Online Anomaly Detection for Reconfigurable Self-X
Real-Time Operating Systems

A Danger Theory-Inspired Approach

Dissertation

A thesis submitted to the
Faculty of Electrical Engineering, Computer Science and Mathematics
of the
University of Paderborn
in partial fulfillment of the requirements for the degree of
doctorum rerum naturalium (Dr. rer. nat.)

Diplom-Informatikerin Katharina Stahl

November 14, 2015

ii

Acknowledgements

Es ist fertig, endlich! Und genau wie jeder Andere, der eine Dissertation
verfasst hat, habe ich auch alle Phasen durchlebt: von Enthusiasmus fiir das
Thema, den Zweifel eine Losung zu finden oder diese umsetzen zu kénnen,
Gedanken tiibers Aufgeben - es einfach sein zu lassen, der Schwierigkeit den
inneren Schweinehund zu iiberwinden und an der Sache dran zu bleiben, bis
schliefSlich hin zum Einfach-nur-Durchzuhalten, um die Sache abzuschliefSen.
Auf diesem Weg haben mich viele Menschen aus meinem Leben begleitet
und untersttitzt - jeder in seiner eigenen Rolle -, und denen mdochte ich auf
diesem Wege danken:

Ein ganz grofler Dank geht als erstes an meinen Doktorvater Prof. Franz
Rammig, der mir nicht nur die Méglichkeit zur Promotion gegeben hat, son-
dern mich wirklich auf dem Weg dahin begleitet hat. Wahrscheinlich hatte
er zwischenzeitig genauso grofie Zweifel wie ich, ob ich denn irgendwann
zu einer passenden Losung komme. Nichtsdestotrotz hat er mich immer
wieder ermuntert und mir gute Hinweise gegeben und viele Gespréche iiber
Ideen und den Fortschritt der Arbeit mit mir gefiihrt - eben genau so, wie
man sich einen Doktorvater vorstellt! Auch dafiir, dass er in seiner Rolle
als Gutachter die doch so umfangreich gewordene Arbeit gelesen hat - und
manche Kapitel auch mehrfach: Herzlichen Dank!

Zur Umsetzung dieser Arbeit haben auch weitere Personen beigetragen:
angefangen von Gavin Vaz und Sijia Li, die durch ihre Master-Arbeiten
die Vorarbeiten zur Implementierung meines Konzepts geliefert haben, und
insbesondere Sijia Li, der als studentische Hilfskraft grofie Teile der Pro-
grammierung tibernommen hat. Insbesondere aber ohne die grofsartige
Unterstiitzung von Jorg Stocklein wére eine Evaluierung meiner Arbeit nicht
moglich gewesen. Jorg hat sich nicht nur die Ideen zur Umsetzung angehort
und mit mir diskutiert, vielmehr hat er mir die Evaluierungsumgebung zur
Verfiigung gestellt und sie an die Bediirfnisse meiner Case Study angepasst,
ohne dass es fiir ihn einen personlichen Nutzen hatte. Das war wirklich
grofsartig!

Meiner lieben Schwégerin, Silke Stahl-Rolf, muss ich herzlich dafiir danken,
dass sie die komplette Arbeit durchgearbeteitet hat und mich darin un-
terstiitzt hat, Rechtschreib- und Tippfehler zu entfernen oder zumindest ihre
Anzahl zu reduzieren.

ACKNOWLEDGEMENTS

iv

Ich danke meinen Eltern nicht nur dafiir, dass sie den Weg bereitet haben,
bis hier hin zu kommen. Insbesondere danke ich Thnen dafiir, dass sie mir
immer noch tagtdglich ihre Unterstiitzung anbieten, sich um unsere Kinder
kiimmern, und mir dadurch viel Freiraum geschaffen haben, mir Zeit fiir
die Fertigstellung dieser Arbeit zu nehmen.

Auch mein Mann Jan musste insbesondere im letzten Jahr viel Einsatz
zeigen, im Bezug auf die Kinder sowie den Haushalt - was er beides grofsartig
gemanaged hat, wahrend ich mich ins Arbeitszimmer verzog. Was aber
viel wichtiger fiir mich war, war sein unerschiitterlicher Glaube an mich
und an die Tatsache, dass ich es schaffen wiirde, - auch wenn ich selbst
zwischendurch grofie Zweifel hatte.

Ein ganz besonderer dicker Kuss geht an meine beiden kleinen Tdchter
Amalia (6) und Paulina (5), die vielleicht noch nicht verstehen, dass Mama
“Doktor” werden mochte aber NICHT Arzt, - die fiier ihr Alter viel Verstindnis
und Geduld aufweisen mussten, wenn ich statt spielen schreiben musste

und mir aber dennoch zur Unterstiitzung diese zwei tollen Bilder ausgemalt
haben:

Abstract

Anomaly detection is considered as a useful means to enhance the system’s run-time de-
pendability in self-reconfiguring real-time systems. Employed in self-reconfiguring real-time
systems, anomaly detection requires to fulfill the specific requirements and challenges resulting
from the specific characteristics of the application domain: working online, being lightweight in
terms of resource consumption, self-learning, and, in order to be able to cope with dynamically
changing behavior, it requires a context-related evaluation of behavior.

These requirements have been addressed by the Online Anomaly Detection as the central
contribution of this thesis. Its concept was inspired by the Danger Theory coming from Artificial
Immune Systems and building up an operating system framework for the context-related
classification of behavior. Composed of system call sequences executed by the applications
tasks, the behavior is evaluated on the basis of input signals reflecting the operating system
state determined as the behavior’s context. A compact data structure on the basis of Suffix
Trees has been integrated into the framework for building up a Behavior Knowledge Base to
store the behavior history. Based on the properties of Suffix Trees, it enables online profiling of
the behavior including its immediate conservation.

The applicability of the Online Anomaly Detection with respect to the given restrictions was
proven by formal analysis of the approach and it was verified by a quantitive evaluation of the
implementation of the approach within the real-time operating system ORCOS. Furthermore,
the performance of the Online Anomaly Detection in terms of its effectiveness was demonstrated
by means of a case study using the autonomous BeBot application within a virtual evaluation
environment.

The evaluations have shown that the Online Anomaly Detection offers a powerful concept to
enhance the run-time dependability of self-reconfiguring real-time systems by implementing
context-related classification of system behavior and, beyond that, by providing means to
identify potential threat sources in conjunction with the evaluation of the system health state.

ABSTRACT

Vi

Zusammenfassung

Anomaliedetektion ist ein wertvolles Mittel zur Verbesserung der Laufzeitzuverladssigkeit in
selbst-rekonfigurierbaren Echtzeitsystemen. Aufgrund der spezifischen Eigenschaften, die sich
aus der Kombination von selbst-rekonfigurierbared Systemen und Echtzeitsystemen ergeben,
muss die eingesetzte Anomaliedetektion spezifische Anforderungen erfiillen: online-fdhig
sein, leichtgewichtig im Sinne des Verbrauchs von Ressourcen und selbst-lernend. Um mit
sich dynamisch dndernden Verhalten umgehen zu kénnen, muss die Anomaliedetektion eine
kontextbezogene Evaluierung des Systemverhaltens umsetzen.

Der zentrale Kern dieser Arbeit ist die Online Anomaly Detection, die auf Basis dieser
spezifischen Anforderungen entworfen wurde. Das Konzept der Online Anomaly Detection
beruht auf der Danger Theory, welche zu den Verfahren der Kiinstlichen Immunsysteme gehort.
Das Konzept stellt ein Betriebssystem-Framework zur kontext-bezogenen Klassifizierung von
Systemverhalten zur Verfiigung. Dabei setzt sich das Systemverhalten aus den Systemaufrufen
der Anwendungen zusammen und wird auf Basis von Eingangssignalen evaluiert, welche
den Betriebssystemzustand als Kontext des Systemverhaltens widerspiegeln. Zur Speicherung
der Historie des Systemverhaltens wurde in das Framework eine Wissensbasis (Behavior
Knowledge Base) integriert, die mithilfe von Suffixbdumen eine kompakte Datenstruktur
erzeugt. Die Verwendung von Suffixbdumen ermdglicht einen Abgleich des Systemverhaltens
zur Laufzeit und dessen direkte Ablage in die Wissensbasis.

Die Anwendbarkeit der Online Anomaly Detection auf das gegebene Einsatzgebiet wurde im
Bezug auf die vorgegebenen Restriktionen anhand einer formalen Analyse bewiesen. Dariiber
hinaus wurde die Online Anomaly Detection im Echtzeitbetriebssystem ORCOS umgesetzt
und zur Verifizierung der Anwendbarkeit eine quantitativen Evaluierung durchgefiihrt. Die
Performanz und Effektivitit der Online Anomaly Detection wurde im Rahmen einer Fallstudie
demonstriert, welche auf Basis einer autonomen BeBot Anwendung innerhalb einer Virtuellen
Evaluierungsumgebung durchgefiihrt wurde.

The Evaluierung des Ansatzes hat gezeigt, dass die Online Anomaly Detection ein erfolgre-
iches und leistungsstarkes Konzept bietet, um Laufzeitzuverldssigkeit in selbst-rekonfigurierenden
Echtzeitbetriebssystemen zu erhohen. Es ermoglicht kontext-bezogene Klassifizierung von
Systemverhalten. Dariiber hinaus bietet es Moglichkeiten zur Identifikation der Fehlerquellen,
die auf Basis der Evaluierung des Betriebssystemzustandes erfolgt.

Contents

Acknowledgements iii
Abstract \4
Zusammenfassung vii
PartI Introduction 1
1 Introduction 3
Motivation e 3
Objective 4
1.1 Requirements, Restrictions and Challenges 5
1.2 BasicIdea 7
Structure of this Thesis 8
Part I Foundations 9
2 Anomaly Detection 11
2.1 Definition 11
2.2 Properties and Features, 12
2.3 Architectural Model L 18
2.4 Data Classification 19
2.5 Anomaly Detection Techniques 21
2.6 Application Domains Lo 37
27 SUMMATY oottt e et e e 40
3 Artificial Immune Systems 41
3.1 The Human Immune System 41
3.2 Artificial Immune Systems L Lo 43
3.3 Self/Nonself Discrimination, 44
3.4 DangerTheory 46
3.5 Evaluation of Artificial Immune Systems 52
3.6 Summary 53
4 Related Work 55
4.1 System Call-based Anomaly Detection. 56
4.2 AlS-inspired Anomaly Detection 58

4.3 Danger Theory-based Anomaly Detection 61

44

Discussion and Summary

5 Online Pattern Matching

5.1
5.2
53

Introduction e
Suffix Trees o o e e
Summary

6 ORCOS - Organic Reconfigurable Operating System

6.1
6.2
6.3
6.4

ORCOS Design and Architecture
Offline Configurability
Operating System Modules
Summary e

Part III Online Anomaly Detection

7 Online Anomaly Detection for Reconfigurable Real-Time Systems

7.1
7.2
7-3
7-4
7-5

Problem Definition and Feature Requirements
Anomaly Detection Framework
Behavior Profiling and Knowledge Base
Architectural Model
Summary

Part IV Implementation and Evaluation

8 ORCOS Online Anomaly Detection Framework
8.1 Online Reconfigurability
8.2 Basic Self-X Architecture L L o
8.3 Architecture for Anomaly Detection
8.4 System Call Monitor
8.5 Behavior KnowledgeBase
8.6 Operating System Health Monitor
8.7 Classification.
8.8 Runtime Process of Anomaly Detection
8.9 Summary

9 Evaluation of Costs
9.1 Evaluation of the System Call Monitor
9.2 Evaluation of OS Health Monitor
9.3 Evaluation of Behavior Knowledge Base
9.4 Overhead of the Overall Approach
0.5 SUMMATIY v v vt vttt e e e e

Part V Case Study

10 Evaluation Methodologies
10.1 Problems and Challenges
10.2 Requirements

65
65
66
75

77
77
79
79
85

87

89
90

98
101
102

105

107
107
111
114
116
121
148
175
191
210

211
212
216
223
226
226

10.3 Applicability of Virtual Reality and Virtual Environments
10.4 SUMMAry

11 Evaluation Case Environment
11.1 Evaluation Environment
11.2 The BEBOT e
11.3 Interaction and Control L L
11.4 EvaluationOutput
11.5 Evaluation Scenarios
11.6 Summary

12 Evaluation Results and Discussion
12.1 Evaluation Scenario 1.
12.2 Evaluation Scenario 2. e
12.3 Evaluation Scenario 3.
12.4 Evaluation Scenario 4.
12.5 Discussion

Part VI Conclusion
13 Summary and Conclusion
Appendices

A ORCOS System Calls
A.1 Stream/File related systemcalls
A.2 Memory related systemcalls
A.3 Taskrelated systemcalls
A.4 Thread related systemcalls
A5 Signal related systemcalls oL
A.6 Socketrelated systemcalls. L L o
A.7 System calls for Task loading
A8 Others
A.9 Specific system calls under QEMU
A.10 System calls for BEBor control o oo oo
A.11 Additional System Calls for Bug Manipulator/Generator

B System Call Monitor API

C OS Health Monitor - Parameter
C.1 Scheduler Monitor
C.2 Processor Utilization Monitor,
C.3 Memory Manager Monitor,
C.4 Communication Monitor L Lo
C.5 File Manager Monitor
C.6 Device Driver Monitor e
Co7 IRSensor Monitor. o o i i e e e e

D Device Driver Monitor Interface

239
239
243
253
253
256
258

259
260
267
274
281
282

285
287
291

293
293
293
294
294
294
295
295
296
297
297
298

299

301
301
302
303
304
305
307
307

309

E OS Health Monitor API

F Proposals for future research

F.1 Potentials to enhance the evaluation of the classification marker

F.2 Alternatives for Processing the Anomaly Detection
List of Figures
My Publications

Bibliography

311
313
313
317
322

323

325

CONTENTS

xii

Part I

Introduction

Introduction

Motivation

Recent developments enforce embedded systems - that predominantly are real-time systems
- to become more and more intelligent and to implement capabilities to be able to cope with
dynamically changing environments as well as dynamically changing requirements. As a
means to address these challenges, embedded systems implement autonomous behavior by so
called self-x mechanisms, like self-organization, self-optimization, self-healing etc. Regarded to
be promising approaches, they offer potentials to the system to handle the challenge of changing
operating conditions and to initiate according intelligent adaptations that change the system
behavior without any external control. Autonomous execution decisions are also governed
by factors like interactions between the system components and/or the applications. Self-x
capabilities introduce high complexity in the behavior of the system. Because of this complexity,
autonomous behavior can cause decisions that lead to previously unknown behavior and/or to
unspecified system states for which it is unknown whether these novel behaviors or system
states are stable. Hence, self-x behavior also introduces novel risks in terms of dependability.
Dependability in embedded systems, however, is a crucial issue and must be ensured during
the entire system life cycle.

Numerous investigations concentrate on the development of methods for autonomous
systems to ensure the dependability at specification or design time since design time faults
are permanent and will remain in the system. However, in autonomous systems, the actual
performance becomes apparent when the system is put into execution. The behavior of an
autonomous system is unpredictable and offers potentials to generate decisions that could
also manifest suspicious or even malicious behavior during run-time. Hence, for autonomous
systems it is essential that the system behavior, the autonomous decisions and the adaptations
are evaluated and verified at runtime in order to ensure that at any point of time of the
execution the system behavior is matching its intended specifications.

To address this, powerful methods like Hazard Analysis [80] and Online Model Checking
[95] support autonomous reconfigurations and aim to verify and control the correct execution
of the software system. These methods basically rely on specification knowledge or on
offline generated system models. The system state analysis performed by Hazard Analysis is

computed on an exhaustive system model and, therefore, is resource intensive. For this reason,
it can only be executed offline or outside the system if some online operating is intended to
be achieved. Online Model Checking [95] is an approach integrated as an operating system
service for ensuring dependability at run-time inside the system itself. This method uses the
actual system execution state which is established by system state information examined at
specific time stamps to check the correctness of the execution trace by means of a partial system
model. Choosing the time stamps for verification is a challenging issue in order to ensure
an adequate granularity and not to miss any significant execution traces. Moreover, as both
approaches are based on system models, they might be prone to be imprecise as models are
used to describe abstractions of the real code. Applying models that may be imprecise could
produce gaps between the system model and the real system behavior. On the other hand,
we assume that the behavior of such complex systems being based on interaction, mobility,
communication, environmental changes, and self-reconfiguring software (but also hardware)
can neither easily be completely modelled at design time by a system designer nor by an
automated development tool. Because of the system dynamics, autonomous decisions may
lead to system states or behaviors that could have not been foreseen, and would therefore be
not included when building up the model. Hence, there is always a risk that such approaches
operate on models which might be incomplete so that the system may exhibit behaviors that
are undefined. The questions remains how to deal with undefined states or behaviors as they
do not need to be categorically incorrect or malicious in all cases.

The main motivation of this thesis is to overcome the limitations of specification-based
approaches, and enable analyzing and evaluating autonomous system behavior decoupled
from any previously specified model in order to close the gap and thereby enhance the system’s
dependability.

Objective

This thesis addresses the problem of run-time dependability of self-x real-time systems.
As a consequence of avoiding the usage of design-time system models, the objective is to
achieve run-time dependability based on real execution data. System run-time behavior has
to be observed, analyzed and classified in order to evaluate behavior or system states and
detect instablilities caused by the system dynamics or by autonomous system and application
behavior. These properties and characteristics can be found as a principle of Anomaly Detection
which motivated this thesis to investigate into this topic.

Run-time information, (state) parameters and execution data of a system and its applications
exploited by anomaly detection are usually kept by the operating system that builds up the
interface between the hardware platform and the executing application software and is respon-
sible for their correct operation. In the context of real-time systems, real-time operating systems
are applied to manage the execution of real-time applications as they provide mechanisms to
ensure the timeliness and determinism of the real-time system. Consequently, the real-time
operating system keeps the according run-time execution data of the real-time system appropri-
ate to supply an Anomaly Detection module with input data. Numerous substantial works in
the domain of Anomaly Detection exist. However, only a small subset is addressing real-time
systems. Moreover, self-x systems are setting different requirements on the characteristics of an
Anomaly Detection as behavior is intended to change dynamically.

The specifics of self-x environments set another challenges to real-time operating systems.
In order to provide an adequate execution platform able to cope with dynamically changing

conditions and applications that implement self-x capabilities, real-time operating systems
must implement self-x capabilities by themselves [Stahl et al., 2014b]. They become self-x
real-time operating systems. Self-x systems operate based on data monitoring of the system
execution. Hence, the run-time execution data of a self-x real-time system may be extended
by further dimensions effecting the input data of the Anomaly Detection. In particular, for
self-x real-time systems, no Anomaly Detection approach could be identified to meet the
specific requirements and challenges (described in the next section) to be integrated into a
self-x real-time operating system. Based on this, with this thesis I am addressing that open
issue and propose an approach for Anomaly Detection for self-x real-time operating systems.

1.1 Requirements, Restrictions and Challenges

The purpose of Anomaly Detection is to distinguish between harmless and harmful system
activity, or to formulate this in the terminology of Anomaly Detection, it aims to differentiate
between normal and anomaly. The application domain of this thesis are self-x real-time operating
systems that have specific characteristics resulting in specific requirements and challenges
on Anomaly Detection intended for those systems. In particular, in this thesis we combine
two domains, namely self-x computing and real-time computing, that both entail different
requirements which all have to be incorporated in the concept of an Anomaly Detection:

1. Requirements from real-time systems

Kopetz defines a real-time computer system as “a computer system where the correctness
of the system behavior depends not only on the logical results of the computations, but
also on the physical time when these results are produced” [63]. Hence, computer systems
with real-time capabilities are bounded on deterministic timely behavior. The real-time
operating system is responsible to manage the execution of application tasks with respect
to their timing constraints called deadlines. For this purpose, it has a Scheduler that
implements an advanced algorithm able to compute a schedule based on the timing
parameters and priorities of the application tasks. In addition, a real-time operating
system requires all its operating system components to be deterministic in their timely
behavior as well.

Embedded real-time systems are usually applied in critical environments executing
mission-critical or even safety-critical applications. Hence, dependability is an important
and fundamental system property, as a system failure may lead to severe consequences.
The targeted Anomaly Detection is considered as a means to complement the entire set of
dependability measures. Because of the criticality of the application domain of embedded
real-time systems, a failure or a system behavior that might lead into a failure has to be
detected as soon as it occurs, preferably before it is able to propagate throughout the
system and probably effect the entire system’s operation reliability. Addressing this, one
major requirement is that the Anomaly Detection is able to process the collection and
evaluation of the execution data on demand working in an online manner.

Embedded systems are usually resource-restricted systems, predominantly concerning
memory space and computation time. An Anomaly Detection being integrated into
a real-time system has to cope with these restrictions. Because of restricted memory
space, it should not store huge data bases. Concerning computation time, the analyzing
algorithms applied have to maintain the determinism of the system. In fact, both aspects

interact mutually: huge data amounts to be analyzed by an Anomaly Detection usually
effect the computation time of the analysis.

Obviously, any approach that operates online impacts on the execution times of the
entire system including all effected components. The Anomaly Detection intended to
work online introduces additional computation load that affects the execution of the
system and, in particular, of the deadline-bounded application tasks. In order to avoid
an unpredictable increase in computation times of application tasks that could lead into
deadline misses, the computation time of the Anomaly Detection must be bounded.

Allin all, an Anomaly Detection approach for real-time systems is required to work online
and has to fulfill requirements of bounded memory usage and bounded computation
time.

A further specific characteristic of tasks designed for and executed on a real-time operat-
ing system is that they are reactive, and in most cases even periodic. A task is defined by
its period and its worst-case execution time and is executed in forms of task’s instances
assigned to each period. The periodic execution of tasks differs from the execution
of processes for conventional computer systems. This fact mainly contributes to the
representation of application behavior to be evaluated by Anomaly Detection.

. Requirements from self-x systems

The term self-x encompasses properties like self-organization, self-optimization, self-
adaptation, self-reconfiguration, etc. that are described in [24]. Self-x system are complex
and face many internal and external effects and influences. Computer systems equipped
with self-x capabilities are often classified as autonomous systems distinguished by their
decision making process: the decisions made by the system are not human-controlled but
are performed by the system itself in an autonomous manner. Self-x systems operate in
an autonomous manner by applying a control loop consisting of sensing and monitoring,
analyzing, and controlling. The decision process relies on data obtained by sensing
of the system itself and its environment, and is based on predefined rules that may
also be regulated by random factors, in order to meet the system’s specified objective
function. Often, autonomous systems are applied to complex problem solving for which
conventional methods are not sufficiently applicable.

Operating systems designed for self-x applications must provide self-x capabilities by
itself in order to react on dynamical changes of requirements and behavior and ensure
quality of service. Therefore, Anomaly Detection integrated in such an operating system
has also to work in an autonomous manner. Moreover, this requirement is reinforced
by the requirement on Anomaly Detection to work online without engaging a human
operator in order to prevent a delay of the system operation.

Implementing self-x capabilities leads to dynamical changes of system behaviors and/or
configurations, also such ones that could not have been predicted in advance as they were
produced based on autonomous decisions. Novel behaviors and system configurations are
not autonomically potential system threats, - as it is usually assumed by many classical
anomaly detection systems. However, not all resulting behaviors or configurations can
be considered as stable or safe. Because of false specifications, autonomous decisions
could also lead to system behaviors or configurations that can harm the dependability

of the system. Further on, a reconfiguration of a particular system component caused
by changing system requirements may unintendedly disequilibrate applications whose
behavior was unaffected by the reconfiguration. Hence, autonomous changes in system
behavior and the system configuration raise the most essential challenge on the Anomaly
Detection. The Anomaly Detection must implement self-learning capabilities in order
to be able to adjust the classification of known behaviors. Concurrently, it must be able
to cope with novel behaviors and system states, examine their effect on the system and
classify them.

An Anomaly Detection designed for self-x real-time operating systems must mandatorily
meet all requirements from the two domains illustrated above. In summary, Anomaly Detection
must be:

e online
e autonomous and, in particular, self-learning
e lightweight, meaning

- bounded in terms of memory usage

- bounded in terms of computation complexity and restricted in terms of computation
time

e able to take into account the specific characteristics of real-time tasks of being periodic

e able to cope with unknown system behavior and system states and able to classify them
correctly.

The basic motivation of this thesis is to overcome the problems concerned with specification-
time models. Hence, this approach is intended to rely only on the execution time data
without any (previous) knowledge about the application behavior. In order to be able to
integrate Anomaly Detection into systems with already existing applications without the need
of recompiling, but also to prevent a change in the development process of future applications
in terms of interfaces, etc., an essential requirement is to realize the desired Anomaly Detection
without any application-specific knowledge. Hence, Anomaly Detection is required to operate
only such data that is available in the operating system.

1.2 Basic Idea

The challenge in developing an Anomaly Detection for self-x real-time operating systems
is twofold: On the one hand, it requires a definition of behavior as the key point of interest
of the Anomaly Detection. Related to this, an adequate representation of the behavior data
must be determined in combination with a data structure for its storage. On the other hand,
the core entity of the Anomaly Detection is the method applied for analysis and classification.
For being applicable in the domain of self-x systems, the classification method is not allowed
to only distinguish between known and unknown behavior. Moreover, it has to classify each
behavior with respect to its potentials to harm the system.

The Anomaly Detection approach proposed in this thesis was inspired by the Danger
Theory from Artificial Immune Systems which are known as a powerful but lightweight defense

mechanisms with autonomous and self-learning capabilities. The Danger Theory, in particular,
provides mechanism to tolerate (also novel) behavior that is classified as harmless while in
contrary it induces a system reaction in case of harmful effects and thereby allows a context-
related classification of behavior.

In this approach, behavior is represented by system call sequences executed by the applica-
tions as system calls predominantly affect state changes in the operating system. The threat
potential of a behavior is reflected by the state parameters of the operating system associated
with a system call execution. For storing the behavioral sequences, we use Suffix Trees as they
enable a compact storage of recurring patterns that are identified by a low-cost pattern match-
ing mechanism. The concept of the Suffix Tree is extended to hold the classification-related
data associated with observed behaviors.

This basic idea is worked out in details in this thesis. It was implemented and integrated
into a real-time operating system, and evaluated by means of a case study that show promising
results.

Structure of this Thesis
This thesis is organized in parts enclosing the contentual contributions:

1. Part I describes the motivation of this thesis, determines the requirements and introduces
the basic idea for the approach in Chapter 1.

2. In Part II, the foundations of this thesis are presented. A detailed introduction into
Anomaly Detection is given in Chapter 2, describing properties, models, techniques and
applications domains. Then, the basic of Artificial Immune System are discussed in
Chapter 3 including an introduction into the Danger Theory. Afterwards, an overview
over existing approaches is given in the Chapter 4, including concepts and approaches
that inspired this thesis. Chapter 5 deals with Online Pattern Matching methods that are
required for the behavior pattern matching used by the approach presented in this thesis.
Finally, we introduce the real-time operating system ORCOS in Chapter 6 as it forms the
basis of the implementation of the approach presented here.

3. Part III gives a detailed discussion of the concept and the motivation for using the selected
techniques.

4. In Part IV, the implementation of the approach integrated into the real-time operating
system ORCOS is presented in detail in Chapter 8, followed by a short evaluation of the
costs in terms of memory and computation time in Chapter 9.

5. Part V presents the evaluation of the performance of the approach in forms of a case
study. Chapter 10 gives a short introduction into evaluation methods of autonomous
approaches and provides a motivation for using virtual environments as the one which
we applied and described in Chapter 11. The results of the evaluation of the Anomaly
Detection are presented in Chapter 12.

6. We conclude this thesis in Part VI with a summary and discussion of its contribution.

Part 11

Foundations

Anomaly Detection

In this chapter, we introduce anomaly detection, the existing techniques and their application
purposes in order to be able to classify the anomaly detection approach proposed in this thesis.
Even though anomaly detection, in general, has gained great attention in research in the recent
years, there is no standard literature on anomaly detection. This is mainly caused by the fact
that the problem of anomaly detection has often been related to its specific application domain.
In [34], Chandola et al. give an overview in form of a technical report on anomaly detection
and the existing techniques. The content of this chapter mainly refers to that report [34], but
it also includes content provided by Patcha and Park [79], the book by Tan et al. [87] and a
survey by Axelsson [22].

2.1 Definition

Many definitions or descriptions of Anomaly Detection exist in the literature, all of them
being quite similar. In [87], Tan et al. give a description for Anomaly Detection being “the
task of identifying observations whose characteristics are significantly different from the rest
of the data.” According to Chandola et al. in [34], “Anomaly Detection refers to the problem
of finding patterns in data that do not conform to expected behavior.” Another, more precise
description of anomaly detection which is used by Chandola et al. (in [34]) and also by others
like Patcha and Park (see [79]), is the ability of detecting deviations from a defined normal
behavior or a so called normal profile.

Referring to these definitions and descriptions, the aim of anomaly detection is to recognize
and identify significant information indicating changes in data or behavior during system
operation. Thereby, any observation that does not match the normal profile is defined as an
anomaly. By delivering this information, anomaly detection offers potentials to draw conclusion
on qualities of system states at run-time.

Related terms in different application domains for anomalies are outliers, novelties, excep-
tions, aberrations, surprises, peculiarities, contaminants, noise, etc. so that the problem of
anomaly detection is strongly related to research domains such as novelty detection and outlier
detection [73, 74].

2.2 Properties and Features

Referring to the definition provided by the section above, anomaly detection systems rely on

1. normal profiles,
2. observation data and

3. the ability to detect deviations in the observation data.

This definition gives a general understanding of anomaly detection but it leaves it open to
offer a precise specification. This is due to the fact that miscellaneous requirements originating
from application purpose and problem characteristics are set on anomaly detection systems.

This section aims to classify anomaly detection problems with respect to requirements and
problem characteristics that arise in various application domains. The problem classification is
mapped on properties and features implemented by anomaly detection techniques. This in turn
deals as a basis, on the one hand, to asses the effectiveness of anomaly detection techniques
to specific problems, and, on the other hand, as a framework for the development of novel
anomaly detection approaches.

2.2.1 Aspects of Problem Formulation

As a basis, Chandola et al. (in [34]) specify four main aspects to be determined concerning
the anomaly detection problem and its application purpose: Nature of Data, Labels, Anomaly
Type and Output that are explained as following:

1. Nature of Data

The question of the nature of data is related to the data that can be obtained from
the application and deals as input for anomaly detection. Tan et al. classify data and data
types in detail in [87, Chapter 2] in the context of data mining, but as data collection is a
prerequisite for anomaly detection, the classification made by Tan et al. can be adopted to
the problem of anomaly detection. Data items are mainly differentiated into qualitative
data that is composed of symbolic or categorical attributes and quantitative data that
is represented by numerical attributes. The type of attributes thereby determines the
properties of the attributes and their values. Tan et al. define four type of attributes:

e nominal: nominal attributes provide information to distinguish different objects
from one another, such as name or ID. Main operations on such attributes are = or
#.

e ordinal: ordinal attributes extend nominal attributes as they contain enough infor-
mation for ordering objects. Thus, operations allowed on such attributes are also <
and >.

e interval: interval attributes allow to identify meaningful differences between objects
with operations like + and —; one example for interval attributes are calendar dates.

e ratio: for ratio attributes, both differences and ratios are meaningful (with the
operations - and /). These attributes allow to calculate means or variations, for
example.

Nominal and ordinal attributes belong to symbolic or categorical attributes while interval
and ratio attributes are numerical attributes.

A further distinction introduced by Tan et al. is the number of values the attributes can
take. They differentiate between:

e discrete: discrete attributes can take either a finite set of values or a countably
infinite set of values. They can be of categorical or numeric type.

e binary: binary attributes are a special type of discrete attributes as they can take
only two different values (true or false, 0 or 1, black or white, etc.)

e continuous: continuous attributes can take infinite number of values such as real
numbers or (idealized) floating point values.

Besides univariate data objects of one type, data records can also have multivariate
attributes consisting of either a fixed set or a varying set of attributes. In multivariate
attributes, data fields can be of the same data type (e.g. in records of geographical position
containing x, y, and z) but it is possible that each data field can take an individual type
of data (e.g. ID in connection with a binary attribute).

Classification does not address only individual data items. Also collections of data
records show up different characteristics that are mapped to different types of data sets.
Numerous types of data sets exists as there exists many types of attributes, but Tan et al.
highlight three main types of data sets:

(1.) Record Data defines a collection of data records with no explicit relationship among
the individual data entities. If a data record contains multivariate attributes, the
collection of record data can be represented by a matrix of size m x n with m
defining the dimension of the vector representing a data record (m being the number
of attributes) and #n the number of recorded data items.

(2.) Graph-based Data are data sets that contain relationships among objects in such a
manner that the data objects and their relationships can be represented by a graph.
The data objects are thereby the graph nodes whereas the relationship between the
objects is represented by the edges between the nodes.

(3.) Ordered Data defines data sets with relationship in the values established by order
in time or space. Ordered data can be distinguished into:

- sequential data are data where each data record is associated with a time stamp

- sequence data are data sets that build up a sequence of data entities in an
ordered manner but without containing time stamps

- time series data are collections where each data record is a time series
- spatial data contain spatial attributes (such as geographical location)

For all types of data sets some common characteristics have to be considered as well.
The first aspect is the dimensionality of the data set, as it strongly depends on the
application of how many data attributes per record as well as data records in a set can be
stored. Often, anomaly detection techniques have to cope with huge data amounts with
high dimensionality. The second aspect to be considered is sparsity. Sparsity mainly is
concerned the question of relevant data in order to save computation time and space.
In some applications, in might be useful not to store each data record, but extract only
the relevant ones. A further aspect to be considered is the resolution of the recorded

data that is mainly responsible for determining the ability of the approach to identify
deviations. If the scale of data items will not allow to detect distinctive information, the
values may become useless.

The last factor that has impact on the nature of data is its quality. In terms of precision,
this means that data recorded may be exposed to noise, collection errors, non-accuracy,
missing values or inconsistency. Furthermore, recorded data may require preprocess-
ing such as normalization or standardization, dimensionally reduction, feature subset
selection, creation or extraction, discretization or binarization or some further specific
transformation in order to serve as input data for an according anomaly detection
technique.

. Labels

Labels are associated with data instances to denote whether a data instance belongs to a
normal or anomalous data set. Accurate data instances of normal behavior are easier to be
determined and obtained than anomalous data instances as it is typically difficult to specify
(a complete assortment of all) possible anomalies that may arise. Anomaly detection
systems can operate in different modes due to the availability of accurately labeled data.
(These modes are differentiated into Supervised anomaly detection, Sem-supervised anomaly
detection and Unsupervised anomaly detection presented later in this section.)

. Anomaly Type

The most important aspect is to verify the nature of the desired anomaly that has
to be detected by the implemented anomaly detection algorithm. Chandola et al. define
three different categories:

e Point Anomaly: Point Anomalies are assumed in approaches where individual data
instances are examined separately. If a data instance is considered to be different
from the rest of (normal) data, the anomaly caused by this data instance is termed
Point Anomaly.

o Collective Anomaly: Collective Anomalies are assumed in approaches that examine
collections of data instances with respect to the rest of data. The data instances may
not be anomalies by themselves, but their aggregation is considered as anomalous.
Collective Anomalies can only occur in data sets that are related to each other like
sequence data.

o Contextual Anomaly: Contextual Anomalies are assumed in approaches that examine
data instances in a specific context. A data instance is considered to be anomalous
only if the context conditions are present (if not, then the data instance is of normal
data). Such an anomaly is then termed Contextual Anomaly (or Conditional Anomaly as
referred by Song et al. in 2007 [84], see [34]). Of course, the notion of context has to
be specified as a part of the problem formulation. Two sets of attributes are required
to be collected for anomaly detection: Behavioral attributes and Contextual attributes.
Behavioral attributes are those that are collected to specify the pure behavior while
the contextual attributes are used to determine the context of the behavioral instance.
Examples for contextual attributes are spatial data that define the location of data
instances, edges in graphs as contextual attributes to indicate connections between
nodes (containing behavior attributes), position of data instances in sequential data

or time-series data, time stamps of events on sequential data or even profile data to
segment or cluster data attributes into data components having the same contextual
attribute.

Contextual Anomalies can be determined on data points as well as data collections so that
approaches examining Contextual Anomalies can be related to Point Anomalies or Collective
Anomalies.

4. Output

Analysis of data results in an output of the anomaly detection technique. Chandola et
al. distinguish between two types of output: first, by using (binary) labels that assign
a test instance either to be normal or anomalous, or second, by assigning a score to each
test instance that indicates the degree of this test instance to be anomalous. The labeled
output delivers a clear categorization of test instances (being normal or anomalous) while
the scoring-based approach also allows grey zones.

These four aspects allow to formulate and classify the anomaly detection problem precisely.
From the specification of each of the aspects, according requirements arise and are set on the
approach dedicated to solve the formulated anomaly detection issue. These requirements can
be mapped on features and properties that classify anomaly detection techniques.

2.2.2 Design Decisions

The task of problem formulation requires an in-depth examination of the dedicated appli-
cation (domain). The specification of problem formulation clarifies some basic characteristics
(nature of data, data labels, type of anomaly and output), but it automatically yields into
requirements that in turn result in features and properties of anomaly detection to be realized
by the applied approach. Most of the decisions of implementing a feature or a property must
be made at design time. In this section, we discuss all design time decisions such as detection
principles and operational aspects [23] that must be clarified before implementing an anomaly
detection approach.

The basic property of any anomaly detection system derived from definition is its operation
on a system under execution. As a first design decision, Axelsson [23] distinguishes between
two different detection principles:

1. Programmed

The system is programmed to detect anomalous data if the decision between normal and
anomalous is determined by a user or a function configuring the system. This programmed
configuration can be done by setting the parameters of a descriptive statistic for the
normal profile (e.g. number of unsuccessful logins, number of network connections) or
by user/system-defined thresholds that determine the boundary between normal and
anomalous. Another sort of programmed detection is based on the so called default deny
policy. Here, explicitly defined benign and legal system states deal as a basis for detection
as any deviations from these states are by default declared as anomalous.

2. Self-learning

Self-learning detection systems learn what constitutes normal by means of sample data.
Usually, typical observation data is exploited to establish a model of normal system

behavior. These models can be rule-based models, descriptive statistics or even more
complex structures such as Hidden Markov Models [10] or Artificial Neural Networks [6].

In this thesis, we are mainly interested in such anomaly detection systems that are not
programmed but rather self-learning. The lifecycle of such anomaly detection systems consists of
two phases: training phase and operational phase. In the training phase, the system is executed
within a safe and reliable environment in order to guarantee normal system execution. In this
benign environment, the anomaly detection system is fed with selected operational data called
training data in order to establish the model of normal profile of the system operation. Different
types of training data exist that determine the mode of the anomaly detection technique which
is classified into supervised, semi-supervised or unsupervised [34].

e Supervised techniques are trained on labeled data sets that hold both classes of data:
normal as well as anomalous. From this labeled data, a model is obtained that allows
to establish a boundary between these two classes of data. Test data is then compared
against the model to be classified as belonging either to normal or anomalous class. Normal
data (and anomalous data accordingly) does not need to be of one unique class. In the
supervised mode, the anomaly detection system can be fed with different (sub-)classes of
normal and anomalous data.

e Semi-supervised techniques are trained on a labeled data set of only one class, which
usually is the class of normal data. A model is build on basis of the training data to
determine the normal profile. Test data is matched against that model and is declared
as anomalous if the test data does not correspond with the model. Of course, semi-
supervised techniques can also be trained by using only anomalous data to establish a
model. However, it is very challenging for most of the applications to generate training
data that covers completely every possible anomalous behavior.

e Unsupervised techniques do not require any labeled training data. Relying on the
assumption that normal behavior occurs much more frequently than anomalous behavior,
unsupervised techniques learn the behavioral model in the training phase based on
unlabeled operational data. The more data is preserved for the training phase, the more
robust the model may become.

The main factor for the selection of the employed training mode is governed by the availability
of the training data and, associated with that, the type of training data. If training data is
not available or is available but not labeled, then the applied anomaly detection technique
has to be unsupervised. In contrary, if training data is available and labeled, then supervised or
semi-supervised modes come into operation, of course, according to the availability of the type
of labels.

After having established a robust model in the training phase, the anomaly detection system
is intended to switch into the operation phase. Its responsibility is the analysis and evaluation
of the data observed during system operation. For the operation phase, Axelsson discusses
some operational aspects in [23], mainly related to Intrusion Detection Systems. Here, we refer
to those operational aspects suitable to characterize anomaly detection systems that have to be
considered at design time:

e Time of detection The anomaly detection system can either work in real-time (this terms
is used by Axelsson in [23]) or nearly real-time performing online detection, or non
real-time which is also referred as offline anomaly detection by the researchers of that

community. Offline anomaly detection is triggered regularly or even periodically and
runs delayed on (historical) data collected since the last execution of the evaluation.
Online anomaly detection is more challenging as it requires means to examine and
classify data immediately as soon as it occurs. Often, only an excerpt of the complete
data set is present. However, online techniques open up the opportunity to implement
prevention or direct reaction mechanism as deviations or anomalies are signalized at the
time they occur, even before they can propagate. Any online anomaly detection approach
can be operated in offline mode.

e Granularity of data-processing Axelsson [23] makes a difference between data process-
ing in a continuous manner or in batches in regular intervals. Deriving from this definition,
the granularity of data-processing is closely linked to time of detection.

e Locus of data-collection Observation or test data can be collected by different system
sources in a distributed manner, or centralized collected by a single system entity. Further-
more, the data collection can be performed direct or indirect. Direct data collection in this
context means that the data is used for evaluation in the form it has been collected. Hence,
the anomaly detection can directly process the data. Indirect data collection means that
the data has to be pre-processed before being able to be analyzed.

e Locus of data-processing Data processing can be either performed in a centralized manner
by one single system component, or in distributed fashion by many different system entities.
Beyond that differentiation of Axelsson [23], we distinguish between data processing that
may be located internal as a component of the system that is under observation or external
by an external system entity. The main difference is the access to information that could
be exploited by anomaly detection systems located as an internal system entity, while the
external system can only operate on those information with which it is supplied by the
system itself. An external anomaly detection system however, is executed on a separate
system and does not need to share resources with the system under observation. One
main drawback of the external approach is the latency of access to system information.

e Response to detected anomalies Two types of responses on detected anomalies exist:
passive and active. Passive response systems only generate an alert in case of a detected
anomaly. The responsibility to react on the anomaly is transferred to a proper authority
(such as the system administrator). In contrast to that, active response means that
a reaction on a detected anomaly is implemented as a means of defense, mitigation
prevention and maintenance of the system operation.

¢ Ability to evolve Systems can be statically configured in the training phase (in a similar
way like the programmed detection principle) with fixed decision rules and thresholds
that are not changeable at run time. This can be intended in systems with static environ-
ments. However, modern systems are more often required to dynamically change their
behavior as they are executed in environments with dynamically changing circumstances.
Such changing system behavior leads to an evolving normal. Accordingly, the anomaly
detection system applied in such environments must also be able to adapt its established
normal profile dynamically. The adaptation must be implemented in a self-learning
or autonomous manner by using approaches from evolutionary computing, machine
learning, or other domains that enable to implement self-x capabilities.

Many design decision have to be made during the development process and have been

summarized in this section. The efficiency of the designed anomaly detection system, in turn,
can only be evaluated in experiments during system operation.

2.3 Architectural Model

Historically, one of the major applications domains of anomaly detection (see Sec. 2.6) are
intrusion detection systems. In a survey on research in intrusion detection systems, Axelsson
[22] depicts a generic architectural model for intrusion detection systems. This model has often
been cited by anomaly detection researchers, e.g. by Patcha et al. in [79], and has become a
generic de-facto architecture for intrusion detection systems. Because anomaly detection is
a major issue in intrusion detection system, Axelsson’s architectural model can generally be
applied to anomaly detection.

-

Configuration

Reference Data

> Data
...... . Audit Dgta . Audit Data Processing . Alarm L
Collection Storage (Detection)
A\
Active/

Proccessing Data

Figure 2.1: Generalized architectural model for anomaly detection (originating from intrusion
detection systems [22, 79])

Fig. 2.1 illustrates the architectural model defined by Axelsson [22]. We describe the modules,
the architectural model contains, mainly on the basis of [22] and [79]:

Audit Data Collection: System components or entities are monitored and produce observation
data. The Audit Data Collection module is responsible for extracting and collecting the
relevant data from the monitored entities.

Audit Data Storage: The collected audit data must be (at least temporarily) stored by the Audit
Data Storage module. Furthermore, the storing module may encompass pre-processing
to obtain a representation of data in form of an appropriate data structure for the
corresponding processing module.

Processing: Processing is the central module of an anomaly detection system as it executes the
anomaly detection algorithm or even several algorithms. It is responsible for identifying
suspicious data within the stored audit data.

Configuration Data: The Configuration Data contains the most sensitive part of the anomaly
detection system. In this module, controlling information of the anomaly detection
system are defined. Besides settings such as how and when to collect audit data, it may
also imply decision rules, classification boundaries and thresholds as well as rules that
determine how to respond on an anomaly, etc. The Configuration Data mainly affects the
efficiency and the performance of the anomaly detection system.

Reference Data: The Reference Data contains the knowledge base of the anomaly detection
system. It stores normal profiles as well as signatures of known anomalies. The Processing
module proceeds the analysis of the audit data on the basis of the knowledge base in the
Reference Data.

Active/Processing Data: This module stores intermediate data or partial analysis results of
the Processing module.

Alarm: This module is responsible for delivering the output of the anomaly detection system
in order to initiate a response or reaction.

This architectural model apparently defines the generalized workflow for anomaly detection
that is processed at system operation: collecting and storing data, analyzing the data in order
to detect anomalies and trigger an alarm or a reaction if necessary.

The dotted lines in Fig. 2.1 denote the interfaces to the related system the anomaly detection
system is integrated in. Monitored system entities deliver data to the collecting module
of the anomaly detection system. The analysis and anomaly detection is performed in the
processing module and based on the configuration data and the reference data. Even if used at
operation time, this data is usually obtained before the system is set into operation and requires
sophisticated examination. Furthermore, the modules holding this data provide interfaces to
enable - if required - an adjustment of that data at runtime. The Alarm module also provides
an interface as here, the output of the anomaly detection is delivered. The resulting output has
to be passed to the authority responsible for initiating a response or reaction which usually is
not being part of the anomaly detection system.

2.4 Data Classification

System properties are observed, collected and analyzed in order to extract information about
the system state. Depending on the applied approach, the observation and analysis process is
usually done in an autonomous but at least in an automatic manner. In most of the applications
presented above, an anomaly detected reflects a potential threat of the system. A simple
classification can be applied here which only differentiates between safe system state when
matching the normal profile and dangerous system state in case an anomaly has beed detected.

However, even with this simple classification approach, it is important to consider that the
boundaries between the normal and the anomaly are not fixed. The borderline between safe and
dangerous may be blurred as differentiation between normal and anomalous is often based on
decision rules and thresholds. Obviously, this can lead to false alarms. The definition of false
alarms is always related to the perspective and the context of the testing.

Two perspectives are possible:

1. When testing for matching normal, normal becomes positive while consequently the
anomaly is considered as negative. Referring to this perspective, the following definitions
for anomaly detection false alarms will result:

e false positive The testing data is classified as normal. However, the result of the test
is incorrect as the test failed to recognize the anomaly. As normal is identified as
positive, this classification test causes a false positive.

o false negative The testing data is classified as anomalous. However, the result of the
test is incorrect as the test failed to identify that the testing data in fact matches
normal. As anomalous is identified as negative, this classification test causes a false
negative.

2. When changing the perspective and testing for anomaly, the anomaly becomes positive
while consequently the normal is considered as negative. The specification of false alarms
must then be interchanged:

o false positive The testing data is classified as anomalous. However, the result of the
test is incorrect as the test failed to identify that the testing data in fact matches
normal. As anomalous is identified as positive, this classification test causes a false
positive.

e false negative The testing data is classified as normal. However, the result of the test
is incorrect as the test failed to recognize the anomaly. As normal is identified as
negative, this classification test causes a false negative.

Of course, false alarms degrade the performance and the reliability of the anomaly detection
mechanism and are therefore undesired.

The mapping normal on safe and anomalous on dangerous is not necessarily true for all
application domains. In novelty detection (see [34]) e.g., novel patterns in data are typically
not assumed to be suspicious, but furthermore, detected novel patterns are integrated into the
normal profile. Referring to the context of autonomous systems we are dealing with, behaviors
can change dynamically because of a self-adaptation or self-reconfiguration of the system.
Novel behaviors may have occurred that do not match a preliminarily trained normal even
though these behaviors have been intended. In that case, the simple classification approach
will not take effect and a more distinctive approach for classification is required here.

In [64], Kumar et al. present such a classification approach as a premise for intrusion
detection systems. We apply the differentiation proposed by Kumar et al. for the classification
of behaviors in our anomaly detection approach. In contrast to assigning normal to safe and
anomalous to dangerous, we differentiate between normal and anomalous and between safe and
dangerous separately. Based on this, the following classification classes result:

Class I : normal and not suspicious
Class II : anomalous and suspicious
Class III : anomalous and not suspicious

Class IV : normal and suspicious

Class I and Class II are closely related to the simple classification approach presented above.
Class I reflects normal and safe behavior while Class II identifies deviations from normal
classified as threats. Class III outlines behaviors that do not match the normal but which are
not suspicious. As already mentioned above, this classification class is essential for changing
system behavior due to self-adaptations or self-reconfigurations. Obviously, the resulting

behavior will possibly not match normal. But as resulting from an autonomous system change,
this previously unknown behavior should not be classified as a potential threat. Class IV
illustrates the case of behavior matching the normal profile which comprises potential threats.
This situation may be caused by various scenarios. It can simply be a false alarm. On the
other hand, this can happen if normal and safe has not been defined accurately. Beyond that,
learning capabilities may be applied that lead to continuously updating of normal behavior
with potentially suspicious behavior of threats invading in a creeping manner. It is also possible
that changes in the environment will not be registered properly. Unsafe system states may
result if the behavior maintains unchanged.

Our anomaly detection approach is dedicated for self-reconfiguring systems that are applied
in dynamic environments. For such applications, the simple classification approach is not
sufficient. Therefore, we will apply the defined classification classes which have been inspired
by Kumar et al. ([64]).

2.5 Anomaly Detection Techniques

The broad spectrum of application domains and anomaly detection problems is presented in
section 2.6. As the nature of attributes determines the applicability of an anomaly detection
technique, the variety of input data types and types of anomalies to be detected related to
different domains and problems lead to the requirement for appropriate approaches and
justifies the need for an equivalent amount of different anomaly detection techniques. In this
chapter, we categorize the existing techniques and introduce them in a short manner.

Tan et al. provide an overview on anomaly detection techniques in [87, Chapter 10]. They
can be classified into Supervised, Semi-Supervised or Unsupervised as depicted in section 2.2.2.
Additionally, they differ in the number of attributes and the relation of values to define an
anomaly, in the perspective of detecting global or local anomalies, in the degree to which a
point is an anomaly, in the ability of identifying one anomaly at a time versus many anomalies
at once, in their evaluation effectiveness as well as in their (computational) efficiency. Often, the
individual techniques discussed in this section have been developed to serve specific application
domain problems and tend more to be specialized instead of being generic. However, referring
to [87], anomaly detection techniques overlap in problem solving characteristics so that they be
grouped at high-level into:

1. Model-based Techniques

These techniques first build a model out of the provided data. Such a model can be
e.g. a statistical model for distribution, or probability of distribution, a clustering model
as well as regression model. Model-based techniques distinguish between two different
classes of data: normal is every data record that fits the model, and anomalous is data that
does not fit the model. For model construction, a training data set is obligatorily required
as it becomes very difficult to construct a model if no training data or no statistical
distribution is available. The obtained models then tend to be highly specialized for the
particular application.

2. Proximity-based Techniques

These techniques define a proximity measure for distinction between normal and
anomalous. An anomaly in this context is an data object that is far from most of the other

objects with respect to the proximity measure. A subclass of proximity-based techniques
is represented by distance-based outlier detection techniques.

3. Density-based Techniques

These techniques comprise two different views to classify data points as anomalies:
if data points are in regions of low density relatively distant from their neighbors, or if
their local density is significantly less than the density of most of their neighbors. These
approaches also rely on proximity measures to some extend.

All these high-level technique categories can be reflected in approaches implemented by the
particular anomaly detection techniques that originally rely on concepts adopted from statistics,
machine learning, data mining, information theory, spectral techniques, etc. that now can be
considered as related disciplines. The latter of this section provides a collection of anomaly
detection techniques with each including a basic introduction mainly related to Chandola et al.
[34] and Tan et al. [87].

2.5.1 Classification-based Anomaly Detection

Classification-based approaches come from machine learning and data mining domain.
Referring to [34], ”A classifier that can distinguish between normal and anomalous classes
can be learnt in the given feature space.” Following from this assumption, classification-based
approaches operate in a two-phase fashion having a training phase and a testing phase.
The key issue is to learn classifiers (similar to model) from a set of labeled data instances
(in the training phase) and classify test instances according to the learnt classifier (in the
testing phase). With respect to the number of labels, classification-based anomaly detection
techniques can be grouped into multi-class anomaly detection, if multiple normal classes exist
and consequently, multiple labels are available for normal data instances, and one-class anomaly
detection techniques, if all training instances have only one class label. Anomalies are identified
in multi-class anomaly detection if a test instances cannot be classified as normal by any of
the classifiers, each associated to one normal class, whereas anomalous data instances in one-
class anomaly detection are identified based on a learnt discriminative boundary. Different
approaches exists to build classifiers and are exploit for anomaly detection:

1. Neural Network-based Anomaly Detection

Neural networks are computational models inspired by the central nervous system
(brain) applied in machine learning and other related fields (see Wikipedia: [6]). Neural
networks are capable of machine learning and pattern matching by computing input data
through hidden layers to so called output neurons. A neural network consists of nodes
and interconnections between nodes that usually contain adaptive weights which are
continuously updated in order to realize the learning algorithm that trains the neural
network based on the input data.

Usually, neural networks implement non-linear functions in the hidden layers. They are
applied to compute input values in a parallel and distributed manner in order to solve
problems that are hard to be solved by ordinary methods.

Applied in anomaly detection, they can cope with one-class anomaly detection problems
as well as multi-class. The training phase is used to build a stable classifier represented by

the network. If the neural networks accepts a test input, then the test instance is classified
as normal. If the neural network rejects a test input, it is classified as anomalous.

Chandola et al. list some examples for anomaly detection using different variants of
neural networks, such as Multi Layered Perceptrons, Neural Trees, Radian Basis Function
Based, Adaptive Resonance Theory based, Replicator Neural Network, etc. in [34].

. Bayesian Network-based Anomaly Detection

Bayesian networks are probabilistic graphical models to represent (often causal) rela-
tionships between variables (represented by nodes) in the Bayesian sense (see Wikipedia:
[7]). The nodes are associated with probability functions giving the probability of the
variable represented by the node. The edges between the nodes represent conditional
interdependencies of nodes.

Bayesian networks are used for anomaly detection with multi-class properties. Basically,
for a given input data (which can be univariate categorical data as well as a multivariate
categorical data set with aggregated per-attribute values), the Baysian network estimates
the posterior probability of being of a particular class. [34] provides some references to
examples that use variants of Bayesian networks for anomaly detection.

. Support Vector Machine-based Anomaly Detection

Support vector machines (SVMs) come from the domain of machine learning and
are supervised learning models with associated learning algorithms (see Wikipedia:
[17]). With their learning algorithms, SVMs are able to analyze data, recognize patterns,
perform classifications and regression analysis. SVM require input data in the form of
points in space of both classes (normal and anomalous) of data for training in order
to establish a non-probabilistic binary linear classifier. By using Kernel methods (see
Wikipedia [12]), SVMs can also perform non-linear classification by implicitly mapping
the inputs into high-dimensional feature spaces.

Based on its classification method, SVMs can be applied to one-class anomaly detection.
The learnt classifier builds the classification boundary (either linear or a more complex
non-linear boundary) between the exclusive regions . A test instance is classified according
to the region it falls in.

Chandola et al. provide some further references to variants of SVMs and they mention
some example implementations for anomaly detection with SVMs in [34].

. Rule-based Anomaly Detection

Rule-based systems rely on rule-learning algorithms to determine rules that capture
the normal system behavior in their training phase. Rule-based anomaly detection is able
to cope with one-class and multi-class properties. The key issue in rule-based anomaly
detection is formed by a confidence value that is associated with each rule determining
a proportional value to the ratio between the number of correctly identified training
instances and the total number of training instances covered by that rule. Anomalies are
those input instances that are not covered by any of the learnt rules. Each test instance is
assigned an anomaly score based on the inverse of the confidence value associated with
the rule by which the test instance is captured best. Again, Chandola et al. have collected
in [34] some references to variants of rule-based techniques as well as some application
examples.

Different techniques exist for classification-based anomaly detection that address different
applications domains. Some of the (for this thesis) relevant examples referenced by Chandola
et al. are discussed in Chapter 4. However, most of the existing approaches predominantly
solve Point Anomaly detection problems.

Summing up, classification-based techniques can use powerful algorithms, especially for
multi-class classifications problems, in order to discriminate between instances of different
classes. The computational complexity of the respective technique depends on the complex-
ity of the applied classification algorithm. However, most of the techniques produce high
computational costs in the training phase when learning the classifier while the testing of
input instances is usually simple and fast. The quality of the classification results relies on the
availability of accurate trainings sets and their coverage.

2.5.2 Nearest Neighbor-based Anomaly Detection

Nearest neighbor-based anomaly detection follows the assumption, that “normal data
instances occur in dense neighborhoods, while anomalies occur far from their closest neighbors.”
(see [34]). In order to determine whether data instances are close or far from other data instances,
nearest neighbor-based approaches require a distance or a similarity measure. Computing this
measure can be done by different methods depending on the nature of input data (univariate
or multivariate, categorical, continuous, etc.) as well as on the type of output expected. Mainly,
nearest neighbor-based anomaly detection techniques can be categorized into distance-based
and densitiy-based techniques:

1. Distance-based Anomaly Detection

Distance-based techniques are also referred as Proximity-based Outlier Detection by Tan
et al. in [87]. Basically, they determine an anomaly score, or outlier score respectively, for
each data instance defined as the distances to its k' nearest neighbor among the data set.
There are mainly two different methods applied to declare data instances as anomalous.
On the one hand, a threshold is defined on the anomaly score to set a boundary between
data that is still classified as normal and such data instances that are treated as anomalous.
On the other hand, anomalies are those data instances that belong to the set with the n
highest anomaly scores. Furthermore, various approaches exist to calculate the anomaly
score of a data instance. One example for this is counting the number of neighbors within
d being a distance value (radius in hyper-sphere). Chandola et al. discuss in their article
several methods for calculating distance measures for the various data types and provide
many references to corresponding approaches and publications. As these approaches vary
(from calculating Euclidean distances up to more dimensional hyper-grid representations),
their computational complexity obviously depends on the complexity of the applied
approach.

2. Density-based Anomaly Detection

Density-based anomaly detection techniques consider for each individual data instance
the density within its neighborhood. As a basis, density-based anomaly detection
techniques follow the simple principle to test whether a data instance is lying within a
neighborhood of low density (meaning that there are very few other data instances close
to it). In such a case, the data instance is declared as anomalous whereas in case of a dense

neighborhood, the data instance is put to the class of normal data. The neighborhood is
thereby determined by distance (radius) or by restricting it to the k' nearest neighbors.

However, if data sets form regions (or so called clusters) with different densities, this
general assumption may lead to false results so that this basic technique shows up
poor performance. In order to prevent such failures in anomaly detection, various
improvements and extensions of this basic principle have been proposed in literature,
which has been collected and summarized by Chandola et al. One example is to refer to
a local relative densitiy such as Local Outlier Factor (LOF) (see Wikipedia [13]) or variants
of it in order to classify data instances.

Besides a spatial distance, there are approaches that use similarity measures. Similarity-
based techniques are in particular applied in anomaly detection problems concerning
sequence data in order to find the nearest neighbor for a given data sequence.

Nearest neighbor-based techniques are usually unsupervised anomaly detection techniques
as they do not rely on any predetermined assumptions regarding the input data (e.g. of data
distribution) but are purely driven by the data produced by the application. An accurate set
of data instances is required which adequately covers the possible data classes. For some
applications, semi-supervised techniques are applied if only normal data sets are available for
training.

Concerning the performance, nearest neighbor-based techniques require O(N?) (N is the data
size) computational complexity to classify data instances as they rely on measures reflecting
the (pairwise) interrelation between data instances. Of course, some optimizations in terms of
complexity and efficiency have been proposed by different researchers which are referenced by
Chandola et al. in [34]. However, in those applications where an anomaly score is required for
each test instance, the computational effort is huge so that they seem not applicable for online
methods. On the other hand, optimizing approaches that reduce complexity by classifying
only a subset of test instances may lead to inaccurate and incorrect anomaly detection.

In fact, the performance and the complexity mainly depends on the distance or density
measure applied as well as on the nature of data (concerning the number of attributes) provided
by the application domain. Furthermore, nearest neighbor-bases techniques are sensitive to the
choice of the parameters and therefore, require detailed investigation for finding appropriate
measures, setting a well-defined value for k and defining according thresholds and boundaries
which altogether makes their design to be very challenging.

2.5.3 Clustering-Based Anomaly Detection

Clustering is defined as the task of finding groups of strongly related objects out of given data
instances (see Wikipedia [8]). A cluster builds up a particular kind of model so that clustering-
based techniques are part of the class of model-based anomaly detection. Various different
clustering algorithms exist and, in general, they all can be applied to anomaly detection. When
applied to anomaly detection, the clustering-based techniques can be categorized in three
groups with respect to defining anomalies:

1. Anomalies outside Clusters

Anomalies are considered as those data instances that do not belong to a cluster.
Clustering-based anomaly detection techniques belonging to this group assume that all
data instances that are part of a cluster (determined by a clustering algorithm) are normal

data, while all residual data that do not belong to any cluster are declared anomalous.
The key challenge thereby is to define by an objective function or another measure (such
as Gaussian distance or Mahalanobis distance [87]) to which degree an object belongs to
a cluster or not. However, such clustering algorithms are not primarily designed for
detecting anomalies as their main objective is the identification of clusters. Consequently,
this can affect the performance and, in particular, the efficiency of anomaly detection.

2. Anomalies far from Clusters

Anomalies in this category are considered as those data instances that are far away
from any cluster. Clustering algorithms such as Self-organizing Maps[15] or k-means
Clustering[11] are used to find clusters for the given data instances. Then, for each data
instance an anomaly score is calculated that reflects the distance of the data instance to
the closest centroid of the cluster. Closely related to distance-based anomaly detection
techniques, anomaly detection is based on testing each data instance and declaring
anomalies as those data instances with an anomaly score above a predefined threshold.

3. Anomalies represented by small and sparse Clusters

Clustering techniques of the first category explained above (and partially clustering
techniques applied in the second category) rest upon the fact, that the applied clustering
algorithm does not force data to be allocated to a cluster. However, there are also
clustering algorithms that mandatorily assign each data item to one cluster. Therefore,
data instances that form a cluster may also be an anomaly on the whole. According to
the nature of anomaly, these data instances shall be rare and therefore, found in clusters
that are small and sparse. These anomalous data sets joint to clusters represent collective
anomalies. For such approaches, is it a key challenge to identify the parameters consisting
of size and density that determine to which degree a cluster is classified as normal or
anomalous.

Clustering-based techniques are usually unsupervised anomaly detection techniques. How-
ever, in some approaches only normal data is specified for training, so that approaches are also
being explored that belong to semi-supervised anomaly detection (see [34]).

The performance and efficiency of anomaly detection using clustering-based techniques is
strongly related to the clustering algorithm, which encompasses decisions about the minimum
size of cluster, number of clusters, etc. Some of the techniques require distance or density
computations which makes them very similar to nearest neighbor-based techniques. The
main difference is how they evaluate the test instances: in clustering-based techniques data
instances are tested with respect to the cluster they belong to, while the nearest neighbor-based
techniques evaluate data instances in reference to their neighborhood.

The computational complexity in the training phase is basically O(N?) but in the testing
phase they are very fast as each test instance only has to be matched against the (constant
number of) existing clusters.

2.5.4 Statistical Anomaly Detection

Statistical anomaly detection techniques underlie a statistical (or stochastic) model for data
distribution. They presume normal data to lie in regions of high probability of the applied
model whereas anomalies occur in low probability regions of the according model. Statistical
anomaly detection technique are differentiated into parametric and non-parametric techniques:

1. Parametric Techniques

Parametric techniques require the definition of underlying (parametric) distribution
by which © represents the distribution parameters which are derived on the basis of a
given training normal data set. Concerning anomaly detection, parametric techniques
apply two different options to define anomaly scores for observation test data: First, the
distribution is associated with a probability density function f(X,®) for X being the
observation test data. The anomaly score of X is defined by the inverse of the probability
density function f. On the other hand, parametric techniques use statistical hypothesis
testing [16] by examining whether the observation test data X is covered by the estimated
distribution. If X is not covered by the distribution, a test statistic delivers a probabilistic
anomaly score for the test data X.

Parametric techniques can be categorized according to the type of distribution. Typical
types for distributions are

I. Gaussian-based Distribution: The data is assumed to appear according to Gaussian
(or Normal) distribution which is the distribution model that is most frequently
used. Relying on two parameters, mean y and standard deviation ¢, a probability
can be calculated for each test data. The distance of the test data to the mean defines
the anomaly score of the test instance which in turn identifies the test instance
being normal or anomalous based on thresholds set for the anomaly score. Threshold
settings are strongly application-specific. Furthermore, as data can be univariate
or multivariate, different techniques can be applied to distance calculation and
threshold setting.

II. Regression-based Distribution: Regression models are prediction methods and
have been applied to anomaly detection in time series data. The test data is matched
against the predefined regression model. The residual of the test instance is the
part not matching the regression model. This residual part is used to determine
the anomaly score calculated either on the basis of the magnitude of the residual
or on statistical tests. There are so called robust regression methods which belong to
the class of those methods being able to cope with anomalies in training data. Well
known robust anomaly detection techniques for time series data are Autoregressive
Integrated Moving Average (ARIMA) and (for multivariate data) Autoregressive Moving
Average (ARMA) which are explained in short in [5].

III. Mixture-based Distribution: In mixture-based techniques, the data is modeled
based on a mixture of parametric statistical distribution functions. Basically, two
approaches for mixture-based distribution exist that are based on different assump-
tions: in the first one, the mixture is associated with the fact that normal data
is considered to be modeled by one statistical distribution while anomalous data
is modeled by another clearly separated distribution where the main task in the
testing phase is to verify to which of the both distribution the test data belongs
to. The second approach models only normal data by using a mixture of statistical
distribution functions. A test instance that does comply with any of the applied
distributions is declared as anomaly. Mixture-based distribution approaches are
potentially powerful as they allow a more realistic model of the data set. However,
the models reflecting the reality approximately exactly tend to be complicated to
understand as well as to use them.

2. Non-Parametric Techniques

For non-parametric techniques the underlying distribution is assumed to be unknown
a priori. The statistical distribution model is derived from the data set autonomously.

I. Histogram-based Anomaly Detection: The most common non-parametric tech-
nique constructs histograms to maintain profiles for data. The histogram is build
up based on normal data. Often, histogram-based approaches are referred to as
frequency-based or counting-based approaches, as the area representing a data at-
tribute reflects its frequency in the training set. The key challenge when constructing
the histogram is the definition of the size of a bin (interval for attribute value) as
this is the basis for evaluation of test data. A inadequate choice of the bins causes
the key source for producing false alarms.

Histograms are applied to univariate data as only one dimension is illustrated in
the histogram. In multivariate problems, multiple histograms are generated, one
for each attribute, which deliver per-attribute anomaly scores for test data instances
that finally can be aggregated to determine the anomaly score for the entire data
instance.

II. Kernel Function-based Anomaly Detection: These techniques are usually semi-
supervised anomaly detection techniques. They use a kernel function[12] to estimate
the actual density in order to determine the probability density function (pdf) of the
given data set. All test instances that lie in a low probability region of the estimated
distribution are identified as anomalies.

Statistical models are powerful in anomaly detection as problems and, accordingly, data
sets of problems can be adequately represented by a statistical model reflecting a good
approximation of reality. The key challenge of statistical based anomaly detection approaches is
to identify the right statistical model that reflects the normal data correctly. Wrong choice of the
model or its parameters will lead to false evaluation of test instances. Most of the approaches
are dealing with Point Anomalies as the objective of such approaches is to calculate an anomaly
score for an individual test instance. The complexity of statistical anomaly detection primary
depends on the fact whether the statistical model is known in advance or has to be estimated.
Secondly, the complexity is also related to the statistical model that is applied as well as the
number of considered attributes. In most of the approaches, the testing phase can be performed
in constant or linear time as the test instances has only to be matched against the fitting to the
statistical model. However, applying more complicated approaches, such as kernel functions,
the testing phase can also have quadratic time complexity.

2.5.5 Information Theoretic Anomaly Detection

Information theoretic anomaly detection techniques are based on the assumption that
irregularities in information content of data sets are traced back to anomalies. Therefore, an
analysis of the information content is required and usually performed by applying measures
from information theory like Kolomogorov complexity, entropy, relative entropy, uncertainty, etc.
Because of the information theoretic measures, these anomaly detection techniques can be
classified as unsupervised (no examples or training data for anomalous data are required).
Anomaly detection applying information theoretic approaches always consider the entire data
set D for which C(D) denotes its complexity (such as Kolomogorov complexity, entropy, relative

entropy, uncertainty, etc). They examine every possible subset in order to determine a minimal
subset I for which the distance of complexities denoted by C(D) — C(D — I) is maximized.
The subset I then contains the instances that are declared as anomalies.

Information theoretic techniques are also applied to ordered data sets such as sequential
data with the objective to find the substructure I such that C(D) — C(D — I) is maximized. As
the sequential data is split into subsequences, it is the key challenge to determine the size of
the subsequences (window) that is optimal to anomaly detection in that particular data set.

Considering the entire data set with all possible subsets leads to a basic computational
complexity of exponential time even though some optimizations and approximations exists
that are listed by Chandola et al. Basically, the performance of the anomaly detection approach
is highly dependend on the choice of the information theoretic measure that should be sensitive
enough to enable the aspired anomaly detection. Additionally, the performance of anomaly
detection in sequential data using information theoretic measures is strongly related to the
quality of the choice of the subsequence window size.

2.5.6 Techniques for Collective Anomaly Detection

Collective anomaly detection techniques are discussed by Chandola et al. in [34] only in
short. Collective anomalies are identified by a co-occurrence of data instances in such a way
that this co-occurrence does not match normal behavior (see Section 2.2.1). This incorporates
that there exists a relationship among the data instances. Three types of data relationships
reflect the most frequent collective anomaly detection problems and have been identified by
Chandola et al.: sequential, spatial and graph relationship.

Anomaly detection in sequential data aims to detect anomalous subsequences or entire
sequences in event sequence data (sets) or time-series data (sets). As this type of techniques
is the most interesting one for the problem addressed in this thesis, a detailed discussion is
provided in Section 2.5.8.

For spatial and graph data, anomaly detection has not become a meaningful research topic
yet, so that only little research has been done addressing these problems. Chandola et al.
only present the basic principles without going into details of the applied techniques: Spatial
anomaly detection techniques aim to detect connected regions in spatial data that show up
anomalies. The data set is segmented by use of appropriate segmentation techniques. The
resulting segmented data subsets are explored to find collective anomalies by e.g. considering
the anomaly probability of each data instance within the region (which in fact is detection
contextual anomalies) and connecting all anomalous data instances into the spatial structure.
Typical problems for spatial anomaly detection are addressed by image processing.

Graph relationships between data lead to graph anomaly detection techniques that aim to
find anomalous subgraphs within the data. Different assumptions on anomalies are considered.
On the one hand, anomaly detection involves the classification of a sub-graph with respect
to the entire graph. Thereby, measures like regularity of graph or its entropy are important
ingredients. On the other hand, anomaly is related to the frequency of sub-graphs within a
large graph by taking into account the size of the sub-graph in order to determine anomaly
scores for the particular sub-graphs.

Detecting collective anomalies is more challenging than detecting point anomalies as it
requires to examine the structure in data which is strongly related to the type of the relationship
between the data.

2.5.7 Techniques for Contextual Anomaly Detection

The techniques discussed in the sections above concentrate on either detecting point anomalies
or collective anomalies. Research in techniques for contextual anomalies (see description in Section
2.2.1) often relies on reducing the problem of detecting contextual anomalies either to the problem
of point anomalies or collective anomalies .

1. Contextual Point Anomaly Detection

A point anomaly is an anomaly in an individual data instance. Contextual point anomalies
are anomalies in individual data instances with respect to its context. The context of each
test data instances is determined by its contextual attributes.

For anomaly detection of contextual point anomalies, it is possible to use a common
technique for point anomalies which is appropriate to the considered problem (as those
presented in the sections above) in correlation with the according contextual attributes. A
data instance d is represented, for example, as [x, y] with x being the behavioral attributes
and y being the contextual attributes. Both, behavioral attributes and the contextual
attributes, are respresented by data models (e.g. statistical distribution models), but each
by an individual one. The anomaly score for the data instance 4 is calculated on the
basis of the probability that the behavioral attributes x are generated when the contextual
attributes y are present.

2. Contextual Collective Anomaly Detection Collective Anomalies occur in data structures
such as time-series or sequence data in which not one individual data item is anomalous
but the entire structure. Typically, prediction-based techniques are applied here, as
usually, the future behavior is expected to be estimated based on observations of behavior
history.

The behavioral structure is learnt in the training phase and constructs a prediction
model for expected behavior within the given context. To realize this, regression analysis
techniques [14] offer powerful methods for behavior prediction as they model and
estimate relationships among variables. Applying regression, contextual attributes are
used to predict the behavioral attributes. Numerous variations of regression analysis have
been examined and proposed contextual anomaly detection for time series or sequential
data. These different approaches are references by Chandola et al, in particular, ARMA
and ARIMA models [5] specific to contextual anomaly detection in time-series, to name
some of them.

Usually, problems of contextual anomaly detection are reduced to either problems of point
anomalies or collective anomalies so that the according techniques are applied, extended by
taking the data context into account. Because of this reduction, the complexity of the anomaly
detection technique is related to the reduction technique as well as the applied anomaly
detection technique. Considering the context of data (either data instance or data structure)
enables to detect a class of anomalies that might not have been detected by the pure anomaly
detection technique (without the extension of context information).

2.5.8 Sequence Data Anomaly Detection

Sequence data is an ordered series of data instances. Many applications produce data
sequences or time series data. In his PhD thesis [33], Chandola emphasizes that “anomalies in

sequences can only be detected by analyzing data instances together as a sequences” so that
different anomaly detection techniques are required as the traditional once discussed above.

In [34], only a brief overview is given on sequence data anomaly detection, but Chandola et
al. provide in [35] a more comprehensive survey on anomaly detection for sequence data, and
in particular, in this article they concentrate on symbolic (or as they refer to discrete data). This
section mainly summarizes the techniques described in [35].

Many different approaches for techniques for sequence data anomaly detection exist because
it is a very common problem in a wide range of domains. Many applications produce
sequentially ordered data, but the nature of data varies and is related to the application domain.
Chandola et al. mainly distinguish between symbolic or discrete data and continuous or
time-series data (time-series of symbolic data belongs to the class of symbolic or discrete data).
Sequential data can, of course, consist of univariate as well as multivariate data instances.
Besides the nature of the data, the nature of anomaly to be detected may be different. Several
techniques have been proposed for symbolic sequences within specific domains, but, up to
now, it is not well-understood and has not been examined in detail to what extend a technique
developed for a particular application domain would perform in a completely different domain.

Chandola et al. differentiate the problem of anomaly detection of sequential data into three
different assumptions on anomalies that refer to different classes of anomaly detection:

1. Sequence-based anomaly detection
2. Continuos subsequence-based anomaly detection
3. Pattern frequency-based anomaly detection

These three classes of sequence data anomaly detection have different characteristics, problem
formulations and hence, they apply different techniques. In the following, basic anomaly
detection techniques are presented for each class of sequence data anomaly detection, but these
techniques are mainly related to symbolic sequence data (according to the survey offered by
Chandola et al. [35]):

1. Sequence-based anomaly detection

This class of anomaly detection is concerned with detecting entire anomalous sequences
in a set of sequences with respect to the defined or trained normal. Existing tech-
niques operate either in semi-supervised mode with available labeled training data or in
unsupervised mode in case of unlabeled data.

Assuming, that all sequences are of equal length, a sequence can be treated as a data
record having n features (n is the length of the sequence). Then, the detection of
anomalous sequences is related to the problem of point anomalies in which the test data
instance is composed of multiple feature values so that any appropriate point-based
anomaly detection technique (fitting the application and the problem as described in the
sections above) can be applied here, e.g. similarity or distance-based techniques.

However, in practice, sequence-based anomaly detection is facing the key challenge of
varying sequence lengths of individual sequences and, referring to this, the challenge of
sequences that may not be aligned with each other and especially, with the set of normal
data. In [53], Gusfield explores established methods for sequence alignment and sequence
matching for sequences and strings. These methods offer potentials to be applicable to

sequence-based anomaly detection as the the sequences addressed here are symbolic
sequences that can be referred as Strings.

To deal with sequences of different lengths, two different approaches exists:

(a)

(b)

transforming the sequences with different lengths into sequences of equal lengths
which leads to the fact that again, point-based anomaly detection techniques can be
applied here. However, the transformation can only be applied if sequences can be
property aligned

use techniques that can operate on sequences of unequal lengths. This approach is
chosen if the original sequence is required to be maintained in length and structure
or if alignment of sequences is infeasible or of unacceptable effort.

According to [35], the latter can be classified in four different categories of techniques:

1.1

1.2

Similarity-based Techniques

In similarity-based techniques, sequences are compared pairwise by applying a spe-
cific similarity or distance measure (k-nearest neighbor, clustering-based techniques
etc.) for anomaly score calculation. Other approaches are based on counting the
number of positions in which the two sequences match. However, these approaches
require sequences of (nearly) equal lengths. For sequences with different lengths,
methods are used to compute the longest common subsequence as a similarity measure.

Similarity-based techniques by nature do not consider relations between different
pairs of symbols within a sequence. A huge selection of approaches exists and
can be found in the literature. If the problem considered can be transformed to a
problem of similarity (or distance), then it can be solved by one of the many existing
similarity-based technique. Obviously, the performance of the anomaly detection is
depending on characteristics and parameters of the applied approach as well as on
its suitability to the problem. Similarity-based techniques suffer on the complexity
as pairwise comparison is of O(N?).

Window-based Techniques

Window-based techniques are usually applied as semi-supervised methods and
hence are based on available training data. Mainly, they address the problem of
assuming that causes for an anomalous sequence can be located within subsequences
of that sequence and assuming that those anomalies - when analyzing the sequences
as a whole - either itself or their cause might not become detected. The basis of
these techniques is that sequences are split into fixed-sized (overlapping) windows
of length k. Thereby the windows are sliding by one symbol per window along
the sequence. In the training phase, for each window extracted from the training
sequences the frequency of occurrence is determined. In the testing phase, each
of the windows of the test sequences is analyzed separately with respect to a
trained normal obtained from training sets. Based on this, the analysis of a window
results in an anomaly score (e.g. the inverse of the frequency) that is assigned to
each window. The individual anomaly scores of the windows belonging to one
sequences are aggregated to result in an anomaly score for the entire sequence. If
the anomaly score of a sequence exceeds a predefined threshold the sequence is

1.3

declared as anomalous (normal otherwise). Different variants exist for defining the
window’s anomaly score as well as for calculating the aggregated anomaly score of
the associated sequence. The basics of this variants are explained in short in [35].
Besides the basic examination of frequencies of subsequences, there are techniques
that make use of so called lookahead pairs defined as < a, >; with B following
« at the jth position in the window. Thereby, the number of mismatches of these
expected lookahead pairs contributes to the anomaly score calculation. Others use
measures like Hamming Distance (such as Hofmeyr et al. [56]) to obtain the deviation
between the test window and the windows from normal data, similarity measures
(such as Lane and Brodley [65]) that take into account the location of windows
within the entire sequence or classifier approaches to determine the anomaly scores
of the individual windows. For all these diverse approaches, obviously, different
methods exists to derive the according sequences” anomaly scores. In [35] Chandola
et al. discuss the problem of merely accumulating window anomaly scores that
potentially may lead to washing out anomalous regions in sequences. They give a
basic introduction to methods for local combinations of window anomaly scores
(such as locality frame count (LCF)).

Windows-based techniques are well applicable in applications that assume anomalies
to be located in regions of the underlying test sequences. The biggest challenge is to
appropriately choose the windows size k which strongly effects the powerfulness of
a method to differentiate between normal and anomalous. Furthermore, storing all
patterns occurring in windows requires huge amount of memory, in particular in
case of high variations in the pattern the memory requirement can be exponential
with respect to the size of the symbol’s alphabet.

Markovian Techniques

The key characteristic of Markovian techniques for sequence-based anomaly de-
tection is based upon analyzing the probability of occurrence of a symbol t; with
respect to the sequences of k symbols occurred prior to that. That means that the
history of k symbols is used to determine the probability of symbol t; in a test
sequence t. In general, this probability is defined as P(t;|t;_k...t;—1). The overall
probability of a given sequence t is established using chained rules (see [35]), such
as by multiplying the individual probabilities P(t) = [T, P(fi|t; ... t;i_1) (with I;
length of). Markovian techniques are semi-supervised anomaly detection tech-
niques that learn parameters and establish a probability distribution model for the
occurrence of the symbols in their training phase.

Considering the length of history of a sequence k analyzed by the anomaly detection
technique, Chandola et al. in [35] distinguish between three different approaches for
Markovian techniques: fixed Markovian techniques, variable Markovian techniques and
sparse Markovian techniques.

Fixed Markovian techniques use a fixed value for k. In this class of techniques,
the probability of a symbol in the test sequence is determined by a fixed length
of history of k symbols. k = 1 thereby forms a special case where the probability
of a symbol is only related on its direct predecessor which has gained special
attention in the research community because of its simplicity (see further references
provided by [35]). Having established all probabilities of symbols with respect

1.4

to their history, all these transitions have to be stored. Typical data structures
for storing the probabilities (or frequencies respectively) are Extended Finite State
Automata (EFSA) [9]. The size of the EFSA is depending on the parameter k, the size
of the alphabet - which is determined by the application, but in particular on the
variations of sequences defined as training data. Obviously, the constructed EFSA
can be of huge complexity.

Fixed lengths of history may lead to unreliable estimation of probabilities for specific
cases (e.g. if a training sequence of length k occurs only once in the training set).
Variable Markovian techniques address this problem by introducing variable length
of history for probability estimation. To compute the optimal value for k for a
training set, models such as Probabilistic Suffix Trees (PST) are applied. Based on
predefined thresholds, it is ensured that only such sequences are considered which
in the training set occur frequently enough. Each of the (sub)sequences is pruned to
an individual length in the PST.

While fixed-length and variable-length techniques require a contiguous and immedi-
ately preceding symbols for analysis, sparse Markovian techniques are more flexible
as they allow symbols to be replaced by wildcards within sequences. Hence, the
probability of occurrence of symbols is based on a sparse history. These techniques
use so called Sparse Markov Transducers (SMT) which are similar to PST to estimate
the probability of symbols conditioned on a preceding sequence. In the training
phase, a collection of different variations of wildcard positions is constructed. Find-
ing an adequate position for a wildcard symbol is a challenging issue and leads to a
complex training phase.

