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Chapter 1

Introduction

Testing is one of the traditional and most commonly used techniques for assuring
quality of software. It is carried out by fest cases that are ordered pairs of test inputs
and expected fest outputs. A test execution represents the execution of the system
under consideration (SUC) against the test cases. If the results of the test execution
differ from the expected output, then the SUC fails; otherwise it succeeds the exe-
cution. Static testing evaluates a system based on its form, structure, or documenta-
tion. In contrast, dynamic testing is the process of evaluating a system based on its
behavior during execution. It can be divided into two concepts. Black-box testing
(also termed functional testing) ignores the internal behavior of the SUC. It concen-
trates on the outputs that can be traced back to selected inputs. Hence, test cases can
be generated without the implementation. White-box testing (or structural testing)
exploits the knowledge of the implementation to generate control flow-based and/or
data flow-based test cases. Test adequacy criteria are used as a stopping rule to de-
termine when to stop the process of testing and to provide a measure of test quality
[128]. Most of the adequacy criteria are coverage-oriented, that is, they rate the
portion of the system specification or implementation that is covered by the given
test set against the specification/implementation.

The initial step of the software development is usually the requirements elicita-
tion, and its outcome is the specification of the system’s behavior. It is important to
define appropriate test processes and generate test cases in this early stage, in com-
pliance with the user’s expectancy of how the system should behave. Some methods
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visualize and represent the relevant features of the SUC in its environmental con-
text, leading to a model of SUC. Based on this representation, model-based testing
(MBT) techniques generate test cases systematically. In the last decade MBT has
grown in importance ([36]). Models are specified to represent the relevant, desirable
features of the SUC. These models are used as a basis for (automatically) generating
test cases to be applied to SUC.

1.1 Model-Based Mutation Testing

Another fundamental problem of testing stems from the huge variety of possible
software faults to be considered. For this purpose, mutation analysis techniques
generate faulty versions of a software system—termed mutants—by introducing sim-
ple but representative faults in the implementation using mutation operators. These
operators are also known as mutant operators in the literature. A given test set is
executed against these mutants to check how many of these faults are revealed. The
ratio of detected to undetected faults is finally used to assess the fault detection ca-
pability of the test set. A characteristic of implementation-based mutation analysis
is that it does not detect new faults in SUC. At best, it indicates potential faults.
Furthermore, it is a white-box testing technique necessitating the implementation
of SUC, which is not always available.

The primary objective of this thesis is to conduct mutation analysis in the con-
text of model-based testing, leading to model-based mutation testing (MBMT). For
MBMT, a model of SUC that is assumed to be correct is first mutated to generate
mutants that can be viewed as fault models. Test cases are then generated for each
mutant (that is, each mutated model) using a test generation algorithm from MBT.
Finally, SUC is executed against these test cases to decide which mutants can be
revealed. In contrast to implementation-based mutation analysis, MBMT has more
different, possible alternative outcomes (also refer to Figure 2.6 in Chapter 2). A
test that reveals a model mutant of an SUC means that either the injected fault(s)
in the mutant and/or fault(s) in SUC have been detected that were not found during
MBT. Thus, the present approach enables the evaluation of the fault detection capa-
bility of test sets and, at the same time, the revelation of non-injected, latent faults
in SUC, if any.
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1.2 Modeling Techniques

A broad variety of formal or informal models exist for modeling software as recom-
mended in standards such as the Unified Modeling Language (UML) [100] or the
Testing and Test Control Notation (TTCN-3) [68]. Depending on user needs, those
models describe SUC at different levels of granularity and preciseness. Graph-based
models consist of nodes and arcs that connect the nodes. The semantics associated
with these nodes and arcs determines the level of granularity of SUC description.
For algebraic modeling, such levels primarily depend on the number of operations
and operands used and their semantics. The issue of which model to use is not de-
termined by solely identifying which model might be best for modeling the SUC,
but also for performing the test, including fault modeling, test generation, and de-
termining the test effectiveness.

Ideally, a model should be able to be converted between graphic and algebraic
representations. For example, event sequence graphs and finite-state machines can
be converted to regular expressions and vice versa by using algorithms from au-
tomata theory and formal languages ([11], [19], [54], [67], [111], [118]). Similarly,
statecharts can be converted to extended regular expressions [16]. This implies that
mutants with respect to these models can be generated by using either graph or
algebraic manipulation operators and algorithms. This thesis prefers formal graph-
based models; the following ones were selected and used in order of increasing
expressive power.

e Directed Graph (DG): At this initial level, models include no semantics, that
is, nodes and arcs have no interpretation. This level is used for introducing
notations, especially mutation operators, syntactically.

e Event Sequence Graph (ESG): Nodes are interpreted as events; arcs define
sequences of events ([10], [18]).

e Finite-State Machine (FSM): In addition to events, which are attributes of
arcs of FSM, nodes are interpreted as states, whereas arcs symbolize state

transitions. Outputs can be considered as additional attributes of arcs (Mealy
machines) or states (Moore machines) ([103], [106], [115], [124]).
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e Basic Statechart (SC): In addition to states and state transitions of FSM, con-
currency and hierarchy aspects are considered ([22], [100]).

The above hierarchy is used to exemplify the approach; it is not meant to be
complete. These models enable application of graph theory, discrete mathematics,
formal logic, etc. In this thesis, one-sort nodes and arcs are considered and not two-
sort ones (such as Petri nets) or multiple-sort ones (such as some UML diagrams).
Of particular interest are those that formally specify functional behavior of SUC.

1.3 Mutation Operators

Different strategies have been proposed for mutation analysis. Some are applied to
source code of the SUC while others are applied to models derived from specifica-
tions. Mutants generated can be used at the unit testing [2], [83], as well as at the
integration testing level [50] (further details on related work are given in Chapter
8). A common problem of these studies is that they use a large number of mutation
operators to generate mutants because they empirically determine the mutation op-
erators based on selected fault models. This makes the exact number of operators
that should be developed for a given fault model a matter of debate.

A different approach is used in this thesis by introducing two basic mutation
operators: insertion and omission. Starting with a DG as the underlying model, the
basic operators are applied to other models, such as ESG, FSM, and SC in the same
manner. This is a major difference between this thesis and other studies, such as
[34], [45], [50], [55], [57], [58], [84], [112], [117], [125]. Many mutation operators
known from literature can be reduced to these two basic operators introduced, and
their combination and iteration. For example, the “sdl”” operator in the Mothra tool
set [44] deletes a statement that is equivalent to an “omission” operator, and the
“svr” operator does a scalar variable replacement that is an “omission” followed by
an “insertion.” In fact, mutants generated by the mutation operators in the afore-
mentioned literature could be viewed as special cases of the fault model developed
in this thesis. However, mutants generated by the two basic operators (with multiple
iterations) and their combinations presented in this thesis might not be generated by
the operators in previous publications.
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1.4 Case Studies

For demonstration and validation of the proposed MBMT approach incorporating
the graph-based models and basic operators, three case studies on industrial and
commercial applications were conducted. They are the music management sys-
tem RealJukebox (RJB) developed by RealNetworks, the adaptive cruise control
system (ACC) developed by Hella Corp., and the control desk of a marginal strip
mower (RSM13) mounted on the Unimog truck manufactured by Mercedes-Benz.
The experiments on the broad area of these real-life applications covering interac-
tive, reactive, and proactive systems delivered valuable data for the comparison and
evaluation of the fault detection capability of test sets generated based on different
kinds of graph models (ESG, FSM, and SC).

The results of these experiments suggest that test sets generated by the proposed
approach can be effective in detecting faults in SUC. For example, the application
used in the third study (RSM13) was previously (and independently) tested by a
technical control board in Germany and released for public use. Test cases gener-
ated by the approach described here could detect faults in the released version that
were not previously found.

1.5 Main Contributions and Novelties

To sum up, the main contributions and novelties of this thesis are:

e arigorous introduction to the concept of MBMT that combines advantages of
MBT and mutation analysis and positioning this concept in the landscape of
mutation analysis while extending this landscape;

e systematizing and superseding the broad variety of existing mutation opera-
tors by using two basic mutation operators (insertion and omission);

e analyzing the mutants generated by the basic operators to avoid multiple oc-
currences of the same mutants;

e demonstrating the use of MBMT as an alternative to implementation-based



6 Chapter 1. Introduction

mutation techniques for analyzing the adequacy of test sets and extending the
approach to a new testing strategy; and

e enabling the evaluation of the fault detection capability of test sets and rev-
elation of residual (non-injected) faults in SUC by combining notations of
mutation adequacy from implementation-based mutation analysis with test
generation based on model mutants to detect faults in SUC.

1.6 Outline

The thesis is organized as follows. Chapter 2 introduces MBMT and explains the
difference between implementation-based mutation analysis and this new approach.
Chapter 3 defines a hierarchy of selected graph models along with the basic muta-
tion operators, insertion and omission. It discusses their relationship and how to
generate a broad class of mutants by applying these two operators multiple times
in separate or combined ways. Chapter 4 presents model-based test processes for
graph-based models discussed in the previous chapter. It also includes a discussion
on the tool support. Chapter 5 reports case studies on three real-life industrial appli-
cations to demonstrate the applicability of the approach for mutant generation. The
fault detection capability of test cases generated based on these mutants is also eval-
uated. Moreover, limitations are pointed out. As a result of the case studies a further
coverage criterion is defined in Chapter 6 that is used to extend the model-based test
processes described in Chapter 4. Chapter 7 presents different applications of basic
operators and mutation testing in the context of robustness testing, model checking,
and integration testing. Chapter 8 gives related work on mutation analysis based on
programs, specifications, and models. Note that throughout the thesis related work
is referred to whenever it is significant. Conclusions and perspectives are summa-
rized in Chapter 9.



Chapter 2

Model-Based Mutation Testing
(MBMT)

Mutation analysis, as introduced in the late seventies of the last century, is an imple-
mentation and fault injection-based white-box testing technique for software ([39],
[51], [79]). Mutation analysis relies on two hypotheses: the competent programmer
hypothesis ([1], [37]) and the coupling effect ([101]). The competent programmer
hypothesis suggests that experienced programmers tend to write programs that are
“close” to being correct. That is, although a program written by a competent pro-
grammer may be incorrect, it will differ from the correct version by only relatively
simple faults in terms of their syntax/semantics. The task of testing is therefore
reduced to validating a program that is probably not correct but is very close to
the correct one. The coupling effect assumes that a test set that detects all simple
faults in a program is sensitive enough to detect also more complex faults [101]. As
Morell [94] points out, the distinction between “simple” and “complex” faults is not
always clear. This thesis follows Offutt’s definition [101]: a simple fault is a fault
that can be fixed by making a single change to a source statement, and a complex
fault is one that cannot be fixed by making a single change to a source statement.

Mutants generated by introducing only a single change to a program under test
are known as first-order mutants. Second-order mutants are generated by making
two simple changes, third-order by making three simple changes, and so on. Mu-
tants of other than first-order are also known as higher-order mutants. To put it
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simply, first-order mutants model simple faults, and higher-order mutants model
complex faults. According to the coupling effect, higher-order mutants are likely
to be detected by test cases that detect first-order mutants. In general, therefore,
only first-order mutants are generated and used in implementation-based mutation
analysis. However, according to Jia and Harman ([80]), there exist higher-order
mutants constructed from first-order mutants that are harder to detect and thus more
interesting than first-order mutants.

Testset T
Test execution Test execution
ea
Program P Mutant P*
R4

Mutant generation
Legend: —» Testing the program --» Mutation analysis

Figure 2.1: Implementation-based mutation analysis. 7' is mutation adequate if it
kills all P*. T' can be used for testing the program P (see, e.g., [83]).

For explanatory purposes, assume that a program P and a test set 7" are given. A
set of mutation operators X', which is subject to be defined, is then applied to P to
generate mutants by introducing one or more syntactical changes into . Based on
the coupling effect, the focus is on first-order mutants. The fault detection capability
of T" can be measured in terms of the number of mutants that can be distinguished
(“killed”) from the original program by test cases in I'. More precisely, a mutant is
killed by a test case t € T if the observed behavior of P and the mutant P* differ
from each other when executed against t. A mutant is equivalent to P if it always
behaves the same as P for every case (or possible input). The test set 7" is said to be
mutation adequate ([128]) with respect to P and X if every non-equivalent mutant
of P generated by applying the mutation operators in X can be killed by at least one
test case in 1" (see Figure 2.1). Mutation analysis has also been extended to validate
a specification Spec (see Figure 2.2). To do this, a set of mutation operators is
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applied to Spec and the fault detection capability of 1" is measured by how many
mutated specifications Spec* can be killed by test cases in 7.

Testset T

Test execution <. Test execution
A

Specification Spec Mutant Spec*

Mutant generation
Legend: —» Testing the specification --+ Mutation analysis

Figure 2.2: Specification-based mutation analysis. 1" is mutation adequate if it kills
all Spec*. T can be used for testing the specification or the implementation based
on the specification (see e.g., [84] or [117], respectively).

2.1 Mutation Analysis for Evaluating Model-Based
Test Generation

In model-based testing (MBT), SUC is described by means of a model M that is
built in accordance with the specification (note that specification-based testing does
not necessarily require a model). It is assumed that M is correct. A test gen-
eration algorithm & using a test selection criterion (for example, covering every
node if M is graph-based) is applied to M such that (M) generates a test set
T = (t1,...,t;,...,t,) with each ¢; (i € {1,...,n}) being a test case as an ordered
pair

t; = (input to SUC, expected output from SUC) € T

After executing SUC against all the test cases in 7', the question usually arises
whether or not there are still more faults in SUC that have not been revealed. In
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other words, the fault detection capability of 7" needs to be assessed. This can be
carried out by

e cither mutating the source code of SUC to construct code mutants of the SUC
(Figure 2.3), or

e mutating the model M to construct model mutants of the SUC (Figure 2.4).

While the first view leads to implementation-based mutation analysis, the sec-
ond view is used to define model-based mutation testing. Both approaches assume
that (i) prior to the mutation activities, the conformance of model M and the corre-
sponding SUC has been validated by MBT, and (i1) there may be still latent faults
in SUC that MBT could not reveal. Solid lines in Figure 2.3 and 2.4 denote this. In
these figures, the dashed lines describe different, follow-on mutation activities. The
mutants are denoted by SUCT; and M;';, respectively, where index ¢ corresponds
to 7*" mutation operator and index j corresponds to the j* mutant generated by the
i operator.

Model M

Test generation
(algorithm @)

v

Testset T ~._
Test execution Test execution
v a

SUC Mutant SUC*i,j

Mutant generation

Legend: —» Model-based testing
--+» Mutation analysis based on SUC

Figure 2.3: Mutation analysis for evaluating model-based test generation based on
the implementation of SUC

10
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Mutant generation

Model M Mutant M*;;

Test generation Test generation

(algorithm @) (algorithm @)
v v
Testset T Test set T
Test execution ’,,"/Test execution
v "/
SsucC

Legend: —» Model-based testing
--» Mutation testing based on models (MBMT)

Figure 2.4: Mutation testing for evaluating model-based test generation based on
model M of SUC

Both approaches enable an evaluation of test generation algorithm ¢ by mea-
suring the mutation adequacy in terms of how many mutants (SUCY; or M) are
killed. The implementation-based view (Figure 2.3) generates mutants directly
with respect to the corresponding SUC. Note, however, that this approach is not
always feasible, for example, if SUC is on a firmware or an embedded system
that is difficult to mutate or if the source code is not available. Furthermore, an
implementation-based approach does not necessarily reveal remaining faults in SUC.

This thesis focuses on the model-based approach that is depicted in Figure 2.4.
As Section 2.2 will explain more in detail, a set of mutation operators is defined
and each operator is applied to model M, yielding a set of mutants (with each mu-
tant being a mutated model). With respect to each mutant M;;, a test set 1;; is
generated using (model-based) test generation algorithm ®. Then, SUC is executed
against every test case in each 777;. If additional faults in SUC are detected by these
17; that have not been revealed by test cases in 7" during MBT, then the test set
T' is not mutation-adequate with respect to the mutants. Therefore, apart from the
possibility of detecting remaining faults in SUC, the model-based approach enables

an assessment of the algorithm @ and the test set 7' by checking the mutation ad-

11
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equacy. However, MBMT leads to different interpretations of the predicates killed
and live, as will be explained in the following section.

The competent programmer hypothesis can apply to MBMT, as well. It is as-
sumed that programs that are implemented based on models only slightly differ
from the correct ones. Thus, SUC deviates slightly from the original model that
is presumed correct. Similarly, the coupling hypothesis is used to generate only
first-order mutants with respect to the underlying model. Some other studies, for
example, [3], [6], and [33], also generate test cases from model mutants and exe-
cute SUC against these test cases. Figure 2.5 depicts the procedure used by them.
For each mutant M/, a specific test set is generated to kill that mutant using an
algorithm ®; ;. The approach in Figure 2.4 differs from Figure 2.5 in that the same
test generation algorithm @ is used for all mutants in Figure 2.4 to generate test
cases and the conformance testing based on the algorithm @ has been carried out
beforehand.

Model M

Mutant generation

*. .

Mutant M*;;

Test generation
(algorithm @;)

— s Z -

*. .

Test set T*;

Test execution

wn
e

C

Legend: --+» Mutation testing based on models

Figure 2.5: Mutation testing based on model M of SUC

In contrast to Figure 2.3, the processes in Figure 2.4 and Figure 2.5 generate mu-
tants and test cases for mutation testing with respect to models. Figure 2.4 describes
the MBMT-based test generation and test adequacy analysis, which is the focus of

12
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this thesis. Throughout the rest of the thesis, wherever used, the term MBMT ad-
dresses this concept. The following section presents this approach in detail.

2.2 MBMT for Test Generation and Test Adequacy
Analysis

The set of mutation operators is defined as X = (x1, ..., Xi, ---, Xx)- Each operator
defines a fault model. Applying an operator x; to M (denoted by x;(M)) generates
a set of mutated models M; = (M, M}, ..., M}, ..., M;,), where p > 1. These
mutants are called model mutants of M. For the rest of the thesis, they are referred
to as mutants. The notation M * is used as a generic representation for a mutant with
respect to M. From each M, a test set T;'; is generated based on test generation
algorithm @, that is, (M) = T, = (t;; .t ;.- t;; ). The notation T will
be used as a generic representation for a test set with respect to 7;°;,. SUC will be
executed against every test case in each 7;;.

In the following, predicates are defined to determine whether M* is a valid or
an invalid mutant of M, and whether M * has been killed or is still live with respect

to test cases in 7™, or whether or not M* is equivalent to M.

Definition 2.1 (Valid Mutant) A mutant M* is a valid mutant of M if and only if

M* satisfies the syntactic and semantic requirements that model M has to fulfill.

Otherwise, M * is an invalid mutant, that is,

valid(M*) := { M*|M* satisfies the syntactic and semantic requirements imposed
by the model type of M }.

As an example, if M is an FSM, then M* (a mutated model) must also be a valid
FSM. A syntactical requirement for an FSM is that all transitions must be associated
with states. Semantics might require that an FSM must be deterministic or that all
states are reachable from an initial state. More examples will be given in Chapter 3.

Definition 2.2 (Killed Mutant) If there is at least one test case ¢t* in 7™ such that
SUC generates an output that differs from the one expected from ¢* when executed
against t*, then the mutant M ™ is killed by ¢*, that is,

13
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killed(M*, @, SUC) = valid(M*) A 3t* € &(M*) : ActualOutput(SUC, t*) #
ExpectedOutput(t*)

Note that the output of SUC is also the output of M as the conformance between
SUC and M has been validated with respect to 7' = ® (M) as shown in Figure 2.4.

Definition 2.3 (Live Mutant) )/ is live with respect to ®(A*) = T if and only
if no test case t* in 7™ can kill M*; that is,
live(M*,®,SUC) := valid(M*) ANVt* € ®(M*) : Actual Output(SUC, t*) =
EzxpectedOutput(t*)

Definition 2.4 (Equivalent Mutant) A mutant M * is equivalent to M if and only
if they produce the same outputs on every possible input in the input domain of
SUC; that is,
equivalent(M, M*) := Vt in the input domain of SUC:
Output(M,t) = Output(M*,t).

2.2.1 Mutant Classification

In mutation analysis based on the implementation/specification, it is important to
classify mutants into killed and live in order to assess the adequacy of a test set 7" in
terms of its capability for detecting the faults that are injected into SUC. However,
analyzing mutants only with respect to the predicates killed and live in MBMT is
not sufficient. This is because mutants and SUC must be further analyzed to find
out why the expected and the actual outputs differ or are the same. The challenge
is that, in addition to faults in the mutants (which have been injected on purpose),
faults may also exist in SUC which may or may not be the same as the injected
faults in the mutants. Note that this is also subject of discussion in data mutation
[114]. Thus, in spite of killing all the mutants, there might still be remaining faults
in SUC; moreover, SUC might not contain any faults represented by the mutants
under consideration. The same argument also applies to mutants that are live. As
a consequence of the discussion on predicates killed and live, Figure 2.6 illustrates
six different types of mutants as follows.

14



2.2. MBMT for Test Generation and Test Adequacy Analysis 15

’ Execution of SUC on T* = @ (M¥*) ‘

/\

[ tive (v~ @, 5UC) | ] killed (M*, d, SUC) \
(denoted as LM) Ated as KM)
| (@ equivalent (M, M¥) | | — equivalent (M, ") | (d) Injected fault in Fault in SUC
.

(denoted as LM,) (denoted as LM, ) M* notin SUC
(denoted as KM,)

(b) SUC behaves the (c) Tests in T* are unable to (e) Faultin SUC (f) Injected fault in

same as M* detect the injected fault in M* that is not in M* M* also in SUC

(denoted as LM, ;) (denoted as LM, ,) (denoted as KM, ;) (denoted as KM, ,,)

Figure 2.6: Mutant classification

o Live mutants (LM): set of all mutants that are live

— LM.: subset of LM consisting of all mutants equivalent to M

— LM,.: subset of LM consisting of all mutants that are non-equivalent
to M

x LM,.,: subset of LM, where SUC behaves the same as M*

* LM,e,: subset of LM, where tests in 7™ are unable to detect the
injected fault in M*

o Killed mutants (KK M): set of all mutants that have been killed

— K M,: subset of K M such that the injected fault in M* is not in SUC
- KM,,: subset of K M such that T reveals a fault in SUC

* K M,,,: subset of K'M,, such that there is a fault in SUC that is
not in M*

* K M,,,: subset of K'M,, such that the injected fault in M* is also
in SUC

15



16 Chapter 2. Model-Based Mutation Testing (MBMT)

A mutant M* can be live for one of the following reasons. First, it is possible
that M* is equivalent to M (see Box (a) in Figure 2.6). The second possibility
(see Box (b)) is that SUC behaves the same as M* (which is not equivalent to M)
with respect to test cases in 7. This indicates that the implementation of SUC
deviates from model M. As a result, SUC may contain “code” to introduce certain
“unexpected” behavior different from that specified by M. This helps testers to
reveal faults in SUC that have not been detected. Finally (see Box (c)), 7™ is unable
to detect the fault(s) in M*. There are two possible reasons. Test cases in 7™ do
not execute the mutated part of M*, or they cannot reveal the difference between M
and M*. Figure 2.7 gives a visual interpretation of Boxes (b) and (c).

