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Abstract

The incorporation of interstitial elements in transition metals can drastically change the perfor-
mance of these materials. For example, the incorporation of hydrogen, which is often unavoidable,
can cause devastating failure due to embrittlement. Interstitial carbon and nitrogen for instance
favor the formation of microstructures (e.g. carbides or nitrides). Boron can stabilize grain bound-
aries and oxygen causes unwanted material oxidation. In each of these cases, the knowledge of the
atomic solution enthalpy is of enormous importance, since it determines the concentration of the
inclusions.

In this thesis, a comprehensive ab initio study of solution enthalpies of typical interstitial ele-
ments H, B, C, N, O, F, ( He and Ne ) in 3d, 4d and 5d transition metals is performed. The primary
objective of the analysis are mechanical and chemical regularities and trends for the solubility in
order to improve the prediction of atomic concentration in a variety of materials. One challenge is to
identify quickly accessible physical material parameters, so-called descriptors that depend only on
the host lattice and may allow to predict the solution enthalpy of interstitial elements in materials
not considered in this study. In order to determine material parameters such as band structures,
atomic positions, and electronic density of states, ab initio methods within the density functional
theory (DFT) framework were used, which allow the calculation of the energetics of a material on
the electronic scale. The detection of trends is achieved through the generation and analysis of large
amounts of ab initio data. To handle such amount of data, a Python-based working environment for
data management (generation, storage, visualization, and analysis) was developed. Tools of mul-
tivariate statistics and numerical analysis (for example factor analysis or correlation coe�cients)
have been implemented and used for the analysis.

In a multistage process, �rst the solution enthalpy of hydrogen in the 3d transition metals has
been studied extensively. An universal trend for the solution enthalpy in dependence of a chemical
and a mechanical e�ect could be observed. The study has been extended to other interstitial
elements and transition metals. In order to analyze the large amount of produced data we used
the factor analysis and found that all interstitial element solution enthalpies can be described by
three common yet unknown factors. On closer inspection we found that boron is an outlier with one
dominant factor and its exclusion yields a description of the solution enthalpy for which two factors
are su�cient. Furthermore, the classi�cation of the interstitial elements into two groups revealed
that only one common factor can be used. Speci�cally, for the elements H, C, N, and O the factor
can be related to the atomic distance and the electronic density of states of the host lattice which
allows the prediction of the solution enthalpy with high accuracy. The insights provided in this
work are useful guidelines in materials alloy design and the identi�ed descriptors can be employed
for screening candidate materials in existing structural databases.
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Chapter 1

Introduction

The design of materials by generating and analyzing large databases is at latest since the �Materials
Genome Initiative� of Barack Obama a strategy that attracts more and more attention in the
community [1]. The idea of high-throughput (HT) investigations is, however, much older, since �rst
HT experiments were performed and reported in the �eld of materials research more than 130 years
ago [2]. Some of the resulting discoveries are well-known due to the signi�cant impact on our daily
life, while much less is known about their HT background. It is worth mentioning two examples
here:

In October 1878, Thomas A.Edison registered the patent �Improvement In Electric Lights", a
long lasting electrical light bulb, containing an incandescent metal-�lament being a conductor with
a high fusing-point. However, it took him 40,000 notes pages �lled with the results of testing 1,600
di�erent elements (even including �hears from a friend's beard" [3]) in order to discover a suitable
material for the incandescent �lament. Finally he suggested an optimal material, a carbonized
bamboo �ber in a vacuum light bulb which could last for approximately 1200 hours (50 days) and
was registered as a patent in November 1880 [4]. It goes without saying that this discovery had for
many generations a signi�cant impact on their daily (nightly) life.

In 1912 Ciamician tested hundreds of �asks with potentially photoactive materials in order to
determine the possibility of using an alternative and renewable energy form instead of the limited
fossil energy (which was mainly coal at that time). He shared his vision of a clean photochemical
industry instead of an industry based on coal usage for covering the energy needs. Today, more
than 100 years later, this topic is one of the hottest topics in materials science. In addition, his
method of spectroscopy helped Mendelejew to develop the periodic table of elements. However, one
can imagine from �gure 1.1 that he might have faced spacing problems for storing all the �asks on
the roof of the University of Bologna in order to determine the possibility of using a photochemical
process for batteries [5].

In the following, HT experiments found their way and became of central importance in chemical
industry and for the development of parallel screening and parallel analysis methods in order to
decrease the time of �nding new drugs [7]. The same development is currently going on in the �eld
of materials science. In the majority of these cases [8, 9], HT is used to screen large amounts of
chemical compositions in a �trial and error� approach for materials that optimize certain prede�ned
properties such as thermoelectric, magnetic or mechanical key quantities. Only in exceptional cases,
like the �eld of computational thermodynamics [10, 11], experimental databases are used to identify

9
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Figure 1.1: Ciamician testing hundreds of samples in parallel on the roof of the University of
Bologna. Taken from [6].

generic rules for physical properties.

Besides the experimental research approaches, the increasing computer power in particular in
high-performance clusters (HPC) along with tremendous developments of theoretical and numerical
methods are pushing the importance of computer aided research methods since 50 years forward.
The �eld of modern materials research is heavily a�ected by this development. Computational
materials research nowadays covers various scales between the electronic and the macroscopic level,
i.e. length scales between 10−10 m and 1 m and time scales between 10−15 s and 107 s. In this thesis,
mainly the electronic scale is exploited and the quantum-mechanical Schrödinger equation is solved
without using empirical parameters. Due to the huge amount of interacting atoms and electrons
(≈ 1023) these so called ab initio approaches are typically not exact, but rely on approximations.
The Born-Oppenheimer approximation [12] and the development of the Density Functional Theory
(DFT) [13] are the most established concepts to overcome the problem of treating a huge number
of interacting particles and are therefore employed in this work.

An advantage of DFT as compared to alternative atomistic methods, is the possibility to derive
chemical or structural trends based on an e�cient simulation of the electronic structure. On the
one hand, methods that by construction would allow more accurate results, such as the solution
of the Schrödinger's equation with quantum Monte-Carlo techniques [14], have too many uncon-
trollable approximations. The required approximations in DFT, which make the approach much
more e�ective, might have an in�uence on absolute numbers like formation energies, but the relative
numbers in a trend study are typically predicted rather accurately [15]. Approaches that reduce the
complexity even further, such as the application of empirical potentials [16�20] are not based on the
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evaluation of the electronic structure, but on a �tting to experiments and are therefore much less
predictive. Experiments, on the other hand, can typically only be performed for selected parameters
in a �trial and error" approach, since the consideration of hundreds of experiments is logistically
di�cult or requires compromises in terms of accuracy.

The nature of ab initio calculations allows to modify systematically the chemical composition,
crystalline structures (e.g. the lattice constant) and physical parameters (e.g. the magnetization),
choosing even values that cannot be reached in nature. In this way, much broader trends of all micro-
scopically determined physical properties such as atomic positions/relaxations, band gaps, density
of states, etc. can be achieved, than possible in experimental materials design [21]. The drawback
of the application of DFT with its focus on the electronic structure is, however, the di�culty to
determine macroscopic properties (such as formability, embrittlement etc.) directly. The most de-
manding part of DFT based HT methods for materials design is, therefore, to identify promising
and fast so called descriptors [22�27]. These descriptors are essential for the communication with
the database and usually needed to connect the microscopic parameters mentioned above with the
macroscopic properties. Such a microscopic parameter is for example the intrinsic stacking fault
energy γisf which can be linked to the macroscopic deformation behavior of the material. A low γisf

leads to a strengthening as shown for example for Mg-Y [28] or Fe-C alloys [29].

The �eld of DFT based HT investigations [30�35] is still relatively young, but is growing fast in
the �eld of materials research. The latter can be mainly subdivided into functional and structural
materials. Both classes have in common that transition metals (TMs) play the most important role
to achieve a certain (for example electronic [36, 37], magnetic [38] or mechanical [39]) functionality.
It is, however, clear that a perfect crystal consisting solely of one TM element can be synthesized in
labs but does not exist under real conditions. They are always alloyed with other chemical species.
In particular when being in contact with an (often reactive) environment, the incorporation of
interstitial elements cannot be avoided, since they are typically rather mobile and therefore able to
penetrate into the lattice [40]. Through several mechanisms they can have a favorable or detrimental
impact on the material properties. For example they in�uence the stacking fault energy [29, 41],
yield precipitate formation [42, 43] or in�uence the mobility of dislocations [44]. In this way, one of
the impacts of interstitial atoms (e.g. reported for carbon [45]) is a crystal hardening or softening.
Alternatively, they can lead to serious material failure like interstitial embrittlement known for
example for hydrogen [16, 46�48] and nitrogen [49, 50]. One goal in this �eld is to gain control
over these property changes. Therefore, it is very important to know the underlying mechanisms
governing the interstitial solubility and to a minor extend the interstitial di�usivity within these
materials.

In order to understand the mechanisms governing interstitial solubility a wide range study for
di�erent interstitial elements including H, B, C, N, O, F, He, and Ne in all TMs and neighboring host
elements (in total 32 host elements) is performed in the present work. A variety of di�erent struc-
tures (fcc, hcp, bcc), magnetic states (fm, nm, and afm) and interstitial positions are considered.
Our aim in this work is not in the �rst place a ranking of solubilities, which would be in line with
several other state-of-the-art HT studies [8, 51�54] as for example presented for hydrogen storage
materials in chapter 2, but a detailed analysis of the generated data to obtain novel insights about
underlying mechanisms for interstitial solubilities in TMs. These insights are very important since
a general understanding of the coherency between chemical and structural solubility mechanisms
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can allow one to predict interstitial solubilities in more complex host materials without performing
time and money consuming experiments or calculations.

The interstitial solubility (i. e. the concentration cH) can be determined for example with the
equation [55]

cH =

√
p

p0
· e

∆S
kB · e−

∆H
kBT , (1.1)

in which T denotes the temperature, p is the pressure, p0 the reference pressure (usually p0 = 1
atm), kB the Boltzmann constant, ∆S is the entropy change between the reactant and product
system, which is assumed to be constant with respect to the temperature T . The last term ∆H

denotes the solution enthalpy of the interstitial element which is of main focus in this thesis since
it is directly linked to the solubility as shown above.

Starting with standard ab initio calculations (e.g. total energies of a large variety of systems)
and their transformation to higher level data (e.g. the solution enthalpy of interstitial atoms), the
data mining step employs statistical approaches in order to evaluate and �nd patterns/correlations
between the solution enthalpy and (combined) material characteristics (�fast descriptors") of the
pure host materials. Once relevant patterns are found, the newly gained knowledge for solubility
trends can be used to predict interstitial solubilities for compositions not considered in the database
and eventually to suggest new host materials with a tailored interstitial solubility. Our such devel-
oped Knowledge Discovery (KD) process is constructed such that it can be fully automatized and
can therefore be applied to various other materials science questions.



Chapter 2

High-Throughput in Materials Science

The two examples of Edison and Ciamician indicate that setting up HT experiments by hand can be
a cumbersome and error prone task. It is obvious that an automated setting up of the test-samples
and their automated analysis, including an automated documentation would have increased the
speed of �nding the mentioned materials. Such an automatization, however, requires the availability
of the technical infrastructure and is also closely related to computational facilities.

First e�orts to perform automated HT experiments have therefore only started approximated
50 years ago. In 1970 Hanak introduced a �new parallel� approach to search and �nd novel binary
compositions that become superconducting at su�ciently low temperatures [56]. These measure-
ments, which will be discussed in more detail below, can be considered as a milestone in automated
HT research, since they documented for the �rst time a thirty-fold increase of the rate of experimen-
tal output due to automatization. With the development of computers and computational power,
automated HT methods have in the last two decades more and more often be performed solely
on the computer. The development of technologies such as databases, data-mining technologies,
modeling approaches, and evolutionary strategies allowed one to further speed up the discovery and
development processes substantially [2, 57]. These developments are central for the present thesis,
and some landmarks in the �eld will therefore also be discussed below.

2.1 Automatized experiments

As mentioned above, Hanak suggested in 1970 the key concept for a new approach in materials
design, which contains three parallel steps:

� the parallel synthesis of an entire multicomponent system in a single experiment,

� the parallel chemical analysis of the entire system based on a few simple measurements, and

� the materials testing and evaluation in a single experiment.

The keys to his success was the simpli�cation of a one-cathode, multiple-target, radio-frequency co-
sputtering synthesis technique and the development of a computerized analytic method to measure
a simple and common property of the sample (the thickness of the �lm). It allowed the implemen-
tation of a so called �multiple-sample concept� in which binary and ternary solid alloy systems are
synthesized and their analysis is performed in a single experiment.

13



14 2.1 Automatized experiments

In his setup, two di�erent target materials A and B are placed as half-discs on the �radio-
frequency� cathode within a chamber �lled with constant argon gas. Ionized argon atoms simulta-
neously evaporate atoms from this target and result into a �co-sputtering� of A and B on a single
water-cooled substrate such that almost the entire composition continuum of the binary system is
captured.

For three-component thin �lms the same technique is introduced. The second key invention was
the development of a parallel chemical analysis by calibrating the sputtering apparatus in order
to measure the �lm thickness. From the measured �lm-thickness and assuming Vegard's law [58]
the element composition is obtained. When Hanak applied this technique to the determination of
superconducting materials, 50 gold contacts were evaporated on such a thin �lm in order to measure
the transition temperature and the resistivity. With this approach Hanak achieved a thirty times
higher rate of experimental output for binary systems and has paved the way for presently used
high-end HT materials design.

The improvement of this kind of synthesis methods such as pooled synthesis (e.g., split-pool)
and masking strategies (e.g., gradient or x-y shutter masking) [59] increased the e�ciency and
accuracy of material library generation. These sophisticated techniques have been applied to a
wide range of materials. Some of the most important materials under focus are: superconductor
materials [60], ferroelectric materials [61], magnetoresistive materials [62], structural materials [63],
hydrogen storage materials [8, 51�53, 64], ferromagnetic shape-memory alloys [65], various types
of catalyst materials [66�68], materials for fuel and solar cell applications [69�72], and automotive
coatings [73]. This list of materials and references could be extended, and it is clear that not the
whole set of materials properties can be considered in the present thesis. Instead we will focus our
considerations on interstitial solubility in metals. In this context, some interesting experimental
studies have for example been performed on hydrogen storage materials.

Hydrogen storage materials

In 2004 Olk has presented a combinatorial approach to materials synthesis and the screening of
their hydrogen storage capabilities [51]. Mg-Ni-Fe ternary and Mg-Ni or Mg-Fe binary thin-�lms
(pads) have been synthesized, employing pulsed laser deposition as well as magnetron sputtering.
The element Mg was �rst sputtered under argon atmosphere over the entire substrate and then the
elements Ni and Fe are evaporated by using a combination of laser pulses and mask-slot positioning.
In this way, a 4 by 4 mask with 16 ternary Mg-Ni-Fe pads and 32 Mg-Ni or Mg-Fe binary pads
in the intersections was created. In a second chamber with H2 atmosphere the sample is loaded
with hydrogen by controlling the substrate temperature. For the subsequent analysis, infrared
imaging is used in order to screen the materials. The physical background is a modi�ed electronic
density of states (DOS) and a rise of the Fermi energy Ef due to the absorption of hydrogen in
intermetallic alloys. More precisely, Ef is shifted to a region with a lower DOS, which leads to
a less metallic character and therefore an increase in the electrical resistance. At the same time,
the materials are changing their optical properties due to the charging with hydrogen [51]. This
change can be detected due to IR emissivity change. The optical approach has the advantage that
a parallel analysis of 16 separate Mg-Ni-Fe ternary pads and 32 Mg-Ni (Mg-Fe) binary pads in a
single measurement became possible.
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In 2006 Gremaud et al. used a similar combinatorial method that could examine 103 samples
in parallel. Again, the metal-insulator character during hydrogen loading of the gradient sample
is used. During the so called hydrogenation [54] all hydride forming compositions are mapped
simultaneously. This method, called hydrogenography, has been successfully applied to MgxAl1−xHy

thin �lms [53]. One year later Gremaud and co-worker could successfully adapt hydrogenography to
metallic hydrides such as Pd-H, which is known not to experience a metal-insulator transition [52].
The �pressure-optical-transmission-isotherms� (PTI) of metallic hydrides is used, i.e. the optical
transmission of di�use light during the hydrogenation of the substrate, which correlates linearly
with the hydrogen concentration. Furthermore, the hydrogen enthalpy and the entropy could be
obtained.

In 2007 Ludwig et al. [8] used a three level substrate as shown in �gure 2.1 instead of sapphire
as a substrate. Here, the substrate is a cantilever which is bending during hydrogenation of the

Figure 2.1: Figure copied from [8].Three level substrate layers (micro machined Si cantilevers, SiO2

and Si3N4) used by Ludwig et al.. Hydrogenation of the thin �lms and its stress change leads to a
bending of the �lm/cantilever.

thin �lm. The volume expansion of the thin �lm leads to an out-of-plane strain and the in-plane
mechanical stress obtained from bending is directly linked to the H concentration. Their concept
allowed to measure 16 �lm/cantilever in parallel.

It is an advantage of computer aided HT DFT approaches that they do not depend on the
existence of such complex setups or empirical laws for the interpretation of the results. One should
note, however, that even in the case of DFT calculations, the automatized setup of structures and
chemical con�gurations is a non-trivial task. This is currently under development and was a major
part of the present PhD thesis. However, it should be mentioned here that the accuracy of DFT
calculations are limited due to intrinsic (e.g. the choice of the exchange-correlation) and numerical
errors (e.g. numerical convergence). Using only DFT calculations, which is an approach at T = 0 K

to describe/predict realistic material behavior at �nite temperatures can fail since further e�ects
contribute to the free energy such as anharmonic, magnetic excitations, and electronic e�ects. They
are, however, of little importance for the total energy at 0K (which is the temperature considered
in this work), while they will become more dominant with increasing temperature.
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2.2 Computational approach

Computer aided HT materials research based on DFT calculations can replace expensive �trial and
error� experiments. Several advantages of the ab initio character of DFT become immediately ap-
parent: One is not confronted with experimental constraints such as the impact of substrates or
reactive environments. One can easily adjust the desired crystalline structure without inventing
complicated synthesis routes. One has full control over the chemical composition and can avoid
impurities. One can adjust physical parameters such as temperature, pressure, or magnetization.
Moreover, a computer-based approached is ideally suited for automatizations in which certain char-
acteristics of materials (structure, chemistry or physics) are systematically modi�ed.

According to Curtarolo et al. [22] a computational HT method should be subdivided into the
three connected steps

� (i) virtual material growth,

� (ii) rational materials storage, and

� (iii) materials characterization and selection.

Step (i) corresponds to setting up the structure and performing subsequent thermodynamic and
electronic structure calculations of materials. Step (ii) is the storage of all relevant information in
databases (DB). Examples for such DBs and corresponding tools are

� Open Quantum Material Database (OQMD) [35],

� Materials Project [33],

� Computational Materials Repository (CMR) [74],

� AFLOWLIB [75],

� Pearson's crystal data (PCD).

OQMD is a database containing DFT calculated properties of 285,780 compounds. Materials Project
is an open web-based computed information on known materials for 65,968 compounds. CMR is
a software infrastructure which provides tools for data management (storing, analyzing, etc.) with
the main focus on DFT calculations. Up to now 126,569 data entries are available on their web
page. A�owlib is a globally available DFT based database of 771,310 material compounds. PCD is
a crystal structure database for Inorganic Compounds containing 274,000 structural data sets.

The presumably most demanding step (iii) is the data analysis for the selection of novel ma-
terials according to user-de�ned criteria or the discovery of new physical insights. The authors
distinguish between intrinsic and extrinsic HT computational research. The former dominates the
current literature in this �eld. It consists only of the characterization and selection step (iii) and is
performed through (fast) descriptors, which are empirical quantities. These descriptors form a link
between microscopic data and macroscopic physical parameters and are mandatory to determine
the optimum material within an existing DB.

Extrinsic research is a closed feedback loop over the steps (i), (ii) and (iii). The evaluation of
descriptors on existing DBs will suggest new structures, which will generate further data for the
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DBs and so on. The suggestion of new structures can be obtained from di�erent schemes such as
genetic algorithms [76, 77], data mining[78], bayesian probabilities [79], or neural networks [80, 81].
Since these strategies are not subject of this thesis, they are not discussed here.

More important for the present study is the fact that also in the extrinsic approach, the iden-
ti�cation of accurate and fast descriptors is a bottleneck for an e�cient communication with the
DB. For certain applications such a descriptor is known from long-standing empirical studies. In
the �eld of structural materials, for example, the above mentioned stacking fault energy is known
to be a key parameter that ful�lls two aspects: On the one hand, it controls macroscopic defor-
mation mechanisms such as twinning or transformation induced plasticity (TWIP and TRIP) that
mesoscopically involve a change of the stacking sequence of atomic layers. On the other hand, it is
relatively quickly accessible by ab initio calculations. This descriptor is for example used to optimize
high-strength steels or Mg alloys with the help of DFT calculations [82�84].

In more sophisticated approaches, however, the explicit form of the descriptor is a priory not
known, but this is part of the evaluation process. For example, Yang et al. [85] have used HT
ab initio methods to determine candidates for Topological Insulators (TI), where a band inversion
is induced by spin-orbit coupling. The investigations started, with a DFT study of the energy
di�erence of conduction and valence bands, were extended to its strain dependence and �nally
considered the ratio of DFT calculations with and without spin-orbit coupling

χTI = −
ESOC
k (a0)/a0

δEnoSOC
k (a)/δ(a)|a0

. (2.1)

Once the descriptor parameter χTI has been identi�ed, it can be used to get a fast feedback for the
feasibility of all materials in a repository. In the present case [85], the repository a�owlib.org with
the mentioned descriptor led to the discovery of 28 (already known and also unknown) TIs.

In general, the descriptor can contain more than one physical quantity. In the of �eld ther-
moelectric materials, for example, such a descriptor is the dimensionless �gure of merit ZT , which
combines the electrical and thermal conductivity (σ and κ) such that the equation

ZT =
S2σT

κ
(2.2)

in which S corresponds to the Seebeck coe�cient and T to the temperature, can be used in order
to quantify the thermoelectric performance. The material properties σ, κ are evaluated from the
ab initio band structure. In order to determine thermoelectric materials ZT must be at least larger
than one. A stability descriptor under focus is the enthalpy of formation, which is also accessible
with ab initio methods. Both descriptors were used in di�erent studies of Madsen et al. [86�88].

In 2016 Kirklin et al. used HT DFT computational approach to search for promising pre-
cipitate/alloy system. For this purpose they de�ne a four compound descriptor, i.e. Stabil-
ity, Coherency, Cost, and Two-phase equilibrium with the host [89]. 200,532 DFT calculations
(L12,D019,L21 structures) have been performed in order to search for strengthening precipitates in
alloy matrices. First the convex hull (it represents the most stable structure with the lowest energy
for the given compound) from the OQMD is determined for all considered compounds. The stability
(the �rst descriptor) is given as the di�erence energy between the phase under focus and the energy
of the convex hull at the composition for that phase taken from the OQMD. All compounds with



18 2.2 Computational approach

a di�erence larger than 25 meV/atom are ignored. The coherency is de�ned as a relative lattice
mismatch between the precipitate compound and the host element. All compounds exceeding the
mismatch of 10 percent are ignored. The cost is determined from the so called Her�ndahl-Hirschman
Index (HHI), which is an availability measurement, as used by Gaultois et al. [90]. The last de-
scriptor, the so called two-phase equilibrium with the host is valid if the precipitate compound is
stable or if it at least decompose into the bulk.

The simultaneous relevance of several physical parameters is occasionally visualized in so-called
treasure maps. For example such a treasure map was presented by Lencer et al. for phase-change
materials [91]. Materials with a small degree of ionicity and small magnitude of covalency of the
bonding have the tendency towards phase-change. In 2013 Hammerschmidt et al. demonstrated
that the composition-dependent relative volume di�erence and the valence electron count employ
the structural stability of TCP phases in multi-component TM alloys [92]. Koermann and co-
workers [93] presented the Curie temperature and magnetization saturation (at T = 0 K) maps for
CorCrFeNi-based alloys w.r.t. (Ag,Au,Pd,and Au) and Cr content.

However, the consideration of di�erent physical parameters in one descriptor is typically not
straight-forward. It is neither clear, which physical parameters should be involved nor how they
should be combined in a mathematical expression. This challenge can be addressed by multivari-
ate statistic methods, such as Multi-optimization techniques, Factor Analysis (FA) or Principle-
component analysis (PCA). The application of these approaches implies that the generated set of
data is used to generate a knowledge about physical relations and mechanisms, which is not avail-
able at the beginning of the study. Such a knowledge discovery is performed in the present thesis
by using the FA which will be described below.



Chapter 3

Theoretical Background

The combination of HT with DFT based computer simulation(s) is a very powerful and fast method
in order to systematically study and understand the mechanisms on the electronic scale governing
interstitial solubilities. For transition metals it is known that electronic e�ects (e.g. hybridization,
screening, etc.) directly in�uence for example the hydrogen solubility which is one out of several
interstitial elements under focus in this thesis. An exact solution of the quantum mechanical problem
on the electronic scale would need to consider approximately 1023 interacting particles (electrons
and atoms) at the same time which is not possible. Simpli�cations of the Hamiltonian are needed
and presented in the following chapter.

The energy E of a system of interacting nuclei and electrons, both in motion, is given by the
time-independent Schrödinger equation.

H̃ψ = Eψ, (3.1)

in which the Hamilton operator H̃ denotes the sum of the kinetic operator T̃ and the potential
operator Ṽ (H̃ = T̃ + Ṽ ). On the electronic scale the kinetic operator describes the electronic
motion (atomic units are considered as ~ = me = e = 4π/ε0 = 1)

T̃el = −1

2

Nel∑
i=1

∇2
i (3.2)

and the nuclei motion

T̃nuc = −1

2

Nnuc∑
J=1

∇2
J

MJ
(3.3)

with Nel electrons and Nnuc nuclei. MJ are the masses of the nuclei and ∇ the Nabla operator. If
the electron and nucleus interaction is considered the potential operator Ṽ contains the repulsive
electron-electron

Ṽel−el =
1

2

Nel∑
i 6=j

1

|ri − rj |
, (3.4)

19



20

the repulsive nucleus-nucleus

Ṽnuc−nuc =
1

2

Nnuc∑
J 6=I

ZIZJ
|RI −RJ |

, (3.5)

and the attractive electron-nucleus

Ṽel−nuc = −
Nnuc∑
J=1

Nel∑
i=1

ZJ
|ri −RJ |

(3.6)

Coulomb interaction, with ri denotes the coordinates of the i-th electron, RI (ZI) the coordinates
(charge) of the I-th nucleus.

Even for a system with just three interacting bodies the Schrödinger equation cannot be solved
analytically. Therefore a numeric solution is necessary. A quantum mechanical system with ≈ 1023

interacting bodies cannot be solved at all. Here, depending on the required accuracy, approximative
simulation methods are applied in the �eld of Computational Materials Research for di�erent time
and length scales.

