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CHAPTER 1

Introduction

“ The Internet is the first thing that humanity has built that humanity doesn’t
understand – the largest experiment in anarchy that we have ever had. ”

Eric Schmidt, former CEO Google

How are networks formed when their participants are acting selfishly?
What is the cost for society by allowing selfish behavior instead of
enforcing a central control? And how can we predict the impact of

rules that narrow the freedom of decision? – These are the key issues of this
thesis, and they are studied for large and dynamic networks.

Networks in the context of this thesis are understood as overlay networks. On
top of any physical communication layer, they feature connections in the form
of logical links among their participants. Specifically, those logical links can
be created and adapted almost arbitrarily, while no such modification affects
the underlying physical connections. The importance of overlay networks
comes from their applications: They are an important technique especially
used to create peer-to-peer networks. Popular examples of them are search
overlays, like Gnutella or Chord (cf. survey by Androutsellis-Theotokis and
Spinellis [AS04]), which provide efficient search mechanisms for large networks
by establishing a logical overlay. Still, different examples can be found in other
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1 Introduction

𝑥
𝑢

Figure 1.1: Example of a participant in a Gnutella overlay network [AS04]: Participant
u� creates a logical link to u�, who just answered her search request successfully. The
expectation of u� is that future requests possibly will be served well by u�.

fields like overlays providing self-stabilization properties (e.g., [KKS14]).
In such networks, we can be faced with a very dynamic behavior of their

participants (e.g., continuous joins/leaves and changing communication pat-
terns). Additionally, networks may have a vast size, literally numbering in
billions of participants. These properties combined make it infeasible to install
any centralized control that manages the whole network; already obtaining
an overview of the complete network would raise immense cost and require a
considerable amount of time.

The neat idea usually employed to overcome those problems is to dismiss
any role of a centralized organizer in favor of distributed operations: The
participants perform local operations in the network to reduce the overall cost.
For example, in a search network, the participants locally compute and decide
the search paths along which incoming requests will be sent (cf. example of
operations in Gnutella search overlay in Figure 1.1). Conceptually, by selecting
those paths the participants implicitly form logical links in the network and
effectively establish an entire logical overlay network: Paths imply overlay
edges and every such edge induces a certain cost for maintaining it.

We encounter a similar behavior when looking at the Internet, where agents
in the form of service providers autonomously optimize their connections
(cf. Fabrikant et al. [Fab+03]). Specifically visible in their attitude, actions are
usually performed in a selfish manner, only with respect to someone’s own
cost. This brings us to a question valid for overlay networks: Why should
participants follow any algorithm and not simply do what is best for them?
– And actually, each agent faces her private cost in the form of requests and
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1.1 A Model for Selfish Network Creation

link maintenance and by this has a valid incentive to consider her own benefit
first, before looking at the overall network. The consequence is that we must
consider them as selfishly acting agents.

However, by accepting this fact of selfish agents, the classic tools from dis-
tributed computing fail to capture the network’s behavior. In the following,
we use the concept of network creation games to tackle this selfish behavior. The
model as well as many methods that will be used throughout this thesis origi-
nate from the field of algorithmic game theory. This field of research is generally
interested in issues relating to the result of strategic actions of autonomous
agents. Thereby, the main concerns range from the computational complex-
ity of outcome forecasts, over the behavior of dynamic adjustment processes
driven by the agents, to the efficiency loss by selfish behavior.

1.1 A Model for Selfish Network Creation

We consider the behavior of a group of network agents who can act arbitrarily,
as long as their actions are rational and strategic. This means, every agent
is aware of her private cost in the network and only performs actions (e.g.,
creating or changing connections) that actually improve her cost.

Over the last two decades, various approaches have been introduced to
provide a model that captures such strategic behavior of agents. The two most
influential models were provided by Jackson and Wolinsky [JW96] and by
Fabrikant et al. [Fab+03]. In the first model, the creation of a link is understood
as the bilateral decision of both acting agents, whereas both agents share the
price of a created link. Thereby, the authors follow the intuition from social
and economic networks. Differently, the latter model by Fabrikant et al. is
inspired by technical networks and interprets a link creation as a unilateral
decision, whereas only the one acting agent has to pay the full price. In any
such model, the agents strive for minimizing their trade-offs between the
cost for communication to other agents and the cost raised by creating and
maintaining links. The communication costs thereby are considered as the
sum or the maximum of distances (called the Sum-Game or the Max-Game,
respectively). With its focus on technical networks, in theoretical computer
science as well as in this thesis, the model of choice to study the outcome quality
of selfish network creation is the network creation game model by Fabrikant et
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1 Introduction

al. [Fab+03].
Our main objective is to study the outcome of the individual selfish actions

of the agents. For this, we consider (pure) Nash equilibria as states of the game,
where no agent can improve her private cost by a unilateral action. Looking at
the set of all Nash equilibrium networks, we can estimate the worst-case loss of
selfish behavior by comparing the worst possible overall cost of stable network
states to the overall cost of an optimal solution. This gives the so-called price of
anarchy and is an established worst-case measure in algorithmic game theory
(cf. [Nis+07, Chapter 17]).

Evidently, this network creation game model is only an abstraction of reality
and cannot capture every effect one can see in practice. Yet, as of today, it
is the best model we know to evaluate the cost of selfish behavior in overlay
networks. Actually, Chun et al. [Chu+04] show that networks that are created
by this model (by adjusting the edge price and applying a maximum degree)
lead to overlay networks with very desirable properties with respect to degree
distributions, stretch, and resilience. The so-generated networks turn out to
behave similarly to the Internet.

1.2 Thesis Focus & Overview

Understanding the impact and outcome of selfish behavior of network par-
ticipants is crucial when designing network protocols. We want to know if
a network protocol is robust against selfish behavior in the sense that selfish
actions lead to globally good solutions. Moreover, a proper model for the
network behavior allows to make predictions for the outcome of the selfish
actions and to take countermeasures like restricting or extending the set of
available actions the agents can perform. In addition to all this, we must ensure
not to loose focus of aspects and issues governing our practical experience.

Approaching this, my thesis suggests and studies several specializations
of the network creation game model by Fabrikant et al. [Fab+03]. Part one
(Chapter 3) covers the impact of non-uniform communication interests, which is
that not every agent is interested in communication with every other agent, i.e.,
only wants to communicate with her so-called friends. In Part two (Chapter 4),
I introduce quality-of-service decisions into the framework of network creation
games, which allows agents to choose not only where to create an edge to but

4



1.2 Thesis Focus & Overview

also of which quality and for which price. Part three (Chapter 5) considers the
important topic of the influence of having only local network information available
to the agents, which specifically limits actions of an agent. Finally, in Part
four (Chapter 6), I introduce a new model for studying the interaction between
different network layers.

The remainder of this section provides a short overview of the main ques-
tions, the model extensions, and sketches the respective results of each part.

Loss and Benefit of Friendships. The first part of my thesis considers the
impact of non-uniform communication interests on the quality of equilibrium
networks. For the game variants derived from the model by Fabrikant et
al. [Fab+03] as well as those derived from the model by Jackson and Wolin-
sky [JW96], the usual assumption is that agents strive to uniformly improve
their communication costs to all other agents. However, in real networks we
have the observation that agents only want to communicate with a (small)
subset of the others, the so-called friends. This raises the question about the
impact of non-uniform communication interests on the quality of equilibria.
Halevi and Mansour [HM07] were the only ones preceding our work who
considered non-uniform communication interests in network creation games,
although only for the Sum-Game model by Fabrikant et al. [Fab+03]. For this
game variant, they provided an upper bound of O(√𝑛) for the price of anarchy
for games with 𝑛 agents.

In this part, first I focus on the overall quality loss by friendships, which is
the worst-case impact those non-uniform communication interests can have in
Swap-Games (a game variant in which only edges can be changed but no new
ones created, [Alo+13]). By discarding the otherwise strong dependency of the
edge price to the game’s outcome, the Swap-Game variant is particularly well
suited to study structural properties of worst-case network instances. In case
of non-uniform communication interests, I show that the price of anarchy is
worst possible in all considered game variants except for tree equilibria in the
Max-Game. For this latter class of tree equilibria, the price of anarchy results in
a notably smaller tight worst-case bound of 𝛩(√𝑛). This is a surprising result
since, unlike in most other game variants, here the average distance versions
behave worse than the maximum distance versions.

In contrast to this worst-case approach, I further study in the original game
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variant by Fabrikant et al. how to exploit that networks typically evolve along
the communication interests of their participants and by this derive improved
equilibrium quality guarantees. The price of anarchy bounds provided for the
newly introduced concept of process equilibria are considerably good when the
communication interests form distinct groups of agents that do not want to
communicate with each other.

The model, analysis, and results presented in this chapter are based on the
following publication:

2012 (with M. Hüllmann, P. Kling and A. Setzer). “Basic Network
Creation Games with Communication Interests”. In: Algorithmic
Game Theory – 5th International Symposium, SAGT 2012, Barcelona,
Spain, October 22–23, 2012. Proceedings, cf. [Cor+12].

The Impact of Choosing Edge Qualities. The second part of the thesis
looks at the impact of providing connections with different qualities and,
accordingly, also for different prices. Instead of choosing only where to create
an edge to, agents are now able to also specify which quality this edge should
have. When considering today’s networks, where connections are offered by
several service providers with different bandwidths and latency guarantees, it
is natural to assume that agents have several edge quality offers available to
choose from. Despite of its significance, this question was not studied before
in the context of network creation games.

Given a set of available edge lengths, the price assignment is modeled by
a so-called price function, which assigns a price to each edge. Such a function
must merely be positive and further fulfill that shorter edges are not more
expensive than longer ones. Despite this very general model, for both the Sum-
Game and the Max-Game and arbitrary combinations of edge lengths and
price functions, equilibrium networks always exist. For the Sum-Game, the
price of anarchy upper bound utilizes a game characterization of the optimal
trade-off between edge price and edge length and is even tight for specific
price functions. In particular, for a class of linear price functions the price of
anarchy becomes constant. The Max-Game, however, shows a very different
behavior and the price of anarchy bounds go in line with the results for the
original game with only one available edge length.

6



1.2 Thesis Focus & Overview

The model, analysis, and results presented in this chapter are based on the
following publication:

2014 (with A. Mäcker and F. Meyer auf der Heide). “Quality of
Service in Network Creation Games”. In: Web and Internet Economics
– 10th International Conference, WINE 2014, Beijing, China, December
14-17, 2014. Proceedings, cf. [CMM14].

Limits of Locality. Global precise knowledge is a very unrealistic assump-
tion if we consider large and dynamic networks. However, most present models
for network creation games assume such knowledge when studying the evo-
lution and outcomes of networks by selfish agents. The only exceptions are
provided by Bilò et al. [Bil+14a; Bil+14b]. In their models, for a fixed parameter
𝑘 the agents only know the network part induced by their 𝑘-neighborhoods.
Under this locality assumption, one can show that the price of anarchy dra-
matically increases in terms of lower bounds. This originates from the fact that
agents can only partially estimate the outcome of their actions, limited by their
local knowledge, and are thus unaware of many possibly profitable actions.

The third part of my thesis studies the limits of locality in the sense: What
is possible in terms of strategic decision making and global cost efficiency
when facing locality? In contrast to Bilò et al., agents are now equipped with
the power to probe (i.e., estimate the cost change for a certain action) a certain
number of different strategies while still restricted to their 𝑘-local knowledge.
The main result is that it suffices to probe only a polynomial number of dif-
ferent strategies (namely all one-edge strategy changes) to ensure price of
anarchy upper bounds close to those in the global knowledge game and by
this to guarantee a good global cost outcome. In particular, this even holds for
constant size neighborhoods.

The model, analysis, and results presented in this chapter are based on the
following publication:

2015 (with P. Lenzner). “Network Creation Games: Think Global –
Act Local”. In: Mathematical Foundations of Computer Science 2015 –
40th International Symposium, MFCS 2015, Milan, Italy, August 24–28,
2015. Proceedings, Part II, cf. [CL15].
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Multilevel Network Games. The last part of my thesis sheds light on the
interaction between different network layers. In particular, how selfish agents
of a general purpose network utilize a high-speed layer to improve their com-
munication costs. Such high-speed layers ensure that for every communication
path in the general purpose layer there is a shorter path in the high-speed layer.
Every agent has the minimal strategy set of either connecting or not connecting
to the high-speed layer for a fixed price. Connected agents then act as gateways
and allow the access to the other layer. Depending on how the high-speed
layer is implemented, two different access models for using the high-speed
layer are considered: Assuming the high-speed layer is a separated network, it
is reasonable that switching between both networks is only possible at specific
gateway locations. Otherwise, if the high-speed layer is considered as a logical
network layer, then only the access to the high-speed layer is restricted to
gateway locations. My model is the first one that analyzes strategic behavior
in multilevel networks. The results specifically cover the price of anarchy and
show that in general the games are not potential games.

The model, analysis, and results presented in this chapter are based on the
following publication:

2014 (with S. Abshoff, D. Jung and A. Skopalik). “Multilevel Net-
work Games”. In: Web and Internet Economics – 10th International
Conference, WINE 2014, Beijing, China, December 14–17, 2014. Pro-
ceedings, cf. [Abs+14].
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CHAPTER 2

Preliminaries

In this chapter, we present an overview of the different concepts and notions
used in the research on network creation games. Thereby, our focus lies
on variants derived from the model by Fabrikant et al. [Fab+03], which

we will call the classic network creation game models.1 We start by formally
introducing the Sum-Game and the Max-Game as the major model lines,
which either model agents who strive for optimizing their average distances or
those who strive for optimizing their maximal distances. After that we discuss
different solution concepts, measures for network quality, and convergence
characteristics for the agents’ operations. Considering these concepts, after
that we provide an overview of the results for variants of the classic network
creation game.

Most notions introduced and used in this section origin from the field of al-
gorithmic game theory. In particular, solution concepts like for example “Nash
equilibria” have a long history in algorithmic game theory, and even predating

1See Section 2.3 for a broader overview and discussion of models derived from the Sum-Game
model by Fabrikant et al. [Fab+03]. As discussed in Section 2.4, there is actually a vast
amount of literature in economics and mathematics concerning alternative models that
predate the model by Fabrikant et al. [Fab+03]. Yet, we see this model as the most relevant
one when considering overlay networks and hence refer to it as the classic model in computer
science.
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2 Preliminaries

this, in game theory. Instead of discussing them in their full generality, we only
introduce and use them in the sense they are required to study the outcome of
selfish behavior in network creation games. For a general introduction into
algorithmic game theory and discussion of those concepts, we refer to Nisan
et al. [Nis+07].

The notions and definitions presented in this chapter form the basis for in-
troducing and discussing the model variants in later chapters. Specifically, the
game definition from Section 2.1 and the equilibrium concepts from Section 2.2
are essential for later discussions.

2.1 The Classic Model of Network Creation Games

A network creation game consists of a set of agents 𝑉 = {𝑣0, … , 𝑣u�−1} (also
called peers or players). These agents are interpreted as network nodes that
can create edges to other agents. Thereby, each agent can individually decide
about the edges she wants to buy in order to minimize her private cost, which is
the cost of the bought edges plus the cost for communicating with other agents.
In the game introduced by Fabrikant et al., agents strive to minimize the sum
of distances to all other agents and are able to perform arbitrary changes of
their edges to achieve this goal. In particular, they can exchange any current
set of own incident edges with another set of incident edges. Throughout this
thesis, we call this game the Sum-Game.2

Stating the Sum-Game in the terms of a strategic game, every agent 𝑢 ∈ 𝑉
has a strategy space 𝑆u� ≔ 𝒫(𝑉 ⧵ {𝑢}), consisting of all possible sets of incident
edges as given by the possible edge endpoints. Her current strategy 𝑠u� ∈ 𝑆u�

specifies the currently selected edges, i.e., the edges owned by 𝑢. Then, the
combination of all agents’ strategies 𝑆 ≔ (𝑠u�0, … , 𝑠u�u�−1) ∈ 𝑆0×…×𝑆u�−1 denotes
the strategy profile, which we interpret as a graph 𝐺[𝑆] = (𝑉, 𝐸): Agents are
the graph nodes and each strategy 𝑠u� = {𝑣1, … , 𝑣u�} implies the graph edges
{𝑢, 𝑣1}, … , {𝑢, 𝑣u�}. Note that all edges are undirected edges and, moreover,
that even though the definition admits multi-edges, throughout this thesis the
selfish nature of the agents ensures that no multi-edges will ever be created –
creating an already existing edge cannot be a cost-improving operation. Given

2In the literature, the Sum-Game is also called Buy-Game [Len12; KL13], SumGame (for
example, [MS13]), or sometimes simply network creation game, [Fab+03].
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2.1 The Classic Model of Network Creation Games

a strategy profile 𝑆 and the induced network 𝐺[𝑆], we denote the length of
the shortest path between two agents 𝑢 and 𝑣 as 𝑑u�[u�](𝑢, 𝑣). The length of the
longest shortest path, diam(𝐺[𝑆]) ≔ maxu�,u�∈u� 𝑑u�[u�](𝑢, 𝑣), gives the diameter
of the network.

Agents strive for minimizing their private costs, given by a private cost function
𝑐u�(𝑆). Thereby, the cost of an agent is given only by the current strategy profile.
Each edge in an agent’s strategy raises a fixed cost value of 𝛼 > 0. There are
two variants of private cost functions that yield two different versions of the
game:

Sum-Game: If the private cost is given by the sum of distances to all other
agents plus 𝛼 for every bought edge, we name the game the Sum-Game
(introduced by Fabrikant et al. [Fab+03]). Given a strategy profile 𝑆 and
an agent 𝑢 ∈ 𝑉 with strategy 𝑠u�, formally the private cost of 𝑢 is:

𝑐u�(𝑆) = 𝛼 ⋅ |𝑠u�| + ∑
u�∈u�

𝑑u�[u�](𝑢, 𝑣) (2.1)

For this cost function, we refer to the first term as edge u�(𝑆), called the
edge cost of 𝑢, and to the second as distu�(𝑆), called the distance cost of 𝑢.

Max-Game: If the private cost is given by the maximum distance to any other
agent plus 𝛼 for every bought edge, we name the game the Max-Game
(introduced by Demaine et al. [Dem+07]). Given a strategy profile 𝑆 and
an agent 𝑢 ∈ 𝑉 with strategy 𝑠u�, formally the private cost of 𝑢 is:

𝑐u�(𝑆) = 𝛼 ⋅ |𝑠u�| + max
u�∈u�

𝑑u�[u�](𝑢, 𝑣) (2.2)

For this cost function, we refer to the first term as edge u�(𝑆), called the
edge cost of 𝑢, and to the second as distu�(𝑆), called the distance cost of 𝑢.

Whereas the private cost is a measure of the local cost of an agent, the sum
over all agents’ private cost values,

cost(𝑆) ≔ ∑
u�∈u�

𝑐u�(𝑆), (2.3)

estimates the overall quality of a network and we refer to it as the social cost.
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2 Preliminaries

2.2 Notions of Stability, Quality, and Convergence

We are interested in the outcome of the selfish actions of the agents. Specif-
ically, how do “stable” states look like in those games? – To answer this, there
are different approaches employed in the literature. The most commonly
used solution concept for network creation games is that of a (pure) Nash
equilibrium, which focuses on network states where no agent can improve
her private cost by unilateral strategy changes (cf. Fabrikant et al. [Fab+03]).
But there are also different concepts of stability, like the stability of bilateral
strategy changes, called pairwise stability (cf. Jackson and Wolinsky [JW96]),
which is widespread in economics literature.

2.2.1 Notions of Stability

The concept of a Nash equilibrium was introduced by Nash [Nas51] in his
seminal work and since then “has emerged as the central solution concept in
game theory” (Nisan et al. [Nis+07, p. 12]). We call a state in a game with a
strategy profile 𝑆 a Nash equilibrium (NE) if no agent can improve her private
cost by unilaterally changing her current strategy.3 Formally, for every agent
𝑣u� and every strategy change 𝑠′

u�u� ∈ 𝑆u�u� with the accordingly changed strategy
profile 𝑆′ ≔ (𝑠u�0, … , 𝑠u�u�−1, 𝑠′

u�u�, 𝑠u�u�+1, … , 𝑠u�u�1
), it holds that 𝑐u�u�(𝑆) ≤ 𝑐u�u�(𝑆′).

Depending on the allowed strategy changes of the agents, we distinguish
the following three different Nash equilibria. For each of these equilibrium
notions, we further introduce a so-called greedy equilibrium variant that denotes
the stability of single-edge changes.

Buy Equilibrium (BE): A strategy profile 𝑆 forms a buy equilibrium if the
agents are allowed to arbitrarily buy, remove, and swap own incident
edges and 𝑆 forms a Nash equilibrium. If no agent can buy one incident
edge, remove one own incident edge, or swap one incident edge, 𝑆 forms
a greedy buy equilibrium.

Asymmetric Swap Equilibrium: A strategy profile 𝑆 forms an asymmetric
swap equilibrium if the agents are only allowed to arbitrarily swap own

3In related literature, this solution concept is often called a “pure” Nash equilibrium to
distinguish it from the so-called “mixed” Nash equilibria, where strategies are chosen only
with certain probabilities. Since we will focus our analysis only on pure equilibria, we omit
the extra term.
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incident edges and 𝑆 forms a Nash equilibrium. If no agent can swap one
own incident edge, 𝑆 forms a greedy asymmetric swap equilibrium. Note
that for this equilibrium notion, the edge price 𝛼 will be omitted, since
the number of edges does not change.

Swap Equilibrium (SE): A strategy profile 𝑆 forms a swap equilibrium if the
agents are allowed to arbitrarily swap any incident edges and 𝑆 forms
a Nash equilibrium. If no agent can swap one arbitrary incident edge,
𝑆 forms a greedy swap equilibrium. Note that for this equilibrium notion,
there are no edge ownerships and thus the edge price 𝛼 can be omitted.

For both, the game variants with sum cost function and with maximum
cost function, all these different equilibria exist. Depending on the edge price
𝛼, either a clique (Sum-Game for 𝛼 ≤ 1, Max-Game for 𝛼 ≤ 1/(𝑛 − 1)) or
a star (Sum-Game for 𝛼 > 1, Max-Game for 𝛼 > 1/(𝑛 − 1)) constitutes a
buy equilibrium (cf. Fabrikant et al. [Fab+03] and Demaine et al. [Dem+07]).
For the swap equilibrium and the asymmetric swap equilibrium, always a
star network forms an equilibrium (cf. Alon et al. [Alo+13] and Mihalák and
Schlegel [MS12]). Note that the named equilibrium networks are also stable
for the corresponding greedy equilibrium variants.

For the above equilibrium concepts, we consider agents who always want
to perform a strategy change when they improve their costs. Yet, this can
lead to situations where the gain of an agent is negligibly small but the effort
in terms of to be changed edges is very high. Facing this, the notion of an
𝜀-approximate equilibrium (e.g., Chien and Sinclair [CS07] and Skopalik and
Vöcking [SV08]) captures agents that perform strategy changes only if they
reduce their cost by a reasonable fraction. We say for 𝜀 > 1 that a strategy
profile is an 𝜀-approximate equilibrium if no agent can decrease her private
cost by a factor of at least 𝜀 by unilaterally changing her strategy, i.e., to be at
most 1/𝜀 times the former cost value.4 Note that this notion of approximate
equilibria applies to all above-mentioned equilibrium variants.

4In the literature, there is a similar solution concept with the same name that considers
the additive improvement by u� instead of the multiplicative improvement (for example,
Daskalakis et al. [DMP07]). Another popular choice for the approximation parameter is u�.
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2.2.2 Quality of Equilibria

The typical way of evaluating the quality of a network is by estimating its social
cost. Our main interest here is the quality of equilibrium networks; in other
words, what is the quality of solutions in a network creation game? Specifically,
we ask:

(a) How bad are equilibria in the worst-case?

(b) How good are equilibria in the best-case?

Since for most variants of network creation games the equilibria are not unique,
these two questions constitute the maximal and minimal loss by the selfish
acting of the agents, which can possibly be far apart. The maximum loss by
selfish behavior was formalized by Koutsoupias and Papadimitriou [KP99] as
the price of anarchy (PoA) and is defined as the ratio of the highest social cost
of any equilibrium network and the optimal social cost. The minimal loss by
selfish behavior was first studied by Schulz and Moses [SM03] and nowadays
is known as the price of stability (PoS).5 Its value is given by the ratio of the
smallest social cost of any equilibrium network and a minimum social cost
network (not necessarily forming an equilibrium).

Definition 2.1 (Price of Anarchy and Price of Stability). Consider a game with
social cost function,

cost ∶ 𝒮 → ℝ>0,

whereas 𝒮 is the set of all possible strategy profiles. Let 𝒮u�u� ⊆ 𝒮 be the
set of all equilibrium strategy profiles and 𝑆Opt be the strategy profile with
minimal social cost. Then we define:

(a) price of anarchy: max
u�∈𝒮u�u�

cost(u�)
cost(u�Opt)

(b) price of stability: min
u�∈𝒮u�u�

cost(u�)
cost(u�Opt)

Note that both maximum and minimum are defined over any number of agents.

Given the equilibrium networks from the previous section, it is easy to see that
the price of stability is bounded to be at most two and it is even close to one for

5The price of stability is sometimes also named the optimistic price of anarchy, see [Ans+03]. It
was first mentioned under the name “price of stability” by Anshelevich et al. [Ans+04].
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several equilibrium concepts and parameters. On the other hand, bounding
the price of anarchy is a challenging task that was considered in a remarkable
series of papers (see Section 2.3).

If we have a strategy profile 𝑆 that is an 𝜀-approximate buy equilibrium
with a corresponding network 𝐺[𝑆], we can derive an upper bound for the
price of anarchy by generalizing an argument by Albers et al. [Alb+14, proof
of Lemma 3.4].

Theorem 2.2. For the Sum-Game with 𝛼 ≥ 2, let 𝑆 be a strategy profile that is an
𝜀-approximate buy equilibrium and let 𝑆Opt be a strategy profile with minimal social
cost. Then the ratio of them is at most:

cost(𝑆)
cost(𝑆Opt)

≤ 𝜀(3 + diam(𝐺[𝑆]))

Proof. Let 𝑢 be an arbitrary fixed agent and consider 𝑇 to be a shortest path tree
rooted at 𝑢. (Note that paths to all other agents exist, since 𝑆 is an 𝜀-approximate
buy equilibrium.) For every agent 𝑣 ∈ 𝑉, we consider the strategy change of
removing all own edges that do not belong to 𝑇 and creating one new edge
to 𝑢. Thereby, let 𝑇u� ⊆ 𝑇 be the set of tree edges owned by 𝑣. Since 𝑆 is
an 𝜀-approximate buy equilibrium and no agent 𝑣 changes distu�(𝑆) by this
operation, we get 𝑐u�(𝑆) ≤ 𝜀(𝛼 ⋅ |𝑇u�| + 𝛼 + (𝑛 − 1) + distu�(𝑆)). Hence, for the
social cost we get:

cost(𝑆) = ∑
u�∈u�

𝑐u�(𝑆) ≤ ∑
u�∈u�

𝜀(𝛼 ⋅ |𝑇u�| + 𝛼 + (𝑛 − 1) + 𝛿u�)

≤ 𝜀(𝛼 ⋅ |𝑇| + (𝑛 − 1)𝛼 + (𝑛 − 1)2 + 𝑛𝛿u�)

≤ 𝜀(2(𝑛 − 1)𝛼 + (𝑛 − 1)2 + 𝑛(𝑛 − 1) ⋅ diam(𝐺[𝑆]))

Since the optimal solution is a star and has social cost of 𝛼(𝑛 − 1) + 𝑛(𝑛 − 1),
we get as the upper bound for the social cost ratio 𝜀(2 + 1 + diam(𝐺[𝑆])).

2.2.3 Convergence of Improving-Response Processes

For both games, the Sum-Game and the Max-Game, we know that equilibria
exist. In particular, this also holds for all variants of buy and swap equilib-
rium concepts as introduced above. Yet, if we consider some non-equilibrium
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strategy profile as a starting point, it is a valid question whether agents can
ever reach such an equilibrium state from there. Specifically we ask: Can we
find for every initial strategy profile a sequence of improving strategy changes
that transforms it into an equilibrium strategy profile? And, if yes, how long
is such a sequence?

These sequences of iterative applications of cost-improving operations of
the agents are called improving-response processes. Here, an improving response
(IR) denotes any cost-decreasing strategy change of an agent. An improving
response is called a best response (BR) if this strategy change is optimal regarding
the maximum private cost decrease for this agent. We say an improving-
response process (or best-response process) converges to an equilibrium if the
final strategy profile of the process is an equilibrium. If, for a game with a finite
number of strategies, there is an infinite long improving-response process, then
the process must contain a cycle. We call such a cycle an improving-response
cycle (or best response cycle, respectively).

A game is called a weakly acyclic game (WAG) (introduced by Young [You93])
if, starting from any initial strategy profile, there exists some finite sequence of
improving responses that eventually converges to an equilibrium state. This
concept resembles the natural class of games that possibly reach equilibrium
states via simple and globally asynchronous strategic actions, independently
of their starting states. For this, even very simple dynamics, like randomized
improving- or best-response dynamics or regret-based dynamics, suffice (cf.
[You93; Mar+09]). Examples for such weakly acyclic games are given by En-
gelberg and Schapira [ES14] and Milchtaich [Mil96]. In [Mil96], Milchtaich
considered a variant of congestion games but with individual payoff functions
for every player. Engelberg and Schapira [ES14] introduced a class of rout-
ing games that models aspects of Internet-routing algorithms. For both of
these weakly acyclic games we have that one can find improving-response
cycles and hence, not every sequence of improving strategy changes leads to
an equilibrium.

A class of games that was subject to substantially more research interest
is the class of potential games (cf. Monderer and Shapley [MS96]). This is the
subclass of all weakly acyclic games for which it holds that every sequence
of improving-response operations terminates in an equilibrium: i.e., every
such sequence is finite. In particular, this is known as the finite improvement
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property (FIP). Monderer and Shapley [MS96] showed that a game has the
finite improvement property if and only if there exists a generalized ordinal
potential function,

𝛷 ∶ 𝑆0 × ⋯ × 𝑆u�−1 → ℝ≥0,

that maps strategy profiles to real numbers such that if an agent performs
an improving response, then the potential value decreases. One of the most
prominent examples for games belonging to this class are congestion games
(introduced by Rosenthal [Ros73]). Monderer and Shapley [MS96] showed that
the class of congestion games is actually isomorphic to potential games. Note
that though every sequence of improving responses is finite, these sequences
still may be exponentially long (cf. Fabrikant et al. [FPT04]).

The convergence properties in the context of network creation games were
studied by Kawald and Lenzner [KL13]. For the Max-Game and the Sum-Game,
i.e., with agents who can arbitrarily buy, delete, and swap edges, they showed
that improving-response cycles may exist and hence these games cannot be
potential games. They further showed that these negative results still hold if
agents are only allowed to perform greedy operations as well as if the agents
are only allowed to swap edges. The only positive exception, where such a
game is known to fulfill the finite improvement property, are swap games
where the starting network is a tree (cf. [Len11; KL13]). This means, these
game variants are potential games and every sequence of improving response
operations converges to an equilibrium state.

For network creation games with bilateral edge operations [CP05], Kawald
and Lenzner [KL13] showed that the game is not even weakly acyclic, mean-
ing that there are strategy profiles for which no sequence of best-response
operations leads to an equilibrium. The question whether the classic network
creation games with unilateral edge operations by Fabrikant et al. are weakly
acyclic games or not is still an open question, though.

2.3 Known Results

Starting with the study by Fabrikant et al. [Fab+03], computing the price of
anarchy in network creation games attracted a lot of attention. Figure 2.1
summarizes the currently best known price of anarchy results for the Sum-
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Game and the Max-Game. In the following, we give an overview of those
results. The detailed discussions and comparisons with the models considered
in this thesis are postponed to the individual chapters.

2.3.1 Model Variants

For the Sum-Game, Fabrikant et al. [Fab+03] proved an upper bound of O(√𝛼)
on the price of anarchy for the case of 𝛼 < 𝑛2, as well as a constant price of
anarchy upper bound for tree network equilibria. By using the fact that for
𝛼 ≥ 𝑛2 every equilibrium is a tree network, they also obtain a constant price of
anarchy for 𝛼 ≥ 𝑛2. In their initial paper, they further formulated their famous
tree conjecture, which states that there is a constant 𝐴 such that for every 𝛼 > 𝐴
all non-transient buy equilibrium networks6 are trees [Fab+03, Conjecture 1].

This conjecture was later disproved by Albers et al. [Alb+14] by constructing
a family of non-tree buy equilibrium networks that contain cycles of length
three and five. In the same paper, Albers et al. further showed that the price of
anarchy is constant for 𝛼 = O(√𝑛) and presented the first sublinear price of an-
archy upper bound of O(𝑛1/3) for general 𝛼 > 0. Demaine et al. [Dem+07] were
the first to prove an o(𝑛u�) bound for 𝛼 in the range of 𝛺(𝑛) and O(𝑛 log 𝑛). By
Mihalák and Schlegel [MS13] and improved by Mamageishvili et al. [MMM13],
it was shown that for 𝛼 ≥ 65𝑛 all equilibria are tree networks and thus the
price of anarchy is constant. For non-integral constant values of 𝛼 > 2, Graham
et al. [Gra+13] showed that the price of anarchy tends to 1 as 𝑛 → ∞. Halevi
and Mansour [HM07] considered the case that agents are only interested in a
subset of the other agents (see detailed discussion in Section 3.2).

Demaine et al. [Dem+07] introduced the Max-Game variant, in which agents
desire to minimize the maximum distance to any other agent, rather than
the sum of distances. For this model, they showed that the price of anarchy
is at most 2 for 𝛼 ≥ 𝑛, at most O(min{4√lg u�, (𝑛/𝛼)1/3}) for 𝛼 in range of

2√lg 𝑛 ≤ 𝛼 ≤ 𝑛, and at most O(𝑛2/u�) for 𝛼 < 2√lg 𝑛. Using a similar technique
like for the Sum-Game, Mihalák and Schlegel [MS13] showed that for 𝛼 > 129
all equilibria are tree networks and hence the price of anarchy is constant.

6Here, a strategy profile is called a non-transient equilibrium if it is a buy equilibrium and also
no agent can perform a strategy change that preserves her current private cost.
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(a) Sum-Game:
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Figure 2.1: Overview of the currently best known upper bounds for the price of anarchy
for buy equilibria. In case (a), the parameter u� is an arbitrary positive constant.

Swap Equilibria. Considering the price of anarchy results for buy equilibria,
we see a strong dependency on the edge price 𝛼. To overcome this, Alon et
al. [Alo+10] introduced the basic network creation game (revisited in [Alo+13]),
which avoids the parametrization by an edge price parameter. In their game
variant, agents of a given network can arbitrarily swap their incident edges in
order to minimize the maximum or sum of distances to the other agents. By
the change from edge ownerships to anonymous edges, which do not belong
to any specific agent anymore, this game is mostly suited to analyze structural
properties of equilibria rather than convergence processes. In the following,
we call equilibria of this game swap equilibria (cf. Section 2.2), although they
are conceptually different to the original Sum-Game and Max-Game, as there
are no edge ownerships anymore. Specifically, Mihalák and Schlegel [MS12]
showed that the equilibrium concepts of swap equilibrium and buy equilibrium
are different in the sense that equilibrium networks from one concept are not
always equilibria in the other concept and vice versa (cf. Section 2.3.2).

Restricting the initial networks to trees, Alon et al. [Alo+13] showed that for
the Sum-Game the only equilibrium is a star network, while in the Max-Game it
can be either a star network or a double-star (i.e., any tree graph with diameter
of at most three). Without restrictions to the initial networks, all equilibria in

the Sum-Game are proven to have a diameter of at most 2O(√lg u�), which is
also the upper bound for the price of anarchy. For the Max-Game, the authors
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only show the existence of an equilibrium of diameter 𝛩(√𝑛), which especially
gives the same lower bound for the price of anarchy. Computationally, the
estimation of best-response strategies can still be 𝒩𝒫 -hard in general. Yet,
the greedy swap game version, which was considered by Alon et al. [Alo+13],
makes the best-response computation feasible in polynomial time. In Chapter 3,
we will discuss the effects of non-uniform communication interests in swap
games and thus omit details here.

Budgeted Buy Equilibria. Ehsani et al. [Ehs+15] introduced a different ap-
proach for removing the edge price 𝛼 from the classic model. Their idea was
to build upon a game by Laoutaris et al. [Lao+14], in which every agent has
only a limited budget for buying directed edges of different lengths and prices
in order to minimize the sum of distances according to her preference list.
The model by Ehsani et al. [Ehs+15] applied the budget restriction to both the
Sum-Game and the Max-Game. Specifically, they changed the private cost
functions to only consist of the distance cost term.

In the changed model, one can observe that the agents’ budgets significantly
change the outcomes of the games. Given an arbitrary non-negative assignment
of budgets to the agents, equilibria always exist for both the Sum-Game and
the Max-Game. While Ehsani et al. [Ehs+15] provide an upper bound of
O(2√log u�) for the price of anarchy in the Sum-Game, achieved by a similar
technique as in Alon et al. [Alo+13], in the Max-Game they can show a worst
possible price of anarchy of 𝛩(𝑛). If all agents have positive budgets, in the
Max-Game the price of anarchy result improves to O(√log 𝑛).

Asymmetric Swap Equilibria. Mihalák and Schlegel [MS12] proposed a
variant of the swap game model in which edges are owned by agents and
specifically only own edges can be swapped. The so-called asymmetric swap
game hereby generalizes both the budget game model and the swap game
model, in the sense that any equilibrium in one of these models forms an
equilibrium in the asymmetric swap game model.

Their main results are particular structural insights into the equilibria of
all of these games. On the one hand, they show that every asymmetric swap
equilibrium has at most one (non-trivial) 2-edge-connected component. On the
other hand, they show a logarithmic upper bound on the equilibrium network
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diameter for the case that the minimum degree of the unique 2-edge-connected
component is at least 𝑛u� with 𝜖 > 4 lg 3

lg u� . These structural results were later
reused for proving the nowadays best known price of anarchy upper bounds
in Mihalák and Schlegel [MS13] and Mamageishvili et al. [MMM13].

Greedy Equilibria. In the models we discussed so far, agents are able to
perform radical strategy changes in terms of the number of edges changed at
a time. Specifically, for these models we made the assumption that agents are
able to compute their best strategy changes – even if this is computationally
intractable, as, for example, the computation of a best-response strategy change
in the Sum-Game is 𝒩𝒫 -hard. Lenzner [Len12] introduced the notion of
greedy operations (cf. Section 2.2) by limiting agents to perform only single-
edge changes. This notion can be applied to every before-mentioned game.

Restricting agents to greedy operations immediately makes best-response
computations feasible in polynomial time. Surprisingly, in the Sum-Game
greedy buy equilibria are 3-approximate buy equilibria. Although it is not
directly proven in [Len12], by Theorem 2.2 the results for the price of anarchy in
the Sum-Game for buy equilibria essentially apply here, too (only impaired by
a small multiplicative factor). This is quite different for the Max-Game, where
greedy equilibria exist that are not even 𝛺(𝑛)-approximate buy equilibria.

Local Knowledge Buy Equilibria. Agents with only local information about
the current status of the network were first considered by Bilò et al. [Bil+14a]
and then extended by a slightly relaxed locality notion in Bilò et al. [Bil+14b].
In both papers, the local knowledge is modeled in a very pessimistic way: An
agent is aware of her neighborhood within a bounded distance only and has to
assume a worst-case network structure outside of this view range. In particular,
every agent estimates the result of a strategy change by the worst-case private
cost over all possible network structures compliant with her current view. We
refer to Chapter 5 for a detailed discussion of this model and the results therein.
Specifically, there we provide a much more optimistic model for locality that
takes into account that agents are able to test the outcome of (some) different
strategy changes and finally choose the best of them.
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2.3.2 Relationships of Model Variants

For understanding the structural similarities and differences between the var-
ious equilibrium concepts, we compare their respective sets of equilibrium
networks. Specifically, we are interested in set relationships between them in
the following form: Given an equilibrium strategy profile 𝑆 of a fixed game, for
which other games is 𝑆 also an equilibrium? For example, for every network
that is a buy equilibrium for a fixed edge price 𝛼, this network is also a greedy
buy equilibrium for the same edge price.

Lenzner [Len14, pp. 22–24] discussed this question for various games. In
Figure 2.2, we provide an overview of their results for the game variants used in
this thesis and refer to [Len14] for the discussion and proofs. Specifically note,
as discussed by Mihalák and Schlegel [MS12], that buy equilibria and swap
equilibria are very different solution concepts in the regard of equilibrium sets.
In particular, there are constellations where both equilibrium sets intersect but
none is a subset of the other one. However, asymmetric swap equilibria are a
generalizing class of both concepts.

The equilibria in the edge pricing game from Chapter 4, where agents can
also choose the length and price for their edges, are evidently a subset of
the buy equilibria, assuming that edges of length 1 for price 𝛼 are available.
Supplementary to this diagram, in Chapter 5 we will further discuss how the
different versions of local knowledge equilibria fit into this set structure.

2.4 Alternative Models

The research on network formation by selfish agents has a long history in eco-
nomics research and was considered only later in mathematics and computer
science. With a focus on economics literature, Dutta and Jackson [DJ03] and
Jackson [Jac08] provide a very good overview of the different approaches and
results so far. In the following, we name only some of the most relevant models
that help us to provide a better classification of the variants that follow the
model by Fabrikant et al. [Fab+03]. Note that especially in economics literature
the incentives of agents are modeled by utilities. In this light, those models
consider agents to utilize their connections to others and by this receive a gain,
which is then reduced by the effort spent on creating connections. The more
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asymmetric
swap equilibria

greedy buy
equilibria

buy
equilibria

swap
equilibria

Figure 2.2: Structural relationships between Nash equilibria in different model variants.
The areas indicate how equilibria of one game are included in the set of equilibria
of another game variant. Specifically, an equilibrium strategy profile for a game in
this diagram is also an equilibrium for all game variants indicated as supersets. Cf.
Lenzner [Len14, pp. 22–24] for a detailed discussion of the inclusions.

technical view on networks, like it is promoted by Fabrikant et al. [Fab+03],
rather focuses on the trade-offs between the cost for utilizing edges and the
creation cost as the goal of an agent.

While the early models, like in Myerson [Mye77], were motivated by coopera-
tive game theory and hence only took into account which agents are connected
in a subnetwork, Jackson and Wolinsky [JW96] and Bala and Goyal [BG00]
considered network distances to estimate the utility of an agent. Hence, dif-
ferent networks connecting the same agents can lead to different utilities of
the agents. Jackson and Wolinsky [JW96] introduced the notion of pairwise
stability for a game where the utility of an agent depends on the distances in
the network. A network in this game is called pairwise stable if both agents
of every established edge want to keep that connection and no pair of agents
wants to create a further edge. Note that here the edge price has to be paid by
both incident agents of an edge. Their approach uses a multiplicative utility
distance measurement such that for a fixed parameter 𝛿 ∈ (0, 1], a path of
length 𝑑 gives an utility of 𝛿u�. The utility of an agent then is the sum of utilities
to all other agents minus the cost for the established connections. In [JW96],
the authors also explicitly compare stable networks to optimal networks. Later,
Baumann and Stiller [BS08] continued this research and further analyzed con-
vergence properties and the price of anarchy for different ranges of the edge
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price depending on 𝛿. Watts [Wat01] proposed a dynamic process to analyze
the outcomes of the selfish decisions of the agents. This process uniformly at
random proposes possible edges to the agents, who then can decide whether
they want to create the edge or not.

Corbo and Parkes [CP05] considered bilateral edge creation games for agents
with the Sum-Game cost function from Fabrikant et al. [Fab+03]. The authors
show that the price of anarchy is worse than for the unilateral game by Fabrikant
et al. Along their analysis, they showed the equivalence of pairwise stability
and a two-player coalition refinement of buy equilibria. Interestingly, Kawald
and Lenzner [KL13] showed that best-response dynamics in this game are
not even weakly-acyclic in the sum distance variant, and admit best-response
cycles in the maximum distance variant.

In contrast to the pairwise stability notions mentioned so far, Bala and
Goyal [BG00] considered games with unilateral edge creations. Edges in their
game variants are either unidirectional or bidirectional, but there is always only
one agent who decides to create and pay for an edge. The utility of agents is
given by exponential payoffs like in the game by Jackson and Wolinsky [JW96].
Although the cost function of the agents is different, the game is very close to
the game by Fabrikant et al. [Fab+03].