(b) SUC behaves the (c) Tests in T* are unable to
same as M* detect the injected fault in M*

i
|
|
Part of M* L
covered by T* | ‘
i
|

Execution of SUC on T* ——|

SUC ——— il

Part of SUC
executed on T*

B Injected fault in M*
MM Deviation of SUC from M

Figure 2.7: Interpretation of a live, non-equivalent mutant M * in Figure 2.6, where
Vt* € T* : ActualOutput(SUC, t*) = ExpectedOutput(t*)

When a mutant M* is killed by 7™, then SUC behaves differently from M* on
at least one test case t* € T™. For each of such t*, this can also be further divided
into three cases. First (see Box (d)), M™ has a fault that is not in SUC. As a result,
when SUC is executed against t*, it does not show certain faulty behavior of M*.

16



2.2. MBMT for Test Generation and Test Adequacy Analysis 17

Second (see Box (e)), SUC has a fault that is not in M*. For example, there is a
fault in SUC which causes its execution against test case t* to fail, but M* does not
contain this fault. Due to the changes made in the mutant, the test set 7™ generated
using the algorithm ® contains a test case t* that reveals the fault in SUC that does
not correspond to any fault in M *. Third (see Box (f)), the fault in M* (covered by
at* € T”) reveals a fault in SUC that makes the SUC fail; for example, crash or
inoperable. Note that the fault in SUC and M™ are the same faults with respect to
model M but with different effects when executing the ¢t* € 7™ against SUC and
mutant M *. Figure 2.8 provides a visual interpretation of these three cases.

(d) Injected fault in (e) Faultin SUC (f) Injected fault in
M* not in SUC that is not in M* M* also in SUC
M* ‘rf 77777 T ‘77777””’_’::1’,11 ff,f:ff::fﬁf*f*fiﬂ‘
- | | | 1 |
b | } i | } i |
Part of M* | | i i | |
covered by at*eT* | | | ¥ | |
L‘;::’:;:,‘,,,,,,,,Ji L,,,,,,,,‘;:: ;’;j L:: :;:L,,,,,,,,Ji

Execution of SUC on t* — { 1

SUC —

Part of SUC
executed on t*

B Injected fault in M*
B Fault detected in SUC by t*

Figure 2.8: Interpretation of a mutant M ™ killed by a test case t* € T™ in Figure
2.6, that is, where ActualOutput(SUC,t*) # ExpectedOutput(t*)

Note that Boxes (a), (c), and (d) can be viewed as the traditional interpretation
of predicates killed and live with respect to M* and 7™; and Boxes (b), (e), and (f)
in Figure 2.6 denote cases where faults in SUC are revealed by MBMT. In other
words, if there are any mutants in these categories, then SUC has some faults that
are not in M and cannot be detected by the test set 7' generated by applying test

17



18 Chapter 2. Model-Based Mutation Testing (MBMT)

generation algorithm @ to the model M. Hence, test generation algorithm & (which
also implies the generated test sets 7' and 7™) should be improved if any of the
following conditions occur.

o LM, is not empty; SUC deviates from M and such deviation(s) have not
been detected by the test set 7" during MBT.

e LM,., is not empty; that is, some non-equivalent mutants are still live. These
mutants do not correspond to faults in SUC but may be killed if (M *) = T*
is improved with additional test cases.

o KM,, or KM,,, are not empty, that is, faults have been detected in SUC
but were not detected during MBT by test set 7'

Thus, the total number of faults in SUC (from the MBMT point of view) is
|LM e, | + | K Mo, | + | K M,,,|- Based on this, the following score is defined.

Definition 2.5 (Mutation Fault Detection Score) Given a model M, a test gen-
eration algorithm ®, SUC, and a set of mutation operators X', the mutation fault

detection score is defined as \LMpe, | + | K My, | + | K My, |
ner | + [ K My, | + na
MFDS(M,®,SUC, X) := : 1 -
|M*| — | LM,|

where | M *| denotes the number of all mutants generated.

Definition 2.5 relates the number of mutants that revealed remaining faults in
SUC to all mutants generated, except for equivalent mutants. If MBMT does not
detect any remaining faults in SUC, the score is 0.

Definition 2.6 (Test Generation Mutation Adequacy Score) Given a model M,
a test generation algorithm ®, SUC, and a set of mutation operators X, the test
generation mutation adequacy score is defined as

KM,
TGMAS(M,@,SUC,X) = W,

where |M/*| denotes the number of all mutants generated.

The score given by Definition 2.6 corresponds to the traditional mutation score,
that is, comparing the mutants that were killed (but did not reveal any faults in

18



2.2. MBMT for Test Generation and Test Adequacy Analysis 19

SUC) to all mutants, except for equivalent ones. The score is 1, if no faults in SUC
have been detected and there are no live mutants as the test cases generated based
on the mutants were capable to distinguish all the mutants from SUC. A low score
indicates that test cases in 7" generated based on ® (M) were not sufficient to detect
all (potential) faults in SUC.

In the following, an algorithm for mutant generation, execution of SUC, and
classification of mutants into killed or live is presented. It is a model-independent
algorithm that can be applied to any of the models introduced in Chapter 3 (DG,
ESG, FSM, and SC) or other graph-based and algebraic models.

2.2.2 Generation and Execution of Mutants

Algorithm 2.1 describes how model mutants are generated and executed. The input
consists of a model M that describes SUC, a set of mutation operators X, and
a test generation algorithm ®. The output is a list of mutants generated by the
mutation operators in X that are killed by test cases generated by ® and a list of
mutants that are still live. Note that this algorithm is not necessarily restricted to
first-order mutants. Each mutation operator y; € X is applied to M to generate a
set of mutants denoted as M;". Invalid mutants are discarded. For each valid mutant
M;; € M;, SUC is executed against the test cases in a corresponding test set 77,
generated by using the algorithm ®. If at least one test case t* € T}, exists in
which the expected output predicted by t* (namely, FxpectedOutput(t*)) differs
from the output of executing SUC against ¢t* (namely, ActualOutput(SUC,t")),
then the mutant M/, is killed. If no test case in 77", can kill M}, itis live. Note that
a (manual) sub-classification of killed and live mutants according to the scheme in
Figure 2.6 is still necessary to analyze the correctness of SUC.

If M* is live, then the possible equivalence between model M and mutant M*
must be checked. Depending on the kind of model used, this could be done by
using model checking. If M* is non-equivalent, M/* and SUC have to be compared
to identify where the fault(s) are injected in order to determine whether or not M*
belongs to the set LM,,., or LM,,,. If M* is killed, it has to be checked whether
or not the behavior of SUC is faulty. If it does not imply a fault in SUC, the mutant
is classified as K M,. Otherwise, the mutant and SUC have to be compared. If the
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20 Chapter 2. Model-Based Mutation Testing (MBMT)

fault in SUC does not correspond to fault(s) in the mutant, it is classified as K M, ,
otherwise as K M,,,,.

Algorithm 2.1: Mutant generation and execution
Input: Model M that describes SUC
Set of mutation operators X = (X1, ..., Xi; -+, Xk)

Test generation algorithm ®
Output: A list of the mutants that are killed and the ones that are live
foreach y; € X do
M; = xi(M):
foreach M, € M; do
if valid(M;;) then
T7j = ®(M;5);
killed := false;
foreach t* € 7", do
Execute SUC against t*;
if ActualOutput(SUC,t*) # ExpectedOutput(t*) then
L Add M} to the list of killed mutants;
killed := true;

o 0 N R W N -

e
e

-
|5}

if killed = false then
t Add M;; to the list of /ive mutants;

o
w

The runtime complexity of Algorithm 2.1 depends on the runtime complexity
of (1) mutant generation, that is, the mutation of model M, (2) test generation, that
1s, algorithm @ to generate a test set 7™ for each mutant //*; and (3) test execution,
that is, the execution of SUC against the corresponding test sets 7. Table 2.1 gives
the runtime complexity for each step. The total number of mutants that can be
generated depends on the number of mutation operators (|X'|) and the number of
mutants (|M|) that are generated by each operator.
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Table 2.1: Runtime complexities for generation and execution of mutants

Step Runtime complexity for a | Number of mu-
mutant M~ tants

(1) Mutant generation | O(|M*|) (|M*| denotes the
size of the mutated model)

|X|

(2) Test generation O(®) > | M
=1

(3) Test execution O(|e(M*)]) = O(|T*|) (|T*|

denotes the size of the test

set)

2.3 Summary

Mutation analysis is usually applied to programs or specifications to assess the abil-
ity of a test set 1" to reveal the mutants. Model-based mutation testing as proposed
in this thesis integrates the concept of mutation analysis and model-based testing.
Faults are injected in the model to systematically construct fault models that repre-
sent faulty behavior of SUC. Then, a test generation algorithm from MBT is applied
to every mutated model to generate a test set 7™, which are then used for testing
SUC. In contrast to implementation-based mutation analysis, each of the predicates
killed and live has three possible interpretations that need to be further analyzed.
A significant advantage is that the proposed MBMT allows mutation analysis to be
applied to software (not just the model), where the source code is not available. This
enables to detect faults also in SUC and at the same time to assess algorithm ¢ and
the test set 7' used in MBT by checking the mutation adequacy.
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Chapter 3

Basic Mutation Operators Applied to
Different Models

As explained in Chapter 1, selected graph-based models exemplify the approach
introduced in this thesis. The models selected are directed graphs (DG), event se-
quence graphs (ESG), finite-state machines (FSM), and basic statecharts (SC). First,
these models establish a hierarchy concerning their expressive power. ESG is more
powerful than DG since it includes the notations of “event” and “sequence.” FSM
has additional notation “state,” and SC extends the models with concurrency and
hierarchy. Second, these models are well-known, widely accepted in practice, and
are partly included in de-facto standards such as UML. Finally, these graph mod-
els consist of one-sort nodes and arcs and their formal view allows the application
and, wherever necessary, adaptation of mathematical notations and techniques from
graph theory and automata theory, which leads to algorithms to generate and select
test cases efficiently.

The following sections present these graph-based models in such a way that the
same elements are used for describing different kinds of graphs: ESG based on
DG, FSM on DG, and SC on FSM. Doing so can easily demonstrate the increasing
expressive power (representation capability) of these models. Two basic mutation
operators—insertion and omission—are also introduced and it is discussed how to
apply these operators to the models leading to model-specific mutation operators.
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3.1. Initial Level: Mutation Operators for Directed Graphs (DG) 23

3.1 [Initial Level: Mutation Operators for Directed
Graphs (DG)

Directed graphs (DG) establish the basis for the graph-based models. The mutation
operators are syntactically introduced and their basic features are discussed in this
elementary level. This helps to understand the proposed operators easily.

Definition 3.1 (Directed Graph) A directed graph DG = (N, A) is an ordered
pair where

e NV is a finite set of nodes, and

e A C N x N is a finite set of arcs.

In Definition 3.1, the nodes and arcs do not have any semantics. It is assumed
that a DG has to be strongly connected; that is, a model given by an unconnected
graph is invalid.

Definition 3.2 (Subgraph) A subgraph DG' = (N', A’) of a directed graph DG =
(N, A) is defined as follows:

DG C DG :=(NNCNANACAVNNCNANA CA)
In case that two directed graphs DG and DG’ are not subgraphs of each other, this
is denoted by DG <t DG’ := (DG C DG') A —~(DG' C DG)

Two types of mutants (node and arc mutants) can be generated for each DG. For
each type, two basic mutation operators are defined, namely insertion and omission.
To generate a first-order mutant, a mutation operator Y is applied once to a DG de-
noted by x(DG) = DG} = (N}, A}). The notation DG* = (N*, A*) will also be
used as a generic representation for a mutant with respect to DG, . Note that even in
this initial step, the mutated graph may easily become invalid (e.g., unconnected).
Only in the case that an operator would always generate invalid mutants are a min-
imum set of additional operations (see Figure 3.1 and Figure 3.2 as two examples)
also applied to make the mutant valid (that is, strongly connected). Higher-order
mutants can be generated by applying the basic operators or their combinations,
multiple times.
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24 Chapter 3. Basic Mutation Operators Applied to Different Models

Using the notations of Definition 3.2 three types of graph mutants DG* can be
classified, which can arise by applying the basic mutation operators to a directed
graph DG.

Definition 3.3 (I-, D-, C-Mutant)

1. DG* is an increscent mutant (I-mutant) of DG if DG C DG*.
2. DG* is a decrescent mutant (D-mutant) of DG if DG* C DG.

3. DG* is a cross mutant (C-mutant) if DG <t DG*.

3.1.1 Node Mutants of DG

Node mutants of a directed graph are defined as follows.

Definition 3.4 (nI-Operator) Let « ¢ N be a node as defined in Definition 3.1.
The node insertion operator (n/-operator) inserts « into a given DG. To keep the
resulting graph valid (strongly connected), it also inserts an incoming arc to and an
outgoing arc from «:

nl(DG,«a) — DG* = (N U{a}, AU{(B,a) U (a,7)}),
where (3 and ~y are arbitrarily chosen from N (8 # a and a # 7).

An example is given in Figure 3.1 where a new node « is inserted and two arcs
in dashed lines are also inserted to make the mutant valid.

Definition 3.5 (nO-Operator) Let a € N be a node as defined in Definition 3.1.
The node omission operator (nO-operator) removes node « from a given DG. It
keeps the graph valid by also removing the arcs that have « as either the starting
node or the ending node:
nO(DG,a) — DG* = (N \{a}, A\ {(B,a0)|(B,a) € AN € N}
\{(a,7)l(e,7) € ANy € NY).

If the nO-operator violates the validity of DG, that is, if the mutant becomes invalid
(unconnected), then it is discarded. An example of applying the nO-operator to a
DG is given in Figure 3.2.
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PN
Figure 3.1: Adding necessary arcs to Figure 3.2: Deleting arcs to make a
make a mutant valid after inserting a mutant valid after deleting node 3

node «

The nl- and nO-operators can be repeatedly applied to a DG m times, repre-
sented as nI™ and nO™ with m € N, respectively. They can also be combined with
each other arbitrarily as illustrated in the following examples.

Example 3.1 (nI?+nO") represents two nodes inserted, one node deleted or both.
The notation “+-” is the “or.”

Example 3.2 (nI? e nO') represents two nodes inserted and one node is deleted.
The notation “e” is the “and.”

3.1.2 Arc Mutants of DG

Arc mutants of a directed graph are defined as follows.

Definition 3.6 (aI-Operator) Let (a, 3) ¢ A be an arc where o and 8 € N as
defined in Definition 3.1. The arc insertion operator (al-operator) inserts the arc
(o, B) into a given DG:

al (DG, (a, 8)) = DG* = (N, AU {(a, B)}).

An example of this is shown in Figure 3.3.

Definition 3.7 (aO-Operator) Let (o, 5) € A be an arc as defined in Definition
3.1. The arc omission operator (aO-operator) removes the arc («, 5) from a given
DG. If the resulting graph becomes invalid, the graph (that is, the mutant) is dis-

carded: aO(DG, (o, B)) = DG* = (N, A\ {(a, B)})-

Figure 3.4 depicts an example of omitting an arc. Similar to the n/- and nO-
operators, the al- and aO-operators can be repeatedly applied to a given DG. In
addition, they can be arbitrarily combined with each other.
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Figure 3.3: Inserting a new arc («, ) Figure 3.4: Omitting an arc («, f3)

Example 3.3 (al 34 aOQ) represents three arcs inserted, two arcs deleted, or both.
Example 3.4 (al® e aO?) represents three arcs inserted and two arcs deleted.

The node mutation operators (n/ and nO) can also be combined with the arc
mutation operators (al and aQO).

Example 3.5 (nI? e a0?) represents two nodes inserted and two arcs deleted.

3.1.3 Node Mutants versus Arc Mutants

A problem with mutant generation is that the application of different mutation op-
erators can lead to the same mutants. As test cases are generated with respect to
each mutant, multiple occurrences of any duplicate mutants cause inefficiency of
test sets and unnecessary waste of testing resources.

Lemma 3.1 Using the notations of Definition 3.3, the following is observed.
e Mutants DG* generated by the n/- and a/-operators are [-mutants.
e Mutants DG™ generated by the nO- and aO-operators are D-mutants.

e C-mutants can only be generated by applying an insertion operator (n/ or al)
followed by an omission operator (nO or aQ), or vice versa. Each operator
can be applied multiple times, if necessary.

The following theorem checks whether duplicate mutants will occur while mu-
tating a DG by the basic operators. The focus is only on the first-order mutants; that
is, the mutants generated by applying nl, al, nO, or aO exactly once to a given
DG.

26



3.1. Initial Level: Mutation Operators for Directed Graphs (DG) 27

Theorem 3.1 First-order mutants of a DG generated by the nl-, al-, nO-, and aO-
operators are different from each other.
Proof: The proof is carried out in three steps.

e nlvs. nO, nl vs. a0, al vs. nO, al vs. aO:
From Lemma 3.1 it follows that mutants are different.

e nlvs. al:
DGy = DGy as (A & Aqp) A (Asp € Ay)
Hence, mutants generated by the n/-operator are different from those gener-
ated by the a/-operator.

o nO(DG,a) vs. aO(DG, (B,7)):
If (0 = 5V a= ) then
DG € DG as (N C Nyo) A (A7o C Alp)
else DG > DGR as (A5 & Ajp) A (AGo € Aro)
Hence, mutants generated by the nO-operator are different from those gener-
ated by the aO-operator. |

3.1.4 Number of First-Order DG Mutants

Let |N| and |A| be the number of nodes and arcs of a DG. Each time an aO-operator
is applied to a DG, it generates a mutant by deleting an existing arc from the graph.
This implies that the maximum number of first-order mutants that can be generated
by the aO-operator is the number of arcs in the graph. Similarly, each time the
nQO-operator is applied to a DG, it generates a mutant by deleting an existing node
from the graph. Hence, the maximum number of first-order mutants that can be
generated by the nO-operator is the number of nodes in the graph. The set of arcs
that can be inserted into a DG without causing multiple arcs in the same direction
between any two nodes is given by (N x N) \ A. Hence, the maximum number
of first-order mutants that can be generated by the al-operator is |N|? — |A|. The
number of first-order mutants generated by the n/-operator depends on the number
m of nodes that can be inserted (which can, for example, be the value of |V|) and
on the number of arcs that are connected with these nodes. Further, it is assumed
that the mutated graph has to be a valid graph, which implies the necessity of having
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28 Chapter 3. Basic Mutation Operators Applied to Different Models

at least one incoming arc to and one outgoing arc from each of the inserted nodes.
Thus, there are at most | N|? first-order mutants for each inserted node. Table 3.1
summarizes the discussion.

Table 3.1: The maximum number of first-order mutants that can be generated with
respect to a DG = (N, A) by the nl-, nO-, al-, and aO-operators

Mutation operator al aO nl nO
Maximum number of first-order | [N|? — |A| | |A| | m - |N|* | |N]|
mutants generated

3.1.5 Corruption (Replacement) Operators

For convenience, a node corruption (nC) is defined as an operator which replaces
an existing node of a given DG by another node. Note, however, that nC' is not a
basic operator because it can be presented as a combination of an n(O-operator (to
delete a node) and an n/-operator (to insert a new node, namely the node that is to
replace the deleted node).

Similarly, an arc corruption (aC') is defined as an operator that changes the
direction of an existing arc of a given DG. Again, aC' is not a basic operator as
it can be presented as a combination of an aO-operator (to delete an arc) and an
al-operator (to insert a new arc which is the opposite direction of the deleted arc).

Similar to the n/-, nO-, al-, and aO-operators, the nC- and aC'-operators can
also be applied repeatedly to a DG n times. They can also be combined with each
other and the n/-, nO-, al-, and aO-operators, arbitrarily using “+” (or) and “e”
(and).

3.2 Second Level: Event-Based Interpretation of Di-
rected Graphs—Event Sequence Graphs (ESG)

Generally, an event represents an externally observable phenomenon, such as an
environmental or a user stimulus, or a system response punctuating different stages
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of the system activity of an SUC. To take this concept into account, DG is enriched
with semantic information to interpret its set of nodes as a set of events and arcs to
form sequences of events leading to event sequence graphs ([10], [12], [18]). They
are similar to the concept of event flow graphs [92] and are used for analysis and
validation of user interface requirements prior to implementation and testing of the
code. ESG can also be used to reveal structural features of graphical user interfaces
(GUI) to expose further test opportunities ([40]). This thesis favors event sequence
graph notation because it intensively uses formal, graph-theoretical notations, and
algorithms [13], [14].

Definition 3.8 (Event Sequence Graph) An event sequence graph ESG = (DG,
=, I') is a directed graph, where

e DG = (E, A), as defined in Definition 3.1, with E being a finite set of events
and A C E x E being a finite set of arcs;

e = (entry events) C E and I' (exit events) C F are finite sets of distinguishing
events with || > land [I'| > 1. Ve € Fande ¢ =, 3k € Nand 3£ € Z,
such that there is at least one sequence of events (, e, ..., e;) from  to e, = e
with (e;,e;41) € A, fori € {1,....,k — 1}. Similarly, Ve € F and e ¢ T,
Jdm € N and 3y € T, such that there exists at least one sequence of events
(€1,...,em,y) frome; = etoy, with (ej,e;41) € A, forj € {1,....m — 1}.

The syntax of a valid ESG requires that every event has to be reached by an
entry and that from every event an exit has to be reached, otherwise the ESG is
invalid. To identify the entry and exit events of an ESG graphically, every £ € = is
preceded by a pseudo event “[” ¢ E and every v € I is followed by a pseudo event
"¢ E.

The semantics of the arcs of an ESG are as follow. For two events, eand e’ € F,
¢’ must be enabled after the execution of e if (e, e’) € A. Note that an ESG model
focuses on events and their sequences and ignores states and state transitions. Such
a representation disregards the details of internal system behavior. An ESG is a
more abstract representation compared to an FSM. This will be further discussed in
Section 3.3.
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Example 3.6 For the ESG given in Figure 3.5, £ = {a, b, ¢,d}, A = {(a,b), (b, c),
(b,d), (¢,a), (c,c),(c,d),(d,a),(d,c),(d,d)}, = = {a},and ' = {b,c,d}. Note
that arcs from pseudo event “[”” and to pseudo event “]” are not included in A.

Figure 3.5: An ESG with pseudo nodes “[” and “]”

When using ESGs to model a system, it is often necessary to use the same event
for similar operations in different contexts or states of the system. Such an example
is the operation copy used to copy a picture, a file, text, etc. In such cases, the
system usually carries out the corresponding action using the context information.
Figure 3.6 (the left part) describes an ESG that has two occurrences of an event a.
These different occurrences of a are to be indexed to distinguish between the event
a that leads to b or ¢, and event a that can be reached via b and leads only to c. For
example, a; represents the first a and a, the second a as shown in the right part of
Figure 3.6.