Markovian techniques analyze each symbol in context to its preceding ones so that
they allow to detect anomalies localized within (long) sequences. They provide three
different approaches to define the context of a symbol which reflect the different
strengths of applying these techniques.

Hidden Markov Model-based Techniques

Hidden Markov Models [10] (HMM) are statistical models that provide powerful
features for sequence modeling and, accordingly, for anomaly detection.

The key ingredient is a finite state machine with parameterized state transitions
based upon a probability distribution reflecting the Markovian property (probability
of a state transition depends on the previous state). Each symbol in a sequence is
defined as an observation that leads to a state transition in the state machine which
in turn delivers an output. The states and the state transitions constitute the Markov
process which is not observable (therefore, the states are called hidden states). The
output produced is the only observable indicator that provides the basis for anomaly
detection e.g. in terms of labels or anomaly scores.

HMM-based anomaly detection techniques belong to the class of semi-supervised
techniques. With respect to the available data, three different approaches may be
applied to the learning process in the training phase([35]):

e for a given set of observation sequences, learn the most likely HMM parameters
which result in maximum likelihood for the observation sequences

e for a given HMM, compute the hidden state sequence that is most likely to have
generated a given test sequence

o for a given HMM, with given state transition and observation matrices, compute
the probability of a test sequence

The key advantage of HMM it that they can model complex systems. However, the
learning process may also be of high computational complexity. The efficiency of
HMM applied to anomaly detection strongly depends on an adequate choice of
(number of) state and parameters of state transitions in the initialization.

2. Continuous subsequence-based anomaly detection

Continuous subsequence-based anomaly detection is concerned with the detection of
anomalous subsequences within a sequence. An anomalous subsequence is a significantly
different subsequence within one sequence. The detection of continuous subsequence-
based anomalies is a problem addressed by applications that produce monitored data
over long periods of time. The basic technique applied to those problems is related to
window-based anomaly detection techniques. The monitored data is split into fixed-size
windows of length k. Each window is analyzed with respect to the rest of the windows
in order to assign an anomaly score to it. Keogh et al. in [60] propose to compare those
windows that do not overlap. This reduces the complexity and it intends decreasing
mis-evaluations caused by similarities between overlapping windows.

Based on the basic technique, several variants exist addressing different aspects of the
problem. First, different approaches exist for window scoring. While the simplest
approach is based on counting the number of occurrences of a pattern within the
database of windows, other approaches use distance measures related to nth nearest
neighbor-based techniques (referring to Section 2.5.2 the performance of the anomaly
detection is sensitive to the setting of 1) or analyze windows by using compressions-based
dissimilarity measures.

Comparing windows against the entire set of stored windows in the database is a
very complex issue and usually requires O(n%) complexity. There are variants of the
basic technique that aim to reduce the complexity and run approximately in linear
time by immediately pruning such windows whose anomaly score is below a threshold
(representing the pth largest anomaly scores).

A further aspect of the window-based problem is the to find an optimal value for the
window size k. This is a challenging issue as a too small chosen k may lead to high false
negative rates while a too large value for k may lead to high false positive rates. Consid-
ering that the length of anomalies is not known a priory and, furthermore, anomalies
may be of varying lengths, setting the value of k becomes even more challenging. In
their survey ([35]), Chandola et al. shortly discuss a segmentation-based approach that
addresses the problem of finding an optimal k by exploring segments (or subsequences)
of unequal lengths extracted from the sequence. However, acceptable solutions for this
problem only exist for small alphabet sizes.

Techniques for sequence-based anomaly detection and continuous subsequence-based
anomaly detection concentrate on different problem formulations and have been devel-
oped for different application scopes. However, with some adaptations that are discussed
in [35], the techniques can be mutually applied to solve problems of the other type of
problem formulation.

3. Pattern frequency-based anomaly detection

Pattern frequency-based anomaly detection techniques deal with the problem whether
for a given pattern, its frequency of occurrence in a test sequence is significantly different
from its expected frequency. Thereby, the deviation in both directions (greater and smaller
frequencies) is of interest.

The basic technique tests for each query pattern the difference between its frequency in
the test sequence with uts average frequency of occurrence in the entire data set. Based on
this, the query pattern is assigned an anomaly score. Besides examining exact matching
of query patterns with the database as performed by the basic technique, some variations
exist that loosen the restriction of exact matching and allow some interspersion of symbols
in the test pattern. For example, in one approach presented in [35], a test pattern is
matched against the pattern data base in order to determine the longest substring in the
test pattern that matches a pattern in the data base. This longest substring is used as
a basis in order to count the frequency of that substring in the test sequence. Another
approach referred by Chandola et al. is to count the occurrence of permutations of the
query pattern in the test sequence if the ordering of the symbols is not significant.

For counting the number of occurrences of a query pattern in a sequence, in particular, if
the problem is not restricted to exact matching, the required computational complexity
is huge. Chandola et al. refer to some techniques proposed by Keogh et al. that use
so called suffix trees and which will be introduced in more detail in Chapter 4 (Related
Work).

Pattern-frequency based anomaly detection techniques can be applied to detect anomalous
sequences and hence also address problems of sequence-based anomaly detection. In
the contrary, these techniques cannot be applied to detect anomalous subsequences in a
sequence, as they rely on a data base containing a set of sequences while the continuous
subsequence-based anomaly detection approaches examine subsequences that occur in
one long sequence.

For symbolic sequences, there are several techniques that have been proposed and developed
within specific application domains and anomaly detection problem formulation. These
techniques have been evaluated in their specific domains. Hence, they are not directly applicable
to similar problems in other domains as it is not well-understood yet how a technique developed
for one domain would perform in a completely different domain. Little deviations in the
problem formulation, parameter configurations, type of available (training) data or the alphabet
size may lead to totally different performance measures and efficiency of the applied technique.

2.5.9 Online Anomaly Detection Techniques

Many applications continuously generate or collect data during their operation. Some of
them (e.g. critical applications) require analysis of the data online as soon as the data is
available. Online analysis is the basis of online anomaly detection that enables immediate
detection of occurring anomalies which in fact means real-time detection. Online anomaly
detection, thereby, enables to induce immediate reaction on the anomaly in terms of preventive
or corrective measures. The techniques discussed in the former subsections basically have
been designed for offline (time-delayed) anomaly detection which, as a prerequisite, imply
the complete test data to be available. In contrast to that, online anomaly detection by nature

can only operate on the data that has been observed so far. From the techniques presented
above, those techniques that unconditionally require the complete test data for analysis are
not applicable to online anomaly detection (such as similarity-based techniques or pattern
frequency-based techniques). However, some of the presented techniques can be either directly
adopted or adapted to operate in online manner.

Continuously generated or collected data can be considered as sequence data so that if the
data is of symbolic type, some of the techniques for sequence anomaly detection presented
above can be exploited. In particular, window-based technique or subsequence-based tech-
niques are suitable for online anomaly detection as they can assign anomaly scores to windows
or even single symbols as soon as they occur. Furthermore, HMM-based techniques provide
appropriate features to work in online manner as they rely on the fact that each observation is
depending on its previous ones without taking into account those which may be upcoming.

Chandola et al. in [35] emphasize that all the referred techniques for online anomaly detection
require an exhaustive training phase in order to become reliable in detecting anomalies.

2.6 Application Domains

Anomaly detection is applied in numerous application domains that use anomaly detection
or do research in the field of anomaly detection. The specification of an anomaly and, hence,
the objective of an anomaly detection approach is strongly related to the application domain
and the associated purpose that it is implemented for. In this section, we discuss some typical
applications for anomaly detection coming from different domains. As the community dealing
with anomaly detection has been continuously growing in the recent years, the here listed and
discussed domains are not exhaustive but provide an extract of the major application domains
(surveyed by [34]). The most important application domain for the context of this thesis is
covered by Intrusion Detection Systems (IDS), therefore it is separately introduced in an own
section. The remaining application domains are summed up together in section 2.6.2.

2.6.1 Intrusion Detection

According to [34], Intrusion Detection plays an important role in computer security as it
"refers to detection of malicious activity (break-ins, penetrations and other forms of computer
abuse) in a computer related system...”. From definition, intrusions exhibit different behaviors
than the normal system behavior, and, referring to the definition of an anomaly, they can be
seen as synonymous in this context. Therefore, anomaly detection techniques are applied to
detect intrusive system behavior.

Anomaly detection in this context is based on system observation of events and logging data,
but, as related to the nature of computing systems, huge amounts of such data is generated.
Moreover, such data is generated in a more or less streaming manner. Therefore, the anomaly
detection approach applied in this domain must be able to cope with analyzing huge data
amounts and preferably, the applied approaches shall be able to process the data online.
For computer systems, accurate and exhaustive training data is available as, usually, these
systems can be run in testing and safe environments before being transferred into productive
environments. The execution of the system in a test environments delivers activity data that is
exploited for obtaining normal behavior profile. On the other hand, it is impractical to specify
the behavior of all possible intrusions. Considering the evolution of intrusions, novel intrusions
are continuously arising as intruders adapt the attacks in order to evade the present intrusion
detection systems. However, in IDS the main objective is that the anomaly detection system is

able to identify intrusions even if their behavior has not been known before as soon as it differs
from the normal behavior profile. Therefore, referring to the classification of anomaly detection
approaches in section 2.2, anomaly detection approaches applied to intrusion detection belong
to the class of either semi-supervised or unsupervised techniques.

Intrusion Detection Systems (IDS) are classified into[27]:

e Network IDS: The aim of a Network Intrusion Detection Systems is to detect intrusions
in network data related to a potential remote attack, e.g coming from the internet. Such
intrusions can either be Point Anomalies initiated by one single event as well as Collective
Anomalies formed by a sequence of events. Intrusion detection systems rely on data with
different levels of granularity. One of the first developments in the domain of network
intrusions systems and - most commonly referred - has been made by Anderson et al.[40]
and is called NIDES.

e Host-based IDS: Host-based Intrusion Detection System usually reside in the operating
system itself in order to protect the host from misuse. They are often referred toas
system call based intrusion detection systems as the deal with operating system traces
[34]. Single events in traces cannot be directly assigned to an intrusion as in terms of
system calls for example, all system calls provided by the operating system are legal
events in principle. But it is more the co-occurence of successive calls that may lead into
a malicious system behavior. Therefore, anomalies occur mainly in form of Collective
Anomalies within subsequences of traces produced by malicious programs, unauthorized
behavior of policy validations. The traces may be produced by programs as well as users
which each produce individual sequences of varying length and are typically sequential
data items. Considering investigations to evade the system’s intrusion detection, based
on this customized profiles for each program or user, it is difficult for the attacker to know
a normal behavior profile in order to adapt the attack in such a way that it converges to
the according normal behavior.

Many anomaly detection methods using different techniques have been developed in
order to solve the host-based intrusion detection problem. As this application domain
is most interesting regarding this thesis, existing approaches dealing with system call
anomaly detection are examined in more detail in the Chapter 4.

2.6.2 Other Application Domains

Even if Intrusion Detection is the most interesting anomaly detection application domain,
other application domains may face similar conditions and restrictions so that the may provide
applicable solutions for the problem regarded here. The assumptions and conditions deter-
mined in an application domain can be used as guidelines to assess the effectiveness of the
applied techniques for similar problems even though developed for this particular application
domain. These are mainly presented in [34] (with no claim of providing a complete and
comprehensive overview):

e Fraud Detection: Fraud Detection deals with identifying anomalies that represent crimi-
nal activities in commercial procedures such as bank, credit card, cell phone, insurance
or stock market operations. Frauds are defined as uncommon consumer operations that
may be caused by an unauthorized user. The objective of fraud detection algorithms is
to immediately identify the misuse in order to prevent economic losses through activity
monitoring (introduced by Fawcett and Provost in 1999 [42], referenced by [34]). For each

user, an activity profile is maintained. Typically, such activity profiles are generated
over several dimensions over periods of time and are continuously updated as the data
collection is proceeded continuously whenever a transaction happens. This can lead
to an expensive central storing of high volume of data caused by the nature of the
application. On the basis of a users’ activity profile, any new transaction is matched
against the activity profile in order to detect any deviation online. In fact, the anomalies
aimed to be detected belong to the class of Point Anomalies (considering an individual
transaction being uncommon) and/or Contextual Anomalies (considering the context of
the transaction being uncommon, e.g. geographical location as source of the transaction).
As based on huge data amounts with numerous dimensions, this online detection may
become complex. Typical solutions for fraud detection problems are provided by profil-
ing and clustering-based techniques and belong to the class of either semi-supervised or
unsupervised anomaly detection techniques.

Insurance and Health Care: Applications in this domain have different perspectives and
characteristics. For example, there are applications that aim to detect disease outbreaks
on the basis of patients records which is a critical problem requiring a high degree of
reliability and accuracy. Usually, anomalies detected by these applications are referred to
Point Anomalies while the output of such an approach is of predictive qualities. Other
applications concerned with anomalies in Electrocardiograms handle time series data in
order to detect Collective Anomalies.

Fault Detection (in safety critical systems or industrial/mechanical units): Anomaly
detection in this context is applied to early detect or even predict failures of system
units due to wearout circumstances in order to prevent damage of other system parts
or actually the entire system. A normal profile of data is usually available based on the
system specifications so that semi-supervised approaches are applied. Furthermore, the
data of normal behavior is even of static manner.

Monitoring is realized in an online fashion by sensors from which data that is gathered
has temporal context. Anomalies in such systems can be determined by using time series
analysis techniques and are Contextual Anomalies or Collective Anomalies.

Sensor Networks: Sensors collect a lot of data that has to be analyzed in terms of
interesting data items that differ from the rest. However, it depends on the application
area of the sensor which kind of data it collects (binary, discrete, continuous data, etc.)
even though the data is usually gathered in a streaming manner. Furthermore, the
data is often required to be analyzed in an online manner. Deciding which techniques
are applicable best is strongly related to the nature of the data as well as the types of
anomalies to be detected.

Image Processing: Anomaly Detection in image processing applications are intended
to identify changes in images over time, also referred as motion detection, or finding
changes in regions of static images. Chandola et al. enumerate satellite imagery, digit
recognition, spectroscopy, mammographic image analysis and video surveillance as main
application areas. Considering these applications, the big challenge for image anomaly
detection is based on the large size of input data for analysis. As anomaly detection in
this domain is interested in finding single points of interest as well as regions, anomalies
are either of class Point Anomalies or Contextual Anomalies.

Chandola et al. have collected references to publications concerning all these application
domains for further reading in [34]. They also list other domains that exploit techniques
and approaches from anomaly detection such as text processing, speech recognition, novelty
detection, traffic monitoring, fault detection in web applications, anomaly detection in biological
data as well as astronomical data, detecting ecosystem disturbances, just to name some of them.
In fact, the applicability of anomaly detection approaches is unlimited and particularly not
restricted to these application domains.

2.7 Summary

This chapter provides an introduction into the topic of anomaly detection focussing, in
particular, on the problem of developing an anomaly detection approach as addressed by this
thesis. All challenging aspects concerning the development phase are pointed out. First, the
development of an anomaly detection approach requires a clear formulation of the underlying
problem according to the properties defined in this chapter. Then, design decisions that are
summarized in Section 2.2.2 have to be made before the architectural model is mapped on
the problem’s application domain. As a next step, it is important to determine the classes
applied to data classification. All theses decisions establish the basis to assess the applicability
of specific anomaly detection techniques in terms of solving the problem addressed. Section 2.5
gives an overview on the best known anomaly detection techniques, their characteristics and
application purposes, while Section 2.6 provides an overview over the common application
domains for anomaly detection.

This chapter helps to classify the problem and the requirements on the anomaly detection
problem examined in this thesis and emphasizes the challenges concerned with developing
approaches for anomaly detection. Furthermore, with the information provided by this chapter,
we can assess the potentials of existing techniques to solve our anomaly detection problem.
From their limitations in terms of dealing with autonomous self-reconfiguring systems, we
have derived the motivation to develop a better-applicable novel anomaly detection approach.

Artificial Immune Systems

In this chapter, first Artificial Immune Systems are introduced in short including a discussion
of their properties as well as their applicability to problem solving. This part of this chapter
mainly refers to surveys provided by de Castro in [32] and [31]. Afterwards, an introduction is
given to Danger Theory that builds up the core of the approach proposed in this thesis.

3.1 The Human Immune System

The human immune system is the defense system of the human body against diseases. Based
on its powerfulness in detecting and protecting, and the processes taking place in the human
body, it inspired the development of the computational paradigm of Artificial Immune Systems
(AIS).

De Castro describes the immune system in [31, Chapter 6] as ”... an intricate collection of
distributed cells, molecules and organs that altogether play an important role of maintaining
a dynamical internal state of equilibrium in our bodies.” Its primary function is to protect
the body from disease-causing agents such as viruses, bacteria and parasites, called pathogens
by immunologists. It is capable of recognizing those pathogens and fighting against them by
stimulating a so-called immune response.

The human immune system is a multilayer system composed of a physical barrier, which is
the skin, a biochemical barrier in forms of pH level and saliva, the Innate Immune System and
the Adaptive Immune System as illustrated by Fig. 3.1.

The Innate Immune System is understood as the first line of defense that regulates the
Adaptive Immune System to induce the immune response. The cells belonging to the Innate
Immune Systems are capable of recognizing a set of pathogens that possess generic molecular
patterns. The immunity provided by the Innate Immune system is inherently given by birth.

The Adaptive Immune System primarily consists of white blood cells (called B-cells as
maturating in the bone marrow and T-cell as maturating in the thymus) that are responsible
for recognition of those molecular patterns that cannot be recognized by the Innate Immune
System. These cells are able to adapt to previously unknown patterns through variation in
genetic reproduction. When matching the unknown pathogen, these cells reproduce and thereby
generate and maintain a stable memory of already known patterns. Having recognized a

Skin

Biochemical
barriers

Innate
Immune
response Phagocyte

Adaptive
immune
response

\/

Lymphocytes

Figure 3.1: Multilayered Architecture of Human Immune System.

pathogen, the immune cells bind the pathogen and signal other immune cells of the Adaptive
Immune System, such as big cell eaters known as phagocytes, to destroy the bound complex.

By this, the Human Immune System implements adaptation, learning, and memorizing.
Different theories exist to explain the processes taking place in the immune system:

e Pattern Recognition

Clonal Selection

Immune Learning and Memory

Affinity Maturation

Self/Nonself Discrimination

Immune Network Theory

Danger Theory

We will not introduce these immunological theories here. For more insight into these theories,
see [32]. However, we will present the computational principle derived from Danger Theory
after giving an introduction into the computational paradigm of Self/Nonself Discrimination
that to some extend builds the fundamentals of Danger Theory.

3.2 Artificial Immune Systems

Garrett emphasizes in [48] that there are two different understandings of Artificial Immune
Systems reflecting two different viewpoints. On the one hand, referring to the computational
immunology, “an AIS is a model of the immune system that can be used by immunologists
for explanation, experimentation and prediction activities” (see [48]) which in fact, emulates
an immune system being implemented into a computing system. On the other hand, when
considering the other viewpoint, “an AIS is an abstraction of one or more immunological
processes” (see [48]) and provides methods and algorithms that have been developed based on
these abstractions in order to solve computational problems. The latter viewpoint is the one
which we rely on in this thesis when referring to AIS.

De Castro provides a general definition for Artificial Inmune Systems (see [32, Chapter
3]) that summarizes other definitions which can be found in the literature: ”Artificial Immune
Systems are adaptive systems, inspired by theoretical immunology and observed immune functions,
principles and models, which are applied to problem solving.”

From the immunological theories, computational models and algorithms have been derived
(also providing abstractions of the immunological process) that altogether are described as
Artificial Immune Systems. They are intended to be applied to solve complex problems
by making use of the ideas, models and algorithms offered by AIS. The set of the features
and characteristics provided by the models and algorithms of AIS is diverse and powerful
(see [32, Chapter 3]): Pattern recognition, Uniqueness, Self identity, Diversity, Disposability,
Autonomy, Multilayered, No secure layer, Anomaly detection, Dynamically changing coverage,
Distributivity, Noise tolerance, Resilience, Fault tolerance, Robustness, Immune learning and
memory, Predator-prey pattern of response, Self-organization, Integration with other systems,
etc.

By constructing a defense system that is capable for fighting against unknown invaders in
a robust and autonomous manner, the human immune systems forms a suitable model for
computational anomaly detection. The most commonly known algorithms of AIS are:

Clonal Selection Algorithm - CLONALG [39]

Self/Nonself-Discrimination - Negative Selection Algorithm [47]

Immune Networks Algorithms - aiNet [38]

Dendritic Cell Algorithm (DCA) [52]

Typical application domains of AIS are [54]:

Clustering/Classification

Anomaly Detection (Intrusion Detection)

Computer Security

Optimization

(Machine) Learning

Bio-informatics

Image Processing

Robotics

Control

Virus Detection

Data Mining / Web Mining

AIS are applied in Anomaly Detection as well as Learning, and therefore, it promotes to
be applicable to the anomaly detection in self-x systems. Many publications exist that are
concerned with discussing AIS, the models and algorithms, and its applications like [55], [37]
and [21]. Furthermore, Chapter 4 provides a discussion on AlS-based approaches implemented
for anomaly detection and refers to many well-known and often cited approaches.

3.3 Self/Nonself Discrimination

Self/Nonself Discrimination bases on the capability of the human immune system to dif-
ferentiate between the system’s own cells entitled as self and foreign cells depicted as nonself.
This theory makes use of the process taking place in the thymus that is responsible for the
maturation of T-cells. T-cells are intended to recognize nonself antigens (those pathogens that
can promote an adaptive immune response). For this purpose, the immature T-cells are tested
in the thymus against self antigens, which are the organism’s self cells: If a T-cell is able to bind
self antigens, it becomes useless for antigen detection. Furthermore, by providing receptors to
bind organism’s self cells, it potentially would provoke autoimmune responses. As this is not
intended, those T-cells are immediately destroyed in the thymus. In contrast, T-cells that are
not able to recognize and bind self antigens are expected to be capable of recognizing other
cells not belonging to the organism, meaning the nonself antigens. These T-cells maturate in the
thymus, become immune system cells that are released out of the thymus to circulate through
the body in order to search for nonself antigens. This process is called negative selection of T-cells
[31, Chapter 6] from which the most common algorithm arose: Negative Selection Algorithm.

This model forms the basis of anomaly detection in which self patterns are classified as safe
while the nonself patterns are all patterns that do not belong to the system’s known behavior
and therefore endanger the system.

3.3.1 Negative Selection Algorithm

In 1994, Forrest et. al proposed in [47] the first algorithm inspired by the principle of negative
selection of T-cells which then was named the Negative Selection Algorithm.

Like many other anomaly detection algorithmes, its lifecycle is divided into a training phase
and an operation phase. The objective of the training phase is to establish a set of detectors
that are able to recognize nonself patterns. Patterns in this context can be binary patterns,
real-valued patterns or any other patterns reflecting the behavior of a certain part of the system
that is dedicated to be equipped with anomaly detection. The detector set generation process is
illustrated in Fig. 3.2. For the generation of the detector set, the set of self patterns is required
that is assumed to define the normal behavior. Detector strings are generated randomly and
matched against the set of self strings by applying a predefined affinity function. If the detector
string passes the matching process by matching at least one string of the set of self strings, it
is able to recognize self strings and is therefore rejected by the pool of nonself detectors. In
contrary, if for each self string the affinity function matching the detector string with the self

string exceeds a predefined threshold so that the detector string is not able to bind self, it is
declared as a nonself matching detector and therefore added to the detector set. This process is
repeated until the set of detectors is big enough.

Self Strings
(S)

Generate
random strings Detector Set
(Ro) no (R)

Reject

Figure 3.2: Detector Set generation in the Negative Selection Algorithm (source [31, Chapter

6]).

In the operational phase, any monitored pattern is then matched against the detector set.
As long as the monitored patterns fail the matching test, they are classified as self patterns
that represent normal behavior. If a monitored pattern matches at least one detector from the
detector set, it identifies a nonself pattern that is classified as an anomaly.

The Negative Selection Algorithm was primarily developed for the purpose of computer
security applications, such as virus detection or intrusion detection. But in the last two decades,
it was migrated to other diverse application domains as well.

A analogical approach exists that is called Positive Selection Algorithm. This approach relies
on the knowledge of nonself patterns that are used to train the detector set capable to recognize
the self patterns when transferred into the operation phase. This approach is better applicable
to systems where all nonself patterns are known in advance, and the set of self patterns has
much higher variability, and is much greater than the set of nonself pattern.

3.3.2 Limitations of Applicability to Self-x Systems

The Negative Selection Algorithm offers potentials to anomaly detection as it is able to differ-
entiate between normal behavior and such behavior that deviates from normal. However, the
strength of this approach relies on the definition of normal that is specified in the set of self
strings as these are exploit to build up the detector set in the training phase.

For autonomous systems that exhibit dynamic behavior, a definition of normal behavior is
very challenging, if not impossible. Even if it would be possible to specify the self strings for one
system configuration, with a high probability they might become invalid after reconfiguring
the system. The system is immediately continuing its execution after a reconfiguration so that
there is no time for the anomaly detection module to switch into a training phase. Last but
not least, the reconfiguration is performed autonomously leading to a configuration that is not
predictable. If applying this approach in the context of autonomous systems, the questions
occur which training set to use and whether it actually is possible to generate training sets of
all possible configurations - as in the motivation of the present work, we have already stated
that not all system behaviors can be foreseen at design time.

Furthermore, at operation phase, another problem is faced: with the requirement to work
in an online manner, the targeted approach is restricted in terms of computation time as
applied in a real-time system. Hence, if the detector set is huge (as it has to cover all possible
normal behaviors of the dynamic system) in order to ensure an adequate coverage, it becomes
impractical to match an actually monitored behavior against the complete set of detectors
online as this would introduce enormous execution complexity into the system.

Based on these arguments, Negative Selection Algorithm was assessed to be not applicable for
the purpose of this thesis. However, its principles build up the basis for the Danger Theory. For
better understanding the motivation of and the differentiation to the Danger Theory, a short
introduction is noteworthy here.

3.4 Danger Theory

The Danger Theory was proposed by Matzinger in 1994 and published in the Annual Review
on Immunology [76]. It was motivated by the fact that Self/Nonself Discrimination failed in
explaining some phenomena observed in the human immune system, e.g.

e foreign or nonself cells are tolerated and not destroyed, such as in case of pregnancy
e foreign or nonself cells should not be destroyed in cases of transplantations
e own or self cells can also endanger the system, when they mutate to cancer cells

The main questions derived from this are: what happens when self changes? what if self
becomes harmful? how can harmless nonself be tolerated? etc. These questions are closely
linked to the challenges of the targeted anomaly detection approach.

One of the main challenges related to these phenomena is to explain how the immune
response is triggered as only differentiating between self and nonself turned out to be insufficient.
From the immunological point of view, the basic idea of the Danger Theory refers to the fact
that cells undergo injury, stress or bad cell death - that is termed necrotis -, and thereby they
send out danger signals. Antigen-presenting-cells (APC) are sending activation signals based
on the dynamic and constantly updated presence of danger signals that trigger the immune
response (accomplished by T-cells). Detailed exploration of the theory can be found in [76].
Until today, the theory is treated controversial among immunologist as it could not be proven
completely (see [66]). Nevertheless, it provides a powerful computational model that can
be exploited for solving computational problems such as those in the domain of anomaly
detection.

3.4.1 Computational Danger Theory

Like the other immune system principles, the Danger Theory provides a good metaphor
and a promising model for computational purposes offering powerful properties and features.
Therefore, computer scientists like Aickelin et al. [20] propose a computational model of
Danger Theory contributing to Artificial Immune Systems without any relevance of its actual
existence in the human immune system.

Aickelin et al. [20] point out that the Danger Theory is relevant for approaches for which a
discrimination of self and nomnself is unsuitable in cases if nonself is not inherently associated
with danger, if self is inaccurate or if the boundary between self and nonself may be blurred.
Furthermore, the Danger Theory is applicable on problem domains where self is expected to

change over time. The main contribution of the Danger Theory is that the system responds to
the presence of danger signals.

Aickelin et al. [20] formulate aspects that have to be considered when incorporating the
Danger Theory into a computational approach:

1. an entity responsible for presenting an appropriate danger signal as a counterpart for the
antigen-presenting cell

2. the semantics of the danger signal (the danger signal may have nothing to do with danger,
but can signal a case of interest) and its representation (positive/negative, presence/ab-
sence, single-valued /array, etc)

3. the definition of a danger zone: entities effected by a danger signal, temporal enduring
effect of the danger signal, etc.

4. the immune response (that should not induce a danger signal itself)

Considered as an extension of Self/Nonself Discrimination, the Danger Theory allows to
classify patterns as:

e self - harmless

self - but harmful

nonself - harmful

nonself - but harmless

solution space

harmless | harmful

nonself

Figure 3.3: Classification of entities applying Self/Nonself Discrimination with Danger Theory.

Fig. 3.3 illustrates the different classification classes: the entire solution space consists of
a set of self and its complement, the set of nonself, and is split into the classes harmless and
harmful. The set of self can belong to the harmless class but partly also to the harmful class.
Its complement, the set of nonself can also be part of harmful as well as harmless. With this
classification, the immune response is triggered by a co-stimulated method as it is dependent
on the second signal (the danger signal). Furthermore, the Danger Theory with quite a number
of elements (see [76], [20]) provides potentials to alter the model according to the addressed
problem. For example, it is possible to completely omit a discrimination into self and nonself,
and operate only on the danger signal caused by distressed system entities.

Aickelin et al. [20] propose a number of application domains for the Danger Theory such
as computer security, (hardware) fault detection, virus detection, intrusion detection but also
anomaly detection in general, data mining and classification. Up to now, numerous publications
exist that try to survey the most interesting applications which are making use of the Danger
Theory.

3.4.2 Dendritic Cell Algorithm

One of the main contributions to Artificial Immune Systems from the Danger Theory is the
Dendritic Cell Algorithm. Dendritic Cells (DCs) are white blood cells that are assumed to
act according to the model proposed by the Danger Theory (their functionality is not fully
examined yet). Hence, the Dendritic Cell Algorithm was derived from the properties of DCs
and was developed by Greensmith, Aickelin and Cayzer [51] for the purpose of anomaly
detection.

Immunological Background of Dendritic Cells

From an immunological point of view, Dendritic Cells are antigen-presenting cells that
are responsible for the major control mechanism of the immune system as acting as a vital
interface between innate immune system, performing the initial recognition, and the adaptive
one executing the effector response. Basically, the DC’s function is to collect antigens from
pathogens or the host cells in tissue, and present these to the T-cells in the lymph nodes.
Besides the initial recognition, DCs sense the environment and differentiate behavior based on
the concentrations of the present signals.

For a DC, three states are defined: immature, semi-mature and mature. The state of the DC
is determined by the environmental signals or events, or the correlation of various signals.
The immature state is the initial state of the DC. In this state, it collects and processes material
of its environment. The immature DC can maturate either into the mature or the semi-mature
state. The maturation process is controlled by the differentiation of the collected material in
respect to the receiving signals. If the immature DC is exposed to a certain number of (threat or
danger) signals, it maturates its surface in order to become able to stimulate T-cells and thereby
becomes a mature DC. In absence of those signals, or in case of a too small concentration of
signals, the immature DC changes into semi-mature state. The mature DC has the ability to
activate naive T-cells that induce an immune response, while in contrary, the semi-mature
DC has a suppressive effect on the immune response. After maturation, a DC, irrespective
of whether in the mature or the semi-mature state, migrates to the lymph node where it is
conserved.

The Computational Counterpart

From the desirable characteristics exhibited by DCs, Greensmith et al. [51] have derived an
abstract model of the DC interactions and functions. The core properties describing this model
are:

e the initial state of the DC is the immature state from which it transitions to either mature
or semi-mature state

e the immature DC collects information it is dedicated for (each DC can have assigned an
individual purpose)

e maturation is caused by the exposure of certain signals received by the DC

e the output of DCs after maturation is different for mature DCs and semi-mature DCs
and provides contextual information

DCs are treated as processors of signals that costimulate the classification of the collected
data. Greensmith et al. [51] propose the following input signals:

e PAMP (pathogen-associated molecular pattern) - exposes pattern of a known threat
e Danger Signal - exposes a potential danger
e Safe Signal - represents a safe state

¢ Inflammatory Signal - general alarm signal (positive or negative)

These signals are present (with different concentrations) in the environment of each DC.
From a biological viewpoint, PAMPs are molecules that are exclusively expressed by invaders
(pathogens such as bacteria, viruses, etc.) that are inherently infectious nonself. The recognition
of these molecules identifies a threat. According to the biological counterpart, the PAMP
signal is defined as a known danger. In the computational context, the PAMP signal can
be anything that definitely identifies a thread, such as a known dangerous behavior pattern
or signature or an attribute value exceeding a predefined threshold (e.g. number of error
messages). PAMP signals can either be specified by expert knowledge at the specification phase
and/or they can be learned at operation phase based on behavior patterns that previously
have been detected as leading to a danger and have been memorized. Danger signals are
representing potential threats based on internal (state) information that indicate high level of
anomaly, such as receiving a high number of network packages per second. Both, the PAMP
signal and the danger signal induce the DC to migrate into the mature state. However, the
PAMP signal entails the most intensive signal for the DC to become a mature DC while the
danger signal offers tendencies of the DC to migrate to the mature state in case of a high
concentration of the signal.

In contrast, the safe signal shows up in a safe state of the DC’s environment without
potentials of threats and, hence, it promotes the DC to migrate to the semi-mature state. This
maturation process is illustrated by Fig. 3.4.

immature

PAMP
Danger signal

¥

Figure 3.4: Maturation of Dendritic Cells.

Safe signal

The Inflammatory Signal is not sufficient to initiate maturation of a DC, but it can be
considered as a generous alert signal that amplifies the concentration of the remaining signals
in order to enhance the maturation tendency.

ARTIFICIAL IMMUNE SYSTEMS

immature

antigen / behavior data, input signal data

threshold > data amount Il
Itimeout Il
low signal concentration

threshold <= data amount II
timeout Il
high signal concentration

®

maturation

Danger Signal Il
PAMP Signal Safe Signal

mature semi-mature

conservation

add to virtual lymph node /
knowledge base

(memorized >

Figure 3.5: Lifecycle of a Dendritic Cell.

The lifecyle of a DC is illustrated in Fig. 3.5. At the beginning of a DC’s lifecycle, the DC is
in the initial immature state collecting environmental data. The DC will reside in that state

50

until it will either reach a predefined amount of collected data specified by a threshold, or until
a specific condition for state transition is present e.g. a combination of the concentration of
costimulatory input signals or a timeout. Then, the DC performs the maturation by migrating
into either the mature or the semi-mature state. The migration is governed by the concentration
of danger signal, PAMP signal and safe signal. After the state transition, the DC will go into
the conservation state to enter a virtual lymph node with its maturity context for the purpose
of being memorized.

According to its biological counterpart, the computational approach is a population-based
approach involving multiple DCs having assigned individual tasks (of course overlapping with
other DCs’ tasks). Population-based approaches are well known for ensuring robustness as
they are eliminating single-point-of-failures and in the context of anomaly detection they can
reduce the risk of false alarms.

Greensmith et al. have shown the functionality and the efficiency of this algorithm in [51]
using the example of detecting anomalies in breast cancer data-sets. Furthermore, in [52],
Greensmith et al. provide a detailed description of the Dendritic Cell Algorithm including also
pseudo code.

3.4.3 Applicability to Anomaly Detection in Self-x Systems

In contrast to Self/Nonself Discrimination, the Danger Theory does not rely on a separated
training phase to establish a normal behavior knowledge entitled as self. When applying the
Danger Theory, the collected behavior data is not matched against any previously trained
knowledge but it is rather assessed in the context of the observed environmental signals.
Hence, changes in normal behavior do not effect the effectiveness of approaches applying the
Danger Theory as the currently collected behavior data is not compared to any (history or
trained) behavior data. The immune system implemented in forms of the Danger Theory is
only dedicated to induce an immune response in case of present threats that are represented by
correlations of various signals. This characteristic, in particular, is essential for self-reconfiguring
systems in which the normal behavior may vary and yield in behavior previously unknown.
These previously unknown patterns do not need automatically to be classified as threats but, in
contrast, they are examined with respect to their contextual environment signals which makes
this approach applicable to anomaly detection in autonomous systems.

Furthermore, the Danger Theory does not require huge amounts of stored data to assess
the currently collected data. Contrary, it operates only on the data present at the specific time
stamp and, therefore, becomes applicable to such resource restricted systems like those that we
address in this thesis.

The input signals that are used for defining the context of the collected data and, thereby
,allow to classify the currently collected data. This is well suited to the requirements formulated
in advance. The PAMP signal indicating already known threats can be exploited properly
exactly for that purpose: system parameters that definitely identify malicious system states are
PAMP signals. The same applies to the danger signal that indicates a suspicious system state
showing up a potential threat, and the safe signal reflecting a safe system state, accordingly.

The Danger Theory provides suitable characteristics and properties to be applied in the
anomaly detection for self-x real-time systems and, therefore, it essentially inspired the pre-
sented work to develop a context-related classification of system and application behavior. Of
course, applying Danger Theory requires to define the computational counterparts for the
elements building up the Danger Theory, meaning to determine the data that is collected by
the DCs, the components responsible for delivering the costimulatory signals, and finally, the

virtual lymph node to conserve the DCs with their maturity information.

3.5 Evaluation of Artificial Immune Systems

Usually, the evaluation of Artificial Immune Systems is not straightforward. Simon Garrett
investigates the questions concerned with how to evaluate Artificial Immune Systems in [48].
The main question Garrett discusses is whether and to what extent these novel approaches
provided by AIS are useful and in his discussion he considers the individual paradigms of
AIS (Self/Nonself Discrimination, Danger Theory, Clonal Selection and Immune Network
Theory) in separate. In this context, Garrett defines the term useful as being a combination of
distinctiveness and effectiveness, for which he also delivers definitions and explanations:

1. Distinctiveness:

Distinctiveness deals with of the issue how distinct AIS paradigms are from other
approaches. This issue is mainly related to the problem whether a paradigm provided by
AIS can be transferred to any other paradigm originating from other sources of inspiration
resulting in the same mathematical method or algorithm. In order to make distinctiveness
of a novel method clearer, Garrett provides three main questions (Source [48]):

D.1 Does the new method contain new symbols (and features)?

D.2 Are the new method’s symbols organized in novel expressions?

D.3 Does the new method contain unique processes?

The more of these questions are true for the novel approach, the more likely the approach
can be classified as being distinctive, especially if it can be said that the symbols, expres-

sions, and processes of the new approach as a whole cannot be made equivalent to other
existing approaches.

2. Effectiveness

Effectiveness deals with the issue of an approach of standing out in terms of being
better or faster that in others. For assessing effectiveness, Garrett also provides three
main questions to be considered (Source [48]):

E.1 Does the method provide a unique means of obtaining a set of results?
E.2 Does the method provide better results than existing methods?

E.3 Does the method allow for a set of results to be obtained more quickly than another
method?

Concerning the declaration of an approach being effective, it is sufficient if only one
of these questions is valid for a subset of problems that are covered by the evaluated
approach.

As there might be examples for approaches being distinctive but ineffective and others
being effective but not distinctive (reducible to other paradigms or algorithms), Garrett em-
phasized that usefulness of an approach presumes the coexisting presence of distinctiveness and
effectiveness.

For Self/Nonself Discrimination (or Negative and Positive Selection), Garrett refers to
Hofmeyr and Forrest [57] who point out that the process of learning rules introduced by
Negative Selection is distinctive compared to other classifier learning methods. Considering
the effectiveness of Negative Selection, it offers unique potentials to detecting different sets of
objects by the variety of learned detectors and, in some cases, it exhibits more precise results in
change detection (see [48] for further references), and hence it can be defined as effective. Due
to these arguments, the AIS paradigm of Self/Nonself Discrimination, in fact, is assessed to be
a useful approach as it is distinctive as well as effective.

Garrett does not offer any sophisticated validation of Danger Theory based on the presented
evaluation method, as research on Danger Theory has been in its infancy when Garrett pub-
lished his article in 2005. But as Danger Theory introduces novel processes, he acknowledges
that it will obtain relevance in main areas as it promises the ability to find solutions for different
problems (such as intrusion detection) in an autonomous manner.

3.6 Summary

This chapter gives an introduction into Artificial Immune Systems including a background
on the source of inspiration for it, the Human Immune Systems. Their characteristics and
properties as well as typical application domains are described. As one of the main principles,
the approach of Self/Nonself Discrimination is explained in more details as its limitations built
up the motivation for specifying the Danger Theory, the core inspiration of this thesis.

The core of the Danger Theory relies on Dendritic Cells and the corresponding computational
approach that was introduced by Greensmith et al. [51]. Dendritic Cells operate on means
of costimulatory input signals to classify collected data without any matching against self
or nonself knowledge. This property provides the most essential concept to be applied for
anomaly detection in self-x systems.

In this chapter, we discuss the applicability of the Danger Theory in the context of this thesis.
Finally, we provide a discussion based on the publication of Garret [48] on the evaluation of
Artificial Immune Systems.

ARTIFICIAL IMMUNE SYSTEMS

54

Related Work

In this chapter, we present approaches that, on the one hand, initially inspired the idea of
anomaly detection developed in this thesis. On the other hand, limitations of these approaches
and their nonapplicability in terms of addressing the challenges and requirements defined for
an anomaly detection for self-x real-time systems are worked out to emphasize the necessity
for a novel approach like the one presented in this work.

The objective of the targeted anomaly detection is to ensure the stability of the system on the
basis of analyzing the system behavior. System behavior is mainly governed by the executing
applications which through dedicated interfaces, usually in forms of system calls, interact with
the operating system and use services of the operating system. Only by executing system calls,
applications can effect the operating system’s internal state. Thereby, particular sequences of
system calls may offer potential to do harm. Hence, the system behavior can be substituted
by the application behavior composed of system calls that become the observable objects for
anomaly detection.

Analyzing system call sequences in order to detect anomalous behavior that may yield into
threats for the concerned system was primarily brought in by Forrest et. al in [56]. Since
then, many researchers have investigated into concepts and models for system call-based
anomaly detection. These approaches are often dedicated to the closely related domain of
host-based intrusion detection systems, predominantly addressing ordinary computer systems
(non real-time). Nevertheless, they provide interesting aspects in terms of assessing what is
applicable to our problem so that the most relevant ones will be discussed in short in Section

4.1.

By [47, 57, 46], and [44], Forrest and Hofmeyr (et al.) mainly pushed on the research in
system call-based anomaly detection by applying concepts of Artificial Immune Systems. The
concepts developed by Forrest and her co-researchers but also those of other researchers using
the idea of Artificial Immune Systems (AIS) are discussed in Section 4.2.

Finally, as the Danger Theory is a specific principle belonging to Artificial Inmune Systems,
Danger Theory-inspired approaches for anomaly detection are presented in the last part of this
chapter, in Section 4.3.

4.1 System Call-based Anomaly Detection

Approaches that examine system call sequences for detecting anomalies rely on the assump-
tion that a particular class of system threats will be unveiled in unusual sequences of system
calls [46].

As a first approach in this context, in [46], Forrest, Hofmeyr et al. have proposed an approach
for look-ahead pairs of system calls for uNIx processes. They have monitored the execution
traces of UNIX programs such as sendmail or 1pr and derived from their traces short sequences
of k system calls to build up a database of normal behavior by recording for each system call
all the system calls that follow this call at the positions 1 up to k — 1 in the sequence. Forrest,
Hofmeyr et al. claim that if program code is static, a stable database can be obtained even by
short sequences of length k = 6, as they have shown in [46]. By using the look-ahead pairs, this
approach allows to take into account orderings of system calls within long system call traces.
The look-ahead pairs of system calls are stored in tables, one for each process, that are used for
matching newly occurring system call sequences against the normal behavior database. The
purpose of the matching procedure is, first, to verify their presence of absence of the sequence
in the database and, second, count the pairwise mismatches if the sequence is not present in
the database. The number of mismatches dictates whether a currently occurring system call
sequence is classified as normal or anomalous. The matching procedure can run in O(N), where
N is the length of the system call trace, and is therefore efficient to be executed online.

Even though this approach is stated as an initial step for building up an Artificial Immune
System as the idea is based on the immunological principle of distinguishing between self
and nonself by previously generating a normal behavior database, it does not implement any
further immunological principles. Therefore, from my viewpoint, it does not belong to the
class of AlS-inspired approaches. Nevertheless, this approach is one of those that inspired this
thesis as it demonstrates simplicity in terms of detecting anomalous system call sequences with
low runtime effort. However, the authors emphasize that the size of the database is strongly
depending on the variations in the system call sequences and the length of the trace that is
considered to build up the normal behavior database. The database may become huge in case of
strong variations. Furthermore, it is a challenge to decide how much data is sufficient to obtain
a stable normal behavior database in order to maintain runtime efficiency, on the one hand, as
well as to achieve a good coverage on the other hand that is mainly responsible for preventing
false classification results. Last but not least, it is the question how to set the threshold that
determines a sequences to be either normal or anomalous. In particular, in the context of self-x
systems, learning of changes in normal behavior are not taken into account by this approach
which mainly made this approach not applicable for our purpose.

With this work ([46]), Forrest, Hofmeyr et al. started investigating into the topic of system
call-based anomaly detection. Beyond this, they have refined their approach for the purpose of
being applied for UNIX systems and examined a number of other mechanisms to distinguish
between normal or anomalous behavior. One of these approaches was published in [56]:

By [56], Forrest, Hofmeyr et al. are actually cited by many other researches to have been the
first ones who have proposed a system call-based anomaly detection (for intrusion detection in
UNIx systems). This approach relies on measuring the distance (Hamming distance) of a fixed
length system call trace executed by a program against its normal behavior database. If the
distance value exceeds a specified threshold, the observed behavior sequence is classified as an
anomaly or intrusion (as Forrest, Hofmeyr et al. prefer to use this term). In their experiments,
Forrest, Hofmeyr et al. found out that not only for each program an individual normal behavior
database is generated, but furthermore, that the normal behavior of a program differs with

respect to a particular system (with a specific configuration) by which the diversity of this
approach could be demonstrated.

In this approach, each program is assigned a normal behavior database that is established
in a training phase (either in a synthetic or a real environment) by monitoring the system
call execution traces for that program and storing k-length sequences of the system calls
extracted from the trace in a rooted tree structure. Because UNIx programs are usually running
continuously, Forrest, Hofmeyr et al. have chosen to use sliding windows in order to obtain all
system call sequences of length k across the entire execution trace. By this, the database holds
all k-length sequences having occurred during the training phase, which may become large for
programs that use a large number of system calls. Forrest, Hofmeyr et al.[56] have build up
such a database exemplarily for the UNIX program sendmail that uses 53 of the system calls
provided by UNIx. Based on empirical evaluations, Forrest, Hofmeyr et al. have determined
k =10 as a good choice. With these parameters, the normal behavior database for sendmail
includes 1318 unique system call sequences.

In the operation phase, any k-length system call sequence is matched against the database
for the purpose of identifying whether the sequence is belonging to the normal behavior. This
can be performed in constant time based on the fixed length of the sequence. However, if
the sequence is not part of the normal behavior, the Hamming distance has to be calculated.
Basically, this can only be conducted by pairwise comparison (the current sequence with each
of the sequences stored in the normal behavior database). The complexity of this procedure is
depending on the size of the normal behavior database. For large databases, this procedure
becomes very time consuming (see the example of 1318 database entries for sendmail). As
Forrest, Hofmeyr et al. extract the sequences by sliding windows, each new system call
generates a new sequence that requires the execution of the distance calculated in worst
case (in case the sequence is not part of the normal behavior database). In their conclusion,
Forrest, Hofmeyr et al. emphasize that detecting anomalies or intrusions online requires careful
attention to efficiency issues that they did not consider at the point of time their work was
published. The results achieved in anomaly detection by this method have been better than
those in [46], as more accurate detection precision was possible. However, from the viewpoint
of the requirements set by real-time systems, matching each new sequence against the entire
set of sequences in the normal behavior database becomes unfeasible due to timing constraints.

Besides the challenge of determining a suitable value for the variable k, choosing an adequate
value for the threshold that causes a sequence to be either classified as normal or anomalous in
another problem. From my viewpoint, there might be system call sequences i that differ only
by one system call from a normal sequence, having a Hamming distance of d(i) = min{d(i,j) V
normal sequences j} = 1, that could already endanger the system. On the other hand, there
might be sequences with a greater value for d(i) that would not. Forrest, Hofmeyr et al. have
not formally or theoretically proven how to generally define an adequate threshold value
but, moreover, they have set this threshold based on empirical evaluations that have to be
individually performed for each particular program.

Another more important aspect which makes this approach not applicable in the context
of the problem addressed by this thesis is that the normal behavior database is established
during a training phase. Thereby, the knowledge base becomes fixed for the entire system
execution which is suitable for standard computer systems. In environments with self-x
capabilities, behaviors of applications can change dynamically so that normal behavior may
alter but become uncovered by the normal behavior database. It is not possible to predict any
possible configuration that may result from autonomous decisions in order to provide a normal
behavior database for each configuration. Furthermore, it is impractical to induce a training

phase after each system reconfiguration while the system is in execution as due to autonomous
decisions false reconfiguration decisions may cause behaviors that may immediately endanger
the system.

Numerous publications on system call based anomaly detection exist that offer good surveys
on the research taking place in this domain. E.g. in [93], Warrender, Forrest et al. provide a first
discussion of models for system call data. Chandola et al. [36] provide a comparative evaluation
of anomaly detection techniques for sequence data by which they mainly address system call
sequences. In a later publication in 2008, Forrest, Hofmeyr et al. [44] have summarized research
taken place in system call-monitoring and its application to anomaly intrusion detection since
their first paper in that topic. In [93] and [44], the authors have mainly set focus on analyzing
the diverse data models for representing normal behavior applied by various researchers they
reference. Apart from their own concepts concerning look-ahead pairs of system calls, tree-
structure representation of k-length sequences, etc., they refer to approaches that model normal
behavior by statistical analysis (based on frequencies), Finite State Automata, Markov Models,
Hidden Markov Models, Neural Networks, Bayes models, fixed-sized windows as well as
windows-based approaches with variable size, etc. In addition to that, Chandola et al. [36]
enumerate Probabilistic Suffix Trees as a further data representation model. Forrest, Hofmeyr
et al. state that “developing a normal profile is a typical machine learning problem” [44]. Each
of the approaches applied are aimed at producing a more accurate representation of normal -
irrespective if in a supervised or unsupervised learning manner - in order to obtain a stable
normal that enables to reduce false rates.

Forrest, Hofmeyr et al. emphasize that for an anomaly detection capable to work online
it is essential for the representation of normal to remain compact. Not all of the referenced
approaches meet this requirement. Furthermore, in association with the data model, different
algorithms and methods are applied to differentiate between normal and anomalous with
different degrees of precision and different computational complexity. Beyond that, some
approaches such as [72] additionally take into account system call arguments and parameters in
order to detect inconsistencies which introduced much more complexity into the definition of
normal as well as into the classification method. Through the diversity of the existing approaches,
a comparison between them is difficult or even impossible. Each of the approaches outperforms
others in a specific application purpose, specific system configuration or environment. However,
approaches with a complex structure for representing normal or those using methods with
high computational complexity for evaluation of executing sequences - even if they achieve a
dedicated accuracy - are inapplicable for executing online as they may enormously interfere the
system execution. In the context of real-time systems, such additional computational overload
may lead to infeasible system configurations that could violate the system’s as well as the task’s
real-time constraints.

A more critical deficiency pointed out by Forrest, Hofmeyr et al. is that all these approaches
are not able to cope with dynamically changing behavior where normal behavior may evolve
over time. Once, normal is established in a training phase either through synthetic generation
or extracted by real execution, it is fixed with no mechanisms incorporated for adaptation or
adjustment of normal during system execution.

4.2 AlS-inspired Anomaly Detection

Forrest et al. [45] state that there are compelling similarities between the problems of
immune systems and computer system. Therefore, they propose to apply principles found

in immunology to computer science problems. Especially for defense purposes in computer
systems AIS are assumed to be promising and powerful because of their effectiveness in defense
of the natural counterpart, the Human Immune Systems (HIS). They provide a valuable source
of inspiration for anomaly detection because of their ability to protect against previously
unknown invaders in dynamic environments with increasing complexity in an autonomous
and adaptive manner (see Chapter 3). Furthermore, principles derived from the HIS and
formulated in computational approaches that contribute to AIS are characterized as lightweight
and robust so that they are expected to be better applicable in online manner than the traditional
approaches mentioned in the previous section.

The first approach known to us that can be called immune system-inspired was published
by Forrest et al. in [47]. This approach is dealing with self/nonself discrimination for
differentiation between legitimate and harmful activity in computer systems for ensuring
their security. The work published by Forrest et al. [47] aims to develop a change detection
method for identifying changes caused by viruses or unauthorized users that was inspired
by AIS. In particular, Forrest et al. apply the principle of self/nonself discrimination where
self is represented by (equally-sized) strings reflecting legitimate behavior. Even if Forrest
et al. did not address the problem of system call sequences directly, system call sequences
can be described by strings consisting of the IDs of system calls ordered according to their
temporal occurrence which makes the approach also applicable to system calls, or sequences
respectively. For enabling the detection of deviations from self, the generation of random
detectors is performed in a censoring phase (that we call training phase). The detector
generation was inspired by the generation of T-cells that was later formulated as the Negative
Selection Algorithm (see Chapter 3.3.1). A set of unique detectors is established of which each
is able to bind different kinds of nonself strings founding distributivity and diversity of that
approach. Different matching functions were proposed to be applied such as exact matching,
or matching of r-contiguous symbols of strings. The authors emphasize that the generation
of the detector set is computationally expensive, but checking for a deviation from self is
computationally cheap. By demonstrating the simplicity and the strength of their AIS-based
approach, Forrest and her co-researchers have become forerunners in the domain of anomaly
detection and have predominantly contributed to the raising interest in employing AIS for
anomaly detection.

Based on the approach proposed by Forrest et al., widespread research has been conducted
in the field of employing immune systems in anomaly detection, in particular to be integrated
into anomaly-based Intrusion Detection Systems (IDS). Aickelin, Greensmith et al. provided a
detailed review of the existing research approaches in [61].

First, they summarize works exploiting self/nonself discrimination as a principle. This class
of approaches defines self and builds up a normal database by making use of conventional
algorithms. Also, classifying the activity monitored at the system execution is performed
by traditional classification methods. For these approaches, only the idea of discrimination
between self and nonself is exploited so that the immune system is set as an on top architecture,
mimicking the HIS at a high abstraction level. Hence, the performance and efficiency of those
approaches is only related to the characteristics of the algorithms and methods applied.

In their review, a main focus is set by Aickelin, Greensmith et al. [61] on research applying
the Negative Selection Algorithm for anomaly detection in IDS. The main motivation of all the
approaches applying Negative Selection resides on the ability to identify nonself - and thereby
meaning invaders or intrusions - without prior knowledge of their structure or appearance as
it is found in the HIS. Aickelin, Greensmith et al. [61] give an exhaustive review of the existing
approaches including their specific characteristics, their performance and their uniqueness in

relation to others. Therefore, we are not interested in repeatedly summarizing the main aspects
of the discussed approaches and rephrasing the analysis made by the authors (for further
insight into the approaches referred to, see [61]). Moreover, here, we want to point out general
commonalities, differences, powerfulness and limitations of this class of approaches:

By applying Negative Selection, all these approaches enumerated by Aickelin, Greensmith et
al. have in common the proceeding of the following three phases:

1. Defining self and an adequate representation of self patterns
2. Generation of detector sets
3. Classification of monitored activity on the basis of the detector set

Apart from this common procedure, the existing approaches differ in their realization of
these three phases. There are different points of interest in IDS solutions to determine self. On
the one hand, self can be defined as internal system data of an operating system component in
case of host-based IDS. One option is to define system call sequences executed by applications
as self, in which we are mostly interested in this thesis. Furthermore, as IDS are applied in
computer systems that are interconnected, also network connections are considered as point of
interest to be monitored if incorporated into network-based IDS. Then, self is defined according
to that purpose. The representations of self are also varying with respect to the data that is
determined to be meaningful showing up characteristics that allow to differentiate between
normal and harmful activity. The representations of self referred by Aickelin, Greensmith et al.
[61] can be realized in form of binary strings, real-values strings, vectors, multi-dimensional
vectors or any other data structure that is appropriate to hold the data determined to be
significant in the context of the application purpose.

The decision for a representation of self introduces different complexity to the data structure
as well as different degrees of accuracy and, thereby, it obviously effects the generation
process of the detector set. Besides the original random process for detector generation,
Aickelin, Greensmith et al. [61] reference works that try to improve the process by applying
other methods such as greedy algorithm to reduce redundancy in detector set, (dynamic)
clonal selection from AIS, fuzzy rules, supervised and unsupervised learning from classifier
algorithms, and evolutionary algorithms in order to reduce the time complexity of detector
generation as well as in order to achieve a better coverage of self in the detector set. (Most of
these methods are also applied in conventional anomaly detection without employing AIS as
introduced in Chapter 2). Aickelin, Greensmith et al. also refer to approaches that use positive
selection instead of negative selection to achieve better detection results in terms of coverage as
well as in terms of precision in classification (in order to avoid false classifications).

Considering classification, the review provided by Aickelin, Greensmith et al. [61] points
out differences in the applied matching methods. The authors compare their efficiency and
performance and show strengths and weaknesses of the approaches. Diverse mechanisms are
applied in operation phase, from simple exact string matching methods, counting k mismatches
that classify monitored activity in a threshold-based manner, nearest neighborhood exploration
as well as classifier- or cluster-based algorithms, each method having its specific application
purpose where it outperforms others. There is no clear statement, which of the approaches
reviewed by Aickelin, Greensmith et al. performs best.

As the application purposes considered in the review are solely systems that execute
continuously, data generated by these systems can be classified as sequence data or time series,
the approaches discussed in [61] are related to defining a window size for the data. Hence, this
characteristic also effects the performance of the individual approaches. We will show that for

the application domain of the anomaly detection proposed in this thesis we do not have to care
about windows sizes due to the characteristics of real-time applications in Chapter 7.

Mainly, the authors point out, that there is a trade-off between scalability of the approaches
in terms of size of the detector set, the accuracy of detectors, the time complexity for their
generation, and the accuracy and time complexity originating from the applied detection
method. Hence, the presented approaches trade between scalability and coverage. Moreover,
Aickelin, Greensmith et al. [61] emphasize that current techniques based on the self/nonself
discrimination are not able to cope with dynamic and increasing complexity of computer
systems as they fail in taking into account that normal and legitimate system usage may change
over time. In [61], they point out that normal profiles need to be dynamic and adaptable,
but none of these approaches is able to overcome this problem because they are relying on a
training phase.

In [67], Lay et al. emphasize that real-time systems are becoming more complex and that
they face requirements in terms of adaptability and autonomy. Dependability is a challenge
as traditional methods are restrictive in this context. Based on this assumption, Lay et al.
[67] examine the applicability of AIS to real-time embedded systems. Predominantly, Lay
et al. point out the performance of AlIS-based systems in terms of anomaly detection by
providing easily-computable metrics and algorithms. Nevertheless, AIS-principles belonging
to the adaptive immune system such as Self/Nonself Discrimination or Clonal Selection
have significant memory and processing requirements which makes an effective use of these
techniques impractical being integrated into real-time systems. They propose to apply innate
immune principles that are mainly represented by the Danger Theory and the Dendritic Cell
Algorithm as they mainly operate on system signals inherently extractable from the system
and do not require the processing and memorization of observed behavior patterns.

4.3 Danger Theory-based Anomaly Detection

With [19], Aickelin et al. motivated using the Danger Theory for IDS as it dissolves the
limitation of self/nonself discrimination. A number of diverse approaches was developed
applying the Danger Theory for anomaly detection. In the review, Aickelin, Greensmith et
al. [61] sum up IDS those approaches published until then. The review can be considered to
reflect the development and application of the Danger Theory at an early state because at the
time this review was published, the community dealing with the Danger Theory just started
to grow. Hence, today there exist numerous solutions using the Danger Theory for anomaly
detection so that we are also only able to refer to the most important ones that have inspired
our work.

One approach referenced by Aickelin, Greensmith et al. [61] and known as the first one
published is cfengine by Burgess et al. [29, 28]. They apply the Danger Theory for the
purpose of a hybrid IDS, combining network-based and host-based, for detecting damage at an
initial attack stage. They are making use of danger signals that are raised in case of statistical
anomalies in observed event data: on the one hand host-based data such as number of users,
number of processes, average utilization, as well as network-based data such as number of
incoming and outgoing connections or number of packet loss in the network on the other hand.
The danger signals deal as co-stimulation signals that enhance the classification of anomalous
system activity and, thereby, strongly impact the reduction of false classification rates. The idea
to use danger signals reflecting the system-internal parameters gave us a good inspiration.

Aickelin also contributed to the approach published by Kim, Greensmith, Twycross and

Aickelin [62] dealing with the detection of malicious code execution mainly ensuring compli-
ance with the configured system call policy (in the UNIX program systrace). Their idea to use
the Danger Theory in their work was motivated because of the problem that system call-based
anomaly detection suffers from high false rates. In order to overcome this, they proposed to
couple the system calls with its environmental condition and, thereby, build up a context for
the system call execution. The Dendritic Cell (DC) is the central component in their approach
being responsible for antigen collection and processing of the environmental signals in order to
classify the antigen collected. The antigens in the context of this work are subsets of system call
sequences executed by the systems. The signals that contribute to the classification of an antigen
are defined as: PAMP determining a violation in the security policy (signature-based), danger
signal reflecting high CPU load and/or high memory usage, safe signal reflecting continuous
normal CPU utilization and memory usage, and the inflammation signal expressing the average
system load. Multiple DCs examine one set of system calls, each considering an individual
partial string, for identifying malicious executions in a population-based manner.

This proposal is the first approach known to us that combines behavioral system and process
information with information of the executed system calls. It is not really clear whether the
authors have implemented and evaluated this approach. No details about implementation
issues are presented so that the paper [62] leaves many open questions: how does the represen-
tation of the system call subset looks like? which matching algorithm is applied? how is the
classification method implemented? which structure is used for memorizing mature DC? what
is the resulting runtime complexity? etc. Nevertheless, the idea proposed by Kim, Greensmith,
Twycross and Aickelin addressed many challenges that this thesis is also facing. By combining
system call behavior with signals reflecting the system state, a more reliable classification is
possible that does not rely on trained data but examines the behavior with respect to its current
context. Even if the approach [62] was not intended by its developers to be applied in a self-x
environment, the context-related classification builds up the basis for the anomaly detection
for self-reconfiguring systems.

Aickelin continued research on Danger Theory-based IDS and the work of his research group
was published in the context of an interdisciplinary project called Danger Project (the results of
this project - inter alia the Dendritic Cell Algorithm - could be found at www.dangerproject.com
until 2012). Together with Twycross, Aickelin developed a software system called 1ibtissue
that builds up a general framework for implementing and evaluation AIS-based algorithms
for anomaly-based intrusion detection [89]. libtissue is a library for Linux that provides
all building blocks to implement AIS-based systems. It provides wrappers for antigens that
represent the structure of entities and for signals reflecting the behavior of entities in the
environment of the antigens. It offers functions to be implemented for antigen processing,
including collection and presentation, signal processing, cellular bindings, antigen matching
as well as immune response. Developers are allowed to program these functions according to
their respective problem. Every building block provides a set of parameters to be configured
by the user. The architecture of libtissue is composed of a libtissue client responsible for
monitoring the host (processes, operating system, network, etc.) as well as implementing the
immune response, and a libtissue server containing the algorithms and the storage of antigens
and signals. The client collects the data (antigens and signals) and, if required, preprocesses it.
Then, it sends the data to the server in order to be processed by the AlS-based algorithm and
delivers the classification results back to the client that is able to induce the reaction. The data is
stored at the server-side that is considered to be the natural counterpart of tissue. The libtissue
client and the libtissue server are periodically scheduled and communicate via a socket-based
connection.

Twycross and Aickelin have evaluated libtissue by using the approach of Kim et al.
presented above. libtissue’s utilization has been demonstrated in [89] on the example of
detection of malicious code execution based on system calls and their policies configured in
systrace in the context with signals reflecting CPU usage. However, the authors emphasize
that 1ibtissue is applicable to more complex systems as well.

libtissue is a very powerful tool as it allows for any kind of AlS-based intrusion detection
with diverse points of interest specified as the behavior to be observed in a Linux-like system.
As the building blocks are standardized, 1ibtissue allows for a systematic analysis of the
approaches and makes the different approaches comparable in their performance. Unfortu-
nately, in the context of this thesis, 1ibtissue fails to be integrated into a real-time operating
system because the behavior of its building blocks has not beed designed for deterministic
behavior. One additional problem may arise from the socket-based communication that may
cause a further source of unpredictability in terms of timeliness. As it allows many parameters
to be configured, it is questionable whether 1ibtissue is able to be integrated in a resource
restricted platform as those we are addressing here. Because being designed for executing in
periodic intervals, an IDS implemented by means of 1ibtissue is not able to detect anomalous
or even malicious behaviors at the point of time they occur, meaning in a true online manner -
an important aspect for us as it was formulated in the requirements introducing this thesis.

Lay et al. in [68] discuss the problem of how to solve ”..anomalies in the domain of real-
time and embedded systems” and propose to apply Danger Theory. In fact, they build up a
schedulability analysis inspired by the Danger Theory that operates on real execution times in
order to overcome wasting of resources caused by static analysis techniques only taking into
account worst-case execution times (WCET). In their approach, they show that relying on the
signals defined by the Danger Theory is more reliable and more efficient than only monitoring
behavior for the purpose of detecting deviations.

This short overview is of course incomplete but it points out that there are different view-
points how to integrate the Danger Theory into a computation system for the purpose of
anomaly detection. Based on the objective of the anomaly detection, the Danger Theory allows
to specify according behavior (antigen) as well as input signals composed of danger signal,
PAMP signal, safe signal and inflammation signal. In fact, the Danger Theory seems to be a
promising approach applicable for anomaly detection that classifies observed behavior not
only based on the structure it exhibits but, moreover, it takes into account the behavior’s
environmental context by which false classification rates can be reduced.

4.4 Discussion and Summary

System call-based anomaly detection was mainly influenced by Forrest and Hofmeyr who
argued that the system call interface is an adequate source of information for enhancing a
system’s security. By monitoring and analyzing executed system calls, it is possible to detect
deviations in program behavior without any specification-based knowledge. Furthermore,
system call-based anomaly detection is possible to be integrated into a system without any
need to reprogram or recompile application programs. Existing approaches that have been
analyzed suffer from complexity in terms of computation time and memory requirements
which makes them difficult to be applied in an online working anomaly detection module.

Forrest and Hofmeyr have proposed to use Artificial Inmune Systems for overcoming the
problem of computational complexity at operation time and expected to deliver a greater
level of reliability by reducing development complexity. They proposed to use self/nonself

discrimination for anomaly detection and realized this in the context of system call-based
analysis. The idea of applying AlS-based approaches for anomaly detection has inspired
numerous researchers to follow their idea. Several different approaches for anomaly detection
inspired by self/nonself have been developed. However, it turned out that it is challenging
to generate an adequate detector set in the training phase in order to ensure a certain degree
of coverage. Furthermore, the main drawback related to self/nonself discrimination is its
dependency on a training phase in which a normal behavior knowledge base is established.
The fixed definition of normal contradicts the application purpose addressed in this thesis
concerning the normal behavior as it is expected to change dynamically.

Apart from self/nonself discrimination, Artificial Immune Systems offer the Danger Theory
mainly advanced by Aickelin and his co-researchers. Different approaches for diverse appli-
cation purposes of anomaly detection have been proposed. Especially, the system call-based
anomaly detection using principles of the Danger Theory proposed by Kim et al. [62] has
inspired the idea of this thesis. Because the Danger Theory enables context-related classification
based on the presence and absence of input signals, it is not only related to knowledge about
normal system call sequences but also allows to classify novel occurring system call sequences
within their environmental context. Therefore, it seems to be applicable for self-reconfiguring
systems.

One main question that is left open by all these Danger Theory-based approaches is the
implementation the pattern matching process and the storing of the system call sequences
as representatives of the antigens. For contiguous processes this question is challenging and
often mechanisms such as sliding windows are utilized to isolate an antigen from the entire
data sequence. This is different for real-time systems as real-time applications exhibit valuable
characteristics that enable to enclose the behavior sequences by their periodic execution. Hence,
different kinds of pattern matching mechanisms and storing structures have to be considered
for this purpose. Foundations into this topic are provided in the next chapter.

Online Pattern Matching

5.1 Introduction

In Chapter 1.1, requirements for the Anomaly Detection approach have been formulated.
One of the major requirements is the evaluation of behavior patterns in terms of their previous
occurrences. This aspect defines two subtasks to be solved:

e every occurring behavior sequence has to be stored

e every new behavior sequence has to be matched against the set of previously executed
behavior sequences.

In fact, these tasks address the problem of finding an adequate data structure for storing and
the problem of pattern matching.

Pattern matching mainly deals with the question [53]: "Given a string P called the pattern
and a longer string T called the text, the exact matching problem is to find all occurrences, if
any, of pattern P in T.”

Definition: Substring
A sequence P = pj...p, is a called subsequence or substring of the string S, if there
exists a string X = s;..5;4,-1 in S = UXW (U,W being strings, also possibly empty) with
Pk = Si4k—1 forevery k: 1 <k <n.

Generally, pattern matching consists of two phases: the preprocessing of the text T and the
matching process of pattern P. Referring to the formulated tasks, the preprocessing of the
text is related to the storing of an executed behavior sequence as an executed pattern must be
made available for matching with behavior sequences that will follow. The matching process
is performed on the newly arriving behavior sequences that builds up the pattern P as the
matching object.

In order to make the pattern matching applicable in a real-time system, the task of pattern
matching is restricted in terms of being deterministic in run-time and memory requirements.
Hence, the execution time as well as the memory load produced by the pattern matching must
be bounded. Furthermore, to ensure real-time performance, anomalies must be detected as
soon as they occur which leads to a pattern matching that must be performed online.

There are approaches to perform online (sub-)sequence pattern matching in order to detect -
exact matching - common substrings between sequences. Some of them use sliding window
techniques to compare and find matching substrings. In [77], for example, Mueen and Keogh
evaluate the first approach for online discovery of exact patterns in time series data that
requires only linear runtime with respect to the windows size. However, the main drawback
of this approach is that it only operates on recent history data as the search space for pattern
discovery, and thereby discards older data as well as the hitherto discovered occurring patterns.
Above all, the efficiency of sliding windows techniques, usually, suffers on the decision of
windows size. This can be either too small to detect complete recurring patterns, or it is chosen
too large which increases the runtime complexity of the matching process.

Apart from sliding window techniques, approaches such as Dynamic Time Warping are
applied for strings of (different) finite lengths with the objective to detect all common substrings
including their number of occurrence. In Dynamic Time Warping, string matching problems
are solved by means of grids [26] that match a query S against a sequence of data points T by
searching for s; = t; and recording the distances of any s; —t; . The required time complexity is
O(n - m) with n the length of S and m the length of T. The task of the pattern matching process
in the context of our anomaly detection approach is to detect whether the currently occuring
query S has already occurred in history. Then, T shall contain the entire history of behavior
sequences. Even if the runtime complexity is bounded by n and m, T is extended by each
execution of a task instance and, consequently,the length of T is increasing with each execution
of a task instance which makes m to become unbounded. Besides the performance of those
approaches, the challenge remains how to store all discovered common patterns in a compact
and bounded manner. These two arguments make Dynamic Time Warping not applicable to the
present online anomaly detection problem.

The objective of this chapter is to discuss online pattern matching approaches that are
applicable for anomaly detection in real-time systems. In the context of this thesis, Suffix
Trees have been identified to be best suitable for matching as well as storing. Therefore, in
the remaining part of this chapter, Suffix Trees are introduced in detail showing why the
characteristics of Suffix Trees are best suitable for the problem solved by this thesis. The content
of this section mainly refers to Gusfield [53] (Part II, Chapter 5 and 6) and to Martin Kay’s
lecture notes [59].

5.2 Suffix Trees

Suffix Trees belong to the fundamental data structures in computer science even though they
did "not make it into mainstream of computer science education...” [53]. For the introduction
of Suffix Trees, some definitions are helpful beforehand:

Definition: Suffix
For a string S of length m, every S[i.m] with 1 <i <m+1is a suffix of S. S[(m + 1)..m]
is defined as the empty suffix.

Definition: Prefix
For a string S of length m, every S[1..i] with 0 <i < m is a prefix of S. §[1..0] is defined
as the empty prefix.

Refering to these definitions, every substring P of S is a prefix of the suffix of S (S = UPW,
with PW building a suffix of which P is a prefix).

A Suffix Tree is a tree data structure that represents a string S of final length m in such a
manner that, for every suffix of the string S, it contains one unique path starting from root.

Definition: Suffix Tree [53]
A suffix tree T for an m-character string S is a rooted directed tree with exactly m leaves
numbered 1 to m. Each internal node, other than the root, has at least two children and
each edge is labeled with a nonempty substring of S. No two edges out of a node can
have edge-labels beginning with the same character. The key feature of the suffix tree is
that for any leaf i, the concatenation of the edge-labels on the path from the root to lead i
exactly spells out the suffix of S that starts at position i. That is, it spells out S[i..m].

String: "ABABC"

Figure 5.1: Suffix Tree for String S= ABABC

Figure 5.1 shows an example for a Suffix Tree for the string S = ABABC. Suffixes of the
String S are ABABC, BABC, ABC, BC and C. Every suffix is represented by a unique path
in the tree which is identified by the labels on the edges. The labels on the edges of a path
constitute - by concatenation - the suffix of S. The Suffix Tree does not represent the empty
suffix of a string.

Suffix Trees are build to solve a number of string problems, such as the exact string matching
problem, the substring problem, the longest common substring of two strings as well as the
DNA contamination problem. Suffix Trees are well-known to solve these problems in linear
time (see [53]). Moreover, according to Gusfield [53], they build a bridge between exact matching
problems and inexact matching problems. The applicability of Suffix Trees to those problems will
become clear when considering the characteristics that Suffix Trees provide.

5.2.1 Basic Characteristics

The basic assumption in context of Suffix Trees is that the string S, for which the Suffix Tree
is constructed, is composed of symbols of a finite alphabet. For the examples in this Chapter,
we use the alphabet= {4, ..., Z} for the string characters.

Deriving from the definition, the Suffix Tree for a string S of length m has the following

properties [59]:

1. the Suffix Tree has exactly m leaves numbered from 1..m
2. every node has at least two children (except the root node)

3. each edge is labeled with a non-empty substring of S

4. no two edges starting out of a node will have string-labels beginning with the same
character

5. the string obtained by concatenating all the string-labels on one path from the root to leaf
i spells out the suffix S[i..m|, i = 1..m

However, the last property cannot be explicitly guaranteed for strings with a suffix completely
matching a prefix of another suffix. An example for such a string is ABCBC. The suffix
S[4..5] = BC is a prefix of the suffix 5[2..5] = BCBC and the suffix S[5..5] = C is a prefix of the
suffix S[3..5] = CBC. Figure 5.2 shows the Suffix Tree for string ABCBC, having no explicit
paths for the suffixes S[4..5] = BC and S[5..5] = C and hence no leaves at the positions 4 and 5.
Such a Suffix Tree is called implicit Suffix Tree as it does not provide an explicit unique path
for every suffix of the string ending in a leaf node. Nevertheless, it encodes all suffixes of the
string.

String: "ABCBC"

ABCBC CBC

BCBC

Figure 5.2: Implicit Suffix Tree for String S= ABCBC

In order to ensure one unique path for every suffix ending in a leaf node, a common practice
is to extend every string by a unique termination symbol that is not in the original alphabet.
Usually, the symbol $ is used as the termination symbol and is added at the end of a string.
Extending the example string ABCBC by the termination symbol, we obtain ABCBC$ and the
Suffix Tree as illustrated in Figure 5.3. Thereby, we obtain a Suffix Tree containing a unique
path for every suffix with m = 5 (the length of the string) leaves. For the further explanations
in this chapter, every string is assumed to be ending with the termination symbol $, even if not
explicitly denoted, in order to ensure the existence of true Suffix Trees for the strings.

String: "ABCBC#$"

ABCBCS$

Figure 5.3: Suffix Tree for String S= ABCBC$ extended by the termination symbol $

For solving the pattern matching problem, in particular, the substring problem, Suffix Trees
provide the following characteristics (assuming the Suffix Tree was build up for the text T and
the pattern P to be found in T):

o If pattern P is a substring of T, then P is a prefix of a suffix of T and, consequently,
a path in the Suffix Tree exists, that starts from root node and is labeled by P (by
concatenating the labels of the edges). The path determining the pattern P does not
necessarily need to end at a leaf node. (E.g. the pattern P = BCB in the text T = ABCBC$.
Hence, by matching the pattern with the labels in the Suffix Tree in a symbol-by-symbol
manner starting from root, it can be verified whether the pattern P is a substring of T.
Furthermore, by the symbol-by-symbol comparison, the longest common substring can
be identified, even if the pattern P is not (completely) a substring of T.

e If a pattern P is a substring of T, then the number of occurrence of pattern P in T can be
directly derived from the structure of the Suffix Tree. Pattern P is found in the tree as
described above and its path in the Suffix Tree is identified by the matching path” labels.
The subtree below the last match contains leafs that denote the starting location of P in
T. Hence, the number of leaves of that subtree is equal to the number of occurrence of
pattern P in T. In the Suffix Tree for T = ABCBCS$ (see Figure 5.3), the subtree below
pattern P = BC has two leaves identified by the positions 2 and 4. Hence, P = BC occurs
twice in T = ABCBCS$.

Because of the structure of the Suffix Tree, the pattern matching process is simple: following
the path in the Suffix Tree that is labeled by the pattern. (If no path exists, the pattern is not
contained.) According to Gusfield [53], by assuming a finite alphabet, the workload to detect
the accordingly labeled edge descending from a node can be considered as consuming constant
time. Hence, the time costs required to match the pattern against the path labels is proportional
or linear to the length n of P, but independent of m, the length of the text T. Generally, the
search/matching process in Suffix Trees requires O(n) time.

The problem of counting the number of occurrences, initially, involves the search process
as counting can only be performed on patterns that exist in the Suffix Tree. Additionally, it
requires to traverse the subtree below the path of the matching pattern in order to count the
number of leaves. In worst case, the subtree may have the maximum number of leaves of m
(length of T). Therefore, the time required for counting the number of occurrences of a pattern
Pin a text T results in O(n + m).

However, before being able to execute the matching process, the Suffix Tree has to be built
up which happens in the preprocessing phase. First, a trivial approach for the construction
method is provided. Then, the approach introduced by Ukkonen is illustrated as it is famous
for constructing the Suffix Tree in linear time and best suitable for the approach discussed in
this thesis.

5.2.2 Basic Construction Method
In order to ensure a clear terminology and understanding, we first provide some definitions:
e the root node is denoted as r
e every inner node is identified by a letter {a, ..., z}\{r} ; the set of nodes is denoted by N

e leaf nodes are labeled by the starting position of the suffix in the text T

e an edge is denoted by ¢; = (u,v) if ¢; connecting u and v, with u,v € N and i the index
of the edge

e the Suffix Tree for string S is called 7 = T (S)

Step 1: "ABABC" r Step 2: "BABC" r Step 3: "ABC" r
AB
ABABC ABABC u
BABC ABC c BABC
Step 4:"BC" r Step 5:"C" r

Figure 5.4: Steps performed in the Naive Suffix Tree Construction Method for String S =
ABABC

The basic construction method for Suffix Trees described in this section is often called the
naive algorithm. In the naive algorithm, the Suffix Tree is constructed in an incremental way, by
adding the m suffixes S[i..m] one after the other, for i increasing from i = 1 to m. The Suffix
Tree obtained after step i is denoted as 7.

To support the generic description following, the step-wise construction is illustrated in
Figure 5.4 for the example string S= ABABC (as this string does not lead into an implicit Suffix
Tree, we left out the termination symbol for the purpose of simplicity).

Initially, the Suffix Tree T consists of only the root node r. As a fist step, a single edge is
entered for S[1..m]. The edge is labeled by the string S[1..m] and ends at the leaf labeled 1
(see step 1 in Figure 5.4). 77 is constructed. The Suffix Tree 7;,1 is (incrementally) constructed
on the basis of 7;. In any i + 1th step, the suffix S[i + 1..m] is extending the Suffix Tree 7; in
order to obtain 7;;1 by the following procedure: To insert the suffix S[i + 1..m| into T, first it is
necessary to find the longest path from root whose labels match the prefix of S[i + 1..m|. The
last matching characteris j: i +1 < j < m or j = i — 1 if there is no match. The Suffix Tree 7;
must be extended by S[j + 1..m] behind the character that points to the last match.

If there is no path matching the prefix of S[i 4 1..m], the pointer to the last matching character
points to the root node and requires the complete suffix to be added below that. This is done
by creating a new leaf j and an edge connecting it that is labeled by that suffix. Referring to
the example in Figure 5.4, at step 2 there is no match with an existing path for S[2..5] = BABC.
Hence, a new leaf labeled 2 and an edge (r,”2”) is created.

If there is a matching path for a prefix of S[i + 1..m], the last matching character S(j) is either
ending at the end of an edge label - ending in a node - or is ending in the middle of a label.
In the first case, the last matching character is the ending of an edge label of a node v so that

the Suffix Tree 7; has to be extended by S[j + 1..m| below the node v by creating a new leaf
j+1 and an edge connecting (v, j + 1) having the label S[j + 1..m]. In the latter case, the last
matching character is in the middle of an edge label of edge (u, w). The edge is split behind the
character j by introducing a new node ¢’ resulting in two edges (u,v’) and (v, w). Accordingly,
the original label of the edge (u, w) is split also resulting in the label S[x..j] (x being the starting
position of the edge label i +1 < x < j for edge (u,v’) and the remaining part of the original
edge label (after the jth character) now labeling edge (v/,w). As v’ identifies the path of the
prefix S[i 4+ 1..j], S[j + 1..m] is added below the node v’ by creating a new leaf j + 1 and an
edge connecting (¢/,j + 1) having the label S[j + 1..m].

In our example, at step 3, the suffix 5[3..5] = ABC matches the label of edge (r,”1”) in the
first two characters. The edge is split and node u is introduced and extended by the leaf 3
and the edge (u,”3"). At step 4, the suffix 5[3..5] = BC matches in the first character of edge
(r,”2”) which leads to a split and the introduction of node v the according extension.

The naive algorithm requires O(m?) time to construct the Suffix Tree for a string of length
m. The required number of nodes (in worst case) is 2m (1 root node + m leaf nodes + (m — 1)
inner nodes in worst case), while the space requirement for the labels is again O (m?).

5.2.3 Construction by Ukkonen’s Algorithm

Even though, the first linear-time algorithm for constructing a Suffix Tree was presented
by Weiner [94] in 1973, Ukkonen’s Algorithm, which first was presented in 1995 [90], is more
famous and has become generally known as it is better understandable and easier to implement
(see [53]). Besides its linear-time complexity, one of the main important property of Ukkonen’s
algorithms is that it works online.