Moscibroda et al. [MSW06] considered the selfish behavior of agents as peers
in peer-to-peer networks, which are modeled as metric spaces. Like in the Sum-
Game, the agents strive for minimizing their trade-off between the edge cost
and the sum of distances to all other agents. In this setting with an underlying
metric space, the authors can show a price of anarchy of O(min{𝛼, 𝑛}). They
further provide negative convergence results and moreover, they show that
buy equilibria do not always exist; even deciding if such an equilibrium exists
is 𝒩𝒫 -complete.

A series of research focuses on the formation of social networks. Agents
in these networks especially seek for being well connected with agents who
have a high influence or centrality in the network. For example, Nikoletseas
et al. [Nik+15] introduced a swap-based model where the agents’ revenue is
based on the sum of degrees of their direct neighbors. With this, the authors
aim to provide a model for large distributed systems that are similar to power
law or preferential attachment graphs. In this game, there exists an exact
potential and hence improving-response processes always converge. Hereby,
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the convergence time is polynomially bounded. This still holds even when
restricting the agents by a local view such that they can only probe the degrees
of a fixed number of other agents; improving-response dynamics still converge
in expected polynomial time.

A different approach is provided by Brautbar and Kearns [BK11]. They
proposed a model driven by the observation that friendships in social networks
are often transitive and thus define the utility of an agent essentially by the
number of triangle she is part of. Specifically, using the clustering coefficient
of an agent, which is the probability of two uniformly at random selected
neighbors being connected, the utility of an agent is the clustering coefficient
minus the edge cost (hence, only an edge price of 𝛼 ∈ (0, 1) is reasonable).
Considering the agents having a high clustering coefficient, we can see which
agents are important in the network in terms of being well connected via
cliques.

Note that for the remainder of this thesis, we will only consider variants of
the classic game by Fabrikant et al. [Fab+03].
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CHAPTER 3

Loss and Benefit of Friendships

In this chapter, we analyze the impact of non-uniform communication inter-
ests on the quality of equilibrium networks: Given a large and dynamic
network, the agents are usually not interested in communicating with

all other agents but only with a subset of them. Our focus lies on the differ-
ent aspects of influences by such non-uniform communication regarding the
negative and the positive effects on the quality of equilibria.

Throughout this chapter, two agents are called friends when they want to
communicate with each other. In our model, friendships are mutual and an
agent is only interested in her direct friends and not necessarily her friends’
friends. This means, we do not assume any gain by having many first or second
order friends, like it may be in social networks. Rather, we understand the
friendships as some given allocation, which simply specifies which agents
want to communicate with each other. Our analytical tool for modeling these
friendships is a so-called friendship graph. Given two nodes in this graph, the
respective agents are friends of each other if and only if there is a friendship
graph edge between them.

First, we consider the worst-case impact on equilibrium networks by friend-
ship allocations in the Swap-Game [Alo+10]. By discarding the strong depen-
dency of the edge price, which is present in most other models, this model is
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particularly well suited to study structural equilibrium properties. On the one
hand, we seek for combinations of a friendship graph and a corresponding
equilibrium network that maximizes the worst-case social cost ratio when
compared to an optimal solution. On the other hand, we aim for upper bounds
on the price of anarchy when facing arbitrary friendship allocations. Thereby,
we will show a worst-case behavior for almost all considered variants. The
only exceptions are tree equilibria for games with agents who strive for min-
imizing their maximum distances to their friends. In this case, we provide
an interesting structural property of equilibrium networks which leads to a
surprising bound for the price of anarchy of 𝛩(√𝑛).

Facing these negative results, we change our focus to the analysis of beneficial
effects of friendships. We exploit the properties given by friendship allocations
in the Sum-Game and the Max-Game (cf. Section 3.1, [Fab+03]) that ensure
best-response processes to lead to equilibria with not too high social costs.
Specifically, we introduce a new concept that we name process equilibrium and
show that equilibria in this natural class, for which connected components of
the friendship graph correspond to connected components in the equilibrium,
lead to a drastically improved price of anarchy results.

For all such game variants, note that if the friendship graph is a clique,
our games with friendship allocations coincide with their original versions in
which every agent is interested in every other agent.

Chapter Basis. The model, analysis, and results presented in the remainder
of this chapter are based on the following publication:

2012 (with M. Hüllmann, P. Kling and A. Setzer). “Basic Network
Creation Games with Communication Interests”. In: Algorithmic
Game Theory – 5th International Symposium, SAGT 2012, Barcelona,
Spain, October 22–23, 2012. Proceedings, cf. [Cor+12].

Chapter Outline. In Section 3.1, we introduce friendship graphs to model a
non-uniform communication behavior of agents in network creation games.
An overview of our results and a comparison with related work is provided in
Section 3.2. The main part of this chapter is given in Section 3.3, which is the
analysis of the worst-case behavior of friendship allocations in Swap-Games.
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3.1 The Friendship Model & Preliminaries

Section 3.4 contrasts these negative results with a more optimistic view on
friendship allocations and shows how non-uniform communication interests
can have a positive effect on the overall quality of networks. Section 3.5 recaps
the results and presents an outlook for future research.

3.1 The Friendship Model & Preliminaries

As usual for network creation games, we consider a set of 𝑛 selfish agents
𝑉 = { 𝑣1, 𝑣2, … , 𝑣u� } who unilaterally perform strategy changes in order to
improve their private costs. The models considered in this chapter consist of
two main ingredients:

(a) The friendship model, which states with respect to whom agents want to
reduce their communication costs, and

(b) the game model, which states how agents can act.

Note that we use the notions and notations from Section 2.1 and Section 2.2.3
and name only differences explicitly here.

Friendship Model. Every agent 𝑢 ∈ 𝑉 has a fixed set of friends F(𝑢) ⊆ 𝑉,
whereas F ∶ 𝑉 → 𝒫(𝑉) is called a friendship allocation. Throughout this chapter,
if not specified differently, we only consider friendship allocations that fulfill:

(a) Friendships are mutual and hence for every 𝑣 ∈ F(𝑢) it holds 𝑢 ∈ F(𝑣).

(b) Every agent 𝑢 ∈ 𝑉 hast at least one friend: i.e., | F(𝑢)| ≥ 1.

Considering such a friendship allocation, we define a friendship graph 𝐺u� =
(𝑉, F), whereas the agents 𝑉 form the graph nodes and there is an edge between
two nodes if and only if the respective agents are friends. Edges in this graph
are bidirectional.

Game Model. We combine friendship allocations with two different game
concepts. On the one hand, we consider Swap-Games (cf. Section 2.2), which
are convenient for analyzing structural properties of worst-case equilibrium
settings by dismissing the use of an edge price parameter. On the other hand,
we study friendship allocations in Buy-Games (cf. Section 2.1) with respect to
the positive effects of friendships regarding the social cost.
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3 Loss and Benefit of Friendships

Swap-Game: In the Swap-Game variant, the agents 𝑉 are connected by a
set of bidirectional edges 𝑆. These edges are not owned by anyone and
hence any edge can be swapped arbitrarily by any incident agent. Here,
the swap operation of an agent is the simultaneous removal of an incident
edge and replacement by a different incident edge, formally stated as
{𝑢, 𝑣} → {𝑢, 𝑤} for agent 𝑢 swapping the edge {𝑢, 𝑣} to edge {𝑢, 𝑤} (cf.
Figure 3.1). An agent’s operation can consist of an arbitrary combination
of simultaneously executed swaps. The current strategy profile, which
is equal to the current set of edges in the network, is called 𝑆 and in
conformity with other models we denote the implied network as 𝐺[𝑆].
In these games, we only consider connected networks and restrict the
agent’s actions such that agents must always preserve connectivity.

Any agent strives to minimize her private cost, which is given either by
the average distance or by the maximum distance cost function. Namely,
in the Sum-Swap-Game,1 the private cost of an agent is

𝑐u�(𝑆) ≔
1

|F(𝑢)|
∑

u�∈F(u�)
𝑑u�[u�](𝑢, 𝑣),

and in the Max-Swap-Game, it is

𝑐u�(𝑆) ≔ max
u�∈F(u�)

𝑑u�[u�](𝑢, 𝑣).

Here, 𝑑u�[u�](𝑢, 𝑣) denotes the shortest path distance in the network 𝐺[𝑆] =
(𝑉, 𝑆).

Buy-Game: For the Buy-Game variant, we consider buy equilibria of the Sum-
Game and the Max-Game (cf. Section 2.1). In this chapter, we name these
games Sum-Buy-Game and Max-Buy-Game to avoid confusion with the
Swap-Games. In the considered Buy-Games, agents can arbitrarily buy
incident edges to other agents, each for a fixed price of 𝛼 > 0. The set of
edges of an agent 𝑢 ∈ 𝑉 is given by 𝑠u� and 𝑆 is the joint strategy profile
of all individual strategies. For the Sum-Buy-Game, the private cost

1Note that for the Sum-Swap-Game we normalize the distance cost by the number of friends
and thus gain the average distances. This was not necessary in the original games with
uniform communication interests, where every agent wanted to communicate with exactly
u� − 1 other agents.
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𝑥
𝑤

𝑣
𝑢

Figure 3.1: Illustration of a swap operation in the Max-Swap-Game. The blue agents
denote the friends F(u�) of agent u� (red), the orange line states the initial longest
shortest path from agent u� to any of her friends. The swap {u�, u�} → {u�, u�} then
reduces u�’s private cost from 4 to 3.

function is
𝑐u�(𝑆) ≔ 𝛼 ⋅ |𝑠u�| +

1
|F(𝑢)|

∑
u�∈F(u�)

𝑑u�[u�](𝑢, 𝑣),

and in the Max-Buy-Game, it is

𝑐u�(𝑆) ≔ 𝛼 ⋅ |𝑠u�| + max
u�∈F(u�)

𝑑u�[u�](𝑢, 𝑣).

The overall quality of a network 𝐺[𝑆] is measured by the sum over all private
costs and is called the social cost cost(𝑆) ≔ ∑u�∈u� 𝑐u�(𝑆). Using the same terms
as in Section 2.2, we denote a strategy profile as equilibrium if no agent can
improve her private cost by a unilateral strategy change. To quantify the
worst-case loss of selfish behavior, we use the price of anarchy, which is the
worst-case ratio of any equilibrium’s social cost and the minimal cost of any
strategy profile.

3.2 Related Work & Contribution

While network creation games, as introduced by Fabrikant et al. [Fab+03] and
their variants, seem to capture the dynamics and evolution caused by the self-
ish behavior of agents in an accurate way, there is a major drawback: Most of
those models assume agents to be interested in communicating with all other
agents in the network. Given the immense size of communication networks,
this seems rather unrealistic. In reality, agents usually communicate in small
groups and each only has a small subset of the network participants she is
interested in.
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3 Loss and Benefit of Friendships

The only paper apart from [Cor+12] that considers such non-uniform com-
munication interests in the framework of network creation games is by Halevi
and Mansour [HM07]. They also use the above stated concept of friendship
allocations to model the non-uniform communication interests of the agents.
However, their focus only lies on the Sum-Buy-Game (cf. Section 2.1), for
which they proved the existence of equilibria for almost all edge prices of 𝛼
(in particular, 𝛼 ≤ 1 and 𝛼 ≥ 2). For general 𝛼, they provided an upper bound
of O(√𝑛) for the price of anarchy. For an average degree 𝑑 of the friendship
graph, i.e., the average number of friends of the agents, in the case of 𝛼 or 𝑑
being a constant and 𝛼 = O(𝑛𝑑), they upper bounded the price of anarchy by
a constant. Furthermore, the authors provided a family of problem instances
for which the price of anarchy is lower bounded by 𝛺( log u�

log log u�
).

A different approach to introduce non-uniform communication interests
was used by Albers et al. [Alb+06]. They apply a so-called weighted traffic
matrix to the Sum-Buy-Game such that for the communication cost of an agent
every distance is multiplied by a traffic value from the interval (0, 1), which
indicates how much traffic should be sent to the target. The special case of
having only 0/1-weights results in the friendship graph considered in this
chapter. However, their model and applied techniques explicitly require all
traffic values to be greater than 0.

Different to explicit a-priori given friendship allocations, there are also
models where the utility of an agent is based on how many other agents are in
her two-neighborhood, like Nikoletseas et al. [Nik+13], for example. In that
game, the utility of an agent is the sum of degrees of her neighbors.

For the results about the uniform interest case in the Buy-Game and the
Swap-Game, we refer to Section 2.3.

Contribution. In this chapter, we introduce a generalized class of swap equi-
libria in network creation games (cf. Section 2.3) by taking the different friends
of individual agents into account. For the Swap-Game with friendship allo-
cations, we provide tight price of anarchy results for all interesting model
variants: The price of anarchy is worst possible for the Sum-Swap-Game, this
even when restricting to the class of tree equilibria. For the Max-Swap-Game it
is worst possible for arbitrary equilibria and turns out to be only 𝛩(√𝑛) for tree
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3.3 Worst-Case Friendships in Swap-Games

equilibrium networks. The latter result uses an interesting structural insight
into equilibrium networks (see Binding-Sequence, Definition 3.7). We show
that the price of anarchy for tree equilibrium networks in the Max-Swap-Game
can be further characterized by the size 𝑀 of a maximum independent set in
the friendship graph, which gives a price of anarchy of at most 2𝑀 and hence
an improved bound if 𝑀 ≤ √𝑛. For example, for a complete friendship graph
we have 𝑀 = 1 and hence a constant price of anarchy.

Moreover, we turn our interest to a more optimistic approach of how self-
ish behavior can deteriorate the social cost. Thereby, we identify a structural
property of certain best-response processes, namely that the connected com-
ponents of the friendship graph are also connected components in respective
equilibrium networks. Using this, we introduce the class of process equilibria
and for this class provide an improved price of anarchy bounds. For the Sum-
Buy-Game we provide a so-called process price of anarchy of O(log 𝑛 + √𝑁);
whereas for the Max-Buy-Game it is O(𝑛2/u� + (𝑁/𝛼)1/3). Here, 𝑁 is the size
of the largest connected component in the friendship graph.

3.3 Worst-Case Friendships in Swap-Games

In this section, we consider the worst-case impact of friendship allocations in
Swap-Games. Our focus lies on the existence of equilibria, the convergence of
best-response processes, and specifically on bounds for the price of anarchy.
For the original Swap-Games with uniform interests and thus with a complete
friendship graph, we know from the discussion in Section 2.3 that equilibria
always exist, that for tree equilibrium networks the price of anarchy is constant

and that for the Sum-Swap-Game with 𝑛 agents it is at most 2O(√lg u�), whereas
for the Max-Swap-Game only a lower bound of 𝛺(√𝑛) is known (cf. Alon
et al. [Alo+10]).

We start our analysis with games utilizing the maximum-distance price
function, for which we show an interestingly different behavior with regard to
the price of anarchy, when differentiating between tree equilibrium networks
and arbitrary equilibriums. Later, the Sum-Swap-Game will show a worst-case
behavior also for the class of tree equilibrium networks. This is a remarkable
difference to the games with uniform interests, where tree equilibria behave
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similarly in both variants and, moreover, the general case actually shows a gap
where the Sum-Swap-Game guarantees a much better price of anarchy than
the Max-Swap-Game can provide.

To avoid networks becoming disconnected, we restrict the agents to perform
only those swaps that preserve the connectivity of the network. This restriction
is valid from a practical point of view, where a lost network connectivity is to
be avoided, since re-connecting a network causes unpredictable costs – if at all
possible. Note that in games with uniform communication interests, agents
want to communicate with all other agents and hence a network would never
be disconnected.

We start with studying the existence of equilibria when we are given arbitrary
friendship allocations. For arbitrary networks this is a trivial question, since
having the network equal to the friendship graph raises the cost of 1 for every
agent, is an equilibrium, and affirms the price of stability to be 1. On the other
hand, for tree network equilibria it is not clear that an equilibrium for a given
(possibly cyclic) friendship graph always exists. In the following, we provide
an algorithm that computes equilibria for both game variants with social cost
that are at most two times those of a socially optimal solution.

Theorem 3.1 (Max-Swap-Game: price of stability). In the Max-Swap-Game, for
any friendship allocation F there exists a tree equilibrium network and the price of
stability is at most 2.

Proof. Let F be a friendship allocation for 𝑛 agents 𝑉. By using Algorithm 1
we construct a tree network, which we claim to be an equilibrium.

In the first loop (lines 4–6), we only add edges between agents 𝑣 and 𝑤 who
are friends and where one of them has exactly one friend. Thus, the resulting
network at line 6 is acyclic. Note that for every agent 𝑣 ∈ 𝐵, who is considered
in the second loop (lines 7–12), it holds: (1) 𝑣 is a friend of at most one agent
to whom 𝑣 is not yet connected and (2) 𝑣 is connected to an agent 𝑢 ∈ 𝐴
(otherwise, 𝑣 would have degree one in the friendship graph and therefore
would be an element of 𝐴 instead of 𝐵). Thus, adding an edge {𝑣, 𝑤} with
𝑣 ∈ 𝐵 and F(𝑣) ⧵ {𝑢 ∈ F(𝑣) ∣ ∃𝑢′ (𝑢, 𝑢′) ∈ 𝑆} = {𝑤} in line 9 does not create
cycles in the network. Finally, in the next loop (lines 14–16) we create a star
that connects all formerly created disjoint trees, which contain agents formerly
been in set 𝐵. By this, the constructed network (𝑉, 𝑆) is a set of trees. In the

34
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Algorithm 1: Computation of Equilibrium Networks
1 𝑆 ← ∅
2 𝐴 ← {𝑣 ∈ 𝑉 ∣ | F(𝑣)| = 1}
3 𝐵 ← 𝑉 ⧵ 𝐴
4 foreach 𝑣 ∈ 𝐴 do
5 𝑆 ← 𝑆 ∪ {{𝑣, 𝑤} | F(𝑣) = {𝑤}} B note that 𝑤 is unique
6 end
7 while ∃ 𝑣 ∈ 𝐵 with |{𝑤 ∈ F(𝑣) ∣ {𝑣, 𝑤} ∉ 𝑆}| ≤ 1 do
8 if |{𝑤 ∈ F(𝑣) ∣ {𝑣, 𝑤} ∉ 𝑆}| = 1 then
9 𝑆 ← 𝑆 ∪ {{𝑣, 𝑤} | 𝑤 ∈ F(𝑣) ∧ {𝑣, 𝑤} ∉ 𝑆} B note that 𝑤 is unique

10 end
11 𝐵 ← 𝐵 ⧵ {𝑣}
12 end
13 select an arbitrary agent as center agent 𝑥 ∈ 𝐵 and assign 𝐵 ← 𝐵 ⧵ {𝑥}
14 foreach 𝑤 ∈ 𝐵 do
15 𝑆 ← 𝑆 ∪ {{𝑥, 𝑤}}
16 end
17 foreach connected component 𝐶 ⊂ (𝑉, 𝑆) with 𝑥 ∉ 𝐶 do
18 select an arbitrary agent 𝑦 ∈ 𝐶
19 𝑆 ← 𝑆 ∪ {𝑥, 𝑦}
20 end
21 return 𝑆;

final loop (lines 17–20), we connect all remaining unconnected components.
It remains to show that (𝑉, 𝑆) is an equilibrium. By construction, each agent

added during the first two loops (lines 4–12) has a private cost of 1. The center
agent 𝑥 (selected in line 13) of the star also has a private cost of 1, since each
friend of 𝑥 either was connected to 𝑥 in the previous two loops (lines 4–12) or
is connected to 𝑥 in the last loop (lines 14–16). For each friend 𝑢 of an agent
𝑤 ∈ 𝐵 who is chosen in line 14 it holds: Either 𝑢 is chosen in the previous
loops (lines 4–12) and the edge {𝑢, 𝑤} is added to 𝑆, or 𝑢 is connected to 𝑥 in
the last loop (lines 14–16). In both cases, the distance from 𝑤 to 𝑢 is at most
2. Thus, 𝑤 has a private cost of 2. Since 𝑤 ∉ 𝐴, we have | F(𝑤)| > 1 and thus,
𝑤 cannot perform any improving response. Hence, we get a private cost of at
most 2 for every agent.

Finally, we use that every network implies social cost of at least 𝑛. Comparing
this to the network constructed by the above algorithm, we get a ratio of
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2𝑛/𝑛 = 2, and by this an upper bound on the price of stability.

Theorem 3.2 (Sum-Swap-Game: price of stability). In the Sum-Swap-Game, for
any friendship allocation 𝐹 there exists a tree equilibrium network and the price of
stability is at most 2.

Proof. Let F be a friendship allocation for 𝑛 agents 𝑉. By using Algorithm 1 we
construct a tree network, which we claim to be an equilibrium. The arguments
from Theorem 3.1 apply unchanged to show that the resulting network is
acyclic. Thus, it only remains to show that the computed network 𝐺[𝑆] is an
equilibrium regarding 𝐹.

First, for any agent 𝑢 with exactly one friend, the first loop (lines 4–12) guar-
antees that her friend is at distance 1, which is minimally possible. The same
holds by loop (lines 7–12) for agents that have exactly two friends, whereas
one of them has only one friend. Now consider some agent 𝑢 with at least two
friends | F(𝑢)| ≥ 2. For every 𝑣 ∈ 𝐹(𝑢) who was handled in the first two loops,
we know that the distance from 𝑣 to all her friends is 1 and thus minimally
possible. If we have 𝑢 = 𝑥, i.e., 𝑢 being the selected center agent, then her
distances to all of her friends are exactly 1 and also best possible. Otherwise, 𝑢
is connected by one edge to the center agent 𝑥 and has at least two friends to
which both shortest paths contain 𝑥, since the second loop was not entered for
𝑢. Using this, 𝑢 cannot perform any improving response that swaps her single
edge that is used to connect to these agents.

For the convergence of best-response processes with a complete friendship
graph, we know from Kawald and Lenzner [KL13] that such processes always
converge for tree networks but may contain infinite improvement cycles for
general networks. In the case of the Max-Swap-Game, we next show that
friendship allocations admit best-response cycles also for tree networks.

Proposition 3.3. The Max-Swap-Game on tree networks with friendships is no
potential game.

Proof. Using the construction provided in Figure 3.2, there are settings that
allow cyclic best-response processes over all agents. Hence, the game does not
provide the finite-improvement property and cannot be a potential game.
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Figure 3.2: This figure depicts an instance of the Max-Swap-Game where the black
lines mark the network edges and the blue lines state a friendship allocation.
We consider the sequence u�1, … , u�4, u�1, … , u�4, u�1, … , u�4 in which the agents per-
form best-response operations. By this, only the following swaps are performed:
{u�3, u�3} → {u�3, u�3}, {u�3, u�3} → {u�3, u�3}, {u�3, u�3} → {u�3, u�3} (in this order). After one
sequence the network is again the initial network and hence admits a best-response
cycle.

3.3.1 Private Costs in Max-Swap-Game Tree Equilibria

Below, we prepare the arguments to prove the following worst-case bound for
the private cost of any agent in a tree equilibrium, which later will lead to a
corresponding bound for the price of anarchy (Theorem 3.14):

Theorem 3.4. For a friendship allocation 𝐹, let 𝑆 be a Max-Swap-Game tree equilib-
rium strategy profile of 𝑛 agents 𝑉. Then, for all 𝑢 ∈ 𝑉 we have 𝑐u�(𝑆) = O(√𝑛).

Outline of the proof: We consider a tree equilibrium network and some agent
with a maximal private cost among all agents. Starting with this agent, we can
find an agent sequence, later called a Binding-Sequence, which will contribute
the following properties: (1) each two successive agents of the sequence are
friends of each other and (2) every agent of the sequence is “far away” from all
previous agents of the sequence. We will prove that such a sequence necessarily
exists and that its length is proportional to the private cost of the starting agent.
Since we can show that such a sequence visits each agent at most twice, we get
an upper bound on its length by the size of the network and, by this, also an
upper bound on the private cost.
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𝑢
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Figure 3.3: Illustration of Lemma 3.6: agent u� could perform an improving swap
{u�, u�1} → {u�, u�2} if the T-configuration claim would be wrong.

Remark 3.5. Note that in every equilibrium network 𝐺[𝑆] = (𝑉, 𝑆) each agent
𝑢 ∈ 𝑉 with | F(𝑢)| = 1 implies 𝑐u�(𝑆) = 1. Hence, for an agent 𝑢 ∈ 𝑉 with
𝑐u�(𝑆) > 1 it holds | F(𝑢)| > 1.

Lemma 3.6 (T-configuration). In a Max-Swap-Game, let F be a friendship allocation,
𝐺[𝑆] = (𝑉, 𝑆) a corresponding tree equilibrium network, and 𝑢 ∈ 𝑉 some agent with
| F(𝑢)| ≥ 2. Then, there exist agents 𝑥, 𝑦 ∈ F(𝑢) such that

∣𝑑u�[u�](𝑥, 𝑢) − 𝑑u�[u�](𝑢, 𝑦)∣ ≤ 1

and 𝑢 is connected by at most one edge to the shortest path from 𝑥 to 𝑦 and 𝑐u�(𝑆) =
𝑑u�[u�](𝑢, 𝑥).

Proof. Let 𝑢 ∈ 𝑉 be an agent with | F(𝑢)| ≥ 2 and 𝑥 ∈ F(𝑢) with 𝑑u�[u�](𝑢, 𝑥) =
𝑐u�(𝑆). Assume for contradiction that all agents 𝑥′ ∈ F(𝑢) ⧵ {𝑥} are at a distance
of 𝑑u�[u�](𝑥′, 𝑢) ≤ 𝑐u�(𝑆)−2 from 𝑢. Consider the shortest path (𝑢, 𝑣1, 𝑣2, … , 𝑥) to
agent 𝑥. In this case, 𝑢 can reduce her private cost by the swap {𝑢, 𝑣1} → {𝑢, 𝑣2},
since this swap reduces 𝑢’s distance to 𝑥 by 1 but increases the distances to every
agent in F(𝑢) ⧵ {𝑥} by at most 1 each. Using the maximum distance function,
we get that 𝑢’s private cost decreases and hence, this is a contradiction to 𝑆
being an equilibrium.

Now we consider all pairs (𝑥u�, 𝑦u�) ∈ F(𝑢)×F(𝑢) for that it holds 𝑑u�[u�](𝑢, 𝑥u�) =
𝑐u�(𝑆) and 𝑑u�[u�](𝑢, 𝑦u�) ≥ 𝑐u�(𝑆) − 1. Let us assume that 𝑢 is connected to each
shortest path from 𝑥u� to 𝑦u� by at least two edges that do not lie on that path. (cf.
Figure 3.3) Thus, 𝑢 is not located on the shortest path from 𝑥u� to 𝑦u�. This implies
that in the network 𝐺[𝑆] ⧵ {𝑢} for each pair (𝑥u�, 𝑦u�) there exists a connected
component containing both agents 𝑥u� and 𝑦u�. Since each two agents at a distance
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𝑣0
𝑣1

𝑣2

𝑣3
𝑣4

…
𝑣u�−1 𝑣u�

Figure 3.4: Illustration of a Binding-Sequence. The radius of a circle around an agent
corresponds to the agent’s private cost. Curled lines denote shortest paths.

of exactly 𝑐u�(𝑆) form such a pair, all agents of F(𝑢) at a distance of exactly 𝑐u�(𝑆)
must be located in the same connected component, which then gives for every
pair (𝑥u�, 𝑦u�) that both agents are contained in the same connected component.
Hence, all agents 𝑥′ ∈ F(𝑢) at distance 𝑑u�[u�](𝑥′, 𝑢) ≥ 𝑐u�(𝑆) − 1 from 𝑢 are in
the same connected component and by the two edges distance constraint, there
must be a path (𝑢, 𝑣1, 𝑣2) that is a subpath of every path from 𝑢 to every agent 𝑥u�

and 𝑦u�. Hence, 𝑢 can perform the improving swap {𝑢, 𝑣1} → {𝑢, 𝑣2}. This swap
decreases her distances to all agents 𝑥u�, 𝑦u� by 1 each and increases her distances
to other agents by at most 1 (i.e., agents 𝑤 ∈ F(𝑢) with 𝑑u�[u�](𝑤, 𝑢) ≤ 𝑐u�(𝑆) − 2)
and hence contradicts 𝑆 being an equilibrium.

Our main tool for the remainder of the private cost upper bound proof will
be so-called Binding-Sequences. The definition is as follows:

Definition 3.7 (Binding-Sequence). In a Max-Swap-Game tree equilibrium
network 𝐺[𝑆] with a friendship allocation F, let 𝑣0 ∈ 𝑉 and 𝑣1 ∈ F(𝑣0) be
friends such that 𝑑u�[u�](𝑣0, 𝑣1) = 𝑐u�0(𝑆) and further let 𝑣1, … , 𝑣u� be a sequence
of agents such that

(a) they form a sequence of friends, i.e., 𝑣u� ∈ F(𝑣u�−1) for 𝑖 = 1, … , 𝑚,

(b) all agents have a private cost of 𝑐u�u�(𝑆) > 3, for 𝑖 = 0, … , 𝑚 − 1,

(c) the last agent has a private cost of 𝑐u�u�(𝑆) = 3, and

(d) for 𝑖 = 2, … , 𝑚 it holds:

𝑣u� = arg max
u�u�∈F(u�u�−1)

⎧{
⎨{⎩

𝑑u�[u�](𝑣u�−2, 𝑣u�)
∣∣∣∣

𝑣u�−1 is connected by ≤ 1 edge to the
shortest path from 𝑣u�−2 to 𝑣u�

⎫}
⎬}⎭
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3 Loss and Benefit of Friendships

Then we call this sequence a Binding-Sequence (cf. illustration in Figure 3.4).

For such a Binding-Sequence, we will show two key properties that hold in
any tree equilibrium network: Given a Binding-Sequence and some agent 𝑣u�

therein, then

(a) 𝑣u�’s successor 𝑣u�+1 cannot have a much lower private cost than 𝑣u� (cf.
Lemma 3.8) and

(b) the shortest path from 𝑣u� to 𝑣u�+1 can overlap by at most one edge with
the shortest path to 𝑣u�’s Binding-Sequence predecessor (cf. Lemma 3.9).

Later, we will show that for any agent there necessarily exists a Binding-
Sequence of about the same length as her private cost value. Then, by bounding
the maximum length of a Binding-Sequence, we will obtain a private cost upper
bound.

Lemma 3.8. For a friendship allocation F, let 𝑆 be a Max-Swap-Game tree equilibrium
strategy profile and 𝑣0, … , 𝑣u� a Binding-Sequence. Then, for each two consecutive
sequence agents 𝑣u� and 𝑣u�+1, with 0 ≤ 𝑖 < 𝑚, it holds 𝑑u�[u�](𝑣u�, 𝑣u�+1) ≥ 𝑐u�u�(𝑆) − 1
and 𝑐u�u�+1(𝑆) ≥ 𝑐u�u�(𝑆) − 1.

Proof. For 𝑖 ∈ {0, … , 𝑚 − 1} consider an agent 𝑣u� in the Binding-Sequence.
Then, by Lemma 3.6 there exist 𝑥, 𝑦 ∈ F(𝑣u�) with 𝑑u�[u�](𝑣u�, 𝑥) = 𝑐u�u�(𝑆) and
𝑐u�u�(𝑆) ≥ 𝑑u�[u�](𝑣u�, 𝑦) ≥ 𝑐u�u�(𝑆) − 1 such that 𝑣u� is connected by at most one edge
to the shortest path from 𝑥 to 𝑦. At least one of these agents is a valid candidate
for the next Binding-Sequence agent 𝑣u�+1. Yet, even if 𝑣u�+1 is neither 𝑥 nor 𝑦,
still we gain a lower bound for the maximum distance:

𝑑u�[u�](𝑣u�, 𝑣u�+1) ≥ min{𝑑u�[u�](𝑣u�, 𝑥), 𝑑u�[u�](𝑣u�, 𝑦)} ≥ 𝑐u�u�(𝑆) − 1

This further gives 𝑐u�u�+1(𝑆) ≥ 𝑐u�u�(𝑆) − 1.

Lemma 3.9 (Increasing Distance). For a friendship allocation F, let 𝑆 be a Max-
Swap-Game tree equilibrium strategy profile and 𝑣0, … , 𝑣u� a Binding-Sequence. Then,
the distances to 𝑣0 are monotonously increasing, i.e., 𝑑u�[u�](𝑣0, 𝑣u�) ≤ 𝑑u�[u�](𝑣0, 𝑣u�+1)
for 𝑖 = 1, … , 𝑚 − 1.
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𝑣0

𝑣u�−1

𝑤1

𝑤2
𝑣u�=𝑤0

𝑣u�+1=𝑤u�

Figure 3.5: Illustration of Lemma 3.10: edge {u�0, u�1} is used only two times.

Proof. Using 𝑐u�1(𝑆) ≥ 3 we get with Remark 3.5 that ∣F(𝑣1)∣ ≥ 2. Hence, by
Lemma 3.6 there exists an agent 𝑣2 such that the paths from 𝑣1 to 𝑣0 and from
𝑣1 to 𝑣2 overlap by at most one edge. By construction of the Binding-Sequence,
the distance 𝑑u�[u�](𝑣0, 𝑣2) is maximal among all distances from 𝑣0 to agents
𝑣 ∈ F(𝑣1) and hence we get 𝑑u�[u�](𝑣0, 𝑣1) ≤ 𝑑u�[u�](𝑣0, 𝑣2).

Now assume that there is an agent 𝑣u� with the smallest index 𝑖 ≥ 2 in the
Binding-Sequence for which the claim does not hold. This is, 𝑑u�[u�](𝑣0, 𝑣u�−1) ≤
𝑑u�[u�](𝑣0, 𝑣u�) and 𝑑u�[u�](𝑣0, 𝑣u�) > 𝑑u�[u�](𝑣0, 𝑣u�+1). Denote by 𝑥 the most distant
agent from 𝑣0 who is on all shortest paths from 𝑣0 to 𝑣u�−1, from 𝑣0 to 𝑣u�, and
from 𝑣0 to 𝑣u�+1. Such an agent 𝑥 exists, since especially 𝑣0 fulfills the restrictions.
By the choice of 𝑖 and since all these paths contain agent 𝑥, we get:

𝑑u�[u�](𝑥, 𝑣u�−1) ≤ 𝑑u�[u�](𝑥, 𝑣u�) > 𝑑u�[u�](𝑥, 𝑣u�+1) (3.1)

By definition of the Binding-Sequence, 𝑣u� is connected by at most one edge
to the shortest path from 𝑣u�−1 to 𝑣u�+1. Hence, 𝑥 must be an agent on the path
from 𝑣u�−1 to 𝑣u�+1. First note that 𝑥 cannot be 𝑣u� or a neighbor of 𝑣u�, since for
those cases (3.1) yields 𝑑u�[u�](𝑥, 𝑣u�+1) < 𝑑u�[u�](𝑥, 𝑣u�) ≤ 1. Furthermore, 𝑥 must
lie on the shortest path from 𝑣u�−1 to 𝑣u�, since otherwise 𝑥 would lie on the
shortest path from 𝑣u� to 𝑣u�+1, which together with 𝑑u�[u�](𝑣u�−1, 𝑣u�) ≥ 3 would
imply 𝑑u�[u�](𝑥, 𝑣u�) < 𝑑u�[u�](𝑥, 𝑣u�−1). But this gives 𝑑u�[u�](𝑥, 𝑣u�) ≤ 𝑑u�[u�](𝑥, 𝑣u�+1)
and is a contradiction.

Lemma 3.10. For a friendship allocation F, let 𝑆 be a Max-Swap-Game tree equilib-
rium strategy profile with network 𝐺[𝑆] = (𝑉, 𝑆) and 𝑣0, … , 𝑣u� a Binding-Sequence.
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3 Loss and Benefit of Friendships

Then, no edge in 𝑆 is used more than two times by the shortest path visiting the agents
𝑣0, … , 𝑣u� in the given order.

Proof. We label the agents of 𝐺[𝑆] by their distances to 𝑣0. This is, for every
𝑣 ∈ 𝑉 we define level(𝑣) ≔ 𝑑u�[u�](𝑣0, 𝑣) to be the distance to 𝑣0. For an arbitrary
agent 𝑣u� with 𝑘 ∈ {1, … , 𝑚 − 1} we consider the corresponding shortest path
(𝑣u� =∶ 𝑤0, 𝑤1, … , 𝑤u� ≔ 𝑣u�+1) to agent 𝑣u�+1 of some length 𝑡. By definition, 𝑣u�

is connected by at most one edge to the shortest path from 𝑣u�−1 to 𝑣u�+1 (for an
illustration cf. Figure 3.5). By Lemma 3.9 we have level(𝑣u�−1) ≤ level(𝑣u�) ≤
level(𝑣u�+1). Hence, for 𝑖 = 2, … , 𝑡 − 1 we get level(𝑤u�) < level(𝑤u�+1). This
means that at most one edge (specifically edge {𝑤0, 𝑤1}) of the shortest path
from 𝑣0 to 𝑣u� is used a second time by the shortest path traversal from 𝑣u� to 𝑣u�+1.
By Lemma 3.8 we have 𝑡 ≥ 𝑐u�u�(𝑆) − 1 ≥ 3 and get level(𝑣u�) < level(𝑣u�+1).

Finally, we conclude the proof of the private cost upper bound by considering
a pair of most distant friends and show that their distance corresponds to a
Binding-Sequence of similar length. Using that for the traversal of a Binding-
Sequence every tree edge is used at most twice, we get an upper bound on its
length and by this an upper bound in the maximal distance.

Theorem 3.11 (Max-Swap-Game: private cost upper bound). For a friendship
allocation F let 𝐺[𝑆] = (𝑉, 𝐸) be a Max-Swap-Game tree equilibrium network with
𝑛 ≔ |𝑉| agents. Then, for all 𝑢 ∈ 𝑉 we have 𝑐u�(𝑆) = O(√𝑛).

Proof. Let 𝑣0 ∈ 𝑉 be an agent with maximal private cost. We can assume
that 𝑣0 has at least one friend at a distance of at least 3, since otherwise the
claim already holds. Let 𝑣1 be a most distant friend 𝑣1 ∈ F(𝑣0) and denote the
distance between 𝑣0 and 𝑣1 as 𝐷 ≔ 𝑑u�[u�](𝑣0, 𝑣1) = 𝑐u�0(𝑆).

(Existence.) Agents 𝑣0, 𝑣1 obviously fulfill the conditions for a Binding-Sequence.
Thus, it suffices to show that given the beginning of a Binding-Sequence
𝑣0, … , 𝑣u� with 𝑐u�u�(𝑆) > 3, for 𝑗 = 0, … , 𝑖 − 1, either we can find a next agent
𝑣u�+1 who suffices the conditions or otherwise 𝑐u�u�(𝑆) = 3 and the sequence
terminates. If we assume 𝑐u�u�(𝑆) > 3, then by Lemma 3.6 there exist agents
𝑥, 𝑦 ∈ F(𝑣u�) with 𝑑u�[u�](𝑣u�, 𝑥) = 𝑐u�u�(𝑆) and 𝑐u�u�(𝑆) ≥ 𝑑u�[u�](𝑣u�, 𝑦) ≥ 𝑐u�u�(𝑆) − 1
such that 𝑣u� is connected by at most one edge to the shortest path from 𝑥 to
𝑦. Since 𝑐u�u�(𝑆) > 3, both 𝑐u�(𝑆) ≥ 3 and 𝑐u�(𝑆) ≥ 3 hold. Now, for at least one
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agent (𝑥 or 𝑦) we have that this agent is most distant to 𝑣u�−1, she is not 𝑣u�−2,
and thus she fulfills the conditions for a Binding-Sequence.
(Traversal.) Given the existence, now we can apply the previous lemmas for pro-
viding the minimal length of such a Binding-Sequence: Lemma 3.8 states that
by construction of the Binding-Sequence we always have 𝑐u�u�+1(𝑆) ≥ 𝑐u�u�(𝑆) − 1.
Lemma 3.9 implies that no agent can be contained more than once in a Binding-
Sequence. By the arguments above we get that we can always find a new agent
for the Binding-Sequence until we reach an agent 𝑤 with 𝑐u�(𝑆) = 3. Hence,
the Binding-Sequence contains at least 𝑐u�0(𝑆) − 2 agents. Since the distance
between two succeeding agents of the Binding-Sequence decreases by at most
one per agent, a traversal of this Binding-Sequence consists of at least

u�u�0(u�)

∑
u�=3

𝑖 =
𝑐u�0(𝑆)2 + 𝑐u�0(𝑆) − 6

2

edges. From these edges, by Lemma 3.10, at least (𝑐u�0(𝑆)2 +𝑐u�0(𝑆)−6)/4 many
edges are different.
(Private cost upper bound.) Finally, we use that the traversal of the Binding-
Sequence uses at least u�2+u�−6

4 -many different edges. Since the tree has exactly
𝑛−1 edges, we get (𝐷2+𝐷−6)/4 ≤ 𝑛−1 as an upper bound for the size of every
Binding-Sequence and hence the private cost upper bound is 𝐷 = O(√𝑛).

Next we show that this private cost bound is actually tight. This means, there
are combinations of a friendship allocation and a tree equilibrium network of
𝑛 agents such that there is an agent with private cost of 𝛺(√𝑛). For this, we
consider the following ring friendship graph.

Theorem 3.12. There exists a friendship allocation F and corresponding Max-Swap-
Game tree equilibrium network 𝐺[𝑆] of 𝑛 agents 𝑉 in which some agent has a private
cost of 𝛺(√𝑛).

Proof. For the agents 𝑉 = {𝑣1, … , 𝑣u�}, we consider the friendship allocation
F ≔ {{𝑣u�, 𝑣u�+1} ∣ 𝑖 = 1, … , 𝑛 − 1} ∪ {{𝑣u�, 𝑣1}}, forming a ring friendship graph,
and a corresponding network 𝐺[𝑆] = (𝑉, 𝑆) as stated in Figure 3.6. We claim
that the network is an equilibrium and yields a private cost of 𝑐u�u�(𝑆) = 𝛺(√𝑛)
for agent 𝑣u� ∈ 𝑉 (index 𝑖 will be specified later). Specifically, for the private
costs we have
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𝑣1

𝑣u�
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+
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−
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𝑣u�+5

𝑣u�+2
𝑣u�+1

… … … … …

𝑣2

𝑣3

𝑣4 𝑣u�−1 𝑣u� 𝑣u�+1 𝑣u�+2 𝑣u�−2

𝑣u�−1
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𝐷 − 1 𝐷 𝐷 − 1

Figure 3.6: Illustration of a Max-Swap-Game tree equilibrium strategy profile u�[u�] =
(u�, u�) of u� ≔ |u�| agents with a friendship allocation ring graph such that the
private cost of u�u� is u�(u�), with u� ≔ √u� − 2 + 1, u� ≔ 2u� − 3, and u� = u� − ∑u�

u�=1 u�.

• for 𝑗 = 1, … , 𝑖 − 1 that 𝑐u�u�+1(𝑆) = 𝑐u�u�(𝑆) + 1 and

• for 𝑗 = 𝑖 + 1, … , 𝑘 that 𝑐u�u�(𝑆) = 𝑐u�u�+1(𝑆) + 1.

We first compute the exact value for 𝑐u�u�(𝑆) given by this setting, then we argue
why no agent in this network can perform an improving response. Denote the
maximal distance from 𝑣u� to any of her friends by 𝐷. Then 𝐷 must fulfill

𝑛 =
u�−2
∑
u�=1

𝑖 +
u�−3
∑
u�=1

𝑖 + 2(𝐷 − 2) + 3 = 𝐷2 − 2𝐷 + 3,

and hence, 𝐷 = √𝑛 − 2 + 1. This yields a private cost of √𝑛 − 2 + 1 for agent
𝑣u� when we fix the parameters as 𝑖 ≔ 𝐷 − 1 and 𝑘 ≔ 2𝐷 − 3.

For each agent with a degree greater than 1 in 𝐺[𝑆] we have a private cost
of 1 and hence no improving response is possible. Otherwise, consider some
agent 𝑣u� of degree 1 in 𝐺[𝑆]. Agent 𝑣u� cannot perform any swap if and only if
it holds both, ∣𝑑u�[u�](𝑣u�−1, 𝑣u�) − 𝑑u�[u�](𝑣u�, 𝑣u�+1)∣ ≤ 1 and 𝑣u� is connected by one
edge to the shortest path from 𝑣u�−1 to 𝑣u�+1. Since this property is given by
construction, 𝑣u� cannot perform any improving response.

An interesting insight from the last theorem is that the used stability argu-
ment for T-configurations (cf. Lemma 3.6) characterizes ring friendship graphs
in general: Every agent must be in the center of her two friends.
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3.3.2 The Price of Anarchy in Max-Swap-Games

Continuing the analysis of the worst-case behavior of friendships in the Max-
Swap-Game, next we consider the price of anarchy. At first, we will provide a
lower bound for tree equilibrium networks and then use the private cost upper
bound to show that this bound is tight. In the setting of tree equilibria, we
will further characterize the price of anarchy by the structure of the friendship
graph, namely the size of a maximum independent set therein. We will con-
clude this section by showing that the price of anarchy is worst possible when
considering arbitrary networks.

