
DS&OR Lab
Fachgebiet Wirtschaftsinformatik
Fakultät Wirtschaftswissenschaften

Universität Paderborn

Dissertation

Ontology-Based Representation of Abstract
Optimization Models

for
Model Formulation and System Generation

Der Fakultät Wirtschaftswissenschaften der
Universität Paderborn

zur Erlangung des akademischen Grades
Doktor der Wirtschaftswissenschaften

- Doctor rerum politicarum -
vorgelegte Dissertation

von
Dipl.-Math. Florian Stapel
geboren am 15.10.1984 in

Herford

Gutachter:

1. Prof. Dr. Leena Suhl
2. Prof. Dr. Taïeb Mellouli

2016

Hiermit erkläre ich an Eides Statt, dass ich die vorliegende Arbeit selbständig und
ohne unerlaubte fremde Hilfe angefertigt, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt und die den benutzten Quellen und Hilfsmitteln wörtlich
oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Paderborn, 25.07.2016

——————————————
(Vorname Name)

Abstract - deutsch

Gegenstand dieser Arbeit ist ein neuer Ansatz zur Entwicklung optimierungs-basierter
Entscheidungsunterstützungssysteme, wobei abstrakte Optimierungsmodelle die Kern-
komponenten der Systeme darstellen. Um den Entwicklungsprozess und insbesondere
den zentralen Schritt der Modell-Formulierung zu unterstützen, wird eine neue Darstel-
lung solcher Modelle vorgeschlagen, die es erlaubt, die Semantik und Struktur von
Daten, mathematischen Eigenschaften und den Formulierungs-Elementen der Model-
le selbst geeignet auszudrücken. Die Darstellung basiert auf Ontologie-Klassen und
assoziierter Funktionalität zur Herleitung algebraischer Statements. Diese Struktur
ermöglicht es, Modellierungs-Fragmente in einer wiederverwendbaren Weise zu ent-
werfen. Formulierungs-Entitäten wie Constraints und Optimierungsziele werden von
Datenmodellen und konkreten algebraischen Ausdrücken wie etwa Summationen ent-
koppelt, sodass eine weiter abstrahierte Sicht auf Optimierungsmodelle entsteht als es
in Algebraischen Modellierungssprachen der Fall ist. Die Operationen im Schritt der
Modell-Formulierung werden auf einfache Ontologie-Graph-Manipulationen reduziert
und es wird die Grundlage für eine Vielzahl relevanter Automatisierungen gelegt. Im
Rahmen dieser Arbeit werden verschiedene Konzepte und Technologien zur Unter-
stützung des Gesamt-Ansatzes präsentiert. Der Erzeugungsprozess des Systems wird
erörtert, wobei semantische Modell-Services, die die Instanziierungs-Funktionalität
mit Daten anbieten, in ihren Service-Beschreibungen mathematische Eigenschaften
der Modelle repräsentieren. Die Services und ihre Beschreibungen können direkt aus
der Ontologie-Darstellung generiert werden. Semantische Servicekomposition wird
eingesetzt, um ein System welches Modell, Solver und weitere Services enthält, zu
erzeugen. Zusammen mit Datentransformationen, die aus Mappings der verwendeten
semantischen Typen in Ontologie-Darstellung und Service-Beschreibungen gewonnen
werden können, kann ein lauffähiges System entstehen.
Der Entwurf und die Struktur wiederverwendbarer Typen von Modell-Entitäten,

sowie die Unterstützung von Operationen in der Modell-Formulierung, bilden den
Hauptteil dieser Arbeit. Das Wissen um Vererbungs-Beziehungen und Klassen-Re-
striktionen, welches in den Ontologien enthalten ist, kann die Automatisierung von
Änderungen der Formulierung des Modells, beispielsweise nach einer ersten System-
Ausführung, ermöglichen. Beispiele aus den Domänen der Netzwerk-Fluss-Probleme
und der Planung von Wasserversorgungssystemen werden zur Evaluation des Ansatzes
diskutiert. Dabei werden verschiedene Formalisierungen vorgestellt, wie zum Beispiel
die Glättung und Linearisierung nichtlinearer Constraint-Gruppen.

Stichworte: Algebraische Modellierungssprachen, Entscheidungsunterstützungssys-
teme, Model Formulation, Model Management, Semantic Web Services, Service Com-
position, Structured Modeling

Abstract - englisch

This dissertation presents a novel approach for developing optimization-based decision
support systems in which problem specific abstract optimization models constitute
the core components. In order to support the development process and especially the
task of model formulation, a novel representation of such models is proposed which
allows to suitably express the semantics and structure of data, mathematical properties
and the problem formulation elements themselves. The representation is based upon
ontology classes and associated derivation functionality for algebraic statements. The
latter structure allows to design respective modeling fragments in a reusable way.
Formulation entities such as constraints and objectives are decoupled from data models
and concrete algebraic terms such as summations, which provides a further abstracted
view in comparison to Algebraic Modeling Languages. The operations in the model
formulation step are reduced to simple ontology-graph manipulations as well as that
a fundament for a variety of meaningful automatizations is laid. Within this thesis,
different concepts and technologies to support the overall approach are presented. The
generation process of the system will be discussed where semantic model services that
provide the functionality to instantiate a model with data represent the mathematical
properties of models in their service descriptions. The services and descriptions can
be generated straight forward out of the ontology representation. Semantic service
composition is exploited to build a system with model, solver and further services.
Together with data transformations generated from mappings of the semantic data
types included in the ontology representation and service descriptions, a runnable
system can be retrieved.
The design and structure of reusable model entity type formulations, as well as

the support of operations in the model formulation, constitute the main part of this
work. The knowledge about subsumption relations and class restrictions that is repre-
sented in the ontologies may allow to automatize changes in the model formulation,
e.g., after a first execution of a system. Examples from the domains of network flow
problems and water distribution system planning will be discussed to evaluate the
approach, thereby providing formalizations of different model formulation fragments
and operations such as the smoothing and linearization of nonlinear constraint-groups.

Keywords: Algebraic Modeling Languages, Decision Support Systems, Model Formu-
lation, Model Management, Semantic Web Services, Service Composition, Structured
Modeling

Preface

Developing ideas is a fascinating process. You start with a very vague vision or maybe
some fragments coming to your mind and end up with a whole book of 250+ pages.
In the case of developing an idea to a research fragment, the identification of a re-
search question, the formulation of a goal and the respective exploitation of a research
methodology are important for sure. Furthermore, analytical thinking and logical de-
duction are the typical tools to achieve a concrete result out of a vague idea. But the
process of developing an idea itself can not be completely demystified. There always
is a black box of creativity and experimentation required to push things forward and
explore new directions. I write this with the view of a mathematician and also as
a computer scientist with a growing interest in business information systems. But I
would strongly believe that the statement remains valid for authors and artists. Fol-
lowing the creative research process can have interesting intermediate results such as
a piece of paper being marked all over with diagrams and greek letters or, even more
mysterious, images of sheep occuring on whiteboards and further infrastructure of a
working group. But in the end, when the work is done, many things occur simple and
clear.
When I started my work at DS&OR Lab in early 2011, there was a formal description

of the research project C3 "Modeling of Optimization Problems" which was embedded
into the visionary Collaborative Research Center 901 "On-The-Fly Computing". To be
honest, it really took a comparably long time to identify a core research question and
develop new ideas. But with the here achieved results, I would describe the process
that took place in the last years as a consequent development of the initial aspects
and ideas. For sure, all this would not have been possible without the aid of many
people to whom I would like to express my gratitude.

Acknowledgements
At first I would like to thank Prof. Dr. Leena Suhl for supervising this thesis,
including several thorough discussions, different opportunities for funding and
networking, and finally, motivation. The next big thank goes out to Corinna
Hallmann who accompanies me as a collegue and friend for many years, including
the studies of mathematics and working at DS&OR. Thanks for making many things
possible, such as starting together into the CRC and always organizing a continuous
supply of chocolate with expectation value Wednesday.
This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre "On-The-Fly Computing (SFB 901)". I
would like to thank my project partners, especially Felix Mohr, Sven Walther, Marie
Christin Platenius, Svetlana Arifulina and Alexander Jungmann, for inspiring
discussions and the German Research Foundation for funding this project.
I would like to thank Prof. Dr. Taïeb Mellouli and his working group for taking the
time for a thorough discussion on the research work of this thesis. I also thank Prof.

Mellouli for being the second referee. Special thanks go out to Dr. Michael Römer
for arranging the meeting at Halle and providing many ideas in the discussion. In
this context, I also would like to thank Hendrik Nieß for many ideas and the
thorough discussion at Halle.
I would like to thank Dr. Kostja Siefen for his encouragement in discussing a
requirements engineering ansatz for the development of optimization models and
systems. The latter ansatz also had a strong emphasis on optimization models in the
development of dss and as such the discussion was fundamental to me for starting to
evolve the idea of a semantic optimization model representation. Further thanks in
this context also go out to Lars Beckmann, whose concept of an "Optimization
Framework" always showed me further important aspects of the big picture of
optimization system development.
Big thanks go out to my family and friends for supporting me over the last five
years. I thank Alexandra Bäcker for assisting me over all the time and being at my
side. Furthermore, I especially would like to thank my parents for always being
there. A big thank goes out to Lieselotte Bäcker for proofreading major parts of this
document. I also would like to thank the whole family Bäcker for supporting me over
the last years.

Paderborn, July 2016

Contents

1. Introduction 1
1.1. Approach within this Thesis . 2
1.2. Outline and Methodology . 4

2. Software Services and Ontologies 5
2.1. Component-Based Software Engineering 5
2.2. Services, SaaS and SOA . 10
2.3. Web Services . 12
2.4. The Visions of Semantic Web and OTF Computing 15
2.5. Ontologies . 18

2.5.1. Ontology Languages and Semantics 19
2.5.2. Visualization of Ontologies within this Thesis 25
2.5.3. Reasoning, Queries and Rules 27
2.5.4. Ontology Imports and Ontology Mapping 30

2.6. Semantic Services . 32
2.6.1. Semantic Service Description Languages 33
2.6.2. Semantic Service Composition 36
2.6.3. Data Mediation in Sequential Workflows 39

3. Model Management and Optimization Software 41
3.1. Basic Notions . 41
3.2. Model Management . 42

3.2.1. Modeling Lifecycle and Model Formulation 42
3.2.2. Structured Modeling . 44
3.2.3. Model Integration and Composition 47
3.2.4. Distributed Model Management and SOA 49

3.3. Optimization Software . 50
3.3.1. Solver Software . 51
3.3.2. Algebraic Modeling Systems . 52
3.3.3. Distributed Optimization, Frameworks and SOA 55

3.4. Conclusion . 57

4. Problem Identification and Objectives 61
4.1. Problem Identification and Motivation 61
4.2. Requirements . 64

i

Contents

5. Ontology-based Representation of Optimization Models 67
5.1. Basic Approach . 67
5.2. A First Example Model: Min-Cost-Flow with integrality Requirements 70
5.3. Structure of the Representation . 72

5.3.1. Ontology Structure . 72
5.3.2. Top Level Definitions in OM . 76
5.3.3. The Set-Parameter-Indexing Vocabulary 78
5.3.4. The Mathematical Properties Ontology 80
5.3.5. Ontology Specifications for the Min-Cost-Flow Problem 82

5.4. Expression Structure Separation and AML Derivation 86
5.4.1. Flow Type Example of a Statement Derivation 89
5.4.2. Requirements and Design Considerations for Queries and Deriva-

tion Implementations . 97
5.4.3. A Balance-Type Example of a Statement Derivation 103
5.4.4. Algebraic Model Derivation Process 108
5.4.5. Conclusion of Statement Derivation and Structure 111

5.5. Reengineering of AML Models . 112
5.6. Model Instantiation Services . 114

5.6.1. Obtaining Model Properties from the Ontology Representation . 114
5.6.2. Generating Model Instantiation and Solver Service Descriptions 125

5.7. Conclusion . 128

6. Reusability and Model Formulation in the Ontology Representation 133
6.1. Considerations for Min-Cost-Flow Models 133

6.1.1. The Single Commodity Balance Hierarchies 134
6.1.2. Considerations for a Multicommodity Flow Model 139
6.1.3. Two Types with Generic Summations 146
6.1.4. Ontology Specifications for a general Min-Cost-Flow Model . . . 150

6.2. Discussion of MDO and Formulation Ontology Type Design 158
6.3. Considerations for a Water Network Case Study 160

6.3.1. Introduction to Water Distribution Systems Planning 160
6.3.2. The Case Study Model . 163
6.3.3. Pipe Headloss and Linearization Types 169
6.3.4. Model Formulation Considerations 179
6.3.5. Types and Formulation Choices concerning Integrality Require-

ments . 186
6.4. Soft Constraints . 191
6.5. Conclusion . 195

7. Consolidation: A MINLP Model for Pipe Renewal Planning 199
7.1. Literature Review: Pipe Renewal Planning and Optimization 200
7.2. Multiperiod Renewal Planning: Problem Statement and Approach . . . 202

ii

Contents

7.3. MINLP Model . 205
7.4. Numerical Results . 213

7.4.1. Test Network . 214
7.4.2. Results with Bonmin . 215
7.4.3. Results with Baron . 216
7.4.4. Conclusion . 217

8. Tool Support 219
8.1. Funtionality . 219
8.2. Design . 221

9. Conclusion and Outlook 225
9.1. Conclusion . 225
9.2. Outlook . 228

Bibliography 233

A. Common Shortcuts 245

B. Ontology Definitions and Digital Material 247

iii

Contents

iv

List of Figures

2.1. Sequential composition of a model and a solver 7
2.2. Hierarchial composition with an adaptor. Extended version of an image

from [Som12] . 9
2.3. Additive composition with glue code. Image in similarity to [Som12] . 9
2.4. Web Services Architecture. Image in similarity to [Som12] 14
2.5. A network data ontology in Manchester Syntax - Part 1 22
2.6. A network data ontology in Manchester Syntax - Part 2 23
2.7. Visualization of the network data ontology 26

3.1. Genus graph of a transportation model. Reproduction of an image from
[Geo87] . 45

5.1. Generation of optimization systems for target SOA with changes 68
5.2. Ontology representation as a layer in-between AMLs and services . . . 69
5.3. Example: A standard min-cost-flow problem 71
5.4. Structure of the ontology representation 73
5.5. Using a standard balance constraint type in a water distribution model 75
5.6. Top level optimization modeling definitions 77
5.7. Excerpt of the SPI ontology . 79
5.8. Excerpt of the OM.MProps ontology for data properties 81
5.9. Excerpt of the OM.MProps ontology for formulation properties 81
5.10. Min-cost-flow instance structure in the ontology representation 82
5.11. Types in use for the min-cost-flow model in the ontology representation 85
5.12. Type definitions for the min-cost-flow model 85
5.13. Expression structure separation by query and derivation implementations 87
5.14. AML Derivation Service as a hierarchical composition (treat derivation

services as components) . 89
5.15. Excerpt of ontology knowledge that is required for deriving the flow

variable statement in the min-cost-flow model 90
5.16. First part of query for flow-type derivation 91
5.17. Matching group of query atoms . 92
5.18. Query results for SingleCommodityFlowCollection Type - Part 1 94
5.19. Query results for SingleCommodityFlowCollection Type - Part 2 95
5.20. Abstract algorithmic description for a derivation implementation of

Net#SingleCommodityFlowCollection. 96
5.21. SingleCommodityFlowCollection individual statement(s) as XML . . . 98

v

List of Figures

5.22. Ontology excerpts for deriving the mass-balance statement 103
5.23. Query for SingleCommodityBalance - Part 1 104
5.24. Query for SingleCommodityBalance - Part 2 105
5.25. Query for SingleCommodityBalance - Part 3 106
5.26. Abstract algorithmic description for a derivation implementation of

NetForms#SingleCommodityBalance. 107
5.27. Algebraic model derivation process . 109
5.28. Adding mathematical properties of formulation entities to an OWL op-

timization model in an automated way 118
5.29. Two balance formulation types in a subclass relation 119
5.30. Given and inferred knowledge for the single linearity rule and a balance

constraint . 120
5.31. Pattern for an undecideable mathematical property with the SWRL

rule ansatz . 122
5.32. Analyzing mathematical properties of a model 124
5.33. Simple service descriptions for model and solver in case of the min-cost-

flow-model . 126

6.1. Taxonomy of single commodity balance types 134
6.2. OM#requires specifications for the demand-oriented balance types . . . 138
6.3. A multicommodity min-cost-flow model 140
6.4. Balance types with and without commodity sets 141
6.5. Changes in the assertional specification when extending the first min-

cost-flow model towards the multicommodity flow model 142
6.6. Formulation type adaptions when extending the first min-cost-flow model

towards the multicommodity flow model 143
6.7. MDO-type adaptions when extending the first min-cost-flow model to-

wards the multicommodity flow model 144
6.8. Type specification for a generic resource availability type 147
6.9. Type specification for a multiple commodity sets min-cost-flow goal . . 149
6.10. A general min-cost-flow model - Data definitions 150
6.11. A general min-cost-flow model - Formulation definitions 151
6.12. Specification of implicit set unions for multiple commodity sets 153
6.13. Instance level specifications for the upper resource availability constraints154
6.14. Adaptions in the assertional specifications of the balance constraints

when extending the ontology specification towards the third min-cost-
flow model . 155

6.15. Formulation type changes when extending the ontology specification
towards the third min-cost-flow model 156

6.16. Expression type definitions for the third min-cost-flow model 157
6.17. MDO type changes when extending the ontology specification towards

the third min-cost-flow model . 157

vi

List of Figures

6.18. Exemplary drawing of a WDS (generated with EPANET 2, [Ros00]) . . 161
6.19. The water network case study model - Data definitions 165
6.20. The water network case study model - Formulation definitions 166
6.21. Definition of waternet source restriction types 168
6.22. Definitions of smoothed and standard headloss types 170
6.23. AMPL statements for a non uniform L01 linearization of the pipe head-

loss in a MIP . 173
6.24. Type definition for the non uniform L01 linearization of the pipe headloss173
6.25. MDO definitions for the non uniform L01 pipe headloss linearization type174
6.26. AMPL statements for a uniform L01 linearization of the pipe headloss . 175
6.27. The uniform L01 pipe headloss linearization type as a parent of the non

uniform one . 176
6.28. Hierarchy of pipe headloss smoothing and linearization types 177
6.29. Extending a model with a balance constraint by a headloss constraint . 181
6.30. Recursive character of model formulation specifications for retrieving

an ontology model’s consistency after adding a new formulation entity . 185
6.31. Forbid short-term pump activation and deactivation by MIP constraints 188
6.32. Forbid short-term pump activation and deactivation for one and two

subsequent periods by quadratic NLP constraints as in [BGS09] 189
6.33. Ontology definitions for the two pump switching formulation types . . . 190
6.34. Ontology definitions for soft constraints’ constraint types 193
6.35. Ontology definitions for soft constraints’ goal types 194

7.1. A process for water optimization applications. Visualized process is in
similarity to an approach presented in [Hal15] 203

7.2. Fitted function Cost(·) . 209
7.3. The meshed example network . 215

8.1. Screenshot of the Load Models Tab . 220
8.2. Screenshot of the AML Derivation Tab 221
8.3. Relevant excerpt of classes and methods for the general derivation func-

tionality . 222
8.4. Relevant excerpt of classes and methods for derivation implementations 224

B.1. OM Ontology - Part 1 . 249
B.2. OM Ontology - Part 2 . 250
B.3. OM Ontology - Part 3 . 251
B.4. Set-Parameter-Indexing - Part 1 . 252
B.5. Set-Parameter-Indexing - Part 2 . 253
B.6. Set-Parameter-Indexing - Part 3 . 254
B.7. Set-Parameter-Indexing - Part 4 . 255
B.8. Set-Parameter-Indexing - Part 5 . 256

vii

List of Figures

B.9. OM.MProps - Part 1 . 257
B.10.OM.MProps - Part 2 . 258
B.11.OM.MProps - Part 3 . 259
B.12.OM.MProps - Part 4 . 260
B.13.Technical Constants . 261
B.14.Time Horizons - Part 1 . 262
B.15.Time Horizons - Part 2 . 263
B.16.Mathematical Operation Parameters - Part 1 264
B.17.Mathematical Operation Parameters - Part 2 265
B.18.Mathematical Operation Parameters - Part 3 266

viii

1. Introduction

Decision support systems (dss) and optimization technology provide powerful tools
for decision makers. The ongoing development in solver technology allows for the
solution of more and more practical problems in acceptable time. In addition to
that, tools for formulating and managing optimization models provide expressive
languages as well as supporting functionality to modelers and system developers.
Together with the ongoing research in the field of operations research, decision
support can be provided for a wide and growing range of application areas such as
supply chain management, home health care or public water supply.
With the growth of application areas and methods, suited support for the
development of optimization-based decision support systems becomes more and more
important. Concerning approaches and frameworks for the formulation and solution
of optimization models, areas of interest cover the suited representation of models,
the integration of data-sources, as well as means to generate complete prototype
systems in an integrated development environment (, see, e.g., AIMMS [RB13]).
Besides the monolithical approach of algebraic modeling systems such as AMPL,
GAMS, AIMMS, LINGO or FICO Xpress Optimization Suite
[FGK03, McC14, RB13, LIN07, FIC16], frameworks such as the Python
Optimization Modeling Objects (Pyomo) [HWW11, HLWW12] provide novel
development capabilities for formulating, analyzing and integrating optimization
models into decision support applications. Furthermore, service-oriented
architectures provide an emerging paradigm for conceptualizing software systems
based on reuse. Concerning the latter, web service approaches for distributed
optimization, e.g., allow to invoke solver functionality remotely over the internet,
where the binding to a service can be changed dynamically. Exemplary web service
frameworks are, e.g., given by the two projects Optimization Services (OS)
[FMM10b] and Open Optimization Framework (OOF) [EM03].
The central role of decision models in the development of dss is reflected by the
research field of model management. Model management covers different questions
concerned with decision models in a general modeling lifecycle. Besides others,
suited representations and the provision of means to formulate, integrate and reuse
decision models, are of interest. The framework of Structured Modeling (SM, see,
e.g., [Geo87]) and its extensions besides others allow to reuse modules of model
formulations, integrate models into new models, as well as to perform semantic
search for and reasoning on models by respective representational extensions.
Outside the SM framework, a work by Binbasioglu [Bin96] discusses configurable
types of linear model formulation elements, providing a first effort to not only reuse

1

1. Introduction

and integrate greater blocks of model definitions, but to also base the model
representation upon reusable formulation conceptualizations. Unfortunately, the
latter approach is only rarely formalized and restricted to linear problems that are
typically of the class LP. Together with the missing semantics of an underlying
language framework, the possibilities for support and automatization in the model
formulation of general mathematical programming models seem to be limited.
Furthermore, the portability of specifications seems hard to achieve. In addition to
that, the requirements on a suited formulation type and model representation
approach can also be extended by a development aspect: A widely automatized
generation of systems by means of service composition, where the model specification
builds a core, is desireable. Altogether, a research gap that is identified within this
thesis can be described as follows: Current optimization model representations
cannot cover suited model formulation support, reusage and the requirements for
service composition, in a holistic approach. In order to deal with the respective
issues, this thesis provides a novel framework and representation.

1.1. Approach within this Thesis

This thesis is concerned with a novel optimization model representation and system
generation approach. Abstract optimization models will be represented semantically,
within ontologies. The ontology representation serves as a layer inbetween algebraic
modeling languages (AML), and the layer of software services in which special
services provide the functionality to instantiate models with data. On the service
level, the models can be composed with further services, e.g., for solvers, as well as
that data transformations might be generated in an automated fashion based upon
mappings of semantic types. A runnable system can originate out of a model with
only a few specificational steps. In order to generate semantic service descriptions,
methods to analyze ontology-represented models will be presented. The ontology
representation itself exploits the aforementioned concept of reusable types for goal
and constraint formulations. Furthermore, also types for data entities will be
introduced. The formulation types are abstracted from data models and allow to
reuse blocks of AML statements in different model contexts. Means for deriving
AML-represented models out of ontology-represented ones will be provided, as well
as that the general design of formulation types will be discussed and exemplified by
two elaborate case studies and further examples.
The reusable types formalize definitions of model entities such as goals, constraints,
variables, parameters and sets. Model entities are represented by ontology
individuals and typed in ontology classes which respectively represent the types. A
whole abstract optimization model is described in terms of ontology axioms that
correspond to the class restrictions of the respective types. The axioms represent the
relations between entities, such as a parameter being defined over an index-set or a

2

1.1. Approach within this Thesis

variable occuring in the definition of a constraint group. By providing vocabularies
for domain data models, the classes for constraint and goal formulations can be
abstracted from the data types. The organization of formulation types exploits
concepts such as subsumption, in order to define a type as an extension of another
one, and allows for simple operations in the model formulation. As standardized
ontology languages such as OWL 2 [W+12] are designed for portability and an
enhanced Web architecture, the usage of ontologies for the optimization model
formalization furthermore enables different scenarios for automated reasoning by
agents, as well as the usage with software services.

This thesis presents different technologies towards the realization of the model
formulation and system generation approach that was outlined above. The
transformations inbetween the three layers as well as the vocabularies to define
reusable formulation types constitute central components. Exemplary formalizations
for case study models from the domains of network flow problems and water
distribution systems will be given to demonstrate the definition and organization of
respective type hierarchies, as well as to illustrate the different application scenarios
in model formulation. Different design considerations will be discussed and a
demonstrator application for the derivation of AML models out of
ontology-represented ones is provided with the digital material accompanying this
thesis. Numerical results for a novel optimization model dealing with the pipe
renewal planning of water distribution systems round up the considerations of this
thesis. The results provided within this thesis can be seen as a contribution to a
greater vision. In this vision, different models and semantic services can be
composed into systems in an automated fashion. In the latter point, the vision
extends the restricted service architecture of this thesis to a wider range of models,
software components and execution processes. Also, some technologies provided to
make the findings of this thesis applicable in practice are only outlined within this
thesis. This, e.g., covers the exemplary description of methods to automatically
recommend formulation types to a modeler in a given model context. To that end, a
broad perspective for future research comes along with this thesis.

The efforts towards a highly automated composition of software systems, e.g., for
optimization, are also reflected by a research project at the University of Paderborn
in which the author of this thesis was engaged. The CRC 901 - On-The-Fly
Computing [CRC11] - is a current research project that is concerned with the
opportunities of providing general and individual IT-services by semantic service
compositions, where services are available on global markets. As a part of this vision,
the application scenario of optimization systems has also been investigated within a
collaboration during the first period of the research project. As such, the author of
this thesis was part of this collaboriation in parallel to the work on this thesis. The
collaborative work especially investigated the more top-down approach of composing
optimization systems without the here proposed ontology representation, ontology

3

1. Introduction

model transformation and analysis methods, and architecture. As such, the findings
of this thesis can be seen as a novel contribution to the "On-The-Fly Computing"
vision, especially concerning architectures and application scenarios.

1.2. Outline and Methodology

This thesis is structured according to the design science methodology presented by
Peffers et al. in [PTRC07]. The description of the six process model steps problem
identification and motivation, objectives of a solution, design and development,
demonstration, evaluation and communication is contained in that order within the
chapters, sections and subsections of this document. Before the problem identification
and motivation can be described, a broad literature survey is given in Chapters 2
and 3 which reviews the state of the art in the different relevant fields, as well as
that fundamental notions for the concepts introduced in this thesis will be presented.
Whilst Chapter 2 deals with software services and ontologies in general, Chapter 3
reviews the state of the art for managing decision models and developing software
systems for optimization and decision support. Chapter 4 consists of two consecutive
sections that conclude the problem identification and motivation and describe the
objectives of a solution in terms of requirements. The problem identification and
motivation part also contains the descriptions of some use cases. The design and
development part is mainly dealt with in Chapter 5 which presents the framework of
this thesis in a top-down manner. The most important part is given by the definition
of the ontology representation of abstract optimization models. Practical and
important design considerations on a more specific level will also be part of Chapter
6. Chapter 6 in general provides means for demonstration and evaluation, as different
type formalizations will be demonstrated and further discussed in the context of
some case study models. The core topic of Chapter 6 is the discussion of reusability
and model formulation in the ontology representation. Chapter 7 presents a practical
optimization model for the renewal planning in water distribution systems with some
numerical results. This extends and underlines a preceding case study of Chapter 6.
Though the main character of Chapter 7 is of practical optimization nature, some
application scenarios for the concepts of the preceding chapters will be discussed. In
Chapter 8, the architecture and usage of a demonstrator application for deriving
AML models and statements out of ontology-represented models will be described,
thereby further extending the considerations for demonstration and evaluation. The
Conclusion and Outlook in Chapter 9 is separated into the two naming parts and
therefore provides means to recapitulate the results of this thesis and watch them as
part of a greater vision towards which further research and work should take place.

4

2. Software Services and Ontologies

In this chapter, important techniques from the fields of semantic software services
and ontologies will be discussed. This shall provide the background for the general
approach and the design of the ontology representation of abstract optimization
models which will be introduced in Chapter 5. This chapter starts with a short recap
on component-based software engineering and then introduces software services and
web services as basic concepts. Furthermore, ontologies and related technologies will
be introduced as a core concept for the approach of this thesis. Ontologies also
provide a basis for introducing semantic software services, their composition and
means to provide automated data mediation in service workflows at the end of this
chapter.

2.1. Component-Based Software Engineering

Component-Based Software Engineering (CBSE) is a methodology for developing
software which is based on reuse. The concept of a software component forms its
central building block where a component-based software development process for
new systems is based on integrating existing components by means of component
composition. To that purpose, components are described structurally and
semantically by so-called interfaces, contracts and extrafunctional properties (see
[CHJK02]). This makes the provided functionalities and possible dependencies
explicit such that components can be deployed independently and integrated into
applications, e.g., as binaries or services, without accessing their source-code. In
order to standartize the necessary descriptions of software components and allow for
a successfull composition, component models serve as the basis for component-based
software engineering. With implementations of component models that can be
referred to as component frameworks, further supporting middleware services are
typically supplied. By this, a developer can focus on the main tasks of integrating
components into new applications.
The purpose of this section is to give a short introduction to some of the major
concepts of component-based software engineering as there are interface definitions,
component composition as well as pre- and postconditions. The concepts introduced
here are important for understanding software services which can be seen as a
specialized form of components. To that end, this section includes basic concepts for
presenting the approach of this thesis. This subsection is not meant as a state-of-the
art review or a complete depiction of CBSE. Further relevant topics not treated here
cover development processes, contracts, the specification of extrafunctional properties

5

2. Software Services and Ontologies

or special component frameworks. The interested reader is refered to the literature
which will be presented now:
Two good introductions on CBSE which also served as a basis for this section can be
found in the book of Sommerville [Som12] and the article of Crnkovic et al.
[CHJK02]. Szyperski [Szy02] presents a standard book on CBSE which includes a
common definition of components. This section refers to the 2002 version of the
book. A newer version from 2011 is also available. Finally, for a classification and
discussion of component models, the reader is referred to the article of Lau and
Wang [LW07] from 2007.
There are different definitions of components and even broader is what component
frameworks implement. This thesis refers itself to the definition of Szyperski [Szy02]
who defines a software component as follows: "A software component is a unit of
composition with contractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently and is subject to
composition by third parties,". A short recap on common definitions including the
latter can be found in the article [LW07].
The definition above highlights a software as an independent unit that can be
combined with others such that a new system originates. It does not incorporate the
notion of component models which are included in other definitions and provide the
basis for any practical implementations.
Software component models "define standards for implementation, documentation
and deployment of components" [Som12]. Upon these standards the definition and
implementation as well as the composition of components into a running application
can take place. Following Lau et al [LW07] and Sommerville [Som12], the most
important component models seem to be Web Services, Enterprise-Java-Beans and
.NET. Implementations of component models may provide some standartized
services to the components that are being used in a concrete software project. These
services may roughly be classified as platform services and helper services [Som12].
Platform services allow for communication and interoperation in distributed
environments whereas helper services may provide more concrete functionality that
is being used in applications with a high possibility. Examples of the latter include
resource management or authentication.
The most important part of a component specification is the definitions of its
interface. Interfaces in CBSE are separated in provided and required interfaces. A
provided interface defines the methods that users of a component can call whereas
the required interface defines methods which are required from other components for
the component itself to work. Though components are designated to be independend
building blocks, the requiered interface dependencies are allowed in CBSE and
represent a major difference of components and software services. The most
important thing about the interface definitions are that they have to be made
explicit and should be complete in order to reuse a component as a black-box in

6

2.1. Component-Based Software Engineering

different contexts.

SimpleOptDSS

Model

Instantiation
Solver

OptSolution

solveModel(ModelData data)

OptInstance

instantiateModel(ModelData data)

OptSolution

solve(OptInstance inst)

Figure 2.1.: Sequential composition of a model and a solver

A simple example of components and parts of their interface definitions is visualized
in Figure 2.1. The drawing will also serve as a basis for explaining sequential
component composition in what follows. The image shows three components. The
component SimpleOptDSS provides the solution of an abstract optimization model for
some scenario data by its provided interface’s method solveModel(...). Readers
which are not familiar with optimization software and optimization models are
refered to Section 3.1 which presents the basic concepts in the fields related to the
latter notions. For the moment it should be sufficient to know that an abstract
optimization model provides a mathematical description of a computational problem
where the word abstract is used in order to clarify that the optimization model itself
defines some set-and parameter-based data model that can be instantiated with
concrete instance data.
On can see in Figure 2.1, that the provided interface of a component is visualized by
a circle which is annotated with some methods and their signatures. In the example,
a description of a single method solveModel(...) is given. In order to provide the
functionality of this method, SimpleOptDSS has to invoke two methods of other
components called Model Instantiation and Solver in that order. The complete
method signatures with some descriptions are given as follows:

• public OptSolution solveModel(ModelData data): This method computes
a decision proposal in form of an optimization model solution for some instance
data. To that end it instantiates a model with the data (component Model
Instantiation) and calls a solver (component Solver) with the retrieved
instance.

• public OptInstance instantiateModel(ModelData data): This method
instantiates a fixed optimization model with instance data.

7

2. Software Services and Ontologies

• public OptSolution solve(OptInstance inst): This method solves an
optimization problem which is given as an instance (with concrete data) by
some implemented optimization algorithm.

The three components form an example of a sequential composition. There are three
kinds of component composition in CBSE which will be introduced now:
Composition of Components
When components are integrated into new systems, three kinds of composition can
be distinguished. Following [Som12] there are:

1. Sequential Composition: By sequential composition new components or
systems are generated from existing components where the latter are executed
in sequence. The example from Figure 2.1 provides an example for a sequential
composition where the consecutive execution of provided interface’s methods
from the Model Instantiation and Solver components yield a new
functionality that directly solves a model for given input data. Sequential
composition is also possible for services. It is important to notice that one
needs additional code to perform the calls to the individual components in the
composed component. In addition to that, mediation code to transform the
output of a preceeding service into an input of the next service to call may be
required for the composition.

2. Hierarchical Composition: This kind of composition is used when a component
directly calls other components and all components shall be integrated. In a
situation with a component A calling methods from a component B, the
required interface of A should be matched by the provided interface of B. If the
interfaces are not directly compatible, an adaptor component has to be
inserted to adjust the data types of inputs and results and hence provide a
matching of parameters. Figure 2.2 provides an illustration how provided and
required interfaces are combined in hierarchical composition.

3. Additive Composition: The additive composition is used to combine the
provided functionality of two ore more components. Since mutual components
can be integrated by this kind of composition, mediation code is both needed
for managing the calls and inputs to the individual components over a
combined provided interface, as well as for performing the calls to further
components that were first required by the individual components and are now
required within a unified required interface of the composition. The whole
situation is visualized in Figure 2.3. This kind of composition can also be used
for services.

8

2.1. Component-Based Software Engineering

A

B

Adaptor

Figure 2.2.: Hierarchial composition with an adaptor. Extended version of an image
from [Som12]

A B

Figure 2.3.: Additive composition with glue code. Image in similarity to [Som12]

Pre- and Postconditions
Method names and signatures specify the semantics of a method only to a limited
degree. To that end, a certain form of documentation is required. In CBSE, the
usage of Object Constraint Language (OCL) [WK03] is a common and formal
approach for documenting interface methods (see also [Som12]). In OCL, so-called
pre- and postconditions of methods can be specified.
The following example refers to the components in Figure 2.1 where the the method
solve(...) from the provided interface of the component Solver is described:

context solve
pre: Solver.getSolution(inst) = null
post: Solver.isOptimal(Solver.getSolution(inst)) = true

(2.1)

The precondition says that a solution for the passed instance should not exist before

9

2. Software Services and Ontologies

the execution. To that end another method public OptSolution
getSolution(OptInstance inst) from the provided interface of the component
Solver is used. After the execution of solve(...), the solution can be obtained by
a call to getSolution(...). Using the method is not a requirement since a
reference to the optimal solution can also be obtained directly as a return value from
a call to solve(...). But one can use getSolution(...) as a building block to
formulate the postcondition. The method public Boolean
isOptimal(OptSolution sol) returns true iff the solution object passed to the the
method represents an optimal solution.
Pre- and postconditions will be considered again in the context of semantic service
descriptions in Section 2.6.

2.2. Services, SaaS and SOA

This section will introduce the notion of software services. The concept of Software
as a Service (SaaS) will be presented and compared to Service-oriented Architectures
(SOA). A special focus is laid on service concepts for optimization software.
Refering to Turner et al. [TBB03] "SaaS focuses on separating the possession and
ownership of software from its use [TBB03]". This stresses that SaaS is a
methodology of making software accessible instead of an architecture or design
philosophy. By SaaS software is typically being made available over the internet and
can be accessed by browsers [Som12]. The provision and maintainance of the service
is up to a service provider which can be different to the developer of a software. By
standard internet protocols, clients of a software service can access remote
funcionality on the basis of messages. The customer that uses a software service does
not have to care about deployment issues, hardware ressources or the management of
updates.
Lovelock and Wirtz [LPW14] define general services in their book on services
marketing and compare the notion of a service to that of manufacturing. Besides
others they highlight the following definition of a service: "A service is any act,
performance or experience that one party can offer to another and that is essentially
intangible and does not result in the ownership of anything, but nonetheless creates
value for the recipient. Its production may or may not be tied to a physical
product."
Software services are covered by this definition. The requester of a service that
invokes a service over the internet won’t own a copy of the software but rather just
get a response to his specific request that might be of some value for him.
There are different paradigms for the provision of commercial software services in
SaaS. Valente and Mitra [VM07] highlight the difference between Application Sevice
Provider (ASP) and the general e-Service paradigm for e-commerce. In ASP, a
service provider "employs the personnel needed to install and maintain the

10

2.2. Services, SaaS and SOA

application and the servers" [VM07] where the focus lies on the technical outsourcing
of service provision from the developer of a software. In contrast to that, the
e-services paradigm presented in [RK03] lays a focus on the customer, e.g., by
providing customer care: "In the downstream channel, e-service subsumes concepts
such as customer/citizen-relationship management (CRM), relationship marketing,
one-to-one marketing, and customer care [RK03]".
In SaaS, software services are services for a customer, where the users use the services
of a service provider technically as a client. By this model, technical standards or
restrictions are not directly imposed but one may rather highlight a standard use
case where the client accesses the service via a browser. Examples are, e.g., given by
Google Docs or the NEOS Server [CMM98] for numerical optimization where the
customer, besides others, can get results for browser submitted jobs via email.
Interactions with software services provided by SaaS are typically long (Google
Docs) and are manually induced by a human user (Google Docs, NEOS Server).
When custom applications invoke a remote service directly, message based
communication can be used. The Web Services approach [HB04] provides a standard
for this form of machine to machine interaction where especially message formats
and interface descriptions are defined. Furthermore, the specifications in the context
of web services include means for the discovery of services, the definition of
workflows that invoke multiple services, security issues and more. Web services will
be further discussed in the next section. By the provided standards and technologies,
flexible connections between servers of different enterprises can be established
[Som12]. Applications that make use of multiple extenal web services provide an
important example for the realization of a Service-oriented Architecture (SOA)
[Erl05, OAS12]. Different definitions of SOA exist. Following [The15], the notions
SOA and service-orientation, as well as another definition of a (software) service in
the context of SOA are to be distinguished:
"Service-Oriented Architecture (SOA) is an architectural style that supports
service-orientation. Service-orientation is a way of thinking in terms of services and
service-based development and the outcome of services. A service:

• is a logical representation of a repeatable business activity that has a specified
outcome (e.g. check customer credit, provide weather data, consolidate drilling
reports)

• is self-contained

• May be composed of other services

• is a "black-box" to consumers of a service

[The15]"

11

2. Software Services and Ontologies

By this definition no technical restriction, e.g., on using the web service standards
are made. SOA rather highlights important features such as the perspectives for
integrating business activities by the means of workflows where services provide
reusable functionality to be used by different acteurs. Another important property is
that software services are loosely coupled, i.e., the services that are incorporated in a
system can be exchanged, e.g., by a newer version, during the execution. Compared
to SaaS, SOA is an architectural design that can be used with SaaS.
Valente and Mitra [VM07] discuss the evolution of web based optimization in terms
of a shift from ASP to e-Services. An important project in the scope of this article is
the WEBOPT project which implements a system that provides different
optimization functionality in a SOA by using web services. With WEBOPT a
fundament for composing different services to new subsystems in a wokflow is laid:
"The infrastructure provided by WEBOPT enables the creation of distributed
applications which may take advantage of multiple specialist knowledge" [VM07].
WEBOPT is an example for the synergy of e-Services and the web service
technology and extends the Optimization Service Provider project (OSP) which was
based on older technology and the ASP model.
Technological standards for realizing optimization solvers and model related
functionality (see Chapter 3) as web services have been defined in the projects
Optimization Services (OS, Fourer and Ma [FMM10b]) and Open Optimization
Framework (OOF, Ezechukwu and Maros [EM03]). Whilst OS has a solver-centric
view and defines XML-languages for optimization related data, communication,
discovery and registration, OOF also lays a focus on Algebraic Modeling Languages
(AML) by providing an XML-based algebraic modeling language also called AML.
Optimization software, architectures and the technology behind will be further
discussed in Chapter 3. In the next section, the discussion of software services will
be continued by introducing web services in more detail.

2.3. Web Services

The goal of this section is to introduce important concepts related to the notion of
web services. Web services provide a common standard for the description of
software services. Therefore, they also serve as a basis for the concept of semantic
services which will be of further importance in the remainder of this thesis.
Following Haas and Brown ([HB04]), a web service can be defined as follows: "A
Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with the
Web service in a manner described by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards [HB04]".

12

2.3. Web Services

The definition above highlights the standars used for the description of and
communication with web services in order to provide a platform independent
machine-to-machine interaction. Let us now shortly characterize the relavant aspects
of these standards:
WSDL:
A web service is to be described by a service description in Web Service Description
Language (WSDL) format. The current W3C recommendation WSDL 2.0 [SAJR07]
requires service descriptions to be built as XML documents with respectively
structured information under the tags types, interface, binding and service.
The first two tags define the abstract section of the service description and are used
to define the logical interfaces of a service, i.e., the provided operations with their
signatures, respective messages (implicitely in WSDL 2.0 as XML schema types) and
types. The last two tags build the so-called concrete section and describe relevant
information about the communication with the service such as the bindings to
concrete message protocols, message exchange patterns, or the addresses under
which the service can be contacted.
SOAP:
Refering to the W3C recommendation [JNM+07], SOAP ".. is a lightweight protocol
intended for exchanging structured information in a decentralized, distributed
environment [JNM+07]". SOAP is based on XML for representing data and can be
embedded into standard internet protocols such as HTTP from the application layer.
The Envelope tag in a SOAP-message is used to capture header and body
information. When applied for communication with a web service, the specifications
under a Body tag can, e.g., be used to describe method calls and their inputs.
UDDI:
Universal Description, Discovery and Integration (UDDI) [CHRR04] denotes a
standartized registry service in the context of web service specifications. It is an
approved OASIS standard for the publishing and discovery of (web) services as well
as that it defines "a set of services supporting the description and discovery of (1)
businesses, organizations, and other Web service providers, (2) the Web services they
make available, and (3) the technical interfaces which may be used to access those
services [CHRR04]".
Following [Som12], different registries have been implemented by major software
vendors such as Microsoft at the beginning of the 21. century. But due to an
improved search engine technology all these registries have been deactivated by now.
The standard way for discrovering services may now be described as using standard
search engines that look for respectively commented WSDL descriptions (see,
[Som12]).
The standards introduced the last can be used for the publication, discovery and
understanding of, as well as the communication with web services. But besides
WSDL their usage is no requirement. The Web Services Architecture [BHM+04] that

13

2. Software Services and Ontologies

is visualized in Figure 2.4 formaly specifies the different roles involved in the
publication and usage of a web service:

Service Requester

Service Registry

(UDDI)

Service Provider
bind

discover publish

WSDL
SOAP

Service

Figure 2.4.: Web Services Architecture. Image in similarity to [Som12]

The service provider implements a web service and generates his service description
in WSDL. He makes the service available and, in order to be found, publishes the
web service, e.g., in an UDDI registry. A service requester can then discover the web
service and contact the service under the given address. By retrieving the WSDL he
can decide wether the web service fulfills his requirements or not. Finally, by binding
to a concrete protocol such as SOAP, the service requester can invoke the service.
Further standards for web services have been developed until the current date. The
specifications which are referred to as "WS-*" are not owned or standartized by a
single organization. Important examples include security specifications such as Web
Services Security (WS-Security) or specifications for business processes such as the
Web Services Business Process Execution Language (WS-BPEL). Both the latter
have been published by OASIS.
Different apsects of the web service standards have been critizised. The lack of
semantics that may go along with specifying "only" method signatures and types will
be a topic in the later sections of this chapter. The complexity of the various "WS-*"
specifications has been criticised ([Bra12]) as well as that an alternative for simple
publication of and communication with web services, that are not required to publish
their interface in form of a WSDL-description, e.g., because they are somehow
"enterprise internal", has been proposed:
RESTful services [RR08] have been introduced as a simple altenative which employs
the Representational State Transfer (REST) programming paradigm for distributed
systems. Communication with a RESTful service for the requester is to be done by

14

2.4. The Visions of Semantic Web and OTF Computing

the HTTP methods GET, PUT, POST and DELETE and a requester will be
delivered the representation of a resource (to be identified by an URI) for an HTTP
request. The operations are idempotent such that multiple request at different points
in time yield the same result. Following [Som12], Restful services are considered to
have a smaller overhead than web services and find applications in many enterprises
that implement service-based systems, where the services are "non-external".

2.4. The Visions of Semantic Web and OTF Computing

In the section, two visionary projects whose ideas are relevant for this thesis will be
introduced. The first one will be the vision of the Semantic Web. The semantic web
vision contains standards for ontology and query languages which will be introduced
in the next section and are important for the approach of this thesis. The second
vision will provide important concepts for semantic service composition.
The Semantic Web can be described as an initiative to "lead the use of the Web as
an exchange medium for data as well as for documents [W3C15a]". Its initial idea
has been described in the 2001’s article [BLHL01] by Tim Berners-Lee, James
Hendler and Ora Lassila. Besides others, the article presents the story of a use case
where different agents arrange appointments for a therapy. The therapy involves
different specialists at different locations and the agents who arrange the
appointments make use of some expressed information that extends the structural
information given with actual web technologies by semantics. This extended web is
described as follows: "The Semantic Web is not a separate Web but an extension of
the current one, in which information is given well-defined meaning, better enabling
computers and people to work in cooperation [BLHL01]".
In order to realize the vision, different technologies are mentioned as a requirement.
The knowledge to be formalized needs to be represented with techniques from the
field of knowledge representation where not only web pages are extended with
information, but the information adheres to a certain vocabulary that is being
defined in the form of ontologies. The formal semantics of ontologies together with
rule knowledge serve as a basis for deducting new knowledge or integrating
knowledge from different sources in a consistent way. To that end, software agents
may crawl the web for information and invoke other resources or agents in order to
answer complex semantic queries.
The notions introduced above will be further explained in the following sections.
This section now continues with a short description of current research activities
related to the initial vision of the "Semantic Web".
Today, activities such as Linked (Open) Data [BL15] and the W3C Data Activity
[W3C15a] are related to the primary vision. In Linked Data, structured data is
published in form of URIs that can be resolved on a network by performing requests
based on the HTTP protocol. The underlying data structure is given by the

15

2. Software Services and Ontologies

Resource Description Framework (RDF) [W3C15b] which allows to store the data in
an extensible graph that is build of so-called triples which relates a resource node
with another resource or a literal node by a property. The resolving of uris by HTTP
requests can iteratively retrieve new RDF-Data and by this extend the RDF graph.
The extension of knowledge associated with these activities may allow for the
answering of more and more complex queries. Tim Berners-Lee names four design
principles in [BL15] for the publishing of linked data that enforce the usage of
(HTTP)-URIs, RDF* and SPARQL (see Subsection 2.5.3). These are added by a
fifth one about open content in the remainder of the same note in order to yield
Linked Open Data. A famous example of linked open data is given by the DBPedia
project [DBP15], an initiative that allows to extract structured information from
Wikipedia by the means of semantic queries.
The W3C Data Activity Group [W3C15a] is an initiative that "merges and builds
upon the eGovernment and Semantic Web Activities [W3C15a]". Its aim has been
described to "make data publication less of a specialist activity and ensure that the
excellent work done by portals does not lead to de facto data silos [W3C15a]". This
goal can be seen as motivated by the fact that the hughe amounts of data published
today are not published on web sites as in the primary semantic web vision, but
rather "through portals that act on behalf of multiple agencies [W3C15a]".
Software services and especially web services were introduced in the preceeding
sections. Software services of a certain form also play an important role in the vision
of the semantic web. The need for semantically described web services that allow,
e.g., for a better discovery and matching of capabilities is highlighted in the article
[BLHL01] as well as the book [BKM08]. But though Semantic (Web) Services are
highly motivated by the vision of semantic web, the research on semantic service
descriptions, matching and semantic service composition forms own fields of
research. One encompassing concept for these techniques is that of Semantic Service
Provisioning [KTSW08]. The latter techniques and notions will be further
introduced and discussed in Section 2.6.
An important approach for semantic service provisioning in the actual development
of the semantic web vision is the Semantic Automated Discovery and Integration
(SADI) Web service Design Pattern proposed by Wilkinson et al. in [WVM+11].
SADI services are atomic and stateless. They simply process individuals of owl
classes (see Section 2.5.1) by annotating them with new information on the basis of
rdf-triples. By doing this, the concept of linked open data which was introduced
above can be realized in a simple manner. SADI services have a very simple interface
description in terms of OWL classes. The restrictions of these classes describe the
input and output data semantically. The authors describe different plug-ins and
environments that allow the simple discovery and pipelining of SADI services. The
application of SADI services to bioinformatics is highlighted.
Broadening the scope from the context of the semantic web, semantic service

16

2.4. The Visions of Semantic Web and OTF Computing

provisioning can be motivated as an improvement in the development of
service-oriented systems in general. Kuropka et al. [KTSW08] have named the
following initial limitations (2004) of service-oriented systems in the introduction to
their book that features the results of the Adaptive Services Grid (ASG) project:
Static Discovery and Binding, Fixed Service Landscape, Static Service Composition
and Poor Service Level Agreement Specification. These limitations are identified as
mainly due to the missing of semantically rich service specifications that allow for an
automated discovery and integration of services even at runtime. In the book they
present an architecture for a semantic service provisioning platform. With the
experiences on service descriptions, automated composition and a use case the
authors come to the conclusion, that future (advanced) research on service
engineering should besides others focus on real-world use cases and the level of detail
for service specifications.
The ongoing research on semantic service provisioning encompasses different fields
as, e.g., service matching and service composition. The CRC 901 - On-The-Fly
Computing - is a current research project at the University of Paderborn that is
concerned with the opportunities of providing general and individual IT-services by
semantic service compositions where services are available on global markets. The
wide scope vision also includes economic market and security aspects as well as the
concept of so-called "On-The-Fly" Compute Centers that are concerned with the
provision of hardware services for the performant execution of resource demanding
applications as, e.g., in mathematical optimization.
The CRC 901 - On-The-Fly Computing states its objective and scope as follows:
"The objective of CRC 901 - On-The-Fly Computing (OTF Computing) - is to
develop techniques and processes for automatic on-the-fly configuration and
provision of individual IT services out of base services that are available on
world-wide markets. In addition to the configuration by special OTF service
providers and the provision by what are called OTF Compute Centers, this involves
developing methods for quality assurance and the protection of participating clients
and providers, methods for the target-oriented further development of markets, and
methods to support the interaction of the participants in dynamically changing
markets [CRC11]".
The CRC 901 is an ongoing project. Within the project techniques for service
description, service matching and service composition are developed. The research
within the project further spins the progress that has been made in Semantic Web
activities or the ASG project towards a vision of automatically configured and
provided IT services, where the global market perspective becomes a novel focus,
and further requirements such as those for security and hardware aspects, as well as
economic questions, have been identified.
With the consideration of research activities on semantic data and software services
in this section a rough overview on techniques for discovering, searching and

17

2. Software Services and Ontologies

integrating data and services into new applications was given. The following sections
of this chapter will further introduce the relevat techniques, especially ontologies in
the next section and semantic (web-) services in Section 2.6.

2.5. Ontologies

This section introduces ontologies and related technologies such as representation
and query languages. The last section has already motivated using ontologies for the
description of semantic software services and in the vision of the semantic web. The
term ontology originates from philosophy, where it forms a certain branch, but has
become a novel meaning from the computer science research in the last decades.
Ontologies in the computer sciences are used to represent knowledge about excerpts
of the real world, called domains, in a well formalized way. The formalization takes
place in concepts and their interrelationships. Besides others, it has the goal to
generate a vocabulary that can be used to share data between different applications
or systems in a system independent way. An ontology is hence designed for a certain
purpose, but will be used by multiple acteurs. An often quoted description of
ontologies is given by Gruber [Gru93] as an "explicit specification of a
conceptualization".
An important aspect of ontologies is that the ontology languages such as the Web
Ontology Language (OWL, see 2.5.1) in its DL-Profile are related to a subset of
First Order Logic (FOL), namely an extension of the description logic SROIQ. The
OWL 2 Direct Semantics [BPB12] specify the semantics for the respective OWL
profile in a model-theoretic way. With logic reasoning new inferences can be gained
based on the specified semantics, i.e., new ontology knowledge can be generated out
of existing one based on ontology reasoning. This aspect will be further discussed in
Subsection 2.5.3. As it will be explained there, the close connection to description
logics also provides a basis for reasoner implementations. Another aspect of the logic
grounding is that the reasoning procedures can also validate ontology definitions for
freeness of contradictions.
Ontologies also provide extensible formalizations. This means that the closed-world
semantics usually being incorporated in databases are changed to an open-world
assumption where new facts can be added or concluded incrementally. Complex
reasoning tasks with the aid of additional rules provide the possibility to retrieve
important information for automatization tasks and especially other software
components. An application of the latter principle will, e.g., be presented in this
thesis when analyzing optimization models in Subsection 5.6.1.
As already mentioned, ontologies play an important role in the description of
semantic software services and in the vision of the semantic web. The role of
ontologies in the description of semantic software services will be discussed in Section
2.6.

18

2.5. Ontologies

Within this thesis ontologies will primarily be used as a representation mechanism
for abstract optimization models that extend the established structural and syntactic
representations by semantics. The ontology representation which will be introduced
in Chapter 5 captures semantics of data, model constituents and their mathematical
properties as well as that it allows for the generation of a semantic model service.
In the next subsection ontology languages, especially OWL, will be introduced.
Followed by this is the introduction of a graphical representation of ontology
excerpts in Subsection 2.5.2 as well as an introduction and review on reasoning, rules
and query languages. The last part of this section is devoted to a discussion of
ontology mapping and merging.

2.5.1. Ontology Languages and Semantics

Ontologies are to be specified in a certain ontology language and every such language
has its own semantics. Different ontology languages exist at current date. In what
follows, the two closely related languages RDF(S) and OWL will be introduced.
RDF(S):
The Resource Description Framework (RDF) [DMR14] as well as its data-modelling
vocabulary RDF Schema (RDFS) [BG14] provide an important ontology language
for metadata annotation and the vision of the semantic web. As it was already
mentioned in Section 2.4, RDF-data is stored in form of triples containing so-called
subjects, predicates and objects such that multiple triples together form a directed
RDF-graph. An example for such an RDF-triple would be ex:florian ex:worksAt
ex:DSOR ., stating that the resource representing the individual ex:florian is
employed at an institution that is identified by the resource ex:DSOR. It is
mentioned, that everything contained in this triple is a resource, i.e., even the
predicate ex:worksAt can be seen as such a resource, and that the resources are
identified by IRIs which were abbreviated with the usage of the prefix @prefix ex
:<http://examplenamespace.org/>. IRI is the abbreviation of "Internationalized
Resource Identifier" that extends the character set of the well known concept of URI
towards unicode. Besides the usage of resources that are identified by an IRI, RDF
also allows the usage of literals and blank nodes.
By the graph-structure of RDF-data, a high extensibility is given which is a
key-feature for its usage in the semantic web. Services, e.g., such ones that are
conformant to SADI (see Section 2.4) may answer to HTTP-GET messages with
further semantic data in RDF-format that extends a prior knowledge graph.
Through the usage of URIs or according to the novel standards better say IRIs,
global consistent names and linking can be guaranteed.
RDF itself can be described in different syntaxes, where the standard recommended
RDF 1.1 XML Syntax [FG14] and the triple-near Turtle notation [GE14] are
mentioned here.

19

2. Software Services and Ontologies

With RDFS and the vocabulary introduced it is possible to describe schematic
ontological knowledge of RDF-data and perform reasoning based on the specified
semantics of the constructs. Constructs introduced by RDFS include type-and
subclass-specifiers, domains, ranges and subproperties. The semantics of RDF and
RDFS are specified in the RDF 1.1 Semantics [PP14]. Since RDF is fundamental for
OWL which will be introduced the next, the important RDF(S) constructs will be
futher explained in the context of OWL.
OWL:
In the remainder of this thesis the OWL 2 Web Ontology Language (OWL) [W+12]
will be used, where the version number two will often be omitted and the common
abbreviation OWL will be used. In OWL, a strong distinction between individuals,
classes and properties that intuitively specify concrete objects, classes and
relationships, is made. Besides these three, OWL contains further constructs, e.g.,
for data(type) properties, data values and annotations.
As with resources in RDF, OWL 2 makes use of IRIs for the globaly unique naming
of entities. Since OWL is named as an ontology language of the web, this point is of
crucial importance both for conformity with the URI/IRI standard for the
identification of web resources as well as the consistency of globally distributed
resources. IRIs can be abbreviated via the use of prefixes. According to the OWL 2
structural specification [PBB12] entities are "classes, datatypes, object properties,
data properties, annotation properties and named individuals".
The main part of an OWL ontology document is a set of axioms that make
statements about the included classes, properties, individuals and data values which
are asserted to be true. Furthermore, OWL ontologies can carry annotations, which
have no defined semantics but can be used by tools, as well as that ontologies can
import other ontologies. Every ontology may have an ontology IRI as well as that
there is the possibility to reference different versions of an ontology by version IRIs.
OWL - Syntax:
There are also different syntaxes available for OWL 2. The only syntax that is
required to be supported by all tools is RDF/XML [FG14]. By this syntax OWL
ontologies are described and stored as RDF documents where the embedding of
OWL constructs is done by an imported namespace. To that end this syntax is also
often referred to as the OWL-RDF syntax. Other syntaxes are OWL/XML
[MPPS09] which is a direct serialization of OWL in XML that can be mapped to
RDF/XML, and the OWL functional syntax [PBB12] which is mainly used for the
structural specification of OWL. A practical syntax for describing OWL documents
and parts of it in tools and text is the Manchester Syntax [MP12] for OWL 2, also
known in its prior version "Manchester-DL Syntax" for OWL 1. Within this
dissertation, the Manchester Syntax will typically be used in combination with a
graphical representation of OWL ontology excerpts. The graphical representation of
ontologies in OWL will be presented in the next subsection.

20

2.5. Ontologies

OWL - Language Constructs:
Let us now introduce the constructs which are important for this thesis with an
intuitive description of their semantics.
As it has already been mentioned, OWL distinguishes individuals, classes and
properties. The separation between individuals and classes can be seen as a
separation between the types of instance and class knowledge. Individuals can be
used to describe instance knowledge where especially a type in form of a class can be
specified. The respective property to be used in an axiom is called rdf:type and
stems from RDF. Classes can be defined to be subclasses of other classes by the
property rdfs:subClassOf from RDFS. With the aid of rdfs:subClassOf whole
subclass hierarchies can be built. The distinction between instance and class level is
manifested in the notions of assertional and terminological knowledge.
Besides the language built-in properties a user can define properties on his own.
Object Properties as well as Data Properties (or data type properties) can be defined
on the terminological level and used to relate individuals with other individuals or
data on the assertional level. The relation given with properties is binary. Properties
can have a domain and a range specified on the terminological level that specifies the
allowed types / data types of the related individuals. Further knowledge on class
level can be used to define properties of the relations such as symmetry or reflexivity.