NSRS

Figure 3.6: An ambiguity caused by two occurrences of event a and indexing of this
event to avoid the ambiguity
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It is assumed that an ESG correctly specifies the expected behavior of SUC. This
ESG can then be used to generate mutants £ESG* = (E*, A*, = ') to specify
erroneous and/or undesirable behavior of SUC. These mutants help describe how
the system is not supposed to behave. Event-based mutant generation is discussed
below, followed by sequence-based mutant generation.

3.2.1 Event Mutants of ESG

Event mutants of an ESG can be generated by using

e an event insertion operator (el-operator) to insert an extra event e into the
ESG resulting in E* = E'U {e} or

e an event omission operator (eO-operator) to delete an existing event e from
the ESG resulting in £* = E'\ {e}.

Insertion of an intrinsic event e (that is, e € E) generates an intrinsic mutant,
whereas insertion of an extrinsic event e (thatis, e ¢ F) leads to an extrinsic mutant.
Extrinsic events are events that are not included in the event set /. Their number
generally depends on the nature of the SUC. If all events of the SUC are included in
the model (this is typically the case for elements representing a GUI such as buttons,
input fields, etc.), then it is not necessary to insert any extrinsic events which are to
be considered if events are forgotten or neglected in the design phase. This thesis
focuses on the intrinsic mutants.

The eO- and el-operator are applied similarly to ESG as the corresponding nO-
and n/-operator to DG (Section 3.1). For the n/-operator, as for the e/-operator,
there is a need to insert an additional incoming/outgoing arc to and from the inserted
event. Accordingly, for the eO-operator there is a need to remove the arcs connected
with the deleted event.

3.2.2 Sequence Mutants of ESG

For a given ESG, its sequence mutants can be generated by using the sequence
insertion operator (s/-operator) to insert an extra arc in any direction into the ESG
and to make sure that no multiple arcs in the same direction between two events
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are produced. Similarly, the sequence omission operator (sO-operator) is used to
delete an existing arc from the ESG. Note that a sequence insertion extends the ESG,
whereas a sequence omission reduces it. After applying the sO- or s/-operator to
an ESG, the validity of the resulting ESG should be checked. If it is invalid (see
Definition 3.8), the mutant is discarded.

Similar to the nl-, nO-, al-, and aO-operators of DG, the el-, eO-, sI-, and
sO-operators can also be repeatedly applied to an ESG n times, represented as
el™, eO™, sI™, and sO™, respectively. They can also be combined with each other
arbitrarily using “+” (or) and “e” (and).

3.2.3 Event Mutants versus Sequence Mutants

Theorem 3.1 can be adapted to ESG as follows. Note that mutants of entry and exit
events that lead to trivial constellations are not considered.

Theorem 3.2 First-order mutants of an £ESG = (DG, =,T") with DG = (E, A)
generated by el-, sI-, eO-, and sO-operators are different from each other.
Proof: The proof is carried out in three steps.

e ¢l vs. eO, el vs. sO, sl vs. eO, sl vs. sO:
From Lemma 3.1 it follows that mutants are different.

o el vs. sl:
ESGyy 01 ESGYy as (Af & AL) A (A3 € Ap)
Hence, mutants generated by the e/-operator are different from those gener-
ated by the s/-operator.

e cO(ESG,ey) vs. sO(ESG, (eq,€3)):
If (e; = e3 V e; = e3) then
ESGy C ESGp as (Efp C Eip) A (Ao € Alp)
else ESGo > ESGip as (Aip € Ajp) N (Aso € Alo)
Hence, mutants generated by the eO-operator are different from those gener-
ated by the sO-operator. |
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3.2.4 Number of First-Order ESG Mutants

Following a similar analysis for the mutants generated for a DG (Section 3.1), the
maximum number of first-order mutants that can be generated by different opera-
tors for ESG is given in Table 3.2. Similar to the n/-operator, the e/-operator can
generate up to m - | F|* mutants, where m is the number of events that can be in-
serted. If m is set to | E|, there are at most | E|? first-order intrinsic mutants that can
be generated.

Table 3.2: The maximum number of first-order mutants that can be generated with
respectto an ESG = (E, A, =,T") by the el-, eO-, sI-, and sO-operators

Mutation operator sl sO | el | eO
Maximum number of first-order | |E|*> — |A| | |[A| | |E]® | |E|
mutants generated

3.2.5 Corruption (Replacement) Operators

Similar to the corruption operator of DG, an event corruption (eC') can be defined
as an operator which replaces an existing event of a given ESG by another event.
However, eC' is not a basic operator since it can be viewed as a combination of an
eO-operator (to delete an event) and an e/-operator (to insert the event that is to
replace the deleted event). Similarly, a sequence corruption (sC') can be defined as
an operator that changes the direction of an existing arc of a given ESG. Again, sC
is not a basic operator since it can be viewed as a combination of an sO-operator (to
delete an arc) and an s/-operator (to insert a new arc that is the opposite direction of
the deleted arc). Iteration and combination of basic operators can be built for ESG
the same way as for DG.

3.2.6 Entry and Exit Mutants of ESG

Mutants concerning the entry and exit events can be generated as follows. Note that
these operators may lead to invalid mutants, such as missing entry or exit events or
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34 Chapter 3. Basic Mutation Operators Applied to Different Models

missing arcs.
e An entry omission operator removes an event from =.
e An entry insertion operator adds an event ( € E but ¢ =) to =.
e An exit omission operator removes an event from I'.
e An exit insertion operator adds an event (€ E but ¢ I') to I
Two additional corruption operators can also be defined as follows:

e An entry corruption operator as a combination of an entry omission operator
followed by an entry insertion operator.

e An exit corruption operator as a combination of an exit omission operator
followed by an exit insertion operator.

Neither of these two corruption operators is a basic operator for ESG. Similar
to the el-, eO-, sI-, and sO-operators, the entry omission, entry insertion, exit
omission, exit insertion, entry corruption, and exit corruption operators can also be
applied repeatedly to an ESG n times. These operators can also be combined with

each other and the el-, eO-, sI-, and sO-operators, arbitrarily using “+” (or) and
‘G.” (and).

3.3 Third Level: Taking States into Account-Mutation
with Finite-State Machines (FSM)

An ESG consists of a finite set of events and unlabeled arcs. The Moore finite-
state machines consist of states (represented as nodes) labeled by outputs, and state
transitions (represented as arcs between states) labeled by inputs. As for the Mealy
machines, their arcs are labeled by inputs and outputs ([67], [111], [118]). However,
for each Mealy machine there is an equivalent Moore machine. Based on the DG
and ESG notations (see Definition 3.1, Definition 3.8, Section 3.1 and Section 3.2),
the finite-state machines used in this thesis are defined as follow.
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Definition 3.9 (Finite-State Machine) A finite-state machine is defined as F'SM =
(DG, E, f, Sz, Sr), where

e DG = (S,TR), as defined in Definition 3.1, where S is a finite set of states
and TR C S x S'is a finite set of transitions;

e [ is a finite set of events;
e f:TR — FEis alabeling function, mapping an event to each transition; and
e S=,Sr C S are finite sets of initial and final states.

Besides the notation of “events,” FSM includes the notation of “transition.”
Nodes represent states. Arcs, labeled by events, are transitions between states.
Furthermore, the following is assumed: (1) only deterministic FSMs are consid-
ered. An FSM is valid only if all transitions are deterministic, that is, for each
state s € S and each event e € F, there is at most one transition that can be trig-
gered by event e in state s. Note that even though there may be several possible
transitions in a non-deterministic FSM for each pair of state and event, it is known
that non-deterministic and deterministic FSMs are equivalent. One can construct an
equivalent deterministic FSM for any given non-deterministic FSM and vice-versa.
(2) There exists exactly one initial state (|Sz| = 1), but there can be more than one
final state (|Sr| > 1). (3) It is necessary that each state can be reached from the
initial state and a final state is reachable from each state.

An FSM can be viewed as a DG with semantically distinguished states (nodes)
and state transitions (arcs) that are labeled by events. Note that ESG and FSM are
equivalent, both of them accepting type-3 languages [98] (regular languages), which
is depicted by the next example.

Example 3.7 The FSM in Figure 3.7 is represented by S = {s1, s2,53}, TR =
{(s1,52), (s2,83)}, E = {a, b}, f = {((s1,52),0), ((52,83),0)}, S= = {s1}, and
Sp = {83}.

An arrow from nowhere to a node indicates the initial state, and arrows from a
node to nowhere indicate final states. States and inputs of an FSM can be merged
to derive the corresponding ESG. For example, Figure 3.8 gives the corresponding
ESG for the FSM in Figure 3.7.
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(D—@—0)—)

Figure 3.7: An FSM, which is equiv- Figure 3.8: An ESG, which is equiv-
alent to the ESG in Figure 3.8 alent to the FSM in Figure 3.7

3.3.1 State Mutants of FSM

State mutants of an FSM can be generated by using a state insertion operator (st/-
operator) or a state omission operator (stO-operator). An st/-operator inserts an
extra state into S. It also requires the insertion of an additional incoming/outgoing
transition-event pair to/from the inserted state. An stO-operator deletes an existing
state from .S. All transitions connected with the deleted state should also be removed
from the FSM. This is done in a similar way as the nO-operator for DGs and the
eO-operator for ESGs. The function f also needs to be updated accordingly with
respect to the stI- and stO-operators by adding or removing appropriate mappings
between transitions and events.

Similar to the n/-, nO-, el-, and eO-operators, the st/- and stO-operators can
also be applied repeatedly to an FSM n times. This is represented as stI™ and stO"
with n € N, respectively. They can also be combined with each other an arbitrary
number of times.

3.3.2 Transition Mutants of FSM

Transition mutants of an FSM can be generated as follows:

e Applying a transition insertion operator (t/-operator) to add a transition tr =
(s,s") into TR, where s and s’ € S. The transition has to be triggered by an
intrinsic or extrinsic event e and moves the FSM from state s to state s'.

e Applying a transition omission operator (tO-operator) to delete an existing
transition ¢r from 7'R. The function f also needs to be adapted accordingly.

The tI- and tO-operators can be applied repeatedly to an FSM n times. This is
represented as ¢/ and tO™ with n € N, respectively. They can also be combined
with each other or with the st/- and stO-operators an arbitrary number of times.
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3.3.3 State Mutants versus Transition Mutants

Theorem 3.3 First-order mutants of an F’'SM = (DG, E, f, S=, Sr) with DG =
(S, TR) generated by the stl-, tI-, stO-, and tO-operators are different from each

other.
Proof: The proof is carried out in three steps.

o stl vs. stO, stl vs. tO, t1 vs. stO, tl vs. tO:
From Lemma 3.1 it follows that mutants are different.

o stlvs. tl:
FSM, > FSMYy as (TR, SZ TR;) N (TR SZ TR;)

Hence, mutants generated by the st/-operator are different from those gener-

ated by the t/-operator.

o stO(FSM,sy) vs. tO(FSM, (s2,583)):
If (s1 = s9 V s; = s3) then
FSM3o C FSMjy as (S50 C Sjo) AN (TR0 € TRp)
else FSM,, 1 FSM;, as (TRY, ¢ TRiy) A (TR & TRY)

Hence, mutants generated by the stO-operator are different from those gen-

erated by the t{O-operator.

3.3.4 Number of First-Order FSM Mutants

The maximum number of first-order mutants that can be generated for an FSM is
given in Table 3.3. The number of mutants generated by tO- and stO-operators is

given by the cardinality of the corresponding sets. The determination for the ¢/-
operator is more intricate because there are at least |S|? possibilities of inserting
an additional arc. Each arc can be labeled by an event. Subtraction of all existing
transitions results in a maximum of |S|? - |E| — |TR| mutants. Note that non-

deterministic, and therefore invalid, mutants may be included. The number of st /-

mutants is given by the number of transitions that can be inserted from an existing
state to a new state (< |S| - | E|) multiplied by the number of possible transitions

from the new state to an existing one (|.S| - | E|).
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Table 3.3: The maximum number of first-order mutants that can be generated with
respect to an FSM = (DG, E, f, Sz, Sr) by the tI-, tO-, stl-, and stO-operators
Mutation operator 174 tO stl stO
Maximum number of first- | |S|*-|E| — |TR| | ITR| | (|S|-|E|)?* | |9]
order mutants generated

3.3.5 Corruption (Replacement) Operators

Corruption operators can also be defined for FSM. However, none of them is a ba-
sic mutation operator since each can be viewed as a combination of an insertion
operator and an omission operator. A state corruption operator (stC'-operator) re-
places an existing state of a given FSM by another state. This is equivalent to the
application of an stO-operator followed by an st/-operator. Differing from the arc
corruption (aC') for DGs and the sequence corruption (sC') operator for ESGs, a
transition corruption operator (tC'-operator) for FSMs generates two types of cor-
rupted mutants. First, it replaces the event e that triggers a transition by another
event, ¢ € FE or e’ ¢ E. Second, it reverses the direction of a transition (that is,
swapping the source and target states of a transition). Each scenario can be viewed
as the application of a tO-operator followed by a t/-operator. After applying the
tO- or tC'-operator, it is important to check the validity of the resulting FSM. Invalid
mutants should be discarded. It is also important to update the labeling function f
accordingly. The stC- and tC'-operators can be combined with each other and the
stl-, stO-, tI-, and tO-operators arbitrarily using “+” (or) and “e” (and).

3.3.6 Entry (Initial State) and Exit (Final State) Mutants of FSM

Mutants of initial and final states of FSM are generated in analogy to ESG (see
Section 3.2).

e An entry omission operator removes a state from S=.

e An entry insertion operator adds a state (€ S but ¢ Sz) to S=.
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e An exit omission operator removes a state from Sr.

e An exit insertion operator adds a state (€ .S but ¢ Sr) to Sr.

Note that the entry omission and entry insertion operators generate invalid mu-
tants. They are solely defined to be used for the entry corruption operator, which
is a combination of an entry omission operator, followed by an entry insertion op-
erator. Similarly, there is an exit corruption operator as a combination of an exit
omission operator followed by an exit insertion operator.

Neither of these two corruption operators is a basic operator for FSM. All the
operators for the initial and final states can be combined with each other and the
stl-, stO-, tI-, and tO-operators arbitrarily using “+” (or) and “e” (and).

3.4 Advanced Level: Considering Concurrency and
Hierarchy—Mutation with Statecharts (SC)

At the last step, concurrency and hierarchy are also considered in addition to events,
states, and state transitions. Statecharts (SC) include these additional aspects and
are also popular in research and industrial practice [70]. This might explain the
variety of statechart notations that differ slightly from each other in syntax but sig-
nificantly in their execution semantics [122]. To avoid such a notational problem,
and to be consistent with the representations starting with ESG based on DG and
FSM on ESG, an alternative representation of statecharts [22] is given in Definition
3.10. It is based on FSM and includes common key features of most of the existing
statechart representations. A more comprehensive statechart notation can be found
in [81].

Definition 3.10 (Basic Statechart) A basic statechart is given by
SC = (FSM, H, g), where

e FSM = (S,TR, E, f, Sz, Sr) as defined in Definition 3.9,

e H C S x S'is a hierarchy relation, and

39



40 Chapter 3. Basic Mutation Operators Applied to Different Models

e g: S — {simple,and, zor} is a labeling function. It defines the following
sets of states:

— Sand := {s]s € S A g(s) = and}

- Sxor i={s|s € SAg(s) = zor}

- Ssimple := {s]s € S A g(s) = simple}
= Scomp := Sand U Sxor

A set H is used to represent the hierarchy relation between nested states. More-
over, each state s € S is identified as either a simple state (s € Sgimple) OF @ COMPOS-
ite state (s € Scomp), Which is further classified as either an AND-state (s € Syna)
or an XOR-state (s € Sxor). Simple states, in contrast to composite states, may not
have sub-states. Each XOR-state owns an immediate sub-state, which is marked as
the initial state. If an XOR-state is active, then exactly one of its immediate sub-
states must also be active. The immediate sub-states of AND-states represented by
XOR-states are called regions. It means that the statechart resides simultaneously
(concurrently) in each region of the AND-state; that is, in contrast to XOR-states
each immediate sub-state (region) of an AND-state is an initial state.

The sets of initial and final states are denoted by S= and S, whereas |Sz| > 1
and |Sp| > 1. The final states represent possible exits of the system. The set H
defines a binary relation on the set S that must form a tree and be consistent with g
in order to be valid. Given two s and s’ € S, if (s,s') € H, then s’ is an immediate
sub-state of s. Transitions must be deterministic and associated with an event. The
source and target states of a transition may also consist of composite states. This
corresponds to a (graphical) simplification since such transitions may be replaced
by several transitions whose source and target consist of simple states.

Table 3.4 depicts functions used to formalize properties concerning the sets. The
functions in and out deliver all transitions that lead to or from a simple state. They
also comprise transitions that are located in different tiers of the hierarchy.

An example of a simple statechart SC is given in Figure 3.9 where S = {s1, $2,
s3t, TR = {try = (s2,53),tra = (s3,82)}, B = {e1, ea}, f = {(tr1,e1), (tra, e2)},
Sz = {s1, 82}, Sr = {s3}, H = {(s1, $2), (51, 83)}, and g = {(s1, wor), (sa, simple),
(ss3,simple)}. A more comprehensive example of a statechart with an AND-state
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Table 3.4: Statechart functions

Function Description

root: — S delivers the root state € .S

initial @ Sy — S delivers the initial state from the immediate substates
of s € Sior

in : Ssmpe — P(T'R) | delivers all transitions that lead to a simple state s

out : Ssimple — P(TR) | delivers all transitions that lead from a simple state s

consisting of two regions (“‘Cutter unit” and “Automatic modus”) is given by Figure
6.1 in Chapter 6. How the two basic mutation operators (insertion and omission)
apply to statecharts is explained in the following.

4 S1 N
S, try: e, > S3
P try. e,

Figure 3.9: Example of a simple statechart

4

3.4.1 Mutants of SC

State mutants of SCs are generated the same way as those of FSMs. The stO-
operator removes a state and associated transitions from an SC, whereas the st/-
operator adds a new state and an incoming/outgoing transition to/from this state to
an SC. Functions f and g, as well as the hierarchy relation H, also need to be up-
dated accordingly. In most cases, the st/- and stO-operators only apply to simple
states. Removing/inserting composite states from/into an SC typically results in
invalid mutants. Removing a composite state would leave its sub-states and tran-
sitions “exposed” (that is, promoting them to their parents’ level in the H graph).
Adding an enclosing state (new level in the hierarchy) would lead to missing initial
or final states. An example of applying the st/-operator to the statechart in Fig-
ure 3.9 is given in Figure 3.10. Note that the following sets have to be updated:
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S* = SU{ss}, TR* = TRU {tr3 = (82,54),trs = (s4,83)}, E* = E U {es},
fr=TU{(trs,es), (tra,en)}, H* = H U {(s1,54)}, and g* = g U {(s4, simple)}.

- 51 N\

Sy trl: €1 > S3

< tr,. e,
try:e try:

3- ©3 “I,___ __S_4 ----- \( tr4. €1
____________ '
' 1
! '
! 1
\

Figure 3.10: A sample st/-mutant of the SC in Figure 3.9

Transition, entry, exit and corruption mutants for SC are defined in the same way
as for FSM. After applying these operators, the validity of mutated SCs has to be
checked against Definition 3.9 and Definition 3.10. Invalid mutants are discarded.
An example of a t/-mutant of the statechart in Figure 3.9 is given in Figure 3.11.
Consequently, the following sets of the statechart also have to be updated: T'R* =

TRU {trs = (s3,s3)} and f* = fU{(trs,e1)}.

C 5 N

Sy tryie; > S3
try: e,
1

| 1
| IR

trs: e;

A

Figure 3.11: Example of ¢/-operator: A new transition 73 is inserted
The t1-, tO-, stl-, and stO-operators for an SC, as well as the corruption oper-

ators, can be combined and repeated arbitrarily using “+” (or) and “e” (and).

3.4.2 Hierarchy and Concurrency Mutants of SC

The hierarchy and concurrency mutants of an SC can be generated by mutating the
hierarchy relation / and the labeling function g as given in Definition 3.10. How-
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ever, the two basic mutation operators (insertion and omission) discussed in this
thesis cannot be applied to H and g without generating invalid mutants (because
the mutated SCs do not satisfy the conditions set by Definition 3.10). For example,
adding/removing an element (s, s’) into/from H invalidates the underlying state-
chart because the binary relation defined by H on S will no longer form a tree. On
the other hand, the function g can be mutated to convert a simple state into a com-
posite state and vice versa. Also, the AND- and XOR-states may be exchanged.
However, in all cases the resulting statecharts become invalid. To sum up, further
research is necessary to define appropriate operators to generate concurrency and
hierarchy mutants of SC. First approaches in that direction have recently been de-
scribed by Trakhtenbrot ([119], [120]). He defined informal mutations to validate
statechart features such as hierarchy, orthogonality and time expressions.

3.5 Comparison of Mutation Operators

Mutation analysis typically makes use of a cluster of different operators. In con-
trast, basic operators consist of a small set of operators. A benefit of using such
a set is also justified by previous and current research work suggesting that even a
small set of operators is sufficient ([96], [99], [102]). Table 3.5 summarizes the dif-
ferences between implementation- and specification-based mutation operators from
literature and basic mutation operators introduced here. Corruption operators cor-
respond to higher-order mutants, having the capability to potentially reveal more
faults. Typically, they represent first-order operators as used in implementation-
and specification-based mutation analysis. First-order basic operators are not in-
tended to be applied at the program level. Pure insertion or omission of elements
based on programs commonly results in the creation of many invalid mutants due
to incorrect syntax.

3.6 Summary

Two basic mutation operators (omission and insertion) supersede and systematize
the broad variety of existing mutation operators. These two operators are generic
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in the sense that they can apply to any model of SUC. Iteration and combination
of these basic operators increases their expressive power. Applications of these
operators to models in order of increasing expressive power have been defined for
DG, followed by the enhancement of their semantics for ESG, FSM, and SC.

In addition, higher-order mutants can be generated by multiple iterations and/or
combinations of the basic operators whenever necessary. Hence, it is clear that
the two basic mutation operators and their combinations and iterations not only
are sufficiently comprehensive but also subsume many operators reported in the
literature.

Table 3.5: Implementation- and specification-based mutation operators versus basic
mutation operators

Implementation- and | Basic mutation opera-
specification-based tors
mutation operators

Number of operators Arbitrarily; typically a | Insertion and omission
cluster of operators

Fault model Operators are chosen to | Fault models are not ex-
simulate typical faults | plicitly defined

a programmer/modeler
might make

Construction By experience/empiri- | Systematically
cal aspects

Intended level to be ap- | Programs,  Specifica- | Specifications & Mod-

plied to tions & Models els
Order of mutants typi- | First-order mutants First-order mutants,
cally used second-order mutants

(corruption operators)

Subsumption These mutation oper- | —
ators can be derived
from basic operators
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Chapter 4

Test Generation and Tool Support

A test process is developed using the definitions and notations introduced in Chapter
2 and Chapter 3. As DG has no semantics, the focus is on ESG, FSM, and SC, which
are used to model SUC. Section 4.3 describes tools for effectively performing the
test process. The algorithms underlying these tools for test generation are briefly
discussed and illustrated by examples in Section 4.1 and Section 4.2.