Lemma 3.13. There exists a friendship allocation F and a corresponding Max-Swap-
Game tree equilibrium network 𝐺[𝑆] of 𝑛 agents such that the social cost is 𝛺(𝑛3/2).

Proof. We create a network 𝐺[𝑆] = (𝑉, 𝑆) of agents 𝑣1, … , 𝑣u�. For a fixed

parameter 𝐷 ≔
√2u�−7−3

2 , we first connect agents 𝑣u�+1, … , 𝑣u�/2−u�−1 as a line
and then further connect agents 𝑣u�/2, … , 𝑣u� to agent 𝑣u�, whereas 𝑙 ≔ u�

2 −
𝐷 − (∑u�

u�=1 𝑖 + 2). The remaining agents are connected as leaves to specific
places at the line: For agents 𝑣1, … , 𝑣u�, first 𝑣1 is connected to 𝑣u�+u�, then 𝑣2 is
connected to 𝑣u�+2u�−1, and further up to 𝑣u�, the agents are connected such that
the distance between each next pair decreases by 1 (cf. Figure 3.8). We make
the same construction for agents 𝑣u�/2−1 to 𝑣u�/2−u�, whereas 𝑣u�/2−1 is connected
to 𝑣u�−u� and the remaining agents are again connected such that the distances
decrease by 1 with each pair. Note that by the choices for 𝑙 and 𝐷, we have
𝑛 = 2 ∑u�

u�=1 𝑖 + u�
2 + 2𝐷 + 4 and hence the network can actually be constructed

as stated above.
The corresponding friendship graph consists of a ring, which connects

agents 𝑣1, … , 𝑣u�/2, and additionally connects agents 𝑣u�/2+1, … , 𝑣u�, such that
each of them is a friend of both agent 𝑣u�/2−1 as well as agent 𝑣1 (cf. Figure 3.7).
Considering the network 𝐺[𝑆], this implies a private cost of (√2𝑛 − 7 + 1)/2
for all agents 𝑣u�/2, … , 𝑣u�. Thus, the social cost of 𝑆 is cost(𝑆) = 𝛺(𝑛3/2). The
arguments that 𝐺[𝑆] is an equilibrium for the given friendship graph apply
analogously to Lemma 3.12.

Theorem 3.14 (Max-Swap-Game: price of anarchy for tree networks). In the
Max-Swap-Game with friendship allocations, the price of anarchy for tree network
equilibria is PoA = 𝛩(√𝑛), with 𝑛 being the number of agents.
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𝑣1 𝑣2 𝑣3

…
𝑣u�/2−1

𝑣u�

⋮
𝑣u�/2

Figure 3.7: The friendship graph for the proof of Lemma 3.13.
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Figure 3.8: The network for the proof of Lemma 3.13. This tree equilibrium network

corresponds to the friends as given in Figure 3.7. The parameters are u� =
√2u�−7−3

2
and u� = u�

2
− u� − (∑u�

u�=1 u� + 2).
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Proof. For the upper bound, we apply Theorem 3.4, which states for tree
equilibrium networks that the private cost of every agent is at most O(√𝑛).
By this, the social cost for every tree network is at most O(𝑛3/2). Using
Lemma 3.13, we get that this bound is actually tight and the worst-case social
cost is 𝛩(𝑛3/2). On the other hand, for any friendship allocation in an optimal
solution the social cost is between 𝑛 and 2𝑛. Hence, the worst-case ratio of
both is PoA = 𝛩(√𝑛).

Next, we provide a different characterization of the price of anarchy for tree
equilibria, namely by the size of a maximum independent set in the friendship
graph. We will get this bound by using the maximum independent set size
to bound the maximal length of a Binding-Sequence, similar to the proof
of Theorem 3.11. Here, a maximum independent set (MIS) of a given graph
𝐺 = (𝑉, 𝑆) is a subset 𝑀 ⊂ 𝑉 of maximum size such that for no two 𝑢, 𝑣 ∈ 𝑀
there is an edge connecting them.

Lemma 3.15. For a friendship allocation F, let 𝐺[𝑆] = (𝑉, 𝑆) be a Max-Swap-Game
tree equilibrium network of 𝑛 ≔ |𝑉| agents and let 𝑀 ⊂ 𝑉 be a maximum independent
set in the friendship graph (𝑉, F). Then, the length of every Binding-Sequence is at
most 2𝑀.

Proof. Let 𝑣0, … , 𝑣u� be a Binding-Sequence with maximal length. We will
prove that the agents of this sequence with even index form an independent
set in the friendship graph (𝑉, F). For this, consider an even index 𝑖 and
assume for contradiction that there is an even index 𝑘 < 𝑖 such that 𝑣u� ∈ F(𝑣u�).
By Lemma 3.9 we get 𝑑u�[u�](𝑣u�, 𝑣u�+1) ≤ 𝑑u�[u�](𝑣u�, 𝑣u�+2). If 𝑣u�+2 ≠ 𝑣u�, then by
Lemma 3.8 and by 𝑐u�u�(𝑆) > 3, for all 𝑣u� in the Binding-Sequence, we get:

𝑑u�[u�](𝑣u�, 𝑣u�) > 𝑑u�[u�](𝑣u�, 𝑣u�+2) + 1 ≥ 𝑐u�u�(𝑆)

Yet, this is a contradiction.
Thus, consider the case 𝑣u�+2 = 𝑣u�. Since 𝑣u�+1 is connected by at most one

edge to the shortest path from 𝑣u� to 𝑣u�+2 and 𝑑u�[u�](𝑣u�+1, 𝑣u�+2) ≥ 3 we get that
𝑣u�+2 ∉ F(𝑣u�). Otherwise, we either get the same contradiction as before or
𝑣u�+1 would contradict to be the most distant agent in F(𝑣u�) who fulfills the
Binding-Sequence conditions.
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3 Loss and Benefit of Friendships

Figure 3.9: Lower bound construction for the price of anarchy in the Max-Swap-Game
for general networks. Each of the ring agents is a friend of her three neighbors.
Each satellite agent is a friend of her ring neighbor as well of the two agents at a
distance of exactly u�/6 + 2. In this illustration, the three friends of a satellite agent
(marked in orange) are marked in blue.

Hence, the agents with an even index of the Binding-Sequence form an
independent set in (𝑉, F). Since an independent set has at most 𝑀 agents, we
get an upper bound of 2𝑀.

Theorem 3.16. In the Max-Swap-Game with friendship allocations, let 𝑛 be the
number of agents and 𝑀 the size of a maximum independent set in the friendship
graph. Then, the price of anarchy for tree equilibria networks is PoA = O(𝑀).

Proof. By using Lemma 3.15, we know that the maximum Binding-Sequence
length is 2𝑀. Now we use the same arguments as in the proof of Theorem 3.11,
yet with 2𝑀 as the maximum length, and get O(𝑀) as the upper bound on the
private cost of every agent. With the arguments from Theorem 3.14 we deduce
the price of anarchy upper from the private cost upper bound.

This theorem further shows how the maximum independent set characteriza-
tion of the friendship graph provides a nice parametrization of tree equilibrium
networks for the original Max-Swap-Game with uniform communication in-
terests, as considered by Alon et al. [Alo+10]. Given a game with a complete
friendship graph, the maximum independent set has size 1 and hence yields a
constant price of anarchy. Then, with increasing size of the independent set,
the upper bound for the price of anarchy linearly increases.

Corollary 3.17. In the Max-Swap-Game with friendship allocations, if the friendship
graph forms a clique, then for tree equilibrium networks the price of anarchy is O(1).

In the following theorem we will show that, in contrast to tree equilibrium
networks, the price of anarchy will become worst possible when considering

48



3.3 Worst-Case Friendships in Swap-Games

arbitrary equilibrium networks. As a reminder, for this class of arbitrary
equilibrium networks we know from Alon et al. [Alo+10] that for uniform
communication interests the price of anarchy is at least 𝛺(√𝑛), although no
non-trivial upper bound is known.

Theorem 3.18 (Max-Swap-Game: price of anarchy for general networks). In
the Max-Swap-Game with friendship allocations, with 𝑛 being the number of agents,
the price of anarchy is PoA = 𝛩(𝑛).

Proof. First note that the social cost of every strategy profile is upper bounded
by 𝑛(𝑛 − 1) and lower bounded by 𝑛. Secondly, we provide a friendship alloca-
tion for 𝑛 agents (with 𝑛 being a multiple of 6) and a corresponding equilibrium
network 𝐺[𝑆] = (𝑉, 𝑆) such that the social cost is 𝛺(𝑛2) (cf. Figure 3.9). For
this, we connect (𝑛/2)-many agents as a ring and call them ring agents. For
each ring agent, we connect one additional satellite agent to her. Each of the
ring agents is a friend of her three adjacent agents in 𝐺[𝑆], whereas each satel-
lite agent is a friend of her neighbor at the ring and of both satellite agents at
a distance of exactly 𝑛/6 + 2. This construction is an equilibrium and all 𝑛/2
satellite agents have a private cost of 𝑛/6 + 2 each, which gives the claimed
price of anarchy of 𝛺(𝑛).

3.3.3 The Price of Anarchy in Sum-Swap-Games

In the following, we will consider the price of anarchy in Sum-Swap-Games.
In comparison to the games with complete friendship graphs, as considered
by Alon et al. [Alo+10], we will prove that for tree equilibrium networks as
well as for arbitrary networks the price of anarchy will become worst possible.
By this, the results are in stark contrast to the non-uniform variant. Specifically,
we use very sparse friendship allocations to obtain these worst-case results.
Note that the following result specifically applies for general networks, too.

Theorem 3.19 (Sum-Swap-Game: price of anarchy for tree networks). In the
Sum-Swap-Game with friendship allocations, for tree equilibrium networks the price
of anarchy is PoA = 𝛩(𝑛).

Proof. We consider a line network of agents 𝑣1, … , 𝑣u� and select the biggest
integer 𝐷 such that it holds 3𝐷 + 2 ≤ 𝑛. All agents on the line are friends of
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𝐷 𝐷 𝑛 − 2𝐷

𝑣1 𝑣2 𝑣u� 𝑣u� 𝑣u�−1 𝑣u�

Figure 3.10: Illustration of tree equilibrium network u�[u�] = (u�, u�) with social cost
u�(u�2) as used in Theorem 3.19. Both leaf agents have only their direct neighbors
as friends. The agents in the first and last part have 3 friends each, whereas one
friend is at distance u� each. The orange agents in the center part of the line have 4
friends each, whereas two of them are at distance u�.

their direct neighbors. Furthermore, for 𝑖 = 𝐷 + 2, … , 2𝐷 + 2, we define the
friends of agent 𝑣u� as 𝐹(𝑣u�) = {𝑣u�−1, 𝑣u�+1, 𝑣u�−u�, 𝑣u�+u�} (cf. Figure 3.10).

For the leaf agents of the line, we get that each of them has exactly one friend
at distance 1 and hence will not perform an improving response. For any other
agent, say 𝑣u�, we have a degree of 2 in 𝐺[𝑆]. Since the network is a tree and 𝑣u�

has friends in both directions of the line, after any possible improving response
still one edge must point in each direction of the line, since otherwise the tree
would become disconnected and the private cost of 𝑣u� would be unbounded.
Considering only one line direction for agent 𝑣u�, she has exactly two friends in
this direction and is connected to the closest of them. Yet, swapping this edge
to any other agent cannot decrease her private cost, since her distance cost to
one friend increases by at least the same amount that the distance decreases to
the other friend.

For a social cost lower bound of this network, we consider only the agents
who have at least 3 friends. For each such agent, the private cost is at least
(2 + 𝐷)/3, which gives for the social cost 3𝐷(2 + 𝐷)/3 ≥ (u�−4)

3
(2 + u�−4

3
). On

the other hand, by considering a star network, the private cost of any agent
in an optimal solution is at most 2, since an agent has a maximum distance
of at most 2 to her friends. Hence, by comparing both social cost bounds we
get PoA = 𝛺(𝑛). Since the price of anarchy for connected tree equilibrium
networks cannot be higher than 𝑛, this bound is tight.

This result is actually surprising when compared to the behavior of other
network creation games. Usually, for those games one can observe that the
average distance version leads to better social costs than the maximum ver-
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sion. Yet, for Swap-Games with friendship allocations this is the contrary –
although, in our case, it only holds for tree equilibria and in the case of arbitrary
equilibrium networks, both games show a similar worst-case behavior.

3.4 Process Equilibria

Typically, in real networks equilibrium states result from the best-response
strategy changes of the agents and are not instances specifically crafted to show
a particular worst-case behavior, as we saw it in the first part of this chapter;
although it is the usual approach in the overwhelming body of literature about
network creation games. In the remainder of this chapter, we address this issue
by taking a more optimistic view on the effects of non-uniform communication
interests in the Buy-Game. Specifically, we want to restrict our analysis to
only those networks that result from best-response processes when starting
with an empty network. By Kawald and Lenzner [KL13] we know that such
best-response processes are not guaranteed to converge. Hence, approaches
that exploit the behavior of potential functions, as they were studied for several
other games (for example Nisan et al. [Nis+07, Chapters 18 and 19]), do not
apply here.

Our approach is to identify properties that every best-response process
ensures. By using such properties, we can specify a class of equilibria that
excludes incompatible equilibrium. Although this class is possibly larger than
the class we really want to consider, price of anarchy results therein directly
apply for the class of best-response process equilibria we are interested in. We
call the so-shaped equilibrium class process equilibria and name the price of
anarchy restricted to only process equilibria the process price of anarchy:

Definition 3.20 (Process Equilibrium). Given agents 𝑉 and a friendship allo-
cation 𝐹, then an equilibrium is called a process equilibrium if it can be reached
by a sequence of best-response strategy changes of the agents that starts from
an network without any edges.

The main property we will use for bounding the process price of anarchy is
given by the following observation. Briefly, we use that the size of the largest
connected component in the friendship graph also bounds the size of the
largest connected component in any process equilibrium network.
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Observation 3.21. Let 𝐺u� be a friendship graph for an agent set 𝑉 and 𝑁 the size
of the largest connected component in the friendship graph. Then, for every
process equilibrium it holds: For an agent 𝑢 ∈ 𝑉 it is never a best response to
connect to a connected component that does not contain any of her friends.
Thus, by starting from an empty network, an agent will never connect to a
connected component not containing any of her friends and consequently in
any process equilibrium no connected component of the network is bigger
than 𝑁.

First, we provide a bound for the Sum-Buy-Game by adapting a technique
by Halevi and Mansour [HM07]. For this, we utilize the following lemma by
Dutton and Brigham [DB91] to estimate the number of edges in equilibrium
networks of limited girth. Note that the following proofs also hold for unidi-
rectional friendships and hence 𝐺u� could also be modeled as a directed graph
yielding the same results.

Lemma 3.22 (Dutton and Brigham [DB91]). Given a graph 𝐺 and a connected
component 𝐶 ⊆ 𝐺 of 𝑛 nodes, then the length of a shortest cycle of odd length 𝑔 is at
most O(𝑛1+2/(u�−1)).

Theorem 3.23. In the Sum-Buy-Game with agents 𝑉 and a friendship graph 𝐺u�, let
𝑁 be the size of the largest connected component of the friendship graph. Then, the
process price of anarchy is at most O(log 𝑛 + √𝑁).

Proof. In the following, let 𝑆 be a process equilibrium strategy profile and
𝐺[𝑆] = (𝑉, 𝐸) the corresponding network. By Observation 3.21, we know that
for every process equilibrium no connected component consists of more than
𝑁 agents.

(Distance cost upper bound.) For an agent 𝑢, let 𝑇u� be a shortest path tree consist-
ing of the shortest paths from agent 𝑢 to all her friends F(𝑢). For a parameter
ℎ ∈ ℕ, define 𝑋(ℎ) ≔ {𝑣 ∈ 𝐹(𝑢) ∣ ℎ ≤ 𝑑u�[u�](𝑢, 𝑣)} to be the set of agents 𝑢’s
friends who have a distance of at least ℎ to 𝑢. Using a fixed parameter ℎ, we
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can write 𝑢’s distance cost as:

distu�(𝑆) = ∑
u�∈u�(ℎ)

𝑑u�[u�](𝑢, 𝑣) + ∑
u�∈F(u�)⧵u�(ℎ)

𝑑u�[u�](𝑢, 𝑣)

≤ ∑
u�∈u�(ℎ)

𝑑u�[u�](𝑢, 𝑣) + (ℎ − 1)(|𝐹(𝑢)| − |𝑋(ℎ)|)

= ∑
u�∈u�(ℎ)

(𝑑u�[u�](𝑢, 𝑣) − ℎ + 1) + (ℎ − 1)|𝐹(𝑢)|

We consider the first term of the last estimation: For every 𝑥 ∈ 𝑉, let 𝑚u� denote
the number of 𝑢’s friends whose unique paths to 𝑢 in the tree 𝑇u� contain 𝑥.
Since the network is an equilibrium, 𝑢 cannot perform any improving response.
By this, we get 𝑚u�(𝑑u�[u�](𝑢, 𝑥) − 1) ≤ 𝛼. For each 𝑣 ∈ 𝑋(ℎ), we can interpret
the value 𝑑u�[u�](𝑢, 𝑣) − ℎ + 1 as the number of different agents with distance of
at least ℎ to 𝑢 who are visited on the shortest path from 𝑢 to 𝑣 in 𝑇u�. Hence,
when looking at all agents 𝑋(ℎ), we can write:

∑
u�∈u�(ℎ)

(𝑑u�[u�](𝑢, 𝑣) − ℎ + 1) = ∑
u�∈u�u�∶u�u�[u�](u�,u�)≥ℎ

𝑚u�

≤ ∑
u�∈u�u�∶u�u�[u�](u�,u�)≥ℎ

𝛼
𝑑u�[u�](𝑢, 𝑥) − 1

≤
𝑁 − 2
ℎ − 1

𝛼

Setting ℎ ≔ 1 + ⌈√𝛼 u�−2
|u�(u�)|⌉, we get distu�(𝑆) ≤ 3√(𝑁 − 2)𝛼 ⋅ |𝐹(𝑢)|.

(Edge cost upper bound.) Next, we estimate an upper bound on the number
of edges (utilizing the technique from Halevi and Mansour [HM07], their
Theorem 4). For every agent 𝑢 ∈ 𝑉 and any of her edges 𝑣 ∈ 𝑠u�, we define
𝐶(𝑢, 𝑣) to be 𝑢’s friends to which the distance from 𝑢 increases if the edge
{𝑢, 𝑣} is removed. Accordingly, we assign a weight 𝑤(𝑢, 𝑣) ≔ |𝐶(𝑢, 𝑣)| to this
edge and define the total weight to be 𝑊 ≔ ∑{u�,u�}∈u� 𝑤(𝑢, 𝑣). (Note that in
an equilibrium no edge is built twice and hence the weight is well-defined
according to the agent who created this edge.) For some parameter 𝛽 > 0 (to
be specified later), by taking (𝑉, 𝐸) and removing all edges {𝑢, 𝑣} ∈ 𝐸 with
weight 𝑤(𝑢, 𝑣) ≥ 𝛽, we transform the network into a new network (𝑉, 𝐸′) and
implicitly also gain a new strategy profile 𝑆′.

Let 𝑚 be the number of removed edges, then the total removed weight is at
least 𝛽𝑚 and at most 𝑊. For each agent 𝑢 ∈ 𝑉 and any 𝑣 ∈ F(𝑢) there is at
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most one 𝑥 ∈ 𝑠u� such that the shortest path from 𝑢 to 𝑣 uses the edge {𝑢, 𝑥}.
Hence, the sum over all weights is upper bounded by twice the number of
friendships, i.e., 𝑊 ≤ 2 ∑u�∈u� |𝐹(𝑢)|, and we get:

|𝐸′| ≥ |𝐸| − 2 ∑
u�∈u�

|𝐹(𝑢)|
𝛽

Since the edge {𝑢, 𝑣} exists in the equilibrium network 𝐺[𝑆], the edge price 𝛼
is at most the distance cost increase for 𝑢 that we get by removing the edge.
Each such distance cost decrease is upper bounded by the distances in 𝐺[𝑆′]
and we get:

𝛼 ≤ 𝑤(𝑢, 𝑣)(𝑑u�[u�′](𝑢, 𝑣) − 1) (3.2)

The new network 𝐺[𝑆′] is either cycle-free, and the number of edges is
limited by at most 𝑛 − 1, or there exists a cycle of a minimal length 𝑔. Let {𝑢, 𝑣}
be an arbitrary edge of this cycle and let it be owned by 𝑢. By using (3.2), we
get:

𝛼 ≤ 𝑤(𝑢, 𝑣)(𝑔 − 2) ≤ 𝛽(𝑔 − 2) ⇒ 𝑔 ≥ 2 + 𝛼/𝛽

Now, we can choose 𝛽 ≔ u�
2 log u� and apply Lemma 3.22. This gives an upper

bound of O(𝑛1+1/ log u�) = O(𝑛) for |𝐸′|. Applying this to 𝐺[𝑆], we have |𝐸| =
O(𝑛 + log 𝑛 ∑u�∈u�

|u�(u�)|
u�

).

(Price of anarchy.) Finally, we compare both bounds for distance cost and for
edge cost with the social cost lower bound of 𝛼𝑛/2 + ∑u�∈u� |𝐹(𝑢)|. The total
edge cost easily gives us a ratio upper bound of O(log 𝑛). For estimating the
ratio for the distance cost, we first define ̄𝑓 ≔ ∑u�∈u� |𝐹(𝑢)|/𝑛 to be the average
number of friends of an agent and then separately consider if 𝛼 ≥ ̄𝑓 or not:

O⎛⎜⎜⎜
⎝

∑u�∈u� 3√(𝑁 − 2)𝛼|𝐹(𝑢)|
𝛼𝑛/2 + ∑u�∈u� |𝐹(𝑢)|

⎞⎟⎟⎟
⎠

= O⎛⎜⎜⎜
⎝

𝑛√𝑁𝛼 ̄𝑓
𝛼𝑛 + 𝑛 ̄𝑓

⎞⎟⎟⎟
⎠

= O(√𝑁)

Summed up, the price of anarchy is at most O(log 𝑛 + √𝑁).

Compared to the results by Halevi and Mansour [HM07], the process price
of anarchy for the Sum-Buy-Game gives much better results when the friend-
ship graph is sparse enough. Specifically, if the maximal size of a connected
component is at most (log 𝑛)2, the process price of anarchy becomes O(log 𝑛).
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For process equilibria in the Max-Buy-Game, we can bound the process price
of anarchy in a similar way by incorporating the size of the largest connected
component. Thereby, we use a technique by Demaine et al. [Dem+12].

Theorem 3.24. In the Max-Buy-Game with agents 𝑉 and a friendship graph 𝐺u�, let
𝑁 be the size of the largest connected component of the friendship graph. Then, the
process price of anarchy is at most O(𝑛2/u� + (𝑁/𝛼)1/3).

Proof. In the following, let 𝑆 be a process equilibrium strategy profile and
𝐺[𝑆] = (𝑉, 𝐸) the corresponding network. By Observation 3.21, we know that
for every process equilibrium no connected component consists of more than
𝑁 agents.

(Distance cost upper bound.) For any agent 𝑢 ∈ 𝑉, we define the set of all agents
within a distance of at most 𝑘 to agent 𝑢 as 𝐵u�(𝑢) ≔ {𝑣 ∈ 𝑉 ∣ 𝑑u�[u�](𝑢, 𝑣) ≤ 𝑘}
and the set of all agents with a distance of exactly 𝑘 to agent 𝑢 as 𝐵u�(𝑢) ≔
{𝑣 ∈ 𝑉 ∣ 𝑑u�[u�](𝑢, 𝑣) = 𝑘}. Given these sets, we claim that for any parameter 𝑘
with 𝑘 ≤ diam(𝐺[𝑆])/2 it holds:

∣𝐵u�+1(𝑢)∣ ≥ 𝑘2/(2𝛼)

Now consider the possible strategy change of 𝑢 that consists of buying the
edges to all agents 𝑣 ∈ 𝐵u�(𝑢), this would decrease 𝑢’s distance cost by at least
𝑘, while increasing her edge cost by 𝛼 ⋅ ∣𝐵u�(𝑢)∣. Since 𝑆 is an equilibrium, we
get ∣𝐵u�+1(𝑢)∣ ≥ 𝑘/𝛼. By summing over all ranges this yields:

∣𝐵u�+1(𝑢)∣ ≥ ∑
u�=1

𝑘
𝑖
𝛼

>
𝑘2

2𝛼

Next, fix the parameter 𝑘 such that 𝑘 ≔ diam(u�[u�])
4 − 1 and consider an agent

𝑢 such that distu�(𝑆) = diam(𝐺[𝑆]). We select a set of cluster centers 𝐶 by the
following iterative algorithm: First mark all agents within a distance of 2𝑘 from
𝑢, then iteratively select an arbitrary unmarked agent 𝑐, add 𝑐 to 𝐶, mark all
agents within distance of at most 2𝑘 from 𝑐, and continue this procedure with
the next iteration until all agents are marked.

Now assume a strategy change of 𝑢 that creates edges to all agents in 𝐶. This
would raise an additional edge cost of 𝛼 ⋅ |𝐶| for 𝑢. Since for any 𝑐u�, 𝑐u� ∈ 𝐶 with
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3 Loss and Benefit of Friendships

𝑐u� ≠ 𝑐u� it holds 𝐵u�(𝑐u�) ∩ 𝐵u�(𝑐u�) = ∅, we get 𝑁 ≥ |𝐶| ⋅ (u�−1)2

2u� and hence 𝑙 ≤ 2u�u�
(u�−1)2 .

Using that 𝑆 is an equilibrium and thus 𝛼 ⋅ |𝐶| ≥ 2𝑘, we get 2𝑘 ≤ 2u�u�2

(u�−1)2 , which
yields: diam(𝐺[𝑆]) = O((𝑁𝛼2)1/3).

(Edge cost upper bound.) The minimal length of a cycle is 𝛼 + 1, since otherwise
an agent owning such a cycle edge could improve her costs by removing it.
By this, we can apply Lemma 3.22 and get an upper bound on the edges of
O(𝑛1+2/u�).

(Price of anarchy.) For an optimal solution, we know that every agent is con-
nected to at least one other agent, which gives a simple social cost lower bound
of 𝛼𝑛/2. Comparing this to the above upper bounds gives for the process price
of anarchy:

O⎛⎜⎜
⎝

𝑛2/u� + (
𝑁
𝛼

)
1/3

⎞⎟⎟
⎠

3.5 Conclusion & Future Work

This chapter provided two different approaches to study the impact of friend-
ships on equilibria in network creation games. First, driven by the commonly
used worst-case approach, we saw that in Swap-Games the social cost can
become worst possible. The only exception is the quality of tree equilibria in
the Max-Swap-Game case, which states a remarkably different behavior. In
particular, the Binding-Sequence gives a very interesting insight into the struc-
ture of worst-case equilibria. Secondly, looking from a much more optimistic
view angle, we showed that using only some simple structural insights of the
best-response processes suffices to drastically improve the results. Specifically,
in the process price of anarchy, we tie the upper bound to the structure of the
friendship graph and 𝛼.

Throughout this chapter, we only considered static friendship graphs: The
set of friends never changes. Yet, in practice, friends of network participants
might change over time. Introducing a time model and considering (possibly
restricted) changes of the friendship graph seems to be a natural way to gen-
eralize our model, yielding an interesting online problem. In particular, the
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3.5 Conclusion & Future Work

combination of dynamic friendship graphs and more problem tailored price
of anarchy concepts, like the stated process price of anarchy, seems to be an
interesting further direction.
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CHAPTER 4

The Impact of Choosing Edge Qualities

Network creation games try to capture the behavior of Internet-like
networks, which are created by the autonomous decisions of multiple
strategic agents. Specifically, the game by Fabrikant et al. [Fab+03]

was introduced to study the outcome of such interactions with respect to the
impact of the agents’ selfish behavior to the overall quality. For this challenging
task, their classic model stays very simple and only provides one parameter,
namely the edge price 𝛼, which has major influence on the outcome. In this
chapter, we extend their model by enabling agents to select edges of different
qualities for different prices.

When considering today’s networks, where connections are offered by sev-
eral service providers with different bandwidths and latency guarantees, choos-
ing both the target and the quality of a connection seems to be a very natural
extension. We are specifically interested in latency costs, which can be modeled
as the shortest path lengths in a weighted network. Our model extension intro-
duces a set of available edge lengths, from which the agents can choose when
creating or changing an edge, and a price function, which assigns an individual
price to every available edge length. For this generalized model, we show that
equilibrium networks exist for any combination of available edge lengths and
price functions. Considering the quality loss by the selfish behavior of the
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4 The Impact of Choosing Edge Qualities

agents, we analyze the price of stability and the price of anarchy.

Chapter Basis. The model, analysis, and results presented in the remainder
of this chapter are based on the following publication:

2014 (with A. Mäcker and F. Meyer auf der Heide). “Quality of
Service in Network Creation Games”. In: Web and Internet Economics
– 10th International Conference, WINE 2014, Beijing, China, December
14-17, 2014. Proceedings, cf. [CMM14].

Chapter Outline. This chapter is organized as follows. In Section 4.1, we
introduce our model extensions for the Sum-Game and the Max-Game variants
of the classic model by Fabrikant et al. [Fab+03], in particular the notion of edge
lengths and price functions, and discuss several important properties of price
functions that are needed for the later analysis. A comparison to other price
functions, as typically used in economics literature, is provided in Section 4.2.
For the introduced game variants, in Section 4.3 we first analyze the existence
and structure of equilibrium networks. Supplementing this, in Section 4.4 and
Section 4.5 we provide answers on the minimal and maximal quality loss by
selfish behavior of agents.

4.1 Model & Notations

The considered model variants are extensions of the Sum-Game and the Max-
Game models as introduced in Section 2.2. In each game, there is a set of 𝑛
selfish agents 𝑉 and a set 𝐿 ⊆ [ ̌𝛽, ̂𝛽] of available edge lengths with 0 < ̌𝛽 ≤ ̂𝛽.
For convenience, throughout this chapter we assume ̌𝛽 = min{𝑥 ∈ 𝐿} and

̂𝛽 = max{𝑥 ∈ 𝐿}, which also gives that a specific minimum and maximum
edge length always exists in 𝐿. Every agent 𝑢 ∈ 𝑉 can create edges to other
agents of any available edge length 𝑥 ∈ 𝐿. The individual price of an edge of a
length 𝑥 is given by a monotonously decreasing function 𝑝 ∶ 𝐿 → ℝ≥0, which
is called a price function.

Every agent 𝑢 ∈ 𝑉 aims to minimize her private cost by selfishly selecting a
strategy 𝑠u� ⊂ 𝑉 ×𝐿. Hereby, each (𝑣, 𝑥) ∈ 𝑠u� represents an undirected weighted
edge ({𝑢, 𝑣}, 𝑥) from 𝑢 to 𝑣 of length 𝑥, which is created by 𝑢 and has a price

60



4.1 Model & Notations

of 𝑝(𝑥). For a strategy profile 𝑆 = (𝑠u�1, … , 𝑠u�u�) of agents 𝑉 = {𝑣1, … , 𝑣u�}, the
resulting weighted graph 𝐺[𝑆] consists of the vertices 𝑉 and the weighted
edges ⋃u�∈u�{({𝑢, 𝑣}, 𝑥) ∣ (𝑣, 𝑥) ∈ 𝑠u�}.

Game Variants. We consider the two natural network creation game variants
as discussed in Section 2.1. On the one hand, these are games in which agents
want to minimize the sum of distances to all other agents, and on other hand
these are games with agents who aim for minimizing their maximal distances.
The private cost of an agent 𝑢 in the Sum-Pricing-Game with strategy profile 𝑆
is given by:

𝑐u�(𝑆) = ∑
(u�,u�)∈u�u�

𝑝(𝑥) + ∑
u�∈u�

𝑑u�[u�](𝑢, 𝑣)

Here, 𝑑u�[u�](𝑢, 𝑣) denotes the shortest weighted path distance from 𝑢 to 𝑣 in
the weighted graph 𝐺[𝑆]. For the Max-Pricing-Game, the private cost function
is:

𝑐u�(𝑆) = ∑
(u�,u�)∈u�u�

𝑝(𝑥) + max
u�∈u�

𝑑u�[u�](𝑢, 𝑣)

The social cost in both games is estimated as:

cost(𝑆) = ∑
u�∈u�

𝑐u�(𝑆)

We refer to the first term of a cost function as edge u�(𝑆) = ∑(u�,u�)∈u�u�
𝑝(𝑥), called

the edge cost, and to the second term as distu�(𝑆), called the distance cost.

Price Functions. In this chapter, for a game with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽] a
monotonically decreasing function

𝑝 ∶ 𝐿 ⟶ ℝ≥0 (4.1)

is called a price function. Considering only monotonously decreasing functions
means that we only consider price functions for which shorter (better) edges are
more expensive than longer (inferior) ones. As noted previously, we assume

̌𝛽 = min{𝑥 ∈ 𝐿} and ̂𝛽 = max{𝑥 ∈ 𝐿} and by this know that 𝐿 contains a
specific minimum and maximum value.

Most of the analysis in this chapter makes use of some characteristic values

61



4 The Impact of Choosing Edge Qualities

of a price function. Given a domain of available edge lengths 𝐿 and a price
function 𝑝 ∶ 𝐿 → ℝ≥0, we consider the edge lengths that minimize the following
functions (cf. Figure 4.1):

(a) 𝑥 ↦ 𝑝(𝑥) + 𝑥,

(b) 𝑥 ↦ 𝑝(𝑥) + (𝑛 − 1)𝑥, and

(c) 𝑥 ↦ (𝑛 − 1)𝑝(𝑥) + 𝑥.

The minimizing values can be understood in the following way: If we consider
the Sum-Pricing-Game, where agents aim to minimize the sum of distances
to all other agents, 𝑥 ↦ 𝑝(𝑥) + 𝑥 is the trade-off function between an edge
length and its price for an edge that is used only for one shortest path and
complementary, 𝑥 ↦ 𝑝(𝑥) + (𝑛 − 1)𝑥 illustrates the trade-off between an edge
length and its price if the edge is used for 𝑛 − 1 shortest paths. Different for
the Max-Pricing-Game, 𝑥 ↦ (𝑛 − 1)𝑝(𝑥) + 𝑥 illustrates the trade-off between
an edge length and its price for an edge that is used only for one shortest path,
while 𝑥 ↦ 𝑝(𝑥) + 𝑥 now illustrates the trade-off between an edge length and its
price, if the edge is used for 𝑛 − 1 shortest paths. The following lemma gives
an overview of these functions and their relations, as they are needed in the
later analysis.

Lemma 4.1. Let 𝐿 ⊆ [ ̌𝛽, ̂𝛽] be a set of edge lengths and 𝑝 ∶ 𝐿 → ℝ≥0 a price function.
Then for the values

• 𝑥∗ ≔ arg minu�∈u� 𝑝(𝑥) + 𝑥,

• ̄𝑥 ≔ arg minu�∈u� 𝑝(𝑥) + (𝑛 − 1)𝑥,

• ̃𝑥 ≔ arg minu�∈u�(𝑛 − 1)𝑝(𝑥) + 𝑥,

• 𝜒∗ ≔ arg minu�∈u�
u�(u�)

2 + 𝑥, and

• ̄𝜒 ≔ arg minu�∈u� 𝑝(𝑥) + 2(𝑛 − 1)𝑥,

it holds:

(a) ̄𝑥 ≤ 𝑥∗ ≤ ̃𝑥 and 𝑝( ̃𝑥) ≤ 𝑝(𝑥∗) ≤ 𝑝( ̄𝑥),

(b) 𝑝(𝑥∗) + 𝑥∗ ≤ (𝑛 − 1)𝑝( ̃𝑥) + ̃𝑥 and 𝑝(𝑥∗) + 𝑥∗ ≤ 𝑝( ̄𝑥) + (𝑛 − 1) ̄𝑥, and
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length

price

𝑝(𝑥) = 1/𝑥𝑝( ̂𝛽)

𝑝( ̌𝛽)

̌𝛽 ̂𝛽

𝑝(𝑥) + 𝑥

𝑝(𝑥) + (𝑛 − 1)𝑥

(𝑛 − 1)𝑝(𝑥) + 𝑥

Figure 4.1: For some example price function u�(u�), the figure illustrates the differences
between the functions u�(u�) + u�, u�(u�) + (u� − 1)u�, and (u� − 1)u�(u�) + u� . The minimal
values of these functions in the domain of available edge lengths are characteristic
for the later discussed prices of stability and anarchy.

(c) 𝜒∗ + u�(u�∗)
2 ≥ u�∗+u�(u�∗)

2 and 𝑝( ̄𝜒) + 2(𝑛 − 1) ̄𝜒 ≥ 𝑝( ̄𝑥) + (𝑛 − 1) ̄𝑥.

Proof. The first set of inequalities directly follows from the fact that 𝑝 is a
monotonically decreasing positive function. For the second set of inequalities,
we only need that 𝑥∗ minimizes the term 𝑝(𝑥) + 𝑥, which cannot have a higher
value than the compared values. And finally, for the last set of inequalities,
using the definition of the values gives that the respective terms at the right
hand side are minimized by the used parameters.

Solution Concepts. Using the terms of a buy equilibrium from Section 2.2,
we call a strategy profile 𝑆 = (𝑠u�1, … , 𝑠u�u�) a buy equilibrium, if for every
agent 𝑣u� and every strategy 𝑠′

u�u� ≠ 𝑠u�u� it holds that the strategy profile 𝑆′ ≔
(𝑠u�1, … , 𝑠u�u�−1, 𝑠′

u�u�, 𝑠u�u�+1, … , 𝑠u�u�) does not have a lower private cost for 𝑣u�. If a
strategy profile is not a buy equilibrium, then there exists at least one agent
who can perform a strategy change that decreases her private cost. Such a
strategy change is called an improving response. If the strategy change is the
best possible for the agent in terms of reducing her private cost, it is called a
best response.
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4.2 Related Work & Contribution

As discussed in Section 2.2, both the Sum-Game and the Max-Game were stud-
ied extensively by various authors, in particular with respect to the question of
the price of anarchy (cf. Section 2.2.2 and Section 2.3). This includes the study
of different solution concepts, which usually restrict the available strategies
or strategy changes of the agents. Yet, there is not much work on extending
the capabilities of the agents, specifically not for the question of different edge
qualities.

Still, when we consider network formation problems in general, edges of
different qualities are quite common. For example, in congestion games (intro-
duced by Rosenthal [Ros73]) for every edge there is a function that denotes its
quality (latency) depending on the number of agents using the edge. Also in
network design games (e.g., Augustine et al. [Aug+15]), edges usually have
prices (weights) that are shared evenly among the agents that use them.

When it comes to modeling how a price function assigns a price to a good of
a certain quality, there is a great deal of microeconomics literature (e.g., Jehle
and Reny [JR11, pp. 135–145] and Mas-Colell et al. [MWG95, pp. 144–147]).
As a reference, we refer to convex and linear price functions (cf. Mas-Colell et
al. [MWG95, p. 144]), when benchmarking our results. In the related problem of
provider competition in an Infrastructure-as-a-Service market, where providers
offer access to computing resources and the resource prices change with the
current load, Künsemöller et al. [Kün+14] considered a similar set of price
functions by using piecewise linear functions.

Contribution. For every set of available edge lengths and every price func-
tion, we show that in the Sum-Pricing-Game and the Max-Pricing-Game buy
equilibrium networks exist. Specifically, our constructions yield a constant
price of stability for both games.

In the Sum-Pricing-Game, we can show that the price of anarchy is upper
bounded by at most O(min{𝑛, (𝑝(𝑥∗) + 𝑥∗)/ ̌𝛽}), with 𝑥∗ ∈ 𝐿 being the edge
length that minimizes 𝑝(𝑥)+𝑥. This emphasizes the importance of the trade-off
between edge price and quality. In particular, we can show that the price of
anarchy bound is nearly tight for a class of linear price functions, given by
𝑝 ∶ [1, 𝛼 − 2𝜀] → ℝ≥0 with 𝑝(𝑥) = 𝛼 − (1 + 𝜀)𝑥, for 𝛼 > 0 and 𝜀 ∈ (0, 1/2). This

64



4.3 Existence of Equilibria

is in considerable contrast to the classic Sum-Game for which no non-constant
lower bound is known.

For the Max-Pricing-Game we provide a price of anarchy upper bound of
O( 3√𝑛). Here, we note that unlike in the Sum-Pricing-Game, introducing
price functions has no major effect to the game.

Note that in both games, by setting the available edge lengths to 𝐿 ≔ {1} and
the price function to 𝑝(1) ≔ 𝛼, we obtain the original Max- and Sum-Games.

4.3 Existence of Equilibria

Compared to the classic network creation games by Fabrikant et al. [Fab+03]
and Demaine et al. [Dem+07], being able to select edge lengths and hence edge
prices equips agents with much more freedom than before. For example, any
interval 𝐿 ⊆ ℝ≥0 of positive length gives an infinite number of available edge
lengths and hence an infinite number of possible strategy choices. Since a
larger strategy space can make equilibria from the classical games unstable, in
this section we start by asking whether equilibria always exist.

For this, given an arbitrary price function we make use of the optimal trade-
offs between edge length and edge price for edges that are used only for
one shortest path and edges that are used for 𝑛 − 1 shortest paths. Using
these edge lengths, we can construct equilibrium networks that look similar to
those for the Max-Game and the Sum-Game, i.e., being either star or clique
networks. In particular, the structure of the equilibrium networks depends on
the characteristic price function values as introduced in Lemma 4.1.

4.3.1 Equilibria in the Sum-Pricing-Game

In the following, for any combination of a given set of edge lengths and a price
function, we first compute the optimal solutions regarding the social cost and
secondly show that always a buy equilibrium network exists. These results
will be used in later sections to estimate bounds for the prices of stability and
anarchy.

Lemma 4.2. For the Sum-Pricing-Game with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽] and price
function 𝑝 ∶ 𝐿 → ℝ≥0, let 𝑆 be a strategy profile such that 𝐺[𝑆] is connected and
no edge can be removed without increasing the social cost. Denote by ̌𝑥 the minimal
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length of any edge in 𝐺[𝑆] and by 𝑚 the total number of all edges. Then, for 𝑥∗ ≔
arg minu�∈u� 𝑝(𝑥) + 𝑥 it holds:

cost(𝑆) ≥ 2 ̌𝑥𝑛(𝑛 − 1) + 𝑚(𝑝(𝑥∗) + 𝑥∗ − 4 ̌𝑥)

Proof. Let 𝐸u� ≔ ⋃u�∈u�{{𝑢, 𝑣} ∣ (𝑣, 𝑥) ∈ 𝑠u�} denote the edges in 𝐺[𝑆] of length
𝑥. Using that not directly connected agents have a (weighted) distance of at
least 2 ̌𝑥, we can make the following estimation:

cost(𝑆) ≥ ∑
u�∈u� ∶ |u�u�|≠0

|𝐸u�| ⋅ (𝑝(𝑥) + 2𝑥) + 2 ̌𝑥(𝑛(𝑛 − 1) − 2𝑚)

≥ 2 ̌𝑥𝑛(𝑛 − 1) + ∑
u�∈u� ∶ |u�u�|≠0

|𝐸u�| ⋅ (𝑝(𝑥) + 𝑥) − 4𝑚 ̌𝑥

≥ 2 ̌𝑥𝑛(𝑛 − 1) + 𝑚(𝑝(𝑥∗) + 𝑥∗ − 4 ̌𝑥)

Lemma 4.3. For the Sum-Pricing-Game with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽] and price func-
tion 𝑝 ∶ 𝐿 → ℝ≥0, define 𝜒∗ ≔ arg minu�∈u� 𝑝(𝑥) + 2𝑥 and ̄𝜒 ≔ arg minu�∈u� 𝑝(𝑥) +
2(𝑛 − 1)𝑥. Then, the network with optimal social cost is either given by a star network
with all edges having length ̄𝜒 or by a clique network with all edges having length 𝜒∗.

Proof. First, we argue that it is enough to only consider networks with a hop-
diameter of at most 2 by converting any network 𝐺 into a network 𝐺′ with a
not higher social cost but a hop-diameter of either one or two. For this, let
𝑥1 ≤ … ≤ 𝑥u� be the lengths of all edges of 𝐺 (same lengths are listed multiple
times), ordered by increasing length. We create 𝐺′ with one center agent 𝑐,
𝑛 − 1 satellite agents 𝑣1, … , 𝑣u�−1, and an initial edge set 𝐸u� by connecting each
𝑣u� to 𝑐 by an edge of length 𝑥u�.