Typical length and time scales of materials simulations

� Electronic scale simulations: 10−9 m and 10−15 s

� Atomic scale simulations:10−9 − 10−6 m and 10−9 s

� Film scale simulations: 10−6 m and 10−6 − 10−4 s

� Macroscopic scale simulation: 1 m and 107 s

Following this philosophy of approximative methods and their scales, we adapted three external
programs, namely VASP (DFT), LAMMPS (Molecular Dynamics), and KMC (Kinetic Monte Carlo)
representing the �rst three simulation scales into our workbench having in mind that coupling
between the methods of di�erent length scales (or intermediate scales) are also possible. A separate
code for the macroscopic scale calculating material properties of multi-phase aggregates (�gure 3.1)
has been developed in the same programming language python [94�96]. This code is not adapted
to the workbench but in principle can be easily linked to it since it is using elastic constants of
single-phase crystals.

Whereas VASP is a so called ab initio method, i.e. free of empirical parameters, LAMMPS
and KMC require further input. For example, in the case of LAMMPS this could be an empirical
potential and a thermostat or in the case of LAMMPS or di�usion barriers and binding energies
in the case of KMC. In the latter two cases electronic interactions are not considered directly in
the Hamiltonian. They are contributing to the empirical potential of LAMMPS and to the binding
energies and di�usion barriers of KMC. The needed input information can be gained by VASP.
The implemented workbench allows the communication between the di�erent length scales. For
example, the output of VASP calculations can be used as input parameters for the larger scales
tools and vice versa. This might be a fast relaxed structure performed with LAMMPS as a direct
input structure for the computationally more demanding VASP calculations.
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Figure 3.1: Di�erent time and length scales covered by pyCMW and SC-EMA.

In all three scales, if one looks at the huge amount of ≈ 1023 atoms (plus electrons for electronic
scale simulations) in a crystal, it becomes clear that there is a huge number of interactions which
needs to be considered.

Even for a single atom, we take, for example, Fe, contains 26 electrons plus one nucleus which
interact with each other. In 3D space the wave function contains 107 degrees of freedom (DOF) (
26 * 3 ( electron coordinates) + 1 * 3 (nucleus coordinates) + (26 ( if electron spin)). A further
reduction can be achieved by the separation of the electrons in quasi-free and quasi-bound electrons.
Quasi-bound electrons are located in the vicinity of the nucleus so that they are not able to �escape�
out of the potential of the core. They do not a�ect the material properties (for example the electronic
conductivity) like quasi-free electrons do. Coming back to the example of Fe, the subdivision into
18 quasi-bound and eight quasi-free electrons reduces the DOF to 8*3+1*3+1*8=35.

Considering alloys with more than one species of atoms, the DOF are increasing drastically and
furthermore for the description of point defects (≈ 10 to 100 atoms are needed). As is apparent from
the consideration above, further simpli�cations are necessary. These simpli�cations are discussed
below.

3.1 From the many-body problem to Density Functional Theory

The �rst important approximation (reduction of the problem) is the so called Born-Oppenheimer
Approximation (BOA), which was �rst derived for a molecule in quantum chemistry and is named
after Max Born and J. Robert Oppenheimer [12].

The Born-Oppenheimer Approximation

The time independent Schrödinger equation 3.1 of a molecule containing Nnuc nuclei and Nel elec-
trons is a second order partial di�erential equation with (Nnuc+Nel)×3+(Nel if spin-decomposed)
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DOF.

The basic idea of the BOA is to reduce the dimension of the equation by separating the electron
motion ψel from the nucleus motion ψnuc, thus the motion of electrons is considered within a static
external nucleus potential with Ṽel−nuc = Ṽext, and to solve the Schrödinger equation in two separate
steps. The new wave function has then the form

ψBOA(r,R) = ψel(r; R) · ψnuc(R) (3.7)

with R, r as the coordinates of the nuclei and electrons. The interaction between the nuclei and
electrons Ṽel−nuc can be assumed as an external potential, thus

Ṽel−nuc(r; R) =: Ṽext(r; R) (3.8)

and the electronic Hamilton operator is then in the form

H̃el(r; R) = T̃el(r) + Ṽel−el(r) + Ṽext(r; R). (3.9)

The electronic ground state can be derived from the equation

H̃el(r; R)ψel(r; R) = Eel(r; R)ψel(r; R). (3.10)

The wave function itself is often described by a linear combination of a orthonormal basis set

ψel(r; R) =

n∑
i

ciφi(r) (3.11)

with
〈φi|φj〉 = δij . (3.12)

The energy of the electronic ground state ψel,0 is then given by

Eel,0 = 〈ψel,0|H̃el|ψel,0〉 . (3.13)

The Born-Oppenheimer energy surface is de�ned as

EBOA(r,R) := Eel,0(r; R) + Vnuc−nuc(R), (3.14)

and consequently the total energy of the whole system is then given by

Etot = Tnuc + EBOA. (3.15)

The separation of the electronic motion and the ionic motion reduced the size of the many-body
problem but due to the large number of electrons (especially their coordinates and spins) is the
calculation of the Schrödinger equation 3.10 and hence the energy in equation 3.13 still impossible.

Further approximations for the electronic motion given by the so called Density-Functional
Theory (DFT). The complex energy equation 3.13 is replaced by a calculation method which is
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using the electronic density,
Eel,0 = 〈ψel,0|H̃el|ψel,0〉 = E[n] (3.16)

i.e. an energy functional on the density n.

In 1964 Pierre Hohenberg and Walter Kohn proved that DFT is an exact theory of describing
a many-body systems [13]. One year later in 1965 W. Kohn and Lu Jeu Sham introduced single-
particle equations to solve the originally many-body system [97]. This will be presented in the
following part.

Hohenberg-Kohn theorems

The precondition for the Hohenberg-Kohn theorems is the existence of an external potential vext(r)

which is not a�ected by the motion of the electrons.

�It is proved that there exists a universal functional of the density n(r), independent of the
external potential v(r), such that the expression

E ≡
∫
vext(r)n(r)dr + F [n(r)] (3.17)

has as its minimum value the correct ground-state energy associated with vext(r)� [13].

Here E denotes the electronic ground state energy Eel mentioned in equation 3.13, and the
right-hand site of the equation denotes the Hohenberg-Kohn energy functional EHK[n(r)] on the
charge density n(r). Eel is equal to EHK[n] when the charge density n(r) corresponds to the true
unknown charge density distribution (without excitation). If this is the case, the integral in the
equation 3.17 corresponds to the Coulomb energy of electron-nuclei interaction. The second term,
the density functional F [n(r)] will be explained below.

�The external potential vext(r) for any system is determined, except of a constant shift, uniquely

by the electronic ground state density n0(r)�.

In other words, the electronic density n determines the external potential vext(r) and all ground
state properties. This is schematically shown in �gure 3.2.

Figure 3.2: Schematic drawing of the Hohenberg-Kohn circle. The external potential vext(r) is
determined, except for a constant, by the ground state density n0(r).

The theorem is a prove that a energy functional on the density EHK[n] (which gives the ground-
state energy E0 by minimizing it) must exist, but doesn't o�er how to obtain the ground-state
energy. It writes

E0 ≤ E[ni] (3.18)



24 3.1 From the many-body problem to Density Functional Theory

and
E0 = E[n0] = min

n
EHK[n]. (3.19)

Similar to the terms of the sum of equation 3.9 the Hohenberg-Kohn energy functional EHK[n]

contains the external energy functional Eext[n], the electron kinetic energy functional T [n], and
the repulsive electron-electron interaction functional Vint[n] on the electron density. Considering
equation 3.17 and de�ning

Eext[n] =

∫
vext(r)n(r)dr (3.20)

it becomes clear that FHK[n] can be expressed as the sum

FHK[n] = T [n] + Vint[n]. (3.21)

The potential functional in equation 3.21 contains a classical term, the so called Hartree term
EH [n], and a non-classical term Exc[n]. The Hartree term describes the classical repulsive (long
range) Coulomb energy of the electron-density which is interacting with itself

EH [n] =
1

2

∫
n(r)n(r′)

|r− r′|
drdr′. (3.22)

The non-classical term, namely the energy functional density of the exchange and correlation of the
electrons, is yet unknown and must be approximated. This will be discussed in more detail below.
Equation 3.21 can then be reformulated as

FHK[n] = T [n] + EH [n] + Exc[n], (3.23)

and hence the Hohenberg-Kohn energy functional in equation 3.19

EHK[n] = T [n] + Eext[n] + EH [n] + Exc[n]. (3.24)

Kohn-Sham Equations

In the Kohn-Sham equations the many-body system of Nel interacting electrons is replaced by an
auxiliary system of non-interacting electrons, assuming that the ground state density of interacting
electrons is equal to the ground state density of speci�c chosen system of non-interacting electrons
in an e�ective potential.

This simpli�cation allows to solve Nel single-particle Schrödinger equations in the form

H̃KS |ϕi〉 =

(
−1

2
∇2
i + veff(r)

)
|ϕi〉 = εi |ϕi〉 (3.25)

under the constraint of orthogonal single-particle wave functions

〈ϕi|ϕj〉 = δij (3.26)
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in an e�ective potential veff(r). According to equation 3.24 the e�ective potential writes

veff(r) =
δEext

δn(r)
+
δEH
δn(r)

+
δExc
δn(r)

= vext(r) + vH(r) + vxc(r), (3.27)

and the density

n(r) =

Nel∑
i

∑
s

|ϕi(r, s)|2 (3.28)

in which s denotes the spin. The Kohn-Sham equations 3.25, 3.27, and 3.28 depending on each
other and must be solved self-consistently. This is schematically shown in �gure 3.3

Figure 3.3: Schematic drawing of the self-consistency loop of the Kohn-Sham equations. Starting
with an initial guess for the density, the e�ective potential veff(r) is determined through it. Nel

single-particle Schrödinger equations with the given e�ective potential are solved self-consistently.

In equation 3.27 all terms of the sum, except the exchange-correlation potential vxc(r) are well
de�ned. The latter term needs to be approximated. This will be discussed in the following part.

Exchange-correlation Functional (GGA and LDA)

In the mentioned Kohn-Sham loop the only unknown part is the exchange-correlation potential
which is the derivative of the exchange-correlation functional with respect to the density n

vxc(r) =
δExc[n]

δn(r)
. (3.29)

The exact functional is the di�erence in the kinetic and potential energy between the true interacting
many-body system and the Hartree and kinetic energy of the auxiliary system

Exc[n] = 〈T̃ 〉 − T [n] + 〈Ṽ 〉 − EH [n]. (3.30)
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Since the true energies are unknown, this functional must be approximated.

Local Density Approximation

Historically the �rst approximation for this functional was performed by Hohenberg and Kohn
with the so called Local Density Approximation (LDA) assuming that exchange and correlation of
electrons are local e�ects and that the energy density is the same as in a homogeneous electron gas
εhom. It writes

ELDA
xc [n] =

∫
n(r)εhom(n(r))dr, (3.31)

and its functional derivative

δExc[n]

δn(r)
= vxc(r) = εhom(r) + n(r)

∂εhom(n)

∂n(r)
. (3.32)

LDA is the simplest approximation for the exchange-correlation term. An extension of LDA is the
so called Generalized-Gradient Approximation (GGA) which is using the gradient of the density
|∇n| as further information. This extension leads in general to an improvement for most but not
for all material systems.

Generalized-Gradient Approximation

All developed GGA functionals (PBE [98], PW91 [99], B88 [100],. . . ) can be expressed in the general
form

EGGA
xc [n] =

∫
n(r)εhom(n, |∇n|)dr, (3.33)

and the potential in the general form

vxc(r) = εhom(r) + n(r)
∂εhom(n)

∂n(r)
−∇

(
n
∂εhom(n)

∂∇n

)
. (3.34)

The GGA functional used in this work is PBE, developed by Perdew, Burke, and Ernzerhof in 1996.
The simpli�cations mentioned above reduce the problem of solving the originally formulated

Schrödinger equation 3.1 but still do not solve the huge number of interacting electrons. As already
mentioned the periodicity of solids turns out to be a huge advantage to reduce the problem drastically
by using Bloch-functions. This will be explained in the following part.

Periodic Boundary Condition and Bloch's theorem

The wave function of an electron in a potential with R-periodic boundary conditions (i.e. v(r) =

v(r + R)) can be expressed as a product of a plane wave exp(ikr) and a R-periodic function
uαk(r) = uαk(r + R)

ψαk(r) = uαk(r) exp(ik · r) = uαk(r)(cos(k · r) + i sin(k · r)), (3.35)

with R = n1a1 + n2a2 + n3a3 where ai denotes the three basis vectors of a Bravais lattice and ni
integer numbers.
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Figure 3.4: 2D example of a periodic lattice with two basis atoms in the unit cell (blue shaded). a1

and a2 denotes the two Bravais vectors of the cell. The translation vector R11 = 1a1 + 1a2 is one
example out of an in�nite number of possible translations. The wave functions of the electrons in
such a crystal can be expressed as Bloch functions.

Here k denotes the wave vector which is de�ned in the �rst Brillouin zone and α counts the
eigenvalues to the corresponding vector k. Equation 3.35 is also known as so called Bloch-function
(named after Felix Bloch) [101]. The periodic function uαk(r) can be expressed through a Fourier
transformation in the reciprocal space

uαk(r) =
∑
G

cαk(G) exp(iG · r), (3.36)

with G being a reciprocal lattice vector. Considering both equations 3.35 and 3.36 the single-particle
wave function of an electron in a periodic potential can be expressed as

ψαk(r) =
∑
G

cαk(G) exp(i(k + G) · r). (3.37)

Bloch's theorem allows to reduce the description of the electronic wave function of a quasi-in�nite
crystal to the limited region of a unit cell (Brillouin zone).

The wave functions of the valence electrons are drastically �uctuating close to the core due to
the requirement of being orthogonal to the core electrons (number of plane waves in a basis-set
are increasing to describe the �uctuation accurately). In this manner solving single-particle wave
functions under the constraint of orthogonality becomes in an all-electron approach computationally
demanding especially for the valence electrons.

The last simpli�cation is performed with the separation of quasi-free and quasi-bound elec-
trons. The so called pseudopotential approximation (in contrast to an all-electron approach) was
introduced by Hans Hellmann 1935 [102] and simpli�es the solution of the electronic Schrödinger
equations drastically (number of plane waves in a basis-set are decreasing).
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Pseudopotentials

Because of screening e�ects and a very strong electron-nucleus Coulomb interactions electrons close
to the core are �trapped� and do not in�uence material properties very much (they are chemically
inactive). The wave function close to the core region, which is de�ned by a cuto�-radius, is ap-
proximated by smooth functions in order to �atten out the wave function in this region. The wave
function above the cuto� radius of the approximated system is equal to the wave function of the
all-electron system (see �gure 3.5). The mentioned approximation - the separation of core and va-
lence electrons and the smoothing of the wave functions for the valence electrons in the core region
- leads to the last simpli�cation of the originally formulated many-body problem.

Figure 3.5: s, p, d pseudo-wave functions (dashed line) and all-electron wave functions (blue line) of
Mn obtained in the valence band region (-8.16 eV). Above the cuto� radius rcut the wave functions
of the pseudo system corresponds to the all-electron system [103].

3.2 Solubility of interstitial elements

A central motivation of the HT study in this thesis is the fact that interstitial elements can sig-
ni�cantly in�uence the materials properties of a host material. One of the central questions to
approach these phenomena, is the number of interstitial atoms that can be dissolved in the bulk
material or in other words the solution enthalpy of interstitial atoms. In this context, hydrogen
serves as a prototype interstitial element for our investigations.

The chemical reaction of originally n
2 diatomic gas molecules X2 (e.g., hydrogen molecules)

dissolved as n single atoms in a bulk system (e.g., a transition metal) in the form

n

2
X2 +M →MXn + δQ (3.38)
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is exothermic, if the system releases heat (δQ > 0) and endothermic if the system requires heat for
the transformation (δQ < 0). The product system is for an exothermic reaction energetically more
favorable than the reactant system (see �gure 3.6).

Figure 3.6: The reactant system contains the bulk contribution (a transition metal) and a single X2

molecule. The product system shows the dissolved single atom in the bulk. If the product system
is more favorable, the heat δQ > 0 is released. With δQ the interstitial solubility is increasing.

For constant temperature T = T0, constant pressure p = p0, and a �xed number of interstitial
atoms, the heat is equal to the change of the enthalpy δQ = −∆H. Assuming a very low interstitial
concentration (ppm range) that is dissolved in the metal, implying that the individual interstitial
atoms do not interact with each other the already introduced equation 1.1 of the form

cH =

√
p

p0
· e

∆S
kB · e−

∆H
kBT (3.39)

can be derived [55]. Here T is the temperature, p is the pressure, p0 the reference pressure (in
general p0 = 1 atm), kB the Boltzmann constant, ∆S is the entropy change between the reactant
and product system, which is assumed to be constant with respect to the temperature T . One
should note that this assumption is not necessarily ful�lled in reality. Various point defects show
deviations from a temperature independent entropy of formation for point defects. In the case of
vacancies, for example, a recent study [104] has shown a strongly nonlinear temperature dependence
of the free energy of formation, resulting from anharmonic lattice vibrations. However, at room
temperature anharmonic e�ects are negligible small and therefore within a narrow temperature
regime the assumption of a constant entropy will be justi�ed. The key quantity in equation 3.39 is
the already mentioned solution enthalpy ∆H, which is the enthalpy di�erence between the product
system (2) and the reactant system (1) as shown in �gure 3.6

∆H1→2 = H2 −H1. (3.40)

The enthalpy is the sum of the internal energy U and the product of the pressure p and the volume
V

H = U + pV. (3.41)

The solution enthalpy can be determined experimentally as follows: If the interstitial containing
metallic phase is in thermodynamic equilibrium with a surrounding atmosphere of gaseous intersti-
tial molecules, then the chemical potential of a single interstitial atom 1

nµ
g
X in gas atmosphere needs
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to be equal to the chemical potential of the atomic interstitial dissolved in the host metal µM
X , i.e.

1
mµ

g
X = µM

X , (3.42)

in which m denotes the number of atoms per molecule (for example m = 2 in the case of a diatomic
hydrogen molecule). From the equilibrium condition the Van 't Ho� equation for the solution
enthalpy

∆H1→2 =
R

2

∂ ln p

∂(1/T)
(3.43)

can be derived in dependence of the ideal gas constantR, the dissociation pressure p, and the
temperature T (see �gure 3.7). Each dot in the �gure corresponds to several isotherm experimental
measurements. In contrast to the sophisticated experimental method, the determination of ∆H

with ab initio methods is straight forward and will be presented in the following section.

Figure 3.7: Copied from [105]. Van 't Ho� plot of the complex hydride Mg2FeH6 and MgH2 . Black
dots belong to pressure composition isotherms measured at di�erent temperatures. According to
equation 3.43 the slopes corresponds to ∆H.

3.3 Ab initio description of the solution enthalpy

The calculation of the ∆H within DFT is conceptionally straight forward. It is the energy dif-
ference between the relaxed interstitial-metal system and the reference pure metallic system and
the chemical potential of the interstitial element. Considering equations 3.40 and 3.41 the solution
enthalpy of the metal-interstitial system after interstitial solution at zero pressure is given as

∆H0 = EMX −
(
EM + 1

2µX2

)
, (3.44)

in which EMX denotes the relaxed energy of the transition-metal super-cell containing a single
interstitial atom, EM denotes the reference energy of the pure transition-metal super-cell, and 1

2µX2

corresponds to the half energy of a diatomic interstitial molecule in vacuum. In order to determine
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the energies of the distorted and pure system both must be calculated at zero pressure p = 0. In order
to obtain the energies at corresponding zero pressures two methods are implemented and discussed in
the results chapter 5. The chemical potential of the interstitial elements are also calculated at p = 0.
This is simply a X2 molecule in vacuum. However, one should note that the chemical potential of
the interstitial element can vary according to its environment (e.g. temperature or pressure) [106].
The current thesis is focused on interstitial elements in dilute limit. For this purpose, the size of
the supercell must be checked carefully to avoid interstitial-interstitial interaction with mirror-cells.

3.4 Zero point energy: Einstein method and dynamical matrix

For small interstitial atoms such as hydrogen, but also for the host crystal structure quantum
e�ects due to zero-point vibrations might be relevant. They result into an energy shift of the
ground state energy as compared to a classical treatment of the crystal structure. The zero-point
energy (ZPE) EZPE must in principle be added to each term in equation 3.44. For ∆EZPE =

EZPE
MX −

(
EZPE

M + 1
2µ

ZPE
X2

)
equation 3.44 can then be reformulated as

∆H0+ZPE = ∆H0 + ∆EZPE. (3.45)

The most simple description of ZPE is achieved, if the lattice vibrations of a single particle are
mapped on a one-dimensional harmonic oscillator, for which

Esp
ZPE =

1

2
~ω, (3.46)

and where ~ is the reduced Planck' s constant and ω denotes the oscillation frequency of the particle.
More generally, to determine the energy for the (coupled) oscillations in a crystal exactly, the whole
phonon dispersion ωq within the �rst Brillouin zone must be known. The ZPE for the crystal is
then de�ned as

Ecell
ZPE =

1

2
~
∫ ΩBZ

ωqdq. (3.47)

In this work the ZPE is determined in two di�erent ways, within the Einstein approach [107] and
by calculating the full dynamical matrix.

Einstein method

The Einstein method is computationally less demanding, since it describes the ZPE of the crystal
by a single e�ective frequency ω. Here, we assume that the di�erence between the ZPE of the
metal-interstitial system and the ZPE of the pure host material is dominated by the vibrations of
the single interstitial atom, which is missing in the pure host material. Therefore, it is su�cient to
determine the vibrational frequencies of the interstitial atom in the harmonic approximation using
the potential

V (x, y, z) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (3.48)

in which ωα is the vibrational frequency of the interstitial atom in α = x, y, z direction, respectively.
The ab initio energy is determined for small displacements of the interstitial atom out of its
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equilibrium position into three perpendicular directions and a second-order polynomial �t is used
to to determine the vibrational frequencies

ωx,y,z =

√
2ax,y,z
m

. (3.49)

with aα as quadratic pre-factor and the total frequency

ωMX = ωx + ωy + ωz (3.50)

of the interstitial in the host material. As already mentioned above the zero-point energy di�erence
between the metal-interstitial system and the pure host material can be approximated with this
frequency, thus

EMX
ZPE − EM

ZPE =
1

2
~ωMX. (3.51)

The last term of equation 3.45 can then be completed with the ZPE of the X2 molecule

∆EZPE = EMX
ZPE − EM

ZPE −
1

2
EX2

ZPE =
1

2
~
(
ωMX −

1

2
ωX2

)
(3.52)

in which EX2
ZPE correspond to the zero-point energy of theX2 molecule and ωX2 denotes the vibration

frequency of it.

Dynamical matrix

The computationally more demanding approach is the calculation of the full dynamical matrix of the
supercell. In contrast to the Einstein method, this requires the displacement of all non-equivalent
atoms in the supercell and the determination of the force components on the atoms that result from
the displacement. In the harmonic approximation a proportionality Fi = −

∑
j Φi,juj of the forces

Fi on an atom i after the displacement of atoms j is assumed. Here, Φi,j is the force constant matrix
and the indices distinguish also special directions. Analogous to equation 3.49, the diagonalization
of the matrix allows the determination of the eigen frequencies of the atoms

ωi =

√
Φdiag
ii

mii
, (3.53)

with i = 1, . . . , 3N and Φdiag
ii denotes the matrix elements of the diagonalized matrix. The diago-

nalization yields a coupling of all oscillators in terms of phonon modes. Therefore, the displacement
of a single atom a�ects all other atoms in the supercell. The displacement of all atoms leads to the
general formulation of the force constant matrix

Φi,j := −
∂F iuj
|∂uj |

≈ −
F iuj
|uj |

, (3.54)

with i = 1, . . . , 3N and j = 1, . . . , 3N . [108] [109]. After Fourier transformation of Φ, which is called
the dynamical matrix, the periodic boundary conditions of the supercell are taken into account.
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If the supercell (containing N atoms) consists of P primitive cells, then the originally formulated
(3N × 3N)-dimensional force constant matrix can be replaced by (3r × 3r)-dimensional (with r =

N/P ) matrices Φ̂P of P primitive cells and their positions RP (i.e. the translation vector w.r.t.
the �rst primitive cell de�ned at the origin). The dispersion relation ωq can be determined by
diagonalization of the dynamical matrix

Dα,β(q) =
1

√
mαmβ

∑
P

Φ̂Pα,β exp(iq·RP ), (3.55)

with the masses of the atoms mα,mβ , the force constant matrices Φ̂P and their positions RP of the
primitive cells.

Due to symmetry, this dispersion relation of the phonon frequencies ωq can be limited to the �rst
Brillouin zone of the primitive cell (containing r atoms) only. The number of accurate frequencies
(at exact q points) is increasing with increasing the numbers of primitive cells in the supercell. Since
we consider a dilute concentration of interstitial atoms in our work, the translational symmetry of
the supercell is broken. The required large supercells will contain only one exact q point. At the
same time they are connected with a very small Brillouin zone. Therefore, the determination of the
frequencies at the Γ point is considered as being su�ciently accurate for the present purpose.

The vibrational contribution to the solution enthalpy of interstitial atoms is typically ignored in
the literature. For the interstitial element hydrogen, however, quantum e�ects like ZPE corrections
can be relevant for the di�usivity [40, 110, 111] and also for the solubility [112, 113], since it is a light
element and experiences a rather sti� potential in the interstitial position of an transition metal.
Therefore, they might also a�ect the solubility signi�cantly. Similar to the Einstein approach 3.51,
the ZPE contribution of each phonon mode is now added to obtain

EMX
ZPE =

1

2
~

3N+3∑
i=1

ωDiag
ii (q = (0, 0, 0)) (3.56)

for the metal-hydrogen system and

EM
ZPE =

1

2
~

3N∑
i=1

ωDiag
ii (q = (0, 0, 0)) (3.57)

for the pure metallic system. The total ZPE correction can again be calculated according to equation
3.52.

3.5 Semi-empirical models for interstitial solubilities

The general philosophy of an approach to predict interstitial solubilities in transition metals is
explained in this section. For this purpose, we choose hydrogen as a prototype interstitial element
to understand the mechanisms governing the solubility. Furthermore, we describe the only semi-
empirical model we are aware of that predicts the hydrogen solubility based on a systematic study
of experimental data. It has been introduced by Griessen et al. [114].

The desired model is assumed to describe the target property �solution enthalpy" as a function
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f(X), i.e.
∆H = f(X), (3.58)

of a yet unknown combinations of parameters X that contains information about the host material
and/or the interstitial element, but does not use any information about the interstitial in the host
as input.