Classes can be described in different ways. The most common one is to specify
necessary conditions on the members of a class. Such a necessary condition can be
given by a restriction. Restrictions describe the individuals that participate in a
relationship. By this they can describe an anonymous class of which a concrete class
to be restricted can be a subclass. In this case one speaks of an object-(property-) or
class restriction. Multiple such restrictions can be specified for a class. The
restrictions are distinguished as quantifier restrictions, cardinality restrictions and
hasValue Restrictions (see [Hor11b]). The representation approach of this thesis will
make extensive use of cardinality restrictions in what follows. For a given property
and a class to which the restriction applies, a cardinality restrictions imposes a
condition on the number of distinct individuals to be related by the aid of the
construchts min, max, exactly and a respective nonnegative integral argument.
Let us now introduce a first ontology described in Manchester Syntax to illustrate
the constructs mentioned above. The first example ontology provides a vocabulary
for network data, i.e., instance data that consists of network arcs and nodes which
are related to each other, as well as some annotated parameter values. The ontology
provides a vocabulary which makes use of classes, object properties, data properties
and datatypes. Also some restrictions are imposed. The ontology contains no
individuals and the definition can be found in Figures 2.5 and 2.6. The specifications
in Manchester Syntax introduce the prefix cdo-network in order to denote the
ontology concepts fore simply. This prefix will also be used in the following textual

21

2. Software Services and Ontologies

Prefix : dc: <http://purl.org/dc/elements/1.1/>
Prefix : owl: <http://www.w3.org/2002/07/owl#>
Prefix : rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
Prefix : xml: <http://www.w3.org/XML/1998/namespace>
Prefix : xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix : rdfs : <http://www.w3.org/2000/01/rdf−schema#>
Prefix : cdo−network: <http://www.semanticweb.org/florianstapel/ontologies/2015/5/

CDO−Network#>
Ontology: <http://www.semanticweb.org/florianstapel/ontologies/2015/5/CDO−Network

>
Datatype: xsd:double
Datatype: xsd:integer
ObjectProperty: cdo−network:LastNode

Domain:
cdo−network:Arc

Range:
cdo−network:Node

ObjectProperty: cdo−network:hasSingleCommodityFlow
ObjectProperty: cdo−network:hasSingleCommodityUpperCapacity
ObjectProperty: cdo−network:FirstNode

Domain:
cdo−network:Arc

Range:
cdo−network:Node

ObjectProperty: cdo−network:hasSingleCommodityCost
DataProperty: cdo−network:FlowValue

Domain:
cdo−network:SingleCommodityFlow

Range:
xsd:double

Figure 2.5.: A network data ontology in Manchester Syntax - Part 1

description, where the separation of prefix and suffix is done by the symbol "#"
instead of the colon ":" used in the Manchester Syntax.
A visualisation for OWL ontologies will be discussed in the next subsection.
Therefore, a visual representation of the latter ontology can be found in Figure 2.7.

Concrete network arcs and nodes are to be related by the object properties
cdo-network#FirstNode and cdo-network#LastNode. More specific, the domains
and ranges of the properties are defined as the classes cdo-network#Arc and
cdo-network#Node. The class cdo-network#Arc furthermore carries two cardinality
restrictions that intuitively state that every network arc has exactly one first and one

22

2.5. Ontologies

DataProperty: cdo−network:SupplyValue
Domain:

cdo−network:SingleCommoditySupply
Range:

xsd:double
DataProperty: cdo−network:CapacityValue

Domain:
cdo−network:SingleCommodityUpperCapacity

Range:
xsd:double

DataProperty: cdo−network:CostValue
Domain:

cdo−network:SingleCommodityCost
Range:

xsd:double
Class: cdo−network:SingleCommoditySupply

SubClassOf:
cdo−network:SupplyValue exactly 1 xsd:double

Class: cdo−network:SingleCommodityFlow
SubClassOf:

cdo−network:FlowValue exactly 1 xsd:double[>= 0.0]
Class: cdo−network:SingleCommodityCost

SubClassOf:
cdo−network:CostValue exactly 1 xsd:double[>= 0.0]

Class: cdo−network:Node
Class: cdo−network:Arc

SubClassOf:
cdo−network:hasSingleCommodityCost max 1 cdo−network:

SingleCommodityCost,
cdo−network:LastNode exactly 1 cdo−network:Node,
cdo−network:FirstNode exactly 1 cdo−network:Node,
cdo−network:hasSingleCommodityUpperCapacity max 1 cdo−network:

SingleCommodityUpperCapacity,
cdo−network:hasSingleCommodityFlow max 1 cdo−network:

SingleCommodityFlow
Class: cdo−network:SingleCommodityUpperCapacity

SubClassOf:
cdo−network:CapacityValue exactly 1 xsd:double[>= 0.0]

Figure 2.6.: A network data ontology in Manchester Syntax - Part 2

23

2. Software Services and Ontologies

last node.
Further object properties, classes and restrictions in the ontology describe the typical
network data conceptualizations such as costs, supplies, capacities and flow values.
The respective IRIs carry very specialized names, e.g.,
cdo-network#SingleCommodityUpperCapacity. The principles of modeling in
domains such as networks will be further discussed in Chapter 6.
Data properties and respective restictions are also included in the example. The
cdo-network#CapacityValue at first is a data property that relates individuals of
type cdo-network#SingleCommodityUpperCapacity to data values of type
xsd:double. By a restriction on cdo-network#SingleCommodityUpperCapacity the
value is further forced to be unique and nonnegative.
This subsection gave a short first overview on the language constructs of OWL that
are of great importance for the ontologies developed in this thesis. Further
constructs such as means to specify classes to be disjoint or equivalent will be
introduced in the context of the respective sections making use of them.
OWL - Semantics:
The OWL 2 semantics are specified in two forms. At first, the OWL 2 RDF-Based
Semantics [Mic12] provide a complete definition of OWL 2 semantics that is
compatible with the semantics of RDF(S). For the sublanguage OWL 2 DL (see next
paragraph) there are the OWL 2 Direct Semantics defined in [BPB12]. The direct
semantics are defined in a model-theoretical way and extend the semantics of the
description logic SROIQ. OWL 2 DL ontologies can be mapped to rdf-graphs and
the Correspondece theorem [Mic12] states that conclusions made using the DL
semantics will stay valid for the rdf-based semantics.
The complete OWL 2 specification can be restricted to sublanguages, e.g., for the
purpose of handling the computation complexity of reasoning or keeping
implementations simple. Common sublanguages of OWL 2 are called profiles and
have been defined in the OWL 2 Web Ontology Language Profiles [BBI+12]. The
profiles from OWL 2 have to be distinguished from the ones named for OWL 1. In
OWL 2 the three profiles OWL 2 EL, OWL 2 QL and OWL 2 RL were introduced as
different sublanguages that are all more restrictive than the OWL DL profile. As
already mentioned above, OWL DL itself is the profile that corresponds to the
sublanguage of OWL whose semantics can be seen as an extension of SROIQ and
which are specified in the OWL 2 Direct Semantics. OWL DL is of great importance
since it is decideable in contrast to OWL 2 Full which corresponds to OWL 2
ontologies that have been mapped to rdf and are interpreted using the rdf-based
semantics.
OWL - Software and APIs:
Finally, different tools and APIs are in use for tasks related to the management and
manipulation of ontologies. For the OWL ontologies within this thesis, Protégé
version 4.3 [Hor11b] is used as an ontology editor. Protégé is a famous open-source

24

2.5. Ontologies

ontology editor and provides further support for reasoners, queries, rules and
visualization via plugins. Protégé in the versions 4 upwards uses OWL API [Hor11a].
OWL API provides parsers for different OWL syntaxes as well as that it provides
different functionality associated with the management and manipulation of OWL
ontologies. OWL API was used for the implementation of a demonstrator tool that
is presented in Chapter 8.

2.5.2. Visualization of Ontologies within this Thesis

Within this thesis, a visual representation of OWL ontologies and ontology excerpts
will be used. As to the best of the author’s knowledge there is no recommended
standard for representing OWL ontologies visually, and in addition to that, a
consistent and simple visual representation of all OWL 2 constructs seems hard to
realize, an own visualiation based on a relevant subset of OWL 2 will be used for the
examples of this thesis. This visualization will be introduced within this subsection.
The chosen representation is similar to the common visualizations for RDF-graphs
(see, e.g., [HKRS08]) with the key difference that the here presented approach will
distinguish individuals and classes visually as there also is the clear distincition
between classes and individuals in OWL. Classes will be visualized as ellipsoids
without a filling but the abbreviated IRI of the class. Individuals in contrast to this
will be visualized with filled circles. The latter idea is inspired by an ontology
visualization under the reference [Wik16]. Data types will in contrast to classes be
visualized by rectangles which will be filled in case of concrete values. The whole
structure of the ontology definitions will then be represented as a graph, where the
directed arrows represent the properties and a labeling will carry further
information.
We will distinguish full and stroke arrows, where the full arrows are reserved for the
RDF(S) properties rdf:type and rdfs:subClassOf. The usage of type- and
subclass- properties for the full arrows will become clear from the context of classes
and individuals. Stroke arrows will be used for properties that are defined in the
respective new or imported vocabularies. In order to describe the respective property
that is used, or even to describe more expressive constructs such as restrictions, the
stroke arrows will be labeled.
Before the labeling of arrows will be further introduced, a first example of a visual
ontology representation will be given. The network data ontology which has been
introduced in Manchetster Syntax in Subsection 2.5.1 is now being visualized in
Figure 2.7. One can see the typical visualizations of classes, data types, properties
and respective restrictions. The visualization omits the IRI prefix cdo-network since
there is only one ontology in this example. For a visualization of individuals, type
specifications and subclass relations in the context of multiple ontologies the reader
is referred to the examples given in later chapters and sections, e.g., an ontology

25

2. Software Services and Ontologies

excerpt in Figure 5.5 of Section 5.3.

SupplyValue

exactly 1

Node

Arc
FirstNode

exactly 1

LastNode

exactly 1

SingleCommodity

Supply

SingleCommodity

Cost

SingleCommodityUpper

Capacity

CostValue

exactly 1 [>= 0.0]

CapacityValue

exactly 1 [>= 0.0]

hasSingle

CommoditySupply

max 1

hasSingle

Commodity

Cost max 1

hasSingleCommodity

UpperCapacity max 1 SingleCommodityFlow

hasSingleCommodity

Flow max 1

FlowValue

exactly 1 [>= 0.0]

xsd:double xsd:double xsd:double xsd:double

Figure 2.7.: Visualization of the network data ontology

The labeling of a stroke arrow in its most simple form includes an abbreviated IRI
for denoting a property resource. In the case of an arrow connecting constructs on
the terminological level, e.g., classes and data types, the respective arc can be seen
as defining a property with its domain and range. This is not completely formal as a
visualization might like to highlight that a property is available between certain
classes without refering to the most general superclasses for which the property is
defined. To that end, the arrow only specifies entities that are in the case of classes
subclasses of the real domains and ranges and the meaning of the arrow and label in
this case refers to an object property restriction for the range of values in axioms
with the respective subclass as a domain. For the correct specifications the reader is
referred to the appendix of this thesis or the accompanying digital material, where
the ontologies in use are given with a complete and formal specification in
Manchester Syntax. Coming from the property definitions to the assertional level,
arcs can be read as triples where the respective axiom for an arc labeled p that
connects nodes a and b reads a p b in triple-notation.
Restrictions are also to be visualized. Basically, the Manchester Syntax is used to
represent restrictions such as cardinality restrictions of the form p keyword number
b for a class a where keyword is one of min, max, exactly and number is a
nonnegative integer. The class IRIs a,b will be excluded from the statement and be
represented by the start and endnodes of the corresponding arrow. An example of
such a cardinality restriciton is given for the class cdo-network:Arc which reads
cdo-network:LastNode exactly 1 cdo-network:Node in the Figure 2.7. Data
restrictions are also described by excerpts in Manchester Syntax where an example is
given in the figure for the class cdo-network:SingleCommodityUpperCapacity

26

2.5. Ontologies

which reads cdo-network:CapacityValue exactly 1 xsd:double[>=0] .
Further constructs of our OWL ontology visualizations such as, e.g., disjoint classes
or subproperties will be introduced when they are used.

2.5.3. Reasoning, Queries and Rules

The development and maintenance of ontologies, as well as their usage in
applications, require methods to query and analyze ontologies. In this section, the
approaches to query languages and ontology reasoning that are relevant for this
thesis will be discussed. Ontology reasoning describes the process of logically
deducting new knowledge out of the existing one. OWL(-DL) reasoners can, e.g., be
used to check for contradictions both locally and globally, or to compute
subclass-hierarchies and direct types of instances. Ontology reasoning is also an
important method for debugging ontologies. Query engines can invoke reasoning to
answer complex queries in respective query languages.
Reasoning:
Reasoning for OWL ontologies is usually being based on Description Logics (DL)
[Baa03]. Different approaches for ontology reasoning exist. Both Tableau-Based
Reasoning [MH09] or Resolution-Based Reasoning [Mot09] are typically introduced
for description logics such as ALC and ALCHI and then extensions towards the full
spectrum of OWL 2 constructs, reflected by the DL SROIQ(D) take place.
Resolution in general is a typical first order theorem proving approach. The
tableau-(calculi-) based reasoning currently seems to prevail over the resolution-based
reasoning for DL ontologies, at least in the practical reasoner implementations. Both
approaches will be shortly discussed in what follows. A comparison of different
reasoners for ontologies in the OWL 2 EL profile can be found in [DCT+11].
In order to understand reasoning procedures and the corresponding problems one
needs to understand how syntax and semantics of description logics can be defined.
A simple description logic that can later be extended towards more powerfull
languages that capture the full capabilities of OWL 2 ontologies is the above
mentioned Attributive Language with Full Complement ALC. In ALC concepts and
roles are introduced as unary and binary predicates and individuals are used to
represent specific objects of a domain. Allowed descriptions of complex concepts can
be built by using conjunctions, disjunction, negation, existential quantification and
value restriction.
The semantics can be defined with the aid of interpretations in a model theoretic way
or alternatively by a translation to first-order logic. An example for the latter
approach can, e.g., be looked-up in [Mot09] where knowledge bases in the description
logic ALCHI are mapped to formulas in FOL. Independent of that, in DL one
defines the notions ABoxes and TBoxes that intuitively refer to the assertional and
the terminological knowledge in a DL-knowledge base, i.e., the knowledge and

27

2. Software Services and Ontologies

axioms about individuals and classes. Different decision problems in reasoning can
be defined both for the tableau-calculi and the resolution based approach. All these
problems that, e.g., deal with the satisfaction of Tboxes, the deduction of subclass
relations (in ontology speaking) and the retrieval of instances can be reduced to a
certain form of satisfiability problem. For the case of Tableau-based reasoning the
solution of the so-called Consistency Problem for ALC Aboxes is a core component
of reasoners whose results are to be used for other reasoning tasks. In the case of
resolution-based reasoning one considers the problem of "checking satisfiability of K-,
[Mot09]" as a core problem. The latter problem is concerned with the satisfiability of
an ALCHI knowledge-base as a first-order formula.
Reasoners such as FaCT++, HermiT and Pellet [TH06, SMH08, SPG+07] are based
on DL tableau/hypertaubleau -reasoning and introduce different optimizations to
increase performance as well as extensions to allow for more complex queries. They
are currently the most common tools for reasoning with OWL 2 ontologies. Another
important reasoner usually refered to as RacerPro is included in the RacerPro
Knowledge Representation and Reasoning System [HHMW12]. All the latter
reasoners can, e.g., be used with the Protégé ontology editor via plugins.
Resolution-based reasoners seem to be beneficial for the case of large Aboxes (see,
e.g., [Mot09]). A reasoner implementation is given within the ontology managing
infrastructure KAON2 [Mot06]. The KAON2 reasoner is no longer maintained.
Ontology Queries:
Ontology query languages are typically classified as either RDF-based or DL-based.
A recommendation for the case of RDF(S) ontologies is given by SPARQL [W+13],
whereas DL queries can, e.g., be performed by ASK queries in the DIG protocol
[BMC03]. An interesting approach for DL reasoning that also allows for the mixing
of queries on assertional and terminological knowledge is given by SPARQL-DL
[SP07]. SPARQL and the distinct subset SPARQL-DL will now be introduced.
SPARQL-DL will be used in the design presented within this thesis.
SPARQL [W+13] denotes a recommendation for querying RDF-graphs. A SPARQL
query is constructed of so-called triple patterns which are rdf-triples in which zero or
more variables occur. Multiple triple patterns together yield a Basic Graph Pattern
(BGP) and finally operators such as OPTIONAL, UNION and FILTER can be used to
construct more complex SPARQL-queries. Answers to SPARQL queries are then
variable allocations that in the end yield a subgraph of the queried RDF-graph. An
implementation of a SPARQL query engine is, e.g., given by the ARQ engine of the
Apache Jena framework [Apa15]. Results of SPARQL (and also SPARQL-DL)
queries can be obtained in different formats, where the SPARQL Query Results
XML Format [JD13] will be used in what follows.
Typical DL Queries can be used to ask for either direct or general super- and
subclasses, equivalent classes and instances of classes. But the main restriction is
that the queries are atomic and are either Tbox, Rbox or Abox queries (see [SP07]).

28

2.5. Ontologies

I.e., you may ask for all subclasses of a certain class or all instances of a class
separately but not mix queries with both individual and class variables. A flexible
approach to overcome this limitation is the above mentioned SPARQL-DL [SP07].
SPARQL-DL has been designed as a distinct subset of SPARQL that allows for the
combined treatment of ABox, RBox and TBox queries. Different query atoms such
as Type(a,C), PropertyValue(a,p,v) or SubClassOf(C,D) can be used in
conjuntion with a SPARQL-like syntax to formulate queries. An API including a
query processor that is based upon OWL API is also available (see
http://www.derivo.de/ressourcen/sparql-dl-api.html for more information).
SPARQL-DL queries will be used and extensive examples of such queries will be
given in Chapter 5 of this thesis.
Rules
Logical knowledge that goes beyond the expressive power of the ontology language
OWL 2 can be specified in form of rules which are then to be considered in reasoning
procedures. A simple and common approach to formulate rules directly upon OWL
ontologies is given by the Semantic Web Rule Language (SWRL) [HPSB+04]. SWRL
provides Horn-like rules that can be added to OWL-DL ontologies. OWL syntaxes
such as RDF/XML are extended for specifying OWL ontologies with SWRL rules.
The semantics of OWL ontologies including SWRL rules are defined in a
model-theoretic way.
SWRL rules consist of an antecedent and a consequent that can consist of multiple
atoms. Multiple atoms are then treated as a conjunction. Following the definition
[HPSB+04], atoms are of the form C(x), P(x,y), sameAs(x,y),
differentFrom(x,y) or so-called builtIns are used. A "?" character typically marks
a variable, e.g., ?x and variables are treated as universally quantified having their
scope limited to a single rule. Different language built-ins can be used, e.g., to
perform simple computations with numbers in a rule.
A first example of a SWRL rule also mentioned in the member submission
[HPSB+04] is given as follows where a human readable syntax with the usual logic
operators is used. This syntax is reflected by implementations, e.g., for the
specification of rules in Protégé:

parent(?x, ?y) ∧ brother(?y, ?z)⇒ uncle(?x, ?z).

The rule intuitively states that a person ?z that is a the brother of a person ?y,
which is a parent of a child ?x, is an uncle for ?x.
Further examples and uses of SWRL rules will be presented in Section 5.6.
By the condition of only using variables in a consequent that are used in the
antecedent, that is typically refered to as "safety", the decidability of SWRL
extended OWL ontologies can be guaranteed [MSS05].
Reasoner implementations that support the reasoning with SWRL rules are given by

29

http://www.derivo.de/ressourcen/sparql-dl-api.html

2. Software Services and Ontologies

HermiT, Pellet and RacerPro.

2.5.4. Ontology Imports and Ontology Mapping

In typical applications, not only a single ontology is used, but multiple ontologies
come together. Different scenarios can be distinguished such as the ontology import,
where concepts and axioms from another ontology are loaded into an actual ontology
project. The new "importing" ontology can make use of the knowledge contained in
the imported ontology in order to formulate new axioms. It is important to notice
that ontologies are only referenced and loaded by this step and that a working
ontology import requires that no conflicts in the vocabularies being brought together
occur. Besides the ontology import, different application scenarios such as the
integration of data that is annotated with ontology metadata or the automated
composition of semantic software services require different ontologies to be
semantically integrated. In a typical situation, where two ontologies provide
conceptualizations for overlapping excerpts of a domain, differences can occur that,
e.g., result from the different views, modeling principles or granularity requirements
of the individual ontologies. To solve the heterogeneity problem, the ontologies need
to be aligned. Ontology alignment can be referred to as the task to both provide an
ontology matching, i.e., to find similarities in the concepts of ontologies, and to
provide an ontology mapping that concretely relates the two ontologies. The
mapping can consist of simple relations, i.e., subclasses, equivalent classes,
disjointness, or also complex transformations. The task of ontology mapping provides
the basis to automatically integrate or transform data. The terms ontology
alignment, ontology matching and ontology mapping are not clearly disambiguated in
the literature. To that end, the latter separation of the notions ontology matching
and ontology mapping will be dropped and the use of the term ontology mapping will
be favored as the task to find and specify mappings. This notion follows Noy
[Noy09]. Other authors prefer the notion of ontology matching (see, e.g., [SE13]).
Ontology Import:
Ontology imports can be either direct or indirect and are typically handled
automatically by tools such as Protégé. Ontology A imports ontology B directly if a
respective import is specified for A. For a concrete syntax this could, e.g., mean that
the ontology IRI of B is specified within an <Import> tag in the OWL/XML
serialization of A. If then B imports another ontology C that is not directly imported
by A, then C is an indirect import of A. By following all referenced ontologies
recursively, the imports-closure of an ontology can be build. Ontology imports are
important for the representation approach of this thesis. Different ontologies will be
required to specify and process an abstract optimization model and ontologies
concerned with the entities of optimization models will use other vocabularies
provided by imported ontologies to formulate their axioms.

30

2.5. Ontologies

Ontology Mapping:
As mentioned above, ontology mapping or the associated task of finding an ontology
alignment is of great importance for data/ontology integration and emerging
applications such as semantic service composition or the answering of queries in the
semantic web.
A definition of an ontology alignment can, e.g., be found in Shvaiko and Euzenat
[SE13]: "An alignment is a set of correspondences between entities belonging to the
matched ontologies. Alignments can be of various cardinalities: 1:1 (one-to-one), 1:m
(one-to-many), n:1 (many-to-one) or n:m (many-to-many). Given two ontologies, a
correspondence is a 4-tuple: < id, e1, e2, r >, such that

• id is an identifier for the given correspondence;

• e1 and e2 are entities, e.g., classes and properties of the first and the second
ontology, respectively;

• r is a relation, e.g., equivalence (≡), more general (w), disjointness (⊥),
holding between e1 and e2.

[SE13] ". In addition to that, the correspondences can have annotated metadata,
especially a confidence value that represents the likelihood that a relation holds in a
[0, 1]-range.
As mentioned above, allowed mapping constructs are, e.g., equivalence relations,
super-class and sub-class relations and disjointness. Following Noy [Noy09], also
more complex transformation rules are allowed and the possible mapping constructs
depend on the chosen representation of mappings.
Methods to discover mappings cover manual, semi-automated and automated
approaches. Besides the completely manual approach, Noy [Noy09] distinguishes two
basic cases. In the first case mappings are found using a shared ontology and in the
second case ontologies are compared directly with the aid of different techniques that
are, e.g., based on machine learning or graph comparison.
Following Noy [Noy09], shared ontologies can be used in different ways for integrating
or mapping ontologies. In the most simple case, semantic interoperability is given
directly by reusing so-called upper ontologies for ontology development. Examples
are given by SUMO [NP01] or DOLCE [GGMO03]. In a more general case, common
shared vocabularies are reused with additional infrastructure to construct mappings
between two ontologies directly out of mappings to the intermediary and
standartized ontologies. An example is given by the Process Specification Lanugage
(PSL) [Gru03] and the methods proposed by Gruninger and Kopena in [GK05].
Shared ontologies to which the ontologies to be matched conform or refer might not
always be available. Different automated approaches that exploit and compare the
structure of ontologies exist. Approaches cover a detailed comparison of entity

31

2. Software Services and Ontologies

definitions in an OWL subprofile by a similarity measure [EV+04] and approaches
such as GLUE [DMDH02] that use multiple learning strategies to especially exploit
the information on the instances of ontologies or the taxonomic structure for finding
most similar concepts. A recent survey on matching approaches and a discussion of
the state of the field can be found in [SE13]. Another standard text is given by
[Noy09].

2.6. Semantic Services

Structural specifications of service interfaces such as gained with WSDL basically
require a human to read the service specification and further documentations in
order to understand what a service does and how it can be integrated with other
services. When applications are created by the means of service composition, the
services are to be selected in a first step and then to be bounded in a static way at
design time, i.e., an automated recomposition with new services at runtime can not
take place. In addition to that, errors in the execution of the final system due to
changed services might not be dealt with automatically. The development of
composed services in this context is often characterized as time-consuming and
error-prone compared to the possibilities that are envisioned by semantic services
which are going to be discussed in this section.
In order to deal with the latter issues in terms of automatization, the structural
specifications of software services are to be augmented by semantics. Semantic
services provide descriptions by which "properties, capabilities, interfaces, and effects
are encoded in an unambiguous, machine-understandable form [MSZ01]." With the
means to provide these rich descriptions, the vision of generating service
compositions automatically out of semantic service requests that generally describe
"what shall be achieved and not which concrete service has to be executed
[KTSW08]" can be treated as an AI Planning task. To conclude, semantic services
are introduced to simplify the discovery, selection, execution and composition of web
services.
In order to pronounce their relation to web services and the vision of the semantic
web, the notion of semantic web services was established, see, e.g., [MSZ01]. In the
semantic web, automated interaction of web services and agents can be seen as an
important feature, e.g., to allow for the answering of semantic queries. Today,
different visions and usage scenarios for semantically described services exists and
therefore the shorter notion of semantic services will be used in what follows.
Semantic services, e.g., occur in the context of a semantic service provisioning
platform described by Kuropka et al. [KTSW08] or in the recent vision of
On-The-Fly Computing which has been introduced in Section 2.4.
An early approach to the semantic markup of web services and the enforcement of
automated web service discovery, execution, composition and interoperation was,

32

2.6. Semantic Services

e.g., given by McIlraith et al. in 2001 [MSZ01]. This approach will be discussed
together with novel service composition approaches in Subsection 2.6.2.
In their book on the Semantic Web, Bussler, Kashyap and Moran [BKM08] describe
further aspects and usage-scenarios of semantic services. They highlight the role of
data, process and selection semantics for semantic web service descriptions and
elaborate a clinical use-case. Payne and Lassila [PL04] also highlight the role of
semantic web services in the context of the vision of the Semantic Web. The prior
vision "to increase automation in processing Web-based information and to improve
the interoperability of Web-based information systems [PL04]" may only be achieved
by tackling behavioral issues such as the "unarchitected, unanticipated encounters of
agents on the Web [PL04]".
The semantic service provisioning approach by Kuropka et al. [KTSW08] that has
already been mentioned above further tackles important issues for turning semantic
service visions into practice. The authors highlight the aspects of run-time
composition and service quality. They review the literature at date (2008) and
present own approaches to service matching and automated composition, especially
enforcing the late binding and automated re-planning of compositions after failures.
Usage scenarios are elaborated and relevant aspects for providing semantic services
over a platform, such as service enabling, are discussed.
A very recent approach towards semantic services is followed in the "On-The-Fly
Computing" project which has been introduced in Section 2.4. The vision includes
many facets in order to realize the provision of individual IT-services out of
base-services on global markets, see, e.g., [CRC11]. Semantic service descriptions,
service matching and composition play a major role in this approach as well as
means for validation and verification. The technical report [APG+14] describes the
configuration of a specification language and matchers in the OTF Computing
vision, thereby highlighting the broad range of service description aspects for
different applications and providers of services. A novel approach to service
descriptions, the Service Specification Language (SSL), goes along with this.
In the remainder of this section, the issues concerned with semantic service
description languages, service composition and matching, as well as mediation will
be discussed.

2.6.1. Semantic Service Description Languages

In this subsection, different approaches to the semantic markup of software services
will be presented. The view on which descriptional elements may be contained under
which terms may differ from approach to approach. Therefore, the major
descriptional elements will now be characterized in an abstract fashion.
In similarity to web services, every service that is considered in this section will
provide callable operations with certain inputs and outputs. Within the approach of

33

2. Software Services and Ontologies

this dissertation, these services will also be limited to only provide a single operation
and not have any effect on a world state. Nonetheless, the latter restrictions would
be too restrictive for a review of semantic service description approaches.
Thereforem the possibly multiple operations a service provides are first of all to be
described by signature descriptions. The input and output data of service operations
is to be augmented by data semantics, e.g., by directly using ontological types from
or making reference to so called domain ontologies. Kuropka et al. [KTSW08] define
the latter as follows: "Domain ontologies serve the purpose of defining how a domain
is formalized and what situations are hold regarding the content that is to be
communicated in a network of web services [KTSW08]."
Method specifications with ontological types can be seen as a part of a service’s
interface description. But an interface description may generally contain more
information, e.g., on the order of callable operations and the communication with the
service. This is reflected by the following citation from [KTSW08] dealing with the
interface concept in WSMO (to be explained in the remainder of this subsection): "A
service interface consists of a choreography which describes the interface for the
client-service interaction required for service consumption, and an orchestration
which describes how the functionality of a Web Service is achieved by aggregating
other Web Services [KTSW08]".
The operations a service exhibits have a meaning that is to be defined in a manner
more explicit than only providing a signature. To that end, a service may have a
precondition on its execution, a postcondition to specify what holds after the
execution of the service, and an effect that typically describes global changes in the
world’s state after the execution of the service. Effects are often exemplified with
physical effects, i.e., after the purchase of a book in an online shop the real physical
good will be shipped. Preconditions, postconditions and effects are to be formulated
in logic. For that purpose, the elements of the ontologies underlying the service
descriptions can be treated as logical predicates and then new logical expressions can
be formulated. The preconditions, postconditions and effects of services describe
capabilities that are to be matched with goal descriptions for a required service in a
service composition approach. Here, an overall goal might be reached after multiple
service invocations and the capabilities of every individual service influence the
possible services to be executed in advance. Pre- and postconditions were
exemplified in the context of CBSE in Section 2.1.
The latter descriptional elements correspond to functional properties of the software
behind the semantic services. Nonfunctional properties such as costs should in
addition to that also be included into semantic service specifications. In the context
of this thesis, interesting nonfunctional properties would include the mentioned
specifications of usage costs, performance aspects as well as futher issues concerned
with the quality of service, e.g., response times. Nonetheless, as this would go
beyond the scope of this thesis, it was decided to leave nonfunctional properties out

34

2.6. Semantic Services

of the consideration.
Let us now shortly introduce three relevant approaches to semantic service
descriptions. For further approached the reader is referred to the literature, e.g.,
[KTSW08, BKM08], for a description and discussion of approaches such as OWL-S
or SWSF.
WSMO/WSML:
Following de Bruijn et al. [BLPF06], "The Web Service Modeling Language (WSML)
is a language for the specification of different aspects of semantic web services. It
provides a formal language for the Web Service Modeling Ontology WSMO which is
based on well-known logical formalisms, specifying one coherent language framework
for the semantic description of Web Services, ... [BLPF06]".
WSMO distinguishes the four top-level elements Ontologies, Goals, Web Service
Descriptions and Mediators and therefore includes further descriptional elements for
service discovery, composition and execution than the ones that were mentioned in
the introduction above. There are different language profiles of WSML which will
not be described here. Ontologies in WSML are described by concepts, relations,
instances, relation instances and axioms plus some allowed nonfunctional properties,
e.g., for annotations. Web services in WSML have capabilites, i.e., preconditions,
assumptions, postconditions and effects as well as interfaces. In addition to that,
nonfunctional properties can be specified for web services. The authors in [BLPF06]
highlight that "WSML has a normative human readable syntax that makes a
separation between conceptual and logical syntax, thereby enabling conceptual
modeling from the user point-of-view according to a language-independent
meta-model (WSMO), while not restricting the expressiveness of the language for
the expert user [BLPF06]".
SAWSDL:
Semantic Annotations for WSDL and XML Schema (SAWSDL) [LF07] provides a
lightweight approach to semantically describe web services based on WSDL (see
Subsection 2.3) and XML Schema. SAWSDL has the status of a W3C
recommendation. It is independent of ontology languages, though OWL and RDF
are mentioned as typical examples. SAWSDL provides means to augment WSDL
description elements by references to semantic concepts from ontologies. To that
end, a so-called modelReference attribute is defined for the WSDL and XML
Schema elements. Two further constructs, namely liftingSchemaMapping and
loweringSchemaMapping are provided in order to specify complex mappings
between semantic data and XML. SAWSDL does not include any means to formalize
preconditions or postconditions.
SSL:
The Service Specification Language (SSL) [APG+14] refers to a novel semantic
service approach in the context of the OTF Computing vision. Service specifications
in SSL may in principle contain various descriptional elements, where the basic idea

35

2. Software Services and Ontologies

is to provide a core language for service decription that can be adapted for individual
service providers in respective domains by means of configuration and to which
transformations from the existing service specification languages exist. Key features
included in SSL service specifications typically encompass signatures with types,
inputs, outputs and references to ontologies, preconditions, postconditions and
protocols. Nonfunctional properties and means to describe hardware services are
further important features.
Service specifications in this thesis:
Within this thesis, only semantic services that provide a single operation will be
defined. These services will further be of the type input-output with no effect. I.e.,
data is passed into the service as an input and a respective computational result for
which certain postconditions hold will be returned as an output. To that end, the
key descriptional elements for the services are signatures with ontological types,
preconditions and postconditions. The services will mainly be brought into
sequential execution orders and therefore will comprise very simple workflows with
limited branching capabilities. Errors are to be dealt with to a limited amount. This
kind of mostly sequential workflow with no "physical effects" may become clear when
considering that the focussed application, namely mathematical optimization, is of
computational nature. Since the descriptions will be kept that simple, no concrete
specification language from the literature needs to be chosen, but rather will visual
representations in combination with signatures and logical expressions for pre- and
postconditions be given. Nonfunctional properties will not be considered for the
service specifications. An example will, e.g., be presented in Chapter 5, Subsection
5.6.2.

2.6.2. Semantic Service Composition

Service compositions are services which have been integrated into a new service with
a new functionality. In contrast to component-composition in CBSE, which was
discussed in Section 2.1, it is important that the newly generated functionality is
provided as a service for the possible users. This means that it should be
independent and loosely coupled. Nonetheless, the notions of composed services and
atomic services out of which the first ones are to be generated can be distinguished.
Service composition also decribes the task to generate a composition that fulfills
certain requirements. Composition approaches can be characterized by the degree of
automation and the point in time at which real services are bound. The basic
distinction for the latter issue is design-time versus run-time composition.
A service composition can be seen as a workflow of concretely bound services and
related tasks to find concrete services can be considered under the roof of service
composition. Nonetheless, in recent approaches, a composition is first of all described
and generated in an abstract way. This refers to an abstract description of control-

36

2.6. Semantic Services

and dataflow for certain activities. The computational activities considered here can
be described semantically by preconditions, postconditions and effects as well as
signatures with ontological types. The word abstract then means that the activities
do not represent concrete services but rather some placeholders under which different
concrete services that match the description might be inserted. Service composition
from this view is the planning of activities and their ordering such that a goal is
reached, an initial state is respected and the plan is valid according to the individual
requirements of the activities (or operations), i.e., preconditions, postconditions and
signatures. Kuropka et al [KTSW08] describe these compositions as follows: "The
elements of a composition are activities that perform a task. The only activities are
service interactions. Besides invoking services, a composition can itself be invoked as
a service. The resulting composition includes service interactions only on the
specification level without a binding to a concrete implementation [KTSW08] ".
Right before or even during execution, service compositions will always be bound to
some conrete services. The following citation motivates abstract service compositions
and the requirement of automated service composition techniques for the case of
dynamic service landscapes, in which services can occur, vanish or change, and where
especially new services that are aggregates of others may become available: "If a
service changes it might no longer be suitable for the compositions in which it was
used previously. Of course, if a service is removed, all service compositions using this
service will fail. If service types exist and some form of dynamic binding (without
semantics) is in place some of these problems can be solved. However this rarely
works with existing Web services based on simple WSDL descriptions because the
probability for a full overlapping of functionality and data structures is rather low,
[KTSW08]".
By shifting the service composition and the binding of concrete services from
design-time to run-time by means of automatization, the actual services landscape
can be considered to satisfy a formal request. As already mentioned above, before an
abstract composition can be executed, the binding to concrete services has to take
place in form of a selection. Besides others, this selection has to respect possible
differences in the service desciptions of the service requested by the composition and
the services actually provided. The differences may contain signature differences
such as parameter numbers, types and operation names as well as differences in
preconditions, postconditions, nonfunctional properties and further. If signatures
and logical conditions match, nonfunctional properties can be seen as important
factors to choose the best implementation. The whole topic of comparing service
descriptions of required and provided services is called service matching and plays an
important role for the enactment of abstract compositions as well as the classical
case where a single service (atomic or composed) is searched.
Service matching (or matchmaking) and requests have also been defined in the
literature: "Service matchmaking is the task of finding services for a given user

37

2. Software Services and Ontologies

request based on their semantic service specification. A user request describes the
requirements of the user toward the service in a similar fashion as the semantic
service specification describes the functionality of a service [KW08]".
Service Composition Approaches:
An early approach to semantic services and semantic service composition was given
by McIlraith et al. in 2001 [MSZ01]. The authors present a semantic markup based
on the DAML family with a focus on the following descriptional elements:
"Fundamental to having computer programs or agents implement reliable, large-scale
interoperation of Web services is the need to make such services computer
interpretable - to create a Semantic Web of services whose properties, capabilities,
interfaces, and effects are encoded in an unambiguous, machine-understandable form
[MSZ01]". The authors present a composition approach by model-based
programming using the situation calculus and GonGolog, a variant of Golog.
Generic procedures that are abstracted from the concrete services are instantiated to
concrete sequences of service calls by means of logical deduction. The decuction
process is based on the knowledge of the user constraints and services as well as
further parameters and hence leads to different answers for individual user requests.
The customization of generic procedures (or templates) according to user constraints
and available services requires a suited generic procedure to be available and selected
for an individual user request. In the context of their holistic semantic service
provisioning approach, Kuropka et al. [KTSW08], like other authors at that date
treat service composition as a planning problem without the need for this kind of
guidance for finding a control and data flow as well as the services to invoke. To that
end, the generation of abstract service compositions as well as the consideration of
run-time composition are central features of the approach. The authors treat the
following four requirements on automated service composition not being referenced
in the service composition literature at that date: Parallel control flow, uncertainty
in initial state and service effects, alternative control flow, creation of new variables.
The first requirement relaxes the assumption of total ordering of service invocations
to the possibilities of a parallel workflow and the second requirement allows a more
realistic treatment of services with multiple possible effects. Based on the uncertain
states, different paths of service executions might be required which lead to the third
requirement and then requirement four deals with the problem that in planning it is
often assumed that all variables are defined in advance. As the authors mention, this
requires knowledge of the service landscape and so they try to deal with the issue in
their approach. For the compositions an extended version of Enforced Hill Climbing
is used.
In [MB13] Mohr and Kleine Büning also tackle the problem of alternative control
flows for efficient composition in practice by complementing existing composition
approaches with the possibility to include composite components that can be
generated before the composition step as a preprocessing task.

38

2.6. Semantic Services

Service Composition in this thesis:
The framework presented within this thesis incorporates service composition by the
aid of templates. Templates can be compared to the generic procedures that were
mentioned above and provide placeholders for services and a rough concept of a
control and data-flow including xor-branches. The composition with these templates
then reduces to the customization and instantiation of the template according to the
given knowledge of user constraints and available services. As template composition
includes instantiation, the result of this composition task will contain concretely
bound services. The instantiation of a template in the case of this thesis will also be
guided by fixing some of the services, e.g., a model instantiation service in a first
step and allowing to leave service placeholders for data mediation uninstantiated in
the actual composition step. The data transformations are to be implemented before
the execution of the system instead of being part of a search procedure. Means to
create such transformations for data semi-automatically will be described in the next
subsection.

2.6.3. Data Mediation in Sequential Workflows

In this subsection, a special issue concerned with inconsistencies in semantic service
descriptions will be discussed. Inconsistencies can occur in different forms such as
varying operation names or granularities of service operations, e.g., when two
operations of one service might be combined by a sequential execution to yield the
functionality of a single operation of another service. Of special interest for the
services that are applied in this thesis are parameter inconsistencies, where two
comparable operations with the same name have differences in the number and types
of parameters. These can, e.g., occur, when the outputs and inputs of two services to
be executed in sequence do not match. This setting will further be referred to as
data inconsistencies where the following assumptions are made: It is assumed that
inputs and outputs of services are separated into so-called ports, i.e., a port produces
or consumes data of a certain structural type, e.g., an XML-message, and two ports
of two services to be executed in sequence are connected in the sense that the
port-output of the one service is to be passed as an input for the input port of the
other service. In this case the problem of inconsistent data may occur and the issue
to deal with is the automated generation of a transformation program.
The task described above is known under the general term mediation. As descried
above, mediation for services might deal with various forms of inconsistencies as
there are, e.g., differences in data, processes and protocols (see, e.g., [BKM08]). A
similar concept in object-oriented programming is the one of an adapter (cf. adapter
pattern) which also occured in the context of CBSE in Section 2.1. The framework
presented within this thesis will make use of data mediation for services and
respective programs performing such data transformations will be referred to as
transformation services.

39

2. Software Services and Ontologies

In [BL04], Bowers and Ludäscher decribe an approach to generate data
transformations in scientific workflows semi-automatically out of ontological type
definitions for service inputs and outputs. The authors present a framework in which
structural types are related to ontology types by registration mappings and the
specified semantic concepts in the ontologies are mapped by so-called contextual
subpaths. Together with the subpath-relation and the registration mappings,
correspondence mappings are defined as a semantic join of two registration mapping
rules. A correspondence mapping consists of mappings of substructures of the
structural types, where the substructures are described by queries. Out of multiple
correspondence mappings, the automated generation of data transformation
programs is possible under respective assumptions. The authors define general
assumptions on the registration mappings, namely well-formedness, consistency with
respect to cardinality constraints and partial completeness, which are at first
independent of concrete languages. Consistency in the latter context states that
cardinality constraints of structural types imply semantic-type cardinality
constraints. Partial completeness according to the registration mappings firstly
enforces the registration mapping of a service’s output port to be complete in terms
of semantic types, i.e., the required concepts for some cardinality constraints of a
semantic type have respective structural type instances. Furthermore, the partial
completeness requires the data items of the structural types of an input port all to
be registered with semantic types in terms of contextual paths. A concrete example
using XML data is elaborated and refinements of the assumptions are discussed. The
authors mention that partially complete registration mappings that also fulfill
respective XML-specific requirements such as a compatibility of cardinality
restrictions should allow to generate unique data-transformations. A problem to deal
with in practice might be the violation of the partial completeness assumption that
leads to underspecified correspondence mappings.

40

3. Model Management and Optimization Software

The aim of this chapter is to introduce the basic notions concerned with optimization
models and optimization software in the decision support system context. Literature
and technologies will be reviewed and a special focus is laid on the field of model
management. The next section starts with a short introduction of basic notions.

3.1. Basic Notions

Mathematical optimization techniques are nowadays being used for a huge variety of
applications in science and industry. A common approach is based upon formulating
a decision situation at hand as an optimization model, where typically abstractions
from concrete data are being made in order to allow for the execution of the model
with different data-sets. Such an abstract optimization model defines goals and
constraints of the problem in terms of arithmetic expressions and inequalities. Sets
and indexing can be used to separate the model logic from instance data.
Techniques and formalisms within this thesis are often optimization specific.
Nonetheless, the more general notion of decision models provides the accurate
background for discussing the related research and state of the art. Krishnan and
Chari [KC00] define a decision model as a "formal abstract representation of reality"
that "constitutes an important component of decision support systems (DSS)
[KC00]". Furthermore, "Such models can be instantiated with data to create model
instances that represent specific problem situations. Model instances are solved by
executable programs known as solvers to obtain model solutions [KC00]". This
definition captures the aspect of abstraction or, say, a schema when a model can be
instantiated with different data-sets to obtain computational instances. It also
highlights the model as a central component to support decision making. Decision
models, their instantiation and solution are therefore typically core components of
decision support systems. When the model component is restricted to optimization
models, the term optimization system will be used within this thesis. General
decision models can, e.g., be mathematical models for simulation, forecasting or
optimization, whilst optimization models will be restricted to a definition given
below. Within this thesis, the term model, if not stated otherwise, will always
correspond to an abstract model without concrete instance data and is hence to be
distinguished from a concrete model instance.
Optimization models constitute a special form of decision models which consist of
objectives (or goals) and constraints. The goal is to find a feasible solution to the set

41

3. Model Management and Optimization Software

of constraints that minimizes or maximizes the objective. The scope of optimization
in this thesis corresponds to the notion of mathematical programming which usually
deals with a finite set of real variables to be determined in a solution. Constraints
are understood as (in-)equalities of algebraic expressions in the model parameters
and variables. Optimization problems are to be solved by specialized algorithms.
Implementations of such algorithms are usually contained in software components
called solvers (this is the same as for the general decision model context above).
The basic workflow in optimization can be described as formulating an abstract
optimization model based upon a problem description, implementing the abstract
model and instantiating it with data, solving the instance and interpreting the
results. The process may typically be reiterated where model and data are adapted
and further steps such as validation and selection and integration of components
such as solvers take place in order to obtain suited decision support for a real world
decision situation. The research discipline of model management tries to answer
different questions concerned with decision models in the different steps of a general
modeling lifecycle. Therefore, model management deals with different questions of
creation, description, analysis, reuse and integration. It will be the topic of the next
section. For optimization specific purposes, software solutions to support the
modeling lifecycle exist in different forms. A common approach is to formulate an
abstract optimization model in a symbolic, algebraic notation in a so-called Algebraic
Modeling Language (AML). AMLs are typically a part of Algebraic Modeling
Environments. The latter languages and systems will be a topic of Subsection 3.3.2.

3.2. Model Management

Current and past research on decision models in software systems for decision
support can be viewed as part of the field of model management. An overview article
is, e.g., given by Krishnan and Chari [KC00]. The following subsections will
introduce basic concepts and describe the state-of-the art for central areas such as
SOA for model management, model representations and model integration.

3.2.1. Modeling Lifecycle and Model Formulation

This subsection is concerned with the modeling lifecycle of decision models and the
central step of model creation. Krishnan and Chari [KC00] define the modeling
lifecycle as a process of eight tasks, namely problem identification, model creation,
model implementation, model validation, model solution, model interpretation, model
maintenance and model versions/security. Each of the latter tasks has a certain goal
and can be achieved by different mechanisms. Problem identification is the first step
that has the goal of determining a "clear, precise problem statement [KC00]" that
can be translated into a formal mathematical model in the model creation step.

42

3.2. Model Management

Model creation can be achieved by different mechanisms where the authors define
the four mechanisms formulation, integration, selection and modification as well as
composition. Model implementation has the goal of creating a computer executable
statement of the model. This can contain both the formulation of an abstract
optimization model, e.g., in an AML, as well as its instantiation with data. After
model implementation, the model can be validated by model validation as well as
that a computational instance for the model solution step shall exist. Model
interpretation denotes the interpretation and analysis of results. With the last step,
a first decision proposal for the practical decision problem can be obtained. Model
maintenance denotes the step to revise the problem statement and/or model and
reiterate the latter steps. Model versions/security is a task to be performed parallel
to the latter loop and has the goal to "maintain correct and consistent versions of
models [KC00]" and "ensure authority to access [KC00]".

As mentioned above, model creation can be achieved by the different mechanisms
model formulation, integration, selection and modification as well as model
composition. A commonly known mechanism that is not focussed on reusing existing
models or parts is model formulation. According to Krishnan and Chari [KC00],
"model formulation is the task of converting a precise, problem description into a
mathematical model. It is different from the other mechanisms used to create models
in its focus on constructing the mathematical structure of the model [KC00]".
According to the same reference, questions concerned with model formulation cover
the "characterization of the modeling process", "represenational issues" as well as
"Reasoning Issues". The modeling process can both be investigated under the
process perspective of "determine where model management technology can be of the
most use [KC00]", as well as on the sources of knowledge employed by modelers.
Representational issues do not only deal with representations of model and data, e.g.,
whether they should be domain specific in problem objects or "in terms of object such
as resources and activities that underlie modeling paradigms [KC00]", but also how
knowledge about modeling paradigms and solution technology should be represented.
Reasoning issues are concerned with the question of "what is the reasoning process
used to formulate a model from a qualitative problem description [KC00]".

In [MSM92], Murphy, Stohr and Ma provide composition rules to generate linear
programming models (LPs) out of abstract algebraic pieces such as terms with
summations and right-hand side coefficients with equality/inequality relations. They
define the three tasks of constructing models from a complete collection of pieces,
the inference of summations from terms and the inference of right-hand side pieces
from a complete collection of left-hand side pieces. Rules are proposed for these
tasks and an algorithm for composing LPs from pieces and terms is described. The
index structure of pieces is identified as a central ingredient for the construction rules
and general problems of the algebraic piece construction are solved by extending the
indexing by information about form, time and place. In [MMS96], the

43

3. Model Management and Optimization Software

implementation of the model formulation system LPFORM is presented which
implements some of the methods from [MSM92]. The system is graphically oriented
and lets the user enter model entities such as sets and parameters as well as the
algebraic pieces in window dialogues. The composition techniques from [MSM92] can
be applied to a so-called scenario and afterwards a GAMS model ([McC14], see
Subsection 3.3.2) can be derived. A graphical interface also allows for the definition
of network-based models by entering and connecting entities such as pumps, wells
and refineries for problems of the oil industry. The graphical editing of the network
generates constrainst such as mass balance equations automatically and allows for
model integration. The approach is not restricted to network based problems but to
the class LP, as the techniques from [MSM92] are LP-restricted.
The approach of Murphy et al. [MSM92] can be characterized as bottom-up in
contrast to the approach presented by Binbasioglu in [Bin96]: Abstract
representations of equations / constraints are stepwise refined into linear constraints
by rule-knowledge that formulates on a so-called action-resource view. Following the
author, "the action-resource view captures the semantics of linear programming
model formulation since it formalizes the choice of decision variables, coefficients,
constants and their appropriate configuration [Bin96]". In this form, the idea has
some similarities to the abstraction of formulation types and their derivation as it
will be presented in Chapter 5. Nonetheless, the reasoning techniques in [Bin96] are
restricted to linear models. Furthermore, the approach in [Bin96] configures a small
set of equation types into flexible statements such that, e.g., certain coefficients can
be used or left-out, whilst the approach presented in this thesis will follow a different
paradigm by providing many different types of less flexible syntactic structure that
are organized in taxonomies and can be compared by ontology matching. Operations
in the formulation of a model are then performed, e.g., by changing the formulation
type to a subclass and adapting the related data specifications. By this, a complex
and step-wise configuration of a constraint type is avoided.

3.2.2. Structured Modeling

Under the different model representations and frameworks that have been proposed
in the model management literature, Structured Modeling (SM) [Geo87] has gained a
lot of attention until today. Krishnan and Chari [KC00] describe Structured
Modeling as "a formally specified notational framework for modeling that was
developed to address a variety of model development problems [KC00]." More
concrete, Geoffrion states that "Structured Modeling aims to provide a formal
mathematical framework and computer-based environment for conceiving,
representing, and manipulating a wide variety of models [Geo87]". This subsection
aims at giving a short overview on Structured Modeling and its extensions. This will
also be of importance for the model management approaches presented in the
following subsections.

44

3.2. Model Management

Structured Modeling (SM) is based upon formulating general decision models in
terms of five elements and their interrelationships. These five elements are primitive
and compound entities, attributes, test elements and functions. Whilst the entities
and attributes relate to the representation of data (structure), the test and function
elements can represent things like mathematical constraints or formulas for
computations. The elements and their relationships are to be defined in multiple
structures on multiple levels of aggregation. Namely, the elemental structure, the
generic structure and the modular structure constitute three levels of representation
that are required to specify model instances or represent "abstract" models in form of
a model schema. Concrete representation languages that are capable of representing
the latter structures will be discussed below. By allowing to specify a broad range of
decision models such as probabilistic, simulation or optimization models, the
approach is generally applicable in the dss context.

PLANT CUST

SUP LINK DEM

COST!!!!!!!!!!!!!!!!!!!!!FLOW

T:SUP $ T:DEM

Figure 3.1.: Genus graph of a transportation model. Reproduction of an image from
[Geo87]

Figure 3.1 gives an example of a genus graph that can be used to visualize a generic
structure. The graph represents definitions for a transportation model. The
primitive entities PLANT and CUST represent plants and customers. The entities can
be compared to sets in the AML view (see Subsection 3.3.2) as the elements do not
carry any values. The same goes for the compound entity LINK representing the links
in-between plants and customers. The definitional dependencies in Structured
Modeling are visualized in graph or tree views which, besides others, allows for
automated model integration approaches that are a topic of Subsection 3.2.3. The
latter aspect has also been described by Krishnan and Chari [KC00]: "Another useful
feature of structured modeling is its explicit representation of the inter-relationships
between model elements [KC00]". Attributes in the example are SUP,DEM,COST and

45

3. Model Management and Optimization Software

FLOW which in order represent the values for supply and demands at the respective
plant and customer nodes, as well as the unit-transportation cost parameters and
unit flow values for the links. The flow values are variables of the model. This fact
can be represented in SM by a variable attribute which is a specialization of the
usual attribute. The model contains an objective and two constraints (T:SUP and
T:DEM) that can be represented by a function and two test elements.

Different languages have been introduced that formalize and extend the Structured
Modeling framework introduced by Geoffrion in 1987. Geoffrion proposes SML
[Geo92b, Geo92c], a language formalization that is grouped into four levels of
complexity. Geoffrion [Geo89] and Tsai [Tsa98] study model integration (Subsection
3.2.3) on SML represented models. Tsai [Tsa98] especially highlights the operations
on SML represented models as manipulations to be performed in a text-processing
software such as WORD. SML itself is extended towards the Structured Modeling
Markup Language SMML for better sharing and reuse in [EGT07]. SMML as an
XML language is compliant with current web standards and is used in the model
management SOA [EGD13] to be discussed in Subsection 3.2.4. Different languages
for SM are typically developed towards a certain application scenario. BLOOMS
[GS97] and ASCEND [PMW92] provide two object-oriented approaches. In
BLOOMS [GS97], it is possible to define classes for SM elements and use
OO-principles such as inheritance for reuse. The system itself is capable of some
model integration functionality, see, e.g., [GS95]. Besides the SM-focussed approach
of BLOOMS, Piela et al. [PMW92] present the ASCEND language and interactive
environment in which five operators for inheritance, typing, refinement, merging and
grouping of objects and their members can be used to enforce, e.g., reusage and type
checking. They also provide means for checking dimensional consistency. Though
object-orientation is exploited by the latter approaches for reuse, there is no broad
discussion of design patterns, e.g, for optimization models. As OO focusses its design
towards the reuse of functionality it also seems hard to reuse single "constraints" in
the latter approaches but rather are bigger software components for models
envisioned. The desig approach of this thesis in contrast is intended to reuse detailed
type-conceptualizations of model entities in a platform-independent way by
exploiting ontologies.

Logics and logical reasoning are central aspects of ontologies but have also been
exploited in the past SM literature. In [CK90], Chari and Krishnan present the logic
based executable modeling language LSM. LSM represents structured models as a set
of FOL-formulas by treating individuals of models as objects that occur in predicates
and functions representing SM-concepts. Following an approach from [BK93], the
predicates, functions and constants that represent SM constructs such as primitive
entities or genus-graph relations are then embedded into the language L ↑ [BK93] as
constants. This then allows for a reasoning on models to conclude or state relations
such as a formulation being a linar approximation of another or the evaluation of

46

3.2. Model Management

functions. Checking the integrity of a model by rules or validating units of
measurement are further important applications. The inference of mathematical
properties such as linearity of a model, or using predefined formulations to perform a
linearization, are not a topic of the latter approach but should be mentioned at this
point as features of the approach presented within this thesis.

3.2.3. Model Integration and Composition

This subsection is concerned with the two mechansims of model integration and
model composition. Both mechanisms can be used to support the model creation step
and aim at reusing models or model parts. They are distinguished by the fact that
model integration typically tries to create a single consistent model out of parts,
whilst model composition, in similarity to the composition of software services
(recap. Subsection 2.6.2), tries to bring existing models into an integrated solution
process to iteratively solve a bigger problem. Confusion may result from different
usage of the terms integration and composition in the literature. Historically, both
model integration and model composition are covered under the name model
integration ([Geo89]), where the model integration as defined above is specialized to
deep model integration and model composition is denoted as functional integration.
Geoffrion defines the term deep model integration as the integration task for models
in the same representation language with the further requirement of generating a
valid model in that language. With the distinction of model integration and model
composition this thesis sticks to the view of Krishnan and Chari [KC00]: "Model
integration, like model composition, also leverages previously developed models.
However, in model integration, the models being integrated are modified [KC00]".
Furthermore, the concept of model integration can be refined to schema integration
and process (solver) integration: "Schema integration is the task of merging the
internal structure of two models to create a new model. Process integration is similar
to solver integration in the context of model composition [KC00]". This distinction
highlights that integration, in similarity to composition, can generate a process. But
for process (solver) integration "the solution process of two or more models may have
to be interwoven [KC00]". This subsection will treat model composition as well as
model schema integration, where model schema integration is set equivalent to deep
model integration or shortly model integration.
Geoffrion has investigated model integration for SM with a manual procedure
[Geo89] that is based on the SML language for Structured Modeling described in
[Geo92b] and [Geo92a] (recap. subsection 3.2.2). Model integration has been further
studied in the model management literature for languages that are based on the
Structured Modeling framework. Gagliardi and Spera [GS95] provide procedures and
formal results based on genus graphs. Some of the procedures have also been
implemented in the scope of their object-oriented SM language BLOOMS [GS97].
The authors define three levels of automation for model integration. Level one

47

3. Model Management and Optimization Software

integrates two input models (or selections of their genera) fully automatically. Level
two, in contrast, requires user-entered dependency replacements ("order of
integration among the genera [GS95]"). Level three provides an interface for manual
model integration. Results for levels one and two are presented in the reference,
where example models are integrated in such a way that previously user-entered
parameters are now computed by the resulting model. In case of a transportation
model being integrated with an exponential smoothing demand forecast model, a
fully automated level one integration can take place, whilst for a four model example
the user has to replace dependencies. The example models are typical case-studies in
the model integration literature, see, e.g., [Geo89]. An article by Tsai [Tsa98]
investigates operations for model integration in the SM framework directly on the
SML language provided by Geoffrion. Operations to support model integration are
introduced in terms of tree-editing operations for the modular, generic and elemental
structures. The author, amongst others, defines operations for projection,
concatenation and joining of models as well as that some formal results on their
validity are proven. A hierarchy relationship on genus types is defined that explains
which genus types can be defined on others. The relation is also used in the join
operation to decide which one of two compatible genera should be deleted when
merging them. Compatibilty of genera is a further definition given in the article. An
illustrative example for a transportation model and a multi-item EOQ model is
given. Bhargava et al. [BKK91] introduce a certain aspect into the general
framework of model integration by focussing on the question whether object names
in a model refer to the same element. To that purpose they postulate the
specification of four types of information that especially include dimensional
information and a definition of the intended interpretation called quiddity.
Model composition denotes a task that uses previously developed models to solve a
greater problem, e.g., by selecting and bringing them into an execution order. It
contains the task of "linking together independent models such that the output of
one model becomes an input of another [KC00]", as well as that it can use techniques
from model selection "when no one model meets the requirements of a problem
[KC00]". To that end, the task can be seen as similar to (semantic) service
composition (recap. Subsection 2.6.2) for general software services, since automated
procedures are exploited to determine components, control and data flow to solve an
overall task. A special issue for model composition is solver integration since the
pure determination of composition of models by their inputs and outputs might not
be executable due to different data formats or the missing of a suited solver
component that is capable of solving a model.

A literature review on model composition will not be provided at this point, but
rather a will a single publication, which treats model composition as a general
service composition task and highlights the aspects of distributed model
management, be described . Madhusudan [Mad07] introduces a web service

48

3.2. Model Management

framework for distributed model management where the execution of serveral models
can be brought into a service plan by AI Planning methods ([MU06]). Models are
not only composed due to their inputs and outputs but rather are model services
integrated with solution methods and further services, e.g., for querying data. The
case-study example highlights an application from engineering design where, e.g.,
linear programming services and a finite element analysis are parts of the resulting
process. As mentioned before, data-services that provide access to external data
repositories are also part of the composition. As the models are implemented as web
services and a framework architecture with different service providers and
repositories is instantiated, model composition for distributed model management is
envisioned by the approach. Domain knowledge is modeled in ontologies which are
being exploited by the semantic service composition based on HTN planning.