4.1 ESG-Based Test Generation

To generate test cases, a test generation algorithm @ is applied to an ESG model.
The following explains the process ®(ESG).

Definition 4.1 (Event Sequence) Let £ and A be the finite set of events and arcs
of an ESG. Any sequence of events (e1,...,ex) with e; € F fori € {1,....,k} is
called an event sequence (ES), if (e;, e;11) € Afori € {1,....k — 1}.

Let a and w be the functions to determine the first and the last events of an ES;
for example, for £'S = (ey, ..., ex) , the first event is a(ES) = e; and the last event
isw(ES) = ey, respectively. Also, let the function [ (symbolizing length) return the
number of events of an ES.

Example 4.1 For the ESG in Figure 3.5, bcdc is an ES of length 4 with b and c as
the first and the last events.
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Definition 4.2 (Complete Event Sequence) An ES is a complete event sequence
(CES) if a(ES) e Zand w(ES) € T.

Example 4.2 Referring to Figure 3.5, the event sequence abc is a CES.

Each CES represents a walk from the entry of an ESG to its exit, realized by a
chain of user inputs and system responses. As explained earlier, a test case is an
ordered pair of an input and an expected output of the SUC. A test set can contain
any number of test cases. A CES of an ESG can be used as a test case for the
corresponding SUC; its execution is in general expected to be successful. The test
cases are thereby formed by the events, particularly by the user activities (inputs)
and the expected system responses (outputs).

Definition 4.3 (Fault Model) A test execution with respect to a CES fails if the
CES cannot reach the corresponding exit event due to a failure in SUC or reaches
an exit event but does not produce the expected outputs.

Definition 4.4 (k-Event Coverage) Generate complete event sequences that sequen-
tially conduct all event sequences of length £ € N.

Based on the above definitions, Algorithm 4.1 describes for a given ESG a
coverage-based test generation process to produce a set of CES to cover all event
sequences of a required length. To minimize the total length of a test set, solutions
of the Chinese Postman Problem can be used; that is, finding the shortest path or
circuit in a graph by visiting each arc. Algorithms supporting this test generation
process have been published in previous work ([13], [14]). For the case studies in
Chapter 5, test sets to cover event sequences of length k& = 2 are generated as a
minimal requirement to cover all events and arcs.

The ESG in Figure 4.1 is used as an example for ESG-based test generation:
ESy; = {event sequences of length 2} = {(a,b), (b,a), (b,d), (¢,a), (c,d), (d,c)}.
To cover these sequences, a test set 7, = {(c, a, b, a, b, d, c,d)} is generated contain-
ing one complete event sequence. 75 has a total length of 8, which is the minimum
among all the test sets that can cover the six event sequences in ££S;. Similarly,
ES3 = {each sequence of length 3} = {(a, b, a), (a,b,d), (b,a,b), (b,d,c), (¢,a,b),
(¢c,d,c), (d,c,a), (d,c,d)}. To cover ESs, atestset Ty = {(c,a,b,a,b,d,c,a,b,d),
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Algorithm 4.1: An ESG-based test generation process (ESG)
Input: An ESG
A number n € N as sequence length
Output: A test set 7' = {t1, to, ..., t,, } to cover all event sequences of length
n. Each test case in 1" is a CES.
1 Generate a set of CES to cover all event sequences of length n in the ESG;

2 Minimize the total length > I(;) of test set T’;
i=1

(c,d, c,d)} is generated with two complete event sequences. T3 has a total length of
14(= 10 + 4), which is the minimum among all the test sets that can cover all event

sequences in £'Ss.

Figure 4.1: A sample ESG for the ESG-based test generation

4.2 FSM/SC-Based Test Generation

Test generation for FSMs and basic SCs is conducted similarly as for ESGs by
covering their transitions and, thereby, also states [22]. Some notations required
for the FSM/SC-based test generation process (Algorithm 4.2) are introduced in the
following.

Definition 4.5 A transition pair (tr,tr") with tr,tr’ € TR is a sequence of an in-
coming transition to an outgoing transition of a (simple) state so that 3 s € Sgimple :
tr € in(s) ANtr' € out(s).

Sequences of transitions can now be defined as follows.
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48 Chapter 4. Test Generation and Tool Support

Definition 4.6 (Transition Sequence) A sequence of k transitions (¢, ..., try) with
tr; € TR for i in{l,...,k}, where TR is defined as in Definition 3.9 and where
(tr;, tri+1) denotes a valid transition pair for all ¢ € {1, ...,k — 1} is called a transi-
tion sequence (TS) of length k. The function [ (standing for length) determines the
number of transitions of a TS.

Definition 4.7 (Complete Transition Sequence) A sequence (tr1, ..., try) is a com-
plete transition sequence (CTS) if and only if ¢ry starts at the initial state of the
statechart that is entered firstly and ¢r; ends at a final state.

As a precondition for setting up a coverage criterion a fault model is used as in-
troduced in the previous section for ESG. A test (of a complete transition sequence)
is assumed to fail if a final state cannot be reached, or a final state is reached, but
the expected result differs from the actual result. This assumes that only the final
states of the statechart can be observed. Thus, the oracle problem of specifying
the expected outcome for a specified input is solved in accordance with the fault
model as follows. It is assumed that a test based on complete transition sequences
will succeed. Based on Definitions 4.6 and 4.7 the following coverage criterion is
defined.

Definition 4.8 (k-Transition Coverage) Generate complete transition sequences
that sequentially conduct all transition sequences of length k£ € N.

Definition 4.8 guarantees that all possible transition sequences of length k& will
be tested. A test set consisting of all transition sequences of a fixed length k does
not necessarily cover a set of all sequences of length i € {1,...k — 1} as there may
exist sequences of length ¢ that cannot be expanded to length £.

The process in Algorithm 4.2 describes a coverage-based test generation process
for FSM and SC to generate a set of CTS to cover all transition sequences of a given
length. Note that each CT'S = (try, ..., try) is mapped to a complete sequence of
events CES = (f(try),..., f(trr)) = (e1,...,ex) so that it can be applied to the
underlying SUC. For the case studies in Chapter 5, test sets to cover transition
sequences of length £k = 1 are generated as a minimal requirement to cover all
states and transitions.
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Algorithm 4.2: An FSM/SC-based test generation process ®(FSM/SC)
Input: An FSM/SC
A number n € N as sequence length

Output: A test set 7' = {t1, to, ..., t,, } to cover all transition sequences of
length n. Each test case in 7" is a CTS.
1 Generate a set of CTS to cover all transition sequences of length n in the
FSM/SC;
2 Minimize the total length > I(t;) of test set T’

i=1

3 Map all CT'S = (try, ..., tri) to CES = (f(tr1), ..., f(try)) = (eq, ..., €x);

4.3 Tool Support

The approach described in the previous sections is straightforward with a simple
structure. The large amount of data to be gathered and analyzed is, however, hardly
feasible and, equally critical, error-prone when processed manually. Therefore, a
chain of tools, available under a uniform GUI, was developed to cope with the
scalability problem in large projects. They have also been used to conduct the case
studies in Chapter 5.

Some of the tools are add-ons to commercial ones, while others implement the
test algorithms described in the previous sections. An ESG-based mutant and test
set generator (MTSG) forms the heart of the tool chain. A snapshot in Figure 4.2
represents its entry window. For mutant generation, MTSG computes first-order
mutants with respect to each operator. For example, the configuration in Figure 4.2
indicates that 50% of the s/-mutants, 150 of the sO-mutants, 0% of the e/-mutants,
and 100% of the eO-mutants are generated. For ESG-based test generation, MTSG
checks the validity of the model analyzed as the first step before a test set is gen-
erated to cover all event sequences of length n. Each test case in this set is a CES
(a complete event sequence) of the ESG. To reduce the execution cost, another unit
of MTSG generates a test set in such a way that the total length of all the CES
contained is minimal. This is done by using the algorithm for solving the Chinese
Postman Problem (see Section 4.1; [13], [14]).

Commercial capture/playback tools (as for WinRunner HP, formerly Mercury
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Interactive) help automate the testing of GUIs. Modern GUIs consist of elements
such as buttons, checklists and labels. These elements and their properties, such
as position, size, type, and window they belong to, can automatically be captured.
Figure 4.3 depicts a dialog containing different elements of the SUC from the first
case study. A built-in test script language is provided for automating test execu-
tion. Test scripts can either be implemented manually or generated by recording the
user’s interactions with SUC. The MTSG tool can generate test sets consisting of
sequences of events to be transformed into the WinRunner test scripts. Figure 4.4
shows the main window displaying part of a test script.

The tool BAT (“Bibliotheksbasierte Annotierung von Testmodellen™) has been
developed to generate executable test scripts directly from ESG and FSM ([127]).
The main screen which is shown by Figure 4.5 offers a uniform GUI for ESG and
FSM models using directed graphs as the underlying data structure. The user can
set up specific code libraries. This is done by inserting different code fragments of
a capture/playback tool such as WinRunner or Selenium ([113]) which is a popular
plug-in for Firefox browser for automating the tests of web applications. During
the course of modeling, the user annotates the events (in case of ESG) or transitions
(in case of FSM) by these code fragments. Concluding, test generation is done
according to Algorithm 4.1 for ESG and Algorithm 4.2 for FSM. As a result of the
test generation process a test script is generated to be executed by the corresponding
capture/playback tool on SUC.

4.4 Summary

A coverage-based test generation process for ESG and FSM/SC has been defined
by covering all events/transitions of a fixed length £ € N by means of complete
event/transition sequences. The tool MTSG implements such a coverage-based test
process for ESG, minimizes the test sequence length and helps to generate different
mutants. The tool BAT generates test scripts based on user-defined code libraries
for capture/playback tools such as WinRunner or Selenium. BAT also enables the
user to choose between ESG and FSM models.
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Chapter 5

Three Case Studies

This chapter validates the proposed MBMT and determines its characteristic fea-
tures using three case studies on three different industrial and commercial real-life
projects:

e An interactive commercial music management system (Section 5.1)
e A reactive/adaptive, real-time cruise control system (Section 5.2)

e A proactive control desk unit of a marginal strip mower mounted on a truck
(Section 5.3)

The diversity of the case studies increases confidence that the results are repre-
sentative. Furthermore, this diversity helps to demonstrate the wide range of appli-
cability of the proposed approach. The first two studies use ESGs (Definition 3.8)
for modeling the system behavior while the third study uses ESGs and SCs (Defini-
tion 3.10). FSMs have not explicitly been considered in the case studies since they
are equivalent to ESG and form a subset of SCs. Objectives of the studies are to

e analyze the fault detection capability of test sets generated using the proposed
MBMT approach which is done by

— determining whether there are still remaining faults in SUC that can be
detected by these test sets; and
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— measuring the score M F' DS (Definition 2.5)

e assess the mutation adequacy of test sets generated using the proposed MBMT
approach to kill the mutants measured by the score TG M AS' (Definition 2.6);

e compare the fault detection capability of test sets generated by ESG-based
mutation versus SC-based mutation, that is,

— test sets generated based on sequence and event mutants of ESG; and

— test sets generated based on transition and state mutants of SC.

Generation, execution, and classification of mutants was carried out as described
by Algorithm 2.1 in Section 2.2. Test sets for ESG mutants were generated based on
the process described in Algorithm 4.1 to cover all events and arcs (sequences), that
is, all event sequences of length £ = 2. Similarly, a test set was generated for each
SC mutant based on the process in Algorithm 4.2 to cover all transition sequences
of length k = 1, that is, to cover all states and transitions. Thus, there are as many
test sets as mutants. The number and the size, that is, the number of events, of test
cases per test set, is variable and is determined by algorithms to solve the Chinese
Postman Problem for the specific ESG that models SUC. However, the test effort
primarily depends on the size of the test cases and not their number. To evaluate
the fault detection capability of test sets generated by the test generation processes
described in Section 4.1 and 4.2 (Algorithm 4.1 and Algorithm 4.2) with respect to
Definition 2.5 and Definition 2.6, first-order mutants were generated by applying
the s/-, sO-, and eO-operators to ESGs and the t/-, tO-, and stO-operators to
SCs. For reasons of costs and practicability, e/- and st/-mutants are not considered
in the case studies. Compared to s/- and ¢/-mutants, they would have produced
considerably more mutants. Furthermore, in cases with graphical user interfaces,
these mutants represent a similar fault model as s/- and ¢/-mutants.
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56 Chapter 5. Three Case Studies

5.1 Case Study I: Music Management System—an In-
teractive System

RealJukebox (RJB) is an interactive personal music management software devel-
oped by RealNetworks [108] for PCs running the Microsoft Windows operating
system.
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Figure 5.1: Main window of RealJukebox

5.1.1 System Under Consideration

The basic English version of RealJukebox 2 (build 1.0.2.340) of RealNetworks was
used as the SUC. It is a music management system used to build, manage, and play
digital music libraries on a personal computer. RJB supports different media types
such as compact discs, audio files, and Internet services. The main GUI of RJB (see
Figure 5.1), has several menus (“File,” “Edit,” etc.) that invoke other components.
Each one has further sub-options. There are additional window components that
duplicate the functionality of the menus and sub-menus, creating many possible
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5.1. Case Study I: Music Management System—an Interactive System 57

combinations and, accordingly, many applications. In this study, RJB was installed
on a PC running Windows XP with Service Pack 2 and satisfying the recommended
hardware requirements (300 MHz CPU, 64 MB RAM, full duplex sound card, 16
bit color video card) as described in the product’s manual.

5.1.2 Modeling of SUC

Due to the lack of a manufacturer’s system specification, that is, a functional de-
scription of RJB, the help facilities and handbook of RJB were used to produce the
references for generating test cases based on ESGs. These functions describe the
steps as to how to reach situations the user wants, that is, desirable events in terms
of system functions (responsibilities). Seven functions of RJB were used in this
study. Each function represents a complete interaction scenario for a well-defined
task.

e Playing and recording a compact disc or a track

Creating and playing a playlist

Editing playlists and/or auto playlists

Viewing lists and/or tracks

Editing a track

Changing the application views by using different skin layouts

Configuring RJIB

Each function is modeled by an ESG and several corresponding refinements as
sub-ESGs. Figures 5.2, 5.3, and 5.4 depict sample mutants generated by the s/-,
sO-, and eO-operators. In Figure 5.2, the s/-operator is applied to insert an arc
from Jump Beginning to Track position, whereas in Figure 5.3 the arc from Jump
Beginning to Stop is removed by the sO-operator. In Figure 5.4, the event track
position is removed by an eO-operator. All arcs connected with this event are also
removed.
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Jump

Beginning

Figure 5.2: Application of Figure 5.3: Application of Figure 5.4: Application of
sI-operator sO-operator eO-operator

5.1.3 Mutant Generation and Results

Table 5.1 lists the number of mutants that were generated with respect to each mu-
tation operator and the number of faults detected in the deployed application (see
Table 5.2 for a detailed description of these faults), which is the number of mutants
given by |LM,,., | + | K M,,| for each operator as discussed in Section 2.2. As pre-
viously explained, SUC and its model M may differ from each other; it is assumed
that M is correct. Note that there are only 178 instead of 200 eO-mutants since it is
the maximum number that could be generated.

Table 5.1: Number of mutants generated and number of faults detected in RJB

X Number/Percentage | Number/Percentage
of mutants generated | of faults detected

sl 200 (34.6%) 18 (81.8%)

sO 200 (34.6%) 3 (13.6%)

eO 178 (30.8%) 1 (4.5%)

total 578 22

From Table 5.1, it can be observed that inserting additional arcs into an ESG
is the most effective operator helping to detect remaining faults in RJB. Omitting

58



5.2. Case Study II: A Driver Assistance System—an Embedded Reactive
System 59

arcs also helped to reveal some faults, but the omission of events only helped to
reveal one fault. An explanation is that when sequences (arcs) are inserted into the
underlying ESGs, they in general represent some illegal behavior of the SUC, such
as a button that should be disabled in a certain context but becomes enabled due to
this additional sequence (arc). Thus, these faults are more likely to be detected.

Table 5.2 lists all of the 22 faults detected in RJB and the mutation operators
X € X that helped to reveal them. A significant observation worth noting is that
all the faults in Table 5.2 were detected using a version of RJB 2 that had been in
use for years. An advantage of the proposed approach is that it reveals faults that
could not be detected by test cases generated to cover the model M, that is, all event
sequences of length 2.

5.2 Case Study II: A Driver Assistance System-an
Embedded Reactive System

The second case study comes from the automotive industry ([8], [23], [25]). Itis a
driver assistance system within a car. The system was manufactured by Hella Corp.
[73], one of the major German suppliers for electronic devices.

5.2.1 System Under Consideration

The focus is on the adaptive cruise control (ACC)—an electronic control unit (ECU)
of the driver assistance system, which is an embedded reactive system (Figure 5.5).
To automatically control the distance between vehicles, ACC is supplemented with
a 24 GHz radar sensor and connected over CAN Bus (controller area network) to
five other ECUs and thereby indirectly coupled to more than 7 sensors. Figure 5.6
demonstrates the physical dependencies. More illustrations and examples are given
by Figures A.1, A.2, and A.3 in Appendix A. The core controller and scheduler unit
of ACC combines the signals of the other ECUs and is the most complex part of the
software to be tested.
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Table 5.2: Description of the faults detected in RJB
ID | Description of the fault X
1 | Track Position cannot be set anymore and the application freezes | s/
when the end of track is reached.
2 | GUI shows state Paused but the music is still playing. sl
3 | Pushing Play button plays a wrong track. sl
4 | AutoPlay does not start playing when a CD is inserted. sl
S | Pause button has no impact despite the fact that the system is playing. | s/
6 | If at least one track of a CD is selected, double-clicking with mouse | s/
on unselected starts playing a selected one from beginning.
7 | When double clicking a track that is not selected while in Shuffle | sI
mode, the application is closed without a warning (not repeatable).
8 | RealJukebox shows the wrong track when playing a CD in parallel | s/
in another application.
9 | Muting the sound in the taskbar is not shown in RealJukebox (it | s/
works vice versa).
10 | Deselecting and selecting a recorded track leads to a wrong percent- | s/
age of work done shown in the title bar of the GUI (more than 100%).
11 | Pushing Rew while recording cancels recording. sl
12 | Pushing FF while recording cancels recording. sl
13 | While recording and playing a track in parallel, the track bar cannot | s/
be set.
14 | Setting the track bar during Pause mode, the track begins to play. sO
15 | Fast-Forwarding track during Pause mode, the track is being played. | sO
16 | Rewinding a track during Pause mode, the track is being played. sO
17 | Track button cannot be set if track is stopped. sl
18 | If no tracks selected, buttons Play/Pause are still active. sl
19 | If no tracks selected, button Record is still active. sl
20 | Recording from Playlist: after recording, entries in the list are dam- | s/
aged.
21 | When creating an Auto Playlist with no genre/artist chosen, all tracks | eO
are listed in the new list.
22 | Active skin of the GUI can be deleted without warning. sl
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Adaptive Figure 5.6: The system and test environment of ACC and
its interfaces with other sub-systems

5.2.2 Modeling of SUC

This section reports on experiments on a relatively small sub-system of ACC, which,
nevertheless, allowed for interesting observations and insights. Appropriate events
were selected for modeling the SUC that are specific to the system and test envi-
ronment, for example, short circuits. Arcs connect these events according to the
system specification and logical relations. For an effective execution of the tests,
a company-developed test environment was used that included a PC, SUC, a pro-
grammable logic controller (PLC), a programmable power supply, and, last but not
least, the standard software CANoe [121] for

e simulation and monitoring of specific traffic scenarios,
e simulation of all other involved ECUs, and
e creation of test reports based on XML and HTML.

While generating the test sequences for the software, CANoe state-based infor-
mation was augmented by conditions and variables. Apart from testing different
street traffic situations, the test environment also allows testing of short circuits,
different supply voltages on the bus and/or ECUs, etc.
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5.2.3 Mutant Generation and Results

Based on the models constructed, mutants were generated using s/-, sO-, and eO-
operators as follows:

e 82 mutants using the s/-operator,
e 62 mutants using the sO-operator, and

e 36 mutants using the eO-operator.

As aresult of the mutation testing, five faults were detected. Table 5.3 lists these
faults detected in ACC and the operator y € X used to generate the corresponding
mutant.

Table 5.3: Description of the faults detected in ACC
ID | Description of the fault X

1 | The system resides in the error state and the speed of the vehicle | sO
drops to 5 km/h. If a simulation is now requested, the system re-
mains in the error state (instead of switching to the simulation state
as required).

2 | If an error occurs, the system does not switch in time to the error | s/
state.

3 | If the system resides in the error state and the error vanishes, the | s/
system does not switch to the requested active state in time.

4 | If the system resides in the error state and the error vanishes, the | s/
system does not switch to the requested inactive state in time.

5 | The system does not switch from initial state to active/inactive state | s/
in time.

Fault 1 represents an undesirable situation in which the system remains in an
error state instead of switching to the simulation state as required. The other four
faults represent violations of time constraints, meaning that the system does not
transfer to the requested state within the specified time. Thus, the detection and
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correction of the faults listed in Table 5.3 contributed considerably to an increase in
safety of SUC.

5.3 Case Study III: The Control Desk of a Marginal
Strip Mower-a Proactive System

The third case study is on a proactive system to control a marginal strip mower
(RSM13) mounted on the Unimog, a truck manufactured by Mercedes-Benz [93].
The study focuses on the control desk developed for RSM13.

Figure 5.7: Control desk for RSM13 Figure 5.8: Marginal strip mower
(RSM13)

5.3.1 System Under Consideration

The control desk (Figure 5.7) of RSM13 is the SUC. Considering safety aspects,
the most significant component of the strip mower are revolving knives (Figure 5.8)
that are controlled by the SUC. Such systems are used within cities in Germany,
even in presence of heavy traffic. The kinematics of the rotating point and the spe-
cially designed run of the mow head guide enables to reach large areas behind the
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crash guides. The mow head is protected against stone chipping by a special cutting
system. Operation is affected either by the front power take-off or by the power hy-
draulic. The buttons on the control desk simplify the operation and mitigate safety
risks so that the mow head returns to the working position or transport position in
potential emergencies, such as when a button is accidentally pressed. The posi-
tion of the mow head can also be continuously varied. Besides the positioning, the
support pressure and incline of the mowing unit can be controlled.

5.3.2 Modeling of SUC

The control desk has four different modes. The first mode (Actuator) is used to con-
trol the actuators; the second mode is used to switch between transport and working
position (transport/working position). Additionally, there are two operation modes
(Operation I and Operation II). These operation modes have been modeled by ESG
and SC. An example of an ESG of mode RSM 13 transport/working position is given
in Figure 5.9. The same mode is represented by an SC in Figure 5.10. All the ESG
and SC models used are depicted in Figure B.1 - Figure B.10 in Appendix B.