In the following, we create a one-to-one mapping from agent pairs in 𝐺 to
agent pairs in 𝐺′ such that no distance compared to 𝐺 is increased. First, for
every directly connected agent pair {𝑢, 𝑣} such that their edge is associated
with an edge in 𝐸u�, we map 𝑢 and 𝑣 to the end points of this edge. Secondly,
for every agent pair {𝑢, 𝑣} that is not directly connected, but where both the
first and the last edge of a shortest path in 𝐺 are associated with edges in
𝐸u�, we map the agents to the satellite agents adjacent to the corresponding
edges in 𝐺′. Thirdly, for every agent pair {𝑢, 𝑣} that is not directly connected
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in 𝐺, but where the first and not the last edge of a shortest path from 𝑢 to 𝑣
in 𝐺 is associated with an edge in 𝐸u�, we map to the satellite agent adjacent
to the corresponding edge and to an arbitrary other agent to which not more
than 𝑛 − 2 agents are already mapped (including the mappings done by edge
associations during the current step). Fourthly, for all remaining not directly
connected agent pairs in 𝐺, we map them to arbitrary pairs of agents to which
no mapping is performed yet. Finally, for all directly connected edges in 𝐺,
which are not mapped yet, we map them to an arbitrary pair of agents. Here,
if the distance of the mapped pair in 𝐺′ is at most the distance as in 𝐺, then do
nothing. Otherwise, create an edge between them of same length as in 𝐺.

By construction, this mapping is bijective as all agent pairs are mapped and
to every agent pair in 𝐺′ only one pair is mapped. In particular, no distance of
a mapped pair of agents is bigger than the corresponding distance in 𝐺. This
is obvious for the first and last step. For the other steps, this holds by the fact
that 𝑥1, … , 𝑥u�−1 are the minimal lengths of all edges in 𝐺. Finally, the edge cost
in 𝐺′ is at most the edge cost in 𝐺 and hence cost(𝐺′) ≤ cost(𝐺).

We claim that the so constructed network is either a star or a complete
network. By construction, a shortest distance path between any two not directly
connected agents 𝑢, 𝑣 ∈ 𝑉 ⧵ {𝑐} must contain 𝑐. Hence, any edge connecting
two satellite agents 𝑢, 𝑣 ∈ 𝑉 ⧵ {𝑐} is used exclusively for the shortest paths 𝑢 to
𝑣 and 𝑣 to 𝑢 and thus has length 𝜒∗. Since the social cost is optimal, all satellite
agents must have the same degree and be connected to 𝑐 by edges having the
same length 𝑥. For 𝑚 being the total number of edges that connect any two
satellites, the social cost is:

𝑚(𝑝(𝜒∗) + 2𝜒∗ − 4𝑥) + (𝑛 − 1)(𝑝(𝑥) + 2(𝑛 − 1)𝑥) (4.2)

We see that for any fixed 𝑥 this term is minimized either with 𝑚 = 0 (lower
bound for 𝑚) or 𝑚 = (𝑛 − 1)𝑛/2 − (𝑛 − 1) (upper bound for 𝑚). Hence, the
optimal solution is either a star or a complete network. For a complete network,
all lengths are 𝜒∗ and the social cost is 𝑛(𝑛 − 1)(𝜒∗ + 𝑝(𝜒∗)/2). Otherwise, for
a star network the edge length ̄𝜒 minimizes the social cost given by:

2(𝑛 − 1)𝑥 + (𝑛 − 1)(𝑛 − 2)2𝑥 + (𝑛 − 1)𝑝(𝑥) = (𝑛 − 1)(2(𝑛 − 1)𝑥 + 𝑝(𝑥))
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Hence, the star and clique networks are the only two solutions with optimal
social cost.

Next, we show for the Sum-Pricing-Game that for any set of available edge
lengths 𝐿 and any price function 𝑝 ∶ 𝐿 → ℝ≥0 a buy equilibrium network exists.
Depending on 𝑥∗ and ̄𝑥 for the considered combination of price function and
edge lengths (cf. definition in Theorem 4.4), this will either be a star or a clique
network.

Theorem 4.4 (Sum-Pricing-Game: existence of equilibria). For the Sum-Pricing-
Game with a set of edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽] and arbitrary price function 𝑝 ∶ 𝐿 →
ℝ≥0, a buy equilibrium strategy profile exists. Depending on the values 𝑥∗ ≔
arg minu�∈u� 𝑝(𝑥) + 𝑥 and ̄𝑥 ≔ arg minu�∈u� 𝑝(𝑥) + (𝑛 − 1)𝑥, one of the following
networks is a buy equilibrium:

⎧{
⎨{⎩

clique, all lengths 𝑥∗ for 𝑝(𝑥∗) ≤ ̄𝑥,
star, all lengths ̄𝑥 otherwise.

Proof. The following proof is about distinguishing when it is cheaper for a
single agent to unilaterally replace an expensive short edge by many cheap
long ones, or the other way around. In particular, we consider the cases when
𝑝(𝑥∗) > ̄𝑥 holds and then, for the contrary case of 𝑝(𝑥∗) ≤ ̄𝑥, whether 𝑝( ̄𝑥) < 𝑥∗

holds or not.

(Stability of star, first case.) For ̄𝑥 < 𝑝(𝑥∗), we consider a spanning star network
consisting of a center agent 𝑢 and 𝑛 − 1 satellite agents 𝑣1, … , 𝑣u�−1. Every
satellite agent 𝑣u� owns one edge towards 𝑢 of length ̄𝑥. Considering the center
agent, 𝑢 will not create any edge since she is directly connected to all other
agents and by Lemma 4.1 we know ̄𝑥 ≤ 𝑥∗: i.e., every edge length is already
shorter than the length agent 𝑢 would choose when connecting to exactly
one agent. But also no satellite agent 𝑣u� can perform an improving response,
since on the one hand the length of 𝑣u�’s only edge is optimal for being the
only connection to 𝑛 − 1 agents. And on the other hand, for the optimal cost
𝑝(𝑥∗) to improve the distance to exactly one other satellite agent, the gain is
2 ̄𝑥 − 𝑥∗ − 𝑝(𝑥∗) ≤ 0. Hence, the star forms a buy equilibrium network.

(Stability of clique.) For 𝑝(𝑥∗) ≤ ̄𝑥, we check when a clique with all edges having
length 𝑥∗ and arbitrarily assigned edge ownerships forms a buy equilibrium
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network. First, we see that decreasing the length of any edge {𝑢, 𝑣} exclusively
decreases the distance between 𝑢 and 𝑣. Since the edge length 𝑥∗ is the optimal
length for an edge used for exactly one shortest path, no agent will change any
edge length as well as create a new edge. Hence, we only have to consider the
unilateral strategy change of an agent of removing some edges and creating
one new edge of a length 𝑥 ≤ 𝑥∗. Since all strategy changes are unilateral, after
this change the hop-diameter is two. This means that other agents are either
directly connected or at distance 𝑥 + 𝑥∗. We consider the best possible strategy
change for an agent 𝑢, consisting of removing (and by this gaining the edge
cost reduction of) at most 𝑛 − 1 edges of length 𝑥∗ and creating one new edge
of length ̄𝑥 to an arbitrary agent. This changes the cost of 𝑢 by:

−(𝑛 − 1)𝑝(𝑥∗) + 𝑝( ̄𝑥) + (𝑛 − 2) ̄𝑥 − (𝑥∗ − ̄𝑥) =

𝑝( ̄𝑥) − 𝑥∗ + (𝑛 − 1)( ̄𝑥 − 𝑝(𝑥∗)) ≥

𝑝( ̄𝑥) − 𝑥∗ + (𝑛 − 1)(𝑝(𝑥∗) − 𝑝(𝑥∗)) = 𝑝( ̄𝑥) − 𝑥∗

In particular, for 𝑝( ̄𝑥) ≥ 𝑥∗ the private cost of 𝑢 increases and hence for this
case the clique network forms a buy equilibrium.

(Stability of star, second case.) It remains to consider the last case, which is
𝑝(𝑥∗) ≤ ̄𝑥, 𝑝( ̄𝑥) < 𝑥∗, and 𝑝( ̄𝑥) − 𝑥∗ + (𝑛 − 1)( ̄𝑥 − 𝑝(𝑥∗)) < 0. Again, like in the
first case, we claim that a star network with all edges of length ̄𝑥 and owned
by the satellite agents is a buy equilibrium. By choosing the edge lengths to be
̄𝑥, we only have to show that creating a new edge gives no gain. The optimal

cost change by creating a new edge is 𝑝(𝑥∗) − 2 ̄𝑥 + 𝑥∗. This operation is an
improving response if and only if 𝑥∗ < 2 ̄𝑥−𝑝(𝑥∗). But combining all constrains
gives:

0 > 𝑝( ̄𝑥) − 𝑥∗ + (𝑛 − 1)( ̄𝑥 − 𝑝(𝑥∗))

> 𝑝( ̄𝑥) − (2 ̄𝑥 − 𝑝(𝑥∗)) + (𝑛 − 1)( ̄𝑥 − 𝑝(𝑥∗))

≥ 𝑝( ̄𝑥) − 2 ̄𝑥 + 𝑝(𝑥∗) + (𝑛 − 1) ̄𝑥 − (𝑛 − 1)𝑝(𝑥∗)

≥ (𝑛 − 3) ̄𝑥 − (𝑛 − 3)𝑝(𝑥∗)

= (𝑛 − 3)( ̄𝑥 − ̄𝑥) ≥ 0

This is a contradiction and hence the star network is a buy equilibrium, since
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no improving response exists.

Comparing this existence proof to the equilibrium analysis by Fabrikant et
al. [Fab+03] for the classic Sum-Game, where only edges of length 1 for price 𝛼
are available, one can see an interesting relation. If we set 𝐿 ≔ {1} and 𝑝(1) ≔ 𝛼
in our proof for the Sum-Pricing-Game, the case distinction simplifies to the
first two cases: i.e., whether 𝛼 > 1 or not. Specifically, this is the same case
distinction as in the original game and gives the same existence result.

4.3.2 Equilibria in the Max-Pricing-Game

In the following, we show that also in the Max-Pricing-Game, for every combi-
nation of available edge lengths and price function, there exists a buy equilib-
rium network.

Lemma 4.5. Let 𝐿 ⊆ [ ̌𝛽, ̂𝛽] be a set of edge lengths, 𝑝 ∶ 𝐿 → ℝ≥0 be a price function,
𝜒∗ ≔ arg minu�∈u� 𝑥 + 𝑝(𝑥)/2, and 𝑆 a strategy profile. Then, in the Max-Pricing-
Game the social cost is at least:

cost(𝑆) ≥ (𝜒∗ +
𝑝(𝜒∗)

2
)𝑛

Proof. For every agent 𝑢 ∈ 𝑉, we consider an arbitrary fixed, longest shortest
path and denote the length of the first edge of this path of agent 𝑢 by 𝑥u�.
Since an edge has only two incident agents, it can only be considered twice by
the above procedure, whereas one agent has to pay for the edge. Hence, by
summing over all private costs, we get:

cost(𝑆) = ∑
u�∈u�

𝑐u�(𝑆) ≥ ∑
u�∈u�

(𝑥u� +
𝑝(𝑥u�)

2
) ≥ (𝜒∗ +

𝑝(𝜒∗)
2

)𝑛

Note that this lower bound is actually tight up to a constant. This can be
seen by considering a star network with all edges having length of 𝜒∗ and thus
giving a social cost of 𝛩(𝜒∗𝑛 + 𝑝(𝜒∗)𝑛).

Theorem 4.6 (Max-Pricing-Game: existence of equilibria). For the Max-Pricing-
Game with a set of edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽] and arbitrary price function 𝑝 ∶ 𝐿 → ℝ≥0, a
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buy equilibrium strategy profile exists. Depending on 𝑥∗ ≔ arg minu�∈u� 𝑝(𝑥) + 𝑥 and
̃𝑥 ≔ arg minu�∈u�(𝑛 − 1)𝑝(𝑥) + 𝑥, one of the following networks is a buy equilibrium:

⎧{{
⎨{{⎩

star, all lengths 𝑥∗ for (𝑛 − 1)𝑝( ̃𝑥) + ̃𝑥 ≥ 𝑝(𝑥∗) + 2𝑥∗,
star, all lengths ̃𝑥 for (𝑛 − 1)𝑝( ̃𝑥) + ̃𝑥 < 𝑝(𝑥∗) + 2𝑥∗ ∧ ̃𝑥 ≤ (𝑛 − 2)𝑝( ̃𝑥),
clique, all lengths ̃𝑥 otherwise.

Proof. In the following, we use the relations from Lemma 4.1 and perform a
case distinction on the properties of 𝐿 and 𝑝.

(Stability of star network with satellites owning all edges.) If it holds (𝑛−1)𝑝( ̃𝑥)+ ̃𝑥 ≥
𝑝(𝑥∗) + 2𝑥∗, we consider a star network with all edges having length 𝑥∗ and
being owned by the satellite agents. Then, the center agent can only improve
her private cost by creating 𝑛 − 1 edges of some length 𝑥 < 𝑥∗, leading to a
gain of:

𝑥∗ − ((𝑛 − 1)𝑝(𝑥) + 𝑥) ≤ 𝑥∗ − ((𝑛 − 1)𝑝( ̃𝑥) + ̃𝑥) ≤ 𝑥∗ − (𝑝(𝑥∗) + 2𝑥∗) < 0

For any satellite agent 𝑣, there are two kinds of possible improving responses.
First, if 𝑣 only creates edges of some length 𝑥 ≤ 𝑥∗ to satellite agents, then the
gain is at most:

𝑝(𝑥∗) + 2𝑥∗ − ((𝑛 − 2)𝑝(𝑥) + 𝑥∗ + 𝑥) ≤ 0

Secondly, for a strategy change that connects 𝑣 to every other agent, the gain is
at most:

𝑝(𝑥∗) + 2𝑥∗ − ((𝑛 − 1)𝑝( ̃𝑥) + ̃𝑥) ≤ 0

Hence, no improving response exists and the star network is a buy equilibrium.
In the following, we consider the remaining case (𝑛 − 1)𝑝( ̃𝑥) + ̃𝑥 < 𝑝(𝑥∗) + 2𝑥∗,
for which we make a further case distinction.

(Stability of star with center owning all edges.) Now, let (𝑛−1)𝑝( ̃𝑥)+ ̃𝑥 < 𝑝(𝑥∗)+2𝑥∗

and further consider the case of ̃𝑥 ≤ (𝑛 − 2)𝑝( ̃𝑥). We want to show that then a
star network consisting only of edges of length ̃𝑥, whereas all edges are owned
by a center agent 𝑢, is a buy equilibrium. By construction, the center agent
cannot perform any improving response and it suffices to consider the possible
improving responses of the satellite agents. For this, let 𝑣 be a satellite agent.
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First, if 𝑣 creates edges of length 𝑥 to all other 𝑛 − 2 satellites (note that 𝑥 ≤ 2 ̃𝑥),
the gain is:

2 ̃𝑥 − (max{ ̃𝑥, 𝑥} + (𝑛 − 2)𝑝(𝑥))

If 𝑥 < ̃𝑥, this value is negative. But still for 𝑥 ≥ ̃𝑥, the gain is at most

2 ̃𝑥 − (𝑥 + (𝑛 − 2)𝑝(𝑥)) ≤ ̃𝑥 + (𝑛 − 2)𝑝( ̃𝑥) − (𝑥 + (𝑛 − 2)𝑝(𝑥) ≤ 0

since the value minimizing 𝑥 + (𝑛 − 2)𝑝(𝑥) lies in the interval [𝑥∗, ̃𝑥] and thus
the only possibly improving choice for 𝑣 is 𝑥 = ̃𝑥. Secondly, if 𝑣 creates edges
of length 𝑥 to all other agents, the gain is:

2 ̃𝑥 − ((𝑛 − 1)𝑝(𝑥) + 𝑥) ≤ (𝑛 − 2)𝑝( ̃𝑥) + ̃𝑥 − (𝑛 − 1)𝑝( ̃𝑥) − ̃𝑥 ≤ 0

Thirdly, if 𝑣 creates only one edge to the center agent of length 𝑥, the gain is:

2 ̃𝑥 − (𝑝(𝑥) + 𝑥 + ̃𝑥) ≤ ̃𝑥 − 𝑝(𝑥∗) − 𝑥∗

≤ ̃𝑥 − ((𝑛 − 1)𝑝( ̃𝑥) + ̃𝑥 − 𝑥∗)

≤ (𝑛 − 2)𝑝( ̃𝑥) − (𝑛 − 1)𝑝( ̃𝑥) − ̃𝑥 + 𝑥∗ < 0

Hence, this star network is a buy equilibrium.

(Stability of clique with one agent owning 𝑛 − 1 edges.) As the final case, we have to
consider (𝑛 − 1)𝑝( ̃𝑥) + ̃𝑥 < 𝑝(𝑥∗) + 2𝑥∗ and ̃𝑥 > (𝑛 − 2)𝑝( ̃𝑥). Here, we construct
a star with one agent 𝑢 owning 𝑛 − 1 edges of length ̃𝑥 and complete this
star to a clique with all edges having length ̃𝑥, yet arbitrary edge ownerships.
We claim that this network is a buy equilibrium. At first we note that by
construction, 𝑢 has optimal lengths for all of her edges. Also every other
agent has optimal lengths for her edges, since by unilaterally changing her
edge lengths the diameter stays at least ̃𝑥. We further show that no agent will
change her edge set by considering the following kinds of possible improving
responses. First, for any agent replacing her current set of edges by edges to
all other agents, the optimal length is ̃𝑥 and hence, doing so cannot improve
her private cost. Secondly, by simply removing all own edges the gain is at
most (𝑛 − 2)𝑝( ̃𝑥) − ̃𝑥 < 0. Thirdly, by removing all own edges and creating
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one edge to 𝑢 of length 𝑥, the gain is at most:

(𝑛−1)𝑝( ̃𝑥)+ ̃𝑥−( ̃𝑥+𝑥)−𝑝(𝑥) ≤ (𝑛−1)𝑝( ̃𝑥)−𝑥−𝑝(𝑥) ≤ ̃𝑥+𝑝( ̃𝑥)−(𝑥∗+𝑝(𝑥∗)) ≤ 0

Concluding, no improving response exists for any agent and hence the network
is a buy equilibrium.

4.4 Quality of Equilibria in the Sum-Pricing-Game

In this section, we consider the quality of equilibria in the Sum-Pricing-Game.
In particular, we provide bounds for the prices of stability and anarchy.

Corollary 4.7 (Sum-Pricing-Game: price of stability). For the Sum-Pricing-Game
with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽] and price function 𝑝 ∶ 𝐿 → ℝ≥0, the price of stability is
at most 4.

Proof. In the following, we compute the social cost ratio when comparing
the equilibrium networks from Theorem 4.4 with the optimal solutions from
Lemma 4.3. For this, define the characteristic values 𝑥∗ ≔ arg minu�∈u� 𝑝(𝑥) +
𝑥, ̄𝑥 ≔ arg minu�∈u� 𝑝(𝑥) + (𝑛 − 1)𝑥, 𝜒∗ ≔ arg minu�∈u� 𝑝(𝑥) + 2𝑥, and ̄𝜒 ≔
arg minu�∈u� 𝑝(𝑥) + 2(𝑛 − 1)𝑥. If the equilibrium network and the socially op-
timal network have the same topology, i.e., both being star networks or both
being clique networks, the price of stability is at most 2. This directly follows
from the relations of Lemma 4.1, when comparing the social costs.

Now consider the case when the equilibrium network is a star with all edges
having length ̄𝑥, but the optimal solution being a clique. In this case we get:

PoS ≤
(𝑛 − 1)(2(𝑛 − 1) ̄𝑥 + 𝑝( ̄𝑥))

𝑛(𝑛 − 1)(𝜒∗ + u�(u�∗)
2

)
≤ 4

(𝑛 − 1) ̄𝑥 + 𝑝( ̄𝑥)
𝑛(𝑥∗ + 𝑝(𝑥∗))

≤ 4
(𝑛 − 1)𝑥∗ + 𝑝(𝑥∗)

𝑛(𝑥∗ + 𝑝(𝑥∗))
≤ 4

For the second-last estimation note that by definition ̄𝑥 is the argument in 𝐿
for which the function 𝑥 ↦ (𝑛 − 1)𝑥 + 𝑝(𝑥) is minimized.

Finally, consider the case when the buy equilibrium network is a clique with
all edges of length 𝑥∗ and the optimal solution being a star with all edges of
length ̄𝜒. Considering equation (4.2) from Lemma 4.3, for the optimal solution
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to be a star it must hold that 𝑝(𝜒∗) + 2𝜒∗ − 4 ̄𝜒 ≤ 0 and hence 𝑝(𝜒∗) + 2𝜒∗ ≤ 4 ̄𝜒.
This gives:

PoS ≤
𝑛(𝑛 − 1)(𝑥∗ + u�(u�∗)

2
)

(𝑛 − 1)(2(𝑛 − 1) ̄𝜒 + 𝑝( ̄𝜒))
≤

𝑛(𝑥∗ + u�(u�∗)
2

)

2(𝑛 − 1) ̄𝜒 + 𝑝( ̄𝜒)

≤
𝑛(𝜒∗ + 𝑝(𝜒∗))

2(𝑛 − 1) ̄𝜒 + 𝑝( ̄𝜒)
≤

4𝑛 ̄𝜒
2(𝑛 − 1) ̄𝜒

≤ 4

Similar to Albers et al. [Alb+14], we start our analysis of the price of anarchy
by bounding the social cost of a buy equilibrium network by the diameter of
the network but now incorporate arguments about maximum edge lengths
and edge prices. This will yield the upper bound for the price of anarchy as
stated in Theorem 4.10.

Lemma 4.8. For the Sum-Pricing-Game with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽] and price
function 𝑝 ∶ 𝐿 → ℝ≥0, let 𝑆 be a buy equilibrium strategy profile and define 𝑥∗ ≔
arg minu�∈u� 𝑝(𝑥) + 𝑥. Then, for any agent 𝑢 ∈ 𝑉 it holds:

cost(𝑆) ≤ 𝑛 ⋅ distu�(𝑆) + 𝑥∗(𝑛 − 1)2 + 2(𝑝(𝑥∗) + 𝑥∗)𝑛(𝑛 − 1)

Proof. First, we claim that in an equilibrium network all edges have a price
of at most 𝑛(𝑝(𝑥∗) + 𝑥∗). For this, assume there is an edge of price 𝑝(𝑥) >
(𝑝(𝑥∗) + 𝑥∗)𝑛 and consider replacing it by a new edge of length 𝑥∗. This would
decrease the owner’s edge cost by 𝑝(𝑥) − 𝑝(𝑥∗) > 𝑛𝑥∗ + (𝑛 − 1)𝑝(𝑥∗), while
increasing the distance cost by at most (𝑥∗ − 𝑥)(𝑛 − 1). Since (𝑥∗ − 𝑥)(𝑛 − 1) <
𝑛𝑥∗ + (𝑛 − 1)𝑝(𝑥∗), this is an improving response and hence contradicts 𝑆
forming a buy equilibrium.

Next, fix an arbitrary agent 𝑢 ∈ 𝑉 and consider a shortest path tree 𝑇 rooted
at 𝑢 in 𝐺[𝑆]. For every 𝑣 ∈ 𝑉, define 𝑚u� ≔ ∣{{𝑣, 𝑤} ∣ (𝑤, 𝑥) ∈ 𝑠u� ∧ {𝑣, 𝑤} ∈ 𝑇}∣
to be the number of tree edges maintained by 𝑣. Then, for any agent 𝑣 ≠ 𝑢 we
argue that it must hold

𝑐u�(𝑆) ≤ (𝑝(𝑥∗) + 𝑥∗)𝑛(𝑚u� + 1) + distu�(𝑆) + 𝑥∗(𝑛 − 1),

which we can see as follows: Since 𝑆 forms an equilibrium, deviating from her

74



4.4 Quality of Equilibria in the Sum-Pricing-Game

𝑢
𝑣u� 𝑣2

𝑣
… 𝑣1

0 u� u� + u� 2u�

Figure 4.2: Illustration of the diameter argument of Lemma 4.9: Agent u� creates an
edge to agent u� and improves her distance cost to agents u�1, … , u�u�.

current strategy cannot decrease 𝑣’s private cost. In particular, the resulting
private cost when removing all own edges, except those belonging to 𝑇, and
additionally creating one new edge of length 𝑥∗ to 𝑢 cannot be less than 𝑐u�(𝑆).
Since this strategy change would not modify any edges of the shortest path
tree 𝑇, after the strategy change 𝑣’s distance cost would be at most distu�(𝑆) +
(𝑛 − 1)𝑥∗, while her edge cost would be (𝑝(𝑥∗) + 𝑥∗)𝑛(𝑚u� + 1) + 𝑝(𝑥∗).

Using this bound for every agent 𝑣 ≠ 𝑢 and the fact that 𝑢 only owns edges
belonging to 𝑇 (removing a non-tree edge would reduce 𝑢’s cost), we get:

cost(𝑆) ≤ distu�(𝑆) + (𝑝(𝑥∗) + 𝑥∗)𝑛𝑚u�

+ ∑
u�≠u�

((𝑝(𝑥∗) + 𝑥∗)𝑛(𝑚u� + 1) + distu�(𝑆) + 𝑥∗(𝑛 − 1))

= 𝑛 ⋅ distu�(𝑆) + 𝑥∗(𝑛 − 1)2 + (𝑝(𝑥∗) + 𝑥∗)𝑛𝑚u�

+ ∑
u�≠u�

(𝑝(𝑥∗) + 𝑥∗)𝑛(𝑚u� + 1)

= 𝑛 ⋅ distu�(𝑆) + 𝑥∗(𝑛 − 1)2 + 2(𝑝(𝑥∗) + 𝑥∗)𝑛(𝑛 − 1)

For the last equality we use that a tree with 𝑛 agents has 𝑛 − 1 edges.

Lemma 4.9. In the Sum-Pricing-Game with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽] and price
function 𝑝 ∶ 𝐿 → ℝ≥0, define 𝑥∗ ≔ arg minu�∈u� 𝑝(𝑥) + 𝑥, and let 𝑆 be a buy
equilibrium strategy profile. Then, the diameter of 𝐺[𝑆] is at most O(𝑝(𝑥∗) + 𝑥∗).

Proof. First, we show that no edge can be longer than 𝑝(𝑥∗) + 𝑥∗. Assuming
there is an agent 𝑢 who owns an edge (𝑣, 𝑥) ∈ 𝑠u� of length 𝑥 > 𝑝(𝑥∗) + 𝑥∗,
which connects 𝑢 to an agent 𝑣, we consider the replacement of this edge by an
edge of length 𝑥∗. Such a new strategy 𝑠′

u� ≔ (𝑠u� ⧵ {(𝑣, 𝑥)}) ∪ {(𝑣, 𝑥∗)} decreases
𝑢’s distance cost by at least 𝑥 − 𝑥∗ > 𝑝(𝑥∗), but increases 𝑢’s edge cost by at
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most 𝑝(𝑥∗) − 𝑝(𝑥). Since an improving response contradicts 𝑆 being a buy
equilibrium, we get the upper bound on the edge length.

Next, we consider the length of a longest shortest path in 𝐺[𝑆], of which we
call the incident agents 𝑢 and 𝑣. If this path only consists of one edge, the edge
would have a length of at most 𝑝(𝑥∗) + 𝑥∗ and the claim holds. Otherwise,
the path consists of at least two edges and we define a parameter 𝑘 ∈ ℝ≥0

such that 2𝑘 = 𝑑u�[u�](𝑢, 𝑣) and consider the strategy change 𝑠′
u� ≔ 𝑠u� ∪ {(𝑣, 𝑥)}

of agent 𝑢 that consists of creating an edge {𝑢, 𝑣} of some length 𝑥 ∈ 𝐿. This
strategy change (cf. Figure 4.2) decreases 𝑢’s distance cost to agents on the
path that have a distance of at least 𝑘 + 𝑥 to 𝑢. Let 𝑣 ≕ 𝑣1, 𝑣2, … , 𝑣u� denote
these agents, ordered by increasing distance to 𝑣. Since each edge has a length
of at most min{𝑝(𝑥∗) + 𝑥∗, ̂𝛽}, we get 𝑍 ≥ ⌈ u�−u�

min{u�(u�∗)+u�∗, ̂u�}
⌉. With the strategy

change 𝑠′
u�, each distance from 𝑢 to any 𝑣u� decreases from 2𝑘 − 𝑑u�[u�](𝑣, 𝑣u�) to be

at most 𝑥 + 𝑑u�[u�](𝑣, 𝑣u�), resulting in a distance cost decrease of at least:

u�
∑
u�=1

(2𝑘 − 𝑑u�[u�](𝑣, 𝑣u�)) −
u�

∑
u�=1

(𝑥 + 𝑑u�[u�](𝑣, 𝑣u�)) = 𝑍(2𝑘 − 𝑥) − 2
u�

∑
u�=1

𝑑u�[u�](𝑣, 𝑣u�)

≥ 𝑍(2𝑘 − 𝑥) − 2𝑍(𝑘 − 𝑥)

= 𝑍(2𝑘 − 𝑥 − 2𝑘 + 2𝑥) = 𝑍𝑥

Since 𝑆 is a buy equilibrium, this cannot be an improving response and hence
we get 𝑍𝑥 ≤ 𝑝(𝑥). This gives 𝑝(𝑥) ≥ u�−u�

min{u�(u�∗)+u�∗, ̂u�}
𝑥 and hence:

𝑘 ≤ min{𝑝(𝑥∗) + 𝑥∗, ̂𝛽}
𝑝(𝑥)

𝑥
+ 𝑥

If min{𝑝(𝑥∗) + 𝑥∗, ̂𝛽} = ̂𝛽, then the diameter of 𝐺[𝑆] is at most 2(𝑝( ̂𝛽) + ̂𝛽) ≤
2(𝑝( ̂𝛽) + 𝑝(𝑥∗) + 𝑥∗) = O(𝑝(𝑥∗) + 𝑥∗). Otherwise, if min{𝑝(𝑥∗) + 𝑥∗, ̂𝛽} =
𝑝(𝑥∗) + 𝑥∗, then the diameter is at most (𝑝(𝑥∗) + 𝑥∗)u�(u�)

u� + 𝑥. For 𝑝(𝑥∗) ≤ 𝑥∗

the lemma follows by setting 𝑥 ≔ 𝑥∗. In case 𝑝(𝑥∗) > 𝑥∗, by setting 𝑥 ≔ 𝑝(𝑥∗)
the diameter is at most O((𝑝(𝑥∗) + 𝑥∗)u�(u�(u�∗))

u�(u�∗)
). Using the monotonicity of 𝑝,

it holds 𝑝(𝑝(𝑥∗)) ≤ 𝑝(𝑥∗) and we get O(𝑝(𝑥∗) + 𝑥∗).

Theorem 4.10 (Sum-Pricing-Game: price of anarchy upper bound). In the
Sum-Pricing-Game with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽], price function 𝑝 ∶ 𝐿 → ℝ≥0, and
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4.4 Quality of Equilibria in the Sum-Pricing-Game

𝑥∗ ≔ arg minu�∈u� 𝑝(𝑥) + 𝑥, the price of anarchy is at most:

PoA = O(min{𝑛,
𝑝(𝑥∗) + 𝑥∗

̌𝛽
})

Proof. Let 𝑆 be a buy equilibrium strategy profile. Then by Lemma 4.9, the
diameter of 𝐺[𝑆] is at most O(𝑝(𝑥∗) + 𝑥∗). Applying this to Lemma 4.8, the
social cost of 𝑆 is at most:

cost(𝑆) = O(𝑛(𝑛 − 1)(𝑝(𝑥∗) + 𝑥∗))

Moreover, by Lemma 4.2 the social cost of an optimal solution is at least

2 ̌𝛽𝑛(𝑛 − 1) + 𝑚(𝑝(𝑥∗) + 𝑥∗ − 4 ̌𝛽),

whereas 𝑚 denotes the number of edges. When comparing both bounds, we get
for 𝑝(𝑥∗)+𝑥∗ ≤ 4 ̌𝛽 that the lower bound is minimized with 𝑚 = 𝑛(𝑛−1)/2 and
then becomes 𝑛(𝑛 − 1)(𝑝(𝑥∗) + 𝑥∗)/2, which gives a price of anarchy of O(1).
Otherwise, for 𝑝(𝑥∗) + 𝑥∗ > 4 ̌𝛽 the lower bound is minimized with 𝑚 = 𝑛 − 1
and we get PoA = O( u�(u�(u�∗)+u�∗)

̌u�(2u�−4+(u�(u�∗)+u�∗)/ ̌u�)
). When separately considering

whether 𝑛 < u�(u�∗)+u�∗

̌u�
holds or not, we get the claimed price of anarchy upper

bound.

Applying the price and length value ranges, we can deduce a price of anarchy
upper bound, which is independent of the price function, but depends only
on the range limits.

Corollary 4.11. In the Sum-Pricing-Game with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽], for every
price function 𝑝 ∶ 𝐿 → ℝ≥0 it holds:

PoA = O⎛⎜
⎝

min
⎧{
⎨{⎩

1 +
𝑝( ̌𝛽)

̌𝛽
,
𝑝( ̂𝛽) + ̂𝛽

̌𝛽
, 𝑛

⎫}
⎬}⎭

⎞⎟
⎠

In the following, we will see that the price of anarchy upper bound is even
tight for a broad class of price functions, including for all price functions that
decrease faster than the linear function 𝑥 ↦ −𝑥 and where both 𝑝( ̂𝛽) ≤ ̌𝛽
and 𝑝( ̌𝛽) ≤ ̂𝛽 hold. Examples of such functions are provided in the following
section.
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However, note that the bound cannot be tight for every price function. To
see this, consider 𝑝 ∶ [1, 1] → [𝛼, 𝛼], which constitutes the original game by
Fabrikant et al. [Fab+03] and for which it is known that for most ranges of 𝛼
the price of anarchy is constant (cf. Section 2.2.2).

Theorem 4.12 (Sum-Pricing-Game: price of anarchy lower bound). In the Sum-
Pricing-Game with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽], let 𝑝 ∶ 𝐿 → ℝ≥0 be a price function with
𝑝( ̂𝛽) ≤ ̌𝛽, 𝑝( ̌𝛽) ≤ ̂𝛽, and ̂𝛽 = 𝑥∗ ≔ arg minu�∈u� 𝑝(𝑥) + 𝑥, then:

PoA = 𝛺(min{𝑛,
𝑝(𝑥∗) + 𝑥∗

̌𝛽
})

Proof. Using the given constraints, we get 𝑝(𝑥∗) = 𝑝( ̂𝛽) ≤ ̌𝛽 ≤ 𝑥 for every 𝑥 ∈ 𝐿.
In particular, this gives 𝑝(𝑥∗) ≤ ̄𝑥, whereas ̄𝑥 ≔ arg minu�∈u� 𝑝(𝑥) + (𝑛 − 1)𝑥,
and hence by Lemma 4.4 we know that a clique network with all edges having
length ̂𝛽 is a buy equilibrium.

We compare the social cost of this clique network to the social cost of a star
network with all edges having length ̌𝛽. This gives a price of anarchy lower
bound of:

PoA ≥
𝑝( ̂𝛽)𝑛(𝑛 − 1)/2 + ̂𝛽𝑛(𝑛 − 1)

𝑝( ̌𝛽)(𝑛 − 1) + 2 ̌𝛽(𝑛 − 1)(𝑛 − 2) + 2(𝑛 − 1) ̌𝛽
=

𝑛(𝑝( ̂𝛽)/2 + ̂𝛽)
𝑝( ̌𝛽) + 2 ̌𝛽(𝑛 − 1)

Next, we separately consider the cases of 𝑛 ≥ (𝑝( ̂𝛽)+ ̂𝛽)/ ̌𝛽 and 𝑛 < (𝑝( ̂𝛽)+ ̂𝛽)/ ̌𝛽.
For 𝑛 ≥ (𝑝( ̂𝛽) + ̂𝛽)/ ̌𝛽, we get:

𝑛(𝑝( ̂𝛽)/2 + ̂𝛽)
𝑝( ̌𝛽) + 2 ̌𝛽(𝑛 − 1)

≥
𝑛(𝑝( ̂𝛽)/2 + ̂𝛽)

̂𝛽 + 𝑝( ̂𝛽) + 2 ̌𝛽(𝑛 − 1)
≥

𝑛(𝑝( ̂𝛽)/2 + ̂𝛽)
𝑛 ̌𝛽 + 2 ̌𝛽(𝑛 − 1)

= 𝛺⎛⎜
⎝

𝑝( ̂𝛽) + ̂𝛽
̌𝛽

⎞⎟
⎠

Otherwise, for 𝑛 < (𝑝( ̂𝛽) + ̂𝛽)/ ̌𝛽 we get:

𝑛(𝑝( ̂𝛽)/2 + ̂𝛽)
𝑝( ̌𝛽) + 2 ̌𝛽(𝑛 − 1)

≥
𝑛(𝑝( ̂𝛽)/2 + ̂𝛽)

𝑝( ̌𝛽) + 2 ̌𝛽((𝑝( ̂𝛽) + ̂𝛽)/ ̌𝛽) − 1)
≥

𝑛(𝑝( ̂𝛽)/2 + ̂𝛽)
3 ̂𝛽

= 𝛺(𝑛)

Combining both bounds gives the claim.
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4.4 Quality of Equilibria in the Sum-Pricing-Game

4.4.1 Employing Characteristic Price Functions

Concluding the analysis of the Sum-Pricing-Game, we apply our price of
anarchy results to some typical price functions (cf. Mas-Colell et al. [MWG95,
pp. 143–147]). These are firstly the price function 𝑥 ↦ 𝛼/𝑥, whereas 𝛼 > 0,
as an example for a convex function, and secondly a class of linear functions.
Recalling Corollary 4.7, we know that the price of stability is constant for every
price function.

The convex function 𝑥 ↦ 𝛼/𝑥 (cf. Figure 4.1) illustrates the scenario where
edge prices increase very fast for good connections but do not vary much for
the tail of slow connections. Note that we only provide a price of anarchy
upper bound but no lower bound, since the lower bound from Theorem 4.12
does not apply. This is due to the fact that the only interval of edge lengths
that fulfills all constraints of the theorem is 𝐿 = {√𝛼}.

Corollary 4.13. Given an interval 𝐿 ≔ [1, 𝛽] of available edge lengths for some
parameter 𝛽 > 1, then for the price function 𝑝 ∶ 𝐿 → ℝ≥0, 𝑥 ↦ 𝛼/𝑥 with 𝛼 ∈ [1, 𝛽2),
the price of anarchy is at most PoA = O(√𝛼).

Proof. For the upper bound, we consider Theorem 4.10 and have to compute
minu�∈u� 𝑝(𝑥) + 𝑥, which is given by 𝑥∗ ≔ √𝛼 and yields the claim.

Next, we consider a linear function and show that actually a very high price
of anarchy lower bound is possible, in particular higher than anyone known
for the classic Sum-Game without edge price functions. For our construction,
we choose a set of linear functions that decrease just slowly enough such that
a clique network is a buy equilibrium, while the optimal solution is a star.

Corollary 4.14. Given an interval 𝐿 ≔ [1, 𝛼−(1+𝜀/2)] of available edge lengths, for
some value 𝛼 > 2 and a positive value 𝜀 < 1

u�−1 , we consider the Sum-Pricing-Game
of 𝑛 agents. Then, for the price function 𝑝 ∶ 𝐿 → ℝ≥0, 𝑥 ↦ 𝛼 − (1 + 𝜀)𝑥 the price of
anarchy is PoA = 𝛩(𝛼(1 − 𝜀)).

Proof. First we see that 𝑥∗ ≔ arg minu�∈u� 𝑝(𝑥) + 𝑥, which is arg minu�∈u� 𝛼 − 𝜀𝑥 in
this case, has the value 𝑥∗ ≔ 𝛼−(1+𝜀/2). Using this, by applying Theorem 4.10
we get PoA = O((1 − 𝜀)𝛼) as upper bound for the price of anarchy. Considering
the ranges of 𝐿, we see that now both constraints of Theorem 4.12 are fulfilled,
i.e., 𝑝(1) = 𝛼 − (1 + 𝜀) ≤ 𝛼 − (1 + 𝜀/2) and 𝑝(𝛼 − (1 + 𝜀/2)) = 𝛼 − (1 + 𝜀)(𝛼 −
1 − 𝜀/2) < 1 − 𝜀 ≤ 1. Thus we get the corresponding lower bound.
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4.5 Quality of Equilibria in the Max-Pricing-Game

In this section, we consider the quality of equilibria in the Max-Pricing-Game.
In particular, these are the prices of stability and anarchy.

Corollary 4.15 (Max-Pricing-Game: price of stability). In the Max-Pricing-Game
with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽] and price function 𝑝 ∶ 𝐿 → ℝ≥0, the price of stability is
at most 4.

Proof. We compare the social cost of the three equilibrium networks from
Theorem 4.6 with the social cost lower bound from Lemma 4.5. For this, define
the values 𝑥∗ ≔ arg minu�∈u� 𝑝(𝑥) + 𝑥 and ̃𝑥 ≔ arg minu�∈u�(𝑛 − 1)𝑝(𝑥) + 𝑥.

For (𝑛 − 1)𝑝( ̃𝑥) + ̃𝑥 ≥ 𝑝(𝑥∗) + 2𝑥∗, by Theorem 4.6 a star network with all
edges having length of 𝑥∗ is a buy equilibrium. Compared to the social cost
lower bound, the social cost ratio is:

PoS ≤
(𝑛 − 1)𝑝(𝑥∗) + 𝑛2𝑥∗

(𝑥∗ + 𝑝(𝑥∗)/2)𝑛
≤

𝑝(𝑥∗)
𝑥∗ + 𝑝(𝑥∗)/2

+
2𝑥∗

𝑥∗ + 𝑝(𝑥∗)/2
≤ 4

For (𝑛 − 1)𝑝( ̃𝑥) + ̃𝑥 < 𝑝(𝑥∗) + 2𝑥∗ ∧ ̃𝑥 ≤ (𝑛 − 2)𝑝( ̃𝑥), by Theorem 4.6 a star
network with all edges having length of ̃𝑥 is a buy equilibrium. Compared to
the social cost lower bound, we get the following social cost ratio by applying
the first constraint:

PoS ≤
(𝑛 − 1)𝑝( ̃𝑥) + 𝑛2 ̃𝑥
(𝑥∗ + 𝑝(𝑥∗)/2)𝑛

≤ 2
𝑝(𝑥∗) + 2𝑥∗

𝑥∗ + 𝑝(𝑥∗)/2
≤ 4

For the remaining case, by Theorem 4.6 a clique network with all edges
having length ̃𝑥 is a buy equilibrium. Compared to the social cost lower bound,
the social cost ratio is:

PoS ≤
𝑝( ̃𝑥)(𝑛 − 1)𝑛/2 + 𝑛 ̃𝑥

(𝑥∗ + 𝑝(𝑥∗)/2)𝑛
≤

(𝑛 − 1)𝑝( ̃𝑥) + ̃𝑥
(𝑥∗ + 𝑝(𝑥∗))/2

≤ 2
𝑝(𝑥∗) + 2𝑥∗

2𝑥∗ + 𝑝(𝑥∗)
≤ 2

Lemma 4.16. In the Max-Pricing-Game with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽], price function
𝑝 ∶ 𝐿 → ℝ≥0, and 𝑥∗ ≔ arg minu�∈u� 𝑝(𝑥) + 𝑥, let 𝑆 be a buy equilibrium strategy
profile. Then, for any agent 𝑢 ∈ 𝑉 it holds:

cost(𝑆) ≤ 𝑛 ⋅ distu�(𝑆) + 2(𝑛 − 1)(𝑝(𝑥∗) + 𝑥∗)
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Proof. First, we show that in a buy equilibrium network no edge costs more
than 𝑝(𝑥∗) + 𝑥∗. For this, consider a strategy profile 𝑆′ such that some agent 𝑣
owns an edge of price 𝑝(𝑥) > 𝑝(𝑥∗) + 𝑥∗, which has length 𝑥 < 𝑥∗. If 𝑣 replaces
this edge by one of length 𝑥∗, her edge cost will decrease by 𝑝(𝑥) − 𝑝(𝑥∗) > 𝑥∗,
while her distance cost increases by at most 𝑥∗ − 𝑥. Since this contradicts 𝑆′

being an equilibrium, we get the upper bound on the edge prices.
Next, take an arbitrary agent 𝑢 and consider a shortest path tree 𝑇 rooted at

𝑢 in 𝐺[𝑆]. For every 𝑣 ∈ 𝑉, define 𝑚u� ≔ ∣{{𝑣, 𝑤} ∣ (𝑤, 𝑥) ∈ 𝑠u� ∧ {𝑣, 𝑤} ∈ 𝑇}∣ to
be the number of tree edges maintained by 𝑣. Then, for any agent 𝑣 ≠ 𝑢 we
argue that it must hold that

𝑐u�(𝑆) ≤ (𝑝(𝑥∗) + 𝑥∗)(𝑚u� + 1) + distu�(𝑆),

which can be seen as follows: Since 𝑆 forms an equilibrium, deviating from her
current strategy cannot decrease 𝑣’s cost. In particular, the resulting private cost
when removing all own edges, except those belonging to 𝑇, and additionally
creating one new edge of length 𝑥∗ to 𝑢 cannot be less than 𝑐u�(𝑆). Since this
strategy change does not modify any edges of the shortest path tree 𝑇, with
the changed strategy 𝑣’s distance cost would be at most distu�(𝑆) + 𝑥∗, while
her edge cost would be at most (𝑝(𝑥∗) + 𝑥∗)(𝑚u� + 1) + 𝑝(𝑥∗). Summing over
all agents’ costs and using the fact that agent 𝑢 only owns edges belonging to
𝑇 (otherwise removing a non-tree edge would improve 𝑢’s cost), we get:

cost(𝑆) ≤ distu�(𝑆) + (𝑝(𝑥∗) + 𝑥∗)𝑚u�

+ ∑
u�∈u� ∶ u�≠u�

((𝑝(𝑥∗) + 𝑥∗)(𝑚u� + 1) + distu�(𝑆))

= 𝑛 ⋅ distu�(𝑆) + (𝑛 − 1)(𝑝(𝑥∗) + 𝑥∗) + ∑
u�∈u�

(𝑝(𝑥∗) + 𝑥∗)𝑚u�

= 𝑛 ⋅ distu�(𝑆) + 2(𝑛 − 1)(𝑝(𝑥∗) + 𝑥∗)

For the last equality we use that the number of edges in a tree of 𝑛 agents is
𝑛 − 1.