3.2.4. Distributed Model Management and SOA

To a relevant part, model management is concerned with the reuse of models.
Mechanisms such as model composition, model integration or model selection are
based upon existing models to perform the task of model creation. When model
resources are to be shared within organizations or over the internet, architectural
considerations and the support for steps such as a semantic search become
important. To that end, distributed model management, as it was also leveraged by
the model composition approach [Mad07] presented in the last subsection, has
gained greater attention in the model management community in the last years.
In [EGD13], such a semantic service-oriented architecture for distributed model
management systems that exploits the semantic annotation of decision models is
presented. The authors aim "to address problems encountered in sharing and reusing
models in a distributed setting [EGD13]". Besides that, the support for model
discovery and composition is presented. The suited formalization and processing of
semantic information about decision models is provided, where semantic annotations
of XML Schema documents, as proposed in the SAWSDL extension of the Web
Service Description Language (WSDL) [LF07], come into use. The authors provide a
classification of services that are concerned with decision models and model
management functionality. Different scenarios, from simply solving a solver instance
that is obtained from a repository, to retrieving, manipulating, instantiating and
then solving abstract models are possible under the architecture and proposed
services to be integrated into a workflow. Parts of the classification can be quoted as
follows: "Model execution services are responsible for solving a model. This involves
providing the model with a compatible model instance (data), and identifying and
invoking the appropriate solver service. The mechanism will differ depending on the
underlying model representation. For example, in the case of binary executable
models, a model execution service simply runs the model and returns the results of
the execution of the model. In the case where proxy model services are involved, the

49

3. Model Management and Optimization Software

role of the model execution service extends to orchestrating the translation of a
model (in case of SMML models) into an executable model format and invocation of
a compatible model solver service [EGD13]". The latter classification can also be
seen as usefull for concretizing and formalizing the example-based considerations on
model services for model and service composition in [Mad07].
But as the view on model semantics and model instantiation functionality in this
thesis is fixed to an instantiation and solution workflow, own terms and a workflow
will be coined in Section 5.1. This is due to the fact that the term model execution
service does not exactly fit the target service architecture of this thesis. For the
description and annotation of decision models in [EGD13], the XML-based
Structured Modeling Markup Language (SMML) [EGT07] is recommended (recap.
Subsection 3.2.2). SMML itself exploits and adapts the Structured Modeling
principle introduced by Geoffrion. Besides SMML, further modeling paradigms and
representations are possible. In that case, the respective model services’ WSDLs are
to be semantically described by SAWSDL.
As the last publication highlights, the role of model and model metadata
representations is important for sharing and reuse in a distributed environment. In
order to find and select models, model discovery and semantic search are further
important tasks to be investigated and supported by suited representation languages.
Bhrammanee and Wuwongse [BW08] present the ODDM framework for modelbases
which uses ontology languages and a formalism called OWL Declarative Description
(ODD) to represent and query model semantics in modelbases. A model is being
represented in multiple ontologies. The model ontology encapsulates the important
meta-information for model discovery such as problem classes for, e.g., optimization,
important domain concepts included in a model and certain properties such as a
restricted graph structure for transportation models. The model itself is represented
as an instance of a model schema which again provides knowledge for the model
ontology.
The model representation approach in this thesis will differ from the latter
representation by a further abstracted structure that allows to efficiently manage
model formulation as well as to reuse constraint formulations with different data
models. Here, the expression structure of the statements will not have to be
represented within the ontology but can be derived from the specifications by
predefined reference implementations. Nonetheless, the importance of semantic
model representations should have become more clear at this point.

3.3. Optimization Software

The preceding section has presented model management as a research discipline in
the field of decision support systems that is concerned with general decision models.

50

3.3. Optimization Software

This section shall highlight research and technologies that are more specific to
optimization software.

3.3.1. Solver Software

A broad scale of commerical and academic software implementations of algorithms
for mathematical programming has been developed until today. The software can be
used in different forms such as executable binaries offering a console environment,
via an API, or in the cloud. This corresponds to the deployment and reuse of
software components as well as the idea to use solver software as a service (, see, also
Subsection 3.3.3). Solver software can be classified by the problem classes it is
capable to solve, as well as the methodology exploited in the algorithms. Solvers for
Mixed Integer Programming (MIP) are based upon MIP-technology. They are
widely used and provide powerfull tools for solving large scale problems where the
perfomance has been tuned over years. Also some extensions for nonlinear problems
are typically available for MIP solvers. The relatively new field of Mixed Integer
Nonlinear Programming (MINLP) has also produced academic and commercial
codes. A novel approach to mathematical programming solvers is given by the
LocalSolver [Inn07] that claims to be capable of solving also "highly nonlinear
problems [Inn07]" by a hybrid approach that is besides others, based upon a
combination of local search and MIP-techniques. Until now, meta-heuristics were
typically exploited in problem specific solutions and not in general purpose solvers.
Furthermore, the SCIP Optimization Suite [Zus07] provides a
branch-and-cut-and-price framework that integrates MIP-techniques and techniques
from Constraint Programming (CP) [ABKW08] for solving Constraint Integer
Programs (CIP) that can also contain nonlinearities with a restriction on the
problem being linear after fixing the integer variables.
Gurobi Optimizer [Gur15] and the solver contained in IBM ILOG CPLEX
Optimization Studio [IBM15] are the commmercially most successfull MIP solvers.
Both solvers can be used in a service fashion in the cloud. FICO Xpress
Optimization Suite [FIC16] contains the FICO Xpress-Optimizer, a further
established MIP solver formally known under the name Xpress-MP.
BARON [N. 15] is a MINLP solver that is capable of solving also non-convex
problems provably, globally optimal. It is distributed with typical AML
Environments (, see, Subsection 3.3.2) and uses a polyhedral branch-and-cut
approach to global optimization [MN05]. Bonmin [PLA+08] is capable of solving
convex MINLPs to global optimality. Lindo [LIN07] provides a global solver for
nonconvex MINLP that is, besides other possibilities, distributed with the modeling
language LINGO and an algebraic modeling environment. AIMMS [RB13] provides
an outer approximation algorithm implementation to solve convex MINLP.
The LocalSolver [Inn07] that was introduced in the introductory text above provides

51

3. Model Management and Optimization Software

a novelty by integrating local search techniques on a general purpose level. The
capability to apply this to mathematical programming models represented in the
proprietary algebraic modeling language LSP on this level of abstraction is of
importance for this thesis as it demonstrates the possibility to include different
solution approaches into a system architecture that is based upon representing
mathematical programming models in AMLs, instantiating them with data and later
calling a solver with that instance. Althoug meta-heuristic solution approaches are
not explicitely part of the design presented in Chapter 5, these methods could be
integrated by obtaining transformations or, as in the case of the LocalSolver, by
letting a suited solver do the transformation.

3.3.2. Algebraic Modeling Systems

The task of implementing and instantiating abstract optimization models, with a
special focus on data management, is typically performed in and supported by
algebraic modeling aystems such as AMPL, GAMS, AIMMS or LINGO
[FGK03, McC14, RB13, LIN07]. These systems provide Algebraic Modeling
Languages (AML) in which models can be formulated in an instance data
independent way. The languages are typically declarative, though procedural
elements such as loops for iteratively adding a group of constraints to the model
have entered to some of them, see, e.g., LINGO [LIN07]. The systems are typically
statically or dynamically linked to solver software. The whole modeling system is
then distributed as a single product. Valente and Mitra highlight the language
approach with the capability to instantiate abstract, symbolic representations with
data [VM07]: "These modeling systems, based on Algebraic Modeling Languages
(AMLs), enable the definition of models via symbolic algebraic expressions.
Algebraic modeling systems interpret the algebraic model and use a given set of data
to create model instances in MPS format or equivalent [VM07]". Furthermore, single
optimization solvers are sometimes distributed within whole algebraic modeling
systems, as it is the case for the FICO Xpress Optimization Suite [FIC16] containing
the AML Xpress-Mosel. The language and system LINGO that was already
mentioned above is also typically distributed with a proprietary solver.
Algebraic modeling languages have an underlying paradigm that views abstract
optimization models as a union of certain constituents (or modeling components, see,
e.g., [RB13]). The basic constituents are

• Sets: Mathematical sets are used for representing a collection of elements and
can be used for indexing purposes. References to concrete elements are avoided
by this.

• Parameters: Parameters provide the data-input to the model and can be
defined on sets, i.e., indexed by the elements of a set.

52

3.3. Optimization Software

• Variables: Variables represent the decisions of a model and can also be indexed
by set elements.

• Objectives (or goals): The objective(s) of an abstract optimization model can
be represented by algebraic expressions in combination with an indicator of the
direction of optimization, e.g., minimization or maximization. The expressions
can be symbolic in the way that they use indexing for sets, parameters and
variables in order to be independent of concrete instance data values. A typical
example is the summation over all elements of a set in a special operator for
summation.

• Constraints: The constraints of an abstract optimization model can also be
represented in a symbolic fashion as it is the case for the objective(s). By
indexing a constraint entity in an AML model, the symbolic formalism can be
used to represent a group or set of similar constraints that are translated into a
set of rows in the instance-matrix representation of a model instance.

AMPL [FGK03] is an example of a language that clearly adopts this classification by
providing keywords for each of the latter five. AIMMS [RB13] allows for the
definition of variables to be defined by an expression (i.e. a constraint) that later can
be defined as an objective to the model. This fits the classification but may allow for
a further decoupled and modular structure that enforces reuse in the model
formulation. To that end it should be noted that AIMMS is an example of a
modeling environment in which model formulation is not due to purely writing
statements in a text editor, but due to a GUI-guided process in which the modeling
components are created, manipulated and added iteratively by the user via window
dialogues.
As already mentioned above, further typical parts of AML models can be identified,
as there can be self-defined functions or procedures as well as expressions for
computed parameters, i.e., computations to be performed a priori the solution of an
instance. The a priori principle also applies to checks on instance data that can, e.g.,
in the case of AMPL, be specified in a constraint-like syntax.
The AML modeling paradigm in opposite to Structured Modeling does not
foreground the model representation as graphs and trees but rather as a declarative
specification, e.g., in form of syntactic statements. Nonetheless, AML environments
such as AIMMS also exploit similarities such as the possibility to put the modeling
components of a model into modules, cf., the "modular structure" in SM (Subsection
3.2.2). Generally speaking, one can say that the approach of AMLs is more taylored
towards mathematical programming models than the general decision model
approach of SM.
Further specialized constituents of AMLs are, e.g, initial primal or dual values of
variables and constraints. In general, features that have established themselves as

53

3. Model Management and Optimization Software

usefull for solver implementations are reflected by AML environments and languages
that, as already mentioned above, provide a high level access to solvers as integrated
components.

Further AML constructs and declarations that are important in the remainder of
this thesis will be discussed at the example of AMPL [FGK03]. The usage of AMPL
for the examples and demonstrative implementations within this thesis is motivated
by the fact that AMPL provides a clear declarative structure that is very near to
mathematical notations. In addition to that, it is wiedely used in the academic area.
The language authors describe some aspects of AMPL as follows [FGK03]: "AMPL
is notable for the similarity of its arithmetic expressions to customary algebraic
notation, and for the generality and power of its set and subscripting expressions
[FGK03]". Sets can be declared in AMPL by the keyword set and a respective
set-expression. There are different constructs to define, e.g., ordered sets or sets of
sets which will not be explained here. The most important feature of sets in AMPL
is their usage via indexing expressions. An indexing expression can be used to define
and/or reference a set with the additional possibility to define so-called dummy
indices for referencing anonymus set members. Dummy indices and indexing
expressions in AMPL are valid "only in the scope of the defining indexing expression
[FGK03]". A standard application would be the definition of a group of constraints
in one statement, where a constraint will be generated for every member of the
indexed set. With the definition of dummy indices, indexing can be used for
referencing the i. parameter/variable value for a set-indexed collection of
parameters/variables in a summation. The following example of a constraint from a
diet problem stems from the AMPL Book and shall illustrate the latter constructs:

subject to Diet_Min { i in MINREQ } :
sum { j in FOOD } amt[i,j] * Buy[j] >= n_min[i];

(3.1)

Indexing sets are MINREQ and FOOD with dummy indices i and j. Whilst i is used in
the outer indexing expression to define a constraint for every member of set MINREQ
it is also used in the symbolic constraint expression for referencing the i. parameter
value of n_min. The dummy indice j is used for the local sum operator. AMPL
provides language constructs for a variety of mathematical functions such as
abs(x),exp(x),cos(x) and the logarithm function for different bases. The natural
logarithm is, e.g., referenced by the keyword log(x) and the common logarithm to
the basis ten by the keyword log10(x). Another usefull feature in the context of
sets are set operations like intersections and unions. The union of two sets can, e.g.
be specified by the binary operation union in infix notation. Besides arithmetical
expressions, logical expression can be used to formulate conditions. Besides the usage

54

3.3. Optimization Software

for defining computed parameters these can also be used to specify logical modeling
situations in a compact form. These situations, for which mathematical formulation
techniques exist in the literature, are then translated, e.g., into MIP constraints in
an automated fashion by AMPL. An example for a piecewise defined function for
which the defining arithmetic expression is case-distinguished over the intervals of
the domain will be given in Section 7.3.
Model Formulation was introduced as a mechanism for model creation in Subsection
3.2.1. In the case of AML models for optimization, model formulation can be
characterized as a process in which data modeling preceeds the definitions of the
objective and constraints. To that end, sets, parameters and variables may be
declared, basically in that order since parameters and variables provide data values
that are set-indexed and variables can be seen as special cases of value-bearing data
elements (this is similar to the view of Strutured Modeling). Nonetheless, necessary
adaptions may destroy the strict sequential order. Afterwards, the formulation
specific parts such as the objective and the constraints are defined, where the former
data conceptualizations are being used. Surely the view to create sets, parameters,
variables, goals and constraints in that order is idealistic. As already mentioned,
especially in later steps, adaptions of previously definied elements may take place
when new insights into the problem arise. Nonetheless, it is not possible in the
context of the abstract and symbolic view of AMLs to formulate model constraints
and data for abstract models without a prior definition of the required data entities.
The process of model formulation may vary from AML Environment to AML
Environment. As already mentioned above, AIMMS allows for a graphical
manipulation of model constituents, whilst AMPL resides on text editing capabilites.
Syntax and static semantics are checked for every model before it is instantiated
with data.

3.3.3. Distributed Optimization, Frameworks and SOA

In similarity to the approaches for distributed model management and SOA that
have developed around decision models and decision support systems (recap.
Subsection 3.2.4), distribution, service-orientation and reusage aspects also play an
important role for specific optimization technology. This subsection aims at
presenting approaches that allow for the remote access to optimization related
decision technology, architectural consideration for related systems as well as aspects
of reuse for optimization models and implemented optimization specific functionality.

In Section 2.2, the NEOS Server [CMM98] for numerical optimization was mentioned
as a an examle for providing software as a service. The NEOS Server
(www.neos-server.org/neos/) provides access to over sixty solvers. It can be
accessed via a web-interface, the Kestrel [DFG+08] interface for the modeling

55

3. Model Management and Optimization Software

systems AMPL and GAMS, as well as XML-RPC ("NEOS API"). Also in Section
2.2, the article [VM07] by Valente and Mitra that discusses the paradigm shift from
ASP to e-Services in the provisioning of, especially optimization related, software as
a service, was discussed.

In the same section, the two projects Optimization Services (OS) [FMM10a] and
Open Optimization Framework (OOF) [EM03] that both provide standards for
realizing optimization solvers and modeling components as web services, were
presented. Whilst OS was characterized to have a solver-centric view by defining
XML-languages for optimization related data, communication, discovery and
registration, OOF was characterized to also lay a focus on algebraic modeling
languages by providing an XML-based AML. In OS, specialized protocols for
representing optimization instances, results and solver options, as well as for
communications, discovery and registry of optimization related software are defined
and allow for the implementation of a web service architecture. OOF also provides
standards for implementing a web service architecture in the optimization domain
and highlights the modelbase aspect from model management by exploiting the idea
of providing models in repositories. To that purpose, OOF provides the
aforementioned XML-based algebraic modeling language called AML that can also
represent abstract optimization models. So-called AML Transformers can then
instantiate models with concrete data. The language serves as a core language into
which or from which other model representations can be transformed and that again
provides a standard for the communication with solver services.

Whilst typical AML environments are monolithic systems, the Python Optimization
Modeling Objects (Pyomo) software [HWW11, HLWW12] provides a modeling
language and funcionality which is embedded into the programming language
Python. This allows to reuse software libraries when developing own models,
solution methods or whole decision support systems. Object-oriented principles are
being employed within the model formulation process. The ability to implement own
functionality around and inside the model instantiation and solution process is of
great importance. Methods such as Benders Decomposition and its variants [Ben62]
are hybrid in the sense that they decompose models into a master and several
subproblems and then the instances of models are changed iteratively, e.g., by adding
cuts. An implementation of hybrid methods is usually problem specific and requires
programming capabilities and communication between modeling and solver
components. In AML environments, this can only be done by using propriertary
scripting languages in cooperation with the available solver software. In contrast to
that, a framework as Pyomo is customizable and extensible, and a rich set of features
from the programming language itself can be reused together with external packages
that employ the principles of object-oriented design.

56

3.4. Conclusion

3.4. Conclusion

This section gives a short conclusion of this chapter. According to the design science
research methodology [PTRC07], the next chapter will present the problem
identification and motivation as well the requirements describing the objectives of a
solution. The conclusion in this section can be seen as a preparation for the latter
tasks, helping to identify open research questions.

Chapter 2 has introduced ontologies as a technology to represent the semantics of
data and services for different purposes as there were, e.g., automated semantic
service composition and data mediation. The methods and technologies were
presented as a general purpose methodology for software engineering based on reuse
with a special focus towards service orientation. Basing upon the techniques of
Chapter 2, Chapter 3 has laid the focus on the decision support and optimization
domains where the role of optimization models in the development of
optimization-based decision support systems was of central importance.

The research discipline of model management has been introduced together with the
modeling lifecycle, both providing the framework for discussing the central tasks and
mechanisms concerned with decision models in the development and maintenance of
dss-applications. Besides the discussion of the different mechanisms, Structured
Modeling (SM) was presented as an established framework to support the various
tasks in the modeling lifecycle. The object-oriented extensions of SM allowed for the
reusage of models as modules, related functionality and model integration. The
presented approaches for model integration aimed at an automated integration of
models in the same representation language into a new whole. Gagliardi and Spera
[GS95] have classified the levels of automation and gave examples for working
integrations of models where previously user provided data inputs are parts of the
computation in the final model. The resolution of an order decision for integration
was a central point making fully automated model integration impossible.
Concluding the different SM representations, the logical approach of the language
LSM provided means to apply logical inference on model formalizations. Besides
model integration, techniques for supporting the model formulation itself were
presented. The bottom-up approach partially implemented in the system LPFORM
[MMS96] allowed for the automated integration of algebraic pieces to LP models.
The pieces had to be supplied by the user and further annotated by semantic
information about form, time and place. Opposite to that, the top-down approach
[Bin96] allowed for the configuration of abstract constraint types in the domain of
linear problems, typically from the class LP. For the configuration steps, semantics in
form of action-resource graphs had to be supplied. Dealing with aspects of model
selection and reuse in a distributed environment, different frameworks and
architectures were presented. The approach of El-Gayar and Deokar [EGD13]
integrated different use cases of reusing models and applied semantic annotations to

57

3. Model Management and Optimization Software

the elements. The approach of Bhrammanee and Wuwongse [BW08] introduced an
ontological representation in multiple ontologies where the core model was
represented on a statement-structural level.
Concerning optimization specific approaches, Algebraic Modeling Languages (AML)
were introduced as mainly declarative languages separating model structure from
data by allowing for a symbolic representation of sets, parameters, variables, goals
and constraints in statements and algebraic expressions. Though some environments
provide means to structure the modeling components into modules, no further
abstraction, e.g., in form of configurable types of constraints is made in AMLs. A
broad range of optimization solvers is available nowadays and can also be accessed
remotely by different technologies such as XML-RPC or web service standards,
providing practical means for SOA implementations.
The conclusion of this chapter can be drawn as follows: The creation of decision
models is a central task in the modeling lifecycle. Besides the adequate
representation of a practical problem situation, models need to be integrated with
data and other components such as solvers in order to build a system. Research
questions, besides others, cover architectures and representations that allow for
suited reuse, editing and integration of decision models. Semantic representations of
optimization models have been applied for annotating, searching and reusing models
as a whole. First semantic SOAs for model-oriented decision support systems are
available as well as technology to manage symbolic models in AMLs and to invoke
solver software. The word reuse of models or model parts can cover different aspects.
Model integration and model composition are approaches to model creation that
reuse models as a whole to either generate an new consistent model or bring existing
models into an execution process. Model integration can be performed in an
automated fashion for merging model structure based on inputs and outputs, where
order conflicts may have to be resolved manually. Besides the latter approaches,
different fragments can be used to support the mechanism of model formulation. A
model formulation approach that is based on a partially automated configuration of
single constraint placeholders is proposed with the the action-resource view [Bin96].
Besides the limitation to linear models, the type configuration process of the latter
approach seems to be complex. Formalizations are not available in a complete and
detailed fashion and there might be limitations in the portability of specifications
due to the missing of universally accepted semantics (,i.e., ontologies). In contrast to
the top-down constraint configuration approach, there are also means for puzzling
and integrating models out of pieces as, e.g., summations. The latter work in an
automated fashion up to the point where a user has to enter additional semantic
specifications.
Upon the latter observations, different research questions can be derived. This thesis
is concerned with the support of the model formulation process as well as the
automated generation of a system based upon a model. The idea behind this is a

58

3.4. Conclusion

suited semantic representation of reusable model formulation parts (,i.e., constraint
types). With this view in mind, a research gap is identified by the fact that the only
known constraint configuration approach is limited to linear problems and has no
formalized, portable semantic knowledge available on the one hand, and that model
integration has a focus on syntactically merging the input and output interfaces of
models without basing upon semantic representations of model knowledge. This
limits the capabilities for automated manipulations of models and a highly
automated generation of systems. Steps such as analyzing models for generating
semantic service descriptions, service compositon and data mediation should be
automated and integrated into a development process, where minimal effort is
required to specify models, data and components for obtaining a runnable system. A
special focus is laid on the model formulation step that should require minimum
effort for specifications based upon the resuable formulation types. As Structured
Modeling and AMLs do not provide such an abstraction and the semantics inherent
in extensions of SM have a focus that is not laid on the model formulation and
model/data mediation tasks, a new optimization specific representation is required.

59

3. Model Management and Optimization Software

60

4. Problem Identification and Objectives

The preceding chapters introduced notions and technologies both from the general
computer science disciplines of ontologies and semantic software services as well as
from research on optimization related software, model management and algebraic
modeling languages. Furthermore, a research gap covering aspects of model
formulation and the development of optimization systems was identified. This
chapter will introduce the scope of this thesis as follows: In Section 4.1 the problem
definition will be given. Then Section 4.2 will state the objectives for a solution in
form of requirements.

4.1. Problem Identification and Motivation

This section shall give a definition of the research problem which this thesis is
concerned with. The problem definition will be presented as part of a broader vision
that will be further discussed in the outlook part of Chapter 9. Before the problem
definition will be given, some motivational use cases shall illustrate the practical use
of a solution:

1. Formalized choices in modeling: Consider the situation where an optimization
model is to be formulated for decisions on a technical system underlying
physical laws such as, e.g., the pipe headloss in pipe networks for transporting
water. Constraints have to be added that represent nonlinear curves. Choices
in modeling may arise. Using the standard technical formulas may introduce
nonlinear curves that are in addition to that not everywhere twice continuously
differentiable. This may rule out solvers which have the differentiability as a
requirement. To that end, a modified, smoothed variant of the formula might
be computed and inserted for the model formulation instead, allowing more
nonlinear solvers to be chosen. Besides the latter, further possibilites for
modeling the pipe headloss exist. As linear MIP technology has proven its
practicability on a large scale, other modelers may decide to linearize the
formula, thereby introducing a certain modeling error and a huge number of
binaries. For the linearized formulation, further decisions have to be made.
E.g., an L01 or a SOS2 linearization might be chosen, yielding polyhedral
formulations of different quality and allowing for different support in solver
implementations. This use case enforces the definition of formalized modeling
knowledge in order to allow for explicit, possibly automatizable choices as well
as a widely automatized execution of the required modeling operations when

61

4. Problem Identification and Objectives

the choice for a certain "formulation" is made. To conclude, the modeling
decisions for formulations should be formalized in a way that it is simply
possible to choose and later change a formulation for the respective technical
curve by simple type definitions, mainly requiring to choose the right
"formulation type". All further adaptions in the model structure and data, as
well as the system composition, i.e., finding a suited solver, should be
automated where possible. The formulations are to be chosen and reused, i.e.,
the work of writing down the technical formula and introducing variables and
further constraints for its linearization can be seen as redundant and should not
be required to be performed by a modeler in a repeated fashion. The adaptions
to be performed when changing the reusable formulation type in a model
specification should also be automatized as far as possible. Automatization of
the choice of the formulation type itself in an iterated system generation loop
can be seen as part of a future vision that extends this use case. A first step
towards the latter is to provide the formalized formulation knowledge, e.g., in
form of a subsumption hierarchy or a tree. After choosing a formulation and a
solver and solving an instance of the model, the solution of the linearized model
might have to be evaluated for its practical feasibility. This might, besides
others, be due to the error introduced by a linearization. Therefore, a broader
vision extending this use case would be the fully automated generation and
modification of systems and models in a loop where a formalized error measure
can be used to evaluate different solution scenarios based on the modeling
decisions. The modeling decisions might also be influenced by instance data.

2. Recommended adaptions in model formulation: The previous use case
highlighted the support for a choice in the model formulation step where the
decision to add a certain constraint, independent of its concrete form, already
took place. In contrast to that, domain typical formulation elements or
extensions of existing formulations towards more general situations could be
suggested automatically for a model in a certain state. This mechanism could
be based upon a matching of constraint types and their interfaces. Consider,
e.g., a network flow model consisting of network typical balance constraints
and capacity restrictions for a single flow good. The model is known from the
literature and an implementation can be retrieved from a library. Now for a
practical modeling situation, extensions have to be considered. First of all,
there are multiple flow goods to be treated. These different flow goods, usually
being referred to as commodities, have to be introduced by a set and then
adaptions in the definition of variable collections, parameters, constraints and
also the objective of the optimization model have to take place. A user could
manually enter a definition of a commodity set and then the system could
suggest different adaptions based upon the formalized type knowledge. This
would first of all concern the constraint types inherent in the model for which

62

4.1. Problem Identification and Motivation

ontologically similar types from the same domain that also contain the feature
"commodity set" could be suggested. Adaptions in this case could, e.g., contain
changes of constraint statements to more general situations, e.g., an additional
commodity index for the network balance constraints, or an adaption of
capacity restrictions towards a more general "bundle constraint" that captures
all the different commodities and the parts of the capacity they occupy in a
sum. To conclude, the suggested formulations could be used instead of the
existing ones. Furthermore, domain typical formulations that contain the
"commodities" and are not included in the model in a related way could be
suggested to be added to the model afterwards. In the example, additional
capacity restrictions for the individual commodities, basing upon individual
commodity parameters, might be required. To conclude, a matching
mechanism based upon the type interfaces, i.e., ontological class restrictions,
has to be developed that provides the technology behind the recommendations
in the model formulation process. The recommendation has to consider the
current state of the model and optionally the last modification made in the
data model as, e.g., the addition of a set.

3. Generating a system for the model in a highly automated fashion: The latter
model formulation use cases included the scenario of a highly automated
system generation. This setting itself is a further use case containing steps such
as an automated analysis of the model in order to generate a semantic service
description, the composition of the system itself and the generation of data
transformations for data mediation. In order to automatize these steps,
semantic representations of the model should be introduced, capturing
semantics of the modeling components (both the data and the formulation
components representing algebraic statements) and the properties of a model
and its parts, e.g., linearity of a formulation or integrality requirements.

The latter motivational use cases outline a framework for an optimization system
development or better say "generation" with certain capabilities. The problem that
this thesis is concerned with can now be stated as follows:
Design a framework that allows for the manipulation of optimization models and the
generation of a runnable system both in a highly automated fashion. A model is to be
understood as a central component to be instantiated with data and solved by a suited
solution algorithm. The framework should contain a suited representation formalism
for optimization models that allows to represent semantics of the individual modeling
components, data as well as the mathematical properties required to determine a
suited solution strategy. The representation should furthermore formalize reusable
modeling fragments (abstracted types) and organize them, such that steps in model
formulation can be automated and editing operations are simple. Mathematical
programming problems up to class MINLP should be supported.

63

4. Problem Identification and Objectives

The latter problem definition lays a focus on a single optimization model to be
manipulated and integrated into an automatically composed system. This restricts
the considerations of this thesis to a manageable scope. Nonetheless, the restricted
framework outlined by the problem definition can be seen as a part of a greater
vision that will be discussed further in Chapter 9.

4.2. Requirements

To conclude the latter considerations, requirements on the outlined framework
should be formulated. These requirements can be stated as follows:

• Model Formulation by abstract Types: The creation and manipulation of
an abstract optimization model should be based upon a simple process of
adding or manipulating modeling components such as sets and constraints and
relating them with others. In order to enforce reusage and simplify the process,
the modeling components, also called model entities should be instances of
abstract types whose type knowledge and relation to other types is represented
adequately. In summary this should allow for reusing abstractions, e.g., for
special constraints or constraint groups together with their implementations,
i.e., the abstract structure of an AML formulation, in a simple way. Simple
also means that single type manipulations on a model, e.g., when performing
model integration or changing the formulation of a constraint after an
execution, should intitiate an automated procedure to restore the consistency
of the model as a whole and only the absolutely necessary specification in this
process should be performed by a user. To conclude, a new representation of
optimization models is required.

• Model Semantics: For different applications of the approach, different types
of model semantics will need to be expressed. To that end, the optimization
model representation formalism as stated in the first requirement should be
able to represent semantics of data conceptualizations, goal- and constraint
formulation types and mathematical model properties such as linearity.

• Automated Modifications and Recomposition: It should be possible for
a machine to manipulate models in a suited manner. Especially the semantics
of the modeling components may besides the simple and hence
machine-manipulable structure of the representation support the automated
choice of suited reformulations such as constraint smoothings or linearizations.
After manipulations, an automated process to restore the model’s integrity is
required, as it has already been discussed in the first requirement. It is clear
that a changed model may also require a new system composition. The step of
changing the whole system composition after changes in the model should to

64

4.2. Requirements

that end also be highly automated. An automated evaluation of a system and
the solution after a first execution based upon a quality measure is not part of
the requirements but of a broader vision. To that end, a basis for automated
model manipulations should be laid.

• Models as Services and Composition: It should be possible to wrap
optimization models as semantic web services in a straight-forward fashion.
Besides their description, the services should provide the functionality to
instantiate the model with concrete data. The service description should
support semantic service composition, e.g., by including model property
knowledge in the composition process for the matching of model and solver.

• System Integration: The DSS that is being composed "in theory" by a
composition algorithm should be executable in practice. This requires a target
architecture and a process in which the models can be integrated with the
systems as services and in which data interfaces can be brought to a match,
e.g., by automatically generating data transformations for mediation. The
composition and data-mediation steps are based upon the semantics inherent
in the model representation.

• Service Enabling: It should be possible to integrate model representations in
AMLs into the framework by providing transformations to the new
representation in two directions. To that end, means to reengineer AML
models into the optimization model representation to be developed should in
principle be considered as a step before the generation of semantic model
services which itself should be highly automated. On the other hand, models in
the formalism will themselves have to be transformed into AML representations
automatically. As the new formalism itself is based upon abstract types,
so-called AML Derivation functionality should accompany the types and allow
to encapsulate the statement structure of modeling component definitions and
especially constraint types. Furthermore, it would also be practical to reuse the
functionality for instantiating AML models with data, i.e., use an AML tool
such as AMPL as a service that is a part of the composition for a model service.

• Compatible with (semantic) Web Technologies: Technologies such as
OWL and XML should be used in the architecture and design in order to allow
for extensions of the framework towards the integration of arbitrary semantic
services.

65

4. Problem Identification and Objectives

66

5. Ontology-based Representation of Optimization
Models

In this chapter, the design of an ontology-based representation of optimization
models will be presented together with the techniques to keep such ontology
represented models as a layer in-between AMLs and services. Before the
representation is discussed, the general framework for generating optimization
systems out of models and services will be explained in Section 5.1. At a certain
point in the process, models are treated as services and the ontology representation
of abstract optimization models provides the important technology behind. The
ontology structure will be introduced in Subsection 5.3.1 and the respective
vocabularies will be explained in further detail in the subsections that follow
thereupon. After an illustrative specification example in Subsection 5.3.5, the
techniques to realize ontology-represented optimization models as a layer in-between
AMLs and model instantiation services will be discussed. Examples for the derivation
of AML models out of the ontology representation that make use of abstracted and
reusable formulation types will be given and a process for transforming a whole
ontology-represented abstract optimization model into an AML representation will
be defined. The last section of this chapter is concerned with the generation and
usage of semantic model instantiation services for ontology represented models.

5.1. Basic Approach

The basic approach for generating optimization systems out of optimization models
is visualized in Figure 5.1. A process is described that leads to an executable
optimization system with an abstract optimization model as a core component. An
iterated and automated treatment of changes, leading to a recomposition of the
system, is included. In a first step, an initial abstract optimization model is
formulated in a format suited for a human modeler. The choice is between the usage
of an AML such as AMPL, GAMS, AIMMS, LINGO or XPress-Mosel, or the
ontology-representation to be introduced within this chapter. When the model is
formulated in an AML, AML Reengineering, which is outlined shortly in Section 5.5,
can be used to obtain an ontology formulation. The discussion of the model
formulation process in the ontology representation will be part of Chapter 6.
With a formulation of an abstract optimization model and further input describing
the instance data it might be possible to estimate the complexity of solving the
mathematical programming model. In addition to that, instance data itself could be

67

5. Ontology-based Representation of Optimization Models

Formulate

Opt.-Model

Choose

Path in

Template

Realize Opt.-

Model

as Service

Model

Instant.

Service

Search and

match

Services by

Template-

Composition

Optional

Solver

Visualization

Pre-

Processing

Simulation

Generate

Data Mediators

...

Transform.

Transform.

Bind&

Execute

System

[satisfied]

Modify

Opt.-Model

[Modifications

required]

[Composition

Success]

[No Composition]

Figure 5.1.: Generation of optimization systems for target SOA with changes

considered for choosing a suited model formulation. With the knowledge about the
instance data and model, a choice of the services to be included in a system
composition can be made. I.e., for network models it might be useful to have a
computational step that uses preprocessing of network data to simplify instances, or
apply a simulation engine on mathematical programming solutions that allows to
investigate the applicability of the optimization solutions in more detail. If no
knowledge about instance data is available, a general strategy including all
computational services in the architecture, i.e., preprocessing, solver and simulation,
can be followed.
The latter step is represented in Figure 5.1 by choosing a template-path.
Corresponding to considerations in Subsection 2.6.2, the service composition task
will be treated as a special form of template composition. This means that the
general task of service composition is reduced to suitably instantiating the template
which in turn means the determination of inputs, outputs, preconditions and
postconditions by inserting concretely bound services into a placeholder. Choosing a
path in such templates in our case leads to determining a unique sequential workflow
of services, e.g., preprocessor, data transformation, model instantiation, solution,
data transformation and simulation / visualization that further simplifies the
semantic service composition task.
The semantic service composition task occurs in the approach after the generation of
a so-called model instantiation service. To that end, model instantiation services will
be discussed further in Section 5.6. In parallel to the choice of a template-path, the
ontology-represented model can be wrapped as such a service that provides the data
instantiation functionality as well as that it has a semantic service specification that
represents the model semantics needed for composition and mediation. When the

68

5.1. Basic Approach

model instantiation service is available, the target system can be composed.
Assuming for a moment a successful composition, it might be necessary to transform
data in-between the service calls of the concretely bound services. This might, e.g.,
be required when a preprocessing step works on network graph representations of
data, whilst a mathematical programming model formulates on a general
set-parameter structure. Such transformations can be seen as placeholder services in
the composition procedure to be generated semi-automatically after the composition
step based upon semantic service specifications (recapitulate, e.g., the approach of
Bowers et al. [BL04] presented in Subsection 2.6.3). This step is indicated by the
"Generate Data Mediators" placeholder.
As a next step, the system might be executed with specific instance data. If the
results are not satifactory, it might be required to change the abstract optimization
model’s formulation. This step might be based upon automatically suggested and
executed reformulations such as a smoothing of constraints for meeting NLP solver
requirements. If a modification is required, the process restarts at the generation of a
model service with a possible rechoice of the template-path running in parallel. The
AML representation of the changed model can be updated by using the AML
Derivation functionality provided with the predefined model entity types of the
model representation approach (Subsection 5.3.1 and Section 5.4). Further
automatized steps for the possibly required recomposition of a new system are
described in Section 5.6. This thesis does not provide technology on how to and
whether to automatize the decision to modify the model and/or system after a first
execution. Nonetheless, if for a certain problem domain error measures and decision
procedures are available, an automated analysis of a solution/decision proposal
generated by a certain system composition (and model formulation) could be
implemented that leads to automated reconfigurations of models and the service
composition itself. An exemplary scenario for the latter is also described shortly in
Section 7.2.

©
 H

e
in

z
 N

ix
d

o
rf

 I
n

s
ti
tu

t,
 U

n
iv

e
rs

it
ä

t
P

a
d

e
rb

o
rn

AML!Level:

 Common!formulation

 Backend!for instantiation

Ontology Level:

 Formalized semantics

 Reusable types for formulation

 Automated modifications

Semantic Service!Level:

 Automated composition

 Automated mediation

Reengineering Autom.!Gen.

Execute

AML!Derivation

Figure 5.2.: Ontology representation as a layer in-between AMLs and services

To conclude the considerations in this section, let us outline in short how the
ontology representation integrates with AMLs and services. Taking a look at Figure

69

5. Ontology-based Representation of Optimization Models

5.2 one can see the ontology representation as a layer in-between the AML and the
service level. That means, when editing models within the approach, one may start
with a favored, supported AML and edit or just reuse a model. Suited support of
AML Reengineering may allow to bring the model into an ontology representation
with minimum effort. But it has to be mentioned that this step is optional. To that
end, Section 5.5 only contains a very rough draft of AML Reengineering. For the
scope of this thesis, one might therefore start in the ontology formalism which is
presented in this chapter. Whilst the ontology representation supports different tasks
such as specifying all kinds of semantics, model formulation, as well as a highly
automated way to perform changes on the formulation of a model, a corresponding
AML representation can always be obtained by the AML Derivation capabilities that
will also be presented within this chapter. This is important as the AML
representation itself serves as a backend for performing the instantiation of a model
with data.
The functionality to instantiate a model with data as a frontend is provided by a
model instantiation service. This service has a semantic service description to be
used for semi-automated data transformation generation and service composition. It
will be discussed how to put the ontology represented models’ semantics into such a
service description in Section 5.6.

5.2. A First Example Model: Min-Cost-Flow with integrality
Requirements

The first example model that will be used in the remainder of this chapter is a
common min-cost-flow problem. An AMPL formulation of this problem can be found
in Figure 5.3. A standard reference on network flow problems is Ahuja et al.
[AMO93]. For readers not familiar with AMPL-syntax, the AMPL book [FGK03]
provides an excellent reference.
As one can see in the model, the min-cost-flow problem is formulated on a directed
graph with two sets Nodes and Arcs. It is emphasized that the whole model, as
typical for AMLs, is abstracted from concrete instance data. Parameters are given as
follows: One can observe supply parameters ("SupplyDemand") at nodes which are
defined as usual with positive values for inflows/supplies, negative values for demands
and a zero value in sum if a node is a transshipment node. There are linear flow cost
parameters at the arcs plus an upper capacity for the throughflow of the single
commodity considered at the moment. Lower capacities are given by enforcing zero
as a lower bound on the flow variables ArcFlow. The arc-flows are to be determined
in solutions of the abstract model’s instances. An explicit integrality requirement is
put on the flow variables ArcFlow by the keyword integer. The reason for this is
that it will be demonstrated how to perform such a specification in the
ontology-representation approach later on. Anyhow, the specification can be seen as

70

5.2. A First Example Model: Min-Cost-Flow with integrality Requirements

Standard min−cost−flow problem from Ahuja et al., Network Flows
Specialized AMPL formulations for network models are not used in the examples
Integrality of flows is required for demonstrational purposes though integer flows are

guaranteed for integral data!

set Nodes;
set Arcs within {Nodes, Nodes};

param Cost{Arcs};
param UpperCapacity{Arcs};
#Include general upper capacities but no lower ones.
param SupplyDemand{Nodes} integer;
#This parameter follows the convention > 0 for supply and < 0 for a demand

var ArcFlow{Arcs} >=0, integer;
#Zero lower bounds of flows in standard formulations.
#Integrality requirement for demonstrational purposes!

minimize FlowCost: sum{(i,j) in Arcs}(Cost[i, j] ∗ ArcFlow[i,j]) ;

s . t . MassBalance{i in Nodes}: sum{(i,j) in Arcs}(ArcFlow[i,j]) − sum{(j,i) in Arcs}
(ArcFlow[j,i]) = SupplyDemand[i];

s . t . UpperCapacityConstraints{(i,j) in Arcs}: ArcFlow[i,j] <= UpperCapacity[i,j];

Figure 5.3.: Example: A standard min-cost-flow problem

somehow redundant since a standard min-cost-flow problem with suited, e.g., integral
data that is solved by a specialized method for min-cost-flow or an LP-relaxation of
the mathematical programming formulation has an integral solution.
The goal of the problem is to minimize the overall linear flow cost. Besides the
UpperCapacityConstraints, the network problem typical MassBalance-constraints
occur in the example model. The network balance in a very simple form as given in
this example model forces the inflows and outflows at nodes to be equal. This is a
requirement for an admissible network flow. The constraint formulation integrates
the supply parameter for the respective node. If we, e.g., consider a supply node
with a positive value of SupplyDemand at a node i with only outgoing arcs, the
respective formulation for node i sums all the positive arc outflows and states that
they should equal the positive supply value. The intuition in the latter case is that
everything provided at the node should flow into the network via the outgoing arcs.
In order to keep the example simple and extendable, AML-typical constructs for
network flow problems such as the node and arc keywords in AMPL (, see, e.g.,

71

5. Ontology-based Representation of Optimization Models

[FGK03], Chapter 15) were not used.
In the progress of Chapter 6, extensions of this model will be presented. For this
chapter, the simple min-cost-flow formulation of this section should suffice to discuss
the basic ideas of the ontology representation approach.

5.3. Structure of the Representation

This section is concerned with the structure of the ontology representation for
optimization models. A survey is given in the first subsection and then the
fundamental vocabularies that define the representation structure of optimization
models will be presented. An extensive example specification of the min-cost-flow
problem introduced in the last subsection will be given at the end of this section.

5.3.1. Ontology Structure

The basic structure is visualized in Figure 5.4. An abstract optimization model is
treated as instance knowledge, where different ontologies are used as vocabularies.
The instance knowledge is indicated by the filled circles in the drawing. Goals and
constraints and their relations to individuals for data and mathematical properties
are aggregated in the filled circles where arrows show the structure of ontology
property axioms. Also indicated by continuous black arrows is the typing of the
individuals in classes that belong to ontologies for optimization model formulations,
mathematical properties and data. In the non-filled ellipsoids one can observe
placeholders for conceptualizations of domain data ontologies on the right, as well as
aggregations of conceptualizations from the optimization modeling domain on the
left.
The idea behind the approach is to have typed individuals for every model entity,
i.e., goals, constraints, parameters, sets and variables. By formulation entities, the
subclass of goals, constraints, or groups of related constraints encapsulated in a
single class, are denoted. The model entities as individuals are similar to abstract
model statements in AMLs, but there are important differences. At first, the
expression structure of such statements is not explicitely represented within the
ontology, but rather are the semantic types in use specified which then encapsulate
the statement structure in a way that is explained in Section 5.4. More specific, the
types are always accompanied by queries and implementations that together provide
the functionality for building AML statement(s). The basic idea is to reuse the
formulation types with different data conceptualizations and slightly varying
expression parts such as inner summations.
To fortify the latter consideration, the representation is more abstract than in
AMLs. In order to build an AML statement, the different conceptualizations of data
and variables used in a constraint are to be specified before the actual derivation of

72

5.3. Structure of the Representation

„Optimization Modeling“

Constraints and

Goal

Meta Domain Ontologie(s)

Datamodel

Concrete Domain

Ontologie(s)

Set!Parameter!Indexing

Data Concepts

Instance Data:

Given in structural types

for model instantiation

services

<…>

<…> <…>

<…>… <…>

„Annotations“

„Type as

Variable /

Parameter“

Constraints

and Goal

Math. Props.

Mathematical

Properties

Expressions

Figure 5.4.: Structure of the ontology representation

an abstract AML statement takes place. To that end, goals and constraints are
grouped into ontologies for certain very abstract domains such as "networks" and
also do only specify that they require abstract types from data ontologies, e.g., for
"networks". Concretion is to be made by conceptualizations from subdomains such as
water distribution networks or supply chains. A first short example of such a
constraint specification will be given in what follows. Further elaborate examples
will follow in the remainder of this thesis. The principles behind the definition of
reusable formulation types and the criteria for especially creating subclasses are a
topic of Chapter 6.
Another difference to AML representations should have become clear by now:
Abstract optimization models are to be represented in an ontology graph structure.
This means that manipulations on a model specification will also be manipulations of
the knowledge graph given by the model. Besides the ontology types for formulation
entities, the data conceptualizations for sets, parameters and variables are to be
defined as semantic types from ontologies for respective application domains. These
ontologies will be referred to as meta domain ontologies (mdo) in what follows. The
meta domain ontologies model data conceptualizations of certain domains in terms
of sets and parameters. The meta domain ontology concepts, as well as the goal and
constraint types from the respective formulation ontologies to be discussed later on,
are to be hierarchized by certain subclass-relations, as it is indicated in the
graphics by continuous black arrows. This allows one to see certain constraint
formulations as a specialization of others, and on the side of the meta domain
ontologies, to insert concrete submodels for specialized domains such as in the
already considered case of water distribution networks. Meta domain ontology types
are also subtypes of general concepts for sets, parameters and variables as indicated

73

5. Ontology-based Representation of Optimization Models

by the arrows pointing to the "Set-Parameter-Indexing" and "Data Concepts"
ontologies. "Set-Parameter-Indexing" provides a general vocabulary for explaining
set-indexed data and set relations such as cartesian products, whilst "Data Concepts"
allows to specify data entities, i.e., data concept individuals in the approach, to be
seen as variables or input parameters in the context of a model. Both vocabularies
will be explained in the following subsections. "Data Concepts" especially refers to a
subset of the the OM vocabulary that will be discussed in the next subsection.

Since the data-related ontology classes are also to be used to support the generation
of data transformations for the concrete model instantiation services, one also needs
semantic specifications for concrete instance data. This relates to the notion of a
concrete domain ontology (cdo) that can be found in a circle in Figure 5.4. An
excerpt of such an ontology for concrete network data has already been given in
Figure 2.7 of Subsection 2.5.2.

As the basic structure of ontology represented models has been introduced by now it
is time for some first remarks. A thing to be mentioned is that Figure 5.4 provides a
simplified and aggregated view on the representation approach. Therefore, the image
serves as a basis to explain the standard features of a model entity specification.
E.g., the special case of having reusable formulation types with the aid of ontology
classes for expressions is indicated by the ellipsoid "Expressions" , but the respective
properties will not be used until Subsection 6.1.3 of Chapter 6. The specification
example below will give a first hint of a simple constraint-type usage indicated by
the arrows directly connecting "Constraints and Goal" and "Meta Domain
Ontolog(ies)" on the assertional and terminological level. The reader might also have

become a first idea how the requirement Model Semantics from Section 4.2 is
covered. "Model Semantics" for mathematical model properties and their usage are to
be explained in Section 5.6. At the moment it is observed that these properties are
annotated to the entities of a model by means of properties which have concepts
from a "Mathematical Properties (Math. Props.)" ontology in their range. For the
requirements Models as Services and Composition as well as System
Integration it was mentioned how data semantics for data transformation
generation are specified within the approach. The abstract types required in Model
Formulation by abstract Types are the core ingredients of the representation.

A First Example of a Constraint-Type Usage:
Figure 5.5 shows the ontology excerpts required to define a network problem typical
balance constraint for every network node in a model. A target AMPL statement
that is represented by the formulation type Net#SingleCommodityBalance would,
e.g., be

74

5.3. Structure of the Representation

s.t. MassBalance {i in Nodes} :
sum{(i,j) in Arcs}(ArcFlow[i,j]) - sum{(j,i) in Arcs}(ArcFlow[j,i])

= SupplyDemand[i];.
(5.1)

Note that the identifiers of sets, parameters, variables and the constraint in the
AMPL model are not equal to the IRI suffixes of individuals in the ontology
definitions. As typical for ontologies, a data property, in this case called OM#EName,
can be used to annotate string names to IRIs. The respective property will be
introduced in the next subsection.

supplies

Net#NodeSet Net#ArcSet

SPI#WithinCartProductTwoSame

max 1

Net#SingleCommoditySupplyCollection

SPI#definedOn

exactly 1

Net#SingleCommodityFlowCollection

SPI#definedOn

exactly 1

balance

WaterNet#JNodes WaterNet#Pipes

WaterNet#Flows

NetForms#Single

CommodityBalance

OM#Constraint

OM#requires

exactly 1

OM#requires

exactly 1

OM#requires

exactly 1

OM#requires

exactly 1

SPI#definedOn

SPI#WithinCartProduct

TwoSame max 1
subclasses

nodes pipes

flows

types

OM#Variable

Figure 5.5.: Using a standard balance constraint type in a water distribution model

The specifications discussed at the moment only represent a single statement
without a model context. A complete specification for the min-cost-flow model
presented in Section 5.2 will therefore be given in Subsection 5.3.5. The
specifications presented here, however, are not part of that model.
As one can see in Figure 5.5, an individual balance of the semantic type
NetForms#SingleCommodityBalance has to be created for the ontology
specification. The prefix NetForms refers to an ontology for network flow related
formulations that will be considered further in the following sections, e.g., in 5.3.5.
The semantic type prescribes some requirements on the terminological level. Besides
other possible specifications, every instantiation of the
Net#SingleCommodityBalance-formulation type requires network node- and
arc-sets, as well as flow variable- and supply parameter collections (for

75

5. Ontology-based Representation of Optimization Models

single-commodity models) to be defined. The respective ontology classes stem from a
meta domain ontology for networks that carries the prefix Net. Without prefixes the
respective classes are identified as NodeSet, ArcSet,
SingleComodityFlowCollection and SingleCommoditySupplyCollection. The
ontology Net will be further discussed in Subsection 5.3.5.
The SingleCommodityBalance type represents flow conservation equations for a
single commodity with a single flow variable on every arc. To that end, further use
cases might require different formulation types for balance constraints that are more
general. These will be introduced in the remainder of this thesis.
It is prescribed by some cardinality class restrictions that every instance of
Net#SingleCommodityBalance is included in some axioms specifying the relation to
concrete individuals of the abstract network types. When the constraint type is to
be used in the context of a complete model, a concretion of these types may have to
take place in order to be consistent with other constraints. Consider, e.g., how this
constraint definition is part of an optimization model for water distribution systems.
Therefore, the semantic types of network node-sets, pipe-sets and flows might have
to be specialized to types for concrete junction nodes, pipes and respective flows of
water in order to be consistent with other constraints. The semantic types in the
ontology prefixed with WaterNet reflect these considerations. The type of the supply
individual might not have to be adapted because its specification is not shared with
other water network typical constraints. Note that the flows are also declared to be
variables in the context of a model by the specification of the OM#Variable-type.
The latter example gave a first idea for the usage of a constraint type in the
specification of a model and the vocabularies in use. The consideration of balance
constraints in water networks will be further extended in a case study in Section 6.3.
In scope of the complete model presented there it will also be required to overthink
the orientation of balance equations and the conceptualization of supply. The
specifications of the first example from above were not given in the context of a
complete model in order to keep the types simple. As a next step, the fundamental
vocabularies for optimization model specifications will be presented.

5.3.2. Top Level Definitions in OM

This subsection is concerned with the most elementary vocabulary "Optimization
Modeling" that is denoted by the prefix OM. Figure 5.4 from Section 5.3 already
suggested to bundle classes for concepts relevant in optimization into such an
ontology and to furthermore structure concepts for mathematical properties, data
conceptualizations in the context of optimization and formulations into specialized
ontologies that in union all build the "Optimization Modeling" ontology framework.
It will be discussed now how the top level definitions for modeling components can
be put into the basic optimization modeling ontology and an extra, imported

76

5.3. Structure of the Representation

mathematical property ontology. Furthermore, it will be explained how formulation
ontologies for goal and constraint types, generated by users and experts, can be put
under this framework. The definitions are visualized in Figure 5.6.

OM#ModelEntity

OM#FormulationEntity OM#DataEntity

OM.MProps#TopLevelMathProp

Thing

OM#Goal OM#Constraints

OM#Constraint

xsd:string
OM#EName

OM#requires

„Formulationdomain“#“SpecialConstraint“

OM.MProps

#FormulationEntityProperty

OM.Mprops

#DataEntityProperty

OM#formulation

MProp

OM#data

MProp

OM#VariableOM#ParameterOM#Set

OM#ExpressionEntity
OM#expRequires

Figure 5.6.: Top level optimization modeling definitions

Except the class OM#ExpressionEntity which will be explained and motivated in
Section 6.1.3, all definitions fit under the "top-level concept" OM#ModelEntity.
OM#ModelEntity provides a class for all entities occurring in an abstract
optimization model such as sets, parameters, variables, constraints and goals. Under
this class, the respective conceptualizations for the model entities are separated into
the classes OM#FormulationEntity and OM#DataEntity. The definitions under
OM#DataEntity especially refer to the "Data Concepts" subvocabulary from Figure
5.4. Every model entity can carry a string-identifier referred to as a name that can
be used in AML representations of an abstract optimization model. The respective
data property OM#EName is defined for every model entity. Most important for the
data model abstracted representation of optimization model formulations such as
reusable constraints is the OM#requires property used for formulation type
definitions to state which data conceptualizations are required for using the type.
The range of OM#requires is left generous to be Thing. Reusable formulation
conceptualizations will make object property restrictions that restrict the range to
respective subclasses in the respective context. A complete definition of the
OM-ontology in Manchester Syntax can be found in the appendix of this thesis.
Mathematical properties of formulation and data individuals such as linearity,
integrality and further are to be concluded or specified when a specific optimization
model is defined in the ontological representation (, see, Section 5.6 and its

77

5. Ontology-based Representation of Optimization Models

subsections). For this purpose, the "Mathematical Properties" ontology referred to
under the prefix OM.MProps provides a suited vocabulary. The details of this
vocabulary will be discussed in Subsection 5.3.4. OM.MProps has a top-level concept
OM.MProps#TopLevelMathProp under which the subclasses
OM.MProps#FormulationEntityProperty and OM.MProps#DataEntityProperty are
structured. The most important thing to mention is that mathematical properties in
the ontology formalism can be referenced and used by the object properties
OM#formulationMProp and OM#dataMProp with their respective domains and ranges.

Reusable conceptualizations are to be provided in extra ontologies that use the OM
and OM.MProps vocabularies as imports, e.g., by stating constraint types to be
subclasses of OM#Constraint. The issues concerned with generating and organizing
reusable formulation conceptualizations will be further discussed in Chapter 6.

5.3.3. The Set-Parameter-Indexing Vocabulary

The "Set-Parameter-Indexing" ontology referred to in this thesis under the prefix SPI
formalizes concepts for the definition of meta domain ontologies. The ontology takes
a set- and parameter-based view as it provides concepts for the mdo-elements that
enter abstract optimization models as sets, parameters and variables. Ontologies for
data conceptualizations stemming from other applications will have to be mapped to
classes that fall under the set-parameter view provided by SPI in order to integrate
with the OM and formulation ontologies in the representation approach.

The relevant excerpts of the SPI-vocabulary are visualized in Figure 5.7. As there is
no possibility of misunderstandings, the prefixes for SPI concepts will be omitted in
the text of this subsection. Under the top-level concept SPITopLevelConcept, the
class SPIEntity can be found. The two central classes in the approach are Set and
ParameterCollection which are both subclasses of SPIEntity. These two latter
classes provide the basic vocabulary to see conceptualizations for data models as sets
and parameters. A family of parameters, reflected by the type ParameterCollection
is to be indexed by members of a Set. In this context one can say that the
parameters are defined over a set and reflect this relation by the object property
definedOn. The property definedOn is defined with domain ParameterCollection
and the very general range TopLevelConcept though its favored use is with Set
individuals in the range. Examples in later sections will also enforce the usage of
definedOn with SimpleParameter. SimpleParameter provides a class for those
parameters that are not defined over a set and hence have no indexing. An example
would, e.g., be a simple time parameter definition such as param T > 0; in AMPL.
An important subclass of Set is UnionSet. This class provides means to specify
implicit sets that are given as a union of two or more explicitely specified sets.

78

5.3. Structure of the Representation

SPI#ParameterCollection

SPI#Set

SPI#WithinCart

ProductTwoSame

SPI#Within

SPI#SimpleParameter

SPI#defined

On max 0

SPI#UnionSet
SPI#has

Operand min 1

SPI#defined

On

SPI#SPIEntity

xsd:boolean

SPI#Non

Instantiable SPI#SPITopLevelConcept

Figure 5.7.: Excerpt of the SPI ontology

Applications for this are, e.g., given by indexing expressions such as in the following
AMPL statements:

set A;
set B;

param PUnionSet{ A union B };
(5.2)

Further examples will be given in the examples of Section 6.1.3. The specification of
a union-set works by creating an individual of UnionSet and relating it to the
concrete sets that are operands of the set union by the object property hasOperand,
see, again Section 6.1.3 for examples.
Since an individual that represents a union set should typically not be translated to a
set-defining AML statement in the set-declaration part of a model, the data property
NonInstantiable can be used to mark the union set as "non-instantiable". Speaking
in general, all instances of SPIEntity can be marked as non-instantiable and will
hence not be derived into AML statements. Examples for this are typically given by
union sets that are defined implicitely, e.g., within an indexing as in (5.2). Note that

79

5. Ontology-based Representation of Optimization Models

using this property is optional. It also might seem more intuitive to put the
respective property into the OM-vocabulary of the previous subsection with domain
OM#ModelEntity. But since the treatment of non-instantiability for general model
entities would have further complicated the design and especially the implementation
of statement derivations in the approach, a demo-implementation for SPI-entities
was chosen in order to keep the representation of this thesis manageable.
As the image only represents an excerpt of the SPI vocabulary, it is mentioned that
a full specification of the SPI vocabulary in Manchester Syntax can be found in the
appendix of this thesis.

5.3.4. The Mathematical Properties Ontology

The purpose of this subsection is to introduce the OM.MProps ontology for specifying
or generating mathematical properties of abstract optimization models’ entities.
This refers to the informal shortcut "Math. Props." for mathematical properties in
the ontology structure Figure 5.4. As already mentioned in Subsection 5.3.2, the OM
vocabulary imports the OM.MProps ontology and then specifications can be included
into ontology-represented models by using the OM#formulationMProp and
OM#dataMProp object properties. Figures 5.8 and 5.9 show the relevant excerpts of
OM.MProps that will be discussed here. A complete specification in Manchester
Syntax can be found in the appendix of this thesis. As in the previous subsection, the
prefix OM.MProps for the considered ontologies’ classes will be omitted in the text.
It has already been stated that OM.MProps has a top-level concept
TopLevelMathProp under which the two categories FormulationEntityProperty
and DataEntityProperty are set up. This reflects the distinction between properties
of data entities that are typically to be specified by a user, such as a variable having
an integrality requirement, and formulation entities that can be linear, continuous,
convex and more depending on how the related data entities are used in the model.
E.g., a constraint formulation without a variable might just be a presolve
computation of a parameter and does not change the character of a linear model. To
that end, mathematical formulation entity properties should be derived from the
model context, e.g., in an automated fashion with methods from Section 5.6. Taking
a look at Figure 5.8, a point that might draw the attention of the reader is the
presence of individuals, e.g., ZeroLowerBoundInd of the type
NonNegativeLowerBound. These individuals are defined in the ontology such that
abstract optimization models specified in the ontology formalism can use them either
for their specificational purposes, or, if rule knowledge has to be applied, in order to
have them available for the consequents of SWRL-rules.
Data entity property classes (Figure 5.8) especially contain IntegerData and
BinaryData as consecutive subclasses for specifying integer and 0-1 ranges of
parameters and variables. Further classes are for specifying bounds/ranges. A simple

80

5.3. Structure of the Representation

OM MProps#hasUpperRange

OM.MProps

#DataEntityProperty

OM.MProps

#RangeProperty
xsd:double

OM.MProps#hasLowerRange

OM.MProps

#IntegerData

OM.MProps

#BinaryData

OM.MProps#TopLevelMathProp

OM.MProps

#NonNegativeLowerBound
OM.MProps#Zero

LowerBoundInd

OM.MProps#Integrality

PropertyInd

OM.MProps#Binary

PropertyInd

OM.MProps

#StrictlyPositiveLowerBound
OM.MProps#

StrictlyPositive

LowerBoundInd

Figure 5.8.: Excerpt of the OM.MProps ontology for data properties

11 – 20.11.2015 DS&OR Colloquium

OM.MProps

#LinearFormulation

OM.MProps

#FormulationEntityProperty

OM.MProps

#C2Formulation

OM.MProps

#C1Formulation

OM.MProps

#ContinuousFormulation OM.MProps

#GeneralNonLinear

FormulationOM.MProps#Linear

FormulationInd

OM.MProps

#ConvexFormulation

OM.MProps#TopLevelMathProp

OM.MProps#Continuous

FormulationInd

OM.MProps#C1

FormulationInd

OM.MProps#C2

FormulationInd

OM.MProps#Convex

FormulationInd
OM.MProps#General

NonLinearFormulationInd

Figure 5.9.: Excerpt of the OM.MProps ontology for formulation properties

class to use often is the NonNegativeLowerBound which provides a concept to state a
lower bound of zero. More general, the RangeProperty class can be used to specify
lower and upper bounds, e.g., on variables. Since the definitions of general bounds
differ, models making use of this construct have to define mathematical property
class individuals on their own. Furthermore, the respective individual has to make
use of a respective data property hasLowerRange or hasUpperRange with a double

81

5. Ontology-based Representation of Optimization Models

value.
Formulation entity properties specify mathematical properties of mathematical
programming formulations in the context of a model. Properties included in Figure
5.9 are linearity and continuity, which is refined by one- and two-time continuous
differentiability, as well as convexity and a nonlinear formulation property. The
respective classes are LinearFormulation, ContinuousFormulation,
C1Formulation, C2Formulation, ConvexFormulation as well as
GeneralNonLinearFormulation.