Griessen's model is special in the sense that it has with the �volume expansion� of the host
material due to hydrogen incorporation another target property. It is best described by the partial
molar volume V H which is by de�nition the change of host volume with respect to the change of
moles hydrogen ∂V/∂nH in the host [115]. Considering atomic units and according to subsection 3.3,
the excess volume by de�nition is given as

V H =
VMX − VM

nX
, (3.59)

in which VMX denotes the equilibrium volume of the metal-interstitial system, VM denotes the
equilibrium volume of the pure host system and nX denotes the number of interstitial atoms in the
host (which is in practical calculations equal to one, if the dilute limit is considered).

Griessen and Feenstra [115] demonstrated that in the dilute limit the change of the solution
enthalpy of hydrogen with respect to the logarithmic change of the host materials volume for
constant temperature is very well described by the approximation

∂∆H

∂ lnV
≈ −BV H, (3.60)

i.e. by the product of the excess volume of the hydrogen atom and the bulk modulus of the host
material. Equation 3.60 is for the dilute limit considered here actually almost exact [115]. The
correlation of the such predicted with experimental values for the solution enthalpy is shown in
�gure 3.8. It has been determined for a large variety of host materials and very low hydrogen
concentrations.

Taking both equations 3.58 and 3.60 into account, it follows

BV H =
df

d lnX

(
−∂ lnX

∂ lnV

)
=:

df

d lnX
γX . (3.61)

If γX is constant for all unknown parameters X it directly follows

BV H = ϕ(∆H) or
df

d lnX
γX = ϕ(f(X)). (3.62)

The partial di�erential equation 3.62 can be rewritten as

df

ϕ(f(X))
=

1

γX
d lnX. (3.63)

Since d lnX is equal to 1
X dX, the integration of both sides yields∫ f

f0

df

ϕ(f)
=

∫ X

X0

1

γX

1

X
dX (3.64)



3.5 Semi-empirical models for interstitial solubilities 35

Figure 3.8: Copied from [114]. Comparison between the experimental obtained solution enthalpy
of hydrogen in 3d and 4d transition metals and the product of the bulk modulus and the excess
volume of hydrogen in the reference host metal.

Having in mind that we considered γX to be constant, the right-hand site of equation 3.64 can be
solved by using analytic properties of logarithms:∫ f

f0

df

ϕ(f)
= ln

(
X

X0

) 1
γX

. (3.65)

We now determine the function ϕ(f) from a �t through the experimental data shown in �gure 3.8.
From this we get

ϕ(f) = 3.83f + 345. (3.66)

Next we transform the left-hand side of equation 3.65∫ f

f0

1

3.83f + 345
df =

1

3.83
ln

(
3.83f + 345

3.83f0 + 345

)
= ln

(
3.83f + 345

3.83f0 + 345

) 1
3.83

= ln

(
X

X0

) 1
γX

. (3.67)

By taking the exponential on both sides, it follows[
X

X0

] 1
γX

=

[
3.83f + 345

3.83f0 + 345

] 1
3.83

(3.68)
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and comparing both sides one can gets the value γX = 3.83 and

X = k(3.83f + 345) or ηX = f + 90 (3.69)

with unknown constants k or η = 1
3.83k . It was therefore Griessen's approach to �nd a product of

physical parameters X of the pure host system which linearly correlates with the function f under
the constraint γX = 3.83.

Earlier energy level analysis [116] on Pd6H1 clusters revealed that the incorporation of hydrogen
reduces the lowest lying conduction band of the metal phase (highlighted at bottom of �gure 3.9),
but the energy reduction is almost compensated by the repulsive electron Coulomb interaction due
to an increased charge density close to the protons. Overall the system energy is decreased and

Figure 3.9: Copied from [116]. Band analysis of an octahedral Pd cluster achieved with a self-
consistent �eld method (SCF-Xα-SW). The insertion of hydrogen interstitial leads to a lowering of
the lowest lying band of the host element. The electron coming from the hydrogen atom accomodates
just above the Fermi energy of the Pd6 cluster (red ellipses).

the hydride formation becomes bene�cial. On the other hand, the additional electron coming from
hydrogen is accommodated just above the Fermi level of the host material (highlighted at top of
�gure 3.9). The electron uptake at the Fermi level increases the system energy and hydride formation
becomes expensive. The energy gain of the system is supposed to be the energy di�erence of the
Fermi level and the energy of the center of the lowest lying conduction band of the pure Pd6 cluster
∆E = EF −Es. To achieve a model that takes the impact of local e�ects, such as volume expansion
or the site occupancy, into account, Griessen introduced two more parameters, the d-band width
Wd of the host element, which correlates with the d-d band overlap integral, and the distance of
the interstitial site to the neighboring atoms Rj , i.e. the spacing of the interstitial site. Both a�ect
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the solution enthalpy. The mentioned parameter X is then in the form

X = ∆E ×Wm
d ×

∑
j

R−nj (3.70)

with the yet unknown exponentials n and m, and with j counting the nearest neighboring atoms
(four in the case of tetrahedral site occupation and six in the case of octahedral site occupation).

Considering equation 3.61, γX must ful�ll the constraint

γX = −∂ lnX

∂ lnV
= −∂ ln ∆EF−s

∂ lnV
−
∂ lnWm

d

∂ lnV
−
∂ ln

∑
j R
−n
j

∂ lnV
= 3.83. (3.71)

By using the correlations for ∆EF−s ∼ V −5/3, Wd ∼ V −5/3, and Rj ∼ V 1/3 , equation 3.71 can be
reformulated as

3.83 =
5

3
+

5

3
m+

1

3
n, (3.72)

or
6.5 = 5m+ n (3.73)

which is the constraint for solving the exponentials n and m of equation 3.70.

Satisfying equation 3.60 with the constraint 5m + n = 6.5 and using a least squared errors �t
to the experimental data shown in �gure 3.8, the best result is achieved for m = 1

2 , n = 4 and the
multiplicative constant η = 18.6 (kJ/mol H)(Å4eV−3/2). The predicting formula for the solution
enthalpy is then given as

∆H = 18.6 (kJ/mol H)(Å4eV−3/2)∆EW
1/2
d

∑
j

R−4
j − 90 kJ/mol H. (3.74)

The correlation between the predictive formula and the experimental values is presented in
�gure 3.10.

In the present work, it is assumed that such a predictive formula (which can also be a similar one
with di�erent �tting values) can be found not only for hydrogen, but also for all other interstitial
elements under focus. Instead of using experimental input as shown in �gure 3.8, we fully rely
on ab initio calculations. Furthermore, we replace the analytic approach presented above, by an
automated data analysis, which is based on concepts of multivariate-statistics.

3.6 Bravais-Pearson correlation coe�cient

An important statistical tool for our analysis is the detection of linear correlations between di�erent
physical quantities, as for example the solution enthalpy of two di�erent interstitial elements. For
this purpose, the Bravais-Pearson correlation coe�cient (PCC) is used, which is well established in
statistical mathematics [117]. For two sets of data a = (a1, a2, ..., an) and b = (b1, b2, ..., bn), which
can be the solution enthalpies of two di�erent interstitial elements (say ai and bi) for a series of
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Figure 3.10: Copied from [114]. Griessen's predictive formula of the hydrogen solution enthalpy vs
experimental values in 3d and 4d transition metals. An overall good accuracy can be observed.

host elements i, the PCC is de�ned as

ra,b =
cov(a,b)

σaσb
=

∑n
i=1 (ai − 〈a〉) (bi − 〈b〉)√∑n

i=1 (ai − 〈a〉)2
√∑n

i=1 (bi − 〈b〉)2
, (3.75)

with the covariance of a and b in the nominator and their standard deviations in the denominator
(having in mind that the coe�cient 1

n in the nominator and denominator is canceled out). For a
high correlation r is equal to one, for no correlation r will be close to zero, and for anti-correlation
equal to minus 1. This is shown schematically in �gure 3.11.

If more than two physical quantities are compared to each other it is more convenient to use
the matrix notation and calculate the PCC matrix for all combinations of the physical parameters.
First the standardized solution enthalpy table Z can be calculated from the table containing the
physical quantities (for example the solution enthalpy table in 6.1) with the equation

Zij =
Xij − µj

σj
(3.76)

with µj and σj being the mean value and the standard deviation of column j. The PCC matrix
can be determined directly through the equation

Rij =
1

n− 1
Z†Z (3.77)
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Figure 3.11: Schematic plots for the Pearson correlation coe�cient for the two extreme cases (a)
high correlation r ≈ 1 and (b) no correlation r ≈ 0. High anti-correlation corresponds to a value of
r ≈ −1.

in which n denotes the number of rows of matrix Z.

3.7 Factor Analysis

The Factor Analysis is a method in the �eld of multivariate statistics in order to determine k
latent/unobserved variables (so called factors) among m observed variables with the aim to reduce
the dimension of the problem (m > k). All observed variables can then be determined (with a
certain error bar) by a linear combination of these factors.

With the factors p1, .., pk and their loads aij each element of matrix Z containing all observed
variables in standardized form can be determined by

zij = pi1aj1 + ...+ pjkajk + δi (3.78)

with a certain error δi. The equation above is reformulated in matrix notation as

Z = PA† + δδδ. (3.79)

Considering equation 3.79 and assuming the error to be negligible small the correlation matrix can
be rewritten as

R =
1

n− 1
(PA†)†(PA†) (3.80)

or
R =

1

n− 1
AP†PA†. (3.81)

For non-correlated factors the multiplication gives the identity

1

n− 1
P†P = I. (3.82)
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and for equation 3.81 follows
R = AA†. (3.83)

According to equation 3.83 the loading matrix A can be determined through a singular value
decomposition (svd) of the matrix R

R = UΣV† = UΣU† = UΣ
1
2

(
UΣ

1
2

)†
. (3.84)

in which Σ is a diagonal matrix with the eigenvalues of R, and U contains column-wise the corre-
sponding eigenvectors. The loading matrix it then determined by

A = UΣ
1
2 T, (3.85)

in which T corresponds to any orthogonal rotation matrix. Starting with the identity matrix for T

(e.g. T = I) a particular solution of the loading matrix A can be determined. The reduction to k
factors appears by canceling out eigenvalues and corresponding eigenvectors according to di�erent
criteria (for example the Kaiser criterion only considers eigenvectors with eigenvalues larger than
one because the corresponding factors covers more variance than a single observed variable did
before). The reduced correlation matrix Rredk can be determined by

Rredk = AIk (AIk)† (3.86)

The error due to the reduction can be determined by taking the di�erence of the original correlation
matrix and the reduced correlation matrix

δδδ = R−Rredk . (3.87)

Equation 3.85 denotes that any orthogonal rotation T of the particular solution is again a solution.
A rotation allows a convenient visualization and interpretation of the factors. The rotation matrix
T is determined in such a way that the columns (e.g. sum of variances) of the squared loadings of
matrix A are maximized (the so called varimax method [118] is used here). An example is presented
in the appendix.



Chapter 4

The workbench

Figure 4.1: Figure adapted from [119]. Knowledge Discovery in Databases (KDD) process according
to Fayyad et al.. The core of this process is the data-mining step, which needs an application of a
speci�c algorithm in order to determine patterns from the data. The technical realization of this
scheme is an in-house developed workbench.

In 1996 Fayyad et al. published their general concept of Knowledge Discovery in Databases
[119, 120] as illustrated in �gure 4.1. The whole KDD process is in the best case a fully computational
process. Therefore, a workbench with several tools is required that can (i) handle each step of the full
process in its complexity and can (ii) provide a user friendly communication between the computer
generated data and its user. For this purpose, the development of algorithms for the most important
steps within a workbench called pyCMW was a substantial part of the present thesis. We designed
it such that the speci�c requirements of the KDD process are taken into account. The workbench
is separated into di�erent tools that are explained in the following.

4.1 Concepts

Front-end and Back-end

The KDD process requires full �exibility of the user to transform her/his data and at the time
the chance to quickly visualize dependencies in order to identify possible pattern(s). We realized

41
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that this is best ful�lled if a strict separation into a front-end and a back-end of the workbench
is performed. In this context the front-end code contains the libraries, which are responsible for
the generation of the graphical user interface (GUI). The back-end delivers all necessary workbench
libraries needed for data creation, data analysis and data visualization (see �gure 4.2). It is com-
pletely free of front-end libraries and can be directly used from a Python shell. To be more speci�c,
a requirement for data visualization provided in the back-end is the �structure output", i.e. to
provide the atomic coordinates and atomic species on the command line. However, if needed, a
call of a `showGUI' on the command line, will switch to the front-end and will open a GUI for the
speci�c tool, e.g. AtomStructure.showGUI().

The front-end is using libraries from QT, which is a cross-platform framework. In this thesis
we are focusing on the back-end, since this contains the important concepts in terms of KDD. It
is constructed in such a way, that front-end tools, which are not speci�c for the materials science
approaches addressed here, can be easily adapted to it.

Figure 4.2: Tools of the developed workbench pyCMW (data creation, data visualization, data
analysis, data storage). A strong separation between the front-end and back-end allows a general
�exibility in the usage of the workbench.

Consideration of various external programs

The KDD process also requires a �exibility in the selection of tools for the generation of physical
data from a given set of input parameters. A workbench in which the connection with only one DFT
program is hard-coded would be insu�cient. It is, therefore, a major feature of the pyCMW work-
bench that the communication with external programs is generic and supports various programs on
di�erent time and length scales simultaneously (see �gure 3.1). In fact, if typical external programs
used for atomistic simulations in materials science, such as VASP [121] and LAMMPS [122], being
representatives for a DFT and a molecular dynamics code, are compared with one another, we �nd
that from a physical point of view all information processed by them can be subdivided into two
main modules: into the atomic Structure and into the Hamiltonian.

From a practical point of view, the communication with external programs happens via the
program-speci�c input and output �les. Despite the diversity of �le structures, certain classes of
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programs share identical physical data, so-called generic information. One example are the atomic
coordinates that are intrinsically required for all kind of atomistic simulations. Other physical data
like the total energies resulting from the calculation are not identical, but are of the same kind.

This general observation implied a certain structure during the implementation of the work-
bench classes. One of the cornerstones of pyCMW is that generic information is collected in one
generic class (see �gure 4.8) and used in the same way by all sub-classes. To make this approach
computationally e�cient, we use the concept of inheritance of object-oriented programming for this
purpose.

4.2 Implementation

The mentioned subdivision into two main modules has been applied to our workbench as shown
in �gure 4.3. The highest class in the hierarchy is the Project class which needs at least one

Figure 4.3: Subdivision of the modules and corresponding classes. A de�ned project can contain
several jobs. A single job must contains an instance of the Hamilton class (e.g.VASP, LAMMPS,..),
an instance of the corresponding parameters class (e.g. vaspParams, lammpsParams,..) and an
instance of the AtomStructure class.

Hamilton instance as an input-parameter (e.g. VASP, LAMMPS or KMC). The Hamilton class needs
a parameters instance and the parameters class an AtomStructure instance as input-parameters
as shown in �gure 4.3. It should be mentioned here that all instances can be generated during the
program run or can be imported from existing so called HDF5 �les (Hierarchical Data Format that
will be discussed in section 4.3), which contain all necessary information for the speci�c instance.
The mentioned classes are presented in more details in the following.

Structure classes: CrystalStructure and AtomStructure

The Structure module contains the CrystalStructure and the AtomStructure classes. The
CrystalStructure de�nes the Bravais lattice, the Bravais basis, the lattice constants, and the
chemical element of a perfect (and well de�ned) cell based on the fourteen Bravais structures and
does not allow further modi�cations of the cell.
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An example code is shown in �gure 4.4. Line 1 generates an instance of a CrystalStructure

class consisting of the element iron with a cubic Bravais lattice and a fcc basis which corresponds
to setting four basis atoms. Line 2 generates a similar structure but with the element manganese
in this case. For a �cubic" Bravais lattice which is a category for all cubic lattices the user has
to choose one of the known three types: �fcc", �bcc" or �primitive". The CrystalStructure class

Figure 4.4: Generation of two CrystalStructure instances basis1 and basis2 corresponding to two
separate fcc cells. At this level further modi�cations of the cells are forbidden.

delivers on purpose very limited functions. For further modi�cations the CrystalStructure must
be transformed to an AtomStructure in which any modi�cation on the atomic structure is allowed,
which can be for example a shifting of the cell (line 6), the addition of magnetism (line 7), the shift
of planes, replacing atoms etc. Alternatively, one can directly use the AtomStructure, in order
to generate molecules for example. An example code which is a continuation of the previous code
is shown in �gure 4.5. Line 3 and 4 cast the previously generated CrystalStructure instances
to AtomStructure instances in order to modify them. Line 8 produces a diamond cell (consisting
of two fcc cells shifted with respect to each other). The sum in this line is an overloaded �+"
operator resulting in a new AtomStructure instance. Further modi�cations on the diamond cell
like increasing (27-fold) the cell, generating vacancies or adding an interstitial hydrogen atom (lines
9, 11 and 12) are performed. It should be mentioned, that the presented functions usually allow more
input options as presented here. For example the �index=1" term in line 11 can be replaced by the
term �element=’Mn’" or in order to generate surface structures a command like �deleteAtoms(z >

2.)" will generate slabs. Line 14 stores the newly generated AtomStructure in a HDF5 �le named
structure h5file.h5.

A generated CrystalStructure class must be transformed to an AtomStructure class since
the parameters class of the Hamiltonian module (see �gure 4.3) only allows an instance of the
AtomStructure class as an input-parameter.

Hamiltonian classes: Hamilton and parameters

The Hamiltonian module contains two classes (see �gure 4.3). The �rst class is the parameters

class which is the hierarchically lower class in this module.
This class contains functions and variables that are in�uencing the speci�c Hamiltonian. Com-

paring the external programs VASP and LAMMPS common and non-common functionalities are
observed. This allows a separation/extension of the parameters class and in a di�erent naming
of the inheriting vaspParams class and the lammpsParams class. However, generic information and
functions (i.e. in common) of the programs are collected in the common parent class (parameters)
and non-common information and functions in the corresponding child classes. This is shown in
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Figure 4.5: Modi�cation of the cells (e.g. shifting, adding magnetism, merging, cell increasing,
deleting, adding (interstitial) atoms, etc.) is allowed only on the AtomStructure level. The
CrystalStructure instances must be transformed to AtomStructure instances via the command
getAtomStructure().

�gure 4.6.

Figure 4.6: Class concept for the parameter classes. All parameter classes of external programs are
inheriting from the parent class, namely parameters.

Handling and unifying the input and output of physical quantities of the external programs
requires careful book-keeping due to the variability of input formats requested by the external
programs. For example it can be the usage of di�erent physical units in each external program
(e.g., energy can be in Hartree, eV, Joule, etc.) or a clear de�nition of valid input values, which can
be for example a data range or a speci�c data type. In a more complex case, input formats could be
hierarchical, i.e. the usage of a given input parameter makes the usage of further input parameters
necessary.

The program speci�c information about the possible �ags, used units, input values, and the
relation between them must be considered. This kind of information is stored in a HDF5 template-
�le called vasp_default.h5 in the case of VASP (lammps_default.h5 or kmc_default.h5 respec-
tively).

An example code for the usage of the parameters classes of the two di�erent programs (VASP
and LAMMPS) is shown in �gure 4.7. In lines 15 and 20 instances of vaspParams and lammpsParams



46 4.2 Implementation

Figure 4.7: Usage of the parameters classes: vaspParams and lammpsParams. An instance of an
AtomStructure class is necessary as input.

are generated, respectively. Both instances need the AtomStructure as input. The AtomStructure
instance myAtomStruc in line 15 was generated and modi�ed in the lines mentioned before but it
can be directly imported from an existent HDF5 �le called structure_h5�le.h5 as shown in the lines
19 and 20. In the lines 16 and 17 modi�cations of VASP speci�c input �ags are done, i.e. the width
of the fermi smearing and the cut o� energy for de�ning the plane wave basis set. Here the unit of
the energy is given in rydberg but also other units (e.g. hartree, eV) can be used.

The two programs VASP and LAMMPS have di�erent input and output formats but their corre-
sponding parameter classes (i.e. vaspParams and lammpsParams) are using the same AtomStructure
class as an input-parameter (lines 15 and 20). This indicates a major advantage of our workbench
but will be more clear in the discussion of the next class, the Hamilton class.

The Hamilton class contains information and functions for the communication between our work-
bench (especially between the generated HDF5 �les) and the external program speci�c input and
output �les. Common information/functions of the external programs VASP, LAMMPS and KMC
are collected in a parent class called genericHamilton and non-common information/functions in
the corresponding classes VASP class, LAMMPS class and KMC class. This is shown in �gure 4.8. The
genericHamilton class which is the highest parent class shares generic information and functions
which are inherited and used in all three considered classes, whereas the MDHamilton class shares
common information and functions just for VASP and LAMMPS Hamiltonians. Non-common in-
formation, such as, e.g., the naming of the input and output �les as well as the information how
to generate the speci�c input �les or how to collect the output data are stored in these lowest
classes. This structure allows a certain �exibility and makes especially the inclusion of not yet im-
plemented atomic or electronic structure codes very easy. An example code for VASP and LAMMPS
is presented below.

The Hamilton classes need an instance of the corresponding parameters classes. In the case of
the VASP class it must be a vaspParams instance (param4Vasp) as shown in line 21 in �gure 4.9,
and for LAMMPS it is lammpsParams (param4Lammps) as shown in line 22. Prede�ned �scenarios"
can be used in order to set prede�ned �ags for the speci�c need. For the case shown in �gure 4.9 a
structure relaxation is aimed. Line 24 writes all the information about the structure and parameters
into a HDF5 �le. Line 25 generates the default LAMMPS input �les and line 26 submits the job
to a local machine/cluster. Assuming the job �nished correctly line 28 collects the output of the
LAMMPS job into the HDF5 �le. The storage of the input and also the output information in the
same �le is challenging due to the large output but can be handled with HDF5 �le formats. It is
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Figure 4.8: Class concept for the Hamiltonian classes. Generic information of di�erent external
programs are collected in the same class and inherited from the basis classes. This concept makes
the inclusion of new programs into the workbench very easy.

Figure 4.9: Usage of the Hamilton classes: vaspParams and lammpsParams. An instance of an
AtomStructure class is necessary as input.

obvious that the code from line 24 to line 28 also works for VASP having its own �le formats.

Figure 4.10: The key concept of pyCMW. A relaxed structure with LAMMPS can be directly used
in a di�erent program (VASP) for further calculations.

Starting a VASP calculation with the relaxed LAMMPS structure (line 29 and 30 in �gure 4.10)
is straight forward with this way of implementation. Since a computational �cheap" pre-relaxation of
structures can be necessary in the present work (the incorporation of interstitial elements is breaking
symmetries) which was the case for example in the work by Glensk for vacancy calculations with
VASP [123]. In order to determine a ground state structure for cells with vacancies pre-relaxations
with low convergence parameters were necessary by alternating calculations for the volume and
for the ion positions. However, our concept described above allows alternatively to use a MD
program (LAMMPS) in order to determine fast pre-relaxed structures for �expensive" electronic
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VASP calculations.

Project class: project

The transformation of data in a KDD process typically involves higher-dimensional problems (e.g.
pre-relaxation of the cell as described above, phonon calculations, �ts to the Murnaghan equation
of state, etc.) which require that several calculation steps are collected in the project class. In
a simple case, this can be a loop over di�erent lattice constants needed for a Murnaghan �t, but
also more complex algorithm steps can be de�ned here. For the simple case of a Murnaghan �t the

Figure 4.11: Algorithm for a fully automatized calculation of bulk modulus and equilibrium lattice
constant of a de�ned structure. Gray shaded areas represent the steps performed in the external
program. The steps of such an algorithm can be stored in a project class illustrated in �gure 4.3.

algorithm is shown in �gure 4.11. The whole process described by �gure 4.11 can be performed fully
automatically. This means no human interaction is needed and each of the steps will automatically
start after the preceding step is �nished. The corresponding example code is shown in �gure 4.12.
Line 1 generates the structure of interest. Line 3 de�nes the precision (i.e. the values for the
bulk modulus and the equilibrium volume). The database is then asked for the structure with
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the given precision (line 5) . If more than one item is found the results will be immediately
plotted (line 8). If this is not the case convergence calculations will be started with the command

Figure 4.12: The setup of an automatized bulk modulus and equilibrium volume convergence with
respect to the cuto� energy. A schematic overview is given in �gure 4.11.

runConvergenceCalcs() in line 12 (i.e. a function of the project class). In order to understand
the necessity of the project class even in such a simple case we need a closer look to �gure 4.13. It
shows the code for the presented scheme (loop) in �gure 4.11. An approximate volume is calculated
in lines 2 and 3 (the member-function getRelaxedVolume is not explained here). Since the target
is given as a list of two targets one has to consider both in the �if-case" in line 6 but for the case of
simplicity we describe the code for a single target with the given initial target parameter (line 4).
After the de�nition of a volume range and the number of data points (line 5) for the Murnaghan �t
later in the code (line 10) the self consistent calculation (loop) is performed until the convergence
condition(s) (current error is smaller than the targeted error) is (are) ful�lled (lines 6 to 16).

4.3 Tools of the workbench

As mentioned above (see �gure 4.2) the workbench consists of four main tools required for KDD.
All tools have in common that they can be directly used from the command line or with a graphical
user interface.

Data storage

A fundamental feature of HT ab initio investigations is the production of huge amounts of data. We
have therefore chosen HDF5 (Hierarchical Data Format) as an ideal candidate for the aimed data
management (data storage, data compression, data sharing, data query, etc.) in pyCMW. Among
several commercial and non-commercial software platforms (e.g. Java, MATLAB, ..), it is also
supported by Python, since powerful interfaces and libraries (e.g., PyTables) have been developed
by the Python community. HDF5 libraries are using chunked (bunches of certain length) datasets
as atomic objects and the disk I/O is made in terms of complete chunks. This allows a very high
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Figure 4.13: A function of the project class for automatized convergence calculations as shown in
�gure 4.11.

performance in terms of data indexing and data query [124]. The disadvantage is the high main
memory usage for storing the index structure (so called B-tree) of the chunks. As mentioned above,
PyTables is using HDF5 �les and �gure 4.14 shows the performance (time for complex queries) in
comparison with a postgreSQL database. It can be seen that complex queries on PyTables can
be 10 times faster than for postgreSQL tables and half disk space is used for the same amount of
data. In addition one can see that for a large number of search hits the query time is increasing for
postgreSQL whereas pytables remain almost constant.

Figure 4.14: Performance test of the HDF5 format (by using PyTables) compared to postgreSQL
for a dataset of 10 million rows. The time for complex query for PyTables uncompressed data is 10
times faster than for postgreSQL and only the half disk space is used. Copied from from [125].