Using a similar approach like Demaine et al. [Dem+07], we derive a bound
for the diameter and hence for the social cost of every buy equilibrium network
in the Max-Pricing-Game.
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Lemma 4.17. In the Max-Pricing-Game with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽] and price
function 𝑝 ∶ 𝐿 → ℝ≥0, let 𝑆 be a buy equilibrium strategy profile. Then, the diameter

of 𝐺[𝑆] is at most O( 3

􏽯𝑝(𝑥)2𝑥𝑛 + 𝑥), for 𝑥 ∈ 𝐿 arbitrary.

Proof. Let 𝑢 ∈ 𝑉 be an agent with maximal distance cost, i.e., with distu�(𝑆) =
diam(𝐺[𝑆]). In the following, we first show for every agent a lower bound on
the number of other agents within a specific range and then use this lower
bound to derive an upper bound on the private cost of 𝑢.

For an edge length 𝑥 ∈ 𝐿 and a parameter 𝑘 ≥ 0, we define 𝑁u�(𝑣) to be the
set of agents within a distance of at most 𝑘𝑥 to agent 𝑣 ∈ 𝑉. We claim that for
any 𝑘 ≤ distu�(𝑆)/(2𝑥) it holds:

∣𝑁u�(𝑣)∣ ≥
𝑥

2𝑝(𝑥)
(𝑘2 − 3𝑘 + 2) (4.3)

Let 𝑃1, 𝑃2, … , 𝑃u�−1 be the shortest paths from 𝑣 to all agents 𝑉 ⧵ {𝑣} and for
every 𝑘 ∈ ℕ define 𝑄u� to be the set containing the first agent of every path
𝑃u� that has a distance of at least 𝑘𝑥 and at most (𝑘 + 1)𝑥 to 𝑣. (Note that such
agents do not necessarily exist and 𝑄u� might even be empty.) Then, for an
arbitrary fixed 𝑘 ≤ distu�(u�)

2u� consider the strategy change where 𝑣 creates edges
of length 𝑥 to every agent in 𝑄u�. This strategy change decreases 𝑣’s distances
to all agents in 𝑄u� by at least (𝑘 − 1)𝑥 each, while increasing the edge cost by
𝑝(𝑥) ⋅ |𝑄u�|. Since 𝑆 is a buy equilibrium, it must hold that ∣𝑄u�∣ ≥ (u�−1)u�

u�(u�) , which
gives us the following lower bound:

∣𝑁u�(𝑣)∣ ≥
u�−1
∑
u�=1

∣𝑄u�∣ ≥
u�−1
∑
u�=1

(𝑖 − 1)
𝑥

𝑝(𝑥)
=

𝑥
2𝑝(𝑥)

(𝑘2 − 3𝑘 + 2)

Let 𝑘 ≔ diam(u�[u�])−u�
4u� be a fixed parameter, then we compute a set of cluster

centers 𝐶 as follows: Starting with 𝐶 = {𝑢}, we mark 𝑢 as well as all agents
within a distance of less than 2𝑘𝑥 to 𝑢. Iteratively, while there is still an un-
marked agent 𝑣, we further mark 𝑣 and all agents within a distance of less than
2𝑘𝑥 and add 𝑣 to 𝐶. By construction, the resulting set 𝐶 meets the following
two conditions:

(a) For any agent 𝑣 ∈ 𝑉 the maximal distance to a center is 𝑑u�[u�](𝑣, 𝐶) ≤ 2𝑘𝑥.

(b) The distance between any two centers 𝑐, 𝑐′ ∈ 𝐶, 𝑐 ≠ 𝑐′ is 𝑑u�[u�](𝑐, 𝑐′) > 2𝑘𝑥.

82



4.5 Quality of Equilibria in the Max-Pricing-Game

For the selected 𝑘, we observe that it holds 𝑘 ≤ distu�(u�)
2u� for all centers 𝑐 ∈ 𝐶,

since otherwise there would be a center 𝑐′ ∈ 𝐶 having distu�′(𝑆) < 2𝑘𝑥, which
gives distu�′(𝑆) < distu�(𝑆) = diam(𝐺[𝑆]) and hence contradicts the choice of 𝑢.
By construction of 𝐶, we have:

𝑛 ≥ ∑
u�∈u�

|𝑁u�(𝑐)| ≥
|𝐶| ⋅ 𝑥
2𝑝(𝑥)

(𝑘2 − 3𝑘 + 2)

Considering a strategy change where 𝑢 buys edges of length 𝑥 to all 𝑐 ∈ 𝐶, this
would decrease 𝑢’s distance cost by at least distu�(𝑆) − (2𝑘 + 1)𝑥 ≥ 2𝑘𝑥 while
increasing her edge cost by |𝐶| ⋅ 𝑝(𝑥). Since 𝑆 is a buy equilibrium, it must hold
|𝐶| ≥ 2𝑘 u�

u�(u�) and we obtain:

𝑛 ≥ |𝐶|
𝑥

𝑝(𝑥)
𝑘2 − 3𝑘 + 2

2
≥

2𝑘𝑥2(𝑘2 − 3𝑘 + 2)
2𝑝(𝑥)2

This further gives 𝑝(𝑥)2𝑛/𝑥2 ≥ 𝑘3 − 3𝑘2 + 2𝑘 = 𝑘(𝑘 − 1)(𝑘 − 2) ≥ (𝑘 − 2)3 and
hence 𝑘 ≤ (𝑝(𝑥)2𝑛/𝑥2)1/3 + 2 must hold. By this, we get an upper bound for
the diameter of: diam(𝐺[𝑆]) = 4𝑘𝑥 − 𝑥 ≤ 4(𝑥𝑝(𝑥)2𝑛)1/3 + 7𝑥.

Theorem 4.18 (Max-Pricing-Game: price of anarchy upper bound). In the Max-
Pricing-Game with edge lengths 𝐿 ⊆ [ ̌𝛽, ̂𝛽] and price function 𝑝 ∶ 𝐿 → ℝ≥0, the price
of anarchy is at most O( 3√𝑛).

Proof. Define the values 𝑥∗ ≔ arg minu�∈u� 𝑝(𝑥)+𝑥 and 𝜒∗ ≔ arg minu�∈u� 𝑝(𝑥)+𝑥.
Then, by Lemma 4.5, every strategy profile incurs a social cost of at least
(𝜒∗ + 𝑝(𝜒∗)/2)𝑛. On the other hand, for every buy equilibrium strategy profile
𝑆, by Lemma 4.16 and Lemma 4.17, we obtain the social cost upper bound of
cost(𝑆) ≤ 𝑛(𝑝(𝑥∗)2𝑥∗𝑛)1/3 + 2(𝑛 − 1)(𝑝(𝑥∗) + 𝑥∗). Comparing both, we get:

PoA ≤
𝑛(𝑝(𝑥∗)2𝑥∗𝑛)1/3 + 2(𝑛 − 1)(𝑝(𝑥∗) + 𝑥∗)

(𝜒∗ + 𝑝(𝜒∗)/2)𝑛

≤ 2
(𝑝(𝑥∗)2𝑥∗𝑛)1/3 + 2(𝑝(𝑥∗) + 𝑥∗)

𝑥∗ + 𝑝(𝑥∗)

≤ 4 + 2
(𝑝(𝑥∗)2𝑥∗𝑛)1/3

𝑥∗ + 𝑝(𝑥∗)

This gives the claim by case distinction of whether 𝑥∗/𝑝(𝑥∗) < 1 holds.
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4 The Impact of Choosing Edge Qualities

Note that the price of anarchy result in the Max-Game, unlike in the Sum-
Game, is not related to the chosen price function. Intuitively, we can explain
this observation by the different impact of edge prices in both game variants.
While in the Sum-Pricing-Game, an edge is possibly used for several unique
shortest paths and hence its distance is weighted by the number of them, in the
Max-Pricing-Game, an edge is considered at most once for the distance cost.
Thus, the strategic behavior of the agents in the Max-Pricing-Game is close to
their behavior in the original Max-Game, since the major strategic choice of
the agents is still where to create edges to, and edge prices change this little.

4.6 Conclusion & Future Work

In this chapter, we proposed a model extension that introduces quality-of-
service agreements into the framework of network creation games. Despite of
the considerably increased freedom in the strategic decisions of the agents (e.g.,
for any continuous interval of edge lengths the strategy set is unbounded),
equilibria always exist. In the Sum-Pricing-Game, we discovered the optimal
price and length trade-off for an edge that is used for exactly one shortest path
to characterize the price of anarchy. By exploiting properties of specific price
functions, we could further provide a non-constant lower bound for the price
of anarchy in this game. Contrary to the behavior of the Sum-Pricing-Game,
our results for the Max-Pricing-Game indicate that edge prices have only a
minor impact on the price of anarchy when agents strive for minimizing their
maximum distances.

Building on the models and results of this chapter, it would be interesting
to see how the games change when there is not an unlimited provision of
edges. For example, inspired by the bounded budged equilibria by Ehsani
et al. [Ehs+15], there could be a limit on the number of available edges for each
individual edge length. Faced with such limitations, it would also be natural
to assume that edge prices are not static anymore but being affected by the
demands of the agents. Moreover, one could imagine that the agents are not
only buying single connections but high-speed access to certain areas of the
network. The special case of buying high-speed access to the whole network
will be considered in Chapter 6.
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CHAPTER 5

Limits of Locality

The original motivation to study the Sum-Game model was the rising
interest in understanding the structure and evolution of Internet-like
networks.1 As discussed in Section 2.3, a remarkable series of further

research and model variants followed this publication. Still, except for a recent
approach [Bil+14a], all of these network models have in common that they
neglect the fact that agents usually do not have access to global knowledge
about the network structure. This is caused by the mere network size as well
as by the dynamics of the participating agents, a combination that makes it
infeasible for an agent to always maintain a correct overview of the current
network. Instead, we have to acknowledge that agents know only certain parts
of the network and must perform actions to gather additional information
about the unknown network parts.

In this chapter, we want to understand what is possible in terms of strategic
decision making and social cost efficiency, if agents are restricted to possess
only local knowledge. Our approach is to extend the Sum-Game by Fabrikant
et al. [Fab+03] by introducing a locality notion that on the one hand restricts
agents to know only the subnetwork within a specific fixed range 𝑘, but on the

1As stated in the introduction of Fabrikant et al. [Fab+03].
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other hand allows agents to also probe a certain number of different strategy
changes and finally select the best. We benchmark our model according to the
following three questions:

(a) For which locality parameters and which probing techniques are equilib-
ria equal or close to those in the global knowledge Sum-Game?

(b) Which impact do the locality parameter and the probing technique have
on the price of anarchy?

(c) How costly is the locality restriction for individual agents, i.e., by how
much could agents improve their costs if they were not restricted?

In regard of applicability to real networks, both having a fixed (possibly con-
stant or logarithmic) neighborhood parameter and being able to estimate the
result of a specific strategy change are realistic assumptions: Whereas restrict-
ing the view range of an agent is a typical approach to understand locality in
distributed computing (cf. Peleg [Pel00, Section 2]), also the latter assumption
is reasonable as discussed by Bilò et al. [Bil+14b]. In particular, obtaining dis-
tance information, as it is required for estimating the current cost of an agent,
is possible via standard traceroute techniques (cf. Dall’Asta et al. [Dal+06]).

The results of this chapter shed light on what is possible under locality
constraints. We will see that probing is an efficient way to overcome locality:
Having agents with limited viewing ranges, it is enough to allow them a
quadratic number of strategy probes to ensure price of anarchy results close to
those for games with global view. Still, we can provide a non-constant lower
bound on the price of anarchy and by this show that there is an actually overall
quality loss by having locality restrictions – even in the most optimistic case.
The individual deterioration of an agent by having a view restriction will be
quantified in terms of the approximation ratio of local operations versus global
operations. Considering the other extreme of forbidding any strategy probing,
our model generalizes the worst-case locality model by Bilò et al. [Bil+14a].

Chapter Basis. The model, analysis, and results presented in the remainder
of this chapter are based on the following publication:

2015 (with P. Lenzner). “Network Creation Games: Think Global –
Act Local”. In: Mathematical Foundations of Computer Science 2015 –
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40th International Symposium, MFCS 2015, Milan, Italy, August 24–28,
2015. Proceedings, Part II, cf. [CL15].

Chapter Outline. In Section 5.1, we start by introducing our locality model
and in Section 5.2 compare it to the existing locality approaches. Section 5.3
contains some simple results about the hardness of best-response computations
and the non-convergence of best-response processes. In the main part of this
chapter, we first show in Section 5.4 how an agent’s efficiency in terms of
approximation ratio is affected, when she is limited by certain locality or
probing constraints. Finally in Section 5.5, we provide our results about the
price of anarchy and explore the parameter ranges for which equilibria in the
Sum-Game coincide with those in our locality model.

5.1 Model & Notations

In the following, we introduce the 𝑘-local Sum-Game, which is a variant of
the Sum-Game model by Fabrikant et al. [Fab+03] and incorporates the same
notation as given in Section 2.1. An instance of the 𝑘-local Sum-Game consists
of a set of 𝑛 selfish agents 𝑉, an edge price parameter 𝛼 > 0, a view radius
𝑘 ∈ ℕ, and a probing technique. Every agent 𝑢 ∈ 𝑉 strives for minimizing her
private cost by selecting a strategy 𝑠u� ⊆ 𝑉 ⧵ {𝑢}. The private cost of an agent is
given by:

𝑐u�(𝑆) = 𝛼 ⋅ |𝑠u�| + ∑
u�∈u�

𝑑u�[u�](𝑢, 𝑣) (5.1)

For this cost function, we refer to the first term as edge u�(𝑆), called the edge cost
of 𝑢, and to the second term as distu�(𝑆), called the distance cost of 𝑢. Considering
a strategy profile 𝑆 that is formed by the joint strategies of all agents, we obtain
a network 𝐺[𝑆]. The social cost of a strategy profile is cost(𝑆) = ∑u�∈u� 𝑐u�(𝑆).
Throughout this chapter, we will consider connected networks only as they
are the only ones that induce finite private and social cost.

Probing Locality. In our 𝑘-local Sum-Game, the selfish agents are only aware
of their 𝑘-neighborhood and hence are restricted to perform operations therein.
Given a locality parameter 𝑘 ∈ ℕ and an agent 𝑢 ∈ 𝑉, then for a strategy
profile 𝑆 the set 𝑁u�(𝑢) ⊆ 𝑉 denotes the agents with a distance of at most 𝑘 to 𝑢
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in 𝐺[𝑆]. The subgraph of 𝐺[𝑆] that is induced by the set 𝑁u�(𝑢) is called the
𝑘-neighborhood of 𝑢.

In this game, agents are only allowed to perform 𝑘-local operations, which is
the simultaneous application of any combination of the actions of (1) removing
an own edge, (2) swapping an own edge to an agent in the 𝑘-neighborhood,2

and (3) creating an edge to an agent in the 𝑘-neighborhood. In particular, the set
of actions that realize a 𝑘-local operation must not contradict each other. Since
together they form a single operation, they are also performed simultaneously
and hence due to the same 𝑘-neighborhood. If a 𝑘-local operation consists of
only exactly one of the actions (1)–(3), it is called a 𝑘-local greedy operation.

A probing technique limits which and how many different strategies can be
tested by an agent before selecting her best operation that she wants to perform.
In this chapter, we consider the two probing techniques named unrestricted
probing and greedy probing. Yet, for completeness and to emphasize the relation
to the model by Bilò et al. [Bil+14a], we also define 0-probing, which resembles
their worst-case model.

Unrestricted Probing: An agent is enabled to test all possible 𝑘-local opera-
tions and to select a best-response strategy among them.

Greedy Probing: An agent is enabled to test all possible 𝑘-local greedy oper-
ations and to select a best-response strategy among them.

0 Probing: An agent is not able to test any 𝑘-local operation and thus esti-
mates the result of a strategy change by considering the worst-case of all
possible networks that comply with her current 𝑘-neighborhood (cf. Bilò
et al. [Bil+14a] and the discussion in Section 5.2).

Solution Concepts. Restating the notions of Section 2.2, we call a strategy
profile to be a buy equilibrium if no agent can unilaterally change her strategy
to decrease her cost. The strategy profile is a greedy buy equilibrium if no agent
can unilaterally change her strategy by any greedy operation. When restricting
agents to perform only 𝑘-local operations with a respective probing technique,
we obtain their 𝑘-local counterparts. We say that a strategy profile is a 𝑘-local

2A swap-action of an agent is the simultaneous deletion of an own edge and creation of a new
incident own edge.
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buy equilibrium and call the corresponding network to be 𝑘-local stable if no
agent can unilaterally decrease her cost by a 𝑘-local operation. If no agent can
decrease her cost by a 𝑘-local greedy operation, the strategy profile is a 𝑘-local
greedy buy equilibrium and the network is called 𝑘-local greedy stable.

Supplementing the above notions, we also consider 𝜀-approximate equilibria
(cf. Section 2.2). We call a strategy profile to be a 𝜀-approximate buy equilibrium if
no strategy change of an agent can decrease her cost by more than an 𝜀-fraction
of her current cost. Similarly, we say a strategy profile is a 𝜀-approximate greedy
buy equilibrium if no agent can decrease her cost by more than an 𝜀-fraction
of her current cost by a greedy operation. Note that in both approximate
equilibria notions arbitrary operations are allowed, not only 𝑘-local ones.

For a fixed price parameter 𝛼, we define classes of equilibria due to the
different solution concepts: BE is the class of all networks that are a buy
equilibrium, GBE is the class of all networks a greedy buy equilibrium, k-BE
is the class of all 𝑘-local buy equilibrium networks, and k-GBE is the class of
all 𝑘-local greedy buy equilibrium networks.

Our notion of social efficiency of a strategy profile is the ratio of its induced
social cost and the optimal social cost. Specifically, we are interested in the
worst-case ratio of any equilibrium’s social cost and the optimal social cost,
which we recall as the price of anarchy (cf. Definition 2.1).

5.2 Related Work & Contribution

The only models in the realm of network creation games that consider games
without global knowledge are by Bilò et al. [Bil+14a; Bil+14b]. In their games,
the agents have limited viewing ranges and thus can access only a certain
subset of information about the network. Hence, they are forced to base
their decisions upon such incomplete information. Bilò et al. model this by
considering conservatively acting agents, i.e., agents who perform only those
actions which they know for certain to reduce their private costs. By this, the
private cost of an agent can still depend on the total network, even if an agent
cannot estimate it.

In Bilò et al. [Bil+14a], the authors incorporate a most pessimistic locality
view, which limits agents to know exactly their 𝑘-neighborhoods. For any
operation, an agent then estimates her private cost change by making a worst-
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case assumption about the unknown network part. Specifically, she computes
an operation’s private cost change by taking the worst-case over all networks of
arbitrary size that comply with her current 𝑘-local view. Not surprisingly, the
authors can provide several non-constant lower bounds for the price of anarchy
in both the Sum-Game and the Max-Game. In particular, for the Sum-Game the
price of anarchy is at least 𝛺(𝑛/𝑘), when 𝑘 = o(𝛼1/3), and for the Max-Game
it is at least 𝛺(𝑛/(1 + 𝛼)). They further show for the Max-Game that their
lower bound is still 𝛺(𝑛1−u�) for every 𝜀 > 0, even if 𝑘 is poly-logarithmic and
𝛼 = O(log 𝑛). For none of the considered games, the authors provide upper
bounds on the price of anarchy. In the context of our probing models, these
games can be understood as the 𝑘-local Sum-Game and the 𝑘-local Max-Game
with 0-probing.

In a follow-up paper, Bilò et al. [Bil+14b] considered a variant where agents
have access to certain traceroute-based information, in addition to their 𝑘-local
views. Specifically, they look at how much the agents gain by having access to
(1) a distance vector, (2) a minimum spanning tree, or (3) the set of all minimum
spanning trees. Using these traceroute-based information, they provide the
first known upper bounds on the price of anarchy for games with local view
restricted agents. However, for all considered variants, the price of anarchy
bounds are much worse than for the classic Sum-Game and Max-Game. For all
versions of the Sum-Game, the price of anarchy is 𝛩(min{1 + 𝛼, 𝑛}); while for
versions of the Max-Game, it is 𝛩(𝑛) for 𝛼 > 1. Notably, their price of anarchy
proofs only require agents to have access to distance vector information.

There is a lot of literature about network exploration and in particular about
using traceroute strategies. For example, Beerliova et al. [Bee+06] consider the
complexity of discovering the topology of a whole network in an online-setting
and provide an O(√𝑛 log 𝑛)-competitive online algorithm for a network of
𝑛 agents. A good overview of applications of different traceroute protocols
for network discovery is provided by Dall’Asta et al. [Dal+06]. Specifically for
retrieving simple network information like distance vectors, we refer to the
discussion in Bilò et al. [Bil+14b] about how to utilize traceroute protocols for
this purpose.

Apart from network creation games, the influence of locality has also been
studied for other game-theoretic settings, e.g., in the local matching model by
Hoefer [Hoe13], where agents know only their 2-neighborhood and have to
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choose their matching partners from this set.

Contribution. Our main contribution is a new model for locality in network
creation games. By taking the natural observation into account that agents
want to test the outcomes of their strategic changes, we create not only a more
optimistic but also a more realistic model. In our model, agents are still limited
in their knowledge and actions, but now can probe different operations and
choose the best one. Yet, our probing locality (even for viewing ranges as
small as 2) has no impact on the hardness of best-response computations or
the convergence of best-response processes.

For the Sum-Game with unrestricted probing, we show upper bounds for
the price of anarchy that are close to those in the classic Sum-Game. Hence,
the results are in stark contrast to the worst-case model by Bilò et al. [Bil+14a],
where myopic agents select their strategies without knowing the exact results
of their strategy changes. Looking at the Sum-Game with greedy probing,
which limits the probes to the quadratic number of greedy operations, we show
the surprising insight that 𝑛2 probes suffice to gain the same results for the
price of anarchy as with 2u� probes. Moreover, considering the behavior of the
individual agents, we discuss how well 𝑘-local greedy operations approximate
arbitrary greedy operations. For tree networks, we specifically show that 𝑘-
local operations with greedy probing approximate arbitrary operations by
𝛩( log u�

u�
).

5.3 Preliminaries

Starting our analysis, we first provide some observations about the structure
and relations of equilibria and further show that results about the hardness
of computing best responses and about non-convergence of best-response
processes still apply for the 𝑘-local Sum-Game. In particular, the hardness
results hold for any 𝑘, while the non-convergence results hold for any 𝑘 ≥ 2.

Observation 5.1. Agents in the 𝑘-local Sum-Game and the 𝑘-local greedy Sum-
Game can be characterized as follows:

(a) Agents with unrestricted probing are equivalent to agents who are aware
of the whole network, but whose operations are restricted to be only
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𝑘-local operations.

(b) Agents with greedy probing are equivalent to agents who are aware of
the whole network, but whose operations are restricted to be only 𝑘-local
greedy operations.

Using these characterizations, we can directly derive some set relationships
for the equilibrium classes.

Observation 5.2. For a fixed edge price 𝛼 > 0 and any fixed locality parameter
𝑘 ∈ ℕ, the following relations between the different equilibrium classes hold:

(a) BE ⊆ k-BE ⊆ k-GBE

(b) BE ⊆ GBE ⊆ k-GBE

Since there exist equilibria for the classic Sum-Game (cf. Fabrikant et al. [Fab+03,
Section 2]), note that there are also equilibria for both the 𝑘-local Sum-Game
and the 𝑘-local greedy Sum-Game.

Theorem 5.3. For the 𝑘-local Sum-Game with 𝑘 ≥ 1, in general it is 𝒩𝒫 -hard to
compute a 𝑘-local best-response operation.

Proof. We follow the hardness proof by Fabrikant et al. [Fab+03, Proposition 1],
which reduces the Minimum Dominating Set problem [GJ02] to the compu-
tation of an optimal strategy change in the Sum-Game. For a given network
𝐺 = (𝑉, 𝐸), the Minimum Dominating Set problem is the task to compute a
dominating set 𝐷 ⊆ 𝑉 of minimal size. Here, 𝐷 is called a dominating set if
every agent of 𝐺 belongs to 𝐷 or has a neighbor in 𝐷.

Let 𝐺 = (𝑉, 𝐸) be an instance of Minimum Dominating Set, then we obtain
an instance of the 𝑘-local Sum-Game as follows: Let 𝑉 be a set of agents
and define a strategy profile such that for every edge {𝑢, 𝑣} in 𝐸, there is a
corresponding strategy 𝑠u� with 𝑣 ∈ 𝑠u�. Thereby, edge ownerships are assigned
arbitrarily. Furthermore, we add an additional agent 𝑧 to the network and set
her strategy to 𝑠u� ≔ {𝑉}: i.e., 𝑧 owns edges to all other agents. For an edge
price of 𝛼 ∈ (1, 2) and arbitrary 𝑘 ≥ 1, we claim that a minimum cost strategy
for 𝑧 forms a minimum dominating set.

For this, let 𝑠′
u� be the optimal strategy change for 𝑧 and 𝑆′ the changed

strategy profile. Since 𝛼 < 2, we get that for every agent 𝑣 ∈ 𝑉 it must hold
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𝑑u�[u�′](𝑧, 𝑣) < 3, since otherwise 𝑧 could improve her private cost by creating
an edge to 𝑣. Hence, the distance is either 1 or 2. For 𝑑u�[u�′](𝑧, 𝑣) = 1, agent
𝑧 owns an edge to 𝑣 and otherwise, for 𝑑u�[u�′](𝑧, 𝑣) = 2, agent 𝑣 must own an
edge to a direct neighbor of 𝑣. By this, 𝑠′

u� forms a dominating set and it remains
to show that its size is minimal. Since the private cost of 𝑧 is

𝑐u�(𝑆′) = 𝛼 ⋅ |𝑠′
u�| + |𝑠′

u�| + 2 ⋅ |𝑉 ⧵ 𝑠′
u�| = |𝑉| + 𝛼 ⋅ |𝑠′

u�| + |𝑉 ⧵ 𝑠′
u�|,

we get by 𝛼 > 1 that 𝑧’s private cost is minimized when |𝑠′
u�| is minimized.

Thus, an optimal strategy change for 𝑧 is a minimum dominating set in the
constructed instance and directly gives a minimum dominating set in 𝐺.

In the remainder of this section, we consider the convergence properties of
best-response processes, as introduced in Section 2.2.3. Given a fixed game
with edge price, locality parameter, and probing technique, we consider some
initial strategy profile and analyze sequences of best-response strategy changes
of the agents. At each time step, exactly one agent acts and we ask if such
best-response processes are guaranteed to converge to an equilibrium state.
Specifically, does the game possess the finite improvement property and hence,
is it a potential game? Or otherwise, can we show a cyclic sequence of best-
response strategy changes, i.e., the existence of a best-response cycle that can
prevent these processes from terminating?

Theorem 5.4. In both the 1-local greedy Sum-Game and the 1-local Sum-Game, every
sequence of (𝑛 − 1)2-many improving operations converges to an equilibrium. For
𝑘 ≥ 2, for both the 𝑘-local greedy Sum-Game and the 𝑘-local Sum-Game, there are
strategy profiles and best-response sequences that result in best-response cycles.

Proof. For 𝑘 = 1, neither in the Sum-Game nor in the greedy Sum-Game there
is an agent who can create or swap an edge. Hence, the number of edges
is strictly monotonically decreasing with every operation. We know for the
initial strategy profile that for 𝑛 = |𝑉| agents, there are at most 𝑛(𝑛 − 1) edges.
Since no agent disconnects the network by any operation, there never can be
less than 𝑛 − 1 edges. Hence, after at most (𝑛 − 1)2-many improving strategy
changes, in both models the network is an equilibrium.

For 𝑘 = 2 and 𝛼 ∈ (2, 3), Figure 5.1 provides a best-response cycle in the
2-local Sum-Game: In (1) 𝑐 swaps edge {𝑐, 𝑎} → {𝑐, 𝑏}, in (2) 𝑎 buys edge {𝑎, 𝑒},
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in (3) 𝑏 deletes edge {𝑎, 𝑏}, in (4) 𝑎 buys edge {𝑎, 𝑏}, in (5) 𝑏 deletes edge {𝑏, 𝑒}, in
(6) 𝑑 swaps edge {𝑑, 𝑏} → {𝑑, 𝑎}, in (7) 𝑐 swaps edge {𝑐, 𝑏} → {𝑐, 𝑎}, in (8) 𝑏 buys
edge {𝑏, 𝑒}, in (9) 𝑎 deletes edge {𝑎, 𝑏}, in (10) 𝑏 buys edge {𝑎, 𝑏}, in (11) 𝑎 deletes
edge {𝑎, 𝑒}, and in (12) 𝑑 swaps edge {𝑑, 𝑎} → {𝑑, 𝑏}. This gives the original
network from (1) and hence a best-response cycle exists. It is easy to check that
in every step of the cycle, the active agent performs a best-response operation.
Since every operation is a greedy operation, the best-response cycle also holds
for the 2-local greedy Sum-Game. Note that in strategy change (6), agent 𝑑
could perform a 3-local greedy operation (swapping edge {𝑑, 𝑏} → {𝑑, 𝑒}), if
the game was 3-local, and hence this construction cannot be used for 𝑘 = 3.

For 𝑘 = 3 and 𝛼 ∈ (3, 4), Figure 5.2 provides a best-response cycle in the
3-local Sum-Game that works as follows: In (1) 𝑏 buys edge {𝑏, ℎ}, in (2) 𝑑
swaps edge {𝑑, 𝑐} → {𝑑, 𝑏}, in (3) 𝑎 swaps edge {𝑎, 𝑐} → {𝑎, 𝑏}, in (4) 𝑏 deletes
edge {𝑏, ℎ}, in (5) 𝑐 buys edge {𝑐, ℎ}, in (6) 𝑑 swaps edge {𝑑, 𝑏} → {𝑑, 𝑐}, in (7)
𝑎 swaps edge {𝑎, 𝑏} → {𝑎, 𝑐}, and in (8) 𝑐 deletes edge {𝑐, ℎ}. This again gives
the original network from (1). It is easy to check that in every step of the cycle,
the active agent performs a best-response operation. Since every operation is
a greedy operation, the best-response cycle also holds for the 3-local greedy
Sum-Game.

For any 𝑘 ≥ 4, we refer to the construction in Kawald and Lenzner [KL13,
Theorem 7], which only requires agents to perform 4-local greedy operations
and hence provides a best-response cycle for both the 𝑘-local Sum-Game and
the 𝑘-local greedy Sum-Game.

5.4 Approximation Quality of Greedy Probing

In this section, we investigate the agents’ perspectives in the Sum-Game in
terms of how close 𝑘-local operations approximate arbitrary strategies. Specif-
ically, for a given 𝑘-local game we ask by how much agents could improve
their costs if they were allowed to perform arbitrary operations. First, we
show that a 𝑘-local greedy best-response operation is a 3-approximation of a
𝑘-local best-response operation. Then, we shift our focus to the approximation
quality of 𝑘-local greedy operations versus arbitrary greedy operations. For
tree networks, we provide a tight approximation bound of 𝛩( log u�

u�
) and for any
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Figure 5.1: The 2-local Sum-Game with a best-response cycle for edge price u� ∈ (2, 3).
The orange agent performs a best-response operation: gray edges are removed, red
edges are created.
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Figure 5.2: The 3-local Sum-Game with a best-response cycle for edge price u� ∈ (3, 4).
The orange agent performs a best-response operation: gray edges are removed, red
edges are created.
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general 𝑘-local greedy buy equilibrium network 𝐺, we get an approximation
upper bound of O(diam(𝐺)).

5.4.1 Approximation of the k-Local Sum-Game

First, we consider the approximation quality of 𝑘-local greedy operations
regarding arbitrary 𝑘-local operations. For this, we show that 𝑘-local greedy
best-response operations are 3-approximations of arbitrary 𝑘-local operations.

Theorem 5.5. In the 𝑘-local Sum-Game with 𝑘 ≥ 1, every strategy profile in 𝑘-local
greedy buy equilibrium is a 3-approximate 𝑘-local buy equilibrium.

Proof. We show that if an agent cannot improve her cost by a 𝑘-local greedy
operation, then this agent also cannot perform an arbitrary 𝑘-local operation
that reduces her private cost to a value less than 1/3 of her current cost.

For this, similar to [Len12], we reduce the best-response computation of
any agent to the solution of a corresponding Uncapacitated Metric Facility
Location instance (UMFL, cf. Williamson and Shmoys [WS11]). UMFL is the
problem of selecting a subset 𝑋 ⊆ ℱ of facilities with the objective to minimize
the term ∑u�∈u� 𝑓u� +∑u�∈𝒞 minu�∈u� 𝑑(𝑥, 𝑣) for a given set of clients 𝒞 , individual
opening costs 𝑓u� ≥ 0 for every facility 𝑣 ∈ ℱ , and a metric distance function
𝑑 ∶ ℱ × 𝒞 → ℝ≥0. Arya et al. [Ary+04, Theorem 4.3] provide a locality gap
result that (beside other implications) states: When starting with an arbitrary
facility set and performing only the operations of closing a single facility,
opening a single facility, or swapping a single facility (i.e., simultaneously
closing one facility and opening another one) until no further improvement is
possible, this greedy local search heuristic results in a 3-approximation of the
optimal solution.

Given a 𝑘-local greedy buy equilibrium strategy profile 𝑆 for a 𝑘-local Sum-
Game with agents 𝑉 and edge price 𝛼, let 𝑢 ∈ 𝑉 denote an arbitrary agent. For
agent 𝑢 let 𝑠u� denote the set of agents to which she owns an edge and let ̄𝑠u� be
the set of agents who own edges to agent 𝑢. Using this, we define an instance
𝐼 = (ℱ ,𝒞 , {𝑓u�}u�∈u� , 𝑑) of the UMFL problem as follows:

• The set of facilities ℱ is given by ℱ ≔ 𝑁u�(𝑢) ⧵ {𝑢}.

• The set of clients 𝒞 is given by 𝒞 ≔ 𝑉 ⧵ {𝑢}.
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• For every facility 𝑣 ∈ ℱ ∩ ̄𝑠u�, we define the opening cost as 𝑓u� ≔ 0 and
for all other facilities we set 𝑓u� ≔ 𝛼.

• For a facility 𝑣 ∈ ℱ and a client 𝑥 ∈ 𝒞 , we set the distance as 𝑑(𝑣, 𝑥) ≔
𝑑u�[u�](𝑣, 𝑥) + 1; the distance is ∞ if there is no path from 𝑣 to 𝑥 in 𝐺[𝑆].

Note that by using the shortest path metric to define the distances in 𝐼, we
ensure that the distances are metric. It is easy to see that 𝑐u�(𝑆) = cost(𝐼) =
∑u�∈u�u�

𝑓u� +∑u�∈𝒞 minu�∈u�u� 𝑑(𝑥, 𝑣). Since we assume that agent 𝑢 cannot perform
any improving 𝑘-local greedy operation, the locality gap for UMFL [Ary+04]
yields that the cost of agent 𝑢 in 𝑆 is at most 3 times her cost it would be by
performing a 𝑘-local best-response operation.

The construction by Lenzner [Len12, Theorem 3] further yields an approxi-
mation lower bound for 𝑘 ≥ 2 such that there exist 𝑘-local greedy buy equilibria
that are in (3/2)-approximate 𝑘-local buy equilibrium. This lower bound also
applies here.

5.4.2 Approximation Lower Bound in the Sum-Game

In the following, we prove a lower bound on the approximation ratio for 𝑘-local
greedy operations versus arbitrary greedy operations. For this, we use the
following constructed 𝑑-𝑙-Tree-Star network (cf. Figure 5.3). It consists of a
complete binary tree subgraph and a star subgraph, both connected by one
additional agent.

Complete Binary Tree 𝑇u�: For 𝑑 ∈ ℕ, define 𝑇u� to be a complete balanced
binary tree of depth 𝑑 with root agent 𝑟 such that every edge is owned
by the agent who is closer to 𝑟. Let 𝑢 denote a fixed leaf agent (i.e., an
agent with maximal distance to 𝑟).

Tree-Star 𝐺u�,u�: We consider a combination of a complete binary tree 𝑇u�, with
root agent 𝑟 and of even depth 𝑑, and a star network consisting of a center
agent 𝑧 and 𝑙-many leaves (cf. Figure 5.3). Both subgraphs are connected
by one additional agent 𝑦 who owns one edge to the root agent 𝑟 and one
edge to the center agent 𝑧. The tree subgraph contains one (arbitrary)
leaf marked as 𝑢. In the following, we will also consider the networks:
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𝑟=𝑣u�

𝑦 𝑧

𝑢=𝑣0

⋮

𝑙 agents

𝑣u�

𝑣′
u�𝐻u�

𝑇u�

depth 𝑑

Figure 5.3: Illustration of the u�-u�-Tree-Star u�u�,u� with depicted path u�0, … , u�u� and the
subtree u�u� for an agent u�u�. Note that edges are undirected but depicted with
directions to indicate edge ownerships.

• 𝐺u�
u�,u�: the network that is obtained from 𝐺u�,u� when agent 𝑢 buys the

edge {𝑢, 𝑦}.

• 𝐺u�
u�,u�: the network that is obtained from 𝐺u�,u� when agent 𝑢 buys the

edge {𝑢, 𝑧}.

For a 𝑑-𝑙-Tree-Star network with suitable chosen 𝑑 and 𝑙, we will prove that
agent 𝑢 cannot improve her private cost by a 𝑘-local greedy operation, yet by
an arbitrary greedy operation. We start by computing the maximal distance
cost improvement of agent 𝑢 when performing a greedy operation and then
show that 𝑢’s operations upper-bound the distance cost improvement of any
agent. By comparing the private cost of 𝑢 in 𝐺u�,u� to her private cost after she
performed a (non-local) best-response greedy operation, eventually we will
obtain the lower bound.

Different to the notation in the previous chapters, for convenience, in the
following we sometimes use 𝑐u�(𝐺) to denote the private cost of some agent 𝑢
with respect to the strategy profile implied by network the 𝐺 and only implic-
itly consider the respective strategy profile. Moreover, we denote the agents
belonging to a subgraph 𝐺′ of some network 𝐺 by 𝑉(𝐺′) and use

distu�(𝐺′) ≔ ∑
u�∈u�(u�′)

𝑑u�(𝑢, 𝑣)

to denote the distance cost of agent 𝑢 only regarding the agents in 𝐺′.

98



5.4 Approximation Quality of Greedy Probing

Lemma 5.6. Let 𝑑 be even and the networks defined as above. Then, the following
distance cost estimations hold:

(a) distu�(𝐺u�,u�) = 9 + 𝑙(𝑑 + 3) + 3𝑑 + 2u�+1(2𝑑 − 3)

(b) distu�(𝐺u�
u�,u�) = 9 + 3𝑙 + 𝑑 + 2u�+1(𝑑 + 1) − 2u�/2+3

(c) distu�(𝐺u�
u�,u�) = 9 + 2𝑙 + 𝑑 + 2u�+1(𝑑 + 2) − 3 ⋅ 2u�/2+2

Proof. For the following estimations, we consider the shortest path from 𝑢 to 𝑟
in 𝑇u� and denote the agents on this path as 𝑢 ≕ 𝑣0, … , 𝑣u� ≔ 𝑟 (cf. Figure 5.3).
For every 𝑣u�, we call the subtree rooted at the (unique) non-path neighbor
of 𝑣u� as 𝐻u�. Then, the distance cost of 𝑣u� for the corresponding subtree is
distu�u�

(𝐻u�) = ∑u�
u�=1 2u�−1𝑗 = 2u�𝑖 − 2u� + 1. Note that there are |𝐻u�| = 2u� − 1 many

agents in the subtree 𝐻u� and hence 𝑢 has distance cost for this tree of:

distu�(𝐻u� ∪ {𝑣u�}) = distu�u�
(𝐻u� ∪ {𝑣u�}) + 2u�𝑖 = distu�u�

(𝐻u�) + 2u�𝑖

Claim (a): For network 𝐺u�,u� we get the following distance cost for 𝑢:

distu�(𝐺u�,u�) = 3 + 2𝑑 + 𝑙(𝑑 + 3) +
u�

∑
u�=1

(2u�𝑖 − 2u� + 1 + 2u�𝑖)

= 3 + 2𝑑 + 𝑙(𝑑 + 3) + 2(2u�+1𝑑 − 3 ⋅ 2u�) + 6 + 𝑑

= 9 + 3𝑑 + 𝑙(𝑑 + 3) + 2u�+1(2𝑑 − 3)

Claim (b): For network 𝐺u�
u�,u� we get the following distance cost for 𝑢:

distu�(𝐺u�
u�,u�) = 3 + 3𝑙 +

u�
∑
u�=1

distu�u�
(𝐻u�) +

u�/2+1
∑
u�=1

2u�𝑖 +
u�

∑
u�=u�/2+2

2u�(𝑑 − 𝑖 + 2)

= 3 + 3𝑙 +
u�

∑
u�=1

distu�u�
(𝐻u�) +

u�/2+1
∑
u�=1

2u�𝑖 +
u�/2−1
∑
u�=1

2u�/2+1+u�(𝑑/2 − 𝑖 + 1)

= 3 + 3𝑙 + (4 + 𝑑 + 2u�+1(𝑑 − 2)) + (2u�/2+1𝑑 + 2)

+ (−2u�/2+1𝑑 + 3 ⋅ 2u�+1 − 2u�/2+3)

= 9 + 3𝑙 + 𝑑 + 2u�+1(𝑑 + 1) − 2u�/2+3
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Claim (c): For network 𝐺u�
u�,u� we get the following distance cost for 𝑢:

distu�(𝐺u�
u�,u�) = 3 + 2𝑙 +

u�
∑
u�=1

distu�u�
(𝐻u�) +

u�/2+1
∑
u�=1

2u�𝑖 +
u�

∑
u�=u�/2+2

2u�(𝑑 − 𝑖 + 3)

= 3 + 2𝑙 +
u�

∑
u�=1

distu�u�
(𝐻u�) +

u�/2+1
∑
u�=1

2u�𝑖 +
u�/2−1
∑
u�=1

2u�/2+1+u�(𝑑/2 − 𝑖 + 2)

= 3 + 2𝑙 + (4 + 𝑑 + 2u�+1(𝑑 − 2)) + (2u�/2+1𝑑 + 2)

+ (−2u�/2+1𝑑 + 2u�+3 − 3 ⋅ 2u�/2+2)

= 9 + 2𝑙 + 𝑑 + 2u�+1(𝑑 + 2) − 3 ⋅ 2u�/2+2

Considering agent 𝑢 in a 𝑑-𝑙-Tree-Star network 𝐺u�,u�, we first compute a pa-
rameter 𝑙 such that the best possible greedy edge creation of 𝑢 is to buy the edge
{𝑢, 𝑧}. Then, we show that 𝑢 is the agent with the maximum possible private
cost improvement among all agents, but that 𝑢 cannot perform an improving
response if 𝑙 and 𝑘 are selected appropriately. By this, we get that the network
is a 𝑘-local greedy buy equilibrium and we can compare 𝑢’s private cost with
the result of an arbitrary greedy best-response operation.