5.3.5. Ontology Specifications for the Min-Cost-Flow Problem

The usage of the NetForms#SingleCommodityBalance type in Subsection 5.3.1 gave
a first impression on the interplay of different vocabularies. But a complete model
has not been specified yet. For the instance structure of a complete
ontology-represented model, the reader may reconsider the min-cost-flow model from
Section 5.10. This model will now be specified in the ontology representation. A
visualization of the graph structure on the assertional level for this model is given in
Figure 5.10. The drawing does not specify the used types in the respective
vocabularies as well as that the respective names of properties are not included. This
information has been put into two extra Figures 5.11 and 5.12. In these figures, one
can find excerpts of the respective vocabularies in use plus the explicit type
definitions for the model individuals. The ontology-represented model can also be
found in form of an OWL-XML file on the digital material accompanying this thesis.

BalanceConstraint

FlowVar CapacityConstraint

LinearFlow

CostGoal

FlowCostPar

CapacityPar

SupplyPar

ArcSet NodeSet

OM.MProps#Integrality

PropertyInd

ArcFlow

OM#EName

OM.MProps#ZeroLower

BoundInd
OM.MProps#

Linear

Formulation

Ind

OM.MProps#

Convex

Formulation

Ind

OM.MProps#

Continuous

Formulation

Ind

Figure 5.10.: Min-cost-flow instance structure in the ontology representation

The model consists of three formulation entities, six data entities and some
individuals for mathematical properties that are not newly defined in the model but

82

5.3. Structure of the Representation

imported from OM.MProps. The types of the formulation entities stem from an
ontology for network formulations that will further be referred to under the prefix
NetForms. Excerpts of this vocabulary will be explained in the remainder of this
subsection. In contrast to the classes, the individuals that represent model entities
carry no prefix in this simple example since they are all to be integrated into one
current ontology for a model. The mathematical property individuals, which are not
model entities, have a prefix since they stem from an imported ontology. Concerning
the model entities, the three individuals are LinearFlowCostGoal,
CapacityConstraint and BalanceConstraint. The respective types from the
NetForms vocabulary are given by
NetForms#LinearSingleCommodityFlowCostGoal,
NetForms#SingleCommodityBalance and
NetForms#SingleCommodityFlowBoundsUp. Ontology excerpts defining these types
can be found in Figure 5.11. The type definitions for the model entities are also
visualized in Figure 5.12. The three types from the NetForms vocabulary define their
required data conceptualizations where all required classes stem from the ontology
with the prefix Net. Excerpts for this kind of definition for the type
NetForms#SingleCommodityBalance were already given in Figure 5.5.

In Figure 5.11, the formulation classes are visualized in the grey bordered ellipsoids.
As already mentioned, every formulation class requires certain mdo-classes for its
translation into a statement. This kind of interface is specified by using the
OM#requires property in respective cardinality restrictions. All formulation classes
require exactly one individual of Net#SingleCommodityFlowCollection
representing the flow variables of the model. In order to be treated as a variable, a
second type definition to the type OM#Variable has to be performed for the
individual FlowVar of the class Net#SingleCommodityFlowCollection. This is
illustrated in Figure 5.12. The prescribed usage of other mdo-classes differs from
formulation class to formulation class. The
NetForms#SingleCommodityFlowBoundsUp, e.g., require
Net#UpperCapacityCollection, Net#ArcSet plus the already mentioned
Net#SingleCommodityFlowCollection. The cardinalities for these specifications are
forced to exactly one, which gives a first hint that sharply formalized ontology
knowledge goes over the flexible usage of single formulation types. Requirements for
more general formulations will be resolved by additional types to be structured into
the ontologies. More general statements can be derived with more general types and
the modeling principles behind these types will be a topic of Chapter 6. Nonetheless,
the abstraction of the semantic data types is a feature of every formulation type.
The concrete statement to be derived from the usage of
NetForms#SingleCommodityFlowBoundsUp in the context of the min-cost-flow model
as specified in the ontology graph in Figure 5.10 is

83

5. Ontology-based Representation of Optimization Models

s.t. UpperCapacityConstraints { (i,j) in Arcs } :
ArcFlow[i,j] <= UpperCapacity[i,j];

(5.3)

This statement is also included in the complete AMPL min-cost-flow model from
Figure 5.3 in Section 5.2. It will be explained how such statements can be derived
from reusable types in Section 5.4. The identifiers in the AMPL-statement differ
from the abbreviated IRIs of ontology individuals as it has already been mentioned.
Axioms using the data property OM#EName specify the respective identifiers. These
axioms can be found in the full specification of the ontolgy-represented min-cost-flow
problem. In order to keep the images simple, Figure 5.3 only contains the entity
name ("EName") of the flow variables which is ArcFlow.

The character of types such as Net#SingleCommodityFlowCollection should be
explained in more detail. The term "SingleCommodity" refers to the usage of the
respective mdo-concept for flow in a model context where only one flow good is used
and therefore flow variables, respective constraints and further parameters are not
indexed over a commodity set. This restricts the generality of the mdo-concept (as
well as in the respective capacity constraint type
NetForms#SingleCommodityFlowBoundsUp) but is a necessary modeling paradigm in
order to avoid contradictions in the open-world semantics of the ontology language
OWL 2. More on these issues will become clear when the network vocabularies and
example models are extended in Section 6.1, such that more types become available
and their relations have to be discussed.

The type NetForms#SingleCommodityBalance requires exactly one individual of
Net#NodeSet, Net#ArcSet, Net#SingleCommoditySupplyCollection and
Net#SingleCommodityFlowCollection. The respective types for
NetForms#LinearSingleCommodityFlowCostGoal are
Net#SingleCommodityCostCollection (again a commodity individual type),
Net#SingleCommodityFlowCollection and Net#ArcSet.

The ontology structure in Figure 5.10 shows some mathematical property individuals
being specified for the model entities via axioms. The mathematical property
individuals are displayed in red filled circles. The two individuals
OM.MProps#ZeroLowerBoundInd and OM.MProps#IntegralityPropertyInd from
the OM.MProps vocabulary represent a zero lower bound and an integrality
requirement. They are both specified for the FlowVar individual representing the
flow variables in the model. The two specifications reflect the AML statement

84

5.3. Structure of the Representation

NetForms#Single

CommodityBalanceNet#ArcSet

Net#SingleCommodity

FlowCollection

Net#SingleCommodity

SupplyCollection

Net#NodeSet

Net#Upper

CapacityCollection

OM#requires

exactly 1

SPI#definedOn

exactly 1

NetForms#Single

CommodityFlowBoundsUp

OM#requires

exactly 1

OM#requires

exactly 1

NetForms#LinearSingle

CommodityFlowCostGoal

Net#SingleCommodity

CostCollection

SPI#definedOn

exactly 1

Figure 5.11.: Types in use for the min-cost-flow model in the ontology representation

©
 H

e
in

z
 N

ix
d

o
rf

 I
n

s
ti
tu

t,
 U

n
iv

e
rs

it
ä

t
P

a
d

e
rb

o
rn

BalanceConstraint

FlowVar

CapacityConstraintLinearFlowCostGoal FlowCostPar

CapacityPar

SupplyPar

ArcSet NodeSet

NetForms#

SingleCommodity

Balance

Net#ArcSet

Net#SingleCommodity

FlowCollection

Net#SingleCommodity

SupplyCollection

Net#NodeSet
Net#Upper

CapacityCollection

NetForms#Single

CommodityFlow

BoundsUp

NetForms#Linear

SingleCommodity

FlowCostGoal

Net#SingleCommodity

CostCollection

OM#Variable

Figure 5.12.: Type definitions for the min-cost-flow model

excerpts >= 0 and integer in the defining AMPL statement

var ArcFlow { Arcs } >= 0, integer;
(5.4)

of the flow variables from Figure 5.3. The IntegralityPropertyInd of type
OM.MProps#IntegerData is also used by the individual SupplyPar which reflects an

85

5. Ontology-based Representation of Optimization Models

integrality requirement for the input supply parameters. This illustrates that
mathematical property individuals can be shared by different model entities.
The data entity properties are to be defined when editing the model in its ontological
representation or retrieving it in a semi-automated fashion by AML Reengineering
(,see, Section 5.5). In contrast to that, formulation entity properties should be
concluded form the context of a model definition. This point will be further discussed
and demonstrated in Section 5.6. For the moment, observe that the three individuals
OM.MProps#LinearFormulationInd of type OM.MProps#LinearFormulation,
OM.MProps#ConvexFormulationInd of type OM.MProps#ConvexFormulation and
OM.MProps#ContinuousFormulationInd of type
OM.MProps#ContinuousFormulation are properties of the formulation individuals.

5.4. Expression Structure Separation and AML Derivation

This section will explain how the structure of AML statements, especially the
algebraic structure of abstract optimization models’ goals and constraints, can be
separated from the ontology formalizations. Then, a suited derivation process, as it
will be presented in Subsection 5.4.4, can instantiate the optimization model
constituents into statements that are valid for a target AML.
Statements in algebraic modeling languages are valid for the context-free grammars
that specify the languages. A valid parse of a statement can be represented in a
parse-tree and later be processed by interpreter programs. But the tree-like structure
of a statement is something very unlikely to be represented in an ontology.
Especially, the representation of statement structure with all its complexity as, e.g.,
different operators for sums, inequalities and products, would blow up the ontology
at no purpose and make query answering and reasoning tasks harder and more
complex from a computational perspective. To that end, separating the expression
structure from an ontology specification is of great importance. When doing so,
further goals can be achieved.
The basic idea of the ontology represented abstract optimization models considered
in this thesis is the typing of model entities such as specific sets, parameters,
variables, goals and (groups of) constraints in a standard vocabulary of reusable
types with explicitely formalized semantics. Already mentioned benefits are the
reusage of constraint formalizations with different data models, simple model editing
operations for model formulation, as well as model semantics for service composition.
These benefits rely on the conceptualizations but not on the concrete statement
structure.
Figure 5.13 describes the basic structure of the statement structure separation. It is
centered around every model entity type, i.e., the types for certain constraints such as
"balance" or data conceptualizations such as a network node-set for which multiple

86

5.4. Expression Structure Separation and AML Derivation

AML XSD

Entity Type

rdf:type

Query

by IRI

Derivation

IRIs (choose)

Composed AML

Derivation Service

Model Entities

Results as

XML
Query

Processing

Statement(s) as

XML Doc.
Reference for

Schema Validation

Mirrors AML

AML

Grammar

Figure 5.13.: Expression structure separation by query and derivation implementations

individuals can exist in a model. The fundamental steps for deriving all statements
of individuals for a single type are the processing of a query and the transformation
of the query results into statements by certain derivation implementations. The
details are to be discussed now. First of all, the type of a model entity is
accompanied by an IRI that can be resolved to a unique ontology query, as well as
multiple IRIs representing derivation resources for all individuals of the model entity
type. Both the unique query IRI and the implementation IRIs can be referenced
inside the ontology vocabularies by annotation properties.
The implementation IRIs can be resolved to services that implement derivation
capabilities for the respective entity types and a chosen target algebraic modeling
language. For the latter reason, multiple such implementations for the same type
may exist. Suited derivation services may be composed into greater services which
allow for the derivation of whole models based on techniques for semantic service
description and composition. But as such compositions would go beyond the scope of
this thesis, a simplified view is taken here that leaves the latter opportunities for
flexible compositions and choices of derivation implementations open: It is assumed
that an implemented process for deriving a whole ontology represented abstract
optimization model knows about unique, correct derivation implementations for
every entity type. Nonetheless, since these implementations should in principle be
deployed as services, the interaction of the derivation procedure takes place with a
centralized AML Derivation Service (, see, also Figure 5.14). This service is a central
hub for deriving all entities of a type as an XML document. The input to this service
consists of the query results to be discussed the next, as well as the string IRIs of the

87

5. Ontology-based Representation of Optimization Models

currently chosen derivation implementations. The service is assumed to be known
and existent, and the opportunity to later replace it by more individual
implementations is left open. A derivation procedure for whole models making use of
the central AML Derivation Service is described in Subsection 5.4.4.
Queries and derivation implementations have to fulfill certain requirements in order
to be generous enough. They will, e.g., have to deal with the disambiguation of
variables and parameters in the context of a model, mathematical properties, or
implicit union-sets in indexings. The requirements on queries and implementations
will be discussed in Subsection 5.4.2. Let us now further focus on the process of
transforming all model entities of a single entity type into the respective target AML
statements.
The derivation process for all individuals of a model entity type that was outlined
above furthermore works as follows: At first, a suited query processor for the
ontology query language in use processes the referenced ontology query with the
model and all directly and indirectly imported vocabularies as a knowledge base.
SPARQL-DL will be used as a query language (, see, [SP07]) in the examples of this
thesis. Another idea would be to use SPARQL queries on RDF graph
representations obtained from the collected OWL ontology knowledge. But due to
the need for mixed Abox and Tbox queries as well as implementational
considerations for the demonstrator (, see, Chapter 8), it was decided to use the
distinct subset SPARQL-DL of SPARQL (see again Subsection 2.5.3), for which an
API including a query processor that is based upon OWL API is available (, see,
http://www.derivo.de/ressourcen/sparql-dl-api.html for more information).
SPARQL-DL is at date no W3C standard.
A requirement on the query processor and the query language is given by the need to
support an XML result format. SPARQL Query Results XML Format [JD13]
provides a standard for OWL ontologies and can be used both for SPARQL and
SPARQL-DL queries. The XML query results should contain all important
information on the entity type individuals, e.g., model entity IRIs, e-names and the
IRIs and names of all required/definedOn or further individuals existing in object
property axioms of the model entities. For the complete requirements, the reader is
referred to Subsection 5.4.2.
The query result XML together with a string representing the IRI of the type
derivation implementation can be sent in a message to a composed AML Derivation
Service. As already mentioned above, this service is a (hierarchical) composition
with derivation services for model entity types, i.e., the aforementioned entity type
implementations. To that end, it should be said that the AML Derivation Service
has to be deployed as a "whole" in order to justify the word service (the hierarchical
composition is only available for software components). The composed AML
Derivation Service provides a single method for instantiation and delegates and
manages the calls to the statement type derivation services based on the input

88

http://www.derivo.de/ressourcen/sparql-dl-api.html

5.4. Expression Structure Separation and AML Derivation

string-IRI, see, again Figure 5.14.

AML Derivation Service

XML deriveStatements(XML queryResult, String typeIRI)

Derivation

Service Type

IRI A

Derivation

Service Type

IRI B

Derivation

Service Type

IRI X

...

Figure 5.14.: AML Derivation Service as a hierarchical composition (treat derivation
services as components)

After the generation of statements, the validation of derived AML statements
against an XML Schema (Figure 5.13) representing the relevant excerpts of the
target AML’s grammar in XSD is a final possible step in the derivation process for a
single entity type. A target AML XSD for the modeling language AMPL has been
implemented for this thesis and can be found in the accompanying material in digital
form. The structure of valid XML documents for the XSD will also be illustrated by
the examples of the following subsections. The implementations of SPARQL-DL
queries and type statement derivations will also be demonstrated in the following
examples and further specifications can be found in the digital material.
Let us now start with a first simple example of a derived flow variable definition in
AMPL and then explain the general requirements on query and type statement
derivation implementations. This will be further concluded by a more complex
statement example later on. After a description of the derivation process for
complete abstract optimization models, a discussion of the statement structure
separation approach will conclude this Section in 5.4.5.

5.4.1. Flow Type Example of a Statement Derivation

In this subsection, the statement derivation process presented for all individuals of a
type will be demonstrated for the entity type

89

5. Ontology-based Representation of Optimization Models

FlowVar ArcSet

OM.MProps#Integrality

PropertyInd

ArcFlow

OM#EName
OM.MProps#ZeroLower

BoundInd

OM.MProps

#NonNegative

LowerBound

OM.MProps

#IntegerData

Net#ArcSet

Net#SingleCommodity

FlowCollection

OM#Variable

OM#dataMProp

OM#dataMProp

OM.MProps#TopLevelMathProp

SPI#definedOn

Figure 5.15.: Excerpt of ontology knowledge that is required for deriving the flow
variable statement in the min-cost-flow model

Net#SingleCommodityFlowCollection and the specifications made for the
min-cost-flow example in Subsection 5.3.5. This should exemplify the process and
illustrate the inner workings of query and derivation implementations. At first, we
reconsider the single target AMPL statement

var ArcFlow { Arcs } >= 0, integer;
(5.5)

for the defintion of a family of flow variables for every network arc in the
min-cost-flow model from Figure 5.3. The required ontology definitions were given in
Subsection 5.3.5. Figure 5.15 provides a survey of the required definitional excerpts
and combines instance and type knowledge. The figure shows the excerpts of the
model and vocabulary specifications required for deriving the target flow-variable
statement.
The Query:
The first step to perform for the derivation of the target statement is the processing
of the unique SPARQL-DL query for the type
Net#SingleCommodityFlowCollection. SPARQL-DL allows for mixed ABox and
TBox queries which is important for our purposes. Figure 5.16 shows the first part of
the query which already contains all important aspects. After a definition of
vocabulary prefixes the variables for which the results are to be returned are defined
in a SELECT statement. Since SPARQL-DL is a distinct subset of SPARQL, the
syntax is similar to SPARQL as well as to SQL. The query variables are also given in

90

5.4. Expression Structure Separation and AML Derivation

PREFIX om: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.
owl#>

PREFIX mdo: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/
MDO−Network.owl#>

PREFIX spi: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−
Set−Parameter−Indexing.owl#>

PREFIX mprop: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/
OM.MProps.owl#>

SELECT ?parvarflow ?nonInstantiable ?omEntityType ?setarc ?unionsetoperandsarc
?unionsetoperandnames ?mathprops

WHERE
{
Type(?parvarflowiri, ?omEntityType),
PropertyValue(?parvarflowiri, spi :NonInstantiable, ?nonInstantiable),
EquivalentClass(?omEntityType, om:Parameter),
PropertyValue(?parvarflowiri, om:EName, ?parvarflow),
Type(?parvarflowiri, mdo:SingleCommodityFlowCollection),
PropertyValue(?parvarflowiri, spi :definedOn, ? setarciri) ,
Type(?setarciri , mdo:ArcSet),
PropertyValue(?setarciri , om:EName, ?setarc),
Type(?setarciri , spi :UnionSet),
PropertyValue(?setarciri , spi :hasOperand, ?unionsetoperandsarc),
PropertyValue(?unionsetoperandsarc, om:EName, ?unionsetoperandnames),
PropertyValue(?parvarflowiri, om:dataMProp, ?mathprops)
} OR WHERE
{
...
} ...

Figure 5.16.: First part of query for flow-type derivation

the following listing with an explanation of their meaning:

• ?parvarflow: This variable queries the e-names of all individuals of
Net#SingleCommodityFlowCollection. The respective variable querying the
ontology individuals of the type is ?parvarflowiri. The conjuncted
query-patterns PropertyValue(?parvarflowiri, om:EName, ?parvarflow),
Type(?parvarflowiri, mdo:SingleCommodityFlowCollection) build-up the
respective part of the query.

• ?nonInstantiable: This variable determines boolean values of the

91

5. Ontology-based Representation of Optimization Models

... OR WHERE
{
Type(?parvarflowiri, ?omEntityType),
EquivalentClass(?omEntityType, om:Variable),
PropertyValue(?parvarflowiri, om:EName, ?parvarflow),
Type(?parvarflowiri, mdo:SingleCommodityFlowCollection),
PropertyValue(?parvarflowiri, spi :definedOn, ? setarciri) ,
Type(?setarciri , mdo:ArcSet),
PropertyValue(?setarciri , om:EName, ?setarc),
PropertyValue(?parvarflowiri, om:dataMProp, ?mathprops)
} ...

Figure 5.17.: Matching group of query atoms

SPI#NonInstantiable property for the above mentioned data entity
individuals.

• ?omEntityType: The conjuncted query atoms Type(?parvarflowiri,
?omEntityType), EquivalentClass(?omEntityType, om:Parameter)
restricts the results to data entities of the flow type that are defined as
parameters in the context of a model. It will be explained how to query for
variables below.

• ?setarc: The flow-variables or parameters in the model to be queried are
indexed over arcsets whose e-names are determined for the ?setarc variable.
The respective variable ?setarciri for the entity IRI is implicit. The query
atom PropertyValue(?parvarflowiri, spi:definedOn, ?setarciri)
states the required connection of flow-individuals and arc-set individuals for
indexing.

• ?unionsetoperandsarc: If ?setarciri query results are defined as union-sets,
the SPI#hasOperand objects can be queried by this variable and the respective
query patterns.

• ?unionsetoperandnames: E-names of the latter union-set operands.

• ?mathprops: Query for all mathematical properties of the
Net#SingleCommodityFlowCollection-individuals.

The reader may have observed that the query excerpt given in Figure 5.16 is not
satisfiable for the specifications made in the considered ontology represented model.
The unsatisfiability of the first Where-block results from three reasons:

92

5.4. Expression Structure Separation and AML Derivation

1. The individual FlowVar is not of type OM#Parameter but of type OM#Variable.

2. A value for the data property SPI#NonInstantiable as required by the query
atom PropertyValue(?parvarflowiri, spi:NonInstantiable,
?nonInstantiable) is not defined.

3. The individual ArcSet to be retrieved for the query variable ?setarciri is not
a SPI#UnionSet.

In order to make the whole query satisfiable for all possible specifications including
the given case, the respective query patterns should be put into blocks that are
marked as optional. Unfortunately, the SPARQL-DL implementation used here does
not provide such a nested form of an OPTIONAL construct as it is, e.g, known from
SPARQL. To that end, one has to make explicit distinctions of conjuncted groups of
query atoms by the construct OR WHERE. The construct OR WHERE can only be
applied on the top level of the query and a nesting into blocks of query patterns is to
the best of the author’s knowledge from the documentation of SPARQL-DL and the
query engine implementation not possible. For the three cases mentioned above and
the additional need to allow for a missing of mathematical property specification one
gets 24 = 16 different groups of conjuncted query atoms (,see, the digital material for
the complete query). The matching pattern in the case of the given specifications
reads as in Figure 5.17.
The Query Results:
The query results in XML form are given in Figures 5.18 and 5.19. The
<results>-part of the document is made up of three <result>-blocks. Every
block contains the e-name of the single data entity as a binding of the query variable
"parvarflow", the arc-set e-name (binding name "setarc") and the typing as a
variable (binding name "omEntityType"). The two extra blocks result from the
specification of the two mathematical properties OM.MProps#ZeroLowerBoundInd
and OM.MProps#IntegralityPropertyInd that are to be transformed into the
subexpressions >=0 and integer in AMPL.
The Derivation Implementation:
As a next step, the query results can be sent to the composed AML Derivation
Service and by processing the entity type implementation IRI an internal call to a
derivation service for the type Net#SingleCommodityFlowCollection can be
executed with the XML query results as input. In this example, the AML Derivation
Service and its invoked statement type derivation services produce AMPL
statements in an XML format that was developed for this thesis. The XSD defining
valid AMPL statements can be looked up in the accompanying material in digital
form. It is important to mention that the prototypical XSD does not support all
language features of AMPL. The features that are supported can roughly be
described as the standard expressions for defining abstract AMPL models and will

93

5. Ontology-based Representation of Optimization Models

<?xml version="1.0" encoding="UTF−8"?>
<sparql xmlns="http://www.w3.org/2005/sparql−results#">

<head xmlns="">
<variable name="mathprops" />
<variable name="setarc" />
<variable name="parvarflow" />
<variable name="omEntityType" />

</head>
<results xmlns="">

<result>
<binding name="mathprops">

<uri>http://www.semanticweb.org/florianstapel/
ontologies/2015/6/OM.MProps.owl#
IntegralityPropertyInd</uri>

</binding>
<binding name="setarc">

<literal>Arcs</literal>
</binding>
<binding name="parvarflow">

<literal>ArcFlow</literal>
</binding>
<binding name="omEntityType">

<uri>http://www.semanticweb.org/florianstapel/
ontologies/2014/8/OM.owl#Variable</uri>

</binding>
</result>

Figure 5.18.: Query results for SingleCommodityFlowCollection Type - Part 1

be illustrated by the examples in the remainder of this thesis. An important
construct that is not supported so far is given by logical expressions.
A derivation implementation for Net#SingleCommodityFlowCollection has to
provide the following functionality:

• Derive a statement for every individual of the entity type.

• Start the statement with the keyword var or param depending how the
corresponding individual is used in the model.

• Construct the indexing with a single allowed arc-set as an index, but check
whether the related arc set is built as a union of other sets.

• Check for mathematical property definitions of every individual and build the
respective subexpressions.

94

5.4. Expression Structure Separation and AML Derivation

<result>
<binding name="mathprops">

<uri>http://www.semanticweb.org/florianstapel/
ontologies/2015/6/OM.MProps.owl#
ZeroLowerBoundInd</uri>

</binding>
<binding name="setarc">

<literal>Arcs</literal>
</binding>
<binding name="parvarflow">

<literal>ArcFlow</literal>
</binding>
<binding name="omEntityType">

<uri>http://www.semanticweb.org/florianstapel/
ontologies/2014/8/OM.owl#Variable</uri>

</binding>
</result>
<result>

<binding name="setarc">
<literal>Arcs</literal>

</binding>
<binding name="parvarflow">

<literal>ArcFlow</literal>
</binding>
<binding name="omEntityType">

<uri>http://www.semanticweb.org/florianstapel/
ontologies/2014/8/OM.owl#Variable</uri>

</binding>
</result>

</results>
</sparql>

Figure 5.19.: Query results for SingleCommodityFlowCollection Type - Part 2

95

5. Ontology-based Representation of Optimization Models

Algorithm 1: deriveStatements(XML queryResults)
Data: XML queryResults
Result: XML resultStatementsforType

1 Initialize resultDocument with a <root>-tag ;
2 Load queryResults into a suited object representation data ;
3 for model entity ent do
4 Determine the entitykind as var or param from data ;
5 Insert a <statement>-tag with respective <mod_entity> child and a

<var> or <param> statement-tag depending on entitykind under the
<root>-tag ;

6 Insert <VAR> or <PARAM>-tags under the current <var> or <param>
statement-tag and insert the e-name of ent that was retrieved from data in a
<LITERAL> tag that resides under the current <var> or <param>
statement-tag ;

7 Depending on the results in data: Insert an indexing with the e-name
identifier as a result of ?setarc in conjunction with ent under the current
<var> or <param> statement tag. If the single indexing argument is a
union-set, instantiate a respective union of unionset operands ;

8 Insert the mathematical property subexpressions depending on the results in
data under the current <var> or <param> statement-tag ;

9 Insert a <SEMIKOLON>-tag with node-content ";" under the current <var> or
<param> statement tag ;

10 end
11 return resultDocument ;

Figure 5.20.: Abstract algorithmic description for a derivation implementation of
Net#SingleCommodityFlowCollection.

An abstract algorithmic description for the derivation implementation can be found
in Figure 5.20. Since the concrete implementation contains further details, the reader
is referred to the complete source-code in the digital material accompanying this
thesis.

XML Document containing the Statement(s):
The xml document resulting from the derivation process for the type
Net#SingleCommodityFlowCollection is given in Figure 5.21. Starting with the
nested tags <root>, <statement> and <mod_entity>, a <var> statement has
been constructed. The document’s leave nodes contain the important identifiers for
model entity name and indexing indentifier names that were returned form the
query. The mathematical properties have been translated into respective
subexpressions. The whole file can be validated against the AMPL XSD in order to

96

5.4. Expression Structure Separation and AML Derivation

guarantee syntactical correctness for AMPL.
The example of this subsection shall now be concluded with a collection of all
requirements for general query and derivation implementations in the following
subsection. This will extend the specific requirements for the example
variable/parameter type presented above by requirements for deriving sets, goals and
(groups of) constraints.

5.4.2. Requirements and Design Considerations for Queries and Derivation
Implementations

This subsection shall illustrate the requirements and design considerations
underlying queries and derivation implementations for reusable model entity types.
All features that are part of the ontology versions accompanying this thesis, as well
as of the demonstrator application to be presented in Chapter 8, will be discussed.
The requirements on queries and derivation implementations have to be covered
when implementing a new ontological type. They can be stated as follows:

1. All queries and derivation implementations, independent of wether they are for
data entity or formulation entity types have to guarantee the following
functionality:

a) Retrieval of e-names: The values of OM#EName property axioms have to be
extracted from the ontology representations and processed into identifiers
for the respective entities they refer to.

b) Valid statements: All statements constructed by the derivation process
have to be valid for the target AML XSD describing the XML
representations of AML statements.

c) Treat all instantiable individuals: All individuals of the entity type
currently processed have to be considered for instantiation into valid
statements.

2. Besides the latter general requirements, certain functionality has to be
guaranteed for special entity types that are restricted to either sets, parameters
and variables or formulations. For the data entity types that are suclasses of
SPI#Set the following is required:

a) Check for and deal with axiom definitions of SPI#NonInstantiable
true: Set-entities that define this property must not be transformed into
AML statements.

b) Set-expressions for axioms with SPI#WithinCartproductTwoSame:
Process specifications made with the latter property into respective AML
statements that cover the respective set relations.

97

5. Ontology-based Representation of Optimization Models

<?xml version="1.0" encoding="UTF−8"?>
<root>

<statement>
<mod_entity>

<var>
<VAR>var</VAR>
<id>

<LITERAL>ArcFlow</LITERAL>
</id>
<indexing>

<LCURLBRACKET>{</LCURLBRACKET>
<sexpr_list>

<sexpr>
<id>

<LITERAL>Arcs</
LITERAL>

</id>
</sexpr>

</sexpr_list>
<RCURLBRACKET>}</RCURLBRACKET>

</indexing>
<v_attributes>

<v_attribute>
<RANGEEXP>

<GT>>=</GT>
<NUMBER>0.0</NUMBER>

</RANGEEXP>
</v_attribute>
<COMMA>,</COMMA>
<v_attribute>

<INTEGER>integer</INTEGER>
</v_attribute>

</v_attributes>
<SEMIKOLON>;</SEMIKOLON>

</var>
</mod_entity>

</statement>
</root>

Figure 5.21.: SingleCommodityFlowCollection individual statement(s) as XML

98

5.4. Expression Structure Separation and AML Derivation

c) Union-set operands in set espressions: Derive objects of
SPI#WithinCartproductTwoSame axioms into union statements of
respectively specified operands in case of a SPI#UnionSet.

3. Queries and derivation implementations for data entities that are in contrast to
the latter subclasses of SPI#ParameterCollection have to provide the
following special functionality:

a) Distinguish variables from parameters and instantiate respective
statements with AML keywords and syntactical structure.

b) Determine and process all objects of SPI#definedOn axioms that are
prescribed by the data entity type. Processing in this case means the
generation of a respective subexpression in the indexing part of the
parameter or variable statement.

c) Union-set indexing: As comparable to set-expressions instantiate
set-objects of SPI#definedOn axioms into union statements of
respectively specified operands in case of a SPI#UnionSet.

d) Mathematical properties: Process mathematical property specifications
for OM#dataMProp into AML representations. Within this thesis, only the
code snippets integer, binary, >= 0 and >0 for the target AML
AMPL are supported.

It also has to be mentioned that the SPI#NonInstantiable property is
currently only supported for set-types.

4. Finally, formulation types also have their own specific requirements on the
implementation of queries and statement derivations:

a) Determine and process all objects of OM#requires axioms that are
prescribed by the data entity type. Processing in this case means either a
respective subexpression in the indexing part of the goal or constraint
expression or a direct treatment in the exression part describing the
formulation entity.

b) Union-set indexing: As comparable to set-expressions instantiate
set-objects of OM#requires axioms into union statements of respectively
specified operands in case of a SPI#UnionSet.

c) Guarantee consistency in index order: Indices of constraint-groups,
parameters and variables should be used in the correct order as intended
by the parameters and variables. E.g., the order of arc-set indices shall
not be interchanged.

d) Support of OM#ExpressionEntity specifications: Examples and
explanations for this requirement will be given in Section 6.1.3. The

99

5. Ontology-based Representation of Optimization Models

functionality provided intuitively allows for the implementation and
specification of formulation types with a dynamic number of
summation-operations. E.g., a variable number of variable families can be
instantiated into multiple summation expressions that are themselves put
together in an outer sum.

Design Principles for Queries:
The requirements above lead to specific design considerations for the SPARQL-DL
queries that are in one-to-one relation to the model entity types. To that end the
following aspects of a query design are proposed:

1. The following can be stated for every query implementation:
a) An implicit and an explicit query variable for the entity individuals and

their e-name has to be introduced. Respective query atoms determine
individuals of the entity type and relate them to the value of the OM#EName
property. This corresponds to the requirements 1a and 1c from above.

b) All query patterns that are optional or in disjunction, i.e., for which
matching variable allocations may not exist or where types may vary have
to be treated suitedly. A matching group of query patterns has to be
introduced for every intended possible query result. The groups are to be
disjuncted by the OR WHERE keyword.

2. The generation of valid statements from requirement 1b is an issue for the
derivation implementations. Besides the general specifica of queries, the
following parts of query implementations are specific to either set, parameter
or variable or formulation entities. For the data entity types that are suclasses
of SPI#Set the following variables and query atoms shall furthermore be
introduced:
a) A SPI#NonInstantiable-PropertyValue query atom: For checking

whether a respective property axiom is defined with value "true" such that
a respective statement will not be instantiated, see requirement 2a.

b) A query variable for SPI#WithinCartProductTwoSame axiom objects and
their e-name as well as respective query atoms, see requirement 2b.

c) Two query variables for every possible union-set operand and their
e-names. Respective query atoms, see requirement 2c.

3. Queries for data entities that are in contrast to the latter subclasses of
SPI#ParameterCollection contain following extra variables and patterns:
a) A variable for determining a type of the data entity individual as eiter

OM#Variable or OM#Parameter and respective query atoms. This
concerns requierement 3a

100

5.4. Expression Structure Separation and AML Derivation

b) Two variables for every object type required by a SPI#definedOn class
restriction. One variable for the individual’s IRI and one for the e-name.
Query atoms for the SPI#definedOn-property, the OM#EName property and
the ontology type of the object, see requirement 3b.

c) Two query variables for every possible union set operand and their
e-names. Respective query atoms, see requirement 3c.

d) Mathematical properties: Add a single query-variable for mathematical
property individuals (IRIs) and a single query atom for the property
OM#dataMProp. The concrete type of the mathematical property can later
be identified by the individual for the limited amount of properties
supported within this thesis. This concerns requirement 3d.

4. The formulation types then add the following variables and patterns:

a) Two variables for every object type required by a OM#requires class
restriction. One variable for the individual’s IRI and one for the e-name.
Query atoms for the OM#requires-property, the OM#EName property and
for checking the ontology type of the object. See requirement 4a.

b) Two query variables for every possible union-set operand and their
e-names. Respective query atoms. See requirement 4b.

c) In case of OM#ExpressionEntity specifications: Respective variables and
query patterns.

The consistency of indice order as stated in requierement 4c is an issue for the
derivation implementation.

Derivation Implementations:
Finally, the general ingredients of formulation type derivation implementations can
be described. A pseudo-code for a derivation of statements with the type
Net#SingleCommodityFlowCollection has already been given in Figure 5.20.
Another example for a balance-formulation type will follow in the next subsection.
The design of implementations described here has already been realized by classes
and a demonstrator (Chapter 8) in Java 7. Every type is implemented in a class for
its derivation that provides the single public method deriveStatements(...). The
classes are invoked by the imaginary AML Derivation Service via reflection. A full
service realization was not provided but a design that fulfills the signatures given
within the beginning of this section and can in principle be deployed as a service.
For further details on the installation, usage and design of the demonstrator
application, the reader is refered to Chapter 8. The following description of the
implementation design is partially specific to the target demo language AMPL.
The issues concerned with the design of derivation implementations can be stated
and grouped as follows:

101

5. Ontology-based Representation of Optimization Models

1. All statement derivations implement the following tasks:
a) Generate the initial document with a <root>-tag.
b) Implement a loop over every model-entity of the respective type that is

contained in the model. Instantiate the respective tags <mod_entity>
and <statement> for model entities and statements. Insert the respective
statement-tag for the OM-entity type, e.g., <set> or <param>. Every
statement is closed by a ";"-Symbol with a respective tag.

The points from above are especially of importance for the valid statements
requirement 1b. All following computations happen inside the loop over model
entities.

2. The points in the next enumeration are then implemented for the types that
are subclasses of SPI#Set:
a) Finish the current loop iteration without a statement in case of a

SPI#NonInstantiable true specification for the model entity under
consideration.

b) Determine the e-names of the SPI#WithinCartProductTwoSame operands
and build respective set-expressions.

c) Instantiate union-set statements in case of union-set operands.

3. For parameters and variables the following is considered:
a) Check for type declaration of model entity as OM#Parameter or

OM#Variable and insert a respective statement tag.
b) Instantiate the SPI#definedOn sets as set-expressions in an indexing.
c) Instantiate union-sets with union-set expressions.

4. For formulation-types one has the following:
a) Instantiate the indexing tag in case of constraint-types.
b) Define and later use dummy indices for the indexing sets and those of

operators in expresssions in a consistent way. See requirement 4c.
c) Instantiate union sets with union set expressions.
d) Insert a colon ":" symbol with respective tags.
e) Insert the expressions for goals and constraints with dummy-indices and

union set declarations for the sum-operator.
f) In case of required OM#ExpressionEntity individuals: Insert the

respective generic number of expressions and tie them together, e.g., by
an outer sum.

The latter considerations shall now be concluded by another example.

102

5.4. Expression Structure Separation and AML Derivation

5.4.3. A Balance-Type Example of a Statement Derivation

The considerations of the preceding subsections shall now be illustrated by another
example of a statement derivation for the single entity type
NetForms#SingleCommodityBalance. This example is especially intended to extend
the flow-variable declaration example from Subsection 5.4.1 by the aspects concerned
with deriving statements from formulation entity specifications. The target
statement

s.t. MassBalance { i in Nodes }:
sum{ (i,j) in Arcs }(ArcFlow[i,j])
-sum{ (j,i) in Arcs }(ArcFlow[j,i]) = SupplyDemand[i];

(5.6)

is a part of the min-cost-flow model of Section 5.2. The relevant parts of the
ontology specifications are given in an extra Figure 5.22.

©
 H

e
in

z
 N

ix
d

o
rf

 I
n

s
ti
tu

t,
 U

n
iv

e
rs

it
ä

t
P

a
d

e
rb

o
rn

Balance

Constraint

FlowVar SupplyParArcSet

NodeSet

MassBalance

Net#SingleCommodity

FlowCollection
Net#NodeSet

NetForms#SingleCommodity

Balance Net#ArcSet

Net#SingleCommodity

SupplyCollection

OM#EName

OM#requires

OM#requires

OM#requires

OM#requires

Figure 5.22.: Ontology excerpts for deriving the mass-balance statement

The SPARQL-DL query which is given in Figures 5.23 - 5.25 introduces the following
variables and query patterns according to the design considerations from the last
subsection:

• ?forment: This variable allows to query the e-names of all indivudals of
NetForms#SingleCommodityBalance. The respective variable querying the
ontology individuals of the type is ?formentiri. The conjuncted
query-patterns PropertyValue(?formentiri, om:EName, ?forment),
Type(?formentiri, formont:SingleCommodityBalance) buid-up the
respective part of the query.

103

5. Ontology-based Representation of Optimization Models

PREFIX om: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#>
PREFIX mdo: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/MDO−

Network.owl#>
PREFIX formont: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM−

Network−Formulations.owl#>
PREFIX spi: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#>
PREFIX mprop: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.

MProps.owl#>
SELECT ?forment ?setarc ?unionsetoperandsarc ?unionsetoperandnamesarc ?setnode ?

unionsetoperandsnode ?unionsetoperandnamesnode ?varparsupply ?varparflow
WHERE
{
PropertyValue(?formentiri, om:EName, ?forment),
Type(?formentiri, formont:SingleCommodityBalance),
PropertyValue(?formentiri, om:requires, ? setarciri) ,
Type(?setarciri , mdo:ArcSet),
PropertyValue(?setarciri , om:EName, ?setarc),
Type(?setarciri , spi :UnionSet),
PropertyValue(?setarciri , spi :hasOperand, ?unionsetoperandsarc),
PropertyValue(?unionsetoperandsarc, om:EName, ?unionsetoperandnamesarc),
PropertyValue(?formentiri, om:requires, ?setnodeiri) ,
Type(?setnodeiri, mdo:NodeSet),
PropertyValue(?setnodeiri, om:EName, ?setnode),
Type(?setnodeiri, spi :UnionSet),
PropertyValue(?setnodeiri, spi :hasOperand, ?unionsetoperandsnode),
PropertyValue(?unionsetoperandsnode, om:EName, ?unionsetoperandnamesnode),
PropertyValue(?formentiri, om:requires, ?varparsupplyiri) ,
Type(?varparsupplyiri, mdo:SingleCommoditySupplyCollection),
PropertyValue(?varparsupplyiri, om:EName, ?varparsupply),
PropertyValue(?formentiri, om:requires, ? varparflowiri) ,
Type(?varparflowiri, mdo:SingleCommodityFlowCollection),
PropertyValue(?varparflowiri, om:EName, ?varparflow)
} OR WHERE

Figure 5.23.: Query for SingleCommodityBalance - Part 1

104

5.4. Expression Structure Separation and AML Derivation

{
PropertyValue(?formentiri, om:EName, ?forment),
Type(?formentiri, formont:SingleCommodityBalance),
PropertyValue(?formentiri, om:requires, ? setarciri) ,
Type(?setarciri , mdo:ArcSet),
PropertyValue(?setarciri , om:EName, ?setarc),
Type(?setarciri , spi :UnionSet),
PropertyValue(?setarciri , spi :hasOperand, ?unionsetoperandsarc),
PropertyValue(?unionsetoperandsarc, om:EName, ?unionsetoperandnamesarc),
PropertyValue(?formentiri, om:requires, ?setnodeiri) ,
Type(?setnodeiri, mdo:NodeSet),
PropertyValue(?setnodeiri, om:EName, ?setnode),
PropertyValue(?formentiri, om:requires, ?varparsupplyiri) ,
Type(?varparsupplyiri, mdo:SingleCommoditySupplyCollection),
PropertyValue(?varparsupplyiri, om:EName, ?varparsupply),
PropertyValue(?formentiri, om:requires, ? varparflowiri) ,
Type(?varparflowiri, mdo:SingleCommodityFlowCollection),
PropertyValue(?varparflowiri, om:EName, ?varparflow)
} OR WHERE
{
PropertyValue(?formentiri, om:EName, ?forment),
Type(?formentiri, formont:SingleCommodityBalance),
PropertyValue(?formentiri, om:requires, ? setarciri) ,
Type(?setarciri , mdo:ArcSet),
PropertyValue(?setarciri , om:EName, ?setarc),
PropertyValue(?formentiri, om:requires, ?setnodeiri) ,
Type(?setnodeiri, mdo:NodeSet),
PropertyValue(?setnodeiri, om:EName, ?setnode),
Type(?setnodeiri, spi :UnionSet),
PropertyValue(?setnodeiri, spi :hasOperand, ?unionsetoperandsnode),
PropertyValue(?unionsetoperandsnode, om:EName, ?unionsetoperandnamesnode),
PropertyValue(?formentiri, om:requires, ?varparsupplyiri) ,
Type(?varparsupplyiri, mdo:SingleCommoditySupplyCollection),
PropertyValue(?varparsupplyiri, om:EName, ?varparsupply),
PropertyValue(?formentiri, om:requires, ? varparflowiri) ,
Type(?varparflowiri, mdo:SingleCommodityFlowCollection),
PropertyValue(?varparflowiri, om:EName, ?varparflow)
} OR WHERE

Figure 5.24.: Query for SingleCommodityBalance - Part 2

105

5. Ontology-based Representation of Optimization Models

{
PropertyValue(?formentiri, om:EName, ?forment),
Type(?formentiri, formont:SingleCommodityBalance),
PropertyValue(?formentiri, om:requires, ? setarciri) ,
Type(?setarciri , mdo:ArcSet),
PropertyValue(?setarciri , om:EName, ?setarc),
PropertyValue(?formentiri, om:requires, ?setnodeiri) ,
Type(?setnodeiri, mdo:NodeSet),
PropertyValue(?setnodeiri, om:EName, ?setnode),
PropertyValue(?formentiri, om:requires, ?varparsupplyiri) ,
Type(?varparsupplyiri, mdo:SingleCommoditySupplyCollection),
PropertyValue(?varparsupplyiri, om:EName, ?varparsupply),
PropertyValue(?formentiri, om:requires, ? varparflowiri) ,
Type(?varparflowiri, mdo:SingleCommodityFlowCollection),
PropertyValue(?varparflowiri, om:EName, ?varparflow)
}

Figure 5.25.: Query for SingleCommodityBalance - Part 3

• ?setarc: The sums of ongoing and outgoing flows in the statement are indexed
over arc sets whose e-names are determined for the ?setarc variable. The
respective variable ?setarciri for the entity IRI is implicit. The query atom
PropertyValue(?formentiri, om:requires, ?setarciri) specifies the need
for a "requires"-axiom concerning balance constraint individuals and arc set
individuals.

• ?unionsetoperandsarc: If ?setarciri query results are defined as union sets,
the SPI#hasOperand objects can be queried by this variable and the respective
query patterns.

• ?unionsetoperandnamesarc: E-names of the latter union set operands.

• ?setnode: The balance constraints are indexed over node sets whose e-names
are determined for the ?setnode variable. The respective variable
?setnodeiri for the entity IRI is implicit. The query atom
PropertyValue(?formentiri, om:requires, ?setnodeiri) specifies the
need for a respective "requires"-axiom.

• ?unionsetoperandsnode: If ?setnodeiri query results are defined as
union-sets, the SPI#hasOperand objects can be queried by this variable and
the respective query patterns.

• ?unionsetoperandnamesnode: E-names of the latter union-set operands.

106

5.4. Expression Structure Separation and AML Derivation

Algorithm 2: deriveStatements(XML queryResults)
Data: XML queryResults
Result: XML resultStatementsforType

1 Initialize resultDocument with a <root>-tag ;
2 Load queryResults into a suited object representation data ;
3 for model entity ent do
4 Insert a <statement>-tag with respective <mod_entity> child and a

<constraint> statement-tag under the <root>-tag ;
5 Insert a <SUBTO>-tag with respective node-content and a <LITERAL> tag

containing the e-name of ent that was retrieved from data as child nodes of
the actual <constraint>-tag ;

6 Insert the indexing for the results of Net#NodeSet e-name results of the query
variable ?setnode that are in conjunction with ent under the current
<constraint>-tag. The results are to be retrieved from data. If the single
indexing argument is a union set, generate a respective union of unionset
operands. The indexing has to declare an index "i" for referencing the nodes
in the inner expressions ;

7 Insert a <COLON>-tag with node-content ":" under the current
<constraint>-tag ;

8 Insert a <cexpr>-tag for the constraint expression under the current
<constraint>-tag ;

9 Retrieve the results of ?setarc and ?varparflow (from data) as e-names of
Net#ArcSet and Net#SingleCommodityFlowCollection individuals that are
in conjunction with ent ;

10 Generate the content of the left-hand side of the equality: Insert an outer
expression with a "minus" operator for the two sums of flow variables over the
arc-set under the current <cexpr>-tag. Insert the two individual sums as
expression-childs of the outer sum in the same way where the difference lies in
the interchanged subscripts "i,j" and "j,i" for the network arcs. The
identifiers for arcs and flows were retrieved in the last steps ;

11 Insert a <EQUAL>-tag with node-content "=" under the current <cexpr>-tag ;
12 Insert the right hand side content of the equality under <cexpr>: Retrieve

the e-name of the required Net#SingleCommoditySupplyCollection as a
result of the query-variabe ?varparsupply for the current entity from data
and insert a respective expression-tag with the identifier and a subscript with
the single index "i" ;

13 Insert a <SEMIKOLON>-tag with node content ";" as a child node of the
current <constraint>-tag ;

14 end
15 return resultDocument ;

Figure 5.26.: Abstract algorithmic description for a derivation implementation of
NetForms#SingleCommodityBalance.

107

5. Ontology-based Representation of Optimization Models

• ?varparsupply: The query atom PropertyValue(?formentiri,
om:requires, ?varparsupplyiri) specifies the need for a respective
"requires"-axiom. ?varparsupply with a respective query atom is the query
variable for the respective e-name.

• ?varparflow: The query atom PropertyValue(?formentiri, om:requires,
?varparflowiri) specifies the need for a respective "requires"-axiom.
?varparflow with a respective query atom is the query variable for the
respective e-name.

The matching group of query atoms in this case is the last block of query atoms from
Figure 5.25 that does not require sets to be defined as SPI#UnionSet.
As the query results would blow up the description of this example, the interested
reader is referred to the digital material in this case.
The derivation procedure for the type NetForms#SingleCommodityBalance in an
abstract algorithmic form is given in Figure 5.26. According to the design
considerations from the last subsection the procedure iterates over every model entity
to generate a respective <constraint> statement. The e-names of individuals
OM#requires-axioms are inserted as identifiers into respectively build expressions.
The XML document resulting from the derivation can be found in the accompanying
digital material.

5.4.4. Algebraic Model Derivation Process

Until now it has been explained how to derive AML statements for all individuals of
a single ontological entity type. This subsection describes the process to transform a
whole ontology represented abstract optimization model into an AML represented
abstract optimization model. The input to the process is an ontology represented
optimization model in OWL 2 which is imports-closed, i.e., for which all directly or
indirectly imported vocabularies have been loaded into the model as an ontology.
Furthermore, the following validations should have taken place before the process is
started:

• Validations by Model Editor: Model editors should validate ontology models
before the derivation. Are the type definitions for all individuals as intended?
Are the additional type definitions such as OM#Set or OM#Variable present in
the model? Do distinct individuals refer to distinct model entities and are
references to the same individual really intended as such?

• Ontology Validation: The model can be validated ontologically by a resoning
procedure. This can reveal contradictory specifications, e.g., missing axioms for
specifying related data entities or non-matching types of such stated entities

108

5.4. Expression Structure Separation and AML Derivation

Algorithm 3: transformOntologyModel2AML(OWL model)
Data: OWL model
Result: AML-File modelFile

1 Retrieve all entity types that are used in the model: There has to be at least one
individual with that type and the type must have been directly specified (no
inferred type axioms) ;

2 Sort the entity types partially by grouping them into containers for
simple-parameters, sets, parameters, variables, goals and constraints ;

3 Initialize the resultString for the target AML file as empty ;
4 for every entity type in order do
5 Resolve the query location from the annotated IRI and process the query on

model. Store the resuls in XML queryResult ;
6 Call deriveStatements(queryResult,typeIRI) on the AML Derivation

Service and store the XML statementResults. The typeIRI is internally
known to this method ;

7 Extract the text-node content of the statementResults into a local variable
currentResultString ;

8 Append currentResultString to resultString and add a line-break;
9 end

10 Generate the modelFile of the target AML format from the resultString ;
11 return modelFile ;

Figure 5.27.: Algebraic model derivation process

according to the class restrictions in the vocabulary. Reasoners also provide
capabilities for debugging ontologies in terms of localizing these contradictions.
It is important that inferred type axioms are not stored in the ontology model
(see the following explanations of the process).

Figure 5.27 specifies the process from an algorithmic perspective. The derivation
process itself is an iterated application of the derivation of all individuals for an
entity type where the latter types are retrieved from the ontolgy model by the aid of
the specified type axioms (therefore no inferred type axioms). The types and their
individuals are sorted in the order of non-dimensional parameters, sets, parameters,
variables, goals and constraints. Every entitity type is processed in terms of the
query processing and a call to the AML Derivation Service. Text node content will
be extracted from the XML documents and written into a string that can be used to
build the content of an AML file.
The following remarks are important:

• It is assumed that the query IRIs can be extracted from the vocabularies used

109

5. Ontology-based Representation of Optimization Models

in the ontology model and resolved to the unique and correct queries for the
entity types.

• The AML Derivation Service and correct IRIs of implementations for entity
types, i.e., especially ones that yield statements of the target AML, are fixed
and known to the procedure as it has already been described in the beginning
of this section.

• It is optional to validate the resulting statements against an XML schema for
the target AML. This could be done either within the loop (after step 6.) or, if
all XML statementResults are stored in a separate loop, after step 9. The
demonstrator application that is presented in Chapter 8 provides means to
validate the results after the derivation of the model as a string. XML
validation can, e.g., be helpfull in case of mistakes in AML derivation
implementations.

• The whole process does not contain a treatment of errors for reasons of
simplicity. The process is designed to demonstrate the feasibility of the
derivation approach in the entity type and service context. As such, the process
is implemented in the demonstrator application presented in Chapter 8.

• The process terminates respective the operations on ontologies: The retrieval
of all directly specified types can be performed in finite time by looping over
the finite number of model individuals and looking for such explicit definitions
without a need for further reasoning. The grouping into containers can
basically be seen as a standard OWL 2 resoning task that queries for
individuals of a fixed class and is decideable since all model and vocabulary
definitions in use fall under the OWL DL profile. Furthermore, SPARQL-DL is
decideable and as such are the queries. The derivation implementations with
their design as presented in Subsection 5.4.2 will terminate. Further
considerations of performance issues are not part of this thesis.

• Derived models will be complete in the sense that every model entity declared
in the ontology model will be derived into a respective statement or statements
in case of types that represent groups of AML declarations.

• The derived algebraic models will be correct so far as that every statement is
syntactically correct in terms of the AML syntax and semantically correct in
terms of the intended mathematical exressions iff the implementations for the
type in use are correct and the ontology specifications are free of contradictions
according to the class-restrictions imposed in the vocabulary. In case the AML
derivation implementations are not trusted, means for XML validation can be
used. Identifiers for model entities will be consistent according to the
dependencies specified in the ontology model. The correct order of indices is

110

5.4. Expression Structure Separation and AML Derivation

guaranteed by correct formulation type derivation implementations. The
correct order of declarations in the resulting AML document is not guaranteed
as the next remark states.

• A topologically sorted order of data declaring statements in terms of the
dependencies they have on other identifiers is not guaranteed by the process.
As long as there are no cycles introduced in the definitional dependencies, the
order could be retrieved by an additional topological sort (this is also a
standard method for models in Structured Modeling). Some AMLs and their
respective environments may have suitedly ordered declarations as a
requirement. E.g., for .mod in AMPL, the declarations have to be sorted by the
occurence of identifiers. What can be guaranteed is the order of blocks for
model entity declarations. E.g., set-statements will be stated before parameter
declarations.

5.4.5. Conclusion of Statement Derivation and Structure

This subsection gives a short conclusion of the entity type and statement derivation
approach as it has been presented so far. Based upon the vocabulary and ontology
specifications from Section 5.3, this section explained how the structure of abstract
model statements with their respective identifiers, semantic types of identifies and
expressions can be decoupled from a conceptualization of a reusable model entity
type. The special feature of this structure is the definition of data model
independent formulation types. It was shown how ontology represented abstract
optimization models can be transformed into algebraic modeling language models.
The process as a whole could generate complete and syntactically correct algebraic
models, but the semantical correctness depends on the ontology specifications
performed by humans and the correctness of the implementations. The topological
order of statements in terms of the definitional dependencies of identifiers was
neglected but can be achieved by a topological sort in case of non-cyclic definitions.
Another important aspect is the service-orientation for the derivation functionality
provided as an AML Derivation Service. Though the considerations of this thesis
were simplified to a central and known derivation service, the possibilities for flexible
compositions of algebraic model derivations, e.g., for representing a fixed abstract
model in a fixed language, are given by the presented framework.
At this point it is not possible to discuss the full capabilities for reusability of entity
types in the approach. Nonetheless, it can be recapitulated what has been
demonstrated and mentioned so far:

• It was demonstrated that it is possible to reuse formulation types with different
identifiers and semantic data types. This included the usage of subtypes for
required mdo-types.

111

5. Ontology-based Representation of Optimization Models

• The indexing of the entity types is flexible in the point that one can not only
generate static sets but also dynamic unions of sets in an indexing expression.
This has so far only been mentioned but will be demonstrated by the examples
of the next chapter.

• Data entities which are not sets can be reused as variables or parameters either.

• What has not been demonstrated so far but will be shown in Subsection 6.1.3
is the definition of formulation types with generic summation expressions. E.g.,
these type can be reused with one, two or *-many inner summations of
different structure.

In the remainder of this chapter, issues concerned with the two missing
interconnections of the three model representation layers from Figure 5.2 in Section
5.1 will be discussed. Namely, the reengineering of AML represented models into the
ontology representation and the generation of semantic service descriptions for model
instantiation services out of ontology represented models. This will highlight further
aspects and capabilities of the ontology vocabulary.

5.5. Reengineering of AML Models

Besides the means to bring an ontology represented optimization model into an AML
representation there also should be a highly automated process to reengineer AML
models into the ontology representation. This has been visualized in Figure 5.2 of
Section 5.1 by the arrow "Reengineering". Reengineering of AML models is of
importance for model formulation and reuse, since a large number of models that are
defined in AMLs is available. Furthermore, the creation of abstract optimization
models within AMLs seems to be a very intuitive process for human modelers. The
detailed investigation of AML Reengineering is not part of this thesis. To that end,
only an outline for illustrating the feasibility is given. The following steps may be
performed when reengineering an AML model into the ontology representation.
Steps that might be automated are marked as such:

1. Parse AML Model: Parse the model with a parser for the AML and obtain a
valid parse tree in a tool for AML reengineering. This step can be automated.

2. Extract IDs: Perform a visit of the parse tree in order to extract the identifiers
of model entities and assign iris to these identifiers in an automated way.

3. Specify ID Semantic Types: This step requires the user to interact. Since
AMLs naturally provide no semantic types, suited ontology vocabularies, e.g.,
for goal and constraint types as well as meta domain ontologies have to be
loaded and semantic types have to be specified. The resulting knowledge is to
be stored in an ontology.

112

5.5. Reengineering of AML Models

4. Build Statement Ontologies: With the parse tree and the semantic type
specifications of the unique model individuals, first ontology representations of
the models’ statements may be built in an automated fashion. In order to
increase the performance of the following step one may build an ontology
explaining the tree-structure for every statement of the chosen AML. These
structures can be generated automatically out of the parse tree and the
knowledge of the semantic types of the unique model entity identifiers.

5. Conclude Relationships: Having the context of a parse tree should allow to
apply specialized rule knowledge to conclude new relationships automatically.
These relationships are the typical ontology model relationships such as the
required data conceptualizations of goals and constraints or relations of sets.

6. Extract Parts: With the model structure explained on the tree ontologies for
every statement one is likely to build a consistent ontology optimization model
by a union of the individual model entity definitions. Before doing this, one
should separate the statement representations from the parse-tree structure
overhead in an automated way.

7. Build Single Model: Finally, the model entities with their specifications can be
merged into a consistent model in an automated way. Merge in this case is a
simple ontology integration operation on the assertional level, by which the
triple axioms for stating the model entities definitional dependencies are
brought together. Basically it has to be taken care that refrences to the same
objects are treated as such and do not lead to the generation of a copy.
Semantic integration on the terminological level should not be required by the
step as the types of model entities stem from unique and compatible
vocabularies that were selected by the user in the prior steps of the process.