The I/O of the di�erent programs (VASP, LAMMPS, KMC, etc.) are stored in this uni�ed �le



4.3 Tools of the workbench 51

format (HDF5). This allows a �exible information exchange between these programs (e.g. output
of relaxed structure performed with LAMMPS can be directly used by VASP as input structure as
shown above). It is very suitable to use the hierarchical form of the HDF5 �le format in order to store
the output of these programs which can also be ordered in a hierarchy as presented in �gure 4.3.
The �gure 4.15 shows a di�erent hierarchically �lled HDF5 �le. A project called �Murnaghan"

Figure 4.15: A hierarchically �lled HDF5 �le after the collection of a single �job" of a VASP
Murnaghan-project containing �ve di�erent lattice constants (red line). Expanded information
about the energies after each ionic step and the total calculation time (blue lines) for the setup of
54 osmium and 1 helium atom at a lattice constant of 2.64 Å (green lines) is shown.

containing �ve di�erent lattice constant calculations was submitted. The genericHamilton class
is visualized as a folder containing sub-folders of the calculation results (logStatus), the hamilton
(parameters), and the structure of the cell.

Data creation

The data creation is de�ned as a whole process beginning with the creation of the input data/jobs,
via the calculation step with any external program, up to the collection of the output data as shown
in the example above.
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An intermediate automatic step is the parsing (translation) of the created instances of the classes
to the speci�c requested input format of the external program (e.g. vaspParams will be parsed
to INCAR, KPOINTS, POTCAR, POSCAR for VASP or lammpsParams to LAMMPS speci�c
input �les) or KMC, respectively. In addition a HDF5 �le (default: VASP_run.h5 containing full
information of the input data will be created. This is shown in �gure 4.16. At this stage a so called

Figure 4.16: Schematic view of the same commands that can be applied for di�erent external
programs and will generate and read program speci�c input and output �les.

�job" in a folder is created. In parallel all necessary information about the job (job status, job id,
job path, ..) will be stored in a database. The database controls the running, �nished, submitted
jobs via a demon. Finished jobs are collected and the �hierarchical" �lling of the HDF5 �le with
output data is performed automatically.

Data visualization

Data visualization in general means the presentation of input and output data to the user in two
ways. The user can decide to visualize the data as output strings on the command line or use
the front-end. For example the structure consisting of chemical elements, atomic coordinates,
magnetization, etc. on the command line is presented as a multidimensional array. A print

structure.coordinates call shows the structure coordinates, print structure.elements shows
the elements of the structure, etc. The command structure.showGUI() opens a GUI, which
presents the user di�erent options from visualizing the atomic positions in an embedded Qt window
to interacting on the structure directly (removing atoms, planes, changing elements, etc.). Data
visualization includes also the visualization of �nished calculations. Therefore, one or more HDF5
�les, �lled with output data, can be visualized on the command line or via a GUI (see �gure 4.15).

Data analysis

Based on the database information and the HDF5 �les output information (e.g. energies, volumes,
forces) can be read in and analyzed via di�erent data analysis tools. These tools are de�ned in the
genericHamilton class if all external programs serve same physical information. For example a
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Murnaghan �t needs cell volumes and corresponding energies as input which can be calculated with
VASP or LAMMPS but not with KMC. The function for the Murnaghan �t will be de�ned in the
common parent class, which is in this special case the MDHamilton class. The cluster analysis for
example which is valid for all three programs is de�ned in the genericHamilton class. More complex
analysis functions like vibronic frequencies of phonons, corresponding free energy calculations, or
tools for the factor analysis introduced in section 3.7 are de�ned as separate classes or modules.

Job control

Figure 4.17: Schematic plot of the working principle of pyCMW. The clients database is separated
from the di�erent DB architectures and batch-queuing systems of the clusters.

In order to overcome the problem of di�erent job management systems (i.e. batch-queuing
systems) for di�erent computer clusters, we establish our own postgreSQL DB [126] which gets the
�ltered information coming from the di�erent environments (e.g. cluster no.1, cluster no.2, etc.
as shown in �gure 4.17). The DB contains four tables: Two tables for current jobs (pending or
running), a table of �nished jobs and a table for error state jobs all involving information about
project path, job path, project status, job status, etc.

Facing the problem that calculations can be performed on di�erent locations (e.g. on local
machines or on di�erent clusters) having their own job management systems (e.g. SGE [127]) it is
necessary to make the architecture of the workbench and its working environment independent of
the several locations.



Chapter 5

Results I: Study of chemical trends

A key hypothesis of this thesis is that the solubility of interstitial elements is largely determined
by physical properties of the host materials. The host materials under focus in this work are pure
3d, 4d, and 5d transition metals and their neighbors in the periodic table of elements (PTE) as
shown in �gure 5.1. The �rst part of this chapter contains, therefore, a study of these pure host
systems only. We consider their ground state properties, provided they belong to the hcp, bcc, or fcc
structures and have only a collinear magnetic order (e.g. nonmagnetic, ferro- or antiferromagnetic).
In addition, we also consider all host elements under comparable conditions, for which we have
chosen a non-magnetic fcc structure. Only in the second part, the occupation of the octahedral
(o-site) or tetrahedral sites (t-site) of these host materials by light weight elements such as H, He,
B, C, N, O, F, and Ne will be discussed. This study is focused on dilute concentrations of these
elements, since this is a typical situation in experiments.

5.1 Study of host materials

The 4th, 5th, and 6th row elements of the PTE have been studied in hexagonal-close-packed
(hcp), face-centered-cubic (fcc) or body-centered-cubic (bcc) crystal structures, assuming either
a non-magnetic (nm) behavior or ferromagnetic (fm) con�gurations of their local moments. A bcc
(collinear) anti-ferromagnetic structure was only used in the case of the host element chromium.

5.1.1 Self-consistent parameter optimization

Convergence of lattice constant and bulk modulus

For all ab initio calculations, it is an important prerequisite to ensure the convergence of the targeted
physical data with respect to the numerical parameters employed in the program. Typically, this
requires individual tests and adjustments by the user that are hardly compatible with a high-
throughput data analysis.

We have therefore used the workbench pyCMW to automatize this procedure. The user de�nes
a maximum error for a targeted physical property, as for example, the lattice constant or the bulk
modulus of a crystal structure, and selects the set of considered convergence parameters, for example
the cuto� radius for the plane wave basis functions or the number of k-points for the sampling of

54
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Figure 5.1: Interstitial elements and host materials that are studied in this thesis. The latter include
mainly the 3d, 4d, and 5d transition metals. Since the study of chemical trends is extended to some
neighboring metals, we typically refer to the host materials as 4th, 5th, and 6th row elements.

the Brillouin zone. The program then performs an automated value optimization of the mentioned
convergence parameters with respect to the prede�ned error range. The challenge is to optimize
all convergence parameters simultaneously. The principle algorithm, however, is similar to the one
shown in �gure 4.11.

For the purpose of the present study and as a compromise between the numerical e�ciency for
convergence tests and actual calculations, the self-consistent convergence scheme is not �ne-tuned to
perfectly optimize all numerical parameters. For example, to converge bulk modulus and equilibrium
lattice constant, the cuto� radius is typically varied between the values 200, 300, and 400 eV (see
�gure 5.2). More sensitive dependencies such as the speci�c position of the lattice constants used for
the evaluation of the Birch-Murnaghan �t [128] are not considered in the optimization procedure,
though the developed code would in principle allow to do so.

c/a relaxation of hcp materials

As another example for automatizations implemented in the workbench, the relaxation of the c/a
ratio of hcp crystal structures, is discussed next (see �gure 5.3). This requirement for a shape
relaxation makes the structure optimization a two-dimensional problem, what distinguishes hcp
from the cubic cells (bcc and fcc). We have applied the following algorithm for this purpose.

1. Start with the ideal c/a ratio for hcp of 1.633 and �nd the equilibrium volume V0.

2. Relax the c/a ratio and keep the volume V0 �xed.

3. Keep the c/a ratio �xed and relax and �nd the equilibrium volume V1.
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Figure 5.2: E�cient optimization of numerical parameters to ensure a pre-de�ned precision (dotted
lines) of physical properties such as bulk modulus and the equilibrium lattice constant of a given
element. In order to visualize only a fraction of the huge amount of generated data, a limited
number of parameter choices are displayed.

4. Repeat the last two steps if the di�erence V1-V0 is larger then a given con�dence interval.

The c/a relaxation results for 4th, 5th, and 6th row elements are shown in Table 5.1 and
demonstrate that overall a good agreement with experiments is achieved. A more meaningful
benchmark for the c/a ratio algorithm is the comparison of the results with those obtained in
a brute-force calculation of a whole mesh of c/a ratios and lattice constants. This comparison is
graphically visualized in Figure 5.4 for the two elements Ti and Zn, which have qualitatively di�erent
deviations from the ideal c/a ratio. It clearly demonstrates the e�ciency of the algorithm. A more
quantitative comparison for further elements is shown in table 5.2. It demonstrates a qualitatively
good agreement of the results achieved by the described algorithm with a calculation of a whole
mesh of a and c lattice constants.

5.1.2 Chemical trends for host materials

In this section, we study the equilibrium volume, the bulk modulus, and the zero point energy for
the elements in their respective ground state. On the one hand, the parameters of the host materials
are required as reference values for solution enthalpies. On the other hand, the performance of HT
investigations can already be tested and demonstrated: instead of discussing these quantities for
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Figure 5.3: The lattice parameters (c and a)
of an hcp supercell which are considered. Ac-
cording to a hard-spheres model the optimum
c/a ratio is at approx. 1.633.

element GGA-PBE experiment

Sc 1.56 1.592
Ti 1.581 1.586
Co 1.617 1.622
Zn 1.877 1.861
Y 1.549 1.57
Zr 1.599 1.594
Tc 1.607 1.606
Ru 1.58 1.579
Cd 1.883 1.886
Hf 1.564 1.583
Re 1.617 1.616
Os 1.581 1.577
Tl 1.566 1.595

Table 5.1: Calculated c/a ratios in comparison
with experiments [129]. Note that former are ob-
tained at T = 0 K, whereas the latter are deter-
mined at room temperature.

a few elements only, the full set of all transition metals of the 4th, 5th and 6th row of the PTE
is determined simultaneously. The large set of achieved results yield perfect statistics for testing
correlation functions, data analysis strategies, and the relevance of the chosen crystal structure.

The cell structure and also magnetism might in�uence the trends of the bulk modulus and the
equilibrium volume. Therefore we are interested in studying also the elements under comparable
conditions. For this purpose we discuss the trends of the host elements additionally in non-magnetic
(NM) fcc structure. The results are shown below.

The equilibrium volumes per atom and the bulk modulus for the host elements in their respective
ground states are shown in �gure 5.5. A clear chemical trend is observed for all studied elements.
It can be seen that elements with half-�lled d-band have smaller atomic volumes [130], i.e. smaller
lattice constants, than the elements to the right and to the left of the periodic table. Further, it

mesh calc algorithm di�erence
element alat c/a-ratio alat c/a-ratio ∆alat ∆c/a-ratio

Ti 2.925 1.581 2.925 1.581 0 0
Co 2.501 1.624 2.495 1.617 -0.006 -0.007
Zn 2.666 1.87 2.66 1.877 -0.006 0.007
Cd 3.056 1.885 3.045 1.883 -0.011 -0.002
Tl 3.594 1.548 3.58 1.566 -0.014 0.018

Table 5.2: Results of the iterative algorithm for the lattice constant a (in Å) and the c/a ratio,
compared to a whole mesh calculation.
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Figure 5.4: The relaxation algorithm (red arrows) compared to spline interpolated results achieved
through a calculation of a large mesh (contour surface) for the host elements Ti (a) and Zn (b). The
red line marks the constant volume curve c/a = V0/a

3. The red dot marks the achieved equilibrium
a value and c/a ratio after the �rst iteration with the suggested algorithm. The green dot is the
minimum of the contour surface. The black dotted lines mark the lattice constant a and the energies
after the application of the iteration scheme. The gray dotted lines mark the lattice constant a and
the corresponding energies for a �xed c/a ratio without using the iteration scheme.

can for example be noticed that the 4th row elements have a smaller atomic volume, than those
of the other two rows, whereas the di�erences are surprisingly small between the 5th and 6th row
elements. This, so-called �lanthenide contraction� is known to be related to a reduced screening
e�ect by 4f electrons and the resulting strong binding of the 6s electrons to the core [131, 132].

A reverse chemical trend is observed for the bulk modulus: Half-�lled d-band elements have a
higher bulk modulus than the elements to the right and to the left of the periodic table. These
trends are well documented in the literature [130] and explained in terms of the underlying electronic
structure. It is therefore not meaningful to repeat such an analysis here. Instead we provide a more
detailed discussion on the trends for the ZPE, which have been less systematically investigated so
far.

The zero point energy (ZPE) has been determined for all considered host materials using the
method of the dynamical matrix, as explained in section 3.4. Trends for phonon energies have
previously been performed to our knowledge only for subgroups of the transition metals [134, 135],
as for example for the fcc metals [109]. This is mainly because the involved supercell calculations
require, in comparison to the Murnaghan equation of state discussed above, orders of magnitude
more computational resources. Furthermore, a careful convergence of phonon spectra with respect
to numerical parameters is di�cult to automatize in a HT investigation [109]. To avoid manual
adjustments, we have for example removed those elements from the analysis, for which a straight-
forward application of the dynamical-matrix approach has lead to imaginary phonons.

The results are shown in �gure 5.6a and reveal again clear trends: The phonon energies are
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Bulk modulus ground state (GPa)

Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga
17 54 115 184 179 170 220 191 136 68
Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In
9 109 192 297 350 381 341 243 133 28

Ba La Hf Ta W Re Os Ir Pt Au Hg Tl
11 38 93 164 255 286 293 250 165 87 37

Bulk modulus experiment (GPa)

Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga
17 57 110 160 160 120 170 180 180 140 70
Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In

41 170 230 220 380 180 100 42
Ba La Hf Ta W Re Os Ir Pt Au Hg Tl
9.6 28 110 200 310 370 320 230 220 25 43

Bulk modulus NM fcc (GPa)

Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga
17 51 112 179 238 277 280 248 196 136 67 51
Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In
8 25 107 196 290 365 392 341 243 133 6 28

Ba La Hf Ta W Re Os Ir Pt Au Hg Tl
11 39 93 162 245 299 301 250 165 87 41 36

Bulk modulus di�erence (NM fcc and ground state (%))

Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga
� -5.5 -3.6 -2.8 33.0 � 64.3 19.1 2.3 � -1.4 �
Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In
� -2.4 -3.3 -1.2 -3.9 0.1 -1.7 � � � 9.3 �
Ba La Hf Ta W Re Os Ir Pt Au Hg Tl
-7.5 � -5.3 2.0 -2.3 0.1 -1.8 � � � � 4.1

V0 di�erence (NM fcc and ground state (%))

Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga
� 0.0 -0.1 3.4 0.6 � -10.3 -5.1 -0.6 � 0.5 �
Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In
� -1.5 -0.8 3.2 1.7 0.5 0.5 � � � -1.3 �
Ba La Hf Ta W Re Os Ir Pt Au Hg Tl
1.2 � 0.1 2.9 2.0 0.5 0.5 � � � � -1.6

ZPE di�erence (NM fcc and ground state (%))

Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga
� -12.7 -27.6 � � � -7.1 -18.5 0.8 � -29.3 �
Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In
� -5.8 -20.8 � � -36.7 -35.4 � � � -30.4 �
Ba La Hf Ta W Re Os Ir Pt Au Hg Tl
-3.5 � -26.6 -26.4 -43.4 -34.4 -36.1 � � � � -28.7

Table 5.3: Bulk modulus of 4th, 5th, and 6th row elements in their respective ground state (1st

part) in comparison to experiments at room temperature (taken from [133]) (2nd part) and in NM
fcc structure (3rd part). In the lower parts, a comparison of bulk modulus, equilibrium volume
and ZPE for the elements in their respective ground state and in non-magnetic fcc structure is
performed.
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Figure 5.5: Equilibrium volume per atom (a) and bulk modulus (b) of 4th, 5th, and 6th row elements
in their respective ground state. Chemical trends such as the maximum bulk modulus and minimum
volume for half-�lled d-bands can be observed.The ZPE energy of Nb is very high compared to the
other host elements.

softer for lower rows in the periodic system and the ZPE is highest for elements with d-shells
that are close to half �lling. The trends are less systematic for the 3d metals close to half �lling,
where the magnetic order in�uences crystal structures and lattice constants and therefore also
phonon energies. We have extended the phonon studies to quasiharmonic calculations, in order
to determine for example thermal expansions systematically. However, instead of analyzing these
thermodynamic properties, we would like to focus on the possible correlation of the observed trends,
to prepare upcoming considerations for solution enthalpies.

Comparing the qualitative trends in the �gures 5.5b and 5.6a yields the assumption that the
ZPE is related to the bulk modulus of the material. This correlation is visualized in �gure 5.6b
and is physically evident. The host element niobium shows with approximately 112 meV for the
ZPE a very high value compared to the neighboring elements in the PTE. Despite several tests, it
remains unclear if a numerical or a physical reason is responsible for this deviation. The clari�ca-
tion is beyond the scope of the present work. For a more quantitative evaluation, we have used
the statistical concepts introduced in section 3.6. Applied to all host materials, the two physical
properties have a PCC of 0.56, which corresponds to a weak correlation only. This is partly related
to the di�erent trends among the individual d-electron shells. If one reduces the data set for the
PCC determination to a single row in the periodic table, one obtains the signi�cantly higher values
0.76, 0.75 and 0.93, for the 3d, 4d and 5d transition metals, respectively.

Constraint to NM fcc structures

The analysis of the ZPE and its correlation to the bulk modulus indicates that a straight-forward
evaluation of all available data is often not meaningful. Magnetism, for example, destroyed chemical
trends for the ZPE as discussed in the context of �gure 5.6a. The reduction to certain subgroups
improved the correlation coe�cient. Furthermore, the crystal structures will also have an impact
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(a) (b)

Figure 5.6: (a) Zero point energy for 4th, 5th, and 6th row elements (blue, red, green) in their
respective ground state (�lled markers). (b) Correlation of these zero point energies and the bulk
modulus of the corresponding materials. Empty markers denote the correlation of the elements in
NM fcc structure.

on chemical trends. It is obviously desirable to reduce the diversity of material properties to
more comparable conditions, in order to focus the HT analysis on the chemistry of the considered
materials. We have, therefore, repeated all calculations using the constraint of a non-magnetic fcc
structure. The advantage of such an approach is meaningful. However, the comparison of both PCCs
for the ZPE and the bulk modulus (GS vs NM fcc) reveal almost similar correlation coe�cients
for 3d, 4d, and 5d in GS 0.84, 0.95 and 0.93 and in NM fcc 0.90, 0.91 and 0.92 respectively. The
increase of the PCC for the GS appeared because of canceling out the host elements which are not
accessible in NM fcc structure. This is necessary in order to compare both structures since the PCC
is very sensitive to small samples.

Table 5.3 provides the relevant numbers to evaluate the impact of constraining the magnetism
and in particular the crystal structure on the bulk properties. In the upper part, absolute values
for the elements in their respective ground state and in the NM fcc structure are compared for the
case of the bulk modulus. The deviations are typically minor as compared to the discrepancy with
the experimental values, caused by the approximation in the exchange-correlation functional. In
the lower part of Table 5.3 relative changes of the bulk modulus, the equilibrium volume, and the
ZPE due to the constraint are provided. The changes are largest for the magnetic materials and
for the ZPE of non-fcc materials. This demonstrates that the employed constraints help to reduce
scattering in the data, which is not primarily of chemical origin.

5.2 Comparison of hydrides, borides, carbides, and nitrides

In contrast to this, there are a number of experimental results for the high concentration phase for
the interstitial elements H, B, C, and N available, i.e. hydrides (of the form MH or MH2), borides,
carbides and nitrides [136, 137]. For many transition metals such stable compounds can be formed,
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Figure 5.7: Experimental results for the enthalpy
of formation for hydrides, borides, carbides, and
nitrides of 3d and 4d TMs. The lines connect re-
sults for the same shell of TMs. The TM position
corresponds to the data given in table 5.5.

(TM)H � (TM)N: 0.80
(TM)H � (TM)C: 0.63
(TM)H � (TM)B: 0.85
(TM)C � (TM)N: 0.62

Table 5.4: Correlation coe�cients for the enthalpy
of formations of the TM-interstitial compounds
mentioned in table 5.5.

TM (TM)B (TM)C (TM)N (TM)H

Sc (1) � -131 -157 -67
Ti (2) -80 -92 -169 -42
V (3) -69 -54 -109 -18
Cr (4) -39 � -62 -4
Mn (5) -36 � � -2.25
Fe (6) -36 � � 7
Co (7) -35 � � 0
Ni (8) -50 � � -2

Y (1) � -50 -150 -75
Zr (2) � -103 -183 -55
Nb (3) � -70 -119 -20
Mo (4) -62 -5 � -3
Pd (8) � � � -13.3

Table 5.5: Enthalpy of formation (in kJ/mole
atom) of experimental carbides, borides, ni-
trides (all taken from [136]), and hydrides
(taken from [137]) of 3d and 4d transition
metals. Their position in the PTE is given
in brackets.

which is indicated by a negative enthalpy of formation. Table 5.5 provides the relevant numbers.
It also shows that not all transition metals are forming stable compounds with interstitial elements.

When plotting these data in a diagram as a function of the d-band �lling (transition metal
position), see �gure 5.7, one notices that the chemical trends for these high concentration phases
are similar: Within a class of compounds (e.g. the nitrides) only the �lling of the outer d-shell seems
to be relevant for the formation enthalpy, not its number (3d, 4d, or 5d). The largest values are for
all compounds observed for the TMs with d-shells close to half �lling. The observations yield the
interesting hypothesis that those transition metals that are very good hydride formers, also have a
tendency to form borides, carbides or nitrides. Again the PCC is the best way to investigate such
an assumption more quantitatively. We observe that the PCC of r(TM)B,(TM)H = 0.85 shows a high
correlation between the hydrides and borides and less correlation between the hydrides and carbides
r(TM)C,(TM)H = 0.63 (hydrides and nitrides respectively r(TM)N,(TM)H = 0.80). If an even better
correlation coe�cient than for the high concentration phases is achieved for the dilute limit, then a
predictive formulation in the same spirit as Griessen's predictive model for hydrogen (section 3.5)
can be expected also for other interstitial elements. In particular, it will be interesting to realize, if
the similarities between the impact of hydrogen and boron is also con�rmed for the dilute limit.



5.3 Study of hydrogen in 4th row elements 63

Figure 5.8: Solution enthalpies of H in 3d elements. Circles: Experimental data cited in Ref. [138]:
K and Sc (Ref. [139]), Ti (Ref. [140]), V and Cu (Ref. [141]), Cr, Mn, Fe, and Co (Ref. [142]), Ni
(Ref. [143]), Zn (Ref. [144]), and Ge (Ref. [145]). Filled diamonds: ab initio results for 3d elements
assuming NM-fcc structures. Open diamonds: ab initio results including zero-point energy (ZPE)
in NM fcc structure. Filled triangles: ab initio results for 3d elements in their ground state (T= 0
K) stable structure, as indicated by the label. The ab initio results always refer to the energetically
most favorable interstitial site. Bold elements indicate where the fcc structure is the ground state.
Figure taken from [146].

5.3 Study of hydrogen in 4th row elements

In order to exploit chemical trends in a high-throughput analysis, we �rst would like to get a
physical understanding of the relevant mechanisms that determined interstitial solubilities. For this
purpose, we limit our investigations to the interstitial element hydrogen in host materials of the 4th
row in the PTE. In this section, the ab initio calculations are performed for non-magnetic (NM)
fcc crystal structures which allow to separate chemical trends from properties of the structure and
from magnetic interactions. The approach is also motivated by the interest in the local chemical
environment in an fcc alloy (e.g. an austenitic steel) on the H solution enthalpy. The underlying
assumption is that a local enrichment by impurity atoms does not change the lattice structure of
the host matrix. The main �ndings of the study, which we have already been published [146] are
summarized in the following.

5.3.1 Comparison of solution enthalpies with experiments

A comparison of the solution enthalpies determined by our ab initio approach and by experiment is
shown in �gure 5.8. One observes a nice agreement of theory and experiment data for the 3d TMs.
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Figure 5.9: Solution enthalpy ∆H for: hydrogen in o-site (a) and in t-site (b). Furthermore the
derivative of the solution enthalpy ∆H with respect to the logarithmic volume for hydrogen in the
o-site (c) and hydrogen in the t-site (d) is shown. The red line indicates a �t of the resulting master
curve of the simpli�ed form ∆H(alat) = α exp(−alat) − β(1/alat). The linear dependence of the
derivative for a single host element is due to the 2nd order �t of the ∆H values. Copied from [146].

The �gure further con�rms that chemical trends become more apparent if all host materials are
treated in the same structure and magnetic state rather than changing a complete set of parameters.
If the ground state properties are determined, in particular Cr, Ga, and Ge show large deviations.
Further, the �gure demonstrates that corrections due to ZPE have only a small e�ect on the results.

Looking at chemical trends, we observe a clear dependence of the solution enthalpy on the
�lling of the outer d-shell. We can therefore assume that the 3d electrons have a systematic direct
or indirect e�ect on the solution enthalpy. One candidate for such an indirect e�ect is the change
of the lattice constant, which modi�es the interstitial volume and therefore the solution enthalpy.
In order to discriminate between direct and indirect e�ects the studies on lattice constants of the
elements performed in Sec. 5.1.2, see �gure 5.5, are helpful. They clearly indicate the correlation
between the position of host elements in the PTE and the lattice constant. On the other hand,
previous studies[116, 147] have indicated that apart from the chemical composition of the host
materials the distance of the interstitial atom to the atoms of the matrix material is decisive for the
H solubility. For example, the H solubility increases when alloying fcc Fe with Mn, since it expands
the Fe lattice [147]. More generally, a proportionality between the interstitial Voronoi volume and
the H solubility at octahedral or tetrahedral sites has been observed, while the chemical environment
was of secondary importance.
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5.3.2 Solution enthalpy as a function of the lattice constant

For the above mentioned reasons we systematically check the relevance of volume e�ects by plotting
the solution enthalpies of �gure 5.8 as function of the lattice constant (�gure 5.9). Furthermore,
we varied the volume for each of the host materials around the equilibrium lattice constant, corre-
sponding to an hydrostatic compression and expansion of the lattice.

The solution enthalpy in Sievert's equation 3.39 is a function of pressure. However, a clear trend
can be observed if the solution enthalpy is replotted as a function of the lattice constant. This is
shown in �gure 5.9 for the hydrogen solution enthalpy of the octahedral site (a) and its derivative
(c) and separately the hydrogen solution enthalpy for the tetrahedral site (b) and its derivative (d).
Two interesting e�ects appear:

(A) A universal master curve appears for the solution enthalpy for both sites with a minimum
solution enthalpy at a lattice constant of 4.6 Å for the octahedral and 5.5 Å for the tetrahedral
site. This indicates a competition of attractive and repulsive interactions. An arbitrary chosen
function of the form ∆H(alat) = α exp(−alat)−β(1/alat) can be used in order to describe the
volume dependence of the enthalpy curve shown as a red line in �gure 5.12b

(B) For the elements Cu and Fe (or Zn and Ti) which have almost a same lattice constants a
constant shift in the enthalpy is observed.