I’
L

working position auto]

o e
ﬂll
W

o{Amain arm down

D{transport position autDJ

o—{

expand arm
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Figure 5.9: ESG of RSM13 transport/working position
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Figure 5.10: Statechart of RSM13 transport/working position

5.3.3 Mutant Generation and Results

Table 5.4 lists the number of all valid (and invalid) mutants that were generated for
ESG and SC using mutation operators defined in Chapter 3. ESG-based mutants

are more numerous than SC-based, which is easy to explain. In an ESG, orthogonal
regions cannot explicitly be modeled. Therefore, more sequences (arcs) can be

inserted, for example, by an s/-operator. In an SC, each region has been handled

separately—transitions as inserted by a t/-operator do not cross orthogonal regions.

Table 5.4: Number of mutants generated and number of faults detected in RSM13

Number of faults

X | Number of all valid (invalid)
mutants generated detected in SUC
sl 184 (0) 5
ESG sO 22 (19) 1
eO 15 (18) 0
174 41 (0) 5
Statechart | tO 26 (18) 1
stO 15 (20) 0

65



66 Chapter 5. Three Case Studies

Both approaches detect the same number of faults in RSM13. It turns out that
the operators sO and tO, and sI and tI help to detect the same faults. Table 5.5
lists the faults that have been detected in SUC. It is worth noting that this application
was tested by a technical control board in Germany and released for public use. The
approach in this study detects faults in the released version that were not previously
found. Two of these faults are extremely safety-critical. Fault 1 indicates that the
cutting unit can be activated without having any pressure on the bottom, which is
very dangerous if pedestrians approach the working area. Another problem (Fault 6)
is observed by keeping the button for shifting the mow head pressed and changing
to another screen. The mower head with its cutting unit cannot immediately be
stopped in an emergency. Furthermore, restarting the hydraulic gear while it is
already running can cause serious damage.

Table 5.5: Description of the faults detected in RSM13

ID | Description of the fault X
1 | When the function bearingPressure is deactivated, the | s/ for ESG or
function cutting Unit can be activated. t1 for SC
2 | When the function cuttingUnit is activated, the func- | s/ for ESG or
tion bearingPressure can be deactivated. tI for SC
3 | When Engine I is activated, a change from the view | s/ for ESG or
RSM _Actuator to the view Start is possible. t1 for SC
4 | When Engine 1II is activated, a change from the view | sI for ESG or
RSM _Actuator to the view Start is possible. t1 for SC
5 | When Axis Lock is activated, a change from the view | s/ for ESG or
RSM _Actuator to the view Start is possible. t1 for SC
6 | A change from the view RSM_Operation_II to the | sO for ESG or
view RSM_Operation_I while function ArmShiftLeft | tO for SC
is active is possible if the function ArmShiftLeft is ac-
tivated.
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5.4 Overall Results

This section presents detailed results of the three case studies. The mutants gener-
ated for the case studies are classified according to the scheme introduced in Section
2.2 in Figure 2.6. Table 5.6, Table 5.7, and Table 5.8 classify the ESG mutants gen-
erated for RIB, ACC, and RSM13, respectively, by showing the number of live
(LMpe,, LMye,), killed (KM, K M,,) and equivalent (LM,.) mutants with respect
to each mutation operator.

Table 5.6: Classification of ESG mutants generated for RJB

X | LMye, | LMy, | LM, | KM, | KM,, | total | MFDS | TGMAS
sl 0 0 0 182 18 200 0.09 0.91
sO 0 142 0 55 3 200 0.02 0.28
eO 0 59 0 118 1 178 0.01 0.66
total 0 201 0 355 22 578 0.04 0.61

Table 5.7: Classification of ESG mutants generated for ACC

X | LMy, | LMy, | LM, | KM, | KM,, | total | MFDS | TGMAS
sl 0 21 0 57 4 82 0.05 0.70
sO 0 46 0 15 1 62 0.02 0.24
eO 0 11 0 25 0 36 0 0.69

total 0 78 0 97 5 180 0.03 0.54

Although the three selected case studies are from different areas with large di-
versity, the overall results have strong similarities. In all cases, the sets LM,,., and
LM, are empty and equivalent mutants were not discovered. In absolute numbers,
the s/-operator used for ESG helped to reveal most of the faults as denoted by the
set K M,,,. In most cases, the other s/-mutants, as denoted by the set K M,, could
also be killed successfully. A major reason for this, especially for GUIs of RJB and
RSM13, is that such illegal behavior can be easily detected due to non-executable
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Table 5.8: Classification of ESG mutants generated for RSM13

X | LMye, | LMy, | LM, | KM, | KM,, | total | MFDS | TGMAS
sl 0 0 0 179 5 184 0.03 0.97
sO 0 5 0 16 1 22 0.05 0.73
eO 0 3 0 12 0 15 0 0.80

total 0 8 0 207 6 221 0.03 0.94

sequences of events, that is, impossible interactions with the GUIs. In contrast,
many mutants generated by the sO-operator were still live as denoted by the set
LM,., and a low TGM AS score. This can be explained by the fact that the pre-
dicted outputs contained in the test cases are not sufficient to reveal the difference.
On the other hand, these mutants might have been killed using a test generation
algorithm & that also covers non-existing arcs of the model. Nevertheless, this still
does not help to detect mutants generated by eO-operator.

Table 5.9 summarizes the classification of the SC mutants generated for RSM13.
Mutants generated by the ¢/-operator could be killed in all cases. Test sets generated
based on these mutants revealed most of the faults in SUC. Similar to the case for
ESG, killing all mutants generated by the tO- and stO-operators was not possible.

Table 5.9: Classification of SC mutants generated for RSM13

X | LMye, | LMy, | LM, | KM, | KM,, | total | MFDS | TGMAS
tI 0 0 0 36 5 41 0.12 0.88
tO 0 8 0 17 1 26 0.04 0.65
stO 0 3 0 12 0 15 0 0.80
total 0 11 0 65 6 82 0.07 0.79

To sum up, the comparison of the fault detection capability of test sets between
ESG-based mutation and SC-based mutation does not point out any significant ten-
dency, but the data confirms the effectiveness of MBMT when applied using differ-
ent models.
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5.5 Analysis and Discussion of the Results

This section provides an overall cross-comparison of test results using ESG-based
mutants generated for each case study. Table 5.10 lists the percentage («) of the
total generated mutants corresponding to each mutation operator, as well as the
percentage () of the total faults detected by test sets generated based on the mu-
tants of that operator. The last row presents the number of mutants generated and
faults detected in SUC. For all three case studies, it turns out that the s/-operator is
the most effective mutation operator that helps to reveal approximately 80% of the
faults detected in each SUC. In conclusion, a test generation algorithm ® used in
MBT should also consider covering arcs that are not included within the model to
test such faulty behavior of SUC.

Table 5.10: Comparison of ESG-based mutants («: percentage of mutants gener-
ated; (5: percentage of faults detected in SUC)
X RJIB ACC RSM13
Q 15} Q 15} Q 16
sl | 346 | 81.8 1455 |80 |83.2|833
sO |34.6 |13.6 344|120 | 99 | 16.6
eO 308 | 45 [200] 0 | 6.8 0
total | 578 | 22 | 180 | 5 | 221 6

The eO-operator applied to RIB and RSM helped to detect only one fault. A
major problem concerning mutants generated by sO- and eO-operators is the oracle
problem, which is to determine whether the expected outputs by the mutants cor-
respond to the output of SUC. For graphical user interfaces in particular, omitting
events might lead to testing only the correctness of a reduced part of the original
model. Mutants generated by the sO-operator could not be killed in many cases
because the test cases generated were not adequate to detect them. As a result, the
test generation algorithm used in the case studies should also cover the arcs that are
not contained within the model. Figure 5.11 gives a graphical representation of the
fault detection capability of test sets generated based on ESG mutants.
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Figure 5.11: Fault detection capability of test sets generated based on ESG mutants

The classification of different mutants in the previous section facilitates a dis-

cussion of the adequacy of test sets generated by test generation algorithm &. Table
5.11 gives an overall classification of the ESG mutants of all three case studies.

Table 5.11: Overall classification of the ESG mutants

X | LMy, | LMy, | LM, | KM, | KM,, | total | MFDS | TGMAS
sI | 0 21 0 | 418 | 27 | 466 | 0.06 0.90
sO | 0 193 | 0 | 86 5 284 002 0.30
eO | 0 73 0 | 155 1 [229] 0 0.68
total | 0 287 | 0 | 659 | 33 | 979 | 0.03 0.67

As discussed above, test sets generated with respect to the s/-mutants revealed
most of the faults in SUC (as can be seen from the corresponding M F'DS.) The
sI-mutants that do not correspond to a fault in SUC are easily killed in most cases,
as denoted by the value of TGM AS. For GUIs (RSM13 and RJB) in particular, all

of these mutants have been killed.
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Many mutants generated by the sO- and eO-operators could not be killed. Es-
pecially the value of TGM AS of the sO-operator is only 30%, that is, 70% of the
mutants could not be killed. A major reason is that these mutants represent valid
subsets of the original model. As a result, they remain live. On the other hand-
again—these mutants indicate the necessity for testing non-existing arcs. A test gen-
eration algorithm & that covers these arcs (representing potential faulty behavior)
would have killed more of these mutants. The faults that were detected by test sets
generated using the sO- and eO-mutants have been found due to enforcement of
different sequences.

5.6 Limitations and Threats to Validity

Although the case studies in Sections 5.1 through 5.3 give a good insight into the use
of the proposed techniques in practice, they do not aim to draw general conclusions
that need formally sound arguments in addition to the empirical ones gained by
analyzing the case studies. Several reasons cause this uncertainty.

e Various type of real life applications are used in practice on a daily basis
and these applications possess different behavioral properties. Thus, results
obtained from one type of system may not be valid for another type.

e Both number of mutants and their order are limited for practical reasons and
due to the nature of mutation analysis.

e These threats may affect the results of the case studies, such as the evaluation
of the mutation operators, comparison of ESG with SC models, and effective-
ness of MBMT. Thus, the models and operators used should not be interpreted
as a generalization.

e First-order mutants were generated, assuming that higher-order mutants are
likely to be killed due to the coupling effect. The benefit of using a combina-
tion of several operators (as proposed in Chapter 3) is therefore not clear.

e With respect to mutation analysis based on the implementation, the coupling
effect argues that test cases that kill first-order mutants are also likely to kill
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higher-order mutants. With respect to the proposed approach, mutants gen-
erated by any corruption operator (which is a combination of an omission
operator followed by an insertion operator) are regarded as second-order mu-
tants, while the same mutants generated by some implementation-based mu-
tation operators are regarded as first-order mutants. Thus, in this context the
coupling effect becomes arguable.

Some recent studies ([71], [80]) emphasize that using higher-order mutation
provides benefits. Among an exponentially large number of higher-order mu-
tants, some of them are harder to detect than first-order mutants and thus are
more interesting. Such mutants might be more appropriate to simulate real
faults. Therefore, future work could put more focus on the benefit of using
basic operators to generate higher-order mutants and the validity of the cou-
pling effect for the proposed approach.

There are also many other models that could not be considered, including
UML, extended/timed automata, Petri nets, algebraic models such as (ex-
tended) regular expressions, and other generic ones (grammars or temporal
logic). Applying the proposed approach to them could lead to different re-
sults.

Only sequence-based coverage criteria are considered and particular algo-
rithms are used to generate test sets achieving these criteria. It is still possible
to make use of these structures with different algorithms and to achieve other
coverage criteria.

In clarification of the last remark, note that it is usually possible to increase

the number of arguments of this type in any experiment due to the nature of testing.
This stems from the fact that some aspects may or may not be much more difficult to
formalize at some points. Considering the coverage criteria, one cannot absolutely

conclude whether a given test set is the most adequate or not when only satisfying
some specified coverage criteria. This is because a coverage criterion is something
empirical that is generally agreed upon rather than being proved mathematically to
always work or yield the best (see also [128]).
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5.7 Summary

Three case studies demonstrated the application of the proposed MBMT on in-
dustrial and commercial real-life applications. The experimental data suggest that
MBMT can be effective in detecting remaining faults, including those that have
not been revealed by other test techniques, e.g., a German technical control board
previously tested the application used in the third study. Mutants generated by the
approach introduced in this thesis helped to reveal safety-critical faults that were
not found before.

Furthermore, the results of MBMT show that mutants that were generated by
sI-/tI-operators could be killed in most cases and that test cases generated from
these mutants revealed most of the faults in SUC. As a result, model-based test
generation for ESG and FSM/SC is to be extended by additional test cases to reveal
these faults as well.
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Chapter 6

Mutation Adequate Test Generation

As aresult of the three case studies the test process for ESG and FSM/SC described
in Chapter 4 needs to be extended to achieve test sets that are also capable in re-
vealing the faults that were detected in SUC by MBMT. Therefore, a fault model is
given to model also the undesirable behavior represented by mutants. As a result, a

new coverage criterion is defined and an extended methodology for generating and
minimizing test sets is introduced ([15], [16], [17], [21], [74]).

6.1 Fault Modeling

The results of the case studies in Chapter 5 turned out that test sets generated from
mutants created by s/- and t/-operators revealed most of the faults in SUC that
could not be detected by MBT as described by Algorithm 4.1 and 4.2; that is by
covering sequences of events or transitions of length k£ € N. As a consequence, the
fault model of the corresponding mutation operators needs also to be considered for
test generation in MBT.

ESG and FSM are not explicitly considered in the following. According to
Definition 3.10, FSMs are a subset of SCs. Furthermore, an ESG can be transformed
into an FSM in polynomial time as shown by Algorithm 6.1. The events of the
graph F.SG represented by its nodes £ are taken over as events for the FSM. Then,
an initial state in £’'SM is inserted. For each event of F.SG a new state in F'SM
is created. For each arc of F.SG, a transition in F'SM is inserted. Obviously, this
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conversion is correct as each event represented by a node is simply pre-drawn to its
incoming arcs (transitions). The runtime of Algorithm 6.1 is given by O(| A|).

Algorithm 6.1: Conversion of an ESG to FSM
Input: £SG = (E, A E,T)
Output: F'SM = (S, TR, F', f, S=, Sr)
1 TR := f := Sp :=0;
E' = F,
S = 8=z :={s};
foreach e € £ do
L S:=SU{e};
foreach (e,¢’) € Ado
7 TR:=TRU (e €);
8 f = f U ((676/)76/);
9 foreach £ € = do
10 TR :=TRU (s},§);
u | fe=fU((s,6),8);

A WN

=)

12 foreach v € ' do
13 L Sr:=SrU{v};

Mutants generated by s/- and ¢/-operator represent malfunctions of the system
that may potentially lead to failures. To consider these potential faults, they are to
be modeled as undesirable events and transitions. For modeling the faulty, that is,
undesirable events, a statechart SC' is completed by an error state and faulty transi-
tions. The notations error state and faulty transition are used for explicitly describ-
ing the potentially faulty behavior of the modeled system. Therefore, a statechart
is augmented by a set of faulty transitions 7R,y and an error state 0. For each
simple state s and for each event that does not trigger a legal transition in the context
of state s a faulty transition is added. This completion is only done for the purpose
of generating test cases from that model.

The completion process as described does not work for orthogonal regions.
Given the active state s of an orthogonal region, an event e is undesirable if and
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only if in all other regions no active state exists from where this event may be trig-
gered legally. Additionally, the effect of an undesirable event may vary depending
on the active states of the other orthogonal regions. Therefore, as a precondition for
completing a statechart by undesirable, faulty events an explicit-making (flattening)
of all possible state combinations over the regions needs to be conducted.

Each AND-state, along with its regions, has to be converted into equivalent
XOR-states by taking the Cartesian product of the substates from each region. As
a precondition for flattening a single AND-state it is necessary that all XOR-states
have to be removed within the regions. All transitions that are connected with these
XOR-states have to be converted into transitions that are solely connected with sim-
ple states. Due to the removal of transitions XOR-states within the regions become
unnecessary and can be removed. Removing this hierarchy will result in fewer states
but more transitions. The resulting statechart consists solely of simple and XOR-
states. This “flattened” statechart denoted by SC's, equivalent to the one given, is
of course not intended to be legible to human readers. It is solely to be used as an
input for the process of test generation. As an example for flattening a statechart the
one in Figure 6.1 is used. The resulting statechart is given by Figure 6.2. Finally,
the flattened statechart from Figure 6.2 is to be completed by inserting an error state
and faulty transitions as is shown in Figure 6.3.

RSM_Operation
Cutter unit
( try: pressure
- Cutter off 1 p Pressure

try: pressure
<

\ J

A

tr3: cutter try: cutter

p

v
Operable

Automatic modus
I ( : )
Auto off trs: auto Auto on
K | 1rsiauto /
@4—1 <

Figure 6.1: Example of a statechart SC
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RSM_Operation

P Cutter off, Auto off | try: auto > Cutter off, Auto on
©‘_  trp: auto
~ (.
A

trs: pressure | trg: pressure
A 4

try: pressure | tr,: pressure

\
(Pressure, Auto off ) _try: auto (Pressure, Auto on
trg: auto
L P
A

tryy: cutter | try: cutter
A 4
Operable, Auto on )

trg: cutter | try: cutter
v
Operable, Auto off tris: auto

4 trsiauto
<

Figure 6.2: Flattened statechart SC'; of Figure 6.1
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A general problem of flattening orthogonal regions is the growth in the number
of states. If an AND-state compounds m regions sy, Sg, ..., S, Where |s;| denotes the
number of simple states within region s;, the corresponding XOR-state will contain
|s1] - |s2| - ... - |sm| simple states in the worst case. On the other hand, a system
modeled by FSM would count approximately the same number of states.

6.2 A Further Coverage Criterion and Extended Test
Process

A completed statechart §C\'f based on SCY is formally defined as follows.

Definition 6.1 (Completed Statechart) A completed statechart is given by STCTf =
(SCt, T Reauiy) Where

e S =SU{o} (where o is an error state),
e H=HU{(root(),0)}, and

® TRy € S x E x {c} such that T Ry = {(s,e,0)[s € SAe € EAVS €
S:((s,8),e) & [}

Definition 6.2 (Faulty Transition) A transition (s, e, o) € T Ry is called a faulty
transition.

Definition 6.3 (Faulty Transition Sequence) A faulty transition sequence F'T'S =
(trq,...,tr;, tr) consists of ¢ + 1 transitions, forming a transition sequence of length
¢ + 1 including a faulty transition ¢r € T Rg,y. A faulty transition sequence is
called complete if it starts at the initial state of the statechart, abbreviated as CFTS.
The sequence (tr1, ..., tr;) is called a start sequence.

Thus, a complete faulty transition sequence is expected to cause a failure. Based
on Definition 6.3 the following coverage criterion is defined.

Definition 6.4 (Faulty Transition Coverage (FTC)) Generate for each faulty tran-
sition in a completed statechart SC'y a complete faulty transition sequence.
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Definition 6.4 guarantees that potential malfunctions given by faulty transitions
will be tested. The extended process of generating test cases of a statechart SC'
including Definition 4.8 and Algorithm 4.2 is presented by Algorithm 6.2.

Algorithm 6.2: Mutation adequate test generation and execution process
Input: SC = (S, TR, E, f, Sz, Sr, H, g)
1 SCy := Flatten all orthogonal regions of SC’;

2 §C\’f := Add an error state and faulty transitions to SC';

3 n := required length of transition sequences to be covered;

4 Generate a set of CTS to cover all (legal) transition sequences (TS) of length
ke{l,.,n};

5 Generate a set of CFTS to cover all faulty transitions;

6 Map the transition sequences of the test sets given by selected CTSs and
CFTSs to sequences of events;

7 Apply the test sets to SUC;

8 Observe system output to determine whether the system response is in
compliance with the expectation;

6.3 Optimizing Test Sets

A simple method to fulfill the k-transition coverage criterion (Definition 4.8) is to
set up a test case for each transition sequence of length k£ and then to compute a start
sequence for each one. Such a set of test cases will not be minimal due to multiple
occurrences of the same transition sequences. A test set consisting of complete
transition sequences fulfilling k-transition coverage can be minimized with respect
to aspects such as the number of test cases, the total length of all test cases or a
combination of the preceding two criteria. The first criterion may be suitable if
for each complete transition sequence a costly or complex restart of the SUC is
necessary.

It may be useful to weight all transitions by assigning each transition a numerical
value. Such weights can represent costs (such as time) for executing a transition.
However, this requires that costs for a single transition can be determined and that
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they are repeatable. If transitions are not explicitly weighted, it is assumed that all
transitions are weighted by the same value.

Definition 6.5 (Minimal Test Set) A test set is said to be minimal if the sum over
the costs of its transition sequences is minimal. The costs of a transition sequence
are given by the sum of the costs of each transition denoted by the function costs :
TR — R>(. If that function is not specified, it is assumed that this function is de-
fined for an arbitrary transition ¢r by costs(tr) := val where val denotes a constant
value.

6.3.1 k-Transition Coverage

As a precondition for setting up a minimized test set, a data structure termed a
transition graph is needed.

Definition 6.6 A transition graph TG = (V, A, ¢) represents a directed graph that
consists of a set of nodes V, a set of directed arcs A, and a cost function ¢ : A —
Rzo.

Algorithm 6.3 describes how a transition graph is constructed for a statechart
S/C\‘f. The set of nodes V' consists of |T'R| + 2 vertices representing the legal tran-
sitions of statechart 5/6ch An explicit initial node denoted by ¢r| and a final node
denoted by tr} are also included. For each transition pair (¢r, ¢r’) of the statechart,
a directed arc is created. Node ¢ has to be connected with all transitions that may
be triggered from the initial state. Transitions leading into a final state have to be
connected with node ¢r}. The runtime of this algorithm is given in the worst case by
O(|T R|?) for inserting the arcs into the graph.

Based on a transition graph, transition coverage is done by visiting all vertices
of the graph at least once by starting in node ¢r and ending in node ¢7}. The problem
of computing a route for visiting all vertices of a graph by minimizing the length of
the route is well known as the traveling salesman problem (TSP). If visiting vertices
and traversing arcs more than once is allowed, it is called the graphical traveling
salesman problem (GTSP) [109]. In general the traveling salesman problem belongs
to the NP complexity class. But despite of this fact “there are very good heuristics
yielding solutions which are only a few percent above optimality” [109].
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Algorithm 6.3: Construction of a transition graph

Input: S/C?f
costs function
Output: A transition graph TG = (V, A, ¢)
V.= {tr[,tr]};
2 A= 0;
3 foreach tr € T'R do
4 L V=V U{tr};

[S=Y

s foreach s € S do

6 foreach tr € in(s) do

7 foreach tr' € {out(s) \ T Ryuuy} do

8 A= AU (tr,tr');

9 L c((tr,tr')) := costs(tr');

oreach tr € {out(initial(root())) \ T Ry} do
1 A= AU (trp, tr);

12 c((trp, tr)) := costs(tr);

p—
=]
iy

13 foreach s € Sr do
14 foreach tr € in(s) do
15 L A= AU (tr,tr);

16 c((tr,tr))) == 0;
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A test set fulfilling k-transition coverage for £ > 1 is computed by transforming
the transition graph stepwise (k — 1 times) and then applying the graphical travel-
ing salesman problem. By also computing all complete transition sequences whose
length is smaller than &k and that cannot be expanded to longer sequences, a mini-
mal test set fulfilling k-transition coverage for all k € {1,...,n} is achieved. This
proceeding is described in Algorithm 6.4.