Lemma 5.7. For 𝑑 even and 𝑙 ≥ 2u�+1, let 𝐺u�,u� be a 𝑑-𝑙-Tree-Star. Then, creating the
edge {𝑢, 𝑧} is the best possible greedy edge creation operation of agent 𝑢.

Proof. We compute the minimal parameter 𝑙 such that distu�(𝐺u�
u�,u�) ≤ distu�(𝐺u�

u�,u�):
i.e., that creating an edge to some agent in 𝑇u� cannot be a best response. Using
Lemma 5.6, we compute:

0 ≤ distu�(𝐺u�
u�,u�) − distu�(𝐺u�

u�,u�) = 𝑙 − 2u�+1 + 2u�/2+2

Hence, for 𝑙 ≥ 2u�+1 creating an edge to 𝑧 is the best possible greedy edge
creation operation for 𝑢.

Lemma 5.8. For 𝑑 even and 𝑙 ≥ 2u�+1, let 𝐺u�,u� be a 𝑑-𝑙-Tree-Star and 𝑇u� the contained
binary tree of depth 𝑑. Consider a 𝑣 ∈ 𝑉(𝑇u�) who can perform an improving response
and let 𝑣 ≕ 𝑣0, 𝑣1, … , 𝑣u� ≔ 𝑧 denote the shortest path from 𝑣 to 𝑧. Then, for 𝑘 ≥ 2:

𝑣’s 𝑘-local greedy best response is
⎧{{
⎨{{⎩

to create an edge to 𝑣u� for 𝑘 ≤ 𝑚,

to create an edge to 𝑧 otherwise.
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Proof. For any agent 𝑥 ∈ 𝑇u�, we use the notation 𝑆(𝑥) ⊆ 𝑇u� to denote the set of
agents in the subtree rooted at agent 𝑥 in 𝑇u�. Furthermore, we use height(𝑤)
to denote the height of agent 𝑥 ∈ 𝑇u�, i.e., the number of edges on the longest
downward simple path from 𝑥 to a leaf of 𝑇u�.

First, we consider 𝑣 creating an edge to an agent 𝑤 ∈ 𝑇u� with height(𝑤) ≤
height(𝑣) and assume that this edge creation gives a maximum possible dis-
tance cost decrease for 𝑣. Let 𝑤′ be the direct predecessor of 𝑤 on the shortest
path from 𝑣 to 𝑤 in 𝐺u�,u�. If 𝑑u�u�,u�(𝑣, 𝑤) > 2, we compare the distance cost im-
provements of creating the edge {𝑣, 𝑤} and of creating the edge {𝑣, 𝑤′}. Note
that the distance cost reduce differs only by the number of agents in the cor-
responding subtrees. Since 𝑇u� is a complete binary tree, creating the edge to
𝑤′ gives an additional decrease of 2height(u�′) − 2height(u�) > 0. Hence, 𝑤 must
be at distance 2 to 𝑣 and accordingly gives a distance cost improvement of
2height(u�) − 1 ≤ 2u�−1 − 1 < 𝑙. That is, creating an edge to 𝑣2 would result in a
bigger gain and therefore, creating an edge to some agent in 𝑆(𝑣) cannot be
a best response. By the same arguments, this also holds for edge swaps and
thus no improving edge swap to an agent in 𝑆(𝑣) is a best response.

Secondly, we assume that creating an edge to some agent 𝑤 ∈ 𝑇u� with
height(𝑤) > height(𝑣) is 𝑣’s best response. If there exists an agent 𝑤′ on
the shortest path from 𝑤 to 𝑧 who is within 𝑣’s 𝑘-neighborhood, we consider
creating the edge {𝑣, 𝑤′}. Compared to the creation of {𝑣, 𝑤}, this edge gives
an additional distance cost reduction to all 𝑙-many leaves of the star subgraph
of 𝐺u�,u� of 1 each, while increasing the distance to at most 2u�+1 agents in 𝑇u� by
1 each. Hence, the target for the edge creation must be closest possible to 𝑧.

Finally, note that agent 𝑣 can neither delete any edge that connects her to
an agent in 𝑆(𝑣), nor swap such an edge to an agent with a height bigger than
height(𝑣).

Lemma 5.9. For 𝑑 even and 𝑙 ≥ 2u�+1, let 𝐺u�,u� be a 𝑑-𝑙-Tree-Star and 𝑇u� the contained
binary tree of depth 𝑑. Then, the agent with maximum gain by a 𝑘-local greedy
best-response operation is agent 𝑢.

Proof. First note that the maximum possible distance cost decrease for all leaves
of 𝑇u� is equal and it suffices to consider only agent 𝑢.

Assume that there is some non-leaf agent 𝑣 ∈ 𝑉(𝑇u�), who can achieve a
bigger distance cost decrease than 𝑢 by creating an edge {𝑣, 𝑤} with 𝑤 ∈ 𝑁u�(𝑣).
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By Lemma 5.8, 𝑑u�u�,u�(𝑤, 𝑧) = 𝑑u�u�,u�(𝑣, 𝑧) − 𝑘 must hold. Since 𝑣 is no leaf, there
is a neighbor 𝑣′ of 𝑣 with a larger distance to 𝑟 than 𝑣. Moreover, there is a
neighbor 𝑤′ of 𝑤 who lies on the shortest path from 𝑣 to 𝑤. We claim that agent
𝑣′ can achieve a strictly larger cost decrease when creating the edge {𝑣′, 𝑤′}
than agent 𝑣 when creating {𝑣, 𝑤}. Let 𝐴u� ⊂ 𝑉(𝐺u�,u�) be the set of agents to
which agent 𝑣 decreases her distances by exactly 𝑖 when creating the edge {𝑣, 𝑤}.
Moreover, let 𝐴′

u� ⊂ 𝑉(𝐺u�,u�) be the set of agents to which agent 𝑣′ decreases
her distances by 𝑖 each when creating the edge {𝑣′, 𝑤′}. Thus, agent 𝑣 has a
distance cost decrease of ∑u�−1

u�=1 𝑖 ⋅ |𝐴u�| when creating edge {𝑣, 𝑤} and agent 𝑣′

has a distance cost decrease of ∑u�−1
u�=1 𝑖 ⋅ |𝐴′

u�| when creating edge {𝑣′, 𝑤′}. Since
𝑤′ lies on the shortest path from agent 𝑣 to 𝑤 and, additionally, 𝑤 lies on the
shortest path from 𝑣 to 𝑧, we have that 𝐴u� ⊆ 𝐴′

u� holds for all 1 ≤ 𝑖 ≤ 𝑘 − 1. Thus,
the claim follows.

It remains to consider the maximum possible distance cost decrease for
agents 𝑥 ∈ 𝑉(𝐺u�,u�) ⧵𝑉(𝑇u�). First note that without loss of generality it suffices
to consider only the case of 𝑥 being a leaf agent of the star subgraph, in which
case an agent has a maximum possible distance cost decrease in the set. Thus,
consider a leaf agent 𝑥 creating the edge {𝑥, 𝑟}, which decreases her distance
cost by 2 ⋅ |𝑉(𝑇u�)| = 2u�+2 − 2. On the contrary, we compare the cost reduction
of agent 𝑥 to the distance cost reduction that agent 𝑢 can achieve by creating
an edge to 𝑤, where 𝑤 is on 𝑢’s shortest path to 𝑧 and 𝑤 has distance 2 to 𝑢.
This is, 𝑢’s distances to all but 3 agents decrease by 1, which gives a distance
cost decrease of |𝑉(𝑇u�)| + 2 + 𝑙 − 3 = 2u�+1 − 2 + 2u�+1 = 2u�+2 − 2. Hence, 𝑥
cannot reduce her distance cost by more than 𝑢.

Lemma 5.10. For 𝑑 even and 𝑙 ≥ 2u�+1, let 𝐺u�,u� be a 𝑑-𝑙-Tree-Star. Then, for

𝛼 ≥ (𝑘 − 1)(2u�+1 + 𝑙 + 2)

and any 𝑘 ≤ 𝑑, the network is a 𝑘-local greedy buy equilibrium.

Proof. By Lemma 5.9, it suffices to consider only agent 𝑢’s 𝑘-local greedy best-
response operation, which is by Lemma 5.8 the creation of an edge to an agent
𝑤 ∈ 𝑁u�(𝑢) closest to 𝑧. We define 𝛥u�,u�,u� ≔ distu�(𝐺u�,u�) − distu�(𝐺u�

u�,u�) to denote
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5.4 Approximation Quality of Greedy Probing

the distance cost reduction by this operation. For 𝑘 ∈ {2, … , 𝑑}, this value is:

𝛥u�,u�,u� = (𝑘 − 1)⎛⎜⎜
⎝

2 + 𝑙 +
u�

∑
u�=u�

2u�⎞⎟⎟
⎠

+
⌊u�/2⌋−1

∑
u�=1

(𝑘 − 2𝑖 − 1)2u�−u�

≤ (𝑘 − 1)(2u�+1 − 2u� + 𝑙 + 2) + 2u�(𝑘 − 5) + 3 ⋅ 2u�/2+1

≤ (𝑘 − 1)(2u�+1 + 𝑙 + 2)

Since this is the maximum possible distance cost decrease of any single edge
creation by 𝑢, for 𝛼 being at least this value, no agent can perform an improving
response.

Theorem 5.11 (𝑘-local greedy approximation lower bound). For any 2 ≤ 𝑘 ≤
log3(𝑛/2) and suitably chosen 𝑑 and 𝑙, the 𝑑-𝑙-Tree-Star network 𝐺u�,u� is a 𝑘-local

greedy buy equilibrium, but only an 𝛺( log u�
u�

)-approximate greedy buy equilibrium.

Proof. Using Lemma 5.6, the private cost of 𝑢 is given by distu�(𝐺u�,u�) = 9 + 4𝑑 +
𝑙(𝑑 + 3) + 2u�+1(2𝑑 − 3) for 𝑢’s private cost in 𝐺u�,u�. Comparing this to the result
of an arbitrary greedy best-response operation gives us by applying Lemma 5.6
and Lemma 5.10:

lim
u�→∞

distu�(𝐺u�,u�)
𝛼 + distu�(𝐺u�

u�,u�)
= lim

u�→∞

𝑙(𝑑 + 3)
𝑙(𝑘 + 1)

=
𝑑 + 3
𝑘 + 1

Hence, the approximation ratio for any constant neighborhood range 𝑘 may
exceed any constant ratio 𝐶 by choosing 𝑑 > 𝐶(𝑘 + 1) − 3 and 𝑙 large enough.
In particular, it suffices that 𝑙 grows fast enough to dominate the other terms
in the numerator and in the denominator, as 𝑙 tends to infinity. We choose
𝑑 ≔ log3 𝑙, which then yields:

lim
u�→∞

distu�(𝐺log3 u�,u�)

𝛥log3 u�,u�,u� + distu�(𝐺″
log3 u�,u�)

= 𝛺⎛⎜
⎝

𝑙 log3 𝑙
𝑘𝑙

⎞⎟
⎠

= 𝛺(
log 𝑙

𝑘
)

There are 𝑛 = 2u�+1 + 1 + 𝑙 many agents in the network. Choosing 𝑑 ≥ 2,
for this value it holds 2u�+1 + 1 ≤ 3u� and gives 𝑛 ≥ 𝑙 ≥ 𝑛/2. Hence, we
get log 𝑙 = 𝛩(log 𝑛) and thus a lower bound of 𝛺(

log3(u�/2)

u�
) = 𝛺( log u�

u�
) for

2 ≤ 𝑘 ≤ log3(𝑛/2) and 𝛺(log 𝑛) for any constant 𝑘 ≥ 2. Note that the diameter
of 𝐺u�,u� is 𝑑 + 3 = 𝛩(log 𝑙).
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5 Limits of Locality

5.4.3 Approximation Upper Bounds in the Sum-Game

In the following, we will show that the approximation lower bound is tight
for every 𝑘-local greedy buy equilibrium tree network. Our main insight for
this result (formalized in the following lemma) is that whenever an agent can
perform a swap in a tree network, then there is also a 2-local greedy improving-
response swap available for this agent. Since this property does not hold for
general networks, we later provide another approximation upper bound that
holds for arbitrary networks.

Lemma 5.12. Let 𝑢 be an agent in a tree network 𝑇. If 𝑢 can perform an arbitrary
greedy edge swap in 𝑇, then there exists an improving 2-local greedy edge swap
operation for 𝑢.

Proof. Let {𝑢, 𝑣} → {𝑢, 𝑣u�} be a best-response edge swap of 𝑢 and assume
𝑚 = 𝑑u�(𝑢, 𝑣u�) > 2. We define 𝑃 ≔ (𝑢, 𝑣 = 𝑣1, 𝑣2, … , 𝑣u�−1, 𝑣u�) to be the
shortest path from 𝑢 to 𝑣u� (cf. Figure 5.4). For this path, we obtain 𝑣 = 𝑣1

since 𝑇 is a tree and a swap must preserve connectivity. Thus, the swap only
changes distances to agents in the subtree 𝑇u�1 of agent 𝑣1, which is rooted at
𝑢. For all agents 𝑣u� on the path 𝑃, let 𝑉u�u� denote the set of agents who have
agent 𝑣u� on their shortest path to any neighbor of 𝑣u� on 𝑃. Let 𝑇u� be the tree
that results from 𝑢 performing the edge swap {𝑢, 𝑣} → {𝑢, 𝑣u�}. Since the swap
{𝑢, 𝑣} → {𝑢, 𝑣u�} is a best-response edge swap, we have 𝑐u�(𝑇u�) ≥ 𝑐u�(𝑇u�), for
2 ≤ 𝑖 ≤ 𝑚 − 1. Using this together with:

𝑐u�(𝑇u�) =
u�

∑
u�=1

(𝑚 − 𝑖 + 1) ⋅ |𝑉u�u� | + ∑
u�∈u�(u�)⧵u�(u�u�)

𝑑u�(𝑢, 𝑧) + edge u�(𝑇) and

𝑐u�(𝑇u�−1) =
u�−1
∑
u�=1

(𝑚 − 𝑖) ⋅ |𝑉u�u� | + 2 ⋅ |𝑉u�u� | + ∑
u�∈u�(u�)⧵u�(u�u�)

𝑑u�(𝑢, 𝑧) + edge u�(𝑇),

we get:

0 ≤ 𝑐u�(𝑇u�−1) − 𝑐u�(𝑇u�)

=
u�−1
∑
u�=1

(𝑚 − 𝑖) ⋅ |𝑉u�u� | + 2 ⋅ |𝑉u�u� | − ⎛⎜
⎝

u�
∑
u�=1

(𝑚 − 𝑖 + 1) ⋅ |𝑉u�u� |⎞⎟⎠

= −
u�−1
∑
u�=1

|𝑉u�u� | + |𝑉u�u� |
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u�−1
⋃
u�=3

u�u�u�
u�(u�u�u�) =

u�
⋃
u�=u�

u�u�u�

u�(u�u�3) =
u�
⋃
u�=3

u�u�u�

u�−3
⋃
u�=0

u�u�u�

u� = u�0 u�1 u�2 u�3 u�u�−1 u�u� u�u�−3 u�u�−2 u�u�−1 u�u�

u�u�1 u�u�2 u�u�3 u�u�u�-1 u�u�u� u�u�u�-3 u�u�u�-2 u�u�u�-1

u�u�0 u�u�u�

Figure 5.4: Illustration of the sets of agents as used in the proof of Theorem 5.13.

Hence, it must hold:

|𝑉u�1 | ≤ |𝑉u�u� | −
u�−1
∑
u�=2

|𝑉u�u� | < |𝑉u�u� | +
u�−1
∑
u�=2

|𝑉u�u� | <
u�

∑
u�=2

|𝑉u�u� |

The last estimation gives us that the 2-local edge swap {𝑢, 𝑣} → {𝑢, 𝑣2} is an
improving response for 𝑢, since it decreases 𝑢’s distances to exactly (∑u�

u�=2 |𝑉u�u� |)-
many agents, yet only increases 𝑢’s distances to |𝑉u�1 |-many agents by 1.

We can now apply this lemma to prove that the approximation lower bound
from Theorem 5.11 is tight for tree networks.

Theorem 5.13 (approximation upper bound for tree networks). Any tree network
in 𝑘-local greedy buy equilibrium is an O( log u�

u�
)-approximate greedy buy equilibrium.

Proof. Let 𝑇 be a 𝑘-local greedy buy equilibrium tree network. In the following,
we show that 𝑇 is a O(diam(u�)

u�
)-approximate greedy buy equilibrium. From

this, we then can deduce the claim, since Lemma 5.12 implies that every tree
equilibrium is a asymmetric swap equilibrium (cf. Section 2.2), for which
we know from Mihalák and Schlegel [MS12] that the equilibrium network
diameter is at most O(log 𝑛), where 𝑛 is the number of agents.

Let 𝑣0 be some agent in 𝑇 who can buy an edge to decrease her cost. We
assume that 𝑣0 buys the edge {𝑣0, 𝑣u�} to an agent 𝑣u� at distance 𝑚 and that
this is her best-response greedy edge creation. Let the shortest path from 𝑣0 to
𝑣u� be given by 𝑃 = (𝑣0, 𝑣1, 𝑣2, … , 𝑣u�−1, 𝑣u�, 𝑣u�+1, … , 𝑣u�−1, 𝑣u�). We then denote
by 𝑇u�u� the subtree of some agent 𝑣u� that is rooted at 𝑣0 and let the sets 𝑉u�u� for all
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5 Limits of Locality

𝑣u� ∈ 𝑉(𝑃) be defined like in the previous proof of Lemma 5.12 (cf. Figure 5.4
for an illustration of these sets).

We assume that agent 𝑣0 cannot decrease her private cost by creating an
edge to any agent in her 𝑘-neighborhood. Hence, it must hold distu�(𝑣0, 𝑣u�) =
𝑚 > 𝑘 ≥ 2. Since we assume that 𝑇 is a 𝑘-local greedy buy equilibrium, 𝑣0

cannot decrease her cost by creating an edge to 𝑣u�. But since this operation
would decrease 𝑣0’s distances to all agents in 𝑉(𝑇u�u�

) by 𝑘 − 1 each, we get:

𝛼 ≥ (𝑘 − 1) ⋅ ∣𝑉(𝑇u�u�)∣ (5.2)

Next, we consider the ratio of agent 𝑣0’s private cost before and after creating
edge {𝑣0, 𝑣u�}. For this, let 𝑇′ be the network after 𝑣0 has bought the edge and
let 𝛿u�0 denote the distance cost decrease of agent 𝑣0. We get:

𝑐u�0(𝑇)
𝑐u�0(𝑇′)

=
𝑐u�0(𝑇)

𝑐u�0(𝑇) − 𝛿u�0 + 𝛼
=

edge u�0(𝑇) + ∑u�∈u�(u�) 𝑑u�(𝑣0, 𝑣)
edge u�0(𝑇) + ∑u�∈u�(u�) 𝑑u�(𝑣0, 𝑣) − 𝛿u�0 + 𝛼

≤
∑u�∈u�(u�u�3) 𝑑u�(𝑣0, 𝑣)

∑u�∈u�(u�u�3) 𝑑u�(𝑣0, 𝑣) − 𝛿u�0 + 𝛼

The last inequality holds, since all agents to that 𝑣0 decreases her distances by
creating {𝑣0, 𝑣u�} are in 𝑇u�3. We can upper bound the nominator by assuming
that all agents in 𝑉(𝑇u�3) are at maximum distance to 𝑣0, thus:

∑
u�∈u�(u�u�3)

𝑑u�(𝑣0, 𝑣) ≤ diam(𝑇) ⋅ |𝑉(𝑇u�3)|

Since 𝑣0 has at least distance 1 to all agents in 𝑉(𝑇u�3) after creating the edge
{𝑣0, 𝑣u�}, we have that ∑u�∈u�(u�u�3) 𝑑u�(𝑣0, 𝑣) − 𝛿u�0 > 0 must hold. Thus, we can
lower bound the denominator by ∑u�∈u�(u�u�3) 𝑑u�(𝑣0, 𝑣) − 𝛿u�0 + 𝛼 > 𝛼. Hence, we
have:

𝑐u�0(𝑇)
𝑐u�0(𝑇′)

≤
∑u�∈u�(u�u�3) 𝑑u�(𝑣0, 𝑣)

∑u�∈u�(u�u�3) 𝑑u�(𝑣0, 𝑣) − 𝛿u�0 + 𝛼

≤
diam(𝑇) ⋅ |𝑉(𝑇u�3)|

𝛼
(5.2)
≤

diam(𝑇) ⋅ |𝑉(𝑇u�3)|
(𝑘 − 1) ⋅ |𝑉(𝑇u�u�)|
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For 𝑘 ≤ 3, this already yields
u�u�0(u�)
u�u�0(u�′) = O(diam(𝑇)), since for 𝑖 ≤ 3 it holds

|𝑉(𝑇u�u�)| ≥ |𝑉(𝑇u�3)|.
It remains to show that |𝑉(𝑇u�u�)| = 𝛺(|𝑉(𝑇u�3)|) for 𝑘 > 3. Since creating

edge {𝑣0, 𝑣u�−1} is a best-response operation for 𝑣0, its gain must be bigger
than when creating edge {𝑣0, 𝑣u�}. Hence, swapping from {𝑣0, 𝑣u�} to {𝑣0, 𝑣u�−1}
would increase agent 𝑣0’s distances to all agents in 𝑉u�u� by one, as well as
decrease agent 𝑣0’s distances to all agents in the set ⋃u�−1

u�=⌊ u�
2

⌋+1 𝑉u�u� by one. Since
all sets 𝑉u�u� are pairwise disjoint, we get:

u�−1
∑

u�=⌊ u�
2

⌋+1

∣𝑉u�u�
∣ ≤ ∣𝑉u�u�

∣ (5.3)

First consider the case 𝑚 = 5, i.e., 𝑚 − 2 = 3 and hence 𝑘 = 𝑚 − 1 = 4. We
use that creating {𝑣0, 𝑣u�} strictly decreases agent 𝑣0’s private cost, whereas
creating edge {𝑣0, 𝑣u�} = {𝑣0, 𝑣u�−1} does not:

∣𝑉u�u�
∣ >

u�−1
∑

u�=⌊ u�
2

⌋+1

∣𝑉u�u�
∣ (5.4)

Thus, we have ⌊u�
2

⌋ + 1 = 3 and we have that |𝑉(𝑇u�3)| < 2 ⋅ |𝑉u�u� |, which implies
that |𝑉(𝑇u�3)| < 2 ⋅ |𝑉(𝑇u�u�)|, yielding |𝑉(𝑇u�u�)| = 𝛺(𝑉(𝑇u�3)).

Next, consider the case 𝑘 > 4. For 𝑚 − 2 > 3 we claim that the edge
{𝑣u�−2, 𝑣u�−1} must be owned by agent 𝑣u�−1. This holds, since otherwise agent
𝑣u�−2 could perform the swap {𝑣u�−2, 𝑣u�−1} → {𝑣u�−2, 𝑣u�} and thereby strictly
decrease her cost. This can be seen as follows: If 𝑚 − 1 = 𝑘, then by (5.4) we
have |𝑉u�u� | > |𝑉u�u�−1 | = |𝑉u�u� |. On the other hand, if 𝑚 − 1 > 𝑘, then (5.3) implies
|𝑉u�u�−1 | < |𝑉u�u� |, since the sum on the left has at least one additional non-zero
summand. In both cases, we have that the swap {𝑣u�−2, 𝑣u�−1} → {𝑣u�−2, 𝑣u�}
must be improving for agent 𝑣u�−2. This proves the claim.

Having established that the edge {𝑣u�−2, 𝑣u�−1} is owned by agent 𝑣u�−1

and using the assumption that no agent in 𝑇 can swap an edge in her 𝑘-
neighborhood to strictly decrease her private cost, the swap {𝑣u�−1, 𝑣u�−2} →
{𝑣u�−1, 𝑣u�−3} cannot be an improving response for agent 𝑣u�−1, which yields
|𝑉u�−2| ≥ ∑u�−3

u�=0 |𝑉u�u� |. Since 𝑚 > 5, we have that ⌊u�
2

⌋ + 1 ≤ 𝑚 − 2. By (5.3) this
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implies ∑u�−3
u�=0 |𝑉u�u� | ≤ |𝑉u�u�−2 | < ∑u�−1

u�=⌊ u�
2

⌋+1 |𝑉u�u� | ≤ |𝑉u�u� |. Thus, if 𝑘 = 𝑚 − 1 we
have that

u�−1
∑
u�=3

|𝑉u�u� | ≤ 2 ⋅ |𝑉u�u�−2 | ≤ 2 ⋅ |𝑉u�u� | ≤ 2 ⋅ |𝑉(𝑇u�u�)|,

which implies that |𝑉(𝑇u�3)| ≤ 3 ⋅ |𝑉(𝑇u�u�)|. If 𝑘 ≤ 𝑚 − 2, it follows that

u�−1
∑
u�=3

|𝑉u�u� | < |𝑉(𝑇u�u�)|

and hence |𝑉(𝑇u�3)| < 2 ⋅ |𝑉(𝑇u�u�)|.
In both cases this yields |𝑉(𝑇u�u�)| = 𝛺(|𝑉(𝑇u�3)|).

Finally, we prove a general upper bound on the approximation ratio, which
is tight for constant 𝑘 and almost tight in general. As discussed in [CL15,
Lemma 2], for general networks the property of Lemma 5.12 does not hold
and thus we have to analyze edge swaps and edge creations separately. For
both cases, we get the same upper bound on the approximation ratio, which is
independent of 𝑘.

Theorem 5.14 (general approximation upper bound). Any 𝑘-local greedy buy
equilibrium 𝑆 is an O(diam(𝐺[𝑆]))-approximate greedy buy equilibrium.

Proof. Let 𝑢 be an agent and consider her best-response greedy operation in
𝑆. We denote the resulting strategy profile as 𝑆′ and in the following consider
only the cases when this greedy operation is an edge swap or an edge creation,
since improving-response edge deletions would contradict 𝐺[𝑆] to be a 𝑘-local
greedy buy equilibrium. We call the agents to which 𝑢 decreases her distance
𝑋− and the agents to which 𝑢 increases her distance 𝑋+. Then for 𝑢’s distance
cost decrease 𝛿u� we get:

𝛿u� = ∑
u�∈u�−

(𝑑u�[u�](𝑢, 𝑥) − 𝑑u�[u�′](𝑢, 𝑥)) − ∑
u�∈u�+

(𝑑u�[u�′](𝑢, 𝑥) − 𝑑u�[u�](𝑢, 𝑥))

≤ ∑
u�∈u�−

(𝑑u�[u�](𝑢, 𝑥) − 𝑑u�[u�′](𝑢, 𝑥))

Comparing 𝑢’s private cost in both networks, when the operation is an edge
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swap we get for the approximation ratio:

𝑐u�(𝑆)
𝑐u�(𝑆′)

=
𝑐u�(𝑆)

𝑐u�(𝑆) − 𝛿u�
=

edge u�(𝑆) + distu�(𝑆)
edge u�(𝑆) + distu�(𝑆) − 𝛿u�

<
distu�(𝑆)

distu�(𝑆) − 𝛿u�

=
∑u�∈u� 𝑑u�[u�](𝑢, 𝑣)

∑u�∈u� 𝑑u�[u�](𝑢, 𝑣) − 𝛿u�
≤

∑u�∈u�− 𝑑u�[u�](𝑢, 𝑣)
∑u�∈u�− 𝑑u�[u�](𝑢, 𝑣) − 𝛿u�

≤
∑u�∈u�− 𝑑u�[u�](𝑢, 𝑣)

∑u�∈u�− 𝑑u�[u�](𝑢, 𝑣) − (∑u�∈u�−(𝑑u�[u�](𝑢, 𝑣) − 𝑑u�[u�′](𝑢, 𝑣)))

≤
diam(𝐺[𝑆]) ⋅ |𝑋−|
∑u�∈u�− 𝑑u�[u�′](𝑢, 𝑣)

≤
diam(𝐺[𝑆]) ⋅ |𝑋−|

|𝑋−|
= diam(𝐺[𝑆])

Considering greedy edge creations, we get for the approximation ratio (note,
for this case it holds 𝑋+ = ∅):

𝑐u�(𝑆)
𝑐u�(𝑆′)

=
𝑐u�(𝑆)

𝑐u�(𝑆) − 𝛿u� + 𝛼
≤

∑u�∈u�− 𝑑u�[u�](𝑢, 𝑥)
∑u�∈u�− 𝑑u�[u�](𝑢, 𝑥) − 𝛿u� + 𝛼

≤
∑u�∈u�− 𝑑u�[u�](𝑢, 𝑥)

|𝑋−| + 𝛼
<

diam(𝐺[𝑆]) ⋅ |𝑋−|
|𝑋−|

= diam(𝐺[𝑆])

For this estimation, the second inequality holds since agent 𝑢 must have at
least distance 1 to all agents in 𝑋− in 𝐺[𝑆′].

5.5 Efficiency of Probing Locality

In this section, we consider the price of anarchy in the 𝑘-local Sum-Game,
concerning the unrestricted probing and the greedy probing strategies. At
first, we analyze for which choices of 𝑘 the equilibria in the 𝑘-local model with
unrestricted probing coincide with equilibria in the original Sum-Game. The
results of this section are summarized in Figure 5.5. Moreover, in Section 5.5.2
we provide several specific bounds for the price of anarchy.

5.5.1 A Clash of Models

We stated in Observation 5.2 that k-BE ⊆ BE holds. In the following, we will
discuss the limits of several proof techniques to identify the parameters for
which k-BE = BE, i.e., both equilibria concepts coincide. Specifically, we ask
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u�

u�

1 2 √u�/2 u�1−u� u� 12u� log u�

1
2

6

u� = 2√u�

u� = 2 ⋅ 51+√log u� + 24 log u� + 3

4.667 ⋅ 3⌈1/u�⌉ + 8

PoA= u�( u�
u�

+ u�)

PoA= u�(1)
PoA= u�(√u�)

PoA= u�(5√log u� log u�)

PoA= u�(1)

Figure 5.5: Overview of our results from Theorem 5.15 and Theorem 5.28. The light
blue area indicates where buy equilibria and u�-local buy equilibria coincide and
the orange lines mark the ranges that are covered by different proofs.

for which combinations of 𝑘 and 𝛼 any 𝑘-local buy equilibrium diameter is
smaller than 𝑘. If this is true, then a 𝑘-local operation can achieve the same
result as an arbitrary operation. Theorem 5.15 combines the results, which we
will prove below.

Theorem 5.15. The equilibrium concepts 𝑘-local buy equilibrium and buy equilibrium
coincide for the following parameter combinations and yield the respective price of
anarchy results (cf. Figure 5.5): We have k-BE = BE for

⎧{{{{{{{
⎨{{{{{{{⎩

𝛼 ∈ (0, 1) ∧ 𝑘 ≥ 2 ⇒ PoA = O(1),

𝛼 ∈ [1, √𝑛/2] ∧ 𝑘 ≥ 6 ⇒ PoA = O(1),

𝛼 ∈ [1, 𝑛1−u�] ∧ 𝜀 ≥ 1
log(u�) ∧ 𝑘 ≥ 4.667 ⋅ 3⌈1/u�⌉ + 8 ⇒ PoA = O(3⌈1/u�⌉),

𝛼 ∈ [1, 12𝑛 lg 𝑛] ∧ 𝑘 ≥ 2 ⋅ 51+√lg u� + 24 lg(𝑛) + 3 ⇒ PoA = O(5√lg u� lg 𝑛),

𝛼 ≥ 12𝑛 log 𝑛 ∧ 𝑘 ≥ 2 ⇒ PoA = O(1).

Lemma 5.16. For parameters 0 < 𝛼 < 1 and 𝑘 ≥ 2, it holds k-BE = BE and the
price of anarchy is 1.

Proof. Given any strategy profile 𝑆 and 𝛼 < 1, assume there are two closest
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5.5 Efficiency of Probing Locality

agents 𝑢, 𝑣 ∈ 𝐺[𝑆] that are not connected by one edge: i.e., 𝑑u�[u�](𝑢, 𝑣) = 2. In
this case, creating an edge {𝑢, 𝑣} is an improving response for 𝑢. Hence, the
only equilibrium graph for 𝛼 < 1 is a clique, which is also the optimal solution
(cf. [Fab+03]).

Lemma 5.17 ([Dem+07], Theorem 4). For parameters 1 ≤ 𝛼 ≤ √𝑛/2 and 𝑘 ≥ 6, it
holds k-BE = BE and the price of anarchy is at most 6.

Proof. In [Dem+07], the authors show that every shortest path tree rooted at
some agent 𝑢 has a height of at most 5. For this, they assume the contrary and
show the existence of an improving response where an agent at a distance
of at least 6 buys an edge towards 𝑢. This operation is available with 𝑘 ≥ 6,
hence every 𝑘-local equilibrium has a diameter of at most 5. In this case, we
get k-BE = BE and the price of anarchy bound of [Dem+07] applies.

Lemma 5.18 ([Dem+07], Theorem 10). For parameters 1 ≤ 𝛼 < 𝑛1−u�, 𝜀 ≥ 1/ lg(𝑛)
and 𝑘 ≥ 4.667 ⋅ 3⌈1/u�⌉ + 8, it holds k-BE = BE and the price of anarchy is at most
4.667 ⋅ 3⌈1/u�⌉ + 8.

Proof. In Theorem 10 of [Dem+07], the authors use an inductive argument to
find some agent 𝑢 and a radius 𝑑 such that the 𝑑-neighborhood of 𝑢 contains
more than (𝑛/2)-many agents. For this, they start with their Lemma 3 (for
which only 𝑘 ≥ 2 must hold) and apply their Lemma 9 iteratively. They show
that the maximal radius 𝑑, for which their Lemma 9 must be applied, is at most
4.667 ⋅ 3⌈1/u�⌉ + 8, which gives a first lower bound for 𝑘. Using this result, they
apply their Corollary 7 to show that actually all agents are contained in a ball
of radius 4.667 ⋅ 3⌈1/u�⌉ + 7, for which they need the operation of creating an
edge to an agent at distance 4.667 ⋅ 3⌈1/u�⌉ + 8, which is the second lower bound
for 𝑘.

Using both results, they show that the diameter of every equilibrium is at
most 4.667⋅3⌈1/u�⌉+8. By the choice of 𝑘, the same holds for 𝑘-local buy equilibria.
We get k-BE = BE and thus the price of anarchy is at most 4.667 ⋅ 3⌈1/u�⌉ + 8.

Lemma 5.19 ([Dem+07], Theorem 12). For parameters 1 ≤ 𝛼 ≤ 12𝑛 log 𝑛 and
𝑘 ≥ 2 ⋅ 51+√lg u� + 24 lg(𝑛) + 3, it holds k-BE = BE and the price of anarchy is at
most O(5√lg u� lg 𝑛).
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Proof. Similar to the proof of their Theorem 10 in [Dem+07], the authors pro-
vide a price of anarchy upper bound for a larger range of 𝛼: Again, they
use an inductive argument to find an agent 𝑢 and a radius 𝑑 such that the
𝑑-neighborhood of 𝑢 contains more than (𝑛/2)-many agents. For this, they
start with looking at the number of agents in any radius (12 lg 𝑛)-neighborhood
and then apply their Lemma 11 iteratively. They show that the maximal radius
𝑑, for which their Lemma 11 must be applied, is at most 51+√lg u�, which gives a
first lower bound for 𝑘. Using this result, they apply their Corollary 8 to show
that actually all agents are contained in a specific ball, for which they need the
operation of creating an edge to an agent at distance 2 ⋅ 51+√lg u� + 24 lg(𝑛) + 3,
which is the second lower bound for 𝑘.

Using both, they show that in every equilibrium network there is an agent
who contains all others in a ball of radius (8 ⋅ 51+√lg u� + 24 lg(𝑛) + 2). With
the choice of 𝑘, the same holds for 𝑘-local buy equilibria and we get k-BE = BE
as well as a price of anarchy upper bound of O(5√lg u� lg 𝑛).

Lemma 5.20 ([Alb+14], Theorem 3.6). For parameters 12𝑛 log 𝑛 ≤ 𝛼 and 2 ≤ 𝑘, it
holds k-BE = BE and the price of anarchy is O(1).

Proof. In [Alb+14], the authors provide a technical proof that characterizes
equilibria for 𝛼 ≥ 12𝑛 log 𝑛. The main insight that is used for their bound
is that there are different types of agents (see their Lemma 3.4, which uses
their Lemma 3.2 and Lemma 3.3) with which they characterize equilibria and
show that any buy equilibrium network with girth of at least 12 ⋅ ⌈log 𝑛⌉ has
a diameter of less than 6 ⋅ ⌈log(𝑛)⌉ and hence is a tree. In their Lemma 3.5,
they prove that the considered big 𝛼 values ensure a girth of at least 12⌈log 𝑛⌉.
The result of their Theorem 3.6 then comes from a comparison to the social
optimum and gives a price of anarchy upper bound of at most 1.5.

Interestingly, in all used statements, there are only two statements concerning
the creation or deletion of edges. For their Lemma 3.3, the operation of creating
an edge to an agent in distance 2 is considered, and for their Lemma 3.5, the
operation of deleting an edge is considered. Both operations are available with
𝑘 ≥ 2. Hence, for any 𝑘 ≥ 2, we have k-BE = BE and the price of anarchy
bound of 1.5 from [Alb+14] applies.
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5.5.2 The Price of Anarchy

Our analysis of the price of anarchy focuses on diameter bounds for equilib-
rium networks. The reason for this is that using the following theorem that
translates any diameter bound into an upper bound for the price of anarchy.
This correspondence was first shown by Albers et al. [Alb+06] and again for-
mulated by [Nis+07, Lemma 19.4], yet with a different proof. Specifically,
the latter proof requires only the availability of 1-local edge deletion opera-
tions and hence applies without changes for both the greedy probing and the
unrestricted probing 𝑘-local games.

Theorem 5.21 ([Nis+07], Lemma 19.4). For any 𝑘 ≥ 1 and any edge price 𝛼 ≥ 2,
if a 𝑘-local greedy buy equilibrium network 𝐺 has diameter 𝐷, then its social cost is at
most O(𝐷) times the optimal social cost.

In the following, we present several upper bounds on the diameter of equilib-
rium networks and then conclude the price of anarchy results in Theorem 5.28
by using Theorem 5.21. Note that most of the diameter bounds will be given
for 𝑘-local greedy buy equilibria and, since k-BE ⊆ k-GBE, also apply directly
to 𝑘-local buy equilibria, in which arbitrary operations are allowed. We start by
providing a general result for tree network equilibria and then proceed with
different bounds for respective ranges of the edge price 𝛼 that concerns general
networks. Finally, at the end of this section, we provide a notably non-constant
lower bound for the price of anarchy in 𝑘-local buy games.

Corollary 5.22 (price of anarchy for tree networks). For 𝑘-local greedy buy equi-
librium tree networks with 2 ≤ 𝑘 ≤ log 𝑛: PoA = O(log 𝑛).

Proof. By Lemma 5.12, every tree network that is a 𝑘-local greedy buy equi-
librium also is an asymmetric swap equilibrium (cf. Section 2.3). Therefore,
we can apply the diameter upper bounds by Ehsani et al. [Ehs+15] and Mi-
halák and Schlegel [MS12], and get that every tree network equilibrium has a
diameter of at most O(log 𝑛). Combining this with Theorem 5.21, the price of
anarchy is at most PoA = O(log 𝑛).

For general networks, we next provide two different network diameter upper
bounds. The first bound holds for any 𝑘 ≥ 2 and the second one gives improved
results when the edge price is smaller than 𝑛1−u� for any constant 𝜀 ≥ 1

log u� .
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Theorem 5.23. Given a 𝑘-local greedy buy equilibrium network 𝐺 with edge price 𝛼
for 𝑘 ≥ 2, then it holds:

diam(𝐺) ≤
⎧{{
⎨{{⎩

u�
(u�−1) + 𝑘 3

2 + 1 for 𝑘 < 2√𝛼,

2√𝛼 for 𝑘 ≥ 2√𝛼.

Proof. If 𝑘 ≥ 2√𝛼, then the classes of 𝑘-local greedy buy equilibria and buy
equilibria coincide. This follows by Fabrikant et al. [Fab+03], who showed that
no two agents can have a distance of more than 2√𝛼, since otherwise one of
these agents could buy an edge to the other one and decrease her private cost.
Since 𝑘 is large enough to allow any 𝑘-local greedy operation, for 𝑘 ≥ 2√𝛼 we
get diam(𝐺) ≤ 2√𝛼.

Otherwise, if 𝑘 < 2√𝛼, let 𝑢 be an agent with maximal distance to any agent
in 𝐺 and let 𝑣 be a most distant agent to 𝑢. Define 𝐷 ≔ diam(𝐺) and consider
the distance cost improvement of 𝑢 by creating an edge to the agent 𝑥 at distance
𝑘 on the shortest path from 𝑢 to 𝑣. When creating this edge, 𝑢 reduces her
distance cost by 𝑘 − 1 to each of the 𝐷 − 𝑘 last agents on the path. Specifically,
her total distance cost decrease is ∑⌊u�/2⌋

u�=1 (𝑘 − 2𝑖 + 1), given by the distance cost
decrease to the ⌊𝑘/2⌋-many last agents on the same path from 𝑢 to 𝑥, including
𝑥. Since 𝐺 forms a 𝑘-local buy equilibrium, we have

𝛼 ≥ (𝑘 − 1)(𝐷 − 𝑘) +
⌊u�/2⌋
∑
u�=1

(𝑘 − 2𝑖 + 1),

which yields 𝐷 ≤ u�
u�−1 + 3u�

2 + 1.

In the following, we provide a more involved upper bound when the edge
price is in range 1 ≤ 𝛼 < 𝑛1−u�. For this, we modify an approach by Demaine
et al. [Dem+07] and start with providing three lemmas that lower bound
the number of agents in specific sized neighborhoods for 𝑘-local greedy buy
equilibrium networks. Then, considering the locality parameter 𝑘, we look
at the maximal neighborhoods for which these lower bounds still apply and
present an estimation on the network’s diameter.

First we restate Lemma 3 from [Dem+07], which holds for any 𝑘 ≥ 2, since
only 2-local operations are considered.
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Lemma 5.24 ([Dem+07], Lemma 3). For any 𝑘 ≥ 2 and any 𝑘-local greedy buy
equilibrium network 𝐺 with 𝛼 ≥ 0, it holds |𝑁2(𝑢)| > u�

2u� for every agent 𝑢 ∈ 𝑉.

Lemma 5.25. For 𝑘 ≥ 6, let 𝐺 be a 𝑘-local greedy buy equilibrium network and
𝑑 ≤ u�

3 − 1 an integer. If there is a constant 𝜆 > 0 such that |𝑁u�(𝑢)| > 𝜆 holds for
every 𝑢 ∈ 𝑉, then

(1) either |𝑁2u�+3(𝑢)| > u�
2 , for some agent 𝑢 ∈ 𝑉,

(2) or |𝑁3u�+3(𝑣)| > 𝜆u�
u� , for every agent 𝑣 ∈ 𝑉.

Proof. The claim directly holds if there is a 𝑢 ∈ 𝑉 with |𝑁2u�+3(𝑢)| > 𝑛/2.
Hence, we assume the contrary and fix an arbitrary 𝑢 ∈ 𝑉. Denote 𝑢’s (2𝑑 + 3)-
neighborhood as 𝐵 ≔ 𝑁2u�+3(𝑢) and name the agents at a distance of exactly
(2𝑑 + 3) as 𝜕𝐵 ≔ {𝑣 ∈ 𝑉 ∣ 𝑑(𝑢, 𝑣) = 2𝑑 + 3}. We now greedily select a maximal
subset 𝑋 ⊆ 𝜕𝐵 by the following iterative algorithm: (1) mark all agents of 𝜕𝐵
as unassigned, (2) while there is an unassigned agent 𝑥 in 𝜕𝐵, add 𝑥 to 𝑋 and
create a new set 𝜕𝐶u� containing 𝑥 and all unassigned agents of 𝜕𝐵 within a
distance of at most 2𝑑 to 𝑥, and mark these agents as assigned. Note that for
the so-computed set 𝑋 it holds that for any two 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦, we have
𝑑u�(𝑥, 𝑦) > 2𝑑.