In addition to the lattice constant our ab initio study in Sec. 5.1.2 also captured chemical
trends for the bulk modulus for all TMs. Furthermore, the excess volume (equation 3.59) for H
incorporation has been determined together with the solution enthalpy as a function of the lattice
constant.

This allows to test the performance of the introduced analytic relation 3.60. First an axis
transformation from the lattice constant (shown in �gure 5.9a and b) to the logarithm of the
volume is performed. Second the data is �tted to a third order polynomial in order to get the
corresponding solution enthalpy derivative in order to compare it with the product of the pressure
dependent bulk modulus B(p) and the excess volume VH(p), which was determined through the
Murnaghan equation of state. The results are shown in �gure 5.10

The points are close to the analytic expression (solid red line), which allows the conclusion that
the universal trend described in (A) is also applicable to the product of the pressure dependent bulk
modulus and the excess volume. The remaining part of this section is dedicated to understanding
the mentioned e�ects in (A) and (B).

5.3.3 Hard spheres model

If the host atoms are assumed to be hard spheres (with �xed radii) then the interstitial sites (o-site
and t-site) must be su�ciently large enough to incorporate a hydrogen atom coming with its own
�xed radius. The interstitial sites formed by hard spheres is presented in �gure 5.11.

We assume that the �xed radii of the host atoms can be determined with the equilibrium lattice
constant. It is then given as

rhost(alat) = alat/
√

8. (5.1)
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Figure 5.10: The derivative of the solution enthalpy as a function of the bulk modulus B multiplied
by the excess volume VH. The solid red line gives the analytic relation (equation 3.60). Copied
from [146].

Figure 5.11: Hard spheres model: hydrogen (red) located in an o-site (a) at alat = 4.6 Å and in a
t-site (b) at alat = 5.5 Å with host atoms (yellow) sitting at the octahedral (tetrahedral) corners.
Taken from [146].
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The radius of a sphere (e.g. hydrogen interstitial) which �ts in an o-site is then given by

rHocta(alat) = alat · (
√

2− 1)/
√

8, (5.2)

and the interstitial radius in a t-site is given by

rHtetra(alat) = alat · (
√

6− 2)/
√

32. (5.3)

The host atom radii can be obtained rhost(aocta
lat ) = 1.6 Å and rhost(atetra

lat ) = 1.9 Å. We �nd for
the H radii rHocta(a

octa
lat ) = 0.7 Å and rHtetra(a

tetra
lat ) = 0.4 Å, i.e. both are signi�cantly di�erent.

Interestingly, however, the host atom-H bond length in the o-site rhost(aocta
lat ) + rHocta(a

octa
lat ) and in

the t-site rhost(atetra
lat ) + rHtetra(a

tetra
lat ) is for both sites approximately 2.3 Å, i.e. independent on the

site.

A higher solution enthalpy is achieved for smaller lattice constants (e.g. more dense ion packing
leads to smaller interstitial sites) which is in agreement with the studies of Syono et al. and
Baranowski et al. reporting a hydrogen incompressibility in metals [148, 149]. However, the increase
of the solution enthalpy when exceeding a critical lattice constant cannot be explained with such a
simple model. Furthermore, the model predicts di�erent H radii for both sites.

The universal master curve indicates that the observed o-site minimum at 4.6 Å for the element
Sc and the t-site minimum at 5.5 Å for the host element Ca also appears for other host elements.
We check this for the host elements Ca, Sc, Ti, Mn, Fe, Cu, Zn, Ga, and Ge. These host structures
become unstable if their equilibrium lattice constant di�ers too much from the (o and t) site minima.
Large tensile or compressive strain occurs. To avoid instability the host materials are forced to be
ideal fcc structures (no relaxations allowed). The achieved o-site minimum for the elements Ca,
Zn, and Ti correspond to that of Sc (a hydrogen radius of 0.7 Å appears). The achieved optimum
lattice constants for the elements Mn, Fe, and Cu is with approximately 4.1 Å slightly smaller
compared to 4.6 Å. For the host elements Ga and Ge a larger optimum lattice constant is achieved
at approximately 5.3 Å. The observed range from 4.1 Å to 5.3 Å reveals a hard sphere radius for the
hydrogen atom in the range of 0.6 to 0.77 Å. In the t-site the resulting range of the interstitial hard
sphere radius is between 0.35 to 0.44 Å much smaller, which allows the conclusion that the optimum
chemical interaction radius for hydrogen in the o-site (t-site) corresponds to a value between 0.6
and 0.77 Å (0.35 and 0.44 Å).

Ab initio studies on vacancy-hydrogen interactions in fcc Fe or fcc Ni revealed that hydrogen
does not prefer the high symmetric vacancy center. The energetically more favorable interstitial
site is slightly shifted in the 〈100〉 direction from the vacancy center [106, 150]. This leads to the
question whether the H-M binding is strong enough to break the o-site symmetry for elements with
lattice constants larger than 4.6 Å. The hydrogen atom is displaced o�-center at a distance of 2.3 Å
towards a single Ca atom (of two Ca atoms, respectively) with the result, that the H atom moves
back into the o-site. The character of the interstitial con�guration is not changing by applying
compression or tension on the crystals which provides the basis for the universal master curve.
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Figure 5.12: Separation of the solution enthalpy into a strain (a) and a chemical part (b) for o-sites.
The strain energy is determined by relaxation e�ects of the host matrix whereas the chemical energy
is determined by the interaction of the H atom with the matrix atoms. Both energy curves show an
approximate master curve of the form α̃ exp(−alat)− β̃(1/alat) (red). For H in the t-site the same
separation into a strain (c) and a chemical part (d) is given. Copied from [146].

5.3.4 Separation of strain and chemical e�ects

The signi�cant in�uence of the lattice constant on H solubility can have di�erent physical origins.
It is obvious to say that the lattice constant might be in correlation with atomic relaxation e�ects.
The corresponding strain energy ∆Estrain can be decomposed from the solution energy by taking
the di�erence energy between the two di�erent con�gurations containing only the host matrix atoms
(no hydrogen atoms):

∆Estrain = Erelaxed
MN/H1

− Eideal
MN

. (5.4)

The �rst energy term in equation 5.4 corresponds to a crystal with relaxed host atoms positions
due to hydrogen incorporation and removing the H atom and the second energy term to the ideal
fcc crystal. The remaining part of the right-hand site of equation 3.44 is called chemical e�ect and
determined by the equation

∆Echem = Erelaxed
MNH1

− Erelaxed
MN/H1

− 1

2
EH2 . (5.5)

The separation into chemical e�ect and strain energy is shown in �gure 5.12.

The relaxation energy, which is by de�nition always positive, shows a notably dependence on
the lattice constant in the case of hydrogen in the o-site (�gure 5.12a). As expected an increasing
compressive strain energy is observed towards smaller lattice constants. Towards the opposite
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Figure 5.13: E�ect of hydrogen zero point vibrations (ZPE) on the solution enthalpy. The ZPE are
calculated within the harmonic approximation. Open squares: H in o-site, �lled diamonds: H in
t-site. Taken from [146].

limit of larger lattice constants an unexpected increase of strain (tension) energy is observed. In
the compressive region the neighboring host atoms are pushed away and in the tensile region the
neighboring host atoms are pulled towards the impurity. The strain energy vanishes at the optimum
lattice constant of the master curve. The neighboring host atoms remain at their initial positions.
There is no displacement of host atoms necessary to incorporate an hydrogen atom. For H in t-
site (�gure 5.12c) the compressive strain energy is approximately two times larger. The relaxation
e�ects are stronger because of a smaller hydrogen-metal distance for identical lattice constants.

It is surprising that the strain energy vanishes around 4.6 Å for hydrogen situated in the t-site,
whereas the optimum lattice constant for the tetrahedral solution enthalpy occurs around 5.5 Å.
This observation implies that a simple hard spheres model which considers only 1st nearest neighbor
atoms is limited in order to describe the solution of hydrogen. A model including 2nd, 3rd, etc.
NN atoms is necessary. However, geometrical di�erences between the o-site and the t-site makes a
direct comparison also di�cult.

We employed a Voronoi construction and observed that the hydrogen atom in the o-site is
completely surrounded by octahedral atoms whereas the hydrogen atom in the t-site has a contact
surface to the 2nd NN atoms, which might lead to di�erent chemical coordination e�ects for both
sites. This is of importance since the chemical energy ∆Echem is almost one order of magnitude
larger than the strain energy ∆Estrain and mainly determines the solution enthalpy curve ∆H.

We therefore conclude that the shape of the universal master curve is mainly induced by the
metal-hydrogen bonds and insigni�cantly by the hydrogen induced strain.
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5.3.5 Zero point vibrations

As already outlined in section 3.4, zero point vibrations might be particularly relevant for a light
weight element such as hydrogen. We have therefore studied the ZPE contribution for H solution
enthalpy in di�erent elements and di�erent sites employing both methods introduced in section 3.4.

We have used the computationally fast Einstein method to calculate the volume dependent ZPE
for hydrogen in Sc (o-site) and Ca (t-site). A compressive and respectively a tensile strain up to
5 % was arranged for both materials. The energy di�erence between the tensile and compressive
region for both materials (and both sites) was less than 50 meV.

The results of the full dynamical matrix calculations is presented in �gure 5.13. Imaginary
frequencies were obtained for the elements V, Cr, Ni, and Ge, which indicates that these elements
are unstable in an fcc structure. Nevertheless, the Einstein method still works for the mentioned
elements. Imaginary frequencies for hydrogen in o-site was obtained for the host elements Zn and
Ga.

The ZPE energy is increasing linearly towards half �lled d-bands where it reaches a maximum.
From half-�lled d-bands towards completely �lled bands the ZPE is decreasing linearly again. The
chosen site (o and t) by hydrogen does not a�ect the ZPE trend. As mentioned previously for the
strain energy in section 5.3.4 the ZPE almost vanishes at the identi�ed lattice constant of 4.6 Å.
The highest ZPE contribution to the solution enthalpy is less than 0.08 eV and will in�uence the
solution enthalpy trend only moderately.

5.3.6 Chemical shift of ∆H

As shown in section 5.3.2 the slope of ∆H for hydrogen is independent on the speci�c element but
for some host elements with similar lattice constants a chemical o�set for ∆H was observed. This
was shown in �gure 5.9 (a and c). This leads to the conclusion that the chemical nature of the
hydrogen-host interaction is directly responsible for the absolute value of the o�set. In general we
can say that elements with �lled d-shells (e.g. Zn, Cu, Ga, and Ge) have a higher solution enthalpy
than elements without �lled 3d-shells (e.g. Ti, Fe, V).

In previous works by Griessen et al. [114, 116] the global electronic properties of the pure bulk
system were identi�ed to be the relevant physical parameters in�uencing the hydrogen solubility.
Local chemical e�ects were mentioned but not considered in these works. However, it was known
and discussed by Switendick et al. that local chemical e�ects, for example the electronic charge
accumulation close to the shell of dissolved hydrogen, will appear [151]. We will focus in this section
on these local e�ects and analyze the perturbation of hydrogen induced charge density di�erences
(CDD) of the perturbed and unperturbed host materials. The CDD can be calculated with the
equation

n(r)CDD = nrelaxed
MxH (r)− nrelaxed

Mx
(r)− nH(r), (5.6)

in which the �rst term corresponds to the electronic charge of the metal-hydrogen system and the
second term to the relaxed pure metal system in which the host atom coordinates are identical to
the host atom coordinates of the metal-hydrogen systems. The last term is the electronic charge of
the hydrogen atom in vacuum. An example of a CDD isosurface is presented in �gure 5.14

For all host elements an isotropic charge accumulation at the hydrogen position appeared. A
more quantitative analysis is given by a 1D intersection as shown in �gure 5.15.
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Figure 5.14: Isosurface for the charge den-
sity di�erence nCDD(r) using the example of
Ti. The electron accumulating region (H po-
sition) is red coded and the donating region
(host atoms) blue. For all elements the elec-
tronic accumulation at H is isotropic. Copied
from [146].

Figure 5.15: 1D intersections through the charge
density di�erence between the systems with and
without hydrogen for di�erent elements. For H in
an o-site a positive peak for all elements is seen
and the electronic charge is increased. Copied
from [146].

It is evident that the charge maximum observed for all elements in �gure 5.15 is due to the at-
tractive Coulomb interaction of the hydrogen proton. However, the amount of charge accumulation
depends on the speci�c host element. Early elements of the PTE with a low number of 3d electrons
like Ca, Sc, and Ti have higher perturbation of the electronic charge whereas late elements of the
PTE like Cu, Zn, Ge with closed 3d shells show lower perturbation of the electronic induced by
hydrogen. It can be understood within a simple bonding picture (anion model): hydrogen is bind-
ing an extra electron close to its 1s shell. An energy minimization will appear. Electron donating
host elements with �lled d-shells have a lower tendency to donate electrons than host elements with
incompletely �lled 3d shells.

In addition to the anion model the electron (coming from H) will be added at the Fermi-level
which will lead to a repulsive electron-electron Coulomb interaction. Compared to early elements in
the PTE the late elements of the PTE with �lled 3d shells have a higher density at the Fermi-level.
An increase of ∆H is the consequence (proton model) [151]. Nevertheless analyzing the DOS plot
of the metal-hydrogen systems a remarkable change of the densities at the Fermi level were not
observed.

However, based on the presented results above (�gure 5.15) the solution energy increases with
the CDD at the hydrogen position. In addition an occupation with two electrons of the s-like states
was observed for almost all elements. For dilute hydrogen it stands to reason that the anion model

seems to be a much more appropriate. A more quantitative analysis is revealed if ∆Echem is plotted
against the spherically integrated CDD (�gure 5.15). This is shown in �gure 5.16b.

The sign conversion of the CDD de�nes the radius of the integration-sphere. A clear correlation
between the CDD and a reduced ∆Echem is observed. With the ability of the host to donate electrons
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Figure 5.16: Chemical e�ect as a function of the spherically integrated CDD (see text): (a) The
chemical e�ect vs the integrated CDD. Early elements of the transition series (Sc, Ti, V, Cr, Mn)
show larger polarization e�ects. Such screening e�ects lower the chemical o�set and simultaneously
increase H solubility. (b) The element dependent chemical shift relative to the master curve vs the
integrated CDD. The plot reveals a critical value of CDD for the elements, which separates the
studied elements in two classes. Taken from [146].

the hydrogen solubility increases. If the energy di�erence between ∆Echem and the master curve
in �gure 5.12 which we de�ne as ∆Echem(sh) is plotted against the spherically integrated CDD the
correlation becomes more clear. A critical value of 0.025 electrons/Å3 for the CDD separates the
elements into two classes: All transition metals with not �lled d-shells have a CDD larger than the
critical value are below the master curve and on the other hand the host elements Cu, Zn, Ga, and
Ge in which hydrogen is less soluble are below the critical CDD value.

5.3.7 Comparison with semi-empirical models

In this subsection we will use our ab initio data to assess the physical terms ∆E,Wd, and Rj of
Griessen' s semi-empirical model which was introduced in section 3.5.

According to Griessen et al. the solution enthalpy of hydrogen in a transition metal ∆H can be
predicted with only the mentioned three physical properties of the pure bulk by using the equation
3.74. The host element a�ects with ∆E, Wd, and Rj three quantities simultaneously. In order to
evaluate the validity of ∆H dependence on only one quantity, two of these quantities are taken for
granted. The equation 3.74 can be rearranged as e.g. in the case of ∆E

∆H − β
αW

1/2
d

∑
R−4
j

= ∆E (5.7)

(respectively rearranging the equation for Wd and Rj).
The �tted parameters have the values α = 0.13 (eV/atom)(eV−3/2Å4) and β = −1.07 eV/atom.

As predicted by Griessen for the transition metals the values lie on the black line. Therefore, a
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perfect correlation with the ∆EF−s parameter is observed. The model can even be extended to Ga
and Ge but is not working for the elements K, Ca, and Zn (see �gure 5.17a).

The analysis of the parameter of the hydrogen-metal distance Rj reveals an almost same behavior
(�gure 5.17b). The model works for almost all transition metals and can be extended to the
elements Ga and Ge. In section A the correlation between the d-bandwidth Wd and the rearranged
equation 5.7 is shown.

We can conclude that the pure host parameters ∆EF−s, Wd, and Rj which can easily be calcu-
lated with ab initio methods are convenient descriptors to predict hydrogen solution energies in 3d
transition metals. The decisive question for the remainder of this work is, if the same concept can
be extended to other host materials and/or interstitial elements or if even better models exist for
these cases.

Figure 5.17: Correlation between Griessen's approach[114] for the H solution enthalpy the parame-
ters (a) ∆EF−s, (b)

∑
j Rj and Wd (not shown here) as obtained from our ab initio data. Copied

from [146].

5.4 Hydrogen solution enthalpy in 5th and 6th row elements

The investigation in the previous section was on purpose restricted to the single interstitial element
hydrogen and host materials from the 4th row of the PTE. In this way, we achieved valuable
insights into physical rules that determine the hydrogen solubility. In the following we shall extend
the database to host materials of the 5th and 6th row of the PTE, repeating some of the previously
performed investigations.

5.4.1 Hydrogen solution enthalpy in ground state structure

In this subsection the ab initio determined solution enthalpy of H in the ground state of the 5th
and 6th row elements is compared to experimental data. In a similar manner as for the 4th row
host elements, the results are summarized in �gure 5.18. A comparison with �gure 5.8 reveals that
key observations are reproduced: First, it can be noticed that the DFT results show an overall nice
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agreement with experimental data. Quantitative di�erences of about 0.5 eV are observed for the
host materials Mo, Ba, and Au, but this does not in�uence the chemical trends.

Second, we observe the same trend for the dependence of the hydrogen solubility on the position
of the TM in the PTE: Similar to the 3d trend in section 5.3 a negative ∆H is observed for hydrogen
in the early elements in the 4d and 5d TM series. They tend to be hydride forming elements. By
�lling of the outer d-band the solution enthalpy is increasing and the incorporation of hydrogen
becomes less likely. Even deviations from this trend, like the increased value for the VIb column
(Cr, Mo, W) and the dip for the last VIIIb column (Ni, Pd, Pt) are reproduced for all three
considered rows of the PET.

Third, zero-point vibrations have again been considered. They also have for the 5th and 6th row
elements a noticeable, but small e�ect. In some cases, there consideration improves the comparison
with experiment, but overall the chemical trends are not a�ected by ZPE corrections.

Therefore, we can expect that most of the results obtained in the detailed analysis of section 5.3
do equally apply to the transition metals considered in the present section.

(a) (b)

Figure 5.18: Solution enthalpy of hydrogen in (a) 5th and (b) 6th row elements of the PTE.
Red circles corresponds to experimental data taken from references [138�145]. Blue open circles
corresponds to ab initio data and the �lled blue circles included zero point energy. An overall good
agreement with experimental data can be seen.

Motivated by the above mentioned similarities, we also followed the philosophy of section 5.3
and assumed all 5th and 6th row host elements to be in a NM fcc structure, even if this structure is
not the stable ground state. This constraint is applied in order to focus on chemical trends, while
ensuring otherwise comparable conditions.

The e�ect of the structure on the hydrogen solubility is presented and compared in table 5.6.
A general observation is that the constraint to the fcc structure reduces the solution enthalpy
and therewith increases the hydrogen solubility. The reduction is particularly strong for some of
the elements like Mo that have a bcc ground state structure � indicating again that a more open
structure does not imply a better hydrogen solubility. Exception from this observation are small
and limited to the elements Tc, Re, and Cd, which have all a hcp ground state structure, i.e. a
structure that is very similar to the fcc structure considered here.

By increasing the row number (i.e. from 4th via 5th to 6th row elements) the solubility of H
is slightly decreasing. The e�ect is stronger for host elements with more than half-�lled d-shells,
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∆H of H in NM fcc vs GS (eV)

element Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga
NM-fcc -0.533 -0.803 -0.651 -0.463 -0.274 -0.036 0.062 0.112 -0.078 0.429 1.186 0.997
GS -0.533 -0.759 -0.447 -0.157 � � 0.329 0.208 0.070 0.429 1.290 �

element Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In
NM-fcc -0.466 -0.730 -0.626 -0.456 -0.277 -0.059 0.134 0.190 -0.129 0.674 1.231 0.973
GS -0.466 -0.702 -0.400 -0.128 0.936 -0.184 0.274 0.190 -0.129 0.674 1.197 �

element Ba La Hf Ta W Re Os Ir Pt Au Hg Tl
NM-fcc -0.444 -0.774 -0.584 -0.376 -0.098 0.400 0.714 0.938 0.566 1.017 1.701 0.819
GS � � -0.248 -0.052 1.359 0.133 0.869 0.938 0.566 1.017 � 0.916

Table 5.6: Octahedral solution enthalpy of hydrogen in non-magnetic fcc host elements compared
to the solution enthalpy in their ground state structure.

i.e. elements with smaller equilibrium volume (compare �gure 5.5 ). Furthermore, it is stronger for
the change from 5th to 6th row, than from 4th to 5th row. These observations are related to the
universal volume trend.

Figure 5.19: Solution enthalpy of hydrogen in 5th row elements in the octahedral (left) and in the
tetrahedral (right) site.

This universal behavior was the most interesting result for the 4th row elements constraint to
NM fcc structures, see �gure 5.9. It is even more remarkable that exactly the same behavior is also
achieved for the 5th and 6th row host materials. We show this result in �gure 5.19 only for the 5th
row elements, whereas a comparison for all investigated materials is provided in �gure B.1 in the
appendix. One can clearly see that the shape of the universal curve is for all rows of host materials
almost the same. This becomes even clearer when comparing the derivatives in �gure B.2. Even
the absolute minimum along the universal curve is with approx. -0.8 eV always the same. Only
the optimum bonding distance in the octahedral (tetrahedral) site is slightly increasing for the 5th
row elements to approx. 5 Å (6 Å, respectively) and 6th row elements to approx. 5.5 Å in the
octahedral site. H in the tetrahedral site of the 6th row elements does not show a minimum up to
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a lattice constant of 7 Å. The increase of the optimum bonding distance can be understood by the
larger number of electronic shells of the host atoms.

The observed chemical y-o�set for the 4th row elements (see �gure 5.12) also appears in the case
of the 5th and 6th row for �lled d-shell host elements. It is based on the same chemical mechanism
as discussed in section 5.3. The charge density di�erence is just slightly decreased by increasing
the rows of the elements (see appendix). Looking at the chemical shifts in �gure B.1, one might
consider Hg to be an outlier, which does not ful�ll the universal volume trend. For this case we
note that the Hg look much more consistent with the other data, when studying the trends in the
slope in B.2.

Detailed discussions of the physical mechanisms responsible for the chemical and mechanical
part of the solution enthalpy would be very similar to those in 5.3. Instead of such a repetition, we
continue our strategy to extend the database of solution enthalpies investigated in section 5.3 and
put the data in a broader context by considering more interstitial elements.

5.5 Study of interstitial elements in transition metals

Beyond H, the interstitial elements considered in this work are He, B, C, N, O, F, and Ne. We next
want to understand, if the trends discovered for H can also be transferred to these other interstitial
atoms by following the philosophy of section 5.2 that strong correlations between the interstitial
atoms implies similar physical mechanisms.

5.5.1 Chemical potential of the interstitial elements

The reference chemical potentials of the interstitial elements under focus, namely H, He, B, C, N,
O, F, and Ne are determined. As mentioned before interstitial elements are in�uencing material
properties through several mechanisms. According to Sievert's law the solution enthalpy is the
key parameter which mainly determines the concentration of the element in the host matrix. The
solution enthalpy ∆H is de�ned as follows

∆H = Emi − Em − µi, (5.8)

in which Emi denotes the interstitial-metal system, Em the pure metal system, and µi the chemical
potential of the interstitial element.

A comparison of interstitial atoms requires a clear de�nition of their chemical potentials entering
equation 3.44. As already mentioned in section 3.3 the chemical potential of the interstitial element
depends on the environment. In this thesis, we assume an interaction with the gas phase. Therefore,
a diatomic molecule in vacuum is selected in the case of the interstitial elements H, N, O, and F.
Further, for the noble gases He and Ne a single atom is assumed. For the elements B and C, on
the other hand, a diamond cell has been used as reference. The calculated chemical potentials and
the bond lengths are shown in Table 5.7. The bond lengths can be compared with experiment and
show a very good agreement with experiments. An overall good agreement for the calculated bond
length of the diatomic molecules (lattice constant for the diamonds, respectively) is observed. The
reliability of the determined chemical potentials is less clear, since this is a number that depends
on the choice of the pseudopotential and cannot be measured directly. A very high accuracy is,
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bond length (Å) chem pot
element gga-pbe exp. µµµ(eV/atom)

single atom

He � � 0.016
Ne � � 0.005

diatomic molecule

H2 0.75 0.74 -3.375
N2 1.12 1.1 -8.3
O2 1.23 1.21 -4.38
F2 1.42 1.42 -1.85

diamond crystal

Bdiam 4.05 -5.733
Cdiam 3.57 3.57 -9.094

Table 5.7: Reference chemical potentials of the studied interstitial elements. For the noble gas
elements He and Ne it is a single atom in vacuum. The elements H, N, O, and F are calculated as
diatomic molecules in vacuum. The interstitial elements B and C are assumed to be in the diamond
structure.

however, not required, since the chemical potential only yields constant shifts on the trends for the
solution enthalpy.

5.5.2 Interstitial solution enthalpy in NM fcc structure - d-band trend

In order to discuss the chemical trends, we have plotted the solution enthalpies of all interstitial
elements considered here again as a function of position in the PTE, i.e. as a function of d-band
�lling. Plot 5.20 is therefore an extension of the �gures 5.8 and 5.18 for the o-site, using again the
constraint of non-magnetic fcc-structures. Due to this constraint we are not plotting the comparison
with experimental data.

Similar to hydrogen, we also �nd for the other interstitial elements a clear dependence of the
solution enthalpy on the �lling of the d-shells. At the same time there is only little modi�cation of
this trend, when changing the element rows (from 4th to 6th row). We realize, however, that the
actually shape of the d-band trend can strongly di�er from one interstitial element to the next.

According to the ∆H trend in dependence of the d-band �lling a rough separation of the inter-
stitial elements into two groups can be made. The �rst group shows similar features as hydrogen
and contains besides hydrogen the interstitial elements boron, carbon, and nitrogen. The trend is
classi�ed by a ∆H decrease in the beginning and then an increase of ∆H, while the late TMs (with
�lled d-shell) for the same row have almost the same solution enthalpy. The second group contains
the interstitial elements helium, neon, and also �uorine. A characteristic behavior of this group is
an increase of ∆H until the d-bands are half �lled and then a continuous decrease of ∆H, including
the late TMs. The interstitial element oxygen shows properties of both groups.