Algorithm 6.4: Computation of a test set T for k-transition coverage for
ke{l,..,n}
Input: A statechart §(7f
costs function
neN
Output: A test set Tr¢ fulfilling k-transition coverage for k € {1,...,n}
1 Generate the transition graph TG := (V, A, ¢) from STC\’f by applying
Algorithm 6.3 with (§C\‘f, costs);
Tre = 0;
for £ :=2tondo
foreach v € V do
L if (tr;,v) € AN (v,tr) € ANindeg(v) = 1 A outdeg(v) = 1 then

A i A W N

L TTC = TTC U {’U};

7 Transform the transition graph 7'G' by applying Algorithm 6.5 with
(TG, costs);

A:=AU (Zfﬁ, t?"[);

c((try, try)) :==0;

10 Apply the graphical traveling salesman problem to the transition graph 7'G|

11 Split up resulting tour in CTSs. Add them to set Tr¢;

e ®

First, a transition graph is constructed based on a statechart STCTf If n equals 1
the graphical traveling salesman problem can be applied directly. If n is greater than
1 the transition graph has to be transformed & — 1 times. The resulting graph rep-
resents all possible sequences of transitions of length k. Additionally, all sequences
of length £ — 1 are computed that cannot be expanded to longer sequences. In line
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4 each node v represents a transition sequence of length k£ — 1. These sequences are
characterized by the fact that the corresponding node representing that sequence is
solely connected with vertices tr and ¢r]. The functions indeg(v) := [{v'|(v',v) €
A} and outdeg(v) := [{v|(v,v") € A}| are used to compute these vertices. As
these sequences are already complete, they are added to the set T7r¢.

Subsequently, the transition graph is transformed by the application of Algo-
rithm 6.5. The resulting graph TG oy = (Vout, Aout, Cour) cONtains anode (try, ..., try)
for each transition sequence of length k. Two vertices (¢r1, ..., try) and (try, ..., tr},)
are connected by a directed arc if it holds that (tr, ..., try) equals (tr],...,tr,_;)
for each component, that is, try = tr],...,try = tr,_;. These two vertices thus
represent the sequence (tr1, ..., try, tr},).

Concluding, the final transition graph used as a source for the graphical travel-
ing salesman problem is augmented by an additional arc (¢r], tr[). This arc ensures
that the resulting graph is strongly connected, and therefore, a solution exists. The
weight of this arc can be increased to force a tour delivered by an algorithm solving
the graphical traveling salesman problem to contain a minimized number of occur-
rences of this arc. This in turn means that the number of test cases is minimized.
The resulting tour may still need to be split up into single complete transition se-
quences. The runtime of Algorithm 6.5 is given by O(|Ai,|?). For each arc of the
graph TGy, = (Vin, Ain, Cin) that is to be transformed, in line 5 a new node is created
in the graph T'G,,. Inserting the new arcs in the resulting graph 7T'G,, in lines 6-10
is done in O(|Vou|?) = O(|Ai|?) steps.

6.3.2 Faulty Transition Coverage

To fulfill the criterion of covering faulty transitions (Definition 6.4), a transition
sequence for each faulty transition ¢r € 1" Ry, has to be computed as denoted in
Algorithm 6.6. Each faulty transition has to be completed by adding a shortest start
sequence with respect to its costs. To compute the shortest paths, the corresponding
transition graph may be used for computing all shortest paths by applying e.g. the
Floyd-Warshall algorithm. The worst case runtime is given by O(|T R|®) under the
assumption that the transition graph (consisting of |T'R| + 2 vertices) is used for
computing all shortest paths by applying the Floyd-Warshall algorithm.
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Algorithm 6.5: Transformation of a transition graph

o

i A WN

e e 9 &

17

18
19
20

Input: TGy, = (Vin, Ain, ¢in)
costs function
Output: TGy = (‘/out; Aout, Cout)
Vout 1= 0;
Aout = @;
foreach ((trq, ..., try), (tr}, ..., tr})) € A, do
if (try, ..., trg) # trp A (try, ..., tr},) # tr) then
t Vour := Vow U (tr1, .oy try, tr}.);

foreach (try, ..., trg, triy1) € V,, do
foreach (try, ..., tr), tr}, ) € Vou do
if (tro, ..., try, triy1) = (trh, ..., tr},) then
trnew = ((tr1, ooy trig, trpg), (B, o b, tr4) )
Aout = Agut U tTpews

Cout(tTpew) 1= costs(try,);

Vout := Vour U {tr[, tT}};

foreach (tr, ..., try, trig1) € {Vou \ {tr, tr}} do
U eurrent = (71, ooy g, 741 )3

if (try, (try,...,try)) € A;, then

Aout = Aout U (t?"[7 trcurrent>;
k+1

Cout (LT, treurrent)) = Y, costs(tr;);
i=1

if ((tro, ..., try, treg), tr)) € A;, then
Aout = Aout U (trcurrenta tT’]),

B Cout((trcurrent7 tT‘] )) = 0;
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Algorithm 6.6: Computing a test set 77 fulfilling faulty transition coverage

Input: A statechart §C\’f
Output: A test set Trrc
1 Trre = 0;
2 foreach tr € T' Ry, do
3 (try,...,tr;) := STARTSEQUENCE (¢7) ;
L TFTC = TFTC U (trl, ...tri,tr);

4

6.4 Example

This section exemplifies how the coverage criteria k-transition coverage (Definition
4.8) and faulty transition coverage (Definition 6.4) are used to generate test cases.
An example of a completed statechart is given by Figure 6.4 that will be used for

that purpose.
/ Cutter unit \
. —
o> Cutter off try: pressure > Pressure
tr,: pressure
L
| A
i trs: cutter tr3: cutter try: cutter|
A4
L __errorstate ) Operable
' ! tre pressure
SR L

\: ____________ | \ﬁ/

Figure 6.4: Example of completed statechart

Two minimized test sets Tr¢ and Trp¢ fulfilling k-transition coverage for k €
{1, 2} and faulty transition coverage are computed. Set Trr¢ is computed by apply-
ing Algorithm 6.4. The resulting two transition graphs for sequences of length 1
and 2 are shown in Figure 6.5. A shortest tour covering all vertices of the transition
graph with sequences of length 2 (comprising all sequences of length 1) is given by:

((trp), (tri,tre),(tre, try), (tri,tra), (tra, trs), (trs,try), (try, trs), (trs,try),

(tr)))
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86 Chapter 6. Mutation Adequate Test Generation

This results in one test case: (try, tro, try, try, trs, try, trs, try). Thus, the
complete test set is given by

Tro = {(try, try, try, try, trs, try, trs, try)}

To achieve faulty transition coverage, Algorithm 6.6 has to be applied. For the
final test set, it is necessary to add a start sequence for the faulty transition 7.

Trre = {(trs), (tr1,try, tre) }

tr'4)<

Figure 6.5: Transition graphs of length 1 and 2 for statechart of Figure 6.4

6.5 Summary

This chapter presented a coverage- and specification-oriented test approach based
on FSM and SC. It extends modeling of the expected behavior as demonstrated
in Chapter 4 by considering also the faulty behavior of s/-/tI-mutants. This is
done by adding notations of faulty transitions and an error state. It represents a
complementary view of the behavioral model. Based on this view, a new coverage
criterion to cover faulty transitions was introduced. Furthermore, the test process
aims to minimize the total length of the test sets generated.
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Chapter 7

Further Applications of Basic
Operators

This chapter presents further applications of basic operators and mutation testing
based on different kinds of models such as ESG augmented by decision tables,
model checker specifications, and communication sequence graphs.

7.1 Scalable Robustness Testing

This section proposes an approach to scalable testing the robustness of a software
system using ESGs and decision tables (DT) ([29]). Basic operators are used to
manipulate ESGs and DTs resulting in faulty models. Test cases generated from
these faulty models are applied to SUC to check its robustness. Thus, the approach
enables the quantification of robustness with respect to a universe of erroneous in-
puts.

Robustness is defined as the ability of a system to behave acceptably in the pres-
ence of unexpected inputs ([75]). The IEEE standard glossary defines robustness as
the “degree to which a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions” ([76]). Here, robustness is
treated as the ability of a system to handle acceptably faulty inputs.

Different approaches have been proposed to evaluate the robustness of a system.
Fernandez et al. ([59]) propose a model-based approach for testing the robustness of
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a system. Test cases are generated from an operational specification and an abstract
fault model. Mukherjee and Siewiorek ([97]) present a hierarchically structured
approach to building robustness benchmarks. They evaluate various features that are
desirable in a benchmark of system robustness and compare existing benchmarks
according to these features. Fetzer and Xiao ([60]) have proposed an automated
approach for increasing the robustness of C libraries. For that purpose robustness
wrappers are generated that check the arguments of C functions before invoking
them. Kropp et al. presented the Ballista methodology, an automated approach
for testing the robustness of software ([85]). The goal is to identify failures by
performing fault injection at software interfaces such as functions or procedures.
Belli et al. ([26]) propose an event-based, graphical representation of the system and
its environment for testing safety-critical systems. The events are user actions and
system responses, and are ordered according to the threats posed by the resulting
system states.

The approach proposed in this section differs from the ones cited above in that it
allows modeling of incorrect behavior of software systems that can be traced back to
a lack of robustness. Furthermore, an algorithmic approach is presented to generate
test cases for testing a software-based system for robustness. Faulty models of an
event sequence graph augmented by decision tables define a subset of faulty event
sequences that represent faulty test inputs to test the exception handling ability of
the SUC.

7.1.1 Modeling and Test Generation

Similar to the notation of faulty transitions and (complete) faulty transition sequen-
ces (Definition 6.2 and 6.3) this is defined accordingly for ESG = (E,A,=Z,T)

([18]).

Definition 7.1 (Faulty Event Pair) Any event pair (e¢,¢') € A withe, ¢’ € Eis a
faulty event pair (FEP) of an ESG.

Definition 7.2 (Faulty Event Sequence) Let 'S = (ey, ..., ¢;) be an event sequence

of length i and FEP = (e;, e;,1) be a faulty event pair of an ESG. The concatena-
tion of the ES and the FEP denotes a faulty event sequence FES = (eq, ..., €;,€;41).
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Definition 7.3 (Faulty Complete Event Sequence) An FES is complete (or a faul-
ty complete event sequence denoted as FCES) if o(FES) € =.

An ESG can be augmented by decision tables (DT) ([9], [30]) (denoted by
ESGPT) to model different kinds of user inputs and control flow. In certain con-
texts it depends on the user input which event may follow after the current one. As
an example, when logging into a system the combination of user name and pass-
word may be valid or invalid. Depending on the validity of the input the system will
conclude or show the current login screen. Decision tables can be used to model
such control flow. More formally, a decision table is defined as follows.

Definition 7.4 (Decision Table) A decision table is given by DT = (AC,C, R),
where

e AC ={acy,...,ac;} is a set of actions,
e C ={cy,...,cp } is a set of conditions, and

e R={ry,...,r,}is aset of rules.

When using decision tables in an ESG model, a decision table is represented by
a distinguished node in the graph.

Definition 7.5 (Data Event [30]) An event ¢ € E of an ESG is called a data event
(DE) if e is represented by a decision table.

Test generation is done by a process as depicted by Algorithm 4.1. Additionally,
for each DE in a CES multiple CES have to be generated by replacing each DE with
data of the corresponding decision table. For each DE of an FCES multiple FCES
have to be generated with data for every rule of the decision table ([30]). In the
following, basic operators are defined for decision tables.

Definition 7.6 (Action Operators)

e An action insertion operator (acl) inserts a new action ac ¢ AC"
acl(DT,ac) := (AC U{ac},C, R)
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90 Chapter 7. Further Applications of Basic Operators

e An action omission operator (acO) omits an action ac from set AC":
acO(DT, ac) := (AC \ {ac},C, R)

e An action corruption operator (acC') removes an action ac’ and replaces it
with a new action ac”:  acC(DT,ac,ac”) := acO(DT,ac’) ® acI(DT,ac”)

Definition 7.7 (Condition Operators)

e A condition insertion operator (cI) inserts a new condition ¢ ¢ C"
cI(DT,c) := (AC,C U {c}, R)

e A condition omission operator (cO) omits a condition ¢ from set C":

cO(DT,c¢) := (AC,C\ {c}, R)

e A condition corruption operator (cC) removes a condition ¢’ and replaces it
with a new condition ¢’: ¢C(DT, ¢, ") :== cO(DT,c') o cI(DT, ")

Definition 7.8 (Rule Operators)

e A rule insertion operator (r]) inserts a new rule r ¢ R:
rI(DT,r) = (AC,C,RU{r})

e A rule omission operator (rO) omits a rule r from set R:

rO(DT,r) := (AC,C, R\ {r})

e A rule corruption operator (rC') removes a rule 7’ and replaces it with a new
rule 7”": rC(DT, 7", r") :=rO(DT,r") e rI(DT,1")

Note that applying an action, condition or rule operator to a given DT is not
always meaningful. An example is adding an extra rule to a DT that already contains
rules for all combinations of conditions.

7.1.2 Robustness Testing Process

Based on ESG and DT and their basic operators a scalable robustness testing pro-
cess is now defined. It is assumed that the legal behavior of SUC is tested based
on given ESGPT by CES to cover all ES of a desired length, that is, all ES of
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length 2. Firstly, the set of operators X = {x1, X2, ..., X»} has to be defined. This
set may consist of the basic operators or a subset of them. An operator y; € X
that is applied to £SGP7 is denoted by x;(ESGPT) and generates a set of faulty
models ESGY"™ = {ESGYY, ..., ESGYT}. The size of this set is defined as
k = |ESGPT"|. Note that depending on the chosen operator x; the size k may
vary: 1 < k < max(x;). For example, the eO-operator for ESG can generate a

maximum of |E| faulty models, that is, max(eO) := | E|. This enables the defini-
tion of the following scalable robustness measure.

Definition 7.9 (k-Robustness) A system is k-robust if for every operator y; €
X and FCESs generated based on k faulty models x;(ESGP") = {ESGPT/, ..,
ESGPT '} the system handles acceptably the exceptional inputs.

Depending on the test resources available the number of faulty models (given
by k) and/or the number of operators (given by n) can be adapted. Algorithm 7.1
depicts the overall robustness testing process. For each operator y; € X a set of
k faulty models is generated. A test generation algorithm & is applied to a faulty
model £S GQ_T-* yielding a test set consisting of FCES to be applied to SUC.

isJ

Algorithm 7.1: k-Robustness testing process
Input: ESGP7 that describes SUC
Set of basic operators X
k := number of faulty models
Test generation algorithm ¢
Output: List of faults in SUC detected
1 foreach y; € X do
ESGPT" = xi(ESGPT);
for j :=1to k do
17 = (ID(ESGQE*);
foreach * € T7'; do
Execute SUC against t*;
L Observe output of SUC;

N S B AW N
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7.1.3 Case Study

A case study checks the ability of different basic operators for revealing faults. The
SUC is a commercial web portal (ISELTA-Isik’s System for Enterprise-Level Web-
Centric Tourist Applications [77]) for marketing touristic services. Figure C.1 (in
Appendix C) shows the entry page. ISELTA enables hotels and travel agencies to
create individual search masks. These masks are embedded in existing homepages
of hotels as an interface between customers and the system. Visitors of the website
can then use these masks to select and book services, e.g., hotel rooms or special
offers. An example of a search mask for booking hotel rooms is given by Figure
7.1. A second example of a search mask is given by Figure C.2 (in Appendix C)
showing a mask to book special offers. This part of the system has been used within
the case study. To set up a special offer a dedicated website as shown by Figure
C.3 (in Appendix C) is used. The user has to provide the following data for a new
offer: Arrival/departure, kind of room, number of available special offers that can
be booked by customers, price, photo, description, and a name.

search

fast search {powered by iselta.com)

Germany LI
city all cities ;I hotel all haotels ;I
Arrival 16032010 Ty, ¥ | [k Departurs 17032010 we | [k
Catering — ;I category starting from — ;I stars
0 LI single room max. 1 person, (1 adult.) / min. 1 person. {1 adult.}
0 LI double room max. 4 person. (4 adult.) / min. 1 person. {1 adult.)
check availability

Figure 7.1: Search mask for hotel rooms in ISELTA

For the case study two tools have been used. ESG models were created by
using the tool MTSG. An example of an ESG is given by Figure C.4 (in Appendix
C). Decision tables were modeled with the ETES tool (decision tables for event
sequences [129]). A snapshot of the program is given by Figure C.5 (in Appendix
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C). The following set of operators has been chosen: X = {sC, acC, cC, rC}.
Test cases representing faulty complete event sequences were generated based on
the mutants modeled by these operators. In total, 520 test cases were generated
and applied to SUC, whereby k = 130. As a result 18 faults were detected. Table
7.1 shows the operators used and the number of faults detected by each one. It
turns out that the cC-operator is the most effective one in revealing faults. Table
7.2 lists the faults revealed and the corresponding operator that was used to create
the faulty model and thereby corresponding test case. However, the validity of
the results is limited. Firstly, SUC is a web-based system. In contrast to other
kinds of systems it runs on different browsers and operating systems featuring a
server/client architecture. Furthermore, the results only hold for the operators and
models chosen. Thus, other operators or other models could lead to different results.

Table 7.1: Number of faults detected in SUC

Mutation operator \ | Number of faults detected
cC 9
sC' 4
rC 3
acC 2
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Table 7.2: List of faults revealed

ID | Fault description X

1 | Files with size greater than 1 MB can be chosen. cC
2 | Files with size greater than 1 MB can be appended. cC
3 | All kind of files can be uploaded as photos. cC
4 | If departure date is set firstly to the past, only the arrival date is set | sC

to the past.
5 | Itis possible to set only a departure date. A PHP warning appears. acC
6 | Inserting “\” into price field leads to an error. cC
7 | The number of special offers available can be set to zero. acC
8 | Missing warning for wrong file types. rC
9 | Wrong input in other fields deletes the file path of the photo. sC
10 | No warning in case of a file with O bytes. The browser freezes. cC
11 | Arrival and departure field can remain empty. cC
12 | Processing faulty input data doubles “\” in different fields. cC
13 | In existing offers the arrival date can be set to dates into the past. rC
14 | In existing offers the departure date can be set to dates into the past. | rC
15 | If a departure date in the past is set to another day in the past, the | c¢C
arrival is set to the current date.

16 | Missing warning for incorrect prices and number of special offers. sC
17 | Missing warnings for empty dates. sC
18 | The number of specials can be higher than rooms available. cC
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7.2 Mutant-Based Testing with Model Checkers

In model checking ([47]) a model checker is applied to a state-based model M of
SUC that represents the behavior of the system. Temporal logic is used to specify
the desired properties which the system must fulfill. For a given property ¢, a
model checker visits all reachable states of the model to verify whether the property
is satisfied over each possible path (denoted by M = ). In case that the property
does not hold (M [~ ), the model checker generates a counterexample in form of
a trace as a sequence of states.

Thereby, model checking techniques enable generation of test cases for a variety
of test adequacy criteria [128] that are formalized as properties in temporal logic.
Test sequences are generated by using counterexamples that are produced from a
model checker ([53], [66]). In [65], a technique has been presented to generate test
cases from abstract state machine specifications to detect specific fault classes. The
idea of combining model checking and mutation testing is not new, e.g., for generat-
ing test cases through comparison of the mutated specification with the original one
[6], or for generating test cases to measure test coverage [4]. In order to reduce test
costs, model checkers are used to detect equivalent mutants that result in redundant
test cases. In [64], a new method of mutant minimization is proposed for reducing
the number of mutants and thereby the size of the test suites. In general, mutants
result in different, unexpected system behavior, contrary to the one as described by
the original model of SUC.

There is a close relationship between mutation testing and fault class analysis
because mutation operators are often designed to model common faults [86]. Some
testing strategies are proposed to detect certain fault classes. Weyuker et al. in-
troduced meaningful impact strategies to target specifically the variable negation
fault that occurs when a Boolean variable is erroneously substituted by its nega-
tion [123]. Chen and Lau proposed two more powerful testing strategies capable
to detect more fault classes [42]. If these test cases pass, it is guaranteed that no
such faults are contained in the system, which is an important advantage over other
testing methods.

In the following an approach to mutant-based testing with model checkers is
presented to generate test cases from the original model to check the expected be-
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havior (positive testing), and from well-defined mutants to check unexpected be-
havior (negative testing) of SUC ([24], [43]). Mutation operators are applied to the
original model and can increase, or decrease its size, that is, the number of state
transitions. Based on the original model and its mutants, a model checker is then
used to generate counterexamples and thereby test cases that are finally applied to
the SUC.

7.2.1 Model Checking as a Basis for Mutation Testing

Model checking typically depends on a finite state space, which is generated based
on a set of initial states and a transition relation. The state space is usually repre-
sented by a graph structure. It is common to use Kripke models ([47]).

Definition 7.10 (Kripke Model) A Kripke model (or model) is a 3-tuple M =
(S,R,T), where:

1. S is a finite set of reachable states,

2. R C § x S is a transition relation, that must be total, that is, for every state
s € S there is a state s’ € S such that (s, s’) € R, and

3. 7 is a set of initial states.

A mutant is a model M* = (§*,R*,Z*) which is similar to the original one
M = (§,R,I), but differs from M. It is assumed that Z = Z*. S U S* is
considered as the set of states both in M and M?*, in which the states are not
required to be reachable. Without losing generality, it is assumed that S = S*.
Hence, the difference of model M and mutant M* is determined by R and R*.
That is, M = M* if and only if R = R*. Checking of extra or missing states can
be reduced to checking extra or missing transitions. This view leads to the following
formal definition of the notion mutant of a Kripke model.

Definition 7.11 (Mutant of Kripke Model) Givenamodel M = (S,R,Z), a Krip-
ke model M* = (S, R*,T) is a mutant of M. M* is equivalent to M if R = R*.

Concerning their structure, mutants are classified in three types:
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Definition 7.12 (Z-, D-, C-Mutant of Kripke Model)
1. M* is called an increscent mutant (Z-mutant) of M if R C R*.
2. M* is called a decrescent mutant (D-mutant) if R* C R.

3. M* is called a cross mutant (C-mutant) if M* is neither an Z-mutant nor a
D-mutant.

Definition 7.13 (Path) In a Kripke model M, a path is an infinite sequence of
states m = $1S9 - - -, such that (s;, s;.1) € R for every i > 1. A prefix sq - - - s, of
path 7 is denoted by 7,,.

A prefix m,, could also be considered as a set of transitions, thatis, {(s;, s;41)|1 <
i < m —1}. If each transition (s;, s;11) in a prefix m,, is also in R, then 7, is in R,
denoted by 7, C R.

Definition 7.14 (Test Case) Let M* = (S, R*,7Z) be a mutant of M = (S,R,Z).
A test case is a finite prefix 7, such that 7,, C R UR* and 7,,, R N'R*.