Mainly, Ukkonen’s algorithm builds up the Suffix Tree for the prefixes P; = S[1..i] of a
string S[1..m] incrementally, starting at the prefix P; = S[1..1] to construct 77 and successively
extending the Suffix Tree by entering the prefix P; (meaning P; = S[1..1], P, = S[1..2],...
P, = S[1.kk], .. P,, = S[1..m]) to achieve Tj, for i from 1 to m. Every prefix P; is processed within
a so called phase in Ukkonen’s algorithm so that the entire process is divided into m phases.

In each phase i, the prefix P; is again processed incrementally by means of j extensions. The
extension j, j from 1 increasing to i, is concerned with enclosing the suffix of R; = S[j..i] of the
prefix P; into the current Suffix Tree in order to obtain 7;. That means, that for extension j in
phase i, the algorithm extends the path for S[j..i — 1] (in 7;_1) by symbol S(i), of course, unless
it is not already there. The path of S[j..i — 1] is presupposed to exist in the Suffix Tree as it was
enclosed in the previous phase i — 1.

For the extension of symbol S(i) (in extension j of phase i) three rules are specified:

Rule 1 If S[j..i — 1] is the label of an edge that ends at a leaf node, the edge label is updated
and S(i) is added to the end of that edge label.

Rule 2 If the path SJj..i — 1] continues below S[j..i — 1] by at least one path and none of the
continuing paths’ labels starts with S(i), a new leaf edge is created starting from
the end of S[j..i — 1], with the leaf label j and the edge label S(i). If S[j..i — 1] ends
in the middle of an edge, then, before adding the leaf edge, a new inner node is
inserted as a source of the leaf edge.

Rule 3 If some path from S[j..i — 1] starts with the character S(i), then there is nothing to
extend.

Figure 5.5 illustrates the results after executing each of the m phases for the example string
S= ABABC. In phase 1, the prefix P; = A is inserted into the empty Suffix Tree resulting into
Ti. As i =1, there is only one extension for j = 1. In phase 2 for the P, = AB, the extension
1 handles the suffix Ry = S[1..2] = AB by applying Rule 1. The extension j = 2 handles the
suffix Ry = S[2..2] = B by adding the leaf edge labeled 2 as defined by Rule 2. In the phases 3
and 4, all extensions but the last ones (when j = i) require only the adding of the edge labels as
applying Rule1, while for the last extensions j = i, the characters S(i) are already contained in
the 7;_; and therefore, do not require any action as defined in Rule3. In phase 5, the algorithm
makes use of Rule3 and inserts new inner nodes and the according leaf edges for the suffixes of
extensions j > 3 (meaning when including the suffixes R3 = S[3..5] = ABC, Ry = S[4..5] = BC
and Rs = S[5..5] = C). In fact, the algorithm appends S(i) to every suffix R; = S[j..i — 1] of
each prefix P;,_; = S[1..(i — 1)] of S.

Phase 1:"A" Phase 2: "AB" Phase 3: "ABA"
v
A AB B ABA BA
Phase 4: "ABAB" Phase 5: "ABABC"
v
ABAB BAB

Figure 5.5: Steps performed in the Ukkonen’s Suffix Tree Construction Method for String S =
ABABC

By processing prefixes of string S, the endings of the suffixes of the string are not marked
explicitly. Actually, Ukkonen’s algorithm builds up an implicit Suffix Tree 7, for a string S.
After completing all phases of the algorithm, the resulting implicit Suffix Tree 7, is converted
into a true Suffix Tree: this is performed by adding the termination symbol $ to the end of the
string S and executing Ukkonen’s algorithm for that prefix S$ once again. The conversion of
an implicit Suffix Tree 7, into a true Suffix Tree is done in O(m) time.

To build up this tree by Ukkonen’s algorithm described so far, O(m?) time is required.
Ukkonen introduces Suffix Tree representation elements that in combination are exploited by
implementation tricks to speed up the algorithm into a linear time bound. The Suffix Tree
representation elements are:

1. Suffix Links

Definition: Suffix Link [53]:
Let xa denote an arbitrary string, where x denotes a single character and « denotes

a (possibly empty) substring. For an internal node v with the path-label x« , if there
is another node s(v) with the path-label &, then the pointer from v to s(v) is called
Suffix Link.

Such a Suffix Link is shown in Figure 5.5 between node u and node v.

Suffix Links reduce the effort required to traverse the tree for finding the path for S[j..i]
from the path that determines S[j — 1..i] which is required for any incrementation of the
extension in a phase. Furthermore, searching the path for S[j..i] from path for S[j — 1..i]
by the skip/count trick introduced by Ukkonen (see [53] for further details) becomes
independent from the number of characters of S[j..i], but, instead, it gets a function
proportional to the number of nodes.

2. Edge-Label compression

The required amount of space for a Suffix Tree is determined by the number of nodes,
the number of connecting edges, and, in particular, the space required for the edge
labels. As the Suffix Tree contains one path for each suffix (by concatenating its labels),
the worst case space requirement for the labels is O(m?) when using the original label
representation.

Edge-label compression, however, provides an alternative edge-label representation. In-
stead of labeling an edge by the characters of the substring S[p, q|, edge-label compression
replaces the labels by a pair of indices (p,q). Since the string is stored separately in S
(e.g. in an array), the edge label points to the substring’s starting point in the string S by
p and to the substring’s ending character by the value of 4. The extension rules for the
Suffix Tree construction are accordingly adjusted to this labeling scheme.

The edge-label compression reduces the space requirement of an edge to a constant value.
Hence, the total space requirement for edge labels is reduced to O(m), being proportional
to the number of edges.

Applying edge-label compression combined with using Suffix Links for path-finding and some
further implementation tricks to reduce computation effort in the extensions (described in detail
in [53]) yields to a construction time for the Suffix Tree of O(m). For details of the proof for the
achieved speed-up, see [53].

Because, in each phase i, the algorithm proceeds one further symbol (the ith symbol) of the
string, the construction method is called to proceed the string in a symbol-by-symbol manner.
From this, its online property is derived: At any point of time, Ukkonen’s algorithm can
build up the Suffix Tree for the prefix of the string that occurred up to now, without having
knowledge about the remaining (yet unknown) suffix of the string. Hence, the Suffix Tree can
be extended by each occurrence of the next symbol of the string, which actually defines online
processing.

5.2.4 Generalized Suffix Tree

A Suffix Tree, as defined up to now, is a data structure to represent one single string S.
However, Suffix Trees can be used to represent multiple strings Sy, Sy,...S in one data structure.
These Suffix Trees are called Generalized Suffix Trees.

The construction method for Generalized Suffix Trees is based upon the construction method for
an ordinary Suffix Tree. First, the Suffix Tree 7Ts, for string S; is built up. For the second string
S, the Suffix Tree s, is extended by S,. The ordinary construction method (e.g. Ukkonen’s

algorithm) is used for this purpose in a modified manner. For every phase i, it is first checked
whether P; is already contained in the tree. If P; exists in the tree, then phase i for S, can be
skipped. The resulting Suffix Tree contains all suffixes of the strings Sy, S»,...S it includes.

If the purpose of application requires a distinction between the individual strings, the
representation of the suffix tree can be adjusted by the following means:

e Each string S; may be equipped with an individual termination symbol $;. Then every
suffix of S; is represented by an own path leading into its individual leaf. Or:

e If one common termination symbol is used for all strings, an adjustment of the leaf labels
is required: leaf labels hold the starting positions of the suffix in a string. In case of
multiple strings, the label is extended into a tuple composed of starting position of suffix
and string ID. Furthermore, for each occurrence of the suffix within a string S;, one label
entry associated with that suffix is added to the leaf label. And:

e Applying label compression in Generalized Suffix Trees requires an extension of the string
ID in the edge label entries.

For Generalized Suffix Trees, the construction time is proportional to the sum of the string
lengths and results in O(|S1| 4 |S2| + ... +|Sk|). If the strings S1, Sy,...Sk contain equal substrings,
the construction time, in fact, will be reduced by any common substring as these extension
phases can be omitted in the construction process

5.2.5 Suffix Tries

Figure 5.6: Suffix Trie for the string ABABD.

A data structure closely related to Suffix Trees are Suffix Tries.In contrast to Suffix Trees, in
Suffix Tries, each edge is labeled by only one character of the suffix. Consequently, Suffix Tries
require one edge/node per character of a suffix path. Therefore, in Suffix Tries, nodes that
do not need necessaritly to have at least two children but can exist with only one child edge.
Figure 5.6 shows a Suffix Trie for the string S = ABABD.

A Suffix Trie is less compact than a Suffix Tree, as it needs O(m?) nodes, equal to the sum of
characters of all suffixes of S. Suffix Tries can be easily transferred into Suffix Trees in linear
time by joining all edges of nodes that are not branching and replacing them by one single
edge whose label is composed of the concatenated characters of the joined edges. Joining the
edges of non-branching nodes results in a structure containing only branching inner nodes
(besides the root node and the leafs) and leads to the Suffix Tree.

Apart from the space requirement, Suffix Tries have the same characteristics as Suffix Trees,
especially in terms of the ability of finding matching substrings as well as counting the
occurrences of substrings.

5.3 Summary

Numerous pattern matching methods exist in literature. However, their applicability with
respect to the requirements formulated in this thesis are limited. Especially, their ability of being
integrated into an online process is challenging with the restrictions in terms of determinism
in runtime and resources defined by real-time systems. Suffix Trees offer properties that are
best suitable for the application purpose addressed here. They provide bounded preprocessing
and matching methods that work in an online manner with bounded runtime allowing to
process a sequence in a symbol-by-symbol manner. At the same time, in forms of Generalized
Suffix Trees, they provide a data structure that can hold multiple sequences and thereby enable
to store history data which size - by nature of Suffix Trees - is bounded with respect to the
sequences’ lengths.

We exploit the characteristics of Suffix Trees for building up the Knowledge Base of our
anomaly detection. We adjust the concept of Suffix Trees by some variations and extensions of
their basic specifications. These variations and extensions will be discussed in the conception
part of this approach in Chapter 7 as well as in the part introducing the implementation of the
proposed approach in Chapter 8.5.

ONLINE PATTERN MATCHING

76

ORCOS - Organic Reconfigurable Operating System

Even though the approach for anomaly detection worked out in this thesis is designed to be
applicable on any real-time operating system (with specific characteristics that will become
more clear in Chapter 7), we have implemented and integrated it into an exemplary real-time
operating system to establish a basis for the evaluation of the approach. The real-time operating
system ORCOS (Organic ReConfigurable Operating System) [2] has been developed at the
University of Paderborn and I was one of the main persons to push ahead its development.
This operating system is highly customizable and was designed for reconfigurable embedded
systems that implement self-x capabilities and was used in a couple of other research projects.
This chapter basically relies on the ORCOS documentation in [2] and provides an overview of
the concept and design of ORCOS that build the foundations for the implementation of the
anomaly detection.

6.1 ORCOS Design and Architecture

ORCOS is designed as a hybrid kernel architecture which is composed of operating system
modules:

e HAL

e Systemcalls

e Processes

e Scheduler

e Memory Management
e Filesystem

e Communication

e Power Management

Service Service Task Task Task

##ééé

\r \r \r User Space

Kermnel Kernel Space

- -—-—--€4+V - V—-:--—-"-"”:-—;:-—_-_-—_—_— N
l |
: Communication | SyscallManager :
| |
| I
: Board -» MemoryManager :
: InterruptHandler |
|

| L . |
: Timer » CPUDispatcher |
H |

I v I
: DeviceDriver % FileManager i+ Scheduler :
I\)

\, - - J

Figure 6.1: ORCOS Architecture: separation of user space task and services and kernel space
kernel modules

The ORCOS modules are strongly separated from each other and build up an architecture
that is illustrated in Fig. 6.1.

Like any operating system, ORCOS is an interface between applications and the underlying
hardware. Application tasks and the kernel are clearly separated in ORCOS by assigning
application tasks to the user space and the operating system kernel modules to the kernel
space. This ensures that the kernel code and memory space are protected from the user code.
For the applications, ORCOS provides the System Call Interface as the only interface between
applications tasks and the kernel functions. To ensure functionality of the operating system, the
basic modules System Call Interface, Memory Manager and Filemanager are absolutely required
and therefore, they are permanently integrated in the operating system. All other modules are
optionally configurable. The specific kernel modules are described in more details in section
6.3.

The ORCOS lowest layer module is the HAL (Hardware Aabstraction Layer) and it forms the
basis for portability of ORCOS to multiple hardware platforms. The HAL hides implementation
differences between different hardware architectures by providing a dedicated interface to
hardware functionalities for the kernel.

Up to now, ORCOS supports a number of architectures such as
e PowerPC4o5
e Sparc Leon 3
e ARMv4(t) and above

Furthermore, ORCOS runs in an emulated manner using QEMUJ4] for the PowerPC405
architecture.

ORCOS is designed to be a complete object-oriented operating system. Besides hardware-
dependent functions, that are implemented in Assembler and C, the entire operating system is
programmed in C++. All required functions are implemented within ORCOS itself so that no
external (C++) libraries are employed. A clearly structured self-developed operating system
library reduced to the essential functions was included into ORCOS. By this, we could minimize
the size of the operating system that in a small OS binary memory footprint.

6.2 Offline Configurability

With the ORCOS configuration system the developer is able to configure the whole system
within a single configuration file. All ORCOS modules and tasks are individually configurable
at compile time. The configuration system allows to set options that control parts of the system
behaviors as well as settings of the tasks that should be loaded on the target device. Therefore,
ORCOS offers an XML-based language named Skeleton Customization Language (SCL) (see
Documentation on [2]) to simplify the process of the ORCOS configuration. By Skeletons,
developers can decide which implementation of a class/module and which member type to
integrate into the operating system kernel. Valid dependencies between the single module
implementations are specified and stored in a central list. At compilation time, the defined SCL
configuration file is verified and validated against the predefined dependencies and parameter
settings.

With SCL, it is possible to configure an operating system that is fully customized to the
requirements of the application and the target platform. ORCOS’ small footprint and and its
highly flexible customization ensure the applicability of ORCOS on strongly resource-restricted
embedded systems.

6.3 Operating System Modules

ORCOS is composed of modules that are individually configurable at compile time (see
section above). This sections introduces the main concepts and implementation principles of
the particular ORCOS modules.

6.3.1 Task Management and Scheduling

ORCOS implements processes as tasks that can have multiple execution entities. These
execution entities are threads which are represented in ORCOS by multiple thread classes
available for different objectives and configurations.

Threads

A task in ORCOS is composed of threads. Each task at least owns one threads as, in ORCOS,
threads are the scheduling entities. ORCOS offers several classes with different characteristics
for thread implementation, such as the basic class Thread or a specific class for real-time
threads named RealTimeThread, etc. A thread contains all the needed information required
for the management of the thread as well as its execution. The execution to threads is managed
by the Scheduler. At any point of time of a thread’s lifetime, it is always assigned to a state.
The ORCOS thread state model (illustrated by Fig. 6.2) is related to the common 5-state model
for real-time processes (see Stallings [85]).

As threads in ORCOS are the executing entities, each thread is assigned its own stack and
context. The size of the stack is individually configurable.

[bhock]
sleep] ASleep Blocked
[rur]
[timeout]
[callMain] P Junblock]
Riop) [resume] [stop]
stop

[resume]

Stopped/Blocked

Figure 6.2: Thread state model implemented in ORCOS; Source: [2]

Tasks in ORCOS (and their according threads) can be real-time task or non real-time tasks.
When having real-time constraints, a thread will be derived from the RealTimeThread class
which is extended by attributes like execution time and deadline.

Workerthreads

For operating system workload, ORCOS introduces a specific type of task at the kernel side:
the Workertask. There exists exactly one system-wide workertask that usually holds multiple
workerthreads. Workerthreads take over kernel activities that appear sporadically as well as in
a time-triggered or periodic manner. They are executed in such a way that they are scheduled
like any other thread by the system scheduler. The concept of workerthreads makes it possible
to preserve predictability of the kernel activities and hence to ensure the predictability of the
entire system.

Workerthreads can be applied in three different field of applications:

1. Asynchronous Call to Functions:

Asynchonous calls to functions mainly refer to (but are not restricted to) emerging hard-
ware interrupts. ORCOS therefor follows the standard technique of a real-time operating
system (see Buttazzo [30]). Whenever a hardware interrupt arises (if not deactivated),
the kernel interrupts any execution. Even if interrupts are arising unpredictably, the
OS must remain predictable. Therefore, the processing of the interrupt is implemented
within workersthreads containing the interrupt handling routine Then, the interruption
by a hardware interrupt is minimized as it takes only the time required to activate the
workerthread. (In this context, the number of these interruptions by hardware interrupts
can be estimated based on worst case considerations). The workerthread, being inserted
into the scheduling queue, is then scheduled according to its priority and the applied

policy, so that high-priority tasks will not be preempted due to hardware interrupt
handling.

. Timed Calls to Functions:

Some kernel methods need to be called in a time-triggered manner after a given time
interval. Workerthreads implement the calling of these methods.

. Periodic Calls to Functions:

Periodic Calls to Functions extend the idea of Timed Calls to Functions as the timed
function call is assigned an according period. Workerthread for periodic function calls
behave like any other periodic thread.

Like ordinary threads, workerthreads possess their own stack with configurable stack size.
However, as being kernel-side threads, the memory reserved for the workerthread stacks
accumulates to the entire memory usage of the kernel and hence, effects the memory footprint
of the OS. Therefore, system designers have to carefully decide how many workerthreads
are really required to be configured into the OS kernel in order to satisfy the functional
requirements as well as the intended small OS footprint.

Task Structure

A task to be executed in ORCOS has to comply to the ORCOS specification and requires
configuration by SCL. Task attributes that are required for task management are stored in the
task’s TaskTable:

task_start_addr: defines the physical start address of the task’s memory space
task_entry_addr: defines the logical entry function address
task_heap_start: defines the physical start address of the heap

task_heap_end: defines the first physical address that does not belong to the heap ;it is
the last possible entry for a thread’s stack

task_data_end: defines the first logical address that is no data of the task anymore (. text,
.data)

task_thread_exit_addr: defines the logical address of the thread_exit method inside
the task

Sec. 6.3.2 provides a description on the memory layout of a task integrated into the entire
memory layout.

Furthermore, additional task attributes are required in terms of (real-time) scheduling .
These scheduling parameters are extending the task table structure after being configured by
SCL and compiled. They include attributes such as:

period
deadline
execution time

phase

After configuration and compilation process of the task, these configured attributes will be
handed over to the according ORCOS modules (Task Manager, Scheduler, Memory Manager,
etc.).

Scheduling

ORCOS realizes scheduling on thread level. The scheduling module is distributed into the
dispatcher and the scheduler.

The dispatcher is the component that assigns the thread to be executed to the processor. By
the way, the dispatcher is responsible for setting and/or restoring the context of the dedicated
thread.

The scheduler is the component that decides which thread is to be executed next. Therefore,
it implements the scheduling strategy in terms of an algorithm. ORCOS provides several
scheduling algorithms to be selected during compile time configuration. The following list
contains the available real-time as well as non real-time scheduling algorithms, but as ORCOS
is continuously under development, this list is not limited to these algorithms:

e Round Robin

e Priority Scheduling

e Rate Monotonic (RM)

e Earliest Deadline First (EDF)

e Earliest Deadline First with Total Bandwidth Server (TBS) for aperiodic thread scheduling
e Rate Monotonic with Background Scheduling (for dynamic task loading, see section 8.1.2)

e Earliest Deadline First with Background Scheduling (for dynamic task loading, see section
8.1.2)

ORCOS allows the execution of real-time tasks as well as non real-time tasks. If tasks with
real-time constraints are loaded on the system, a specific real-time compliant scheduler is
absolutely required. On the other hand, if a real-time scheduler is configured, only tasks
that are derived from the RealTimeThread are accepted. This interdependency is ensured by
specifications in the SCL-Dependencies.

6.3.2 Memory Design and Management

The Memory Management module belongs to the modules that are always needed and
therefore, has always to be present in the operating system. The ORCOS memory concept is
separating the kernel’s and every user task’s memory space from each other. ORCOS even
uses virtual memory management as an additional security feature if the underlying platform
supports it.

ORCOS allows some memory layout settings to be configured by SCL for the kernel as well
as for each individual tasks. However, the memory layout always needs to follow the following
rules:

1. Interrupt Handlers and Kernel Code are mapped one to one at the beginning of the
global memory.

2. Kernel data with the kernel heap and its stack immediately follows the kernel code

3. Tasks can be placed at the remaining memory regions but must not overlap each other.

Fig. 6.3 exemplary illustrates the ORCOS memory layout for a system with two tasks. Due to
the strict separation of memory spaces, kernel and tasks need their own stacks as well as heaps
to operate on. The memory structure of a task is depicted in the Fig. 6.3. At the beginning
of memory space assigned to a task, the task’s TaskTable is located, followed by its code. The
remaining part of the task’s memory is reserved for the stacks and heaps of the threads that
belong to that task. Usually the stack is filled up from the top to the bottom of the assigned
memory space while the heap allocates memory upwards starting at the bottom.

kernel .text

0x0
&
64 Kb

16 Kb

kernel .data I

e tasktable

fext

task 1 .text + .data

ram

stack threadl

ohjects

task 2 text + .data A e

heap

MMIO

Figure 6.3: ORCOS Memory Layout; Source: [2]

Memory Management Strategies

The separation of memory requires individual memory managers for the separate memory
spaces. Hence, one memory manager is responsible only for the kernel memory as well as each
task owns its own memory manager. The memory management strategies are individually
configurable.

Up to now, ORCOS supports two different memory management strategies:

e Linear Memory Manager

e Sequential Fit Memory Manager

The strategy implemented by the Linear Memory Manager is really simple. It allocates memory
segments in a consecutive manner, one segment after the other. Memory that has been allocated
once cannot be released (it does not implement any free-method). The Linear Memory Manager
may be considered as inefficient in terms of memory usage. However, the memory allocation

procedure prevents searching for free memory segments and thus, it can guarantee constant
time for memory allocation. In the context of real-time systems, this property is essential in
terms of time-predictability.

The Sequential Fit Memory Manager supports the allocation of memory as well as releasing
memory. In the Sequential Fit Memory Manager, the entire memory is managed in a linked list
of memory chunks. Every memory chunk contains a header with management information,
such as the preceding and the following chunk, the payload size of a chunk as well as the
state of a memory chunk. The state of a chunk defines whether the chunk is free and available
to be allocated or is occupied due to allocation. There is no other structure to keep track
of free memory chunks. In order to allocate requested memory, the Sequential Fit Memory
Manager searches for contiguous memory. For this purpose, it traverses the list while searching
for a free chunk of sufficient size. In case it finds more than one free chunk, the Sequential
Fit Memory Manager provides a placement policy to decide which chunk to choose. The
following placement policies are available for the Sequential Fit Memory Manager and, obviously,
configurable by SCL:

e First-Fit: The memory manager chooses the first chunk matching the requested memory
size. This placement policy is set by default.

e Next-Fit: Like in First-Fit, the memory manager chooses the first chunk that fulfills the
condition. However, the search does not start at the beginning of the linked list, but
rather at the last chunk that has been allocated.

e Best-Fit: In this placement policy, among the chunks that fulfill the conditions, the
chunk is selected that has the smallest unused rest payload.

e Worst-Fit: In this placement policy, the chunk is selected that has the biggest unused
rest payload.

6.3.3 System Call Manager

The ORCOS hybrid kernel design does not allow any direct communication between the
tasks and the kernel. ORCOS provides system calls as the only interface between tasks and
kernel functions but also for the access to hardware devices and communication. A complete
list of the system calls supported by ORCOS up to now can be found in Appendix A.

The system calls invoked by user threads are handled by the System Call Manager. In fact,
when a thread calls a system call, the kernel will be triggered using an interrupt. The interrupt
handler is then responsible for forwarding the handling of the system call to the System Call
Manager which is executing the appropriate kernel functions. Fig. 6.4 illustrates this process
of system call handling in ORCOS. Handling system calls by usage of interrupts involves
switching the context between thread’s user mode and kernel mode.

6.3.4 Filesystem and Devices

The ORCOS filesystem is inspiredly the concept of the UNIX filesystem. All devices are
registered at the Filemanager and are accessed by a unique path. By using the file paths to
access system resources, the filesystem builds the interface between the kernel and the device
drivers. When using a device by opening its file, the access to this resource is exclusive. All
devices are automatically secured by a mutex.

Thread Interrupthandler SyscallMananer

1 |
1 |
1 |
I I
syscall() I '
[— '
[1 handieSyscall() :
| L >
[I |
[I |
[I |
| 1 E
| |
[I |
[I :
| N
| retumvalue r:_

Figure 6.4: Processing of a System Call in ORCOS; Source: [2]

User tasks interact with devices through system calls by using the file paths provided by
the Filesystem while the device drivers interact with the kernel via interrupts. Device drivers
may be part of the kernel code as well as they may be executed in user mode. Separating the
device drivers from the kernel space has great effect on the system’s security as it prevents
kernel code and memory being compromised by device drivers.

6.3.5 Communication

The communication module is applied for external communication of the tasks or the kernel.
Compliant with the entire ORCOS design, the communication module uses a very adaptable
socket interface that is completely configurable. This design makes it possible to communicate
with any other system using the same interface protocol so that the communication will become
transparent from the ORCOS point of view.

6.4 Summary

ORCOS is a fully offline configurable real-time operating system. As developed for em-
bedded systems, its main objective is to address the restrictions associated with embedded
platforms. The customization of the kernel allows to deliver a small footprint of the executable
binary by providing full operating system functionality in terms of the configured modules
required by the applications. Because of its flexibility, ORCOS offers an adequate platform
for research evaluations. Additionally, ORCOS was extended towards online reconfigurability
and implementing self-x properties (see chapter 8) which build up the basis for evaluating this
Online Anomaly Detection approach.

ORCOS implements security features as it strongly separates the operating system kernel
from the applications by providing system calls for interaction between the kernel and the
applications. As system calls are the only interface between applications and the operating
system, this strong separation ensures to prevent any intended or non-intended interference or
damage of the kernel structures from the application side. Additionally, this clear separation
builds the best prerequisite for clearly defining and extracting application behavior dealing as
input for the anomaly detection.

The implementation of the operating system functionality in forms of kernel modules makes
the modules exchangable on the one hand. On the other hand, the modules are also clearly
separated from each other which again offers best prerequisites for evaluating the operating
system health state (required for the Online Anomaly Detection) based on the enclosed small
components.

Because providing all required prerequisites for implementation and evaluation, ORCOS
will be applied for integrating the Online Anomaly Detection approach proposed in this thesis.

Part 111

Online Anomaly Detection

Online Anomaly Detection for Reconfigurable Real-Time Systems

The objective of this thesis is to enhance the run-time dependability of self-reconfiguring
real-time systems by introducing Anomaly Detection. The combination of real-time systems
and self-x capabilities makes the integration of existing approaches impossible as the specific
characteristics of those systems result in more challenging requirements. In contrast to many
existing anomaly detection approaches which have been analyzed in Chapter 4, in dynamically
changing systems it is not sufficient to rely on the principle of classifying execution data based
on the fact whether they are known or unknown to the anomaly detection system. Another
principle - using different classification criteria - has to be applied to enable the evaluation
of system behavior in self-x environments. Referring to the challenges described in Chapter
1.1, the approach has to be able to cope with novel and previously unknown behavior and,
therefore, be self-learning. The analysis of the according execution data is required to be
lightweight with low memory consumption and deterministic computation time, as it has to be
performed online because of the criticality of the application domain. This chapter presents the
concept of the Online Anomaly Detection designed for self-x real-time operating systems.

The development of the approach primarily required the determination of an adequate
method to evaluate and classify system behavior. The Danger Theory has been identified
as an appropriate source of inspiration as it provides a different classification perspective:
instead of examining behavior data with respect to a predefined knowledge, anomaly detection
performed on the basis of the Danger Theory relies on the examination of the environmental
context of collected behavior data. The environmental context is defined to be represented by
(absence or presence of) danger signals reflecting the threat potential caused by the behavior.
Hence, this method allows to examine known as well as unknown behaviors by considering
their threat potential to the system.

In order to appropriately integrate the Danger Theory into a real-time operating system,
it is necessary to analyze the specific execution data generated by the real-time operating
system, its components and its application. The execution data serves as the input data of the
anomaly detection. As a basis, in the first part of Section 7.1, the concrete data of interest was
defined by considering the available execution data in real-time operating systems, divided
into data that specifies behavior and data that determines the contextual threat potential. Based
on this definition, the required components could be identified that establish the Anomaly
Detection Framework that is presented in Section 7.2. We have already published the ideas

for the Anomaly Detection Framework in [Stahl et al., 2013, Stahl, 2013, Stahl et al., 2014b];
the framework enables a context-related classification of behavior represented by system call
sequences on the basis of input signals reflecting the operating system state.

In order to specify the classification process implemented by the Anomaly Detection Frame-
work, a detailed analysis of the anomaly detection problem and its required features was
required. To ensure a formal specification of the anomaly detection problem, we have cate-
gorized the targeted anomaly detection type and the expected output data according to the
classification of Anomaly Detection Systems presented in Chapter 2.2.1. The features and chal-
lenges required to be realized by the classification method have been selected by considering
the specific characteristics inherent to the application domain. To ensure a systematic procedure
and completeness, the feature selection process was performed in accordance with the design
decision process presented in Chapter 2.2.2. The selected features presented in Section 7.1.3
had impact of the design on the Anomaly Detection Framework and, in particular, on the intro-
duction of the Behavior Knowledge Base that is presented in Section 7.3. As already published
in [Stahl and Rammig, 2014, Stahl and Rammig, 2015], the Behavior Knowledge Base based on
Suffix Trees is responsible for online behavior profiling as well as for keeping the history that
builds up the basis for the learning capability of the approach e.g. for the purpose of enhancing
the classification of recurring behaviors.

This chapter presents the core approach of the Online Anomaly Detection consisting of two
main ingredients: the Anomaly Detection Framework inspired by the Danger Theory to enable
context-related classification of system behavior, and the Behavior Knowledge Base to profile
behavior and memorize the classification outcomes to ensure self-learning. Considering these
two ingredients, an architectural model for the approach implemented was derived on the
basis of the architectural model presented in Chapter 2.3 illustrating the data flow of the Online
Anomaly Detection. The resulting architectural model completes the concept and is presented
in the final section of this chapter, Section 7.4.

7.1 Problem Definition and Feature Requirements

The particular problem addressed by this thesis is the Anomaly Detection in self-x real-time
operating systems. Real-time systems posses specific characteristics that have to be included
into the concept of the anomaly detection. As system behavior is dedicated to be evaluated
by the anomaly detection approach, the definition of behavior is essential to determine the
data of interest as required by any anomaly detection system. Section 7.1.1 provides this
definition. Based on this, the anomaly detection problem is classified in section 7.1.2 leading to
the specification of design decisions and features in section 7.1.3.

7.1.1 Defining Behavior

Operating systems are service platforms for the applications responsible for managing their
execution and providing access to the available resources in a stable and dependable manner.
They offer interfaces to their services, usually by specifying system calls that implement the
functionality at operating system side. Such interfaces prevent direct access to operating system
resources and enable protection of system resources as well as the kernel. Applications can
only interact with the operating system and gain access to the present resources by using
the interface and, in particular, the system calls. Executing a system call internally changes
attributes of resources and/or the kernel, of course, with respect to the executed system call
and its arguments. The attributes make up the state of the operating system which is composed

of global operating system parameters such as CPU usage and kernel parameter values, but
also parameters associated with the available operating system components such as state of a
resource, resource consumption, memory usage, computation load, etc. In accordance with
the present concept, we call the operating system state the Health State H. The Health State is
related to a particular point of time ¢ defined as:

pP1
Hit)=| P
Pm

Any p; represents a relevant operating system (component) parameter that contributes to
the state. The size of the Health State vector is related to the number of parameters that
the operating system defines. Hence, it is specific to the operating system implementation
including its integrated components.

Because of a clearly defined and protected interface, an application can only impact on
the internal operating system state by using the system call interface. Hence, the application
behavior mainly effects the system’s Health State. (Any other application activity can have
effect on the application’s internal structures, attributes etc. but without any contribution to
the operating system state.)

System calls being the interface between operating system and application, we define the
behavior of applications by their system call invocations and their associated information
(arguments, return values, return addresses etc.). In this thesis, as a first step we only
concentrate on the pure system calls without considering the associated information. Therefore,
Behavior S; of a task i is composed of the sequence of system call sx, with s; being the identifier
of the system call:

Si = (Sl,Sz,...,Sm,...)

The Behavior S; forms a time series 51,5y, ...,5u, ... representing the timely ordering of the
system call invocations made by the application task i. Furthermore, applications in real-time
systems in most cases are implemented as periodic tasks executing one task instance per period.
The task instance terminates within is associated period. Hence, we assume the Behavior S;
of a real-time task to be enclosed by its period and associated with a particular instance j.
The execution sequence of a task instance is of finite length n;, specific to the task instance’s
executing control flow, resulting in S :

Si]' = (31152/ e /Sn]-)

Such a behavior sequence S;; is produced in each execution period of a task and can be
extracted within the operating system without any application-specific knowledge or access to
the application’s internal structures. Furthermore, as each system call may alter the operating
system state, the Health State vector H(ts,) can be determined after each system call execution
(with t;, the termination time of system call s).

7.1.2 Problem Classification

After having defined the data of interest in terms of behavior and system state, a classification
of the anomaly detection problem is required according to the foundations of Anomaly
Detection as introduced in Chapter 2.

The behavior is specified as the sequence of system calls executed by an application task.
The overall behavior of tasks is composed of the set of individual system call sequences of the
tasks executing on the system. A system call sequence, represented by the IDs of the system
calls, consists of discrete values with a value range determined by the set of system calls that
the operating system offers.

To determine an adequate method for anomaly detection, the scope of the anomaly detection
has to be identified considering the application context and the data of interest defined as a
basis. This question is related to the type of anomaly addressed by the method as well as a
measure for the differentiation of data items to achieve an adequate output:

1. Anomaly Type:

The problem of anomaly detection for self-x systems has been motivated in Chapter 1.
Furthermore, when analyzing the applicability of existing approaches (see Chapter 4) to
our application purpose, it turned out that analyzing system calls or their sequences based
on classifying them into known or unknown ones is not sufficient in self-x environments.
It is essential to take into account the effects of the executing system calls on the system
state. This means that the system call-based anomaly detection in self-x systems must be
context-related, yielding to a Contextual Anomaly Detection approach.

System call sequences form sequential input data for the anomaly detection. We assume
that, on the one hand, a single system call is able to harm the system by e.g. provoking
an exceeding of resources or by causing a failure due to incorrect arguments, etc. On the
other hand, a particular sequence of system calls (referred to as pattern in the following)
may lead to instabilities or system failures, e.g. patterns that break the dependencies
between system calls (e.g. releasing resources before they are allocated) or such ones that
because of their successive combination cause failures in components where each single
system call is harmless. The patterns can be identified as entire behavior sequences as
well as subsequences of behavior sequences.

Hence, in our approach, we address both: the detection of Point Anomalies as well as
Collective Anomalies.

2. Labels & Output:

Usually, anomaly detection systems differentiate between normal and anomalous data
items and specify the applied labels accordingly. In our approach, we are more interested
in differentiating between safe and dangerous behavior (safe and dangerous states produced
by behavior) instead of between known and unknown. The output of the classification of
data items has to be performed in a context-related manner by taking into account the
monitored behavior and its effects on the system state.

Furthermore, in dynamically changing systems previously known behavior sequences
may alter their effects on the operating system state from being safe leading into a
dangerous state at another point of time. Such changes in classification of behavior effects
can be abrupt. But it is also possible that, for a particular behavior sequence, the transition
from being safe to dangerous may evolve in a creeping manner, and may transit a grey
zone between safe and dangerous.

In general, we assume that there is no clear boundary between safe and dangerous. In
particular, if applying approaches that incorporate a certain degree of uncertainty because

of using probabilistic classification rules, there might be a range where behaviors cannot
definitely identified as safe or dangerous. They may lie in between showing up potentials to
suspicion. Hence, for the purpose of this approach, we define three types of classification
labels to be applied:

o safe (green)
e suspicious (yellow)

e dangerous (red)

The labels introduced here are assigned colors according to the traffic light principle.

The anomaly detection approach addressed by this thesis can be classified as a Contextual
Anomaly Detection problem able to identify Point Anomalies as well as Collective Anomalies in
system call sequences. Its objective is to deliver an output represented by the labels safe,
suspicious and dangerous as the classification result when analyzing the application behavior in
context-related manner.

7.1.3 Feature Selection

The basic requirements resulting from the problem domain have been formulated in Chap-
ter 1.1. Altogether, anomaly detection for self-x real- time systems has to be autonomous,
lightweight and to operate in an online manner by taking into account the specifics of real-time
systems and the challenges associated with self-x systems. These requirements combined
with the problem definition and classification form a basis for making design decisions, as
formulated in Chapter 2.2.2, and selecting the required features that have to be built into the
anomaly detection approach.

Anomaly detection systems, mainly, perform the tasks of data collection and classifying it
based on a predefined or trained normal profile. In self-x systems, the behavior is expected to
change dynamically either due to step-wise evolution or because of a system reconfiguration.
This raises two challenges on the anomaly detection: First, each novel behavior configuration
requires an according normal profile. Keeping normal profiles for all possible behavior con-
figurations can violate the system’s resource-restrictions. Second, it is challenging or even
impossible to determine all possible normal behaviors or system configurations as they are
based on autonomous decisions that are not completely predictable. Generating a set of -
obviously predictable - behaviors and configurations to train the system normal profile would
always be considered as incomplete. In case of a change to a previously unknown behavior
or configuration, it is impractical to induce a training phase due the fact that, on the one
hand, the system is in operation and, on the other hand, the anomaly detection is required to
continue its execution as it has to operate in an online manner. Hence, the anomaly detection is
required to work without any training phase and consequently has to learn behavior online.
This requirement makes this approach unique as the works discussed in Chapter 4 (Related
Work) presuppose a training phase as a basis.

The anomaly detection approach addressed in this thesis relies only on the operation phase
where behavior data has to be collected, classified and conserved in a knowledge base in order
to enhance the classification of recurring behavior patterns. From this workflow, we derive two
main responsibilities:

1. Learning of Behavior by collecting and storing it with its associated classification out-
come

2. Classification of Behavior by applying a context-related method that incorporates the
effects of the behavior on the system state

In relation to Chapter 2.2.2, the design decisions have been specified for this approach with
respect to the twofold responsibility of the anomaly detection:

e Detection principle: Programmed vs. Self-Learning;:

The overall approach is required to be self-learning. However, considering the responsi-
bilities separately, the situation is diverse:

In particular, without any training data set, the behavior knowledge has to be built up on
observation data as the only basis. This makes the approach to become fully self-learning
in terms of learning of behavior.

This is different for the classification of behavior: The system state plays an important
role for the classification outcome of an evaluated behavior sequence. The classification
can rely on thresholds and/or conditions that are formulated by means of classification
rules. On the one hand, rules specified for classification of behavior can be programmed
by making use of expert knowledge. E.g. a dangerous system state is present if the usage
of a particular resource exceeds the available amount. Intuitively, this can be specified
by threshold-based rules. On the other hand, the classification rules can implement self-
learning capabilities. This can be useful, for example, if the progress of state parameters
is of interest to assess the system state.

e Mode of Anomaly Detection Technique: supervised, semi-supervised or unsuper-
vised:

In terms of determining the detection mode of the desired approach, again, we have
to split the discussion into considering the responsibilities of behavior learning and
classification in isolation:

The process of learning behavior is completely unsupervised and only ruled by the fact
that behavior is defined by system call executions of tasks. Any occurring behavior has
to be monitored and collected, primarily without considering its classification.

In contrary, the classification method is required to deliver a classification outcome.
Diverse methods for assessing the system state are possible so that the classification rules
applied can be supervised, semi-supervised and/or unsupervised.

e Time of detection:

In relation to the basic requirement, online anomaly detection is characterized by the
ability to identify threats at the point of time they occur. Applied for real-time systems,
this is essential in order to prevent a propagation of a failure throughout the system
with potentials to result in critical consequences for the system, its applications or even
humans involved. Hence, the time of detection is defined as real-time, but in contrary to
Axelsson [23], we prefer the term online here.

e Granularity of data-processing;:

The granularity of data collection is determined by the definition of behavior. System
calls are monitored on demand when being executed which is classified as online and
continuously.

As any system call has the potential to harm the system, each system call execution has to
be evaluated immediately. In order to enable an online classification, the classification of
each executing system call must be performed online to ensure a continuous classification.

Storing the occurring behavior sequences, for example within a knowledge base, preserves
the history of execution of a task and is essential for ensuring learning. Information
such as which sequences occur predominantly often may be helpful for establishing a
kind of normal profile. This requires counting the number of occurrences of a sequence.
In addition, recording the classification outcome of a sequence enables to preserve the
progress of a particular sequence in terms of effects on the system state. In order to
realize a knowledge base that holds all these information, a pattern matching must be
implemented to enable the identification of equal sequences. Thereby, it is essential that
the pattern matching method is designed for exact matching of patterns as two sequences
that differ even by only one symbol in the sequence (one system call) may achieve totally
different classification results.

e Locus of data-collection:

The behavior of each task is individual and, therefore, each task is required to have
assigned its own data collection and storage. Considering each task as a data source,
data-collection is realized in a distributed manner as multiple data sources exist. Behavior
data in forms of system call sequences (by IDs) can be directly extracted by the operating
system without any need of being preprocessed.

For the system state parameters dealing as input data source for classification, the
situations is not that clear. System state parameters can be distributed throughout the
individual operating system components, building up distributed data sources. However,
the operating system contains also global system parameters that are held in a centralized
manner. The diversity of state parameters does not allow for an explicit categorization
into direct or indirect data collection as the state parameters have not been defined at this
stage and are specific for each operating system implementation. We assume that there
are parameters that can be directly extracted from the operating system, e.g. currently
allocated memory size. But parameters also exist that have to be preprocessed such as
an utilization factor of a resource. Therefore, the data collection of state parameters will
partly be performed in direct as well as in indirect manner depending on the data type
and the operating system implementation.

e Locus of data-processing;:

Even though the input data is collected in a distributed manner, the classification rules
applied shall be uniform for all tasks and, hence, for all behavior sequences. Therefore,
in order to ensure a consistent classification of behavior data, the data-processing has to
be performed in centralized manner.

All behavior data as well as system state data are available in the operating system. In
order to guarantee online detection, the anomaly detection has to become an inherent
part of the operating system leading to an internal anomaly detection approach.

e Response to detected anomalies:

Addressing the application domain of real-time systems, an identified anomaly repre-
senting a potential system threat has to be immediately signaled and transferred to the
proper authority responsible for reaction. Hence, the response to detected anomalies is
classified as active.

In this thesis, we are only interested in the detection of suspicious or dangerous behaviors
in order to send according alerts. The reaction on identified threats can be diverse:
stopping a task execution and eliminating it from the system, recovering back to a
dedicated safe state, restarting, reconfiguring application or operating system parts,
etc. The decision how to react is not straightforward as it may have consequences
on the system performance. While for one application a reset might be sufficient, it
could harm the overall service of the system for another one. In particular, in order to
generate an adequate response or reaction on an unsafe behavior, threat-specific and
application-specific knowledge is essentially required.

e Ability to evolve:
Based on the requirement of the approach to be self-learning, the ability to evolve is
inherently included.

The concept for anomaly detection has been developed by taking into account all these
requirements described above. Of course, any anomaly detection approach is assessed by its
coverage and accuracy which we address to achieve by the concept.

7.2 Anomaly Detection Framework

Considering the requirements, the biggest challenge is to find an approach that can work
without any training phase allowing for a classification in context-related manner. The Danger
Theory from Artificial Immune Systems (see Chapter 3.4) provides a good source of inspiration
for the addressed problem: it allows assessment of observed behavior by considering its current
context represented by presence or absence of so called danger signals without any need of
matching it against a trained normal profile. Dendritic Cells (DC) build up the core of the
population-based approach responsible for monitoring the system entities, they are assigned
to, and performing - on the basis of provided input signal - a state transition that forms the
classification method of the DC.

Transferring this concept into our problem domain, DCs are responsible for observing the
system behavior defined by the system call sequences of tasks. Hence, a DC is assigned to
each task instance responsible for collecting data in forms of executed system calls. For state
transition, a DC requires input signals that in our case is the system state defined as the Health
State delivered by the operating system.

7.2.1 Operating System Architecture

For the anomaly detection to become an internal part of the operating system, the operating
system architecture has to be extended by introducing required components. Fig. 7.1 illustrates
the resulting Anomaly Detection Framework consisting of DCs, each associated to one task (the
current instance), a Health State Monitor for delivering the input signals, a classification module
responsible implementing the conditions for state transition of the DC and a Knowledge Base
for conserving the migrated DCs.

Task1 Task2 Task3

Lo l
T ¥
N

System CaII Interface

A
¥

-

Lymph Node:
Classification / DC Knowledge
State Transition Base

Health State

Syscall
<l M n
y anager

Monitor = ~

| Functional OS |

L Kernel Components)
—— = — = — = = = = — — — = J

Figure 7.1: Anomaly Detection Framework integrated into an Operating system.

7.2.2 Classification Input Signals

The behavior data collected by the DC has to be evaluated based on the present signals
reflecting the Health State. The Danger Theory defines four input signals that in context of the
operating system Health State are specified as:

Safe signal:
indicates that no threat has been identified in the system; the operating system state is in
normal or safe operation with respect to its system state parameter values.

PAMP (pathogen-associated molecular pattern) signal:
indicator that a known threat has been localized; the PAMP signals occurs in case of a
component failure or state parameter values that signal a definite malicious operating
system state

Danger signal:
indicates a potential danger suspected; the operating system state parameters are not in
the normal or safe operation range, they show up an anomaly (but not a known threat
such as indicated by the PAMP signal)

Inflammation signal:
general alarm signal; the inflammation signal is applied to signal a reconfiguration in
order to indicate a potential change in system behavior or system state

The particular specification of the Health State can only be conducted on the basis of the
present operating system parameters and is strongly dependent on the operating system

implementation. However, as the Health State Monitor is responsible for detecting anomalies
in the operating system state, it can be considered as an anomaly detection system itself that
works internally.

7.2.3 Behavior Classification

The lifecycle of a DC is determined by the lifecycle of the task instance that the DC is
responsible for. Any system call executed by that task is collected by the DC and evaluated in
the context of the input signals. The idea of the classification method is simple: if the resulting
Heath State after a system call execution is reflected by a safe signal, the classification outcome of
the system call is a green signal. If the Health State caused by a system call execution is a danger
signal, the classification outcome is yellow representing a suspicion. If the Heath State delivers a
PAMP signal, the execution of the system call is classified as red indicating a system danger.

Formally integrating the classification into the concept of Dendritic Cells, it is performed
at the state transition of the DC (see Chapter 3.4.2). Three state are defined for Dendritic
Cells: immature, mature and semi-mature. The initial state of the DC is immature. Two exclusive
conditions can initiate a state transition:

1. The lifecycle of the DC expires. This happens when the tasks instance terminates.

As long as the task instance is active, the DC continuously collects system calls and
evaluates them immediately based on the present Health State signals. It remains in
immature state as long as no PAMP signal occurs, - irrespectively whether the input signal
is safe or danger as this only indicates a suspicious but not a true danger.

When the task instance terminates, the state transition of the DC is enforced: In presence
of safe signals, the DC migrates into semi-mature state and outputs a green classification
outcome assigned to the task instance’s behavior sequence. In case a danger signal occurred
during the system call execution of the task instance, the DC migrates to the mature state
with the yellow signal as classification outcome.

2. The presence of a PAMP signal. If the PAMP signal occurs during the task instance’s
execution, it signals the presence of a true threat. Then, the task’s execution is immediately
aborted in order to prevent further damage caused by continuing the execution. The
DC directly migrates into the mature state and assigns a red classification outcome to the
behavior sequence executes until then.

By this method, the behavior data is directly brought in context to the system state parameters.
This method allows to classify any occurring behavior which provides a good basis for coverage.
The fact that any behavior is evaluated individually, in turn, ensures a certain degree of accuracy
but this one is strongly dependent on the accuracy of the Health State evaluation. Implemented
within a classification component, this lightweight principle of data-processing allows the
classification to be performed online and directly inside the operating system.

7.3 Behavior Profiling and Knowledge Base

In the Danger Theory, Dendritic Cells migrate to the lymph node after their state transition
in order to be memorized to enhance future detection and reaction. The same reasons motivate
to introduce a storage for behavior sequences:

1. conserving the history of execution enables to determine a kind of normal profile estab-
lished on the basis of a behavior sequences with a large number of occurrence. In fact,
real-time applications are expected to exhibit similar behavior sequences, at least with
common subsequences, throughout their task instances. Knowing whether a behavior
sequence is commonly executed or rather rarely makes the classification results more
reliable, in particular for commonly executed behavior sequences belonging to the normal

profile.

2. the previous classification outcome(s) of a behavior sequence, and even of each single
system call within that sequences, may be of interest to enhance the classification of a
current occurrence of that behavior sequence. The classification outcome of a previous
execution provides a tendency of the effects of that particular behavior sequence. Con-
servation of this information allows to monitor the progress of effects of a particular
behavior sequence on the system state. Furthermore, knowing that a current behavior
sequence matches a pattern that has previously been determined as dangerous could
prevent damage on the system by exploiting the classification information and aborting
the execution of the behavior sequence at the earliest possible stage.

Storing behavior sequences with their associated classification outcomes in a Behavior
Knowledge Base forms the basic instrument of learning. With respect to the application domain,
several requirements are addressed on such a Behavior Knowledge Base as described above:
Due to the restrictions in terms of memory space, the Behavior Knowledge Base is required
to store behavior sequences in a compact manner. Matching, in particular exact matching, of
sequences has to be performed online, in a symbol-by-symbol manner synchronously to the
system call invocations with low computational effort. Furthermore, the Behavior Knowledge
Base must be extendable by novel arising behavior sequences in order to ensure the learning
process.

Considering the specifics of behavior sequences being of finite length, and expected to be
rather similar throughout the task instances, Suffix Trees - as introduced in Chapter 5 - prove to
be attractive for this application purpose: Suffix Trees provide a symbol-by-symbol construction
method for sequences introduced by Ukkonnen that allows to include the system calls into
the Suffix Tree as soon as they occur without the sequence being completed. Furthermore,
Suffix Trees offer a successive online matching method in linear time (linear to the length of the
sequence). Even though, the memory consumption for a single behavior sequence of length
n is O(n?), it is overall acceptable because it contains all sub-sequences of the sequence and
consumes no additional memory space in case of recurring sequences (or their subsequences).

Based on the fact that a Suffix Tree in the Behavior Knowledge Base is intended to store
multiple behavior sequences of a task - or moreover, its complete behavior sequence history -
being more accurate concerning the terminology, in fact, Generalized Suffix Trees are addressed
here.

7.3.1 Behavior Knowledge Base Properties

The concept of Suffix Trees is required to be modified for the application purpose: First,
we are not interested in starting positions of suffixes originally stored in the leaf nodes of the
Suffix Tree. They become obsolete as the Suffix Tree is intended to store multiple sequences
that potentially share the same paths. Second, the data structure of the Suffix Tree has to be
extended by additional information required by the approach: a counter of occurrences of

DABABC

Figure 7.2: Behavior Knowledge Base with Occurrence Counter in the Suffix Tree containing
the example sequences S;; = ABABC and S;, = DABABC.

behavior sequences and a marker to store classification outcome assigned to each sequence
symbol.

1. Occurrence Counter:

Each leaf node is extended by a Occurrence Counter. Whenever a system call sequence
is executed, the Occurrence Counter of the leaf node identifying the matching path is
incremented. To determine the number of executions of sub-sequences, we can exploit
a property provided by Suffix Trees: originally, counting the number of occurrence of a
sub-pattern within a sequence is simply done by counting the number of leaves that arise
from the (inner) node that determines the sub-pattern. According to this property, the
number of occurrence of a sub-sequence ending in an (inner) node is determined by the
sum of the Occurrence Counters of all the leaf nodes that arise from that shared node.

For better understanding we provide an example illustrated in Fig. 7.2. It shows the
Behavior Knowledge Base Suffix Tree for sequences S;; = ABABC and S;; = DABABC
being executed. The pattern P = ABABC is a subsequence of S;; and S, as S;; is a suffix
of Sj. When counting the occurrence of Py, it is 2 as it is executed once in S;; and once in
Si>. In the Suffix Tree illustrated in Figure 7.2, the Occurrence Counter of P is set to i = 2.
To calculate the occurrence of the subsequence P, = AB, the property of the Suffix Tree is
exploited: adding the Occurrence Counters of the descending paths P = ABC being i = 2
and Pj = C being i = 2, the resulting Occurrence Counter of subsequence P, is 2 +2 = 4.

Integrating a Occurrence Counter into the leaves of our Suffix Tree makes it possible to
calculate the number of occurrences of all (sub-)sequences that are contained in the
Behavior Knowledge Base.

2. Classification Marker:

Each system call is intended to be classified individually. To preserve the classifica-
tion outcome, the Suffix Tree is extended by an additional attribute assigned to the suffix
tree labels: the Classification Marker. According to the defined classification labels, the
Classification Marker colors the suffix tree labels in green, yellow or red to reflect the result of
the classification. Finally, as the path of a behavior sequence in the Suffix Tree is unique

and ending in a leaf node, the leaf nodes are equipped with a Classification Marker as well
to represent the classification outcome associated with the entire behavior sequence.

By introducing the Classification Marker into the Suffix Tree, the Behavior Knowledge Base
can preserve all behavior sequences in one data structure but differentiate between safe,
suspicious and dangerous behavior based on the value of the Classification Marker.

Profiling the behavior online requires every executed system call to be processed on demand.
The system call processing defines a workflow composed of Extending, Classifying and Updating.
Extending the Suffix Tree by the system call first involves verifying whether an entry for that
system call already exists in the path of the current sequence. If no matching in the current
path label is found, the Suffix Tree has to be extended according to the specifications of Suffix
Trees. In case of a match, this step is skipped. Classifying a system call is concerned with
requesting the Health State after its execution, while Updating includes setting the resulting
value to the associated Classification Marker and incrementing the Occurrence Counter, in case a
leaf node is reached.

At the initialization of the system, the Behavior Knowledge Base is empty. With the execution
of the first instance of the task, the Suffix Tree is constructed by applying the basic symbol-by-
symbol online construction method specified by Ukkonnen. The Behavior Knowledge Base
is extended by any behavior sequence executed by a task and it stores its classification labels
which allows continuous learning of behavior and updating of classification results.

In particular, adaptations and reconfigurations induce the emergence of novel behaviors. The
extendability of the Behavior Knowledge Base enables the approach to become applicable for
the purpose of reconfiguration.

7.4 Architectural Model

The anomaly detection approach relies on classifying behavior data on the basis of operating
system health state information. Data processing is performed on two levels: behavior data
as well as operating system health state data. Classification input signals, in particular the
danger signal and the PAMP signal, are raised in case of anomalies in the operating system state
parameters. Moreover, the accuracy of the behavior classification is determined by the accuracy
of the health state evaluation. Anomaly detection, in fact, is performed on two levels: anomaly
detection concerning behavior and the evaluation of the operating system state that is becoming
an internal anomaly detection itself. To determine the concerned system components and
their responsibilities, we specified an architectural model on the basis of the model defined in
Chapter 2.3 and determined the data flow within the architecture. As coping with an anomaly
detection on two levels, the model was adjusted accordingly and consists of an Application
Behavior Anomaly Detection and a Health State Anomaly Detection as shown in Figure 7.3.

On the Application Behavior Anomaly Detection level, the DC needs to collect behavior data
and evaluate it. For the DC, the system call data is extracted by a System Call Monitor and
directly included into the Suffix Tree Behavior Knowledge Base. After storing, its processing is
performed by Classification that requires input data from the Heath State Anomaly Detection
level. The Application Behavior Anomaly Detection delivers a Classification Outcome as the
anomaly detection alarm.

The Health State Anomaly Detection relies on data collected by an OS Health Monitor.
This data is stored in a OS Health Monitor Database that deals as input source for the Signal
Generator responsible to deliver the Health Signal of the system. The Signal Generator operates

Reference Data:
History Health
Data

Configuration
—— Data:
Signal Generator

Rules
Audit Data AS“fo':ath_a o .
Collection: os Heglt'h (Drofecsﬁs"r:?. Alarm:
"| 0SHealth ° _ (Detection): Health Signal ’
Monitor Monitor Signal Generator
Database
Active/
Proccessing Data
Health State Anomaly Detection
Application Behavior Anomaly Detection i
. Audit Data
égﬁgc?izf_ Storage: Processing Alarm:
— | Suffix Tree (Detection): Classification —
System Call e o
Moni (Knowledge Classification Outcome
onitor
Base)

Figure 7.3: Architectural model for Online Anomaly Detection (referring to Chapter 2.3, Fig.
2.1)

on the data in the OS Health Monitor database, the History Health Data as reference data and
Signals Generator Rules that formulate the condition rules to obtain a result. The output of
the Health State Anomaly Detection is the Health Signal that is passed over to the Application
Behavior Anomaly Detection level.

7.5 Summary

This chapter presents the concept of the anomaly detection approach that was developed
based on the clear and detailed specification of the addressed problem application domain and
the resulting requirements. System behavior is defined by system call sequences executed by
task instances and has to be evaluated in order to assess the danger potential of the behavior
on the system.

The core of the approach is the Anomaly Detection Framework inspired by the Danger
Theory and the Behavior Knowledge Base implemented in form of Suffix Trees. The Anomaly
Detection Framework requires an integration into the architecture of an operating system.
For evaluation and classification of behavior sequences, the Danger Theory provides a good
source of inspiration as it allows a context-related classification that takes into account the
effects caused by the executed behavior sequences. The context-related classification builds
the foundation for anomaly detection in self-reconfiguring real-time systems and forms the
basis for an adequate accuracy. The classification of all executed behavior sequences ensures
the coverage.

The Behavior Knowledge Base is responsible for conserving the behavior sequences with
their classification outcomes. Suffix Trees provide best prerequisites for a data structure applied
for the Behavior Knowledge Base because of the characteristics of behavior sequences obtained
by executions of real-time tasks. The online-construction method of Suffix Trees allows online
profiling of behavior and a continuous updating of the Behavior Knowledge Base which is also
important for supporting changes in behavior caused by reconfigurations. By adjusting the
concept of Suffix Trees to preserve the multiple behavior sequences, adding information such
as Occurrence Counters and Classification Marker, we ensure the storing of the entire execution
history.

On the basis of this concept, we have developed an Architectural Model that specifies
components with responsibilities to be implemented and integrated into a concrete real-time
operating system.

ONLINE ANOMALY DETECTION FOR RECONFIGURABLE REAL-TIME SYSTEMS

104

Part IV

Implementation and Evaluation

ORCOS Online Anomaly Detection Framework

ORCOS (introduced in Chapter 6) is used as the evaluation platform for the Online Anomaly
Detection approach presented in this thesis. The topic of this chapter is the implementation
and integration of the Online Anomaly Detection approach into this operating system.

Some work was made on ORCOS in order to make this integration possible: The basic
architecture provided by ORCOS was extended by a Profile Framework to enable online recon-
figurability (see section 8.1) as a prerequisite for (dynamic) autonomous behavior - including
self-x properties. For the integration of self-x methods in ORCQOS, a generic framework was
designed which allows monitoring, analyzing and controlling of the system, as described in
section 8.2. In order to apply Online Anomaly Detection as a means of self-diagnosis based
on system calls in context to the health state of the system, the previously proposed generic
framework has been adopted to its application purpose in section 8.3. The monitoring of
system calls has been implemented by a System Call Monitor specified in section 8.4. Out of
this monitored data, a Knowledge Base is constructed by a representation applying Suffix Trees
illustrated in section 8.5. Data in the Knowledge Base serves, on the one hand, as a storage but,
on the other hand, it offers the input for the classification in the context of the system health
status. The system’s health data is provided by the System Health Monitor depicted in section
8.6. Section 8.8 is completing this chapter as it presents the integration of all components of the
ORCOS Online Anomaly Detection Framework and shows how they interact and operate at
runtime.

8.1 Online Reconfigurability

As already emphasized, ORCOS is an execution platform for embedded systems with self-x
capabilities. That means, that ORCOS has to cope with dynamically changing behavior and
has to be able to satisfy dynamically changing requirements on system service at runtime.
Hence, besides the fine-grained offline configuration and customization, the operating software
must implement methods for online reconfiguration itself [Stahl et al., 2014a]. In fact, online
reconfiguration is realized in ORCOS twofold as it is not only restricted to react on dynamical
changes, but, furthermore, is applied to implement self-optimization facilities to the operating
system as well.

Reconfiguration can be triggered by different sources: external and internal requirement
changes. Internal requirements are coming from the operating system itself based on self-
optimization. Usually, the operating system’s objective is to optimally manage the application’s
task and the resources e.g. in terms of resource consumption, memory management, scheduling
strategies, etc. To meet these requirements, the operating system requires internal structures to
monitor and analyze its own performance and to verify whether the optimization objectives
are fulfilled. An appropriate architectural approach implemented in ORCOS will be discussed
in section 8.2.

In this section, we concentrate on the foundations for online reconfiguration. Considering
external requirement changes that originate from outside the operating system, which is
either from the software or the hardware layer, it is easy to illustrate basic requirements on
online reconfiguration: Due to a new software configuration, the implementation strategy
of an OS service must be exchanged. To be able to satisfy such requirement changes, the
operating system must provide alternatives concerning implementation. On the other hand,
reconfiguration in software may lead to require an OS service that has not been provided by
the operating system before. To satisfy this, the operating system needs structures to enable to
load, exchange, extend, and activate OS components at run-time.

As ORCOS is intended to exhibit small footprints, it is not desired to load every possible
system part on the target device. Online reconfigurability of the system requires the exchange
or additional loading of tasks or system components at run-time. Therefore, ORCOS offers a
Dynamical Task Loading framework which is described in section 8.1.2.

The basis for online reconfigurability of the operating system and the application tasks is
provided by the Profile Framework which allows to switch between different configurations.

8.1.1 Profile Framework

Originally, the Profile Framework has been developed in the context of the Flexible Resource
Manager (FRM) [78] to self-optimize resource consumption in resource restricted real-time
systems by safe over-allocation of resources under hard real-time constrains. By introducing
the Profile Framework, the FRM allows for alternative implementations of an application task
in terms of resource requirements defined in profiles.

The Profile Framework follows the following principle: at each point of time exactly one
profile of a task is active (see Fig. 8.1). A configuration c of the system is defined as configuration
¢ = (p1,p2, ---,Pn), with n being the number of running tasks T and p1 € P1,p2 € P, ..., pn €
P, and P; being the profile set of task 7;. Each task must define at least one profile to be
executed. For any task there may be available multiple profiles, i.e. versions with different
parameters concerning nonfunctional properties. Selecting a specific profile is done due to
dynamic decisions at run-time.

In the context of online reconfiguration of the entire system, we have enlarged the concept
of a profile to be applied to any reconfigurable OS component. This encompasses all system
entities:

e application tasks
e OS kernel components and services

e components of the self-x framework (e.g. reconfigurable Monitor and Analyzer as referred
in section 8.2.)

é System Configuration)
Task A Task B Task C
[Profile1 || || Profiet || || Profile1 |
| Profile2 || || Profle2 || [[Profie2 |
Profile 3 Profile 3
[J active
N\ J profile

Figure 8.1: Profile Framework: Example for a system configuration

Profiles may differ concerning their resource demands, which resources are applied (e.g. a
specific communication resource), the implemented algorithm (e.g. in terms of accuracy of
the algorithm or the strategy), execution times, deadlines etc. A prerequisite for identifying a
component as reconfigurable is the existence of alternatives, which in fact means the definition
of at least two different profiles. Applying profiles to all OS components and the applications
running on the system, all system parts become online (re)-configurable. Reconfiguration
is realized by imply switching between the profiles. In order to maintain predictability and
timeliness of the system, switching times and conditions are defined between the profiles.

For the reconfigurations, a controller module (see section 8.2) is responsible. It contains
policies, restrictions and thresholds for decision making. Of course, a decision for reconfigura-
tion must be checked against the system characteristics and the real-time requirements of the
applications tasks. A reconfiguration must not harm the system service delivery and guarantee
the compliance with the task’s real-time deadline. If all the conditions are meet, the controller
performs the reconfiguration.

8.1.2 Dynamic Task Loading

Usually, the ORCOS kernel’s executable binary is loaded together with the tasks to be
executed onto the target device. As a basic function towards online reconfigurability, ORCOS
offers the ability to dynamically load additional tasks on the target at runtime.

As a matter of fact, real-time operating systems cannot accept adding new tasks uncon-
ditionally as they have to guarantee the schedulability of the tasks already present in the
system. A feasibility check for the task set ' = {J U J,¢ } consisting of the present task set |
in conjunction with the new arriving task], is required in advance in order to ensure the
resource and timing constraints of the system. ORCOS implements this feasibility analysis by
the OROCS’ Task Loading Module.

For ORCOS, tasks to be supplementary loaded reside in the form of their binaries in a task
repository located on a remote server. Tasks in the repository are identified by a unique name.
The connection to the task repository server is established by the ORCOS kernel internally if
the kernel is appropriately configured. ORCOS offers a number of system calls: getTasktable,
preTaskloading, create_task physicalMemory, create physical_syscall and isDownloading
(for description of these system calls see Appendix A.7). Because system call are provided, the
dynamical loading of a task at runtime can be initiated by other running tasks.

The scenario for dynamic task loading is illustrated by the sequence diagram in Fig. 8.2 in
which the operating system modules are compromised into one ORCOS kernel object. The task

NewTask Controller Task ORCOS kernel Task Repository

getTasktable

getTasktable

reTaskloadin:
s 9 > checkMemory

i

precheckSchedulability

downloadTask

isDownloading € ------———————-

create_task_physical_syscall

createPhysicalTaskMemory|

i

checkSchedulability

i

i

new

run

Figure 8.2: Dynamic loading of tasks at runtime

that implements the loading of other tasks (in Fig. 8.2 called ControllerTask) merely initiates
the task loading procedure by calling the system call getTasktable with the according task
name. By doing so, theTask Loading Module checks whether a task identified by the given
task name exists in the repository, and it downloads and returns the Task Table of the task.

If the task exists, the operating system has to verify whether this task can be accepted to be
executed. Even though the operating system modules are compromised into one ORCOS kernel
object in Fig. 8.2, the individual modules are engaged in different subtasks of the acceptance
test: In the first instance, the kernel’s Memory Manager has to check whether the system has
enough memory space available required by the task to be loaded on the system. The system
call preTaskloading implements the searching for memory space for the new task based on
the information delivered by the task’s Task Table. If the task does not pass the memory check,
the ORCOS kernel rejects the task loading and returns an error signal to the initiating task. It
returns an OK signal otherwise and allocates some buffer for the task download. Then, the
kernel performs an initial schedulability check to verify the task’s execution feasibility. If the
new task passes both, the memory check and the initial schedulability analysis, based on the
information delivered by the Task Table, the kernel starts downloading the complete binary of
the tasks.

The downloading of the task is proceeded in the background of the system. The initiating
task can test the progress of the download by calling the system call isDownloading . After

completing the downloading, an own memory space must be provided for the new task (by
the calling create_physical_syscall). Then, the ORCOS kernel initializes the task.

Before being able to include the new task into the task set of ready tasks in order to be
scheduled, a (more sophisticated) Schedulability Analysis is performed. The method for
Schedulability Analysis is related to the applied Scheduler. If the task passes the Schedulability
Analysis, it will be activated in order to be scheduled.

8.2 Basic Self-X Architecture

Usually, the workflow of a self-x system includes the following steps [49]:
1. Analysis of the current situation,

2. determination of objectives and

3. adaptation of the system behavior.

Hence, a real-time operating system with self-x capabilities must provide mechanisms and
structures to enable the implementation of the self-x workflow. However, the adaptations to
changes in the system must lead to robust system behavior in order to prevent that the system
will run out of control.

The Organic Computing Initiative[3] has initiated the Observer-Controller Architecture[82]
which was developed as an approach for self-organizing systems. The main objective of
this architecture is to safeguard autonomous adaptations by maintaining the control of the
system and its reactions on the dynamic adaptions. In order to realize self-x features with
robust behavior in ORCOS, the ORCOS architecture was extended based upon the idea of the
Observer-Controller Architecture.

The Observer-Controller Architecture builds up a feedback and controlling loop on the top
of the a system under observation/control (SuOC). It introduces two main components: an
Observer and a Controller.

The main task of the Observer, according to [82], is to identify the current state of a system
and draw conclusions in terms of future states. As this task is not necessarily a trivial task,
the Observer is split into subcomponents responsible for monitoring, pre-processing, data
analysis, prediction and aggregation. The Observer is equipped with an Observation Model
that specifies the selection of attributes to be monitored, the selection of appropriate analysis
methods as well as the selection of the appropriate prediction methods. This Observation
Model enables the Observer to be variable.

The main task of the Controller is implementing reconfiguration in terms of reaction of the
system on the current system state and the potential future states. The decision making of
the Controller is based on the output delivered by the Observer with respect to the context of
the Controller’s objectives. Changes initialized by the Controller may lead to changes in the
requirements on the Observer. In order to react on that, the Controller is able to configure the
Observer’s behavior in accordance to its context purpose. The Observer offers therefore an
interface to manipulate its Observation Model.

In order to adopt this architecture to ORCOS, we have identified that the Observer is taking
over two distinct tasks that can be clearly separated from each other: monitoring and analyzing.
Although strongly coupled within the Observer, we assume monitoring and analyzing to be
self-contained tasks which can be executed in a timely decoupled manner [Stahl et al., 2014a].

e N
{_ __________________________ ~
Functional OS kernel components |

|
< rrrrrrrrrrrrrrrrrrr SyscallManager] Monitor
Board Analyzer

Timer

4—— Controller

.| FileManager |< Scheduler
DeviceDriver o

L _____

|
|
|
|
|
|
|
|
|
: InterruptHandler
|
|
|
|
|
|
|
|

|

|

|

|

f |
: |
: I
: I
: |
MemoryManager [<----:-=>| CPUDispatcher]
: . |
v I

|

|

Figure 8.3: Generic Self-X ORCOS Architecture integrating a Monitor, an Analyzer and a
Controller module.

Therefore, in the ORCOS Architecture the Observer was split up into two separate components,
a Monitor and an Analyzer.

The resulting ORCOS architecture is presented in Fig. 8.3, containing Monitor, Analyzer
and Controller [Stahl et al., 2014a]. These three components, namely Monitor, Analyzer and
Controller, build up the so called ORCOS self-x framework that constructs a controlling loop of
the system. The components of the self-x framework are integrated into ORCOS as configurable
kernel components. In relation to the Observer-Controller Architecture, the ORCOS self-x
framework modules are strictly separated from the functional OS kernel modules. By this
separation, the self-x framework does not have any direct effect on the kernel’s functional
requirements so that the functional ORCOS modules can operate in an ordinary manner.
Furthermore, it ensures that the functional OS modules can continue their work and will not
break down if the self-x framework stops working. In order to guarantee real-time requirements
of tasks, the ORCOS kernel modules proceed the task’s request on the appropriate priority
level while the self-x framework is operating in background using the system’s idle times, in
the first instance.

The self-x components initially define a generic framework. The introduced ORCOS modules
provide only wrappers for implementation as well as interfaces between them. With these
wrappers, the framework becomes open to different implementations developed for different
objectives. The interconnection between the components is not only related to the interfaces
for exchanging data (passing data from the Monitor to Analyzer, and delivering the output of
the Analyzer to the Controller). Due to the ability of online reconfiguration we introduce an
additional interrelation between the components: The strategy of the Analyzer is reconfigurable
at runtime and can be exchanged by the Controller. The data collected by the Monitor is
depending on the applied analyzing algorithm so that an exchange of the analyzing strategy in
turn has an effect on the data aggregation of the Monitor.

8.2.1 Monitor

The Monitor is part of the self-x framework integrated into the ORCOS architecture. It allows
different implementations as it initially provides only a wrapper for monitoring. Its main
responsibility is identifying and selecting the appropriate information and collecting data. In
accordance with the Observation Model of the Observer-Controller Architecture (discussed in
the section 8.2), the monitored attributes can be customized based on the requirements defined
by the Analyzer with respect to the global objective.

A specific implementation of the Monitor can be related to one OS kernel module as well
as a combination of several kernel modules. Obviously, the implementation of the Monitor
requires sophisticated internal knowledge of the system as well as the ORCOS modules in
order to be able to extract the monitoring data. Furthermore, the Monitor can implement
methods that prepare or even preprocess the collected data in accordance to the Analyzer’s
requirements. The implementation of the Monitor, in fact, relies on techniques established by
scientific domains like data mining, time series generation, etc.

Real-time systems have limited memory and, hence, components of the operating system
have strong restrictions on the amount of memory they can use. Besides the produced run-time
overhead, these memory restrictions have to be considered when implementing the Monitor.

8.2.2 Analyzer

The Analyzer is located between the Monitor and the Controller within the self-x framework.
It is responsible for analyzing the data that was aggregated by the Monitor with respect to the
context purpose.

Like the Monitor, the Analyzer module in ORCOS is a wrapper for implementing different
scenarios and analyzing algorithms. The output of the Monitor thereby deals as input of the
Analyzer. So the Analyzer must be able to operate on the data - determined by the specification
on the nature of data (see Chapter 2.2.1) - delivered by the Monitor. This leads to a strong
interrelation and assigns a specific selection of data to be monitored to a certain analyzer
algorithm. Usually, the algorithms implemented by the Analyzer belong to scientific areas
like data mining, time series analysis and pattern matching, and/or apply mathematical or
statistical methods, but also techniques from reinforcement learning, machine learning, artificial
neural networks, and some others. The latter become more important if more differentiated
conclusions such as predictions are required.

With a variety of different implementations, the Analyzer builds up a toolbox that may cover
a broad range of objectives. Based on the global objective, the Controller selects the analyzing
method out of the provided toolbox.

8.2.3 Controller

The central component for the run-time reconfiguration is build up by the Controller. It is
the component that is responsible for decision making and initiating changes in the system.
The responsibilities of the Controller are defined from different perspectives referring to three
different controlling loops:

e control of the SuOC
e control of the self-x framework

e control of the objective function

On the one hand, the Controller is the closing component of the feedback loop for the SuOC.
Its responsibility is to initiate a reconfiguration of the SuOC as a reaction to the evaluation
procedure results. The results from the Analyzer are handed over to the Controller. The
Controller has to examine the analysis results and evaluate which changes in the SuOC may be
the best adaptation towards the desired direction determined by the objective function. These
reconfiguration decisions on the SuOC are performed based on policies and pre-defined rules.
Learning techniques in the decision making process can be applied in order to enhance the
Controller’s performance in finding better optimized configurations. Additionally, learning
techniques introduce the ability of the Controller to adapt to dynamical changes, e.g. in the
objective function. The reconfiguration itself is performed by the Controller on the basis of the
Profile Framework (see section 8.1.1). Every application and every ORCOS module specifies
profiles with different characteristics that are known to the Controller. Profiles match policy
specifications of the Controller. In order to perform a reconfiguration, the Controller’s task
is to identify the appropriate profiles that cover the policies reflecting the objective function.
Then, a reconfiguration by the Controller is realized by just switching between profiles of
dedicated system modules and/or application tasks respectively. As the Profile Framework
supports reconfiguration under real-time constraints [78], a reconfiguration of the SuOC by the
Controller will only be initiated if all timing restrictions can be guaranteed.

However, the Controller is not only responsible for the configuration of the SuOC. It is part
of the self-x framework that is reconfigurable itself. In fact, the Monitor and the Analyzer
(see sections 8.2.1 and 8.2.2 above) offer interfaces to the Controller for configuration. The
Controller uses these interfaces to select an appropriate analyzing method out of the provided
toolbox with regard to the objective function. The choice of the analyzing method in turn has
effect on the attributes selected for observation by the Monitor.

The objective function is the main reference to measure the quality of the system performance.
Of course, the system may self-adapt its behavior because of dynamical changes. Changes
in system behavior as well as environmental changes in turn may lead to variations or even
to novel requirements on the objective function. The Controller may implement self-learning
methods in order to adjust the objective function by itself. However, as a measure of quality, the
Controller offers interfaces for the objective function to be determined by the user or developer
as well.

Summing up, the Controller guides the self-x process of the entire system from three different
viewpoints, having the impact on the system to be customized to each individual scenario.

8.3 Architecture for Anomaly Detection

The basic self-x framework was integrated into ORCOS to form a basis for self-x properties
introduced in ORCOS. One application of the self-x framework is illustrated in [25] (as part of
a Master Thesis) where it was shown how the framework has been applied to implementing
self-healing components by using the example of device drivers.

For the purpose of implementing the Online Anomaly Detection approach, we use the self-x
framework as a basis. In fact, the implementation of Online Anomaly Detection is another
specific application of the generic framework and is illustrated in Fig. 8.4. As described in
section 2.1, Anomaly Detection refers to the ability of detecting deviations by analyzing data
obtained by observations. Additionally, referring to chapter 7, the main goal of this thesis is to
present an approach for identifying anomalies in self-x systems and classify them by using
ideas from Danger Theory.

The concept of our approach is based on Dendritic Cells which are the responsible entities
for monitoring the behavior of the applications and therefore have to be be integrated into
the Monitor. The behavior of the applications is constructed out of the system calls invoked
by the applications which leads to monitoring of system call data within a System Call
Monitor. The principle part of the Online Anomaly Detection mechanism is integrated into
the Analyzer, consisting of a Behavior Knowledge Base based on this extracted data, the
detection of anomalies integrated into the Behavior Knowledge Base construction method, and
a classification module considering input signals delivered by the System Health Monitor.

Task1 Task2 Task3
| System Call Interface |
(" o)
System Call Monitor
DC DC DC A
shared
Knowledge
A\ Base &
Analyzer
Syscall Manager
/ @
: Functional OS
| Kernel Components Controller
L (T-Cell)
N\ J

Figure 8.4: ORCOS Architecture integrating Online Anomaly Detection modules.

The objective of Online Anomaly Detection is to detect anomalies and classify them. In
case of a potential detected danger, Artificial Immune Systems provide the principle of the
so called immune response as a reaction on this danger. From AIS viewpoint, the immune
response is initiated by T-Cells, which in the ORCOS self-x framework may be represented
by the Controller. It is important to emphasize here, that this thesis is not concerned with
reactions in case of detected anomalies classified as suspicious or even malicious. Therefore,
we are mainly interested in the parts of the Monitor and Analyzer for the implementation of
the approach.

Appropriate reactions on anomalies identified in task behavior are difficult to be specified
generically. Possible reactions may be a shutdown of the task with potential dangerous behavior,
its restart or a resume to the last checkpoint of stable applications state, but also reconfiguration
by switching into another profile or applying application-specific self-healing mechanisms.
However, there is no general answer how to react on unstable states as e.g. a shutdown of a
critical application lead to severe consequences or even failures of other system parts but might
be the best solution in another case. Furthermore, the application does not always need to be
the source of the problem. Unstable application behavior may also be caused based on failures
in the underlying system, namely faulty operating system modules or erroneous hardware

devices. Hence, more application-specific knowledge is required as well as considering the
entire system context to judge what is the best reaction on an unstable application behavior
detected. Even if forming an interesting research topic, this problem is far beyond the scope of
this thesis. Consequently, for the general purpose of implementing the presented approach
for Online Anomaly Detection, an implementation of the Controller is not in the scope of this
approach so that investigations will be omitted (Controller part of the architecture is therefore
colored in grey in Fig. 8.4).

8.4 System Call Monitor

The behavior of tasks is defined by the system calls or more precisely the sequences of
system calls that are invoked by the tasks as system calls providing the only interface between
the user space tasks and the kernel. The System Call Monitor is responsible for extracting the
appropriate information that are then aggregated to construct a Behavior Knowledge Base for
anomaly detection. The anomaly detection is dedicated to work in online manner. Therefore,
the system call informations must be recorded at the time when a system call happens to
realize online monitoring. In order to do so, the System Call Monitor is located directly in
between the System Call Interface and the System Call Manager (see Fig. 8.4). Fig. 8.5 shows in
a sequence diagram how the System Call Monitor is integrated into the execution of a system
call (see Fig. 6.4 in section 6.3.3 for comparison).

Thread InterruptHandler Monitor SyscallManager

T
|
|
|

T T

| |

| |

syscall(}—»| | |
| | |

| | |

—handelSyscall(}—»——handelSyscall(}—»;

{

N
|
|
|
|
|
I
I
|
|
|
|
|
|
In
|
|
|
|
i

-4

0]

—

c

=

>
<
L
c
(0]
|
|
|
T

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
S

N

Figure 8.5: Integration of monitoring into the OROCS System Call Manager

The concept of integrating self-x properties into ORCOS requires that all modules of the
operating system are online reconfigurable. This implies the self-x framework itself, and hence,
the Monitor component. In order to comply with this concept, the System Call Monitor is
designed to offer a framework for online reconfigurable monitoring. The idea of this framework
is to supply a broad range of analysis algorithms by the same monitor which is generic and
independent of any specific anomaly detection implementation. Flexibility is required, as

different algorithms use different parameters for evaluation. Some of the anomaly detection
algorithm considering system calls use just the system calls themselves, while others use system
call arguments, return addresses of the stack or the program counter. The different approaches
have been summarized in Chapter 4.

Even though the Online Anomaly Detection specified in Chapter 7 is the core approach to be
evaluated in this thesis, it should be possible to integrate other approaches without any great
programming or configuration effort in order to exploit their qualities and to provide a base for
making the different approaches comparable. That means that whenever the applied analyzing
algorithm will be exchanged, the monitor shall be set up to the according requirements. The
detailed concept and implementation of the Monitoring Framework has been developed in the
context of a Master Thesis that can be found in [92]. The latter of this section illustrates the
basic properties of the System Call Monitoring Framework.

The following information can be extracted (up to now) from a system call:

e Thread Identifier: Tasks in ORCOS are composed of threads that build up the basic units
of execution. Hence, it is the thread that actually calls a system call. This, in turn leads to
the fact that system call information is collected at thread level. A system call is assigned
to a particular thread by its identifier.

e System Call ID: Each system call provided by the system has its unique own identifier.
The assignment of system calls to their according IDs is listed in Appendix A.

e System Call Arguments: Some of the system calls specify parameters to be passed to the
kernel method. Obviously, the list of the arguments belonging to the system call can be
recorded.

e Stack Return Address: An invocation of a system call leads to a context switch as the
system call is assigned to a kernel function executed in kernel mode. After execution, the
system call returns to the calling stack address. This stack return address is recorded.

e Acquired Resources: ORCOS treats files, stream devices, communication devices, sockets,
etc. as resources assigned to a task with each one of them having a unique address in the
filesystem. The access to resources is encapsulated within system calls and recorded with
the associated system call.

e Time Stamp: The system call is invoked at a particular time; this time stamp is recorded.