It is a straight-forward assumption that for the noble gases dominating the second group, the
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Figure 5.20: Solution enthalpy of interstitial elements in 4th, 5th, and 6th row elements in non-
magnetic fcc structure.

chemical component of the solution enthalpy is less pronounced. This becomes in particular clear
when studying again the universal trends as a function lattice constant. In �gure 5.21 only the
results for the octahedral site and host materials from the 4th row of the PTE are shown. A
complete set of graphs for all studied host materials and for the octa- as well as tetrahedral sites
can be found in section B of the appendix, which is similar to those plotted in �gure 5.21. In the
case of nitrogen and oxygen a similar chemical y-o�set for a subgroup of host materials (mainly
the late TMs) is observed as it was earlier observed for hydrogen (compare also �gure 5.9). In the
case of carbon and in particular boron the chemical y-o�set for the individual host materials are
so pronounced that even the impression of a universal solution enthalpy curve is destroyed (though
the slope for a �xed host material still follows such a trend). The situation is completely di�erent
for the noble gases helium and neon. In these cases no shift between the intermediate and late TMs
can be identi�ed. In the case of �uorine this shift is very small. It is further remarkable that for
this second group of elements the solution enthalpy in the octa- and tetrahedral site of the host
material shows almost the same quantitative behavior (see �gures in section B of the appendix),
whereas noticeable di�erence in the shape and the absolute values are present for the �rst group.

These results con�rm the assumption that the solution enthalpy (at least) for helium and neon
must be dominated by an elastic e�ect. Indeed, looking at �gure 5.20 we observe that the ∆H trend
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Figure 5.21: Solution enthalpy of interstitial elements in the octahedral site of 4th row host materials
assuming a non-magnetic fcc structure.

for these interstitial elements is similar to that of the bulk modulus in �gure 5.5b. A more quanti-
tative analysis can be achieved by using statistical concepts as performed in the next subsection.

5.5.3 Interstitial ∆H vs B0 and ∆EF−s

The Bravais-Pearson correlation coe�cient, which was introduced in section 3.6, is in this thesis
used to optimize the correlation between the solution enthalpy and yet unknown (combinations of)
host properties. In this section, the choice of the host properties is motivated by the observation
of the previous section that depending on the interstitial element a mechanical or a chemical con-
tribution might be dominating. The bulk modulus has been identi�ed as a good descriptor of the
former, whereas for the electronic contribution we follow the empirical considerations of Griessen
(section 3.5) and choose the energy di�erence of the Fermi level and the center of the lowest lying
conduction band ∆EF−s.

The investigations are performed for the individual ground states (fcc, hcp, bcc, NM, FM, AFM)
and the constraint to a NM fcc state, to improve the comparability. Considering the structure e�ect
on the hydrogen solubility shown in table 5.6, modi�cations in the ordering of the elements when
switching from one case to the other (top and bottom in �gure 5.22) are not surprising. While
central �ndings are not a�ected by these constraints of the structure, we provide precise numbers
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Figure 5.22: Correlation coe�cients of the solution enthalpy ∆H for the interstitial element and the
bulk modulus B0 (left) or Griessen's ∆EF−s (right) of the host elements in the ground state (top)
or in the NM fcc state (bottom). The results are ordered according to the size of the correlation
coe�cient, indicating that noble gases correlate better with the bulk modulus (elastic), while H,
O, C and N correlate better with ∆EF−s (chemical). ∆H of boron doesn't correlate with both
parameters.

mainly for the ground state (GS).
In �gure 5.22 one can clearly identify the strong correlation of the solution enthalpy to the

bulk modulus for the elements F, He and Ne (rxy-values well above 0.8), con�rming the previously
assumed predominant mechanical nature of the solution process. In the case of He and Ne this
correlation is with rGS

xy = 0.96, 0.97 respectively, particularly high, which needs to be compared with
the number for C (rGS

xy = 0.03) on the lower side. Also F shows with rGS
xy = 0.88 an unexpectedly

strong elastic e�ect. On the other hand, the elements H (rGS
xy = 0.90), N (0.76), O (0.71), and

C (0.71) show a much stronger correlation with ∆EF−s, though the rxy-values are (apart from
hydrogen) lower than 0.8. These results con�rm the importance of the chemical contribution for
these elements. Boron is special in the sense that it has for both properties correlation values
(rGS
xy = 0.22and0.49) below 0.6, i.e. it shows only weak correlations to a purely elastical or purely

electronic description.
The high correlation values in the case of B0 for the noble gases is re�ected by a proportionality

of ∆H and B0, i.e. an almost linear relation in the diagram. For the other group of interstitial
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Figure 5.23: Solution enthalpy vs bulk modulus of interstitial elements in 4th, 5th, and 6th row
elements in non-magnetic fcc structure. Elements with more than half-�lled d-bands are red encir-
cled. For below half-�lled d-band matrix elements, the solution enthalpy shows a higher correlation
to the bulk modulus.

elements (H, O, C, N) the data points appear to be much more scattered. To analyze this further,
we �rst looked at F, an interstitial element that has also a rather large rxy value. We realized
that the dependence of the solution enthalpy on the bulk modulus separates into two branches. It
turned out that all data points on the lower branch belong to host elements with less than half-�lled
outer d-bands, while the data points of the upper branch belong to host elements with more than
half-�lling.

Having identi�ed this, one realizes that the lower branch is present for all interstitial elements.
The slope of the solution enthalpy vs bulk modulus line correlates with the size of the interstitial
atom. The larger the interstitial atomic number the larger the slope of the solution enthalpy line
(slope(atomic number): He=0.0145(2), F=0.0227(9), Ne=0.028(10)). The data points for more than
half-�lled d-bands (red encircled in �gure 5.23) can scatter much more heavily for those interstitial
elements, where the elastic e�ects are insu�cient to describe the solution enthalpy. An important
outcome of this investigation is, therefore, that chemical trends can become much more pronounced
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Figure 5.24: Solution enthalpy vs Griessen's ∆EF−s of interstitial elements in 4th, 5th, and 6th row
elements in non-magnetic fcc structure. A high correlation coe�cient is achieved for hydrogen.

if only a part of the transition metals is taken into account.

5.5.4 Electronic e�ects and charge density di�erences

We have performed a similar analysis for the correlation of ∆H and the energy di�erence ∆EF−s
in �gure 5.24. The good performance of hydrogen in this comparison is again clearly visible by a
very good proportionality. The behavior of the other interstitial elements is less systematic and did
not provide additional insights.

The chemical e�ect of interstitial solution is, however, multi-fold. On the one hand an interstitial
atom will create energetically low lying states in the host matrix (bonding). The energy distance
of the low-lying conduction bands to the Fermi energy is captured by ∆EF−s. On the other hand
additional electrons coming with the interstitial atom will occupy states at the Fermi-level. Since
at the same time the �lling of d-band shifts the d-band center to the left (negative energy w.r.t.
E-fermi) a weakening of the interstitial-metal bonding can be expected. The latter kind of electronic



5.5 Study of interstitial elements in transition metals 83

Figure 5.25: Example of the charge density
di�erence induced by a H atom located in the
octahedral site of NM fcc Ca. Green spheri-
cal isosurface represents the accumulation of
electronic charge at the hydrogen atom. An
isotropic charge accumulation around the hy-
drogen atom is for all elements observed.

Figure 5.26: Charge density di�erence for H in
early transition metals (Ti and Zr) compared to
late transition metals (Zn and Cd). The peaks
show the charge accumulation at hydrogen posi-
tion. An increased density for hydrogen soluble
elements is observed.

e�ects can be captured by charge-density di�erences (CDDs).

Indeed, we have shown in �gure 5.16 for the example of hydrogen that the spherically integrated
CDD is related to the chemical component in the solution enthalpy as well as to the element-speci�c
chemical shift in the universal curves. The CCD of hydrogen in the four host materials Ti, Zn, Zr,
and Cd is shown in �gure 5.26. It compares two early transition metals (Ti and Zr) to two late
transition metals (Zn and Cd), using this as an explanation for the observed chemical shifts. We
therefore tried to generalize this approach to the other interstitial elements.

Charge density di�erence (H in NM fcc TM)

Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga
0.27 0.32 0.35 0.34 0.34 0.31 0.29 0.25 0.21 0.21 0.17 0.22

Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In
0.26 0.30 0.32 0.30 0.27 0.23 0.19 0.14 0.08 0.14 0.16 0.22

Ba La Hf Ta W Re Os Ir Pt Au Hg Tl
0.27 0.32 0.31 0.27 0.25 0.19 0.14 0.08 0.01 0.02 0.07 0.21

Table 5.8: Charge density di�erence of H in TM. A charge accumulation at the H position is
observed for all studied elements. The table shows the maximum (peak) value of �gure 5.26

.
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However, the simple picture of hydrogen bonding is not applicable to the other interstitial
elements since they have 2p band electrons, which make the chemical behavior more complex. In
�gure 5.27 the interstitial elements CDD in the host element Fe is shown. A more complete set
of CDD �gures is provided in B.4. The p-bondings character can be seen, but not a peak in the
center of the interstitial element like in the case of H. The peak in the case of neon occurs due to
the 'squeezing' of the neon electrons (see appendix). We conclude that the best justi�ed parameter
for the description of the chemical e�ect is still missing. We will next use statistical concepts to
determine it.

Figure 5.27: Charge density di�erence for H, B, C, N, O, F, He, and Ne in Fe. The single peak for
hydrogen cannot be observed for the other interstitials.



Chapter 6

Results II: Knowledge Discovery in

Databases

This chapter combines the goal of �nding reliable descriptors for the prediction of the solubility of
interstitial elements with high-throughput approaches outlined in chapter 2. In the previous chapter
the empirical approach of Griessen for hydrogen solution enthalpies (section 3.5), has been used as a
starting point for such an investigation. We realized, however, in section 5.5 already that the exten-
sion of the database to other interstitial elements yields new insights and candidates for descriptors
such as the bulk modulus B0 for the host elements assumed to be in non-magnetic fcc structure. In
the present chapter, the analysis of our database shall be performed more systematically to identify
the a priori unknown optimum parameter combination for the prediction of solution enthalpies for
the host elements in the ground state.

6.1 Correlations between solution enthalpies of interstitial elements

We �rst exploit the observation that there are large correlation coe�cients between the experimental
solution enthalpies of hydrides and borides or between hydrides and nitrides as shown in section 5.2.
We want to transfer this notion to the dilute limit considered in the present thesis. High correlation
coe�cients between the solution enthalpies of the interstitial elements H, B, C, N, O, F, He, and
Ne can be expected, if they depend on the same physical properties of the pure host material Γy,
i.e. parameters that are independent of the interstitial. This is captured by the following predictive
formula for the solution enthalpy of an interstitial element x in a TM y

∆Hxy ≈ axΓy + bx, (6.1)

in which ax and bx denote now �tting parameters that only depend on the interstitial. The previously
discussed equation 3.74 of Griessen has such a form. It contains the d-band width Wd, the distance
between the interstitial element and the nearest neighboring host atoms

∑
j Rj (the sum denotes

the coordination number of the interstitial element, i.e. six for octahedral site, four for tetrahedral
site respectively), the energy di�erence of the Fermi level and the energy of the lowest lying s-like

85
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conduction band ∆EF−s = EF − Es, combined as

Γy = ∆EF−s ·W
1/2
d ·

∑
j

R−4
j . (6.2)

However, it is not clear whether this is the most suitable choice for hydrogen and in particular for
the whole set of interstitial elements.

6.1.1 Linear dependence between solution enthalpies

The solution enthalpies of individual interstitial hydrogen, boron, carbon, nitrogen, oxygen, �uorine,
helium, and neon atoms (i.e. their dilute limit) in 3d, 4d, and 5d transition metals (TM) are
determined. The host materials are considered in their structural and magnetic ground state (GS),
where we restrict ourselves to those transition metals that are FCC, BCC, or HCP (NM or FM) in
their ground state. Elements with a more complicated structural or magnetic ground state (e.g.,
Mn and Cr) as well as non-transition metals (e.g., Ca and Zn) are not taken into account. The
relevant interstitial positions are the octahedral or the tetrahedral site, of which the energetically
more favorable site determines the solution enthalpy ∆H.

If the same bulk properties Γy of the host material y determine the solution enthalpy of two
di�erent interstitial elements (for example hydrogen (∆HHy) and carbon (∆HCy)) then equation 6.1
can be applied twice and the solution enthalpy of, for example, carbon in the host material y can
be determined through the equation

∆HCy =
aC

aH
∆HHy −

aCbH
aH

+ bC, (6.3)

in which the subindices H and C corresponds to the interstitial elements hydrogen and carbon and
the coe�cients a and b are the �tting parameters in equation 6.1. Therefore, the approach yields
a linear dependence between both enthalpies. A quantitative analysis for the linearity is given by
the Pearson correlation coe�cient (PCC), which is close to 1 for perfect correlation and 0 if no
correlation is present. The results of the solution enthalpies for the interstitial elements H, B, C,
N, O, F, He, and Ne in 3d (�rst block), 4d (second block) and 5d host elements (third block) is
presented in table C.1.

The results in table C.1 allows the determination of the PCC matrix for all pairs of interstitial
elements in the considered set of transition metals as given in table 6.1.

The PCC matrix elements for the ground state structures show a high correlation coe�cient
between solution enthalpies of interstitial elements that have neighboring positions in the PTE
(�gure 5.1). For example, it is PCCC,N = 0.94 for the solution enthalpies of C and N and PCCN,O =

0.96 for N and O. Such a behavior is not very surprising since these interstitial elements only di�er
by one missing or additional 2p electron in its shell. Less obvious are the high correlation coe�cients
between hydrogen and the elements carbon, nitrogen, and oxygen with 0.85, 0.88, and 0.86. This is
interesting since the chemical contribution to the solution enthalpy of hydrogen has been earlier (see
section 5.3.6) connected with the anion model, which might be speci�c to the electronic con�guration
of hydrogen with only one 1s electron. It is therefore remarkable that carbon, nitrogen, or oxygen
show a chemically di�erent behavior.
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H B C N O F He Ne
H 1.00 0.65 0.85 0.88 0.86 0.8 0.71 0.59
B 1.00 0.75 0.56 0.42 0.31 0.25 0.21
C 1.00 0.94 0.83 0.64 0.41 0.28
N 1.00 0.96 0.83 0.6 0.47
O 1.00 0.94 0.76 0.65
F 1.00 0.92 0.86
He 1.00 0.97
Ne 1.00

Table 6.1: PCC matrix for all pairs of interstitial elements. The host elements are considered in
their ground state structure and magnetic phase. Further, they are limited to transition metals, i.e.
without the columns IIa, IIb and IIIa, which are also highlighted in �gure 5.1.

Figure 6.1: Linear dependence of solution enthalpies of interstitial elements in the dilute limit. The
slope of the regression line in �gure (a), which is the �rst quotient aC

aH
of equation 6.3, indicates a

carbon-hydrogen solution enthalpy relation of approx 2.6, (b) a nitrogen-hydrogen relation of ≈ 3.9
and (c) a nitrogen-carbon relation of ≈ 1.4.
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A second interesting e�ect characterizes the �rst row of the PCC matrix (i.e. the PCC between
the hydrogen atom and the 2p interstitial elements). Here, the highest correlation is reached with
the interstitial element N, which has a 2p band that is exactly half �lled with three electrons (same
as hydrogen has a half �lled 1s band containing one electron). A symmetric behavior is observed
and to the left (clearing the 2p shell) and right (�lling the 2p shell) of N the PCC is decreasing in
the same way.

The correlation coe�cients between the solution enthalpy of H and C or H and N (�gure 6.1)
show a clear trend: with increasing hydrogen solubility the N (or C) solubility is increasing with
a certain factor (given by the slope of the solid line) and vice versa. This trend is not perfectly
ful�lled for all host elements. Red circles in �gure 6.1 mark some of these exceptions. Increasing
C (or N) solubility doesn't mean an increased solubility for H for these host elements. These are
mainly the early (3d, 4d and 5d) transition metals. However, the e�ect disappears if the interstitial
elements C and N are compared with each other which have a correlation coe�cient of 0.94.

Interesting is also the size of the slope. A slope of 3.93 in the H-N curve (�gure 6.1(b)) means: if
a change of the host material increases the H solution enthalpy by 1 eV, then the same change yields
an increase of the N solution enthalpy by almost 4 eV. These slopes in the correlations between H,
N, and C can be directly connected with the electronic con�guration of the interstitial elements.

6.1.2 Chemical vs elastic e�ect on the interstitial elements

The predictive formula 6.1 assumes for the interstitial elements with a high correlation coe�cient (for
example H and N) physical properties Γy of the host materials, which in�uence their solubility in the
same way. The decisive question is whether the physical properties we discussed in chapter 5 in the
context of hydrogen provide the most reliable descriptors. As indicated there, the solution enthalpy
should be separated into an elastic term (relaxation e�ect) and a chemical term (bonding/anti-
bonding). We start with the elastic term and revisit the bulk modulus, which has been identi�ed
in section 5.5 as a useful parameter for describing the elasticity of the host material. As already
discussed in section 5.5.3 the noble gases (He and Ne) as well as F show a high correlation between
their solution enthalpy and the bulk modulus (i.e. the elastic e�ect dominates).

The bulk modulus of the host material is one candidate to be used for the unknown parameter Γy
directly. We should mention that B0 is not the only possible choice for Γy, but also (a combination
of) physical parameters which are not considered yet could be possible.

Helium vs Neon

Noble gases such as helium and neon do not show a signi�cant chemical e�ect in�uencing its solu-
tion enthalpy in the TMs. Instead, the solution enthalpy is mainly in�uenced by an elastic e�ect
(relaxation e�ect of the neighboring host atoms). The solution enthalpy of the interstitial elements
He and Ne is plotted with respect to the bulk modulus of (i.e. representative for the elasticity of)
the host material. This is shown in �gure 6.2(a).
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Figure 6.2: (a) Solution enthalpy vs bulk modulus of He (blue) and Ne (red) in 3d, 4d, and 5d
TMs in the ground state. The interstitial element neon is approximately two times less soluble than
helium in the same material. (b) Comparison between the predicted solution enthalpy of Ne by
using equation 6.4 and the calculated solution enthalpy of Ne in the same host material.

A regression line for the data points in �gure 6.2(a) provides the interstitial-dependent terms
of equation 6.1 as aHe = 0.0135 and bHe = 1.3413 for helium, and aNe = 0.027 and bNe = 1.7013

for neon. The slope of Ne is, therefore, exactly two times larger than the slope of helium. In
other words, the solubility of the larger interstitial element neon is decreasing two times faster with
increasing bulk modulus than that of helium. This is in remarkable agreement with the ratio of
covalent radii of both elements (Ne/He= 0.58/0.28 = 2.07). The correlation 6.3 of both interstitial
elements is therefore of the form

∆HNe,y =
aNe

aHe
∆HHe,y −

aNe

aHe
bHe + bNe = 2∆HHe,y − 0.98, (6.4)

which can be used to predict the solution enthalpy of Ne in a host element y if the solution enthalpy
of He in the same host element is known. The predictive power of this approach is shown in the
�gure 6.2(b).

A similar predictive formula can be obtained for all other interstitial elements. If the solution
enthalpies are correlated it can then be reduced to a lower number of variables with the factor
analysis, which was introduced in section 3.7 and will be applied in the following.

6.1.3 Sharpening chemical trends

We realized in section 5.5.3 that chemical trends and materials laws can be become signi�cantly
more pronounced, if the set of considered host materials is reduced. In the case presented there
(see �gure 5.23) the descriptor was already identi�ed to be the bulk modulus. For the more general
approach considered here, the correlation matrix (table 6.1) is used as a criterion.

It is obvious that the reduction of the database (i.e. the reduction of the number of host
materials) will increase the coe�cients in the correlation matrix. One can iteratively investigate
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for which of the host materials this e�ect is most signi�cant and remove it. It turns out that this
procedure would result in a removal in the order Ag, Au, Pd, Cu, Pt, Rh, Y, Re, Ni, Tc, Sc, Ir, Ru,
Co, Fe, and Ta. The impact on the correlation matrix (table 6.1) is shown in �gure 6.3. The left
�gure shows the average value of the whole correlation matrix ravg and the right �gure shows the
average value of the rows (i.e. the impact on a certain interstitial element). It turns out that the
�rst six elements (from Ag to Rh) which are eliminated are all (six of eight) fcc elements in ground
state, and the �rst four eliminated elements have �lled d-shells. By removing the host elements
Ag and Au the average value of the correlation matrix is raising above 0.8. Analyzing the row
average value of the correlation matrix yields the result that the interstitial element boron shows
the lowest correlation to the other interstitial elements. Even if one would remove six host elements,
the average value of the boron row is still around 0.7 and thus below the other interstitial elements
(all around 0.9).

We conclude from these observations that the goal of �nding a universal predictive equation for
the interstitial elements solubility is easier achieved if the interstitial element boron and the host
elements Ag and Au are removed from the studied data.

Figure 6.3: Left: Average value of the changed correlation matrix 6.1 after reducing the host
elements with the most adverse e�ect on the correlation. Right: Average value of the rows of the
same matrix. It turns out that fcc elements (or the �lled d-shell elements) have the lowest impact
on the correlation coe�cients. The �rst six elements are fcc structure in GS and the �rst four of
them have �lled d-shells.

6.2 Factor analysis of the solution enthalpies

The factor analysis (FA) has been introduced in section 3.7 as a method to reduce a system with m
observed variables to a system with (k < m) latent variables, which are called factors. It is applied
in this section to the matrix given in table 6.1 that summarizes the correlation coe�cients between
the solution enthalpies of the interstitial elements H, B, C, N, O, F, He, and Ne in transition metals.
Details of this analysis are given in appendix C, while here the main outcomes are provided.
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6.2.1 Determination of the number of factors k

In order to determine the number of required factors k, a singular value decomposition needs to be
performed �rst. This yields the eigenvalues (5.3876, 1.4730, 0.5436, 0.1184, 0.0170, 0.0071, 0.0025,
0.0008) of our initial matrix 6.1. According to the Kaiser-Guttmann criterion, k is then given by the
number of eigenvalues that are larger than 1. As a consequence we have worked with a reduction
to two factors, for which we don't know the physical meaning at this stage.

Figure 6.4: Correlation circle resulting from a principal component analysis after the reduction to
two factors and an anti-clockwise rotation by α = 43.92◦. Points on the circle with radius 1 are
well described by the two factors. Interstitial elements that appear next to each other close to the
circle are signi�cantly correlated. Boron is an outlier in this respect.

The quality of this reduction is best visualized by a correlation cycle resulting from the principle
component analysis as given in �gure 6.4. It projects the full information of the correlation matrix
on the two factors. The red circle has a radius 1 and is the set of all points for which this reduction
is su�cient. This seems to be the case for all interstitial elements except boron. Points next to the
circle, which are close to each other are strongly correlated. This applies mainly to the interstitial
elements that are neighbors in the PTE. The representation con�rms that hydrogen and nitrogen
are strongly correlated (r close to 1), as well as helium and neon. Points next to the circle that
di�er by an angle of 90◦, are uncorrelated (r close to 0). This is for example the case for carbon
and neon.

Boron seems to be an outlier, consistent with our observation in section 6.1.3 that it shows the
lowest correlation with the other interstitial elements. In the present context this means that the
two factors identi�ed for the other interstitial elements do not completely capture the physics of
boron solubility. The di�erence of the full correlation matrix 6.1 and the reduced correlation matrix
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Rred2 ,

Rred2 −R =



−0.10 −0.01 0.02 0.04 0.03 0.03 −0.02 0.00

−0.01 −0.29 0.06 0.13 0.13 0.05 −0.08 −0.15

0.02 0.06 −0.02 −0.03 −0.03 −0.01 0.01 0.03

0.04 0.13 −0.03 −0.07 −0.07 −0.03 0.04 0.07

0.03 0.13 −0.03 −0.07 −0.08 −0.03 0.04 0.07

0.03 0.05 −0.01 −0.03 −0.03 −0.02 0.02 0.03

−0.02 −0.08 0.01 0.04 0.04 0.02 −0.03 −0.04

0.00 −0.15 0.03 0.07 0.07 0.03 −0.04 −0.08


, (6.5)

has by far the largest number in the boron column (up 0.29) compared to any other column (all
below 0.1). Consequently, an exclusion of boron would result in a plot like �gure 6.4 in which all
elements are almost lying on the circle with radius one. If instead of two a set of three factors is used,
then the correlation coe�cients are for boron, but also for all other elements much better captured.
This is again documented by the di�erence between the original PCC and the three-components
reduced PCC:

Rred3 −R =



−0.09 0.03 0.01 0.02 0.02 0.02 −0.01 0.02

0.03 −0.01 0.00 −0.01 −0.01 −0.01 0.00 −0.01

0.01 0.00 −0.01 0.00 0.00 0.00 0.00 0.00

0.02 −0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.02 −0.01 0.00 0.00 −0.01 0.00 0.00 0.00

0.02 −0.01 0.00 0.00 0.00 −0.01 0.01 0.00

−0.01 0.00 0.00 0.00 0.00 0.01 −0.01 0.01

0.02 −0.01 0.00 0.00 0.00 0.00 0.01 −0.01


. (6.6)

One can clearly see that the reduction to three factors (instead of eight) is completely su�cient
to describe the similarity of the solution enthalpy mechanism between all interstitial elements.
Therefore, we will use for the predictive formula search up to three addends (equal to three common
factors), each of which can be a product of maximum three pure bulk properties (which is an
arbitrary choice in order to limit the number of possible combinations).

The approach needs to be compared to the empirical ansatz 3.74 for hydrogen only, where two
addends (one constant and one factor containing a product of exact three bulk properties 3.70) have
been used.

The factor analysis with three factors (�gures 6.5 and 6.6) reveals that the interstitial element
boron has a dominant third factor (labeled as 3), which is less dominant for the elements hydrogen,
carbon and nitrogen and not relevant for the remaining interstitial elements oxygen, �uorine, helium,
and neon. In addition the accuracy of using three factors is documented by the fact that the radial
parts of the interstitial elements are with r ≈ 0.995 very close to one. Hydrogen has a slightly
lower radial part with r = 0.95. Using the information obtained in the previous sections on the
mechanical nature of the solution enthalpies of F, He and Ne, it can be assumed that factor 3 is
mainly of chemical nature. A more detailed information about the physical properties described by
the three factors is, however, not accessible by the factor analysis.
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Figure 6.5: Result of the principal compo-
nent analysis after the reduction to three fac-
tors.
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Figure 6.6: Angle view of the principal compo-
nent analysis after the reduction to three factors.
The radial parts are not plotted here since almost
all are with r = 0.99 very close to one (except
hydrogen with r = 0.95).

6.2.2 Factor analysis for NM fcc structure

In section 6.1.3 we have investigated, which of the considered host elements have the least systematic
behavior for the interstitial solubilities and realized that this are primarily fcc metals. This raises
the question how the fcc structure in�uences the correlation of ∆H. For this reason, the correlation
matrix for the solution enthalpy of the interstitial atoms given in table 6.1 is again calculated for
the constraint that the host elements are forced to be in a NM fcc structure. The result is shown
in table 6.2.