Test cases are generated based on counterexamples produced by a model checker.
A counterexample is interpreted as a prefix of a path showing the difference between
model M and its mutant M* that contains behavior different from the original one.
It is assumed that there are no hidden variables in model M that represent mutants
which cannot be observed by testing. Each counterexample is used to derive test
cases to be applied to the SUC. Test cases are classified as two types:

Definition 7.15 (Positive Test Case) A test case 7, is positive if m,, C R and
T & R*. If 7, fulfills this conditions it is denoted by 7 2.

Definition 7.16 (Negative Test Case) A test case ,, is negative if m,, C R* and
)

mm € R. If m,, is a negative test case, it is denoted by .

Linear temporal logic (LTL) is used to specify the desired properties which the
system must satisfy. LTL consists of atomic propositions, Boolean operators and
temporal operators [47]. Two temporal operators X and G will be used to specify
the properties needed. X is the next-state operator, e.g., X p expresses that ¢ has to
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be true in the next state. G is the always operator, e.g., G expresses that ¢ holds
at all states of a path.
If M* is a mutant of M, then at least one of the following cases applies:

1. M contains behavior that is not in M*, that is, (R \ R*) # 0.

2. M* contains behavior that is not in M, that is, (R* \ R) # 0.

Therefore, the LTL formula G—(s A Xs') can be used to generate the coun-
terexample with the desired transition (s,s’) € (R \ R*) or (s,5') € (R*\ R). A
challenge is to extract the desired transitions from the model specification. The next
section introduces the notions of positive and negative property for extracting these
transitions using NuSMV model checker.

7.2.2 A Realization using NuSMYV Model Checker

The model checker NuSMV [46] is used to demonstrate how mutation testing can
be realized by model checking using positive and negative testing. Figure 7.2 shows
a simple example of a NuSMYV specification.

MODULE main

VAR
request : boolean;
state : {ready, busy};

ASSIGN
init (state) := ready;
next (state) := case

state = ready & request = 1 : busy;
1 : {ready, busy};
esac;

Figure 7.2: Example of NuSMV specification
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In NuSMYV the variables are defined in the VAR section. The transition system is
defined in the ASSIGN section. The system’s initial conditions are declared using
init () statements. The transition relation is specified using a case expression,
in which next statements assign the next values of variables. A similar method
to specify the transition relation is realized using TRANS statements. Note that the
conditions of TRANS expressions are ordering insensitive but the case statements
are ordering sensitive. Each condition of the TRANS statement is formalized as
a;\ next(f;). Each statement 7, interprets a set of transitions (s, s’) such that s
satisfies oy, and s’ satisfies 3;,.

Definition 7.17 (TRANS statement)
L. T = A X (),
2. T:=V._,T;and
3. T/k:=\\Tiv Vick T

A model specification representing a Kripke model serves as input for a model
checker. Instead of mutating the Kripke model, the NuSMV model specification is
used. Mutation operators are defined to model single mutations, always assuming
that the intended implementation closely matches the actual implementation (com-
petent programmer hypothesis). An atomic element of a mutation of a Boolean
specification is a literal, which is a variable or a negated variable. First-order, basic
mutation operators are defined as follows.

Definition 7.18 (Literal Operators)

e A literal omission operator (IO-operator) omits a literal from a Boolean ex-
pression.

e A literal insertion operator (lI-operator) inserts another possible literal.

e A literal corruption operator (IC-operator) replaces a literal by another pos-
sible literal.

Example 7.1 Applying the [O-operator to the expression a A b A —c yields a A b
with omitting —c.
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Example 7.2 Applying the [/-operator to the expression a A b A —¢ could be im-
plemented as a A b A —c A d by inserting d.

Example 7.3 Applying the [C'-operator to the expression a A b A —¢ could be im-
plemented as a A b A d with —c¢ replaced by d or a literal could be replaced by its
negation, e.g., a A b A —c is implemented as a A —b A —c where b is replaced by —b.

For simplicity, only single mutations in one of the transition conditions are con-
sidered, denoted by 7", that is, either oy, # «j, or B # ;. The mutated transition
conditions are classified in three types:

Definition 7.19 (Z-, D-, C-Transition)

1. 7, is called an increscent transition (Z-transition) if T, = T, that is, Ty
implies 7"

2. T, is called a decrescent transition (D-transition) if T = T, that is, 7,*
implies 7.

3. 7, is called a cross transition (C-transition) if T,* is neither an Z-transition
nor a D-transition.

An equivalent mutated transition implies an equivalent mutant, but an inequiv-
alent mutated transition does not imply an inequivalent mutant. An Z-transition
will create an Z-mutant and a D-transition will create a D-mutant. However, a
C-transition also may create an Z-mutant or a D-mutant, because mutated behavior
may be masked by other transitions 7; (i # k). Hence, mutated behavior will satisfy

(Te NTENST/E) or (T A =Te A =T /E).

Definition 7.20 (Positive Property) Let M} be the mutant of M w.r.t. 7;*. Then
the positive property is defined as

or = G(Tpe AN=TFN=T k).

Definition 7.21 (Negative Property) Let M be the mutant of M w.r.t. 7. Then
the negative property is defined as
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vi = G(Ty AT AT /).

Let M; be a mutant of M w.r.t. 7. The LTL formula ¢y, is designed to find
the expected behavior of M, that is, transitions in R \ R*. The LTL formula o
is designed to find the unexpected behavior of M, that is, transitions in R* \ R.
Therefore, M* is equivalent to M if and only if M = ¢, and M* = ¢;, for
mutant M} w.r.t. 7.

If 7, is an Z-mutant of T, (75, implies 7,), then T, A =7, = false, thus ¢, =
true and M |= @j. Therefore, M is equivalent to M if and only if M} = ¢;.
Hence, a test case that detects an Z-mutant must be negative. Similarly, if 7," is a
D-mutant of 7y, then M is equivalent to M if and only if M = ;. Hence, a test
case that detects a D-mutant must be positive. In Appendix D a thermostat system
is used to illustrate the notions of Z-, D- or C-mutant.

The overall test process is given by Algorithm 7.2. SUC is to be modeled by a
NuSMV model checker specification M. For each mutation operator the number
of mutants to be constructed is to be determined and assigned to variable n. Model
checking is carried out using the positive and negative property. The final step
translates the counterexamples into appropriate test cases which are then used to
exercise SUC. The runtime of Algorithm 7.2 is essentially given by the number of
mutants that are created. For each mutant model checking must be conducted, and
concluding the resulting counterexample is to be applied as an appropriate input to
SUC.
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Algorithm 7.2: Mutant-based testing with NUSMYV model checker

o

B W N

10
11

Input: NuSMV spec

ification M for SUC

Set of mutation operators X’
Number of mutants n to be generated for each operator

foreach y € X do
for::=1tondo

Observe

Use operator ) to generate a mutant M w.r.t. to 7,";
if M = o} then

(n)

Observe 7’
Apply counterexample 7 to SUC;
Observe system behavior;

if M [~ ¢ then

(»).

m s

Apply counterexample 7% to SUC;
| Observe system behavior;
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7.3 Model-Based Integration Testing

This section introduces an approach for model-based integration testing. After a
summary of existing work communication sequence graphs (CSG) are introduced
for representing the communication between software components on a meta-level
([27], [28]). Based on CSG, test coverage criteria and basic mutation operators are
defined. These operators enable to evaluate the test cases generated by mutation
analysis.

Several approaches to integration testing have been proposed. Binder ([31])
gives different examples of common techniques such as top-down and bottom-up
integration testing. Hartmann et al. ([72]) use UML statecharts specialized for
object-oriented programming. Delamaro et al. ([50]) introduced a communication-
oriented approach that mutates the interfaces of software units. Saglietti et al.
([110]) introduced an interaction-oriented, higher-level approach and several test
coverage criteria. In addition, different approaches for object-oriented software
have been proposed. Buy et al. ([41]) defined method sequence trees for repre-
senting the call structure of methods. Daniels et al. ([48]) introduced different test
coverage criteria for method sequences and Martena et al. ([91]) defined interclass
testing.

In the following, communication sequence graphs (CSG) are introduced to re-
present source code at different levels of abstraction. Software systems with discrete
behavior are considered. In contrast to existing, mostly state-based approaches de-
scribed above, CSG-based models are stateless, that is, they do not concentrate on
internal states of the software components, but rather focus on events. CSGs are
directed graphs enriched by semantics to adapt them for integration testing. This
enables the direct application of well-known algorithms from graph theory and au-
tomata theory for test generation and test minimization. The syntax of CSG is based
on directed graphs (Definition 3.1). The goal is to enable a uniform modeling for
unit and integration testing by using the same modeling techniques for both levels.

7.3.1 Fault Modeling

Depending on the applied programming language, a software component represents
a set of functions including variables. Classes contain methods and variables in the
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object-oriented paradigm. In case that no model exists, the first step is to model
the components ¢; of the SUC, represented as C' = {c, ..., ¢, }. Two components,
¢i,c; € C of a software system C' communicate with each other by sending mes-
sages from ¢; to c;, that is, the communication is directed from c; to c;. Figure 7.3
shows the communication between a calling software component (¢; € C) and an

invoked component (¢; € C).
° Faulty output (c;)
--------- >
Msgs(c; , Ci)i Msgvi(ci,cj)l TMsgVO(cj, c)
(Dai
Faulty output (c;)

Legend: —> message direction
— valid message --+ faulty message

Msgy,(C;, C)

-

Figure 7.3: Message-oriented model of integration faults between two software
components ¢; and ¢;

Messages to realize this communication are represented as tuples M sg of pa-
rameter values and global variables and can be transmitted correctly or faulty. This
leads to the following combinations.

1. Msgyi(c;, ¢j): valid input from ¢; to ¢,

2. Msgy(cj, ¢;): valid output from c; back to ¢;,
3. Msgyi(ci, c;): faulty input from ¢; to ¢;, and
4. Msgyo(cj, ¢;): faulty output from ¢; back to ;.

It is assumed that either M sg,;(c;, ¢;) or Msgy;(c;, ¢;) is the initial invocation.
As the result of this invocation, ¢; sends its response back to ¢;. The response is
M sguo(cj, ;) or Msggo(c;,c;). It is further assumed that the tuples of faulty mes-
sages Msgyi(c;, c;) and Msgy,(c;, ¢;) cause faulty outputs of ¢; and ¢; as follows.
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e component ¢; produces faulty results based on

— faulty parameters transmitted from ¢; in M sgy;(c;, ¢;), or

- valid parameters transmitted from ¢; in M sg,;(c;, ¢;), but perturbed dur-
ing transmission resulting in a faulty message.

e component ¢; produces faulty results based on

— faulty parameters transmitted from c; to ¢;, causing c; to send a faulty
output back to ¢; in M sgy,(cj, ¢;), or

— valid, but perturbed parameters transmitted from c; to c;, causing c; to
send a faulty output back to ¢; in M sg,,(c;, ¢;) resulting in a faulty mes-
sage.

This fault model helps to consider potential system integration faults and thus,
to generate tests to detect them.

7.3.2 Communication Sequence Graphs for Unit Testing

In the following the term actor is used to generalize notions that are specific to the
great variety of programming languages, for example, functions, methods, proce-
dures, basic blocks, etc. An elementary actor is the smallest, logically complete
unit of a software component that can be activated by or activate other actors of the
same or other components. A software component ¢ € C' can be represented by a
CSQG as follows.

Definition 7.22 (Communication Sequence Graph) A communication sequence
graph CSG = (DG, Z,T") for a software component ¢ € C'is a directed graph,
where

e DG = (0, A), as defined in Definition 3.1, with © being a finite set of actors
of component ¢; and A C © x O being a finite set of arcs describing all valid
pairs of concluding invocations (calls) within the component; and

e = and I representing initial/final invocations.

105



106 Chapter 7. Further Applications of Basic Operators

To identify the initial and final invocations of a CSG graphically, all § € = are
preceded by a pseudo vertex “[” ¢ © and all § € T are followed by another pseudo
vertex “]” ¢ O. In object-oriented programming (OOP), these nodes typically re-
present invocations of a constructor and destructor of a class.

CSG are similar to ESG differing in following features. In an ESG, a node
represents an event that can be a user input or a system response, both of which lead
interactively to a succession of user inputs and expected system outputs. In a CSG,
a node represents an actor invoking another actor of the same or another software
component. An arc represents a sequence of immediately neighboring events in
an ESG. In a CSG, an arc (0,60") € A denotes that actor §’ is invoked after the
invocation of actor ¢ representing an invocation (call) of the successor node by the
preceding node. Furthermore, CSG differ in following aspects from call graphs.
CSGs have explicit boundaries (entry and exit in form of initial/final nodes) that
enable the representation of not only the activation structure, but also the functional
structure of the components, such as initialization and destruction of a software unit
(for example, call of the constructor and destructor method in OOP).

CSG are directed graphs that enable the application of rich notions and algo-
rithms of graph theory. The latter are useful not only for generation of test cases
based on criteria for graph coverage, but also for optimization of test sets. CSG
can easily be extended to represent not only the control flow, but also to precisely
consider data flow, for example, by using Boolean algebra to represent constraints.

Definition 7.23 (Communication Sequence) Let © and A be the finite set of nodes
and arcs of a CSG. Any sequence of nodes (01, ..., 0) is called a communication
sequence (CS) if (0;,0;11) € A, fori e {1,...,k — 1}.

The function [ (symbolizing length) determines the number of nodes of a CS.
In particular, if [(C'S) = 1, then it is a communication sequence of length 1, which
denotes a single node of CSG. Let a and w be the functions to determine the initial
and final invocation of a CS. For example, given a sequence C'S = (61, ..., 0y), the
initial and final invocation are o(C'S) = #; and w(C'S) = 0y, respectively.

Definition 7.24 (Complete Communication Sequence) A CS is a complete com-
munication sequence (CCS) if «(C'S) is an initial and w(C'S) is a final invocation.
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Based on Definitions 7.23 and 7.24 the following coverage criterion is enabled.

Definition 7.25 (k-Communication Sequence Coverage) Generate complete com-

munication sequences that sequentially invoke all communication sequences of length
ke N.

All communication sequences of a given length % of a CSG are to be covered by
means of complete communication sequences that represent test cases. Thus, test
generation is a derivation of Chinese Postman Problem, that is, finding the shortest
path or circuit in a graph by visiting each arc. Polynomial algorithms supporting
this test generation process have been published in [14]. Algorithm 7.3 sketches the
test generation process for unit testing.

Algorithm 7.3: Test generation for unit testing
Input: CSG
k := max. length of communication sequences (CS) to be covered
Output: Test report of succeeded and failed test cases

1 fori:=1tokdo
2 Cover all CS of CSG by means of CCS;

3 Apply test cases to SUC and observe system outputs;

7.3.3 Communication Sequence Graphs for Integration Testing

For integration testing, the communication between software components has to be
tested. The approach is based on the communication between pairs of components.

Definition 7.26 (Invocation Relation) Communication between actors of two dif-
ferent software components, CSG; = (0;, A;, =;,I';) and CSG,; = (0,, 4;,=;,T;)
is defined as an invocation relation /R(CSG;,CSG;) = {(0,0')|¢ € ©, and
¢ € ©;, where 0 activates ¢’ }.

An actor § € © may invoke an additional actor §' € ©’ of another component.
Without losing generality, the notion is restricted to communication between two

107



108 Chapter 7. Further Applications of Basic Operators

units. If # causes an invocation of a third unit, this can also be represented by a
second invocation considering the third one.

Definition 7.27 (Composed CSG) Given a set of C'SGy,...,C'SG,, describing n
components of a system (', and a set of invocation relations I/ Ry, ..., I R,,, the com-
posed C'SG( is defined as CSGo = ({6, U...UO, }, {A U...UA, UIR U...U
IR} {Z1U ... UE, L {Thu..UT.}).

Figure 7.4 gives an example of a composed CSG that consists of C'SG; and
CSG,. Invocation of actor #] by actor 0, is denoted by a dashed line, that is
IR(CSG,,CSGs) = {(02,67)}.

Figure 7.4: Composed C'SG¢ consisting of C'SG; and C'SG, and an invocation
between them

Based on the k-communication sequence coverage criterion, Algorithm 7.4 rep-
resents a test generation procedure. For each software component ¢; € C, a com-
munication sequence graph C'SG; and invocation relations / R serve as input. The
composed C'SG¢ is to be constructed according to Definition 7.27. Concluding,
Algorithm 7.3 is also applied for test generation.

108



7.3. Model-Based Integration Testing 109

Algorithm 7.4: Test generation for integration testing
Input: CSG,...,CSG,
IRy,... IR,
k := max. length of communication sequences (CS) to be covered
Output: Test report of succeeded and failed test cases

1 CSGe =
({©,0..U0,}, {A1U...UA,UI R U...UIR,,} , {Z1U...UZ, }, {1 U...UL', });

2 Use Algorithm 7.3 with (C'SG, k) for test generation;

7.3.4 Mutation Analysis

In the following, an approach to mutation analysis is proposed to assess the ade-
quacy of a test test with respect to its fault detection capability. The procedure of
integration testing and mutation analysis for a system or program P based on CSG
is illustrated in Figure 7.5. The solid lines describe test generation based on CSG
as described by Algorithm 7.3 and Algorithm 7.4 and test execution based on test
set T'. The dashed lines describe the follow-on mutation analysis activities. Based
on DG (Definition 3.1) and CSG, a set of basic operators X as defined in Table
7.3 realize insertion or omission of nodes and arcs of the CSG. The changes are
accordingly applied to P to create the mutants. Finally, each mutant P* is executed
against test set 7' to compute the mutation score.

The nl-operator in Table 7.3 adds a new node to the CSG, generating a new
communication sequence from a node via the new node to another node of the same
software unit. That is, a new call is inserted in the source code of a component
between two calls. The nO-operator omits a node from a CSG and connects the
former in-going arcs to all successor nodes of the deleted node. This is done by
removing an invocation from the source code of a software unit. The operator a/
inserts a new arc from a node to another node of the same component that had no
connection before applying the operator. Similarly, aO deletes an arc from a node
to another node of the same software component.
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(3) Mutant generation

CSG CSG*

(1) Test generation

v

Testset T

(4) Apply changes to P
*~.(5) Test execution

(2) Test execution

v A
Program P Mutant P*

Legend: —» Model-based integration testing
--» Mutation analysis

Figure 7.5: Model-based integration testing and mutation analysis with CSG

Table 7.3: Basic mutation operators for CSG

X | Description

nl | Inserts a new node into the CSG

nO | Omits a node from the CSG

al | Inserts a new arc into the CSG

aQ | Omits an arc from the CSG

+I | Inserts an invocation between actor § of component ¢ to
actor 6’ of component ¢’

1O | Omits an invocation between actor ¢ of component c to
actor 6’ of component ¢/
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7.4 Summary

This chapter presented different applications of basic operators and mutation testing
using different kinds of models. Section 7.1 introduced a scalable robustness testing
approach based on ESG and decision tables. Different operators are employed to
create faulty models representing faulty behavior of SUC. Test cases are generated
based on these models to reveal potential issues with respect to illegal inputs to
SUC. A case study based on a commercial web portal shows the potential of the
approach to reveal further critical faults that were not detected by previous tests
with legal inputs. Furthermore, an approach to mutant-based testing with model
checkers was presented in Section 7.2 to generate test cases using basic operators.
Based on model-checker specifications mutants are generated. A model checker is
then used to generate counterexamples and thereby test cases to be applied to SUC.
Section 7.3 introduced communication sequence graphs and a mutation-oriented
test process incorporating basic operators.
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Chapter 8

Related Work

Related work discussed in this chapter focuses on mutation analysis. Related work
on modeling, especially graph-based modeling, has been discussed in the previous
chapters whenever it was significant in the context.

Mutation analysis was originally proposed as a white-box, fault injection-based
technique for implementation-based software testing, especially at the unit-level.
Recent works have also applied it to other testing levels such as integration-level,
and other artifacts such as program specifications. An overview of variations of
mutation analysis related to the one proposed in this thesis is presented focusing on
the mutation operators used to generate these mutants.

Random testing compared to mutation analysis is also a commonly used tech-
nique for test data generation because of its simplicity, full automation, and direct
implementation characteristics. However, its probability of selecting specific values
of interest from the program input domain is small. According to Frankl et al. ([63])
random testing is a poor way to achieve mutation-adequate test sets. Thus, random
testing is ineffective to generate test cases for achieving a high level of coverage.

8.1 Implementation-Based Mutation Analysis

In implementation-based mutation analysis, mutants are generated by applying mu-
tation operators to the source code to introduce simple syntactic changes. These
operators are language dependent. For example, there are different sets of operators
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for Ada ([35], [104]), C ([2]), COBOL ([69]), Fortran 77 ([83]), Lisp ([38]), and
Java ([82], [89], [90]). The operators can be further classified. Traditional mutation
operators are used for testing a function or a unit of procedural programs, such as
the 22 operators used by Mothra [52] for Fortran programs and the 77 operators
used by Proteum [2], [49] for C programs. Interface mutation operators include
operators such as those used by Proteum/IM [50] that apply mutation analysis at
the integration-level. Test cases generated to kill these mutants are a good indica-
tor of how well the interactions between different modules of an application have
been tested. The focus is on the source code related to module interactions, in-
cluding function calls, parameters, global variables, etc. Object-oriented mutation
operators are a new category of mutation operators, such as the class and inter-class
mutation operators ([82], [89], [90]). Theses operators are necessary to handle in-
heritance, polymorphism, dynamic binding, and other specific features of object-
oriented languages.

8.2 Model-/Specification-Based Mutation Analysis

Mutation operators can also be applied to other artifacts such as program speci-
fications or architecture and design models. For each method, it can be further
divided by whether it is for testing the specification/model itself or for testing the
corresponding implementation based on the specification/model. Another way to
classify is to focus on whether a method follows the procedure described in Figure
2.2 or Figure 2.5. Studies such as [117] follow the procedure in Figure 2.2 to test the
specification, whereas studies such as [33] and [84] follow the procedure in Figure
2.5 to test the implementation. However, the proposed method in this thesis is the
only mutation testing method that follows Figure 2.4.

For mutation analysis methods that follow the procedure described in Figure
2.2, test cases are executed against the original specification/model and the mu-
tated specifications/models (namely, the mutants) to see how many mutants they
kill. This type of mutation analysis has some benefits over implementation-based
mutation analysis discussed in Section 8.1. Implementation-based analysis requires
the access to the source code of SUC which might not always be available. Addi-
tionally, mutation analysis based on a specification can be done independently of
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the program development. According to [105], mutation analysis is actually easier
at the specification level for some types of specifications. Furthermore, mutation
analysis based on specifications can help to detect faults that are only hard to find
by analyzing only the source code.

An overview of different studies that have proposed different sets of mutation
operators for various specifications and models is presented in the following.