AML Reengineering helps to cover the requirement of Service Enabling. That is,
one can support the generation of model instantiation services with the aid of AML
Reengineering indirectly by providing first of all the ontology structure that can be
used to generate a semantic service by techniques discussed in the next section.

Further investigations and considerations of AML Reengineering that are not
documented within this thesis took place during the work on this thesis. Especially,
an AML parser for a relevant part of the AMPL language was developed and parts
of the steps two and three from above were implemented in a demonstrator
application together with a student helper. Please contact the author of this thesis
for further information.

113

5. Ontology-based Representation of Optimization Models

5.6. Model Instantiation Services

The template-based semantic service composition of an optimization system as it
was outlined in Section 5.1 searches and binds software services for solvers and
further computing steps such as preprocessing and simulation. Before this step, the
abstract optimization model has to be described and implemented as such a software
service, called the model instantiation service, in order to allow for a suited matching
of solver capabilities and model, as well as the matching of data interfaces. The
model instantiation service provides the functionality to instantiate an abstract
algebraic optimization model with instance data, such that the resulting instance can
be sent to a solver service. To that end, an ontology represented model should be
transformed into an abstract AML model by the methods from Subsection 5.4.4 in a
first step. The implementation of the functionality to derive the abstract AML
optimization model out of the ontology representation in the current state of the
approach is, in contrast to the AML model instantiation functionality with data, not
intended to be due to the service composition. When providing the AML derivation
as a component, it can be hierarchically composed with the AML Derivation Service
(Figure 5.14). The main aspect of such a software is that one can automatically
generate correct abstract AML models out of ontology represented models. With a
correct abstract AML model in a target language and a compiler for that language,
e.g., AMPL running as a suited service, the data instantiation functionality can then
be provided as a service in a step before the service composition of the optimization
system. With the aforementioned steps, the "implementation" of the model
instantiation service is also being retrieved in an automated fashion.
The aspect that requires discussion is the automated generation of semantic service
descriptions out of the optimization model’s ontology description such that semantic
service composition for the target optimization system (recap. Section 5.1) can take
place. The term service descriptions comes as a plural, since besides the model
instantiation service, also solver services’ required descriptions are influenced by this.
This section is intended to present an approach for the generation of semantic service
descriptions for model instantiation services and solvers.
The methods and examples from this section work towards the realization of an
automated semantic model instantiation service generation and semantic service
composition of optimization systems. The proposed methods will be illustrated and
their capabilites will be discussed with the help of examples. Complete specifications
and a demonstrator implementation of the methods from this section are not part of
this thesis.

5.6.1. Obtaining Model Properties from the Ontology Representation

The first step for generating semantic service descriptions is an automated analysis
of the ontology represented optimization model. The analysis step should reveal

114

5.6. Model Instantiation Services

properties of the model such as linearity or the presence of integer variables that are
important for the choice of a solution method. The inferred properties of an
optimization model can afterwards be translated into predicates for the semantic
description of model instantiation and solver services such that an automated
composition of an optimization system guarantees the matching of solution method
and model.
In this subsection, a method for concluding mathematical properties of
ontology-represented optimization models will be presented. Since the considerations
in this subsection are only intended to discuss the feasibility of an automated model
analysis, the mathematical properties to analyze will be restricted to the following
informal list: Presence of binary and integer variables, linearity and general
nonlinearity, convexity, continuity and differentiability aspects. The latter aspects
can be seen as important for discussing the principle choice of mathematical
programming algorithms for the classes LP, MIP, convex and nonconcex MINLP.
Further aspects such as the application of meta-heuristics to non-mathematical
program representations of models, specialized algorithms for, e.g., network flow and
quadratic programming, are neglected. They are to be considered in the future
research.
The first step for the analysis of the ontology represented model is the extension of
the mathematical property specifications that are included in the model after a user
or an automated procedure has manipulated an ontology represented model. I.e., the
given model should be complete in terms of all data and formulation entities being
defined and related correctly. The specification of mathematical properties by a user
such as bounds, integrality and binary-value requirements on parameters and
variables has already been demonstrated with the aid of the mathematical properties
vocabulary OM.MProps from Subsection 5.3.4. This vocabulary provides further
classes and individuals for stating mathematical properties of goals and constraints
in a model, such as the above mentioned linearity and continuity properties.
Specifications for these properties can be added for every formulation entity. In
principle, a user can also specify these properties by respective axioms making use of
the OM#formulationMProp-property. But since the requirement of Automated
Modifications and Recomposition from Section 4.2 demands for an automated
recomposition of a system after changes in the model, this specification step should
be automated. More specific, changes in the model, e.g., the declaration of an
additional constraint or the change of a parameter to a variable that occurs in a
product with another variable in the algebraic form of the model can also change the
mathematical properties of goals and constraints, such that the inference process of
these properties should be automated in the same way, as the other procedures to
retrieve a model instantiation service and recompose a system are.
Concluding Mathematical Properties of the Formulation Entities:
To that end, a process has to be defined that has a given ontology represented

115

5. Ontology-based Representation of Optimization Models

optimization model as input and returns an extended specification of the same
model, where the formulation entities carry specifications of the mathematical
properties under consideration. Completeness of this specification in terms of all
considered mathematical properties would be a desireable property. Unfortunately,
the process that will be presented now can not guarantee this property. In the end,
this may lead to a classification of the overall model that is worse than reality. I.e., a
model may be classified as nonlinear though it is linear. Since the methods in this
section are only intended to serve demonstrational purposes, better knowledge bases
and reasoning procedures should be a part of the future research.
An algorithmic specification of the mathematical property conclusion process for the
formulation entities is given in Figure 5.28. The direct types of formulation entities
are to be retrieved such that they can be processed iteratively. For every such
formulation type a copy of the ontology model is generated that only contains the
individuals that have the current formulation type as a directly specified type.
Together with a set of SWRL-Rules that are locally valid for these "one-formulation
type" ontologies, a reasoning procedure can be started. For properly designed rules,
e.g., in a form that satisfies the safety conditions from Subsection 2.5.3, the
reasoning procedure will terminate. The inferred axioms that are of the form
formulationEntity om:formulationMProp mprop:mathematicalProperty are
afterwards inserted into the complete optimization model.
The process, in similarity to the Algebraic Model Derivation Process from Figure
5.27, is based on a separated treatment of all individuals of a certain formulation
type. This is especially due to the complexity of specifying valid rule knowledge for
the inference of mathematical properties. In an ontology where formulation types
can be subtypes of others it seems hard to specify globally valid rule knowledge that
does not lead to contradictions. I.e., the criteria for one constraint type to be linear
may differ for a subtype that extends the formulation of the latter by additional
terms and the usage of further data entities. By now, the specifica of formulation
subtypes have not been discussed in this thesis. To that end, a first illustrative
example will be presented in the rule examples below. The intention of this first
example is to discuss the issues concerned with locally valid rules for formulation
types. The general modeling paradigms behind formulation types and especially
formulation subtypes are a topic of Chapter 6.
The following aspects require commentation:

• Running Time and Performance: Performance and running time of methods for
analyzing models and generating service descriptions are out of the scope of
this thesis. What can be guaranteed for a suited rule design is termination:

• Termination: Since the number of individuals in a model is finite, as in the
case of the AML Derivation process, the retrieval of the respective formulation
types that are explicitely specified, takes finite time. The loop over the

116

5.6. Model Instantiation Services

formulation types performs a finite number of iterations. Inside the loop the
reasoning step has to be considered. As already mentioned, this step will
terminate for rules in a Horn-form that fulfill the safety conditions (see again
Subsection 2.5.3). It will be explained how the rules considered fulfill these
requirements in the examples below.

• Complete Property Inferences: It cannot be guaranteed that all mathematical
properties under consideration are decided. Sufficient conditions, e.g., for the
linearity of a type can be formulated. But these are not necessary and
sufficient at once. As the examples below will illustrate, multiple rules that
have sufficient conditions as antecedents can exist for a mathematical property.
But in order to have a rule-set that "decides" the mathematical property for a
given model, one would have to model all situations in rules that either yield
the property or prove that it is not satisfied. For the formulation types
presented so far in this thesis, cardinality restrictions with exactly 1 were
used and thus such a modeling seems possible by an explicit case enumeration.
But as it will be shown in a counter-example below, reusable formulation types
that require "+"-requires types specifications with cardinality restriction min 1
exist and lead to problems. For this generous formulations, the open-world
semantics, together with the capabilities of SWRL, are too limited.

Rule Examples:
The latter process will now be illustrated by some rule examples. For the
demonstration purposes of rule-sets, two rules, where each rule can be seen as a part
of a whole rule-set for the respective formulation type, will be presented. Both rules
are concerned with the inference of linearity properties for individuals of the
respective formulation types. The two types both represent balance constraints as
they are, e.g., known from network flow problems. Their ontology specifications can
be looked up in Figure 5.29. The first type NetForms#SingleCommodityBalance is
already known from the previous examples of this chapter. The second type
NetForms#GainLossGeneralizedSingleCommodityBalance is new and therefore
requires an introduction:
Taking a look at Figure 5.29, one can see that
NetForms#GainLossGeneralizedSingleCommodityBalance is defined as a subclass
of NetForms#SingleCommodityBalance. This especially means that all class
resstrictions are inherited to the subclass. To that end, a formulation entity of type
NetForms#GainLossGeneralizedSingleCommodityBalance requires the same node-
and arc-sets, supply-parameters and flow-(variable) families as the supertype, but
also extends the definition by requiring an additional
Net#SingleCommodityGainLossMultiplier. The specification gives a hint that the
constraint group represented by the semantic type models a more generous situation
as the supertype does. The min-cost-flow model from Figure 5.3 already included a

117

5. Ontology-based Representation of Optimization Models

Algorithm 4: concludeandAddFormulationProperties(OWL model)
Data: OWL model
Result: OWL model extended by mathematical property axioms

1 Retrieve all formulation types that are used in the model: There has to be one
individual at least with that type and the type must have been directly specified
(no inferred type axioms) ;

2 for every formulation type do
3 Generate OWL localModel as a copy of model where only the formulation

entities / individuals that have a direct specification of formulation type as
their type are contained ;

4 Load the locally valid annotated rule-set for formulation type into
localModel ;

5 Apply the SWRL rule-set on localModel by a SWRL-reasoning capable
reasoner ;

6 Add the inferred OM#formulationMProp-axioms to model ;
7 end
8 return model ;

Figure 5.28.: Adding mathematical properties of formulation entities to an OWL op-
timization model in an automated way

target statement for the type NetForms#SingleCommodityBalance. A target
statement for the type NetForms#GainLossGeneralizedSingleCommodityBalance
differs from the latter by an additional parameter mu that reflects an individual of
the type Net#SingleCommodityGainLossMultiplier:

param mu { Arcs } > 0;
s.t. GeneralizedMassBalance { i in Nodes }:

sum{ (i,j) in Arcs }(ArcFlow[i,j])
-sum{ (j,i) in Arcs }(mu[j,i] * ArcFlow[j,i]) = SupplyDemand[i];

(5.7)

The multiplier mu is used to model a loss of flow-good in the incomming arcs. The
factor also depends on the specific arcs. Another variant of this type for
min-cost-flow models will be presented in the examples of Chapter 6, Section 6.1.
Let us now conclude with the rule-examples for linearity properties of the two latter
formulation types.
The rule following below describes a sufficient condition for a constraint that is
represented by a formulation entity of type NetForms#SingleCommodityBalance to

118

5.6. Model Instantiation Services

NetForms#GainsLossGeneralized

SingleCommodityBalance

NetForms#SingleCommodityBalance

Net#SingleCommodity

GainLossMultiplier

Net#ArcSet

Net#SingleCommodityFlowCollection

Net#SingleCommoditySupplyCollection

Net#NodeSet

Local Rule Set

Local Rule Set

OM#requires

exactly 1

OM#requires

exactly 1

OM#requires

exactly 1

SPI#definedOn

exactly 1

SPI#definedOn

exactly 1
SPI#definedOn

exactly 1

Figure 5.29.: Two balance formulation types in a subclass relation

be a linear formulation. This single rule does not provide the composition of
necessary and sufficient conditions. Furthermore, one has to say that linearity
wouldn’t be the only property to be considered in a complete rule-set for
NetForms#SingleCommodityBalance. As already mentioned above, completeness of
a rule-set in terms of its capability to decide every mathematical property would be
a desireable property, but cannot be guaranteed by the ansatz in general. The rule
below is given in a standard FOL-Syntax. Since it represents a Horn-clause, and all
predicates refer to respective ontology resources, it can simply be translated into
SWRL syntax for implementation purposes:

NeForms#SingleCommodityBalance(?x)
∧ OM#requires(?x,?y)

∧ Net#SingleCommodityFlowCollection(?y) ∧ OM#Variable(?y)
∧ OM#requires(?x,?z) ∧ Net#SingleCommoditySupplyCollection(?z)

∧ OM#Parameter(?z)
⇒ OM#formulationMProp(?x,OM.MProps#linearFormulationInd).

(5.8)

119

5. Ontology-based Representation of Optimization Models

The rule states that any individual of OM#SingleCommodityBalance for which the
single required flow individual is a variable and the single required supply individual
is a parameter is itself linear. To that end, the consequent constructs the respective
OM#formulationMProp axiom for the variable of the antecedent that captures the
constraint individual (safety condition). This is not the only rule that provides
sufficient conditions for linearity. Since the balance constraint reflected by the
semantic type does not contain any products, it is also a linear formulation when the
supply individual in addition to the flow individual is considered as a variable. In
general, for NetForms#SingleCommodityBalance there seems to be no possibility to
destroy the linearity property. This situation changes when taking a look at the
rule-set for the subtype NetForms#GainLossGeneralizedSingleCommodityBalance
which contains a product term. For this type, the rule above has to be extended by
some further parts in the antecedent which will be presented below. Before
continuing the considerations for the subtype, the interested reader my also take a
look at Figure 5.30. The figure illustrates the assumed situation for a successfull
application of aboves rule together with the newly inferred axiom in a bordered box.
The specifications in the figure again constitute an excerpt of the ontology
specifications for the min-cost-flow model from Subsection 5.3.5.

NetForms#

SingleCommodityBalance

OM#Constraint

OM.MProps

#FormulationEntityProperty

Balance

Constraint

Linear

FormulationInd

OM.MProps#formulationMProp

OM.MProps

#LinearFormulation

FlowVar

OM#requires

OM#

Variable

OM#formulationMProp

Net#SingleCommodity

FlowCollection

SupplyPar

OM#

Parameter

Net#SingleCommodity

SupplyCollection

OM#requires

Local Rule Set

Figure 5.30.: Given and inferred knowledge for the single linearity rule and a balance
constraint

The respective rule for the type
NetForms#GainLossGeneralizedSingleCommodityBalance now reads as follows:

120

5.6. Model Instantiation Services

NetForms#GainLossGeneralizedSingleCommodityBalance(?x)
∧ OM#requires(?x,?y)

∧ Net#SingleCommodityFlowCollection(?y) ∧ OM#Variable(?y)
∧ OM#requires(?x,?z) ∧ Net#SingleCommoditySupplyCollection(?z)

∧ OM#Parameter(?z)
∧ OM#requires(?x,?gl) ∧ Net#SingleCommodityGainLossMultiplier(?gl)

∧ OM#Parameter(?gl)
⇒ OM#formulationMProp(?x,OM.MProps#linearFormulationInd).

(5.9)

This rule models a part of the general condition that linearity of the constraint can
only be guaranteed when either mu or ArcFlow is a parameter to the model. In the
given case, the rule antecedent forces ArcFlow to be a variable as usual and mu to be
a parameter (as it is also usual for min-cost-flow models). But other rules with
interchanged roles may also be formulated and would be required in a complete
rule-set (such a set exists for the type above since there only is a finite number of
variable/parameter allocations). It is also important to mention that the first rule
that was presented above for the type OM#SingleCommodityBalance is not valid for
the subtype, as the respective product situation for the new parameter mu is
neglected.
Limitations of the SWRL Rule Ansatz:
As already mentioned, the rule ansatz cannot always provide rule-sets that decide a
mathematical property for a given modeling situation. A general problem for rules
lies in type specifications that use a cardinality restriction other than exactly 1.
Examples of types requiring a flexible number of, e.g., expression-entities with a min
1 cardinality-classifier will be given in Subsection 6.1.3. Nonetheless, Figure 5.31
provides a specification pattern that models the relevant situation. The
ExampleType requires minimum one individual of ExampleExpression which itself
requires exactly one ExampleMDOType.
A rule that would, e.g., imply linearity of a formulation entity of the given type
would have an antecedent that states that every of the min 1 individuals of
ExampleExpression is a linear expression (this would also have to be reflected by a
suited ontology property). But since the number of individuals is arbitrary, such a
rule cannot be defined in SWRL. A first idea for a work-around would be to split the
rule into a part that tries to prove that the "implication" of linearity holds for all
expression individuals in the model. But this proof cannot be performed as the
predefined class ExampleExpression is not closed, i.e., not "all" individuals are
known and hence it cannot be assured that no "other" nonlinear individual of an

121

5. Ontology-based Representation of Optimization Models

„ExampleType“

„ExampleMDOType“

OM#requires

min!1
„ExampleExpression“

OM#ExpressionEntity

OM#expRequires

exactly 1

Figure 5.31.: Pattern for an undecideable mathematical property with the SWRL rule
ansatz

expression will be added.
Concluding Remarks on Rules:
The latter counter example suggests that SWLR-based reasoning might not be the
most accurate way to perform the extension of a model by mathematical properties
such as linearity. A procedure that could neglect the open world semantics of OWL
could simply check all given subexpressions of a fixed formulation entity in a loop in
order to come up with a decision. Nonetheless, SWRL provides a standardized
approach to reasoning tasks on OWL ontologies. As such, the author decided to
include the SWRL approach in order to cover the requirement Compatible with
(semantic) Web Technologies. The usage of standards also underlines the
portability of the reusable type formulations.
To conclude the latter examples, the general design of rules will be discussed now.
This shall cover all the mathematical property aspects that were mentioned in the
beginning of this subsection. To repeat a general remark, it is emphasized that all
rules are to be designed as Horn-clauses satisfying the safety conditions. The design
of a complete rule set for a formulation type is a goal for providing necessary and
sufficient conditions for every mathematical property of formulations under
consideration, though it cannot be achieved in all situations.

• Integer and binary variables: These properties are assumed to be specified a
priori, e.g., by a user. Therefore, no rules are required.

• Linearity and general nonlinearity: Specifications of linearity are reflected by
the two types OM.MProps#LinearFormulation and
OM.MProps#GeneralNonLinearFormulation. For concluding linearity,
examples of rules were given. General nonlinearity has to be considered with
more care as a further detailed modeling of nonlinearity aspects such as
quadratic formulations that are currently not present in the formalism would
change the conditions for this property. Nonlinearity can, e.g., be concluded
from the presence of variables in certain situations, e.g., a product of variables

122

5.6. Model Instantiation Services

or the usage of a variable as an exponent. But this is not a complete
characterization. A formulation entity without a concluded or existing
nonlinearity property will be treated as a nonlinear one (see "Model Analysis
Step" below).

• Convexity: Rule sets can be extended for checks of convexity by rules that may
also use preceeding inferences on linearity. As such, any linear formulation can
be considered as convex and a respective rule can be added to any rule set. As
a formulation entity can be either convex or non-convex and in contrast to
linearity and general nonlinearity there are no possible states in-between (such
as a quadratic formulation), all rules can be formulated for proving a convexity
property to be described by the class OM.MProps#ConvexFormulation. That
means, if convexity cannot be concluded, non-convexity is assumed to be the
case and no extra rules have to be defined. There is no concept for
non-convexity in the OM.MProps ontology. As an example, in Section 6.3, a
headloss-constraint in a pipe network for water will be presented that is
non-convex in the treatment of a standard flow-variable.

• Continuity and differentiability aspects: The three concepts
OM.Props#ContinuousFormulation, OM.MProps#C1Formulation and
OM.MProps#C2Formulation and their pre-defined individuals reflect the
continuity and differentiability properties of a formulation. The most important
property in this case may be OM.MProps#C2Formulation that reflects
twice-continuously differentiable expressions in the domain of variables for a
formulation entity. This property is required by some solvers for the problem
classes NLP and MINLP and as such should be guaranteed. Respective rules
can be designed, though a complete rule-set may again be unrealistic.

The Model Analysis Step:
With suitedly defined mathematical properties for both formulation and data
entities, the whole model can be analyzed in terms of relevant properties for
mathematical programming. The description of the analysis process is given in
Figure 5.32.
The process starts with the assumption of a linear, convex and smooth model that
only contains continuous variables. This is reflected by the initializations in lines 1-5.
A loop over every model entity will change the values of the respective boolean
variables if either the missing of a mathematical property is detected, or a
OM#dataMProp-axiom with object OM.MProps#IntegerData or its subclass
OM.MProps#BinaryData is found. Depending on the boolean values, names of
predicates that can describe the mathematical properties in a service description of
the model are added to a list. This list is returned by the procedure and can be used
for the generation of service descriptions (next subsection). As it has already been

123

5. Ontology-based Representation of Optimization Models

Algorithm 5: analyzeModel(OWL model)
Data: OWL model
Result: List<String> results of predicate-names

1 List<String> results = null ;
2 Bool linearity = true ;
3 Bool convexity = true ;
4 Bool ctwo = true ;
5 Bool requiresintegrality = false ;
6 for model entity in model do
7 if there is no mathematical property axiom with object of type

OM.MProps#LinearFormulation for model entity in model then
8 linearity = false ;
9 end

10 if there is no mathematical property axiom with object of type
OM.MProps#ConvexFormulation for model entity in model then

11 convexity = false ;
12 end
13 if there is no mathematical property axiom with object of type

OM.MProps#C2Formulation for model entity in model then
14 ctwo = false ;
15 end
16 if there is a mathematical property axiom with object of type

OM.MProps#IntegerData for model entity in model then
17 requiresintegrality = true ;
18 end
19 end
20 if linearity then
21 results.add("isLinear") else results.add("isNonlinear") ;
22 end
23 if convexity then
24 results.add("isConvex") else results.add("isNonConvex") ;
25 end
26 if ctwo then
27 results.add("isC2Smooth") else

results.add("isNonDifferentiable") ;
28 end
29 if requiresintegrality then
30 results.add("requiresIntegrality") else

results.add("continuousVariableModel") ;
31 end
32 return results ;

Figure 5.32.: Analyzing mathematical properties of a model

124

5.6. Model Instantiation Services

mentioned before, missing mathematical property specifications, e.g., for linearity,
lead to worse properties than reality, i.e., nonlinearity in this example. For the
convexity property the fact that an intersection of convex feasible regions is again
convex is exploited. I.e., if all formulations describe convex sets, the feasible region
described by the whole model will be convex (in this case a relaxation dropping
integrality requirements is considered).

5.6.2. Generating Model Instantiation and Solver Service Descriptions

The template-based semantic service composition of an optimization system as it
was outlined in Section 5.1 searches and binds software services for solvers and
further computing steps such as preprocessing and simulation. The generation of
semantic service descriptions, e.g., in a simple scenario for model instantiation
service and solver is a required step before the composition of the system. This
subsection shall explain how such descriptions can be generated in an automated
fashion at the hand of this simplified scenario. The investigation and realization of
the composition approach for the whole system is not part of this thesis.
The description of the semantic services, in accordance to the remarks on "Service
specifications in this thesis" from Subsection 2.6.1, requires signatures, pre- and
postconditions, where the aspects considered for the service desciptions of models
and solvers should cover data structure and semantics, as well as the mathematical
properties of a model, at least. The latter properties should especially allow to
match the capabilities of a solver which is to be inserted in the composition step.
Nonfunctional properties of solvers such as running times and costs are not part of
the considerations here. Figure 5.33 provides the respective simple semantic service
descriptions for the running min-cost-flow model example from Section 5.2.
The figure contains the single methods Instantiate(...) and Solve(...) of the
two services. The method signatures declare some inputs and outputs with
respective formats:

• Instantiate(...): The input instdata of type NFlowData provides the input
data for the model. Remarks on this data are given in the text below this
listing. For the output osimod that represents and optimization instance, the
flexible XML-format OSiL from the Optimization Services (OS) project
[FMM10b] is used as a type. This format should fit many solvers.

• Solve(...): The input optInstance of format InstMOD represents the input
to the solver. A respective assignment optinstance:=osimod is made in the
data-flow. The semantic type InstMod represents a general superclass of all
possible solver input formats. To that end, no solver should be rejected in a
composition due to format inconsistencies. Since the type OSiL was fixed for
the generated model instantiation service, an adaption of the output format for

125

5. Ontology-based Representation of Optimization Models
©

 H
e

in
z
 N

ix
d

o
rf

 I
n

s
ti
tu

t,
 U

n
iv

e
rs

it
ä

t
P

a
d

e
rb

o
rn

Model!Instantiation

Service!
Solver

Preconditions

 None/…

Signature

 Instantiate

(In!instancedata NFlowData,

OUT!osimod OSiL)

Postconditions

 isLinear(osimod,!true)

 isConvex(osimod,!true)

 isC2Smooth(osimod,!true)

 requiresIntegrality

(osimod,!true)

Preconditions

 isLinear

(optinstance,!true)

 isConvex

(optinstance,!true)

 isC2Smooth

(optinstance,!true)

 requiresIntegrality

(optinstance,!true)

Signature

 Solve

(In!optinstance InstMOD,

OUT!optsolution OSrL)

optinstance :=!osimod

Figure 5.33.: Simple service descriptions for model and solver in case of the min-cost-
flow-model

that service should be made in case a composed solver is not capable of OSiL.
For further possible output formats, the postconditions of the model
instantiation service could be extended with other formats. As this may
complicate the composition procedure, such as postcondition has not been
added to the example. The output optsolution of the solver then has the
semantic type OSrL representing the respective generous solver result format
from the OS-project.

The signatures and types can be considered as similar for every model and hence the
respective parts can be generated automatically, where the following remark has to
be made on the semantic data type of the model instantiation service’s input:
The input InstanceData of the method Instantiate(...) in the example is of the
semantic type NFlowData that represents data in a suited format for the underlying
min-cost-flow model. But this semantic type is just a placeholder that can be
generated automatically for every model. The placeholder is required for the
description of a data transformation that transforms data of preprocessing services
into the format of the model. This data transformation should be generated
semi-automatically after the template-composition step that in our case binds
concrete solver and preprocessing services. If no transfomation is required, a suited
template-path might have been chosen a priori or the transformation works as an
identity mapping. Note that the matching of instance data and the (flexible and
changing) model is not self-evident. In general, the composition of a model
instantiation service with a service providing the instance data, e.g, a data-base
service or as envisioned in this thesis, some computational service performing a
preprocessing, will not work since there are differences in data. In cases of network

126

5.6. Model Instantiation Services

models, a preprocessor or data-base may store/process data in a network-typical
format, whilst the model instantiation service requires sets and parameters in
respective lists and tables that are specific to the model.
The considerations of an automated service description generation can be concluded
with the mathematical properties of a model. Predicate names from a standardized
vocabulary have been generated by the Model Analysis Step 5.32 in combination
with a preceding extension of mathematical property specifications 5.28 as it was
presented in the last subsection. The task now is to suitedly put them into the
service descriptions for model instantiation service and solver in terms of pre- and
postconditions:

• Linearity: The predicate isLinear(osimod,true) is generated for the fixed
identifier osimod of the service description. isLinear was returned by the
Model Analysis Step for stating the linearity of the min-cost-flow model. The
same predicate is also used for the respective input identifier optinstance of
the solver service to specify an allowed precondition. I.e., solvers that have the
linearity requirement of instances as a precondition will not be rejected by a
composition procedure. Solvers that do not have the linearity requirement and
hence can treat nonlinear models are allowed anyway. Due to the assignment of
osimod to optinstance, the preconditions of any matching solver service will
always be fulfilled by the results of the model instantiation service. This allows
to consider the service composition task as a form of template composition,
where matching services have to be found for every placeholder that is specified
by a semantic service description. In the considered case, the model
instantiation service is fixed in a first step and does not need to be searched for
in a composition.

• Convexity: In a fashion similar to the one mentioned above, the results of the
Model Analysis Step lead to the post- and preconditions
isConvex(osimod,true) and isConvex(optinstance,true) with the same
predicate isConvex.

• Continuity: Similar specifications are retrieved for the case of continuity with
the post- and preconditions isC2Smooth(osimod,true) and
isC2Smooth(optinstance,true).

• Integrality Requirements: Finally, requiresIntegrality(osimod,true) and
requiresIntegrality(optinstance,true) can be generated.

To conclude the considerations of this subsection, the following should be mentioned:
It was demonstrated how simple semantic service specifications for model
instantiation and solver services can be generated out of the model specifications.
The specifications integrate with the system generation and service composition

127

5. Ontology-based Representation of Optimization Models

approach 5.2 from Section 5.1. The choice of a template path which is a part of the
template configuration runs parallel to the generation of the model instantiation
service. The latter step implicitely includes the generation of service descriptions
which is not exploited to the full amount in this thesis. Besides the model
instantiation service that is nonetheless not due to a composition, it was
demonstrated how such descriptions can be generated for the core component, the
solver service. The generation of descriptions for further services such as a
preprocessing or simulation is left open. In the end, after a successful template
composition, all service placeholders besides the data transformations should be
bound to concrete services. Due to the correspondence of model instantiation’s post-
and solver’s preconditions, the solver’s algorithmic capabilities should match the
problem class of the model’s instance. Right before the execution of the system, data
transformations should be generated semi-automatically where the generation of
these is furthermore due to the ontological specifications. This subsection only
introduced a generic type for the model’s instance data. In an automated data
transformation generation approach as described in Subsection 2.6.3, the mapping of
structural data to ontological types as well as the mappings in-between ontologies
need to be exploited. This is facilitated by the representation approach of the
ontology represented abstract optimization models via the introduction of meta
domain ontologies and concrete domain ontologies.

5.7. Conclusion

This section concludes the content of this chapter and discusses the coverage of
requirements by the features of the approach that were presented so far. In this
chapter, the basic vocabularies and representation structure of ontology represented
abstract optimization models were introduced. After discussing the standard
vocabularies OM, SPI and OM.MProps, a complete specification example for a
min-cost-flow problem was given. In the remainder of the chapter, according to the
view from Section 5.1, methods for having the ontology-representation as a layer
in-between AMLs and semantic model instantiation services were presented.
Expression Structure Separation and AML Derivation were presented in detail
together with two examples for a data and a formulation entity. Processes for both
deriving all statements of the individuals of a single model entity type, as well as all
statements of an ontology model, were presented. An AML Derivation Service served
as a basis for the consideration of a model instantiation service in Section 5.6.
Concluding the remarks on Expression Structure Separation and AML Derivation,
the discussion in Subsection 5.4.5 highlighted that model entity types and expecially
formulation entity types are flexible in their indexing structure and the semantic
types of the data model conceptualizations. Thereby, flexibility of the expression
structures for summations was described as a feature to be demonstrated in the next

128

5.7. Conclusion

chapter. The next chapter will also clarify that flexible types are not the ultimate
goal to achieve, but that rather many slightly different entity types should be
organized in the ontologies in an intelligent way.
For the AML Reengineering, only some initial considerations were presented. As it is
possible to formulate and manipulate any model in the ontology formulation with
the aid of standard tools for ontology editing, this topic has been marked as
somewhat out of the scope of this thesis. Nonetheless, AML Reengineering should be
an important technique for making ontology represented models practical. The
formulation and editing of models in the ontology representation will also be a topic
of the next chapter.
The last section on model instantiation services introduced methods to generate a
semantic service and especially semantic service descriptions for the automated
generation of an optimization system by means of semantic service composition. The
role of a possibly changing abstract optimization model was highlighted and
processes to generate the service descriptions in an automated fashion were
presented. Though a combination of an automated specification extension of a
model, together with an automated model analysis, can always be used to generate
semantic service descriptions for models and solvers, the generated descriptions
might represent the properties of the model "worse" than they are (, e.g., claim a
model to be nonlinear and nonconvex instead of being linear and convex). But as a
user may also perform specifications by hand that in the case of changes to the
model might not change or where the changes will be detected automatically, the
perspective that the presented methods work out well should be emphasized.
Let us now shortly discuss the coverage of the requirements from Section 4.2 by the
techniques presented in this chapter. Open issues will be mentioned and solutions
will be introduced in the next chapter:

• Model Formulation by abstract Types: A representation for abstract
optimization models that is centered around reusable model entity types has
been introduced in this chapter. The view of modeling components is reflected
by the top-level definitions of the vocabulary OM. By this, model formulation in
the proposed representation is a process of instantiating and relating reusable
types. Examples for reusable types were formulated and basic ontologies have
been defined. Nonetheless, the core discussion of the model formulation process
and capabilities to reuse formulation types is left open for the next chapter.
This will also cover the aspect that manipulations in the model should be
simple and automatable.

• Model Semantics: All required types of semantics can be expressed by the
representation approach as it should have become clear from the definitions of
the basic vocabularies OM, OM.MProps and SPI as well as the specifications for
the min-cost-flow example.

129

5. Ontology-based Representation of Optimization Models

• Automated Modifications and Recomposition: This requirement has not
been considered in its full extent so far. Especially, the automated modification
capabilites for ontology represented models have been neglected and will be a
topic of the next chapter. Nonetheless, when models get manipulated and
changed, the analysis of models and the generation of services can be
automated such that a new composition of an optimization system can take
place. The latter aspects were part of the last section of this chapter.

• Models as Services and Composition: This requirement should by now be
covered with the aid of the considerations of Section 5.6. Especially the
matching of model and solver was discussed there.

• System Integration: The framework presented in the beginning of this
chapter included different types of services. Especially, the model instantiation
services and the data transformations to be generated after the composition
procedure were introduced. The matching of model and solver, as also
discussed in the last requirement, can be seen as a part of the system
integration. The matching of data interfaces and generation of data
transformations is included in the framework by the means for ontology and
service specifications as well as the respective consideration of transformation
services in the system generation process. Nonetheless, the practicability needs
to be further evaluated in the future and goes beyond the scope of this thesis.

• Service Enabling: Methods for deriving AML models out of the ontology
representation were a topic of Section 5.4 and have been demonstrated in
detail. Further means will also be provided by the demonstrator presented in
Chapter 8. The automated generation of semantic service descriptions together
with the AML Derivation capabilities and the associated possibility to use
AML tools for instantiation with data then complete the basic coverage of this
requirement. Nonetheless, AML Reengineering has only been presented in
terms of some basic ideas and should be investigated further in the future
research.

• Compatible with (semantic) Web Technologies: This requirement is
covered as the design is based on current standards such as OWL, XML and
XSD, as well as emerging technologies such as SPARQL-DL or SWRL.

Why Ontologies?
At this point, a remark should be made why ontologies were chosen as the core
technology for the framework and the approach of this thesis. Object-oriented
technologies in cooperation with the Structured Modeling (SM) framework presented
in Chapter 3 provide established technologies for the management of decision models
as well as the development of related decision support systems. Though the explicit

130

5.7. Conclusion

formalization and design of reusable formulation types has been identified as a
research gap in Chapter 3, one could think of realizing the latter under OO/SM. But
here, the means of ontologies to provide explicitely specified semantics in a portable
fashion that can be distributed over the web represents a novelty. By the aid of the
latter semantics, type formalizations are made explicit and can be analyzed and
queried by different agents on the web. Reasoning, as it is enforced by ontology
technology, is a further relevant feature. The representation in ontologies in the
latter regard interacts well with semantic services. Semantic service approaches
might then provide a framework to overcome drawbacks of component-based
approaches. Besides the novel features, old benefits of Structured Modeling, such as
the extensible graph form and the means for model integration, are also available in
the ontology approach. To that end, the usage of ontologies for a framework as
presented within this thesis is highly motivated. Nonetheless, in order to be
practical, OO-technology might also be exploited and integrated in the future. The
implementations of AML derivations for multiple types should, e.g., be designed well
by the aid of object-oriented design patterns and they should be provided as a
component for suited reuse in different contexts. Furthermore, tools for model
formulation should benefit from a proper object-oriented design and supporting
technology.

131

5. Ontology-based Representation of Optimization Models

132

6. Reusability and Model Formulation in the Ontology
Representation

The last chapter introduced the ontology representation for abstract optimization
models and discussed its role in-between AMLs and services. The top level ontologies
for the representation approach were introduced and their usage for the specification
of abstract optimization models was demonstrated for a simple min-cost-flow
example. This chapter will now deepen the consideration of optimization model
formulation in the language framework by discussing the ontology structure of
reusable formulation types and their usage in the model formulation. This will
mainly be done by the aid of exemplary modeling situations which will typically be
embedded into the context of case study models. The modeling situations will lead
to the encapsulation of reusable blocks of AML statements within respective
formulation types. The examples will cover different conceptualizations of network
balance constraints, generous network resource availability constraints, linearizations
and smoothings of nonlinear constraints with the opportunity to switch in-between
them, integral and continuous nonlinear formulations for a same modeling situation,
again with the opportunity to choose between them, as well as formulation type
variants for providing the modeling technique of soft constraints. As most of of the
examples can be seen as parts of either the domain of network flow problems or the
domain of water distribution systems planning, two sections that are each dedicated
to one of the latter two domains make up the main part of this chapter. Different
case study models from the latter domains will furthermore provide the required
modeling context for many of the reusable type formalizations.
As this chapter is structured according to exemplary formalizations, it is important
to mention that the language framework introduced within this thesis is capable of
formalizing any mathematical programming model up to class MINLP. Anyhow, the
formulation of a group of constraints in a model requires the existence of suited
reusable type(s), as the ontology representation approach is not designed to directly
represent AML statements, but rather treats them in form of a type associated
derivation functionality. Recapitulate, e.g., Section 5.4 for the latter issue.

6.1. Considerations for Min-Cost-Flow Models

This section studies those type formalizations and model formulation situations that
can be associated to the domain of network flow problems. For this purpose, two
extensions of the min-cost-flow model from Chapter 5 will be introduced as case

133

6. Reusability and Model Formulation in the Ontology Representation

study models in the remainder of this section. The formalizations to be introduced
will be suited to discuss the inheritance of types and the possibilities to define
flexible formulation types in terms of the innner expression building blocks. Further
features will be discussed at the example of a water-network case study in a later
section of this chapter.

6.1.1. The Single Commodity Balance Hierarchies

©
 H

e
in

z
 N

ix
d

o
rf

 I
n

s
ti
tu

t,
 U

n
iv

e
rs

it
ä

t
P

a
d

e
rb

o
rn

13 – 09.12.2015 DS&OR Colloquium

NetForms#SingleCommodity

BalancePlanningHorizon

NetForms#Single

CommodityBalance
Net#ArcSet

Net#SingleCommodity

FlowCollection

Net#SingleCommodity

SupplyCollection

Net#NodeSet
NetForms#Single

CommodityBalance

DemandOriented

Net#SingleCommodity

DemandCollection

NetForms#GainLoss

GeneralizedSingleCommodity

Balance

NetForms#GainLossGenera

lizedSingleCommodityBalance

PlanningHorizon

NetForms#SingleCommodity

BalancePlanningHorizon

DemandOriented

NetForms#GainLossGene

ralizedSingleCommodityBalance

DemandOriented

NetForms#GainLossGeneralized

SingleCommodityBalance

PlanningHorizonDemandOriented

NetForms#

SingleCommodityBalancePlanning

HorizonandPeriodsDemandOriented

OM#requires

exactly 1

OM#requires

exactly 1

Figure 6.1.: Taxonomy of single commodity balance types

Network balance or flow conservation equations are common constraints in
network-based optimization models. Depending on the underlying model and
domain, e.g., standard network flow problems or practical application networks such
as water distribution systems, the equations can occur in different forms. This
subsection presents network balance constraint formulation types in the ontology
optimization model representation. Different types will be presented and brought
into a taxonomy such that choices and required adaptions of specifications in a
model formulation process are made explicit. Inheritance and multi-inheritance are
central concepts, where a hierarchy of subtypes can be developed towards
formulations that are more and more general, e.g., by including more parameters,
variables and indices. Nonetheless, the general types will also need a general model
context in order to be applicable.
The taxonomy is visualized in Figure 6.1. Due to place limitations, the image does
not contain all required mdo-classes but just the ones for the top-level types. The
type requirements of the subtypes will be discussed in a passage below and are
visualized for a certain branch of types in Figure 6.2. Taking a look at Figure 6.1 one
can identify nine formulation types in grey ellipsoids that are partially organized in

134

6.1. Considerations for Min-Cost-Flow Models

subclass hierarchies by the usage of (multi-) inheritance. Two isolated types
NetForms#SingleCommodityBalanceDemandOriented and the already known type
NetForms#SingleCommodityBalance can be observed in the upper part of the
figure. The split of types for demand-oriented and normal-oriented ones is explained
by different conventions on the prefix of nodal flow good requirements. This is
reflected by a distinction of supply and demand parameters in network models which
are semantically represented by the typesNet#SingleCommoditySupplyCollection
and Net#SingleCommodityDemandCollection in the figure. Whilst network flow
models typically introduce a supply parameter with the convention of lower zero
values for a consumption of flow good, network models for, e.g., water networks use
positively defined demands for modeling a required measure of flow good to be
consumed in a node. To that end, the orientation in terms of indexing or prefixes in
balance constraint defining statements differs in the latter models. To give an
example, e.g., a target AMPL statement for NetForms#SingleCommodityBalance, as
already given in Section 5.3, reads

s.t. MassBalance { i in Nodes} :
sum{(i,j) in Arcs}(ArcFlow[i,j]) - sum{(j,i) in Arcs}(ArcFlow[j,i])

= SupplyDemand[i];.
(6.1)

In contrast to that, a similar balance statement in a water network model, as it will
be presented in Section 6.3, reads

s.t. Massbalance { x in JunctionNodes} :
sum{(i,x) in Pipes}(Q[i,x]) - sum{(x,j) in Pipes}(Q[x,j])

= Demand[x];.
(6.2)

One can see that with the change of the fixed constraint indice i to x, the position of
the outgoing flow good summations ((i,j) and (x,j)) is changed from being
positively counted to being subtracted. Complete models containing the latter
statements will be presented in the following paragrahs of this chapter. By now it is
important to mention that the differing orientation of statements in combination
with the differing usage of demand and supply concepts leads to different mdo-type
requirements in the formulation types. This is reflected in Figure 6.1 where the
visualized type requirements of both formulation types differ in the requirement of
Net#SingleCommodityDemandCollection and
Net#SingleCommoditySupplyCollection. As the two mdo-types represent distinct

135

6. Reusability and Model Formulation in the Ontology Representation

classes, the respective formulation types also make up different root nodes of
subsumption hierarchies. This is especially due to the inheritance of class restrictions
in ontology class subsumption hierarchies.

The hierarchies for NetForms#SingleCommodityBalanceDemandOriented and
NetForms#SingleCommodityBalance are quite similar. In both cases, two direct
subtypes are specified that extend the given types by means for "GainLoss" or a
"PlanningHorizon". Furthermore, the two subtypes themselves have a common
subtype that inherits the type requirements of both types by means of
multi-inheritance. This type then provides means for a
"GainLossGeneralizedSingleCommodityBalance" with "PlanningHorizon". An
exemplary statement for the type
NetForms#GainLossGeneralizedSingleCommodityBalance would, e.g., be

s.t. MassBalance { i in Nodes} :
sum{(i,j) in Arcs}(ArcFlow[i,j])

- sum{(j,i) in Arcs}(mu[j,i] * ArcFlow[j,i])
= SupplyDemand[i];,

(6.3)

with a multiplicative parameter mu that models the gain or loss of flow good in
incoming arcs. The type will be further explained and brought into the context of a
model in Subsection 6.1.4. The type
NetForms#SingleCommodityBalancePlanningHorizon adds a time index to the
balance constraint. An exemplary statement would be

s.t. MassBalance { i in Nodes, t in 0..T} :
sum{(i,j) in Arcs}(ArcFlow[i,j,t])

- sum{(j,i) in Arcs}(ArcFlow[j,i,t])
= SupplyDemand[i,t];,

(6.4)

with a planning horizon 0..T that is build by the aid of a positive, integral
parameter T. Respective additional indices t occur in the arc-flows, supply-demand
parameter and the constraint group itself. Finally, the formulation type
NetForms#GainLossGeneralizedSingleCommodityBalancePlanningHorizon which
inherits the cardinality class restrictions of both the latter types combines the
features. An example statement could, e.g., read

136

6.1. Considerations for Min-Cost-Flow Models

s.t. MassBalance { i in Nodes, t in 0..T} :
sum{(i,j) in Arcs}(ArcFlow[i,j,t])

- sum{(j,i) in Arcs}(mu[j,i] * ArcFlow[j,i,t])
= SupplyDemand[i,t];,

(6.5)

where the gain/loss multiplier is constant over time.
For now, let us continue the investigation of the type hierarchy by observing the type
NetForms#SingleCommodityBalancePlanningHorizonandPeriodsDemandOriented
which is specified as a subtype of
NetForms#SingleCommodityBalancePlanningHorizonDemandOriented and extends
the latter by the consideration of an additional parameter for periods with respective
indices. An exemplary statement for this demand oriented balance type with two
time indices will be given in the context of a water network renewal planning model
in Section 7.3. For the moment it suffices to observe that subsumption can be
iterated such that lower level types add additional OM#requires restrictions for
certain mdo-types. These restrictions will be explained the next. Before doing so, let
us conclude the latter observations as follows: Two subsumption hierarchies with
different subtrees and also joins of subtrees due to multi-inheritance were defined.
Subtypes on lower levels represent formulation types that are capable of representing
more and more features. Besides the formulations shown in the figure, further types
could be defined for future applications. The next, the subsumption hierarchy for
demand-oriented types shall be further discussed in terms of mdo-requirements.
The type hierarchy for the demand-oriented types together with the
mdo-requirements is visualized in Figure 6.2. As one can see there, formulation
subtypes typically extend the type requirements of their ancestor(s) by additional
type requirements from respective meta domain ontologies. The type
NetForms#GainLossGeneralizedSingleCommodityBalanceDemandOriented
inherits all requirements fom NetForms#SingleCommodityBalanceDemandOriented
and adds an extra requirement for a Net#SingleCommodityGainLossMultiplier
which provides the respective parameter to be integrated into the constraint
formulations. We conclude with the type
NetForms#SingleCommodityBalancePlanningHorizonDemandOriented which also
is a subtype of NetForms#SingleCommodityBalanceDemandOriented and extends
its father by requiring a TimeHorizons#PlanningHorizonLength. TimeHorizons is
a further meta domain ontology that provides conceptualizations of sets and
parameters for time intervalls in optimization models. The length of a planning
horizon in this case is given as a simple nonnegative, integer value that can be used
in models to reference a number of time steps until this parameter.

137

6. Reusability and Model Formulation in the Ontology Representation

NetForms#SingleCommodityBalancePlanningHorizonDemandOriented furthermore
specializes the requirement of a Net#SingleCommodityDemandCollection to the
subtype Net#SingleCommodityDemandCollectionPlanningHorizon which extends
his father by a further indexing over the latter time steps. A similar type
requirement refinement for network flow types is only indicated in the figure due to
placing limitations. On the left side of the subsumption hierarchy, the formulation
type NetForms#GainLossGeneralizedSingleCommodityBalancePlanningHorizon-
DemandOriented inherits all type requirements and hence "features" from his two
parents without adding a new one of his own. The usage of multi-inheritance hence
makes the subtype definitions in this example very simple from an ontology
specification perspective. The last type to consider,
NetForms#SingleCommodityBalancePlanningHorizonandPeriodsDemandOriented
extends his father by the additional requirement of exactly one
TimeHorizons#PeriodNumber and refines the requirement of the demand parameter
that is already indexed for the time steps of the planning horizon to one with an
additional index for periods. Again, the refinement of the flow type requirement is
only indicated in the figure by an arrow.

Net#ArcSet

Net#NodeSetNetForms#SingleCommodity

BalanceDemandOriented

Net#SingleCommodity

DemandCollection

NetForms#SingleCommodity

BalancePlanningHorizon

DemandOriented

NetForms#GainLoss

GeneralizedSingleCommodity

BalanceDemandOriented

NetForms#GainLossGeneralized

SingleCommodityBalance

PlanningHorizonDemandOriented

NetForms#SingleCommodity

BalancePlanningHorizon

andPeriodsDemandOriented

Net#SingleCommodity

DemandCollection

PlanningHorizon
TimeHorizons#

PlanningHorizon

Length

Net#SingleCommodity

GainLossMultiplier

Net#SingleCommodity

DemandCollection

PlanningHorizonandPeriods

SPI#SimpleParameter

TimeHorizons#

PeriodNumber

OM.MProps

#IntegerData

OM#data

MProp

exactly 1

OM#data

MProp

exactly 1

“Flow Type

Hierarchy“

Figure 6.2.: OM#requires specifications for the demand-oriented balance types

The subsumption hierarchies of formulation types with explicitely formalized
mdo-requirements provide a formalization of knowledge in the model formulation
process that lays a fundament for different automatizations. If modeling decisions for
adding a model entity of a certain type or changing a type are performed by a
human modeler, then required adaptions of the model formulation could be
automated under certain assumptions. This could, e.g., mean that an mdo-individual
for a new formulation type requirement (in form of a class restriction) is created,

138

6.1. Considerations for Min-Cost-Flow Models

typed and added in an automated fashion. In this case, axioms for relating other
mdo-concepts to the new one could also need to be adapted or added in a recursive
fashion. The possibilities to choose a formulation type in a certain model context are
furthermore made explicit by the formulation types and their mdo-requirements.
The latter capabilities are also part of the use cases Formalized choices in modeling
and Recommended adaptions in model formulation from Section 4.1. According to
that, the following subsections and sections will discuss examples of situations in
which new formulation entities could be recommended based upon the existing
model’s state (second use case, commodity set example), or the change to a subclass
formulation type could be automated (first use case, waternet pipe headloss
constraints). Concerning the latter, tools for model formulation with integrated
capabilites to build a system automatically could also try different constraint
formulations from a subsumption hierarchy in a loop/ in parallel. With the provision
of means for automatization, a possible exponential growth of types, e.g., in a
subsumption hierarchy should not be a problem. The representation of the
knowledge in types is required to enforce automation capabilites and human modelers
might only be concerned with the "big" ontologies when defining new types.

6.1.2. Considerations for a Multicommodity Flow Model

This subsection studies further ontology definitions of network flow types as well as
operations in the model formulation. To that purpose, a multicommodity
min-cost-flow model, as it can be found in the literature, see, e.g., [AMO93], is
introduced. The multicommodity definitions for this example model reflect the ones
outlined in the second motivational use case "Recommended adaptions in model
formulation" from Section 4.1.
Figure 6.3 provides an AMPL version of the model. In comparison to the first
min-cost-flow model from Figure 5.3, a set Commodities is contained in the model
that allows to treat more than one flow good. The multiple flow goods are to be
transported through the network in an admissible and cost minimal way. The
consideration of multiple commodities makes it necessary that certain parameters
and variables are defined with an additional index. This concerns the parameters
Cost, SupplyDemand and the variable collection ArcFlow. The upper capacities
("UpperCapacity") do not need to be adapted directly as they will be required in the
usual, only arc specific, way by more general bounding constraint
("bundle-constraints") to be explained below. Nonetheless, additional commodity
dependent bounding parameters ("param CommodityUpperCapacity") need to be
defined for later usage in respective commodity-individual bounding constraints.
Concerning the formulation of the model in terms of goals and constraints, an
additional commodity indexing inside the objective function can be observed that
allows to build a sum over all flows of all commodities. The mass-balance equations

139

6. Reusability and Model Formulation in the Ontology Representation

Formulation follows Ahuja et al., Network Flows, p. 649 ff .

set Nodes;
set Arcs within {Nodes, Nodes};
set Commodities;
#Commodity set is new compared to the first min−cost−flow model.
#Parameters will be commodity dependent

param Cost{Arcs, Commodities};
param UpperCapacity{Arcs};
param CommodityUpperCapacity{Arcs, Commodities}; #New Individual Commodity

Capacities!
param SupplyDemand{Nodes, Commodities} integer;

var CommodityArcFlow{Arcs, Commodities} >= 0, integer ;

minimize MultiCommodityFlowCost: sum{k in Commodities}(sum{(i,j) in Arcs}
(Cost[i , j ,k] ∗ CommodityArcFlow[i,j,k]));
#Summation also over each commodity

s . t . CommodityMassBalances{k in Commodities, i in Nodes}: sum{(i,j) in Arcs}(
CommodityArcFlow[i,j,k]) − sum{(j,i) in Arcs}(CommodityArcFlow[j,i,k]) =
SupplyDemand[i,k];

#Additional indexing for commodities

s . t . BundleConstraints{(i,j) in Arcs}: sum{k in Commodities}(CommodityArcFlow[i,j,k
]) <= UpperCapacity[i,j];

#Arc flow bounds extended to a sum over all commodities

s . t . IndividualCommodityCapacityConstraintsUp{k in Commodities, (i,j) in Arcs}:
CommodityArcFlow[i,j,k] <= CommodityUpperCapacity[i,j,k];

#New bounding constraints that are individual for every commodity

Figure 6.3.: A multicommodity min-cost-flow model

140

6.1. Considerations for Min-Cost-Flow Models

carry an additional index for commodities such that a constraint is generated for
every node and every commodity. The statement structure is also adapted to
respective parameters and variables that carry additional indices for commodities.
The upper capabity limitations of network arcs are treated by two different groups of
constraints. The generalization of the UpperCapacityConstraints from Figure 5.3
to the so-called BundleConstraints will be of further interest in the remainder of
this section. The constraints use an only arc dependent upper capacity value to
express that the sum of all commodity flows (for all commodities together) is
bounded from above. Later extensions in another generalized min-cost-flow model
will treat the consumption of capacity by different commodities with respective
weights. As the bundle constraints do not bound the flows for every individual
commodity, additional IndividualCommodityCapacityConstraintsUp might be
defined which are indexed over commodities and arcs and make use of the new
CommodityUpperCapacity parameter.

NetForms#Multi

CommodityBalance

NetForms#GainsLoss

Generalized

SingleCommodityBalance

NetForms#Single

CommodityBalance

NetForms#GainLoss

Generalized

MultiCommodityBalance

Net#SingleCommodity

GainLossMultiplier

Net#CommodityGain

LossMultiplier

Net#CommoditySet

Net#ArcSet

Net#MultiCommodity

FlowCollection

Net#Commodity

SupplyCollection
Net#SingleCommodity

FlowCollection

Net#SingleCommodity

SupplyCollection

Net#NodeSet

Figure 6.4.: Balance types with and without commodity sets

Before the ontology specifications on the assertional and terminological level can be
discussed, the ontology types for the multicommodity balances should be introduced.
As one can see in Figure 6.4, the hierarchy of balance constrain types is furthermore
splitted into types for single commodities and multiple commodities. Subtype
hierarchies as in the last subsection can be defined again, where the
gainloss-generalized types are specified in the figure as examples. An exemplary
usage of the type NetForms#GainLossGeneralizedMultiCommodityBalance
together with exemplary statements will be given in the further extended
min-cost-flow example of Subsection 6.1.4. The type in use by the balance
constraints from the multicommodity model in this section is
NetForms#MultiCommodityBalance. This type and his children differ from the

141

6. Reusability and Model Formulation in the Ontology Representation

single commodity types by requiring a Net#CommoditySet as well as that the mdo
type requirements of flow and supply are changed to the types
Net#CommodityFlowCollection and Net#CommoditySupplyCollection which are
defined over the commodity set. As these requirements are modeled by the
cardinality restrictions of the form NetForms#MultiCommodityBalance requires
exactly 1 Net#CommoditySet, a usage of the types in a model context without
commodity sets is not possible. On the other and, extending single commodity types
by commodity set specfications is not supported by the statement derivations, such
that respective commodity indices would not be generated. Alltogether, the principle
to prefer sharply defined types over flexible ones is applied by the ontological type
modeling. This is intended to support the automation capabilites in model
formulation. The ontology design principles of model entity types will be a topic of
Section 6.2.
The ontology specifications for an abstract optimization model are given by the
instance knowledge on the assertional level in combination with the allocation of
semantic types. When treating the model formulation of the multicommodity
min-cost-flow model as a stepwise extension of the first min-cost-flow model (
specifications were given in Subsection 5.3.5), adaptions have to be performed both
on the assertional level and for the types. The adaptions on the assertional level are
visualized in Figure 6.5.

Balance

Constraint

FlowVar

BundleConstraints

=CapacityConstraint

LinearFlow

CostGoal

FlowCostParCapacityPar SupplyParArcSet NodeSet

Commodity

Set

IndividualUpperCommodity

Capacities

IndividualCommodity

CapacityConstraintsUp

OM.MProps#Integrality

PropertyInd

OM.MProps#Zero

LowerBoundInd
OM.MProps#Linear

FormulationInd

OM.MProps#

ConvexFormulationInd

OM.MProps#

Continuous

FormulationInd

Figure 6.5.: Changes in the assertional specification when extending the first min-cost-
flow model towards the multicommodity flow model

The first step towards a generalization of the min-cost-flow model is the creation of
an individual CommoditySet of the class Net#CommoditySet. By this initial step, a

142

6.1. Considerations for Min-Cost-Flow Models

conceptualization that allows to adjust the other entities of the model towards a
multicommodity formulation is provided. The respective adaptions for the other
model entities are visualized in the figure by the blue/green dashed lines that connect
model entities with each other. Most of the adaptions stand for SPI#definedOn or
OM#requires specifications with the commodity set individual as an object.
SupplyPar, FlowCostPar and FlowVar need to be adapted by this on the side of the
data entities, as well as that an individual of the new commodity-individual capacity
parameters IndividualUpperCommodityCapacities needs to be created and related
to the commodity set and the arc set. All formulation entities require an extra
commodity set which is also reflected by their new semantic formulation types to be
discussed below. The IndividualCommodityCapacityConstraintsUp individual
needs to be created and related to the commodity set, as well as to the flow variables,
arc sets and the newly introduced IndividualUpperCommodityCapacitites.

BalanceConstraint

IndividualCommodity

CapacityConstraintsUp

LinearFlow

CostGoal

BundleConstraint

=CapacityConstraint

NetForms#Upper

BundleConstraints

NetForms#Multi

CommodityBalance

NetForms#

SingleCommodity

Balance

NetForms#LinearSingle

CommodityFlow

CostGoal

NetForms#Individual

Commodity

FlowBoundsUp

NetForms#Linear

Commodity

FlowCostGoal

NetForms#Single

Commodity

FlowBoundsUp

Figure 6.6.: Formulation type adaptions when extending the first min-cost-flow model
towards the multicommodity flow model

The changes in the assertional specifications come along with changes in the
semantic model entity types. On the side of the formulation entities, four new types
need to be assigned whilst the old formulation type axioms for the three existing
model entities need to be deleted. The changes and types are visualized in Figure
6.7. The new balance-constraint type NetForms#MultiCommodityBalance was
explained together with his mdo-type requirements in Figure 6.4. The new type now
has the additional requirement for a commodity set and requires commodity indexed
types for flow variable collections and supply. The respective assertional adaptions

143

6. Reusability and Model Formulation in the Ontology Representation

were illustrated in Figure 6.5 as a whole but their order will be further discussed
below. The type NetForms#UpperBundleConstraints to which the type
NetForms#SingleCommodityFlowBoundsUp is changed, is a sole type of his own and
can be extended by subtypes as it will be shown in the next subsection. The type
requirements of the bundle constraint type are given by exactly one of
Net#CommoditySet, Net#ArcSet, Net#CommodityFlowCollection and
Net#UpperCapacityCollection. The type
NetForms#LinearCommodityFlowCostGoal is similar to the old
NetForms#LinearSingleCommodityFlowCostGoal but requires an additional
commodity set as well as commodity types. To that end, it again can not be defined
as a subtype. Nonetheless, the adaptions for the individual LinearFlowCostGoal
only consist of the the additional specification of the required commodity set and the
change of the type. The type NetForms#IndividualCommodityFlowBoundsUp is also
no subtype of any single commodity flow bound type. As a new individual is created
for the latter type in model, the type needs to be newly defined for that individual
and all the assertional specifications from Figure 6.5 need to be created.