It turns out that the di�erences between the correlation matrices for ground state host elements
and the same elements in NM fcc structure are small. In the hydrogen row, for example, most of
the deviations are in the order of 2 %. Signi�cantly larger deviations are only obtained for the
smallest absolute values, with a maximum deviation of 0.15 for the boron-neon correlation. We can
therefore conclude that the structural di�erences of the host elements is not drastically in�uencing
the correlation among the solution enthalpies of the interstitial elements. To keep the predictions
as realistic as possible, we therefore perform the upcoming investigations for the respective ground
state of the host materials.

6.2.3 Search for the best ∆H predicting equation and corresponding bulk pa-

rameters

Based on the factor analysis we can now approach the problem to �nd the most suitable descriptors in
a predictive formula of the interstitial solubility similar to what has been established in equation 6.1.
It is important to stress again that foreseen physical parameters Γy should solely describe the host
system y, without taking the interstitial x into account. The list of candidate parameters is based
on the experiences with ∆H of hydrogen as expressed in equation 3.74, where Γy = ∆E ·Wd ·

∑
j Rj .



94 6.2 Factor analysis of the solution enthalpies

H B C N O F He Ne
H 1.00 0.65 0.87 0.93 0.92 0.82 0.73 0.61
B 1.00 0.85 0.67 0.47 0.23 0.15 0.06
C 1.00 0.94 0.79 0.56 0.4 0.27
N 1.00 0.94 0.77 0.62 0.5
O 1.00 0.93 0.8 0.71
F 1.00 0.94 0.89
He 1.00 0.98
Ne 1.00

Table 6.2: Pearson correlation matrix as in table 6.1, but for transition metals calculated in the
NM fcc structure.

In addition our considerations in section 5.5 motivated us to consider the bulk modulus as descriptor
for the mechanical properties. In order to take into account that the chemical trends for hydrogen
(for example, the anion model was applicable for hydrogen) are not reproduced in the same way
for all other interstitial elements, we also extend the spectrum of considered electronic properties.
Both, the total density of states for the pure host element as well as its d-band projection are taken
into account.

In summary, the list of considered candidates for descriptors include:

� the width of the d-band W 2
d =

∫
ρE2dE∫
ρdE

(its 4th root was used by Griessen in his model 3.5),

� the interstitial distance to the nearest neighbor atoms
∑

j Rj (di�erent to Griessens ap-
proach 3.5 we sum over both interstitial sites and divide by two),

� the energy di�erence between the energy at the s-like state and the Fermi-energy ∆EF−s (used
by Griessen 3.5),

� the bulk modulus B0 = −V ∂p
∂V ,

� the total number of states in the band structure of the solid Ntot =
∫∞
−∞ ρdE,

� the number of occupied states in the solid Nocc =
∫ EF
−∞ ρdE,

� the fractional band �lling fd = Nocc
Ntot

, and

� the average energy of the d-band (d-band center) εd =
∫
ρEdE∫
ρdE

.

The results for the bulk properties are given in table 6.3.
Besides the number of possible descriptors, we also extend the structure of the predictive formula.

The version
ax · Γy + bx ≈ ∆Hxy, (6.7)

introduced in equation 6.1, describes the enthalpy and the site-occupation of hydrogen very well
and is also ful�lling physical constraints. The formula is also working well for neighboring inter-
stitial elements of the PTE, such as Ne and He in neighboring rows or F and Ne in neighboring
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W
1/2
d (eV) Rj (Å−4) ∆EF−s (eV) B0 (GPa) fd εd (eV) Ntot Nocc

Sc 1.69 0.23 1.54 54 0.13 2.28 7.83 0.99
Ti 1.59 0.37 2.34 116 0.23 1.51 8.33 1.93
V 1.65 0.57 2.64 184 0.35 1.35 8.88 3.10
Fe 1.52 0.69 3.00 170 0.66 -0.59 9.32 6.16
Co 1.54 0.69 3.50 208 0.77 -1.26 9.44 7.23
Ni 1.51 0.68 3.51 191 0.87 -1.55 9.48 8.25
Cu 1.71 0.60 4.66 136 0.97 -2.62 9.56 9.24
Y 1.86 0.16 1.55 40 0.15 2.68 7.72 1.15
Zr 1.81 0.25 2.49 96 0.25 1.98 8.03 1.99
Nb 1.92 0.37 2.86 169 0.32 2.11 7.00 2.27
Mo 1.77 0.45 4.42 255 0.45 0.17 8.59 3.89
Tc 1.75 0.47 4.61 299 0.56 -0.20 8.91 5.02
Ru 1.76 0.50 5.33 306 0.66 -1.31 8.95 5.94
Rh 1.74 0.48 5.18 250 0.77 -1.82 9.08 7.03
Pd 1.62 0.43 4.38 165 0.89 -1.78 9.22 8.18
Ag 2.08 0.35 5.70 87 0.98 -4.10 9.44 9.24
Hf 1.99 0.26 3.20 113 0.23 2.47 7.71 1.80
Ta 2.02 0.37 3.51 192 0.34 2.28 7.81 2.66
W 1.88 0.44 5.31 297 0.43 0.44 8.12 3.52
Re 1.87 0.45 5.56 365 0.53 0.05 8.41 4.50
Os 1.91 0.48 6.72 399 0.64 -1.47 8.58 5.48
Ir 1.93 0.46 6.84 341 0.75 -2.29 8.78 6.57
Pt 1.84 0.42 6.09 243 0.86 -2.41 8.96 7.74
Au 2.00 0.35 6.13 133 0.97 -3.62 9.16 8.86

Avg. (µ) 1.79 0.44 4.21 200 0.57 -0.32 8.64 5.11

Table 6.3: The bulk properties of the pure host elements. The corresponding average values and
standard deviations of the properties (µ and σ) are shown below. The last line indicates the average
values after the sharpening process mentioned in section 6.1.3 (i.e. removing the host elements Ag
and Au) is applied.
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columns. However, the formula is not su�cient to predict the interstitial solubility for other pairs
of neighboring elements very accurately or unite them. We will therefore work with the extended
version

ax · Γ1 + bx · Γ2 + cx · Γ3 = ∆Hx (6.8)

for an interstitial x. In matrix notation it becomes

(Γ1,Γ1,Γ3) · [ax, bx, cx]T = Γ(i,j,k) · [a, b, c]T = ∆Hx, (6.9)

in which each of the matrix columns Γi can contain a product of maximum three bulk parameters,
each of them again representing a column of numbers for the individual host materials.

If m interstitial elements are considered at the same time, equation 6.9 must be extended to

Γ(i,j,k) ·

a1 a2 · · · am
b1 b2 · · · bm
c1 c2 · · · cm

 = (∆H1,∆H2, · · · ,∆Hm) (6.10)

and solved. The indices 1, 2, · · · ,m number the interstitial elements that are considered and the
values ai, bi, . . . , cm result from a �tting procedure. Each column of the bulk matrix Γ(i,j,k) can
contain a product of zero, one, two or three bulk parameters of table 6.3. The number of bulk
properties which are used and which gives the form of the predicting equation is marked by the
index triple (i, j, k) in Γ(i,j,k). Griessen's equation 3.74 for hydrogen, for example, is the special case
Γ(3,0,0) with Γ1 = ∆E ·Wd ·

∑
j Rj (the product is an element-wise product for each host material)

and the other two columns are unit vectors of the form Γ2 = Γ3 = 1 := [1, 1, 1, . . . , 1]T . Therefore,
we introduce the general index notation as

Γ(0,0,0) =
(
1, 1, 1

)
,

Γ(0,0,1) =
(
1, 1, t1

)
,

...

Γ(2,3,3) =
(
t1 · t2, t3 · t4 · t5, t6 · t7 · t8

)
,

Γ(3,3,3) =
(
t1 · t2 · t3, t4 · t5 · t6, t7 · t8 · t9

)
,

with 1 is the unit vector for the column, ti is any column of table 6.3 or its inverse, and ti · tj the
element-wise product of table columns i and j. This allows one to consider properties up to their
third power, while the unit vector corresponds to a constant in the equation.

The number of possibilities for each column is given with r picks out of n = 8 ·2+1 = 17 choices
(eight descriptors and their inversions), is given by equation(

n+ r − 1

r

)
=

(n+ r − 1)!

r!(n− 1)!
. (6.11)

Considering the maximum amount of three picks (with Γ(3,3,3)) for each column which are 969
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choices, we end up with 9693 = 909, 853, 209 possibilities (equations) which need to be considered
and solved for one single interstitial element. Assuming a calculation time of one second for each
equation we end up with approx. 10530 days for a single processor run. Reducing the calculation
speed to 1/10 seconds, we still need approx three years for the calculation for one single interstitial
element for the matrix form Γ(3,3,3). A solution is parallel computing or/and the reduction of the
choices n. Both have been performed. The reduction of the choices can be done by using the FA
on the physical bulk properties in order to determine correlated parameters. This will be presented
below.

6.2.4 FA for physical bulk properties

In order to �gure out correlations among the bulk parameters (columns of table 6.3) the Pearson
correlation coe�cient matrix is calculated and presented (see table 6.4). It can be seen that the

W
1/2
d Rj ∆EF−s B0 fd εd Ntot Nocc

W
1/2
d 1.00 -0.6 0.41 0.08 -0.07 -0.02 -0.42 -0.11

Rj 1.00 0.25 0.44 0.56 -0.46 0.7 0.57
∆EF−s 1.00 0.71 0.7 -0.77 0.44 0.66
B0 1.00 0.27 -0.29 0.18 0.22
fd 1.00 -0.97 0.85 1.00
εd 1.00 -0.83 -0.96
Ntot 1.00 0.88
Nocc 1.00

Table 6.4: Pearson correlation coe�cient matrix for the bulk properties. The shading is increasing
with the increase of the absolute values. A correlation between Nocc,−εd and fd is observed.

fractional d-band �lling fd strongly correlates with the negative average energy of the d-band −εd
and the number of occupied states Nocc (i.e. fd ∼ −εd ∼ Nocc). All other studied bulk parameters
are much less dependent on each other. In order to determine the best �tting formula and bulk
parameters for the interstitial enthalpy prediction it is su�cient to use this value (fd) or one of the
other two correlated parameters instead of using all three of them. This will reduce the dimension
of the combinatoric search problem. Instead of having the mentioned 17 choices, n will reduce
to 13 (the bulk properties and their inverted values plus unity vector). Using equation 6.11 the
possibilities reduce to 4553 or 94, 196, 375 choices. The reduction is with one order of magnitude
signi�cant. Parallel calculation of the choices is reducing the combinatoric search to less than one
hour per interstitial element.

6.2.5 Results for the combinatoric search

In the following, the main results of the combinatoric search are presented and discussed. For
this purpose for each combination of descriptors Γ(i,j,k) a �t to the tabulated solutions enthalpies
is performed and the Pearson correlation coe�cient of the resulting expression and these solution
enthalpies is determined.
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The physical bulk properties are normalized with respect to the average values (for example the
column of the bulk modulus of table 6.3 changes to B̃0 = B0/B0) in order to cancel out the units
in the search for the best predictive formula and to compare easily the coe�cients in the equations
given in the tables C.4-C.12 with each other. These coe�cients are interpreted as weight factors,
which determine the impact of certain physical bulk parameter(s) on the solution enthalpy. In order
to get the right coe�cients for the predictive equation we need to multiply these weight factors at
the end again with the averaged value(s) of the speci�c bulk property (or properties).

Starting with hydrogen we obtain the following most important optimizations:

Formula ∆H function correlation

Γ(0,0,3) −1.062 + 1.077 · Ñ−1
tot · R̃j · ∆̃EF−s 0.906

Γ(0,1,1) −1.519 + 1.124 · ∆̃EF−s + 0.424 · R̃j 0.910

Γ(3,3,3)

(
−0.943 · R̃−1

j · B̃0 + 3.352 · f̃−1
d · ∆̃EF−s − 2.096 · f̃−1

d · W̃
1/2
d

)
∆̃EF−s 0.964

Table 6.5: Selected results of the combinatorial search for the best descriptors for hydrogen (full
data given in table C.4). The performance of the predictive formulas is visualized in �gure 6.7.

We notice that the best choice for a predictive formula of the structure Γ(0,0,3) is close to the one,
which was already suggested in section 3.5 and used by Griessen [114] in 1988. It has the two bulk
parameters product Rj ·∆EF−s, i.e. the distance to the neighboring host atoms of the interstitial
and the energy di�erence, in common with this earlier work. This product alone already yields
a PCC of 0.884. The third parameter seems to be less important for the predictive power. In
the version given in equation 3.74, the parameter W 1/2

d is additionally chosen and improves the
correlation to 0.905. With this selection, it is ensured that the equation aHΓy+bH = ∆HH,y has the
advantage that the volume dependence is qualitatively correct. Without this additional constraint,
the choice of N−1

tot as a third parameter has a minor advantage for the predictability of the solution
enthalpy.

A slightly higher correlation (0.910 as compared to 0.906) is achieved already with the �rst
two parameters Rj and ∆EF−s, if one uses the structure Γ(0,1,1) of the predictive formula instead,
corresponding to the equation aHΓ1 + bHΓ2 + cH = ∆HH. Even the form Γ(1,1,1) does not improve
the result. Here, one should notice that ∆EF−s has the higher weight factor aH. The dominance
of this physical property is also re�ected in the form Γ(3,3,3). This form yields of course the highest
correlation, since it has the highest number of degrees of freedom in order to �t the formula to
the targeted solution enthalpy of hydrogen. Comparing the performance of all three results in
�gure 6.7, one realizes that the form Γ(3,3,3) mainly improves the description of host materials with
high solution enthalpies (such as W, Os, Ir). In these cases the band occupation f−1

d seems to play
a more dominant role.

The combinatoric search for the carbon solubility predicting equations (tables 6.6 and C.4) yields
for the form Γ(0,0,1), Γ(0,0,2), and Γ(0,0,3) the same set of physical parameters as for hydrogen, despite

the small modi�cation that Ñ−1
tot instead of Ñtot enters Γ(0,0,2). The search further reveals with 0.946

a very high correlation coe�cient for the form Γ(0,1,2) where the product of the bulk parameters
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Figure 6.7: Comparison of the solution enthalpy of hydrogen as predicted by the formulas given
in table 6.5 and direct calculations. A high correlation (above 0.9) is achieved with two bulk
parameters and three �tting values (blue points). Orange points correspond to a predicting equation
with exactly the same three bulk parameters as suggested earlier by Griessen [114]. The red points
correspond to three �tting values and allows up to nine bulk parameters.

∆EF−s and Rj remains to be the dominant term. The structure of the formula hardly changes even
if one substantially increases the number of allowed physical parameters up to Γ(0,3,3). Even for
Γ(2,3,3) = Γ(3,3,3) the terms and the PCC value are only slightly extended. The physical parameter

Formula ∆H function correlation

Γ(0,0,2) −2.276 + 2.517 · R̃j · ∆̃EF−s 0.881

Γ(0,1,2) −4.442 + 0.941 · B̃−1
0 + 3.694 · R̃j · ∆̃EF−s 0.946

Γ(2,3,3) −3.956 · W̃ 1/2
d · Ñtot + 3.516 · W̃ 1/2

d · R̃j · ∆̃EF−s + 0.752 · (B̃−1
0 )2 · f̃d 0.956

Table 6.6: Selected results of the combinatorial search for carbon (full data given in table C.4).

∆EF−s is also the dominant term for the correlation coe�cient for the nitrogen and the oxygen
solubility, this time however combined with the band widthW−1/2

d (see tables 6.7 and 6.8). Already
in the case of Γ(0,0,2) this yields remarkably high PCC values of 0.946 and 0.972, respectively. Even
if a larger number of physical parameters is taken into account, these two interstitial elements yield
very similar terms in the predictive formulas.

On the other hand, the analysis of the �tted equations for the boron solubility (table C.6)
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Formula ∆H function correlation

Γ(0,0,2) −6.872 + 6.659 · W̃−1/2
d · ∆̃EF−s 0.946

Γ(0,2,2) −13.542 + 10.58 · W̃−1/2
d · ∆̃EF−s + 2.87 · ∆̃E−1

F−s · W̃
1/2
d 0.970

Γ(2,3,3) −4.453 · f̃−1
d · W̃

1/2
d + 3.219 · Ñ−1

tot · ∆̃EF−s + 0.318 · B̃−1
0 · (f̃−1

d )2 0.981

Table 6.7: Selected results of the combinatorial search for nitrogen (full data given in table C.5).

Formula ∆H function correlation

Γ(0,0,2) −10.476 + 8.576 · W̃−1/2
d · ∆̃EF−s 0.972

Γ(0,1,2) −11.62 + 0.412 · B̃−1
0 + 9.323 · W̃−1/2

d · ∆̃EF−s 0.974

Γ(3,3,3)

(
0.511 · B̃−1

0 · f̃−1
d + 8.58 · ∆̃EF−s · Ñtot − 10.842 · W̃ 1/2

d · Ñtot

)
f̃−1
d 0.992

Table 6.8: Selected results of the combinatorial search for oxygen (full data given in table C.7).

reveals that the considered bulk properties of the host materials describe the solubility of boron
much less accurately. Already Γ(0,0,3), though it has a similar structure as for the other interstitial
elements, has a correlation coe�cient (0.538) that is much too small for predictions. The observation
in section 6.2 that boron requires three factors in a factor analysis is clearly con�rmed by these
investigations. For example, a comparison of Γ(0,1,1) and Γ(1,1,1) (i.e. the comparison of a two
factors equation vs a three factors equation) shows a substantial increase in the PCC of B (see
table 6.9), while it did not improve the description of H and N at all, and only slightly that of C.
Also the changes between Γ(0,3,3) and Γ(3,3,3) are larger for B. Using the highest number of control
parameters in Γ(3,3,3) yields a reasonable PCC of 0.899, which is, however, still signi�cantly smaller
than for the other interstitial elements. This might indicate that the large variety of electronic
properties considered in our formalism are less suitable for boron in the dilute limit.

Formula ∆H function correlation

Γ(0,0,3) −1.684 + 2.144 · f̃−1
d · R̃j · ∆̃EF−s 0.538

Γ(0,1,1) 0.445 + 1.540 · R̃j − 2.067 · W̃−1/2
d 0.498

Γ(1,1,1) 0.765 · f̃−1
d + 3.406 · R̃j − 4.234 · W̃−1/2

d 0.644

Γ(3,3,3)

(
−3.207 · Ñtot + 5.861 · R̃j · ∆̃EF−s − 2.915 · B̃0 · f̃d

)
B̃0 0.899

Table 6.9: Result of the combinatorial search for boron (full data given in table C.6).
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For the interstitial element �uorine already the form Γ(0,0,1) reveals with 0.904 a high correlation
coe�cient. The form Γ(0,0,2) with the element-wise product of the d-band center fd and the bulk
modulus B0, shows with 0.964 a very high correlation between the predicting formula and the
calculated enthalpies (see table 6.10). The bulk modulus remains the key quantity for �uorine also
for the other forms of Γ.

Formula ∆H function correlation

Γ(0,0,2) −4.412 + 4.038 · B̃0 · f̃d 0.964
Γ(0,1,1) −7.038 + 2.933 · f̃d + 4.135 · B̃0 0.978

Γ(1,2,3) −9.162 · Ñtot + 7.834 · W̃−1/2
d · ∆̃EF−s + 1.286 · (R̃j)2 · B̃0 0.987

Table 6.10: Selected results of the combinatorial search for �uorine (full data given in table C.8).

It is again the bulk modulus which is the best parameter to predict the solution enthalpy of
helium and neon as well. The predicting form of Γ0,0,1 is su�cient to achieve a correlation of 0.937
for helium and 0.951 for neon (see tables 6.11 and 6.12).

Formula ∆H function correlation

Γ(0,0,1) 1.354 + 2.809 · B̃0 0.937
Γ(0,1,1) 1.022 + 2.512 · B̃0 + 0.628 · f̃d 0.956

Γ(2,3,3) 5.593 · W̃−1/2
d · ∆̃EF−s − 3.449 · f̃d · (Ñtot)

2 + 2.021 · W̃−1/2
d · R̃j · f̃d 0.994

Table 6.11: Selected results of the combinatorial search for helium (full data given in table C.9).

Formula ∆H function correlation

Γ(0,0,1) 1.964 + 5.452 · B̃0 0.951
Γ(0,1,1) 0.929 + 5.043 · B̃0 + 1.443 · R̃j 0.964

Γ(3,3,3) 11.462 · W̃−1/2
d · Ñ−1

tot · f̃d + 3.353 · R̃j · (∆̃EF−s)2 − 6.711 · Ñ−1
tot · (f̃d)2 0.991

Table 6.12: Selected results of the combinatorial search for neon (full data given in table C.10).

6.2.6 Conclusions from the combinatoric search

The discussion of the previous section can be used for a classi�cation of the interstitial elements.
Using the form Γ(0,0,2) as an indicator, the energy di�erence ∆EF−s is the dominant bulk parameter
for the four interstitial elements H, C, N, and O, whereas for the three interstitial elements F, He,
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and Ne the dominant bulk parameter is the bulk modulus B0. Therefore, the combinatoric search
con�rms an observation already made in section 5.5.3 that chemical e�ects are most important for
the mentioned �rst four interstitial elements and that elastic e�ects dominate the solubility of the
noble gases and �uorine (�gure 5.22). B has an exceptional behavior that cannot be associated with
one of the two groups.

Formula ∆H function correlation

Γ(0,0,2) −0.982 + 0.971 · R̃j · ∆̃EF−s 0.916

Γ(0,1,2) −0.779− 0.088 · B̃−1
0 + 0.861 · R̃j · ∆̃EF−s 0.939

Γ(2,3,3)

(
0.074 · W̃−1/2

d · B̃−1
0 − 0.708 · W̃ 1/2

d

)
∆̃E−1

F−s + 0.626 · Ñ−1
tot · R̃j · ∆̃EF−s 0.948

Table 6.13: Selected results of the combinatorial search for the group I elements containing hydro-
gen, carbon, nitrogen, and oxygen (full data given in table C.11). The coe�cients shown above
corresponds to the interstitial element hydrogen, whereas the correlation value is for the average of
all four interstitial elements. The unnormalized coe�cients also for the remaining three interstitial
elements are given in �gure 6.8.

If one takes the physical similarity for the solution enthalpy equation of the form Γ(0,0,2) seriously,
then the determination of the bulk parameters in the combinatorial research should be performed
for all elements in the same group simultaneously. The result of this procedure is shown in tables
6.13 / C.11 for the group consisting of the interstitial elements H, C, N, and O and in tables 6.14
/ C.12 for the group consisting of the elements F, He and Ne.

Formula ∆H function correlation

Γ(0,0,1) −5.492 + 5.523 · B̃0 0.922
Γ(0,1,1) −7.038 + 4.135 · B̃0 + 2.933 · f̃d 0.962

Γ(0,1,2) −6.25 + 1.599 · B̃0 + 4.5 · R̃j · ∆̃EF−s 0.966

Γ(0,3,3) −6.295 + 6.394 · Ñ−1
tot · R̃j · ∆̃EF−s − 0.196 · B̃−1

0 · ∆̃EF−s · f̃d 0.978

Table 6.14: Selected results of the combinatorial search for the group II elements containing �uorine,
helium and neon (full data given in table C.12). The coe�cients shown above corresponds to the
interstitial element �uorine. The unnormalized coe�cients are shown in �gure 6.9.

The form Γ(0,0,2) for the group I elements contains besides ∆EF−s the physical bulk parameter
Rj , which is imposed by the behavior of hydrogen and carbon. Correspondingly, the PCC value is
unchanged for these two elements, but it also decreases only insigni�cantly for nitrogen and oxygen.
The average correlation is already for this simple form above 0.9. An interesting observation is the
fact that the form Γ(0,0,3), which has also been used by Griessen for hydrogen [114] yields the same
structure as the form Γ(0,0,2) (table C.11). There is no additional physical parameter that, when
multiplied with Rj · ∆EF−s, will increase the correlation coe�cient for the group I of interstitial
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elements together. The structure of the predictive formula remains robust, even if some additional
terms are added. For example, also the form Γ(1,1,2) = Γ(0,1,2) contains the element-wise product

Rj ·∆EF−s and as an additional summand the inverse bulk modulus B(−1)
0 , which is imposed by

the predictive equation of the carbon solubility. Even in the form Γ(0,1,2) the element-wise product
Rj ·∆EF−s is still the dominating term. The predictive power of the derived formulas of the form
Γ(0,0,2) and Γ(0,1,2) are shown in �gure 6.8.

Analyzing table C.12 for the group II elements, the average correlation coe�cient is already
high for all three elements using only the bulk modulus B0. This is due to the fact, that the noble
gases reach a high correlation coe�cient whereas the correlation coe�cient for the element �uorine
lies below 0.9. However the correlation coe�cient of �uorine increases drastically by including the
d-band center as a parameter fd. This is shown in �gure 6.9. The bending of the �uorine data points
(blue circles in left �gure) disappears when including fd (right �gure). Instead of using the form
Γ(0,1,1) with the bulk properties B0 and fd, one can also use the form Γ(0,1,2). This version preserves
the bulk property B0 of the group II interstitial elements and combines it with the element-wise
product of ∆EF−s and Rj , which was for dominating term for the group I elements. The such
obtained average correlation coe�cient of 0.966 is very close to the correlation coe�cient of the
form Γ(0,1,1). An interesting study could be the analysis of the correlation coe�cients for mixed
bulk properties, such as the correlation of the element-wise product Rj ·∆EF−s with fd, which has
been skipped here for brevity.

Figure 6.8: The solution enthalpy of H, C, N, and O: Prediction vs calculations. The �tted co-
e�cients here are related to the physical bulk properties which are not normalized as shown in
table 6.3. The right �gure contains in addition a bulk parameter and a �tting parameter more than
the left �gure, which improves the carbon correlation coe�cient.
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Figure 6.9: The solution enthalpy of F, He and Ne: Prediction vs calculation. The �tted coe�cients
here are related to the physical bulk properties which are not normalized as shown in table 6.3. The
correlation coe�cient of �uorine increases drastically by using a second parameter (i.e. fd) beside
the bulk modulus B0.

6.2.7 Master curve for interstitial solubility

The discussion above yields to the result that the group of the interstitial elements H, C, N, and O
should be distinguished from the other interstitial elements considered in this work. The application
of the FA on the solution enthalpies of these four interstitial elements yields the eigenvalues (3.708,
0.188, 0.002, 0.101). The application of the Kaiser-Guttmann criterion implies that only one single
(common) factor is necessary in order to determine the solution enthalpies of these elements with a
minor error. The quality of the reduced component system can be again calculated by taking the
di�erence of the full correlation matrix of the four elements and the calculated correlation matrix
of the reduced system, i.e.

Rred1 −R =

−0.144 0.0377 0.059 0.039

0.038 −0.071 −0.003 0.038

0.059 −0.003 −0.028 −0.025

0.039 0.038 −0.025 −0.049

. (6.12)

The �nding is in perfect agreement with the identi�cation of a single descriptor in the form Γ(0,0,3)

containing the product of the two pure bulk properties ∆EF−s and Rj is su�cient to predict the
solution enthalpy of these interstitial elements with high precision. This argument can be interpreted
as a proof of the concept applied here to predict equations for the solution enthalpies.