8.2.1 KEstelle

Estelle is a formal description technique to model distributed systems, services,
and protocol specifications. A hierarchy of extended FSMs (EFSM) communicate
through bi-directional channels. Estelle has been developed by ISO (International
Organization for Standardization) ([78]). Probert and Guo [107] defined a mutation
analysis technique to validate the behavior of Estelle-based specifications. They
called it E-MPT (Estelle-directed Mutation-based Protocol Testing). It focuses on
validating the elementary structures of Estelle and the operations of the transitions.
Later, Souza et al. [116] defined three categories of mutation operators: module mu-
tation, interface mutation, and structure mutation. These operators consider the in-
trinsic characteristics of Estelle such as synchronous and asynchronous parallelism,
asynchronous communication, and dynamic structures.

8.2.2 Finite-State Machines & Statecharts

Fabbri et al. [55] applied mutation analysis in the context of specifications based
on FSMs. They defined a set of mutation operators that bases on the error classes
defined by Chow [45] and on results of heuristic research to simulate typical er-
rors made by a designer during modeling the FSM. To generate test sequences
the W-Method and the TT-Method were used. The following nine operators were
defined: arc-missing, wrong-starting-state, event-missing, event-exchanged, event-
extra, state-extra, output-exchanged, output-missing, and output-extra. Later, a tool
called Proteum/FSM was developed to support mutation analysis for FSM [56].
They also extended the approach to statecharts ([58]). They defined three differ-
ent categories of operators: FSM mutation operators similar to the ones in [55],
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EFSM mutation operators, and Statecharts-feature-based mutation operators. The
tool PROTEUMY/ST supports the use of mutation analysis in that context.

8.2.3 Model Checker Specifications

In model checking a system is described by a state machine that is checked if cer-
tain conditions defined by temporal logic constraints hold. In case that a certain
property does not hold the model checker generates a counterexample in the form
of a sequence of states. Another advantage of using model checkers is that equiva-
lent mutants can be detected and therefore eliminated automatically. Ammann et al.
combined mutation testing and model checking for automatically producing tests
from model checker specifications [6] and measuring test coverage on the specifi-
cation instead of the source code [5]. The mutation operators are either applied to
the state machine or the temporal logic constraints. Counterexamples produced by
the model checker are then converted into complete test cases and applied to the
system. In case that the mutation operators have been applied to the state machine
counterexamples represent failing tests, that is, the system is expected to diverge
from the corresponding test cases. Mutants obtained from the temporal logic con-
straints result in passing tests where the system is supposed to pass the test cases.
Black et al. ([32], [33]) refined the mutation operators defined by Ammann et al.
[6] and defined new ones to be applied in the same manner to combine mutation
testing and model checking.

8.2.4 Model-Driven Engineering

Testing the correctness of model transformations plays an important role in model-
driven engineering (MDE) ([61], [62]). A model transformation process transforms
an input model and returns an output model. In each case, these models must con-
form to an input and output meta-model as well. Mottu et al. [95] proposed an
approach based on mutation analysis to evaluate the quality of test sets. Specific
mutation operators are defined on the meta-model notion since the mutants must
preserve the conformity with the meta-models.
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8.2.5 Petri Nets

Fabbri et al. [57] applied mutation analysis to Petri nets. Based on the error classes
of Chow [45] they defined the following set of mutation operators: input-missing,
input-extra, input-shifted, input-exchanged, output-missing, output-extra, output-
shifted, output-exchange, and wrong-initial-marking. The tool Proteum/PN sup-
ports the approach.

8.2.6 SDL

SDL (Specification and Description Language) is a language to describe the be-
havior of reactive and distributed systems such as telecommunication systems. It
has been defined and standardized by ITU-T (International Telecommunications
Union). Kovics et al. [84] applied mutation analysis to SDL to automate the pro-
cess of conformance test generation and selection. They defined six types of mu-
tation operators: state modification operator, input modification operator, output
modification operator, action modification operator, predicate modification oper-
ator, and save missing operator. Two algorithms were defined for automatic test
selection. The first algorithm derives test cases from an SDL specification by com-
paring the mutants of the specification with the original one. The second algorithm
aims to optimize an existing test set by removing test cases that do not affect the
mutation score. Although test cases generated/selected were used for conformance
testing, their study still followed the procedure described in Figure 2.2, that is, gen-
erating/selecting test cases by comparing the execution results between the original
SDL specification and the mutated SDL specifications. Sugeta et al. [117] pro-
posed mutation analysis for SDL for testing the specification itself. They defined
three groups of operators: process mutant operators, interface mutant operators
and structure mutant operators.

8.2.7 XML & Web Applications

Lee and Offutt [87] presented an approach to use mutation analysis for testing the
semantic correctness of XML-based interactions between web systems. The in-
teractions are specified using an interaction specification model consisting of docu-
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ment type definitions, message specifications and a set of constraints. Test cases and
mutants are XML messages. Two initial mutation operator classes were proposed.
Xu et al. [126] define schema perturbation operators that are used to modify XML
schema and therefore to generate invalid messages. Li and Miller [88] proposed
a technique for using mutation analysis to test the semantic correctness of W3C
XML Schemas. Six mutation operators are designed to detect faults concerning
name-spaces, user-defined types, and inheritance.

8.3 Comparison with Other Approaches

Many of the existing mutant generation techniques can be represented in a uniform
way by using the basic operators introduced in this thesis. For discussion purposes,
the 37 mutation operators reported by Fabbri et al. ([58]) are used to generate
statechart-based mutants as an example. After a careful analysis, it can be noticed
that each of them can be represented by an insertion operator, an omission operator,
or a combination of these two, as follows:

e A missing arc, transition, event, state, input, history state, etc. can be repre-
sented by an omission operator.

e An extra arc, transition, event, state, input, history state, etc. can be repre-
sented by an insertion operator.

e A corrupted arc, transition, event, state, input, history state, etc. can be repre-
sented by an omission operator followed by an insertion operator.

Applying the basic operators leads to the following observations:

e omission of a state (“state-missing”) is included in [58], but not in [55];

e states (“‘state-extra”) can be inserted in [55], but not in [58].

Table 8.1 through Table 8.3 show how these 37 mutation operators can be gen-
erated by using an insertion (I) or omission (O) operator or a combination of these
two. In each table, the first column contains an operator defined by Fabbri et al.
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([58]). A cross “x” in the second and third column indicates insertion and/or omis-
sion of the artifact listed in the fourth column. Table 8.1 also includes another set
of FSM operators defined by Fabbri et al. ([55]). From Table 8.1 through Table
8.3, it can be observed that the mutation operators introduced by Fabbri et al. can
be structured and unified in a way that additional meaningful operators arise. For
example, the two FSM operator sets defined by Fabbri et al. ([55] and [58]) in Table
8.1 can be represented by basic operators applied to event, output, transition, and

State.

Table 8.1: FSM operator set and representation using the basic operators

FSM operator (left defined in [58] I | O | Artifact

and right in [55])

wrong-start-state wrong-starting-state  (default | x | X | start-state
state)

arc-missing arc-missing X | arc

event-missing event-missing X | event

event-extra event-extra X event

event-exchanged event-exchanged X | X | event

destination-exchanged - X | X | destination

output-missing output-missing X | output

output-exchanged output-exchanged X | X | output

- output-extra X output

state-missing - X | state

- state-extra X state
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Table 8.2: EFSM operator set and representation using the basic operators

EFSM operator (defined in [58]) I | O | Artifact
expression deletion X | expression
boolean expression negation X negation
term associativity shift X | X | brackets
arithmetic operator by arithmetic operator | X | x | arithmetic operator
relational operator by relational operator X | X | relational operator
logical operator by logical operator x | x | logical operator
logical negation X logical negation
variable by variable replacement X | X | variable
variable by constant replacement X constant
X | variable
constant by required constant replacement | X required constant
X | constant
constant by scalar variable replacement X scalar variable
X | constant

8.4 Summary

Model-based mutation testing (MBMT) as introduced in Section 2.2 has several
advantages compared to existing approaches as cited here. It combines the concept
of implementation-based mutation analysis with model-based testing and allows
mutation analysis to be applied to software, where the source code is not available.
The approach can also detect real (non-injected) latent faults in SUC. Furthermore,
the iterations and combinations of the two basic mutation operators (omission and
insertion) introduced in Chapter 3 can help to supersede and systematize the broad
variety of existing mutation operators.
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Table 8.3: Statecharts-feature-based operator set and representation using the basic

operators
Statecharts-feature-based operator (defined in | I | O | Artifact
[58])
transitions history deletion X | transitions history
transition with history by transition replacement X | transition with history
X transition
history-missing X | history
h by h* replacement X *
h* by h replacement x| ¥
h-extra X h
h*-extra X h*
in(s) condition-missing X | in(s) condition
in(s) condition state replacement X | x | in(s) condition state
not-yet(e) condition-missing X | not-yet(e) condition
not-yet(e) condition event replacement X | %X | not-yet(e) condition event
exit(s) event-missing X | exit(s) event
exit(s) event state replacement X | X | exit(s) event state
entered(s) event-missing X | entered(s) event
entered(s) event state replacement X | X | entered(s) event state
broadcasting origin transition replacement X | X | broadcasting origin transi-
tion
broadcasting destination transition replacement X | X | broadcasting destination
transition
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Chapter 9

Conclusions and Perspectives

9.1 Conclusions

MBMT has been presented in this thesis as a new mutation testing technique that
constructs mutants based on the model of SUC, thereby injecting faults into the
model and not into the implementation. In contrast to mutation analysis based on the
implementation, this technique enables not only the application of mutation analysis
when source code of SUC is not available but also the evaluation of the quality of
test generation algorithms and test sets used and, at the same time, the detection of
non-injected, residual faults in SUC. Thus, the thesis extends the classification of
mutants that are /ive and killed by additional sub-classes (see Figure 2.6).
Implementation- and specification-based mutation analysis techniques usually
need a cluster of operators based on empirical analysis. The approach introduced
in this thesis generates mutants using two basic operators: insertion and omis-
sion. Moreover, these basic operators with appropriate iterations and combina-
tions can be used to systematically construct many existing mutation operators.
The advantage of the basic operators is that they enable a rigorous systematic ap-
proach. Implementation- and specification-based mutation operators from literature
are created on an as-needed basis rather than strictly mathematically. The proposed
method mutates at the modeling level that focuses on relevant features of SUC.
The syntactical part of the notions of the approach are introduced by means of
directed graphs, which are then semantically enriched and practically exemplified
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using a collection of graph-based modeling tools, that is, event sequence graphs,
finite-state machines, and statecharts. These modeling tools build a hierarchy in
terms of their expressive power based on their formal features, which are uniformly
represented. This enables a comparison of the mutant generation issues of the basic
operators when systematically applied to nodes or arcs of the graphs.

Three case studies were conducted to demonstrate the method, to analyze its
characteristics, and to compare the fault detection capability of test sets generated
based on different kinds of mutants using several types of applications and corre-
sponding tool support. Significant results of the case studies are:

1. Test sets generated based on mutants created by insertion operators turned
out to be considerably more effective in revealing faults in SUC than test sets
generated based on mutants constructed by omission operators.

2. Hence, it is strongly recommended that the test generation algorithm used
should not only check the given model to validate the legal behavior of SUC
under expected circumstances but also its non-existing, forgotten, or omitted
elements, for example, arcs and transitions, to check faulty behavior under
unexpected circumstances.

3. Mutants that can be easily constructed using the basic operators represent all
the fault models, except hierarchy faults in SC. Moreover, one may consider
extending the test oracle (predicted outputs) to kill more mutants created by
omission operators.

4. The approach detected additional faults in systems that were already released.
Even more, case study III contains an application that was tested by a German
authority for testing and certification of technical systems and released for
public use. Nevertheless, the proposed approach detected several faults in the
released version of this system. In case study II and III, the manufacturers
were not previously aware of the bugs detected by MBMT.

5. The method can effectively be used to improve test generation for an exist-
ing model-based testing process. It turned out that test sets generated based
on ESG-mutants using the s/-operator revealed approximately 80% of the
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remaining faults detected in each SUC. In conclusion, test generation algo-
rithms for ESG should consider at least covering arcs that are not included
within the model to test such illegal behavior of SUC.

9.2 Outlook and Perspectives

Despite the advantages mentioned in the previous section, further research is needed
to increase the efficiency of the test algorithms used, especially for analyzing ex-
isting empirical approaches to represent their mutation operators by the basic ones
introduced in this thesis. In addition, further empirical studies are necessary to
consider practical aspects, such as the construction of mutants to represent typical
faults in the selection of safety-critical systems. They could form a benchmark for
the assessment of such systems. Starting point is given again by existing empirical
studies; they need a uniform representation using the basic operators. Apart from
these aspects, ongoing research work could include mutation optimization subject
to their costs determined by their length, number, etc., and coverage capability of
different elements of the models (node coverage, sequence coverage, etc.). Further-
more, an extension of the approach to higher-order mutation could be considered
to compare the fault detection capability of test sets and analyze the coupling ef-
fect with respect to first-order mutants ([20]), especially using further graphical and
algebraic modeling tools.
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Appendix A

Adaptive Cruise Control (ACC)
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Figure A.1: Relevant signals for ACC
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Appendix A. Adaptive Cruise Control (ACC)
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Figure A.3: Block diagram of the integration test device
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Appendix B

The Control Desk of a Marginal
Strip Mower (RSM13)

B.1 Statecharts

Control desk of RSM13

? 2

RSM13 Transport- / €9 » RSM13 Actuator
working position =
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€3.10 €49
A\ 4
RSM13 Operation |

IV Y TR
RSM13 Operation Il

A 4

-

/

Figure B.1: SC of control desk of RSM13
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148 Appendix B. The Control Desk of a Marginal Strip Mower (RSM13)
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Figure B.2: SC of RSM13 actuator
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B.1. Statecharts 149
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Figure B.4: SC of RSM13 operation I
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Figure B.5: SC of RSM13 operation II
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150 Appendix B. The Control Desk of a Marginal Strip Mower (RSM13)
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B.2. ESGs
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Appendix C

ISELTA

stem for Enterprise-Level Web-Centric Tourist Applications

login  register  language ™ P4 [N

Welcome
to ($2(ict

* What is ISELTA?

ISELTA is an online reservation system for hotel provider

» mehr

¥ Your advantage

control and transparency.

adaptable offers,

¥ Use the advantages of ISELTA

register without a fee: » registration

terms and conditions | imprint | contact | Support

Figure C.1: Entry page of ISELTA ([77])
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specials

Hotel
Paderborm / Paderborm
Libori 2010

arrival/ departure:
24.07.2010/25.07.2010

Paderborn's Libori Festival i
the ultimate cultural
expetience - a colourful
rmixture of concerts, bands,
church muzic, exhibitions
and shows which takes place
annually in the last week of
July in hanour of St Liboriu:

Paderborn's patron saint.

price: 250 £
1. adress == 2, confirm reservation
with (*] marked field are mandatary fields,
titel br. - I narne of company
last narme* straat®
first narme* house number.*
ermail® postal codefcity®
phone, country Germany - |
last name first name
card holder*
credit card type* please chooze acard - I

no. of credit card .*
expiering date® f (Mr/1110)

CVLC/CVY Code help for CYC/CY¥Y Code

r I accept the terms and conditions of the provider and accept this az well for all participants,

| book I | cancel I

Figure C.2: Booking mask for special offers in ISELTA
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& specials

current total
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add specials to list

photo name arrivalfdeparture number

X

arrival/departure:

?ccommodation debit Doppelzimmer Classic = |
rom:
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total price: £

photo: I Durchsucher... |

description {national):

description
{international):

name:

add

Figure C.3: Website to set up a special offer in ISELTA
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Figure C.4: ESG for setting up a special offer in ISELTA ([129])
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File Edit DecsionTable Help
Projects:
Variables: - Variables LIST dedsion table 01
| |_g Mew Project | L J 1 J
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| i Edit Project | mifes: [FETR (SRS SO ||
| | Delete Project |
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| | Delete OT | Lee |
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—
dedsion table 02
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L
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Actions: Action_1 X - X - X - X - X - X - - - X X
Mg Action_2 k x [- - F F k[ |x - - - - - -
6) Action_4 i N - S N . S R - |- X - i b X x
Les |
Selection:
L= |
L |
- Data Generation | Load | | Save || EXIT |

Figure C.5: ETES—decision tables for event sequences ([129])
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Appendix D

Thermostat System

To illustrate the notions of Z-, D- or C-mutant (Definition 7.12) a thermostat system
is used as an analytical case study. It is shown that depending on the type of the
mutant the positive or negative property ¢j, and ¢j (Definition 7.20 and 7.21) must
be used to generate counterexamples.

There are some conditions that affect the thermostat’s behavior: SwitchlsOn,
TooCold, TooHot, and TempOk. System behavior is expressed as four modes of
operation: Off, Inactive (the thermostat is regulating the room’s air temperature,
but the temperature does not need to be adjusted), Heat (the thermostat is trying to
heat the air), and AC (the thermostat is trying to cool the air). Table D.1 shows the
NuSMV specification model of the thermostat system. The original specification
[7] has been simplified, without changing its functionality. The case statements
have been translated into a TRANS expression.

Example D.1 (Z-mutant created by [O-operator) This example shows negative
testing for an Z-mutant. The statement

oy := Thermostat = Inactive A SwitchIsOn;
is mutated to
o :=(Thermostat = Inactive);

It is clear that oy implies «;. Therefore, the positive property 4 is true and
M = 4. Hence, it requires a negative test case to detect the mutant w.r.t. . The
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158 Appendix D. Thermostat System

Table D.1: NuSMYV model specification of thermostat system
MODULE main

VAR

Thermostat: {Off, Inactive, Heat, AC};
Enuml: {TooCold, TempOk, TooHot};
SwitchIsOn : boolean;

ASSIGN
INIT (Thermostat=0ff & !SwitchIsOn)

TRANS(

oy & next(fy) | ag & next(Bz) | s & next(Bs) | vy & next(By) |

a5 & next(fs) ‘ ag & next(Gg) | a7 & next(S7) | ag & next(fg) |

ag & next(fy) | a1p & next(B1o) | deadlock & next(Thermostat)=Thermostat &
next(Enuml)=Enuml & next(SwitchIsOn)=SwitchIsOn )

DEFINE

«a1:= Thermostat=0Off & !SwitchIsOn;

B1:= SwitchIsOn & Enuml=TempOk & Thermostat=Inactive;
ao:= Thermostat=0ff & !SwitchIsOn;

B2:= SwitchIsOn & Enuml=TooCold & Thermostat=Heat;
«3:= Thermostat=0Off & !SwitchIsOn;

(3:= SwitchIsOn & Enuml=TooHot & Thermostat=AC;
ay4:= Thermostat=Inactive & SwitchIsOn;

B4:= SwitchIsOn & Thermostat=Off;

a:= Thermostat=Inactive & !(Enuml=TooCold);

B5:= Enuml=TooCold & Thermostat=Heat;

ag:= Thermostat=Inactive & !(Enuml=TooHot);

B¢:= Enuml=TooHot & Thermostat=AC;

a7:= Thermostat=Heat & SwitchIsOn;

B7:= !SwitchIsOn & Thermostat=0ff;

ag:= Thermostat=Heat & !(Enuml=TempOk);

Bs:= Enuml=TempOk & Thermostat=Inactive;

ag:= Thermostat=AC & SwitchIsOn;

Bo:= SwitchIsOn & Thermostat=Off;

a19:= Thermostat=AC & !(Enuml=TempOk);

B10:= Enuml=TempOk & Thermostat=Inactive;
deadlock:=!(a1 |042|053‘Oé4|055|046‘Oé7|0(8|049|0410);
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negative property must be set to ¢} := G—(7," A =Ty A =T /4). Model checking
yields the following counterexample (test case), that is, M ~ ©j.

s1: (Thermostat = Off, Enuml = TooHot, SwitchIsOn = 0)

s9: (Thermostat = Inactive, Enuml = TempOk, SwitchIsOn = 1)

s3: (Thermostat = Heat, Enuml = TooCold, SwitchIsOn = 0)

s4: (Thermostat = Inactive, Enuml = TempOk)

s5: (Thermostat = Off, Enuml = TooHot)

sg: (Thermostat = Inactive, Enuml = TempOk, SwitchIsOn = 1)

s7: (Thermostat = Off, Enuml = TooHot, SwitchIsOn = 0)

Example D.2 (D-mutant created by [ I-operator) This example shows positive
testing for a D-mutant. The statement

a5 := Thermostat = Inactive A =(Enuml = TooCold);
is mutated to
o = (Thermostat = Inactive A = (Enuml = TooCold) A SwitchIsOn);

Obviously, o implies a. Therefore, ¢f is true and M; = ¢f. Hence, it re-
quires a positive test case to detect the mutant w.r.t. «f. Therefore, the positive
property is set to 5 := G (75 A =T, A =T /5). Model checking yields the follow-
ing counterexample, that is, M [~ ¢s.
s1: (Thermostat = Off, Enuml = TooHot, SwitchIsOn = 0)

59: (Thermostat = Inactive, Enuml = TempOk, SwitchIsOn = 1)
s3: (Thermostat = Heat, Enuml = TooCold, SwitchIsOn = 0)
54: (Thermostat = Inactive, Enuml = TempOk)

s5: (Thermostat = Heat, Enuml = TooCold)

s6: (Thermostat = Inactive, Enuml = TempOk)

s7: (Thermostat = AC, Enuml = TooHot)

sg: (Thermostat = Inactive, Enuml = TempOk, SwitchIsOn = 1)
Sg: (Thermostat = Heat, Enuml = TooCold, SwitchIsOn = 0)

Example D.3 (D-mutant created by {C-operator) This example shows testing for
a C-mutant. The statement
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g := Thermostat = AC A SwitchIsOn;
is changed to
o = (Thermostat = Heat A SwitchIsOn);

The positive property is set to g := G—(Tg A =T5° A =T /9). Model checking
results in the following counterexample (M [~ ©q).
s1: (Thermostat = Off, Enuml = TooHot, SwitchIsOn = 0)
s9: (Thermostat = Inactive, Enuml = TempOk, SwitchIsOn = 1)
s3: (Thermostat = AC, Enuml = TooHot)
84: (Thermostat = Off, SwitchIsOn = 0)
s5: (Thermostat = Inactive, Enuml = TempOk, SwitchIsOn = 1)
sg: (Thermostat = Off, Enuml = TooHot, SwitchIsOn = 0)

The negative property is set to @5 := G—(T5° A =Tg A =T /9). Model checking
yields M = ¢j. The statement o is a C-mutated transition, but it creates a D-
mutant, because its increscent mutated behavior is masked by other transitions. A
weaker property of 3 := G— (75" A —Ty) would produce the following test case.
s1: (Thermostat = Off, Enuml = TooHot, SwitchIsOn = 0)
$o: (Thermostat = Heat, Enuml = TooCold, SwitchIsOn = 1)
s3: (Thermostat = Off, Enuml = TooHot, SwitchIsOn = 0)
s4: (Thermostat = Inactive, Enuml = TempOk, SwitchIsOn = 1)
s5: (Thermostat = Off, Enuml = TooHot, SwitchIsOn = 0)

However, this is a wrong test case. It passes in the original model M, because

the transition (s, S5) can be generated by 7, = a4A X (f,). Therefore, the condition
—7 /9 is necessary for the positive and negative property (Definition 7.20 and 7.21).
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