Real-time systems have limited memory and, hence, the operating system has severe restric-
tions concerning the amount of memory it can use. These restrictions apply to the monitor as
well. As not every analyzing algorithm processes all this information, unnecessary overhead in
terms of run-time and memory space would be produced if the monitor would store all the
data connected to a system call. Therefore, the monitor is designed to be reconfigurable at
run-time in order to modify which parameters are monitored in accordance to the analyzing
algorithm. The System Call Monitor defines Monitoring Modes to be configured in order to
control the memory usage of the monitor. The recorded data is stored in a Monitoring Database
in order to be aggregated and processed by the analyzing method. The Monitoring Database
is configurable at run-time as well. To be able to control the Monitoring Modes and the
Monitoring Database, the System Call Monitor offers a Monitor API. These three components
of the Monitoring Framework will be described in short in the following section.

As the monitor intercepts the system call execution in order to record the data, it introduces
additional run-time overhead into the system call handling. The run-time overhead as well as
the memory usage caused by the monitoring is evaluated and discussed in section 9.1.

8.4.1 Monitoring Modes

The System Call Monitor is able to extract the system call information listed above. Storing
all this data for every system call would lead to the waste of memory if the data is not required
by the anomaly detection algorithm. To analyze system call sequences, any kind of algorithm
requires at least the following parameters: Thread Identified, in order to assign the system call to
the calling thread, System Call ID in order to record the system call itself and Time Stamp in
order to ensure the correct ordering of the monitored system calls.

The remaining parameters currently supported are to be selected according to the require-
ments of the applied analyzer. Therefore, the monitor defines modes by which the selection of
parameters to be recorded can be modified at run-time in accordance to requirement changes
of the analyzer.

The parameters that are currently supported by the modes are:

e system call id

e system call arguments
e return address stack

e task resources

We use a bitmap to represent the mode, with each bit representing a specific parameter that
can be monitored. This allows us to monitor multiple parameters at the same time, which may
be useful if an analyzing algorithm needs e.g. both system call id and system call arguments as
input parameters. If the analyzer will be reconfigured in such a way that it relies on a different
input data set, the reconfiguration of the monitor is invoked by changing the Monitoring Mode.
(The mode can be set to zero which deactivates the system call id and consequently, deactivates
the entire monitoring module. This option is defined for some critical cases that require the
self-x framework to be switched off in order to preserve resources for the functional part of the
0S.)

8.4.2 Monitoring Database

The extracted system call information belonging to a system call and determined by the
mode of the System Call Monitor are encapsulated within a System Call Record (SCR). The
collected information (System Call Records) are passed from the Monitor to the Analyzer in
order to be examined. The transfer of the data can be realized in different procedures: On the
one hand, the Analyzer is supplied with input data as soon as the data is recorded. On the
other hand, the Analyzer requests the data at the point of time when it requires it. Complying
with our idea of timely independent components, the latter version is the one preferred by
this approach. However, this means, that as the System Call Records will not be processed by
the Analyzer immediately, the Monitor is dedicated to preserve this data until it is requested.
Due do timely decoupled execution, the Monitor is intended to store multiple SCRs as the
Monitor does not have any information about the execution schedule of the Analyzer. Hence, it
implements a Monitor Database as a data structure to hold and manage the aggregated system
call information.

In our idea of applying Dendritic Cells from Danger Theory, Dendritic Cells are responsible
for the observation of one task. In fact, it is the thread that forms the executable unit in ORCOS
so that per task at least one thread has to implemented. (In practice, almost all of the example

8.4 SYSTEM CALL MONITOR

Thread ID Thread DB Pointer BufferQueue
- sona) szl

2

BufferWarningFlag
BufferFullFlag
BufferOverrunFlag

BufferQueue
|| i sl -

BufferWarningFlag
BufferFullFlag
BufferOverrunFlag

Figure 8.6: Architecture of the System Call Monitor Database

applications existing in ORCOS contain exactly one thread.) Thus, a DC is intended to collect
system call information triggered by a particular thread. In order to support this requirement,
the Monitor Database is organized on thread basis. For each thread, the SCRs are stored in an
individual buffer queue. The architecture of the Monitor Database is shown in Figure 8.6.

The memory amount is governed by the selection of the monitored parameters which is
reflected by the size of the System Call Record, but more essentially it is governed by the
frequency of the system call invocations in correlation with the frequency of requesting the
system call data from the Analyzer. Therefore, estimating the memory usage of thread buffers
is a complex issue. The Monitoring Framework thereby offers two different options for buffer
allocation: static and dynamic. This is to be configured by SCL offline, so that the decision
which buffer allocation method to choose must happen at the system’s compile time. Both
options have their pros and cons:

e static buffer configuration: If the buffer is configured to be a statically allocated buffer,
the size of the buffer has to be defined offline. The buffer is implemented as a local
circular queue with a number of System Call Records that can be preserved. Static
allocation guarantees a constant time for data storing. If the queue is full and the System
Call Monitor is up to capture another system call, then the oldest entry in the buffer will
be overwritten. Therefore, it is essential to estimate a safe buffer size at compile time. For
this purpose, the frequency of system calls per thread, and the schedule of the analyzer
must be know in advance.

e dynamic buffer configuration: If the monitor uses a dynamic buffer configuration,
the buffer size can be configured individually on a per thread basis. The monitoring
framework provides an early warning mechanism that raises a flag whenever the buffer
is approaching full utilization. Then, the maximum buffer capacity can be changed at
runtime. Thus, the dynamic buffer configuration enables precise buffer control, with
efficient utilization of the available system memory.

However, while using the dynamic strategy, the monitor always needs to allocate memory
for the system call record first before it can store the data gathered. This allocation

119

requires an additional time overhead which might not be constant.

The behavior of the monitor differs for each approach as the internal representation, data
storage and retrieval strategies differ. While the static strategy needs constant time for storing
a System Call Record, in the dynamic strategy it is depending on the performance of the
Memory Manager applied. In contrary, when data is requested by the Analyzer, using a static
buffer requires coping the data which results in run-time and space overhead while for the
dynamic data, it is merely a handing over of the pointer of the according data set. The decision
which buffer allocation method to choose is in fact a trade-off between the efficient storage
and constant allocation time, taking into account memory wastage and differences in run-time
demands considering the retrieval of system call data.

As real-time systems require to be fully deterministic, the dynamic strategy does not
appear to be applicable in this context. However, recent research in this field has resulted in
approaches like the Two Level Segregated Fit Allocator [75] that is capable of dynamically
allocating memory in constant-time. These recent developments may suggest the use of such
dynamic memory data structures in modern real-time systems in the near future.

8.4.3 Monitor API

The Monitor is designed to be reconfigurable at runtime in terms of its mode identifying the
parameters to be monitored as well as, when using the dynamic buffer configuration, in terms
of setting the buffer size. Furthermore, it is dedicated to provide input data to the Analyzer.
In order to offer interfaces to these functions, the monitor defines an API with the following
operations:

e change the monitor mode

e set the maximum buffer size for a thread

e set the buffer warning threshold for a thread

e check if a threads buffer is full

e check if a threads buffer warning flag is raised
e delete all the data entries for a thread

o get the first entry from a thread buffer

The specification of the methods offered by the Monitor API can be found in Appendix B.

The System Call Monitor has been integrated into the ORCOS Architecture in oder to support
anomaly detection approaches that operate on system call data. The System Call Monitor was
designed in a generous manner offering configurable modes and parameters so that it can be
easily customized to the various requirements of different anomaly detection methods. During
the entire design and development of the monitor, the major requirement on the monitor was
followed to be as less intrusive as possible and have a minimum impact on the schedulability
of the tasks in the system. The System Call Monitor has been developed and evaluated as a
stand-alone module in ORCOS within a Master thesis by Gavin Vaz [92]. This Master thesis
(supervised by me) was implemented in a strong interaction with this thesis as its intention

was to provide input data for the anomaly detection approach presented in this thesis. An
exhaustive evaluation of the System Call Monitor has been performed and described in [92]. A
summary of the stand-alone evaluation of the System Call Monitor is provided in Section 9.1.

8.5 Behavior Knowledge Base

In Chapter 7, the so called Dendritic Cells coming from Danger Theory have been introduced
to observe and collect behavior information about the tasks. Thereby, each task is assigned a
DC. The behavior to be observed has been defined as sequences of system calls executed by the
task (see Definition of Behavior in Chapter 7.1.1). Hence, these are the information about a task
collected by a DC. The lifetime of a DC has been assigned to a period of a task’s execution in
which the DC collects the information in order to be evaluated. Referring to the DC’s lifetime,
a behavioral sequence is determined by the execution of an instance of a task and is therefore
related to a task’s period.

According to the applied model of Danger Theory, all the occurring behavioral sequences
collected by DCs have to be evaluated and are then transferred to the thymus in order to be
conserved. The thymus is then responsible for memorizing the entire behavioral history which
deals also as an indicator input for anomaly detection. For the immunological entity of the
thymus, in fact, the computational counterpart is a storage of history that we call Behavior
Knowledge Base. The objective of the Behavior Knowledge Base is to store all information
collected by DCs. The Behavior Knowledge Base is intended to contain all the behavioral
sequences in order to preserve the entire execution history of the tasks, and thereby to build
the basis for establishing a reliable knowledge about a tasks” (normal) behavior.

Task

calls
system call function v

User Space
------------ System Call Interface SR T

Kernel Space

extracts
system call information System Call system call data Behavior

g Monitor "| Knowledge Base

e store and
system call function i | rotriove add behavior data
\
System Call papr—— =5
ystem Cal)
Manager Record SuffixTree [Tree
Database

Figure 8.7: Data flow of system call data through System Call Monitor to Behavior Knowledge
Base

In ORCOS, the system call sequences are extracted by the System Call Monitor (described in
the section above, Section 8.4) and stored as System Call Records in the System Call Monitor’s
database. The System Call Monitor provides the source of input for behavior collection of DCs
that is then passed to the Behavior Knowledge Base. The data flow of the system call data is
shown in Figure 8.7.

The extracted input data coming from the System Call Monitor are preprocessed and
transformed into the particular representation structure in the Behavior Knowledge Base. As
described in Chapter 7.3, Suffix Trees have beed chosen as the appropriate data structure to
represent the Behavior Knowledge Base. With its characteristics described in Section 5.2, Suffix
Trees offer great potentials to construct a knowledge base for behavior patterns consisting
of sequences of system calls, as they enable to process the sequences in a symbol-by-symbol
manner (using Ukkonen’s algorithm, see Section 5.2.3).

This section introduces the Suffix Tree implementation with the adaptations made on the
original data structure that have been necessary to make Suffix Trees applicable to build up a
Behavior Knowledge Base for the tasks executing on the RTOS.

8.5.1 Internal Behavior Sequence Representation

The System Call Monitor extracts the invoked system calls with the related information
that have been configured in the monitor’s mode. For the purpose of our approach, it is only
required to extract the system call IDs which are stored in the System Call Monitor Database.
(The IDs are unique identifiers of the system calls. The assignment of system calls to their
according IDs is listed in Appendix A.) The monitor’s database is organized in such a manner
that all System Call Records (information related to one system call) associated with one task
are stored in one buffer queue (see Section 8.4.2). Therefore, the system call sequence belonging
to one task’s instance can be easily extracted from the System Call Monitor Database. The
system call sequences is a sequence of system call IDs.

In the database, the buffer queue is continuously filled with entries of the system calls
triggered by a task. The System Call Monitor that is connected to the System Call Interface
has no knowledge about processes taking place in the operating system, such as context
switches, scheduling decisions etc. Context switches, however, could be identified by the
System Call Monitor based on the fact that the task ID of the monitored system calls changes.
Even though, this information does not enable the System Call Monitor to distinguish between
a preemption or a task instance’s termination. However, for the purpose of the anomaly
detection, it is important to identify the end of a task instance’s execution. The major reason
for that is based on our idea of DC that related to a task’s period. But it is also necessary
for the applied data structure (the Suffix Trees) to mark the end of a sequence in order to
enable differentiation between two sequences in which one is the prefix of the other (further
subsections are illustrating this problem). In general, Suffix Trees use unique symbols depicted
by the $-symbol to clearly identify the ending of a sequences. In ORCOS, however, the last
system call of a task instance is the call of the terminate ()-method, or more precisely the
thread_exit-system call, even if not explicitly implemented by the task developer. Therefore,
every sequence of system calls triggered by one task instance is extended by the unique
symbol having the ID 16 for determining the sequences’ ending. Then a behavioral sequence
S, collected by a DC, for task i and its jth execution has the following structure (sx being the
system call IDs of the invoked system calls):

Si,]' = (51,52,. e, S, 16)

The Sequence Ending Symbol is generated internally and included into the buffer queue at
the point of time a thread’s terminate ()-method is called (the $ is synonymously used for the
system call ID 16 in the remaining part of this chapter).

8.5.2 Internal Implementation of the Suffix Tree

Referring to Chapter 5.2, a Suffix Tree consists of a root node that is its entry point. From
the root node, paths descend that represent the suffixes of a particular string or sequence. The
paths consist of labeled edges connecting nodes as branch points of the path and leaf nodes as
ending points of a path. The labels on the edges of one path chained up form the symbols of
the sequence’s suffix. For each suffix one path exists leading into a leaf node.

Our Behavior Knowledge Base is intended to contain not only one behavioral sequence but
moreover all behavioral sequences occurred. Therefore, for the implementation of the Behavior
Knowledge Base, we comply with the concept of the Generalized Suffix Trees (see Section
5.2.4) allowing multiple sequences to be inserted into one data structure. For our purpose, the
concept of Suffix Trees has a major drawback by reason of concatenated labels on the edges:

1. Suffix Trees are built up for the purpose of exact matching of sequences. For anomaly
detection, exact matching is required as we are particularly interested in identifying
deviations from the previously observed behavior. We expect the behavior of task
instances to be quite similar but not always identical to the behaviors of former executions
of the task. Similar behavior leads to similar sequences not being identical and hence,
generates novel sequences. Inserting novel sequences into a Suffix Tree requires an
extension of the Suffix Tree that, depending of the variety of a task execution flow, may
become common. Referring to Section 5.2.2, an extension of a Suffix Tree is realized by
splitting up the label after the last symbol that is matching the sequence to be inserted
and inserting a novel branch node at that place. A new leaf node is generated and
connected with the new branch node by an edge. The label of the new edge is initialized
with that part of the sequence that did not match the already existing labels (starting at
the first symbol mismatching).

From the programming point of view, such extension of the Suffix Tree is difficult and
expensive. It requires the following steps:

Step 1 identifying the position of the last matching point in the label

Step 2 generating two new labels by splitting the original label of the affected edge:
one for the first part that is matching the new sequence and the second label
for the part of the affected label that does not match the new sequence.

Step 3 generating a new node

Step 4 connecting the affected edge (which label has been split) to the newly gen-
erated node and setting the first part of the label (the matching part) as the
label of this edge

Step 5 generating a new edge that connects the new node and the former destination
node of the edge and labeling that edge with the second part of the label of
the split edge (the mismatching part).

Step 6 generating a new leaf node for the new (mismatching) part of the sequence

Step 7 generating a new edge labeled by the mismatching part of the sequences and
setting this edge as a connector of the new branch node and the new leaf
node.

Obviously, this has to be done for all the suffixes of the sequence as in a Suffix Tree
any extension in a path requires to be performed for all the paths containing a suffix of
that path. The run-time complexity is mostly related to the splitting of the labels and is

depending on the internal implementation of the labels: The labels may be realized as
arrays which might be the most efficient data type from memory viewpoint as well as
concerning real-time requirements (static size, deterministic access to entries). If labels
are implemented by arrays, then while splitting 2 new arrays have to be generated. The
initialization of these two arrays is then realized by copying from the original array to
the two new ones. This has to be processed for all the paths containing suffixes of the
matching part of the sequence which leads to much run-time overhead. Using arrays,
however, has another drawback that is related to its static size. It is difficult to estimate in
advance the size of a label at one edge. Furthermore, it becomes more complicated if an
array was chosen too small and has to be enlarged when it has to preserve more entries
that previously expected.

An approach to overcome this problem is to use dynamic data structures such as a linked
list to realize the concatenation of labels. Linked list solve the problem of the complexity
of splitting up the labels. In linked lists, a splitting would only require just a redirection
of pointers instead of copying the existing entries. However, there is another reason why
concatenation of labels at edges for our purpose becomes unhandily:

2. In the approach proposed in this thesis, the execution of a system call sequence but also
each execution of a system call is intended to be analyzed individually in terms of its
effects on the (operating) system state. Hence, further information (such as frequency of
occurrence and classification of effect) not only have to be assigned to a (sub-)sequence
but also to each system call. Using a linked list for edge labels may allow to integrate
these information to each symbol in the label by appropriate design of the symbol
object. However, preserving the same type of information for (sub-)sequences as well as
individual system call leads to high redundancy of data which is not conform with the
requirements of real-time operating system having restricted resources.

To overcome these problems, we have decided to internally implement the Suffix Tree, in fact,
in form of a Suffix Trie (see Section 5.2.5). The main difference between Suffix Tree and Suffix
Trie is that in Suffix Tries an edge is labeled by only one symbol as depicted in Figure 8.8.

AB D$ B

AB D$ D$ ABD$

Figure 8.8: Comparison between a Suffix Tree (left side) and a Suffix Trie (right side) for the
sequence ABABDS$.

Of course, applying Suffix Tries enlarges the number of nodes in the data structure. But on
the other hand, a path extension is easier to be programmed for Suffix Tries as it only requires to
generate a new node and an edge connecting to an existing node. This simplification is essential
for run-time purposes. Additionally, it enables to integrate the classification information into
each node and thereby allows to equip each individual system call as well as an entire (sub-
)sequence with classification information. Besides this difference, Suffix Tries have the same
characteristics and features as the Suffix Trees.

Now the data structure consists of the following elements:

one root node

passthrough nodes (with only one descendant)

branch nodes (with more then one descendants)
e leaf nodes

e edges connecting the nodes with each other.

On grounds of programming simplification, the labels of the edges are implemented as an
attribute of the nodes. For complete sequences (in terms of representing a behavior sequence of
a task instance complete execution), leaf nodes will have to be labeled by the Sequence Ending
Symbol $. Only at the point of time when sequences are not completely inserted, leaf nodes are
able to contain other labels then the Sequence Ending Symbol. The Suffix Tree implementation
consists of three classes (as depicted in the UML class diagram in Figure 8.9):

TreeNode represents the implementation of the nodes of the tree. Each node is assigned a
value-attribute for the system call ID, the nodetype determining the type of the node
in the Suffix Tree, a reference to the node’s father, an array holding the sons of the
node and some further helper attributes that are required for construction and searching
purposes. The specified methods are offered for the access to the values of the listed
attributes. The edge implementation is realized by the pointers to sons-nodes, as there
are no information required to be assigned to an edge due to fact that the edge label
integrated into the node itself in forms of the attribute value.

SuffixPath is a helper class designed to store paths of nodes. A SuffixPath is dedicated
to be used to store such nodes that have been reached during construction of and/or
searching in the Suffix Tree. Its main ingredient is an array of references to TreeNodes
that can be accessed by the offered methods.

SuffixTree is the main class of the Suffix Tree implementation. It holds references to
the root-node, the array of leafnodes, branch point and the according counter vari-
ables numleafnodes and numbranchpoint, a reference to the sequence initSeqPointer
and its length. The class SuffixTree offers one constructor to immediately construct
the Suffix Tree for a previously completely available sequence by SuffixTree(intx
initSeqPointer, int length() and one constructor to initialize an empty Suffix Tree
(SuffixTree()) in such cases when the sequences is not (completely) available. Further-
more, methods are defined to construct the Suffix Tree by addNode(. . .),
addNodeToSuffixTree(...), insertSeq(...). The array pathpool is defined to store
references to objects of SuffixPath and is designed as a helper attribute to remember
the paths of nodes reached during the construction and/or searching. The remain-
ing attributes and methods are further helper attributes and methods defined for the
construction and searching purpose and will not be introduced in details here.

The detailed construction method is explained in Section 8.5.4.

1.
SuffixTree TreeNode
-root: TreeNode™ -value: int
-leafnodes: TreeNode** -nodetype: int
-numleafnodes: int i -sons : TreeNode™*
-pathpool: SuffixPath** SuffixPath -sonnumber : int
-numpath: int - n o -father: TreeNode*
-branchpoint: TreeNode** _(rjeezilgtf;erggg(c:ieso'l'ol'leeNode -leftsibling: TreeNode*
-numbranchpoint: int SuffixPath(reachednode: TreeNode") -rightsibling: TreeNode*
-initSeqPointer: int* ~SuffixPath() -suffixlink: TreeNode*
-length: int +getReachednode(): TreeNode* leaflink: TreeNode™ .
+setReachednode(reachednode: TreeNode*) +TreeNode(v: int, slink: TreeNode* , llink:

-pathpoollsempty: bool +setdeletemark() TreeNode*)
-checkpathpoolmark: bool +getDeletemark(): bool +~TreeNode()
-leafnodesUpdateToSuffixTree: bool +isRootNode(): bool
-indexArrayToSuffixTree: int* +hasSuffixlink(): bool
-numberindexToSuffixTree: int +hasleaflink(): bool
-newleafnodesToSuffixTree: TreeNode™*
-newleafnodesnumberToSuffixTree: int +getValue(): int
SuffixTree(initSeqPointer: int*, length: int); +getFather(): TreeNode*
SuffixTree(); +getLeftsibling(): TreeNode*
~SuffixTree(); +getRightsibling(): TreeNode*
+addNode(object: int*,endmark: bool); +getSuffixlink(): TreeNode*
+addNodeToSuffixTree(object: int*,endmark: bool); +getLeaflink(): TreeNode*
+insertSeq(seq: int*,length: bool): bool +getSons(): TreeNode*
+getRootNode(): TreeNode* +getSonnumber(): int
-addNewleafnode(node: TreeNode™) +setValue(value: int)
-addNewpath(node: TreeNode*) +setFather(father: TreeNode*)
-cleanPathpool() +setLeftsibling(leftsibling: TreeNode*)
-cleanBranchpoint() +setRightsibling(rightsibling: TreeNode*)
-getNextValidPathindexFrom(currindex: int): int +setSuffixlink(suffixlink: TreeNode*)
-compareWith(seq: int*,length: int): bool +setLeaflink(leaflink: TreeNode*)
-addTempNewleafnode(n: TreeNode* ,Inodes: TreeNode** , +addSon(son: TreeNode*)
numinodes: int): int +getNodeType(): int

+setNodeTypeAsRootNode()
-initTree(); +setNodeTypeAsPassThroughNode()
-getNextNodebyValue(value: int, node: TreeNode*): TreeNode* +setNodeTypeAsBranchNode()
-checkPathpool(value: int): bool +setNodeTypeAsLeafNode()
-isExisted(leafnode: TreeNode*,nodes: TreeNode** ,nnumber: int): int
-mergeLeafNodes(ninode: TreeNode**,numninode: int, indexArr:
int* ,nIndex: int)

Figure 8.9: Class Diagramm for Suffix Tree implementation.

The implementation of the Suffix Tree in form of a trie is only realized internally (due to
restrictions originating from requirements on runtime and memory overhead originating from
real-time systems), and it does not have any effect on the design of the anomaly detection
approach presented in this thesis. Therefore, we will continue referring to Suffix Trees as the
data structure for our Behavior Knowledge Base in the following parts of this thesis. We will
only emphasize the real internal realization by Suffix Tries if it becomes important.

8.5.3 Behavior Knowledge Base Initialization

The behavior for each running task in the system is assumed to be unique although the
individual executions of task instances may vary. Mainly, it is determined by the control flow
executed by the application task that leads to a particular system call sequence representing
an instance’s execution. With the Behavior Knowledge Base, we aim to establish a stable and
reliable knowledge of the (normal) behavior for each task in order to enable an individual
evaluation of a task’s behavior.

Therefore, each task requires its own Behavior Knowledge Base that is represented by a
Suffix Tree. Hence, for each task a Suffix Tree is generated at the task’s initialization time
(by using the constructor for sequences not yet available SuffixTree()). At initialization, the
Suffix Tree is empty consisting of only (a pointer to) the root node. The Suffix Tree remains
empty as long as the task’s first instance is not executed.

The collection of the single task’s Behavior Knowledge Bases constructs the shared Behavior
Knowledge Base of the anomaly detection framework.

8.5.4 Construction of the Behavior Knowledge Base

Before a task is executed for the first time, its Behavior Knowledge Base has been generated
at the task’s initialization by creating an empty Suffix Tree assigned to this task. In fact, the
tirst execution of a task (which is its first instance) does not differ from any other execution of
the task’s instance, even if an initial execution may proceed some initialization functions. From
the operating system’s point of view, each task instance is treated equally with respect to its
characteristics such as WCET, period, priority assignment, assigned resources etc. However,
concerning the Behavior Knowledge Base, the first execution of a task differs in such a manner
that the Behavior Knowledge Base is empty at the point of time the task starts its execution.
The Suffix Tree has to be constructed “from scratch” for the task based on the behavior of the
first (actual) task instance.

Each system call executed by the task is monitored by the System Call Monitor and passed
to the Behavior Knowledge Base as depicted in Figure 8.7. As the system calls occur in a
sequential manner, they have to be processes one after the other and included into the Behavior
Knowledge Base that is represented by the Suffix Tree. According to the consecutive emergence
of the system calls, the construction of the Suffix Tree for the behavioral sequence of a task
is implemented in a symbol-by-symbol manner on the basis of the algorithm presented by
Ukkonen (see Section 5.2.3). For each occurring system call, its ID is extracted (associated with
a task/thread ID and passed over to the Behavior Knowledge Base. The Behavior Knowledge
Base holds all the Suffix Trees (one for each task). The system call IDs are inserted into the
associated Suffix Tree of a task by calling its method addNode (int* value, bool endmark).
Then, the Suffix Tree is extended by this new sequence symbol right after the last symbol of
the sequence that has been inserted before.

To show the procedure of Suffix Tree construction, we take a look at a simple example for
an application source code, but by ignoring the semantics of that application. As we are only
interested in the system calls executed by the application task, for simplification purposes, we
reduced the source code of the application to only those commands that contain system calls
as illustrated by the following Listing 8.1. All the other commands have been deleted and are
denoted by . ..’ (dots). Also, we are not yet interested into the arguments of the system calls
so that they have also been replaced by ’. . .".

Listing 8.1: Extract of a simple application code example

void* p,q;

int j = o; int n = 2;

if (p == NULL) {
p = malloc(size); // system call ID '7’
j++;

}

7

q = malloc(size); // system call ID 7’

fopen (...); // system call ID ’o’

for (int i = j; i <n; i++){
f.l;e.:ad(...); // system call ID "2’
f.t"v.rite(...); // system call ID '3’

¥
fclose (...); // system call ID "1’

if (...)
printToStdOut (...); // system call ID ’'26’

free (); // system call ID '8’

if (...)
free (...); // system call ID '8’
¥

Every system call is assigned an ID which is denoted in the comment of the according
command line. (Up to now, we have addressed system call IDs in an abstract manner in forms
of letters such as A, B, C, and D. As this example shows a concrete implementation, we now
use the real IDs of the system calls as assigned in the system. They can be retraced in the
Appendix A.) Considering the control flow of this application example, the following system
call sequences are possible to be executed by this application task (of course, all sequences
ending with the Sequence Ending Symbol inserted at the task’s termination):

Sequence S1 77 023 2318%
Sequence S2 7 0232318 $
Sequence S3 7 0 1 8 §
Sequence S4 7 0 2 318 §

Sequence S5 7 0 2 323 126 8 $

Sequence S6 7 0 2 323188 $

Obviously, the presented application code may also produce further system call sequences,
so that these sequences shall be considered as a sample without any claim to be complete.
However, these examples show some variations that are sufficient for further explanations
concerning the Behavior Knowledge Base.

Let us assume, that Sequence S1 is executed by the first instance of the sample task, of
course the system calls arriving in a consecutive manner. The Suffix Tree (as up to now being
empty) has to be constructed for that sequence by calling;:

Call 1 addNode (&7 ,false)
Call 2 addNode (&7 ,false)
Call 3 addNode(&0,false)
Call 4 addNode(&2,false)
Call 5 addNode(&3,false)
Call 6 addNode(&2,false)
Call 7 addNode (&3,false)
Call 8 addNode (&1,false)
Call 9 addNode (&8,false)

Call 10 addNode($,true)

Figures 8.10 to 8.19 show the successive construction of the Suffix Tree for Sequence S1.
Figure 8.10 shows the Suffix Tree after the system call ID 7 was inserted by Call 1. For any
extension by a next symbol of the sequence, we need to know all paths to suffixes of the current
sequence as they are candidates to be extended by that next symbol. In fact, the paths of the
current suffixes are represented by the last inserted nodes (or at least matching nodes if they
have existed in the Suffix Tree before). In our implementation, we use the attribute pathpool
for the SuffixTree-object to store the nodes that are affected in the case of adding the next
node. These pathpool-nodes are blue-marked in the following figures illustrating the Suffix
Tree construction.

Figure 8.10: Suffix Tree for symbol 7

The next symbol in our system call sequence Sequence S1 is the system call with ID 7 (at
the second position in the sequence). For adding this symbol into the Suffix Tree, Call 2 is
called and the system call sequence executed up to now is S; = 7 7. The objective of the Suffix
Tree extension is that afterwards, the Suffix Tree contains all paths to suffixes of the sequences.
In this examples, it concerns the suffixes Sj[1.2] = 7 7 and S{[2..2] = 7. As a general rule,
the algorithm has to extend each node included in the pathpool of the former phase j —1
and the root node by the currently arriving symbol S(j). Referring to the progress of our
example, the pathpool consist of n; and the current symbol is S(2) = 7. But extending the
sequence by a symbol in this context does not automatically mean adding of nodes at the
nodes stored in the pathpool and the root node. It furthermore is concerned with checking
whether the pathpool-nodes and root already possess a child node with that symbol. The
example provided generates that situation: the symbol S(2) = 7 that is dedicated to extend
the Suffix Tree in phase 2 is equal to the (first) symbol previously included in the Suffix Tree.
As nq does not has any children, it is extended by the new node 1, with the symbol S(2) =
7. But the root node already has a child with the ID 7. Hence, there is no extension required
related to symbol S(2) = 7. After inserting the second symbol S;(2) = 7 by Call 2, the Suffix
Tree for that sequence (illustrated in Figure 8.11) contains paths to all suffixes of the sequence,
which means one path to S}[1..2] = 7 7 ending in node 7, and one path to S{[2..2] = 7 ending
in node n;. Now, the nodes 1, and n; are marked as ending nodes of the suffixes of the present
sequence and they are selected into the set of pathpool nodes that will be affected by the next
symbol extension. (For the following, we will only assign identifiers 7; to those nodes that are
essential for the understanding the corresponding explanations.)

root —_

N

n2

@

Figure 8.11: Suffix Tree for sequence 7 7

root

©

©
©

Figure 8.12: Suffix Tree for sequence 7 7 0

Figure 8.12 shows the Suffix Tree after Call 3 which inserted the system call ID 0. Both
previously blue-marked nodes as well as the root node are now extended by a new node
containing system call ID 0.

root —_

@
@

0
0

Figure 8.13: Suffix Tree for sequence 7 7 0 2

Figure 8.13 shows the Suffix Tree after inserting the system call ID 2 by Call 4. The root
node as well as all the previously blue-marked nodes have been extended by a node having
the symbol 2.

ORCOS ONLINE ANOMALY DETECTION FRAMEWORK

Figure 8.14: Suffix Tree for sequence 7702 3

Figure 8.14 shows the Suffix Tree after inserting the system call ID 3 by Call 5. The root
node as well as all the previously blue-marked nodes have been extended by a node having
the symbol 3.

Now, Call 6 is intended to insert the system call ID 2 as the next symbol of the sequences.
Figure 8.15 shows the extension of all previously blue-marked nodes by a node containing
the symbol 2 as no children with this ID have existed for the blue-marked pathpool-nodes.
However, from the root node, a path to a node with ID 2 already exists and is identified by
node n3. Therefore, it does not need to be added, but it is marked blue as a candidate for
next symbol extension and included into the pathpool. In fact, node n3 identifies the starting
symbol of the suffix of the sequence starting at position 6 (S[6..j] = 2..?).

root —

n

7
7
@

O

0

an O Orn QL ©)
DL+

0

Figure 8.15: Suffix Tree for sequence 7702 3 2

root

Figure 8.16: Suffix Tree for sequence 7702323

The next symbol of the sequence is 3 that is inserted by Call 7. The resulting Suffix Tree is
shown by Figure 8.16. All previously blue-marked nodes, that have been leaf nodes, have been
extended by a node containing the symbol 3. These nodes are now marked blue in order to
be extended by the next symbol of the sequence. For the node n3 that determines the suffix
starting with 2, no inserting of a new child containing the symbols 3 was required, as it already
exists (see node n4). Hence, only the blue marker is set on that child-node 14 identifying the
symbol 3. Additionally, the node determining the path from root that starts with the symbol 3
is n5 and, therefore, also marked blue in order to enable to extend suffixes starting with that
symbol. After the extension, all the newly inserted nodes as well as those determining the
endings of the currently present suffixes are marked blue as they belong to the set of nodes
(pathpool) affected by the next extension.

O

Figure 8.17: Suffix Tree for sequence 77023231

Figure 8.17 shows the Suffix Tree after inserting the system call ID 1 by Call 8. All the
previously blue-marked leaf node are extended by a new node containing the symbol 1. The
remaining previously blue-marked nodes n4 and 75 are validated whether child-nodes exist
with the symbol 1 exist. As this is not the case, they have to be extended by a new child
containing the symbol 1. Now, because these have already had a child-node, they a extended
by a further child and therefore, become branch nodes. As they both change their node type
into branch nodes within one extension cycle, a suffix links is set between them. Suffix links
(see Section 5.2.3) are used to speed up the searching of equal suffixes for extension purposes.
In fact, the destination of the suffix link is identifies the path of a suffix that is also a suffix for
the subsequence determined by the suffix link source.

ORCOS ONLINE ANOMALY DETECTION FRAMEWORK

(D

OO O O O Orn O

O OO O O OO

O

Figure 8.18: Suffix Tree for sequence 770232318

Figure 8.18 shows the Suffix Tree after inserting the system call ID 8 by Call 9. As all the
nodes in the pathpool are leaf nodes, the extension is done by simply extending each of the
node of the pathpool by a new child holding the symbol 8. Additionally, as no path to the
symbol 8 has existed before, the root node is also equipped by a node with the symbol 8.

(DD

(DDA
(DA

Figure 8.19: Suffix Tree for sequence 770232318 $

The last symbol to be included into the Suffix Tree is the Sequence Ending Symbol $. This
symbol is included by Call 10. As this symbol is the Sequence Ending Symbol, the endmark
parameter is set to true. The extension of the Suffix Tree is processed in the same manner as
for any other symbol by extending the set of nodes that are stored in the pathpool besides the
fact that there is no node with the symbol $ generated that starts from root. This is because of
the fact that the Sequence Ending Symbol is determined to identify the ending of a sequence
and its according suffixes. It does not make any sense to insert an empty subsequence or suffix
into the Behavior Knowledge Base. The final Suffix Tree for the complete behavioral sequence
of the first instance of the sample task is now generated and illustrated by Figure 8.19.

8.56.5 Searching and Extension

After the first execution of a task, in fact its first instance, a basis for the Behavior Knowledge
Base has been constructed by inserting the behavioral sequence executed by the task’s instance
into the Suffix Tree. Any further execution of the task requires first the validation whether
the newly arising behavioral sequence is already existing in the Suffix Tree or not. Only if
the behavioral sequence in not in the Suffix Tree, and extension of the Suffix Tree is required.
However, neither the System Call Monitor nor the Behavior Knowledge Base are able to directly
recognize subsequences or suffixes of already included sequences. They have to process the
newly arriving sequence again in a symbol-by-symbol manner. The validation whether the
a path to a symbol of the sequence already exists is already realized in the addNode-method
as it checks whether from the actually reached node a path to the next symbol to be inserted
exists. For each new task instance, the actual reached node is set to the root-node as each new
behavioral sequence has to be completely inserted into the Suffix Tree which means that its
path should start from the root-node.

Considering for example the Sequence Sz (see Section 8.5.4 above) composed of 7 02 3 2
318 %, it is a subsequence of Sequence S1. Moreover, it is its suffix starting at the second
symbol. Obviously, due to the characteristics of Suffix Trees, each suffix of the sequence is
included into the Suffix Tree after its construction. This can be also seen by taking a look at
Figure 8.19. Following the path that starts with symbol 7 which is a branch point, and then
following to node 0 from the branch point, we will detect Sequence Sz being in the Suffix Tree.
Hence, calling the addNode-method for each symbol of that sequence will quickly return after
detecting that the path to that symbol already exists.

This will be different for the task instance executing Sequence S3 =7 01 8 $. This sequence
is not a subsequence of the previously included and is therefore not existing in the Suffix Tree
yet. After the last task’s instance termination, the pointer to the last reached node was set
to the root-node and the pathpool is empty. Hence, at the beginning of a new period, the
tirst symbol of the behavioral sequence 7 is checked against the children of the root node. As
that symbol exists in the Suffix Tree, the node 1, identified by 7 is included into the pathpool
as a candidate for validating the existence of the next occurring symbol. By this, the path
found for the present sequence S[1..1] = 7 is followed. Calling addNode (&0, false) to add
the second symbol of that sequence will detect the next existing path to be followed (in fact,
it is a pathpool of nodes ng and ny as the algorithm has to follow the paths of the suffixes
starting at S[1..2] = 7 0 as well as at S[2..2] = 0). Now, calling addNode (&1, false) detects
that the reached nodes in the pathpool do not have any children to a node containing the
symbol 1. Therefore, these paths have to be extended by newly generated nodes for 1 which is
implemented in the addNode-method in the same manner as for the construction of the Suffix
Tree. Again, the nodes 1 and ny have already had children so that adding nodes with ID 1
makes them become branch nodes. And, as this is executed within one extension cycle, a suffix
link is set from node 14 to node ny. Because from root, a child-node with symbol 1 already
existed having been added by one of the previously executed task instances, no extension of
root node is required here. For the last symbol of the sequence, symbol 8, the addNode-method
is executed according to the process already described. The sequence is then finalized by
including the Sequence Ending Symbol at the affected paths. The resulting Suffix Tree for the
task having executed Sequence S1, Sequence Sz (which was already contained in the Suffix
Tree and therefore needed no extension) and Sequence S3 (extensions on the Suffix Tree are
marked in blue) is shown in the Figure 8.20.

8.5 BEHAVIOR KNOWLEDGE BASE

Figure 8.20: Extension of Suffix Tree by sequence 701 8 $

8.5.6 Discussion on Complexity

As in real-time systems we are facing strong restrictions in terms of time and space (concern-
ing memory), it is necessary to examine the runtime overhead and the memory requirements
caused by the Behavior Knowledge Base. This section deals with a static analysis of that
problem. Experimental results on the quantitive costs of the Behavior Knowledge Base will be
discussed in the Quantitive Evaluation in Section 9.3.

Size of Suffix Tree

Due to the fact, that RTOS have to be fully deterministic, dynamical memory allocation shall
be strictly avoided because time for allocation may become unbounded which may lead to
unpredictability in terms of time. The memory required by each component shall be known in
advance and allocated statically. Hence, this requirement is also set on the Behavior Knowledge
Base.

Therefore, when initializing the Suffix Tree for a task, the size of the Suffix Tree is preliminarily
configured by the system designer in the offline system configuration (by means of the ORCOS’
SCL Configuration see Section 6.2). Here, all parameters such as the maximum number of
nodes, the maximal length of paths, the max number of sons of a node, etc. can be configured.
Because the application developer is the one that has expert knowledge about the application,
he is able to set these parameters according the specific characteristics of the applications.

Nevertheless, static memory allocation means that memory space is allocated in advance, of
course always considering worst case requirements. This requires an exhaustive analysis as it is
important not to allocate too much memory that will stay unused. To configure the parameters
of the Suffix Tree, an analysis of the control flow on the basis of application’s system calls is
required. Referring to the Section 5.2 (background on Suffix Trees), for an n-length sequence,
the according Suffix Tree requires O(n?) number of symbols if the symbols are assigned labels
at the edges. Here, we are interested in a more precise analysis of the size of the Suffix Tree. In
our implementation, each symbol of a sequence is represented by one node in the Suffix Tree,
therefore, the number of symbols is equal to the number of nodes so that we are arguing on
number of nodes in the following. (We are not counting the root-node.)

For one sequence of length 1, the Suffix Tree contains a path consisting of n nodes for the
sequence itself, and pathsof n —1,n —2, ..., n — (n+ 1) = 1 nodes for all the suffixes of that
sequence. Assuming that all the symbols of the sequence differ (no recurrence of the symbols),
each suffix is determined by one unique path in the Suffix Tree. If all the symbols are unique
in the sequences (Vs; € Sy :s; # si(i,j = 0..n,1 # j)), consequently, the size of the alphabet for
that sequence is m = n. Then, the Suffix Tree will have no branch nodes and is composed of

n>+n _ n(n+1)
2 2

n
n+n—1)+m—-2)+.+2+1=) i=
i=1

(8.1)

nodes.

Each suffix (the sequence itself is also a suffix of itself) is ending with a node containing the
Sequence Ending Symbol $ (except the empty suffix) which in fact leads to n further nodes.
(We do not add the $ as a son of the root-node into the Suffix Tree.) Hence, for a sequence of
length n with n different symbols, the sequence becomes the length n’ = n + 1 when extended

by the Sequence Ending Symbol $. The resulting Suffix Tree consists of

n 2 1 1(.,/ 1
Zi+n:”;”+n:”(";)+n=”(";)—1 (8.2)

i=1

nodes.
Considering the Sequence S3 =7 01 8 $, for example, the Suffix Tree is shown in Figure
8.21. Sequence S3 has the length n = 4 and n’ = 5, and consists of m = 4 different symbols.

The Suffix Tree consists of @ +n= w +4 = 14 nodes (ignoring the root-node). We

come to the same result by using M -1= @ — 1 = 14. When counting the nodes in

the Figure 8.21, we will see that the result of 14 nodes is correct.

®

()

(=

Figure 8.21: Suffix Tree for sequence 701 8 $

Assuming that all symbols are different within one sequence (m = n) points out a special
case. Now, let us consider the number of nodes for sequences with recurring symbols. In fact,
the size m of the set of symbols used must be smaller then the length of the sequence n so that
m < n. For sequences that contain multiple occurrences of the same symbol, the Suffix Tree
does not contain one separate path for each suffix of a sequence any more. Moreover, for a
suffix that starts with a symbol already occurred in the prefix of the sequence, a node with
that symbol is already existing in the Suffix Tree. However, it is not enough to only count the
occurrence of a symbol in the sequences. To obtain the accurate size of a Suffix Tree, we have to
consider whether there are exactly matching subsequences in a sequence. Subsequence in this
context has the minimum length of 1. Multiple (at least 2) occurrences of subsequences within
one sequence share one path in the Suffix Tree for the length of that subsequence. Then, the
previously determined number of nodes in the Suffix Tree (see Equation 8.4) has to reduced by
the length of each matching subsequence (as they share the same path).

For each suffix of a sequence, it is essential to verify whether the prefix of that suffix is equal
to a subsequence already occurred in the prefix of that sequence. A matching subsequence
will start at the first symbol of the suffix and may go until the end of the sequence. (If that

subsequence is not ending at the last symbol of the sequence, the path of the subsequence in
the Suffix Tree ends at a branch node.)

For each suffix of the sequence the length of matching (already occurred) subsequences is
determined by the following algorithm:

Algorithm Counting the length of recurring subsequences within one sequence

Require: Behavior sequence Sy of a task

numO f ReducingNodes < 0
fori < 2,n do

forj«1,(i—1) do
while S[j] = S¢[i] and i < #’ do
numQO f ReducingNodes <— numO f ReducingNodes + 1
jj+1
i+ i+1
end while
end for
end for

return numO f ReducingNodes: number of nodes to reduce the size of the Suffix Tree

Then the resulting size of the Suffix Tree is defined by

(n+1)

SuffixTreer| = n +n — numO fReducingNodes (8.3)
> 8

with numO f ReducingNodes = Y*_; length(A;) with A; determining a subsequence occurring
in the prefix of the sequence being equal to the prefix of a suffix, and k the number of that
subsequences found in the sequence.

To explain this more precisely, we will use the example for Sequence S1 (770232318 %)
from the section above. By using the algorithm presented above, we can extract the following

subsequences as prefixes of the considered suffix that have already occurred in the prefix of
the sequence:

1. Ay = {7} withlength 1 fori =2and j =1
2. Ay = {23} with length 2 fori = 6.7 and j = 4.5

3. A3 = {3} withlength1fori=7and j=5

Hence, the size of the Suffix Tree calculated by Equation 8.4 has to be reduced by the sum of

the length of extracted subsequences 1 +2 +1 = 4 (n = 9 for that sequence) which leads to:

k
n(n;l) +n—Y_length(T;) =
i=1
3
9(9;—1) +9—) length(T;) =
i=1

45 +9 — (length(Ty) + length(Ty) + (length(T3)) =

54— (142+41) =50

Resulting from this, the Suffix Tree for Sequence S1 has 50 nodes which is correct when
taking a look at Figure 8.19.

In reality, it is not possible to predict the number and the length of recurring subsequences.
But if my - the size of the alphabet of a sequence Sy - is m < ny (1, length of the sequence
Sk), the it is obvious that exactly nj — my symbol reoccur in the sequence without taking into
account whether they belong to reoccurring subsequence. Hence, the worst estimation for the
number of nodes in a Suffix Tree for one sequence is:

n(n+1) n(n+1)
2 2

This equation is also valid for sequences with m = n and formulates the general upper bound
for the Suffix Tree size build up for one sequence.

|Suf fixTreer| = +n—(n—m)= +m (8.4)

However, the Suffix Tree implementation in intended not only to hold one sequence but to
hold all the behavior sequences that a task has executed. Therefore, it is essential to analyze
the size of a Suffix Tree containing multiple behavior sequences.

First, let us consider the theoretically possible size of a Suffix Tree. For each task, a maximal
length of a behavioral sequence 7,,,; can be determined by analyzing the control flow of a task
and (the worst case from the viewpoint of our anomaly detection) is defined by the path in the
task’s control flow that produces the maximum number of system calls. ORCOS actually offers
Myay = 73 different system calls (see Appendix A). For a n,,,:-length sequence, hence we get
Myt permutations as each system call can occur at any position in the behavioral sequence.
Furthermore, as 1,,,, declared the worst case, all sequences of length from 1,2, ..., 11, — 1 are
also possible. Therefore,

Nimax

n Nymax —1 2 1 _ i
s 4 g A M A Mg =Y My (8.5)
i=1

defines the number of nodes for all possible permutations of sequences with maximal length
of 1,4¢. Taking into account, that each sequence is extended by the Sequence Ending Symbol $,
each node in the Suffix Tree will be extended by one further son for the symbol $, we get

Nimax

|Suf fixTreer| =2+ Y mip,, (8.6)
i=1
For my.x = 73, as Equation8.6 is an exponential function, the size of the Suffix Tree (in
theory) becomes really huge.
Now, from practical point of view, we can reduce this size enormously:

1. it is very improbable that one task uses all m,,,, = 73 system calls. Usually, a task T
executes only a small subset of system calls which results in mt << M4y, and therefore

Nmax Nimax

2- Y mh <2) mi,, (8.7)
i=1 i=1

the theoretically possible size becomes much smaller.

2. there are dependencies between the system calls that have to be respected when program-
ming the application task. For example, considering the memory related system calls (all
system calls are listed in Appendix A), each call of the system call malloc (ID 7) requires
the call of free (ID 8) at a later point of time. If the application is programmed correctly,
a free should never be called if no malloc has been executed before.

Another example for a dependency is provided by the socket related system calls. A
listen (ID 21) to a socket leads to a runtime error if the socket was never created
before, by calling socket (ID 19). There are numerous of those examples showing the
dependencies between single system calls. Sticking to that dependencies, only legal
sequences shall be executed by tasks and hence, only legal sequences shall be inserted
into the Suffix Tree which again reduces the theoretic size of a Suffix Tree.

However, our anomaly detection is intended to also detect executions of illegal system
call sequences. Therefore, they cannot be completely ignored by the Suffix Tree. We will
explain what happens if a task executes such an unstable or illegal system call sequence
in more detail in Section 8.7.

3. We expect the particular executions of task instances to be similar. Similar in that context
means similar in terms of the system call sequences the task instances execute as they
belong to one task that, in fact, has one unique implementation. Hence, we expect
many recurring subsequences in the behavior sequences of a task. Mainly, based on this
assumption, we have proposed to use Suffix Trees for Behavior Knowledge Base. As
recurring subsequences share the same paths in the Suffix Tree (they are not included for
multiple times), the size of the Suffix Tree is predominantly determined by the variation
of subsequences that compose the behavioral sequences.

The latter aspect, is the key ingredient for determining the concrete size of the Suffix Tree
containing a task’s behavioral sequences. For the first instance, the size of the Suffix Tree is
defined by Equation 8.4 |SuffixTreer,| = W + my. For the second instance, the Suffix
Tree has to be evaluated whether it already contains the sequences and/or has to be extended.

Now, we would like to provide a mathematical upper bound for the size of Suffix Tree
containing multiple sequences. In fact, we can say, that for each sequence T; an own Suffix
Tree has to be constructed having the size of w + m; and is then merged with the already
existing Suffix Tree T;_1. The nodes that are existing in both Suffix Trees before merging are the
ones that do not have to be added to the Suffix Tree T;_; to obtain Suffix Tree T; so that they
reduce the number of added nodes. It is strongly related to the set of symbols that the single
behavioral sequences are composed of. Let us define M; as the set of symbols for a sequence
S; of the task T by M; = {s1,52, ..., 5.} with |M;| = m; = z (s1..s; being the symbols or system
call IDs), and My the (complete) set of symbols of the task T. My is the union of all the set of
symbols over all (/) behavioral sequences of the task: Mr = Uj':l M;

When a novel behavioral sequence occurs, we can distinguish between 3 different cases:

1. The symbols that sequence S; is composed of have not occurred in the previous sequences
of the task and are therefor not existing as nodes in the Suffix Tree. This means that the
previously occurred system calls are united to Mr, , = U;-j M; and hence, as all system
calls of S; have not occurred before: |Mr, , N M;| = 0. Then, the number of nodes of the
united Suffix Tree T; is

Tli(i’ll‘ —+ 1)

|Suf fixTreer,| = |Suf fixTreer, |+ |Suf fixTrees,| = |Suf fixTreer, |+ 5

+m;

This case is possible as long as |[Mr,_, << Myax — Mm;

2. The symbols that sequence S; is composed of have all already occurred in the previous
sequences of the task and are therefor all included as nodes in the Suffix Tree: Mr, | =
;;i M; = U§:1 M; = Mr, , and hence |[Mr N M;| = |M;| = m;. Then, in the Suffix Tree,

at least one node for each symbol exists as a son of the root- node. Hence, without
knowing whether there are matching subsequences, the size of the Suffix Tree is bounded

by

|Suf fixTreer,| = |Suf fixTreer,_1| + |Suf fixTrees,| — m;

Tli(i’l,' —+ 1)
2

7’1{(7’1,‘ + 1)

= |SuffixTreer, | + 5

+m; —m; = |Suf fixTreer, |+

3. Some of the symbols that sequence S; is composed of have all already occurred in the
previous sequences of the task and therefore, those symbols are included as nodes in the
Suffix Tree: My, | = ;j M; and hence |[Mr,_, N M;| = |M;| = r with 1 < r < m; Then in
the Suffix Tree, at least 7 nodes for the matching symbol exist as a sons of the root- node.
In that case, the size of the Suffix Tree is bounded by

|Suf fixTreer,| = |Suf fixTreer, ||+ |Suf fixTrees,| —r

All these 3 cases have a common structure consisting of
|SuffixTreer,| = |Suf fixTreer, || + |Suf fixTrees,| — x

with x = 0 = |Mr, , N M;| for case 1, x = m; = |Mr, , N M;]| for case 2, and x = r = |[Mr, , N M;]
resulting into:

|Suf fixTreer,| = |SuffixTreer, ,| + |Suf fixTrees| — |[Mr, , N M;]|

For defining the upper bound for the size of the Suffix Tree T, we have to sum up over all
sequences and their according Suffix Trees. Based on this, we can generally formulate:

ng(ng +1) k=1 > 8.8)

l
|Suf fixTreer| = Z (2 + | Mi| — | [M N M|
P =1

which in worst case without knowing the particular length of the sequences results in

i l k—1
. 1
Suf fixTree| =) texna 1)y ,<|Mk\ - UMfﬂMk|) (8.9)

k=1 k=1 j=1

The latter sum is bounded on the maximum number of system calls used by the task and
results in

nmux(nmax + 1)

|Suf fixTreer| =1- 5

+ M| (8.10)
In (the theoretic) worst case, meaning that there are all permutations of system call possible to
be executed by the task, this upper bound may reach exponential size of 2 - /""" m’.. Contrary,
if for each sequence S; it is valid that it is a real sub-sequence of already occurred sequences (or
equal to it) then we declare this as the best case and the size of the resulting Suffix Tree is

nmax(nmax + 1)

|Suf fixTreer,| = |Suf fixTreer,_1 = |Suf fixTreer,, | = >

+ [Mr|

The real size of the Suffix Tree, however, can only be determined when knowing all sequences.
Assuming that, we are able to calculate the concrete size. The following algorithm illustrates
the procedure to calculate the number of nodes that have already existed in the Suffix Tree and
do not have to be extended when inserting a new sequence S;(it is similar to the one presented
above for a Suffix Tree containing one sequence).

Hence, the number of nodes added by one further sequence S; is the number of nodes that
would be required for a Suffix Tree for that sequence minus the numberO f ReducingNodes that
already exist in the Suffix Tree:

#numO fNodes; = |Suf fixTreer,| — numO f ReducingNodes; (8.11)

For a number of i sequences, the Suffix Tree size can be calculated by
|Suf fixTreer,| = |Suf fixTreer,| + (|Suf fixTreer,| — numOfReducingNodes,) +
+ (|Suf fixTreer,| — numO f ReducingNodes;)

i
= Z; <|SuffixTreeT].\ - numOfReducingNodesj>
=

J nj(nj+1) n] +1) .
= Z + mj — numO f ReducingNodes; (8.12)
j=1

This can, of course, only be calculated by checking the number of already existing nodes
for each of the sequences. It requires to analyze each sequence in detail to obtain the concrete
number of nodes for Suffix Tree T;.

Algorithm Counting the number of nodes already existing in the Suffix Tree when inserting a
new sequence

Require: Suffix Tree of a task, Behavior sequence Sy of a task

TreeNode* actualnode < rootnode
int numO f ReducingNodes < 0
fori < 1,n; do

TreeNode* temp < getNodeByValue(Si[i], actualnode)
je—i+1

while temp and j < n;{ do
actualnode < temp
temp < getNodeByValue(Si[j], actualnode)
jej+1

end while

numO f ReducingNodes <— numO f ReducingNodes + j — i
actualnode < rootnode

end for

return numQO f ReducingNodes: number of nodes that are already inserted in the present
Suffix Tree

Nevertheless, we expect the sequences to be similar and to consist of a bounded set of

subsequences determined by the control flow of the applications task. Hence, we expect the

real size of the Suffix Tree for a task to be closer to |Suf fixTreer| = M + mr than to

the worst case.

Referring to the example of the previous Section 8.5.5, the Suffix Tree T7 has been constructed
for Sequence S1 =77 0232318 $and now was extended by Sequence S3=7018 $
(see Figure 8.20). For Sequence S3 (n3 = 4, m3 = 4) the size of the Suffix Tree would be
M +m3 = 22 +4 = 14 and the number of already existing nodes is calculated by the
algorithm presented above that leads to numO f ReducingNodes = 2+ 1+ 3+ 2 = 8 as for the
suffixes the following subsequences match the already existing Suffix Tree:

1. Ay = {70 } with length 2
2. Ay = {0 } with length 1
3. A3 = {18$% } with length 3 and

4. Ay = { 8% } with length 2

Hence, the number of nodes the Suffix Tree T; has to be extended when inserting Sequence

S3is M +m3 —numO fReducingNodes = 14 — 8 = 6 which is correct when comparing that

with Figure 8.20. For the Sequence S2=70232318$, numOfReducingNodes = M +my

and hence, the Suffix Tree T; has not to be extended by any node, which is obvious as Sequence
Sz is a subsequence of Sequence S3.

Of course, the exact calculation of the size of the Suffix Tree is only possible if all sequences
that are executed by a task are known in advance. Contrary, as our anomaly detection is
designed for self-reconfiguring applications, the behavior of tasks are unknown (but the set
of used system calls is known). However, the presented calculation allows a well-defined
estimation of the Suffix Tree (maximum) size required for an application. Experimental results
of Suffix Tree size are provided in Section 9.3.

Analysis of Runtime Overhead

Runtime overhead is produced in each period of a task as each task instance generate one
behavior sequence that has to be inserted into the Behavior Knowledge Base. Moreover, runtime
overhead is produced by each system call executed by the task.

Any executed system call is a symbol in the behavior sequence that is, first, checked whether
it is contained in the current path in the Suffix Tree, and, if not, inserted as a node into the
Suffix Tree. The matching process is always executed and requires constant time. If the current
system call is contained in the current path of the Suffix Tree, we can assume that the associated
node exists for all suffixes due to the nature of Suffix Tree construction method. The resulting
runtime effort remains constant. If no node corresponding to the current system call exist in
the current path of the Suffix Tree, it has to be generated and extended to that path as well
as all paths determining the suffixes of the behavior sequence. The generation of one node is
considered to require constant time. Hence, the runtime overhead for extending the Suffix Tree
by a system call of the behavior sequence depends on the number of nodes that are generated.

Every node represents the occurrence of a system call in a suffix of the behavior sequence.
The number of occurrences of a system call in the Suffix Tree depends on the number of
occurrences of the system call in the suffixes of the corresponding sequence S = s1s;...s,. The
first symbol in the sequence occurs only in the suffix S[1..n], while the second symbol s, is
present in the suffix S[1..n] and S[2..n]. Generally, each symbol s; is present in 7 suffixes from
S[1..n] to S[i..n]. From this follows that the worst case overhead for extending the Suffix Tree by
one system call is depending on the position i of the system call within the behavior sequence
S as every system call s; requires i nodes in i paths to be generated.

Consequently, the entire runtime overhead related to a complete behavior sequence is O(n?).
This runtime overhead has to be taken into account when performing the Schedulability
Analysis for a task. By knowing the maximum number of system calls of a task 7., - which
is the worst case length of a task’s behavior sequence -, this runtime overhead is bounded to
O(n?,,,) for each period of a task.

8.6 Operating System Health Monitor

The proposed anomaly detection approach was inspired by the Danger Theory. The main
contribution of the Danger Theory to our anomaly detection is that behavior or observation
information is classified based on predominate signals that reflect a health state. In the
former parts of this chapter we have introduced the System Call Monitor as the component
for collecting behavioral information, and the Behavior Knowledge Base implemented in
forms of Suffix Trees as the data structure to represent behavioral sequences and hold the
entire behavioral history. However, these behavioral sequences have not been classified yet.
In order to build the fundament for the classification of the collected behavioral sequences,

signals reflecting the system health state (the respective input signals from Danger Theory) are
required. We define the health state of the system by the state of the operating system and its
associated components. To supply the classification process with signals reflecting the state of
the RTOS, we have integrated an OS Health Monitor into ORCOS.

8.6.1 Design of OS Health Monitor

The basic idea of the OS Health Monitor is to extract parameters that act as software sensors
to determine the operating system state while tasks are executing, and to identify whether
the operating system parameters are in a healthy, suspicious, or malicious range. We call the
parameters that determine the system state as health data. (They will be defined in the following
sections.) The health data is output by the OS Health Monitor and, consequently, represents
the input signals for the classification of the anomaly detection module.

Referring to the basic idea, the OS Health Monitor has to realize the following functionalities:

1. Extracting health data parameters of OS (and its components)
2. Storing and organizing health data (including its history)

3. Reporting the health status of the OS (and its components) to the anomaly detection
module

From these functionalities, requirements can be derived resulting into the following design
decisions:

1. In order to be able to efficiently access internal status parameters of the operating system,
the OS Health Monitor must become a part of ORCOS itself and was therefore integrated
into the ORCOS kernel.

2. The system health state cannot be associated with one single attribute of the operating
system. The operating system consists of a number of components, the kernel modules,
that offer diverse ingredients to reflect their individual states. As these ingredients are
represented by parameters that are related to the OS kernel modules, the OS Health
Monitor must provide mechanisms to extract the health data from the respective OS
components.

This requirement leads to two design decisions:

2.1 The attributes that contribute to the overall system health state are specific to each
OS component. To be able to answer the question which attributes associated with
an OS component are relevant and define the system’s health data, first, each of
the OS components has to be individually analyzed in detail (by experts for that
component).

2.2 Values of parameters that define the health data have to be gathered from each OS
component (or kernel module respectively). This data is specific to that component,
potentially composed of different types, and often encapsulated internally within the
OS kernel module not directly accessible from outside the component. Therefore, a
component-specific implementation is required for the extraction of the data which is
realized by individual OS Health Monitor modules associated with OS components.
Then, a central module is responsible for managing the single component monitor
modules, on the one hand, and for managing the collected health data, on the other

hand. Therefore, an overall hierarchical architecture for the OS Health Monitor was
established consisting of monitor modules related to the OS components and the
Health Monitor Center.

3. The data collected by the OS Health Monitor are strongly related to the runtime status
of the system and its components as it reflects the health status of the system at the
current time stamp. Consequently, the OS Health Monitor must be a runtime component
integrated into the operating systems.

4. The collected health data deals as input signals for the classification of behavior performed
by the Anomaly Detection Module. However, values of parameters at a particular time
stamp are not the only indicators for classification but in some cases, their evolvement
considering the recent history may be of interest. Therefore, apart from current data
provided by the monitor modules, history data must also be preserved to some extent
by the OS Health Monitor. In order to support to the Anomaly Detection Module with
appropriate data, the data gathered by the OS Health Monitor is stored and organized in
an OS Health Monitor Database.

5. The OS Health Monitor is responsible for delivering the input signal for the classification
of the behavior. These classification input signals are of three types defining healthy,
suspicious, or malicious system state. These three states are assigned to different colors,
according to the traffic light principle:

e green - safe signal, healthy state
e yellow - warning signal, suspicious state

e red - danger signal, malicious state

Depending on the collected health data values, the OS Health Monitor produces the
according output by means of a Signal Generator.

6. To provide access to the OS Health Monitor functions as well as its data, the OS Health
Monitor offers an interface in form of a clearly defined APL

7. Being integrated into ORCOS that is fully configurable offline at module level, the OS
Health Monitor is configurable as well. To fully comply with the concepts of ORCOS, the
OS Health Monitor is an operating system module that can be activated or deactivated.
But it is not only the OS Health Monitor as a unique unit that can be included or excluded
into the operating system. Each of the monitor modules can be integrated individually in
dependence of the kernel modules configured at design time. These monitor modules
can be individually configured as well.

In particular, the health signals that the OS Health Monitor generates rely on expert
knowledge that is required to define boundaries between healthy, suspicious, and mali-
cious state for the affected parameters. In order to supply a user-friendly interface for
the experts, the setting of the parameter thresholds will be offered within the ORCOS’
configuration tool SCL Editor.

Domain experts may identify further composition of parameters and relationships be-
tween them that may be ingredients for the health state of the OS. These parameter
compositions should be validated by the OS Health Monitor even though their validation
has not been implemented within the modules. We have developed a Scenario Condition

Framework to allow experts to extend the health parameters, configure relationships
between them, define and add new conditions and to make it possible to flexibly integrate
them into the OS Health Monitor.

All these design decisions and requirements have been realized by the OS Health Monitor
and will be discussed in detail in the following sections.

8.6.2 Integration into ORCOS Architecture

The OS Health Monitor is strongly related to the kernel as it collects data extracted from
the kernel modules. Furthermore, the OS Health Monitor” s task is to deliver signals to the
Anomaly Detection Module that is responsible for the classification of the behavior. Based on
its purpose, the OS Health Monitor forms an interface between the OS components and the
Anomaly Detection Module. Figure 8.22 shows the ORCOS architecture with the OS Health
Monitor.

‘ Service ' ‘ Service ' ‘ Task ' ‘ Task ’ ‘ Task ’
O S
A S SE G ¢ Hser Space

Kernel Space

|
- | .
Communication |« SyscallManager J—,> System Call Monitor

Anomaly Detection
> with

|
|
|
|
|
-» CPUDispatcher : Behavior Knowledge
. | Base
|
|
|
|

Board

OS Health
Monitor

Timer

v

DeviceDriver +>’ FileManager “ """"""" > Scheduler

(
|
|
|
|
|
|
: InterruptHandler
|
|
|
|
|
|
|

Figure 8.22: Integration of OS Health Monitor into ORCOS Architecture (see Fig. 6.1)

Hierarchical Architecture

The diverse tasks of the OS Health Monitor form enclosed functions that can be encapsulated
within separate monitor modules. Therefore, the OS Health Monitor was constructed in a
module-based manner:

Component Monitor Modules: for each kernel module, a kernel module-specific monitor
has been developed to gather the module-related health parameters.

Monitor Database: the data collected by the component monitor modules is organized and
stored in the Monitor Database.

Signal Generator: The health signal is computed based on the data collected and present in
the Monitor Database. The Signal Generator implements and proceeds the generation of
the Health Monitor’s output signal.

A central component is required to manage these modules, their processing and the data
flow between them, and to provide interfaces to the Anomaly Detection Module. This task is
addressed to the Health Monitor Center.

With that central module, all in all, the OS Health Monitor architecture is organized in a
hierarchical manner (see Figure 8.23) consisting of a central module for management, containing
the database module and the signal generator, and component monitors that are assigned to
each ORCOS kernel module.

Health Monitor
Center

|

|

|

|

|

|

]

|

|

]

| Signal .
| Generator Monitor Database
|
|
|
|
|
]
|
|
|
|
|

@/ MemoryManager

CPUDispatcher
FileManager Scheduler

Figure 8.23: Architecture of OS Health Monitor

8.6.3 Component Monitor Modules

The major objective of the OS Health Monitor is to extract the operating system health data.
This data is spread over the single components of the operating system which, in ORCOS, are
represented by kernel modules. To extract the component-specific data, each kernel module
is assigned on component-specific monitor implementation in forms of monitor modules.
Therefore, the OS Health Monitor provides the following monitor modules already illustrated
in Figure 8.23:

e Scheduler Monitor

Processor Usage Monitor

Memory Monitor

e Communication Monitor

File Manager Monitor

Device Driver Monitor

In general, the process of data extraction and collection is confronted with three different
situations:

1. The respective kernel module offers an interface to directly access the data that has been
identified as being a parameter of health data. The Monitor Module can gather this data
by use of the offered interface.

2. The parameters identified as health data can only be accessed internally within the
kernel module. Therefore, no interface function is offered for outside access. Then, the
Component Monitor Module can only collect that data by directly inserting code into the
OS component to extract the according data.

3. Some parameters of health data are not directly provided within the OS component. They
can only be determined by calculations or accumulations on the basis of the present
internal OS component data. The Component Monitor Module has to implement these
calculations for the respective health parameters.

Health data that is collected by the OS Health Monitor without any need of being previously
processed on the basis of other health data values and, that therefore is directly available through
interfaces of kernel modules or code extensions, is termed base health parameter. Another subset
of health parameters are those that represent static values being initialized at the system’s or
the task’s initialization phase. We call this subset static health parameters.

Each of the components has been examined in detail to concretely define the parameters
to be collected by each Monitor Module. The main aspects of each Monitor Module are
described in the later part of this section. The complete listing of the parameters collected
by the Component Monitor Modules can be found in Appendix C. (Base health parameters are
highlighted in boldface.)

The parameters of health data have been individually determined for each OS component
assisted by expert knowledge:

General Monitor Parameters

In order to identify any unexpected system behavior or inside the OS Health Monitor itself,
all Component Monitor Modules measure the time interval in between their own execution.
The value is stored in the health parameter Time Interval. Each Component Monitor Module
stores and updates the Time Interval values, and calculates one average (activation) value
since system startup and one for the recent short-term history. Indications for unstable behavior
may be obtained by comparing the current value for Time Interval and its average value. E.g.
if a Monitor is called much more often or unusually infrequent than normally with respect to
the execution frequency in the system’s lifetime, the current value for Time Interval and the
Average Short-term Time Interval will strongly deviate from the Average Longterm Time
Interval. Obviously, these situations may happen in real-life systems. But, such a deviation
may also be an indicator for a suspicious system situation, as in real-time systems, any system
component shall execute according to a predefined period.

Scheduler Monitor

The Scheduler is responsible for executing the scheduling strategy deciding which task to
be executed next. In RTOS, the Scheduler acts on the basis of tasks” priorities in forms of
deadlines, execution time etc. Consequently, the Scheduler has all the execution-related and
scheduling-related data of each task. In ORCOS, the Scheduler is executed whenever the
according timer interrupt is raised as timer interrupts identify the time stamps for context
switches.

The Scheduler Monitor is intended to determine the health state of the Scheduler. Therefore,
it has to differentiate between stable and unstable behavior of the Scheduler itself as well as of
the scheduled tasks. Even though the operating system supports different types of scheduling
strategies (e.g. Rate Monotonic, Earliest Deadline First, etc.) with different characteristics
(preemptive or non-preemptive, static or dynamic, online or offline, optimal or heuristic, etc) the
Scheduling Monitor is designed in a generic manner. One basic requirement on the Scheduling
Monitor is that it can manage to monitor any scheduler implementation (of course any one that
is compatible with the ORCOS specification) independent of the applied Scheduler. Hence, the
parameters monitored by the Scheduling Monitor have to be generic to any ORCOS Scheduler
to enable to determine the Scheduler’s state:

e The Scheduler does not define any internal state. Additionally, it does not provide
any generous scheduler-specific parameters that would allow to reason of being in
an unstable or unhealthy state. However, if the Scheduler is executing, it consumes
processor time and, thereby, produces processor utilization at the kernel side. So, a
potential indicator for suspicious system behavior may be present in case the Scheduler
is executing unexpectedly frequent. The execution of the Scheduler is based on timer
interrupts. Timers are either calculated by the Scheduler itself to define time stamps
for task instance’s releases or are triggered externally by newly arriving tasks. In
order to detect such unexpectedly frequent execution, the Scheduler Monitor measures
the Time Interval between the Scheduler’s execution and collects that values. The
Scheduler Monitor stores, updates the values, calculates the average value for the Time
Interval since system startup, but also considering the recent short-term history as well.
Indications for unstable behavior may be obtained by a comparison between the current
value for Time Interval and its average value. Any deviation may also be an indicator
for a suspicious system situation. It is the task of system experts to define the correct
conditions and set the right thresholds to identify such situations, as, in fact, this is a
challenging task. Nevertheless, the Scheduler Monitor, as collecting that data, provides
foundations for this.

e Besides monitoring the Scheduler as an OS component itself, the Scheduler holds knowl-
edge about the tasks the operating system is executing. This knowledge can be exploit
in the Scheduler Monitor to identify indicators for unstable states of tasks. Each task
defines an arrival time, a worst-case computation time, and a relative deadline as static
parameters. While executing, the Scheduler, and consequently the Scheduler Monitor as
well, can gather the starting time, and related to this, the waiting time, the real current
execution time, the finishing time and the respective response time.

On the one hand, the Scheduler Monitor is intended to detect system failures such as
a deadline miss or situations when the current execution time exceeds the predefined
worst-case computation time (Obviously, these failures are based on faults in specification
or schedulability analysis that should not happen if specifications and schedulability
analysis are correct. But if these failures occur, the Scheduling Monitor will be able to
detect them.)

On the other hand, from these values collected, diverse conditions can be defined to
identify suspicious behavior. An example for such a condition is: if the execution time
of a task instance strongly deviates from the observed average computation time of that
task, and coincidentally is close to worst-case computation time. This situation may
not show up a failure, but if, for example, the worst-case execution time was never

reached by other instances of that task, that particular deviation execution time may be an
indicator for some suspicious behavior. An analogous argumentation can be formulated
for monitoring the response time of task instances.

Last but not least, when monitoring the static parameters of tasks e.g. the relative deadline
- which obviously should not change during the system’s lifetime - the Scheduler Monitor
is able to detect system manipulations and attacks in case of changes on these parameters.

The Scheduling Monitor collects parameters of tasks that are potential indicators to
identify different types of suspicious or even malicious states of the tasks. The complete
list of parameters collected by the Scheduler Monitor is provided in the Appendix C.1.

With the Scheduler Monitor, we are able to observe the performance of the Scheduler and
the tasks. Furthermore, it allows to define conditions for safe behavior, suspicious or unreliable
states and detect system failures such as deadline misses based on the parameters that the
Scheduler Monitor collects.

Processor Utilization Monitor

Processor utilization is a critical factor in real-time operating systems. To guarantee meeting
all system deadlines, the system requires a precise schedulability analysis and a thorough
exploration of the processor utilization. The system’s behavior must be fully predictable in
terms of time and must not be overloaded. In [30], Buttazzo provides an exhaustive analysis
of processor utilization (Equation 8.13, developed by Liu and Layland [70]) for different
scheduling algorithms. However, Buttazzo performs the schedulability analysis based on
the pure utilization originating from only the periodic tasks, of course based on worst-case
assumption. The calculation of the processor utilization according to Equation 8.13 can only be
applied for theoretical analysis, as from practical viewpoint, it completely ignores the overhead
produced by the operating system.

U= Z— (8.13)

The schedulability analysis for system’s that are dedicated to be put into operation must
take into account the overhead produced by the operating system. The schedulability analysis
performed at system design time delivers upper bounds for processor utilization. They do not
reflect the real processor utilization as the system’s runtime, but they can be exploit to deal as
a critical indicator for determining the system’s health state. In order to be able to evaluate the
real processor utilization with respect to the statically determined thresholds, it is essential to
monitor the processor utilization at runtime. This is implemented by our Processor Utilization
Monitor.

The offline system analysis results in values for worst-case processor utilization for each
system component (including the operating system itself and all tasks to be executed on the
system). If, at runtime, the task’s real processor utilization exceeds the offline calculated value,
its behavior does not comply with its specification. In such a situation, we have an indicator for
an unstable behavior. Hence, thresholds for processor utilization can be set based on the offline
system analysis which deals as a reference value to verify the current processor utilization.

The general accumulated processor utilization of a system is defined by Equation 8.14 (t for
the current time, idle reflecting the accumulated value for the length of time the processor was

in idle state in t):

t —idl
U= tld ¢ (8.14)
or as the sum over all the execution times of the n components:
n N 4
U= (21:1 CZ) idle (815)

t

with ¢; being the accumulated execution time of task or OS component i.

The task of the Processor Utilization Monitor is responsible to monitor the processor workload
assigned to the kernel and to each task separately. It regularly checks and updates the collected
data such as the current processor utilization of the current monitoring period, the short-term
history processor utilization as well as the longterm processor utilization. Then, it matches the
collected data against the system utilization thresholds or evaluates the specified conditions in
order to generate the according signal (safe, warning, danger). The complete list of parameters
monitored by the Processor Utilization Monitor can be found in Appendix C.2.

Monitoring the current processor workload provides benefit to another important aspect:
based on the current processor utilization, the currently remaining processor utilization is
known. This is very useful related to the system’s ability to reconfigure itself. Assuming an
unreliable system state is detected (caused by any system component) and a reconfiguration is
required: then, the operating system should have enough resources available (which includes
also processor time) to be able to reconfigure the system in order to restore the system into
a stable or healthy state. On the one hand, it can be checked based on the current processor
utilization whether there is enough processor utilization available to perform the reconfigura-
tion. On the other hand, the fraction of the processor utilization required for reconfiguration
should always be reserved for worst-case scenarios to guarantee system reconfiguration. The
Processor Utilization Monitor monitors whether the worst-case processor utilization required
for reconfiguration available, and raises a warning signal otherwise.

Memory Monitor

Memory is a restricted resource, especially, in embedded real-time systems. As the system
has to behave fully deterministically, it is also valid for the memory usage. Monitoring the
memory usage at run-time may prevent the system to run into an memory overload situation
which, in real-time system, is unacceptable. Obviously, memory overload shall not happen if
we could guarantee completely error-free specifications, programming, code verification and
analysis as well as testing. Nevertheless, in practice errors are always possible and are possible
to occur. Therefore, we apply our Memory Monitor to monitor the memory usage in order to
detect suspicious situations in terms of memory management.

As introduced in detail in Sec 6.3.2, in ORCOS memory is separated into a kernel space,
which is the memory space reserved for the operating system, and the user space that is the
memory space available for the tasks. The kernel as well as each task get assigned their own
Memory Manager.

The Memory Monitor regularly collects data of the overall memory usage, the kernel memory
usage, as well as per each task. This collected data is matched against the available memory
amount. If a task continuously allocates memory and never releases it, then the system or

at least the task may run out of memory. But there are also other sources of dangers for the
system. For example, if memory allocations are continuously executed (without any freeing of
memory) but at the same time there is no increase in the memory usage (allocations of zero
memory size), this might be either an indicator for a potential attack in forms of occupying the
system (by empty allocation calls) or at least for a suspicious situation. Therefore, the Memory
Monitor also collects data about the number of allocations as well as the number of calls of the
free memory function in order to observe these calls, match them against the used memory
size and, thereby, detect suspicious situations. The complete list of monitored parameters by
the Memory Monitor can be found in Appendix C.3.

Communication Monitor

Communication is a fundamental part of any operating system. In RTOS, is must behave
fully predictable in order to not endanger the deterministic behavior of the entire system.
The Communication Monitor is responsible for the monitoring of the communication device
of ORCOS and its performance. Therefore, it collects the values of the amount of data for
Upload and Download, but also the according Upload Speed, Download Speed and the overall
Communication Speed and checks whether and to what extent these values deviate from the
calculated average values. Furthermore, it might be of importance if connection attempts fail.
Therefore, the Communication Monitor implements a counter for the number of established
connections and a further one for counting the connection attempts that failed. Indicators
for a potential component failure may be found in various situations: the number of failed
connection attempts in the recent history, if the number of failed connection attempts exceeds a
threshold or when considering the rate of failed connections with respect to the number of
established connections.

To be able to distinguish between a general problem in the communication device and a
problem in a specific task, the Communication Monitor separately collects the communication-
related data for the module itself as well as for each task. The parameters collected by the
Communication Monitor are listed in detail in Appendix C.4.

File Manager Monitor

In ORCOS, any resource is managed in forms of files. The File Manager is responsible for
organizing the access to files. For tasks that are supposed to access files or the file system,
ORCOS offers system calls. The File Manager Monitor observes the performance of the
File Manager in order to report its health state. Therefore, it collects the number of file
accesses, but, moreover, it provides counters for each type of error related to file access (such
as cResourceNotOwned, cresourceNotWriteable or cResourceNotReadable). An increasing
number of an occurring error may be an indicator for an unreliable situation, especially if the
error occured frequently in the recent history, and/or reaches a critical threshold. The File
Manager Monitor collects this data set in a global manner as well as with respect to each task
so that conclusions can be drawn considering the source of the suspicion. A complete overview
of monitored parameters is given in Appendix C.5.

Device Driver Monitor

Devices in ORCOS are controlled by device drivers which provide an interface to offer
access to the device’s functionalities. Nevertheless, the ORCOS Module Device Driver is
implemented as an abstract class in order to be inherited by specific device implementations.

Each device driver implementation is specific to the appropriate device. Therefore, no common
health status parameters to be monitored could be identified.

However, the OS Health Monitor provides a module named Device Driver Monitor that
is responsible for monitoring the health state of a device driver. Like its corresponding
counterpart, the Device Driver Monitor offers an abstract framework that can be used to
implement concrete Device Driver Monitor submodules for each device driver integrated in
ORCOS.

Different means exist to obtain the health status of a hardware device:

e Some devices provide self-diagnosis features integrated into the chips to enable the
detection of problems. If a device provides such a feature, then the device driver is able
to obtain the data delivered by the self-diagnosis feature. Obviously, the corresponding
Device Driver Monitor needs access to this data in order to collect it and get information
about the device’s health state.

o As the health parameters of a device are strongly depending on the specification and the
purpose of the device, health parameters can only be identified by expert knowledge in
the context of that device. Often, logical relations between attributes or conditions for
parameters allow conclusions concerning the health state of a device.

When implementing a Device Driver Monitor for a specific device driver, data relations
and conditions have to be implemented individually. However, in order to generate
and obtain health signals from these OS Health Monitor submodules, the Device Driver
Monitor framework requires to access data in a generous manner. Therefore, the Device
Driver Monitor framework defines methods for the access to the data and signals. The
concrete implementations of data relations and conditions have to be encapsulated within
these methods in order to unify the data extraction.

The abstract Device Driver Monitor framework provides a protocol for the implementation of
different device driver monitors which leads to a reliable scalability of the OS Health Monitor.
A unified interface allows to access the monitored data and the resulting health signal in a
standardized manner. The methods defined by the interface are specified in the Appendix D.

The Component Monitor Modules internally collect all the data that contribute to the
reflection of the operating system health state. Basically, the execution of a task has effects
on the state of the kernel modules that in turn accounts for the operating system health state.
Therefore, each of the Component Monitor Modules collects global component-related data
that shows the internal state of the kernel module and task-related data that presents the
parameters of that component with respect to the task’s behavior. Based on these parameter
values, each Component Monitor Module generates an individual local component-related
health signal. Setting the boundaries between healthy, suspicious, or malicious system state
requires a correct configuration of conditions and thresholds for the parameters in any of
the Component Monitor Modules. In fact, it requires exhaustive analysis and evaluation
with component-/ and system-specific expert knowledge. The local component-related health
signals are combined to result in a global system health signal.

8.6.4 Signal Generator

The Signal Generator is the key part in the OS Health Monitor to generate the output
signal that is offered for the classification in the anomaly detection module. It implements the

functions and rules to analyze the data collected by the monitor modules and computes the
current corresponding health signals. From the viewpoint of anomaly detection, it is the part
in the system responsible for delivering the labels (see Chapter 2.2.1) that we call health signals.
The rules that are specified in the Signal Generator are the core ingredients for the efficiency
and reliability of the signals produced for our anomaly detection module. Component-specific
expert knowledge is required that includes exhaustive system analysis to be able to correctly
formulate these rules.

The signal provided by the OS Health Monitor was defined to take values in green (= safe
signal), yellow (=warning signal) and red (=danger signal). For computing the signal, the
Signal Generator operates on the data provided in the OS Health Monitor that was collected
by the individual Component Monitor Modules. However, it is not straightforward or even
impossible to define one rule that reflects the global system health state, taking into account the
large number of parameters monitored (even though using only a restricted set of parameters).
On the other hand, the diverse functionalities of the OS components lead to different parameters
of different parameter types that reflect their purpose and specific behavior (the Scheduler
Monitor collects scheduler-related parameters while the Communication Monitor collects
communication-related data). For these different kinds of parameters, it is not possible to
develop generic Signal Generator rules that could be generally applied to any Component
Monitor Module. Each component has to be individually analyzed in detail based on its state
parameters and results into a ‘Component Monitor Module’-specific sub-signal (see Figure
8.24). The component-related sub-signals are accumulated and build up the global system’s
health signal. For the global health signal, 3 options are configurable at design time that enable
the system designer more flexibility in implementing different strategies for reconfiguration:

Health Monitor
Center

Signal Generator

Sub- ™ Sub-
Signal Signal
| g gnal |§ |
Sub- Sub- Sub- Sub- Sub-
- Signal | | Signal | | Signal | | Signal | | Signal MemoryManager
Communication

o > A

DeviceDriver - CPUDispatcher

FileManager Scenario Scheduler
Condition

Figure 8.24: Signal Generator Design

1. The global system health signal is generated based on the maximum principle: if there is
at least one sub-signal that is red, then the global health signal is set as red; if there is
no red sub-signal but at least one sub-signal that is yellow, then the global health signal

is yellow; if there is no red and no yellow sub-signal, then the global system’s health
signal is set green.