FlowVar FlowCostParCapacityPar SupplyPar

ArcSet NodeSet
CommoditySet

IndividualUpperCommodity

Capacities

Net#CommoditySet

Net#CommoditySupply

Collection

Net#ArcSet

Net#Upper

Capacity

Collection

Net#Commodity

CostCollection

Net#SingleCommodity

CostCollection
Net#Commodity

FlowCollection

Net#SingleCommodity

FlowCollection

Net#Commodity

UpperCapacity

Collection Net#NodeSet

Net#SingleCommodity

SupplyCollection

Figure 6.7.: MDO-type adaptions when extending the first min-cost-flow model to-
wards the multicommodity flow model

The type definitions of all data entites are given in Figure 6.7. As not every type
changes, the real changes in types as well as the newly created individuals are
represented by blue/green arrows and circles. The cardinality restrictions for the
new data entity types for supply and flow have been visualized in Figure 6.4 whilst
the specifications for the types Net#CommodityCostCollection and
Net#CommodityUpperCapacityCollection can be looked up in the ontology
specifications in digial form that accompany this thesis. All new data entity types,
except Net#CommoditySet itself, differ from their single commodity pendants by

144

6.1. Considerations for Min-Cost-Flow Models

additionally being defined on exaclty one Net#CommoditySet. From a specificational
point of view, three data entity types need to be adapted with an additional relation
of the commodity set individual, as well as that two data entities need to be created
and typed the new, where in case of Net#CommodityUpperCapacityCollection
additional specifications for the SPI#definedOn cardinality restrictions need to be
created.
Consequences for Model Formulation:
The introduction of a commodity set and the respective adaptions of model entities
in terms of their types and specifications reflect the example of the second
motivational use case "Recommended adaptions in model formulation" from Section
4.1. Considering the situation where the commodity set has just been specified for
the model, including the creation and typing of the individual CommoditySet, a
specialized module in a model formulation environment could identify the missing
usage of this set in the current model. To that end, it could look for mdo and
formulation types that are similar to the ones actually contained in the model in the
following way: The type requirements in form of cardinality restrictions
(OM#requires, SPI#definedOn, ...) are widely comparable for a searched type as
well as that the additional requirement for exactly 1 Net#CommoditySet occurs.
This could then lead, e.g., to proposing a change of
NetForms#SingleCommodityBalance to NetForms#MultiCommodityBalance as it
was done in the example of this section. A challenge for this approach would be the
definition of a suited "similarity measure" for matching the ontology class
restrictions. In the example, e.g., not only an additional requirement for a
commodity set occurs in the mdo-requirements of the new type, but also do the
types for supply and flow vary in comparison to the old types that are contained in
the model. Nonetheless, though different, the required supply and flow types of the
NetForms#MultiCommodityBalance type to be found are somewhat as intended as
they include the cardinality class restriction for a Net#CommoditySet that was also
considered for the formulation type itself. To that end, a respective recommendation
mechanism should not only select formulation types based upon a matching of class
restrictions to the existing model, but as a consequence of an integrated decision
which considers also the further meaningful adaptions of the model’s data model.
The recommendation to change the formulation type in the balance example would
then come along with the further recommendation to also adapt the types of supply
and flow entities in the model.
The automated recommendation of adaptions in the model formulation as outlined
above is stated as a future research perspective at this point. This thesis can only
present informal textual examples to illustrate important aspects of the model
formulation technology to develop.
What should also be discussed now is the automation of adaptions after a modeling
decision. This step was mentioned in the first motivational use case "Formalized

145

6. Reusability and Model Formulation in the Ontology Representation

choices in modeling". The situation after the commodity set has been added to the
model is considered once again: All individuals that are being changed are assumed
to have their types changed at first. The existing definitions for the entity type
individual first of all stay as they are when changing the type. Now the entity type
changes in this example require adding OM#requires and SPI#definedOn
specifications as well as many changes of related types to multicommodity variants.
The two latter tasks could be automatized as follows: At first, in a situation where a
single individual of type Net#CommoditySet exists in a model, the respective axioms
for cardinality restrictions that are so to say additionally required from the new type
could be guessed and inserted automatically. An example would be the relation of
the commodity set individual after changing the network balance constraints to the
type NetForms#MultiCommodityBalance. Here, a commodity set needs to be related
where there was no such requirement before. Unfortunately, this modification might
not always be correct as the selected commodity set might not be the intended one
and another, maybe newn commodity set would have to be related in the oppinion of
the modeler. To that end, automatizations in model formulation could be
implemented in an experimental fashion such that ontologically consistent models
are generated, but interaction with the modeler is required for obtaining an
intentionally correct model. The degree of automation should be configured before
using respective tools.
The same conclusion can be drawn in the case of changing type requirements: In the
context of the network balance example, the adaption of the type
Net#SingleCommodityFlowCollection to the type Net#CommodityFlowCollection
could also be triggered automatically after the new formulation type for balance was
defined. By this change, two further aspects should be considered: At first, the type
change of the identified mdo-individual for flow might not be intended, as the
individual might have to be replaced by a new, additional one in the opinion of the
modeler. And second, the type change of the mdo flow-individual triggers further
adaptions in a recursive fashion. I.e., the change to Net#CommodityFlowCollection
requires an additional SPI#definedOn axiom with an object of the type
Net#CommoditySet. An automated relation of the single commodity set individual
contained in the model then bears the same questions for the modeler’s intention as
above.

6.1.3. Two Types with Generic Summations

This subsection introduces two formulation types that are generic in the way how
their inner expression structure can be instantiated. Based upon a decoupling of
expression types that form another ingredient for the specification of formulation
types, a generic number of inner summation terms that differ amongst each other
can be considered. This subsection will discuss the ontology specifications for the
latter types on class level. In the next subsection, a further generalized min-cost-flow

146

6.1. Considerations for Min-Cost-Flow Models

model will be presented which uses these types. The instance level specification will
be further discussed there.

NetForms#MultipleFlowParsResource

AvailabilityConstraintsUp

Net#Upper

CapacityCollection

Net#ArcSet

SPI#definedOn

exactly 1

Net#Inhomogeneous

GoodsCapacityMultiplier

Net#Commodity

FlowCollection
Net#CommoditySet

SPI#definedOn

exactly 1

OM#requires

exactly 1

OM#requires

exactly 1
OM#requires

min!1

SPI#definedOn

exactly 1

SPI#definedOn

exactly 1

OM#requires

exactly 1

NetForms#CommodityFlow

SummationExpression

OM#expRequires

exactly 1

OM#ExpressionEntity

OM#expRequires

exactly 1

OM#expRequires

exactly 1

SPI#definedOn

exactly 1

NetForms#CommodityCapacityandFlow

SummationExpression

OM#expRequires

exactly 1

Figure 6.8.: Type specification for a generic resource availability type

The first type to be discussed is the type
NetForms#MultipleFlowParsResourceAvailabilityConstraintsUp. The type
specifications are visualized in Figure 6.8. A target statement for the type (without
model context) would be

s.t. ResourceAvailabilityConstraintsUp {(i,j) in Arcs} :
sum{k in ContinuousCommodities}(CommodityArcFlowContinuous[i,j,k])

+ sum{k in IntegerCommodities}
(rho[i,j,k] * CommodityArcFlowInteger[i,j,k])

<= UpperCapacity[i,j];.
(6.6)

Without knowing the complete model context one can observe that the described
group of constraints bounds the flow through an arc in a fashion such that different
flow variables for different commoditites are aggregated by sums to yield an overall
quantity of capacity to be bounded from above. The flow variables have especially
been split into two families of variables, making it necessary to define two different
inner summations. For the CommodityArcFlowInteger, a parameter rho is
multiplied to the flow variable, making it possible to weight the consumption of
network capacity differently for every commodity. The respective idea can, e.g., be

147

6. Reusability and Model Formulation in the Ontology Representation

found in the book on network flows from Ahuja et al., [AMO93]. The other family of
variables, CommodityArcFlowContinuous has a different expression structure in the
sum which does not require the latter parameter. The story behind this modeling is
a different treatment of commodity flow goods in the respective model, where
continuous commodities represent liquids that can be treated uniformly in terms of
some transport capacity, whilst integer commodities represent some items of different
size to be transported. The constraint can be seen as a generalization of the bundle
constraints from the last subsection. By viewing the statement, certain type
requirements (cardinality class restrictions) from Figure 6.8 become obvious: Exactly
one Net#ArcSet is required for indexing over the network arcs as well as that exactly
one of Net#UpperCapacityCollection is required. The
Net#InhomogeneousGoodsCapacityMultiplier is also required exactly once as the
formulation type in principle treats flow goods with different portions of the
capacity. If the consideration of inhomogeneous flow goods was intended to be left
out for all commodities, the usage of a more simple type would be indicated. How
the parameter can be left out for only parts of the commodities will be discussed
right now.

The relevant type requirement to make the formulation type generic in a way as
described above is given by the cardinality restriction OM#requires min 1
NetForms#CommodityFlowSummationExpression. By this, a generic and non
negative number of the expression type
NetForms#CommodityFlowSummationExpression individuals can be speficied for a
constraint group individual. These individuals represent inner summations in the
target statements. The expression types themselves can be used with different data
conceptualizations to yield a sum over Net#CommoditySet members which sums up a
family of flow variables (Net#CommodityFlowCollection). The latter two
mdo-types are brougth into cardinality restrictions by the property OM#expRequires
which provides a pendant of OM#requires for the case of OM#ExpressionEntity
types (recapitulate the OM vocabulary definitions in Subsection 5.3.2). Instances of
OM#ExpressionEntity, such as individuals of the subclass
NetForms#CommodityFlowSummationExpression, are not to be considered as model
entities and therefore provide an extra construct in the repertoire of modeling
components that, speaking in an OO-design vocabulary, enforces decoupling.

The next design concept to use for the general resource availability type is
inheritance. As the NetForms#CommodityFlowSummationExpression only allows to
sum up simple flow variable collections over commodities, an extension is required in
order to consider the multiplicative parameter rho for the
CommodityArcFlowInteger variables. This is done by the aid of the expression
subtype NetForms#CommodityCapacityandFlowSummationExpression which
inherits the OM#expRequires requirements from his father and extends the latter by
the requirement OM#expRequires exactly 1

148

6.1. Considerations for Min-Cost-Flow Models

Net#InhomogeneousGoodsCapacityMultiplier. The latter mdo-type can be used
for the respective multiplicative parameters rho. Two different expression individuals
can be specified with the aid of the latter discussed types for the instance structure
of the target statement (6.6), where due to the subsumption relation, the cardinality
restriction NetForms#MultipleFlowParsResourceAvailabilityConstraintsUp
OM#requires min 1 NetForms#CommodityFlowSummationExpression is still
satisfied. An illustration of the respective assertional knowledge in the context of a
min-cost-flow model will be given in the next subsection.

NetForms#LinearMultipleCommoditySetsFlowCostGoal

Net#ArcSet

SPI#definedOn

exactly 1

Net#CommodityCost

Collection

Net#Commodity

FlowCollection
Net#CommoditySet

OM#requires

exactly 1

OM#requires

min!1

SPI#definedOn

exactly 1

SPI#definedOn

exactly 1

OM#requires

exactly 1

NetForms#CommodityCost

andFlowArcSummationExpression

OM#expRequires

exactly 1OM#expRequires

exactly 1

OM#ExpressionEntity

OM#expRequires

exactly 1

OM#expRequires

exactly 1

SPI#definedOn

exactly 1

Figure 6.9.: Type specification for a multiple commodity sets min-cost-flow goal

To continue the considerations of this subsection, another summation-generic
formulation type, which is to be used in the min-cost-flow model of the next
subsection, will be presented. Figure 6.9 shows the type specification for the type
NetForms#LinearMultipleCommoditySetsFlowCostGoal. The type represents an
objective of a min-cost-flow model that allows to consider multiple commodities,
where the flow variable collections are split up again. As in the case of the resource
availability type presented above, the decoupling of an OM#ExpressionEntity
subtype, NetForms#CommodityCostandFlowArcSummationExpression in this case,
allows to instantiate a generic number of possibly different inner summations. The
example statement of the next subsection that is to be generated with this type is
more simple as in the case of the resource availability type. More specific, the
expression entity type for the two summations will be the same, and only the
individuals and consequently the identifiers of commodity sets and flow variables will
differ. Hence, no further subtype of the expression type is used. The remainder of
the type specification should become clear from the figure. Further information on
statements and instance knowledge is to be given immediately in the next
subsection.

149

6. Reusability and Model Formulation in the Ontology Representation

#General min−cost−flow model as it is traceable in the book of Ahuja et al., "Network
Flows" until p. 650 ff .

set Nodes;
set Arcs within {Nodes, Nodes};

Split the commodities into continuous and integer ones in order to consider only some
as indivisible goods.

set ContinuousCommodities;
set IntegerCommodities;

param Cost{Arcs, ContinuousCommodities union IntegerCommodities};
param LowerCapacity{Arcs};
param UpperCapacity{Arcs};
param mu{Arcs,ContinuousCommodities union IntegerCommodities} > 0;
mu is the multiplier to model loss and gain in arcs . If mu< 1 arcs are lossy. If mu >

1 they are gainy
param rho{Arcs,IntegerCommodities} >= 0; #parameter for inhomogeneous goods
param CommodityLowerCapacity{Arcs, ContinuousCommodities union

IntegerCommodities};
param CommodityUpperCapacity{Arcs, ContinuousCommodities union

IntegerCommodities};
param SupplyDemandInteger{Nodes, IntegerCommodities} integer;
param SupplyDemandContinuous{Nodes, ContinuousCommodities};

var CommodityArcFlowContinuous{(i,j) in Arcs, k in ContinuousCommodities };
var CommodityArcFlowInteger{(i,j) in Arcs, k in IntegerCommodities } integer;

Figure 6.10.: A general min-cost-flow model - Data definitions

6.1.4. Ontology Specifications for a general Min-Cost-Flow Model

This subsection discusses network formulation types and operations in model
formulation at the example of a further generalized min-cost-flow model. The model
includes two sets of commodities with and without an integrality requirement for the
respective commodity flows. Furthermore, the network balance constraints are
generalized to a variant that allows for gain/loss. The bundle constraints for multiple
commodities are generalized to the resource availability constraints discussed in the
last subsection. Finally, multiple individuals of the same formulation types will
further enforce the idea of reuse as well as that the subsumption of formulation types
will be exploited.
The AMPL model for the generalized min-cost-flow-problem is given in Figures 6.10
and 6.11. Data and goal/constraint declarations are distributed over both figures. As

150

6.1. Considerations for Min-Cost-Flow Models

minimize MultiCommodityFlowCost: sum{k in ContinuousCommodities}(sum{(i,j) in Arcs
}(Cost[i,j,k] ∗ CommodityArcFlowContinuous[i,j,k])) + sum{k in IntegerCommodities
}(sum{(i,j) in Arcs}(Cost[i,j,k] ∗ CommodityArcFlowInteger[i,j,k]));

s . t . ContinuousCommodityGeneralizedMassBalances{k in ContinuousCommodities, i in
Nodes}: sum{(i,j) in Arcs}(CommodityArcFlowContinuous[i,j,k]) − sum{(j,i) in Arcs
}(mu[j,i,k] ∗ CommodityArcFlowContinuous[j,i,k]) = SupplyDemandContinuous[i,k];

s . t . IntegerCommodityGeneralizedMassBalances{k in IntegerCommodities, i in Nodes}:
sum{(i,j) in Arcs}(CommodityArcFlowInteger[i,j,k]) − sum{(j,i) in Arcs}(mu[j,i,k] ∗
CommodityArcFlowInteger[j,i,k]) = SupplyDemandInteger[i,k];

s . t . ResourceAvailabilityConstraintsUp{(i,j) in Arcs}: sum{k in ContinuousCommodities
}(CommodityArcFlowContinuous[i,j,k]) + sum{k in IntegerCommodities}(rho[i,j,k] ∗
CommodityArcFlowInteger[i,j,k]) <= UpperCapacity[i,j];

s . t . ResourceAvailabilityConstraintsLow{(i,j) in Arcs}: LowerCapacity[i,j] <= sum{k in
ContinuousCommodities}(CommodityArcFlowContinuous[i,j,k]) + sum{k in
IntegerCommodities}(rho[i,j,k] ∗ CommodityArcFlowInteger[i,j,k]);

s . t . IndividualCommodityCapacityConstraintsContinuousUp{k in
ContinuousCommodities, (i,j) in Arcs}: CommodityArcFlowContinuous[i,j,k] <=
CommodityUpperCapacity[i,j,k];

s . t . IndividualCommodityCapacityConstraintsIntegerUp{k in IntegerCommodities, (i,j) in
Arcs}: CommodityArcFlowInteger[i,j,k] <= CommodityUpperCapacity[i,j,k];

s . t . IndividualCommodityCapacityConstraintsContinuousLow{k in
ContinuousCommodities, (i,j) in Arcs}: CommodityLowerCapacity[i,j,k] <=
CommodityArcFlowContinuous[i,j,k];

s . t . IndividualCommodityCapacityConstraintsIntegerLow{k in IntegerCommodities, (i,j)
in Arcs}: CommodityLowerCapacity[i,j,k] <= CommodityArcFlowInteger[i,j,k];

Figure 6.11.: A general min-cost-flow model - Formulation definitions

a reference for the generalized formulations contained in the model, Ahuja et al.
[AMO93] is mentioned once again. In comparison to the second min-cost-flow model
from Subsection 6.1.2, two commodity sets ContinuousCommodities and
IntegerCommodities are defined. The split of these commodity sets reflects the
separated treatment of the two flow variable collections
CommodityArcFlowContinuous and CommodityArcFlowInteger. As outlined in the
last subsection, this separated treatment is due to a different treatment of
commodity flow goods in the model, where continuous commodities can, e.g., be
imagined as liquids that can be treated uniformly in terms of some transport
capacity, whilst integer commodities represent some items of different size. The

151

6. Reusability and Model Formulation in the Ontology Representation

different size of the integer commodities is modeled by multiplication with the
additional parameter param rho{Arcs, IntegerCommodities} >= 0 and the
integrality requirement of CommodityArcFlowInteger reflects the assumption of the
indivisibility of the respective goods. The separated treatment of the commodities
and flows enforces the construction of implicit set-unions for the declarations of the
parameters Cost, mu, CommodityLowerCapacity and CommodityUpperCapacity.
Though procedural elements in AMLs such as AMPL could in principle be applied to
generate the respective elements iteratively, without indexing, the usage of indexing
constitutes a well established practice in AMLs. The required union-statements in
AMPL will be mirrored by union-set specifications in the ontology formalism. The
latter will then not be derived to an explicit set declaration but will lead to implicit
set-expressions inside the indexings. More information will follow in the text below.
The description of the model shall now be continued with the declaration of the two
groups of network balance constraints, see, Figure 6.11. The two statements for
ContinuousCommodityGeneralizedMassBalances and
IntegerCommodityGeneralizedMassBalances introduce network balance
constraints for each group of the commodity flow variable collections. The
formulation type in both cases is
NetForms#GainLossGeneralizedMultiCommodityBalance and has been presented
in Figure 6.4 of Subsection 6.1.2. The type provides a multicommodity pendant of
the gain-loss balance type
NetForms#GainLossGeneralizedSingleCommodityBalance that was discussed in
the context of the single commodity balance type hierarchies in Subsection 6.1.1.
Hence, subsumption can be exploited when editing the second min-cost-flow model
towards the representation of the third model. The respective generalized balance
statements in the model also introduce the usage of a parameter mu that allows to
model a gain or loss of flow goods in the incoming arcs. The resource availability
constraints in a general form, as discussed in the last subsection, can also be found
for bounding the respective capacities both from above and from below. Similar to
that, the objective of the model is a target statement for the type
NetForms#LinearMultipleCommoditySetsFlowCostGoal from the last subsection.
Multiple commodity- and arc-individual flow bounding constraints are contained in
the model. The four respective groups of constrains result from the separate
treatment of integer and continuous commodities as well as the consideration of
upper and lower bounds.
The ontology formulation of the third min-cost-flow model shall be explained now.
The modeling of implicit set-unions will be exemplified first.
Figure 6.12 provides a specification of the two commodity sets
ContinuousCommoditySet and IntegerCommoditySet as well as an implicit
union-set UnionSetCommodities. The implicit union-set individual of the type
SPI#UnionSet is marked as SPI#NonInstantiable true such that no

152

6.1. Considerations for Min-Cost-Flow Models

FlowCostPar

ContinuousCommoditySet IntegerCommoditySet

SPI#Set SPI#UnionSet

UnionSet

Commodities

„true“
SPI#NonInstantiable

SPI#definedOn

SPI#has

Operand

SPI#has

Operand

ArcSet

SPI#hasOperand min 1
Net#CommoditySet

Figure 6.12.: Specification of implicit set unions for multiple commodity sets

set-declaration statement will be generated for the union-set individual in the AML
Derivation. UnionSetCommodities is related to the two elements of the set union by
axioms using the SPI#hasOperand property. In the result, a parameter such as
FlowCostPar can be specified to be defined on the union set and hence a union
set-expression such as ContinuousCommodities union IntegerCommodities will be
generated in the indexing of the AML declaration of the parameter Cost, see, Figure
6.10. As UnionSetCommodities is of type Net#CommoditySet, the respective
cardinality restriction from the flow cost parameter mdo-type is satisfied. When
viewing the model formulation of the third model as an extension of the second one,
an adaption of the commodity set specifications is a first step to perform. In order to
do so, the old CommoditySet individual can be renamed to IntegerCommoditySet.
The renaming of the individual can, e.g., be performed by refactoring methods in
ontology editors such as Protégé. In addition to that, the new individuals for the
continuous commodities and the union of commodities need to be created, related
and typed. Other specifications making use of the old CommoditySet which now is
the IntegerCommoditySet have to be adapted whend their indexing is not intended
to relate to the set of integer commodities. In case of the parameter Cost from
Figure 6.12, the respective SPI#definedOn axiom has to be adapted to one with the
new object UnionSetCommodities.

The next specifications to discuss are the assertional specifications for the upper
resource availability constraints (ResourceAvailabilityConstraintsUp in the
AMPL model). According to the type specifications for
NetForms#MultipleFlowParsResourceAvailabilityConstraintsUp from Figure
6.8, a constraint type individual ResourceAvailablityUp is to be related to
minimum one expression individual and some data entities. The respective
specifications can be found in Figure 6.13. As mentioned above, the model
formulation in the ontology can be seen as the result of working the second

153

6. Reusability and Model Formulation in the Ontology Representation

Integer

Flow
Capacity

Par

ArcSet

Continuous

CommoditySet

Integer

CommoditySet

UnionSet

Commodities

RhoParam

ContinuousFlow

ResourceAvailabilityUp

=BundleConstraints

SPI#hasOperand SPI#hasOperand

Commodity

FlowSummationExpressionwith

ContinuousCommodities

CommodityCapacityand

FlowSummationExpressionwith

IntegerCommodities

NetForms#CommodityCapacityand

FlowSummationExpression

NetForms#CommodityFlow

SummationExpression

Figure 6.13.: Instance level specifications for the upper resource availability constraints

min-cost-flow model towards the one of this subsection. Therefore, the old
BundleConstraints individual with its specifications can be used to build the upper
resource availability constraints individual. The first steps are a refactoring in form
of a renaming to ResourceAvailabilityUp, as well as an adaption of the
formulation type. Afterwards, further individuals need to be related. These
individuals possibly need to be created, or their specifications need to be adapted in
a recursive fashion. The result to be achieved after multiple steps then has the
following form: Two expression individuals
CommodityFlowSummationExpressionwithContinuousCommodities and
CommodityCapacityandFlowSummationExpressionwithIntegerCommodities
represent the two inner sums of the target statement, where only the latter
individual is connected to the individual RhoParam accoring to the specification for
the expression (sub-) type
NetForms#CommodityCapacityandFlowSummationExpression. The respective
expression type allows to derive the term sum{k in IntegerCommodities}
(rho[i,j,k] * CommodityArcFlowInteger[i,j,k]) with a product of the
respective parameter. Both inner summation individuals refer to different
commodity sets and flow variable collections. The respective specifications are
visualized by grey arrows in the figure. Then, also some data entities need to be
related, occasionally including the steps to create, type and relate the data entities
themselves further. Considering, e.g., RhoParam, it would be likely that such an
individual does not exist in the model before the specification of a resource
availability constraint and hence a recursive specification of the data individual itself

154

6.1. Considerations for Min-Cost-Flow Models

would be required. The adaptions for the flow variable collection individuals in
contrast to that could have already been performed in the context of adapting
another formulation entitie’s specification, or directly after splitting the commodity
sets for the intended model extension. Included steps would have been a renaming of
the old FlowVar individual to IntegerFlow and the creation, typing and relation of
a new individual ContinuousFlow.

IntegerCommodity

Balances=

BalanceConstraint

Continuous

Commodity

Balances

ArcSet

NodeSet

Continuous

CommoditySet

UnionSet

Commodities

MuParam

SupplyPar

Continuous

ContinuousFlow

Figure 6.14.: Adaptions in the assertional specifications of the balance constraints
when extending the ontology specification towards the third min-cost-
flow model

Of further interest are the assertional specifications for the network balance
constraints. As in comparison to the second model, a gain/loss generalized
formulation type is used, the respective specification for the existing balance
individual needs to be adapted by adding a OM#requires axiom with the gain and
loss parameter individual MuParam as an object. The individual can again be present
in the model or will be created in a recursive fashion. If the balance constraint
individual represents the integer commodities, a refactoring of the name to
IntegerCommodityBalances is indicated. On the assertional side of the data entity
specifications, the commodity set should already represent the set of integer
commodities, as the first operation in adapting the ontology specification for the
third model would be a split of the commodity sets. As the latter steps create a
balance constraint that only covers the integer commodities, another individual for
the continuous commodities needs to be created. This balance constraint then
requires complete new assertional specifications and a type definition as it is
indicated in Figure 6.14 by blue/green arrows. A complete ontology specification of

155

6. Reusability and Model Formulation in the Ontology Representation

the min-cost-flow model of this subsection can be found on the digital material
accompanying this thesis.

©
 H

e
in

z
 N

ix
d

o
rf

 I
n

s
ti
tu

t,
 U

n
iv

e
rs

it
ä

t
P

a
d

e
rb

o
rn

ResourceAvailabilityUp

=BundleConstraints

Resource

AvailabilityLow

IntegerCommodity

Balances=

BalanceConstraint
LinearFlow

CostGoal

ContinuousCommodity

Balances

IndividualCommodityCapacityConstraintsIntegerUp

=IndividualCommodityCapacityConstraintsUp

IndividualCommodity

CapacityConstraints

ContinuousUp

IndividualCommodityCapacity

ConstraintsContinuousLow

IndividualCommodity

CapacityConstraintsIntegerLow

NetForms#Linear

Commodity

FlowCostGoal

NetForms#LinearMultipleCommodity

SetsFlowCostGoal

NetForms#MultipleFlowParsResource

AvailabilityConstraintsUp

NetForms#MultipleFlowParsResource

AvailabilityConstraintsLow

NetForms#Upper

BundleConstraints

NetForms#Multi

CommodityBalance

NetForms#GainLossGeneralized

MultiCommodityBalance

NetForms#Individual

CommodityFlowBoundsUp
NetForms#Individual

CommodityFlowBoundsLow

Figure 6.15.: Formulation type changes when extending the ontology specification to-
wards the third min-cost-flow model

In addition to the adaptions of the assertional model knowledge, entity type
adaptions and specifications need to be carried out for the old and new individuals.
In case of the formulation type specifications, Figure 6.15 provides an overview. New
specifications are visualized in blue/green. There are five newly created formulation
individuals, namely a lower resource availability constraint, a continuous commodity
balance and multiple individual commodity flow bounds. Type changes for existing
individuals can be observed. Here, the balance constraint individual
IntegerCommodityBalances is of special interest. The type of the existing
individual is changed to a subclass by an additional type-axiom, which allows it to
reuse the existing specifications and just extend them by relating a parameter as it
has been discussed above. For three of the formulation types from the image, there
are each two individuals with different instance level specifications in the model.
This further enforces the idea of reuse.
Three formulation types occur in the model that make use of the decoupling of
expression types. The three formulation types are for the objective as well as for the
upper and lower resource availability constraints. As every AMPL statement consists
of two inner summations, one would expect six respective expression individuals.
But as the type definitions in Figure 6.16 show, only four expression individuals are
required. This is due to the similarity of the upper and lower resource availability
constraints which allows it to reuse the respective subexpressions.
For the meta domain ontology type specifications, Figure 6.17 shows the respective

156

6.1. Considerations for Min-Cost-Flow Models

CommodityFlowSummation

Expressionwith

ContinuousCommodities

CommodityCapacityand

FlowSummationExpressionwith

IntegerCommodities

CommodityCostandFlow

ArcSummationExpression

ContinuousCommodities

CommodityCostandFlow

ArcSummationExpression

IntegerCommodities

NetForms#CommodityCapacity

andFlowSummationExpression

NetForms#CommodityCost

andFlowArcSummationExpression

NetForms#Commodity

FlowSummationExpression

Figure 6.16.: Expression type definitions for the third min-cost-flow model

IntegerFlow=

FlowVar

SupplyParInteger

=SupplyPar

Continuous

CommoditySet

IntegerCommoditySet

=CommoditySet

UnionSet

Commodities

CapacityParLow

MuParamRhoParam

IndividualLower

CommodityCapacities

SupplyPar

Continuous

ContinuousFlow

SPI#UnionSet
Net#CommoditySet Net#Inhomogeneous

GoodsCapacityMultiplier

Net#CommodityGain

LossMultiplier

Net#Commodity

FlowCollection

Net#CommoditySupply

Collection

Net#LowerCapacity

Collection

Net#Commodity

LowerCapacityCollection

Figure 6.17.: MDO type changes when extending the ontology specification towards
the third min-cost-flow model

type definitions. When working the second model towards the third one, no deletions
of mdo type axioms take place, but rather are just additional individuals created.
The respective new individuals and their specifications are once more visualized by
blue/green ellipsoids and arrows.

Concluding Remarks:
Let us now conclude the consideration of the third min-cost-flow model. The
specifications of this subsection demonstrated the reusage of formulation types
through multi-instantiation in several cases. Furthermore, the flexible types for
network flow goals and resource availability types from the last subsection were
demonstrated in a consistent model context. Union-set specifications were

157

6. Reusability and Model Formulation in the Ontology Representation

introduced as a novel feature. The adaption of a formulation entity to a subclass of
its former type was demonstrated for network balance constraints. If the type
adaption is performed manually, an automated procedure may again look for existing
individuals for the gain and loss parameter and relate them in case of an existing
and unique individual. But full automatization of this adaption step seems hard to
achieve in every model context. E.g., if no such parameter exists in the model, an
individual has to be created the new and a SPI#definedOn axiom with the correct
commodity set individual as an object has to be generated. In the presented example
from Figure 6.14, this individual would refer to the union-set UnionSetCommodities
that should have been introduced to the model before. A rule that prefers such
set-unions over basic sets in the automatized step could be written, but its
application nonetheless would just provide a guess for the model formulation. If
multiple individuals for a gain/loss parameter exist in the model, choosing the
correct one could be complicated though a matching of the individual specifications
might be applied. Nonetheless, a model formulation system can not know a
modeler’s intention without a respective input in the model formulation process.

6.2. Discussion of MDO and Formulation Ontology Type Design

This section shall discuss the ontology design of model entity types and the strucure
of the respective ontologies. Section 5.3 of Chapter 5 introduced vocabularies that
are required to specify model entity types. Besides some simple examples in Chapter
5, the specification of exemplary reusable types from the network flow domain was a
topic of the first section of this chapter. The presented formulation and mdo types
were specified in terms of certain cardinality class restrictions and were partially
grouped into subsumption hierarchies. This section will explain which cardinality
restrictions should be used when defining a type, as well as what kind of embedding
into the ontology structure is to be considered. At first, the cardinality restrictions
in the desing of formulation and meta domain ontologies will be concluded in short:
All examples of formulation types, including the ones that will follow in the next
section, only use cardinality class restrictions of the following form:

• The cardinality class restriction for the property OM#requires is exactly n if
the object is a data entity type (no expression). In the typical examples given
so far, the value of n was one. An example of a specification with n=2 required
node-sets will be discussed in Subsection 6.3.2. The value of n can also be set
to zero in order to explicitely forbid specifications.

• The cardinality class restriction for the property OM#requires is min 1 if the
object is a OM#ExpressionEntity. The expression entity types themselve are
defined with sharp cardinality restrictions of the form OM#expRequires
exactly m with m typically being set to one.

158

6.2. Discussion of MDO and Formulation Ontology Type Design

On the side of the data entity types that are organized in meta domain ontologies,
the following applies:

• Cardinality class restrictions of the form exactly n are used with the property
SPI#definedOn where in the typical examples, n is set to one. Not every data
entity type allows for such definedOn’s. In case of SPI#SimpleParameter, they
are explicitely forbidden, i.e., n is set to zero.

• Cardinality class restrictions of the form max 1 are used with the property
SPI#WithinCartProductTwoSame.

• Cardinality class restrictions of the form min 1 are used with the property
SPI#hasOperand.

Interpretation of the cardinality class restriction design:
Recapitulate the single commodity balance hierarchies from Subsection 6.1.1 as well
as the multicommodity flow types introduced in the subsections following thereon.
Reusable formulation types were defined by class restrictions with mdo types in their
range, as well as that the mdo types themselves had to be defined by class
restrictions. Two respective vocabularies NetForms and Net were introduced. In
both ontologies, subsumption was used as a technique to extend father types in
subtypes by inheritance of the cardinality restrictions, possibly specializing their
range or adding new class restrictions. The inheritance concept was also exploited in
a multi-inheritance fashion. But inheritance was not always possible. As different
mdo-conceptualizations for demand/supply or single and multiple commodities
introduced isolated classes in the mdos, the distinction propagated to the
formulation types. The distinctions in the mdos were also due to a modeling
principle that prefers sharp cardinality restrictions, and hence sharp type definitions,
over flexible ones. This is motivated by the idea to lay a foundation for
automatizations in the model formulation, especially, the automated
recommendation of formulations. The possibilities to analyze type definitions are
both required and enforced by the design decisions. The design principles that are
concluded in this section lead to a definition of many different formulation types.
This makes the automated treatment of modeling knowledge necessary. On the other
hand, as it has already been mentioned, these automation capabilities are explicitely
desired and hence imply a design with explicit knowledge of a "type interface".
An exception from the modeling with cardinality restrictions of the form "exactly
n" was given by the flexible types for resource availability constraints and a network
flow objective in Subsection 6.1.3. There, it was possible to relate a generic number
of expressions, each leading to different inner summation terms. Nonetheless, the
flexible types still have many specifications prescribed on class level that should
support their automated finding by a recommendation/matching formalism.

159

6. Reusability and Model Formulation in the Ontology Representation

As the next section will demonstrate, the organization of entity types by
(multi)-inheritance is not only restricted to definitions in a single ontology.
Specialized domains such as water networks may introduce subtypes of general
network types. Specialized domain ontologies may also import standard vocabularies
and extend them by inheritance. The reusage of types can be enforced by providing
more and more flexible formalizations in subdomains. If models use the same
constraint type for more than one individual, the reusability of formulation types can
also be exploited. This is further motivated by the fact that certain formulation types
encapsulate multiple AML statements in larger blocks. Hence, an instantiation of
these types may save the error-prone work of specifying multiple related statements,
e.g., for the linearization of a curve in AMLs. The latter example of linearization and
smoothing will be discussed in Subsection 6.3.3 of the following case study section.

6.3. Considerations for a Water Network Case Study

In this section, further formulation type formalizations will be introduced in the
context of another case study. The application domain of water distribution systems
will be investigated together with planning tasks in this domain. A network design
problem will serve as a basis for discussing the formalizations. Formulations from
another planning task of the domain will be discussed based upon the initial
observations for the network design problem. Important examples cover types for
linearizing and smoothing nonlinear pipe headloss constraints, as well as such ones
that model the short-term activation and deactivation of pumps in different fashions,
i.e., such that there is a choice between an integrality-requiring linear, and a
continuous, nonlinear, formulation. At first, a short introduction to the planning of
water distibution systems and the underlying mathematical models and equations
will be given. This provides the basis for discussing the ontology formalizations in
the remainder of this chapter. Chapter 7, which follows on this section, then
provides a model and numerical results for the problem of pipe renewal planning.
The latter problem can be seen as related to the problem of pipe network design that
will be treated within the case study of this section.

6.3.1. Introduction to Water Distribution Systems Planning

Distribution networks for water constitute an important part of our infrastructure.
The supply of water in drinking quality has to fulfill different requirements on
availability and quality, especially in unforeseen demand situations such as fire or
mass events. To that end, the analysis and design of water distribution systems
(WDS) constitutes an active area of research for people from diverse fields such as
engineering and the computer sciences.
A water distribution system is typically represented by a network model that

160

6.3. Considerations for a Water Network Case Study

distinguishes six types of components as there are suppy/reservoir nodes, tank
nodes, general junction nodes (with demands), pipe arcs and two special types of
arcs for modeling network pumps and valves. An example network is visualized in
Figure 6.18.

Figure 6.18.: Exemplary drawing of a WDS (generated with EPANET 2, [Ros00])

Besides the modeling of the distribution network’s structure, the network’s state at a
certain point of time has to be represented by some values which are determined by
parameters and physical laws. Hydraulic variables of interest are the arc’s flow
values and the nodal heads. Their status at a certain point of time is influenced by
the network’s demand and supply scenario, the boundary heads as well as the pipe
characteristics to be determined in terms of pipe length, diameter and roughness.
Mass Balance:
The first typical equations to be included in a mathematical system for describing
network hydraulics model the conservation of mass. Considering a network model at
a static point of time, the mass balance at the junction nodes of the network is
formalized in terms of the volumentric flow rates through the pipes. For the set of
network pipes P , denote by Qi,j the value of flow through a pipe (i, j) at a static
point of time. In many models for water network optimization, this flow is
unrestricted in sign. A reference orientation of the network pipes is assumed by
modeling the pipes as directed arcs, which allows it to represent flow into the pipe
direction by positive values and vice versa, to represent flow in direction contrary to
the reference orientation, by negative values. Considering the set J of junction nodes
inside a network with positive demand values Dk ≥ 0, k ∈ J , the mass balance at a
static state reads

∑
(i,k)∈P

Qi,k −
∑

(k,j)∈P

Qk,j = Dk ∀k ∈ J. (6.7)

This representation assumes water as a fluid due to its incompressibility. The mass
balance equation in a constraint form as above represents an example for the

161

6. Reusability and Model Formulation in the Ontology Representation

demand-oriented balance type NetForms#SingleCommodityBalanceDemandOriented
from Subsection 6.1.1.
Pipe Friction caused Headloss:
The second system of equations to be included in mathematical models for
simulation and optimization is the pipe friction caused headloss in standard pipes
(no pumps or valves). Denoting by Hi, i ∈ J the nodal head at a junction node,
there are different models for determining the headloss between two nodes (i, j)
constituting a network pipe. Besides the formula of Hazen-Williams, which is often
used in the anglo-american area and provides a valid approximation in the case of
turbulent flow, the formula of Darcy-Weisbach in principle provides a valid
framework for computing pipe friction based headlosses for different types of flow.
The formula of Darcy-Weisbach in SI units will be used in the examples of this
thesis. The classical formula is represented in terms of pipe velocities and can, e.g.,
be found in [KCLH08]. But as volumetric flow rates are the standard variables in
optimization models for WDS related problems, the following equivalent
representation will be used. The following formula can, e.g., be found in [BGS09]:

Hi −Hj = ri,j ·Qi,j · |Qi,j| ∀(i, j) ∈ P, (6.8)

where the coefficient ri,j aggregates the pipe "resistance" information and one has

ri,j = λi,j(Qi,j) ·
8 · li,j

π2 · d5
i,j · g

. (6.9)

The factor λi,j(Qi,j), (i, j) ∈ P denotes the so-called friction factor. Its determination
is dependent on he character of flow, i.e., laminar or turbulent, and furthermore the
hydraulical pipe characteristic (smooth pipe versus rough pipe). With typical
distribution network scenarios lying in the so-called transient area, the law of
Prandtl-Colebrook provides the accurate formula for computing the friction factor.
But due to its dependency on the pipe speed and hence flow rate, in this thesis, the
law of Prandtl-Kármán, which provides an accurate approximation for high pipe
speeds and roughness parameters of the material, will be used. The law of
Pradtl-Kármán in a variant that has been resolved for the friction factor reads

λi,j = (2 log10(
ki,j/di,j,t

3.71))−2, (6.10)

where ki,j denotes the roughness coefficient of the pipe material in [m].
Based upon the network model with its components and the associated physical
laws, the simulation of network hydraulics is a key task for network analysis. In 1936
the major Hardy Cross developed a method for the consecutive computation of flows

162

6.3. Considerations for a Water Network Case Study

and heads in looped pipe networks which is known today as the Hardy Cross method
[Cro36]. Nower contributions enlarge the applicability to a broader range of network
topologies and increase the performance such as, e.g., the method of Todini and
Pilati [TP88]. The hydraulic simulation of a water distribution system has become a
key feature in the analysis and design of this kind of systems. But the planning of a
water distribution systems can also be supported by optimization. A classification of
optimization problems can, e.g., be found in the book of Boulos, Lansey and Karney
[BLK06]. The latter book also provides an excellent reference for the general analysis
and design methods of WDS. The examples of this thesis will basically be concerned
with the design of the network in terms of pipe dimensions. A model for the related
task of planning the renewal of pipes will also be presented and solved in Chapter 7.
This is to be accompanied by a short literature review on pipe network design,
renewal planning and optimization in WDS in Section 7.1. As the latter
considerations would blow up the discussion of the ontology formalizations, it was
decided to put them into an extra chapter. This section will now present a basic case
study model in the next subsection. Ontology formalizations will be discussed in the
subsections following thereon.

6.3.2. The Case Study Model

In Germany, most households and industrial consumers are connected to the public
water distribution system. The planning of new networks is mainly due to new
housing developments and therefore constitutes a rare task. In contrast to that, the
renewal and extension planning of existing networks has gained a lot of attention in
the last years. This is due to the fact that water usage in Germany has considerably
decreased since the early 90’s. In contrast to that, the distribution networks that
were designed before the drop are overdimensioned due to an estimated, increasing
demand. Overdimensioned networks lead to lower pipe speeds and, possibly,
stagnation, which requires costly countermeasures such as pipe flooding in order to
keep the high level of water quality. With the consecutive deterioration of pipes, pipe
renewal planning under the aspect of minimizing pipe dimensions has gained
attention. A side-effect of this dimension reduction is the saving of pipe material
costs. When planning the renewal of pipes, a first proposal for decisions is typically
being made by solving a pipe network design problem. This kind of problem will be
introduced in what follows and is concerned with the determination of a target
network’s pipe dimensions with minimized pipe diameter costs.
This subsection introduces a model for the problem of pipe network design as a
starting point for a case study in ontology formalizations for water distribution
systems. Ontology formalizations will also be dicussed in this subsection, but the
main part of the type discussion will be presented in the following subsections. The
model presented in this subsection is a slightly modified variant of a Mixed Integer
Nonlinear Programming (MINLP) model presented in the article [BDL+06]. The case

163

6. Reusability and Model Formulation in the Ontology Representation

study variant of the model is given in Figures 6.19 and 6.20. The model presented
here differs from the one given in the literature reference by the following points:

• The bounds for the pipe heads are given directly as head values instead of
parameters that are computed out of pressure values and an elevation.

• The Darcy-Weisbach equations are used to represent the pipe headloss instead
of the Hazen-Williams formula. The model of this subsection uses an
unsmoothed variant, whilst the following subsection will introduce a type that
represent a smoothing of the curve around zero. Though the exact formulas are
different, the smoothing will be applied in a fashion similar to the paper
reference.

• The Darcy-Weisbach equations will be split into two goups of constraints such
as it has been introduced in Subsection 6.3.1. By this, another nonlinear
restriction for computing the "resistance coefficient" is introduced. Both
constraint groups together yield a nonlinear, nonconvex curve which is
comparable to the Hazen-Williams formula of [BDL+06]. An "Area
Parameterization" for reducing the nonlinearity as it is suggested in the paper
reference is not applied.

• Instead of a single source node, multiple source nodes and respective
restrictions will be allowed. This makes it possible to demonstrate another
specificational feature.

The reason for the modifications is to provide a consistent framework for the
presentation of the ontology types in this section. In addition to that, the
formulation of the model as it is given here can serve as a basis for understanding
the renewal planning model of the next chapter.
Coming back to Figures 6.19 and 6.20, the AMPL model can be described as follows:
A simple network model with junction and source nodes is defined in the first four
declarative statements. Only standard pipes (no pumps and valves) are considered.
Variables of the model are the nodal heads H, pipe flow rates Q and the the pipe
diameters d that are used to represent the computed network design. Further
variables are introduced for the resistance coefficient r as well as that some binaries
for modeling increments of pipe diameters X are introduced. The objective of the
model is to minimize the overall cost of pipe material. To that end, the unit cost of
pipe material is modeled by a polynomial function that depends on the diameter.
Multiplication by the pipe length and summation over all pipes yields the objective
function. The details of the pipe diameter polynomial which in fact is a fit of
discrete cost data will be further discussed in scope of the renewal planning model in
Section 7.3. Coming back to the case study model from this subsection, standard
demand-oriented balance equations (6.7) as well as an unsmoothed variant of the

164

6.3. Considerations for a Water Network Case Study

#Basic water network case study model as a variant of Bragalli et al .

set Nodes;
set JunctionNodes within Nodes;
set Sources within Nodes;
set Pipes within {Nodes , Nodes};
param dnum; #Number of available pipe diameters
param degP; #Degree of fitted cost−function polynomial
param PI; #Pi
param g; #Earth gravitation [m/s^2]
param Diameters{1..dnum}; #Set of commercially available pipe diameters in[m]
param pcoeff{0..degP}; #Coefficients of fitted cost−function polynomial
param Ck{Pipes}; #Pipe roughness coefficient in [m]
param L{Pipes}; #Length of a pipe in [m]
param Demand{JunctionNodes} ; #Demand at a junction node [m^3/s]
param vmax{Pipes}; #Maximal pipe velocities [m/s]
param dmin{Pipes}; #Minimal pipe diameter [m]
param dmax{Pipes}; #Maximal pipe diameter [m]
param QSmin{Sources}; #Minimal source inflow [m^3/s]
param QSmax{Sources}; #Maximal source inflow [m^3/s]
param Hmin{JunctionNodes}; #Minimal head of junction node [m]
param Hmax{JunctionNodes}; #Maximal head of junction node [m]
param HSources{Sources}; #Initial head at source node [m]

var H{Nodes} >=0; #Head at nodes [m]
var Q{Pipes}; #Flow through pipes [m^3/s]
var r{Pipes} >=0; #Resistance coefficient of pipes for DW
var d{Pipes} ; #Variable diameter of pipes [m].
var X{Pipes,0..(dnum−1)} binary; #Pipe diameter increment switching

Figure 6.19.: The water network case study model - Data definitions

Darcy-Weisbach headlossformula (6.8) are introduced in Figure 6.20. The
computation of the resistance coefficient is modeled by a highly nonlinear curve in
accordance to equation (6.9). The modeling of network hydraulics is continued by
some bounds on the pipe speed. Two groups of constraints are required in order to
model the unrestricted sign of the flow variables. The pipe speed bounds constitute
quadratic restriction in the pipe diameter variables. The model presented here allows
for multiple source nodes. Respective restrictions model the constant head at such
nodes, lower and upper bounds on the inflow into the network as well as a
nonnegativity condition for the flow variables that represent the outflow of sources.
Coming back to the general network, junction node heads and pipe diamters are

165

6. Reusability and Model Formulation in the Ontology Representation

#Objective
minimize Costs: sum{(i,j) in Pipes}(L[i , j] ∗ sum{e in 0..degP}(pcoeff[e]∗d[i , j]^e)) ;

#Mass balance at junctions.
s . t . Massbalance{x in JunctionNodes}: sum{(i,x) in Pipes}(Q[i,x])
− sum{(x,j) in Pipes}(Q[x,j]) = Demand[x];

#Standard headloss, unsmoothed
HeadlossDW{(i,j) in Pipes}: H[i] − H[j] = r[i , j] ∗ Q[i, j] ∗ abs(Q[i, j]) ;

Restriction for computation of "Resistance Coefficient ". log10 has basis 10
s . t . ResistanceCoefficientPipes{(i , j) in Pipes}: r [i , j] = (8 ∗ L[i , j]) /
(PI^2 ∗ g ∗ (d[i , j])^5) ∗ (2 ∗ log10((Ck[i, j]/ d[i , j]) / 3.71))^(−2);

Upper bounds for pipe speed
s . t . PipeSpeedBoundsupPos{(i,j) in Pipes}:
Q[i , j] <= vmax[i,j] ∗ (PI/4) ∗ d[i , j]^2;
s . t . PipeSpeedBoundsupNeg{(i,j) in Pipes}:
(−1) ∗Q[i,j] <= vmax[i,j] ∗ (PI/4) ∗ d[i , j]^2;

Constant initial heads at sources
s . t . SourceHeadsConstant{s in Sources}: H[s] = HSources[s];
Lower and upper bounds on the outflow of sources
s . t . SourceFlowBoundslow{s in Sources}: QSmin[s] <= sum{(s,j) in Pipes}(Q[s,j]);
s . t . SourceFlowBoundsup{s in Sources} : sum{(s,j) in Pipes}(Q[s,j]) <= QSmax[s];
#All outflows nonnegative by a set−intersection
s . t . SourceFlowNonneg{(s,j) in ({Sources,Nodes} inter Pipes)}: Q[s,j] >= 0;

Bounds on heads at junction nodes
s . t . HeadBoundslow{n in JunctionNodes}: Hmin[n] <= H[n];
s . t . HeadBoundsup{n in JunctionNodes} : H[n] <= Hmax[n];

#Lower and upper bounds on the diameters
s . t . PipeDiameterBoundslow{(i,j) in Pipes}: dmin[i,j] <= d[i,j];
s . t . PipeDiameterBoundsup{(i,j) in Pipes}: d[i , j] <= dmax[i,j];

Discrete set of commercially available pipe diameters by increments
s . t . PipeDiametersincremental{(i,j) in Pipes}: d[i , j] = Diameters[1]
+ sum{ mu in 2..dnum}((Diameters[mu] − Diameters[mu−1])∗ X[i,j,mu−1]);
s . t . Incrementalsalloneupto{(i, j) in Pipes, mu in 1..(dnum−2)}:
X[i , j ,mu] >= X[i,j,mu+1];

Figure 6.20.: The water network case study model - Formulation definitions

166

6.3. Considerations for a Water Network Case Study

bounded by further constraints. The last two groups of constraints model the
discrete set of commercially available pipe diameters. As only such a restricted set of
pipes is available in practice, the computed values of the continuous diameter
variables should only take values from the respective discrete set. This is achieved by
an incremental modeling as it was proposed in [BDL+06]. The pipe diameters are
summed up by increments which are being activated by respective binaries. The
binaries are coupled in a monotonically decreasing order such that a consistent sum
is guaranteed.

Numerical results for the case study model discussed in this subsection will not be
provided within this thesis directly. But two points should enforce the practicability
and relevance of the model. At first, the underlying original model from Bragalli et
al. [BDL+06] has been solved and investigated in the paper reference. Furthermore,
the pipe renewal planning to be presented and solved in the next chapter contains
(besides others) all the constraints and objective formulations from above in an
extended form. Finally, the model given in this subsection has been checked for
correctness of syntax and static semantics by an execution of the AMPL command
model.

Ontology formalizations for the entities of the model will be explained in the
remainder of this section. To that end, Subsection 6.3.4 further investigates the
modeling of the mass balance constraints in the context of the water network
domain. The formulation type NetForms#SingleCommodityBalanceDemandOriented
has already been mentioned as the suited formulation type from the balance type
hierarchies, but of further interest will be the operations in model formulation when
the balance equations need to be integrated with pipe network typical constraints
such as the headloss equations. The headloss equations themselves are of central
importance for mathematical models in water networks. Different formulations may
introduce linearizations and smoothings. To that end, a formulation type hierarchy
that provides respective variants will be discussed in the next subsection. Another
type formalization will be discussed right now, in the remainder of this subsection.
Further ontology specifications and types for the case study model can be looked up
in the digital material accompanying this thesis.

Exemplary formalizations shall be presented now for the restrictions that are
concerned with the source nodes. The respective AMPL statements from Figure 6.20
are

167

6. Reusability and Model Formulation in the Ontology Representation

32 – 12.12.2015 DS&OR Colloquium

WaterNet#Pipes

WaterNetForms#Constant

HeadatSources

WaterNetForms#LowerSummed

SourceOutFlowBounds

WaterNetForms#UpperSummed

SourceOutFlowBounds

WaterNetForms#

SourceOutFlowNonNegative

WaterNet#Nodes

WaterNet#JNodes

WaterNet#

SourceNodes

WaterNet#Minimum

SourceInflows

WaterNet#Maximum

SourceInflows

WaterNet#Constant

SourceHeads

WaterNet#Flows

WaterNet#Heads OM#requires

exactly 2

OM#requires

exactly 1

Figure 6.21.: Definition of waternet source restriction types

s.t. SourceHeadsConstant {s in Sources}: H[s] = HSources[s]
s.t. SourceFlowBoundslow {s in Sources}:
QSmin[s] <= sum{(s,j) in Pipes}(Q[s,j]);
s.t. SourceFlowBoundsup {s in Sources}:
sum{(s,j) in Pipes}(Q[s,j]) <= QSmax[s];

s.t. SourceFlowNonneg {(s,j) in {Sources,Nodes} inter Pipes}:
Q[s,j] >= 0;.

(6.11)

The formulation types for the latter statements can be found in Figure 6.21. The
SourceHeadsConstant are reflected by the type
WaterNetForms#ConstantHeadatSources. As the type provides a typical water
network formalization, also the mdo-concepts stem from an ontology for water
networks with the prefix WaterNet. The WaterNet vocabulary provides subtypes of
Net classes as well as novel types. Three data conceptualizations for the head
variables, constant head values at sources and the source nodes themselves are
required for the formulation type by class restrictions of the form OM#requires
exactly 1. Similar specifications are made for the lower and upper source flow
bounds, reflected by the formulation types
WaterNetForms#LowerSummedSourceOutFlowBounds and
WaterNetForms#UpperSummedSourceOutFlowBounds. Both formulation types

168

6.3. Considerations for a Water Network Case Study

require both WaterNet#SourceNodes and WaterNet#Pipes in order to build the
outer indexing expressions as well as the indexings for the inner summations. The
pipe indices for the inner summations use the outer indice s for referencing the
source nodes and allow to select only pipes that "leave a fixed source".
Finally, the formulation type that provides a novel observation in the ontology
design of formulation types is WaterNetForms#SourceOutFlowNonNegative with the
target statement SourceFlowNonneg from above. In order to explicitely index over
all pipes that have a source node as a starting node, a set-expression with the three
sets Sources, Nodes and Pipes is build. The sets are reflected by the WaterNet
mdo-classes WaterNet#Nodes, WaterNet#SourceNodes and WaterNet#Pipes.
Respective axioms with the OM#requires property were created for the formulation
type specification. But as the class WaterNet#SourceNodes is a subclass of
WaterNet#Nodes, the cardinality restriction for WaterNet#Nodes has the cardinality
value two. The necessity to model cardinality restrictions with values higher than
one was mentioned in Section 6.2. Here, an example how such higher values originate
is given. When required mdo-types stand in a subclass relation, the cardinality of a
subtype also has to be counted in the restriction of the supertype. Without doing so,
a contradiction would be introduced to any model that provides the intended,
distinct individuals for both the super- and the subclass. Therefore, respective
knowledge about subclasses needs to be considered when defining a new formulation
type.

6.3.3. Pipe Headloss and Linearization Types

This subsection introduces reusable formulation types at the example of the
Darcy-Weisbach equation(s) for pipe headloss (6.8). Different solution approaches
and solvers might require different formulations and approximations of the original
curve. The latter is motivated by the fact that the Darcy-Weisbach equation(s)
represent a nonlinear curve that is not twice continuously differentiable in the origin.
To that end, different approaches for smoothing and linearizing the constraint
formulation will be discussed and encapsulated into reusable formulation types
within this subsection. The types will, as in the case of network balance equations,
be organized in a hierarchy, allowing for explicitely formalized choices in the model
formulation. The formulation types themselves encapsulate medium sized blocks of
AML definitions such that a reusage of these formulations should really save work.
Finally, the perspective for automatization in the model formulation will be
discussed. Furthermore, it should be emphasized that the here proposed type
hierarchy of smoothing and linearization types can be seen as prototypical for other
technical formulas. Whenever certain nonlinear curves are to be used as constraints
in an optimization model, the provision of smoothed and linearized variants might be
appropriate in order to suitedly support the process of model formulation.

169

6. Reusability and Model Formulation in the Ontology Representation
©

 H
e

in
z
 N

ix
d

o
rf

 I
n

s
ti
tu

t,
 U

n
iv

e
rs

it
ä

t
P

a
d

e
rb

o
rn

SPI#WithinCartProductTwoSame

max 1
WaterNet#Nodes

WaterNet#Pipes

WaterNet#Flows

SPI#definedOn

exactly 1

WaterNet#Aggregated

PHCoeffsDW
WaterNet#Heads

SPI#definedOn

exactly 1

SPI#definedOn

exactly 1
WaterNetForms#Pipe

Headloss

OM#requires

exactly 1

WaterNetForms#

PipeHeadlossC2Smooth

Deg5Poly

OM#requires

exactly 1
WaterNet#Origin

SmoothingDelta

OM#Constraint

OM#dataMProp

exactly 1
OM.MProps

#StrictlyPositiveLowerBound

SPI#SimpleParameter

Figure 6.22.: Definitions of smoothed and standard headloss types

Figure 6.22 shows formulation type definitions for the standard pipe headloss
formulation as well as a smoothed variant
WaterNetForms#PipeHeadlossC2SmoothDeg5Poly. The standard pipe headloss
constraint in the AMPL formulation of the case-study model (Figure 6.20) reads

HeadlossDW{(i,j) in Pipes}: H[i]-H[j]=r[i,j]*Q[i,j]*abs(Q[i,j]);.

The respective formulation type WaterNetForms#PipeHeadloss requires exactly one
of WaterNet#Pipes, WaterNet#Heads, WaterNet#Flows and
WaterNet#AggregatedPHCoeffsDW. The latter class represents the multiplicative
"resistance coefficient" r. The second formulation type in Figure 6.22 models a
variant of the standard pipe headloss formulation. As the standard formulation is
not twice continuously differentiable around the origin, the type
WaterNetForms#PipeHeadlossC2SmoothDeg5Poly introduces a smoothed variant of
the curve. Details about the smoothing will be given in the context of the renewal
planning model in Section 7.3. For the moment, it should suffice to know that the
resulting curve differs from the standard formulation in a range deltaHeadloss of
flow values around the origin. In this interval, the curve is approximated by a
smooth polynomial of degree five. A target AMPL statement in the context of the
case-study model then reads

170

6.3. Considerations for a Water Network Case Study

param deltaHeadloss > 0;
HeadlossDW{(i,j) in Pipes}:

H[i] - H[j] = if(abs(Q[i,j]) > deltaHeadloss)
then r[i,j] * Q[i,j] * abs(Q[i,j])

else (r[i,j] * (0.375 * deltaHeadloss * Q[i,j]
+ (3 / (4 * deltaHeadloss)) * Q[i,j]^3

- (1 / (8 * deltaHeadloss^3)) * Q[i,j]^5));.
(6.12)

The positive parameter deltaHeadloss is introduced at first. The formulation uses
logic expressions by the case distinction if then else. The logics behing the
piecewise curve decalaration will be resolved into a MIP formulation by AMPL using
standard MIP modeling techniques. The formulation type
WaterNetForms#PipeHeadlossC2SmoothDeg5Poly that delivers the target statement
can be defined as a subclass of WaterNetForms#PipeHeadloss. By this, all type
requirements are inherited and only the additional requirement of exactly one
WaterNet#SmoothingDelta has to be added to the type definition. The respective
mdo-type models the positive parameter deltaHeadloss. An additional
mathematical property definition is prescribed for any individual of the mdo-type
WaterNet#SmoothingDelta in order to enforce the positive value restriction.

Besides smoothing, linear approximations of the pipe headloss curve are of interest
for applying standard MIP techniques to the solution of water distribution related
optimization models. The L01 linearization of separable, nonlinear functions
provides an established MIP modeling technique for linearizing and representing
nonlinear constraints in a MIP model. Padberg [Pad00] reviews the technique and
gives a proof that it yields better polyhedral formulations than another established
linearization and representation technique usually referred to as SOS2. A standard
L01 linearization, applied to the pipe headloss curve in the flow variables Q, can be
found in Figure 6.23. Before explaining the technique, it is important to mention
that linearization would have to be applied to all nonlinear formulations of a model
when aiming to solve it by mixed integer programming solvers. In the case study
model, e.g., the ResistanceCoefficientPipes restriction that gives the curve for
the "resistance coefficient" r, as well as the quadratic restrictions for the pipe speed
bounds and the polynomial objective function, would also need to be linearized.
Furthermore, the variable r occurs in a product term in the pipe headloss curve of
the flow variables Q. To that end, the case study model is highly nonlinear such that
the here represented techniques are only of exemplary character. Nonetheless, by
making diameter decisions d constant and switching to another model, e.g., for

171

6. Reusability and Model Formulation in the Ontology Representation

planning the operation of pumps, or the technical planning of further assets such as
tanks, the respective techniques could be applied in a practical fashion to obtain a
linear model.