The insights obtained in the analysis can be used to construct a master curve for the solubility
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of the interstitial elements H, C, N, and O. We use the �tting parameters in the left �gure 6.8
to construct contour lines for vanishing solution enthalpy in a diagram where the bulk properties
∆EF−s and

∑
Rj form the axes. Comparing it with the originally calculated solubilities in table C.1

it shows an amazing agreement. This leads to the conclusion that the even more simple product
∆EF−s ·

∑
Rj than the one found by Griessen for hydrogen is also applicable (with di�erent �tting

parameters) for the other interstitial elements C, N, and O.

Figure 6.10: Solubility contour lines for the interstitial elements in 3d, 4d and 5d TMs with respect to
the descriptors ∆EF−s and

∑
Rj . The points on the line corresponding to zero solution enthalpy.

Left to the line the corresponding interstitial element is predicted to have a negative solution
enthalpy and vice-versa.



Chapter 7

Summary and Outlook

A main goal of the present thesis was the discovery of new insights into chemical and physical
causes for interstitial solubility in transition metals. We achieved this goal in a three-fold approach
that includes (i) the development of tools to perform high-throughput (HT) calculations, (ii) a deep
analysis of physical concepts governing hydrogen solubility for a limited set of data, and (iii) the
creation of large databases and its analysis with tailored statistical concepts. As a result of this
approach we obtained a very compact and previously unknown analytic expression for the prediction
of interstitial solubility based on a couple of bulk parameters of the host materials only. In this
spirit the current work is a true example of knowledge discovery in databases (KDD).

Setup of the database

The results obtained from the ab initio study of the interstitial element hydrogen in 4th row elements
including 3d transition metals (TM) motivated us to extend the study to 5th row (including 4d TMs)
and 6th row elements (including 5d TMs). We further learned from the hydrogen investigation that
a constraint to non-magnetic fcc structure is helpful and meaningful. Furthermore, the interstitial
elements boron, carbon, nitrogen, oxygen, �uorine and the noble gases helium and neon have been
taken into account. The host elements are �rst calculated in their ground state structure and in a
second step under comparable conditions in order to rule out structural e�ects that might in�uence
the interstitial solubility. For this reason all host elements are assumed to be in non-magnetic fcc
structure. Considering all these extensions together (including convergence checks) we anticipated
the demand of a huge amount of data production, data storage and its analysis. To cope with these
challenges of the present high-throughput (HT) study we designed and developed new tools.

Tools to perform HT calculations

Following the concept of the KDD process discussed in chapter 4, we developed a workbench called
pyCMW. It is a characterized by a variety of features including the independence of platforms, the
support of various external programs (VASP, LAMMPS, and KMC) as well as a graphical user
interface controlled by the front-end. For the purpose of the present study mainly the concepts
implemented in the back-end are decisive. In the �rst place they allowed us to set up and admin-
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istrate the roughly one million individual VASP calculations that entered this HT study. For this
purpose, we had to take care of reliable communication with the hardware infrastructure (compute
clusters), intelligent storage concepts (using the HDF5 �le format) and easy tools for combining
and post-processing data.

The last point is already required for standard tasks like Murnaghan �ts and the construction
of dynamical matrices, which have been heavily used in this thesis. More important was, however,
the statistical evaluation like the determination of Pearson correlation coe�cients (PCC) and factor
analysis. To meet these challenges, the usage of python as a programming language was very helpful,
since it allowed the straight-forward implementation of already existing libraries. Furthermore, the
concept of grouping calculations into projects, as implemented in pyCMW, greatly simpli�ed the
handling of data. Finally the �exibility of the workbench due to its object-oriented and modular
structure was decisive, since the way how di�erent sets of data should be combined to determine
the best expression for the solution enthalpy, was not clear at the time of programming.

Finally, the graphical tools implemented in the front-end form an important part of the analy-
sis. Though numbers like the PCC eventually quantify the degree of correlation between di�erent
physical properties, the knowledge discovery, i.e. the physical understanding of relations and the
detection of special properties of individual elements (such as the interstitial boron) cannot be au-
tomatized. It can only be achieved by the interaction with a scientist. For the latter, the importance
of diagrams cannot be overstated.

Physical concepts governing hydrogen solubility

We �rst identi�ed chemical trends for the solution enthalpy ∆H of the interstitial element hydrogen
in the 4th row elements. The study was restricted to (i) 3d transition metals and the neighboring
elements K, Ca, Ge, and Ga, (ii) the fcc crystal structure and (iii) non-magnetic con�gurations.
Using these constraints, we were able to identify several rules for the hydrogen solubility in transition
metals:

1. A universal dependence of the hydrogen solution enthalpy on the lattice constant of the host
metal was revealed. The universality becomes most apparent, if tensely or compressively
strained materials are considered.

2. The solution enthalpy results from a competition between getting su�cient space to incor-
porate hydrogen (i.e. a preference for large lattice constants) and the formation of strong
hydrogen-metal bonds (favoring smaller atomic distances). In the present thesis, we identi�ed
an optimal spherical radius for interstitial H of approximately 0.7 Å in the octahedral site
(0.4 Å in the tetrahedral site, respectively).

3. An fcc-lattice constant of 4.6 Å turned out to be characteristic for several atomistic mecha-
nisms. In particular at this lattice constant, no relaxation of matrix atoms is needed upon
hydrogen incorporation at the octahedral site.

4. These observations motivate a decomposition of the hydrogen solution enthalpy in a strain in-
duced part ∆Estrain (related to the lattice relaxations) and a remaining chemical part ∆Echem.
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The such de�ned chemical part, ∆Echem, contains the energy related to the formation of chemi-
cal bonds. It covers the largest part of the hydrogen solution enthalpy. Accordingly, its volume
dependence also shows the universal behavior observed for the whole solution enthalpy.

5. Investigating charge density di�erences at the hydrogen position revealed two classes of ele-
ments: In one class only a small part of the electronic charge of the matrix material is locally
bound at the hydrogen position. This is a consequence of the limited ability of these materi-
als to screen the proton. The resulting reduction in ionic character explains the signi�cantly
higher endothermic hydrogen solution enthalpy.

The insights of the study of hydrogen in 4th row elements motivated us to extend the research
to 5th row and 6th row host elements and to consider additional interstitial elements including
the elements boron, carbon, nitrogen, oxygen, �uorine, helium, and neon. The previously revealed
trends for hydrogen were replicated for the interstitial elements boron, carbon, nitrogen, and oxygen,
though they were less clearly visible in these cases. The trends did not show up for the noble gases
and �uorine, which have their ∆H maximum at half-�lled d-shells (similar to the behavior of the
bulk modulus w.r.t. d-band �lling).

Knowledge discovery from our databases

The PCC analysis of the solution enthalpy versus bulk modulus and Griessen's ∆E term revealed
that the elements F, He, Ne are strongly correlating with the bulk modulus, which is an evidence
that the solubility for these elements is mainly determined by elastic contributions. With increasing
the bulk modulus the solubility is decreasing and in the case of Ne two times higher than the
element He. The solution enthalpy of hydrogen is mainly in�uenced by an chemical e�ect, which is
in excellent agreement with the study of H in 4th row elements before.

The PCC analysis of the solution enthalpies among the interstitial elements revealed high corre-
lation coe�cients between the interstitial solubilities of neighboring interstitial elements in the PES
(having a single electron di�erence only), such as C and N, N and O, or F and Ne or elements in
the same column of the PES (having same number of electrons in the outer shells), such as He and
Ne. A surprisingly high correlation coe�cient between the elements H and N, H and C, and H and
O was observed. N is approximately 4 times more soluble than H, and C approximately 2.5 times
more soluble than H.

The Factor Analysis (FA) of the interstitial element solubilities revealed that two latent factors
are necessary to describe the solution enthalpy of almost all interstitial elements except boron. To
describe boron interstitial solubility a third latent factor appeared. In order to �nd a predictive
model and parameters for the interstitial solubilities a combinatorial search has been applied. It
turned out, that �tting is best performed, if the interstitial elements are divided into two groups.
The �rst group consists of the interstitial elements H, C, N, and O, and the second group consists
of F, He, and Ne. It turned out that for the �rst group the formula

∆H = a∆E ·
∑
j

Rj + b (7.1)

is su�ciently accurate to draw a treasure map for the interstitial solubilities. This is shown in
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�gure 6.10. This formula re�ects our central �nding that predictive model should re�ect both the
chemical nature, as it is done by ∆E, and the mechanical nature, as done by

∑
j Rj . Beyond this,

a third parameter, as used in earlier work by Griessen [114], is not required, unless another target
property like the formation volume should also be captured.

Outlook

We believe that the achieved general understanding of fundamental rules for the incorporation of
interstitial elements and the obtained knowledge of chemical trends are very important for the
design of materials in which dilute interstitial concentration have severe e�ects on the functionality
and/or structural performance.

Practical applications require, however, an extension of the investigations in several directions.
First, the current approach is not free of approximations. In particular, the choice of the exchange
correlation-functional within the DFT calculations can have a strong impact on the �nal results
for the solubility. We believe that the chemical trends will not change, if another functional is
chosen. Nevertheless, an estimate of the predictive power could be achieved by comparing various
functionals. The obtained insights might also be helpful, to develop tight-binding parametrizations,
which allow the investigation of more complex structures.

Second, the host materials in reality are typically not pure elements, but multicomponent alloys.
It is an assumption of the present study that the impact, for example, of Cr in Ni on the H
solubility is qualitatively already covered, if the solubility in pure Cr is compared to that in pure
Ni, provided that both elements are treated in the same crystal structure as the alloy. The extension
to multicomponent systems needs, however, more systematic investigations, starting from alloying
elements in the dilute limit and proceeding to concentrated ordered and disordered alloys.

Third, the solution of elements, in particular if incorporated as an interstitial, may not be
well described by considering perfect single crystals. In applications, materials have a complicated
microstructure, consisting of several grains, point defects and extended defects. For all these mi-
crostructure features similar high throughput investigation can be performed or are already on the
way. Since they are computationally even more demanding, the existence of e�cient simulation
tools and analysis concepts, as developed in this work, is highly important.

Finally, one rarely wants to optimize a single quantity, like the interstitial solubility. Typically,
other parameters, such a electrical conductivity, phase stability, solution hardening, stacking fault
energy, etc. should be controlled at the same time. Therefore, the correlation between di�erent
target properties should be systematically investigated. This can be achieved by extending the con-
cepts of knowledge discovery that turned out to be so valuable for the physical questions presented
in this work.



Appendix A

Correlation of Griessen's predictive

equation

The correlation between the rearranged equation 5.7 versus the d-bandwidth Wd is presented below

Figure A.1: The correlation between the d-bandwidth Wd and Griessen's rearranged equation 5.7.
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Appendix B

Study of interstitial elements

B.1 Hydrogen solution enthalpy vs lattice constant

Figure B.1: Solution enthalpy of hydrogen in 4th, 5th, and 6th row elements in the octahedral (left)
and in the tetrahedral (right) site.
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B.2 Derivative of hydrogen solution enthalpy

Figure B.2: Derivative of the solution enthalpy of hydrogen in 4th, 5th, and 6th row elements in
the octahedral (left) and in the tetrahedral (right) site.
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B.3 Interstitial solution enthalpies vs lattice constant

B.3.1 Boron solution enthalpy vs lattice constant

Figure B.3: Solution enthalpy of boron in 4th, 5th, and 6th row elements in the octahedral (left)
and in the tetrahedral (right) site.
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B.3.2 Carbon solution enthalpy vs lattice constant

Figure B.4: Solution enthalpy of carbon in 4th, 5th, and 6th row elements in the octahedral (left)
and in the tetrahedral (right) site.
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B.3.3 Nitrogen solution enthalpy vs lattice constant

Figure B.5: Solution enthalpy of nitrogen in 4th, 5th, and 6th row elements in the octahedral (left)
and in the tetrahedral (right) site.
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B.3.4 Oxygen solution enthalpy vs lattice constant

Figure B.6: Solution enthalpy of oxygen in 4th, 5th, and 6th row elements in the octahedral (left)
and in the tetrahedral (right) site.
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B.3.5 Fluorine solution enthalpy vs lattice constant

Figure B.7: Solution enthalpy of �uorine in 4th, 5th, and 6th row elements in the octahedral (left)
and in the tetrahedral (right) site.
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B.3.6 Helium solution enthalpy vs lattice constant

Figure B.8: Solution enthalpy of helium in 4th, 5th, and 6th row elements in the octahedral (left)
and in the tetrahedral (right) site.
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B.3.7 Neon solution enthalpy vs lattice constant

Figure B.9: Solution enthalpy of neon in 4th, 5th, and 6th row elements in the octahedral (left) and
in the tetrahedral (right) site.
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B.4 Charge density di�erences of interstitial elements

B.4.1 CDD of Interstitial elements in early TMs

Figure B.10: Charge density di�erence for early TMs.
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B.4.2 CDD of Interstitial elements in half-�lled TMs

Figure B.11: Charge density di�erence for half-�lled d-band TMs.
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B.4.3 CDD of Interstitial elements in late TMs

Figure B.12: Charge density di�erence for �lled d-band TMs.
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B.4.4 CDD of H in all TMs

Figure B.13: Charge density di�erence of hydrogen for all studied elements in octahedral and
tetrahedral site.
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Appendix C

Factor Analysis

C.1 Solution enthalpy matrix

Pos Bulk Hydrogen Boron Carbon Nitrogen Oxygen Fluorine Helium Neon

0 Ca -0.687 0.030 0.442 -2.056 -5.912 -5.532 1.016 1.304

1 Sc -0.943 -0.807 -0.967 -3.411 -6.560 -4.906 1.782 3.120

2 Ti -0.419 -1.134 -1.550 -3.701 -6.243 -3.716 2.895 4.877

3 V -0.332 -0.611 -0.840 -2.714 -4.905 -2.144 3.085 6.267

6 Fe 0.167 -0.139 0.554 0.248 -1.241 1.100 4.498 8.592

7 Co 0.045 -0.355 0.716 0.504 -0.746 1.240 4.653 8.334

8 Ni 0.054 -0.911 0.554 0.682 -0.300 1.498 4.484 7.564

9 Cu 0.429 0.569 2.614 2.083 -0.406 0.017 3.802 5.548

10 Zn 1.047 1.266 2.490 0.882 -2.441 -2.010 2.836 3.984

0 Sr -0.727 0.502 1.152 -1.374 -5.750 -5.665 0.818 1.004

1 Y -0.959 -0.550 -0.503 -2.928 -6.342 -5.166 1.587 2.494

2 Zr -0.424 -1.387 -1.674 -3.758 -6.344 -4.036 2.623 4.221

3 Nb -0.414 -0.808 -0.845 -2.448 -4.502 -1.921 3.137 6.322

4 Mo 0.632 0.496 1.239 0.563 -1.006 1.126 4.929 9.016

5 Tc -0.163 -1.073 -0.073 -0.327 -1.339 0.845 4.470 8.333

6 Ru 0.261 0.008 1.604 1.882 0.648 3.176 5.302 10.197

7 Rh 0.190 -1.303 0.803 1.571 0.548 2.488 4.958 8.866

8 Pd -0.129 -2.158 0.363 1.299 0.052 1.095 3.592 5.736

9 Ag 0.674 1.251 4.021 3.264 -0.233 -1.057 2.597 3.524

10 Cd 0.968 1.683 3.177 1.629 -1.915 -2.572 1.715 2.297

2 Hf -0.352 -1.436 -1.926 -3.983 -6.337 -3.700 3.111 4.925

3 Ta -0.393 -1.044 -1.245 -2.809 -4.669 -1.835 3.177 6.662

4 W 0.932 0.825 1.555 1.122 0.038 2.255 5.842 10.870

5 Re 0.135 -0.884 0.190 0.279 -0.696 1.818 5.676 10.112

6 Os 0.851 0.872 2.776 3.073 1.825 4.888 6.805 12.735

7 Ir 0.938 -0.291 2.315 2.726 1.662 4.175 6.512 11.322

8 Pt 0.501 -1.390 1.569 1.957 0.943 2.332 4.650 7.033

9 Au 0.822 0.669 4.093 3.709 0.582 0.058 2.936 3.909

11 Tl 0.888 2.080 4.029 2.320 -1.803 -2.935 1.120 1.524

Table C.1: Solution enthalpy of interstitial elements in TM GS (units in eV). Gray shaded elements
are not considered in the PCC matrix 6.1.
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C.2 Standardized solution enthalpy matrix

Hydrogen Boron Carbon Nitrogen Oxygen Fluorine Helium Neon

Sc -1.844 -0.386 -0.943 -1.339 -1.596 -1.724 -1.608 -1.431
Ti -0.909 -0.750 -1.282 -1.454 -1.488 -1.305 -0.818 -0.801
V -0.753 -0.168 -0.869 -1.063 -1.031 -0.751 -0.683 -0.302
Fe 0.138 0.358 -0.059 0.111 0.222 0.391 0.321 0.533
Co -0.080 0.117 0.035 0.212 0.391 0.441 0.431 0.440
Ni -0.064 -0.501 -0.059 0.283 0.543 0.531 0.311 0.164
Cu 0.586 1.249 1.147 0.838 0.513 0.063 -0.173 -0.560

Y -1.873 -0.100 -0.674 -1.148 -1.522 -1.816 -1.747 -1.656
Zr -0.918 -1.031 -1.354 -1.477 -1.523 -1.418 -1.011 -1.036
Nb -0.900 -0.387 -0.872 -0.958 -0.893 -0.673 -0.646 -0.282
Mo 0.968 1.065 0.339 0.236 0.302 0.400 0.627 0.685
Tc -0.452 -0.682 -0.424 -0.117 0.188 0.301 0.301 0.440
Ru 0.306 0.522 0.551 0.758 0.867 1.123 0.892 1.109
Rh 0.175 -0.877 0.115 0.649 0.831 0.854 0.648 0.631
Pd -0.344 -1.790 -0.096 0.580 0.702 0.421 -0.322 -0.492
Ag 1.081 2.027 1.955 1.297 0.569 -0.329 -1.029 -1.286

Hf -0.789 -1.087 -1.500 -1.566 -1.520 -1.299 -0.664 -0.783
Ta -0.862 -0.650 -1.105 -1.101 -0.950 -0.642 -0.617 -0.160
W 1.504 1.432 0.522 0.457 0.659 0.798 1.276 1.351
Re 0.081 -0.472 -0.271 0.123 0.408 0.644 1.158 1.079
Os 1.359 1.484 1.232 1.230 1.269 1.726 1.960 2.020
Ir 1.520 0.238 0.994 1.109 1.198 1.418 1.752 1.513
Pt 0.734 -1.014 0.554 0.808 0.970 0.836 0.429 -0.027
Au 1.338 1.402 2.065 1.531 0.892 0.008 -0.789 -1.148

Table C.2: Standardized solution enthalpy matrix Z

C.3 Factor Analysis of ∆H for interstitial elements H, B, C, N, O,

F, He, Ne

C.3.1 Determination of the number of factors k

The correlation coe�cient matrix can be calculated from the standardized solution enthalpy ta-
ble C.2



C.3 Factor Analysis of ∆H for interstitial elements H, B, C, N, O, F, He, Ne 129

R =
1

n− 1
Z†Z =



1.00 0.65 0.85 0.88 0.86 0.80 0.71 0.59

0.65 1.00 0.75 0.56 0.42 0.31 0.25 0.21

0.85 0.75 1.00 0.94 0.83 0.64 0.41 0.28

0.88 0.56 0.94 1.00 0.96 0.83 0.60 0.47

0.86 0.42 0.83 0.96 1.00 0.94 0.76 0.65

0.80 0.31 0.64 0.83 0.94 1.00 0.92 0.86

0.71 0.25 0.41 0.60 0.76 0.92 1.00 0.97

0.59 0.21 0.28 0.47 0.65 0.86 0.97 1.00


(C.1)

Using the relation
R = AA†. (C.2)

and by using the singular value decomposition (svd) of the symmetric matrix R reveals

R = UΣV† = UΣU†. (C.3)

in which Σ is a diagonalmatrix with the eigenvalues of R, thus

Σ = diag
(

5.3876 1.4730 0.5436 0.1184 0.0170 0.0071 0.0025 0.0008.
)

(C.4)

and column-wise the corresponding eigenvectors

U =



−0.388 −0.136 0.087 −0.877 −0.219 −0.071 −0.044 −0.024

−0.241 −0.502 0.715 0.277 −0.176 0.250 0.064 −0.065

−0.347 −0.433 −0.150 0.103 0.494 −0.494 0.183 0.371

−0.384 −0.207 −0.356 0.179 0.099 0.030 −0.412 −0.685

−0.398 0.007 −0.358 0.175 −0.304 0.456 −0.237 0.571

−0.389 0.256 −0.153 0.193 −0.378 −0.142 0.715 −0.220

−0.345 0.429 0.206 −0.097 0.645 0.453 0.147 −0.043

−0.307 0.500 0.371 0.186 −0.123 −0.505 −0.449 0.107


(C.5)

Comparing equations C.2 and C.3
R = AA† = UΣU† (C.6)

matrix A is equal to UΣ1/2T, in which T corresponds to any orthogonal rotation matrix. For T = I

(identity) it follows for the loading matrix

A =



0.936 0.165 −0.064 0.302 0.029 0.006 0.002 0.001

0.583 0.610 −0.527 −0.096 0.023 −0.021 −0.003 0.002

0.839 0.525 0.111 −0.036 −0.064 0.042 −0.009 −0.010

0.929 0.252 0.263 −0.062 −0.013 −0.003 0.021 0.019

0.961 −0.009 0.264 −0.060 0.040 −0.038 0.012 −0.016

0.939 −0.311 0.113 −0.066 0.049 0.012 −0.036 0.006

0.835 −0.520 −0.152 0.033 −0.084 −0.038 −0.007 0.001

0.742 −0.607 −0.274 −0.064 0.016 0.043 0.023 −0.003


. (C.7)

The reduction of the dimension to k factors can be achieved with di�erent methods. One
method to reduce the dimension of the problem is the usage of the Kaiser-Guttmann-Criteria: All
factors with eigenvalues larger than one will mainly determine the originally formulated standardized
variables. In the formulated problem above there are only two eigenvalues which are larger than
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one (i.e. k = 2). The reduced loading matrix is then de�ned as the �rst two columns of A, i.e.

Ared2 =



0.936 0.165

0.583 0.610

0.839 0.525

0.929 0.252

0.961 −0.009

0.939 −0.311

0.835 −0.520

0.742 −0.607


T, (C.8)

in which for k = 2 the orthogonal transformation matrix corresponds to

T =

(
cos(α) − sin(α)

sin(α) cos(α)

)
(C.9)

According to equation C.2 the reduced correlation coe�cient matrix can be achieved (independent
of T) through Rred2 = Ared2A†

red2

Rred2 =



0.9 0.65 0.87 0.91 0.9 0.83 0.7 0.59

0.65 0.71 0.81 0.7 0.56 0.36 0.17 0.06

0.87 0.81 0.98 0.91 0.8 0.63 0.43 0.3

0.91 0.7 0.91 0.93 0.89 0.79 0.64 0.54

0.9 0.56 0.8 0.89 0.92 0.91 0.81 0.72

0.83 0.36 0.63 0.79 0.91 0.98 0.95 0.89

0.7 0.17 0.43 0.64 0.81 0.95 0.97 0.93

0.59 0.06 0.3 0.54 0.72 0.89 0.93 0.92


. (C.10)

However, the reduction to three factors captures all correlation coe�cients very well. The three-
components reduced PCC is given as follows

Rred3 =



0.91 0.68 0.87 0.89 0.88 0.82 0.71 0.61

0.68 0.99 0.75 0.56 0.42 0.30 0.25 0.21

0.87 0.75 0.99 0.94 0.83 0.64 0.41 0.27

0.89 0.56 0.94 1.00 0.96 0.82 0.60 0.46

0.88 0.42 0.83 0.96 0.99 0.94 0.77 0.65

0.82 0.30 0.64 0.82 0.94 0.99 0.93 0.85

0.71 0.25 0.41 0.60 0.77 0.93 0.99 0.98

0.61 0.21 0.27 0.46 0.65 0.85 0.98 0.99


. (C.11)
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C.4 Results/Tables for the combinatoric search
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·Ñ
−

1
to
t
·∆̃

E
F
−
s

+
(−

1.
08

10
0)
·R̃
−

1
j
·B̃

0
·f̃
d

0.
94
9

Γ
(1
,3
,3

)
(−

0
.4

65
0
0)
·f̃
−

1
d

+
1
.9

22
00
·f̃
−

1
d
·∆̃

E
F
−
s
·∆̃

E
F
−
s

+
(−

1
.1

45
00

)
·R̃
−

1
j
·W̃

1
/
2

d
·B̃

0
0.
95
1

Γ
(2
,2
,2

)
(−

0
.1

11
00

)
·R̃

j
·B̃

0
+

0
.3

57
00
·R̃

j
·∆̃

E
F
−
s

+
(−

0
.0

39
00

)
·f̃
d
·f̃
d

0.
92
9

Γ
(2
,2
,3

)
(−

2.
2
02

00
)
·1
·W̃

1
/
2

d
+

3
.2

54
00
·Ñ
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·Ñ
−

1
to
t
·∆̃

E
F
−
s

0.973

Γ
(2
,2
,3

)
(−

5.4
370

0
)·

∆̃
E
−

1
F
−
s ·f̃

−
1

d
+

2
.23300

·
∆̃
E
F
−
s ·Ñ

to
t
+

2
.17600

·∆̃
E
−

1
F
−
s ·

∆̃
E
−

1
F
−
s ·f̃

−
1

d
0.978

Γ
(2
,3
,3

)
(−

4.4
530

0
)·f̃

−
1

d
·W̃

1
/
2

d
+

3
.21900

·
Ñ
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Ñ
−

1
to
t
·
W̃

1
/
2

d
0.980

Γ
(0
,3
,3

)
(−

6.209
00)

+
(−

6
.13800)·

R̃
j ·
Ñ
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·Ñ
−

1
to
t
·R̃

j
·B̃

0
0.
96
9

Γ
(0
,2
,2

)
0.

76
40

0
+

4
.4

28
00
·W̃

1
/
2

d
·B̃

0
+

2
.0

69
00
·W̃

−
1
/
2

d
·R̃

j
0.
96
9

Γ
(0
,2
,3

)
3.

06
30

0
+

6
.5

80
00
· R̃

j
·∆̃

E
F
−
s

+
(−

3
.2

25
00

)
·B̃
−

1
0
·∆̃

E
F
−
s
·f̃
d

0.
97
7

Γ
(0
,3
,3

)
2.

55
90

0
+

6
.7

73
00
·Ñ
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·Ñ
−

1
to
t
·R̃

j
·f̃
d

0.
98
6

Γ
(2
,2
,2

)
6.

41
10

0
·Ñ
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