2. The global system health signal is specified as a tuple counting the occurrences of the
sub-signals: health_signal := (#red sub-signals, #yellow sub-signals, #green sub-signals).

3. The global system health signal is defined as a tuple of the component-related health
signals as: health_signal := (health_signal Scheduler, health_signal ProcessorUtilization,
health_signal MemoryManager, health_signal Communication, health_signal FileManager,
health_signal_DeviceDriver_i, health_signal ScenarioCondition ...).

The first option provides one single value as a global indicator for the health state of the
system.

The second option counts occurrences of the different health signal values delivered by the
OS Health Monitor Components. Verifying the quantity of diverse signals enables the system
to recognize whether a potential instability might have been propagated throughout the system
components. The third option collects the sub-signals of the individual OS Health Monitor
Components. Providing this kind of global health signal offers the possibility to localize the
potential source of instability in the system based on the values of the component-related
sub-signals.

Further potentials are provided by the OS Health Monitor components that collect generous
component-related data (we call them global component parameters) as well as task-associated
data. Based on this distinction, we are able to separately define rules that examine the state
of a task and the state of the OS component and provide signals that are globally assigned to
a particular OS component and signals assigned to the individual tasks. Let us assume that
for one specific task the Memory Manager Monitor data exhibits indicators for an unstable
memory usage of that task, but the global Memory Manager Monitor data is not in a critical
state, then the OS Health Monitor’s warning or danger signal is related to the task. Contrary, if
the global Memory Manager Monitor’s data is critical, which obviously will affect the single
task-related Memory Manager Monitor data, then the Signal Generator will raise the according
component-specific warning or danger signal.

This information can be exploited by the system’s Controller responsible for the system
reconfiguration: if a task is detected to behave unstable, then the Controller would decide
to exchange that task while if the problem is globally present in an OS component, then the
Controller should decide to reconfigure that system component.

The complexity of the system composed of a number of components leads to the fact that
defining rules to obtain an accurate health signal is very challenging. Each component as well
as its delivered parameters have to be examined thoroughly in order to be able to make a
distinction between safe, suspicious, or dangerous state and consequently, raise the corresponding
signal.

In the parameters of the Component Monitor Modules, the different types of (mainly
numerical) attributes specified in "Nature of Data” in Chapter 2.2.1 are present: interval and
ratio attributes, predominantly available as time-ordered data. In fact, the data analyzing
process to generate a health signal is related to anomaly detection in the data, detecting either
Point Anomalies or Contextual Anomalies. Therefore, the rules we apply to the Signal Generator
are mainly coming from the various anomaly detection techniques (introduced in Chapter 2.5)
also implementing the different ‘Design Decisions’ (from Chapter 2.2.2).

For the data of the OS Health Monitor, we have characterized five different categories for
data analysis:

1. Static data analysis

There is a number of parameters that actually are static at system run-time, e.g. the
Relative Deadline of a task. These static parameters are expected not to change unless
in case of a system reconfiguration (e.g. exchange of a task by one with different
parameters). Static parameters, however, are monitored by the OS Health Monitor
in order to detect malicious system manipulations. The actual value is compared to
the statically configured value stored in the OS Health Monitor Database. If a static
parameter changes although no system reconfiguration was invoked, we can suspect a
system manipulation that was not intended and, therefore, raise a danger signal. As long
as there are no changes detected in the static parameters, the according signal remains
safe (healthy state). For static parameter monitoring, warning signal is not supported.

There is no history data required to be collected for static parameters so that the memory
overhead caused by monitoring is minimal (one entry per static parameter).

Samples of static parameters that are monitored by the OS Health Monitor (as imple-
mented up to now) are:

e Scheduler Monitor: Relative Deadline of each task (see Appendix C.1)

e Memory Manager Monitor: Memory Size of each task and the kernel (see Appendix
C.3)

Static data analysis belongs to the class of 'Programmed Anomaly Detection’ (see Chapter
2.2.2) that is dedicated to identify a Point Anomaly.

2. Threshold-based analysis

Real-time systems require a system analysis at design time in order to be able to guarantee
the schedulability, accurate timeliness and full dependability of the system. The analysis
performed offline is based on worst-case assumptions on the performance (execution
times, scheduling, and operating system overhead) of the system parts. From these worst-
case assumptions, boundaries can be derived that specify thresholds for the parameter
values at run-time. Like static data analysis, threshold-based analysis is also classified as a
"Programmed Anomaly Detection” technique (see Chapter 2.2.2) addressing the detection
of Point Anomalies.

As based on worst-case assumptions, exceeding a threshold shall, in general, lead to a
danger signal. The definition of threshold-based warning signal is not supported by offline
worst-case analysis and therefore, intuitively, not easy to be conducted. However, in the
context of reconfigurability, the warning signal may become useful: Reconfiguration is a
key feature in our operating system and the application environment that this anomaly
detection approach is designed for. Reconfiguration is intended to be rarely performed
(in case of failure or in terms of optimizations) as it requires a high amount of resources
and temporarily may cause a decrease in system performance. The RTOS must guarantee
full dependability in any case and, therefore, is obliged to reserve the according resources
required for reconfiguration. Nevertheless, the reserved resources would stay unused
for most of the time. But, by applying the ORCOS Flexible Resource Manager (see
Section 8.1.1), ORCOS is allowed to employ resources that are dedicated to be reserved
for worst-case scenarios. The FRM is responsible to allow such over-allocations only if
the release of the resources can be guaranteed to be performed in such a manner that
it does not violate any time or resource restrictions. Even if it is the FRM’s obligation

to manage such situations, over-allocation situations are critical for the overall system
and require accurate performance. Hence, we have decided to raise a warning signal if
resources reserved for system reconfiguration are borrowed to the tasks or the kernel.

Samples for thresholds set based on static analysis are:

e Scheduler Monitor:

— The calculated worst-case execution time (WCET) is set as a threshold for
Current Execution Time. If the current execution time exceeds this threshold,
then the Scheduler Monitor sets the health signal to red (danger signal).

— If the current Response Time exceeds the value of the Relative Deadline,
a deadline miss happened and, therefore, the danger signal has to be raised.
Therefore, we define the Relative Deadline as the threshold for the current
Response Time.

- We define a value called Relative Nonactive Time which is composed of
Relative Nonactive Time = Relative Deadline - Worst-Case Execution Time.
Relative Nonactive Time deals as a threshold for:

1. Waiting Time; the current Waiting Time shall not exceed the
Relative Nonactive Time
(Waiting Time < Relative Nonactive Time = Relative Deadline -
Worst-Case Execution Time),
as otherwise the Scheduler cannot guarantee that the task will be able to
finish within its deadline

2. Preemption Time; the current Preemption Time shall not exceed the
Relative Nonactive Time
(Preemption Time < Relative Nonactive Time = Relative Deadline -
Worst-Case Execution Time),
as otherwise the Scheduler cannot guarantee that the task will be able to
finish within its deadline

3. Blocking Time; the current Blocking Time shall not exceed the
Relative Nonactive Time
(Blocking Time < Relative Nonactive Time = Relative Deadline -
Worst-Case Execution Time),
as otherwise the Scheduler cannot guarantee that the task will be able to
finish within its deadline

4. sum of Waiting Time, Preemption Time and Blocking Time: the current
Waiting Time + Preemption Time + Blocking Time shall not exceed the
Relative Nonactive Time
(Waiting Time + Preemption Time + Blocking Time < Relative Nonactive
Time = Relative Deadline - Worst-Case Execution Time),
as otherwise the Scheduler cannot guarantee that the task will be able to
finish within its deadline

If the enumerated parameters exceed the threshold, an according health signal
has to be raised. Its definition is left to be decided by the system designer with
respect to whether the task is a hard (setting danger signal) or a soft real-time
task (setting warning signal). Furthermore, for assigning the signal it is possible
to take into account the (expected) Average Execution Time. If the Average
Execution Time is much smaller than the WCET, raising a warning signal might

be sufficient as the task will potentially be able to finish within the deadline
(and danger signal otherwise).

e Processor Utilization Monitor:

- For each task, the upper bound of the Processor Utilization is calculated offline
by & 7 which is set as the threshold for a task. If the Current Task Utilization
exceeds the threshold, then the task does not comply with the static analysis
and a danger signal is raised.

— For the overall system, the Processor Utilization has been determined by static
system analysis as well. If the Long-Term Processor Utilization exceeds this
value, a danger signal has to be raised.

— For the reconfiguration, a fraction of the processor utilization Uy, s has to be
reserved. If the current Current Processor Utilization exceeds the value of
1 — Uyecons, then at least a warning signal is raised. The decision whether to raise
a warning signal or a danger signal in that case is left to the system designer.

e Memory Manager Monitor:

- The kernel and each task have their own memory space and a specified Memory
Size which in fact acts as the threshold for the Memory Manager. If the current
Used Size of a task or the kernel reaches the value of the Memory Size, a danger
signal has to be raised in order to indicate a full memory usage.

— For the reconfiguration, a dedicated amount of memory Mem, .o, has to be
reserved. If the current kernel’s Used Memory exceeds the value
Memory Size — Mem,econf, at least a warning signal is raised. The decision
whether to raise a warning signal or a danger signal in that case is left to the
system designer.

e Communication Monitor:

— For each task that uses the communication device, a minimum communication
speed is required to be able to guarantee its deadline. We set that required
communication speed as the upper bound threshold. If the Communication
Speed undercuts the required upper bound for communication speed, a deadline
miss becomes probable and therefore a danger signal is raised.

— In order to guarantee a deterministic behavior, in each period of a task an
upper bound for Communication Load is determined. If the task’s current
Communication Load exceeds that value, a deadline miss becomes probable
which leads to a raise of the health signal. The simplest solution is to immedi-
ately raise a danger signal. Another possibility is to allow the system designer to
decide whether in that case to simply raise the danger signal or whether to match
the Communication Load against the Communication Speed in order to decide
to either raise a danger signal or only a warning signal. If the Communication
Load exceeds the upper bound but the Communication Speed is higher than
required, a warning signal might be sufficient.

e File Manager Monitor:

The File Manager is responsible to manage the access to files. The File Manager
Monitor mainly counts the number of errors occurring in the context of file accesses.
Concerning file accesses, it is not possible to define thresholds based on static
analysis. However, errors in file accesses will decrease the performance of tasks and

are therefore essential. On the one hand, they may indicate a wrong implementation
while on the other hand, they might indicate a potential attack that is dedicated
to occupy the system (by senseless file accesses). Therefore, the system designer is
allowed to set thresholds for acceptable occurrences for the various error types (see
Appendix C.5) monitored by the File Manager Monitor. The thresholds can be set
generally or even per period of a task’s execution.

These example provide an excerpt of Signal Generator rules and show that setting
thresholds for danger signals based on static analysis is applicable. The challenge is how
to define thresholds for the warning signal. This can only be decided by expert knowledge
of the system designer who is aware of the application scenario and its environment.

. Analysis of evolving data

The values of the parameters are monitored regularly at dedicated time stamps. They are
expected to differ at each monitoring point of time which, in most of the cases, is identical
to one execution period of a task or a kernel module. The change of the parameter values
may be of interest with respect to its tendency to evolve.

Some examples for suspicious data progressions are:

e Scheduler Monitor:

The Current Execution Time is monitored by the Scheduler Monitor. A suspicious
development can be identified if the execution time of a task tends to increase in
each period of execution.

e Processor Utilization Monitor:
The current Current Processor Utilization is directly related to the execution
time of a task. Hence, if the execution time of a task increases within each execution
period, the processor utilization of the task will increase as well. Changes in Current
Processor Utilization have equal significance as the Current Execution Time.

e Memory Manager Monitor:

The Memory Manager Monitor collects the Alloc Size of a task and the kernel per
period. Let us assume the following situation: A task allocates a certain amount
of memory in one period. Primarily, this is a valid action, especially in the task
initialization phase. However, if the task continues to allocate memory in each
period without releasing the same amount of allocated memory, it may lead to a
‘run-out of memory’ situation.

¢ Communication Monitor:
The Communication Speed is regularly collected. A continuous decrease of the
speed may be suspicious as it may reach an upper bound at which the timeliness of
the system may be disrupted.

Of course, most of these situations - if they occur - are related to specification or pro-
gramming errors that should have been detected by verification methods. But they could
also arise because of system complexity coming from autonomous and dynamic system
behavior.

Detecting such changes in parameter values may be not critical for one or two successive
values. But they may become critical if the values continue to change. Therefore, it is
essential to identify such situations. To decide which signal to raise in these situations is

not easy: Even if a value was increasing (or decreasing) in each period, it would be useful
to know whether it will tend to increase in the same manner. It might continue to evolve
in equal measure so that it will reach a critical value and cause dangerous circumstances.
Contrary, its course may exhibit an asymptotic curve which is not targeted to yield into a
danger situation. As the future progress of the value is unknown and not easy to predict,
but may lead to a suspicious situations, at least a warning signal shall be assigned here.

In order to detect the course of change in parameter values, methods for time series
analysis are powerful to be applied and provide mechanisms for clearly defining the
appropriate health signal. Another approach is to use regression-based methods (see
Chapter 2.5.4) that analyze the relationships of parameters in order to identify dependen-
cies between the present parameters and, thereby, allow to make predictions about the
development of values. It is left to the system’s expert to decide which method to apply
to which parameter set in order to ensure a reliable evaluation.

. Relationship analysis

There are health parameters collected by a Component Monitor Module that are interde-
pendent. Any change in one parameter shall induce a corresponding change in another
parameter.

One example for such an interdependency is:

e Memory Manager Monitor: The Memory Manager Monitor monitors the Alloc
Size and counts each call of the system call alloc (or new as an alias function call,
see Appendix A) by the parameter Alloc Counter. Analogously, it also counts the
free- calls (or delete) and collects the information in the Free Counter and Free
Size. Each call of alloc leads to a value for Alloc Size and an incrementation
of the Alloc Counter (and for the free-related parameters in analogical manner).
These parameters are interdependent as their change originates from the execution
of one identical system call.

Assuming that a tasks tends to call the alloc-function with an empty argument,
it will lead to the Alloc Size = 0 received by the Memory Manager Monitor. (Of
course, such a call is not expected. But it may occur and it might be caused by faulty
programming or a potential attack on the system). Even if that behavior does not
endanger the memory usage of the system, it provokes the system to be utilized by
useless function calls and thereby occupies the system. It has to be detected in order
to raise at least an warning signal to signify suspicious behavior.

The resulting rule for this example is: If there is an increase in the Alloc Counter,
the value of Alloc Size has to be > 0.

The Signal Generator provides rules to evaluate interdependent parameters in order to
detect any suspicious behavior. Here, we have discussed an example that is intuitively
reasonable. Further parameters exist that also show interdependencies. According rules
for these parameters can be formulated.

However, in contrast to our example, it is possible that the interdependencies between
the health parameters are not that clearly perceived . Their dependency may be unknown
because the parameters may be not directly affected by the same system calls or even
system components. To address this problem, the Signal Generator may use regression-
based analysis in order to detect such interdependencies between health parameters and,
thereby, enhance the accurateness of the health signals generated.

5. Observation data analysis

For many parameters, their actual values at run-time cannot be predicted by offline
analysis. They have to be measured online as they are affected by many different factors
and interactions of the system parts in operation. Based on the monitored data, profiles
can be derived that determine the normal behavior. Such normal profiles - often constructed
by self-learning methods - could be expressed by a stable average value or a value range,
by a distribution model, by patterns detected in the parameter value history, by clusters
formed based on the observed data items, etc.

Any observed parameter value that does not match the normal profile identifies a sus-
picious behavior that is declared as an anomaly which at least shall lead to generate
a warning signal. In fact, the OS Health Monitor builds up its own internal anomaly
detection mechanism for the observation data.

To realize this, diverse anomaly detection techniques, introduced in Chapter 2.5, can
be applied: Classification-based, Nearest Neighbor-based, Clustering-based, Statistical
Anomaly Detection, etc. It strongly depends on the type of the parameters and its
characteristics which anomaly detection method to choose. However, it is essential to
take into account that the data amount the anomaly detection method will operate on
is very restricted (as being applied in an RTOS for real-time embedded systems) which
might reduce the pool of applicable anomaly detection methods.

The decision which method to use is specific to each component’s parameter and requires
the expert knowledge. However, we provide some simple samples for ‘observation
data’-related anomaly detection by means of determining average values:

e Scheduler Monitor/Processor Utilization Monitor:
The Scheduler Monitor collects a number of parameters for which the average values
can be determined and which are helpful to identify suspicious behavior:

— Based on the monitored values of the Current Execution Time of a task, its
Average Execution Time can be calculated. If the execution times of a task are
similar and lay within a small range, then we can call the Average Execution
Time as stable. If any further instance of that task exhibits a Current Execution
Time that strongly exceeds the Average Execution Time, it might be an indi-
cator that the system’s or the task’s performance has changed. The Current
Processor Utilization is directly related to the execution time so that we can
formulate an analogical rule for the task’s processor utilization.

Of course, if the Average Execution Time is detected to be close to the WCET,
it becomes difficult to detect deviations that reflect suspicious behavior.

— Based on the observations of the Response Time of a task, it is possible to verify

whether the response times of the instances of that task are stable (lie within one
interval). Then, the resulting average response time may deal as an indicator to
evaluate the task’s execution performance.
Of course, the effectiveness of this rule is strongly related to the scheduling
algorithm applied as the response times for single instances may also vary (e.g.
when applying a fixed-priority scheduling policy like RM where its is possible
to state that a task with statically-assigned highest priority will immediately
execute as soon as it arrives. In contrast to that, applying a dynamic scheduling
technique such as EDF, the priorities of the instances are different and lead to
different schedules).

These are two examples how the average value might be significant to identify
changes in task’s performance. It is possible to formulate such average value-related
rules for all the parameters of the Scheduler Monitor (Waiting Time, Blocked Time,
Preemption Time, etc) if a stable behavior of a tasks can be taken for granted.

e Communication Monitor:
The Average Communication Speed is calculated based on multiple monitored
values of the Communication Speed and defines its normal value. If the current
Communication Speed strongly deviates from the average value, a problem in the
communication device may be the cause.

It is possible to calculate the average values for any kind of health parameters as one
means to detect a task’s or the component’s behavior differing from its normal profile.
Based on these average values (assuming that they are gained from stable and rather
similar performance of the task’s instances) outliers can be detected that are reflected by
raising a warning signal. An alternative for our simple approach to use average values
(in case they are not reliable), is to consider the median values, density-based anomaly
detection, or statistical anomaly detection like histogram-based approaches (see Chapter
2.5.4) and match the current monitored data against that model.

However, the observation-based analysis does not only rely on statistical calculations.
In particular, in case of strongly varying parameter values, statistics are not significant.
Another approach to detect deviations in observation-based methods is to first identify
behavioral patterns from the obaservation data. Pattern detection can be performed
by using regression-based or sequence data analysis (Chapter 2.5.8). One example for
pattern-based anomaly detection may be:

e Memory Monitor: The amount that a task allocates in a period is monitored in the
Alloc Size and the Memory Usage of that task. Let us assume that the memory
allocation in a task J; follows a particular pattern such as: In an initial state, the
task J; allocates per period a dedicated amount of memory size. After reaching
an internal threshold, the task may switch into a different state which changes
its behavior concerning the memory allocations: for example, after n periods of
allocation, the task could release all the allocated memory or start releasing step-wise
some amount of allocated memory in the following m periods.

From this behavior, a pattern for the A1loc Size and the Memory Usage values could
be extracted to define its normal profile. The current behavior of the task in terms of
memory usage shall be evaluated against this obtained normal profile.

Observation data-based analysis allows to define a normal profile for the behavior by
applying different models. Determining the adequate model is the first challenge that
the system designer has to face as a wrong choice will lead to an inaccurate model of
the normal profile. The second challenge is to assign an appropriate anomaly detection
technique based on the selected model as it must be efficient for small data sets and and
work on restricted resources.

As the problem of implementing Observation data-based analysis is very complex, we
are not able to provide a clear answer in form of specific Signal Generator rules here.
This topic is left to the system and application designers that have knowledge about the
specific application, the OS, and its application environment and are able to consider all
contributing factors.

The different rule categories introduce different levels of accuracy: First, we can distinguish
between hard and soft rules: hard rules are those that lead to a clear identification of a failure
(and result in a danger signal). Soft rules are those that lead to an identification of a suspicious
situation that cannot clearly be assigned to a dangerous state but potentially may lead to
it. Rules defined in Static data analysis and Threshold-based analysis are exclusively hard. The
remaining three categories allow to define both: hard as well as soft indicators. On the one
hand, it depends on the characteristics of the concerned parameters whether it is possible
to define rules that definitely point out a failure situation and such conditions that reveal a
suspicion. On the other hand, it depends on the system designer/developer, his/her expertise
and ability to define the rules or find appropriate algorithms and methods with qualities to
classify the collected data into safe, suspicious and dangerous. For hard rules, we can assume a
high quality of accuracy, while for soft rules, we are not able to make a general assumption.

The second implication on the accuracy is governed by priorities applied to the rules between
the different categories. The hard rules detect dangerous system states. Hence, if any of the
conditions defined by the hard rules is valid, a danger signal must be raised, without any ranking
order between the rules. Hence, all hard rules are assigned a unique priority at highest level. It
is different for soft rules: Soft rules can have different significance with respect to the accuracy
of the applied method, they even may be competitive. To illustrate this, let us make use of
the example of increasing memory usage per period. In the Analysis of evolving data, such
a successive increase of memory usage may be defined at least to lead to a warning signal.
When applying the Observation data analysis, this successive increase of memory usage may be
detected as a normal behavioral pattern that shall be classified as safe. In order to get a clear
health signal from the Signal Generator, it is essential to define an order of priority for the
defined rules at least at the level of rule categories.

One possibility for such a prioritization of soft rules is to give Observation data analysis highest
priority - as it relies on the learnt system behavior, then Relationship analysis, and at lowest
priority Analysis of evolving data. Of course, this is only possible if the method applied in
Observation data analysis is more efficient and reliable than the remaining ones.

With the hard rules identifying dangerous system state, the Signal Generator can be considered
as a failure detector. But moreover, with its soft rules, the Signal Generator becomes an internal
anomaly detector that is able to identify suspicious situations or states of the operating system
components at an early stage.

We provided some samples or simple rules as examples, but of course, the given examples
are incomplete. For anomaly detection, different models and anomaly detection approaches
can be applied, including all kinds of anomaly detection principles: programmed as well as
self-learning, supervised, semi-supervised as well as unsupervised. By this, Point Anomalies
as well as Contextual Anomalies can be addressed. However, to formulate the Signal Generator
rules correctly, and ensure a certain level of reliability and efficiency, the Signal Generator
can only be realized by expert knowledge and appropriate methods for system analysis. This
strongly effects the precision of the health signal that the OS Health Monitor delivers to the
anomaly detection module. To give an example for integrating expert knowledge, in our case
study (see Chapter 11), we have implemented a Signal Generator for an IR Sensor Monitor that
is an implementation of the Device Driver monitor.

Based on the health parameters associated either globally with an OS component or specifi-
cally with a task, the Signal Generator is able to track down the source of the threat or instability.
This offers great potentials to support an integrated system controller. The detection of the
potential source of threat supports the controller’s reconfiguration decisions that is considered
as one means of a reaction on a threat.

8.6.5 Scenario Condition Framework

For each Component Monitor Module, we have identified parameters to be monitored
in order to be able to evaluate the system’s health state. In the Signal Generator, rules are
implemented to produce the health signal based on the values of the monitored parameters.
However, we already have emphasized that the choice of appropriate parameters and, moreover,
the definition of rules for the Signal Generator strongly depends on a thorough analysis and
is not possible to be conducted without expert knowledge. In our implementation of the
Component Monitor Modules and the Signal Generator, we have worked in our fundamen-
tal system-specific knowledge without having involved detailed component-related expert
knowledge. A fixed specification of parameters and rules for generating the health signal may
introduce some deficiencies:

e From an expert’s viewpoint, the list of parameters or the rules for signal generation that
we have specified are not complete.

e The parameters or rules may not be suitable for a particular application scenario. Specific
working environments may require specific parameters and conditions that may result in
different health signal generator rules.

e The global health signal is derived from the local component-related health signals.
These, in turn, are constructed based on the parameters of only that component. However,
indications for dangerous situations may be discovered when combining parameters (or
parameter conditions) from different monitor components.

To give experts and developers the opportunity to incorporate their knowledge and, thereby,
enhance the OS Health Monitor, we have developed the Scenario Condition Framework. It
allows to define further parameters, conditions and rules a posteriori without the need to
directly include source code or modify the existing code of the ORCOS kernel or the OS
Health Monitor. (Allowing users to work directly in the source code of ORCOS is risky and
unacceptable with respect to the required system’s dependability.) Therefore, the Scenario
Condition Framework offers a user interface in forms of an editor that was integrated into the
SCL Editor (ORCOS offline configuration tool, see Section 6.2).

In the Scenario Condition Editor (see screenshot in Figure 8.25), the user is able to select
attributes that are available in ORCOS, define logical operations (such as <, >, =, | =, etc.) or
thresholds for the attributes that have to be checked at operation time in order to guarantee a
health state. Offering a form to the users ensures that the syntax of the formulated scenario
conditions is correct. In order to integrate these conditions into the OS Health Monitor, some
further phases are required:

After having defined the conditions, they are extracted by a Syntax Translator and translated
into a specific format. The Syntax Translator is equipped with a Dependency Builder that
verifies whether the user-defined conditions conform to the existing ORCOS dependencies.
(As ORCOS is fully configurable, different implementations of kernel modules can be selected
in the current configuration. They even can be completely activated or deactivated. Hence,
it is important to check whether the attributes used in the conditions that can be of different
OS components are available in the current ORCOS configuration.) As last step, the Syntax
Translator transfers the conditions into an ORCOS-readable SCL Configuration file. This
SCL Configuration file is bounded into the set of files for compilation. After the ORCOS
compilation, the OS Health Monitor is retooled with the Scenario Condition Monitor consisting

Please Type the identification name for this scenario condition:(without space)

condition1

Please Input the new scenario condition:

Sensor1>Sensor2

ComponentList OperaterList
Sensor1 &&
Sensor2 <
Sensor3 > OK
Sensor4 true
false cancel
!
++
| Select Component | Select Operater

Figure 8.25: Screenshot of Scenario Condition Editor ([69])

of a Condition Checker that includes all the user-defined conditions and a local Signal Generator.
The described workflow of the Scenario Condition Framework is illustrated in Fig 8.26.

At run-time, the generated Scenario Condition Module is responsible for verifying the
defined scenario conditions. However, the conditions can only result into either being true or
false so that, in contrast to the other monitor modules, the Scenario Condition Monitor can
only output two different signals:

e safe signal - if the scenario condition is true
e danger signal - if the scenario condition is false

The output signal of the Scenario Condition Monitor is treated as any other local health
signal and contributes to the overall system-wide health signal.

With the Scenario Condition Framework, we offer potentials to flexibly extend the OS Health
Monitor in a user-friendly and safe manner.

8.6.6 OS Health Monitor Database

The number of parameters that can be monitored is huge when consolidating all the possible
parameters of the Component Monitor Modules listed. Furthermore, referring to a set of
the rules for the Signal Generator (Section 8.6.4), considering only the current snapshot of
parameters is not sufficient to make assumptions on the system’s health state. There is a
number of signal generating rules that take into account history data in order to evaluate the
change in the values over a course of time. The data collected by the health monitor modules
has to be centrally organized and stored in order to be analyzed for the purpose of signal
generation. This is done in the OS Health Monitor Database that is responsible to hold data of
the health parameters.

Storing that huge amount of parameters including their complete history (a snapshot of
the parameter values is gathered in each execution period) is not possible in such resource
restricted environments that we address with this anomaly detection approach. Memory usage
must be bounded for any system part and, hence, for the OS Health Monitor as well.

Phase 1: Scenario
Specification of Condition Editor
Scenario Conditions
Model Checking
¢Syntax Translator
Phase 2:
Syntax Translation Scenario Dependency
Model Builder
Code Generator
Generating Code
Phase 3:
Compilation SCL
Configuration File
Phase 4: . o
ORCOS Build Scenal\l;:odCcI)ndltlon
for Operation odule
Signal ¢ Condition
Generator Checker

Figure 8.26: Scenario Condition Workflow ([69])

On the one hand, ORCOS offers the possibility for fine-grained configuration. At config-
uration time, the system developer has the opportunity to configure (add or remove) each
parameter of the OS Health Monitor separately. Unused parameters (those parameters for
which no signal generating rules have been specified) can be removed from the set of monitored
parameters. With this option system developers can primarily reduce the memory requirement
of the OS Health Monitor Database.

On the other hand, for determining the course of changes in the parameter values, only the
recent history data is required. Usually, old history data that is not related to the current system
state can be considered as outdated in the current context and, therefore, has no significance
in terms of the evaluation of the current system health state. Consequently, the OS Health
Monitor as a system component reflecting the current system state does not need to store
the entire history of parameter values. As only a restricted number of values from recent
(short-term) history are of interest, we decided to use fixed-size ring buffers for the health
parameters that require to store history data. As a means to address the problem of resource
restriction, this allows us to fully control the size of the OS Health Monitor Database and it
prevents unbounded memory usage.

We call the applied data structure containing the set of configured health parameters of

a Component Monitor Module with its associated history buffers the health matrix of a
Component Monitor Module.

Even if the size of the health matrix can theoretically be determined, most of the monitor
modules store task-related data. Hence, the real size of the health matrix is depending on
the number of tasks that are executed by the operating system which - in case of ORCOS - is
not finally set at compilation time because ORCOS allows dynamic loading of tasks during
run-time. Consequently, static allocation of memory space for the OS Health Monitor Database
becomes impossible as the required memory space is unknown. The OS Health Monitor has to
dynamically allocate memory space for each task which, in fact, contradicts the second major
requirement in real-time systems to ensure fully deterministic behavior. We have resolved this
conflict by implementing a compromise: Based on a fixed memory usage of the health matrix
for each task (that is defined by the used health parameters of the OS Health Monitor and the
size of the ring buffers) we can allocate memory for the OS Health Monitor Database at the
task’s initialization phase. By doing so, we apply dynamic memory allocation which, of course,
increases the task’s initialization. However, as after the task’s initialization all required memory
is allocated, it will not effect the further execution times of the task after it becomes ready to be
scheduled.

Initializing
ORCOS

Thread 1 Health Matrix

Thread 1 Health Matrix in
Assistant Database Scheduler Monitor

Thread 1 Health Matrix in

/ Mmeory Monitor

Number of Threads

Thread 1 Pointer

Remove Thread 2 Thread 2 Pointer

\ Thread 2 Health Matrix
Add Thread k Thread k Pointer

Thread 2 Health Matrix in
Scheduler Monitor
\ Thread 2 Health Matrix in

Memory Monitor

Thread k Health Matrix

Thread k Health Matrix in
Scheduler Monitor

Thread k Health Matrix in
Memory Monitor

Figure 8.27: Assistant Database (Source [69])

All information for the Signal Generator including all task-related health parameters are
present in the health matrix which is completely stored in the OS Health Monitor Database. In
order to manage the health parameters of a task and being able to extract the corresponding
signals associated with a task in an efficient manner, we have designed an Assistant Database
that holds the references to the task-associated health matrixes (of the activated monitor
modules). The structure of the database is illustrated in Figure 8.27. In case the number of
active tasks will change, the Assistant Database can be easily modified by adding, deleting

or exchanging its entries. With the Assistant Database, we are able to provide access to the
current task-related health parameters that are present in the running system.

8.6.7 OS Health Monitor Operation

The objective of the OS Health Monitor is to provide an output signal that reflects the
system’s health state. For this purpose, the OS Health Monitor has to undergo the following
workflow

1. collect the system-related health data
2. store and
3. process the data.

The extraction and collection of the system-related health data is implemented by the
Component Monitor Modules. The monitor modules gather the relevant data online at the
point of time they are affected at the system’s execution and store the data directly into the OS
Health Monitor Database.

However, the OS Health Monitor Database as well as the data processing that is implemented
by the Signal Generator must be controlled and managed. This is done by the OS Health
Monitor Center.

OS Health Monitor Center

The OS Health Monitor Center is the core component of the OS Health Monitor framework
responsible for managing its operation. The OS Health Monitor Center has assigned two main
tasks:

1. management of the OS Health Monitor Database and
2. ensuring the delivery of the output signal by the Signal Generator.

The latter is strongly connected with the task of managing the Component Monitor Modules
that have to provide their input to make it available to the Signal Generator.

The life cycle of the OS Health Monitor Center ordinarily consists of two phases: initialization
phase and operation phase. In the initialization phase, the OS Health Monitor Database is
initialized according to the health parameters selected in the configurations, the Component
Monitor Modules are activated, the appropriate size of buffers as well as the current number
of tasks are loaded into the system. Whenever a new task enters the system, the task-related
database initialization is re-performed. Then, the activated Component Monitor Modules and
the Signal Generator including its rules have to be initialized and prepared for their execution.

In the operation phase, the OS Health Monitor Center is responsible to control the usage of
the database. This especially includes to ensure reliable access to the ring buffer when data
is written to the OS Health Monitor Database but also the cleaning of expired data. In order
to supply the Signal Generator with up-to-date data, the OS Health Center is responsible for
triggering the Component Monitor Modules to preprocess their local signals and write their
current data into the database (if not already happened online). The Scenario Condition Monitor
is a monitor module, for example, (Device Drivers might be another example) that cannot
consistently perform online processing as some conditions may be composed of parameters
that are not synchronously changing and, hence, require the validation of the condition at a

different point of time. By the triggering of the Component Monitor Modules, the OS Health
Monitor Center enforces the Scenario Condition Monitor to update its data and its internal
state. The data and the local output signal of the Scenario Condition Monitor are passed to the
OS Health Monitor Database in the same manner as it is done for all the other Component
Monitor Modules. After having triggered the Component Monitor Modules to update their
data and their local signals, the OS Health Monitor Center drives the Signal Generator to
execute computations. Figure 8.28 illustrates the components and actions of the OS Health
Monitor Center.

Health Monitor
Center

Initialization

Initialize
Database &
Health Matrix for
Monitor Modules

=/

initialize,
activate

Initialize Signal
Generator and
Monitor Modules

Signal
Generator

Monitor Database

initialize,
activate

initialize,
activate

initialize,

initialize,
activate
activate

initialize, T T
/

activate Operation
Manage Manage
Modules, Database (add,
Trigger Signal remove data,
Generator control buffer)

./
\ 4

FileManager

MemoryManager

Communication

CPUDispatcher

Scenario
Condition

Scheduler

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

Figure 8.28: Processing of OS Health Monitor Center

The OS Health Monitor Center is realized as an ORCOS workerthread (see Chapter ORCOS
6.3.1) in order to be regularly scheduled to guarantee fully deterministic OS behavior. The
period of the OS Health Monitor Center has to be set according to the priority that will be
given by the system designer to the OS Health Monitor.

8.6.8 Health Monitor API

The key intention of the OS Health Monitor is to supply the anomaly detection module with
signals reflecting the system’s health state. In order to get access to these signals (the global
signal but also the local component-related signals), the OS Health Monitor provides an APL

The anomaly detection module is only allowed to read out data without being able to modify
or manipulate the data. The data of the OS Health Monitor can only be modified by its internal
components. Therefore, the API of the OS Health Monitor offers mainly get-functions and
methods to trigger the OS Health Monitor to update the data and return the according health
signals. The methods defined by the OS Health Monitor’s API are listed in Appendix E.

8.7 Classification

The core approach of the presented anomaly detection method is the classification of observed
behavioral patterns. Basically, the classification relies on evaluating the behavior in the context
of the health signals delivered by the OS Health Monitor as introduced in Chapter 7. However,
Chapter 7 merely introduces the classification idea, but leaves the question open what exactly
is to be classified and how the context-related classification is conducted.

Generally, the classification is based on the concept of the traffic light principle as already
applied for the health signals of the OS Health Monitor. The classification outcome takes on
values from

e green for safe behavior,
e yellow for suspicious behavior, and

e red for detection of dangerous behavior.

8.7.1 Classification Entities

Behavioral patterns are the system call sequences executed by the running tasks and are the
ones to be classified by means of the health signals. The execution of system calls has in turn
effect on the values of the health parameters in different variations:

case 1 the execution of a system call has direct effect on a particular subset of health
parameters

case 2 the consecutive execution of several system calls effects a particular subset of
health parameters

case 3 a complete behavioral sequence (representing the execution of a task’s in-
stance in one period) has effect on the system’s health parameters

With this differentiation into three cases, we have determined three entities of classification for
our anomaly detection approach.

In reference to the example introduced in Section 8.5.4, we will illustrate the three cases of
effects on the health parameters and the problems concerned with classification by using the
sequences

Sequence S7 7 7 0 1 8 $

Sequence S8 7 7 0 1 8 8 §

as legal sequences associated with the code provided in Listing 8.1. Additionally, the
following behavioral sequence is taken into account for the purpose of an illustration example
(and may be considered as a potential outcome of a system reconfiguration):

SequenceS9 7 ... 70188$

System call ID 7 represents the alloc-system call while system call ID 8 stands for the system
call free. The ’...” (dots) in Sequence S9 denote multiple occurrences of the system call 7.
The remaining system calls are not relevant for the following discussion and are therefore not
explicitly annotated.

Each single call of the system call 7 has effect on the allocation size of the task (see case 1)
and, hence, on the health parameters of the corresponding OS Health Monitor Module. Each
single call of the alloc-system call may lead to a memory allocation that exceeds a certain
boundary so that a warning or even a danger signal might be raised by the OS Health Monitor.

case 2 refers to a consecutive subsequence that in correlation effects the health signals.
Sequence Sg illustrates such situation: even if one call of alloc will not endanger the system’s
health state, the series of calls, denoted by 7...7, might do.

Furthermore, considering Sequence S7 - without the Ending Symbol $ -, it is a subsequence
of Sequence S8. However, the effects of these two sequences on the system’s health state are
different: Without going to far into details and by ignoring the arguments of the system calls,
we have to point out one main characteristic concerning the system calls alloc and free: due
to their semantics, alloc and free construct a pair. From the point of view of memory usage,
the call of alloc increases the memory usage, while a call of free decreases the memory usage.
Usually, according to good programming standards and requirements, each memory allocated
must be freed afterwards. Therefore, these two system calls are expected to occur in form of a
pair in the behavioral pattern. The occurrence of these system calls as a pair in the behavioral
sequence, assuming that alloc and free are called with the same arguments, neutralizes the
memory usage of the behavioral sequence.

Referring to the presented example, Sequence S7 contains two calls of alloc but only one
call of free. Hence, the execution of Sequence S7 will probably summarily increase the total
memory usage of the task. In contrast, Sequence S8 is Sequence S7 extended by one call of
system call 8, and, therefore, resulting into the same number of alloc- and free-calls which
leads to a potential neutralization of the memory usage of that task. This shows that different
behavioral patterns, even if one being a subsequence of the other such as Sequence S7 and
Sequence S8, have to be classified individually as described by case 3.

By the way, the latter example proofs the need for signifying the end of a pattern by
introducing the sequence’s ending symbol (indicated in Section 8.5.1) as it builds up the basis
for the differentiation between behavioral patterns that are subsequences and other sequences
in the knowledge base. The differentiation by means of the ending symbol allows behavioral
patterns to be individually classified.

Representation of Classification Entities

The behavioral patterns are encoded in the Behavior Knowledge Base in form of Suffix
Trees as described in Section 8.5. The structure of the Behavior Knowledge Base’s Suffix Trees
provides best prerequisites to differentiate between the three cases of classification entities.
Each single system call is represented by a node in the tree (case case 1), the entire sequence is
reflected by a path from root to an ending node, and consecutive subsequences are encoded
within the path that can be identified being located in between branch nodes in the tree.
(Referring to our implementation by using a trie, the occurring branch nodes are in fact the real
nodes of the Suffix Tree. The branch nodes are the nodes that would persist as tree nodes, if the
Behavior Knowledge Base would have been implemented according to its original specification

of Suffix Trees, see Fig. 8.8, while the single system call nodes would be abolished by inserting
their IDs into the edge labels.)

In order to ensure the differentiation of the defined three classification entities and their
identification in the Behavior Knowledge Base’s Suffix Trees, we have extended the structure of
the implemented Suffix Tree by introducing a specification of different types of nodes: The
basic class of a node is realized by TreeNode. Objects of this class usually represent the single
system call node (see case 1). To distinguish general tree nodes from branch nodes and leaf
nodes, specific types of classes have been defined for these nodes: BranchNode and LeafNode
that inherit the class TreeNode as depicted in Fig. 8.29. Two successive branch nodes of a
path enframe a pattern that occurs only in that consecutive manner and determines a minimal
subsequence of the behavioral pattern. Hence, the posticous branch node identifies the end of
the subsequence (as required in case 2). With reference to case 3, leaf nodes show up the end
of a sequence and therefore identify the third entity of classification.

<<enumeration>>
ClassificationMark

TreeNode Lo >

green
yellow
red

- classification_marker : ClassificationMark

i

BranchNode LeafNode

Figure 8.29: Class Diagram illustrating types of tree nodes

Classification Marker

All three entities of classification can be identified in the structure of the Behavior Knowledge
Base. Based on this, the Behavior Knowledge Base offers best foundations to directly integrate
the classification information. Each node in the Suffix Tree (independent of whether being an
ordinary tree node, a branch node or a leaf node) is extended by one further attribute: the Clas-
sification Marker (see Fig. 8.29, classes equipped with the attribute classification marker).
The classification marker is assigned a value that corresponds to the configured global health
signal representation explained in Section 8.6.4. That means, in correspondence to the global
health signal, the classification marker is either

1. a single value taken from the enumeration set ClassificationMark = {green, yellow,
red} that was obtained based on the maximum principle applied on the individual health
signals generated by the contributing components (here: the Signal Generator rules), or

2. a tuple of values that represent the count of occurrences of the particular health signal
values delivered by the contributing components health_signal := (#red sub-signals,
#yellow sub-signals, #green sub-signals), or

3. atuple representing the component-related health signals as: health_signal := (health_signal Schedu

health_signal ProcessorUtilization, health_signal MemoryManager, health_signal Communication,
health_signal_FileManager, health_signal_DeviceDriver_i, health_signal _ScenarioCondition...)

The value of the classification marker is established on the basis of the behavior classification
method implemented by the anomaly detection module and described in the remaining part of
that chapter.

8.7.2 Classification Method

The objective of the classification method is to assign each classification entity instance a
value for the classification marker. The basic entity is the tree node that represents one symbol
of the behavioral pattern which actually is a representative for a single system call. Based on
the fact that the execution of a system call directly effects on the values of a subset of health
parameters, the classification of a system call - as a basic classification entity - is related to
that subset health parameters. In order to perform the classification of applications’ behavior
in forms of the different classification entities, it is essential to first identify the effects of the
system calls on the existing health parameters gathered by the OS Health Monitor:

Correlation of System Calls and OS Health Parameters

The impact of the system calls on values of the health parameters has been determined by
code analysis of the system calls. The system calls offered by ORCOS are primary grouped
according to the kernel functions they address, as depicted in Appendix A. In the following
discussion on the effects of system call executions, this grouping is maintained as the analysis
has shown that system calls grouped to one kernel function predominantly effect the corre-
sponding health parameters of the Component Monitor Module of the OS Health Monitor that
is associated with that kernel module. (The complete set of health parameters attached to the
Component Monitor Module is listed in Appendix C.)

The following parts contain tables that illustrate the correlation of system calls and OS Health
Parameters. In fact, a correlation means that a change of the health parameter value can be
induced by the execution of the particular system call. In the provided tables, the correlation
of system calls and OS Health Parameters is denoted by an "x” in the table entry.

Health parameters that represent accumulations or average values, obviously will change
because of changes in the base health parameters. However, these health parameters are not
depicted here, as their changes are induced indirectly as a consequence of the change on the
directly effected base health parameter values.

1. Stream/File related system calls

System calls related to stream or file operations are addressed to the ORCOS resources
and are mainly executed by services of the ORCOS File Manager. Therefore, the system
calls belonging to this group directly effect the File Manager Monitor parameters as
denoted in Table 8.1. Only system call fcreate effects the Memory Manager Monitor
parameters as its execution is intended to create a new resource or file that has to be
allocated in memory.

2. Memory related system calls

System calls that are related to memory management imply new and delete. These two
system calls affect only health parameters associated with the Memory Manager Monitor
as illustrated in Table 8.2.

File Manager Monitor Memory Manager Monitor
@D
Ll Q
S| E|E
EIR B
Bl 28
~—)
Slel2| &
A @ [< o
15 Sl =S| T E
bR
= 3 = Qo 8
3 Q2| & &
= -+ + =] =~ >
2 c|lo|o| ol @ 5
&~ Z\1Z1Z| 31| ¢ £
S])] [2]
o) O O © ol N)
= S| 5| 5o . =~
15212122909
Q) O
EIMIE| 83| 8|E|2B]|8 E
2IQIEIEIMIXE I IIZ|Z -
System Call RO I I I A B
fopen X | X | x X
fclose X | x| X |x
fread X | X | X X
fwrite X | X | X |X
fputc X X | X
fgetc X X X
fcreate X | X X || x| x X

Table 8.1: Mapping of System Call to OS Health Parameters: Stream/File related System Calls

Memory Manager Monitor
= >
gl | g
Sl ol € £
Ol N| 2| ¥)
Sl 58 =
19 1 o]
S| &| 9| @ I
==& & 93
System Call | < | < | & | = -
new/malloc | x | x X
delete/free X | X X

Table 8.2: Mapping of System Call to OS Health Parameters: Memory related System Calls

3. Task related system calls

The task related system calls are responsible for stoping, resuming or exchanging system
tasks. The health parameters that are effected by these system calls belong to the
Scheduler Monitor as shown in Table 8.3.

Scheduler Monitor
Q
£
=18
q -
S8 |¢
v | B2 |-
E|S|Y |E
o| S5 6|8
E| 2| 2| £
= | A c | & | &
Hl2 | 8| | E
.2 Hl o)
LR =T = I O I
System Call DU A
task_stop X | X
task_resume X
getSubtaskByld
changeRunningSubtask | x | x | x

Table 8.3: Mapping of System Call to OS Health Parameters: Task related System Calls

4. Thread related system calls

Similarly to task related system calls, thread related system calls effect parameters of the
Scheduler Monitor. However, system call thread_create also effects health parameters
of the Memory Manager Monitor. The effects of thread related system calls on health
parameters are illustrated in Table 8.4.

Scheduler Monitor Memory Manager Monitor
[3)
£
—
o |g| 2
o) Q
é -‘g 8 é Q Q -~ >
& 8 2 c | = | = c S
Elale s |8 |E|EB | 8| a &
Lﬂ o o= o0
=) E - | ' - bo & o | N)
S SIE|E| &g |E|OD =
S = N g E | 2|5 v Y)
- < o o Q [«D] Q o= o o)
Elg| 83888 |E|=2]S &
System Call || h || A& & B |K|<|< -}
sleep X | x| x| x
thread_create | x | x X | X X
thread _run X X
thread _self
thread_yield | x X X | x
thread _exit X X

Table 8.4: Mapping of System Call to OS Health Parameters: Thread related System Calls

5. Signal related system calls

The signal related system calls are addressing operations on exclusive resources that
in ORCOS are administered by means of files. These operations are intended to block
or resume the execution of threads with respect of the status of the required resource.
Hence, these system calls, on the one hand, effect health parameters of the File Manager
Monitor as well as the parameters of the Scheduler Monitor, on the other hand.

File Manager Monitor | Scheduler Monitor
<)
£
-
o g
@) <]
: £
2 glo |8 | ¢
~ Clelg =
= g8 | F
5 £ 85| &
S S| E|E| =
& g o) J
S = T I = .=
System Call = Uls |~ |
signal _wait X X | x| x
signal_signal X X X

Table 8.5: Mapping of System Call to OS Health Parameters: Signal related System Calls

6. Socket related system calls

Socket related system calls are a suitable example to show that a group of system calls
does not only effect mainly one Component Module Monitor. In contrary, this group
of system calls affects all the basic monitor modules including File Manager Monitor,
Memory Manager Monitor, Scheduler Monitor and that Communication Monitor as
illustrated in Table 8.6.

In this context, system call add_devaddr is a specific system call: based on the fact that it
enables to build up a socket connection to a local device by mapping its address on the
socket, communication with that device (over the socket) may lead to effects on the health
parameters of the specific device. However, these health parameters are not generally
defined because they can only be specified in the context of that device. Even if there
might be a correlation between system call add_devaddr and a device’s health parameters,
these health parameters are unspecified and therefore, they cannot be encountered here.

File Manager Monitor

Memory Manager Monitor

Communication Monitor

Scheduler Monitor

9]
&
-
o Z 3
5 El5 |
- o R=
2) 2 210 |E g
& = g ele | g| =2
v 3¢ g ¢ Sl8|s| F
o o= -+ -+ oY0)
) O|® > - S Elel | £
Q V| v o) © 8 & | g & -~
g eBiNe O M| = 2 E1 2|3 3
5 = | =) O|4l &) o I et °
System Call s < | < = O T | P A O|& [& | m
socket X X | x X
connect X | x X
listen X | x X | x| x X
bind X | X
sendto X | x| x
recvfrom X | X X X | x| x X
add_devaddr

Table 8.6: Mapping of System Call to OS Health Parameters: Socket related System Calls

Memory Manager Monitor

Communication Monitor

Scheduler Monitor

5
3 & 2) ol T
c 3 e N g 9
5| ol § = N T = A q.>
O| N| B| | W > < = g
Q| B | LI NI= 5 < o —~| e 5
Old Q = c < |2 =
V| Y o) = ol o = -
ol &l vl| 9| g VR I = 2 o © ca
== ¢ ¢ @ Y Ol & | & © El g s
System Call <|<|E| =D | = O| o A < | & »
getTasktable X | X X X | X | X X
create_task_physicalMemory | x | x | x | X | X X X | X X
isDownloading X | x| x X | x X
preTaskloading X | X X X | x| x
createtask_physical_syscall X | x| x| x| X X X | X X

Table 8.7: Mapping of System Call to OS Health Parameters: System calls for Task loading

7. System calls for Task loading

This group of system calls is designed for dynamic loading of new tasks at runtime. These
system calls effect parameters of the Memory Manager Monitor, the Communication
Monitor as well as the Scheduler Monitor as depicted in Table 8.7.

8. Others

For the system calls belonging to the group of ‘Others’, no effects on the defined health
parameters have been identified. In case of the system call printToStdOut, a device
specific implementation is required. Therefore, this system call can potentially effect
health parameters of the corresponding device driver (which are not specified yet).

Considering the types of OS Health Parameters, of course, static health parameters should not
be effected by any system call execution as they are fixed over the entire system runtime.

Summarizing the presented correlation results, every base health parameter is directly
effected by at least one system call and can be found in one of the mapping tables presented
here. One exception are the Time Interval parameters that are set at the beginning of
an execution period of the OS Health Monitor Center. System calls have no effect on the
Time Interval parameters. Another exception are the parameters provided by the Processor
Utilization Monitor. The base health parameters of the Processor Utilization Monitor such as
Idle Time or Kernel Occupying Time are not directly initiated to be set by any system call.
Moreover, their values can only be allocated whenever the ORCOS Scheduler is triggered.

As shown, only base health parameters are directly effected by the execution of system
calls. However, the remaining health parameters, that are no base health parameters (and no
static health parameters), are defined as compositions of base health parameters. Any change
in the value of a base health parameter induces a change of all health parameters that are
depending on that particular base health parameter. The dependent health parameters require
a recalculation to update their values.

effects contributes
base health parameter ———————————— health parameter

system call

new/malloc

delete/free

Figure 8.30: Effected OS Health Parameters by system call executions for Memory related
system calls.

In fact, the health parameters that are not directly effected by the execution of system calls
are affected in an indirect manner because of the chained effects of system call executions. The
correlations are exemplarily depicted in Figure 8.30 for the memory related system calls. The
graph shows the system calls on the left side and identifies their effects on the base health
parameters. From the base health parameters, the effects on the remaining health parameters
are illustrated. The red-marked health parameters are emphasizing static health parameters as
those should never be modified by chained effects.

Such graphs for visualizing the correlations of system calls and health parameters can be
constructed not only for memory related system calls but for any of the system call groups
even though they are not provided in this work. In fact, in the anomaly detection module, the
correlations are implemented in forms of mapping tables that contain all the interdependencies
of health parameters and system calls.

By the chained effects, every health parameter is actually affected by some system calls (at
least one) as, in the analysis, correlations with system calls (at least one) have been identified
for every base health parameter (besides the exceptions explained above). We can determine
the subset of health parameters that are effected by a particular system call (by following
the paths of system call effects on health parameters illustrated in Figure 8.30). Vice versa,
the subset of effecting system calls on a particular health parameter can be determined by
the subset of system calls that effects the base health parameters that the particular health
parameter depends on. We can determine this by following the reversal paths in Figure 8.30
starting from the health parameter to its effecting system calls.

Of course, the presented results represent a snapshot of the current ORCOS release. They
reflect the implementation specifics of ORCOS’ system calls and the specification of the
parameters collected by the OS Health Monitor. Any change in the implementation of the
system calls, any extension of the ORCOS’ System Call Interface by novel system calls as well
as any extension of the parameters monitored by the OS Health Monitor require a renewed
analysis of potential changes and necessary extensions of the mappings presented here.

An example of such an extension is provided in the case study presented in Part 11. For
the application discussed in the case study, we have defined application specific system calls
and added a device specific Component Monitor Module to the OS Health Monitor. In this
context, we have analyzed the newly-created effects of the introduced system calls on the
health parameters (see Section 11.2.7).

Identification of Signal Generator rules

Referring to the objective of our classification method, classification requires to equip each
classification entity with a health signal. Still, we concentrate only on the basic classification
entity: how to classify a system call. On the one hand, the anomaly detection module has
knowledge about the health parameters effected by system call executions. On the other hand,
the OS Health Monitor implements rules for generating health signals that operate on a subset
of health parameters. The classification method implemented in the anomaly detection module
combines this information as illustrated in Figure 8.31a. The extracted health parameters set
effected by a particular system call serves as a basis to determine which of the rules defined
by the Signal Generator are effected by the system calls. Actually, each rule that operates on
at least one health parameter of the effected health parameter subset is a rule affected by the
particular system call.

Hence, this procedure allows to assign a subset of Signal Generator rules to each system call
as emphasized in Figure 8.31b for the system call new/malloc. The correlations of system calls
and the effected subset of Signal Generator rules are integrated into the anomaly detection
module by means of mapping tables.

Classification Procedure

The foundations for the classification of the behavior are the identified effected Signal
Generator rules assigned to each system call. Processing the identified Signal Generator rules

effects contributes)
system cal ——— > base health parameter ——— > health parameter Signal Generator

N operates on
new/malloc Alloc Counter Memory Size ‘®

Alloc Size Memory Utilization Cperatos on @
2
Used Memory ksm=——--N\- -\ --------

delete/free

<

~ S
\ operates on Rule
i

(a) Correlation of rules and Memory related system calls

effects contributes .
base health parameter ——— > health parameter Signal Generator

operates on
Memory Size JF——————\
o N operates on
Memory Utilization 2

N — = »{Last Used Memory
v\
pe!

~
>

system call

new/malloc Alloc Counter

Alloc Size

Used Memory

delete/free

N operates on @
i

(b) Determining the subset of Signal Generator rules for system call new/malloc

Figure 8.31: Correlation between Signal Generator Rules and System Call Executions

- of course, according to the priorities and weighting as described in Section8.6.4 (Signal
Generator) - delivers a health signal. This health signal builds the source for the Classification
Marker that was introduced to the nodes of the Suffix Tree (see Section 8.7.1) as it is intended
to hold the outcome of the health state evaluation.

In short, the basic procedure for classification is defined as following:

1. collect the effected health parameters and update their values
2. identify the effected Signal Generator rules

3. evaluate the health state by processing the identified Signal Generator rules and deliver
the corresponding health signal

4. return the health signal to the Classification Marker of the node representing the classifi-
cation entity

The obtained health signal is computed on a subset of Signal Generator rules. Therefore,
the health signal, as obtained by evaluating the identified effected subset of rules, can only
be considered as a partial system health state. Furthermore, in most cases the subset of Signal
Generator rules is again only a subset of the rule set associated with the effected component(s),

as emphasized in the example in Fig. 8.31b. Hence, the obtained health signal actually
represents the current partial health states of those system components implied in the signal
evaluation.

According to the procedure described above, this health signal provides the value to be set
to the classification marker of the Suffix Tree nodes. These nodes, however, are representatives
for different classification entities of a behavior sequence. In this context, the classification
procedure requires a further specification of the different purposes of the classification entities
and its associated classification markers:

1. Tree Node

An ordinary tree node represents one symbol of the behavioral pattern which is a
representative for a single system call executed. Its classification marker, consequently, is
associated with the execution of that particular system call.

To obtain a health signal for a particular system call, it is necessary to make use of
the subset of Signal Generator rules assigned to that system call. According to the
classification procedure described above, the effected health parameters have to be
updated after the execution of the system call. Then, the assigned subset of Signal
Generator rules is processed on the updated values of health parameters in order to
evaluate the health state and deliver a health signal. The classification marker in the tree
node of the system call preserves the health state value.

This procedure, if immediately processed after the system call execution, allows to
implement individual classification of every system call. The current partial health signal
can be directly associated with the particular system call execution. Therefore, it leads to
a classification of the behavior sequence in a symbol-by-symbol manner.

In the context of classifying anomalies, the symbol-by-symbol evaluation of system calls
enables to detect Point Anomalies (see Chapter 2.2.1).

2. Branch Node

A sequence located between two branch nodes represents a unique and coherently exe-
cuted subsequence of the behavioral pattern. A branch node declares the ending symbol
of a coherent subsequence of the behavioral pattern. As already stated, consecutive
system calls, on the one hand, may reinforce their effects on the health parameters and,
consequently, may lead to a different health signal than each single system call On
the other hand, they may compensate their effects on health parameters and, therefore,
neutralize some one-symbol-related health signals and produce a health signal associated
with the entire subsequence.

The purpose of the classification marker of a branch node is to hold the health signal for
the corresponding subsequence it represents. In contrast to the tree node’s classification
marker, it is not sufficient to identify the effected health parameters by the system call
represented by the branch node. Moreover, primary, it is necessary to identify the
complete set of health parameters effected by all the system calls that are symbols of the
subsequence that is intended to be evaluated.

For classifying subsequences, the identification of the set of health parameters is different.
It relies on the basic principle that each system call is assigned a set of effected health
parameters. But, as the subsequence consists of multiple system calls, we have to accu-
mulate the sets of effected health parameters: First of all, the anomaly detection module

holds a binary array called subsequenceEffectedHealthParameters for the subsequence
evaluation (having the length equal to the overall number of health parameters, with the
indexes being the IDs of the health parameters and the content being a binary marker indi-
cating whether the health parameter is effected by the currently evaluating subsequence).
Initially, all entries in the binary array are set to false. This initial state of the array is
always required at the beginning of a subsequence which is identified by either a node
descending directly from root node or a node directly descending from a branch node.
After the execution of a system call, the effected health parameters of that system call are
marked as true in the subsequenceEffectedHealthParameters array. This marking is
performed for the consecutive system call executions until a system call is executed that,
in the Suffix Tree, is either represented by a branch node or a leaf node (that stands for
the sequence ending symbol). By reaching such a kind of node, the ending of the unique
subsequence is reached. The established subsequenceEffectedHealthParameters array
now marks all the health parameters effected by the current subsequence. Based on
this set of health parameters, the associated Signal Generator rules are identified and
processed. The resulting health signal delivers the value for the classification marker of
the branch node.

The classification procedure corresponds to the basic procedure defined above besides
the method to obtain the effected health parameters.

. Leaf Node

Leaf nodes mark the end of a behavior sequence and hold the Sequence Ending Sym-
bol (represented by the thread_exit system call). While including a new (previously
unknown) sequence, the leaf node marks the last symbol included into the Suffix Tree.
The classification marker in the leaf node is dedicated to hold the classification outcome
of the complete behavior sequence (or of the complete behavior sequence executed until
then, in case of including a sequence). To obtain the health signal for the sequences, and
accordingly the value of the classification marker, we provide two options:

1. update all components” health signals

2. update only effected components” health signals

The first option requires the evaluation of all Component Monitor Modules and their
implementing Signal Generator rules. The evaluation delivers the global health state of
the system after the execution of a task instance.

The second option relies on the procedure as applied for the branch nodes: identifying
the effected health parameters of the system calls executed by the current task in-
stance. To realize this, a second binary array called sequenceEffectedHealthParameters
is introduced to collect the effected health parameters of the sequence starting from
the root node up to the leaf node. After reaching a leaf node in the Suffix Tree,
the Signal Generator rules effected by the health parameters determined in the array
sequenceEffectedHealthParameters are evaluated.

Independent of which option was chosen, health signals related to the Scheduler Monitor
and the Processor Utilization Monitor are of interest here in order to obtain a health
signal that represents the overall system’s health state caused by the behavior sequence.
These health subsignals are integrated into the leaf node’s classification marker. However,
health parameters of the Scheduler Monitor and the Processor Utilization Monitor can

only be updated when the ORCOS Scheduler is triggered because the value allocation of
the health parameters is directly integrated into the kernel module’s code. Its realization
is explained in the next section dealing with the entire run-time process of the anomaly
detection.

For all three types of classification entities, the classification procedure relies on the identifi-
cation of the effected health parameters. This, however, differs with respect to the classification
entity: for the single system call, it is only the set of health parameters effected by that system
call, while for a subsequence and the entire behavior sequences, it is the accumulation of
effected health parameters by all system calls contained in the subsequences or the entire
behavior sequence, respectively. The identified set of effected health parameters determines
the the effected Signal Generator rules in order to obtain a health signal.

Coverage of Classification Outcome

The health signal obtained by executing the effected Signal Generator rules is the input
source for the classification marker of the respective classification entity. However, because of
applying Suffix Trees, each classification entity exists multiple times as it is contained in the
paths identifying the suffixes of the behavior sequence (of course, depending on its position
within the behavior sequence). For example, Fig. 8.32 shows a Suffix Tree for the behavior
sequence S; =7 018 $. For the classification entity TreeNode S;(2) = 0, we have two nodes
as representatives. For the TreeNode, the classification entity containing the sequences ending
symbol $ occurs four times, one node with the sequences ending symbol $ generated for
each suffix of the behavior sequence. According to the specification of the TreeNode, each
node is equipped with the classification marker attribute, independent of being an ordinary
TreeNode, a BranchNode or a LeafNode. Hence, it is the question whether each representative
of a classification entity shall capture the classification outcome in its classification marker.
Referring to our example, the question is concerned with whether for classification entity
TreeNode 5;(2) = 0 that exists twice in the Suffix Tree both representative nodes have to be
assigned a classification outcome produced by executing the classification procedure. This
question becomes more relevant in the context of the LeafNode classification entity: Shall the
classification outcome produced by the classification procedure classifying the entire sequence
be assigned to each representative of the sequence’s Sequence Ending Symbol (meaning all the
four nodes in the Suffix Tree in Fig. 8.32)?

We will discuss this question by referring to the example using the sequence S; =701 8 $:
Let us assume that S; = 0 1 8 $ is a behavior sequence executed before (i < j). Furthermore,
let us assume these sequences have different classification outcomes such as the sequence
S; = 01 8 $ is resulting in a red/danger signal while the sequence Sj =7018$is returning
a green/healthy signal. These classification outcomes have been obtained in the context
of the executions of the corresponding entire behavior sequences. The same is true for the
classification entity TreeNode as S;(1) = 0 may lead to a different classification outcome than
the execution of 0 in the S; as the second symbol of the behavior sequence. In order to preserve
the context of the classification outcome of the classification entity, it should be ensured that
classification outcomes are assigned to the classification markers of the nodes belonging to the
path that determines the complete sequence. As a means to ensure this, we have introduced
a further distinction of paths in the Suffix Tree: let us call the path identifying the complete
behavior sequences from root to the leaf node the main path, while all paths and/or nodes
belonging to the suffixes are called reproductions, see Figure 8.32. The main path is traced during

[

main path

()
o

@O—(=>—

reproductions

OO

Figure 8.32: Illustration of the main path and the reproduction nodes on the example of sequence
7018%$.

the application’s execution. At the activation of a new task instance, the main path is reset to
root. For each system call executing and extending the Suffix Tree, the main path pointer is
set to the node in the path representing the complete behavior sequence. When executing the
classification procedure after each system call, the classification outcome is therefore assigned
only to the node of the current main path pointer. Thereby, the Suffix Tree is able to maintain
(previously obtained) classification results of sequences that share the same paths (parts of or
even complete suffixes) with reproductions of the current sequence.

8.7.3 Further Classification-affecting Factors

Up to now, the classification method in the Anomaly Detection Module is implemented as
described above. The health signal and the classification marker obtained accordingly set in
the Suffix Tree are evaluated on the basis of values of health parameters and their associated
Signal Generator rules.

However, instead of purely adopting the health signal value to the classification marker,
further factors exist that also may have impact on the value of the classification marker - yet not
implemented, but already prepared by the implementation. Here, we offer a short discussion
on some suggestions for enhancing the procedure to evaluate the classification marker value.
A detailed discussion of open research issues in this context is provided in Appendix F.1.

1. Previous Classification Marker Value The previous value of a classification outcome
related to a classification entity may be of interest for examining the health state of the cur-
rent instance. Information about the previous classification marker value can be exploited
to enhance the evaluation, reinforce values, and improve the precision of the obtained
health signal. By incorporating the previous classification marker into the evaluation of
the current classification marker, the classification outcome can become more sensitive
and may assess an anticipated system’s health state at an early stage. We introduce a
further attribute to the TreeNode named previous_classification marker. Whenever
a node in the SuffixTree is reached by the current behavior sequence, first, the value of

the classification marker is transferred to the node’s previous_classification marker
before the evaluation of the health signal related to the current execution is performed.

2. Occurrence Counter Information whether a behavior sequence is of high or low occur-
rence may be of importance in terms of classification. The number of occurrences of a
classification entity can have an impact on weighting parameters in the Signal Generator
rules as well as strengthen the weights of the rules themselves. Therefore, we have
introduced an occurrence counter visit_counter into the LeafNodes in order to record
its number of occurrence. Whenever the leaf node is reached by a behavior sequence, its
visit_counter is incremented. By this leaf node’s attribute, the number of occurrence of
each predecessing node can be derived based on the characteristics of the Suffix Tree.

In this section, we present ideas and approaches on how information, on the one hand,
available in the Behavior Knowledge Base and, on the other hand, extensible with low effort
may contribute to the classification method. The decision how to integrate the previous
classification marker, the occurrence counter and potential further classification-affecting
factors (not presented here) into the evaluation of a behavior sequence and to choose an
appropriate strategy for their impact is left to system designers and analysts because they
have more specific knowledge with respect to potential correlations and threats, including an
acceptable rate of false alarms, detection sensitivity etc.

In the case study, we have implemented some simple integration of the previous classification
marker value into the calculation of the classification marker value concerned with the IR
Sensor Device Driver Monitor (see Chapter 11).

8.8 Runtime Process of Anomaly Detection

The following sections discuss the coordination of the behavior of the anomaly detection in
operation:
8.8.1 Anomaly Detection in Operation

The components that compose the Anomaly Detection Framework build up a logical work-
flow process derived from their responsibilities and the dependencies (of data output/input)
between the components:

1. System Call Monitor to record the behavior sequences,

2. Behavior Knowledge Base in form of Suffix Trees to conserve the behavior patterns,
3. OS Health Monitor to provide health state signals for classification,

4. Classification Method as a part of the Anomaly Detection Module

4.1 to perform the context-related (health signal-related) classification of the behavior
entities and
4.2 to store the classification results in the Behavior Knowledge Base, and

5. the Anomaly Detection Module to coordinate the actions of the Anomaly Detection
Framework.

Anomaly
Task SystemCall §ystLCall Detection Suffix Tree m
Manager Monitor Monitor
Module
1 1 1 1 1 1
]]] 1 1]
1 1 1 1 I 1
- - - - - - -~ - - - - -
calls a system call
>
extracts system call
information adds system call to
suffix tree
| -
Ll
check classification
marker
Ll
-----------------3 B e e
execute system call
classify system call,
get corresponding
health signal
return health signal
4 __________________ Y S Y
Ll
set classification
_____ marker ________|
‘ __________________ B e |
‘ ___________________
- - - - - -

Figure 8.33: Classification Run Time Process.

identify health
parameters

process Signal
Generator rules

Scheduler

terminate current task
and set health
parameter values

dispatch

classify sequence

asl
i
1
1
—

. SystemCall SystemCall S oomaly. 0S Health
Manager Monitor Ty Suffix Tree Monitor
Module
i
1
.
calls a system call
>
extract system call
information add system call to

suffix tree

>
check classification

marker

—»
execute thread_exit
get corresponding
health signal
return health signal
< _______________________________________

>
>

set classification
_____ marker_________J

-

Figure 8.34: Classification Run Time Process for Sequence Ending Symbol.

identify health
parameters

process Signal
Generator rules

NOILD313d ATVINONY 40 SS3D0dd FINILNNY 88

This workflow has been integrated into the real-time operating system ORCOS as illustrated
in the Sequence Diagram in Fig. 8.33. This Sequence Diagram shows the workflow flow of
processing a system call that is not the Sequence Ending Symbol $ (the thread_exit system
call, respectively): Whenever a task executes a system call, the kernel’s System Call Manager is
triggered in order to serve this system call. Before the actual execution of the system call, the
System Call Monitor extracts all information required by the mode that is configured. (In the
case of our anomaly detection approach, it is only the system call ID that is recorded.) The data
extracted by the System Call Monitor is forwarded to the Anomaly Detection Module. This in
turn initiates the adding of the data into the Behavior Knowledge Base at the proper location
in the Suffix Tree. If extending the Suffix Tree by adding a node is performed, the value of the
classification marker is initially set to green/healthy. The node associated with that system call in
the path determining the entire sequence is marked in the Behavior Knowledge Base’s Suffix
Tree as the main path. The value of the classification marker of that node is checked (if already
existed it is associated with its previous classification) first, before the control flow continues
and returns back to the System Call Manager that now triggers the execution of the system
call. (The reason for this previous checking of the classification marker will become more
clear in the following part of this section.) Generally, whenever a node is reached that was
already existing, the value of the classification marker is assigned to the previous classification
marker before the actions of the anomaly detection workflow are continued. This is done in
order to preserve the previous classification outcome and to prevent losing this information
by overwriting this value by the currently following classification. After the execution of the
system call, the System Call Manager does not yet return back to the calling task. Moreover, the
System Call Manager initiates the Anomaly Detection Module to classify the currently executed
system call by means of the classification method. For getting a health signal associated with
the current system call, the Anomaly Detection Module calls the OS Health Monitor to identify
and update the effected health parameters and process the involved Signal Generator rules.
The OS Health Monitor returns the health signal to the Anomaly Detection Module. This
health signal is called by the Anomaly Detection Module to be set as the classification marker
of the system call’s corresponding node marked as main path in the Suffix Tree.With this, the
anomaly detection process is finalized so that the Anomaly Detection Module returns back to
the System Call Manager, that in turn returns back to the calling task.

There is one condition that will abort this control flow: This is at the step of checking
the classification marker value after having located the system call in the Suffix Tree. As a
means of ensuring dependability of the system, one objective is to prevent the execution of
behavior sequences that lead to an unstable or even dangerous state. Whether the current
behavior sequence tends towards such an unstable or dangerous state by executing a system
call can be evaluated by checking the value of the classification marker associated with a
former execution. If the node has already existed, then its classification marker has a value
that is associated with the classification of a former execution of that behavior pattern and
thereby, provides information on the health state resulting from its previous execution. If the
previous classification marker of that node associated with the currently processing system
call is red/danger, such a potential dangerous state is identified actually before the execution of
the active system call. Consequently, in order to prevent a change-over to a dangerous system
state, the execution of the system call is prohibited by the Anomaly Detection Module which
thereby aborts the previously referred optimal workflow.

In case the system call is the Sequence Ending Symbol defined by thread_exit, the pro-
cess of classifying differs slightly. This is illustrated by the Sequence Diagram in Fig. 8.34:
Up to the system call execution by the System Call Manager, the anomaly detection pro-

cess of thread_exit remains the same. However, as dedicated to terminate a task instance,
thread_exit is not returning back to the calling task but is implemented to return back to
the Scheduler in order to perform a context switch and to induce a scheduling decision.
When the Scheduler is terminating a task, it writes the health parameter values related to the
Scheduler Monitor Module and the Processor Utilization Module. These health parameters
are required to evaluate the health signal related to the complete behavior sequence of a task
instance. Therefore, before the Scheduler calls the Dispatcher to dispatch another task, it calls
the classification method of the Anomaly Detection Module to initiate the classification of
the Sequence Ending Symbol that corresponds to the classification of the behavior sequence.
The classification is performed according to the process described above: updating the health
parameters, identifying the set of effected health parameters, processing the effected Signal
Generator rules and returning the obtained health signal to the main path pointer (here the leaf
node containing the Sequence Ending Symbol) of the Suffix Tree.

Runtime Complexity

The Sequence Diagram (Fig. 8.33) illustrates the optimal flow when the anomaly detection is
completely performed in an online manner. It introduces runtime overhead into the execution
of each system call s;. From the perspective of runtime considerations, this optimal flow
constructs the worst case as it is maximally extending the runtime overhead. The resulting
runtime overhead is composed of:

1. Time to extract the system call information of s;: The time required for extracting the
system call information by the System Call Manager (applying the basic mode for only
extracting the system call ID and time stamp, see Section 8.4.1) is constant for any system
call and will be denoted by fsyscarman-

2. Time to extend the Behavior Knowledge Base by s;: This step is related to

e at least: time to locate system call information in the Suffix Tree. This time is
constant as it requires to check whether the current main path node has a child node
with the newly arriving system call ID of s;. The time for checking will be denoted

by EcheckST-

e and in worst case: time to add system call information to the Suffix Tree. As
discussed in Section 8.5.6, the time for adding a system call s; is governed by the
position i of the system call within the sequence (O(i)) and will be denoted by

tadasr,, (1)-

The time for setting the main path pointer to the representative node of s; is also constant
and included into f.pecks7. The resulting runtime overhead produced by extending the
Behavior Knowledge Base is therefore tpeckst + fagast, (1)

3. Time to check classification marker value and to transfer it into the
previous_classification marker: Checking the previous classification marker of the
current main path note and setting its value to previous_classification marker is
constant for any system call and is denoted by ¢.5s5_marker-

4. Time to classify the classification entity: composed of

4.1 Time to identify effected health parameters: The correlation between system calls
and health parameters is stored in arrays. Therefore, the identification of the effected
health parameters requires constant time denoted by t;jensifyrp_syscair- For the classi-
fication entities BranchNode and LeafNode, additionally, this includes to update the
according arrays subsequenceEffectedHealthParameters or
sequenceEffectedHealthParameters (see Section 8.7.2) which also requires con-
stant time denoted by t,,4aterP_arrays- Because it is not possible to predict the node
type of the current system call s;, we have to assume the worst case for the time
overhead composed of tigenti fyHP_syscatl + tupdateHP_arrays b€ing defined as

tidentifyHP = tidentifyHPjyscall + tupdateHP,armys-

4.2 Time to update effected health parameters: After having identified the effected
health parameters, the OS Health Monitor initiates the corresponding Component
Monitor Modules to update the health parameters. The time required for performing
the update depends on the number of health parameters and the execution times of
the corresponding Component Monitor Modules. In worst case, it is the entire set of
health parameters involving the execution of all Component Monitor Modules. We
denote this time by ¢, ,4aterp-

4.3 Time to identify and process effected Signal Generator rules: The time required for

identifying and processing the effected Signal Generator rules is depending on the
set of effected Signal Generator rules. According to the argumentation above, in
worst case, it is related to the execution of the entire set of Signal Generator rules.
This time is denoted by fpocesssG-
In fact, the steps of updating the all health parameters (step 4.3) and processing
all Signal Generator rules (step 4.3) are successively performed by the OS Health
Monitor Center when being executed as a schedulable Workerthread. Therefore,
the sum of ¢, pgarerp @and fprocesssc i equal to the runtime of the OS Health Monitor
Center denoted by fHeqithMonCenter = tupdateHP =+ tprocessSG-

4.4 Time to compute a health signal: The Signal Generator rules deliver sub-signals
that are combined to a health signal for the corresponding system call s;. The time
required to compute the health signal is constant and will be denoted by tcansignar-

5. Time to write classification marker value: Returning the obtained health signal requires
constant time and is included into the computation of the health signal in tjeunsignat-

The entire runtime overhead for a system call s; is defined as a sum of the runtime overhead
of the individual steps performed. Hence, we can define:

tAnomalyDetectian (Si) = tSysCallMan + tehecksT + taddSTsi (1) + telass_marker 1+ tHealthMonCenter 1 thealthsignal

Apart from taddsT,, (i), all ingredients of the runtime overhead are constant, so that the
resulting time for processing a system call is O(i).

The execution time of a task is extended by the runtime costs attached to anomaly detection
for each system call that the task executes. Assessing the runtime overhead for a complete
task, we have to consider the worst case execution of a task, which - from the viewpoint of
the anomaly detection- is its longest possible behavior sequence S, with 7, system calls.
Calculating the runtime overhead for a task is done by summing up runtime overhead of the
individual system calls:

Nmax

tAnomalyDetection (Sn,,mx) = Z tAnomalyDetection (Si)
i=1

This results in quadratic runtime O(Sy,,,,) = O(n2,,,). By this, we can state that the runtime

cost of the Online Anomaly Detection are bounded based on the number of system calls
a task is executing. Performing the anomaly detection online allows immediate behavior
classification and identification of suspicions, threats and dangers as soon as they occur.
Therefore, the resulting runtime overhead becomes acceptable and justifiable. Of course, as an
RTOS must guarantee to be fully deterministic, this runtime overhead has to be integrated into
the Schedulability Analysis of the operating system, but also of each single task to be executed
on ORCOS. The individual costs of each of these phases have been evaluated separately and
are presented in Chapter 9.

Alternative Processing

The Online Anomaly Detection workflow introduces the worst case extension of runtime for
a task as estimated above. There might be situations where this extended runtime could lead
to unschedulability of the task set. To overcome this, a deviation from that optimal workflow is
specified in order to reduce the runtime costs of a system call execution. This is realized by
encapsulating the Anomaly Detection Module within a periodically activated Workerthread
and is offered as an option that can be chosen in the system’s SCL Configuration. In that
case, the System Call Monitor extracts the system call information and collects them within its
internal buffer. If the Anomaly Detection Module is selected by the Scheduler to execute, then
the Behavior Knowledge Base request the collected system call information from the System
Call Monitor’s buffer, and processes the specified steps of inserting the behavior sequence into
the Suffix Tree and performing the classification method. Choosing this option reduces the
runtime overhead of the system call execution to the time related to system call monitoring
tsyscaiman- The Anomaly Detection Module as being executed in form of a Workerthread
contributes by its utilization U anomalyDetection (defined by its execution time CayomatyDetection OVEr
its specified period TanomaryDetection) to the overall system utilization.

If applying anomaly detection in this way, it is important for the system designer - who
chooses this option - to be aware of the fact that the classification precision is degraded: The
classification method relies on the health parameters. These, however, can not be associated
with a particular system call anymore, but moreover define the health state of the task at
the particular point of time when the Anomaly Detection Module is executed. Furthermore,
the health parameters generated during the application task execution can be outdated or
even overwritten by successively executing system calls so that the context of the classification
may get lost. Because the classification is performed according to the specified period, it is
only possible to calculate the health signal for the task’s current execution state. This state is
determined by the task’s latest system call being monitored that is represented by the main path
pointer in the Behavior Knowledge Base. Only this node is assigned a classification marker.
This leads to many leaks in terms of classification markers in the Behavior Knowledge Base.
Additionally, in between the executions of the Anomaly Detection Module, potential suspicious
or malicious health states may occur in the system that will be missed by the classification or
even masked because of successively proceeding execution of the application task.

A further discussion on alternating the anomaly detection process for reducing the time
overhead set on a system call is provided in Appendix F. Here, some ideas are presented that

require more research and can become topics of future research.

8.8.2 Reconfiguration

Causes for reconfiguration are either requirements on the performance (optimization, dynam-
ically adapted requirements), or the exchange of a defective system part. A reconfiguration is
signalized by the inflammation signal as described in Chapter 7.2. It is induced by the Controller
(see Section 8.2.3). We distinguish between two different kinds of reconfiguration:

1. reconfiguration of the operating system
2. reconfiguration of application tasks

Even though both kinds of reconfiguration change the system behavior, they have different
effects on the classification. When reconfiguring the operating system, the application behavior
will maintain. A change in the behavior of the operating system components will have an
impact on the system state and therefore, on the health parameters. Contrary, a reconfiguration
of the application tasks induces a change in the task behavior and can generate different
behavior patterns. That leads to an expected change of the structure of the Suffix Tree. By a
reconfiguration of an application task, the health state of the operating system is initially not
effected, but can mutate because of the change in the application behavior. Additionally, a
reconfiguration of both, the application tasks and the operating system, can be performed at
the same time, if required by the decision strategy of the Controller.

In order to differentiate between these two kinds of reconfiguration, the inflammation signal is
specified to identify the source of reconfiguration: The inflammation signal is defined as a tuple of

Infl = (OS, APP).

with OS: the flag for reconfiguration of the operating system and APP: the signal for
reconfiguration of the application task.

OS is a binary variable set to 0 in case of no reconfiguration and set to 1 if a reconfiguration
has taken place.

APP is in turn a tuple with n binary elements, one for each registered task in ORCOS sorted
according the task IDs. A reconfiguration of the task ID = 3, for example, is signalized by
APP = (0,0,1,0,...). As the Controller is able to reconfigure multiple tasks at once, APP can
contain multiple elements with a flag of 1. The inflammation signal Infl is set by the Controller
at the point of time a reconfiguration is induced.

Depending on the kind of reconfiguration determined by the respective value of the inflam-
mation signal Infl, different alternations in the classification strategy are initiated:

1. Reconfiguration of the operating system, OS = 1:

A reconfiguration of the operating system (or a single component) leads to a change
in the system performance and its resulting health state. Previous health parameter
values become invalid, especially, component-related health parameters and in particular,
history and average values. Because a reconfiguration acts like a (at least partial) system
restart, the reconfiguration-related health parameters are set back to their initial value by
the OS Health Monitor.

Consequently, all classification results obtained on the basis of these health parameters
will also become invalid, meaning the related classification markers in the Behavior
Knowledge Base. For example, nodes that have been classified as red/danger in the
previous system configuration, may receive different classification results as one of the
reasons for the reconfiguration could have been these red/danger signals. Assuming that a
task is executing a behavior pattern that formerly lead to a red/danger state (red/danger
marked node in the Suffix Tree). Based on the classification workflow, however, the
classification marker of each node is checked before the system call is able to execute. A
red/danger classification marker, as defined in Section 8.8.1, would lead to an abortion
of the task’s execution. However, after the reconfiguration, the resulting health state is
expected to be different and, therefore, instead of aborting its execution of the system call,
it has to be evaluated from scratch. In order to interfere this procedure and to enforce
the classification procedure to continue after a operating system reconfiguration, it is
essential to invalidate the (old) classification marker values in the Suffix Tree.