Let us now continue by introducing the linear modeling of the pipe headloss
constraints in Figure 6.23: The AMPL modeling introduces three parameter
declarations. A nonnegative, integer parameter kL01 for modeling the step-number
of the L01 linearization is introduced at first. Then, two parameters a and b are
defined to model grid points of the curve Q[i,j] * abs(Q[i,j]). The parameter
r[i,j] is not part of the curve linearization and will be multiplied to the respective
terms in order to yield a representation of the pipe headloss that is linear whenever
r[i,j] is constant. The grid points will be used to build interval lengths and
(approximative) gradients in what follows. The resulting curve will be stepwise
linear on the intervals. In order to represent the resulting curve in a mixed zero-one
programming fashion, two variables zL01 and yL01 are introduced. Whilst zL01
models parts of the interval lengths, the binaries yL01 are required in two
restrictions ziFullSegmentLengthTill and ziSegmentLengthBound to model the
accounting of lengths and value gains/decreases of a linear segment in a way such
that all segments are fully accounted in a consecutive fashion and only the last such
segment constributes its values in a partial fashion. This is reflected by the two
constraints FlowRepLinL01 and HeadLossRepLinL01 that represent the respective
values of flow and head gain/loss by a sum over the segment contributions. Together
with the initial Boundz01 on the first interval length variable zL01[i,j,1], the
modeling introduces three parameter-, two variable- and five constraint-declarations
as a whole. The respective modeling work for writing the statements in an AML
model can be seen as quite costly and error-prone in contrast to the few ontological
specifications when reusing a formulation type.
Figure 6.24 provides and overview on the formulation type definition for the
linearization type WaterNetForms#PipeHeadlossLinearizedL01NonUniform that
yields statements such as explained above. The mdo-requirements of the type are
grouped into two parts in the figure, as there are the standard water network
requierements of exactly one of WaterNet#Pipes, WaterNet#Heads,
WaterNet#Flows and WaterNet#AggregatedPHCoeffsDW, which are the same as for
the standard formulation type WaterNetForms#PipeHeadloss, and then further
requirements for data of the linearization. The formulation type
WaterNetForms#PipeHeadlossLinearizedL01NonUniform can be defined as a
subclass of the type WaterNetForms#PipeHeadloss and hence, the respective
waternetwork mdo-requirements can be inherited from that type. When changing
the pipe headloss formulation in a model to the subtype, the respective definitions of
individuals and their relations can be taken over as they are. Furthermore, another
L01-linearization type, which is a further father of
WaterNetForms#PipeHeadlossLinearizedL01NonUniform, will be defined below,

172

6.3. Considerations for a Water Network Case Study

param kL01 > 0, integer;
param a{0..kL01};
param b{0..kL01};
var zL01{Pipes, 1..kL01} >= 0;
var yL01{Pipes, 1..(kL01 − 1)} binary;
s . t . FlowRepLinL01{(i,j) in Pipes}: Q[i, j] = a[0] + sum{l in 1..kL01}(zL01[i,j , l]) ;
s . t . HeadLossRepLinL01{(i,j) in Pipes}: r[i , j] ∗ (b[0] + sum{l in 1.. kL01}(((b[l] − b

[l−1]) / (a[l] − a[l−1])) ∗ zL01[i , j , l])) = H[i] − H[j];
s . t . Boundz01{(i,j) in Pipes}: zL01[i , j ,1] <= a[1] − a[0];
s . t . ziFullSegmentLengthTill{(i,j) in Pipes, l in 1..(kL01−1)}:
zL01[i , j , l] >= (a[l] − a[l−1]) ∗ yL01[i, j , l];
s . t . ziSegmentLengthBound{(i,j) in Pipes, l in 1..(kL01−1)}:
zL01[i , j , l+1] <= (a[l+1] − a[l]) ∗ yL01[i, j , l];

Figure 6.23.: AMPL statements for a non uniform L01 linearization of the pipe head-
loss in a MIP

WaterNetForms#

PipeHeadlossLinearized

L01NonUniform OM#requires

exactly 1

WaterNet#Nodes WaterNet#Pipes

WaterNet#Flows
WaterNet#Heads

MathOpParams#Linearization

StepNumber1D

MathOpParams#Linearization

Grid1D

MathOpParams#Linearization

GridValues1D

WaterNet#L01Linearization

GridSegmentPartsforPipes

WaterNet#L01Linearization

GridSegmentIndicatorsforPipes

OM#requires

exactly 1
WaterNet#Aggregated

PHCoeffsDW

Figure 6.24.: Type definition for the non uniform L01 linearization of the pipe headloss

such that a whole hierarchy of formulation types originates.
Let us now continue with the consideration of the left-open mdo-requirements for the
type WaterNetForms#PipeHeadlossLinearizedL01NonUniform: An external
vocabulary MathOpParams yields three classes
MathOpParams#LinearizationStepNumber1D,
MathOpParams#LinearizationGrid1D and
MathOpParams#LinearizationGridValues1D of which exactly one individual is
required each. The respective mdo-types represent the three parameter definitions of

173

6. Reusability and Model Formulation in the Ontology Representation

kL01,a and b in the examplary AMPL statements. To that end, both
MathOpParams#LinearizationGrid1D and
MathOpParams#LinearizationGridValues1D are defined on exaclty one
MathOpParams#LinearizationStepNumber1D. This fact can be looked up, together
with the other mdo-definitions, in Figure 6.25. Two further required concepts are
each exactly one of WaterNet#L01LinearizationGridSegmentPartsforPipes and
WaterNet#LinearizationGridSegmentIndicatorsforPipes. In that order, they
represent the variables zL01 and yL01 that are required for the modeling. Again,
both mdo-types are defined on exactly one
MathOpParams#LinearizationStepNumber1D and exactly one WaterNet#Pipe.

WaterNet#Pipes

MathOpParams#Linearization

StepNumber1D

MathOpParams#Linearization

Grid1D

MathOpParams#Linearization

GridValues1D

WaterNet#L01Linearization

GridSegmentPartsforPipes

WaterNet#L01Linearization

GridSegmentIndicatorsforPipes

SPI#definedOn

exactly 1
SPI#definedOn

exactly 1

SPI#SimpleParameter

SPI#ParameterCollection

OM.MProps

#IntegerData
OM.MProps

#BinaryData

OM.MProps

#NonNegativeLowerBound

OM#dataMProp

exactly 1

OM.MProps

#StrictlyPositiveLowerBound

OM#dataMProp

exactly 1

OM#dataMProp

exactly 1

SPI#definedOn

exactly 1

Figure 6.25.: MDO definitions for the non uniform L01 pipe headloss linearization type

The mdo definitions in Figure 6.25 furthermore contain required mathematical
definitions on class level, e.g., for the integrality and positive value requirement of
the MathOpParams#LinearizationStepNumber1D individual. Before concluding the
representation of the first L01 linearization type, a remark should be made on the
grid values: As the data values for the parameters a and b represent samples from
the curve Q ∗ |Q| in the flow variable Q, the respective generation of the values could
be done in an automated fashion by a further service. Before computing points on
the curve, the value kL01+1 of grid points as well as the lower and upper bounds for
the linearization need to be determined. The rough idea would be to allow an extra
module to generate the values for a,b and kL01 depending on estimated flow value
bounds and accuracy requirements of the approximation. This step could be
performed a priori the instantiation of the model with data. This remark should
suffice for the scope of this thesis, let us now continue with another L01 linearization
type that, in contrast to the latter remark, automates the computation of the grid

174

6.3. Considerations for a Water Network Case Study

param kL01 > 0, integer;
param aStartEnd{0..1};
param stepWidth = (aStartEnd[1] − aStartEnd[0]) / kL01;
param aComp{l in 0..kL01} = if l = 0 then aStartEnd[0] else aComp[l−1] + stepWidth;
param bComp{l in 0..kL01} = if l = 0 then aStartEnd[0] ∗ abs(aStartEnd[0])
else aComp[l] ∗ abs(aComp[l]);
var zL01{Pipes, 1..kL01} >= 0;
var yL01{Pipes, 1..(kL01 − 1)} binary;
s . t . FlowRepLinL01{(i,j) in Pipes}: Q[i, j] = aComp[0] + sum{l in 1..kL01}(zL01[i,j,l]) ;
s . t . HeadLossRepLinL01{(i,j) in Pipes}: r[i , j] ∗ (bComp[0] + sum{l in 1..kL01}(((

bComp[l] − bComp[l−1]) / (aComp[l] − aComp[l−1])) ∗ zL01[i,j,l])) = H[i] − H[j];
s . t . Boundz01{(i,j) in Pipes}: zL01[i , j ,1] <= aComp[1] − aStartEnd[0];
s . t . ziFullSegmentLengthTill{(i,j) in Pipes, l in 1..(kL01−1)}:
zL01[i , j , l] >= (aComp[l] − aComp[l−1]) ∗ yL01[i,j,l];
s . t . ziSegmentLengthBound{(i,j) in Pipes, l in 1..(kL01−1)}:
zL01[i , j , l+1] <= (aComp[l+1] − aComp[l]) ∗ yL01[i,j,l];

Figure 6.26.: AMPL statements for a uniform L01 linearization of the pipe headloss

values by respective AMPL statements.

The second L01 formulation type is exemplified by target AMPL statements in
Figure 6.26. In contrast to the definitions of Figure 6.23, the grid value parameters a
and b are replaced by computed parameters aComp, bComp and an additional
parameter collection aStartEnd. The parameter stepWidth represents a further
computed paremeter. The values of computed parameters are determined out of
other parameter values in AML environments such as AMPL when a model is
instantiated with data. To that end, the only data-values that are to be provided
externally for the declarations in the figure are for the parameters kL01 and
aStartEnd. The values represent the number of grid points (minus one, see, e.g., the
declaration of aComp) as well as the start (aStartEnd[0]) and end (aStartEnd[1])
of the interval on which the curve will be approximated. The respective linearization
will be based upon a uniform grid. This should also become clear from the
introduction of a uniform stepWidth and the computation of the grid values in the
parameter definitions of aComp and bComp. Besides the usage of the computed
parameter values aComp, bComp and the respective interval bounds aStartEnd in the
constraint and variable declarations, no further differences to the AMPL declarations
for the non uniform L01 linearization exist.
A look into the formulation type definitions for
WaterNetForms#PipeHeadlossLinearizedL01Uniform in Figure 6.27 reveals that
the uniform L01 linearization can be defined as a supertype of the non uniform one.
In difference to the sole consideration of the non uniform type in Figure 6.24, the

175

6. Reusability and Model Formulation in the Ontology Representation

WaterNetForms#

PipeHeadlossLinearizedL01

NonUniform

MathOpParams#Linearization

StepNumber1D

MathOpParams#Linearization

Grid1D

MathOpParams#Linearization

GridValues1D

WaterNet#L01Linearization

GridSegmentPartsforPipes

WaterNet#L01Linearization

GridSegmentIndicatorsforPipes

OM#requires

exactly 1

WaterNetForms#

PipeHeadlossLinearizedL01Uniform

MathOpParams#Linearization

StartEndValues

„Specialization

to SubClass“

SPI#definedOn

exactly 1

WaterNet#Pipes

WaterNet#Flows

WaterNet#Heads

WaterNet#Aggregated

PHCoeffsDW

Figure 6.27.: The uniform L01 pipe headloss linearization type as a parent of the non
uniform one

waternet mdo-requirements for pipes, heads, flows and resistance coefficients are now
shifted upwards to the father type.
WaterNetForms#PipeHeadlossLinearizedL01Uniform in similarity to its subtype
requires exactly one of WaterNet#L01LinearizationGridSegmentPartsforPipes
and WaterNet#GridSegmentIndicatorsforPipes for the variable declarations of
zL01 and yL01. To that end, also these type requirements are shifted upwards to the
supertype. A difference occurs in the representation of the discretization parameters
for the L01 linearization. The requirement of the
MathOpParams#LinearizationStepNumber1D can also be moved to the supertype
but a requirement of exacly one individual of the novel type
MathOpParams#LinearizationStartEndValues occurs for the supertype. The
respective class restriction is then refined by the non uniform subtype to the range
MathOpParams#LinearizationGrid1D in order to yield the usual requirement for the
grid segment values. The MathOpParams#LinearizationGridValues1D are only
required by the subtype as the uniform grid supertype treats grid points as
computed parameters. This also explains the aforementioned refinement of
MathOpParams#LinearizationStartEndValues to
MathOpParams#LinearizationGrid1D when changing from the super to the
subtype: The start and end values of the interval for the L01 linearization need to be
provided anyhow, but the respective whole grid is only required for the non uniform
subtype. The supertype treats the grid implicitely as a computed parameter.
To complete the consideration of the formulation type
WaterNetForms#PipeHeadlossLinearizedL01Uniform, it should be mentioned that

176

6.3. Considerations for a Water Network Case Study

the latter type provides a more simple formulation type than its non uniform
subtype with respect to the complexity of required ontology specifications and
instance data provision. Fewer mdo-individual specifications and data values are
required to be provided when instantiating the type. Nonetheless, if instance data is
provided in an automated fashion, as it was mentioned above for the non uniform
type, the latter aspect becomes less important and a usage of
WaterNetForms#PipeHeadlossLinearizedL01NonUniform might be indicated.

WaterNetForms#

PipeHeadloss

WaterNetForms#

PipeHeadlossC2SmoothDeg5Poly

WaterNetForms#

PipeHeadLossLinearized

L01Uniform

WaterNetForms#

PipeHeadLossLinearizedSOS2

NonUniform

WaterNetForms#

PipeHeadLossLinearized

L01NonUniform

„Insert Uniform SOS2!Type“

Figure 6.28.: Hierarchy of pipe headloss smoothing and linearization types

The preceding considerations of this subsection introduced four formulation types for
the pipe headloss constraints that varied in their differentiability and linearity
properties. The L01 linearization types were further distinguished by uniform and
non uniform grid approaches, where the uniform grid was argued to be
specificationally simpler. Figure 6.28 concludes the consideration of pipe headloss
types by structuring them into a subsumption hierarchy. Type requirements are not
visualized for reasons of simplicity, but should be clear from the preceeding
considerations. The standard pipe headloss type NetForms#PipeHeadloss defines
the class restrictions for pipes, heads, flows and resistance coefficients and the
subtypes inherit and possibly adapt or extend the class restrictions. A new
formulation type WaterNetForms#PipeHeadlossLinearizedSOS2NonUniform as well
as a placeholder for a uniform grid variant of that type can also be found in the
hierarchy. The SOS2 linearization provides an alternative to the L01 linearization
techniques by the introduction of so-called SOS2 variables. SOS2 linearizations can
be compared to the L01 pendants from a formulation type perspective. But the
linearization with SOS2 variables provides a polyhedral formulation that is not as

177

6. Reusability and Model Formulation in the Ontology Representation

good as the L01 formulation (,see, again Padberg [Pad00]). Nonetheless, many MIP
solvers support SOS2 variable declarations and an efficient treatment of these in
their algorithms. To that end, SOS2 formulation types, though not further discussed
here, might be of certain use to some model formulation approaches.

Let us now conclude this section by discussing the automation capabilities of the pipe
headloss formulation types and their hierarchy according to the use case "Formalized
choices in modeling" from Section 4.1. The types from this subsection reflect the
pipe headloss formulation example considered in the use case. The goal of providing
formalized modeling knowledge in the form of choices and type interfaces is achieved
by the type hierarchy. Furthermore, the provided formulation types might help
saving costs and reduce errors in model formulation as they provide medium-sized
building blocks of reusable AML statements. Especially, the linearization types were
discussed under the latter two points. What remains to discuss are the capabilities
for automation in the adaption of the ontology specification when changing the type
of a pipe headloss formulation, as well as the consequences for the automated
generation of a runnable system. The first subtype example
WaterNetForms#PipeHeadlossC2SmoothDeg5Poly from this subsection provided a
smoothing of the pipe headloss equation. Consider the fixed case study model with
the standard type WaterNetForms#PipeHeadloss in an ontological representation.
When changing the type of the pipe headloss equation individual to the subclass, all
existing axioms stay valid according to the class restrictions. The only missing
specification is a new relation to an individual of WaterNet#OriginSmoothingDelta
as well as a strictly positive lower bound property for the latter. A respective
individual for the smoothing around the origin could be added and typed
automatically in the case where there is no such individual in the model. In addition
to that, the mathematical property specification can also be added automatically,
leading to a consistent specification for the new smoothed pipe headloss type. The
problem that could occur with this has already been described for the min-cost-flow
models: If one or more individuals for an origin smoothing parameter were added to
the model before, the modelers intention which individual is to relate can only be
guessed. Creating and relating a new individual might not always be correct as well
as that relating a single existing individual appears logical but is not provably
correct. In case of two or more individuals, matching could be applied, but
nonetheless, automated model formulation decisions only provide guesses.

With a consistent constraint declaration, the methods of Section 5.6 can be applied
to analyze the model in terms of mathematical properties. If the pipe headloss is the
only not twice constinuously differentiable function, the respective properties of the
model and the postconditions of the model instantiation service will change after a
type adaption. This would then allow more solvers to be included in the composition
procedure, especially those which have the C2-property of the input as a
precondition. Before the system is brought to execution, the value of the

178

6.3. Considerations for a Water Network Case Study

WaterNet#OriginSmoothingDelta data could simply be set to a standard value such
as 10−6. Alternatively, a more detailed configuration that goes beyond the scope of
this thesis could be performed by an exra module before the instantiation of the
model with data.
In a similar fashion to the smoothing, a type change from
WaterNetForms#PipeHeadloss to a linerization type such as
WaterNetForms#PipeHeadlossLinearizedL01Uniform can be considered. In the
end, the resulting model could have become linear which would allow more solvers,
especially those with a linearity precondition, to be included in the template
composition step. A more complex task would be the automation of the
specificational adaptions. This time, two new parameter individuals would need to
be introduced, or related automatically, without knowing the modelers exact
intention. The generation of data values for the respective number of steps and the
interval bounds would again be something to be performed by an extra module a
priori the instantiation of the model with data.

6.3.4. Model Formulation Considerations

Model formulation was introduced in Section 3.2 as a mechanism for model creation
in the model management lifecycle. When formulating models in the ontology
representation, different capabilities could be exploited to support model
formulation. These capabilities are focussed around the knowledge that is contained
in the ontology representation and the reusable model entity types. Type knowledge
in form of class restrictions can, e.g., be exploited to conclude required specifications
that are needed to keep a model consistent. More specific, ontological consistency in
this context would include correct and complete specifications and relations of model
entities.
Futhermore, type knowledge might be exploited in order to recommend certain
operations, e.g., changing a type or adding a new individual of a certain type. If a
system for model formulation is configured to allow for guesses, performing steps in
model formulation can be automated as it was discussed for the preceding examples.
Different such scenarios were discussed in the preceding sections. This subsection
shall conclude these considerations and give a further example of a use case in model
formulation, in which a model with a single constraint declaration is extended by
another constraint declaration from a subdomain. In the end of this subsection, the
use case of adding a new formulation entity to an ontology model will be investigated
from a process perspective.
An important example for support in the model formulation was given in the context
of the multicommodity min-cost-flow model from Subsection 6.1.2 where, besides
others, the idea to recommend the change of a formulation type and further data
specifications, based upon a matching of formulation type class restrictions, the

179

6. Reusability and Model Formulation in the Ontology Representation

actual model specifications, and some change in a set conceptualization for
commodities, was discussed.
When a formulation type is changed or a new formulation entity is added to a
model, the specification of the entity as well as those of all related ones need to be
adapted according to ontology class restrictions. The latter scenario was discussed
for the multicommodity flow model in Subsection 6.1.2, as well as for its extension in
Subsection 6.1.4. In the latter model, especially a type change to a subclass was
performed and the type change required the additional relation of a required
parameter individual. Further examples were also given in the last subsection for the
pipe headloss smoothing and linearization types where, besides the specificational
consistency according to class restrictions, the consequences for the model properties
and model composition were discussed.
If a conclusion is to be drawn from the examples seen so far, one can say that the
retrieval of ontology model consistency in terms of class restrictions is an important
task in all model formulation operations. A respective process will be discussed at
the example of adding a new formulation entity to a model further below. For the
moment it is just repeated that there is a tradeoff between the automatization of the
retrieval of such a specificational consistency and the intention of a modeler that has
to be interrogated and entered in a manual fashion. I.e., getting a consistent model
according to class restrictions might be possible, but the resulting model might not
be that what the modeler wanted. To that end, respective tools for model
formulation in the ontology representation should provide means to configure the
degree of automation allowing in principle, to interrogate the modeler in conflict
situations. Furthermore, it should be stated that recommending formulations and
providing consistency is not everything in model formulation. There are always steps
remaining that need to be performed by a modeler such as, e.g., the declaration of
data entities as variables or the specification of mathematical properties for the data
entities such as, e.g, integrality requirements.
Certain operations for the model formulation in the ontology representation have
cristalized out of the preceding examples. E.g., it was illustrated how new model
entities can be added to a model. This requires a type definition as well as a creation
of further specifications according to the class restrictions of the entity. As already
mentioned, the respective specifications can make a recursive treatment of the
specifications of related mdo-individuals necessary. Besides the addition of new
elements, old elements might be adapted in terms of type changes. This then
typically requires the consistency-retrieval of the ontology model specifications
according to class restrictions. Together, restoring specificational consistency in an
ontology represented model can be identified as an important process.
At every time in the model formulation, a modeler might extend specifications of
model entities that are not covered by class restrictions, e.g., declaring a variable or
specifying a mathematical property. When elements get deleted, required adaptions

180

6.3. Considerations for a Water Network Case Study

in the ontology model get extended by a different orientation. I.e., the affected
element does not only imply checking the meaningfulness of objects in the axioms
where it occurs as a subject, but vice-versa do all individuals have to be checked that
have the element as an object. This thesis does not provide a complete
characterization of model formulation operations. Rather will the case of adding a
new formulation entity and restoring specificational consistency be treated below. At
first, an additional example will be given.
Model Formulation Example: Balance extended by Headloss

©
 H

e
in

z
 N

ix
d

o
rf

 I
n

s
ti
tu

t,
 U

n
iv

e
rs

it
ä

t
P

a
d

e
rb

o
rn

36 – 13.12.2015 DS&OR Colloquium

NetForms#SingleCommodity

BalanceDemandOriented

Net#NodeSet Net#ArcSet

Net#Single

CommodityDemand

Collection

Net#SingleCommodity

FlowCollection
WaterNet#JNodes

WaterNet#Pipes

WaterNet#Flows

WaterNet#Aggregated

PHCoeffsDW

WaterNet#Heads

WaterNetForms#

PipeHeadloss

headlossbalance

flowspipes
junction

nodes
demands phcoeffsheads

WaterNet#Nodes

Figure 6.29.: Extending a model with a balance constraint by a headloss constraint

In this example, a modeler with the abstract goal to generate an ontology
represented version of the case study pipe network design model from Subsection
6.3.2 starts his modeling work with some initial specifications. These specifications
simply just cover the network model in mind that consists of network nodes with the
two subsets of junction- and source-nodes, as well as the network pipes. As the
model is to be generated for water networks, the modeler generates individuals for all
the latter entities together with water network typical types from the vocabulary
WaterNet and their further specifications such as subset relations. Besides the
definition of the network set elements, no further specifications are added to the
model. I.e., no parameters or variables are defined at first. The direct next step now
is the introduction and specification of a network balance constraint model entity.
Therefore, before coming to the declaration of the headloss equations that were
outlined for this example, the specifications for the network balance constraints will
be considered.
As just said, the next step is the introduction of the first constraint group coming
into mind: The network balance constrains. As the modeler knows that he is dealing

181

6. Reusability and Model Formulation in the Ontology Representation

with water networks, he considers to add the constraint group in a form that uses
the typical conceptualization of positively counted water network demand as well as
a single flow good of water. Before introducing the respective parameter- and
variable- collections, he first of all generates an individual of the type
NetForms#SingleCommodityBalanceDemandOriented within the ontology model.
By now, he would have the possibility to create and relate the required data
individuals on his own. But he decides differently and uses functionality from an
extra ontology model formulation module that allows him to partially automatically
create and/or relate required data individuals according to the type definition. As
the type definition for NetForms#SingleCommodityBalanceDemandOriented has two
cardinality class restrictions for exactly one of Net#ArcSet and Net#NodeSet, the
respective individuals are related automatically by respectively generated axioms.
Since the latter mdo-individuals were added to the model in a manual fashion before,
their specificational correctness in terms of the class restrictions is to be checked
again. The individuals were already typed to the water network types
WaterNet#Pipes and WaterNet#JNodes which are subclasses of the required network
domain superclasses and hence introduce no contradictions. Therefore, the partially
automated specification procedure is continued with the generation, typing and
further recursive relation of the required individuals for
Net#SingleCommodityFlowCollection and
Net#SingleCommodityDemandCollection.

Both individuals are created and related as objects of the axioms for the balance
individual, but as the types of the respective
NetForms#SingleCommodityBalanceDemandOriented OM#requires class restrictions
are not water network specific, they are first of all directly typed to the Net-domain
types mentioned above. In case of the individual flows, a respective adaption of the
type to a subdomain type for water networks will be required when extending the
model by other constraint formulations. But before the addition of a new
formulation entity will be discussed, the consideration of the automated balance
individual specifications should be concluded. As already mentioned, two
individuals, flows and demands for the flow variables of water and the water
demands at junction nodes, need to be created the new and their specifications will
have to be created in a recursive fashion. The mdo-types are given by respective
Net-domain types and are at first not specialized types from the subdomain
WaterNet. SPI#definedOn axioms for pipes and junction nodes will have to be
added in an automated fashion. In case of the pipes for the flow-individuals, there is
exactly one Net#ArcSet individual in the model that has a type definition for the
subclass WaterNet#Pipes. The respective axiom should be generated in an
automated fasion. In the case of the demand, a decision has to be made, which of
the three Net#NodeSet individuals for nodes, junction nodes and sources should be
chosen. This can not be resolved in an automated fashion with any meaningful guess

182

6.3. Considerations for a Water Network Case Study

and so the modeler would have to be interrogated. He should then answer the
dialogue by choosing the individual for junction nodes.

After the declaration of the mass balance equations, the next step could be the
aforementioned introduction of the pipe headloss constraints. The situation is
visualized in Figure 6.29. The modeler might start the process by creating a new
indvidual headloss of the standard headloss formulation type
WaterNet#PipeHeadloss in the model ontology. Then again, model formulation
functionality could be used to extend the specification of the pipe headloss individual
and the affected other data individuals in an automated fashion. As
WaterNet#PipeHeadloss requires four individuals from the WaterNet-domain, the
following should happen: At first, the required WaterNet#Pipes-individual pipes
could be related in an automated fashion. This step should work without
complications as pipes is the only WaterNet#Pipes individual in the model. Then,
an individual of WaterNet#Flows is required. As there is no such individual in the
model, an extended search might conclude that an individual flows of the superclass
Net#SingleCommodityFlowCollection is contained in the model. The automated
procedure for model formulation hence might decide to adapt the type of flows to
the subclass and relate it by an OM#requires-axiom in an automated fashion. Now,
two further axioms are required for the single individuals of WaterNet#Heads and
WaterNet#AggregatedPHCoeffsDW. In case of the head individual, such an
individual could again be created and typed in an automated fashion, but for its
SPI#definedOn axiom of a WaterNet#Nodes, the choice between the indviduals for
all nodes, junction nodes and sources would need to be resolved by the user again.
Finally, an individual phcoeffs for the resistance coefficient type would have to be
created and specified further. As no such individual exists in the model and the only
SPI#definedOn class restriction can be resolved to the single existing individual
pipes in the model, an automated specification should work out well in this case.

With the relation of the four required mdo-individuals as well as the recursive and
mostly automated adaption/generation of their specifications, the definition of the
headloss individual is finished as far as a model formulation module can consider it.
What remains open and needs to be performed by the modeler are further
specifications such as the definition of the individuals heads, flows and phcoeffs
as variables of the model. Again, this is something that lies in the intention of the
modeler and cannot be guessed or concluded by a model formulation component. In
addition to that, mathematical properties such as the non-negativity of the head and
resistance coefficient variables will have to be entered manually. In case of the
resistance coefficient of type WaterNet#AggregatedPHCoeffsDW one could think
about adding an additional data restriction to the mdo-type that enforces a
respective specification. Then again, based upon the class knowledge, a model
formulation component could add such a specification in an automated fashion. But
nonetheless, for the head-variables such a specification might not be correct in every

183

6. Reusability and Model Formulation in the Ontology Representation

model context.
In the description of the model formulation example, some further aspects were
neglected so far. E.g., the definition of the OM#EName axioms and their values was left
out of the consideration. Therefore, it is mentioned that also this step should allow
for automatization by a model formulation component. Furthermore, the example
with its setting also provided only one realization of a model formulation process
under many possible ones. In the example above, the modeler could, e.g., have
decided to complete the specifications of the data model before the definition of the
first formulation entity. This would have had consequences on the automated
specifications when adding the formulation entities. E.g., the
SPI#definedOn-properties of the related mdo-individuals would have already existed
when defining the model formulation entities. In a different approach, the model
might be defined witout any pre-existing data model. In this case, all the types for a
mass balance constraint might, e.g., first of all be created and typed automatically
for the domain Net, until directly after the automated specifications, the modeler
decides to adapt them to water network types manually. This would, in case of the
balance equations, lead to a scenario similar to the first ontology specification
example of this thesis in Subsection 5.3.1, Figure 5.5.
Model Consistency Retrieval Process Considerations:
This subsection shall now be concluded by the characterization of a process for
restoring consistency of ontology model specifications according to class restrictions.
In order to keep things simple, the consideration will be restricted to the case where a
new formulation entity is added to the model and by this causes a need for adapting
specifications. When a new formulation entity is created, the formulation type
should be defined by the modeler in a first step. Then, according to the cardinality
class restrictions of the chosen type, different OM#requires specifications need to be
created. These specifications can be entered manually or created in an automated
fashion, as different examples of the preceding sections discussed it, but the central
point is the order of processing the OM#requires specifications in combination with
the further mdo-specifications and adaptions they imply. As multiple OM#requires
specifications originate from the choice of a formulation type, the required adaptions
can not be processed all at once. Hence, they need to be stored in a data structure
for later processing. This data structure changes dynamically during the process and
new elements will be added to it, e.g., when the specification of an object of an
axiom for a currently processed OM#requires specification needs to be adapted itself.
The latter case occurs, e.g., when a related mdo-individual is created the new or
when it exists in the model but its type is being changed.
Assuming now that the necessary adaptions are processed in a depth-first order, i.e.,
by first following the path of mdo-specifications such as, e.g., SPI#definedOn, down
to standard sets or simple parameters before returning to the next OM#requires
class restriction of the primary formulation entity, the data structure to represent the

184

6.3. Considerations for a Water Network Case Study

required specifications within the process can be identified as a stack of model entity
and type pairs. Every of the latter pairs on the stack has a reference to the
cardinality class restrictions that are required to check when processing it. These
class restrictions themselves imply further pairs to be pushed onto the stack when
processing them. E.g., a cardinality class restriction might require the creation and
specification of a new mdo-individual as an object. When this individual is created
and typed, a pair with new class restrictions itself originates. The latest element that
was pushed onto the stack represents the current entity to be processed. When
processing a class restriction itself, iteration might be necessary in case of cardinality
classifiers such as min 1 or exactly n with n > 1. I.e., according to the ontology
type design considerations from Section 6.2, a standard cardinality class restriction
would be of the form p exactly 1 mdoobject with p being a property such as
OM#requires or SPI#definedOn, but also specifications with p exactly 2
mdoobject or p min 1 expressionobject, the latter case dealing with expressions,
might occur. In the latter cases, the class restriction processing would have an
iterative form, still including the necessary recursion mentioned above, until the
cardinality class restrictions are satisfied and, optionally in case of min or max, a
modeler states completeness.
The typical situation when adding a new formulation entity to a model and creating
its specification is visualized from a snapshot perspective in Figure 6.30.

(a,t)

…

t p1(t) cardclass1(t) x1(t) trange(p1,t)

t pm(t) cardclassm(t) xm(t) trange(pm,t) Loops for axioms

in case of min 1

expressions or

exactly n > 1

(b,tb)

(c,tc)

…

Actual

pair

Null

Initial formulation

entity and type

Figure 6.30.: Recursive character of model formulation specifications for retrieving an
ontology model’s consistency after adding a new formulation entity

As indicated in the figure, the initial formulation entity lies on the bottom of the
stack and after finishing its specification, the process terminates. During the process,
different mdo-entity and type pairs might be added to the stack together with the

185

6. Reusability and Model Formulation in the Ontology Representation

respective class restrictions to check. As mentioned above, checking a single
cardinality class restriction itself can be a complex process. As such, a formalization
of the whole formulation entity addition and ontology model consistency retrieval
process was figured out as a very complex task during the work on this thesis. To
that end, the textual and graphical process considerations of this subsection should
suffice for the scope of this thesis. This subsection should now be concluded by a
very rough discussion of the algorithmic properties of the DFS-approach.
As the ontology graph structure of ontology represented optimization models has a
partial order with formulation entities occuring only as root nodes or subjects in
respective axioms, and other axioms propagating down to sets and simple
parameters as leave nodes and objects, a DFS-like processing of the specificational
adaptions should both be complete and correct. Completeness would mean that all
required adaptions will be processed, whilst correctness would mean that the
specifications of the optimization model are consistent in an ontological way after
termination. I.e., no contradiction to the class restriction knowledge exists in the
model after the use case process has terminated. The termination of the process
itself depends on its concrete realization and the interaction with the modeler. I.e., if
it can be guaranteed that the iterative treatment of the min 1 expression
specifications will terminate at some point, termination of the process itself should
be guaranteed. Nonetheless, the discussed process provides only a single use case in
the model formulation that would typically be accompanied by operations that are
not that formalized at all. E.g., the typing of data entities as variables was
mentioned as a typical user interaction before that can not be completely captured
by ontology class restriction focussed model formulation processes. To that end,
termination is not an important property for the model formulation process itself. In
the end, on the level of formulating complete models, a modeler would always have
to decide by himself, when a specification is completed.
The exemplary consideration of a recursive consistency retrieval process as outlined
above should suffice for the scope of this thesis. For sure, the outlined process itself is
not the only possible approach to such a consistency retrieval in model formulation.

6.3.5. Types and Formulation Choices concerning Integrality Requirements

This subsection is intended to discuss another example of a choice in the formulation
of a model, where reusable types provide the necessary formalization. The essence of
the example is the choice between a linear type that requires the introduction of
certain integral, especially binary, variables, and a continuous variant that in
contrast introduces nonlinearities. In order to stay consistent with the surrounding
water network setting of this section, the activation and deactivation of pumps was
chosen as a specific form of the exemplary modeling situation. The latter topic
occurs in operative planning models for water distribution systems.

186

6.3. Considerations for a Water Network Case Study

As the scheduling of pumps is an operative task, it would be untypical to consider it
in the context of the pipe network design case study model from Subsection 6.3.2.
To that end, the discussed modeling fragments will be taken from another model
that can be found in the literature. This subsection will only discuss the relevant
modeling excerpts and not the complete model. As a reference, the reader is referred
to the article [BGS09] that deals with the formulation and solution of a NLP model
for the operative planning in large drinking water networks. The modeling fragments
considered here are concerned with the short-term activation and deactivation of
pumps in the operative planning shedule that runs over a discrete time-scale. The
motivation for trying to forbid the short-term activation and deactivation of pumps
is given by the fact that respective frequent switching can reduce the service life of
the pumps as well as that it can be costly from an energy perspective. The authors
mention the two tasks to forbid both short-term activation and deactivation together
with a third task, the problem of "alternating discharge", which will not be
considered here. For the problem of forbidding or at least reducing the short-term
pump activation and deactivation, a novel quadratic and smooth NLP formulation is
proposed in [BGS09] and compared to a standard MIP formulation which uses
binary pump activity indicator variables. The two formulations will be presented
right now, followed by the introduction of the respective reusable formulation types.
Finally, the application scenarios in the model formulation will be discussed.

At first, a standard linear formulation using binary indicator variables will be
presented. The formulation forbids the short-term activation and deactivation of
pumps by fixing the activity status of a pump for K periods in a row in case of
changes. Both the activation and the deactivation can be treated by one group of
constraints each. The formulation excerpt in AMPL can be found in Figure 6.31.
For a literature reference, the reader is referred to [BGS09], but care has to be taken
due to an adaption of the group of deactivation constraints by the author of this
thesis. As it will be explained below, a respective multiplicative factor of two in the
right-hand side of the constraint group was identified to be mistakeably wrong and
has thus been adapted to a factor of one.

The MIP formulation introduces the binary indicator variables Y for all pumps at all
times of the discrete planning horizon 0..T. This number can thus be quite huge
although pumps typically rarely occur in comparison to normal pipes in a network.
The parameter K controls the number of periods for which a pump’s activation status
is constant in case of a change. Typically, K is set to the value three in order to
freeze the satus for two subsequent periods after an activation or deactivation in a
respective period. The constraint group
PumpSwitchingLimitActivationwithBinaries enforces a pump that is being
activated in period t+1 to stay on for the periods until time t+K. Vice versa,
PumpSwitchingLimitDeactivationwithBinaries enforces a pump to stay off for
the respective number of periods by letting the right-hand side take a zero value in

187

6. Reusability and Model Formulation in the Ontology Representation

set Nodes;
set FullPipes within {Nodes,Nodes};
set Pumps within FullPipes;
param T > 0;
param K > 0 integer;
var Y{Pumps,0..T} binary;
s . t . PumpSwitchingLimitActivationwithBinaries{(i,j) in Pumps, t in 0..(T−K)}:
K ∗ (Y[i, j , t+1] − Y[i,j , t]) <= sum{l in 1..K}(Y[i,j,t+l]) ;
s . t . PumpSwitchingLimitDeactivationwithBinaries{(i,j) in Pumps, t in 0..(T−K)}:
sum{l in 1..K}(Y[i,j , t+l]) <= K ∗ (Y[i,j,t+1] − Y[i,j , t]) + K;

Figure 6.31.: Forbid short-term pump activation and deactivation by MIP constraints

case of a deactivation in period t+1. More specific, right-hand side values greater
equals K are enforced in case of activated or state-preserving pumps, and the value of
zero only results in case of a deactivation. Note, that in the original reference
[BGS09], the right-hand side term Y[i,j,t+1] - Y[i,j,t] has a factor of 2*K,
leading to a right-hand side value of -K in case of a deactivation. As the left-hand
side is a sum of the respective 0-1 indicator variables, the constraint would thus
become infeasible. For this reason, the formulation was adapted to a rigth-hand side
multiplicative factor of one by the author of this thesis. Finally, it should be
mentioned that both of the latter constraint groups are linear.
The NLP formulation for the pump switching scenario has been developed in
[BGS09] and does not require the introduction of any binary variables but rather
formulates on the volumetric flow rates Q through the pumps. It is restricted to
keeping the activity status constant for two or three periods which respectively
means to freeze the status for one or two periods after the period in which a change
took place. To that end, the parameter values K=2,3 are instantiated by the
formulation excerpt in Figure 6.32. The four constraint groups are divided into two
parts for activation and deactivation. In case of freezing the pump activity for two
periods subsequent the period in which a change took place (K=3), two constraint
groups, including also the one with the name-part "OnePeriod", are required. The
same holds for the deactivation constraints. The activation constraints are linear,
whilst the deactivation constraints are nonlinear but smooth. As the authors
mention, the activation constraints are certain by fobidding the short-term pump
activation in any flow-scenario, whilst the deactivation constraints are only stated to
be "reliable [BGS09]".
The constraints underlying the formulation excerpts in Figure 6.32 are derived in
[BGS09]. For an intuitive interpretation of "how they work", the reader might note
that flow in pumps is always nonnegative in sign and that certain bounds are given
on the multiplicative factors of the constraint formulations. In the constraint goup

188

6.3. Considerations for a Water Network Case Study

set Nodes;
set FullPipes within {Nodes,Nodes};
set Pumps within FullPipes;
param T > 0;
param alpha >0;
param cDeact > 0, <= 0.5;
param cOne > 0.5, < 2;
param cTwo > 1/3, < 2;
var Q{FullPipes, 0..T};
s . t . PumpActivationOnePeriodForbiddenNLP{(i,j) in Pumps, t in 0..(T−2)}:
(cOne + 1) ∗ Q[i,j , t] + (cOne − 2) ∗ Q[i,j,t+1] + (cOne + 1) ∗ Q[i,j,t+2] >= 0;
s . t . PumpActivationTwoPeriodsForbiddenNLP{(i,j) in Pumps, t in 0..(T−3)}:
(cTwo + 1) ∗ Q[i,j,t] + (cTwo − 1) ∗ Q[i,j,t+1] + (cTwo − 1) ∗ Q[i,j,t+2] + (cTwo + 1)

∗ Q[i,j,t+3] >= 0;
s . t . PumpDeactivationOnePeriodForbiddenNLP{(i,j) in Pumps, t in 0..(T−2)}: Q[i,j,t+1]

− cDeact ∗ (Q[i,j,t] + Q[i,j,t+2] − sqrt((Q[i,j,t] − Q[i,j , t+2])^2 + alpha^2)) >= 0;
s . t . PumpDeactivationTwoPeriodsForbiddenNLP{(i,j) in Pumps, t in 0..(T−2)}:
Q[i , j , t+1] − cDeact ∗ (Q[i,j, t] + Q[i,j , t+3] − sqrt((Q[i, j , t] − Q[i,j , t+3])^2
+ alpha^2)) >= 0;

Figure 6.32.: Forbid short-term pump activation and deactivation for one and two
subsequent periods by quadratic NLP constraints as in [BGS09]

PumpActivationOnePeriodForbiddenNLP, the activation of a pump is, e.g.,
characterized by flow rates Q[i,j,t] of zero and Q[i,j,t+1] greater zero such that
the negative sign of the Q[i,j,t+1]-term enforces also Q[i,j,t+2] to be positive.
The next, the formulation types for the latter two formulations of the short-term
pump activity modeling should be discussed.

Encapsulation of the two latter formulation artifacts is achieved by the formulation
types WaterNetForms#IntegralPumpSwitchingConstraintsActivation-
DeactivationOperativeTime and
WaterNetForms#ContinuousPumpSwitchingConstraintsActivation-
DeactivationMaxTwoPerOperativeTime which each contain the respective
constraint groups for both activation and deactivation of pumps from the latter
examples. The first type can be used for a generous number of periods in which the
pump status stays constant after a change, whilst the second type freezes the state
for two periods after the first period in which the change took place, i.e., the pump
operation is constant for three periods. This is done by integrating all four
constraint groups from Figure 6.32.

WaterNetForms#IntegralPumpSwitchingConstraintsActivationDeactivation-
OperativeTime requires exactly one of WaterNet#Pumps and

189

6. Reusability and Model Formulation in the Ontology Representation

WaterNetForms#IntegralPump

SwitchingConstraintsActivation

DeactivationOperativeTime

WaterNetForms#Continuous

PumpSwitchingConstraints

ActivationDeactivationMaxTwoPer

OperativeTime

WaterNet#Pipes

WaterNet#Flows

WaterNet#Pumps

TimeHorizons#

PlanningHorizon

Length

WaterNet#Pump

SwitchingConstantfor

PeriodsParameter
OM.MProps

#IntegerData

WaterNet#PumpSwitching

IndicatorOperativeTime

OM.MProps

#BinaryData

WaterNet#Pump

DeactivationConstant

ForNLPFormulation

WaterNet#PumpActivation

ConstantForNLPFormulation

OnePeriod

WaterNet#PumpActivation

ConstantForNLP

FormulationTwoPeriods

MathOpParams#

AbsoluteValueSquare

RootSmoothingAlpha

OM.MProps

#StrictlyPositive

LowerBound

Figure 6.33.: Ontology definitions for the two pump switching formulation types

TimeHorizon#PlanningHorizonLength, yielding the set of pumps and the length of
the planning horizon. Furthermore, exactly one individual of the mdo-type
WaterNet#PumpSwitchingConstantforPeriodsParameter is required in order to
have the parameter K available. The core requirement is given by exactly one of
WaterNet#PumpSwitchingIndicatorOperativeTime which represents the binary
indicator variables Y. This mdo-type has a further class restriction OM#dataMProp
exactly 1 OM.MProps#BinaryData which explicitely represents the fact that the
indicator data will always be of binary value nature.
Compared to the latter, the NLP formulation type WaterNetForms#Continuous-
PumpSwitchingConstraintsActivationDeactivationMaxTwoPerOperativeTime
has more extensive type requirements. This is due to the fact that a formulation
such as in Figure 6.32 requires further respective parameters, such as cDeact, COne
and CTwo that are represented by the three types in the lower left corner of Figure
6.33. Futhermore, a parameter alpha that is used in the quadratic and smoothed
formulation of an absolute value is required for the formulation of the deactivation
constraints. The respective type requirement is given by the type
MathOpParams#AbsoluteValueSquareRootSmoothingAlpha. The NLP formulation
type does not require any binary indicators or the respective value of K since it is
fxed to K=3. Nonetheless, as the NLP formulation uses the volumetric flow rates
through the pumps, exactly one individual of WaterNet#Flows is required. The type
requirements for pumps and the length of the planning horizon are the same as for
the integral formulation type.
As there is the beneficial missing of the binary indicator requirement in the NLP
formulation type together with some exclusive specific parameter requirements that

190

6.4. Soft Constraints

the MIP-type does not have, a subtype relation can not be established for the two
latter formulation types. Also, fixing the parameter K in the integral MIP-type to
value three would not help. To that end, one gets two formulations with some type
requirement similarities where the types capture some large and complicated
statement blocks for reuse. Using either one of the formulations by types is an
example of a formalized choice though it is not that explicit as the two types are no
siblings in a subclass hierarchy. In the model formulation, the two types might be
applied as follows:

• By Formulation Recommendation: As both types require pumps and operative
timesteps, the introduction of such sets and parameters to a model could lead
to an automated recommendation of multiple types containing the two as
"pump specific" ones. Nonetheless, it would be up to the user to choose
between a formulation that has a requirement for an mdo-concept that
explicitely introduces binary variables, or a nonlinear one.

• By Semantic Search: If a user knows that he is looking for constraints that
formulate on pumps, he can formulate a semantic query for a respective
ontology class, i.e., a formulation type. Filtering out all the solutions that
explicitely require an "integral" mdo-type afterwards could yield the NLP
formulation type as a single result.

6.4. Soft Constraints

This section presents the possibilities to exploit typical MIP-modeling techniques
within the ontology model formulation approach at the example of soft constraints.
Soft constraints provide an opportunity to weaken typical MIP restrictions, such as
upper bounds or capacities, by allowing a violation which is being penalized in the
objective. In the remainder of this section, the design of special soft constraint
formulation types and their usage will be discussed. As reusable types for constraint
formulations can only capture the constraint modeling operations, a further part of
the discussion will be designated to the specification and adaption of goal/objective
formulations. Soft constraint modeling is generally applicable in the MIP-modeling
context, so the formalizations of this section will be given in a pattern-like way
without a concrete application domain such as, e.g., water networks. Furthermore,
the suggested types and ontology concepts are not part of the implementations
accompanying this thesis.
The soft constraints modeling approach consists of multiple partially optional steps
to be applied to an excerpt of a mathematical program. In order to give a short
introduction, you may consider the following three prototypical MIP-constraints and
their transformation into a soft constraint form:

191

6. Reusability and Model Formulation in the Ontology Representation

∑
j∈J

ajxj ≤ b ⇒
∑
j∈J

ajxj − u ≤ b, (6.13)∑
j∈J

ajxj ≥ b ⇒
∑
j∈J

ajxj + v ≥ b, (6.14)∑
j∈J

ajxj = b ⇒
∑
j∈J

ajxj − u+ v = b. (6.15)

u, v ≥ 0 (6.16)

The initial constraints contain some parameters b, aj ∈ J and variables xj ∈ J . Their
soft constraint variants introduce variables u and/or v with non-negativity
requirements. These variables are used to allow for the violation of the original
constraints. In case of an upper bounding constraint, the variable u allows to exceed
the upper bound, whilst in case of a lower bound, a variable v allows to undercut the
respective constraint. In case of an equality constraint, both variables can be used.
Introducing additive terms and nonnegative variables u, v is only a first part of the
soft constraints modeling technique. A second part that also takes place within the
constraint system would be the upper bounding of the variables u, v by some
parameters U, V in respective bounding constraints. This can be used to ensure that
the absoulute violation of constraints does not exceed a certain level. But the
introduction of such bounds is optional. Of more importance is the punishment of
constraint violations within the objective function. This "third part" of the modeling
technique reveals an important consequence for the formulation type based modeling
in the ontology formalism: In accordance to the ontology type design principles from
Section 6.2, modeling fragments will be encapsulated into new types rather than that
a configuration of more generous placeholders for single types or whole models takes
place. By this, the modeling of soft constraints will lead to new formulation types
that capture the modeling statements of the adapted constraints together with the
new variables u, v and optionally their upper bounds. But what can not be
encapsulated into a constraint formulation type is the respective adaption of the
objective. This adaption will be introduced right now and its modeling within extra
goal-types will be a topic further below.
To complete the consideration of the objective modeling, consider the case of a
minimization problem. Any additive term in the variables u, v that increases the
value of the objective monotonically within these variables is a penalization of the
respective usage of the variables. As such, a convenient way is to introduce a
proportionality factor c > 0 for every such variable and add an additive term +cu or
+cv to the objective. Care has to be taken in case of a maximization objective. In
order to penalize the violation of constraints in that case, a decrease of the objective

192

6.4. Soft Constraints

function has to be achieved and the respective factors c < 0 are to be accounted with
a negative sign when using the convention +cu or +cv for the additive terms.
Let us now start with the modeling of reusable formulation types by exploiting the
constraint formulation types that encapsulate the first two parts of the soft
constraint modeling technique from above. Figure 6.34 gives an overview on the type
definitions.

Domain#ConstraintFormulation

TypeX

WaterNet#Pumps

Standard Type

Requirements

Domain#ConstraintFormulation

TypeXSoftConstraintVersion

„OM#formulationMath

ModelingProperty“ exactly 1

FormulationProperties#SoftConstrains

OM#requires

OM#requires

exactly 1/0

Soft!Constraints#UVar

Soft!Constraints#VVar

Soft!Constraints#

UUpperBound

Soft!Constraints#

VUpperBound

OM.MProps

#NonNegative

LowerBound

Figure 6.34.: Ontology definitions for soft constraints’ constraint types

A soft constraint variant should be provided by a subtype of an originating
constraint formulation type as there is no need to delete any preceding type
requirements. By this, the old type requirements can be inherited and only need to
be extended by the additional requirements for the variables u, v as well as their
optional upper bounds. The mdo-concepts for the respective type requirements stem
from an extra vocabulary Soft-Constraints. Their usage is to be prescribed in an
individual way by every soft constraint type. Soft constraint variants for upper
bounding might require exactly one Soft-Constraints#UVar used for the
exceedance of upper bounds, but would typically not use and require any
Soft-Constraints#VVar. Furthermore, the usage of upper bounding constraints for
the new variables and the derivation of respective statements from the type is
optional and can be handeled differently by any type conceptualization and
associated derivation implementation. Special attention has to be paid to a possible
indication of the "soft constraint" property of a formulation. In order to perform a
semantic search for soft constraint variants in the model formulation, a concept
FormulationProperties#SoftConstraints might be of interest. The concepts can
be added to a formulation individual by an ontology axiom using the property
OM#formulationMathModelingProperty and its usage can be prescribed on class

193

6. Reusability and Model Formulation in the Ontology Representation

level by a respective cardinality restriction. By this, the semantice formulation type
provides a simple pattern for a semantic search of soft constraint variants of a
constraint.

©
 H

e
in

z
 N

ix
d

o
rf

 I
n

s
ti
tu

t,
 U

n
iv

e
rs

it
ä

t
P

a
d

e
rb

o
rn

Domain#GoalFormulation

TypeMinimizationX

WaterNet#Pumps

Standard Type

Requirements

Domain#GoalFormulation

TypeMinimizationXSoftConstraint

Version

„OM#formulationMath

ModelingProperty“

exactly 1

FormulationProperties#Soft

Goal

OM#requires

OM#requires

min 1

Soft!Constraints#UVar

Soft!Constraints#VVar

Soft!Constraints#

GoalConstant

Minimization

OM.MProps

#NonNegative

LowerBound

OM.MProps

#StrictlyPositive

LowerBound

Soft!Constraint!Forms#

SC!Expression

OM#ExpressionEntity

OM#expRequires

exactly 1

Soft!Constraint!Forms#

UExprMin

Soft!Constraint!Forms#

VExprMin

Figure 6.35.: Ontology definitions for soft constraints’ goal types

In order to provide the penalization of constraint violations in the objective,
adaptions in the goal type and instance specification have to take place. As different
soft constraints, which all have to be punished within one single objective, can be
used in a model, the goal formulation types themselves should be designed in a
flexible way. This can be done by providing a subtype of every goal type. The
conceptualization of subtypes also allows it to stay consistent with the ontology
formalizations and design principles that were given in this thesis.
The soft constraint goal type uses OM#ExpressionEntity subtypes in order to be
flexible enough to allow for a generic extension of the objective expression by
different penalization terms. Expressions were introduced in Subsection 6.1.3 in the
context of certain min-cost-flow constraints. A soft constraint capable goal can use a
generic, positive number of such expressions, depending on the number and character
of soft constraints used in a model. As soft constraint objectives are conceptualized
as special subtypes, the requirement of min 1
Soft-Constraint-Forms#SC-Expression can be stated, which also is consistent
with the design considerations from Section 6.2. As one does not know whether and
how many exceedance or shortfall soft constraint formulations will be used with an
objective, the requirement of the expression type
Soft-Constraint-Forms#SC-Expression from the extra vocabulary
Soft-Constraint-Forms represents a non-instantiable type which is to be refined to
the subtypes Soft-Constraint-Forms#UExprMin or

194

6.5. Conclusion

Soft-Constraint-Forms#VExprMin. These instantiable expression types are then
specific to their usage by having the respective requirements for variables and
parameters using the property OM#expRequires together with sharp cardinality
restrictions of the form exactly 1 and furthermore encapsulating the right
"sign-requirements", e.g., for minimization. The minimization specific penalization
scaling parameters are encapsulated in the class
Soft-Constraints#GoalConstantMinimization. As in the case of constraint types,
the soft constraint capability of a goal type could be indicated by an extra axiom
using the OM#formulationMathModelingProperty property.
To conclude this section, one can say that providing the soft constraints modeling
technique via reusable types is possible whereupon the necessity to adapt both
constraints and objectives complicates the model formulation. When planning to
reformulate an existing constraint or group of constraints as soft constraints, a
modeler might first of all choose a respective soft constraint subtype. As the type is
a subtype, the respective adaptions for the constraint individual only concern the
type change and the specification and relation of the additional variables and
parameters. The relation of a unique individual to indicate the soft constraint
property can be automated. What the modeler should not forget about is to adapt
the goal specification by adding respective expression entities with their
specifications and possibly changing the type of the objective. When performing
these adaptions, also the direction of the optimization has to be taken into account.

6.5. Conclusion

Within this chapter, multiple examples of formulation- and mdo-types were
presented. Besides their specifications in terms of cardinality class restrictions, whole
subsumption hierarchies of types were discussed, enabling formalized choices in
modeling. Capabilities for automatization in the model formulation were illustrated
together with a discussion of formulation type reusage. Based upon the various
examples, also a characterization of the class restriction design for single types was
given in terms of cardinalities.
The example formulations were presented in the context of two domains, namely
network flow problems and water distribution systems. For the network flow
problems, two consecutive generalizations of a standard min-cost-flow problem were
discussed in terms of commodities and a split of the integral and continuous
commodity flow goods. The example models led to the formalization of different
parallel subsumption hierarchies for network flow mass balance types as well as a
very general representation of resource availability constraints that makes use of
flexible expression specification capabilities within the ontology approach. The case
study for water networks introduced an application domain whose formalizations can
partially be grouped under the ones of the network flow domain. The integration of

195

6. Reusability and Model Formulation in the Ontology Representation

a mass balance constraint individual with constraints for pipe headloss in Subsection
6.3.4 provided an illustrative example for the interplay of the different formalizations
as well as for an exemplary workflow in model formulation. Pipe headloss
formulations were investigated in detail in Subsection 6.3.3 and provided insights
into formalized choices in modeling as well as that they demonstrated how larger
groups of AML statements can be encapsulated for reuse. More specific, polynomial
smoothing and different linearizations were presented and respective type
formalizations were brought into a hierarchy. Automatizations in ontology
specifications for retrieving an ontology model’s consistency were discussed as well as
that the perspective for the analysis of model properties and the service composition
was illustrated. In Subsection 6.3.5, another modeling decision was formalized by
two types for pump switching constraints in models for water distribution systems.
The formulations came from the literature where they had been applied to a pump
operation planning problem. A key feature was the choice between the linear but
integral and the continuous but nonlinear formulation. Finally, Section 6.4 explained
how the modeling technique of soft constraints can be applied in the formulation of
ontology represented optimization models by the aid of respective types.

Concerning the idea of reusing formulation types in the formulation of ontology
represented model’s, different examples were presented that might allow for saving
costs in terms of the time for formulating a model. Furthermore, reusing formulations
in ontology types should avoid mistakes in the specification of AML statements.
Besides others, multiple individuals of the same types in the third min-cost-flow
model as well as the huge statement blocks for the pipe headloss linearizations were
mentioned as examples. Furthermore, a decoupling of expression structure was
demonstrated for the flexible types of resource availability constraints and a network
flow objective. Inside the latter types, different formalizations of expression types
can be reused as well as that the general principle of subsumption is exploited. The
subype relation for expression and formulation types was characterized as only
refining old and adding new class restrictions. This can lead to only a small number
of required operations when changing types in an existing model formulation.

The support of tasks in the model formulation was illustrated by different examples.
The initial creation of a commodity-set in a min-cost-flow model specification led to
the consideration of model formulation recommendation, a technique that was only
outlined by examples and should be investigated further in the future research. The
basic idea was to recommend formulation types together with data model adaptions,
where the ontology class restrictions match both with the types of individuals in the
current model specification as well as with the intended adaptions of the data model
and types, e.g., the "multiple commodities" in the considered example. Besides the
formulation recommendation, the formalized choices in modeling that were reprented
by different subsumption hierarchies provided another case of support in the model
formulation. E.g., for the pipe headloss types, the generation of different model

196

6.5. Conclusion

variants and systems to be solved in an iterative process (or in parallel) was
highlighted as something to automatize.
The central model formulation task that occurred in the different examples was the
retrieval of an ontology model’s consistency according to the class restrictions of the
concerned types. A necessity for specificational adaptions can be triggered by
different model formulation operations such as, e.g, the creation of a new formulation
entity. Besides general process considerations in Subsection 6.3.4, different
automatizations for creating the required specifications were discussed. These
automatizations, besides others, covered the cases where specificational axioms and
especially new objects occurring in the axioms were added automatically to a model,
as well as that existing objects were related in axioms, possibly including a change of
their type. Unfortunately, all these latter methods have no access to the modeler’s
real intention. Hence, a decision has to be made whether a modeler should trust
automated "guesses" that are based on some rules, or whether automatization should
not be exploited and the modeler should be interrogated.
Concerning the requirements from Section 4.2, this chapter demonstrated different
new features for their coverage:

• Model Formulation by abstract Types: The usage of abstract types as a
central representational element has already been discussed in Section 5.7. In
this chapter, many concrete examples of formulation types were given and the
automatization of different operations in model formulation was illustrated.
Especially, the retrieval of an ontology model’s consistency was discussed from
a process perspective. Different examples illustrated that reusing types can be
simple and can save specificational work. E.g., when changing to a subclass
type, the adaptions in a specification only concern the differing class
restrictions. In addition to that, huge blocks of statements that are
encapsulated in formulation types save work compared to AML specifications.
Though there are limitations in automatizing the model formulation process,
this requirement can now be stated as covered.

• Model Semantics: The coverage of this requirement has already been
discussed in Section 5.7.

• Automated Modifications and Recomposition: A detailed example for
the coverage of this requirement was discussed in scope of the pipe headloss
linearization types in Subsection 6.3.3. As the example illustrates,
subsumption hierarchies of formulation types provide formalized choices in
modeling. The choices can be exploited for automated modifications and a
recomposition of the system. The recomposition is based on an automated
model analysis and service generation (recapitulate Section 5.6 of the last
chapter). In this chapter, the perspective to iteratively recompose systems
after changes was highlighted by the pipe headloss example.

197

6. Reusability and Model Formulation in the Ontology Representation

• Models as Services and Composition: The coverage of this requirement
has already been discussed in Section 5.7.

• System Integration: The coverage of this requirement has also been
discussed in Section 5.7.

• Service Enabling: Furthermore, the coverage of this requirement has already
been discussed in Section 5.7.

• Compatible with (semantic) Web Technologies: And finally, also the
coverage of this requirement has been discussed in Section 5.7. This chapter
considered the OWL 2 design of concrete formulation- and mdo-type ontologies
and hence introduced no new technologies or architecures that could contradict
the coverage of the requirement.