Next, we lower bound the size of 𝑋 by |𝑋| ≥ 𝑛/𝛼. For this, enumerate
the elements of 𝑋 with 𝑥1, … , 𝑥|u�| and define cluster sets 𝐶u�u� such that every
𝐶u�u� contains all elements of the corresponding 𝜕𝐶u�u�. Further, for every agent
𝑣 ∈ 𝑉 ⧵ 𝐵, we select an arbitrary shortest path from 𝑢 to 𝑣 and assign 𝑣
to the cluster 𝐶u�u� that contains the (unique) agent on the path belonging to
𝜕𝐵. By construction, we have | ⋃|u�|

u�=1 𝐶u�u� | ≥ 𝑛/2. Now assume that 𝑢 buys
an edge to some 𝑥 ∈ 𝑋, say to 𝑥u�. After this operation, the distance from
𝑢 to every 𝑣 ∈ 𝜕𝐶u�u� is at most 2𝑑 + 1 and thus the distance to any 𝑤 ∈ 𝐶u�u�

decreases by at least 2. Since 𝐺 forms an equilibrium and creating an edge
to 𝑥u� is a 𝑘-local operation, we get 𝛼 ≥ 2 ⋅ |𝐶u�u� | for every 𝑥u� ∈ 𝑋. Hence,
|𝑋| ⋅ 𝛼 ≥ 2 ∑|u�|

u�=1 |𝐶u�| ≥ 2𝑛/2 = 𝑛, i.e., |𝑋| ≥ 𝑛/𝛼.
By construction, for any 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 we have 𝑁u�(𝑥) ∩ 𝑁u�(𝑦) = ∅.

With |𝑁u�(𝑥)| > 𝜆, this gives | ⋃u�∈u� 𝑁u�(𝑥)| > |𝑋| ⋅ 𝜆. For every 𝑥 ∈ 𝑋 we have
𝑑u�(𝑢, 𝑥) = 2𝑑 + 3 and hence, the maximal distance from 𝑢 to any 𝑣 ∈ 𝑁u�(𝑥) is
at most 3𝑑 + 3. This gives |𝑁3u�+3(𝑢)| ≥ | ⋃u�∈u� 𝑁u�(𝑥)| > |𝑋| ⋅ 𝜆 ≥ 𝜆𝑛/𝛼.
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Lemma 5.26. For 𝑘 ≥ 4, let 𝐺 be a 𝑘-local greedy buy equilibrium network with
𝛼 < 𝑛/2 and 𝑑 ≤ 𝑘/2 − 1 an integer. If there is an agent 𝑢 ∈ 𝑉 with |𝑁u�(𝑢)| ≥ 𝑛/2,
then |𝑁2u�+1(𝑢)| ≥ 𝑛.

Proof. We prove the contra-positive: Assume |𝑁2u�+1| < 𝑛, then there is a 𝑣 ∈ 𝑉
such that 𝑑u�(𝑢, 𝑣) = 2𝑑+2. Since for all 𝑥 ∈ 𝑁u�(𝑢) it holds 𝑑u�(𝑢, 𝑥) ≤ 𝑑, by the
triangle inequality we get that 𝑑u�(𝑣, 𝑥) ≥ 𝑑+2 for all 𝑥 ∈ 𝑁u�(𝑢). Now consider
𝑣 creating an edge to 𝑢, which reduces distu�(𝐺) by at least |𝑁u�(𝑢)|. Since 𝐺
forms an equilibrium, we get 𝑛/2 > 𝛼 ≥ |𝑁u�(𝑢)|, which gives the claim.

Combining the three previous lemmas, we can now estimate the maximal
network diameter essentially by using how fast the number of agents increase
if we look at increasingly bigger neighborhood ranges around a fixed agent.

Theorem 5.27. For 𝑘 ≥ 6, 𝑛 ≥ 4, and 1 ≤ 𝛼 ≤ 𝑛1−u� with 𝜀 ≥ 1/ log 𝑛, the maximal
diameter of any 𝑘-local greedy buy equilibrium network is O(𝑛1−u�(log(u�−3)−1)).

Proof. Let 𝐺 be a 𝑘-local greedy buy equilibrium network. We define a sequence
(𝑎u�)u�∈ℕ by 𝑎1 ≔ 2 and for any 𝑖 ≥ 2 with 𝑎u� ≔ 3𝑎u�−1 + 3. We want to apply
Lemma 5.25 iteratively with 𝜆u� ≔ (𝑛/𝛼)u�/2. Lemma 5.24 ensures that with
|𝑁2(𝑣)| > 𝑛/(2𝛼) = 𝜆1 for all 𝑣 ∈ 𝑉, we have a start for this.

Let 𝑚 be the highest sequence index with 𝑎u� ≤ 𝑘/4 − 3. If there is a 𝑗 ≤
𝑚 such that case (1) of Lemma 5.25 applies, then there is an agent 𝑢 ∈ 𝑉
with |𝑁2u�u�+3(𝑢)| > 𝑛/2. For 𝛼 ≤ 𝑛1−u� < 𝑛/2 we get with Lemma 5.26 that
|𝑁4u�u�+7| ≥ 𝑛 holds and hence the diameter is at most 𝑎u� < 𝑘. Otherwise,
case (2) applies for all 𝑖 ≤ 𝑚 and we know that for every 𝑣 ∈ 𝑉 it holds
|𝑁3u�u�+3(𝑣)| > (𝑛/𝛼)u�−1/2. Using 𝑎u� = 7

63u� − 3/2 and 𝑎u� ≤ 𝑘/4 − 3, we get
𝑚 ≥ log(𝑘 − 3) − 1.

Let 𝐷 be the diameter of 𝐺 and 𝑃 a longest shortest path. We define a set 𝐶
by selecting the first agent of 𝑃 as 𝑐1 and then along the path selecting every
further agent with a distance of 2𝑘 to the last previously selected agent. Now
consider the operation of 𝑐1 creating an edge to an agent at distance 𝑘 in the
direction of 𝑐2. Using 𝑘 ≥ 3𝑎u� + 3, |𝑁3u�u�+3(𝑐)| > (u�/u�)u�−1

2 for all 𝑐 ∈ 𝐶 and that
𝐺 is an equilibrium:

𝛼 ≥ (𝑘 − 1)(|𝐶| − 1)(𝑛/𝛼)log(u�−3)−2/2 ≥
𝑘 − 1

2
(

𝐷
2𝑘

− 1)(𝑛/𝛼)log(u�−3)−2
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This gives:

𝐷 ≤
4𝑘

𝑘 − 1
𝛼(

𝛼
𝑛

)
log(u�−3)−2

+ 2𝑘 ≤ 5
𝛼log(u�−3)−1

𝑛log(u�−3)−2 + 2𝑘 ≤ 5𝑛1−u�(log(u�−3)−1) + 2𝑘

By using Lemma 5.18, we get the claimed diameter upper bound for any
𝑘 ≥ 6.

The following theorem summarizes the results of this section, which we
derive by applying Theorem 5.21 to the diameter upper bounds.

Theorem 5.28. For 𝑘-local greedy buy equilibria, the price of anarchy is:

PoA =

⎧{{{{{{{{{
⎨{{{{{{{{{⎩

𝛩(𝑛) for 𝑘 = 1,

O(min{(𝛼/𝑘) + 𝑘, log 𝑛}) for 𝑘 ≥ 2,

O(𝑛1−u�(log(u�−3)−1)) for 𝑘 ≥ 6 ∧ 𝑛 ≥ 4 ∧ 𝛼 ∈ [1, 𝑛1−u�],

O(1) for 𝑘 ≥ 6 ∧ 𝑛 ≥ 4 ∧ 𝛼 ∈ [1, 𝑛1− 1
log(u�−3)−1 ],

O(√𝛼) for 𝑘 ≥ 2√𝛼,

O(log 𝑛) for any 𝑘 ≥ 1, if tree network.

Finally, we show a non-constant lower bound for the price of anarchy when
the edge price is at least 𝛼 ≥ (𝑘 − 1)𝑛. Note that for the classic buy game no
such bound is known and with respect to the known results there, it can only
exist – if at all – for 𝛼 close to 𝑛. Hence, this lower bound states that even
with the most optimistic model of locality, there still exists a fundamental
difference in the efficiency of the local versus the non-local buy games. Our
lower bound is now tight for tree networks when 𝑘 = O(1) and tight in general
when 𝑘 = 𝛺(log 𝑛). The latter can be seen immediately, since the lower bound
simplifies to 𝛺(1), which matches the results of Fabrikant et al. [Fab+03] for
𝛼 ≥ 𝑛 log 𝑛, where they provide an upper bound of O(1).

Theorem 5.29 (price of anarchy lower bound). For 𝑘-local buy equilibrium net-
works with 2 ≤ 𝑘 ≤ log 𝑛 and edge price 𝛼 ≥ (𝑘 − 1)𝑛 it holds: PoA = 𝛺(u� log u�

u�
).

Specifically for 𝛼 = 𝑘𝑛 the price of anarchy is:

PoA = 𝛺(
log 𝑛

𝑘
)
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Proof. For any 2 ≤ 𝑘 ≤ 𝑑, we claim that the strategy profile 𝑆 of a complete
binary tree network 𝑇u� of depth 𝑑, where every edge is owned by the incident
agent who is closer to the root, is in 𝑘-local buy equilibrium. Independent of the
edge price 𝛼, no agent in 𝑇u� can delete or swap edges to improve her private cost.
Thus, we only have to choose 𝛼 high enough such that no agent can improve
her private cost by creating any number of edges in her 𝑘-neighborhood. The
creation of an edge within a 𝑘-neighborhood cannot decrease any distance by
more than 𝑘 − 1. Thus, if 𝛼 ≥ (𝑘 − 1)𝑛, then no agent can create one single
edge to decrease her private cost. Moreover, by creating more than one edge,
no agent 𝑢 can decrease her distance cost by more than (𝑘 − 1)𝑛, which implies
that 𝑆 is a 𝑘-local buy equilibrium for 𝛼 ≥ (𝑘 − 1)𝑛.

We consider the social cost ratio of 𝑆 and the spanning star strategy profile
𝑆Opt on 𝑛 = 2u�+1 − 1 agents. Since 𝛼 ≥ 2, 𝑆Opt is the social cost minimizing
network. It holds cost(𝑆) ≥ 𝛼(𝑛−1)+𝑛⋅distu�(𝑆), since the root 𝑟 has a minimum
distance cost among all agents in 𝑇u�. Further note that distu�(𝑆) > u�

4 log 𝑛, since

𝑟 has at least (𝑛/2)-many agents at distance log u�
2 . In total we get:

PoA ≥
cost(𝑆)

cost(𝑆Opt)
≥

u�2

4 log 𝑛 + (𝑛 − 1)𝛼
(𝑛 − 1)𝛼 + 2(𝑛 − 1)2 >

𝑛2 log 𝑛
4(𝑛 − 1)𝛼

= 𝛺(
𝑛 log 𝑛

𝛼
).

5.6 Conclusion & Future Work

In this chapter, we introduced a new model that provides a realistic locality no-
tion for network creation games. Our results show that strategy probing, even
when restricted to only greedy strategy changes, suffices to overcome most
quality regressions caused by the knowledge limitations of a 𝑘-neighborhood
locality. We can see this by comparing our price of anarchy upper bounds
to the respective (much higher) lower bounds that are provided by Bilò et
al. [Bil+14a] in their worst-case locality model. Specifically, we see that our up-
per bounds for the price of anarchy are close to the non-local model and hence
agents can still create socially efficient networks. However, our non-constant
lower bound on the price of anarchy and our negative results concerning the
approximation quality of non-local strategies by local strategies show that
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the locality constraints still do have a significant impact on the game. Facing
our negative results about the hardness of computing best responses and the
non-convergence of best-response strategy changes, we provide further evi-
dence that those questions are intrinsically hard and effectively independent
of locality assumptions.

Obviously, the proposed locality model is interesting not only to the studied
network creation game variant, but also to various other games. An interesting
area for further research seems to be social network games. Like for the game
discussed in this chapter, probing only a few strategies in only one’s circle
of friends is a very natural behavior. Closely linked to this is the interesting
question of how many probes suffice to achieve reasonable good social quality
results: We know that we can obtain networks with a very high social cost if
we prohibit any probing and we know that only with 𝑛2 probes we always
achieve networks with a reasonable low social cost. It remains an interesting
question what the actual threshold for this behavior is.
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CHAPTER 6

Multilevel Network Games

Layers provide the architectural basis of most computer networks. Al-
ready the OSI reference model (cf. Zimmermann [Zim80]) specified
how layers should be used to gain a modular structure for the Internet

and by this laid the architectural foundations of many modern computer net-
works. Consequently, today this architecture is present all over in the design
of networks and their communication protocols. The general idea of a layered
system is to provide service-specific protocol layers that stack onto each other.
Each layer can access the layer below, in some architectures also several layers
below, and provides services for the layers on top. At the bottom layer, we
have the physical network, at which every operation of a higher layer must be
reflected eventually.

In this chapter, we study the interaction of two communication layers in such
a layered system: One layer provides general purpose connections, the other
one is a high-speed layer that allows agents to improve their communication
distances. Unlike in most previous research, we take a game theoretical view
on the availability of such a high-speed layer and ask about its influence to the
network’s total efficiency when faced with selfishly acting agents. Specifically,
we consider agents as rational actors who individually decide if they want to
connect to the high-speed layer for a fixed price of 𝛼 or not, depending only on
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their private costs.
The availability of such high-speed networks is motivated by various ob-

servations. Foremost, techniques as discussed in Chapter 4 for individual
connections also allow offering access to a whole high-speed network and not
only for single point-to-point connections. A technical different, yet from a
theoretical standpoint still similar scenario, is the use of an additional logical
overlay network. Similar to the way overlays are used for search overlays (cf.
survey by Androutsellis-Theotokis and Spinellis [AS04]), they can provide bet-
ter routing information (e.g., larger routing tables or addresses to more likely
communication partners in case of non-uniform communication interests) for
the shortest path communications to other agents. This means, a logical net-
work can also drastically reduce communication costs of the individual agents
by providing such routing information.

For using the high-speed layer, we consider two different access models in
accordance with the two named motivations. On the one hand, we see the
high-speed network as an additional network to which connections have to
be created in order to enter or leave it. This is the same concept as one can
find in physical networks, for example, which are connected via hardware
routers. On the other hand, when looking at multilevel games that originate
from quality-of-service agreements like in Chapter 4, it is reasonable that only
the access to the high-speed layer raises cost, but switching back to the general
purpose layer is allowed everywhere. In our games, we call the first connection
model bidirectional and the second one unidirectional and further denote the
connection points between the layers as gateways.

Chapter Basis. The model, analysis, and results presented in the remainder
of this chapter are based on the following publication:

2014 (with S. Abshoff, D. Jung and A. Skopalik). “Multilevel Net-
work Games”. In: Web and Internet Economics – 10th International
Conference, WINE 2014, Beijing, China, December 14–17, 2014. Pro-
ceedings, cf. [Abs+14].

Chapter Outline. In Section 6.1, we introduce a basic model for multilevel
networks. This model splits into two variants: a game variant in which layers
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can be switched only at gateway agents and a variant in which just entering
the high-speed layer requires gateways. The more specific model descriptions
for both variants are then provided in Section 6.3 and Section 6.4, alongside
the respective analysis. An overview of our results and a comparison with
other models is given in Section 6.2. The chapter concludes with an outlook
and a summary of open questions.

6.1 Model & Preliminaries

A multilevel network game (𝑉, 𝐿1, 𝐿2) consists of 𝑛 agents 𝑉 who are connected
via two network layers 𝐿1 and 𝐿2. In layer 𝐿1, the agents form a bidirectional
connected graph (𝑉, 𝐿1) and each edge has a length of 1. The second layer
𝐿2 is a supporting high-speed layer, which can be used to improve the agents’
communication costs. Thus, the agents are present in both network layers,
however, the access to the second layer must be enabled specifically.

We denote the distance between two agents 𝑢, 𝑣 ∈ 𝑉 in layer 𝐿1 by 𝑑1(𝑢, 𝑣),
which indicates the shortest path distance in graph (𝑉, 𝐿1). Likewise, 𝑑2(𝑢, 𝑣)
denotes the shortest path distance in (𝑉, 𝐿2). The maximal distance for any
pair of agents in (𝑉, 𝐿1) is given by diam(𝐿1) ≔ maxu�,u�∈u� 𝑑1(𝑢, 𝑣), respectively
by diam(𝐿2) for (𝑉, 𝐿2). Agents are able to use the high-speed layer only at
gateway agents, which means that a path may switch from layer 𝐿1 to layer
𝐿2. Hence, gateways function as connections between the two layers. In the
following, we will study games with two fundamentally different variants of
gateways:

Multilevel games with bidirectional gateways: A gateway at agent 𝑢 forms
a bidirectional edge of length 0 between agent 𝑢 in (𝑉, 𝐿1) and agent 𝑢
in (𝑉, 𝐿2). There are no other connections between the layers other than
the gateways and thus switching between the layers is only possible at
gateway agents.

Multilevel games with unidirectional gateways: At every agent 𝑢, there is
a unidirectional edge of length 0 from 𝑢 in (𝑉, 𝐿2) to 𝑢 in (𝑉, 𝐿1) and
thus, switching from layer 𝐿2 to layer 𝐿1 is allowed at every agent. If an
agent is a gateway, then this connection from 𝐿2 to 𝐿1 is bidirectional and
thus, gateways allow switching from 𝐿1 to 𝐿2.
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Considering a gateway set 𝑆, the communication distance 𝛿u�(𝑢, 𝑣) constitutes
the actual distance between two agents 𝑢 and 𝑣 by making use of both layers.
Although the shortest path is measured by using both layers, we use the
convention that the end points of the path must be the respective agents in
layer (𝑉, 𝐿1). Note that we will omit the index 𝑆 if it is clear from context.
Given an agent 𝑢 and a range 𝑘 > 0, then 𝐵u�(𝑢) denotes the set of all agents
within a communication distance of at most 𝑘 to 𝑢.

In our multilevel network game, agents can decide selfishly if they want to
become a gateway or not. Being a gateway means that the agent pays a fixed
price 𝛼 > 0 and establishes the above mentioned connection between the two
network layers. We call the set of gateways 𝑆 and identify it with the current
strategy profile. Agents in 𝑉 ⧵ 𝑆 are called non-gateways. Analog to network
creation games, the decision of becoming a gateway or not is based on the
private cost function of an agent. In the Sum-Layer-Game, the private cost of an
agent 𝑢 is:

𝑐u�(𝑆) ≔ 𝛼 ⋅ |𝑆 ∩ {𝑢}| + ∑
u�∈u�

𝛿u�(𝑢, 𝑣)

For the Max-Layer-Game, the private cost function is:

𝑐u�(𝑆) ≔ 𝛼 ⋅ |𝑆 ∩ {𝑢}| + max
u�∈u�

𝛿u�(𝑢, 𝑣)

For both games, the social costs are given by cost(𝑆) ≔ ∑u�∈u� 𝑐u�(𝑆).
If an agent improves her private cost by changing her strategy from non-

gateway to gateway or vice versa, we call this an improving response. For an
improving response where an agent 𝑢 changes her strategy to be a gateway, we
say that 𝑢 opens. Analogously, we say 𝑢 closes if she changes her strategy from
gateway to non-gateway. We call a strategy profile 𝑆 a (pure) Nash equilibrium,
or simply an equilibrium, if no agent can perform an improving response. For
the convergence analysis of improving-response processes1, we ask whether
the games provide the finite improvement property or (lesser) whether they are
weakly acyclic (cf. Section 2.2.3).

1Since the strategy space of any agent contains only two possible choices, in this game every
improving response is also a best response.
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6.2 Related Work & Contribution

The outcome of the individual strategic connect and disconnect decisions of
the network’s participants is a key issue in network creation games, as it was
discussed in the previous chapters: How good can such an outcome be? How
bad is it at most? And is it likely that the agents will ever reach an equilibrium
state despite their uncoordinated behavior? – Considering our multilevel
network games, these questions still apply in order to understand and quantify
the effects of individual strategic decision making.

Regarding the agents’ behaviors, multilevel games are actually very similar
to network creation games. Specifically, both have the property in common
that strategy changes result in changes of the network’s topology. However, the
substantial difference is the size of the agents’ strategy spaces: For multilevel
network games, a single agent has only two possible choices, compared to 2u�−1

options previously. This means that the decision whether to use an improving
network layer or not is much more drastic than before in the classic network
creation games as agents cannot make any fine-grained decision like connecting
for a smaller cost to only specific areas.

Despite its importance, the question of strategic decision making in multi-
level networks is barely studied so far. When leaving out the strategic behavior
of agents but using random processes to model their actions, the effects of
network interactions in complex multilevel networks received various consid-
erations, for example the interaction between a physical layer and a congestion
flow by Kurant and Thiran [KT06]. However, such an approach misses the
effects of strategic behavior, which is already present when one agent decides
against being a gateway in favor of free-riding via her neighbor’s high-speed
connection.

With a focus on network formation, Shahrivar and Sundaram [SS13] consid-
ered a multilevel network game of centralized, strategically acting designers.
Together with their follow-up paper [SS15], they provide the only contribu-
tions in this field with a game theoretic view. In their games, multiple network
designers simultaneously construct networks and the overall efficiency of a
designer also depends on the network layers provided by the other designers.
Yet, compared to our model, the individual decision making of the agents was
not considered.
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Contribution. In this chapter, we introduce a new model for analyzing the
effects of strategic decision making in multilevel networks. Our model is the
first one that captures the effects of individual agents being strategic actors
in a multilevel context, namely agents of a general purpose network who can
utilize a high-speed layer. Depending on how the general purpose and the
high-speed layers interact with each other, we gain two qualitatively different
networks games for which we apply the classic sum and maximum private
cost functions.

Considering the game with bidirectional gateways, we show that computing
the optimal placement of gateways is 𝒩𝒫 -hard for both variants of private
cost functions. For the Sum-Layer-Game, we show that for 𝛼 ≤ 𝑛 − 1 and
𝛼 > 𝑛(𝑛 − 1) equilibria always exist and that then the price of anarchy is
𝛩(1 + 𝑛/√𝛼); for 𝛼 ∈ (𝑛 − 1, 𝑛(𝑛 − 1)), we upper bound the price of anarchy
by O(√𝛼). For the Max-Layer-Game, we show that equilibria always exist
if the networks are trees or if the girth is not too small. We further provide
a price of anarchy bound of 1, for 𝛼 < 1, and otherwise the tight bound of
𝛩(1 + 𝑛/√𝛼). Concerning the dynamics, both the Sum-Layer-Game and the
Max-Layer-Game are no potential games, whereas the Sum-Layer-Game is not
even weakly acyclic.

Regarding the game with unidirectional gateways, in the Sum-Layer-Game
the price of anarchy is at most O( 1

1−u� + u�
u�(1−u�)2 ), whereas 𝜇 ∈ (0, 1) is the

improvement factor of the high-speed layer. In the Max-Layer-Game, we
provide an algorithm to compute equilibria for tree networks, when the 𝐿2-layer
provides some exact improvement property. For the general case, we show that
in this game the price of anarchy is at most O(𝛼/(1 − 𝜇)2). Complementing
this upper bound, we also provide a high lower bound of 𝛺(√𝑛) for certain
parameters of 𝛼.

6.3 Bidirectional Gateways

In this section, we analyze the multilevel network game (𝑉, 𝐿1, 𝐿2) with bidi-
rectional gateways. The high-speed layer 𝐿2 is assumed to provide negligible
short connections between all agents. In our sense, this means that every
distance is shorter than 1 divided by the number of agents. Without loss of
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generality, we can assume then that all distances in layer 𝐿2 have a length of
0. Consequently, for the remainder of this section, we will omit specifications
of the 𝐿2-layer network and use only (𝑉, 𝐿1) to state a game instance. Since
the distance between any two gateways is 0, the communication distance for
𝑢, 𝑣 ∈ 𝑉 resolves to:

𝛿u�(𝑢, 𝑣) = min{𝑑1(𝑢, 𝑣), 𝑑1(𝑢, 𝑆) + 𝑑1(𝑆, 𝑣)}

Here, 𝑑1(𝑢, 𝑆) denotes the shortest path distance from agent 𝑢 to any gateway.
Throughout this section, we further require that one gateway must always be
left in the game. Thus, a last gateway is not allowed to close even if that would
be an improving response for her. It is easy to see that otherwise 𝑆 = ∅ would
form an equilibrium for any game instance, since then no agent could improve
her cost by a unilateral strategy change.

6.3.1 The Sum-Layer-Game

We start our study with the Sum-Layer-Game. First, we ask the difficulty of
computing a gateway set that minimizes the social cost. Note that this set is
not required to be an equilibrium.

Theorem 6.1. For the Sum-Layer-Game with bidirectional gateways, the computation
of a gateway set that minimizes the social cost is 𝒩𝒫 -hard.

Proof. Let (𝑉, 𝐿1) be an instance of the Sum-Layer-Game. For two parameters
𝑛, 𝑚 > 4, let there be a set of 𝑚 elements 𝑋 ≔ {𝑥1, … , 𝑥u�} and further 𝑛
subsets 𝑆1, … , 𝑆u� ⊆ 𝑋 of this element set. Then, the 𝒩𝒫 -complete Set-Cover
problem (cf. Karp [Kar72]) is the task to compute a minimal number of subsets
that together contain all elements of 𝑋. Given such a Set-Cover instance, we
construct an instance (𝑉, 𝐿1) of the Sum-Layer-Game as follows (cf. Figure 6.1):
First, we create a clique 𝐶 of 𝑘 agents and mark one of its agents as 𝑐. For
every set 𝑆u�, we create a corresponding agent 𝑆u� and connect her to 𝑐. For
every element 𝑥u� ∈ 𝑋, we create 𝑤-many agents 𝑥1

u� , … , 𝑥u�
u� and connect all 𝑥u�

u�,
for 𝑖 = 1, … , 𝑚 and 𝑗 = 1, … , 𝑤, to all set agents 𝑆u� with 𝑥u� ∈ 𝑆u�. Using the
parameters 𝑤 ≔ 𝑛, 𝑘 ≔ 𝑚−1, and 𝛼 ≔ 4𝑛(𝑚−1), in the following we show that
an optimal placement of gateways corresponds to a solution of the Set-Cover
problem.
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For now, assume that 𝑐 is a gateway agent in the optimal solution 𝑆Opt (we
will prove this claim later). We claim that then no other clique agent 𝑣 ∈ 𝐶 ⧵ {𝑐}
is a gateway. For this, assume that 𝑙 further clique agents are open and compute
the social cost decrease by closing all clique agents except agent 𝑐. The decrease
is at least 𝑙𝛼−2𝑙(𝑤𝑚+𝑛)−𝑙(𝑙+1) > 0 and hence 𝑐 is the only agent in 𝐶 ∩𝑆Opt.

Next, for an element 𝑥u� consider the corresponding element agents 𝑥1
u� , … , 𝑥u�

u�
and a set 𝑆u� such that 𝑥u� ∈ 𝑆u�. If there is any 𝑥u�

u� ∈ 𝑆 and 𝑆u� ∉ 𝑆, closing 𝑥u�
u�

and opening 𝑆u� does not increase the social cost. Hence, we can assume that
in 𝑆Opt there is no closed set agent with an open element agent. Now, let 𝑆u�

be an open set agent and assume that for 𝑥u� ∈ 𝑆u� there are 𝑙 open element
agents. Closing all of these element agents reduces the social cost by at least
𝑙𝛼 − 2𝑙(𝑘 + 𝑛 + 2(𝑙 − 1) + (𝑤 − 𝑙) + (𝑚 − 1)𝑤) = 𝑙𝛼 − 2𝑙(𝑤𝑚 + 𝑛 + 𝑘 + 𝑙 − 2) > 0
and hence in 𝑆Opt all are closed. Given a set of closed element agents 𝑥1

u� , … , 𝑥u�
u�

such that for all 𝑆u� with 𝑥u� ∈ 𝑆u� the set agents are closed, opening 𝑆u� reduces the
social cost by at least 2(𝑘𝑤 + (𝑚 − 1)𝑤 + (𝑛 − 1)) − 𝛼 > 0. Contrarily, opening
a set agent whose element agents are already completely covered increases the
social cost by at least 𝛼 − 2(𝑘 + 𝑚𝑤 + 𝑛 − 1) > 0.

Finally, we can see that 𝑐 actually has to be a gateway in 𝑆Opt. For this,
consider an arbitrary optimal setting with all clique agents closed (if one clique
agent is open, we can close it and open 𝑐 without increasing the social cost).
When opening 𝑐, we know that without increasing the social cost we can close
all element agents and open corresponding set agents. Hence, when opening
𝑐 we can assume that all element agents are closed and that for each element
agent a corresponding set is open. This gives a social cost decrease by opening
𝑐 of at least 2𝑘𝑚𝑤 − 𝛼 > 0.

Hence, the socially optimal solution 𝑆Opt is given by a gateway agent 𝑐 and
a minimal number of set agents such that all element agents are covered.

We now study the existence of equilibrium networks. Given a Sum-Layer-
Game with a moderately small or alternatively very high connection price, we
show that equilibria always exist.

Proposition 6.2. Given a Sum-Layer-Game (𝑉, 𝐿1) of 𝑛 ≔ |𝑉| agents with bidirec-
tional gateways, connection price 𝛼 ≤ 𝑛 − 1 or 𝛼 > 𝑛 ⋅ diam(𝐿1), then an equilibrium
setting exists.
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𝑐

clique 𝐶

⋯ sets 𝑆1, … , 𝑆u�

elements 𝑥(⋅)
1 , … , 𝑥(⋅)

u�⋯

Figure 6.1: Illustration of the 𝒩𝒫 -hardness reduction from Set-Cover to optimal
gateway placement.

Proof. For 𝛼 ≤ 𝑛 − 1, consider the strategy profile 𝑆 ≔ 𝑉 in which every agent
has a private cost of 𝛼. If any gateway closes in this setting, her distance cost
would become at least 𝑛 − 1. This cannot be an improving response and hence
𝑆 = 𝑉 is an equilibrium.

For 𝛼 > 𝑛 ⋅ diam(𝐿1), consider an arbitrary setting with |𝑆| = 1. Assuming a
second agent would open, then her distance cost decreased by not more than
𝑛 ⋅ diam(𝐿1) < 𝛼 and hence this cannot be an improving response.

Proposition 6.3. Given a Sum-Layer-Game (𝑉, 𝐿1) of 𝑛 ≔ |𝑉| agents with bidirec-
tional gateways and a connection price 𝛼 ≤ 𝑛 − 1. Then, 𝑆 = 𝑉 minimizes the social
cost and the price of stability is 1.

Proof. Let 𝑆 be a socially optimal solution and assume that there are 𝑚 closed
agents. When opening all of them, then for any gateway 𝑣 ∈ 𝑆 the distances to
all these 𝑚 agents reduce by at least 1 each, while for 𝑢 ∈ 𝑉 ⧵ 𝑆 the distances
reduce by at least 𝑛 − 1 each. Hence, setting the strategy profile to 𝑆 = 𝑉
changes the social cost by 𝑚𝛼 − ((𝑛 − 𝑚) + 𝑚(𝑛 − 1)) < 0. This holds for any
setting with fewer than 𝑛 gateways and thus, it is the socially optimal solution.
Since 𝑆 = 𝑉 is also in equilibrium, the price of stability is 1.

Note that Proposition 6.3 does not contradict the 𝒩𝒫 -hardness proof of The-
orem 6.1, since in that proof the connection price 𝛼 was chosen to be bigger
than the number of agents.
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Convergence Properties

In the following, we want to understand how combinations of the 𝐿1-layer
and the connection price influence the convergence of improving-response
dynamics. We start with several negative convergence results, which state
that for a wide range of connection prices the Sum-Layer-Game is no potential
game, since it does not have the finite improvement property. This holds for
𝛼 ∈ (4, 𝑛 − 1) as well as for 𝛼 ∈ ( 3

32𝑛2 + 𝑛, 5
32𝑛2). Surprisingly, for specific

game instances we can further show that the game is not even weakly acyclic,
which means that there are improving-response cycles that can never terminate.

Proposition 6.4. In general, the Sum-Layer-Game of 𝑛 > 7 agents with bidirectional
gateways and a connection price 𝛼 ∈ (4, 𝑛−1) has not the finite improvement property.

Proof. We construct a game instance (𝑉, 𝐿1) as depicted in Figure 6.2 (with
𝑐 ≔ 1): First, we create a path (𝑢, 𝑣, 𝑤) of three agents and then connect
additional 𝑟-many agents to agent 𝑤, as well as additional (𝑛 − 𝑟 − 3)-many
agents to agent 𝑢; here the parameter 𝑟 will be computed below. Starting with
only 𝑤 being a gateway, we specify the constraints under which 𝑢 and 𝑣 form
an improving-response cycle:

I: 𝑢 opens if 𝛼 < 2𝑟 + 2.

II: 𝑣 opens if (𝑛 − 3 − 𝑟) + 𝑟 + 2 = 𝑛 − 1 > 𝛼.

III: 𝑢 closes if 𝛼 > 𝑟 + 2.

IV: 𝑣 closes if 𝛼 > 𝑟 + 1.

Combining these conditions, we get 𝑟 + 2 < 𝛼 < min{𝑛 − 1, 2𝑟 + 2}. For
2 ≤ 𝑟 ≤ 𝑛 − 3, the interval (𝑟 + 2, min{𝑛 − 1, 2𝑟 + 2}) is non-empty and thus
for 4 < 𝛼 < 𝑛 − 1 the game admits an infinite improving-response cycle.

Proposition 6.5. In general, the Sum-Layer-Game of 𝑛 > 16 agents with bidirectional
gateways and a connection price 𝛼 ∈ ( 3

32𝑛2 + 𝑛, 5
32𝑛2) has not the finite improvement

property.
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𝑢 𝑣 𝑤
⋮⋯ ⋯

𝑛 − 2𝑐 − 𝑟 − 1 agents 𝑟 agents
𝑐 − 1 agents 𝑐 − 1 agents

Figure 6.2: Improving-response cycle where agents u� and u� perform improving re-
sponses in turn.

Proof. We construct a game instance (𝑉, 𝐿1) as depicted in Figure 6.2. First, we
create a path (𝑢, … , 𝑣, … , 𝑤) with (𝑐 − 1)-many agents between agents 𝑢 and
𝑣, as well as the same number of agents between 𝑣 and 𝑤. Then, we connect
additional 𝑟-many agents to 𝑤 and additional (𝑛 − 2𝑐 − 𝑟 − 1)-many agents to
𝑢; here, the parameter 𝑟 will be computed below and we set 𝑐 ≔ 𝑛/4. Starting
with only agent 𝑤 being a gateway, under the following constraints 𝑢 and 𝑣
form an improving-response cycle:

I: 𝑢 opens if 𝛼 < ∑u�
u�=1 2𝑖 + 2𝑟𝑐.

II: 𝑣 opens if 𝛼 < 2 ∑⌊u�/2⌋
u�=1 2𝑖 + (𝑛 − 2𝑐 − 1)𝑐.

III: 𝑢 closes if 𝛼 > ∑⌊u�/2⌋
u�=1 2𝑖 + (𝑟 + 𝑐 + 1)𝑐.

IV: 𝑣 closes if 𝛼 > ∑⌊u�/2⌋
u�=1 2𝑖 + (𝑟 + 1)𝑐.

To simplify calculations, we assume 𝑛 to be a multiple of 4. Since constraint III
implies constraint IV, it suffices to consider:

𝛼 < 𝑐2 + (2𝑟 + 1)𝑐 (6.1)

𝛼 < −
3
2

𝑐2 + 𝑛𝑐 (6.2)

𝛼 >
5
4

𝑐2 + (𝑟 +
3
2

)𝑐 (6.3)

Combining (6.1) and (6.3) gives 𝑟 ∈ (1
2
(u�

u� − 𝑐 − 1), u�
u� − 5

4𝑐 − 3
2
) as a valid

range for 𝑟. Plugging in 𝑐 = 𝑛/4 gives 𝑟 ∈ (2u�
u� − u�

8 − 1
2 , 4u�

u� − 5u�
16 − 3

2
): i.e., the

interval of valid values for 𝑟 has a length of 2𝛼/𝑛 − 3𝑛/16 − 1. To ensure that
there exist integral solutions for 𝑟, we require the interval to have a length of
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𝑋 𝑌

𝑢 𝑣 𝑤

𝑐

Figure 6.3: Improving-response cycle for the Sum-Layer-Game with u� ≔ 7. Starting
with u� being a gateway, agents u� and u� change their strategies in turn and are the
only agents who can perform an improving response.

at least 1, i.e., 2𝛼/𝑛 − 3𝑛/16 − 1 ≥ 1, which gives 𝛼 ≥ 𝑛 + 3𝑛2/32. Considering
(6.2), which is 𝛼 ≤ 5

32𝑛2, we get 𝛼 ∈ ( 3
32𝑛2 + 𝑛, 5

32𝑛2) as the permitted range.
For 𝑛 > 16, this interval is non-empty and thus agents 𝑢 and 𝑣 form the above
mentioned infinite improving-response cycle.

Theorem 6.6. The Sum-Layer-Game with bidirectional gateways is not a weakly
acyclic game.

Proof. For 𝛼 ≔ 7 we consider the 𝐿1-layer as depicted in Figure 6.3. The layer
consists of three agents 𝑢, 𝑣, and 𝑤, which are connected as a line. Additionally,
we create a clique 𝑋 of ⌈𝛼/2⌉ agents, a clique 𝑌 of ⌊𝛼/2⌋ agents, and a center
agent 𝑐. All agents of 𝑋 are connected to agents 𝑐 and 𝑢, all agents of 𝑌 are
connected to agents 𝑐 and 𝑤, and furthermore agent 𝑐 is connected to 𝑣.

We consider the initial strategy profile 𝑆 = {𝑤} and argue that there exists
a unique sequence of improving responses, such that 𝑢 and 𝑣 change their
strategies in turn. Table 6.1 states that there is always exactly one of these
two agents, who can improve her private cost. Note that we explicitly use
𝛼 = 7.

With these negative convergence results in mind, we next study some specific
game properties that still guarantee convergence despite the general results.

Proposition 6.7. The Sum-Layer-Game (𝑉, 𝐿1) of 𝑛 ≔ |𝑉| agents with bidirectional
gateways is a potential game if the connection price is 𝛼 < 1 or 𝛼 > 𝑛 ⋅ diam(𝐿1).

Proof. If 𝛼 < 1, then for 𝑆 ≠ 𝑉 there is a non-gateway 𝑣 ∈ 𝑉⧵𝑆 who can perform
an improving response by opening. Also, no gateway 𝑢 ∈ 𝑆 will deviate from
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Table 6.1: Calculation of improving responses in Theorem 6.6. At each time only one
improving response is possible, resulting again in the initial strategy profile after
four operations.

(a) agent 𝑢 opens:

Cost if opened Cost if closed State after
𝑥 ∈ 𝑋 2𝛼 + 2 𝛼 + ⌊𝛼/2⌋ + 6 closed
𝑦 ∈ 𝑌 2𝛼 + ⌈𝛼/2⌉ + 1 𝛼 + ⌈𝛼/2⌉ + 6 closed

𝑢 2𝛼 + 1 𝛼 + 2⌊𝛼/2⌋ + 5 opening
𝑣 2𝛼 + ⌈𝛼/2⌉ + 2 2𝛼 + 3 closed
𝑤 2𝛼 + 2⌈𝛼/2⌉ + 5 𝛼 + 2⌈𝛼/2⌉ + 5 opened
𝑐 2𝛼 + 5 𝛼 + 5 closed

(b) agent 𝑣 opens:

Cost if opened Cost if closed State after
𝑥 ∈ 𝑋 2𝛼 + 1 𝛼 + ⌊𝛼/2⌋ + 1 closed
𝑦 ∈ 𝑌 2𝛼 + 1 𝛼 + ⌈𝛼/2⌉ + 4 closed

𝑢 2𝛼 + 1 𝛼 + 2⌊𝛼/2⌋ + 5 opened
𝑣 2𝛼 + 1 2𝛼 + 3 opening
𝑤 2𝛼 + 3 𝛼 + 2⌈𝛼/2⌉ + 5 opened
𝑐 2𝛼 + 1 2𝛼 + 5 closed

(c) agent 𝑢 closes:

Cost if opened Cost if closed State after
𝑥 ∈ 𝑋 2𝛼 𝛼 + 3 closed
𝑦 ∈ 𝑌 2𝛼 𝛼 + 3 closed

𝑢 2𝛼 + 1 𝛼 + ⌊𝛼/2⌋ + 4 closing
𝑣 2𝛼 + 1 2𝛼 + 3 opened
𝑤 2𝛼 + 1 𝛼 + ⌈𝛼/2⌉ + 4 opened
𝑐 2𝛼 𝛼 + 3 closed

(d) agent 𝑣 closes:

Cost if opened Cost if closed State after
𝑥 ∈ 𝑋 2𝛼 + ⌊𝛼/2⌋ + 1 𝛼 + ⌊𝛼/2⌋ + 2 closed
𝑦 ∈ 𝑌 2𝛼 + ⌈𝛼/2⌉ + 1 𝛼 + ⌈𝛼/2⌉ + 4 closed

𝑢 2𝛼 + 1 𝛼 + ⌊𝛼/2⌋ + 4 closed
𝑣 2𝛼 + ⌈𝛼/2⌉ + 2 2𝛼 + 3 closing
𝑤 2𝛼 + ⌈𝛼/2⌉ + 2 𝛼 + 2⌈𝛼/2⌉ + 5 opened
𝑐 2𝛼 + 1 𝛼 + 4 closed
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her current strategy and close. Hence, after at most 𝑛 − 1 improving responses,
the strategy profile is 𝑆 = 𝑉. Otherwise, if 𝛼 > 𝑛(𝑛 − 1), no non-gateway will
open and for every gateway it is an improving response to close.

Proposition 6.8. Given a Sum-Layer-Game (𝑉, 𝐿1) of 𝑛 ≔ |𝑉| agents with bidirec-
tional gateways. If diam(𝐿1) > 2𝛼 + 1 with 𝛼 ∈ [4, 𝑛 − 1] and initially only one
gateway is open, then there exists a sequence of improving responses such that the game
converges to an equilibrium.

Proof. Let 𝑥 ∈ 𝑆 be the initial gateway and consider 𝑢 and 𝑣 being two agents
with 𝑑1(𝑢, 𝑣) > 2𝛼 + 1. One of these agents (say 𝑣) must have a distance greater
than 𝛼 + 1 to agent 𝑥. By opening, 𝑣 reduces her distances to at least half of the
agents on the shortest path to 𝑥. This means, her distance cost decreases by:

⌈u�/2⌉
∑
u�=1

(2𝑖 − 1) = ⌈
𝛼
2

⌉(⌈
𝛼
2

⌉ + 1) − ⌈
𝛼
2

⌉ > 𝛼

Next, with 𝑆 = {𝑥, 𝑣}, also agent 𝑢 wants to open, since opening reduces her
distances to at least half of the agents on a shortest path from 𝑢 to 𝑣, i.e., to
⌈𝛼⌉-many agents. Considering the agents on the shortest path from 𝑢 to 𝑣, for
each of them it is an improving response to open, since opening improves the
distances to at least ⌈𝛼⌉-many agents. Therefore, starting from one end of the
path we can open them iteratively and each time it is an improving response
for the respective agent. Finally, with |𝑆| > 𝛼, all other agents also want to open
and we reach 𝑆 = 𝑉, which is an equilibrium.

Price of Anarchy

In the following, we consider the price of anarchy in the Sum-Layer-Game
with bidirectional gateways. The next theorem combines all the results that
will be proven in this section.

Theorem 6.9. In a Sum-Layer-Game (𝑉, 𝐿1) of 𝑛 ≔ |𝑉| agents with bidirectional
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gateways, the price of anarchy is:

PoA =

⎧{{{{{
⎨{{{{{⎩

1 for 𝛼 ∈ (0, 1),

𝛩(𝑛/√𝛼) for 𝛼 ∈ [1, 𝑛 − 1],

O(√𝛼) for 𝛼 ∈ (𝑛 − 1, 𝑛(𝑛 − 1)),

1 for 𝛼 ≥ 𝑛(𝑛 − 1).

This theorem directly follows from the following lemmas.

Lemma 6.10. In the Sum-Layer-Game with bidirectional gateways, for 0 < 𝛼 < 1
the price of anarchy is 1.

Proof. Given a game instance (𝑉, 𝐿1), then by Proposition 6.3 we know that
the social optimum is 𝑉 = 𝑆. Since for 𝛼 < 1 opening is an improving response
for every non-gateway, this is also the only equilibrium.

Lemma 6.11. In a Sum-Layer-Game (𝑉, 𝐿1) of 𝑛 ≔ |𝑉| agents with bidirectional
gateways, for 1 ≤ 𝛼 < 2 the price of anarchy is 𝛩(𝑛/√𝛼).