The Anomaly Detection Module is responsible to invalidate the classification markers in
the Behavior Knowledge Base. After receiving the inflammation signal from the Controller,
the Anomaly Detection Module initiates to reset all classification marker values in all
Suffix Trees.

The resetting procedure therefore traverses all nodes in all paths of the Suffix Tree and
sets the classification marker to green/healthy. The traversing procedure is implemented
by means of an ordinary tree-traversing algorithm Depth-first search (DFS)([41], Chapter 3)
to reach each node. The complexity of this procedure is bounded to the complexity and
structure of the Suffix Tree. The resulting runtime costs, of course, are mainly determined
by the number of nodes, which is an individual characteristic and specific to the task’s
characteristics. The (worst-case) runtime costs caused by the resetting procedure have to
be taken into account into the costs of reconfiguration.

In this approach, the classification marker values of all system calls gain a reset. It is
not considered that only one OS component has been reconfigured which may involve
that all the remaining ones will maintain their health states. By resetting all classification
marker values, the information of health states of the component not affected by the
reconfiguration will get lost.

An alternative approach to address this problem is to only reset those classification marker
values of the system calls that are affected by system reconfiguration. This approach is
prepared in the framework, but not completely implemented yet. To identify the system
calls which classification markers are to be reset after the system reconfiguration, the
correlation graph assigning health parameters to system calls (introduced in Section
8.7.2) has to be employed. First, it is necessary to identify the health parameters that are
related to the reconfigured component. All system calls that posses a correlation to the
identified health parameters are declared to be effected by the system reconfiguration.
This information can be obtained by backwards following the correlation graphs.

However, as not implemented yet, this approach has not been evaluated: An open
question remains whether a reconfiguration of one component may produce positive
by-effects to other components such that suspicious or even dangerous states situations
will be eliminated? In such a case, the set of system calls that require a reset of their
classification marker will have to be determined by an other method.

2. Reconfiguration of an application task, APP = (..., 1,...):

A reconfiguration of a task is performed by the Controller by means of switching between
the task’s profiles (see Section 8.1.1). The profiles implement different strategies of the
task in terms of its objective. They realize different algorithms for solving the same
problem as well as different requirements in resource usage. Every profile defines its
individual behavior. However, the degree of deviation in behavior between the profiles
is specific to the task’s implementation and specific to the defined profiles. After a
reconfiguration, the task’s behavior may totally change, but it may also be very similar
- if not equal - to the behavior of the task’s former configuration. There is no general
assumption on the change of the behavior after a reconfiguration. Statements on profiles’
behaviors can only be made by the application’s designers.

From the viewpoint of the Behavior Knowledge Base, a total change in behavior will
make the formerly constructed Suffix Tree obsolete. All patterns established by the
former configuration will no longer occur while all new patters must in any case be built
into the Suffix Tree. Contrary, in case the behavior remains equal or similar, the Suffix
Tree established before the reconfiguration can prove beneficial as behavior sequences
produced after the reconfiguration will already be present in the Suffix Tree.

After a task’s reconfiguration, the Anomaly Detection Module is informed by the APP
value of the Infl signal, which task is effected. The Anomaly Detection Framework
provides different options for handling the Suffix Tree after a task’s reconfiguration.

e use the present task’s Suffix Tree
e build up a new Suffix Tree from scratch

The option can be configured by the application developer in the SCL configuration.
Although having the knowledge on the specific task, choosing the adequate option
for a task is a challenge: On the one hand, it is not predictable which of the profiles
the Controller will choose when deciding for reconfiguration as there are numerous
dynamic factors that contribute to its decision. On the other hand, tasks may implement
self-adaptivity so that even the behavior of each single profile may become unpredictable.

Another aspect is how to deal with already determined suspicious or dangerous paths in
the Suffix Tree. As the reconfiguration is applied to the task and primarily does not effect
the operating system, the state of the system is maintained and, hence, health parameter
values (despite of those that are task-related) are still valid and will remain. Classification
entities (system calls or complete behavior sequences) that lead to a suspicious or even
dangerous system state before the reconfiguration, can potentially do similarly after the
reconfiguration. Hence, it can be of value to maintain these information for supporting
the behavior evaluation after the reconfiguration.

If the option to use the same Suffix Tree is chosen, then all information are preserved
anyway. In case of building up a new Suffix Tree, the Anomaly Detection Framework
offers a further option:

e keeping all paths with node whose classification markers are yellow/warning or
red/danger

This is implemented differently from purely generating a new Suffix Tree after the task’s
reconfiguration. Initially, the Suffix Tree of the task is maintained. All paths in the Suffix
Tree are identified that completely consist only of nodes with a classification marker value

green/healthy. The nodes of these identified paths are deleted from the Suffix Tree so that
only such paths remain that contain information on suspicious or dangerous behaviors.
We call this remaining Suffix Tree the Suspicion Suffix Tree.

A last challenge is to decide how to incorporate the knowledge of suspicious or dangerous
behavior patterns into the behavior evaluation performed after the reconfiguration.
Behavior sequences that have been classified as yellow/warning or red/danger in the former
task’s configuration (with a high probability) potentially can but do not need to lead to
the same classification outcome. For example, other argument values in the system calls,
that are not taken into account and, therefore, are not examined by the anomaly detection
approach presented here, can probably lead to a different system health state than in the
former executions.

So, the question remains whether to allow tasks to continue their execution if executing
a behavior pattern that was previously classified as dangerous? For this purpose, the
Anomaly Detection Framework offers two options to handle this question:

e pessimistic or

e optimistic

These options are applicable only if either the same Suffix Tree or the Suspicion Suffix Tree
is used after the reconfiguration, as when using the approach to build up a Suffix Tree
from scratch, all previous classification results are lost.

The pessimistic approach reflects the assumption to not continue the execution of a task
that may probably lead to an unsafe system health state. Whenever a task’s behavior
sequences reaches a node in the Suffix Tree that is marked as red/danger (obtained in the
previous configuration), its execution is aborted after having checked the classification
marker value. Even if, in the new configuration, the concerned system call may not lead
to cause a red/danger signal, there is a high probability that it will. Hence, it is considered
as too risky to allow the task to continue its execution. This, in particular, is an option
chosen for (safety or mission) critical applications.

In contrast, the optimistic approach relies on the assumption that after a task’s reconfigu-
ration the effects of behavior patterns on the health state may change. This means that a
task is allowed to continue the execution of a behavior sequence at least once in the new
configuration in order to evaluate the resulting health state. The realization of this option
requires some extensions on the Suffix Tree and the workflow:

1. Extension on the Suffix Tree

In order to distinguish whether a classification marker is associated with the previous
or the current configuration, a further binary marker classification_invalid was
added to the TreeNode.

e classification_invalid
configuration

0: classification marker is assigned to the current

e classification_invalid
configuration

1: classification marker is assigned to the previous

The Anomaly Detection Module initiates that all nodes of the task’s Suffix Tree obtain
the value classification invalid = 1. The marker is setto classification_invalid
= 0, if the task’s behavior sequence reaches the node in the new configuration.

2. Extension of the workflow:

If a node’s classification_invalid is O, the classification workflow is performed
as defined without any deviation.

If a node’s classification_invalid is 1, the checking of the classification marker
value of the node is skipped, as, for the time being, it is not of interest concerning
the current classification. This prevents the abortion of the execution in case the
node was formerly classified as red/danger. However, the value of the classification
marker is preserved as it is stored in the previous_classification marker. The
classification of the node is performed as defined by the classification method and
finalized by setting the classification outcome into the node’s classification marker.
Before returning back, classification_invalid is set 0.

Preserving the former configuration’s classification marker value becomes important
in case of a unhealthy classification outcome in the current configuration. This
information may be exploit for inducing a reaction as it may give hints to the source
of the problem.

All these options how to deal with a reconfiguration are specific to the tasks’ character-
istics. The decision which strategy to choose requires knowledge concerning the tasks,
their profiles, etc. The SCL Configuration allows the application designer to configure
each task independently.

The inflammation signal is defined to signal a reconfiguration performed by the Controller. A
reconfiguration not only changes the system or the applications configuration, but, furthermore
it has impact on the procedure of the Anomaly Detection Module.

A change in the system configuration, in particular, has also effects on the parameters
collected by the OS Health Monitor. Especially, parameters representing history and average
values may become useless immediately after the reconfiguration. It is possible that strong
deviations from the former values will be observed. Also deviations may be caused by an
initialization phase that is performed after a system reconfiguration.

A similar situation is present at system start up: the Behavior Knowledge Base and the
OS Health Monitor Database are empty. There is neither knowledge about the applications’
behavior nor data about system performance and the associated health parameter. While
initializing the system at start up, on the one hand strong deviations in the monitored data
are expected in the first few periods, but on the other hand, parameter values can be different
from those expected during the later system execution. For example, the initialization phase
implements extra workload that is executed only once. This may lead to other values in the
parameters of the Processor Utilization Monitor and the Scheduler Monitor, among others.

It will take some periods until enough values are monitored to establish reliable history and
average value database that represents the current configuration’s performance. With respect to
the specification of the Signal Generator rules, those rules which operate on history or average
data and are aimed to recognize deviations may lead to alerts in forms of warning or danger
health signals if processed right after the reconfiguration or the system start up (which, in fact,
is a new configuration). However, these health signals may be false in the context of the new
configuration. Hence, it is essential to address this situation in order to prevent false alarms in
the health signals.

To overcome this, the inflammation signal is integrated into the OS Health Monitor. Currently,
the Anomaly Detection Module forwards the information in inflammation signal Infl to the

OS Health Monitor. This information can be exploited by the OS Health Monitor by means of
integrating it to the Signal Generator rules. Different strategies can be implemented here:

1. deactivate the evaluation of designated Signal Generator rules for a fixed number of
periods

2. incorporate the inflammation signal by means of weighting the parameters in the Signal
rules; depending on the semantics of the parameters, some require a softening while
others will have to be strengthened. For the impact of the inflammation signal several
options can be selected:

e continuous reduction of the weighting for a fixed number of periods

e continuous reduction of the weighting until a stable range of values is achieved

Which strategy is the best one depends on the semantics of the parameters and the Signals
Generator rules. This can only be chosen by specifically considering each single rule and its
related parameters and, therefore, requires detailed expert knowledge. Especially, question
about how many periods are effected by the inflammation signal and what are stable ranges of
parameter values are very challenging and system specific.

We have realized and evaluated the impact of the inflammation signal on the Signal Generator
rules by simply using a fixed value of periods in which designated rules are deactivated.
However, with this strategy there is always the risk of missing some relevant warning or danger
signals. Even though, the implementation of the second strategy is already prepared in the
Anomaly Detection Framework, its realization requires a detailed investigation to specify the
proper adaptations.

8.8.3 Learning

Referring to the requirements formulated on the Anomaly Detection Framework in Chapter
1.1, the capability of learning is one of the key attributes set on the Anomaly Detection
Framework as it has to cope with the system dynamics in terms of changing behavior, changing
system states and changes in the environment. Learning is implemented by the Anomaly
Detection Framework on different levels:

Learning in the Knowledge Base

Learning is enforced by the system characteristics and is a means to cope with them. The
following tasks are defined in conjunction with learning:

1. detect and collect new behavior
2. monitor the system health state and altering effects on the health state
3. explore stable or normal behavior, if it can be identified

The objective of learning connected to these tasks is collecting knowledge and its continuous
updating. This knowledge is stored in the Behavior Knowledge Base of our Anomaly Detection
Framework. To realize learning in the Behavior Knowledge Base, no additional effort was
required, as the mechanisms implemented in components of the Anomaly Detection Framework
implicitly implement learning;

1. Suffix Tree:

New behavior patterns are immediately detected at the point of time they are matched
against the Suffix Tree. A new behavior pattern is identified by the fact that no path for
that pattern exists in the Suffix Tree. If the anomaly detection is executed online, then,
the identification of the novel pattern happens online, namely exactly at the point of time
the first system call occurs that does not match any path descending from the path that
identifies the sequence build up until then.

Whenever a system call is detected to be not yet existing as a node in the path of its
coresponding sequence, it is directly included into the Suffix Tree by the Searching and
Extension procedure introduced in Section 8.5.5. By this automatism, the Suffix Tree
is extended with novel patterns as soon as they occur which, consequently, implicitly
implements learning of behavior in the Behavior Knowledge Base.

The existence of a behavior pattern (whether new or known) in the Knowledge Base is a
prerequisite for its classification.

2. OS Health Monitor:

The OS Health Monitor stores history data in its data base and, thereby, provides the
basis of learning: history data allows to observe the evolution of the system’s health
parameters and the corresponding health state, and to derive trends and tendencies of
the system state. Mainly, history data of the OS Health Monitor is used by the Signal
Generator defining different classes of rules (see Section 8.6.4) that are related to learning;:

On the one hand, storing the history data of health parameters enables to examine
whether the health parameters” data converges towards a particular value or state. The
changing in values of health parameters is taken into account for Signal Generator rules
classified as Analysis of evolving data.

On the other hand, this data can be exploited as input for prediction methods (which are
not implemented yet, but classified as Signal Generator rules based on Observation data
analysis).

3. Classification Marker:

The classification marker defines the obtained health state that was caused by executing
the classification entity. Hence, the classification marker is a means to monitor the system
health state in the context of behavior patterns.

Storing the value of the previous classification marker in order to be able to compare
it with the current classification outcome is maybe the simplest form of learning, if it
is at all. Nevertheless, it enables to make statements and conclusions on health state
changes. Furthermore, it is discussed in Section 8.7.3 and in Appendix F.1 how the
previous classification marker value may contribute to the procedure of computing the
current classification marker value.

4. Occurrence Counter:

The Occurrence Counter integrated into the Suffix Tree’s leaf nodes stores the number
of occurrences of a sequence within the system’s lifetime. The value of the Occurrence
Counter provides information to distinguish between common behavior patterns called
normal behavior - if it is high - and - if it is low - uncommon or anomalous (but not
necessarily dangerous) behaviors.

Defining the ranges for that distinction is only possible with respect to a significant total
number of executions of a task (its number of instances).

Even though the information in form of the Occurrence Counter is available, it requires
further investigation to specify conditions for determining what is a significant number
of executions. In this context, the question is still open which characteristics allow to
declare a task’s Behavior Knowledge Base as stable. Answering this question, however, is
application specific and in in the context of this thesis will be left for future reserach.

The mechanisms implemented by the Anomaly Detection Framework allow continuous
learning (in terms of novel behaviors, tendencies in behaviors, of their corresponding health
states and its altering) at a basic stage. By making use of the information provided by the
Anomaly Detection Framework, statements and conclusions can be made on the behavior and
system health state right now. However, using the information in more sophisticated methods
may enable more efficient conclusions or predictions.

Learning for Optimization

The Anomaly Detection Framework, as designed for self-x systems, is required to be self-
adaptable in terms of the system characteristics. However, to comply with the entire system
design, the behavior of the framework is expected to be self-optimizing as well.

Learning for optimization is implemented by the Anomaly Detection Framework in the Signal
Generator rules. The rules belonging to the class of Analysis of evolving data and Observation
data analysis execute (pattern) learning methods. Because of the system restrictions in terms
of memory - especially related to the OS Health Monitor-, the data collected as history is
bounded and small. The implemented learning methods, therefore, are designed to operate on
these small data sets which are offered by the OS Health Monitor mainly reflecting the short
term history. Examples for specifically applied learning methods are discussed in Section 8.6.4
which, predominantly, belong to the class of supervised methods (see Chapter 2.2.2).

Furthermore, numerous decisions in the anomaly detection are designed to be configured
by thresholds (in the SCL Configuration) that have to be determined by expert knowledge.
Learning algorithms, however, may achieve better results than human experts. Therefore, the
Anomaly Detection Framework allows to exchange the threshold-based mechanism by other,
more efficient methods, such as learning mechanisms. Integrating learning algorithms may
optimize the effectiveness of the approach in terms of enhancing the classification precision and
reducing false classification results. As these learning mechanisms are neither implemented
nor evaluated yet, their implementation may become part of future research.

8.8.4 Forgetting

During the system operation, the Suffix Tree of an application tends to grow. Because the
Suffix Tree is desired to store the entire behavior history of a task, it grows as long as novel
behaviors are identified. The maximal size of a Suffix Tree is strongly depending on the
characteristics of the application’s behavior. For each configuration, its size (in terms of number
of nodes) is bounded and determined by the method explained in Section 8.5.6.

However, the occurrence of behavior patterns, on the one hand, may be related to a specific
life cycle phase of a task: the behavior during the start up is associated with the initialization
phase and may lead to behavior patterns that might only occur at the initialization but will not
occur during further operation again. Furthermore, a task may execute a particular behavior

pattern only under a specific very rarely occurring condition. On the other hand, the behavior
of a task can change and evolve over time. This can lead to the phenomenon that behavior
patterns that have been common in the past will become uncommon. A specific case of such an
evolvement in behavior may be produced by a task’s reconfiguration. If the option was chosen
to use the same Suffix Tree after the reconfiguration, there may exist behaviors that have been
associated with the previous configuration but which may become obsolete for the current
configuration. However, they are still kept in the Suffix Tree.

All these diverse situations illustrated above lead to a common consequence: after some
time of system operation, the Suffix Tree of a task may contain paths that are irrelevant for the
application’s current life cycle phase. Concurrently, - because strongly restricted in embedded
systems - these paths consume costly resources in terms of memory space.

One resulting problem is that memory is allocated that is of no avail. A further, and more
critical problem arises if the Suffix Tree tends towards reaching its maximum size or even
exceeding its specified memory (e.g. because of storing the entire history of numerous of
task’s configurations, then the maximum memory usage may become of exponential size).
Because of the system dynamics, the operating system itself may even be in a critical state of
memory usage. Then, a means to overcome facing such problems is to eliminate the previously
mentioned irrelevant paths in order to gain free memory space. In context of our anomaly
detection, we call this elimination the Forgetting Process.

The main idea of the Forgetting Process is, first, to identify those irrelevant paths, and, second,
to delete them from the Suffix Tree. Three characteristics identify such paths:

1. the path represents safe/healthy behavior and

1.1 the number of occurrence is negligible

1.2 the behavior pattern is outdated as its last time of execution was long ago

Because of the importance and role of previously identified suspicious or dangerous behavior
patterns, red/dangerous or yellow/warning-marked paths can never belong to the group of
irrelevant paths. Therefore, the first characteristic specifies that only those paths classified as
green/healthy can be defined as irrelevant paths because of their little effect on the entropy. This
requirement is exclusive for defining a path as irrelevant.

The second characteristic is directly bounded to the Occurrence Counter that was already
introduced. To implement the third characteristic, an extension of the leaf node by the attribute
visit_time is required. Any visit of a leaf node not only increments the node’s Occurrence
Counter, but furthermore, it sets the attribute visit_time to the value of the system’s current
timer. By doing so each behavior pattern is marked by its last time of execution.

To identify the paths to be deleted from the Suffix Tree, the Forgetting Process evaluates for
every leaf node of the Suffix Tree whether it identifies a path being irrelevant to the current
application behavior. Therefore, it first checks the exclusive condition whether the classification
marker is of green/healthy value. Only those nodes with a green/healthy classification marker
are considered by the Forgetting Process further on. For them, two remaining conditions on the
characterizing attributes are verified:

1. occurrence counter below a predefined value; the value is a threshold for a negligible
occurrence. It is to be configured by the application designer that can set by either

e a fixed absolute integer value - or by

¢ a dynamic threshold associated with a specified rate (e.g. 2 %). The absolute value
for the threshold is computed on demand, based on the total number of executions
of the task.

2. visit_time is below a predefined value; the value is a threshold for outdated behavior
patterns. It is to be configured by the application designer that can be set either by

e a fixed absolute integer value specifying time tics that define the time slot in which
the path was not visited. The absolute value for the threshold is computed on
demand by subtracting the specified value in time tics from the current timer value -
or by

e a dynamic threshold associated with a specified number of executed instances (e.g.
100). For the computation of the absolute threshold value, first, the time interval is
statically computed based on the number of executed instances multiplied with the
task’s period length and, second, this time interval is subtracted on demand from
the current timer value to achieve the threshold value.

An additional option for visit_time threshold is the configuration_startup. The
configuration_startup represents the time stamp of starting the execution of the current
configuration (after a reconfiguration decision). If this option is chosen by the system
designer, the threshold value is always set at the point of time of a reconfiguration, which
in fact from the viewpoint of the anomaly detection is the arising of the inflammation
signal.

If at least one of these two conditions is valid for a leaf node, a irrelevant path - ending at
that leaf node- is identified and determined to be deleted from the Suffix Tree.

For deletion, it is necessary to identify the nodes that belong to the pattern determined by the
irrelevant path as similar behavior patterns share their paths in the Suffix Tree. Therefore, the
Suffix Tree is traversed backwards from the leaf node until either a branch node (last symbol of
a shared paths) or the root node are reached. While traversing, all reached nodes - apart from
the destination (root or branch node) - are deleted and their memory is freed.

The outcome of the Forgetting Process is a Suffix Tree that contains all previously identified
suspicious and dangerous behavior sequences and all healthy relevant behavior sequences. In
fact, it can be considered as a kind of garbage collection.

The system designer is allowed to decide in the SCL Configuration whether to activate and
to allow the Forgetting Process to be included into the Anomaly Detection Module. Obviously,
cleaning up the Suffix Tree is a comfortable feature, but at the same time it introduces further
complexity and runtime overhead into the system. If chosen to be activated, the Forgetting
Process on the one hand must be triggered by the Anomaly Detection Module and scheduled
by the operating system (at least taken into account in terms of the Schedulability Analysis).

Triggering the Forgetting Process

There are different causes to activate the Forgetting Process also being of different criticality
such as the Suffix Tree has grown too large or the system might potentially run out of memory.
We classify the causes for triggering the Forgetting Process:

1. soft

A soft cause includes no necessity of cleaning up the Suffix Tree. The Forgetting Process is
executed for optimization purposes in order to reduce the complexity of the Suffix Tree
but without any external enforcement. This soft triggering is processed in the system
idle times by using Background Scheduling. Instead of the processor becoming idle
(empty ready queue in the Scheduler), the Scheduler calls the Anomaly Detection Module
to execute the Forgetting Process. The Forgetting Process is executed as long as no hard
real-time tasks are pending. At the point of time, a task becomes ready, the Forgetting
Process is being interrupted until the next idle time reactivates its execution.

2. hard

In case of a hard cause for triggering the Forgetting Process, its execution is enforced. This
enforcement may be caused by internal and external causes. An internal reason is that
the Suffix Tree (nearly) reaches its specified size and potentially tends to exceed it. An
external reason is that the system tends to run out of memory. In both cases, memory
has to be freed and one means is executing the Forgetting Process.

The Anomaly Detection Module internally monitors the size of the Suffix Tree and,
therefore, is aware of their memory usage. In case of a potential problem, the Anomaly
Detection Module is responsible for calling the Forgetting Process.

In case of an external, generous system problem, the Anomaly Detection Module has to be
pushed to trigger the Forgetting Process. Therefore, a method clean memory () is specified
that can be actively called by the system Controller or even the Memory Manager itself.

Runtime Complexity

For the discussion of the runtime overhead coming with the Forgetting Process, we again
distinguish between soft and hard triggering causes. The runtime complexity in case of soft
triggering can be ignored because it only utilizes idle times. This, in fact, has no effect on the
remaining system performance.

In case of enforced hard triggering of the Forgetting Process, its execution might be of high
priority as initiated because of a potential thread. While on the one hand its execution
is intended to prevent a threat, on the other hand it introduces additional runtime load
that interferes with the execution of the remaining system entities. In order to ensure the
schedulability of the entire system, it is essential to evaluate the run-time overhead produced
by the Forgetting Process to be aware of its worst-case run-time costs.

The basic ingredient that contributes to the run-time complexity is the deletion of a node
which requires constant time. The transition to a node is also valued as constant as the parent
nodes are allocated by a pointer. This constant factor is added to the constant time required for
deletion. Hence, the run-time complexity is determined by the number of nodes to be deleted.
This is defined by the number of nodes of the set of irrelevant paths. In worst case, all the
paths in the Suffix Tree may be identified as irrelevant paths so that the run-time complexity of
the Forgetting Process is determined by the size of the Suffix Tree derived in Section 8.5.6. This
worst-case run-time complexity has to be reserved for the purpose of executing the Forgetting
Process.

Even though it has to be reserved, in average case, the worst-case run-time complexity will
not be used by the Forgetting Process as it is very improbable to induce deleting the entire Suffix
Tree. There is also the question of whether it is always necessary to delete all the irrelevant
paths or whether it is more efficient to only delete the amount of nodes needed to put back
the system into a stable and healthy state. In that case, the Forgetting Process could be aborted

if such a state is reached. This may have different effects on the run-time complexity of the
Forgetting Process. As this alternative approach is not implemented yet, it could become a task
for future work.

8.8.5 Dealing with Classification Outcome

The Anomaly Detection Module is responsible for performing the classification of the moni-
tored application’s behavior and stores all behavior patterns with its associated classification
results in its Behavior Knowledge Base. It is understood as the part of the Analyzer in the
self-x architecture of ORCOS (see Section 8.2). There are classification results (in cases of a
dangerous system states or even in suspicious states) that require a reaction. The reaction of
classification results is given over to the responsibility of the Controller (see Section 8.2.3). The
Controller implements a decision making strategy that is dedicated to induce a reconfiguration
of the system, a system component or a task if required because of a system instability.

As the implementation of a reaction is not in the responsibility of the Anomaly Detection
Module, it is not part of this thesis. However, the classification outcome that is hold by the
Behavior Knowledge Base serves as the basis for any activity of the Controller. Therefore, the
Anomaly Detection Module is required to provide interfaces to hand over the classification
results to the Controller. It is provided a method called getSignals(SuffixTree* t) that
returns the classification marker values of the leaf nodes of the associated Suffix Tree.

In general, the Controller is usually implemented in ORCOS as a WorkerThread that is regu-
larly activated to execute its implemented strategy. It uses the method getSignals (SuffixTreex
t) to obtain its input from the Anomaly Detection Module. By use of the WorkerThread, the
Controller is scheduled as any other system component which may lead to the fact that a
reaction initiated by the Controller may be delayed. This may be sufficient for warning signals,
however, in critical situations, - if a dangerous state is present -, an immediate reaction is
necessary. In order to ensure this immediate reaction, the Anomaly Detection Module provides
a further interface to the Controller: if a node in the Suffix Tree is classified as red/dangerous,
the Anomaly Detection Module directly sends a signal called dangerAlert to the Controller to
trigger its prompt execution.

The Controller’s execution basically relies on the values of the classification markers which
are preserved in the format as defined in Section 8.7.1 and configured by the system designer.
Based on the configuration of the classification marker, in case of a suspicion or a threat, the
Controller is able to extract information about the potential source of a problem. This could be:

e the task in general, if multitude of classification markers in the task’s Suffix Tree show up
warning signals

e a specific behavior sequence executed by the task

e a system component delivering a warning signal in any sequence that operates on this
component.

Of course, the quality of detecting the source of the thread depends on the configuration
of the classification marker, but also on the sensitivity of the decision and reaction strategy:
whether only a danger signal will induce a reaction decision, or whether multiple or even only
one warning signal/s may lead to a reconfiguration. All the decisions related to when to react
and how to react are left to the responsibility of the designer of the Controller.

8.9 Summary

This chapter illustrates in detail the implementation of the Online Anomaly Detection ap-
proach proposed in Chapter 7 in the real-time operating system ORCOS. As a prerequisite to
integrate the Online Anomaly Detection, ORCOS was extended to support Online Reconfigura-
bility by means of the Profile Framework as well as its architecture was extended into a self-x
architecture composed of a Monitor, an Analyzer and a Controller. The basic self-x architecture
was then specified into the Online Anomaly Detection Framework composed of a System Call
Monitor, an OS Health Monitor, and the Anomaly Detection Module responsible for holding
the Behavior Knowledge Base and performing the Classification.

The System Call Monitor extracts the system call information from the System Call Manager
at the point of time a system call is executed. The Behavior Knowledge Base is responsible to
store the behavior sequences and is realized by Suffix Trees. In this chapter, it is introduced in
detail how the Suffix Tree is build up for successively arriving system calls and how the Suffix
Tree is extended by novel behavior sequences.

The health state of the system is monitored by the OS Health Monitor which is composed
of distributed Monitor Modules related to the system components. By means of specified
Signal Generator rules, the OS Health Monitor delivers the health signals as input for the
Classification of the application behavior.

For classification purposes, the Behavior Knowledge Base holds additional information about
the behavior sequences such as the Occurrence Counter and the Classification Marker. We
show how the execution of a system call is set in context to the health state: every system
call is assigned a set of effected health parameters that in turn are associated with Signal
Generator rules defined in the OS Health Monitor. For every system call executed, the effected
set of Signal Generator rules is processed and results into a health signal. This ensures
an immediate classification of the application’s behavior and the detection of suspicious or
malicious behaviors in an online manner. The resulting health signals are stored into the
Classification Markers of the nodes representing the system calls in the Suffix Tree. The
Behavior Knowledge Base contains all information about application executions and their
corresponding effects on the system health state.

We have discussed the runtime overhead produced by the components of the Anomaly
Detection Framework in the according sections. Furthermore, we have formulated a worst case
estimation for the runtime overhead of the overall approach. As a main result, the runtime
overhead introduced by the Online Anomaly Detection extends the execution of each system
call and is therefore a function of the worst case length of the behavior sequences of a task,
resulting in O(n?%,,,). The runtime overhead strongly depends on the characteristics of the
tasks intended to be executed on the system and therefore, must be integrated into the task’s
Schedulability Analysis.

Of course, we provide some ideas for further research and point out some questions that are
still open.

Evaluation of Costs

Chapter 8 illustrates adaptations made in ORCOS in order to transform ORCOS towards
a real-time operating system for self-x environments, in the first place, and presents the
implementation of the ORCOS modules that realize the Online Anomaly Detection approach.

Any extension of the ORCOS kernel leads to an extension in the footprint of ORCOS as
well as it contributes to runtime overhead. Real-time systems, however, must guarantee
full determinism in terms of resource usage and timing (timeliness). Any contribution to
runtime or memory usage has to be taken into account in the evaluation of resource usage
and schedulability analysis of the system.Therefore, measuring any overhead produced by
any system (part) extension is essential for real-time systems which in our context implies
measuring the overhead produced by the Online Anomaly Detection. This can only be obtained
by taking measurements of the system in execution.

The modules that compose the Online Anomaly Detection are implemented as encapsulated
system entities which allows to execute them in isolation in order to perform stand-alone
quantitative measurements. In this chapter, we present the results of runtime overheads and
memory space requirements obtained in the evaluations of the individual modules of the
Online Anomaly Detection.

The evaluations have been encapsulated within isolated work packages (mostly master
theses). Hence, the evaluations have been performed on different architectures, platforms as
well as environments, but always in the context of ORCOS. The most relevant evaluations
have been predominantly performed on a RAPTOR2000" board with a PowerPCg05 200 MHz
processor, and within the PowerPC405 emulator QEMU?(Version 1.5.0) with 300 MHz. For any
module evaluation, the applied evaluation platform is explicitly mentioned.

Specific Remarks to Evaluation Results under QEMU

QEMU is an emulator that supports user-defined hardware platforms, such as for Pow-
erPC405. QEMU uses the dynamic translation technology to enable good emulation speeds as
it aims for fast performance evaluations e.g. for rapid prototyping purposes. Even if supporting
embedded platforms, QEMU, however, does not support cycle-accurate simulations. The fact

T RAPTOR2000 was developed at the group of Prof. Riickert at the Heinz Nixdorf Institute
> www.gqemu.org

that QEMU itself is multithreaded and executed on PC operating systems such as Linux or
Windows that are multitasking- and threaded themselves, builds in many factors of inaccurate
behavior and, therefore, makes cycle-accurateness impossible.

In order to increase the accurateness, the QEMU timer (a fixed interval timer) was exchanged
by an implementation of the programmable interval timer that acts as the clock generator (also
by suspending the timer if ORCOS is suspended) and controls the frequency of the ORCOS
timer [69]. This does provide more reliability in the obtained time measures, but still does not
approach cycle-accurateness.

Nevertheless, we have conducted some significant measurements in the context of the
evaluation of the Online Anomaly Detection under QEMU and ignored QEMU'’s lack of
cycle-accurateness because of the following reasons:

Before an implementation comes into operation on a real-time system, it has to pass static
analysis in order to ensure its predictability, meaning its boundedness in terms of runtime.
Hence, evidence of the predictability and runtime complexity of an approach is provided
before the system is set into execution. The time measurements performed at runtime are
not dedicated to proof the timely accurate behavior, so that we are not really interested in
the delivered absolute values. Furthermore, the entire ORCOS execution suffers from the
dynamics of the underlying emulator so that the measured execution times are distorted by an
approximately equal order of magnitude. Based on this assumption, the accuracy of timing
measures is sufficient enough as only relative results are of interest: With the timing results,
we are able to assess the runtime overhead in relation to the remaining operating system
performance as well as to conclude tendencies in runtime behavior based on the evaluation
results. (In this thesis, we are more interested in showing the effectiveness of the Online
Anomaly Detection, see Case Study in Chapter 11, rather than in detailed assessment of the
costs of the approach.)

The second motivation to use QEMU for the evaluations is convenience: In the first place,
ORCOS executing under QEMU is easier to be debugged than when executing on the RAP-
TOR2000. Runtime data can be easily gained from the debugging interface. Furthermore,
ORCOS that runs under QEMU on a host system has access to the host file system so that (by
the aid of some scripts) runtime data can be easily written into log files to be analyzed after
the execution.

The last but not least reason to apply QEMU is that by using a software emulator, we have
full control over the hardware. This leads, on the one hand, to the ability to manipulate the
hardware configuration according to the scenario requirements (e.g. equip the PowerPC4o05
with more memory if required by the evaluation use case of the Online Anomaly Detection).
On the other hand, full control allows manipulations in terms of fault injections that are of
importance for verifying the effectiveness of an anomaly detection approach.

9.1 Evaluation of the System Call Monitor

The System Call Monitor extracts the required system call data at the point of time the
system call is executed. This, of course, on the one hand requires memory available for storing
the extracted data and it increases the runtime of the execution of a system call. We have
evaluated both, the memory consumption and the runtime overhead, produced by the System
Call Monitor. The here presented evaluation results refer to experiments performed in the
context of the Master Thesis by Gavin Vaz [92]. Here, we only present the main and most
relevant results. More sophisticated discussion on the evaluation of the System Call Monitoring

Framework including more sophisticated results are provided in [92].

Monitor Buffer Configuration

A major decision at compile time is the strategy for buffer allocation. Static buffer configura-
tion leads to constant time in storing the system call-related data. This, of course, increases
the runtime overhead of a system call, but only by a constant value so that the entire runtime
overhead still remains bounded.

The more interesting question is concerned with dynamic buffer configuration. Even if
there are approaches that realize dynamic memory allocation in real-time systems in constant
time as in [75], up to now ORCOS does not implement such memory management strategies.
In order to guarantee predictability of the system, the entire system behavior requires to be
deterministic which implies the memory allocation method as well. Hence, it is essential to
verify whether the available ORCOS Memory Managers are able to fulfill this requirement.

Therefore, the dynamic buffer allocation was evaluated on the Linear Memory Manager and
the Sequential Fit Memory Manager with the following results:

1. Linear Memory Manager:

The time costs for memory allocation with the Linear Memory Manager can be considered
as nearly constant as illustrated in Fig. 9.1. Nevertheless, the Linear Memory Manager
does not support any free- or delete-function. This is critical especially for systems that
continually allocate memory for (monitoring) data like the System Call Monitor as at a
particular point of execution the memory will become fully utilized which will make the
system inoperative.

Memory Allocation Overhead - Linear Memory Manger

0.0248
0.0247
0.0246

0.0245

Duration in milliseconds

0.0244
0.0243
0.0242 - - - - - -
1 51 101 151 201 251 301

Allocation Sequence (8 bytes)

Figure 9.1: Time Overhead for Memory Allocation with Linear Memory Manager (source: [92])

2. Sequential Fit Memory Manager:

The Sequential Fit Memory Manager offers free- or delete-function, so the risk to run out
of memory is much smaller, as unused memory can be released. Because of this, free
memory is not located contiguously but, moreover, can be spread over the entire memory
space. The experiments in [92] have shown, that, by successively allocating memory, for
any new memory request the time the Memory Manager requires for allocation tends to

Memory Allocation Overhead - First Fit

1 51 101 151 201 251 301

Allocation Sequence (8 bytes)

Figure 9.2: Time Overhead for Memory Allocation with Sequential Fit Memory Manager (source:

[92])

increase. The results are illustrated in 9.2. The Sequential Fit Memory Manager becomes
impractical with respect to the predictability of the system.

Based on these evaluations, dynamic buffer allocation is not applicable with the currently
available Memory Management implementations in ORCOS. Hence, for the evaluation of the
Online Anomaly Detection, static buffer configuration was configured for the System Call
Monitor.

Space Overhead

The System Call Monitor causes memory usage with regard to two aspects which both have
to be evaluated: first, the memory amount required by the Monitor Database and second, the
memory space occupied by the System Call Monitor’s code in the kernel’s binary.

1. Monitor Database Memory Overhead

The size of the Monitor Database is composed of the buffersize of a task multiplied with
the size of the System Call Record summed up over all n tasks:

1

n
sizeO f (MonitorDatabase) =) (buf fersize; - sizeOf(SCR)) (9.1)
=1

If all tasks have equal buffersize, which is true in particular for static buffer configuration,
then the resulting size of the Monitor Database is:

sizeO f (MonitorDatabase) = |]| - buf fersize - sizeOf(SCR)) (9.2)

with] being the task set and |J| = n. Both, n and buffersize, are related to the settings in
the system’s SCL Configuration.

Despite the fact that the dynamic buffer configuration is impractical in terms of time
predictability, the main difference in terms of space overhead between static and dynamic
buffer allocation is the size of the System Call Record. While the decision between static
and dynamic buffer allocation is made offline at compile time, the mode of the System
Call Monitor is set (and can be changed) at runtime.

In static buffer configuration, in order to be able to support all the offered modes, the
SCR preserves memory space for the entire set of fields required by the union set of
modes. Hence, the size of the System Call Record is constant. On the contrary, when
dynamic buffer allocation is applied, the SCR consists of only those fields required by the
configured mode. Hence, the size of the SCR is varying.

Regarding the mode, the size of the SCR, furthermore, depends on
e the size of the return address stack, (based on the depth of the calling function,
which was evaluated to be maximum 4 for the currently existing implementation)

e the number of system call arguments, (maximum number of system call arguments
among the existing system calls is 5) and

e the number of acquired resources (maximum number of 6)

The resulting upper bound for memory size of the SCR is 76 bytes:

’ SCR Elements H Size ‘
Basic Parameters:
Thread ID, System Call ID, Time Stamp 16 bytes
System Call Arguments
(4 bytes per each pointer to argument, with maximal 5 arguments) || 20 bytes

Return Address Stack

(4 bytes per entry, with maximal depth of 4) 16 bytes
Acquired Resources

(4 bytes per entry, maximal 6) 24 bytes

2. Kernel Binary Size Overhead

Depending on the buffer configuration in SCL, different parts of source code are compiled
into the kernel. Hence, the size of the kernel binary is related to the buffer configuration:

’ Kernel Binary Version H Size ‘
ORCOS Kernel
System Cal Monitor not configured 657 KB
ORCOS Kernel with System Call Monitor
static buffer configuration 853 KB
ORCOS Kernel with System Call Monitor
dynamic buffer configuration 837 KB

The System Call Monitor increases the size of the kernel image by ca. 30% which is quite
a large overhead. Mainly, this overhead is caused by the size of the lookup table used in the
return address stack generation. If the monitoring parameters would be configured offline, the
compiling source code could pertain only those parts related to the used parameters. This, in
turn, would decrease the kernel binary size including the System Call Monitor.

Runtime Overhead

Apart from the predictability of the memory allocation, the predictability of the entire System
Call Monitor performance has to be guaranteed. For the System Call Monitor, this is concerned
with evaluating the overhead produced by extracting the system call information within a
system call execution. This overhead was measured for the different system calls as well as for
the different modes per system call. To ensure a certain reliability of the achieved values, the
measurements have been replicated for 100 times per each configuration.

In the context of the Online Anomaly Detection, we are mainly interested in the extraction
of the system call identifier. This is reflected in the mode of the basic parameters leading to
a SCR that consists of Thread ID, the System Call ID and the Time Stamp. Hence, only the
results related to the basic parameter mode will be discussed here. For taking a look at the
performance parameters of other modes, see [92].

For every system call, the same data set is extracted. The experiments have shown that
the required time for the extraction is nearly constant for all the different system calls which
approves the boundedness of the System Call Manager. On the 200 MHz PowerPCy4o05, the
system call extraction takes in average case 14.74ys and 14.85us in worst case which are 2948
timer cycles in the average case and 2970 timer cycles in worst case.

As the individual system calls have their individual runtimes, the measured time overhead
extends each system call runtime by an additional amount. For example, free has the runtime
of 6.09875ms leading to a runtime of 6.11327ms with system call monitoring which results in
an increase of 0.24%. In comparison, for malloc which has a pure runtime of 6.33054ms and
6.34244ms with system call monitoring, the increase is 0.19%.

Nevertheless, we can conclude that System Call Monitoring, as it extends the runtime by a
constant value per system call, is independent of the type of system call, and, therefore, only
proportional to the number of executed system calls. This result is the best prerequisite for our
Online Anomaly Detection, as the runtime for obtaining the system call sequences is bounded
by the worst case length of the system call sequences.

9.2 Evaluation of OS Health Monitor

The OS Health Monitor collects and stores the health data delivered by the Component
Monitor Modules and is responsible for calculating the health signals. The collection of the
health data and the calculation of the health signals requires execution time while storing the
according data produces memory consumption. Both, the runtime overhead as well as the
memory requirement, have been evaluated in the work of Sijia Li in [69]. The experiments
performed in that evaluations output quantitative results specifying the produced overhead for
two different scenarios:

e The first scenario is specified as low workload as in this scenario 3 tasks are executed
that do not produce much workload for the system. Two of the three tasks merely do
nothing else than calling print "Hello Task" while one task is sending "Hello Task"
messages via TCP to a remote server. This scenario was basically designed in order
to have a stable system for the evaluation of data gathering as, because of the tasks’
characteristics, the system is expected to remain in a healthy state (which was evidenced

in [69]).

e The second scenario is specified as high workload. It is based on the execution of a real
real-time application that was used for our case study: an application to control and

drive a small BEBot robot through a maze (see Chapter 11 for more details). As such an
application is much more complex than a ’calling print "Hello Task"’-application, it
produces much more workload in the system.

Because of the different characteristics of the scenarios, they provide best conditions for
comparing different workload applications” evaluation results.

Instead of being triggered in an online manner related to a system call execution, for this
evaluation, the OS Health Monitor was executed as a Workerthread. The main difference is that
in the online manner only the respective health data is updated that is effected by the executed
system call which leads to the collection of a (small) subset of the health data as well as a reduced
subset of Signal Generator rules to be processed. In contrast, being executed as a Workerthread,
the Health Monitor Center periodically triggers all Component Monitor Modules to collect
the health data and generate the according health signal. This, in fact, represents the worst-case
execution of the OS Health Monitor, as all health paramters have to be collected as well as
the processing of all the implemented Signal Generator rules. Based on this, the following
evaluation results offer upper bounds for the OS Health Monitor.

9.2.1 Memory Overhead

The health data is hold by the OS Health Monitor in a Monitor Database. The Component
Monitor Modules collect, component-related health parameters as well as health parameters
that are kernel-related and task-related. While each Component Monitor Module and the
kernel only exist once in the system, the size of the parameter set is constant (because of this,
the memory usage of component-related and kernel-related parameters are summed up to
Global Parameter of Component). However, task-related parameters are assigned to each existing
task and, therefore, the size of the parameter set is varying with respect to the number of
tasks and their characteristics. For every task, the Component Monitor Modules are activated
individually (in the SCL Configuration) in dependence of the system calls the task executes.
For example, if a task does not use communication-related system calls, the Communication
Monitor shall be deactivated.

The memory usage of the OS Health Monitor Database, based on the health parameters
specified up to now, is illustrated in Table 9.1.

The history size is configurable by the system designer (by default it is set to history_size = 4).
The resulting memory size of the OS Health Monitor Database is:

sizeO f (OSHealthMonitorDatabase) = history_size - (348 byte + n - 976 byte)

For the two scenarios described above and a history size of 4, we obtained an OS Health
Monitor Database size of (in case all Component Monitor Modules are activated for the tasks):

o low workload with 3 tasks:
sizeOf (lowWorkloadDatabase) = 4 - (348 byte +3-976 byte) = 13104 byte = 12.8 KByte

e high workload with 1 tasks:
sizeO f (HighWorkloadDatabase) = 4 - (348 byte + 976 byte) = 5296 byte = 5.17 KByte

Of course, the main question in this context is the number of history data required for
obtaining a reliable health signal that has to be answered by data analysis experts. It is necessary
to emphasize here that for the BEBoT an IR Sensor Monitor was specifically designed (see

Global Health Parameters of Component Size (in Bytes)
Communication Monitor 96
Memory Monitor 44
Processor Utilization Monitor 120
Scheduler Monitor 32
Device Driver Monitor 32
File Manager Monitor 24
Sum of Global Health Parameters’ Size 348

Task-related Health Parameters Size (in Bytes)
Communication Monitor 128
Memory Monitor 80
Processor Utilization Monitor 160
Scheduler Monitor 416
Device Driver Monitor 32
File Manager Monitor 160
Sum of Task-related Health Parameters’ Size 976

Table 9.1: Overview of Memory Usage of Health Parameters

Chapter 11.2.5) is not part of this overhead evaluation. Obviously, its integration into the OS
Health Monitor will enhance the size of the Monitor Database. For each IR sensor value, 4
Bytes are reserved in the Monitor Database, leading to 4 - 12 Bytes to obtain the entire set of
distance values of the BEBoT’s IR sensors. With respect to the frequency of execution of those
system calls that induce a change in the IR sensor values, the size of stored history data must
be adjusted according to the period of the OS Health Monitor’s execution to ensure no loss of
state information.

9.2.2 Runtime Overhead

The two scenarios defining different workloads (described above) build up the basis for
the runtime evaluations of the OS Health Monitor. Because the second scenario is only
executable in the context of the case study - which requires ORCOS to run in the emulator
QEMU - both, the low workload and the high workload scenario have been conducted on QEMU
in order to make the results comparable. To obtain performance measures of OS Health
Monitor exclusively - without any interference from the remaining components of the Anomaly
Detection Framework - the OS Health Monitor was evaluated in a stand-alone manner, meaning
that system call monitoring as well as the classification part of the approach have been
deactivated. Implemented in form of a Workerthread the OS Health Monitor is regularly
activated with respect to its period. ORCOS is configured to use the Earliest Deadline First
Scheduler.

Some assumptions on the system behavior can be made based on the characteristics of the
two application scenarios:

e Amount of health data generated In the low workload scenario, the three tasks are simple
in terms of the number of executed system calls. While two of the tasks only execute the
printf system call, the third one is additionally sending the TCP messages. Basically,
the complexity of the task’s behavior in terms of system calls governs the amount of

health data generated. Therefore, the low workload scenario is expected to generate a small
amount of health data.

In contrast to that, the application in the high workload scenario (see Chapter 11) uses
much more system calls (mainly related to the BEBo1’s control, see Appendix A.10)
and, additionally, requires the collection of health data from the IR Sensor Monitor. This
generates much more health data as compared to the low workload scenario.

e Diversity of health data Irrespective of the characteristics of any task, a system executing
(if the OS Health Monitor is activated) generates health data for the Scheduler Monitor
and the Processor Utilization Monitor by default. Additionally, it generates the health
data related to the OS components it employs.

In the low workload scenario, health data for the File Manager Monitor (as printf are
considered as file access) and Communication Monitor (as one task is using the Com-
munication Module) is generated. The high workload application also generates health
data for the Communication Monitor. However, as each IR Sensor request includes a
communication over TCP, it generates much more data for the Communication Monitor
than the simple low workload scenario. Furthermore, the high workload application operates
on the IR Sensors which consequently leads to a generation of health data for the IR
Sensor’-specific Device Driver Monitor implementation.

Of course, the amount of health data generated influences the execution time of the OS Health
Monitor as it is responsible for its collection.

Apart from the amount of health data, the set of effected Component Monitor Modules
features Signal Generator rules that also differ with respect to the number of specified rules and
the complexity of calculating the respective health signals that lead to deviations in execution
times.

To measure the OS Health Monitor’s execution time, the Workerthread executing the OS
Health Monitor Center was built as an object to be monitored by the Scheduler Monitor Module.
The Scheduler Monitor Module collects the health parameters of the OS Health Monitor Cen-
ter’s execution and provides the data for the evaluation. Multiple diverse configurations have
been set up for the experiments to measure runtime overhead of the OS Health Monitor. We
discuss some significant samples reflecting typical characteristics observed in the experiments:

1. Low Workload Scenario

In the low workload scenario, Task; is the task executing the communication over TCP.
Task, and Tasks are the tasks executing the printf system calls. The tasks have been
executed with periods as specified in the table and exhibited the following summarized
execution times (values obtained out of over 220 periods of execution):

| Task | Period || average | best case | worst case |

Tasky | 150000us || 85.43us | 52.93us 284.08us
Tasky | 100000us || 69.06pus | 32.57us 235.29us
Taskz | 100000us || 64.97us | 31.16us | 217.11us

The execution times of the tasks do not have any significant impact on our evaluation and
are therefore consolidated here. An example illustrating the execution times of a task is
provided in Fig. 9.3. Fig.9.3 clearly shows that the worst case execution times are outliers.

Reasons for these outliers have not been analyzed in the context of this thesis. We assume
that these outliers are mostly caused by the dynamics of the underlying system QEMU
and/or the nondeterministic behavior of the communication device under QEMU.

us Execution Time of Task1l

300
250

200

150 execution time Taskl

average execution time Task1l

100

50

Periods of the Scheduler Monitor

Figure 9.3: Execution Times of Task; in the Low Workload Scenario

The OS Health Monitor was executed with a period of 100000ys. In order to prevent a
critical situation for execution time that reaches the statically defined worst-case execution
time, we have set the static worst-case execution time equal to the period. The measured
execution times for the OS Health Monitor are illustrated in Fig. 9.4a and in Fig. 9.4b,
both showing the same evaluation using a different resolution.

Basically, the execution times of the OS Health Monitor Center are in majority within the
range of 1300us and 1900ys, leading to an average execution time of ca. 1700us. Referring
to Fig. 9.4b, the number of outliers in execution time is small. Executing this scenario,
the OS Health Monitor consumes mostly about 1% of the processor utilization (see Fig.
9.4¢), apart from the outlier values.

A striking point is the first period of the OS Health Monitor: the execution time of the
OS Health Monitor is much higher than in all the following periods. This is due to the
fact that the OS Health Monitor executes an initialization in its first period of execution
that, obviously, requires more computation time.

9.2 EVALUATION OF OS HEALTH MONITOR

100000 7000
6000
80000
5000
60000
@ — average execution time 7 4000 ——
2 L E — average execution time
] — worst-case execution time T I
E S E — actual execution time
F — actual execution time F 3000
40000
2000
20000
1000)
N A 0
% 50 200 250 0 50 150 200 250

100 150 100
Periods of Scheduler Monitor Periods of Scheduler Monitor

(a) Execution Times of OS Health Monitor in the (b) Focus on Execution Times of OS Health Monitor
Low Workload Scenario measured by the Scheduler in the Low Workload Scenario measured by the
Monitor Module Scheduler Monitor Module

=

~
L

(=]
L

ul
L

IS
.

W

N

=

50 100 150 200 250
Periods of Health Monitoring Framework

o
o

Processor Utilization Percentage of Health Monitor Framework Thread

(c) Processor Utilization by the OS Health Monitor

Figure 9.4: Runtime Performance of the OS Health Monitor for Low Workload Scenario

221

2. High Workload Scenario

In this evaluation scenario, the application task (BEBoT application) is configured with a
period of 110000us while the period of the OS Health Monitor remains 100000us. The
execution times for the task are recorded in Fig. 9.5 over 150 periods of the Scheduler
Monitor. Most of the values are in the range of 40000us (40ms) and 60000us (60ms),
leading to an average value of ca. 49000us (49ms) that reflects a processor utilization of
about 45%. Again, the strong deviations in the collected execution times of the BEBoT
application could have been caused by the dynamics of QEMU and the nondeterminism
of the Communication Device (this has not been examined further).

us Execution times of BeBot application

90000
80000
70000

60000 — BeBot application

—average execution time

50000

40000

30000

Periods of the Scheduler Monitor

Figure 9.5: Execution Times of the BeBot application

The according execution times of the OS Health Monitor are illustrated in Fig. 9.6a (with
a more detailed view provided in Fig. 9.6b). The main range of the execution times is
between 2000us and 7000yus, resulting in an average value of about 4000us with strong
deviation between the values. The processor utilization is depicted in Fig. 9.6c. Based
on of the strong deviation in the execution times, the processor utilization shows up
analogous deviations between 2% and 10% with some outliers of even 14%.

In comparison to the low workload scenario, the OS Health Monitor requires much more
execution time in this evaluation scenario. This is basically caused by the complexity
of the application that generates much more health data needed to be collected and
examined by the Signal Generator.

The results show the OS Health Monitor runtime overhead in a stand-alone evaluation. As
already indicated, it is the worst-case execution of the OS Health Monitor: collecting and
analyzing all health data of all Component Monitor Modules at once (instead of only a subset
of only the effected health parameters if performed in an online manner).

In contrast to this evaluation, in the case study, the OS Health Monitor was operating in
the online manner in order to guarantee an online classification with health signals reflecting
the current state on demand (according to the Online Anomaly Detection runtime process
specification, see the Sequence Diagram in Fig. 8.33).

100000 16000 T r r r
— average execution time — average execution time

— worst-case execution time 14000} — actual execution time ||
— actual execution time

80000

12000r

60000 10000

8000

40000 6000
4000

20000
2000
VAT /\l\Af\A A
W TN VT SANITW

bO 20 40 60 80 100 120 140 160 180 G0 20 40 60 80 100 120 140 160 180

Periods of Scheduler Monitor Periods of Scheduler Monitor

Time(us)
Time(us)

(a) Execution Time of the OS Health Monitor Center (b) Execution Time of the OS Health Monitor Cen-
observed by the Scheduler Monitor Module ter observed by the Scheduler Monitor Module

[
(=2}

=
D
T

=
N

[
o

00

0 20 40 60 80 100 120 140 160 180
Periods of Health Monitoring Framework

Processor Utilization Percentage of Health Monitor Framework Thread

(c) Percentage

Figure 9.6: Runtime Performance of the OS Health Monitor for High Workload Scenario

9.3 Evaluation of Behavior Knowledge Base

The system calls extracted by the System Call Monitor constitute the system call sequences
that are conserved in the Behavior Knowledge Base, in particular in the Suffix Trees. Including
the system call data into the Suffix Tree is performed immediately before the system call’s
execution which consequently increases the runtime overhead of each system call. Furthermore,
any extension of the Suffix Tree by new system call sequences enhances the size of the Suffix
Tree. The results of the quantitive evaluation of the Behavior Knowledge Base including the
runtime overhead and the memory space requirements produced by processing the system
calls sequences have been published in [Stahl and Rammig, 2015].

In order to conserve the system call sequence into the Behavior Knowledge Base, first, it is
verified whether the current system call ID exists as a symbol in the actual sequence path of
the Suffix Tree. If it exists, the control is returned back to the System Call Manager to enable

the processing of the system call. If the symbol currently is not included in the sequence path
of the Suffix Tree, the current path of Suffix Tree is extended by that symbol (and the according
paths of its suffixes) before returning back to the System Call Manager.

We have measured that overhead with some basic experiments in the context of the case
study (see Chapter 11). For the evaluation, we used the high workload scenario defined in
the section above with our autonomous robot BEBoT that is run by ORCOS to drive through
a labyrinth in order to find a dedicated destination. The BEBot provides several different
algorithms that implement destination-finding strategies that can be selected or reconfigured
online by the BEBoT based on a specified optimization function.

For evaluation, we use our Virtual Reality (VR) environment introduced in Chapter 11 that
integrates the virtual counterpart of the BEBor roboter which was modeled based on a real
device. ORCOS is executed under QEMU (device emulator) on a 300 MHz PowerPC4o5 that is
connected to control the virtual BEBor.

To obtain timing values, we preferred to select an application task that implements a simple
(nearly linear) control flow in terms of system calls. The selected application realizes a simple
strategy to just simply follow the right side wall in the maze. Its system call-based control
flow is illustrated by Figure 9.7, containing the according system call IDs in the building
blocks. It consists of 9 system calls in best case and a variation of 10 system calls in worst
case (concerning the number of executed system calls). Because of the nearly linear control
flow, we expect the major construction activity of the knowledge base to be fulfilled in the first
period. In all subsequent periods, mainly matching activity shall be performed besides some
exceptions in case of executing variants of the control flow for the first time.

Figure 9.7: Control Flow of Example Application

In our Suffix Tree implementation, we have realized the Suffix Tree in forms of a suffix trie
where each symbol is represented by one node. We have done this in order to simplify the
process of Suffix Tree extension and for the purpose of avoiding the splitting of edge labels (that
might be time consuming) at run time. The size of a node is 44 byte (including all required data,
pointers to succeeding nodes as well as classification attributes). For our example (executing
between g and 10 system calls), the complete Suffix Tree consists of 152 nodes which leads to
a memory usage of 6696 bytes (6.54 KByte). The number of nodes in the tree (which in fact
represents the number of label symbols in the real Suffix Tree) is caused by the structure of the
system call sequence that does not contain any recurring subsequences (besides the recurrence
of the system call having ID = 70). Of course, the size of the Suffix Tree is strongly governed
by the applications running on the system (as discussed in Chapter 8.5.6).

Measuring the time overhead that is put on each executed system call we have to distinguish
between two cases:

1. node already exists in Suffix Tree

2. node has to be extended into the Suffix Tree

The latter case of extending automatically includes the previously performed checking of
whether the node already exists in the Suffix Tree (in terms of the current sequence path).
Therefore, the effort required for matching is at least added to each system call execution
when the anomaly detection framework comes into operation. Figure 9.8 shows the minimal
overhead of each system call required for matching activity.

0,0028

0,0026

0,0024 —@—SysCall 1

SysCall 2
0,0022
—»—SysCall 3

0,002 —%*—SysCall 4

SysCall 5
0,0018 SysCall 6
_ SysCall 7
0,0016 SysCall 8
SysCall 9

0,0014 SysCall 10

0,0012

0,001

Figure 9.8: Runtime Overhead for extension of the Suffix Tree

From the concept of Suffix Trees, a symbol at the ith position in a sequence is contained
i times in the suffix tree. Hence, the time for adding a system is expected to be related to
its position in the sequence. This was proven by the measures shown in Figure 9.8: for the
Suffix Tree extension, the time overhead increases with the position of the system call in the
sequence. The higher the position of the symbol in the sequence, the longer the time required
for verifying whether the symbol is already contained in the Suffix Tree, being 0,00128ms
(= 385 timer cycles on a 300 MHz processor) for the first symbol in the sequence (as mean best
case value) up to 0,0026ms(= 780 timer cycles) for the 10th symbol in the behavioral sequence.

A summary of the execution times measured is provided in the following table:

position of | best case | average case | worst case time overhead
system call (in ms) (in ms) (in ms)
1 0.001282667 | 0.005225062 0.513289333
2 0.001384667 | 0.004905975 0.287340667
3 0.001524667 | 0.005391915 0.381678
4 0.001646667 | 0.007031669 0.665592667
5 0.00177 0.00841225 1.014724
6 0.001915333 | 0.007239755 0.734574
7 0.002106667 | 0.010336985 1.297471333
8 0.002318667 | 0.01061829 1.337451333
9 0.002482 0.009894956 0.854320667
10 0.002591333 | 0.01247708 1.258096

For worst case, we have detected strong deviations that are caused by the fact that the
function for Suffix Tree matching are not executed in atomic manner and may be preempted by
timer interrupts and operating system activities as well as the dynamic properties of QEMU.

Considering the time required for generating and inserting a new node into the Suffix Tree,
for best case it required at least 0.0402ms (= 12060 timer cycles) per node and 0.6199ms for
average case. The median value was 0.3510ms that also shows a strong deviation from the
average value. This happened due to the fact, that strong outliers have been observed in the
worst case based on the same reasons as found for matching activity.

In fact, to provide precise and reliable values for worst case, appropriate code analysis
methods have to be comprehensively applied for calculating worst case execution times of
the Behavior Knowledge Base searching and construction as well as an evaluation on a fully
deterministic platform.

9.4 Overhead of the Overall Approach

The overhead produced by the Online Anomaly Detection is composed of the overheads of
the individual parts of the Anomaly Detection Framework:

1. the overhead for the system call extraction produced by the System Call monitor
2. the overhead for including the system call into the Behavior Knowledge Base’s Suffix Tree

3. the runtime requirements for examining the system’s health state by the OS Health
Monitor

4. the execution time required to set the classification marker in the Behavior Knowledge
Base

The overheads of the first three parts have been examined in detail in the experiments and
have been discussed in the former sections. We did not explicitly measure the execution time
for setting the classification marker. However, the time overhead produced by this final step is
expected to be constant.

Summing up the worst-case overheads of the individual parts of the framework leads to
the worst-case runtime costs of the overall approach. Nevertheless, this is a very pessimistic
assumption, as here, the overhead concerning the OS Health Monitor includes the complete
execution of the OS Health Monitor Center (in forms of a Workerthread) including all Compo-
nent Monitor Modules. In practice, when applying anomaly detection to work online, the OS
Health Monitor will only update the health (sub-)signals of those components that are effected
by the executed system call. The OS Health Monitor will therefore processes only the Signal
Generator rules that are associated with the system call which in fact is a small subset of the
complete collection of rules processed by the Workerthread. By this, the execution time of the
OS Health Monitor is reduced enormously. However, because each system call is assigned a
different set of Signal Generator rules (different in number of rules and their complexity), it is
not possible to formulate a general reference execution time value for examining the system’s
health state. This requires individual examinations of each system call. The execution time for
examining the health state is a property of the system call (and is therefor constant) and has to
be integrated into the worst-case schedulability analysis.

9.5 Summary

This chapter summarizes the evaluations conducted in terms of measuring runtime and
memory overhead produced by the Online Anomaly Detection. Even though performed on

different platforms as well as in the context of different scenarios, the presented results provide
reference values for the overhead that has to be taken into account when applying the proposed
approach. While the system call extraction consumes constant execution time independent of
which system call is executed, the health state examination of a system call requires different
(constant) execution times associated with the respective system call, but in any case bounded
by the execution time of Workerthread executing the OS Health Monitor. Furthermore, the
time required for adding the system call into the Behavior Knowledge Base depends on the
position of the system call in the behavior sequence. Consequently, the runtime overhead
generated by the Online Anomaly Detection depends, on the one hand, on the worst-case
length of an application’s system call sequence. On the other hand, it is determined by the
specific worst-case structure of the sequence (maximum number of occurrences of particular
system calls within a sequence). We can therefore state that the runtime evaluation of the
Online Anomaly Detection approach can only be performed in an application-specific manner
and has to be taken into account in the system’s schedulability analysis.

EVALUATION OF COSTS

228

Part V

Case Study

Evaluation Methodologies

The development process of autonomous systems is different [49] as the key challenge is
the implementation of the decision making part. Especially, the development becomes more
challenging in terms of assuring dependability and reliability when being applied in the
domain of intelligent mechatronic systems [50].

Evaluation of autonomous approaches such as the here proposed Online Anomaly Detection
in not straightforward as compared to ordinary approaches because of the difference in the
role of decision making processes: autonomous decisions instead of (programmed or) human-
controlled [83]. Hence, methodologies for testing ordinary systems are not suitable here. A
growing demand for research concerning testing and evaluation of autonomous systems can be
observed. In this chapter, we discuss the problems and challenges and formulate requirements
set on evaluating autonomous systems. Based on these requirements, we propose to use virtual
environments for the purpose of evaluation and analyze their applicability with respect to the
defined requirements.

10.1 Problems and Challenges

Several publications analyze the implicated problems and challenges of testing and evaluating
autonomous systems such as Roske et al. in [83], Thompson in [88], Macias in [71] and Garrett
in [48]. The latter, in particular, discusses to problem of evaluating Artificial Immune Systems
as already introduced in Chapter 3.5. Pure static evaluation by mathematical methods or
formal verification is not sufficient as the strength of such approaches lies in the effectiveness
of the approach under operation. Garrett proposes to evaluate the usefulness by splitting
the evaluation into distinctiveness and effectiveness. Distinctiveness (according to [48]) deals
with the question whether an approach is distinctive in such a manner, that it cannot be
transformed to other approaches applied for solving that particular problem. In fact, the
validation of distinctiveness can be performed in form of static or formal analysis by showing
the uniqueness of the approach (which we already have shown in [Stahl et al., 2013] and
[Stahl and Rammig, 2014]). In contrary, effectiveness is concerned with showing that the
evaluated approach results in better performance (in terms of obtaining better or faster results)
compared to other methods, and therefore, it can only be measured at operation time within

experiments.

Possible methods to evaluate such an approach in operation are model-based testing as
proposed by [58]. However, models always provide abstractions that may unintentionally mask
some system properties so that the according results will not be able to match the real system
in operation.

Roske et al. specify the problem of testing and evaluation in more details in [83]. First of
all, evaluation requires a safe environment because of lower tolerance in terms of unpredictable
potential decision errors in real life applications. Similarly, Macias argues that a robust
infrastructure is required to support measurements for testing and evaluation [71]. Secondly,
the lifecycle of autonomous behavior of a system is composed of performing sensing the
system and its environment, acquiring knowledge from the sensed data and building up a
representation, analyzing the sensed data and executing the decision making. In this context,
Roske et al. propose a clear separation of concerns for testing the individual lifecycle phases
in order to ensure the correctness of each phase and to make the identification of a potential
source of inadequate system performance possible:

1. Testing the perception function: Perception is concerned with observing and sensing
the environment and its characteristics. The data delivered by perception defines the
knowledge of understanding the system and its environment and usually deals as the
basis for decision making. The correctness of perception function has to be tested in
separate as erroneous perception may lead to fault decisions. Furthermore, it evaluates
the control of hardware and environment including their failures and allows to perform
a controlled failure injection.

2. Testing the decision making function: The decision making process is implemented
according to a specified objective function. The evaluation of the decision process mainly
addresses to verify its correctness by considering whether the performance of the system
caused by autonomous decisions approximates towards the objective function. The
decision making function has to be tested in separate as it may evolve due to being
applied in complex adaptive systems.

3. Testing the execution function: Testing the execution function is concerned with the
testing ability to execute the decisions in order to obtain confidence about the system
performance in terms of classical system functions (control performance, protection,
reliability, etc.) as well as physical performance (speed, capacity, resource demand, etc.).

Thompson in [88], emphasizes that evaluating the effectiveness of autonomous systems
shall be explicitly concerned with testing against a specified set of requirements dictated by
test missions set on the system performance (e.g. aspects of objective function) instead of
testing the decision process based on assumptions made on decisions. Therefore, a definition
of test scenarios is essential, combined with scenario parameters and metrics that quantify the
satisfaction of the specified requirements dictated by the test mission. According to Macias
[71], experiments must be repeatable, controlled, and reproducible and require instruments to
provide insight into the system functioning as well as to track and record its status. Furthermore,
Macias points out that the evaluation environment must be as adaptive as the autonomous
approach as, from his point of view, the evaluation of the autonomous approach shall be
performed in parallel to its development. Any modification of the autonomous approach
requires an adaptation of the evaluation concept, of the experiments and probably of the
environment as well.

Thompson [88] suggests to use virtual environments to test autonomous software. This
conforms with the proposals of Roske et al. [83] and Macias [71], as virtual environments
allow a system to be preliminarily executed in a safe environment preventing damage or
harm of the target system and its environment. Furthermore, virtual environments are flexible
and adaptable to changing requirements. Thompson claims that (see [88]) “virtual testing
must become a standard complement to field-testing UASs” (UAS: abbreviation for Unmanned
Autonomous Systems used by Thompson) ”..if the testing community is ever going to be able to
test an intelligent UAS safely and comprehensively”. Furthermore, he argues that the most
important requirement is that the virtual environment is identical with the real application
environment in such a way that all essential physical properties and obstacles match the real-
world ones (e.g. in terms of dimensions and resolution). Additionally, the virtual environment
must provide all necessary environment information and requires to be interaction-based in
order to enable the target system to take all actions according to its specification. To ensure
comprehensive evaluation results, it must be able to extract precise and suitable operation
data from the virtual environment. Thompson’s specifications of requirements on virtual
environments for testing autonomous systems are superimposable with the properties Macias
describes.

There is no state-of-the art methodology to realize an evaluation for autonomous approaches
up to now and developing a sophisticated test methodology is not the scope of this thesis. How-
ever, the problems and challenges discussed in the research community mainly guided our idea
in order to perform a systematic and structured evaluation of the Online Anomaly Detection
for which we first specified requirements (which we also published in [Stahl et al., 2015]).

10.2 Requirements

The basis for specifying requirements is a clear definition of the objective of the evalua-
tion. Referring to the assumption that the evaluation of autonomous approaches in terms
of effectiveness has to take place when the system is in operation, the evaluation is usually
application-specific and can only be conducted within its application domain.

The mission of the evaluation of our Online Anomaly Detection is to verify whether the
anomaly detection approach works correctly, according to the properties that have been
intended in the implementation. As a basis, the Anomaly Detection Module has built up a
Behavior Knowledge Base in order to establish the system’s normal behavior based on the
behavior of the applications tasks (defined by system calls invoked by the tasks). Changes in
the applications, their parameters and performance, changes in the environment as well as in
the system itself may lead to system reconfiguration and, respectively, result in changes in the
system behavior. Detecting these behavioral changes is the crucial task of the Online Anomaly
Detection. All occurring behaviors have to be classified by the Online Anomaly Detection. The
classification method analyzes the behavior with the objective to declare observed behavioral
patterns either to be normal, suspicious or dangerous by considering system health signals
provided by the OS Health Monitor. One of the main objectives is to verify whether the Online
Anomaly Detection classification method works correctly: This means that behaviors shall be
classified as normal if the system is expected to be in a healthy state. In contrary, in case of a
instability of the system or even a failure, it is the question whether this unhealthy state will
effect the classification outcome of the Online Anomaly Detection. To realize this, means to
induce and control changes in the executing system itself and the environment are required,
also including unsafe or dangerous system states, of course, initiated in a controlled manner.

The detection quality of the Online Anomaly Detection has to be examined in order to draw
conclusions on the reliability of the detection mechanism of the approach.

Based on this objectives, we set the following requirements on the evaluation environment
and its architecture:

Ra

R.3

R4

R.5

R.6

Reconfigurable applications and environment: Our approach is designed to be inte-
grated in a real-time operating system that serves self-reconfiguring applications. It is
designed to detect unintended and malicious system states provoked by autonomous
decisions at the application or operating system side. Therefore, as a basis to assess the
effectiveness of our Online Anomaly Detection, an application environment is required
that is dynamically changing with a real application implementing autonomous behavior.

Execution platform: Referring to the previous requirement, an execution platform for
the real-time operating system is required that is suitable for the application environment.
In fact, as the Online Anomaly Detection is integrated in the real-time operating system
ORCOS, we need an execution platform that is able to run ORCOS and satisfies the
requirements of the application purpose.

Safe environment: In accordance with the challenges described above, a safe environment
is required for evaluating the Online Anomaly Detection. Safe environments stem
potentially resulting threats caused by the uncertainty of autonomous behavior. Thereby,
the environment has to be identical to the real one (or at least as close as possible to
the real one concerning the relevant system properties) and, on the other hand, it has to
enable full control over the system entities. The latter is related to e.g. controlled initiation
of dynamical changes, also including injection of failures in system components, that
lead to changes in application or system behavior or even to reconfigurations. Changes
initiated in a controlled manner build up the basis for assessing performance of the Online
Anomaly Detection in terms of detecting these changes and classifying the resulting
behaviors.

Separation of evaluation concerns: Based on the requirements formulated by Roske et
al.[83], evaluation environments shall make sure that clear system boundaries can be
guaranteed. This addresses the system boundaries between perception function, decision
making function and execution function. The individual system parts have to be isolated
in order to ensure a decoupled evaluation. From the viewpoint of the Online Anomaly
Detection, the perception function is composed of two entities: the application behavior
represented by system calls, and the input health signals delivered from the OS Health
Monitor. The health signals, in turn, are determined by sensing the health parameters
that reflect the internal states of the operating system components.

Interaction-based environment: Dynamical changes in the environment or the system
itself are the foundations of autonomous reactions. The evaluation environment is
required to provide instruments in order to induce them in a controlled manner as
already emphasized within the requirement concerning a safe environment. Basically,
this can be realized by allowing interaction between the executing system and the operator
responsible for the evaluation.

Evaluation output: To address the challenge for the experiments to become repeatable,
controlled, and reproducible, the evaluation environment must integrate instruments
to monitor and record the execution trace of the evaluation scenario. Of course, we are

mainly interested in the performance of the Online Anomaly Detection with respect to
the question of whether the intended properties that have been implemented can be
achieved in the execution. Hence, an essential requirement is to obtain information that
reflect the output of the evaluation. On the one hand, it is the operating system ORCOS
that has to deliver evaluation results as the target evaluation approach is integrated into
it. Furthermore, behavior of the application and the environment and their changes
must also be traced in such a manner that it is possible to set this data in context to the
internal behavior of the Online Anomaly Detection. The evaluation environment has to
ensure full traceability of the actions performed by the contributing system components
of the evaluation scenario. By this, we will be able to draw conclusions on the anomaly
detection performance from the according evaluation scenarios.

The applied evaluation environment must satisfy these requirements in order to allow a
comprehensive evaluation of the Online Anomaly Detection. As claimed by Thompson [88],
Virtual Reality and Virtual Environments are providing adequate characteristics for evaluating
autonomous systems. Therefore, we analyze their applicability for evaluating the Online
Anomaly Detection, especially, in terms of meeting the specified requirements.

10.3 Applicability of Virtual Reality and Virtual Environments

The former sections have already indicated the applicability of Virtual Reality and Virtual
Environments for evaluating purposes. Before discussing the potentials of these approaches in
terms of evaluation and in particular in terms of evaluating the Online Anomaly Detection,
we will first have to clarify some common conceptualities as well as tointroduce some basic
technology concepts.

Virtual Reality

Virtual Reality (VR) is defined as a technology that ”...replicates an environment that
simulates physical presence in places in the real world or imagined worlds” [18]. It
enables the user to be put into a virtual three-dimensional world that is a computer-based
replication of a real counterpart. Today, VR technologies, initially applied in the computer
gaming field, are used more and more for design reviews, in the field of mechanical
engineering, and plant engineering, and thereby support the planning, the design and
development phase as well as the evaluation of technical systems [86].

Virtual Prototype
A Virtual Prototype (VP) is a computer-internal representation of a real product or a
real prototype [86]. It is constructed based on information on the (physical) shape and
the structure of the product (e.g. 3D-CAD model), its kinematics and dynamics, and its
specification for information processing. A VP is considered as the virtual counterpart of
a real-world object.

Virtual Environment
[86] defines a Virtual Environment (VE) as ”... a synthetic computer-generated envi-
ronment, which presents a visual, haptic, and auditive simulation of a real world to a
user..”. It is composed of (multiple) VPs that build up the virtual counterparts of the
environment. A VE that is applied for product development, analysis and evaluation
requires the integration of the product’s VP.

VR enables to test mechatronic systems, even in early development phases. Especially, the
virtual prototype inside a virtual environment provides suitable instruments as it replicates
the real system in its environment. For using virtual environments to evaluate autonomous
approaches, the requirements imposed for the evaluation environment (namely R.3 to R.6)
have to be fulfilled.

VE and VP, by concept, are constructed based on real environments, real prototypes or
devices (respective to e.g. the size, mass, physical behavior and so on). Hence, VE and the VP
that operate inside act like their real counterparts. Using a virtual prototype inside a virtual
environment provides a tool to safely verify all aspects of the mechatronic system without
endangering neither the real hardware nor the real environment. Therefore the requirement R.3
of providing a safe environment is fulfilled by the nature of VR. Every essential system
entity of the real system is constructed independently as an encapsulated system entity in its
virtual counterpart represented by software implementation. This enables full control over the
properties and attributes also in terms of inducing changes which is a fundamental requirement
for evaluation. Furthermore, the encapsulated virtual counterparts of the system entities
replicate the offered interfaces which enables components to be exchanged by another (e.g.
simpler) implementation. By the encapsulation of the system entities, decoupled evaluations
of individual system parts become possible. This, in particular, forms the foundations for
realizing the separation of concerns in the evaluation (see R.4).

VE can provide interfaces for access to system entities and their parameters for analysis,
assessment as well as manipulation purposes. Using these interfaces at run-time for changing
system components, modifying the virtual environment or even injecting failures into the
system allows controling the system in an interactive manner according to requirement R.5.

VE offers visual representation of the system under execution within its environment and,
thereby, forms one kind of evaluation output as it makes the system performance directly
observable (in contrast to model-based or simulation-based evaluations). Furthermore, instru-
ments for visualizations of parameters, including values of physical components as well as
parameters of the executed software provide facilities to visualize all parameters needed for
the evaluation, and make evaluations traceable as defined by requirement R.6.

With all these characteristics described above, the concept of virtual environments meets
all requirements which are imposed on it for evaluation purposes. The powerfulness and
flexibility offered by virtual environments makes it a vital instrument and suitable for the
evaluation of the presented Online Anomaly Detection for self-x real-time systems.

10.4 Summary

This chapter addresses the problem of determining an evaluation technology for the Online
Anomaly Detection. This is not straightforward, as no state-of-the art methods exist up
to now. Evaluating autonomous approaches requires new methodologies to address the
problems and challenges that have been identified by several researchers dealing with that
topic. Furthermore, these new methodologies must guarantee full traceability of evaluation
experiments even though the system’s behavior is fully dynamic.

We present the objectives of the evaluation of our Online Anomaly Detection and formulate
requirements set on an evaluation environment that, of course, implies the presented problems
and challenges. We discuss the potentials offered by VR technology and prove, based on
the requirements, the applicability of virtual environments for evaluation purposes. By this
discussion, we establish the basis for applying the Virtual Evaluation Environment for the

evaluation of the Online Anomaly Detection as presented in the next chapter.

EVALUATION METHODOLOGIES

238

Evaluation Case Environment

Virtual reality technology as introduced in the former chapter offers an opportunity to manage
the execution of autonomous systems and provides visualization techniques that are used to
present the system behavior. Because of its great potentials to realize the requirements set on
the evaluation (see previous chapter), we have decided to use a virtual environment to evaluate
the effectiveness of the proposed Online Anomaly Detection approach. Applying virtual reality
makes the evaluation process very comfortable and the results (immediately visible) intuitively
conceivable.

In this chapter, we present the application context chosen for the evaluation of the Online
Anomaly Detection and the respective Virtual Evaluation Environment designed for it. Further-
more, we introduce the application-specific implementation and extensions in the operating
system and the Online Anomaly Detection that had to be integrated because of the chosen ap-
plication context. We finalize this chapter by specifying evaluation scenarios that are dedicated
to ensure a comprehensive case study for the anomaly detection approach proposed in this
thesis.

11.1 Evaluation Environment

The Online Anomaly Detection integrated into ORCOS is executed in order to evaluate a
task’s behavior with respect to its effects on the system’s health state. The evaluation of the
Online Anomaly Detection requires a real application context for ORCOS (R.1) as well as an
execution platform (R.2). In some previous work, ORCOS was ported to be executed on a
miniature robot BEBot[1] that was designed for autonomous driving applications in dynamic
environments. Hence, using the BEBoT as the application context lead to the evaluation
environment applied here.

As a foundation, we have exploited an evaluation environment called virtual test environment
that was priorly built up for the purpose of validating the code coverage of self-optimizing user
tasks executed on ORCOS [86]. The evaluation environment mainly consists of a Virtual Envi-
ronment building up a landscape for the miniature robot BEBor[1] in form of a labyrinth/maze
(see Fig 11.1). The BEBoT is aimed to autonomously drive through a maze in order to find a
designated destination. The BEBot’s driving- and destination-finding strategy is implemented

EVALUATION CASE ENVIRONMENT

as an application task for ORCOS. Several strategies are implemented so that it is possible to
exchange the executing strategy by means of system reconfiguration.

For evaluating the Online Anomaly Detection, the virtual test environment as designed
for the work in [86] had to be adapted and extended, and resulted into the here presented
evaluation environment. The concept of this evaluation environment was published at the HCI
International 2015 in [Stahl et al., 2015].

HEINZ NIXDORF INSTITUT)|
'L‘ Universitit Paderborn

Figure 11.1: Virtual Evaluation Environment for the Online Anomaly Detection.

11.1.1 Virtual Evaluation Environment

In order to reduce the implementation effort, for evaluating the approach presented in [86],
a third party solution Unity 3D [91] was selected. Unity 3D is an IDE for developing 3D
applications mostly used in the area of computer games. It provides the developer with many
comfortable solutions for building up virtual environments. Furthermore, it allows to include
own code by a powerful scripting interface for C# and thereby enables to integrate individual
algorithms and complete implementations inside Unity 3D. It is executed on a general purpose
operating system (here Linux). As in [86], the virtual test environment was built up on top
of the VR system Unity 3D and integrated the BEBor with ORCOS running on it, we exploit
the implementations done as a basis to implement the Virtual Evaluation Environment for the
Online Anomaly Detection.

The Virtual Evaluation Environment consists of a VP for the miniature robot BEBoT (intro-
duced in detail in Section 11.2), and its VE being a randomly generated maze. The VE and the
VP have been constructed based on the (physical) properties of the real prototype and the real
environment in which it operates. The maze consists of rectangularly arranged walls and is
built up with virtual counterparts of brick-like plastic elements used for testing the real BEBoT.
The look of the environment way is polished by adding some graphical effects just for a better
look, but nevertheless, it replicates the real environment as required by R.3.

As the task of the robot is to find a way through the maze to a dedicated destination, the
algorithm for finding the destination in the maze is implemented as a task of the underlaying
real-time operating system ORCOS executed on the VP. The start position of the BEBot and
destination position are defined (randomly) inside the maze. Thereby, the randomly generated
maze acts as a test environment for the implementation of the autonomous algorithm.

In order to ensure the separation of the evaluation concerns (R.4), in our Virtual Evaluation
Environment, all system parts such as virtual (hardware) components, and the executed RTOS

240

with its tasks communicate with each other by dedicated interfaces that correspond to the
interfaces of the real counterparts. This architecture enables the exchange of system entities
and hence, decoupled evaluations of individual system parts, in particular, the environment,
the components of the VP, the execution part composed of RTOS and its tasks and fulfills R.4.

R.5 requires changes in system components, modifications of the virtual environment and
failure injection to be performed in an interactive manner. In our concept, we enable the user
of the system to implement such interactive behaviors very easily. A scripting language is
provided for the users to build their own interaction methods quickly. Furthermore, the Virtual
Evaluation Environment was extended by a GUI (Graphical User Interface) for manipulating
the properties of the VE and the VP (see Section 11.3).

Our Virtual Evaluation Environment offers a visual representation of the scenario execution.
Visualizations of diverse parameters, including values of physical components as well as
parameters of the executed software as required for evaluation in R.6 are provided by the
implementation extensions made on the Virtual Evaluation Environment. One means, e.g., is
the notification of the commands that the BEBoT executes.

The resulting Virtual Evaluation Environment ensures that the system and its behavior can
be analyzed inside its virtual world with a close interaction with the virtual objects.

11.1.2 Architecture

To realize this Virtual Evaluation Environment, an architecture is required that combines
the VE with its VP and the operating system ORCOS as the execution platform for the BEBoT
application.

Figure 11.2 shows the architecture we developed for realizing this. It contains the VE
which generates the environment (maze) and the VP (BEBor). For executing applications
(strategies for finding destination) on BEBot, we use ORCOS. However, ORCOS is not able to
be directly executed on the BEBot within the VE. In contrary, ORCOS runs on the emulator
QEMU (see section below) that is connected to the VP over an Assistant Communication Module
(ACM, see section below). Once the virtual test environment is executing, ORCOS starts to
communicate with the VP through ACM. The environment data provided by VE is transferred
back to ORCOS. A particular BEBot controlling task processes these environment data and
commands the virtual BEBot by sending messages to it. This entire architecture of the virtual
test environment is implemented on a Linux system.

QEMU

QEMU (Quick Emulator) is a generic and open source machine emulator and virtualizer [4].
QEMU is a very fast virtual machine because it applies dynamic translation technology to
emulate the processor so that it can achieve good emulation speed. As a virtual machine, it
allows the users to run different operating systems on a specific emulated virtual hardware
platform. Unlike other popular virtual machines, QEMU has two operating modes to run the
operating system. The first one is to emulate a full system like a full PC including the processor
and other peripherals. It can be used for general purpose operating systems like Windows,
Linux or Unix, and even Mac OS. The other mode called user mode is to emulate a user specific
hardware platform. This mode can be exploited to launch a process compiled for one CPU on
another CPU [4]. In our case, ORCOS is able to be executed on an emulated PowerPC 405 CPU
under x86 architecture, even though ORCOS does not support that architecture. In our virtual
environment architecture, the user mode of QEMU is applied.

Virtual Test Environment
(VE, Maze)
Operating System -
(ORCOS) Virtual Prototpye
¥ (VP, BeBot)
Kernel Tasks Assistant
1 Communication Module (B)?)Et?r)l
HAL T Direct Connect
A
17 UDP Sender/
QEMU Monitor UDP Sender/ Receiver
Console Receiver
&
i
Linux

Figure 11.2: Virtual Evaluation Environment Architecture.

We use QEMU version 1.5.0 because this version enables us to realize the communication
with the virtual environment over the network. QEMU is still under development, but it
has dropped further development of the PowerPC 405 processor family which, in fact, is the
main development hardware of ORCOS. As QEMU has not been specifically designed for
ORCOS, it leads to some issues of compatibility. Unfortunately, the QEMU version used in
our environment only supports a fixed interval timer instead of an original programmable
timer of the PowerPC 405 as required by ORCOS. Moreover, since dropping the development
of PowerPC 405 emulation, both, PCI and integrated Ethernet card in CPU, offer only empty
wrappers that require to be implemented. Consequently, it is impossible to implement the
network communication through adding the missing hardware drivers if using the official
QEMU version. So, based on this, a customization of QEMU is required.

The fixed interval timer in QEMU version 1.5.0 overwrites the instance of the programmable
timer during the initialization of CPU. This problem has been solved by disabling the fixed
interval timer in the source code which makes the programmable timer implementation possible
to be executed and makes the timing measures more reliable.

On the other hand, the communication problem is a little tricky. Integrating a network card
chip into the emulated PowerPC 405 CPU is provided as an option in the setup of QEMU.
However, QEMU simplifies the implementation of emulating PowerPC 405 with abandoning
this network card chip, which makes the communication between ORCOS and the outside
world impossible by using this option. Furthermore, QEMU is not offering direct access to
hardware devices installed on the host system so that using the network device of the host is
also not possible.

In order to realize communication between ORCOS through QEMU and the VP in our VE
despite the problems explained above, we implemented a workaround. A monitor console
feature of QEMU provides a way for interacting between QEMU and an external software.
Through specific commands, the monitor allows to inspect the running guest OS, including
changing removable media, taking screenshots, monitoring the memory content, and controlling
other aspects of the virtual machine [81]. QEMU monitor console can be accessed over TCP
socket connection. With this, through sending a specific query to QEMU an internal function is
triggered and the monitor console is able to receive the corresponding result. Such a specific

query must follow the QEMU Machine Protocol (QMP) allowing applications to control a QEMU
instance. QMP is a lightweight, text-based protocol, which makes it easy to parse data format
and allows to add new monitor functions due to the scalability of QMP.

Exploiting the properties of the monitor console enables to implement an unidirectional
communication between the monitor console and an external software. For our purpose,
communication has to be bidirectional. In order to enable an external software to send the
messages to QEMU, the monitor console must have authority to write into the QEMU internal
memory space. Unfortunately, there is no such feature offered by the QEMU monitor console.
Hence, we enhanced QMP with adding a new query function to the QEMU monitor so that we
could modify the memory content through sending the correct monitor query.

In order to realize the VE to communicate with QEMU, we have implemented an exter-
nal software called Assistant Communication Module which builds a part of our evaluation
environment.

Assistance Communication Module

Assistant Communication Module (ACM) is for achieving the communication between QEMU
and the VE. The process of communication is specified in Figure 11.3. ACM is separated into
two parts: One integrated as a driver in ORCOS (written in C++), and its counterparts as an
independent executable software (written in Java). These two parts are interconnected and
exchange data by using the QEMU monitor console. The ACM part in ORCOS synchronizes
messages with the other part of ACM through memory buffers. The receiver buffer as well as
the sender buffer are implemented as static memory ranges, the receiver for saving the received
message from while the sender for saving the outgoing messages to the monitor console. As
mentioned in the previous section, the QEMU monitor console is able to aid the external part
of the ACM to view and modify the memory content. Therefore, the external ACM checks
modifications of the receiver and the sender buffer with high frequency in order to guarantee
the synchronization of the buffers. The protocol design of the receiver buffer and sender buffer
is inspired by TCP/UDP protocol.

Emulator (QEMU)

ORCOS Kernel Receiver Buffer

A

Sender Buffer
; \
Assistant .
Communication Module l—> QEMU Monitor Console

Assistant Communication Module

Figure 11.3: Architecture of the Assistance Communication Module.

11.2 The BeBot

The BEBoT is a small robot serving as a technology platform used for research in the domains
of dynamic reconfigurable systems. Its chassis is shown in Fig. 11.4. ORCOS was ported
to execute on the BEBoT in order to implement dynamic and reconfigurable applications for
controlling the BEBor.

Figure 11.4: The BEBOT mini robot.

11.2.1 Technical Specification

The mini robot has a dimension of ca. 9cm x 9cm x 7cm. It provides 12 infrared (IR) sensors
for sensing its environment. The BeBor is equipped with microcontrollers to process the data
of the IR sensors and an I°C bus to transfer the IR sensor data. The robot movement is realized
by two 2W DC gear motors which actuate two chains, one for each side of the BEBor. The
BEBoT comes with an ARM7-based processor with 520 MHz and 64 MB memory. The detailed
technical specification of the BEBoT as well as a programming guide can be obtained from [1].

11.2.2 Virtual Prototype

The BEBoT is one main object in the Virtual Evaluation Environment as the execution platform
for ORCOS and its applications. Therefore, the BEBoT was implemented inside Unity 3D as a
virtual prototype in order to represent a virtual counterpart of the physical device. The shape
model is based on a CAD model so that its appearance is nearly as realistic as the real BEBoT.
The existing 12 IR sensors to detect distances to obstacles, the gear motors and the chain drive
have been realized as components in the VP that implement their (physical) functionalities in
order to replicate the behavior of the physical BEBOT as close as possible to its real behavior.
The Virtual Prototype implements the same low-level interface to the underlying hardware as
the real BEBor. Commands that control the BEBot have been integrated into the VP in order to
control the BEBoT’s virtual counterpart in the same manner. By this, for the applications, it
becomes transparent whether the application is executed on the real hardware device or on the
VP.

The BeBor application (described below) mainly operates on the values the IR sensors deliver.
To guarantee a realistic simulation of the physical properties of the IR sensors, the real IR
sensors have been examined concerning the distance values they deliver for dedicated distances
to obstacles. The IR sensors installed on the BEBor are physical rays that sense the environment
and deliver int16 values returning the distance to the obstacle it intersects. Fig. 11.5 shows a
model of the BEBoT with its 12 IR sensors and their according physical rays.

To produce identical values as will be received from the real IR sensors, first, we measured
the real behavior by a number of test series. The values of the real sensor have been read out
at different distances to an obstacle. We averaged the measured values and used this as a
reference for the virtual prototype, as seen in Figure 11.6. In the test series, we measured the
value per every 1 cm. At a distance of 11 cm, no reliable results are received, which leads to the
assumption, that the sensor is only able to detect obstacles up to 10 cm. For our simulation,
these reference values r are stored in an array A. For distance d received from the physics
engine dj,r = |d] and d.,; = [d] are calculated as the two adjacent indices for the array. By

90mm

EI @I M @ 110mm
e
IR3 IE

A
S

\j

90mm

A
\j

\ J A\ J

Figure 11.5: Model of BEBoT with geometric dimensions, its IR sensors and sensor ranges

reading out the corresponding values of the array, we get 100, = A[d f100r] and 7eif = Aldceit]-
Between these two values we linear interpolate using the fraction part {d} to calculate the
virtual sensor value 7 = 7 o0 + (Vceit — " fl00r) - {d }. For reflecting the reality, we added approx.
10% random noise to the virtual sensor value as we found out that this is the amount of jitter
we received from the sensors.

3328

3000

N
S
3

~
I}
5]
3

1500

1000

Read Out Data from IR Sensnor (Int16)

«
=
S

2 3 4 7 8 9 1o 11

5 6
Distance (in cm)

Figure 11.6: Mapping of IR Sensor values measured for dedicated distances (in cm).

In addition to the accurate physical model of the real IR sensor behavior, we provide
alternative implementations that have been useful for our evaluation. The following provides
an overview of all implementations of the IR sensor.

1. AccurateModel: the accurate physical model obtained by measuring the real IR sensors
with noise factor

2. IdealizedModel: the model obtained by measuring the real IR sensors without the noise
factor

3. LinearModel: the IR sensor values are linear to the distance

4. ExtendedRangeModel: extension of the range of the physical ray up to 22 cm in order to
enable sensing greater distances

The user is allowed to select one of the implemented models of IR sensor behavior according
to the requirements of the evaluation scenario. In order to realize failure injection, we have
extended all these models by following failure models:

FailureModel1 IR sensor delivers value 0 (no obstacle detected)
FailureModel2z IR sensor delivers max_value (obstacle close to sensor)
FailureModel3 IR sensor delivers a fixed value set by the user

FailureModelg IR sensor delivers a random value

The failure injection implementation was extended by introducing a latency into the reading
out procedure of the sensor. This was done based on the assumption that each IR sensor is
equipped with a simple microcontroller that in case of a failure (e.g. a defective contact or
a memory fault) requires more time to return the distance value. This, basically, effects the
communication time between the VE and ORCOS via ACM when requesting the according
faulty sensor value. (The reason for this extension will become more clear in the description of
the evaluation scenarios as well as in the discussion of the evaluation results.)

The implementation of the virtual IR sensors is not limited to the characteristics described
above. Furthermore, the VP implementation offers an interface to integrate further models for
IR sensor behavior as well as for the sensor failure.

Besides the IR sensors, the BEBoT gear motors have also been implemented according to their
physical specification. Specified commands trigger gear motors to drive the BEBot through
its environment. For evaluation purposes, we included a method which manipulates one or
both gear motors and allows to decide whether a motor will not react at all, randomly react
correctly on a driving command or just react randomly whatever value is sent.

The implementation of the VP fully replicates the behavior of the physical device and makes
the BEBoT’s virtual counterpart becoming as realistic as possible. By this, the BEBoT becomes a
suitable execution platform for the desired evaluation.

The experiments described in this evaluation have been conducted within the Virtual Eval-
uation Environment only. Therefore, we will use the name BEBort as a synonymous for the
virtual prototype as the physical device is not of interest for this evaluation.

11.2.3 The BeBot Application

The goal of the BEBoT in the virtual environment is to reach the destination in the maze.
Basically the BEBoTt has no knowledge about the structure of the maze. Furthoremore, the
BEBoOT is just a robot vehicle without any intelligence. The intelligence lies inside the application
task that only operates based on the values of the IR sensors. Hence, we designed several
maze-solving algorithms to control the BEBOT in order to reach the destination more or less
efficiently:

Right-side wall follower: This algorithm is simple and best-known for solving path finding
in mazes in which all walls are connected together. The robot always drives forward by
following the right-side wall of the maze. Thereby, the robot must be guaranteed not to
lose the wall it is following until it reaches the destination of the maze. For mazes that
are not simply connected, this algorithm can not guarantee the goal to be reached.

Left-side wall follower: This algorithm follows the same principles as right-side wall follower.
The only difference is that the robot follows the left-side wall of the maze instead of the
right-side wall.

Random mouse algorithm: In this algorithm, the robot makes random decisions about the
next direction to follow whenever the robot meets a junction. For robot path-searching,
this algorithm does not guarantee that the robot will find the right solution. However, in
contrast to both formerly described algorithms, it can be applied in mazes in which not
all the walls are connected (e.g. loops) and will probably find its destination.

Parameterized random mouse algorithm: As an improvement of random mouse algorithm,
this algorithm makes a parameterized-random turning decision in which the weighted
parameters are based on the distance calculated by the position data between the robot
and the destination. This algorithm required an extension of the BEBot by a GPS-like
position module. For executing this algorithm, the BEBoT gets information about the
destination’s position and its own and by using this information, it can calculate its linear
distance. Applying this algorithm, we expect an enhancement of the probability of the
robot to find its destination.

Each of the maze-solving algorithms is best applicable for a particular environment scenario.
Figure 11.7 specifies the application side architecture that implements the decision making part
to determine the most suitable strategy for solving the maze. Each strategy is implemented as
the single task and stored in the task repository. The Task Controller is a simple analyzer that
determines the effectiveness of the current searching strategy according to its objective function.
For instance, an applied strategy could be assessed to be not suitable if the BeBot passes the
same position over multiple times. In the case that the applied strategy is not suitable to the
underlying maze, the Task Controller has to choose a better algorithm.

Task Strategy B

Task

A

Thread Thread Controller [<+ Task Repository
1 2
l———
l Task Strategy A
l Thread Thread Thread
\|J Y 1 2 3
System Call Interface
* ORCOS Anonfal
Functional OS . Detectio);
Modules Framework

Figure 11.7: Application evaluation architecture.

The algorithm is implemented by using the ORCOS system calls to accomplish its job.
Behaviors of the functional OS modules are recorded by the Online Anomaly Detection, which
also analyzes these behaviors to determine whether they are normal or anomalous. If the

Online Anomaly Detection recognizes any anomaly associated with system calls made by
an application, e.g. an unreliable device, such as a not correctly functioning IR sensor, on
which access (through system calls) the algorithm relies on, the Anomaly Detection Framework
supplies the Task Controller with these information. In such a case, the Task Controller will
classify the algorithm to be not suitable anymore and has to choose another algorithm strategy
from the task repository in order to meet the detected novel circumstances.

In the concept of the self-x architecture, the controller is part of the operating system.
Thereby, it gains only the information relevant for the operating system. The Task Controller,
however, requires more knowledge about the application context by analyzing the application’s
performance with respect to its objective function (e.g. detecting positions that have been
reached multiple times). This knowledge, by the concept of the self-x architecture, is not
available in the operating system internals. Therefore, in our application scenario, we have
located the Task Controller into the user space in order to implement this knowledge.

11.2.4 BeBot Device Driver

For the applications, ORCOS provides system calls as interfaces to control hardware devices.
The system calls offered by ORCOS for controlling the BEBoT are enumerated in Appendix
A.10. For serving the BEBot-related system calls, the BEBot Device Driver was implemented
and is responsible for encoding the BEBor commands into a format that the BEBoT can execute.
BeBot Device Driver is an implementation of the abstract Device Driver Interface of ORCOS.
However, the BEBoT is controlled by commands over a local I2C bus. Therefore, the BEBoT
Device Driver that implements the system calls is responsible to construct and encapsulate the
I2C bus commands. Moreover, as we do not operate on the real BEBor, the I 2C bus commands
cannot be directly sent over the I2C bus. The communication with the BEBor is masked. This is
realized in a lower layer, the HAL, in order to make the communication between the application
and the BeBoT transparent for the device driver. The I?’C commands are sent to a specific
address. Instead of using the I2C bus, the according I>C commands are encoded into UDP/IP
packages which ORCOS sends via a network connection to the VE and the VP, respectively.

11.2.5 IR Sensor Monitor

As one of its functionalities, the BEBoT Device Driver has been implemented to get access
to the IR sensor values. The BEBoT does not provide any self-diagnostic feature to announce
sensor failures so that it is the task of the IR Sensor Monitor to detect whether all sensors
are still reliable. To be able to monitor the health state of the BeBots IR sensors we have
implemented an IR Sensor Monitor as an example to illustrate how expert knowledge can be
integrated into the OS Health Monitor. The IR Sensor Monitor builds up one of the Component
Monitor Modules of the OS Health Monitor. It collects the data from the BEBot ’s IR sensors in
order to check whether they are working correctly. The IR Sensor Monitor is responsible for
evaluating the health state of all the 12 sensors on the BEBoT, as usually a suspicion cannot be
detected by analyzing one sensor in isolation but it is furthermore identified in the context of
the values of the neighboring sensors. The IR Sensor Monitor also stores history sensor data.
The health parameters recorded by the IR Sensor Monitor are listed in Appendix C.7.

11.2.6 IR Sensor Monitor Signal Generator

Failures in the IR sensors have to be detected by the rules defined for the Signal Generator of
the IR Sensor Monitor. Four failure models have been introduced to the IR sensor. However,

specifying Signal Generator rules is not straightforward as argued by the illustrated problem:

First of all, the values delivered in case of a failure (independent of the applied failure model)
also belong to the range of legitimate values. For example, a distance value of 0 is returned if
no obstacle is detected within the range of the sensor, but if the sensor is defective (applying
FailureModelz) it will also return the value 0 (analogous argumentations can be formulated
for all the specified failure model from FailureModel2z to FailureModelg). Hence, we cannot
definitely testify the status of an IR sensor based on only considering the value that the sensor
delivers.

The IR Sensor Monitor stores the history data of the previously measured distances. Also,
only considering the history values of a sensor is not sufficient to definitely identify a sensor
failure: in case of a failure, for example, the value 0 (again if applying FailureModel1) will be
delivered at any time the sensor value will be requested and therefore will be stored in the
history. A multiple occurrence of the value 0 recorded in the history data, however, can also
occur if the sensor does not sense any obstacle for a longer period of time. From this follows
that a sensor failure cannot be detected by only considering the individual values of an IR
Sensor.

A step towards evaluating the health state of an IR sensor is that the sensor value has to be
set in context with values delivered by other - in particular, its neighboring - IR sensors. For
example, if one IR sensor delivers the value 0 and all its neighboring IR sensors also deliver 0
value, then, in all probability, there is no obstacle detected on this side of the BEBoT. In contrary,
if one sensor delivers the value 0 but all its neighboring IR sensors deliver values different
from 0 (they sense obstacles in the environment), the situation is different. On the one hand,
the probability is high that the 0 value delivering IR sensor is defective. On the other hand,
such a situation can occur (even if seldomly) as illustrated by the Fig. 11.8. In this example,
IRS8 delivers the value 0 because, in contrast to its neighboring IR sensors, the wall is out of the
sensors range. Again, considering only the IR sensors values of neighboring sensors does not
lead to a clear outcome for the state of an IR sensor. However, if the history of the values is
taken into account, the results becomes more reliable: referring to the previous example of one
IR sensor delivering value 0 while its neighbors deliver values different from 0, the situation
is a rather rare combination. Hence assuming that the BEBoT moves in the meantime, the IR
sensor values, especially of the IR sensor that previously delivered 0, shall change. If that one
IR sensor value remains 0, the probability is high that this IR sensor is truly defective.

Based on this problems, we have recognized that for specifying Signal Generator rules for
evaluating the health state of an IR sensor, the values of the neighboring IR sensors and their
history have to be taken into account. Furthermore, all combinations of values (of neighboring
sensors and history values) are possible to occur in true situations as well as in case of faulty
sensors. Consequently, the rules can only reflect probabilities of combinations of values.

For specifying the Signal Generator rules, we have examine potential combinations of sensor
values with their according history values and rated each situation by a probability score. The
resulting health signal is specified as a score value from 0 to 8 with 0..2 defining healthy state,
3..5 defining suspicious state and 6..8 defining the dangerous state. Any combination of values is
scored accordingly:

e if a value combination is in all probability a failure-free situation, the health signal value
is decremented by 3 (of course not falling below the value 0). An example for such a
situation as (nearly) equal values of neighboring side sensor.

e if a value combination is quite probable to be failure-free, the health signal value is
decremented by 1.

Figure 11.8: Situation for possible combinations of neighboring IR sensor values.

e if a value combination is probable to occur in a case of a present failure and is expected
to occur rarely in a failure-free situation, the health signal value is incremented by 1

e if a value combination is very probable to occur in case of a failure, the health signal
value is incremented by 3. An example for such a situation has already been described
above, if one IR sensor value remain 0 for more than one execution period while the
values of the neighboring IR sensors differ.

With these simple rules, we could score any potential position of the BEBoT in relation to wall
distances based on its probability of occurrence. According to the present value combinations
collected by the IR Sensor Monitor, the health signal will evolve. In presence of a failure, the
health signal value quickly (in two consecutive execution periods) yields to a danger signal. In
contrary, value combinations that probably occur in case of a failure even if there is no failure
injected will raise a warning signal. But as these situations are expected not to persist in further
execution periods, the health signal value will be decremented as soon as a value combination
occurs that reflects a failure-free situation.

We will not encounter in detail the specified rules that have been implemented as it was
not the scope of this thesis to design a reliable IR Sensor Monitor and to prove its quality.
Nevertheless, we have evaluated the specified rules in experiments reflecting different situations
and thereby refined the rules accordingly. Especially, we have evaluated the specified Signal
Generator rules for the IR Sensor Monitor in terms of false alarms. The IR Sensor Monitor did
not deliver any danger signal if no failure was injected. Warning signals have beed output even
in absence of failures as, of course, numerous situations exit that produce equal sensor values
if a failure is present. However, these warning signals have been weakened and eliminated in
subsequent execution periods and recovered to a healthy signal. Based on these experiments,
we have obtained a rather reliable IR Sensor Monitor that can be efficiently applied for the
purpose of our evaluation.

11.2.7 Classification Mappings

The BeBort application mainly operates on the system calls related to the BEBot control.
However, the execution of these system calls does not only effect the health parameters of
the IR Sensor Monitor. According to the classification method (see Chapter 8.7.2) of the OS
Health Monitor, the effects of the system calls on the health parameters of all the provided
Component Monitor Modules have to be determined. In this section, we present the effected
health parameters by the BEBor control related system calls.

1. Specific system calls under QEMU

ORCOS offers specific system calls that encapsulate the communication functionality
of an additionally integrated communication module (see Sec.11.1.2 for ACM) which
is required - if ORCOS is executed under QEMU - for communication with external

systems.

Scheduler Monitor
o)
g
5| 8| €
SIEls| 3
System Call CARCARS o

sendto_ QEMU X X
recvfrom_QEMU | x | x X

Table 11.1: Mapping of System Calls to OS Health Parameters: Specific system calls under
QEMU

2. System calls for the BEBoT control

For the BEBoT applications, system calls have been specified to control the BEBot’s actions
and request the BEBOT’s sensor data. The BEBoT’s actions are initiated by the application’s
decision process mainly governed by the configurations of the values delivered by the
IR sensors. At the same time, a system call that initiates any movement of the BEBot
provokes changes in the values of the IR sensors.

The BEBoT control related system calls are sent over QEMU through the ACM to the VE.
Consequently, each BEBoT control related system call uses the communication module
and, thereby, effects the according health parameters of the Communication Monitor.

To provide an adequately structured overview of the correlation between the BEBor
control related system call and the effected health parameters, we have categorized the
great number of offered system calls according to their analogy in terms of their behavior
and their effects on health parameters. In the following, we provide listings of the system
calls that effect the same health parameter set.

(@) No health parameters:
The following system calls do not effect any health parameter by their execution.

e getMedian

(b) Communication Monitor: Upload

The following system calls send command messages to the BEBor, but do not expect
any response. Therefore, these system calls change only the Upload parameter of
the Communication Monitor:

e LEDtoRed

e LEDtoGreen

e LEDtospecificColor

e setMotorSpeed

e stopMotor

e searchWallState

e rotatelLeftState

e driveStraightWallState

e rotateRightState

e leavingWallState

e connectionclosed

e updateState

(c) Communication Monitor: Upload, Download
The following system calls send command messages to the BEBor to ask for data
delivery from the BEBot. Therefore, Upload and Download parameters of the Com-
munication Monitor are effected by these system calls:
e readIRSensorValue
e getBebotPos
e getTargetPos
e readIRSensorValueO
e readIRSensorValuel
e readIRSensorValue2
e readIRSensorValue3
e readIRSensorValue4
e readIRSensorValueb
e readIRSensorValue6
e readIRSensorValue7
e readIRSensorValue8
e readIRSensorValue9
e readIRSensorValuelO
e readIRSensorValuell
e getCurrentState
e getReached
e sendUniversalmsg
e autodrive
e randomautodrive

From this subset, those system calls that read out IR sensor data also effect the
according health parameters of the IR Sensor Monitor. These are:

e readIRSensorValue which requests the sensor data of all IR sensors,

e readIRSensorValuex requesting the distance value of IR sensor x,
¢ and autodrive and randomautodrive that internally request IR sensor data.

(d) Communication Monitor: Download; Memory Manager Monitor: Alloc Counter,
Alloc Size, Free Counter, Free Size, Used Memory
The following system calls effect the download parameters of the Communication
Monitor. Furthermore, memory space is allocated as well as freed again. Therefore,
Communication Monitor and Memory Manager Monitor parameters are effected by:

e bonjour

Based on the classification mappings, the Signal Generator is able to determine the effected
Signal Generator rules have to be processed for classification of the BEBoT” application behavior
(according to the method described in Chapter 8.7.2) in order to assign the respective health
signals.

11.3 Interaction and Control

By using a VE, we have a safe environment by definition. To enable the evaluation of the
effectiveness of the Online Anomaly Detection, e.g. in terms of detecting faulty hardware, a
full control of both, the VE and the VP, is required. This is realized by integrating interactive
control over the VE and the VP at runtime.

First, in order to offer a dynamic environment, the Virtual Evaluation Environment can
change the actual maze as well as the type of the maze itself on the fly (by a provided GUI)
by a randomized generation and a switching between different algorithms for setting up the
maze. It is possible to generate simple maze structures, where all walls are connected, but also
structures with one or more loops, so that the pathfinding algorithm of the BEBoT must be
smarter. Furthermore, we are able to change the size of the maze, the start point of the BeBot
and the destination position inside the maze.

Secondly, as one of the important means, we integrated the possibility to interactively control
the data received from the virtual IR sensors and thereby allow failure injection based on the
failure model implemented. Single sensors can be completely disabled by the user that can
decide which value the defective sensor is sending back to the operating system. It can be a
defined value, e.g. 0 or any other static value, random noise and a random value R between
two boundaries [a, ..., b]. Including this method, we are able to selectively inject failures and
evaluate the reaction of the Online Anomaly Detection’s decision making process.

In order to evaluate the BEBot1’s execution function, we included a method which manipulates
one or both gear motors. We can decide whether a motor will not react at all, randomly react
correctly on a driving command or just react randomly whatever value is sent.

For this interactive control, a graphical user interface as shown in Figure 11.9 was designed
to change all parameters defined above while the system is in execution. The great benefit
using the Virtual Evaluation Environment in contrast of using the real BEBoT is the possibility
of simulating faulty hardware in various ways. Trying to do that by using the real hardware is
hard and may also not include all the options offered by the Virtual Evaluation Environment.

11.4 Evaluation Qutput

As one essential requirement, the evaluation environment has to provide an output of the
evaluation that allows to asses the system performance (see R.6) with respect to its experiments’

EVALUATION CASE ENVIRONMENT

— e

| Enable IR Sensors | Disabled IR Sensors Values
7| K
4 !\"/"‘ [] -("‘-1 | '.
-
9
|

IR Sensor Features
&
. | |
A |

e

= ~a—
Left Motor Behavior || Left Motor Behavior

=
|
|
||
|

Figure 11.9: Graphical user interface for changing the parameters of the Virtual Evaluation
Environment.

objective.

Ensuring a reproducible evaluation scenario requires the availability of all (static) information
about the environment’s configuration as well as the configuration of the executing system. The
configuration of the evaluation environment (including maze, start position and destination
position) can be extracted from the config files of the Virtual Evaluation Environment. The
configuration of the executing system composed of ORCOS including the Online Anomaly
Detection and the application tasks is stored in the SCL configuration files.

As a basic output, the Virtual Evaluation Environment provides a visualization of the
system execution. Thereby, the BEBoT’s performance can be observed which allows to draw
conclusions on the quality of the BEBot’s application. Furthermore, the commands sent by the
application to drive the BEBor are displayed so that the application’s behavior can be traced
online. However, instead of evaluating the BEBoT application, the scope of the case study is the
Online Anomaly Detection so that we are more interested in the output related to that.

Our evaluation environment provides two major instruments for evaluation output related
to the Online Anomaly Detection:

1. Log Files The Online Anomaly Detection operates inside ORCOS and has no direct
connection to the virtual environment. Hence, information that reflects the execution state
is encapsulated within ORCOS. For tracing the execution of ORCOS or its components,
logs are output on the execution console. Additionally, the logs of the Online Anomaly
Detection are written into log files to enable an analysis of an executed evaluation scenario
afterwards. From these log files, the complete execution can be reconstructed and all
information required can be extracted:

e the arriving system calls and their location in the Suffix Tree (with all additional
information such as occurrence counter etc.)

254

e the health signals obtained by the OS Health Monitor, separated for each Component
Monitor Module

e the resulting classification marker values for Suffix Tree nodes after proceeding the
classification process

The Online Anomaly Detection is working fully decoupled from information of the VE.
ORCOS and, in particular, the Online Anomaly Detection have no knowledge about
changes happening in the environment or the BEBort. This includes also that the Online
Anomaly Detection is not aware of whether a failure in an IR sensor has been induced.
However, for analyzing the evaluation scenario, it is important to combine behavior
of the Online Anomaly Detection with the states of the VPs in the Virtual Evaluation
Environment. Assuming that at a particular point of time the classification outcome
changes (e.g. into a suspicious or dangerous state), it is important to know whether
this change was caused by a change in one of the objects of the Virtual Evaluation
Environment or arose because of an internal system instability. On the other hand,
knowing that a failure was induced in a particular evaluation scenario, it is important
to examine whether this failure was detected by the IR Sensor Monitor, how long it
took to detect this failure (in number of periods) and whether this failure will effect the
classification and, hence, the resulting health signal. To overcome this problem, we have
implemented a further interface between the VE and ORCOS through which the VE can
send a message in case of a user-initiated change. The information in this message is not
incorporated to the Online Anomaly Detection at all. It only initiates a notification of e.g.
a failure injection into the log file for supplementary analyzing purposes that allow to
draw conclusions of the performance of the Online Anomaly Detection in context of the
state of its application environment.

The logfiles enable the complete execution to be reconstructed and are the main instru-
ment for assessing the performance of the Online Anomaly Detection with respect to the
objective of the evaluation scenario.

2. Debugging

A further aspect of the evaluation is concerned with the question of whether specific states
of a implementation (programming code) can be reached during the execution. This could
be conditions that are expected to be very uncommon or which are specifically intended.
We call them states of interest. Identifying whether such a state is reached on a system that
is executing is not easy. However, by executing the system within the Virtual Evaluation
Environment with the (application controlling) software executing in the QEMU emulator,
it becomes possible to debug the executing code. We exploit the debugging facility to set
breakpoints in the programming code (of the Online Anomaly Detection) at particular
interesting parts in terms of the evaluation objective, e.g. a produced danger signal. When
reaching a breakpoint, the execution of ORCOS is interrupted which leads to the fact
that the BEBor is brought to a stop as it does not receive any commands during the
break. This allows to directly identify - during the execution - whether the particular
states of interest were reached. Because of the potentials it offers, the debugging facility
is considered as a second major means to produce evaluation output for analyzing the
effectiveness of our approach.

The visualization of the system execution provided by the Virtual Evaluation Environment,
the debugging facility of the operating system and the log files generated by the Online

Anomaly Detection provide suitable instrument to capture the system performance and to
obtain comprehensive evaluation outputs.

11.5 Evaluation Scenarios

For defining evaluation scenarios, we refer to the recommendations of Roske et al. (see
Chapter 10.1) to ensure a separation of concerns in terms of evaluating the life cycle phases
composed of the perception function, the decision function, and the execution function in an
isolated manner (as formulated in requirement R.4). For each of the life cycle phases, we clarify
the responsibilities of that phase and boundaries to the other phases. Then, we discuss the
evaluation objectives of the phase from which we derive evaluation scenarios.

11.5.1 Perception Function

The perception function of the Online Anomaly Detection is composed of system call
monitoring and maintaining health signals. This data deals as input for the classification
method that represents the decision function. A reliable perception function is required as
a prerequisite to evaluate the decision function. Therefore, we have to ensure the correct
functionality of the data input sources, namely the System Call Monitor and the OS Health
Monitor.

1. System Call Monitor

The system call extraction is directly implemented in the System Call Monitor so that any
system call that is executed by an application is recorded with the associated data (system
call ID, task ID, time stamp, etc.). This ensures a completeness of the data collection by
concept. The correctness of the data extraction has been proven by the implementation
that was evaluated in [92]. Based on this, the perception function related to the system
call monitoring does not require further evaluation.

2. OS Health Monitor

The OS Health Monitor delivers health signals obtained by processing the Signal Genera-
tor rules. Hence, the quality of the health signals relies, on the one hand, on the quality
of the rules, and on the other hand, on the data that is processed.

The data that the Signal Generator rules operate on are the health parameters obtained
by the Component Monitor Modules. Health parameters associated with the kernel
components replicate the values of the (internal) state parameters of the addressed com-
ponent or are at least obtained by calculations or accumulations of the available (internal)
state parameter values. This data is produced by software, so that the completeness and
correctness can be proven by validating the programming code (conducted in [69]).

The situation is different for the IR Sensor Monitor as this one operates on data delivered
by hardware devices. Here, the reliability has to be examined in order to guarantee
correctness of the perception function. However, in our evaluation environment the
hardware devices are realized in form of virtual prototypes. These, in turn, are imple-
mented as software components that do not suffer from altering effects or defects (if
not intentionally induced) and thereby ensure the correct functioning of the perception
function.

Furthermore, the implementation of the IR sensor VP offers several alternative models
for distance value accuracy as well as for failure injection. These models can be selected
in accordance to the requirements of the decision function, which allows a full control
over this part of the perception function.

The quality of Signal Generator rules that corporately compute a health signal is strongly
depending on the expert knowledge of the system designer. The correct working of the
Signal Generator that was implemented for the general kernel modules was shown by
performing mutation-based evaluations in [69]. The evaluation of implementation of the
Signal Generator defined for the IR Sensor Monitor is described in the evaluation scenario
Scenario 1 (see Section 12.1). These experiments have been performed in a failure-free
environment. Although designing a OS Health Monitor component is not the scope
of this thesis, it had to be evaluated as its results build up the basis for the evaluation
of the performance of the Online Anomaly Detection with failures induced. Without
evidence that the IR Sensor Monitor works correctly in a failure-free environment, we
cannot analyze and assess results of advanced experiments.

11.5.2 Decision Function

In our Online Anomaly Detection, the decision function, as being the part of the system re-
sponsible for analysis, is represented by the classification mechanism in the Anomaly Detection
Module and forms the core entity of this approach. For evaluating this, different variations in
system behavior have to be initiated.

The Signal Generator was evaluated within the perception function in a failure-free envi-
ronment. However, resulting healthy/green health signals can only lead to green classification
outcomes that are written into classification markers of the Suffix Tree nodes. The classification
method can only deliver classification outputs different from green if the OS Health Monitor
components return health signals different from green. Therefore, the evaluation of the decision
function can only be conducted if warning/yellow or danger/red health signals are raised. This,
however, can be generated in a controlled manner if some threats or failures are induced into
the system. The easiest way to realize this is to exploit the failure injection provided by the
Virtual Evaluation Environment for the IR sensors.

For the purpose of evaluating the qualities of the classification method, we have examined

e Scenario 2: how long does it take until the induced failure is detected by the IR Sensor
Monitor if it is detected at all (see Section 12.2).

e Scenario 3: whether and to what extend the failure effects the classification outcomes of
the currently executing application (see Section 12.3).

e Scenario 4: the reaction induced by the Online Anomaly Detection based on the outcome
of the classification method (see Section 12.2).

The specified scenarios enable to demonstrate all interesting aspects of the classification
method. The quality of the classification method is the core issue in terms of the performance
of the Online Anomaly Detection so that the evaluation of the decision function is the most
significant one.

11.5.3 Execution Function

The evaluation of the execution function is on the one hand concerned with performance
parameters, such as runtime or memory consumption. These have been evaluated in the
quantitative evaluations that are the topic of Chapter 9.

Another aspect of the evaluation of the execution function is concerned with testing whether
the decisions made by the decision function are correctly executed and satisfy the system’s
objective. In the context of our approach, the execution function concentrates on handling the
classification outcomes that, in fact, are passed to the controller (in our application scenario it
is the Controller Task) that is responsible to decide whether to initiate a system reconfiguration.
The passing over of classification outcomes can be verified by programming code validation.
The implementation of the controller is not the scope of this thesis and, hence, the reaction on a
detected unstable or dangerous state as well. Nevertheless, we have evaluated the initiation of
a reconfiguration as one aspect of Scenario 4. With this, we could evaluate the offered options
for dealing with the Behavior Knowledge Base after a reconfiguration.

11.6 Summary

In this chapter, the evaluation environment for the case study of the Online Anomaly
Detection is introduced. The BEBoT with autonomous driving applications was chosen to be
applied for the case study and transferred into a virtual environment because of the potentials
of virtual environments in terms of satisfying the requirements set for the evaluation. The
designed Virtual Evaluation Environment is composed of the virtual prototype of the BEBor,
the maze as its application environment, the BEBoT controlling application and ORCOS on
which the BEBot application is executed. To integrate all these system parts into one evaluation
environment, some auxiliary techniques have been applied such as QEMU for emulating the
ORCOS execution on the BEBor and the ACM for implementing the communication between
the virtual environment and ORCOS. The architecture with all applied techniques is introduced
in detail.

For the purpose of this case study, the Online Anomaly Detection was extended by a BEBot-
related module, the IR Sensor Monitor. It is responsible for monitoring the health states of the
BeBoT’s IR sensors and implements Signal Generator rules for their computation.

The Virtual Evaluation Environment provides means to interactively manipulate the proper-
ties of the evaluation entities and, thereby, allows controlled failure injection. This is the most
powerful feature for the purpose of our evaluation as it allows to induce intended changes
and to evaluate whether and to what extent they will impact the performance of the Online
Anomaly Detection, especially, in terms of the outcome of the classification method. The
different aspects of the evaluation are formulated in evaluation scenarios that according to the
requirements are specified with respect to the separation of concerns.

The application of a virtual environment provides a visualization of the system execution
that allows to observe the system performance. The execution states of the Online Anomaly
Detection can be traced either at runtime by using the debugging facilities, or after the execution
by means of the log files generated during the execution that allow a detailed reconstruction of
the execution scenario. These instruments offer a comprehensive evaluation output to allow an
analysis of the defined evaluation scenarios.

We define four evaluation scenarios with different objectives that build the basis for the
discussion of the results in the next chapter.

Evaluation Results and Discussion

In the former chapter, the entire evaluation environment was described in detail with a short
introduction of the evaluation scenarios resulting from the evaluation objectives. This chapter
specifies the evaluation scenarios with its basic conditions and parameters and outlines the
obtained evaluation results. This chapter is finalized with a discussion of the main results
provided by the case study:.

Evaluation Configuration

For the evaluation discussed here, the BEBoT was executed in the Virtual Evaluation Environ-
ment initially controlled by its simple application left-side wall follower (see Section 11.2.3). The
BeBort applications mainly operate on the IR sensor data values requested by the associated
system calls. For the IR sensor behavior, the LinearModel (see Section 11.2.2) was applied
without any noise or latency. This model was chosen because it enables an easier and more
reliable comparison of values delivered by neighboring sensors (as required by the Signal
Generator rules for the purpose of health state examination). Even if the left-side wall follower
application operates only on data from the front and left-side sensors (encompassing IR0, IR1,
IR2, IR3, IR4, IR10, and IR11), for the evaluation purposes, the application requests all IR
sensor data once in a period. This is done in order to supply the IR Sensor Monitor with actual
sensor data and to make the values delivered by the IR sensors traceable for the postponed
analysis performed here.

As a means to introduce system instabilities in a controlled manner, in this case study, we
refer to injection failures performed by the operator/user. The failure injection is achieved on
the basis of manipulating the behavior of the IR sensors. The different failure models for the IR
sensors (see Section 11.2.2) implement different subsets of Signal Generator rules. On a real
system, it cannot be predicted which kind of failure occurs - if one occurs - so that the entire
set of Signal Generator rules would have to be processed. However, the evaluation within
a safe environment, such as the one applied here, allows us to select a failure model. This,
consequently, allows to reduce the set of processed Signal Generator rules.

From the viewpoint of the Signal Generator rules, the failure models FailureModelx (IR sen-
sor delivers value 0), FailureModel2z (IR sensor delivers value max_value) and FailureModel3
(IR sensor delivers a fixed user-set value) are assigned the same subset of Signal Generator

rules. Therefore, FailureModel1 can be treated as a representative of these three failure models.
FailureModel (IR sensor delivers a random value) is assigned a different subset of Signal
Generator rules. These rules are more complex as it is not that straightforward to detect a
failure if the values delivered by an IR sensor differ in each monitoring period. Because of the
different subsets of Signal Generator rules, the experiments in the evaluation scenarios have
been conducted by using FailureModel1 and FailureModelg separately in order to allow a
comparison of their performance results.

The core entities in this evaluation are the Signal Generator rules of the IR Sensor Monitor.
According to Chapter 11.2.6, they mainly operate based on probabilities of combinations of IR
Sensor values that score the health signal value. The position of the BEBoT towards the present
obstacles governs the in IR sensor values. Hence, positions leading to value combinations
that are assessed as uncommon assuming the IR sensors are working correctly get a higher
probability to declare a suspicion. However, as they may occur even without the presence of IR
Sensor failures, they will lead to an increase in the score of the health signal value. In contrary, a
failed sensor may be assessed as working correctly because its delivered value may accidentally
lay in a range that was assessed as plausible when setting it into context of its neighboring IR
sensor values. Because of relying on probabilities, the Signal Generator incorporates a certain
degree of inaccurateness and uncertainty. Considering the two different classes of failure
models, the Signal Generator rules for FailureModel1 are more straightforward as a failure in
an IR sensor can be rather quickly detected based on examination of the IR sensor’s history
data (the failed IR Sensor delivers a fixes value either 0, max_value or a user-defined fixed
value). In contrast to that, in FailureModelg a failure can only be detected in the context of the
neighboring IR Sensor values as a failed IR Sensor in this mode will deliver values that are
different in each period. Because here, the health signal examination is strongly related to the
different IR sensor value combinations of neighboring IR sensors, the Signal Generator rules in
this failure model are more blurred than those for FailureModel1 and are therefore assumed
to be more inaccurate. Therefore, one objective of this evaluation is to verify the reliability of
the IR Sensor Monitor as a prerequisite to evaluate the powerfulness of the Online Anomaly
Detection.

It is important to emphasize here, that in the evaluation we can only obtain the operating
system internal data and analyze this, meaning the IR sensor values, without any knowledge
of the real situation and the position of the BEBOT in relation to the maze walls. Therefore,
even if getting a health signal score that signals a warning or even a danger, we are not able to
argue based on the environment’s current situation. Hence, the reason for particular signals
occurring during the experiments cannot be given here. However, we expect false signals
that occur because of probably uncommon IR sensor value combinations to be reverted in the
following periods as situations causing such signals are expected to be transient.

12.1 Evaluation Scenario 1

As a prerequisite to evaluate the performance of Online Anomaly Detection in case of
component failures, it is essential to ensure a certain degree of reliability in case of absence of
failures. In this evaluation scenario, we address the reliability of the IR Sensor Monitor in a
failure-free environment (as the reliability of all the other modules have been evaluated in [69]).
The objective of this evaluation is to verify the correctness of the health signals delivered by the
IR Sensor Monitor and their false rate.

We have evaluated the IR Sensor Monitor executing Signal Generator rules for FailureModel1

and FailureModelg within separate experiments with no failure injection performed during
system execution. Of course, for each evaluation we have executed multiple experiments. From
these, the ones with the most significant results have been selected as representatives for this
evaluation scenario, and are presented and discussed here.

1.

The IR Sensor Monitor executes the Signal Generator rules assigned to FailureModelx.
Failures in IR sensors have not been injected.

A typical result of health signals delivered by the IR Sensor Monitor is illustrated in Fig.
12.1. The IR Sensor Monitor was executed over 300 periods. By evaluating the health
state of 12 IR sensors, the IR Sensor Monitor has output 300 - 12 = 3600 health signals.
Almost all health signals are of value 0 which is associated with a healthy/green signal and
no suspiciones at all. (The health signal of the IR Sensor Monitor is assigned a score value
in the range of 0..8, see Section 11.2.6.) In period 85, for one IR sensor (IR5), a warning
signal was raised as the returning health signal value was 3. The value 3 represents a
situation that is rather probable to be a suspicion. However, according to our expectations
in a failure-free scenario, in the following periods 86 and 87, the score value of the health
signal was step-wise diminished. After period 86, the health state immediately recovered
to healthy/green signal with value 2, continued to diminish with the value 1 in period 87,
and, finally, to value 0 afterwards.

health signal value IR Sensor Monitor

8

7

6

0

——Health Signal

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 period

Figure 12.1: Health signals obtained by the IR Sensor Monitor executing Signal Generator rules
for FailureModel1 in absence of failures.

This example illustrates that value combinations of IR sensors exist that represent both,
healthy states as well as suspicious situations, and that for the IR Sensor Monitor it is
possible to raise a warning signal even if no failures were injected as caused by the fact that
the Signal Generator rules are defined based on probabilities. Referring to the presented
experiment, the false rate is 0.027% with a false alarm case of 1 of 3600 (similar false rates
have been obtained in other executions).

With a false rate of 0.027% and the capability to recover from false alarms, we can state
that the IR Sensor Monitor provides an acceptable reliability.

. Detecting a failure in an IR sensor if the sensor delivers different values in each monitoring

period is very complicated. An uncertainty remains whether a particular situation

8

specified in a Signal Generator rule is a failure or not. Hence, the Signal Generator
rules for detecting FailureModelg are more unsafe than those for FailureModel1 as they
operate on probability assumptions. This leads to different results for health signals
delivered by the IR Sensor Monitor executing the Signal Generator rules assigned to
FailureModelg (with no failures in IR sensors injected).

The health signals obtained in our experiments are illustrated in Fig. 12.2. In Fig. 12.2,
the boundaries between the types of health signals are marked. Furthermore, specific
regions or points are marked that will be discussed in more detail later on.

The IR Sensor Monitor was executed over 755 periods evaluating the health state of
12 IR sensors in each period. In this experiment, the IR Sensor Monitor has output
12 - 755 = 9060 health signals.

health signal value IR Sensor Monitor

@ @ danger

— HealthStatus

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 period

Figure 12.2: Health signals obtained by the IR Sensor Monitor executing Signal Generator rules
for FailureModelg in absence of failures.

From these 9060 health signals, 8745 stay in value 0, while 217 get value 1 and 51 value 2
which both represent still healthy/green signal. 47 signals are warning/yellow signals with
37 of value 3, 6 of value 4 and 4 of value 5. This leads to a warning/yellow signal rate of
0.52%. No danger/red signal has been output. Generally, we can state, that all warning
signals are transient as on the one hand, they do not yield to a danger signal. On the other
hand, they are able to recover as, after their occurrence, they do not remain in the system,
but are eliminated and return back to healthy/green signal.

Let us call all health signals whose value differ from 0 deviators, even if in case of 1 and 2
they result in the same healthy/qreen signal. (Deviators are not considered as anomalies or
false signals but only as health signals unequal to 0.) One striking characteristic that can
be seen in Fig. 12.2 is that deviators occur in a number of successive periods building up
clusters.

Accordingly, the warning signals occur in multiple successive periods of a cluster. Gen-
erally, this is caused by the fact that a warning signal detected in one monitoring period
needs some further periods to recover. Hence, instead of considering each of the 47
warning signals separately, we are considering the occurrence of warning signals within
their clusters. In this experiment, we have found 15 clusters with health signals reaching
the warning signal range.

Based on the log files delivered by the experiments and the results illustrated in Fig. 12.2,
we can discuss some detected phenomena and their causes.

1. As already indicated, health signal deviators seem to appear in clusters. Multiple of
them can be seen in Fig. 12.2. Marker (@ points out one typical situation for such a
cluster generation documented in the log files (in this table IR0 is located next to
IR11 to emphasize that these IR sensors are neighbors):

health signal value
period | ... | IR4 | IR5 | IR6 | IR7 | .. | IR11 | IRO
262 0 0 0 0 o |o 0 0
263 0 0 0 0 o |o 1 0
264 o| o 0 0 1 |0 0 0
265 0 0 0 1 o | o 0 0
266 0 0 0 1 o | o 1 0
267 0 0 1 0 o |o 1 1
268 0 1 0 0 o | o 0 0
269 0 0 0 0 o | o 0 0

Because of the interdependencies between neighboring IR sensor values as well
as the impact of the previous classification marker value in the evaluation of the
health signals (as specified in the Signal Generator rules in Section 11.2.6), such
propagations emerge that lead to the already named clusters of deviators. The most
interesting highlight in this excerpt is provided by IR4 to IR7 (and by IR11 and
IR0 on the side). The remaining IR sensors are consolidated by ”...” as they all
deliver health signal values of 0 that are not of any significance here. In period 264,
in the value of IR7 a suspicion is detected that increases the health signal value to
1. Even though, the health signal remains in healthy/green state it is worth noting
this increase. In the next period, for obtaining the health signal value of IR6, the
health signal values of its neighbors - including IR7 which health signal value was
increased in the previous period - imply the result of the health signal value of IR6
and yields to a propagation of the health signal value: In period 265, the health
signal value of IR6 becomes 1 (the same happens in period 266). In period 267 the
health signal propagates to IR5, and finally to R4 in period 268. (IR11 and IR0
also exhibit such a propagating effect in periods 266 and 267).

This propagating phenomenon can be observed for multiple times in the provided
example. The health signal propagation can be a further amplified, and lead to an
additional increase of the health signal value. Such a situation is illustrated in the
following excerpt of log files reflecting the region in Fig. 12.2 marked by .

health signal value
period | ... | IR5 | IR6 | IR7 | .. | IR10 | IR11 | IRO
687 0 0 0 o | o 0 0 0
688 0 1 0 o | o 1 0 0
689 0 1 o} o | o 1 o} 0
690 0 2 1 o |o 0 0 0
691 0 1 0 o | o 0 1 0
692 0 0 0 o |o 0 1 1
693 0 0 0 1 |0 0 1 1
694 0 0 0 2 | o 0 0 0
695 0 0 0 1 |0 0 0 0
696 0 0 0 o | o 0 0 0

In the periods 688 to 691, the health signal value of IR5, on the one hand, prop-
agates to IR6 (in period 690). On the other hand, the obtained health signal is
enhanced by the previous health signal values of IR5 leading to the health signal
value increase to 2, that in the following periods is step-wise eliminated. The same
phenomenon can be observed for IR7 in the periods 693 to 695.

. The following table shows an extract of the log files of the time interval that is
marked by (3) in Fig. 12.2. In this table, IR8 and IR9 are explicitly listed as they
exhibit deviators that are significant here, while the other IR sensors are consolidated
because they all deliver 0 health signal value.

health signal value
period | ... | IR8 | IR9
19 o| o o | o
20 o| o 1 | o
21 ol 3 2 | o
22 ol 2 1 | o
23 ol 1 1 | o
24 o| o o | o

On the basis of this extract, two observations can be discussed:

The first is identified by the periods 20 and 21. In period 20, a situation for IR9 is
detected, that increases the health signal value (to 1). One period later, the health
signal value of IR9 increases again and results in 2. The increase in the health signal
value in one period after the other may be caused by the fact, that the situation of
the BEBor that was classified as a suspicion may last longer and still be present
in that period. Then, the Signal Generator rules effected here amplify the health
signal score. Furthermore, a suspicious combination of IR sensor values may effect
the neighboring sensors’ health states. This can be observed in period 21: the
neighboring IR sensor IR8, exhibits a health signal value of 3 in that period leading
to a warning signal. Hence, the suspicion tends to propagate among the neighboring
IR sensors.

The second observation is depicted in the periods 21 to 24. In each period, the
health signal values decrement step-wise. This behavior resolves the suspicion and
recovers the health state of the IR sensors. This situation proves that the warning
signal was transient and that the suspicious situation either had not existed or was
resolved. This particular example illustrates an ideal form of recovery for IR8 as in
each following period the health signal value is continuously decremented. (It is not
always the case for recovery in other clusters containing warning signals.)

. A mutual enhancement of the health signal values of neighboring IR sensors is
depicted by the marker @ referring to the following health signal values:

health signal value

period | ... | IR4 | IR5 | IR6 | IR7 | IR8 | IR9

280 0 0 0 0 0 0 o |o
281 0 0 0 0 1 0 o | o
282 0 0 0 0 1 0 o | o
283 0 0 0 1 0 0 3 |o
284 0 0 1 0 0 0 2 |o
285 0 0 1 0 0 3 1 |0
286 0 1 0 0 0 2 o |o
287 0 2 0 0 0 1 o |o
288 0 1 0 0 0 0 o |o
289 0 0 0 0 0 0 o |o

Because IR9 was is warning state with a health signal value of 3 in period 283,
it infects its direct neighbor IR8 to also raise a warning signal two periods later on.
Fortunately, both warning signals are transient and are able to recover back to health
signal value 0.

4. Another example for such a mutual enhancement is pointed out by (), illustrating
the following situation (without illustrating in detail, the situation marked by ®) is
very similar to the one marked by (3):

health signal value
period | ... | IR2 | IR3 | IR4 | IR5 | .. | IR9 | IR10 | IR11 | IRO
8o 0 0 3 0 o |o] o 0 0 0
81 0 3 2 0 o |o] o 0 0 0
82 0 2 1 0 o |o] o 0 0 0
83 0 o} 1 0 o |o| o 0 0 0
84 0 0 0 0 o |o] o 0 0 0
85 0 o} o} o} o |o| o 0 o} 0
86 0 3 o} o} o |o| o 0 o} 0
87 0 2 3 0 o |o] o 0 0 0
88 0 5 2 0 o |o] o 0 0 0
89 0 4 5 0 o |o] o 0 0 0
90 o| 3 4 0 o |o| o 0 1 0
91 o| 2 3 0 o |o| o 0 2 0
92 0 1 2 1 o |o| o 0 3 0
93 o| o 1 0 o |o| o 1 2 0
94 o| o 0 0 o |o| 3 0 1 0
95 o| o 0 1 o |o| 4 0 1 0
96 0 0 0 0 o |o| 3 0 1 1
97 o| 2 0 0 o |o| 2 0 0 0
98 0 0 0 0 1 |o| 1 0 0 0
99 o| o 0 0 o |o| o 0 0 0

For IR2 a health signal value of 3 is output in period 86 which is a warning signal.
The state of this IR sensor infects the health signal value of IR3 which then also
delivers a 3 in the following period. In the following periods (period 88 to 91), the
health states of these two IR sensors mutually amplify their health signal values
in such a manner that they both reach the value 5 (IR2 in period 88 and IR3 in
period 89). Of course, this situation could have been caused by a BEBot position in
relation to a wall, that was estimated to seldomly occur and rather specifies a failure
situation. Furthermore, depending on the movement of the BEBoT and the resulting
new position, the assumption of the IR Sensor Monitor (that the according sensors
are in failure mode) could have been reinforced in the following monitoring periods.

Obviously, this situation is more critical than those discussed before, as the health
signal value almost reaches the danger signal range, however without passing over.

Basically, it could be observed that the health signal value 1 occurred in all IR sensors in
a rather equally distributed manner, whereas the higher values, especially, those related
to warning signals were mainly detected in the left-side sensors IR2 and IR3 and the
front-side sensors. This may be caused by the fact that the left-side wall follower algorithm
predominantly aims to drive the BEBOT close to the left-side wall and senses the front
side in oder to detect walls. Hence, the distance values of these IR sensors exhibit more

variations than all the other IR sensors that most of the time may be in the situation not
to sense any obstacle. Therefore, they are more affected in case of uncovering suspicious
distance value combinations which leads to the raised warning health signals.

The experiments for evaluating the Signal Generator rules assigned for FailureModelg
have revealed some interesting phenomena. In comparison to the evaluation in context of
FailureModel1, the IR Sensor Monitor has delivered multiple warning signals. But it was
also shown that all of them have been resolved in the following periods. In the executed
experiments, no danger signals have occurred but it cannot be completely excluded that it
might happen due to the mutual propagating effects.

Applying different subsets of Signal Generator rules leads to different results even in a
failure-free evaluation. Even though a number of warning signals was raised, they all have
been eliminated and the health signal values could recover to their base value 0. However, it is
important to emphasize, that warning signals are suspicions but no real threats. Therefore, we
cannot really talk about a false rate as no danger signals falsely occurred. Consequently, based
on these experiments, we can state that the IR Sensor Monitor is appropriately reliable for the
purpose of this evaluation.

12.2 Evaluation Scenario 2

After having ensured an acceptable reliability of the IR Sensor Monitor in a failure-free
environment, it is essential to examine the performance of the IR Sensor Monitor in case of
failures as it is the major input-delivery module for the Online Anomaly Detection in the
context of this case study. To evaluate this, we have performed experiments with the same
configurations as described in Scenario 1 but with actively inducing failures in the IR sensors.

A failure to an IR sensor can be injected by the user in a comfortable way by using the GUI
provided by the Virtual Evaluation Environment (introduced in Section 11.3). The failed IR
sensors keeps returning that value determined by the applied failure model as long as the
failure persists. If the user unmarks the set failure in the GUI, the according IR sensor is
recovered and returns to function correctly.

The main questions to be answered by these experiments are:

e Will an induced failure be detected by the IR Sensor Monitor?
e How long does it take to detect the induced failure (in number of monitoring periods)?

e Will a failure - if detected - lead to a danger signal or will the IR Sensor Monitor only raise
warning signal?

To be able to answer these questions, the information must be incorporated into the log files
that form the basis of the evaluation output. However, ORCOS is responsible to write the log
files and is completely decoupled from information or configurations related to the Virtual
Evaluation Environment. In order to supply ORCOS with the information of injected failures,
a further interface was implemented (as already introduced in section 11.4) that signals the
failure injection to ORCOS. When receiving this signal, a marker is written into the log files
that determines the point of time of a failure injection (with a small but acceptable latency). By
this, it is possible to derive the monitoring period of the IR Sensor Monitor at the point of time
the failure injection and enables to determine the detection period of the failure in forms of the

danger signal. We have extended the provided log files by a further column for inserting the
detection period.

At any point of time, there is maximally one IR sensor suffering from an injected failure. The
failure is present in the system until it is detected (by means of delivering a danger signal). By
use of a breakpoint at the code fraction that determines the part when the IR Sensors detects
a danger signal we could make sure that the user will not add further failures to the system
as long as the present one is not detected (formulated in evaluation instructions). When the
breakpoint is reached, the system execution is suspended which signals the detected failure to
the user. Only then, the user is allowed to eliminate the failure source by unmarking the IR
sensor, before inducing the next one.

Again, we split the discussion of the results into experiments that apply Signal Generator
rules for FailureModel1 and for FailureModelj.

1. If a failure is injected by applying FailureModel1, the distance value delivered by the
according IR sensor is set to 0. The most critical case provided by this failure model is
that the distance value 0 represents the case of no obstacle is being sensed in the range of
the sensor. Hence, if no obstacles are located in the range of that side of the BEBot that
suffers from the sensor failure, it is not that straightforward to detect this failure.

We have performed multiple experiments to evaluate the failure detection performance
of the IR Sensor Monitor, but reduce the discussion on the results of the most striking
phenomena:

1. A failure was induced in the IR sensor IR3 in period 225. The following excerpt of
the log file is related to this failure injection:

health signal value | detection period

period | ... | IR3

225 o| o 0

226 0 3 0

227 0 6 0 2

228 o| 8 0

229 0 8 0

233 0 8 0

234 o| o 0

The failure was immediately detected, as in the period 226 right after the failure
injection, the IR Sensor Monitor raised a warning signal (health signal value 3) for
sensor IR3. In the next period, this health signal value was enhanced and resulted
in a danger signal with health signal value 6. In this case it took 2 periods of the IR
Sensor Monitor to identify the failure. In the following periods, the health signal
value was even reinforced up to value 8 and remained until period 233 - the length
of time the failure was present. After deactivating the failure source in the GUI,
the health signal value of IR3 was recovered immediately in the next monitoring
period to the basic value 0. The health signal values of the remaining sensors are not
affected here. This example points out the accuracy of the Signal Generator rules for

FailureModel1: no health signal value propagation is emerging in this mode, as the
Signal Generator mainly operates on the particular IR sensor’s own (history) data.

2. The following log file excerpt shows that a failure is detected quickly, but is recover-
ing step-wise:

health signal value | detection period
period | ... | IR4

273
275
276
277

C|O|OC|O|:
C|O|OC|O|:

280
281
282
283
284
285
286

C W [(U] |00|0|XP|N|W|O|:

C|O|OC|O|O|O|O]|:
C|O|OC|O|O|O|O]|:

In this example, the failure was immediately detected in period 275 (2 periods
for detecting and raising the danger signal) after its injection in period 273. The
failure persisted in the system for several periods until it is eliminated in period
280. However, the recovery from the reached health signal value 8 to 0 happens
in a step-wise decrease. This may be caused by the BEBoT’s position in relation to
potential obstacles in the BEBot1’s range.

3. Another interesting highlight is depicted by the following excerpt:

health signal value | detection period
period | ... | IR0

181
182
183
184
185
186

62

C|lO|O|O|O|O]|:
OIN|®ONW|O|:
C|O|0O |0 |0 |O]|:

The front-side sensor IR0 is affected by a failure injection. The BEBot drives by
following the left-side wall and senses the front-side sensors to prevent to drive
against a wall. Moving forward requires a obstacle-free driveway. Hence, at any
point of time the BEBot drives forward, the front-side sensors shall deliver distance
values equal to 0 which is from the viewpoint of the BEBoT the most common
situation. This leads to the fact that the failure injected in one of the front-side
sensors is not immediately detectable, as all front-side sensors return distance values

0 (when the BeBorT is allowed to drive). Only if an obstacle occurs, the distance
values of the front-side sensors will vary. Then, a detection of a failure becomes
possible as it happened in the example illustrated above: It took 62 periods until
the IR Sensor Monitor raised a warning signal as maybe there were no obstacles on
the driveway of the BEBoT before. This signal was immediately transferred in the
following period to a danger signal and recovered after the failure was eliminated by
the user.

Based on the experiments performed, we can state that by applying the Signal Generator
rules assigned for FailureModelx all injected failures have been detected. The IR Sensor
Monitor determined the failed IR sensor correctly. No neighboring IR sensors have been
affected or falsely classified. However, in some cases it took a while until the failure could
be discovered because some failures were not perceptible immediately due to the BEBor
position in relation to the maze objects.

. The evaluation results obtained in the context of the FailureModelg will be discussed
based on an example that was executed over 357 periods. In this time, the IR Sensor
Monitor delivered 12 - 357 = 4284 health signals. During this execution, 14 failures were
injected in diverse IR sensors: a failure was only injected if the previous one was detected
and eliminated. So, at any point of time only one IR sensor failure was present. Basically,
we can state that all failures have been detected by the IR Sensor Monitor. In the following,
we discuss some striking phenomena:

1. In some cases, the failure was immediately detected within 2 or 3 monitoring periods.
Here are the excerpts of the log files:

health signal value detection period
period | ... | IR9 | ... | IR11 | IRO
18 o| o |o 0 0
19 ol 1 |o0 1 0
20 o| 4 |o 0 1
21 o| 7 |o 0 0 2
22 8

The failure in the IR sensor IR9 was detected after 2 periods.

health signal value detection period

period | ... | IR2 | ... | IR11 | IRO

181 0 2 0 0 0

182 0 0 o] 0 3

183 0 0 0 0 6 2

184 0 0 0 1 5

185 0 0 0 0 5

186 0 0 0 0 8

187 0 0 0 0 8

The failure injected into IR sensor IR0 was also detected after 2 periods. In the
following period, the health signal value was weakened and then again reinforced
in the later periods.

2. Some failures have been quickly discovered, however, it took some more periods
until the danger signal was raised:

health signal value detection period

period IR4 | IR5 | IR6 IR8 | IR9 | IR10

30 o| o 0 o |o]| 3 1 0 0

31 o| o 0 o |o]| 2 0 1 0

32 o| 1 0 o |o]| 1 0 1 0

33 o| o 0 o |o]| 4 0 0 0

34 o| o 0 1 |o| 4 1 0 0

35 o| o 0 o |o]| 7 0 0 0 5

36 0 0 1 o |o| 8 0 0 0

In the first period after the failure injection, the IR Sensor Monitor raised a warning
signal for the affected IR8. However, it took 5 periods until the health signal evolved
into a danger signal. The health signal of IR8 even slightly recovered before it was
reinforced. One reason for this might be, that the distance value returned by IR8 in
that period accidentally lay in a range of plausible values when set in the context of
its neighboring IR Sensor values (as randomly generated). Similar situations with
detection periods of 5 or 6 could be observed for several times in the experiments

leading to 5 or 6 detection periods.

3. In some cases, the failure detection required more time, such as:

health signal value detection
period

period IR2 | IR3 | IR4 | IR5 | IR6 | IR7 | IR8 | IR9 | IR10

142 o| o 2 0 0 3 0 0 0 0 0

143 o| o 1 0 0 2 0 0 0 0 0

144 o| o 0 1 0 1 0 0 0 0 0

145 o| o 0 0 0 0 0 0 0 0 0

154 o| o 0 0 0 0 0 0 0 0 0

155 o| o 0 0 0 0 0 1 1 0 0

156 o| o 0 1 0 3 0 0 0 0 0

157 o| o 0 0 0 4 0 0 0 1 0

158 0 0 0 0 0 7 1 0 0 1 0 16

The failure injected into IR6 was immediately signalized by a warning period in
period 142 right at its injection. For the periods 145 to 155 the health signal of the
sensor completely recovered even if the failure was still present. Finally, in period
156 the IR Sensor Monitor raised a warning signal again that quickly evolved to a

danger signal in period 158. The detection of the failure by raising a danger signal
required 16 monitoring periods. One possible explanation for this phenomenon
(health signal recovery) is that IR6 is located on the back side of the BeBot. The back
side sensors, however, are not really engaged in the BEBOT’s sensing and decision
making process except for the situation when the BEBoT rotates (it checks the back
side sensors to prevent hitting a wall).

However, this phenomenon can also happen to other sensors such like IR3 located
on the left side:

health signal value detection period
period | ... | IR3 | ... | IR7 | IR8 | IR9 | IR10

218
219
220
221
222
223
224
225
226
227

C|O|OC|O|O|O|O|O|Q|O]|:
AW IO|OC|Q|Q|OC|R[N|W:
C|O|OC|O|O|Q|Q|Q|Q|O]|:
C|O|Rr|[O|O|O|O|O|Q|QO]:
O|IQC|QO|O|Rr|O|OC|O|O|rR|:
O|IQC|Q|O|R[IN|W|O|O|O|:
O|lRr|R|O|O|O|OC|O|O|O|:

The failure was injected in period 218 in sensor IR3. IR3 is a left-side sensor and
a sensor on which the BEBot’s applications relies on. At the time of injection, the IR
Sensor Monitor raises a warning signal of health signal value 3 which is weakened
in the following periods until it completely recovers to the basic value 0 in period
222. Then, in period 226 it is detected again and yields in a danger signal with health
signal value 6 in period 227. The complete detection phase takes 9 periods. One
reason for the interim recovery of the health signal value is that the random distance
values generated by FailureModelq might accidentally be similar to the distance
values of the neighboring sensors and are therefore estimated to be correct by the
Signal Generator rules.

4. In another case, it took even a long time of 76 periods for failure detection as the
failure was again injected on a back-side sensor. We have reduced the excerpt of the
log file to the most significant lines, only considering the effected IR sensors IR5:

health signal value | detection period

period | ... | IR5

272 o| 3 0

273 o| 2 0

274 o| 1 0

275 o| o 0

284 0 3 0

285 0 2 0

286 0 1 0

287 0 0 0

316 o| 3 0

317 o| 2 0

318 0 1 0

319 o| o 0

346 o| 3 0

347 o] 2 0

348 o| 5 0

349 |o| 8 0 76

The failure in IR5 was injected in period 272 and was finally detected in period
349. In the meantime, IR5 was assigned a health signal of warning for multiple times
that could recover.

This example shows that failures can lie dormant in the system without being de-
tected by means of raising a danger signal for a long period of time. But, nevertheless,
there is a point of time when they are definitely detected.

The evaluation of the IR Sensor Monitor with failure injection by applying FailureModelg
has shown that all injected failures could be detected. Hence, we can assume that the
performance of the IR Sensor Monitor is appropriately reliable.

Random distance values delivered by a failed sensor, of course, can lie in a value range
that is assessed to be correct in relation to the other distance values. Even if some failures
could lie dormant in the system for a while, they finally all have been detected. Basically,
failures in IR sensors that the BEBoT application mainly operates on, could be detected
quickly within 5 or even 2 periods. Failures in those IR sensors that are requested only in
special cases (such as back side sensors for turning) were able to persist in the system as
long as they were not required for the decision making process of the application. But,
when becoming relevant for the application, the failure was detected and a danger signal
was raised by the IR Sensor Monitor.

We could see by these experiments, that the IR Sensor Monitor did not raise false health
signals as no danger signal was raised without a failure being injected.

Of course, this is a case study and not an evaluation with statistical significance, but for the
purpose of this evaluation it provides adequate results. The evaluations for FailureModel1
have outlined that a failure can be detected rather quickly whereas for FailureModelg the
detection quality is more diverse. However, with these examples we could show the reliability
of the IR Sensor Monitor that delivers input for the Online Anomaly Detection.

12.3 Evaluation Scenario 3

In the previous evaluation scenarios, we have ensured an appropriate reliability of the IR
Sensor Monitor in a failure-free mode as well as in case of a failure. However, the IR Sensor
Monitor is only one of the modules that provide input to the classification method of the Online
Anomaly Detection. In this evaluation scenario, the main objective is concerned with the effects
on the classification outcome obtained based on the health signals delivered by the OS Health
Monitor component modules when classifying executed system calls that are represented as
nodes in the Suffix Tree.

The verification of the correctness of the classification outcome includes the following
questions:

1. Which classification outcome is produced in a failure-free execution? Which classification
outcome is delivered in case of a failure in one system entity?

2. How can failures be detected as soon as possible? Can a failure be identified before one
of the OS Health Monitor components raises a danger signal?

3. Can such warning signals delivered by the IR Sensor Monitor in failure-free modes be
masked by the Online Anomaly Detection and finally result in a global healthy/green signal
or do they lead to incorrect global health signals?

4. Can failures that lie dormant in the system be detected before an action is performed that
relies on the failed entity?

Answering these questions requires a consideration of the classification outcome that is
composed of the sub-signals output by the single Component Monitor Modules. The health
states of the single Component Monitor Modules are recorded in the log files whenever the
component’s health state was evaluated. We assume that all Component Monitor Modules are
reliably based on [69] that provides the evaluation of the operating system-related components
by means of mutation testing and on the results offered by Scenario1 and Scenario 2 of this
evaluation that examined the reliability of the IR Sensor Monitor.

Different detection precisions can be implemented in the Online Anomaly Detection that will
trigger an alert to the Controller in order to induce a reaction (see Chapter 8.8.5: one warning
signal, subsequent warning signals in one component, warning signals in multiple components
at the same time, or at latest one danger signal). In our case study, we have to deal with an
imprecise IR Sensor Monitor. Hence, the detection precision is strongly depending on the
combination of health signals delivered by the other Component Monitor Modules. Therefore,
we have configured the Anomaly Detection Module to signal an alert if multiple warning signals
spread out through different Component Monitor Modules are present. This enables the Online
Anomaly Detection to raise an alert as early as possible.

For the experiments in a failure-free mode, all components are expected to be in a healthy/green
state. This assumption could be proven by the executions of the example scenarios, mainly by
taking a view on their log files. We use a log file excerpt for illustrating this. Therefore, we
use the first example of Scenario1 provided for the FailureModelg evaluation and extend it
by the health signals obtained by the Component Monitor Modules of the OS Health Monitor
stored in the log files. (In the tables H is used for healthy/green signal, W is represents the
warning/yellow signal and D the danger/red signal.)

—

2

k=

S 5
A=A
T et o | = N |8
] e o o = —
g S|E|S|E| &
Bll=8|=2|2
HIR-ER RS
S Al 2| 5| ol &
= [an E o] % O

Q <)

glale 2|25
health signal value S(|E|O|R|&|=
period | ... | IR4 | IR5 | IR6 | IR7 | .. | IR11 | IRO -l - - - -
262 0 0 0 0 o |o 0 0 H H|H H|H
263 0 0 0 0 o |o 1 0 H H|H H|H
264 0 0 0 0 1 |0 0 0 H H|H H|H
265 0 0 0 1 o |o 0 0 H H|H H|H
266 0 0 0 1 o |o 1 0 HY H H|H | H
267 0 0 1 0 o |o 1 1 H H|H H|H
268 0 1 0 0 o |o 0 0 HI H H|H | H
269 0 0 0 0 o |o o} 0 H H|H H|H
H H| H H| H

In this example, all IR Sensor Monitor health signals are healthy/qreen as well as the health
signals of the remaining components. This example is representative for all the other parts of
the experiments’ log files with health signal of healthy/green for the IR Sensor Monitor, as all the
operating system-related health signals remain healthy/green all the time during the execution.

However, we have seen that the IR Sensor Monitor also outputs warning/yellow signals (using
Signal Generator rules for FailureModelg) even if no failure is present. An example is offered
by the second log file excerpt of Scenario1 that we extended here by the health signals recorded
in the log files:

—
2
‘g
= o
o
I
o
512 8| €| &
b o =] = 8
2= &8|=|5|s
- s: 3} —
g1l 2 2o e
S a |l 2| 3| @l &
3] D
gllo| 12|25
health signal value SIEB|IO|R|&|=
period | ... | IR8 | IR9 - -1 -1-7-
19 o o] o] o] HIH H| H|H
20 o] 0 1 0 H|{H H|H | H
21 o 3 2 (o] H H H| H
22 0 2 1 o] H{H H|H | H
23 0 1 1 0 H HH H|H
24 0 0 0 0 H H H H|H
HIH H| H| H

Besides the IR Sensor Monitor’s health signal that outputs a warning/yellow signal, the
remaining OS Health Monitor components have returned a healthy/green signal all the time.
Again, this example is representative for the remaining parts of the experiments: even though
the IR Sensor Monitor returns a warning/yellow signal, all the other health (sub-)signals are
healthy/green.

In this case, we know that there is no failure existing in the IR sensor and hence the
resulting warning signal can be considered as false. Because of knowing that the IR Sensor
Monitor is not strictly precise (in terms of warning signals), one central question is what is
the classification outcome and which value shall be set to the classification marker of the
according system call? (The IR Sensor Monitor is more imprecise when applying Signal
Generator rules for FailureModel4. Therefore, the results discussed here have been obtained
in the context of experiments applying Signal Generator rules for FailureModelg.) As already
shown in Scenario1, in the presented example, the health signal recovers quickly and returns
to healthy/green signal back again. But this can only be verified by awaiting the following periods
in which the health signal is either dissolved or it reveals a failure if it switches to danger signal.

Therefore, one main challenge is how to distinguish between a valid warning signal and a
false one, without being forced to await the subsequent executions. The ability to immediately
classify a health signal correctly is a means to prevent false classification results. Related to
this, the challenge is whether failures can be detected earlier than when raising a danger signal.
Both challenges have been addressed and realized by our Online Anomaly Detection approach
which will be shown in the following.

First, it is important to take into account what happens in case of a failure: Failures are
assumed to propagate in a system, meaning that a failure in one system component will have
effect on other components that are interdependent. Considering the ORCOS system calls, they
often have effect on health parameters of multiple Component Monitor Modules (as it was
shown in Chapter 8.7.2). If executing a system call that operates on a failed system entity, the
health parameters effected by that system call (belonging to the diverse Component Monitor
Modules) will get assigned values reflecting the health state. Then, the failure in the system
entity can potentially be implicated in the health parameters of all effected Component Monitor
Modules that output an according health signal.

In our case study, the BEBot-related system calls effect health parameters of the IR Sensor
Monitor and the Communication Monitor, as all BEBoT-related commands are sent over ACM
to the BEBoT’s virtual prototype. The IR sensors of the BEBoT are assumed to be controlled
by simple microcontrollers that process and return the distance values. In case of a failure,
the processing time of the microcontroller is increased, which effects the response time of
the according request to the BEBoT that in turn increases the response time of the IR sensor-
related system calls. In our implementation, we simulate the increase of the microcontroller’s
processing time by increasing the communication time (over ACM) as introduced in Chapter
11.2.2. This results in an increase of the response time of the request sent to the BEBot and again
effects the execution time of the system call and, consequently, of the application itself. Hence,
a failure in an IR sensor propagates in such a manner that it implies the health parameters of
the IR Sensor Monitor, the Communication Monitor as well as the Scheduler Monitor.

Referring to the log file excerpt above, in which the Component Monitor Modules - apart
from the IR Sensor Monitor - have returned a healthy/green signal, it points out that no other
Component Monitor Modules are in a suspicious health state. This indicates that the warning
signal of the IR Sensor Monitor might be false. Hence, the warning signal delivered by the
IR Sensor Monitor is weakened and leads to a healthy/qreen global health signal for that
classification entity, illustrated by:

-
e
=
= o
o
= p=
g < =
AT
BIlIEIE|E|N|2|@
ElS|E|S| B8 ||
2=|5/ 2|52 |5
s 2] 5% g
Ell S| 5|8 2| x|
S| 2 S| 2 &
= o E S 8 Q =
Slolel 2|8l 5|2
o) -~
health signal value S IOl ®a|&|S |0
period | ... | IR8 | IR9 - -l -] - - -
19 o o] o] o] HY H H H| H|H
20 o o 1 o H| H| H| H|H H
21 0 3 2 0 H H H| H|H
22 o 2 1 o HI H H H H| H
23 0 1 1 0 H H H H|H|H
24 o] o] o] o] HY H H H| H|H
HI H|H| H|H| H

The Anomaly Detection Modules examines health signals within their context, taking into
account the health signals of the other Component Monitor Modules. By this, the Online
Anomaly Detection can more efficiently detect failures, if they are present, at an early point of
time.

—
3
k= —
S <
51 =8| B
= e = || N
21§ 5|8
S| 8|2 |%
— = 5 o
) 5 | = T
2 =) —
S €| o=
I E|E|2
health signal value | detection period MO | & | O
period | ... | IR3 - - |- -
127 o] o] 0 HW H| H|H
128 0 3 0
129 o] 2 0 H
130 0 1 0 H
131 0 0 0 H
132 o| 3 0 D || D
133 0 6 0 6 D D | D
134 0 5 0 D D | D

In this example, the IR sensor IR3 raises a warning signal in period 128. This signal is
enhanced by the fact that the Component Monitor Modules effected by the IR sensor-related
system call, the Communication Monitor and the Scheduler Monitor, also show up suspicious
health states. By this, the identification of a failure is proven with a high probability so that
the warning signal of the IR Sensor Monitor is being confirmed and leads to a global warning
signal. Even though the health signal of IR3 is diminished in the following periods, the
Communication Monitor and the Scheduler Monitor continue to remain in warning health state
which indicates that the threat is still present. In period 132, the Scheduler Monitor turns to
deliver a danger signal. This danger signal arises even before the IR Sensor Monitor detects the
danger. Hence, the alert is raised at period 128 with a detection period of 1 instead of waiting
6 periods until the failure is definitely identified.

In this stage of the evaluation, we are interested in continuing the execution of the application
in order to be able to trace the health signal evolvement. Therefore, we have deactivated the
Controller for this evaluation scenario in order to prevent a reaction as this would abort the
execution of the application immediately.

For failures that lie dormant, the classification method is even more significant. To illustrate
this, we refer to an example from Scenario2 where it took 16 periods for definitely detecting
the failure:

g
5 &
512 8| B
2121823
szl 2|22
El 5| E|B|E
glo|l g 2|28
health signal value S|B|O|&|D
period | ... | IR2 | IR3 | IR4 | IR5 | IR6 | IR7 | IR8 - | - -
. H H|H|H
142 o] o 2 0 0 3 0 o |o
143 0 0 1 0 0 2 0 0 0 H
144 o 0 0] 1 0 1 o] 0 o] H | H
145 0 0 0 0 0 0 0 0 0 H
154 o] (o] o] 0 o] o o 0 (o] H
155 0 0 0 0 0 0 o 1 1 H|D | H|D
156 0 0 0 1 0 3 0 0 0 H | D D
157 0 0 0 0 0 4 0 0 0 H
158 0 0 0 0 0 7 1 0 o|16 || D H| D

In period 142, the IR Sensor Monitor delivers a warning signal for IR sensor IR6. The effected
Component Monitor Modules also signal warning health states. At this point of time, the
Anomaly Detection Module raises a warning signal as the global system health state. Sending
an alert to the Controller will induce a proper reaction of the detected failure.

In contrary, if only relying on the single health signal of the IR Sensor Monitor, the application
would continue executing until the danger signal is raised. If failures are lying dormant
and remain undetected, there is always a risk that decisions made by the application in an
autonomous manner may be false as the application is operating on sensor values that are
expected to be reliable although they are false. Here, the Online Anomaly Detection comes
into action and prevents incorrect decisions.

By classifying each system call individually which is represented as a node in the Suffix
Tree with an own classification marker, the Online Anomaly Detection is able to identify the
source of failure. Here, we have to emphasize that a system call related to an IR sensor request
also triggers the Communication Monitor to evaluate its health state. This health state is
incorporated into the classification marker of the according node. In contrary, the Scheduler
Monitor can only be triggered at the point of when the applications completes the execution of
its tasks instance. Nevertheless, a warning signal in the IR Sensor Monitor in combination with
a warning signal in the Communication Monitor in one Suffix Tree node is sufficient enough to
make assumptions on the source of failure.