Proof. If diam(𝐿1) ≥ 2, then all agents will open and constitute a socially
optimal solution. Otherwise, with diam(𝐿1) < 2 the network (𝑉, 𝐿1) forms
a clique and the only possible equilibria are a setting with all agents being
gateways or a setting with exactly one gateway. The first one is again the
socially optimal solution and in the latter case we get 𝛼 + 𝑛(𝑛 − 1) as social
cost, which yields a price of anarchy of 𝛩(𝑛/√𝛼). (Note that here we use
𝛼 ∈ [1, 2).)

Lemma 6.12. In a Sum-Layer-Game (𝑉, 𝐿1) of 𝑛 ≔ |𝑉| agents with bidirectional
gateways, for 2 ≤ 𝛼 ≤ 𝑛 − 1 the price of anarchy is at least 𝛺(𝑛/√𝛼).

Proof. First, consider 𝛼 ∈ [2, 4) and an 𝐿1-layer constituting a star graph with
one center agent 𝑢 and 𝑛 − 1 satellite agents. If exactly one satellite agent is
a gateway, this graph forms an equilibrium with a social cost of 2(𝑛 − 1)𝑛.
Comparing this to the social optimum of 𝛼𝑛, we get:

PoA ≥
2(𝑛 − 1)

𝛼
≥

(𝑛 − 1)
√𝛼
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𝑢 ⋯

⋯
𝑣

⋯

⋮ 𝑘 paths

⌊√𝛼⌋ − 1 agents

Figure 6.4: Equilibrium construction for the Sum-Layer-Game that gives a lower bound
on the price of anarchy with u� ≥ 4, u� ≔ ⌊ u�−1

⌊√u�⌋−1
⌋, and u� being the only gateway.

For the remainder of the proof, consider 𝛼 ≥ 4. In this case, we con-
struct a star-like 𝐿1-layer (cf. Figure 6.4) consisting of one center agent 𝑢,
𝑘 ≔ ⌊ u�−1

⌊√u�⌋−1
⌋-many disjoint paths 𝑃1, … , 𝑃u�, each consisting of (⌊√𝛼⌋ − 1)-

many agents, and possibly an additional path 𝑃u�+1 consisting of the remaining
agents. The first agent on each path is connected to 𝑢. We select one leaf agent 𝑣
at a distance of exactly ⌊√𝛼⌋−1 to 𝑢 to be a gateway. Then, no agent can perform
an improving response, since the maximal distance cost decrease by opening
is ∑⌊√u�⌋−1

u�=1 2𝑖 < 𝛼. We estimate a social cost lower bound by considering the
private cost of 𝑢, which is minimal for all agents:

𝑐u�(𝑆) ≥ 𝑘
⌊√u�⌋−1

∑
u�=1

𝑖 =
𝑘
2

(⌊√𝛼⌋ − 1)⌊√𝛼⌋

This gives for the social cost:

cost(𝑆) ≥
𝑛
2

⌊
𝑛 − 1

⌊√𝛼⌋ − 1
⌋(⌊√𝛼⌋ − 1)⌊√𝛼⌋

Comparing this to the social cost 𝛼𝑛 of the optimal solution, we get as the result
PoA = 𝛺(𝑛/√𝛼).

Lemma 6.13. In a Sum-Layer-Game (𝑉, 𝐿1) of 𝑛 ≔ |𝑉| agents with bidirectional
gateways, for 2 ≤ 𝛼 ≤ 𝑛 − 1 the price of anarchy is O(𝑛/√𝛼).

Proof. Let 𝑆 ⊆ 𝑉 be an arbitrary equilibrium strategy profile. Using Proposi-
tion 6.3, we know that 𝑆 = 𝑉 is the socially optimal solution.

If 𝑆 ≠ 𝑉, then it must hold |𝑆| ≤ ⌈𝛼⌉, since otherwise a non-gateway could
reduce her distance cost by more than 𝛼 by opening. Further, for every non-
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gateway 𝑣 ∈ 𝑉 ⧵ 𝑆, we get that 𝑑1(𝑣, 𝑆) ≤ 2⌈√𝛼⌉, since otherwise opening 𝑣
would reduce her private cost by at least:

⌈√u�⌉
∑
u�=1

2𝑖 = ⌈√𝛼⌉(⌈√𝛼⌉ + 1) > 𝛼

Thus, for all gateways 𝑣 ∈ 𝑆 it holds 𝑐u�(𝑆) ≤ 𝛼 + |𝑉 ⧵ 𝑆| ⋅ 2⌈√𝛼⌉. Since a
non-gateway cannot have a higher private cost than a gateway, we get:

cost(𝑆) ≤ 𝑛𝛼 + 𝑛 ⋅ |𝑉 ⧵ 𝑆| ⋅ 2⌈√𝛼⌉ ≤ 𝑛𝛼 + 2𝑛2⌈√𝛼⌉

Comparing this to the social optimum yields:

PoA ≤
𝑛𝛼 + 2𝑛2⌈√𝛼⌉

𝛼𝑛
≤ 1 +

2𝑛
⌈√𝛼⌉

= O(
𝑛

√𝛼
)

Lemma 6.14. In a Sum-Layer-Game (𝑉, 𝐿1) of 𝑛 ≔ |𝑉| agents with bidirectional
gateways and a connection price 𝛼 > 𝑛 − 1, the price of anarchy is:

PoA =
⎧{{
⎨{{⎩

O(√𝛼) for 𝛼 ∈ (𝑛 − 1, 𝑛(𝑛 − 1)),

1 for 𝛼 ≥ 𝑛(𝑛 − 1).

Proof. First, we show that for an arbitrary strategy profile 𝑆′ ⊆ 𝑉 it holds
cost(𝑆′) > 𝛼 ⋅ |𝑆′| + 𝑛 ⋅ |𝑉 ⧵ 𝑆′|. We define 𝑘 ≔ |𝑉 ⧵ 𝑆′| to be the number of
non-gateways and can use 𝑘(𝑘 + 1) < 𝑛𝑘, since |𝑆′| ≥ 1. This gives:

cost(𝑆′) ≥ 𝑘(𝑛 − 1) + |𝑆′| ⋅ (𝛼 + 𝑘)

= 𝑘𝑛 − 𝑘 + 𝑛𝛼 + 𝑛𝑘 − 𝛼𝑘 − 𝑘2

= 2𝑘𝑛 − 𝑘(𝑘 + 1) + 𝛼(𝑛 − 𝑘)

> 𝛼(𝑛 − 𝑘) + 𝑘𝑛

Now we consider an equilibrium strategy profile 𝑆. If 𝑆 = 𝑉, then the social
cost is 𝛼𝑛. For the case 𝛼 > 𝑛(𝑛 − 1), no agent wants to open and hence exactly
one gateway exists, which gives 𝛼 + 𝑛(𝑛 − 1) for the social cost. Since the
social cost lower bound is minimized when having exactly one gateway, we
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get PoA ≤ u�+u�(u�−1)
u�+(u�−1)u� = 1.

For 𝑛(𝑛 − 1) ≥ 𝛼 ≥ 𝑛, let 𝑚 be the number of gateways in an equilibrium
𝑆. Since 𝑆 is an equilibrium, the maximal distance from a non-gateway to a
gateway is 2√𝛼. This gives for any gateway 𝑢 ∈ 𝑆 that 𝑐u�(𝑆) ≤ 𝛼 + (𝑛 − 𝑚)2√𝛼
and for any non-gateway 𝑣 ∈ 𝑉 ⧵ 𝑆 that 𝑐u�(𝑆) ≤ (𝑛 − 1)4√𝛼. The social cost
can be upper bounded by:

cost(𝑆) ≤ 𝑚𝛼 − 𝑚(𝑛 − 𝑚)2√𝛼 + (𝑛 − 𝑚)4√𝛼(𝑛 − 1)

≤ 𝑚𝛼 − 𝑚22𝛼 + 4√𝛼𝑛(𝑛 − 1)

The global maximum of this upper bound is at √𝛼/4, which has the value of
u�√u�

8 +4√𝛼𝑛(𝑛−1). Comparing this to the social cost lower bound of 𝛼+𝑛(𝑛−1),
we get PoA = O(√𝛼).

6.3.2 The Max-Layer-Game

Similar to the Sum-Layer-Game, we start our analysis of the Max-Layer-Game
by studying the hardness of computing a socially optimal solution, followed
by a discussion of the convergence properties of improving-response processes
and the price of anarchy.

Theorem 6.15. For the Max-Layer-Game with bidirectional gateways, the computa-
tion of a gateway set that minimizes the social cost is 𝒩𝒫 -hard.

Proof. For two parameters 𝑛 and 𝑚 with 𝑚 = 2𝑛, let there be a set of 𝑚 elements
𝑋 ≔ {𝑥1, … , 𝑥u�} and further 𝑛 subsets 𝑆1, … , 𝑆u� ⊆ 𝑋 of this element set. Then
the 𝒩𝒫 -complete Set-Cover problem (cf. Karp [Kar72]) is the task to compute
a minimal number of subsets that together contain all elements of 𝑋. Given
such a Set-Cover instance (𝑉, 𝐿1), we construct an instance of the Max-Layer-
Game as follows (cf. Figure 6.1). First, we create a clique 𝐶 of 𝑘 agents and
mark one of them as 𝑐. For every set 𝑆u�, we create a corresponding agent 𝑆u�

and connect her to 𝑐. For every element 𝑥u� ∈ 𝑋, we create an agent 𝑥u� and
connect her to all set agents 𝑆u� with 𝑥u� ∈ 𝑆u�. Using the parameters 𝛼 ≔ 3 and
𝑘 ≔ 𝛼𝑛 = 3𝑛, in the following we show that an optimal placement of gateways
corresponds to a solution of the Set-Cover problem.

For now, assume that 𝑐 is a gateway agent in the optimal solution 𝑆Opt (we
will prove this claim later). We claim that then no other clique agent 𝑣 ∈ 𝐶 with
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𝑣 ≠ 𝑐 is a gateway. For this, assume that 𝑙 further clique agents are open in 𝑆Opt

and compute the social cost decrease gained by closing all of these clique agents
except 𝑐. If 𝑙 < 𝑘 − 1, then at most the distances of these 𝑙 agents are increased
by one each, which gives a social cost decrease of 𝑙𝛼 − 𝑙 > 0. Otherwise, the
social cost decrease is at least (𝑘 − 1)𝛼 − (𝑘 − 1) − 𝑚 − 𝑛 = 2(3𝑛 − 1) − 3𝑛 > 0.
Hence, there can be at most one gateway agent 𝑐 contained in the clique.

Next, assume that there are 𝑙 open element agents in 𝑆Opt. If 𝑙 < 𝑚 and if at
the same time there are open set agents who form a set cover, then by closing
all element agents, only the maximal distances of these element agents increase
and the social cost decreases by at least 𝛼𝑙 − 𝑙 > 0. If there are not yet set agents
open that form a set cover, we have to open at most 𝑛 set agents to form a set
cover. By opening them and simultaneously closing all element agents, the
maximum distances for all clique agents decrease by one each, which gives a
social cost decrease of at least 𝛼𝑙 + 𝑘 − 𝛼𝑛 − 𝑙 = 3𝑙 + 3𝑛 − 3𝑛 − 𝑙 > 0. Finally,
if 𝑙 = 𝑚, by closing all element agents and opening a set cover, the social cost
decreases by at least 𝛼𝑚 − 𝛼𝑛 − 𝑚 − 𝑘 = 6𝑛 − 3𝑛 − 2𝑛 > 0.

Finally, we can see that 𝑐 actually has to be a gateway in 𝑆Opt. For this,
consider an arbitrary optimal setting with all clique agents closed (if one clique
agent is open, we can close it and open 𝑐 without increasing the social cost).
When opening 𝑐, we know that without increasing the social cost we can close
all element agents and open corresponding set agents. Hence, when opening
𝑐 we can assume that all element agents are closed and that for each element
agent a corresponding set is open.

Hence, the socially optimal solution 𝑆Opt is given by a gateway agent 𝑐 and
a minimal number of set agents such that all element agents are covered.

Equilibria and Convergence Properties

Given a Max-Layer-Game (𝑉, 𝐿1) with bidirectional gateways, next we study
the existence of equilibria and the convergence of improving-response pro-
cesses. For the simple cases when the connection price is very small or very big,
we can provide positive convergence results and by this implicitly show the
existence of equilibria. Likewise, for the class of tree networks and networks
with big girth, whereas the girth is the length of a shortest cycle in the network,
we can compute equilibrium settings in polynomial time. Yet for the general
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case, it will turn out that the Max-Layer-Game is not necessarily a potential
game.

If the connection price is at most 𝛼 < 1, then for any non-gateway it is an
improving response to open and also no gateway will ever close. Hence, no
improving-response process can be longer than 𝑛 − 1 steps and such a process
always converges to the equilibrium state 𝑆 = 𝑉. Moreover, for 𝛼 > diam(𝐿1)
no non-gateway will ever open and every gateway wants to close. Hence, also
here we have the same convergence properties.

Next, we consider the non-trivial case of arbitrary networks with big girth.

Proposition 6.16. Given a Max-Layer-Game (𝑉, 𝐿1) of 𝑛 ≔ |𝑉| agents with bidi-
rectional gateways such that the girth2 is at least girth((𝑉, 𝐿1)) ≥ 4𝛼, then for
𝛼 ∈ [1, diam(𝐿1)) a Max-Layer-Game equilibrium exists.

Proof. Let 𝑥1, 𝑥2 be two maximal distant agents in (𝑉, 𝐿1). If 𝑑1(𝑥1, 𝑥2) < 2𝛼,
we get by girth((𝑉, 𝐿1)) ≥ 4𝛼 that (𝑉, 𝐿1) is a tree and there exists an agent 𝑣
who has a maximal distance of less than 𝛼 to every other agent. In this case,
opening 𝑣 yields an equilibrium.

Otherwise, define 𝑅 ≔ ⌊min{𝛼 − 1, (𝑑1(𝑥1, 𝑥2) − 𝛼)/2}⌋. Since agents 𝑥1 and
𝑥2 are at maximal distance, none of them can be connected to a leaf agent. For
both of these agents, we do the following (cf. Figure 6.5): We consider the
breadth-first-search trees up to level 𝑅, rooted at 𝑥1 and 𝑥2, respectively. From
the agents at level 𝑅, we open a maximal set of gateways such that no two
gateways are at a distance less than 𝑅.

Now we claim that for every agent 𝑥 in such a tree, there exists a gateway
within a distance of at most 𝑅. For this, consider a shortest path to an agent
𝑢 at level 𝑅. If 𝑢 is not a gateway, then there must also be another agent 𝑢′ at
level 𝑅 who is a gateway. Since the girth is at least 4𝛼 and 𝑅 < 𝛼 < diam(𝐿1),
the shortest path from 𝑢 to 𝑢′ can only consist of agents of the tree and hence
𝑑1(𝑥, 𝑢′) < 𝑅.

Next, iteratively open a maximal set of further agents such that each new
agent has a minimal distance of exactly ⌈𝛼⌉ to a gateway. By construction, since
every non-gateway has a maximal distance of ⌊𝛼⌋ to a gateway, a non-gateway
can improve her maximal distance by at most ⌊𝛼⌋ and hence cannot perform
any improving response. For every gateway 𝑣, it holds that her private cost

2Note that for an acyclic graph the girth is infinity.
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≥
⌈𝛼⌉

𝑥1 𝑥2

𝑅 𝑅

Figure 6.5: Illustration of the equilibrium construction in the proof of Proposition 6.16
for the Max-Layer-Game with bidirectional gateways and girth of at least 4u�. Orange
agents denote gateways.

is 𝑐u�(𝑆) = 𝛼 + 𝑅 (with both 𝑥1 and 𝑥2 at maximal distance, since otherwise
we get a contradiction to the maximal distance of 𝑥1 and 𝑥2.) Considering the
private cost change of closing 𝑣, her maximal distance increases by exactly ⌈𝛼⌉
and hence this is not an improving response.

Theorem 6.17. The Max-Layer-Game with bidirectional gateways and a connection
price 𝛼 > 1 is not a potential game.

Proof. Consider an 𝐿1-layer consisting of 𝑛 ≔ 3⌊𝛼⌋+4 agents that are connected
as a line. We denote the first agent of the line as 𝑢, the agent at distance ⌊𝛼⌋ + 1
to 𝑢 as 𝑣, and the agent at distance 2⌊𝛼⌋ + 2 to 𝑢 as 𝑤. Initially, only 𝑢 is a
gateway. Then, 𝑣 and 𝑤 form an improving-response cycle:

I: 𝑤 opens since 2⌊𝛼⌋ + 2 > 𝛼 + ⌊𝛼⌋ + 1.

II: 𝑣 opens since 2⌊𝛼⌋ + 2 > 𝛼 + ⌊𝛼⌋ + 1.

III: 𝑤 closes since 𝛼 + ⌊𝛼⌋ + 1 > ⌊𝛼⌋ + 1.

IV: 𝑣 closes since 𝛼 + 2⌊𝛼⌋ + 2 > 2⌊𝛼⌋ + 2.

Hence, the game does not provide the finite improvement property.

Price of Anarchy

Previously, we already argued that for 𝛼 < 1 the only equilibrium is 𝑆 = 𝑉.
Since this is also the socially optimal solution, both the price of anarchy and
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the price of stability are 1 then. For the remaining connection prices of 𝛼 ≥ 1,
next we provide a tight price of anarchy result.

Theorem 6.18. Given a Max-Layer-Game (𝑉, 𝐿1) of 𝑛 ≔ |𝑉| agents with bidirec-
tional gateways, then for 𝛼 ≥ 1 the price of anarchy is 𝛩(1 + 𝑛/√𝛼).

Proof. (Upper bound.) We start with an upper bound on the price of anarchy.
For this, let (𝑉, 𝐿1) be a game instance and 𝑆 ⊆ 𝑉 an arbitrary equilibrium
strategy profile. With 𝐷 ≔ diam(𝐿1), it trivially holds that cost(𝑆) ≤ 𝑛𝐷.

Now we want to consider the minimal social cost when placing exactly 𝑘
gateways on a longest shortest path 𝑃. Having only these 𝑘 gateways, the total
cost of the agents on 𝑃 is:

𝛼𝑘 + 2𝑘
⌊u�/(2u�)⌋

∑
u�=1

(𝑖 + ⌊
𝐷
2𝑘

⌋) ≥ 𝛼𝑘 +
3
4𝑘

𝐷2

The total cost of all agents not on 𝑃 is at least (𝑛 − 𝐷) u�
2u� , which gives a social

cost lower bound of:

𝛼𝑘 +
3
4𝑘

𝐷2 + (𝑛 − 𝐷)
𝐷
2𝑘

= 𝛼𝑘 +
𝐷2 + 2𝑛𝐷

4𝑘

This term is minimized by 𝑘 = √u�2+2u�u�
4u� , which corresponds to a social cost

of at least √𝛼(𝐷2 + 2𝑛𝐷). Comparing this value to the previously computed
social cost upper bound for any equilibrium setting gives

𝑛𝐷
√𝛼(𝐷2 + 2𝑛𝐷)

≤
𝑛

√𝛼
,

which is the claimed upper bound for the price of anarchy.

(Lower bound.) For 𝑛 ∈ ℕ, 𝑘 ≔ ⌊(𝑛 − 1)/3⌋, we consider the following 𝐿1-layer:
We select one agent 𝑐 as a center agent, connect two disjoint paths of each 𝑘-
many agents to 𝑐, and finally connect one path consisting of (𝑛 − 2𝑘 − 1)-many
agents to 𝑐. When opening the leaf agent of the last connected path, we obtain
an equilibrium strategy profile since no agent can improve her maximum
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distance by opening. The social cost of this equilibrium is at least:

3
u�

∑
u�=1

(𝑖 + 𝑘) = 3𝑘2 +
3
2

(𝑘 + 1)𝑘 = 𝛺(𝑛2)

Next, consider the socially optimal solution. For √𝛼 ≥ 𝑛, the optimal solution
coincides with the equilibrium. Otherwise, we get the optimal solution by
opening 𝑐 as well as a maximal set of agents on each path such that between
each two neighboring gateways the distance is ⌊𝛼⌋. The resulting social cost of
this solution is at most 𝛼 u�

⌊√u�⌋ + 𝑛 u�
⌊√u�⌋ , which gives the price of anarchy lower

bound of 𝛺(𝑛/√𝛼).

6.4 Unidirectional Gateways

In this section, we consider multilevel games with the property that switching
from layer 𝐿2 to layer 𝐿1 is permitted at any agent, but access to the 𝐿2 layer
is restricted to gateway agents. As introduced in Section 6.1, these games are
called multilevel games with unidirectional gateways. Different to the games
with bidirectional gateways, we now consider arbitrary second layer networks,
yet still keep our high-speed assumption. Applied to the new model, this
means that we restrict our analysis to games (𝑉, 𝐿1, 𝐿2) that ensure for every
distance in the 𝐿1-layer that the corresponding distance in 𝐿2 is at most a 𝜇-
fraction of the original one. Formally, we call this property 𝜇-improving and it
states that for every 𝑢, 𝑣 ∈ 𝑉 it must hold:

𝜇 ⋅ 𝑑1(𝑢, 𝑣) ≥ 𝑑2(𝑢, 𝑣)

The following lemma states a first consequence of this property: Any short-
est path between two agents switches at most once from 𝐿1 to 𝐿2 and then
exclusively uses edges from 𝐿2, until it reaches the target agent.

Lemma 6.19. Let (𝑉, 𝐿1, 𝐿2) be a 𝜇-improving multilevel game with unidirectional
gateways, 𝑆 ⊆ 𝑉 a set of gateways, and 𝑢, 𝑣 ∈ 𝑉 two arbitrary agents. Then, for the
edges (𝑒1, … , 𝑒u�) of any shortest path from 𝑢 to 𝑣 it holds: there is a 𝑘 ∈ {0, … , 𝑚}
such that 𝑒u� ∈ 𝐿1, for all 𝑖 ≤ 𝑘, and 𝑒u� ∈ 𝐿2, for all 𝑖 > 𝑘.

Proof. Assume there is an edge 𝑒u� ∈ 𝐿2 such that the succeeding edge of the
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shortest path belongs to 𝑒u�+1 ∈ 𝐿1. Let {𝑥, 𝑦} = 𝑒u�+1 denote the end points of
this edge. Since the 𝐿2-layer is 𝜇-improving, we know that there also exists a
path of length at most 𝜇 from 𝑥 to 𝑦 purely consisting of 𝐿2 edges. Yet, this
would contradict 𝑒u�+1 belonging to a shortest path.

6.4.1 Existence of Equilibria

Compared to the multilevel games with bidirectional gateways, the compu-
tation of equilibria in the unidirectional model seems to be even harder than
before, given that now the 𝐿2-layer can have an arbitrary structure. In the fol-
lowing, we show the existence of equilibria in the Max-Layer-Game for the case
when the 𝐿1-layer is a tree and furthermore the 𝐿2-layer provides the so-called
exact-𝜇-improving property. For a game (𝑉, 𝐿1, 𝐿2) we say that it is exact-𝜇-
improving if it fulfills 𝜇 ⋅ 𝑑1(𝑢, 𝑣) = 𝑑2(𝑢, 𝑣) for every pair of agents 𝑢 and 𝑣.
Specifically, the following theorem provides a polynomial time algorithm for
computing an equilibrium setting.

Theorem 6.20. Let (𝑉, 𝐿1, 𝐿2) be an exact-𝜇-improving Max-Layer-Game instance
with unidirectional gateways such that (𝑉, 𝐿1) is a tree. Then, there exists a set of
gateways 𝑆 ⊆ 𝑉 forming an equilibrium, which can be computed in polynomial time.

Proof. We start with an empty gateway set 𝑆 and compute a solution as follows:

(a) If diam(𝐿1) ≤ u�
1−u� , then output 𝑆 = ∅ as the solution.

(b) If 2u�
1−u� > diam(𝐿1) > u�

1−u� , then select an arbitrary agent 𝑧 such that it

holds 𝑑1(𝑧, 𝑣) ≤ u�
1−u� for all 𝑣 ∈ 𝑉 and furthermore, there is some agent

𝑥 ∈ 𝑉 with 𝑑1(𝑧, 𝑥) ≥ u�
1−u� . Then output 𝑆 = {𝑧} as solution.

(c) If diam(𝐿1) ≥ 2u�
1−u� then:

(i) Considering only the first layer 𝐿1, select an agent with the smallest
maximal distance to all other agents, name her 𝑟 and open 𝑟.

(ii) Next, iteratively consider the other tree agents in a sequence such
that the first layer distance to 𝑟 is increasing. If for such an agent 𝑣 it
holds that 𝑣 would reduce the distance to 𝑟 by at least 𝛼 by opening,
then we open this agent. Otherwise 𝑣 stays closed.
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We claim that the so-computed solution 𝑆 forms an equilibrium setting. First,
if diam(𝐿1) ≤ u�

1−u� , then no agent can improve her maximum distance by more
than 𝛼 and hence 𝑆 = ∅ is an equilibrium.

In case 2u�
1−u� > diam(𝐿1) > u�

1−u� , then there exists an agent 𝑧 with the specified

properties. Specifically, every agent has a distance of at most u�
1−u� to 𝑧 and

hence no agent can improve her maximum distance cost of more than 𝛼 by
opening. Since 𝑧 would increase her maximum distance by closing, it follows
that 𝑆 = {𝑧} is an equilibrium.

Now we consider the interesting case of diam(𝐿1) ≥ 2u�
1−u� . For this, we first

show that no gateway wants to deviate from her strategy and, furthermore,
that also no non-gateway wants to open. We use ℎ(𝐿1) to denote the maximal
distance in the 𝐿1-layer from 𝑟 to any agent.

Gateways: By construction, for gateway 𝑟 it holds that the closest other gate-
way is at a distance of at least u�

1−u� . Hence, 𝑟 would increase her longest
shortest path distances by at least 𝛼 when closing, which cannot be an
improving response.

We denote the gateways as 𝑟, 𝑣1, … , 𝑣u�, ordered in the sequence they were
opened. For the 𝑖-th opened gateway 𝑣u�, the shortest path distance from
𝑣u� to 𝑟 was improved by at least 𝛼. We further know for 𝑣u� that for both
strategies, 𝑣u� being a gateway or being a non-gateway, there is a longest
shortest path containing 𝑟. For 𝑣u� being a gateway, this directly holds
by choice of 𝑟. But also if 𝑣u� ∉ 𝑆, since 𝑟 is a gateway, 𝛿(𝑣u�, 𝑟) + 𝜇ℎ(𝐿1) is
an upper bound on every distance and by choice of 𝑟 there must be a
shortest path over 𝑟 to some agent 𝑥 to which this is the distance. Hence,
the maximum distance to any other agent, and by this the private cost of
𝑣u�, is given by the distance to 𝑟.

Thus, agent 𝑣u� would close only if this distance increased by less than
𝛼. By construction, only the opening of a gateway 𝑣u� with 𝑗 > 𝑖 can
cause a strategy change of 𝑣u�. We denote the closest common prede-
cessor of 𝑣u� and 𝑣u� in the rooted tree by 𝑧 and get 𝑑1(𝑟, 𝑧) ≤ 𝑑1(𝑟, 𝑣u�) ≤
𝑑1(𝑟, 𝑣u�). Hence, if 𝑣u� closed, this would incur additional distance cost
for 𝑣u� of at least min{𝛼, 𝑑1(𝑣u�, 𝑧) + 𝑑1(𝑧, 𝑣u�) + 𝜇𝑑1(𝑣u�, 𝑟) − 𝜇𝑑1(𝑣u�, 𝑟)}. Yet,
the same also holds for 𝑣u� and since 𝑣u� was opened after 𝑣u�, it must
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hold 𝑑1(𝑣u�, 𝑧) + 𝑑1(𝑧, 𝑣u�) + 𝜇𝑑1(𝑣u�, 𝑟) − 𝜇𝑑1(𝑣u�, 𝑟) ≥ 𝑑1(𝑣u�, 𝑧) + 𝑑1(𝑧, 𝑣u�) +
𝜇𝑑1(𝑣u�, 𝑟) − 𝜇𝑑1(𝑣u�, 𝑟) > 𝛼. This means, no gateway in 𝑆 wants to close.

Non-gateways: Let 𝑥 be a non-gateway, then, as in the previous discussion,
we see for 𝑥 that 𝛿(𝑥, 𝑟) + 𝜇ℎ(𝐿1) is an upper bound on every distance.
Hence, the distance improvement from 𝑥 to 𝑟 must be at least 𝛼 such that
𝑥 wants to open. Yet, if that was the case, 𝑥 would have been opened by
the above described process.

Hence, neither gateways nor non-gateways can improve their private costs by
changing their strategies.

Although we do not present existence results for all game instances, with
respect the following price of anarchy estimations still we can argue in the
following way that the price of anarchy is well-defined: For any number of
agents 𝑛, there exists a network of 𝑛 agents enabling equilibria. In particular,
for a clique network of 𝑛 agents trivially an equilibrium always exists, even for
arbitrary 𝐿2-layers.

6.4.2 Quality of Equilibria

We now study upper bounds for the Sum-Layer-Game and subsequently give
results for the Max-Layer-Game.

Sum-Layer-Game

For the Sum-Layer-Game, we start with characterizing equilibria by the maxi-
mal distance that agents can have to the closest gateway. We derive this distance
bound by an expansion argument.

Lemma 6.21. In a 𝜇-improving Sum-Layer-Game (𝑉, 𝐿1, 𝐿2) of 𝑛 ≔ |𝑉| agents with
unidirectional gateways and a connection price 𝛼, let 𝑆 be an equilibrium strategy
profile. Then, for any agent 𝑢 ∉ 𝑆 and any 𝑘 ∈ ℕ with 𝐵u�(𝑢) ∩ 𝑆 = ∅, it either holds

(a) ∣𝐵u�(𝑢)∣ ≥ u�
2 or

(b) 𝛼 ≥ u�u�(1−u�)
2 .
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𝑢 ∈ 𝑆

𝐷

𝑥 𝑦

Figure 6.6: Illustration of main argument used in Lemma 6.22.

Proof. If |𝐵u�(𝑢)| < 𝑛/2, then there is a set 𝑋 ≔ 𝑉 ⧵ 𝐵u�(𝑢) of a size of at least
|𝑋| > 𝑛/2. For any agent 𝑥 ∈ 𝑋, we know that the shortest path from 𝑢 to
𝑥 passes an agent 𝑦 who has a distance of exactly 𝑘 to 𝑢. By the claim, the
shortest path to 𝑦 does not contain any gateways and hence opening 𝑢 reduces
the distance to 𝑦 by at least (1 − 𝜇)𝑑1(𝑢, 𝑦) = (1 − 𝜇)𝑘. Since this holds for all
agents in 𝑋, the total distance cost improvement is at least |𝑋| ⋅ (1 − 𝜇)𝑘. With
𝑆 being an equilibrium, 𝑢 cannot perform any improving response and thus it
must hold

𝛼 ≥ |𝑋| ⋅ (1 − 𝜇)𝑘 ≥
𝑘𝑛(1 − 𝜇)

2
,

which concludes the claim.

Lemma 6.22. In a 𝜇-improving Sum-Layer-Game (𝑉, 𝐿1, 𝐿2) of 𝑛 ≔ |𝑉| agents with
unidirectional gateways and a connection price 𝛼, the maximal distance of any agent
to a gateway is 16u�

(1−u�)u� .

Proof. Let 𝑢 ∈ 𝑉 be an agent with a maximal minimal distance to any gateway
in 𝑆 and define 𝐷 ≔ minu�∈u� 𝑑1(𝑢, 𝑣) (cf. Figure 6.6). Then, there exist two
agents 𝑥, 𝑦 ∈ 𝐵u�(𝑢) such that 𝐵u�/4(𝑥) ∩ 𝐵u�/4(𝑦) = ∅ and further 𝐵u�/4(𝑥) ⊆
𝐵u�(𝑢) as well as 𝐵u�/4(𝑦) ⊆ 𝐵u�(𝑢).3

If at least one of these balls contains fewer than (𝑛/2)-many agents, then
by Lemma 6.21 we have u�

4 ≤ 2u�
u�(1−u�) and thus the claim. Otherwise, we know

that both balls 𝐵u�/4(𝑥) and 𝐵u�/4(𝑦) combined contain 𝑛-many agents. In this
case, we consider a ball around 𝑢 of radius 𝐷/2 and again can apply the same

3Note that if u� is odd, then we can assign the agent contained in both balls arbitrarily and the
following arguments still hold.
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construction as above. Since now at least one of the balls around 𝑥 or 𝑦 must
contain fewer than (𝑛/2)-agents, we get 𝐷 ≤ 2 8u�

(1−u�)u� .

Theorem 6.23. In a 𝜇-improving Sum-Layer-Game (𝑉, 𝐿1, 𝐿2) of 𝑛 ≔ |𝑉| agents
with unidirectional gateways and a connection price 𝛼, the price of anarchy is:

PoA =

⎧{{{{{{
⎨{{{{{{⎩

1 for 𝛼 < 1 − 𝜇,

O( 1
1−u�

) for 𝛼 ∈ [1 − 𝜇, 𝑛(1 − 𝜇)],

O( u�
u�(1−u�)2 ) for 𝛼 ∈ (𝑛(1 − 𝜇), 𝑛(𝑛 − 1)],

1 else.

Proof. We derive the price of anarchy upper bounds by individually comparing
the private costs of agents in an arbitrary equilibrium 𝑆 to the private costs in
a socially optimal solution 𝑆Opt. First note that for 𝛼 < 1 − 𝜇, in both settings 𝑆
and 𝑆Opt, every agent will open and the social costs are equal. Similarly, for
𝛼 > 𝑛(𝑛 − 1) no agent will open and thus the price of anarchy is 1, too.

For the general case, if we have some agent 𝑢 ∈ 𝑉 with 𝑢 ∈ 𝑆 and 𝑢 ∈ 𝑆Opt,
then the private cost of this agent is the same in both solutions. Next, consider
some agent 𝑢 ∈ 𝑆 who is a gateway in 𝑆 but not in 𝑆Opt. Note that for some
solution 𝑆′ with 𝑢 ∉ 𝑆′ it holds 𝛿u�′(𝑢, 𝑣) ≥ 𝑑2(𝑢, 𝑣) + (1 − 𝜇) for all 𝑣 ∈ 𝑉.
Comparing the private costs, we get:

𝑐u�(𝑢)
𝑐u�Opt(𝑢)

≤
𝛼 + ∑u�∈u� 𝑑2(𝑢, 𝑣)

(1 − 𝜇)(𝑛 − 1) + ∑u�∈u� 𝑑2(𝑢, 𝑣)
≤ 1 +

𝛼
(𝑛 − 1)(1 − 𝜇)

If agent 𝑢 is not a gateway in 𝑆 but a gateway in 𝑆Opt, we get for the private
cost comparison:

𝑐u�(𝑢)
𝑐u�Opt(𝑢)

=
∑u�∈u� 𝛿u�(𝑢, 𝑣)

𝛼 + ∑u�∈u� 𝑑2(𝑢, 𝑣)

≤
∑u�∈u� 𝑑2(𝑢, 𝑣)

𝛼 + ∑u�∈u� 𝑑2(𝑢, 𝑣)
+

(𝑛 − 1) 16u�
(1−u�)u�

𝛼 + ∑u�∈u� 𝑑2(𝑢, 𝑣)
≤ 1 +

16
1 − 𝜇

Finally, if agent 𝑢 is not a gateway in both solutions 𝑆 and 𝑆Opt, the private cost
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comparison gives:

𝑐u�(𝑢)
𝑐u�Opt(𝑢)

≤
∑u�∈u� 𝛿u�(𝑢, 𝑣)

(1 − 𝜇)(𝑛 − 1) + ∑u�∈u� 𝑑2(𝑢, 𝑣)

≤
∑u�∈u� 𝑑2(𝑢, 𝑣)

(1 − 𝜇)(𝑛 − 1) + ∑u�∈u� 𝑑2(𝑢, 𝑣)
+

(𝑛 − 1) 16u�
(1−u�)u�

(1 − 𝜇)(𝑛 − 1) + ∑u�∈u� 𝑑2(𝑢, 𝑣)

≤ 1 +
16𝛼

𝑛(1 − 𝜇)2

Combining all private cost ratio upper bounds, the price of anarchy is at most
1 + max{ u�

(u�−1)(1−u�) , 16u�
u�(1−u�)2 , 16

1−u�
} and yields the respective bounds with case

distinction for 𝛼 ≤ 𝑛(1 − 𝜇).

For comparing these results to the Sum-Layer-Game with bidirectional gate-
ways, the improvement factor 𝜇 has to be close to 𝜇 ≈ 0: i.e., 𝐿2 ensures
very short connections. This either results in a constant or in an O(1 + 𝛼/𝑛)
bound for the price of anarchy, whereas the latter tends to 1 with growing
𝑛. Consequently, the results are usually much better than in the game with
bidirectional gateways; and they become worst when the 𝐿2-layer is improving
only marginally.

Max-Layer-Game

For the Max-Layer-Game, we derive our price of anarchy results from char-
acterizing equilibria by the maximal distance that any agent can have to a
gateway and the minimal distance any two gateways must have to each other.
Complementing this upper bound, we further provider a high lower bound,
which will also be a lower bound on the price of stability.

Theorem 6.24. In a 𝜇-improving Max-Layer-Game (𝑉, 𝐿1, 𝐿2) of 𝑛 ≔ |𝑉| agents
with unidirectional gateways and a connection price 𝛼, the price of anarchy is:

PoA =

⎧{{{{
⎨{{{{⎩

1 for 𝛼 < 1 − 𝜇,

O(1) for 𝛼 ∈ [1 − 𝜇, 𝜇 (1+u�)2

1−u�
),

O( u�
(1−u�)2 ) else.
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6 Multilevel Network Games

Proof. First, we consider the case with very small connection prices. For 𝛼 <
1 − 𝜇, assume there is an equilibrium setting 𝑆 ≠ 𝑉 with an agent 𝑢 ∈ 𝑉 ⧵ 𝑆.
Then, we know for agent 𝑢 that every shortest path to any other agent contains
at least one edge of layer 𝐿1 and thus by opening, 𝑢 would decrease her distance
cost by at least (1 − 𝜇). Since this contradicts 𝑆 being an equilibrium, the only
equilibrium is 𝑆 = 𝑉. The same argument holds for the optimal setting, which
means 𝑆Opt = 𝑉. Hence, for this connection price, the price of anarchy is 1.

In the following, we consider the contrary case with connection price 𝛼 ≥
(1 − 𝜇). For the social optimum 𝑆Opt, let 𝑚 ≔ |𝑆Opt| be the number of gateways
and note that for every 𝑢 ∉ 𝑆Opt it holds 𝛿u�Opt(𝑢, 𝑣) ≥ 𝑑2(𝑢, 𝑣) + (1 − 𝜇) for all
𝑣 ∈ 𝑉. With this, we lower bound the social cost of 𝑆Opt by:

cost(𝑆Opt) ≥ 𝑚𝛼 + ∑
u�∈u�

max
u�∈u�

𝑑2(𝑢, 𝑣) + (𝑛 − 𝑚)(1 − 𝜇) + ∑
u�∈u�⧵u�

max
u�∈u�

𝑑2(𝑢, 𝑣)

≥ ∑
u�∈u�

max
u�∈u�

𝑑2(𝑢, 𝑣) + 𝑛(1 − 𝜇)

Next, we estimate an upper bound on the social cost for any equilibrium
strategy profile. For this, let 𝑆 be an arbitrary equilibrium and we estimate the
maximal distance of any agent to a gateway as well as the minimal distance
between any pair of agents.

(a) (Maximum gateway distance.) Let 𝑣 ∉ 𝑆 be an agent and 𝐷 the minimal
distance from 𝑣 to any gateway. Then, for every shortest path from 𝑣
to any other agent, there are 𝐷-many edges belonging to 𝐿1 and thus
opening would reduce 𝑣’s distance cost by at least 𝐷(1 − 𝜇). Since 𝑆 is
an equilibrium, we get 𝛼 ≥ 𝐷(1 − 𝜇) and hence 𝐷 ≤ u�

1−u� .

(b) (Minimum gateway distance.) For any gateway 𝑢 ∈ 𝑆, let 𝐷 be the minimal
distance to any other gateway, i.e., 𝐷 = minu�∈u�⧵{u�} 𝑑1(𝑢, 𝑣). If 𝑢 would
close, her distance cost increased by at most 𝐷 + 𝜇𝐷. Since 𝑆 is in equilib-
rium, we have 0 ≤ −𝛼 + 𝐷 + 𝜇𝐷 and hence 𝐷 ≥ u�

1+u� . Using the minimal
distance between any pair of gateways, we directly gain an upper bound
on the number of gateways of any equilibrium setting. That is, there
cannot be more than (𝑛1+u�

u�
)-many gateways in an equilibrium setting.

Using both estimations, we can finally derive an upper bound on the social
cost of any equilibrium strategy profile 𝑆, hereby 𝑚 ≔ |𝑆| denotes the number
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of gateways in 𝑆:

cost(𝑆) ≤ ∑
u�∈u�⧵u�

(
𝛼

1 − 𝜇
+ max

u�∈u�
𝑑2(𝑢, 𝑣)) + ∑

u�∈u�
(𝛼 + max

u�∈u�
𝑑2(𝑢, 𝑣))

= ∑
u�∈u�

max
u�∈u�

𝑑2(𝑢, 𝑣) + (𝑛 − 𝑚)
𝛼

1 − 𝜇
+ 𝑚𝛼

≤ ∑
u�∈u�

max
u�∈u�

𝑑2(𝑢, 𝑣) + 𝑛(1 − 𝜇
1 + 𝜇

𝛼
)

𝛼
1 − 𝜇

Comparing this to the social cost lower bound, we get for 𝛼 < 𝜇 (1+u�)2

1−u� that the

price of anarchy is constant. And otherwise, the ratio is at most 1 + u�
(1−u�)2 .

Theorem 6.25 (price of stability and price of anarchy lower bound). There are
𝜇-improving multilevel networks (𝑉, 𝐿1, 𝐿2) of 𝑛 ≔ |𝑉| agents, where the price of
stability and the price of anarchy for the unidirectional Max-Layer-Game is 𝛺(√𝑛),
when 𝛼 = √𝑛.

Proof. Consider a network (𝑉, 𝐿1) consisting of agents 𝑣1, … , 𝑣⌊√u�⌋ who are
connected as a line and additional agents 𝑣⌊√u�⌋+1, … , 𝑣u� who are all connected
to agent 𝑣1. The second layer (𝑉, 𝐿2) forms a clique network with all edges
having a length of zero. Note that this instance is 𝜇-improving for any 𝜇.

For this game, the diameter of (𝑉, 𝐿1) is ⌊√𝑛⌋ + 1 and hence for 𝛼 ≔ √𝑛 + 1,
no agent will become a gateway in any equilibrium setting. Thus, for the only
equilibrium, 𝑆 = ∅, the social cost is at least ⌊√𝑛⌋√𝑛/2 + (𝑛 − ⌊√𝑛⌋)√𝑛. On the
other hand, for 𝑆 = {𝑣1} the social cost is at most 𝛼 + (𝑛 − √𝑛) + √𝑛√𝑛. Hence,
the ratio is 𝛺(√𝑛).

Compared to the Max-Layer-Game with bidirectional gateways, the price of
anarchy results become much lower when using unidirectional gateways. This
is similar to the Sum-Layer-Game, where unidirectional gateways also led to
improved worst-case guarantees for the quality of equilibrium networks.

6.5 Conclusion & Future Work

We introduced a new network model to analyze effects of multilevel network
interactions that are not captured by the traditional framework of network
creation games. The provided price of anarchy results emphasize that for
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6 Multilevel Network Games

a very small or big connection price 𝛼 (i.e., when tending to the number of
agents) equilibria are nearly optimal solutions despite the selfish behavior
of the agents. Comparing the bidirectional and the unidirectional variants,
the unidirectional games outperform the price of anarchy results of the other
variant considerably.

In comparison to the classic network creation games, in the multilevel games
the existence of equilibria became a much harder question. Although we have
partial answers for special combinations of the connection price 𝛼 and the
network topology, providing a general answer seems to be a very challenging
open question that deserves further research.

Regarding the convergence of best-response processes, in the game with
bidirectional gateways, both variants with average and maximum cost func-
tions do not provide the finite improvement property and remarkably, the
Sum-Layer-Game is not even weakly acyclic. Due to the symmetry of the max-
imum operator, the equilibria and convergence properties for the maximum
cost function seem to be more stable though. The same observation holds for
the game with unidirectional gateways, however, for this variant we could not
provide a definite answer to the question if and how best-response processes
convergence.
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