With this evaluation scenario, we have demonstrated that the Online Anomaly Detection has
the potential of being able to detect failures as early as possible. By considering application
behavior in the context of the health signals of the effected Component Monitor Modules, it
offers potentials to identify threats even in case of uncertain failure detectors, such as the IR

Sensor Monitor for the FailureModely. By this, it provides potentials to react on failures earlier,
maybe even before they are able to propagate throughout the system, as if being undetected
they might cause critical states of the entire operating system that could even effect other
applications that are executing.

12.4 Evaluation Scenario 4

The Online Anomaly Detection is designed for reconfigurable real-time operating systems.
One major ingredient is the individual classification of each occurring system call based on
the health parameters by which also unknown behavior patterns are able to be classified. Its
detection capability was shown in the previous evaluation scenario. The second ingredient is
the Behavior Knowledge Base realized by Suffix Trees that stores all behavior patterns with
their associated classifications and is continuously extendable by novel behavior patterns that
may be produced because of a system reconfiguration. The objective of this evaluation scenario
is to discuss the case of reconfiguration particularly with regard to the Suffix Tree. The Online
Anomaly Detection offers different options for the Suffix Tree after the reconfiguration: either
to use the same Suffix Tree and extend it by the novel behavior or to build up the Suffix Tree
from scratch. We have compared both approaches within this evaluation scenario.

As an example for this, we use the BEBot application of this case study and predominantly
refer to the two opposed strategies implemented: left-side wall follower and right-side wall follower.
While the left-side wall follower operates on the distance values of the left-side IR sensors (and the
front-side sensors to avoid a collision) without taking into account the right-side IR sensors, the
right-side wall follower uses the right-side IR sensor without any knowledge about the left-side
sensors. This means that a failure of an IR sensor on the left-side cannot effect the application
performance of right-side wall follower (for the left-side wall follower vice versa).

In this evaluation scenario, initially the BEBoT was controlled by left-side wall follower. After a
while, a failure in one of the left-side sensors (IR3 requested by system call with ID 59) was
injected in order to be detected by the Online Anomaly Detection (as presented in Scenario3).
In that case, the Online Anomaly Detected is responsible to send an alert to the TaskController
(see Fig. 11.7 in Chapter 11.2.3). The alert is including information on the system call ID that is
assumed as the source of failure so that the TaskController is able to select another strategy that
is not relying on that system call. In case of a failure on the left-side IR sensor, TaskController
was forced to reconfigure the application to execute right-side wall follower as it does not operate
on any left-side sensors (no other option was available).

This evaluation scenario was executed with the Behavior Knowledge Base configured to

1. build up a new Suffix Tree from scratch
2. use the same Suffix Tree

after the reconfiguration.

We have made the following observations: Both application implementations exhibit similar
behavior as they have a common system call control flow as illustrated by Fig. 12.3 at the
beginning of their periods and at the end. Only the middle part of the system call control
flow differs. (The highlighted arrows emphasize the most common execution path.) Both
application implementations start with executing system call 55 and exhibit equal behavior
until system call 59. Then, there is a difference in behavior between both implementations:
The control flow of left-side wall follower is illustrated in Fig. 12.4 and control flow of right-side
wall follower is shown in Fig. 12.5. Afterwards, both implementations again execute the same

Figure 12.3: Common system call control flow of applications left-side wall follower and right-side
wall follower

system call control flow as illustrated by Fig. 12.3, continuing with system call 66 until the end
of the sequence, completing its execution by system call 16 (Sequence Ending Symbol).

B

Figure 12.4: Specific system call control flow of left-side wall follower

o570 o] 6]+

Figure 12.5: Specific system call control flow of right-side wall follower

Because of the common subsequences in the system call control flow of both implementations,
when building up the Suffix Tree from scratch, many paths previously deleted have been
reconstructed after the reconfiguration. In contrary, when using the same Suffix Tree for storing
the new behavior patters, many paths already existed that matched the new behavior. The
Suffix Tree was only extended by all the suffixes that include system calls requesting right-side
sensors (with ID 64 and 65). After the reconfiguration, the application behavior was classified
as healthy back again and all nodes of the currently executing paths have been marked with a
healthy/green signal.

12.5 Discussion

In this case study, we have shown exemplarily the performance of the Online Anomaly
Detection by making use of the BEBot as the application case. First, we have shown the
efficiency of the IR Sensor Monitor implemented as one module of the OS Health Monitor.
We distinguish between two failure models FailureModel1 and FailureModely as they both
implement different subsets of Signal Generator rules. The health signals obtained for the
experiments in FailureModel1 are highly reliable in a failure-free mode as well as in case
of failures. In contrary, the experiments in context of FailureModelg have pointed out some
degree of uncertainty as the IR Sensor Monitor delivers warning signals in the failure-free
mode and in case of failures. Furthermore, in case of a failure, the experiments have shown
that warning signals can also recover back to a healthy/green signal or the failures may even be
undetected lying dormant in the system.

However, based on the assumptions that failures propagate throughout the system and
thereby effect the health parameters of other Component Monitor Modules, we could show the
main strength of the Online Anomaly Detection: Failures can be detected by considering the

context of the healths signal of the components related to the application’s behavior. By this,
failures can be identified even before they lead to instabilities identified by danger signals. The
classification of behavior within a context makes the Online Anomaly Detection becoming an
efficient approach that can outperform any failure detector which only examines the respective
component in an isolated manner.

EVALUATION RESULTS AND DISCUSSION

284

Part VI

Conclusion

Summary and Conclusion

For embedded systems, dependability is a mandatory system property that becomes more
challenging if these systems are applied in dynamic environments. To handle dynamically
changing conditions, applications and the operating systems tend to employ autonomous
principles such as self-reconfiguration, self-optimization etc. Thereby, the control of behavior
is transferred to the system execution phase and requires to be evaluated in order to protect
against false decisions that may harm the system’s stability and, consequently, its dependability.
Anomaly Detection aims at monitoring and evaluating system behavior while the system is
executing, and is therefore considered as a means to enhance the dependability of a system at
run-time. However, applying Anomaly Detection to self-reconfiguring real-time systems faces
specific requirements which gave reason to develop a novel approach as these requirements
could not be found to be fulfilled by existing Anomaly Detection Systems.

For determining the specific requirements of the approach, system characteristics of real-time
systems and of self-reconfiguring systems have been examined in detail. Real-time systems,
as usually being resource-restricted systems and deployed into critical application domains,
need an online method to enable immediate identification of an arising threat at run-time but
with low resource consumption in terms of memory usage and fully predictability in terms of
computation time in order to preserve schedulability. In contrast to existing anomaly detection
approaches, an anomaly detection for self-reconfiguring systems cannot rely on trained data
as behavior is expected to change dynamically without any guarantee for being predictable.
Because unknown behaviors may be safe as induced by a reconfiguration and known behaviors
may become unstable due to reconfigurations of other system parts, it was determined that
any observed behavior has to be individually classified on the basis of its threat potential by
considering its effects on the underlying operating system. By excluding a training phase, a
self-learning approach is required that needs history data stored in a knowledge base with an
adequate coverage to enhance the accuracy of the approach.

For anomaly detection in self-reconfiguring real-time systems, behavior was defined in
form of system call sequences that are executed by the application tasks. The execution of
system calls has effect on the parameters of the operating system and its components that, in
turn, determine the system state - defined as the Health State - and build up the context for
the evaluation of the threat potential of the behavior. As the entire input data for anomaly
detection, consisting of system call data and the associated health state parameter values,

is kept internally by the operating system, the anomaly detection was decided to be fully
integrated into the operating system, - also in order to ensure its online capability.

As an appropriate source of inspiration for the method to evaluate the behavior, the Danger
Theory from Artificial Inmune Systems has been identified. The idea of the Danger Theory
is to classify behavior with respect to its effects on the associated environment by examining
the presence or absence of danger signals. The Danger Theory enables Anomaly Detection on
a context-related basis. Based on the Danger Theory, an Anomaly Detection Framework was
developed that can be introduced into any real-time operating system dedicated to be applied
in self-x environments. Dendritic Cells are applied to monitor application behavior on the
basis of their execution of system calls. A Health State Monitor is responsible for delivering the
danger signals by representing the operating system health state. Any system call execution is
immediately evaluated concerning the health state resulting from its execution, and assessed
whether it leads to safe, suspicious or dangerous system state. A compact data structure on
the basis of Suffix Trees is applied to build up a knowledge base of history behavior. This
knowledge base is established by learning all behaviors with their associated classification
results. The characteristics of Suffix Trees enable online profiling of behavior and matching of
behavior sequences against the conserved knowledge base in order to enhance the classification.
It was shown that this approach fully satisfies all requirements and challenges formulated for
anomaly detection for self-reconfiguring real-time operating systems.

The Online Anomaly Detection was implemented and integrated into the real-time operating
system ORCOS which provides an execution platform for self-reconfiguring applications. The
Anomaly Detection Module integrated into ORCOS mainly consists of a System Call Manager,
an OS Health Monitor and a Signal Generator. In reference to the responsibility of Dendritic
Cells, the System Call Monitor extracts the executed system calls that are directly included
into the Suffix Tree. An OS Health Monitor was implemented composed of Component
Monitor Modules assigned to each available ORCOS component for collecting their health
parameters. From these health parameters, the Signal Generator obtains the system health
signal by specifying a set of rules. Health signals are generated for each single component but
also for representing the health state of the overall system. Because the classification accuracy
mainly relies on the delivered health signal, the OS Health Monitor and the Signal Generator
are fully configurable and implemented in such a manner that they can be easily extended and
enhanced by expert knowledge. A discussion is provided on the memory usage caused by the
Suffix Tree and the OS Health Monitor Database and it was shown that it is acceptable. As
required by real-time systems, the computational overhead generated by the Online Anomaly
Detection was proven to be bounded.

To evaluate the implemented Online Anomaly Detection in ORCOS, a case study was
conducted by employing a virtual evaluation environment executing an autonomous BeBot
application that was run on ORCOS. In this case study, the reliability of the BeBot application is
dependent on the reliability of the IR sensor values that are evaluated by an IR Sensor Monitor
as a specific component of the OS Health Monitor. The IR Sensor Monitor suffers from a certain
degree of uncertainty in failure detection leading to unjustified warning signals. However, the
experiments have shown that in case of absence of failures the unjustified warning signals
affect only the IR Sensor Monitor while a true - actively injected - failure also infects other
OS Health Monitor Components resulting in multiple component-related suspicious or even
dangerous health states. One major result obtained by the case study is that the correlation
of the health signals delivered by the distinct components enables the input health signals of
Online Anomaly Detection to become more reliable. A failure that propagates throughout
the system in a creeping manner can be revealed by identifying multiple components in a

suspicious health state, even before a dangerous state is detected. Furthermore, in presence
of a failure, the subsignals related to the specific components allow to localize the potentially
failed component. As a second result, the case study has demonstrated the strength of the
context-related classification: In case of a failure in an IR sensor that was detected by the IR
Sensor Monitor, the application behavior operating on that IR sensor is classified as dangerous
or at least as suspicious in accordance to the health signal delivered by the OS Health Monitor.
That application requires a reconfiguration. In contrast, applications that do not operate on the
failed IR sensor are not affected by the failure. Their behavior is classified as safe so that the
application can maintain their execution.

In this thesis, a Danger Theory-based online anomaly detection approach for self-reconfiguring
real-time system has been developed and evaluated. The approach allows to learn arising
behaviors consisting of system call sequences executed by application tasks by storing them in
a Suffix Tree-based knowledge base. The behavior being monitored is individually assessed
on the basis of classification input signals reflecting the behavior’s environmental context,
- the operating system health state. This allows to detect unsafe behaviors independent of
whether they have already occurred or they are novel ones caused by dynamical changes in
the system. Reconfigurations are signaled by the Inflammation Signal to inform the Online
Anomaly Detection about potential deviations in the observed execution data in order to
enhance the classification and prevent false classification outcomes. The concept of the Health
State Monitor consisting of distributed components responsible for evaluating the health state
specific operating system components enables to detect the sources of suspicion or threats.
With the correlation of the distributed component-related health signals, it becomes possible
to detect failures much earlier compared to component-specific failure detection methods,
especially if a potential failure tends to propagate throughout the system and its components
in a creeping manner. The context-related classification enables to identify those system entities
that are affected by the suspicion or threat and require a reaction, for example, by means of a
reconfiguration.

The applicability of the proposed approach was discussed in detail with respect to its appli-
cation domain. Furthermore, its performance in terms of effectiveness has been demonstrated.
Altogether, this thesis proves the contribution to run-time dependability of self-reconfiguring
real-time operating system provided by this anomaly detection approach.

However, it is important to emphasize that the accuracy of detection is strongly related to
the accuracy of the classification input signals delivered by the health state evaluation. A more
precise configuration of the Health State Monitor fed by expert knowledge would be required
in order to make the approach more reliable. Examining each operating system component in
detail, determining appropriate health parameters, configuring more accurate thresholds and
specifying more adequate rules for generating signals for reflecting the operating system health
state could increase the accuracy of the health state evaluation. Furthermore, the examination
of the impact of the values of occurrence counter as well as the previous classification marker
on a current classification outcome are still open issues and could become topics of future
work.

SUMMARY AND CONCLUSION

290

Appendices

ORCOS System Calls

System calls supported by ORCOS can be classified into different groups of system calls. The supported

system calls are:

A.l

Stream /File related system calls

System Call [ID | Arguments

| Description

|

fopen o | const char* filename, | Acquires the resource identified by the source path.
int blocking
fclose 1 | int field Closes the resource by id and deletes the resource
from the tasks owned resource database.
fread 2 void *ptr, size_t size, | Reads from file stream referenced by stream into
sizet nitems, int | the array pointed to by ptr up to nitems elements
stream whose size is specified by size in bytes.
fwirte 3 | const void *ptr, size_t | Writes from the array pointed to by ptr up to
size, size_t nitems, int | nitems elements whose size is specified by size to
stream the file stream referenced by stream.
fputc 4 short ¢, int stream Write ¢ into resource stream.
fgetc 5 | int stream Gets the resource with id stream owned by this
task. It may return null if resource not owned or
not existing.
fcreate 6 | const char* filename, | Creates a new resource by a filename at the spe-
const char* path cific path.

A.2

Memory related system calls

System Call | ID | Arguments

| Description

new 7 | size_ts Allocates an s bytes of memory space for new
instance.

malloc 7 | size_ts Allocates an s bytes of memory space for new
instance.

delete 8 | void* ptr Deletes the memory space referenced by prt.

free 8 | void *s Deletes the memory space referenced by s.

A.3 Task related system calls

| System Call | ID | Arguments

Description

task_stop 9 | int taskid Stops the task specified by taskid.

task_resume 10 | int taskid Resumes the specified taskby taskid. This
system call effects a task that is currently not
running.

getSubtaskByld 68 | int taskid Gets the sub-task by its taskid.

changeRunningSubtask 69 | int taskid Changes the running subtask to subtask refer-
enced by taskid.

A.4 Thread related system calls

| System Call [ID [Arguments

Description

sleep 11 | intms The calling thread will be blocked for at least ms
milliseconds.
thread_create | 12 | int* threadid, | Creates a new thread with thread ID threaded,
thread_attr_t* attr, void | its attributes attar and the pointer to its start
*(*start_routine)(void*), | routine start_routine.
void* arg
thread_run 13 | int threadid Starts the execution of the thread with ID defined
by threadid.
thread_self 14 Returns the ID of the currently running thread.
thread_yield | 15 Voluntarily yields the CPU to some other thread
(if any other existing).
thread_exit 16 Terminates the currently executing thread.

A.5 Signal related system calls
| System Call [ID [Arguments | Description
signal wait 17 | void* sig, bool | Calls a wait for the resource referenced by sig.
memAddrAsSig
signal_signal | 18 | void* sig, bool | Calls a signal for the resource referenced by sig.
memAddrAsSig

A.6

Socket related system calls

System Call [ID | Arguments

Description \

socket 19 | int domain, int type, | Creates a new socket with address family of type
int protocol, char* | domain, socket type of type, and using the spec-
buffer, int buffersize | ified protocol protocol. For any socket an own
buffer referenced by buffer having the size buffer
size is specified.
connect 20 | int socket, const sock- | Connects to a given destination defined by
addr *toaddress toaddress on the provided socket by socket.
listen 21 | int socket Listens for connection on a socket defined by
socket.
bind 22 | int socket, const sock- | Binds a socket in socket to the address given by
addr* address the parameter address sockaddr.
sendto 23 | int socket, const void* | Sends a message located the buffer of size length
buffer, size_t length, | to the socket defined by socket which address is
const sockaddr* | given by dest_addr.
dest_addr
recvfrom 24 | int socket, char** ms- | Receives a message from the specified socket in
gptr, int flags, sock- | socket. If no message is available the first thread
addr* sender trying to receive on this socket will be blocked.
All other threads will return directly without re-
turning a message. The blocked thread will be
unblocked if a message is received by the socket
and the pointer to the message is returned by the
parameter msgptr.
add_devaddr | 25 | constchar* dev, int do- | Adds another addr to a device specified by dev for
main, char* addr the domain given by domain.

A.7

System calls for Task loading

System Call

| ID | Arguments \

Description \

getTasktable 33 | const char* taskname, | Requests the task table of the spec-
char* buffer ified task by taskname and save
this table into buffer.
create_task_physicalMemory | 34 | taskTable* newtask- | Creates a new task under the con-
Info dition of disabling virtual mem-
ory on the RAPTOR Board.
isDownloading 35 Check whether the task down-
loading is finished or not.
preTaskloading 36 | const char* taskname, | Prepares the tasktable from
taskTable* new- | newtask parameters for the
task_parameters task defined by task name and
prepares all necessary conditions
before starting downloading the
task.
createtask_physical_syscall 37 | taskTable* new- | Creates a new task with the task-
task_parameters table from newtask_parameters
under the condition of disabling
virtual memory on the QEMU.

A.8 Others

| System Call | ID | Arguments | Description \
printToStdOut 26 | const void* ptr, size_t | Prints content of ptr with size max to the stan-
max dard output device.
getTime 28 Gets the current system time from the timer.
map_logmemory | 29 | const char* log_start, | Map the desired physical address space speci-

const char* phy_start,
size_t size, int protec-
tion

fied byphy_start to the logical address space
specified by log_start.

A.9 Specific system calls under QEMU

| System Call | ID | Arguments | Description |

sendto_QEMU 31 | QEMUSocket *mysock, | Sends a message data of length len to
const char* data, wun-| the remote socket targetsock from local
signed int len, QEMU- | socket under QEMU mysock.

Socket *targetsock, int

Protocol
recvirom QEMU | 32 | QEMUSocket* serversock, | Receives the message from a specific re-
char *buffer mote socket serversock and stores this

message in a specified buffer.

A.10 System calls for BeBot control

System Call ID | Arguments Description
LEDtoRed 38 Changes all LEDs on BEBOT to red.
LEDtoGreen 39 Changes all LEDs on BEBoT to green.
LEDtoBlue 40 Changes all LEDs on BEBOT to blue.
LEDtospecificColor 41 | LEDColor* led1, | Changes the LEDs to specific color.
LEDColor* led2,
LEDColor* leds,
LEDColor* led4
setMotorSpeed 42 | unint1 leftspeed, | Sets the speed of both motors.
unint1 rightspeed
stopMotor 43 Stops the BEBoT motor.
readIRSensorValue 44 Gets the IR Sensor values from the Be-
Bor.
searchWallState 45 Updates the BEBOT state to search wall
state.
rotateLeftState 46 Updates the BEBorT state to rotate left
state.
driveStraightWallState | 47 Updates the BEBor state to drive straight
with wall state.
rotateRightState 48 Updatse the BEBOT state to rotate right
state.
forceForwardState 49 Updates the BEBor state to force forward
state.
leavingWallState 50 Updates the BEBoT state to leaving wall
state.
connectionclosed 51 Closes the connection from ORCOS to
BeBor.
autodrive 52 Initiates the BEBOT to autodrive in a maze
game.
getBeBotPos 53 Gets the BEBot GPS value.
getTargetPos 54 Gets GPS value of the target in maze.
bonjour 55 Handshake with the remote virtual Be-
Bor.
getIRSensorValueo 56 Gets return value of the IR Sensor o.
getIRSensorValue1 57 Gets return value of the IR Sensor 1.
getIRSensorValue2 58 Gets return value of the IR Sensor 2.
getIRSensorValues 59 Gets return value of the IR Sensor 3.

getIRSensorValueg 60 Gets return value of the IR Sensor 4.
getIRSensorValues 61 Gets return value of the IR Sensor 5.
getIRSensorValue6 62 Gets return value of the IR Sensor 6.
getIRSensorValuey 63 Gets return value of the IR Sensor 7.
getIRSensorValue8 64 Gets return value of the IR Sensor 8.
getIRSensorValueg 65 Gets return value of the IR Sensor 9.
getIRSensorValue1o 66 Gets return value of the IR Sensor 10.
getIRSensorValue11 67 Gets return value of the IR Sensor 11.
getCurrentState 70 Gets the current state of BEBOT.
getReached 71 Checks whether the BEBoT reaches the
target in the maze. Returns true if target
is reached, or false otherwise.
getMedianSensor 72 | int index Gets the medians of return values of the
sensor referenced by index.
sendUniversalmsg 74 | unint1 speed_left, | Sends universal message to BEBoOT.
uint1 speed_right,
LEDColors* newcolor
randomautodrive 75 Initiates the BEBOT to execute the random
autodrive method.
getGreenLED 82 Gets ID of green LED.
getRedLED 83 Gets ID of red LED.
getBlueLED 84 Gets ID of blue LED.

A.11 Additional System Calls for Bug Manipulator/Generator

| System Call

| ID | Arguments

| Description

genCommBug

76

Randomized generation of manipu-
lation data in Communication Moni-
tor Module.

genMemBug

77

Randomized generation of manipu-
lation data in Memory Monitor Mod-
ule.

genProcBug

78

Randomized generation of manipu-
lation data in Processor Utilization
Monitor Module.

genSchedulerBug

79

Randomized generation of manip-
ulation data in Scheduler Monitor
Module.

genDevBug

8o

Randomized generation of manipu-
lation data in Device Driver Monitor
Module.

genScenarioConditionBug

81

Randomized generation of manip-
ulation data in Scenario Condition
Module.

System Call Monitor API

Method Name

Description

getMonitorMode Get the current monitoring mode.

setMonitorMode Changes the monitoring mode to the specified one.

recoverSystemCall Retrieves the system call data for the specified Thread.

getMaxBufferCapacity | Gets the maximum buffer capacity for the specified Thread.

setMaxBufferCapacity | Sets the maximum buffer capacity for the specified Thread
to the specified value.

getBufferWarning Gets the buffer warning size for the specified Thread.

setBufferWarning Sets the buffer warning size for the specified Thread to the
specified value.

getBufferSize Gets the number of used entries in the buffer for the speci-
fied Thread.

getIsBufferWarning Returns true if the Buffer Warning flag is set.

getIsBufferFull Returns true if the Buffer Full flag is set.

getIsBufferOverrun Returns true if the Buffer Overrun flag is set.

Table B.1: Monitor API: Supported Methods

SYSTEM CALL MONITOR API

300

OS Health Monitor - Parameter

C.1

Scheduler Monitor

Global Scheduler Monitor parameter:

Parameter

Description

Time Interval

The time interval from the last timer scheduler monitor execution
to current time.

Average Longterm Time
Interval

The average of time interval from system startup.

Average Short-term
Time Interval

The average of time interval in short-term history (considering,
for example, the last 10 values).

Scheduler Monitor parameter for any task J;:

Parameter

Description

Arrival Time

The time at which J; becomes ready for execution.

Relative Deadline

The relative deadline of the current task J; instance.

Absolute Deadline

The time before which the execution of task J; must be completed.

Start Time

The time at which J; starts its execution.

Waiting Time

The time interval between the arrival time and the start time of
current task J; instance.

Finishing Time

The time at which J; finishes its execution.

Response Time

The time interval between the arrival time and the finish time of
current task J; instance.

Current Execution
Time

The time the current instance of task J; has already taken for its
execution.

Last Execution Time

The execution time of the last instance of task J;.

Average Response Time

The average response time of all the instances of task J;.

Average Short-term
Response Time

The average response time of the instances of task J; in short-term
history (considering, for example, the last 10 values).

Average Execution
Time

The average execution time of all the instances of task J;.

Average Short-term
Execution Time

The average execution time of the instances of task J; in short-
term history (considering, for example, the last 10 values).

Average Waiting Time

The average waiting time of all the instances of task J;.

Average Short-term
Waiting Time

The average waiting time of the instances of task J; in short-term
history (considering, for example, the last 10 values).

Preemption Counter

Counts the number of preemptions of the current instance of task

Ji-

Average Preemption
Number

The average number of preemptions over all the instances of task

Ji-

Average Short-term
Preemption Number

The average number of preemptions over the instances of task
Ji in short-term history (considering, for example, the last 10
values).

Preemption Time

The time of preemption of the current instance of task J;.

Average Preemption
Time

The average time of preemptions over all instances of task J;.

Average Short-term
Preemption Time

The average time of preemptions over the instances of task J; in
short-term history (considering, for example, the last 10 values).

Blocked Time

The time the current instance of task J; is blocked.

Average Blocked Time

The average time over all instances of task J; are blocked.

Average Short-term
Blocked time

The average blocked time of the instances of task J; in short-term
history (considering, for example, the last 10 values).

C.2

Processor Utilization Monitor

Global Processor Utilization Monitor parameter:

Parameter

Description

Time Interval

The time interval from the last timer of processor utilization
monitor execution to current time.

Average Longterm Time
Interval

The average of time interval from system startup.

Average Short-term
Time Interval

The average of time interval in short-term history (considering
the last 10 values).

Idle Time

The time in which the processor stays in idle state during the
current time interval.

Average Idle Time

The average of idle times from system startup.

Average Short-term
Idle Time

The average of idle times in short-term history (considering the
last 10 values).

Overall Idle Time

The accumulated time in which the processor stays in idle state
since the system startup.

Kernel Occupying Time

The time in the current interval that the processor is occupied by
the kernel process.

Tasks Occupying Time

The time in the current interval in which the processor is occupied
by the running periodic tasks.

Overall Occupying
Time

The time in the current interval in which the processor is occupied
by the kernel process and the tasks.

Longterm Kernel
Occupying Time

The time in which the processor is occupied by the kernel process
in longterm examination.

Short-term Kernel
Occupying Time

The time in which the processor is occupied by the kernel process
in short-term examination (considering the last 10 values).

Longterm Tasks
Occupying Time

The accumulated time in which the processor is occupied by
running periodic tasks in longterm examination.

Short-term Task
Occupying Time

The accumulated time in which the processor is occupied by
running periodic tasks in short-term examination (considering
the last 10 values).

Current Processor

The value of the processor utilization in the current time interval.

Utilization

Longterm Processor The value of the longterm processor utilization calculated by the
Utilization usage of the processor since the beginning of system execution.
Short Term Processor The value of the short-term processor utilization is calculated by
Utilization the usage of the processor within the time interval from the last

time processor utilization monitor executing to current time.

Theoretical Processor
Utilization

The value of the processor utilization determined by static anal-
ysis. Calculated offline over a long time interval, it has to be
considered as a mean value to which the Longterm Processor
Utilization shall converge.

Processor Utilization Monitor parameter for any task J;:

Parameter

Description

Time Interval

The time interval from the last timer of processor utilization
monitor execution to current time.

Average Longterm Time
Interval

The average of time interval from system startup.

Average Short-term
Time Interval

The average of time interval in short term history (considering
the last 10 values).

Task Occupying Time

The time in the current interval in which the processor is occupied
by that periodic task J;.

Overall Task
Occupying Time

The time in which the processor is occupied by that periodic task
Ji since system startup.

Short-term Task
Occupying Time

The time in which the processor is occupied by that periodic task
Ji in short-term examination (considering the last 10 values).

Current Task

The utilization of the task within the current period.

Utilization

Average Task The average processor utilization of the task J; in short-term
Utilization history (considering the last 10 values).

Overall Task The overall processor utilization of the task J; since system
Utilization startup.

C.3

Memory Manager Monitor

Global Memory Management Monitor parameter:

Parameter

Description

Alloc Counter

The number of calls of the alloc ()-function (including the func-
tion calls new()) in the last memory monitor period.

Alloc Size

The allocated memory size in the last memory monitor period.

Free Counter

The number of calls of the free ()-function (including the func-
tion calls delete()) in the last memory monitor period.

Free Size

The freed memory size in the last memory monitor period.

Memory Manager Monitor parameter for the kernel:

| Parameter

| Description

Memory Size

The whole memory size of the ORCOS kernel space.

Used Memory

The used memory size in the ORCOS kernel memory space.

Last Used Memory

The used memory size in the ORCOS kernel memory space at
the last monitor period.

Memory Utilization

The percentage of how much memory has been used in the kernel
memory space.

Memory Manager Monitor parameter for any task J;:

Parameter

Description

Memory Size

The whole memory size of the specific task J;.

Used Memory

The used memory size of the specific task J;.

Last Used Memory

The used memory size of the specific task J; in the last monitor
period.

Memory Utilization

The percentage of how much memory has been used by the
specific task J;.

Alloc Counter

The number of calls of the alloc ()-function (including the func-
tion calls new()) in the last memory monitor period by the task

Ji-

Alloc Size

The allocated memory size by the task J; in the last memory
monitor period.

Free Counter

The number of calls of the free ()-function (including the func-
tion calls delete()) in the last memory monitor period by the
task J;.

Free Size

The freed memory size by the task J; in the last memory monitor
period.

C.4

Communication Monitor

Global Communication Monitor parameter:

Parameter

Description

Time Interval

The time interval from the last timer of communication monitor
execution to current time.

Average Longterm Time
Interval

The average of time interval from system startup.

Average Short-term
Time Interval

The average of time interval in short term history (considering
the last 10 values).

Upload The quantity of uploaded content in this time interval.
Download The quantity of downloaded content in this time interval.
CurrentWorkload The quantity of all communication content in this time interval.

Upload Speed

The speed of uploading in this time interval.

Download Speed

The speed of downloading in this time interval.

Communication Speed

The speed of uploading and downloading in this time interval.

Average Communication
Speed

The average speed of uploading and downloading.

Communication Load

The quantity of all communication content since the system
executing.

cOk The number of cO0k the communication module got as the return
value in this time interval.
cError The number of cError (communication failures) the communica-

tion module got as the return value in this time interval.

Overall cOk

The number of cO0k the communication module got as the return
value since system startup.

Average cError

The average number of cError (communication failures) the
communication module got as the return value.

Overall cError

The number of cError (communication failures) the communica-
tion module got as return value since system startup.

Communication Monitor parameter for any task J;:

Parameter

Description

Time Interval

The time interval from the last timer of communication monitor
execution to current time.

Average Longterm Time
Interval

The average of time interval from system startup.

Average Short-term
Time Interval

The average of time interval in short term history (considering
the last 10 values).

Upload The quantity of uploaded content in this time interval for the
task J;.

Download The quantity of downloaded content in this time interval for the
task J;.

CurrentWorkload The quantity of all communication content in this time interval
for the task J;.

cOk The number of times of communication module gets cOk as the
returned value in that period for the task J;.

cError The number of times of communication module gets cError as

the returned value in this time interval for the task J;. .

Overall cOk

The number of times of communication module gets cOk as the
returned value for the task J;.

Overall cError

The number of times of communication module gets cError as
the returned value for the task J;.

Average cError

The average times of communication module gets cError as the
returned value per period for the task J;.

C.5

File Manager Monitor

Global File Manager Monitor parameter:

Parameter Description

cOk The number of times the file manager returns cOK
when processing file-related functions in the current
time interval.

cError The number of times the file manager returns

cError processing file-related functions in the cur-
rent time interval.

Last cError

The number of times the file manager returns
cError in the last monitor period.

Overall cError

The overall number of times the file manager returns
cError when processing file-related functions.

cResourceNotOwnedTimes

The number of times the file manager returns
cResourceNotOwnedTimes in the current time inter-
val.

Last cResourceNotOwnedTimes

The number of times the file manager returns
cResourceNotOwnedTimes in the last monitor pe-
riod.

Overall cResourceNotOwnedTimes

The overall number of times the file manager re-
turns cResourceNotOwnedTimes when processing
file-related functions.

cResourceNotWriteableTimes

The number of times the file manager returns
cResourceNotWriteableTimes in the current time
interval.

Last cResourceNotWriteableTimes

The number of times the file manager returns
cResourceNotWriteableTimes in the last monitor
period.

Overall cResourceNotWriteableTimes

The overall number of times the file manager re-
turns cResourceNotWriteableTimes when process-
ing file-related functions.

cResourceNotReadableTimes

The number of times the file manager returns
cResourceNotReadableTimes in the current time in-
terval.

Last cResourceNotReadableTimes

The number of times the file manager returns
cResourceNotReadableTimes in the last monitor pe-
riod.

Overall cResourceNotReadableTimes

The overall number of times the file manager returns
cResourceNotReadableTimes when processing file-
related functions.

cInvalidResourceTimes

The number of times the file manager returns
cInvalidResourceTimes in the current time inter-
val.

Last cInvalidResourceTimes

The number of times the file manager returns
cInvalidResourceTimes in the last monitor period.

Overall cInvalidResourceTimes

The overall number of times the file manager
returns cInvalidResourceTimes when processing
file-related functions.

File Manager Monitor parameter for any task J;:

Parameter Description

cOk The overall number of times the file manager re-
turns cOK when the task J; is processing file-related
functions.

cError The number of times the file manager returns

cError for the task J; in this time interval.

Last cError

The number of times the file manager returns
cError for the task J; in the last monitor period.

Overall cError

The overall number of times the file manager returns
cError when the task J; processing file-related func-
tions.

cResourceNotOwnedTimes

The number of times the file manager returns
cResourceNotOwnedTimes for the task J; in this time
interval.

Last cResourceNotOwnedTimes

The number of times the file manager returns
cResourceNotOwnedTimes for the task J; tin the last
monitor period.

Overall cResourceNotOwnedTimes

The overall number of times the file manager returns
cResourceNotOwnedTimes when the task J; process-
ing file-related functions.

cResourceNotWriteableTimes

The number of times the file manager returns
cResourceNotWriteableTimes for the task J; in this
time interval.

Last cResourceNotWriteableTimes

The number of times the file manager returns
cResourceNotWriteableTimes for the task J; tin the
last monitor period.

Overall cResourceNotWriteableTimes

The overall number of times the file manager re-
turns cResourceNotWriteableTimes when the task
Ji processing file-related functions.

cResourceNotReadableTimes

The number of times the file manager returns
cResourceNotReadableTimes for the task J; in this
time interval.

Last cResourceNotReadableTimes

The number of times the file manager returns
cResourceNotReadableTimes for the task J; tin the
last monitor period.

Overall cResourceNotReadableTimes

The overall number of times the file manager re-
turns cResourceNotReadableTimes when the task
Ji processing file-related functions.

cInvalidResourceTimes

The number of times the file manager returns
cInvalidResourceTimes for the task J; in this time
interval.

Last cInvalidResourceTimes

The number of times the file manager returns
cInvalidResourceTimes for the task J; tin the last
monitor period.

Overall cInvalidResourceTimes

The overall number of times the file manager returns
cInvalidResourceTimes when the task J; process-
ing file-related functions.

numberofResource

The number of resources that belong to this task.

Last numberofResource

The number of resources that have belong to this
task in the last monitor period.

C.6

Device Driver Monitor

Global Device Driver Monitor parameter:

] Parameter

| Description

Time Interval

The time interval from the last timer device driver monitor
execution to current time.

Average Longterm
Time Interval

The average of time interval from system startup.

Average Short-term
Time Interval

The average of time interval in short-term history (consid-
ering, for example, the last 10 values).

C.7

IR Sensor Monitor

Global IRSensor Monitor parameter:

Parameter | Description

Time Interval The time interval from the last timer IR sensor monitor
execution to current time.

Average Longterm The average of time interval from system startup.

Time Interval

Average Short-term The average of time interval in short-term history (consid-

Time Interval ering, for example, the last 10 values).

Sensor Value i The current value of the sensor with index i. The IR Sensor

Monitor holds one data field per each IR Sensor i.

Last Sensor Value i | The value of the sensor with index i of the last period. The
IR Sensor Monitor holds one data field per each IR Sensor
i

Device Driver Monitor Interface

| Method | Description
UpdateData Update the collected data and collecting time interval.
UpdateSignall Update the health signal of the device driver and report it
to the OS Health Monitor Center.
checkstatus Responsible for the implementation of data collection and
evaluation (relations and conditions).

DEVICE DRIVER MONITOR INTERFACE

310

OS Health Monitor API

| Method | Description \
getHealthPool Get the pointer of the first health matrix in the
health pool.
getLastHealthMatrix Get the last updated health matrix from the

health pool.

getHealthMatrixbyIndex

Get the health matrix through inputted index.

triggerAnomalyDetection

An API left to the future anomaly detection.
To trigger the anomaly detection module to
double-analyze the history health data.

updateData

To collect the health matrix from all enabled
health monitor modules.

getCommunicationMonitor

Get the pointer of the communication moni-
tor module if the communication monitor is

enabled.

getMemoryMonitor Get the pointer of the memory monitor module
if the memory monitor is enabled.
getIRSensorMonitor Get the pointer of the IR sensor monitor module

if the IR sensor monitor is enabled.

getProcessorUtilizationMonitor

Get the pointer of the processor utilization mon-
itor module if the processor utilization monitor
is enabled.

getSchedulerMonitor

Get the pointer of the scheduler monitor mod-
ule if the scheduler monitor is enabled.

getScenarioConditionMonitor

Get the pointer of the scenario condition moni-

tor module if the scenario condition monitor is
enabled..

OS HEALTH MONITOR API

312

Proposals for future research

F.1 Potentials to enhance the evaluation of the classification marker

F.1.1 Previous Classification Marker Value

The previous classification marker value of a node is the value of the node’s classification marker set
by an instance executed before the current task instance execution. Whenever a node in the SuffixTree
is reached by the current behavior sequence, first, the value of the classification marker is transferred
to the node’s previous_classification marker (as a further attribute of the class TreeNode) before
the evaluation of the health signal related to current execution is performed. In fact, the previous
classification marker value represents the health state referring to the latest execution of a task instance
whose behavior sequence was completely matching the current behavior sequence, - at least until the
symbol represented by the currently considered node.

Having information about the health signal related to, at least partially, equal behavior sequences
may be of interest for examining the health state of the current instance. Therefore, as a first indicator,
we propose to take into account potential effects on the current value of a node’s classification marker
provided by the node’s previous classification marker value.

Different scenarios have been identified in which it could be possible to gain information based on
the previous classification marker value:

1. Combining the obtained classification result with the previous classification marker value to
obtain the current classification marker value.

Examining classification results of equal (sub-) sequences enables to adduce evidence of the
general effects caused by that pattern.

On the one hand, it is possible, that the execution of a behavior pattern always leads to the same
classification result. If this result is a safe/green signal, then the task’s behavior is in best order. But
if the classification of a behavior sequence results in a warning or even danger signal, then the task
might contain a general problem in its behavior. Obviously, this cannot be detected if only one
(the current one) classification result is considered.

On the other hand, it is also possible that the accumulations of equal behavior patterns reinforce
values of health parameters through creeping effects on the system health state provoked by that
patterns. A pattern which execution initially yield to a safe signal, may evolve to a warning signal
after a certain number of executions, and may lead to a danger signal after another number of
executions of that pattern (for example by increasing the Memory Usage by each execution of
the behavior sequence). To be able to assess the classification results of the current execution,

it is essential to take into account the previous classification results of formerly occurring task
instances.

In case of existing general instability in a task’s behavior, we deal in most of the cases with
persistent problems. Therefore, it can be assumed that the resulting health signals associated with
behavior patterns will not be able to recover when reaching a state of being classified as suspicious
or dangerous. Moreover the instability may propagate throughout the entire system and - if
classified as yellow first - will potentiallly lead into a dangerous state after a certain number of
executions. Based on this assumptions, we can formulate ideas how to integrate the value of the
previous_classification marker into the computation of the current classification marker.

o If the current node’s classification result is green/healthy, the value of the node’s previous
classification marker has no impact on the current value. Even if the value of the previous
classification marker was yellow/warning or red/danger, then a subsequent green health signal
is an evidence for a recovery of the system’s health state. Such a situation may be an
indicator that the former classification might have been caused by a transient execution
inconsistency without any consequences.

o If the current node’s classification result is (at least) yellow/warning, then the value of
the node’s previous classification marker will be evaluated. If the value of the previous
classification marker is also yellow/warning, then the probability of a persistent inconsistency
is identified. To prevent a potential creeping of an inconsistency, subsequent yellow/warning
signals associated with one behavior pattern can be used either to notify the responsible
controller or to enforce the obtained health signal to change into red/danger signal and
thereby provoke the controller to induce a reaction at an early stage.

o In contrast to the former simple rules, a more detailed specification of the impact of the
previous classification marker value is possible. Therefore, a useful means is to introduce
different degrees of values for danger, warning or safe signals. Adding further attributes
such as light, medium, high to the values of the classification marker could enable the evaluate
the occurrence of subsequently equal health signals. Different concepts are possible here.

One possible approach to integrate the previous classification marker value is illustrated
on a classification outcome of a yellow/warning signal: A first occurrence of a yellow/warning
signal may be set by the attribute /ight, while the subsequent occurrence of the yellow/warning
signal will reinforce the attribute to medium, and to high if the classification marker keeps
to maintain the yellow/warning signal value for a consecutive execution. One proposition is
based on the assumption that the value of the classification outcome is maintained in the
classification marker value with the previous classification marker value having only impact
on the attribute is illustrated in Figure F.1.

Another option also based on the assumption that the value of the classification outcome is
maintained in the classification marker but including the exception in case of subsequently
occurring yellow/warning signals that will - after a particular rate - lead to a red/danger signal
as illustrated in the matrix provided by Figure F.2.

Besides these two options proposed here, many other assignment strategies for the impact
of the previous classification marker are feasible also (such as step-wise manipulation), but
they will not be discussed in further details here.

The most challenging question is how to assign a value to the current classification marker if
it differs from the previous classification marker value, especially how to deal with red and
green signals. Is a green signal following a previously obtained yellow signal with the attribute
high a real recovery leading to a green/health value of the current classification marker (with
which attribute value?) or shall it step-wise decrease the yellow signal to having the attribute
medium? Could such reinforcement of the classification marker value lead to potential false
alarms? These questions can only be answered by precise analysis and specification of an
anomaly detection strategy.

o A last (but not least) idea is to extend each node by a counter of signal occurrence. In
practice, this can be implemented by using the example of the general node’s occurrence

previous
classification
marker value green/ green/ green/ yellqw/ yellolw/ yellqw/ redidanger | red/danger | redidanger
current healthy healthy healthy warning warning warning light medium high
classification light medium high light medium high
outcome
reen/health green/ green/ green/ green/ green/ green/ green/ green/ green/
9 Y healthy | healthy | healthy | healthy | healthy | healthy | healthy | healthy | healthy
light light light medium medium medium high high high
yellow/warning yellolw/ yellqw/ yellolw/ yellqw/ yellolw/ yellqw/ yelloyv/ yellqw/ yelloyv/
warning warning warning warning warning warning warning warning warning
light light light medium high high high high high
red/danger red/danger | red/danger | red/danger | red/danger | red/danger | red/danger | red/danger | red/danger | red/danger
light light light light medium medium high high high

Figure F.1: Impact of previous classification marker on value of current classification marker.

previous
classification
marker value rg];reen/ greer/ green/ yellqw/ yelloyv 4 yellqw/ red/danger | red/danger | red/danger
current ealthy healthy healthy warning warning warning light medium high
classification light medium high light medium high
outcome
reen/health green/ green/ green/ green/ green/ green/ green/ green/ green/
9 Y healthy healthy healthy healthy healthy healthy healthy healthy healthy
light light light medium medium medium high high high
yellow/warning yellolw/ yellqw/ yellolw/ yellqw/ yelloyv/ red/ yelloyv/ yelloyv/ yelloyv/
warning warning warning warning warning danger warning warning warning
light light light medium high light high high high
red/danger red/danger | red/danger | red/danger | red/danger | red/danger | red/danger | red/danger | red/danger | red/danger
light light light light medium medium high high high

Figure F.2: Accumulated impact of previous classification marker on value of current classifica-
tion marker.

counter. After getting a particular health signal for a node, the node’s appropriate signal
occurrence counter is incremented.

Two different approaches are possible to manage the signal occurrence counter:

1. to count every occurrence of a health signal in order to evaluate its relation to the overall
node’s occurrence

2. to count consecutive occurrences of a health signal in order to detect a sustained health
state

For both approaches, thresholds can be determined to enhance the value of the classification
outcome in order to set the classification marker value such as: raise the classification marker
value to red/danger afternthe ith consecutive occurrence of a yellow/warning health signal.

By processing the classification method, a result in form of a health signal is achieved. This
classification result can be adapted by impact of the node’s previous classification marker. The
several approaches presented here can be applied to incorporate the value of the previous
classification marker with each having its different qualities and complexities to be evaluated.

2. Parameterizing the classification method

The formerly discussed ideas rely on the preliminarily processing of the classification method as
originally defined. Another possibility to incorporate the previous classification marker directly
into the classification method.

The classification method is based on using Signal Generator rules that refer to thresholds, define
ranges and decision or parameter weights to generate a health signal. However, processing the
effected Signal Generator rules may lead to nondistinctive situations such as

o classification results to be close to boundaries between two classification classes

e classification results in between signal boundary ranges

e unclear classification outcome because of different sub-signals obtained by different rules
that operate of exclusive subsets of health parameters

For example, the classification of a node results in a yellow/warning signal but with parameter
values that are close to the boundary of being classified as dangerous. Knowing that the previous
classification marker value is for example yellow/warning could tighten the decision making rules.
The value of previous classification marker can take the role of providing a tendency of the
health state in order to immediately raise a signal (e.g. red/danger signal) anticipated by further
executions. This can only be implemented by adapting the Signal Generator rules and integrating
a further parameter in forms of the previous classification marker.

Various effects of the previous classification marker value are possible on the Signal Generator
rules:

e as a function of the value of the previous classification marker strengthening particular
health parameters to reinforce the classification outcome while weakening other health
parameters

e weighting particular Signal Generator rules

e balancing the weights of the rules belonging to the effected subset of Signal Generator rules

The adaption of the Signal Generator rules, obviously, requires further analysis of the semantics
of health parameters and of the potentials of the previous classification marker value to effect the
current classification decision.

Information about the previous classification marker value can be exploit to enhance the evaluation
and improve the precision of the obtained health signal. By incorporating the previous classification
marker into the evaluation of the current classification marker, the classification outcome can become
more sensitive and may assess an anticipated system’s health state at an early stage.

F.1.2 Occurrence Counter

Based on the nature of Suffix Trees, the number of occurrences of sequences can be recorded in the
leaf nodes whenever the leaf node is reached by the executing behavior sequence. Furthermore, the
number of occurrence of unique and coherently executed subsequences that are outlined being located
in between two branch nodes can also be derived based on the characteristics of Suffix Trees. On the
one hand, it is possible to record the number of occurrences of a branch node individually such as
implemented for the leaf node. On the other hand, it can be calculated based on the sum of number of
occurrence of those leaf nodes that are descending from the branch node currently considered.

Besides the previous classification marker value, the Occurrence Counter is another factor that may
contribute to the classification method. It provides information whether a particular behavior pattern is
of high or low occurrence. Furthermore, the frequency of a pattern can be derived from the occurrence
counter with respect to the entire system lifecycle as well as with respect to a short-term history.

High occurrence of a behavior pattern identifies a common behavior. In this context, some health
parameters such as for example those that are associated to provide average values, are expected to be
stable. One approach to incorporate the Occurrence Counter into the classification method, in case of a
high occurrence, is to strengthen the weights of those health parameters that are stable for common
behavior.

Different reasons lead to behavior patterns of low occurrence: Initialization is mostly executed at
the startup of a system or an application only and results in a behavior pattern that is specific for
initialization phase. Seldomly occurring conditions or correlations may lead to a deviation of behavior
patterns. New behavior (for example, after a system reconfiguration) will lead to patterns not known
before, having zero or low occurrence initially. But also unstable behavior leading to a potential failure
is expected to be of low occurrence. Behavior patterns of low occurrence, of course, also have to
be classified according to the defined rules. However, for behaviors of low occurrence, the health
parameters, especially those being stable for common behaviors such as global parameters or average

values, are expected to deviate. Furthermore, health parameters can be identified that might be of
more relevance in anomalous behavior patterns in order to identify potentially critical situations. These
health parameters and rules operating on these health parameters should be given according weights to
enhance the precision of the classification method.

As a further add-on, by considering the occurrence counter and the resultant frequency counter, mech-
anisms of learning could be integrated into the Signal Generator rules where weights and parameters
evolve with respect to the occurrences of behavior patterns.

F.2 Alternatives for Processing the Anomaly Detection

Wse cases are conceivable in which anomaly detection is required but to be performed in an online
manner because of diverse reasons: This could be related to performance or resource restrictions, to
priority policy and assignment of priorities to other components and tasks or related to a lower demand
in the detection precision. No matter what the reason is to decrease the execution priority of the
Anomaly Detection Framework, different stages are determined to alter and interfere the anomaly
detection workflow aligned with a system specification:

2. A first approach to reduce the runtime overhead of the anomaly detection is to abandon the strict
procedure of classifying every system call. Instead, system calls are classified selectively according
to different strategies:

2.1 maintain the classification of system calls that are represented as branch nodes and leaf
nodes.

2.2 maintain the classification only of leaf nodes as representatives of the behavior sequences
associated with task instances

2.3 maintain the classification only of specific system calls (either belonging to a set of system
calls or even individually selected system calls)

Each node skipped in terms of classification reduces the runtime costs by the effort produced by
the classification method. Nevertheless, to ensure the determinism of the anomaly detection (and
consequently the entire system), a pessimistic worst case analysis is required.

This is simple for the second and the third case: For the second case, the classification is processed
at the end of each behavior sequence. The resulting classification costs for each task instance are
determined by one execution of the classification method (instead of executing the classification
method for n-times, with 7 being the length of the behavior sequence). Considering the third case
of classifying only dedicated system calls, the classification cost are determined by the maximum
number of occurrence of the dedicated system calls within a behavior sequence. If a behavior
sequence consists only of those system calls that belong to the set of system calls to be classified,
no real reduction of the runtime overhead can be achieved.

The discussion of reducing the runtime cost for classification becomes more complicated for the
first case: Again in worst case, every system call in a behavior sequences can take on a branch
node. The more interesting question is whether it is possible to verify in advance all the system
calls that in the Suffix Tree will be represented by a branch node? To realize this, all behavior
patterns must to know in advance which actually contradicts with the assumption set on this
thesis to classify behaviors being previously unknown. A clear assessment of the runtime effort
for classification - if only reduced to branch and leaf nodes - is therefor not possible.

3. In order to preserve fully determinism and schedulability, the Anomaly Detection Module can
be scheduled as an ordinary periodic worker thread (kernel thread) with a dedicated priority.
Classification is then not directly related to a particular system call or a sequence but to the
current system time stamp.

4. In order to not interfere in the system performance, and to not interfere with the running tasks
and the present RTOS components, anomaly detection and classification can be shifted to only
idle times of the system. This approach is actually associated with background scheduling.

5. Considering the latter strategies to reduce runtime overhead, they are all concentrating on
reducing the cost produced by the classification. A further option is to address the cost related
to the Knowledge Base. The extension of the Suffix Tree by current system calls contributes
to the runtime overhead of the Anomaly Detection Framework. The system calls are recorded
by the System Call Monitor which additionally offers data structures to hold the system call
information. Hence, the these information do not need to be immediately included into the
Knowledge Base if the classification of them is also postponed as proposed by one of the last two
strategies (priority-based execution or backgound scheduling).

Nevertheless, the costs that remain in any case are the ones related to system call monitoring. If
anomaly detection is applied as presented in this theses on the basis of behavior patterns, the part
of the System Call Monitor is undisputed and cannot be suspended in the workflow of system
call execution.

By choosing any of the strategies to reduce runtime overhead, contemporary, the detection precision
is degraded. Generally, each skipping of a node leads to losing the information that could have been
potentially obtained by classifying the node. Effected health parameters may be overwritten by following
system calls.

Moreover, in periodic or background scheduling of the anomaly detection, the classification performed
is not directly associated with a specific behavior entity, but related to the application behavior proceeded
since the last classification. Then, it becomes impossible to allocate the definite source of problem if a
problem (in forms of a yellow/warning or even red/danger signal) will be identified. The context of the
classification is loosed.

Hence, reducing the runtime cost of classification is bound on information loss.

6. A last option is to apply hybrid approaches:

6.1 For known behavior sequences that are already recorded in the Knowledge Base, the
classification is performed at dedicated classification entities, e.g. classifying the behavior
only at leaf nodes. If a novel behavior pattern occurs, it obviously initiates an extension
of the Knowledge Base by adding new nodes into the Suffix Tree. When registering new
behavior patterns, the classification is processed online for each new node in the behavior
pattern. By this, a detailed and thorough classification of novel behavior patterns is ensured
in order to directly detect potential threats resulting from this previously unknown behavior.

6.2 Initially, the classification is performed according to one of the overhead-reducing strategies
presented above. This is maintained as long as the system health state is green/healthy.
However, if any deviation of the health state is detected, it is necessary to induce more
precision into the classification. In such a case, the scheduling of the classification is
reconfigured and set to the optimal classification flow. With this adaptation, the classification
is set to work online again which allows immediate classification and detection of the source
of potential threats. Although, the adaptation of the classification precision can only take
effect at the earliest executed for the next task instance.

Running the anomaly detection in this hybrid approach, however, requires to guarantee the
resources for worst-case - which is defined by the runtime overhead of the optimal flow - at any
point of time. In order to implement this, the Profile Framework (see Section 8.1.1) is exploit:
different profiles are defined for the different classification granularities specified by the different
strategies, but with a guarantee of being able to reconfigure to the worst-case profile - the optimal
flow - and schedule it. While running the anomaly detection in a higher quality profile (with
lower runtime overhead), the resources that stay unused can be made available for the purposes
of enhancing performance of tasks or system components. In worst case, they become available
for the anomaly detection purpose.

After choosing a strategy, appropriate execution periods and priorities, all parameters can be con-
figured offline in the SCL Configuration referring to the Anomaly Detection Module. It must be
emphasized, that even if included into this concept, the hybrid strategy is not fully implemented yet.

All in all, the system designer must be aware of the required detection precision, if the classification
on demand is not realizable because of unacceptable classification costs. Furthermore, the system
designed must also be aware of the risk to lose information as the context-defining health parameters
are volatile with respect to a continuous system execution.

List of Figures

3.1
3.2

33
3.4
3.5

5.1
5.2
5.3
54

55
5.6

6.1

6.2

6.3
6.4

7.1
7.2

73

8.1
8.2
8.3

8.5
8.6

8.7

Generalized architectural model for anomaly detection (originating from intru-

sion detection systems [22,79]) L L oL oL 18
Multilayered Architecture of Human Immune System. 42
Detector Set generation in the Negative Selection Algorithm (source [31, Chapter

6]). - o 45
Classification of entities applying Self/Nonself Discrimination with Danger Theory. 47
Maturation of DendriticCells. 49
Lifecycle of a DendriticCell. 50
Suffix Tree for String S= ABABC 67
Implicit Suffix Tree for String S= ABCBC 68
Suffix Tree for String S= ABCBC$ extended by the termination symbol $ 68
Steps performed in the Naive Suffix Tree Construction Method for String S =

ABABC . . 70
Steps performed in the Ukkonen’s Suffix Tree Construction Method for String S

=ABABC . . . 72
Suffix Trie for the string ABABD.. 74
ORCOS Architecture: separation of user space task and services and kernel

space kernelmodules L Lo 78
Thread state model implemented in ORCOS; Source: [2] 80
ORCOS Memory Layout; Source: [2] 83
Processing of a System Call in ORCOS; Source: [2] 85
Anomaly Detection Framework integrated into an Operating system. 97
Behavior Knowledge Base with Occurrence Counter in the Suffix Tree containing

the example sequences S;; = ABABC and S;; = DABABC. 100
Architectural model for Online Anomaly Detection (referring to Chapter 2.3, Fig.

2.0) h e e e e e e e e e e e e e e e e e 102
Profile Framework: Example for a system configuration 109
Dynamic loading of tasks at runtimeo oo 0oL 110
Generic Self-X ORCOS Architecture integrating a Monitor, an Analyzer and a

Controller module. 112
ORCOS Architecture integrating Online Anomaly Detection modules. 115
Integration of monitoring into the OROCS System Call Manager 116
Architecture of the System Call Monitor Database 119

Data flow of system call data through System Call Monitor to Behavior Knowl-
edgeBase. 121

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30

8.31
8.32

8.33
8.34

9.1
9.2

93
9-4
9-5
9.6
9.7
9.8

11.1
11.2
11.3
11.4
11.5
11.6
11.7

Comparison between a Suffix Tree (left side) and a Suffix Trie (right side) for the

sequence ABABDS. 124
Class Diagramm for Suffix Tree implementation. 126
Suffix Tree for symbol 7 L 129
Suffix Tree for sequence 77 o 130
Suffix Tree for sequence 770 131
Suffix Tree for sequence 7702 131
Suffix Tree for sequence 77023 L. 132
Suffix Tree for sequence 770232 133
Suffix Tree for sequence 7702323 134
Suffix Tree for sequence 77023231 135
Suffix Tree for sequence 770232318 136
Suffix Tree for sequence 770232318 % 137
Extension of Suffix Tree by sequence 7018% 139
Suffix Tree for sequence 7018 $ 141
Integration of OS Health Monitor into ORCOS Architecture (see Fig. 6.1) 151
Architecture of OS Health Monitor 152
Signal Generator Design, 159
Screenshot of Scenario Condition Editor ([69]) 170
Scenario Condition Workflow ([69]) 171
Assistant Database (Source [69]) o oL 172
Processing of OS Health Monitor Center 174
Class Diagram illustrating types of treenodes 177
Effected OS Health Parameters by system call executions for Memory related

systemcalls. 184
Correlation between Signal Generator Rules and System Call Executions 186
[lustration of the main path and the reproduction nodes on the example of se-

quence 701 8S$. 190
Classification Run Time Process. 192
Classification Run Time Process for Sequence Ending Symbol. 193

Time Overhead for Memory Allocation with Linear Memory Manager (source: [92])213
Time Overhead for Memory Allocation with Sequential Fit Memory Manager

(source: [92])o 214
Execution Times of Task; in the Low Workload Scenario 220
Runtime Performance of the OS Health Monitor for Low Workload Scenario . . 221
Execution Times of the BeBot application 222
Runtime Performance of the OS Health Monitor for High Workload Scenario . . 223
Control Flow of Example Application 224
Runtime Overhead for extension of the Suffix Tree 225
Virtual Evaluation Environment for the Online Anomaly Detection. 240
Virtual Evaluation Environment Architecture. 242
Architecture of the Assistance Communication Module. 243
The BEBor minirobot. 244
Model of BEBoTt with geometric dimensions, its IR sensors and sensor ranges . 245
Mapping of IR Sensor values measured for dedicated distances (in cm). 245

Application evaluation architecture. 247

11.8
11.9

12.1

12.2

12.3

12.4
12.5

F1
F2

Situation for possible combinations of neighboring IR sensor values. 250
Graphical user interface for changing the parameters of the Virtual Evaluation
Environment. 254

Health signals obtained by the IR Sensor Monitor executing Signal Generator

rules for FailureModel1 in absence of failures. 261
Health signals obtained by the IR Sensor Monitor executing Signal Generator

rules for FailureModels in absence of failures. 262
Common system call control flow of applications left-side wall follower and right-

side wall follower 282
Specific system call control flow of left-side wall follower 282
Specific system call control flow of right-side wall follower 282

Impact of previous classification marker on value of current classification marker.315
Accumulated impact of previous classification marker on value of current classi-
fication marker. 315

My Publications

[Dellnitz et al., 2014] Dellnitz, M., Flasskamp, K., Hartmann, P., Kriiger, M., Meyer, T., Priester-
jahn, C., Ober-Blobaum, S., Rasche, C., Sextro, W., Stahl, K., and Trachtler, A. (2014).
Self-optimizing mechatronic systems. In Gausemeier,]J., Rammig, E-J., Schéfer, W., and
Sextro, W., editors, Dependability of Self-optimizing Mechatronic Systems, chapter 1.1, pages
3—12. Springer-Verlag, Heidelberg, Germany.

[Stahl, 2013] Stahl, K. (2013). Ais-based anomaly detection for self-x systems. In Proceedings of
the First Organic Computing Doctoral Dissertation Colloquium (OC-DDC’13), pages 24 — 26.

[Stahl et al., 2014a] Stahl, K., Groesbrink, S., and Oberthiir, S. (2014a). System software. In
Gausemeier, J., Schifer, W., and Rammig, F.-J., editors, Design Methodology for Intelligent
Technical Systems - Develop Intelligent Technical Systems of the Future, chapter Methods for the
Design and Development, pages 298-317. Springer-Verlag, Heidelberg, Germany.

[Stahl and Rammig, 2014] Stahl, K. and Rammig, E-J. (2014). Online behavior classification for
anomaly detection in self-x real-time systems. In Proc. 5th IEEE Workshop on Self-Organizing
Real-Time Systems (SORT) 2014. IEEE, IEEE.

[Stahl and Rammig, 2015] Stahl, K. and Rammig, F.-J. (2015). Online behavior classification
for anomaly detection in self-x real-time systems. Concurrency and Computation: Practice and
Experience.

[Stahl et al., 2013] Stahl, K., Rammig, F.-J., and Vaz, G. (2013). A framework for enhancing
dependability in self-x systems by artificial immune systems. In Proc. 4th IEEE Workshop on
Self-Organizing Real-Time Systems (SORT) 2013. IEEE, IEEE.

[Stahl et al., 2014b] Stahl, K., Seifried, A., Trachtler, A., Kleinjohann, B., Korf, S., Porrmann,
M., Heinzemann, C., Rasche, C., Sondermann-Woelke, C., Priesterjahn, C., Steenken, D.,
Rammig, E-J., Wehrheim, H., Kessler,]J. H., Gausemeier, J., Flasskamp, K., Witting, K,
Kleinjohann, L., Kriiger, M., Dellnitz, M., Iwanek, P., Reinold, P., Hartmann, P., Dorociak,
R., Timmermann, R., Ober-Blobaum, S., Groesbrink, S., Ziegert, S., Xie, T., Meyer, T., Sextro,
W., Schifer, W., Miiller, W., and Zhao, Y. (2014b). Methods of improving the dependability
of self-optimizing systems. Dependability of Self-Optimizing Mechatronic Systems, pages
37-171. Springer Verlag.

[Stahl et al., 2015] Stahl, K., Stocklein, J., and Li, S. (2015). Evaluation of autonomous ap-
proaches using virtual environments. In Virtual, Augmented and Mixed Reality - 7th Interna-
tional Conference, VAMR 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA,
August 2-7, 2015, Proceedings, pages 499-512.

MY PUBLICATIONS

324

Bibliography

[1] Heinz Nixdorf Institute, The BeBot mini robot. https:/ /www.hni.uni-
paderborn.de/en/system-and-circuit-technology /projects /abgeschlossene-
projekte/mini-robot-bebot/, Aug. 2015.

[2] ORCOS - Organic Reconfigurable Operating System, FG Rammig, University of Paderborn.
https:/ /orcos.cs.uni-paderborn.de/doxygen/html/.

[3] Organic Computing Initiative, DFG Priority Program 1183. http://www.organic-
computing.de.

[4] QEMU - open source processor emulator. http://www.qemu.org, Jul. 2015.

[5] Wikipedia: ARIMA (and ARMA). http://en.wikipedia.org/wiki/Autoregressive_integrated_
moving_average, Dec. 2014.

[6] Wikipedia: Artificial Neural Networks. http://en.wikipedia.org/wiki/ Artificial neural_
network, Dec. 2014.

[7] Wikipedia: Bayesian Networks. http://en.wikipedia.org/wiki/Bayesian_network, Dec.
2014.

[8] Wikipedia: Clustering, Cluster Analysis. http://en.wikipedia.org/wiki/Cluster_analysis,
Dec. 2014.

[o] Wikipedia: Extended Finite State Automata. http:/ /en.wikipedia.org/wiki/Extended finite-
state_machine, Dec. 2014.

[10] Wikipedia: Hidden Markov Model. http:/ /en.wikipedia.org/wiki/Hidden_Markov_model,
Dec. 2014.

[11] Wikipedia: K-means Clustering. http://en.wikipedia.org/wiki/K-means_clustering, Dec.
2014.

[12] Wikipedia: Kernel Methods, Kernel Trick. http://en.wikipedia.org/wiki/Kernel trick,
Dec. 2014.

[13] Wikipedia: Local Outlier Factor. http://en.wikipedia.org/wiki/Local_outlier_factor, Dec.
2014.

[14] Wikipedia: Regression Analysis. http://en.wikipedia.org/wiki/Regression_analysis, Dec.
2014.

[15] Wikipedia: Self-Organizing Maps. http://en.wikipedia.org/wiki/Self-organizing_map,
Dec. 2014.

[16] Wikipedia: Statistical Hyphothesis Testing. http://en.wikipedia.org/wiki/Statistical_hypo
thesis_testing, Dec. 2014.

[17] Wikipedia: Support Vector Machines. http://en.wikipedia.org/wiki/Support_vector_
machine, Dec. 2014.

[18] Wikipedia: Virtual Reality. https://en.wikipedia.org/wiki/Virtual reality, Aug. 2015.

[19] U. Aickelin, P. Bentley, S. Cayzer,]. Kim, and J. McLeod. Danger theory: The link between
ais and ids? In J. Timmis, P. Bentley, and E. Hart, editors, Artificial Immune Systems, volume
2787 of Lecture Notes in Computer Science, pages 147-155. Springer Berlin Heidelberg, 2003.

[20] U. Aickelin and S. Cayzer. The danger theory and its application to artificial immune sys-
tems. In J. Timmis and P. J. Bentley, editors, Proceedings of the 1st International Conference on
Artificial Immune Systems (ICARIS-2002), pages 141148, University of Kent at Canterbury,
September 2002. University of Kent at Canterbury Printing Unit.

[21] J. Al-Enezi, M. Abbod, and S. Alsharhan. Artificial immune systems - models, algorithms
and applications. International Journal of Research and Reviews in Applied Sciences (I[RRAS),
3(3):118-131, 2010).

[22] S. Axelsson. Research in intrusion-detection systems: A survey. Technical Report 98-17,
Department of Computer Engineering, Chalmers University of Technology, SE—412 96,
Goteborg, Sweden, Dec. 1998.

[23] S. Axelsson. Intrusion detection systems: A survey and taxonomy. Technical report, 2000.

[24] O. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi, A. van Moorsel, and M. van
Steen. The self-star vision. In O. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi,
A. van Moorsel, and M. van Steen, editors, Self-star Properties in Complex Information
Systems, volume 3460 of Lecture Notes in Computer Science, pages 1—20. Springer Berlin
Heidelberg, 2005.

[25] B. B. Bayer. Reflexive selbstheilende Komponenten zur Unterstiitzung fiir ein eingebet-
teten Echtzeit-Betriebssystem. Master thesis, Faculty of Computer Science, Electrical
Engineering, and Mathematics, Paderborn University, 2010.

[26] D.]. Berndt and]. Clifford. Using Dynamic Time Warping to Find Patterns in Time Series.
In KDD Workshop, pages 359—370, 1994.

[27] D.J. Brown, B. Suckow, and T. Wang. A survey of intrusion detection systems. Technical
report, Department of Computer Science, University of California, 2002.

[28] M. Burgess. Probabilistic anomaly detection in distributed computer networks. Science of
Computer Programming, page 2006.

[29] M. Burgess. Recent developments in cfengine. In In Proceedings of the 2nd Unix.nl conference,
2001.

[30] G. C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Algorithms And
Applications (Real-Time Systems Series). Springer-Verlag TELOS, Santa Clara, CA, USA,
2004.

[31] L. N. d. Castro. Fundamentals of Natural Computing (Chapman & Hall/Crc Computer and
Information Sciences). Chapman & Hall/CRC, 2006.

[32] L. R. d. Castro and J. Timmis. Artificial Immune Systems: A New Computational Intelligence
Paradigm. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[33] V. Chandola. Anomaly detection for symbolic sequences and time series data. Phd thesis,
University of Minnesota, 2009.

[34] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Comput.
Surv., 41(3):15:1-15:58, July 2009.

[35] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete sequences: A
survey. IEEE Transactions on Knowledge and Data Engineering, 24(5):823-839, 2012.

[36] V. Chandola, V. Mithal, and V. Kumar. Comparative evaluation of anomaly detection
techniques for sequence data. In Proceedings of the 2008 Eighth IEEE International Conference
on Data Mining, ICDM ’08, pages 743—748, Washington, DC, USA, 2008. IEEE Computer
Society.

[37] D. Dasgupta, S. Yu, and F. Nino. Review article: Recent advances in artificial immune
systems: Models and applications. Appl. Soft Comput., 11(2):1574-1587, Mar. 2011.

[38] L. de Castro. The immune response of an artificial immune network (ainet). In Evolutionary
Computation, 2003. CEC "03. The 2003 Congress on, volume 1, pages 146-153 Vol.1, Dec 2003.

[39] L. de Castro and F. Von Zuben. Learning and optimization using the clonal selection
principle. Evolutionary Computation, IEEE Transactions on, 6(3):239—251, Jun 2002.

[40] A. V. Debra Anderson, Thane Frivold. Next-generation intrusion detection expert system
(nides) - a summary. Technical Report SRI-CSL-95-07, SRI International, Menlo Park, CA
94025-3493, May 1995. This report was prepared for the Department of the Navy, Space
and Naval Warfare Systems Command, under Contract Noo039-92-C-0015.

[41] S. Even. Graph Algorithms. W. H. Freeman & Co., New York, NY, USA, 1979.

[42] T. Fawcett and F. Provost. Activity monitoring: Noticing interesting changes in behavior.
In In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 53-62, 1999.

[43] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection using
call stack information. In In Proceedings of the 2003 IEEE Symposium on Security and Privacy,
2003.

[44] S. Forrest, S. Hofmeyr, and A. Somayaji. The evolution of system-call monitoring. In
Proceedings of the 2008 Annual Computer Security Applications Conference, ACSAC ‘08, pages
418-430, Washington, DC, USA, 2008. IEEE Computer Society.

[45] S. Forrest, S. A. Hofmeyr, and A. Somayaji. Computer immunology. Commun. ACM,
40(10):88-96, Oct. 1997.

[46] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for unix
processes. In Proceedings of the 1996 IEEE Symposium on Security and Privacy, SP '96, pages
120—, Washington, DC, USA, 1996. IEEE Computer Society.

[47] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-nonself discrimination in a
computer. In In Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy,
pages 202—212. IEEE Computer Society Press, 1994.

[48] S. M. Garrett. How do we evaluate artificial immune systems. Evolutionary Computation,
13:145-178, 2005.

[49] J. Gausemeier, F.-]. Rammig, and W. Schéfer, editors. Design Methodology for Intelligent
Technical Systems - Develop Intelligent Technical Systems of the Future. Springer-Verlag,
Heidelberg, Germany, Jan. 2014.

[50] J. Gausemeier, F. J. Rammig, W. Schéfer, and W. Sextro, editors. Dependability of Self-
optimizing Mechatronic Systems. Lecture Notes in Mechanical Engineering. Springer, Hei-
delberg New York Dordrecht London, 2014.

[51] J. Greensmith, U. Aickelin, and S. Cayzer. Introducing dendritic cells as a novel immune-
inspired algorithm for anomaly detection. In Proceedings of the 4th International Conference
on Artificial Immune Systems, ICARIS 05, pages 153-167, Berlin, Heidelberg, 2005. Springer-
Verlag.

[52] J. Greensmith, U. Aickelin, and S. Cayzer. Detecting danger: The dendritic cell algorithm.
CoRR, abs/1006.5008, 2010.

[53] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
Biology. Cambridge University Press, New York, NY, USA, 1997.

[54] E. Hart and J. Timmis. Application areas of ais: The past, the present and the future. In
Proceedings of the 4th International Conference on Artificial Immune Systems, ICARIS 05, pages
483—497, Berlin, Heidelberg, 2005. Springer-Verlag.

[55] E. Hart and J. Timmis. Application areas of ais: The past, the present and the future. Appl.
Soft Comput., 8(1):191—201, Jan. 2008.

[56] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of system
calls. Journal of Computer Security, 6:151-180, 1998.

[57] S. A. Hofmeyr and S. A. Forrest. Architecture for an artificial immune system. Evol.
Comput., 8(4):443-473, Dec. 2000.

[58] G. Horanyi, Z. Micskei, and I. Majzik. Scenario-based automated evaluation of test traces
of autonomous systems. In M. Roy, editor, Proceedings of ERCIM/EWICS Workshop on
Dependable Embedded and Cyber-physical Systems (DECS) at SAFECOMP’13, pages 181-192,
Toulouse, France, 09/2013 2013.

[59] M. Kay. Chapter 5, Suffix Trees and its Construction. Course Readings,
http:/ /www.cbcb.umd.edu/confcour/Fall2012/suffixtrees.pdf, 2012.

[60] E. Keogh,]. Lin, and A. Fu. Hot sax: efficiently finding the most unusual time series
subsequence. In Data Mining, Fifth IEEE International Conference on, pages 8 pp.—, Nov
2005.

[61] J. Kim, P. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, and J. Twycross. Immune system
approaches to intrusion detection — a review. Natural Computing, 6(4):413—466, 2007.

[62]]J. Kim, J. Greensmith, J. Twycross, and U. Aickelin. Malicious code execution detection
and response immune system inspired by the danger theory. In Proceedings of the Adaptive
and Resilient Computing Security Workshop (ARCS-05), Santa Fe, USA, 2005.

[63] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishers, Norwell, MA, USA, 1st edition, 1997.

[64] S. Kumar and E. H. Spafford. An application of pattern matching in intrusion detection.
Technical report, 1994.

[65] T. Lane and C. E. Brodley. Temporal sequence learning and data reduction for anomaly
detection. ACM Trans. Inf. Syst. Secur., 2(3):295-331, Aug. 1999.

[66] R. Langmann, editor. Self-nonself discrimination revisited, volume 12. 2000.

[67] N. Lay and I. Bate. Applying artificial immune systems to real-time embedded systems.
In Congress on Evolutionary Computation (CEC), 2007.

[68] N. Lay and I. Bate. Improving the reliability of real-time embedded systems using innate
immune techniques. volume 1, pages 113-132. Springer-Verlag, 2008.

[69] S. Li. A Framework for Health Monitoring in the Real-Time Operating System ORCOS.
Master thesis, Faculty of Computer Science, Electrical Engineering, and Mathematics,
Paderborn University, 2014.

[70] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM, 20(1):46-61, Jan. 1973.

[71] F. Macias. The test and evaluation of unmanned and autonomous systems. International
Test and Evaluation Association, ITEA Journal, 29:388-395, 2008.

[72] F. Maggi, M. Matteucci, and S. Zanero. Detecting intrusions through system call sequence
and argument analysis. Dependable and Secure Computing, IEEE Transactions on, 7(4):381-395,
Oct 2010.

[73] M. Markou and S. Singh. Novelty detection: A review - part 1: Statistical approaches.
Signal Processing, 83:2003, 2003.

[74] M. Markou and S. Singh. Novelty detection: A review - part 2: Neural network based
approaches. Signal Processing, 83:2499—-2521, 2003.

[75] M. Masmano, I. Ripoll, P. Balbastre, and A. Crespo. A constant-time dynamic storage
allocator for real-time systems. Real-Time Systems, 40(2):149-179, 2008.

[76] P. Matzinger. Tolerance, danger, and the extended family. Annual Reviews on Immunology,
12:991-1045, 1994.

[77] A. Mueen and E. Keogh. Online discovery and maintenance of time series motifs. In
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD "10, pages 1089-1098, New York, NY, USA, 2010. ACM.

[78] S. Oberthiir. Towards an RTOS for self-optimizing mechatronic systems. Phd thesis, Faculty
of Computer Science, Electrical Engineering, and Mathematics, Paderborn University,
Paderborn, Germany, 2010.

[79] A.Patcha and J.-M. Park. An overview of anomaly detection techniques: Existing solutions
and latest technological trends. Computer Networks, 51(12):3448 — 3470, 2007.

[80] C. Priesterjahn. Analyzing Self-healing Operations in Mechatronic Systems. Dissertation,
Fakultat fiir Elektrotechnik, Informatik und Mathematik, Universitit Paderborn, Pader-
born, Aug. 2013.

[81] QEMU Group. QEMU/Monitor on the Website of Wikibooks, 2014.
http:/ /en.wikibooks.org/wiki/QEMU /Monitor.

[82] U. Richter, M. Mnif, J. Branke, C. Miiller-Schloer, and H. Schmeck. Towards a generic ob-
server /controller architecture for organic computing. In C. Hochberger and R. Liskowsky,
editors, INFORMATIK 2006 ? Informatik fiir Menschen!, volume P-93 of LNI, pages 112—-119.
Bonner Kéllen Verlag, Oktober 2006.

[83] V. P. Roske, I. Kohlberg, and R. Wagner. Autonomous systems challenges to test and
evaluation. Presented at the 28th Annual National Test and Evaluation Conference of
National Defense Industrial Association, Mar. 2012.

[84] X. Song, M. Wu, C. Jermaine, and S. Ranka. Conditional anomaly detection. IEEE Trans.
on Knowl. and Data Eng., 19(5):631-645, May 2007.

[85] W. Stallings. Operating Systems: Internals and Design Principles. Prentice Hall Press, Upper
Saddle River, NJ, USA, 6th edition, 2008.

[86] J. Stocklein, W. Miiller, D. Baldin, and T. Xie. Virtual test environment for self-optimizing
systems. In ASME/IEEE International Conference on Mechatronic and Embedded Systems and
Applications (MESA2013). ASME, 4 - 7 Aug. 2013.

[87] P-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[88] M. Thompson. Testing the intelligence of unmanned autonomous systems. volume 29.
ITEA Journal of Test & Evaluation, Dec. 2008.

[89] J. Twycross and U. Aickelin. libtissue - implementing innate immunity. In Evolutionary
Computation, 2006. CEC 2006. IEEE Congress on, pages 499—506, 2006.

[90] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.
[91] Unity Technologies. Unity3d game engine, 2014. http://unity3d.com.

[92] G. Vaz. A reconfigurable Real-time Monitoring Framework for a Real-time Operating Sys-
tem. Master thesis, Faculty of Computer Science, Electrical Engineering, and Mathematics,
Paderborn University, 2013.

[93] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system calls:
alternative data models. In Security and Privacy, 1999. Proceedings of the 1999 IEEE Symposium

on, pages 133-145, 1999.

[94] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th Annual Symposium
on Switching and Automata Theory (Swat 1973), SWAT "73, pages 1—11, Washington, DC,
USA, 1973. IEEE Computer Society.

[95] Y. Zhao and F.-J. Rammig. Online model checking for dependable real-time systems. In
16th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing-Shenzhen, China, pages 154-161. IEEE Computer Society, IEEE Computer Society,
11 - 13 Apr. 2012.

BIBLIOGRAPHY

332

	Acknowledgements
	Abstract
	Zusammenfassung
	I Introduction
	1 Introduction
	Motivation
	Objective
	1.1 Requirements, Restrictions and Challenges
	1.2 Basic Idea
	Structure of this Thesis

	II Foundations
	2 Anomaly Detection
	2.1 Definition
	2.2 Properties and Features
	2.3 Architectural Model
	2.4 Data Classification
	2.5 Anomaly Detection Techniques
	2.6 Application Domains
	2.7 Summary

	3 Artificial Immune Systems
	3.1 The Human Immune System
	3.2 Artificial Immune Systems
	3.3 Self/Nonself Discrimination
	3.4 Danger Theory
	3.5 Evaluation of Artificial Immune Systems
	3.6 Summary

	4 Related Work
	4.1 System Call-based Anomaly Detection
	4.2 AIS-inspired Anomaly Detection
	4.3 Danger Theory-based Anomaly Detection
	4.4 Discussion and Summary

	5 Online Pattern Matching
	5.1 Introduction
	5.2 Suffix Trees
	5.3 Summary

	6 ORCOS - Organic Reconfigurable Operating System
	6.1 ORCOS Design and Architecture
	6.2 Offline Configurability
	6.3 Operating System Modules
	6.4 Summary

	III Online Anomaly Detection
	7 Online Anomaly Detection for Reconfigurable Real-Time Systems
	7.1 Problem Definition and Feature Requirements
	7.2 Anomaly Detection Framework
	7.3 Behavior Profiling and Knowledge Base
	7.4 Architectural Model
	7.5 Summary

	IV Implementation and Evaluation
	8 ORCOS Online Anomaly Detection Framework
	8.1 Online Reconfigurability
	8.2 Basic Self-X Architecture
	8.3 Architecture for Anomaly Detection
	8.4 System Call Monitor
	8.5 Behavior Knowledge Base
	8.6 Operating System Health Monitor
	8.7 Classification
	8.8 Runtime Process of Anomaly Detection
	8.9 Summary

	9 Evaluation of Costs
	9.1 Evaluation of the System Call Monitor
	9.2 Evaluation of OS Health Monitor
	9.3 Evaluation of Behavior Knowledge Base
	9.4 Overhead of the Overall Approach
	9.5 Summary

	V Case Study
	10 Evaluation Methodologies
	10.1 Problems and Challenges
	10.2 Requirements
	10.3 Applicability of Virtual Reality and Virtual Environments
	10.4 Summary

	11 Evaluation Case Environment
	11.1 Evaluation Environment
	11.2 The BeBot
	11.3 Interaction and Control
	11.4 Evaluation Output
	11.5 Evaluation Scenarios
	11.6 Summary

	12 Evaluation Results and Discussion
	12.1 Evaluation Scenario 1
	12.2 Evaluation Scenario 2
	12.3 Evaluation Scenario 3
	12.4 Evaluation Scenario 4
	12.5 Discussion

	VI Conclusion
	13 Summary and Conclusion
	Appendices
	A ORCOS System Calls
	A.1 Stream/File related system calls
	A.2 Memory related system calls
	A.3 Task related system calls
	A.4 Thread related system calls
	A.5 Signal related system calls
	A.6 Socket related system calls
	A.7 System calls for Task loading
	A.8 Others
	A.9 Specific system calls under QEMU
	A.10 System calls for BeBot control
	A.11 Additional System Calls for Bug Manipulator/Generator

	B System Call Monitor API
	C OS Health Monitor - Parameter
	C.1 Scheduler Monitor
	C.2 Processor Utilization Monitor
	C.3 Memory Manager Monitor
	C.4 Communication Monitor
	C.5 File Manager Monitor
	C.6 Device Driver Monitor
	C.7 IR Sensor Monitor

	D Device Driver Monitor Interface
	E OS Health Monitor API
	F Proposals for future research
	F.1 Potentials to enhance the evaluation of the classification marker
	F.2 Alternatives for Processing the Anomaly Detection

	List of Figures
	My Publications
	Bibliography