198

7. Consolidation: A MINLP Model for Pipe Renewal
Planning

Besides the formulation type focussed considerations, Section 6.3 gave a short
introduction to the planning of water distribution systems and important parts of
the physical network model including underlying physical laws. During the work on
this thesis, a Mixed Integer Nonlinear Programming (MINLP) model for the problem
of pipe renewal planning was formulated and solved. The model catches up
important fragments of the models in [BDL+06] and the case study variant in
Section 6.3, but further extends them to a multi-year planning horizon with different
network configurations to be considered over multiple periods a day. To that end, it
represents a complex new model for a practical application. This section aims at
presenting this model and some numerical results on its solution by two different
MINLP solvers.
Concerning the connection to the preceding chapters, the reader will find some
variants of the types from Section 6.3 and Subsection 6.1.1 in the model formulation,
as well as that the case study domain of drinking water networks will be exemplified
and motivated further. Furthermore, a general planning approach in the domain will
be discussed. The planning approach corresponds well to the development process
and architecture of optimization systems that was outlined in this thesis in Section
5.1. This chapter furthermore provides a part of the evaluation for the considerations
of the case study in Section 6.3 by showing the relevance of concepts from the
framework of this thesis. Besides that, the numerical results might be of some
interest for practitioners doing optimization in water distribution systems.
The next section provides a short literature review on the associated planning
problem. Section 7.2 then gives a problem definition and discusses the model
solution in the scope of the broader approach mentioned above. Section 7.3 finally
presents the MINLP model to be solved. The results will be given in Section 7.4.
There are in fact two results: At first, numerical results for an AMPL formulation of
the model with an older version of the solver Bonmin will be presented. Then, an
implementation of the model under AIMMS which is solved with the solver BARON
in an up to date version will be given. The results under AIMMS/BARON were
achieved by L. Brinkmeyer based upon the mathematical model formulation
developed by the author of this thesis and given within this thesis in Section 7.3.
The AIMMS/BARON model and results are documented in the bachelor thesis
[Bri15] and will only be cited in the relevant excerpts within this chapter.

199

7. Consolidation: A MINLP Model for Pipe Renewal Planning

7.1. Literature Review: Pipe Renewal Planning and Optimization

Planning the renewal of pipes in a water distribution network integrates the two
ideas of planning a target network design and determining a strategy how to achieve
this design in a cost efficient, long-term planning process. There are not many
publications dealing with this integrated view. This section gives a short literature
review on different optimization approaches whose common result is a network with
modified pipes. The static problem of pipe network design, which is already known
from the MINLP model in [BDL+06] that was modified in Subsection 6.3.2,
represents the standard problem underlying most of the approaches.
A further relevant approach that is also used in practice for planning the
development of German municipal drinking water networks is described in the
diploma thesis [Hen08]. The author presents an integrated approach that is based
upon a two-staged planning process. At first, an existing network’s pipe dimensions
are minimized in a cost-efficient way by a simulation-based heuristic. The second
planning step then introduces either a Mixed Integer Programming (MIP) approach
or a genetic algorithm to determine an optimal target network topology. Technical
assets such as valves are included in the planning procedure for an optimal target
network. The approach is evaluated on different networks of realistic size and
character. Strategies how to determine a plan for achieving the target netwok
structure over a long-term planning horizon are described.
Whilst the integrated view has not been regarded too often, the study of the network
design problem for drinking water networks has been carried out under different
viewpoints with different optimization methods. Since the nonlinear network
hydraulics have to be considered in all kinds of approaches that vary from MIP over
MINLP to meta-heuristics, also different model reformulations and linearizations can
be observed.
Sherali and Subramanian [SSL01] present a Branch-and-Bound approach with a
guaranteed gap to the global optimum. They start with a split-pipe design (to be
explained in what follows) formulation of the nonlinear network design problem.
Based upon a convex combination, the nonlinear headloss equations in
Hazen-Williams form are being reformulated in a linear way, where the nonlinearity
in the model now is contained in a formulation of the link flows as a function of a
new variable. This nonlinear constraint is being relaxed by a linear outer
approximation such that the resulting lower bounding problems can be solved
efficiently by LP methods. An upper bounding heuristic is presented and the whole
approach is being evaluated on the standard network design test problems (which are
actually of very small size) and a more realistic Blacksburg test network. The
guaranteed solutions that are within 10−4% of optimality provided a novelty in
MIP-based approaches for the pipe network design problem at that time.
The idea of split-pipe designs, i.e., the determination of pipe diameters by assigning
portions on the length of a pipe for each available diameter was exploited by many

200

7.1. Literature Review: Pipe Renewal Planning and Optimization

approaches relying on the Linear Programming Gradient method (LPG). See, e.g.,
[KS89] for an improved variant. Here, the solution process of the pipe network
design problem is split into two phases. In a first phase, network heads and optimal
portions of pipe diameters on the length segment are computed for a fixed flow
scenario. Due to the split-pipe formulation the computation can be performed in a
linear fashion by solving a LP model. In a second stage, the flow is changed due to
the so-called gradient of the objective function (GOF). The approach in principle
lacks on the guarantee of reality suited solutions (,i.e., no splitting of diamter
portions exists in optimal, realistic solutions) and the general guarantee of global
optimality. Hence, partitioning approaches such as discussed above for [SSL01], or
(Mixed-Integer) Nonlinear Programming Approaches, constitute important parts of
the newer research.
Besides that, meta-heuristics have been, and are still, applied to the drinking water
network design problem.
Dandy et al. [DSM96] provide an improved genetic algorithm (GA) for the pipe
network design problem. They improve the standard GA performance by using a
variable power scaling of the fitness function in combination with an adjacency
mutation operator and a gray coding instead of a binary one. Their results are
provided on the standard New York Tunnels Problem.
An approach based upon Tabu Search is given by [dR04]. The choice of suited pipe
diameters from a discrete set of commercially available dimensions is accompanied
by the characterization of neighbourhood solutions. Here, neighbourhood solutions
are characterized by changing exactly one diameter of one pipe at a time. The
results present some improvements on the small sized standard design problem
networks from the literature.
Novel approaches integrate the integrality and nonlinearity requirements of pipe
diameters and headloss relations by formulating as Mixed Integer Nonlinear
Programming (MINLP) models. As already mentioned before, Bragalli et al.
[BDL+06] present a MINLP model formulation for the network design problem. The
nonlinear headloss equations are included in the model formulation in a locally
smoothed variant in order to fulfill NLP solver requirements. The discrete choices on
commercially available pipe diameters are modeled by continuous diameter variables
that are restricted to the discrete set of available diameters by some diameter
increment constraints. Consequently, the discrete cost function is fitted to a smooth
variant for the principally continuous diameter variables. The model is solved using
different MINLP codes that are interfaced to the modeling environment AMPL
[FGK03]. The results are presented on the standard test networks from the literature
as well as the real world fossolo network near Bologna and compare well to the
results of heuristic or MIP approaches. As the authors highlight, the intractability of
MIP solutions due to a high number of binaries wehn formulating linearizations can
be avoided by MINLP approaches.
To that end, MINLP approaches constitute a promising area of actual WDS

201

7. Consolidation: A MINLP Model for Pipe Renewal Planning

planning research. Whilst NLP techniques might be successfully applied for the
continuous and 0-1 decisions in pump activity planning [BGS09], the treatment of
integral decisions in the planning of pipe network designs, including pipe dimensions,
cannot be neglected. The developments in MINLP solver technology reflect this
development. The solver Bonmin [PLA+08] provides different methods such as a
MINLP Branch-and-Bound and outer approximations in a hybrid scheme that
unfortunately cannot guarantee global optimality for nonconvex problems. The
major reason is the relying on the solution of possibly non convex NLP relaxations
by local NLP solvers. The outer approximation solver Baron [MN05] uses as different
approach that creates convex LP relaxations whose solutions converge to a global
optimum even for non convex problems.

7.2. Multiperiod Renewal Planning: Problem Statement and
Approach

As it was already mentioned in Subsection 6.3.2, water distribution systems in
Germany are characterized by overdimensioned networks. Since renewal measures
are necessary building measures, the idea to develop plans based upon the estimated
times of renewals is a target to be investigated within this chapter.
The basic idea is to develop an integrated model whose result is a multi-year pipe
renewal strategy. Since multiple time-steps in combination with large network sizes
and detailed hydraulic computations will introduce a high complexity into the
model, the long-term vision is to integrate the developed model into the following
iterated solution approach that has been investigated in the dissertation [Hal15] for
the problem of tank planning:

• Reduction: The first step constitutes of an iterated removal and aggregation of
network pipes and nodes. For the goal of changing the size of instances,
sequences of pipes and pipes in parallel are aggregated to single pipes as well as
that tree-structures and end-nodes are removed. Some of the techniques may
introduce errors to the network hydraulics behaviour whilst others produce
virtual but equivalent network formulations. Descriptions of such techniques
and the mathematics behind can, e.g., be found in [BGS09, TD99].

• Instantiation: An abstract optimization model is instantiated with the instance
data for the reduced network.

• Optimization: The optimization instance is solved by a suited algorithm, e.g.,
for MINLP problems.

• Simulation: The optimization solution, which is based upon the reduced
network, is validated by a hydraulic simulation on the detail level of the
originating network. Different demand scenarios are evaluated.

202

7.2. Multiperiod Renewal Planning: Problem Statement and Approach

• Modification: If the solution process did not produce a satisfying and valid
solution, it will be reiterated with a new configuration. In principle, the
reduction method itself, the optimization model behind the instantiation, and
the solution algorithm implemented in a solver, can be modified.

A visualization can be found in Figure 7.1. For a technical realization further data
transformation steps would be required. The approach compares well to the
execution workflow and iterated development process of the optimization systems in
this thesis as it was presented in Section 5.1.

Optimization

Simulation

M

O

D

I

F

I

C

A

T

I

O

N

Reduction

Instantiation

Figure 7.1.: A process for water optimization applications. Visualized process is in
similarity to an approach presented in [Hal15]

The modification step has to be further explained in terms of the changes it will
introduce to the next iteration of the optimization process:

• Reduction: Change the level of aggregation by reconfiguring the network
reduction algorithm and recomputing the reduced network.

• Instantiation: Change the abstract model by changing formulations or
adding/removing constraint groups and compiling a new instance.

• Optimization: Change the optimization algorithm or its configuration.

The first step towards a realization of this planning process was to develop and study
an integrated standard model formulation used in the optimization step. This
formulation is very complex and can be solved up to medium-sized practical
instances. Nonetheless, support for the reduction and modification techniques above
might allow for solving large-scale instances with high quality/level of detail in the
future.

203

7. Consolidation: A MINLP Model for Pipe Renewal Planning

Speaking of requirements, the following aspects are to be integrated into the general
model formulation:

1. Planning horizon and time-coupling of building decisions: A multi-year
planning horizon with a scalable number of discrete timesteps for building
measures has to be considered. A special subset of pipes that is to be renewed
in the planning horizon has to be marked up and these pipes are to be
annotated with a minimum and maximum time parameter for the renewal.
The decisions on renewing a pipe have to be coupled over time such that for
every pipe to renew, a building measure happens exactly once within the
bounds for the renewal.

2. Discrete diameters: Diameters have to take values from a discrete, prescribed
set of commercially available pipe diameters.

3. Nonlinear diameter cost function and goal: The goal of the model should be to
minimize pipe diameters and material cost according to the monotonically
increasing pipe diameter cost function. Since this function is nonlinear and in
principle occurs for every pipe at every possible time of building, a suited way
of modeling that reduces binaries and nonlinear effects has to be found. The
cost function must be represented in a way such that solvers, e.g. for NLP, can
work with it.

4. Budget: A simple declining budget at every time in the planning horizon has
to be adhered to.

5. Demand scenario, periods and tanks: The model has to be accurate in the way
that every developed network variant in the planning horizon is valid for a
simple period simulation. I.e., tank fillings and at least two periods for day and
night have to be respected.

6. Nonlinear headloss: The pipe friction caused headloss should be included in an
exact, nonlinearized way. The assumption of rough pipes is acceptable such
that the Prandtl-Kármán model for the friction factor can be applied. This
introduces a further nonlinearity into the model due to the diameter
dependency. The network hydraulics are to be determined uniquely due to the
input boundary parameters for heads and inflow rates.

7. Bounds and source inflows: Nodal heads are to be bounded by minimum and
maximum parameters and arc flow rates are to be implicitely bounded by
maximum pipe speeds. The fact that diameters come from a discrete and
bounded set should be mapped by the model as well as that the source
outflows are to be bounded from above. Source outflows in addition to that are
only allowed to flow into one outgoing direction. Tanks should have a
maximum filling characterized by their maximal head parameter.

204

7.3. MINLP Model

The overall goal can be concluded as to find a renewal strategy in form of a decision
when to renew and how to dimension the pipes. Thereby, the strategy should lead to
a cost minimal plan in terms of minimized pipe material costs and diameters.

7.3. MINLP Model

This section presents the nonconvex MINLP Model for the pipe renewal problem. At
first, the network model is introduced.
The general network model distinguishes sources, tanks and junction nodes as node
types, whilst arcs only occur in the form of normal pipes. Due to complexity and
solvability reasons, it was decided to leave out pumps and valves, i.e., it is assumed
that all network valves are opened and that there are no pumps inside the
distribution network. The mathematical formulation of the network model uses the
following sets, where a certain subset BP of pipes to be renewed within the planning
horizon is also marked up explicitely:

• Nodes N to capture all network nodes.

• Junction Nodes JN for nodes through which water flows and at which water
can be consumed.

• Sources S for nodes that supply a certain inflow of water.

• Tanks Tk for nodes that can store and hence supply water, but can also
consume water from the network to store it for later periods.

• Pipes P through which water can flow.

• BuildPipes BP as the subset of all pipes which are to be renewed within the
planning horizon.

From a mathematical perspective, the sets underlie the following subset relations,
where it is mentioned that pipes are only allowed to have source nodes as starting
nodes:

J ⊆ N

S ⊆ N

Tk ⊆ N

P ⊆ (S ∪ J)× J
BP ⊆ P

205

7. Consolidation: A MINLP Model for Pipe Renewal Planning

The whole consideration of the network model underlies two time perspectives. One
perspective for the ongoing development of network structure within the planning
horizon as well as one set of periods for simulating a concrete network at a fixed
point in the planning horizon over multiple hours. Since the development of network
structure depends on the bounds for the renewal time of every pipe, additional
parameters have to be introduced for every pipe p ∈ BP . To conclude one
introduces:

• Renewal times in the planning horizon: 0, · · · , T with T > 0.

• Pipe dependent interval of time for a renewal:

0 < TRstart
i,j < TRend

i,j ≤ T ∀(i, j) ∈ BP. (7.1)

• Periods and uniform length of periods (in seconds) for modeling a reference
day:

Per > 0, δPer > 0. (7.2)

For the Budget requirement the following is introduced:

• Budget at every time of a renewal: Budgett ∀t = 1 . . . T .

For the modeling of the pipe diameters and the material cost of a unit pipe length
with a certain parameter, the following is introduced:

• the number of commercially availabe pipe diameters: dnum.

• the pipe diameter values in [m] : dcoi ∀i = 1, . . . , dnum.

• the cost of a unit length of pipe material for a certain diameter:
Cost(dcoi) ∀i = 1, . . . , dnum. In principle, the function Cost(·) is defined on the
discrete set of pipe paraemters. Due to NLP solver requirements it will be
necessary to fit it to a continuous, C2-smooth function, as it will be discussed
in what follows

The netwok model has further parameters as shown in table 7.1.
The building decisions will be indicated by the pipe diameter variables for the
renewal pipes BP at every time in the planning horizon. Due to its diamter
dependency, these pipes further require a variable for the aggregated resistance
coefficient in the Darcy-Weisbach formula (6.8). The pipe diameter will be forced to
take only values from a predefined set, therefore further 0-1 variables are required.
The building measures at a time will further be indicated by a binary variable that
also forces a pipe and time dependent cost variable to take a nonzero value. The

206

7.3. MINLP Model

Set Meaning Symbol Unit
∀tk ∈ Tk Radius of Tanks RTtk m

∀tk ∈ Tk, t = 0, .., T Initial Head at Tanks HIn
tk,t m

∀s ∈ S Initial Head at Sources Hs m

∀s ∈ S Min. Inflow of Source QSmin,s
m3

s

∀s ∈ S Max. Inflow of Source QSmax,s
m3

s

∀p ∈ P Length of Pipe Lp m
∀p ∈ P Roughness of Pipe kp m
∀p ∈ P Pipe-Diameter in act. netw dai,j m
∀p ∈ P Max. Flow Velocity in Pipe vmax,p

m
s

∀p ∈ BP Min. Diameter of Pipe dmin,p m
∀p ∈ BP Max. Diameter of Pipe dmax,p m
∀x ∈ JN ∪ T Min. Head at Junction/Tank Hmin,x m
∀x ∈ JN ∪ T Max. Head at Junction/Tank Hmax,x m

∀x ∈ JN, t = 0, .., T, per = 1, . . . P er Demand at Junction Dx,t,per
m3

s

Table 7.1.: Parameters of the MINPL model

hydraulics are besides the resistance coefficient, which is a variable only for the
renewal pipes, represented by nodal head and pipe flow variables at all times and
periods. A summary is given in table 7.2

Set Meaning Symbol Unit
∀x ∈ N, t = 0, .., T, per = 1, .., P er Junction head at time, after per. Hx,t,per m

∀p ∈ P, t = 0, .., T, per = 1, .., P er Pipe flow rate at time, in per. Qp,t,per
m3

s

∀p ∈ P, t = 0, .., T Pipe resistance at time rp,t
m5

s2

∀p ∈ BP, t = 0, .., T Pipe diameter at time dp,t m
∀p ∈ BP, µ = 0, .., dnum− 1, t = 0, .., T Pipe diam. increments at time Xp,µ,t −

∀p ∈ BP, t = 1, .., T Indicator for pipe renewal at time np,t −
∀p ∈ BP, t = 1, .., T Cost of building meas. at time costp,t −

Table 7.2.: Variables

In what follows, the model’s goal and constraints will be introduced in the order of
the requirements from section 7.2.
Planning horizon and time-coupling of building decisions
Each pipe from the set BP is to be renewed exactly once. Therefore, the sum of all
building measure indicators over the timesteps in the planning horizon is exactly
one, whilst the indicator variables are forced to the value one, whenever a diameter

207

7. Consolidation: A MINLP Model for Pipe Renewal Planning

changes. Otherwise, the character of the objective (minimization, see, (7.11) in the
following) will force the indicator variables to zero. All diameters start at an initial
value:

∑
t=TRstart

i,j ..TRend
i,j

ni,j,t =1 ∀(i, j) ∈ BP (7.3)

di,j,t − di,j,t−1

dmax,i,j
≤ni,j,t ∀(i, j) ∈ BP, t = 1..T (7.4)

di,j,t−1 − di,j,t
dmax,i,j

≤ni,j,t ∀(i, j) ∈ BP, t = 1..T (7.5)

di,j,0 =dai,j ∀(i, j) ∈ BP (7.6)

Discrete diameters
The diameters are forced to take only values from a discrete set by an incremental
modeling as it can, e.g., be found in [BDL+06]:

dco1 +
∑

µ=2..dnum

(dcoµ − dcoµ−1) ·Xi,j,µ−1,t =di,j,t (7.7)

∀(i, j) ∈ BP, t = 0..T
Xi,j,µ+1,t ≤Xi,j,µ,t (7.8)

∀(i, j) ∈ BP, µ = 1..(dnum)− 2, t = 0..T

Nonlinear diameter cost function and goal
The first step to include the nonlinear pipe diameter cost into the model is the
generation of a twice-continuously differentiable function Cost(·) defined on a
bounded interval. To that purpose, the following discrete data known from the
Hanoi test network (,see, e.g., [AM05]) will be considered, where the values have
been converted to SI units:

Diameter di in [m] 0.3048 0.4064 0.508 0.6096 0.762 1.016
Cost ci 45.73 70.40 98.39 129.33 180.75 278.28

Table 7.3.: Diameter cost data

To fit the six data points, an ansatz with a polynomial of degree four that should fit
the data (di, ci)i=1,··· ,6 is made. More specific, due to big scale differences of the data,

208

7.3. MINLP Model

a weighted ansatz of the form

Cost(x) = pa(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4, (7.9)

with a vector at = (a0, a1, a2, a3, a4) of coefficients that minimize the weighted
least-squares objective is made:

min
a

∑
i=1,··· ,6

(1
di
· (pa(di)− ci))2. (7.10)

A similar approach for a diameter cost function can be found in [BDL+06].
By applying an implementation of the general Levenberg-Marquardt method for
nonlinear goal functions from the Octave-Forge packet optim 1.2.2 one obtains an
acceptable result, where the residual lies in the range from 8.95e-005 to 5.23e-003.
A plot of the resulting function can be found in Figure 7.2:

Figure 7.2.: Fitted function Cost(·)

With the available function one can now introduce the objective of the model. In
order to avoid nonlinearities in the goal function that could stem from products of
variable cost terms with 0-1 variables, as well as an occurence of the nonlinear fitted
cost function, the the continuous variables costi,j,t, (i, j) ∈ BP, t = 1, . . . , T are
introduced. The variables count the cost of a unit length of pipe material of a
respective diameter whenever building measures take place. To that end, they need
to be multiplied by pipe lengths and summed over all occurences in the objective
function. The value of the variables is determined by multiple groups of constraints.
The first two groups tie the variables to the value of the nonlinear function Cost(·)

209

7. Consolidation: A MINLP Model for Pipe Renewal Planning

in case of a building measure, whilst the third group sets the cost variables to zero
when no building measures take place. To that end, the introduction of a big-M
parameter is necessary.

min
∑

(i,j)∈BP,t=1,...,T

Li,j · costi,j,t (7.11)

s.t. costi,j,t − Cost(di,j,t) ≤M · (1− ni,j,t) ∀(i, j) ∈ BP, t = 1..T
(7.12)

(−1) · costi,j,t + Cost(di,j,t) ≤M · (1− ni,j,t) ∀(i, j) ∈ BP, t = 1..T
(7.13)

costi,j,t ≤M · ni,j,t ∀(i, j) ∈ BP, t = 1..T
(7.14)

Budget

The budget is modelled by a simple restriction at every time in the planning horizon:

∑
(i,j)∈BP,t=1,...,T ∗

Li,j · costi,j,t ≤
∑

T=1,...,T ∗

Budgett ∀T ∗ = 1..T (7.15)

Demand scenario, periods and tanks

A mass balance constraint (6.7) has to be introduced, where the set of nodes
contains all junction nodes and a constraint has to be inserted for every time-step
and period. For tank nodes, the mass balance has to be formulated in terms of
consistent tank filling levels. These levels are computed by the inflows and outflows
from one period to another. To that end, tank radiusses and heights in form of head
levels are multiplied to obtain a volume which is made comparable to the average

210

7.3. MINLP Model

flow rates of a period by dividing through the period lengths:∑
(i,x)∈P

Qi,x,t,per −
∑

(x,j)∈P

Qx,j,t,per = Dx,t,per (7.16)

∀x ∈ JN, t = 0..T, per = 1..P er∑
(i,x)∈P

Qi,x,t,1 −
∑

(x,j)∈P

Qx,j,t,1 = π ·RT 2

δPer
(Hx,t,1 −HIn

x,t) (7.17)

∀x ∈ Tk, t = 0..T∑
(i,x)∈P

Qi,x,t,per −
∑

(x,j)∈P

Qx,j,t,per = π ·RT 2

δPer
(Hx,t,per −Hx,t,per−1) (7.18)

∀x ∈ Tk, t = 0..T, per = 2..P er

Nonlinear headloss

A pipe headlos relation, as it has been investigated for the ontology formulation case
study in Section 6.3.3, has to hold at all times and periods for every pipe. Since the
right-hand side of the formulation

Hi,t,per−Hj,t,per = ri,j,t ·Qi,j,t,per ·|Qi,j,t,per| ∀(i, j) ∈ P, t = 0..T, per = 1..P er, (7.19)

that would be induced by the Darcy-Weisbach representation (6.8) is not twice
continuously differentiable at zero, typical NLP solver requirements could not be
fulfilled by the latter standard formulation. To that end, the function part
x 7→ x · |x| can be smoothened with a polynomial of the form g(x) = ax+ bx3 + cx5

on a small interval [−δz, δz] around zero. This has been done in [BDL+06] for the
similar case of the Hazen-Williams formula. In addition to that, the smoothened
formulation without time and period dependencies has been discussed as a
formulation type in Section 6.3.3. Continuing with the computation of the
polynomial coefficients, in order to enforce a unique solution, one requires a
matching of the function values, first and second derivative at both ends of the
interval. Due to symmetry one ends up with uniquely determining the three degrees
of freedom as a = 0.375 · δz, b = 3/(4 · δz), c = −1/(8 · (δz)3), see also [Bri15]. Using
logic AML constructs that can be resolved by standard MIP modeling techniques in
AML environments such as AMPL, one ends up with the formulation

211

7. Consolidation: A MINLP Model for Pipe Renewal Planning

if (|Qi,j,t,per| > δz) then ri,j,t ·Qi,j,t,per · |Qi,j,t,per|
else ri,j,t · (0.375 · δz ·Qi,j,t,per + 3/(4 · δz) ·Q3

i,j,t,per − 1/(8 · (δz)3) ·Q5
i,j,t,per)

= Hi,t,per −Hj,t,per ∀(i, j) ∈ P, t = 0..T, per = 1..P er.
(7.20)

Depending on the capabilities of the chosen MINLP solver, either the previously
given smoothened formulation or the standard formulation from (7.19) can be added
to the model. The concrete choices will be explained in the numerical results of
Section 7.4.

The resistance coefficient ri,j,t is determined by the formula ansatz from (6.9) and
(6.10), including the Prandtl-Kármán formula. A distinction has to be made for the
pipes that are to be renewed within the planning horizon and that hence include the
diameter as a variable. Initial heads at sources serve as boundary values for all times:

8 · Li,j
π2 · g · d5

i,j,t

· (2 log10(
ki,j/di,j,t

3.71))(−2) =ri,j,t ∀(i, j) ∈ BP, t = 0..T

(7.21)
8 · Li,j

π2 · g · da5
i,j

· (2 log10(
ki,j/dai,j

3.71))(−2) =ri,j,t ∀(i, j) ∈ P \BP, t = 0..T

(7.22)
Hs,t,per = Hs ∀s ∈ S, t = 0..T, per = 1..P er.

(7.23)

As mentioned above, for the case P \BP , the respective formulas are not treated as
constraints but will be used to determine the resistance coefficient ri,j,t as a
computed parameter a priori the solution.

Bounds and Source Inflows

Maximum speed bounds need to be added where the speed parameters are
transformed to flow rates by multiplication with diameters. First of all, the speed in
the pipes with variable diameters is bounded by two quadratic restrictions in each

212

7.4. Numerical Results

pipe:

Qi,j,t,per ≤vmax,i,j · (
π

4) · d2
i,j,t ∀(i, j) ∈ BP, t = 0..T, per = 1..P er

(7.24)

(−1) ·Qi,j,t,per ≤vmax,i,j · (
π

4) · d2
i,j,t ∀(i, j) ∈ BP, t = 0..T, per = 1..P er.

(7.25)

The nodal head and pipe flow variables as well as all diameters are furthermore
bounded by constant maximum values

Hmin,x ≤Hx,t,per ≤Hmax,x ∀x ∈ JN ∪ Tk, t = 0..T, per = 1..P er
(7.26)

Qi,j,t,per ≤vmax,i,j · (
π

4) · da2
i,j ∀(i, j) ∈ BP, t = 0..T, per = 1..P er

(7.27)

(−1) ·Qi,j,t,per ≤vmax,i,j · (
π

4) · da2
i,j ∀(i, j) ∈ BP, t = 0..T, per = 1..P er

(7.28)
dmin,i,j ≤di,j,t ≤dmax,i,j ∀(i, j) ∈ BP, t = 0..T.

(7.29)

Finally, the summed outflows at sources are forced to stay in their bounds, where
each pipe outflow is nonnegative:

QSmin,s ≤
∑

(s,j)∈P

Qs,j,t,per ≤QSmax,s ∀s ∈ S, t = 0..T, per = 1..P er

(7.30)
0 ≤Qs,j,t,per ∀(s, j) ∈ (S ×N) ∩ P, t = 0..T, per = 1..P er.

(7.31)

7.4. Numerical Results

In order to evaluate the MINLP model for pipe renewal planning, two solvers were
tested on AMPL and AIMMS formulations of the latter model. Different factors may
play a role on the run-time. The complexity of the model increases not only with the
network’s size which is indicated by the numbers of nodes and arcs, but also with the

213

7. Consolidation: A MINLP Model for Pipe Renewal Planning

number of time-steps in the planning horizon and the uniform number of periods for
simulating the network behaviour within each time-step. The time-steps especially
multiply the number of many network related variables, making practical instances
hughe. Besides nodal heads and pipe flows, the diameter variables for the number of
pipes to be renewed within the planning horizon play a major role on the solution
time since they are coupled over the times and occur in multiple nonlinear
constraints.
The diamter variables are also related to further binary variables for the incremental
modeling of the set of discrete, allowed values. Therefore, the number of
commerically available pipe diameters also multiplies the number of binaries in the
model together with the timesteps and network pipes to be renewed. Further impact
factors on the solution time might be the concrete instance parameters such as sharp
bounds and the demand scenario. With the latter in mind, the following framework
was set up for evaluating the model:

• A constant test network to be described the next was used.

• The time-steps in the planning horizon as well as the number of periods vary
with the instances. These are the essential indicators whether finding a renewal
strategy over time in a planning horizon of practical length is possible. What
also varies with the number of time-steps is the length of the intervals in which
pipes can be renewed. For multiple time-steps in the planing horizon it is likely
that these intevals increase in length.

• As it was mentioned in the foregoing sections, network size in contrast to time
might be reduced by a network reduction. With a fixed network, also a fixed
number of building decisions and available pipe diameters can be considered.

The numerical results were obtained with two different solvers on different hardware.
This is to be described the next after the introduction of the the network to be
considered over time

7.4.1. Test Network

The test network is made up of 54 nodes and 90 pipes. It has a meshed and
symmetric structure as you may see in Figure 7.3. Two reservoirs supply the water
into the network, where a single tank can be used to store water for later periods.
The network data is set to typical values. I.e., the maximum pipe speed bounds are
set to 1.5m

s
and there are uniform pipe lengths of 50m, except the supply pipes at

the reservoirs. The number of available pipe diameters is given by six values from
the Table 7.3. Every interior node has a uniform demand of 0.01m3

s
.

214

7.4. Numerical Results

Figure 7.3.: The meshed example network

7.4.2. Results with Bonmin

The first results were computed on a Intel(R) Core(TM) i5-2520M CPU with 2.50
GHz frequency and 64 Bit memory in late 2012. The used algorithm was the routine
MINLP-BB of the MINLP solver Bonmin [PLA+08] in version 1.4.2, performing a
pure Branch-and-Bound search based upon NLP relaxations. Since the
Branch-and-Bound uses only locally optimal solutions to non convex
NLP-relaxations given by the solver Ipopt [WB06], the solutions provided by
MINLP-BB are not proven to be globally optimal. As the planning goes over time, it is
important to mention which build pipes and consecutive intervals in the planning
horizon were chosen: A first set of pipes to be renewed in a first time interval of two
consecutive steps in the planning horizon (,see, the blue ellipsoid in Figure 7.3) and a
set of pipes to be renewed in a later two step range of the time horizon (,see, the
green ellipsoid in Figure 7.3) were chosen. The build pipes were the same for all
instances and the number of consecutive planning times in which they could be
renewed did not vary. The model was formulated in AMPL with a simplified version
of the pipe headloss smoothing (7.20) to fit the NLP solver requirements of twice
continuous differentiablity. The matching condition of the first order derivative was
dropped, leading to a more simple and less nonlinear polynomial of degree three.
More concrete, the coefficients a = 2/3 · δz, b = 1/(3 · δz), c = 0 from the ansatz of the
form g(x) = ax+ bx3 + cx5 on a small interval [−δz, δz] around zero were chosen. As
the numerical results with AMPL/Bonmin were not completely satisfactory (see
below), no further investigations, e.g., with the fully matching coefficients in (7.20)
were performed for the AMPL/Bonmin formulation.
The instances were solved up to an absolute dual gap of 0.1. With an objective value
in the range of 104 for the best found solution, this value was decided to be
acceptable. Since AMPL was used to formulate the model and interface Bonmin, the
AMPL-Preprocessor was used before applying the solution algorithm. The following
table 7.4 supplies the solution times in seconds for the two step solution approach

215

7. Consolidation: A MINLP Model for Pipe Renewal Planning

consisting of the steps preprocessing and branch-and-bound. As expected, a strong
increase of the solution times can be observed with the number of periods per.

Per = 2 Per = 4 Per = 8 Per = 12
T = 2 44 98 235 755
T = 3 899 807 3429 5372

Table 7.4.: Bonmin - Solution times in seconds

As the table only lists two rows for the number of time-steps, one first of all ends up
with the observation of a drastic increase in the solution times from two time-steps
to three time-steps. The solution of a five time-step instance was not possible within
a day on the demo machine. For T = 4 and Per = 2, the best solution was found
relatively fast after 23600 nodes, but no significant reduction of the high dual gap
could be observed within multiple hours.
As the latter results were not completely satisfactory, it was decided in march 2015
to supervise a bachelor thesis that is concerned with, besides others, an
AIMMS/BARON implementation of the latter model as well as the realization of
numerical experiments.

7.4.3. Results with Baron

The results under AIMMS/BARON were realized by L. Brinkmeyer and are
documented in a detailed fashion in the bachelor thesis [Bri15]. To that end, this
subsection will only describe the framework of the experiments, as well as that the
solution times using BARON interfaced from AIMMS will be cited. For further
information, the reader may consider the latter thesis.
The results were retrieved for the same test network as the results under
AMPL/Bonmin. To that end, the pipe lengths, demands, diameters and other
technical parameters were also the same. As it was possible to solve instances with
more time steps in the planning horizon as in the case of AMPL/Bonmin, the
number of consecutive times in the planning horizon during which the build pipes
could be renewed was extended with the number of timesteps. Nonetheless, the set
of build pipes was the same as in the AMPL/Bonmin case. The demo machine had
the following characteristics: Windows 7, 64bit, Intel Core i3-3110M 2x2,4 GHz, 8
GB RAM with an installation of AIMMS Version 4.3.2.3 using BARON version 14.
The only modification in the constraints was the usage of the unsmoothed original
headloss equation (7.19). In general, the solver BARON implements a polyhedral
branch-and-cut approach [MN05] for global optimization allowing to treat general,
nonconvex MINLPs with some restriction on the functional expressions used in the
constraint formulations. The basic ingredients are polyhedral outer approximations

216

7.4. Numerical Results

retrieved by recursive functional decompositions. As valid approximations have to be
generated out of functional expressions based upon estimation, the constraints have
to be formulated with the aid of arithmetical expressions build of supported
mathematical functions, using operations such as concatenation, addition or
exponation. Since now Baron is capable of treating the absolute value function, no
smoothing of the headloss relation was required.
The running times for the instances on a demo machine are to be found in Table 7.5.
Not all instances were solved, but all instances for which solution times are denoted
were solved to global optimality. Further information can be found in [Bri15].

Per = 2 Per = 4 Per = 6 Per = 8
T = 2 24 35 - 65
T = 3 - 54 - 330
T = 4 45 141 - 5882
T = 5 - - - 11613
T = 6 - - 6046 -

Table 7.5.: BARON - Solution times in seconds from [Bri15]

7.4.4. Conclusion

To conclude, the applicability of the model to the problem of multi-year pipe renewal
planning with MINLP methods is underlined by the AIMMS/BARON results. The
network size and meshed structure might be realistic for a practical network that has
been processed with techniques of network reduction. The obtained solutions are
hydraulically exact due to the nonlinear network hydraulics that were included. A
six time-step long planning horizon might be a small but not completely irrelevant
number if one thinks, e.g., of a 30 year planning strategy with 5 year long planning
steps.
The general approach (Section 7.2) based on network reduction, instantiation,
optimization, simulation and modification is of interest both for improving the
practicability of the latter model, but also as an example of the optimization system
architecure and development approach from Section 5.1. Furthermore, the
formulations of the balance constraints (7.16) as well as the pipe headloss equations
(7.19) and (7.20) underline the usage of the reusable formulation types from the
examples of Chapter 6. Namely, the type
NetForms#SingleCommodityBalancePlanningHorizonandPeriodsDemandOriented
can be used for the standard balance constraints. The types
WaterNetForms#PipeHeadLoss and the subtype
WaterNetForms#PipeHeadLossC2SmoothDeg5Poly provide a basis for planning

217

7. Consolidation: A MINLP Model for Pipe Renewal Planning

horizon and period extended subtypes that can be used for the headloss equations in
the model of this chapter.
The AMPL model, as well as the instance data .dat-files for the AMPL/Bonmin
experiments, can be found on the digital material accompanying this thesis.

218

8. Tool Support

This chapter is concerned with a demonstrator application that allows to execute the
AML Derivation functionality of the model entity types. Together with the provided
type formalizations, queries and derivation implementations, this allows to transform
abstract otimization models that were edited in ontology editors such as Protégé into
valid AML models in the exemplary language AMPL.

8.1. Funtionality

The application is capable of loading ontology represented optimization models,
serialized in OWL-XML format, and performing the statement derivation process as
described in Section 5.4 and especially Subsection 5.4.4 for the exemplary target
language AMPL. Furthermore, means for validating the derived AML statements
against an XML schema document representing valid AMPL grammar productions
are implemented. As case study models, all three min-cost flow models from Section
6.1 were implemented in the ontology representation. For the respective types there
are vocabulary definitions, queries and derivation implementations which can be
found together with the latter ontology models on the digital material accompanying
this thesis. The demonstrator is contained as an archive on the digital material. The
archive comes without external libraries due to license restrictions. Furthermore,
some local paths will need to be adapted in order to run the application on a
machine other than the author’s demo machine. To that end, an installation without
further support might be complicated. If you are interested in getting a "live demo"
of the demonstrator or installing it based upon the data on the digital material, you
may therefore first contact the author of this thesis. Further information on the
digital material accompanying this thesis can be found in Appendix B.
After launching the application, the Load Models tab is activated. By clicking on
the Load Ontology Model button, a dialogue is activated by which the user can
choose an ontology optimization model from a path on the file system. Example
models can be found under the path Ontologies/OptimizationModels on the
digital material but should be copied to a respective path on a demo machine. In
this section, the standard min-cost-flow model that has been introduced as an
AMPL model in Section 5.2 and was specified in the ontology representation in
Subsection 5.3.5, will be used as an example. The respective file name is
Min-Cost-Flow-Integrality-1.owl. After clicking the Öffnen button, the window
with the Load Models tab should look as in Figure 8.1.

219

8. Tool Support

Figure 8.1.: Screenshot of the Load Models Tab

Some information about the loaded ontology optimization model can be obtained
from a text area and a table. A text area labeled Model Vocabularies gives
information about the directly and indirecly imported ontologies. The loaded
ontologies represent the vocabularies introduced within this thesis. The most
important such vocabularies, OM, OM.MProps and SPI were introduced in Section 5.3
(recap. also Figure 5.4). Formal definitions of the latter vocabularies can be found in
the appendix and are contained in the digial material accompanying this thesis. The
table labeled Model Entities shows the model entities of the optimization model
structured according to the five concepts for goals, constraints, sets, variables and
parameters from the OM ontology. There are nine model entities contained in the
considered example model that represent a single objective/goal, two constraints,
two sets, a single family of flow variables and three families of parameters.
By changing to the Derive AML tab, the core functiality of deriving a valid AMPL
model can be executed right now. A click on the Derive AMPL button starts the
derivation process for the whole ontology represented model. The resulting XML
files containing the AMPL statements will be stored in the
.../Ontologies/Statement-Derivation/ subfolder of the ontology folder installed
on the target machine. A serialization of the file contents yields the AMPL model
.mod-file content and is displayed in the text area right to the Result–> label. A
click on Validate XML Docs validates the results of the statement derivation against
an XML schema. The results for every model entity type contained in the model are
displayed in the lowest text area field. After executing the latter steps, the results
should look as in Figure 8.2.

220

8.2. Design

Figure 8.2.: Screenshot of the AML Derivation Tab

8.2. Design

Whilst the latter section has explained the scope and usage of the demonstrator
application, the classes and methods used to provide the functionality shall be
discussed within this section. This is of special importance for users that want to
define new types of model entities in the ontology representation. Whilst ontological
specifications for these types can be performed in Protégé with the aid of the
ontologies provided with this thesis, the implementation of the derivation
functionality for generating valid AMPL statements is besides the ontological type
definition due to the creation of a new SPARQL-DL query and a java class capable
of transforming the query results into statements. Information about how to design a
type and implement the derivation and query has been given in Section 5.4. This
section shall now, besides others, explain how to insert the respective derivation
implementation into the project and where to look for helping functionality to use
for the implementational work.
The design will be presented in the form of two class diagrams showing selected
classes, attributes and methods. At first, in order to illustrate the design behind the
general demonstrational process of loading and deriving an ontology model to
AMPL, the reader may take a look at Figure 8.3.
The class OptimizationOntologyManager provides the core functionality to load
and transform an ontology represented model. In order to do so, further objects of
other classes are created inside the respective methods. The constructor can be called
with a File object representing the location of an ontology optimization model. The

221

8. Tool Support

StatementDerivationService

+Document deriveStatements(Document xmlSource, String entityTypeString)

OptimizationOntologyManager

-OWLOntologyManager manager

-OWLOntology mergedModel

+OptimizationOntologyManager(File file)

+processCurrentModel2AML()

MySPARQLDLQueryManager

-OWLOntologyManager ontManager

-OWLOntology ont

+MySPARQLDLQueryManager(OWLOntologyManager ontManager, OWLOntology ont)

+void processQueryFromFileLocation(File queryloc, File resultloc)

1

MyOwlOntologyImportHelper

+static final string ontopathbase

+static final Hashtable<IRI,IRI> mapOnt2Doc

+static final Hashtable<IRI,File> mapDLQueryIRI2QueryDoc

+static final Hashtable<IRI,File> mapDLQueryIRI2QueryResultDoc

+static final Hashtable<IRI,File> mapDLQueryIRI2XMLStatementResultDoc

+static File getFileLocationfromIRI(IRI docname, DType d)

StatementDerivationManager

-String currentAMLString

-StatementDerivationService derivationService

+void DelegateCalltoDerivationService(String formulationTypeString, File xmlqueryresultsinput, File xmlresultoc)

Figure 8.3.: Relevant excerpt of classes and methods for the general derivation
functionality

respective call leading to the creation of an OptimizationOntologyManager object
is performed by the action methods behind the respective buttons on the GUI. The
constructor loads the file with the aid of an OWLOntologyManager from OWL API
version 3.5.0. With the aid of OWL API functionality, directly and indirectly
imported ontologies are loaded recursively and merged into the OWLOntology object
mergedModel storing the ontology represented optimization model. A call to
processCurrentModel2AML() on the OptimizationOntologyManager object
initiates the AML Derivation process. For the execution of the process, both an
object of the classes MySPARQLDLQueryManager and StatementDerivationManager
are created. Inside processCurrentModel2AML() all model entity types used in the
current optimization model are identified first. For the identified types, the
respective query file locations are retrieved with the aid of a helper class method
described below. The queries are executed by a call to the
processQueryFromFileLocation(...) method of the MySPARQLDLQueryManager
object. This call has the query file location as well as a query result file location as
input. In order to process the query, the SPARQL-DL API in version 1.0.0 is used.
The results are serialized in SPARQL Query Results XML Format. When the query
results are available, the DelegateCalltoDerivationService method of the

222

8.2. Design

StatementDerivationService object can be called. This method gets the current
model entity type IRI in form of a string as an input, together with the locations of
the query results and a target file location for the statement results. The derivation
functionality is performed by the AML Derivation Service outlined in Section 5.4. To
that end, the query results are loaded into a JDOM Document. For compatibility
reasons, JDOM in a version starting with number 1 is used here. The query result
document and the model entity type string are passed to the method
deriveStatements(...) of the class StatementDerivationService representing
the general AML Derivation Service. The result is a JDOM Document representing
the statements for all individuals of the respective model entity type. These results
are further processed and stored in the surrounding method calls.
The functionality above requires locations of ontologies and files. Inside the
demonstrator application such resources are treated as IRIs and files. In order to
resolve required locations, e.g., for referenced ontologies or queries, the method
static File getFileLocationFromIRI(IRI docname, DType d) from the class
MyOwlOntologyImportHelper can be called. It uses some static hashtables of the
latter class that store required locations in an ontology-path relative way. The
ontology path should have been configured for the target machine during the
installation procedure.
The next, the inner workings of the class StatementDerivationService representing
the composed AML Derivation Service shall be explained. Due to the simple
interface, the service object could easily be deployed as a real service and the call of
its deriveStatements(...) method would not include a reference to a JDOM
object and a string but rather a real XML document and a string, both wrapped into
a suited protocol such as SOAP. Inside the service’s single method, the model entity
type string is parsed and used to instantiate the respective type derivation
implementation class by the aid of reflection. The derivation implementation’s
deriveStatements(..) method that itself could be deployed as a service integrated
in the composed AML Derivation service is then called with the query results. In
order to get rid of redundancies, before calling deriveStatements(..), the general
AML Derivation Service class loads the query results into a specific class allowing for
suited query answering on the query results. The class functionality is prescribed by
the interface IModelQueryIndividualsStructure. The latter classes that are more
specific to the derivation functionality are visualized in Figure 8.4.
Finally, the derivation implementation itself needs to consecutively build up a XML
document (as a JDOM document), recap. Subsection 5.4.2. In order to support
certain often occuring tasks such as the creation of an initial document that can
capture multiple statements, inserting a subtree representing a single statement,
indexings, dummy indices and also certain summations, static helper methods from
the class MyAMPLStatementXMLStructureHelper can be used.
To conclude, for the technical scope of the demonstrator application of this thesis, a

223

8. Tool Support

MyAMPLStatementXMLStructureHelper

+static Document createStatementDerivationDocument()

+static Element insertStatementwithEntity(Document doc, EntityKind entkind)

+ …. Further static helpers for inserting structures such as indexings and summations!

<<Interface>>

IModelQueryIndividualsStructure

+ List<SPARQLQueryResult> getResults()

+ Hashtable<String, Set<String>>getEntitiesandNamesforVariables(List<String> varnames)

+ List<String> getUnionSetOperandsinCaseOfUnionSet(String entname, String unionvarname, String operatorvarname)

+ String returnRelatedEntityNameforEntityName(String entname, String indexvarname)

+ Collection<String> returnMultipleRelatedEntitiesNamesforEntityName(String entname, String relentityvarname)

+ Boolean containsNonInstantiabilityTrueInformation(String entname, String entvarname, String noninstvarname)

+ Boolean containsVariableTypingforEntity(String entname, String varname)

+ Boolean containsMPropforEntity(String entname, String entvarname, MProp mprop)

+ Boolean containsOntologyTypeInformationforEntityName(String entname, String entvarname, String ontotypeiri)

ModelEntityTypeXDerivation

+Document deriveStatements(IModeQueryIndividualsStructure data)

Figure 8.4.: Relevant excerpt of classes and methods for derivation implementations

user wanting to implement a new model entity type has to provide the following:

1. A consistent definition of the type in an ontology that imports the basic
vocabularies of the framework presented in this thesis. The type should be
specified as a subclass of other types whereever possible. Annotation IRIs for
identifying the query and derivation implementation should be provided.

2. A suited SPARQL-DL query for retrieving the relevant individuals and
properites from a model.

3. A derivation implementation class for the respective type. If this
implementation should be used together with the project, then the respective
class should be implemented in the de.dsor.ontooptmod.derivation package
and implement the interface IEntityTypeStatementDerivation.
Furthermore, for an implementation within the demonstrator, updating the
Hashtables of MyOwlOntologyImportHelper in order to be able to resolve the
file locations for queries and results on the target machine is required.

The demonstrator application and ontologies provided with this thesis contain type
definitions, queries and derivation implementations for over thirty types. The
min-cost-flow models from the examples of this thesis have all been implemented as
ontology represented models and can be tested with the demonstrator.

224

9. Conclusion and Outlook

This chapter concludes the results of this thesis and gives an outlook towards future
research activities. The outlook part is of special importance as the framework
presented within this thesis includes many ideas that leave space for extensions. In
summary, a greater vision of decision support system composition and model
management will be described and different extensions will be characterized in terms
of a gap between the findings of this thesis and the greater vision. The next section
starts with the conclusion, whilst the outlook will be given in Section 9.2.

9.1. Conclusion

This thesis presented a novel approach to the formulation of abstract optimization
models and the generation of respective optimization systems. The central
component is a novel, ontology-based representation of abstract optimization models.
This representation, besides others, allows to represent reusable fragments of
optimization models’ goal and constraint formalizations as simple ontology classes.
The formulation types in combination with an abstraction of data structure
furthermore allow to represent abstract optimization models as simple ontology
graphs. This structure enforces simple model formulation operations. Furthermore,
the automated analysis of models and the service composition and data mediation
steps for system composition are supported by the representation. Different
examples from the domains of network flow problems and water distribution system
planning were given to demonstrate the structure of formalizations and the different
possible scenarios in model formulation. Important type conceptualizations cover,
besides others, hierarchies for network flow balance constraints, water network pipe
headloss linearization and smoothing types, as well as flexible types for network flow
resource availability constraints which are generic in their inner summation and
expression structure. In the future, further such type conceptualizations can be
defined by using provided top-level vocabularies such as OM, SPI and OM.MProps, as
well as that in case of extensions, existing type- and mdo-ontologies such as
NetForms and Net can be reused.
Different transformations inbetween the three representation layers were discussed.
The generation of AML models by AML Derivation is based on a simple, iterated
process of ontology query processing and the transformation of XML results. The
logics of the statement derivation are put into derivation implementations which are
associated to the reusable types. Different examples of queries and derivation
implementations were given together with design considerations. A demonstrator

225

9. Conclusion and Outlook

tool and the source code for a variety of queries and derivation implementations
accompany this thesis. Concerning the other direction, AML Reengineering has been
outlined in short, leaving the investigation open for future research. Finally, it has
been discussed and illustrated how ontology represented optimization models can be
analyzed in terms of their mathematical properties, and how semantic model
instantiation service descriptions can be generated out of the obtained properties.
Here, pre- and postconditions can, e.g., be applied to describe the range of possible
solvers.
The introductory chapters of this thesis gave a literature review on model
management where also the state of the art in optimization technology was
described. An extra chapter provided the basic notions and methods for using
ontologies and semantic software services in the model representation and system
generation approach. Chapter 3 ended with the identification of a research gap
concerning the integrated treatment of model formulation by reusable types and the
highly automated generation of optimization systems out of an optimization model.
Concerning the exemplary type formalizations, different scenarios for support and
automatization in the model formulation were discussed. The hierarchy of pipe
headloss smoothing and linearization types in Subsection 6.3.3 gives rise to an
iterated or parallel solution of model variants in the respectively composed system,
leaving place for an automated improvement of the overall result. E.g., in this
example, the explicit formalization of choices should allow to automatically modify
the formulation of a model. Furthermore, the retrieval of the consistency of an
ontology model specification according to type class restrictions was discussed from a
general perspective as well as that examples, e.g., in the context of changing a pipe
headloss formulation, were elaborated. For the water network case study model and
especially the example of pipe headloss constraints, the adaptions when integrating
pipe headloss constraints with network balance constraints were also discussed.
Concerning network balance constraints, the considerations for the different variants
of network flow models gave insight into the process of extending a model to more
general variants, e.g., by introducing multiple commodities. The automated
recommendation of formulation types was outlined at the example of network flow
balance constraints from the balance type hierarchies and gave a first insight into a
method for matching formulation types and model specifications based upon the
class restrictions. Multi-instantiation of different types gives rise to the reusage of
formulation types. The waternetwork formalizations demonstrated how formulation
types can encapsulate greater blocks of AML declarations in a work-saving and
error-reducing way.
Finally, some numerical results for a nonconvex MINLP model, which dealt with the
renewal planning of pipes in water distribution systems, were given. In the scope of
an optimization system ansatz for the water network domain, the solvability of the
model for relevant instances was demonstrated in principle, as well as that type

226

9.1. Conclusion

formalizations and concepts from the approach of this thesis were brought into the
respective context.
The coverage of the requirements from Section 4.2 will now be discussed in a
concluding form:

• Model Formulation by abstract Types: The ontology representation is
centered around the data model abstracted types as it is stated in the
requirement. Model formulation can be seen as a process of ontology graph
manipulations. By the abstractions of formulation elements and data, the
required operations for adding new elements reduce to a small number of such
specifications. By the subsumption of ontology classes that represent model
entity types, the necessary number of specifications can be further reduced.
The idea of reusing formulations in different model contexts was demonstrated
by the examples of this thesis. Different scenarios for model formulation were
illustrated and the process of recovering the consistency of ontology represented
models according to class restrictions was discussed. Though the technique of
formulation recommendation has only been outlined by an exemplary scenario,
the requirement as a whole is covered by the means provided within this thesis.

• Model Semantics: All required types of semantics can be expressed by the
representation approach as it should have become clear from the definitions of
the basic vocabularies OM, OM.MProps and SPI as well as the specifications for
the different examples of this thesis.

• Automated Modifications and Recomposition: The formalization of
choices in modeling has been demonstrated by the type hierarchy of the pipe
headloss types as well as by the two type formalizations for stopping the
short-term activation and deactivation of pumps in Subsection 6.3.5. The
scenario of recomposing a system for different model variants was discussed for
the pipe headloss smoothing and linearization types. The general methods to
generate semantic model service descriptions were presented in Section 5.6.
Together, the presented framework covers the requirement, though further
research on the evaluation of solutions after the execution of a system as well
as the proposition of modifications should take place.

• Models as Services and Composition: Model instantiation services that
cover the respective requirement were discussed in Section 5.6. Semantic
service desriptions and AML models for data instantiation can be generated
straight forward out of the ontology representation and the generated service
descriptions in principle allow for the composition with solvers and further
preprocessing steps.

• System Integration: Integrating models into the system is a central step and
almost covered by the means to generate model instantiation services. An issue

227

9. Conclusion and Outlook

to discuss is the integration of data for the data model that comes along with
an abstract optimization model as well as for the inputs and outputs of the
further services in the approach. By providing ontology classes for data in the
model representation approach, as well as for the inputs and outputs in
semantic service descriptions, data mediation might be performed based upon
ontology mappings. Placeholders for respective transformations were
introduced to the optimization system’s service architecture as well as that the
general development and execution process(es) allow to generate such
transformations after the composition step. By this architecture, the
requirement is basically covered though an evaluation of the practicability
would be desireable in the future.

• Service Enabling: Methods for deriving AML models out of the ontology
representation were a topic of Section 5.4 and have been demonstrated in
detail. Further means were also provided by the demonstrator presented in
Chapter 8. The automated generation of semantic service descriptions together
with the AML Derivation functionality and the associated capability to use
AML tools for instantiating models with data complete the basic coverage of
this requirement. Nonetheless, AML Reengineering has only been presented in
terms of some basic ideas and should be investigated further in the future
research.

• Compatible with (semantic) Web Technologies: This requirement is
covered as the design is based on current standards such as OWL, XML, XSD
as well as emerging technologies such as SPARQL-DL or SWRL.

9.2. Outlook

The framework presented within this thesis can be seen as part of a greater vision in
which multiple decision models, solvers and different software services can be
combined to executable decision support systems in a highly automated fashion.
Decision proposals are generated by the systems and methods for evaluation and
modification lead to automated modifications of models and a respective automated
recomposition of the systems. The term model in the context of the vision can cover
almost everything that has a mathematical representation and for which the solution
of instances yields a respective computational result. Multiple models can be brought
into solution processes where preceding models yield the inputs for the ones following
subsequently by means of model composition. Service composition in general yields a
solution and processing workflow for models and other services where different
functionality, e.g., for simulation, visualization and analysis is incorporated into the
systems. Provided instance data that has been obtained from databases and users
can furthermore be analyzed in order to configure the solution process and the

228

9.2. Outlook

models. Considering the work of users and developers, suited tool support allows to
formulate models and specify decision support as a service in a simple and
user-friendly fashion. All in all, different efforts from diverse areas such as model
management and semantic service composition are combined within the ansatz.
The following depiction will characterize important techniques to develop and
aspects to consider for the realization of the latter vision. The following is stated for
the respective topics:

• Formulation Recommendation: In the context of model formulation for
ontology represented abstract optimization models, means to provide
recommendations of model entity types to a user in a certain modeling
situation are important for the practicability of the overall approach. As the
design of the ontology types introduces a huge number of types that differ in
details such as indexing, sign or the application of operations such as a
linearization, an automated approach to find suited types for a given model
context is of importance. Finding suited types corresponds to a matching of
ontology class restrictions. In case of a formulation entity, this would typically
mean that the types of required individuals for a recommendation should
match the types that occur in the model. In an example from Section 6.1, this
led to the recommendation of a commodity-set indexed network balance type
to be inserted for a single commodity balance type that had been used in the
model before. In the example, the recommendation should have originated
from the user-induced introduction of a commodity set to the model.
Nonetheless, this thesis did not define or evaluate any measures and methods
that allow to compute the "best fitting recommendations". A definition would
have to consider the ontology types that occur in the model, but not in a too
naive way. I.e., in the discussed example it was important to modify not only
the balance constraint formulation entity itself, but also the types and
specifications of flow and supply conceptualizations. The "old" data
conceptualizations were most similar to the requirements of the "old"
formulation type for balance. But the new ones reflected the orientation of the
model towards multiple commodities. To that end, the mechanism needs to
recommend multiple changes in an integrated consideration. In the example,
the change of the formulation type should induce the changes in data.
Considering the data entity types at first could lead to a conflict between the
"old" balance requirements and the new "commodity orientation".

• Instance Data: The size of model instances and the contained values can have
an influence on the solvability of models and hence on the quality of solutions.
E.g., when instances for nonlinear models get too huge, approximate solutions
might be considered in order to obtain a solution at all. When the data for a
model is available, different decisions can be made. To give an example, if the

229

9. Conclusion and Outlook

instance data for a water network describes a bigger network, it might be
indicated to use a combined approach in which the network’s size itself is
reduced before a model is instantiated and solved. Afterwards, the solution
based upon the simplified network should be evaluated by a simulation. The
consideration of instance data hence can have an influence on the target
system’s architecture and workflow as well as on the system composition.
Furthermore, concerning the linearization of nonlinear optimization models,
the introduction of a linearization changes the model formulation itself. A
decision for a linearization might again be triggered by instance data
considerations and knowledge about the applicability of different solution
strategies such as the solution of an approximative MIP by a high performance
MIP solver. After this decision, which is based on the provided instance data,
a different model and system might have to be considered than it would be the
case with the originating model. To that end, the process of system generation
and modification that was described in this thesis should be extended for the
suited consideration of instance data.

• Error Measures and Automated Modifications: The latter point can be
extended by the treatment of result data after the computation of solution(s).
The quality of solutions should be evaluated in an automated fashion and lead
to respective modifications in case of non satisfactory results. E.g., when the
linearization of an optimization model yields a solution that is too far away
from the solution of a nonlinear and hence more realistic one, other solution
approaches might have to be exploited. An example for this scenario can be
found in the linearization of pipe headloss constraints in optimization models
for water networks. If a hydraulic scenario for a water network that is
described within a linearized optimization model’s solution turns out as
problematic in a simulation, e.g., because a slightly differing flow scenario that
was obtained from the more realistic nonlinear simulation model leads to the
violation of nodal head bounds, a respective decision on modifications has to
be made. Model manipulations were presented as a part of the system
generation process in this thesis and a fundament has been laid by the
formalization of choices in the model formulation. But the decision on a
modification itself was left open as a point for future research. Furthermore,
besides the modification of the model, the modification of the system’s solution
ansatz as it would, e.g., be given by the consideration of a network reduction,
provides another opportunity for modifications.

• (Meta-) Heuristics and other Solution Approaches: Concerning the solution of
optimization models, other solution approaches than mathematical
programming solvers should also be integrated. E.g., problem specific
heuristics might be applied to compute solutions. The point with this is that

230

9.2. Outlook

differing solution approaches might require different representations of the
optimization problems. To that end, means for providing transformations could
be integrated into the approach. This does not have to be a crucial point as
there might also be integrated solver solutions that do the transformations on
their own. The LocalSolver presented in Subsection 3.3.1 already provides an
example for a solver that has an AML language input and treats the
application of meta heuristics internally.

• Model and Service Composition: The current approach relies on one decision
model that is furthermore restricted to be of optimization nature. In the
future, different models for decision support might be solved in a suited
solution process. In that process, models provide the input for other models
according to the execution order. The solution process of the models might
also be combined with the consideration of the whole system’s service
composition that includes further services, e.g., for preprocessing (network
reduction), simulation and visualization. Such services were already considered
in the architecture of this thesis, but a general composition approach for
different models, solvers and further services leaves place for extensions.

• Other Mathematical Models: The latter aspect introduced the idea that also
other decision models than the mathematical programming / optimization
models considered within this thesis should be integrated into the framework.
As the description of the vision from above says, everything that "has a
mathematical representation and for which the solution of instances yields a
respective computational result" should be considered. This might cover models
and solution methods from different areas such as (partial) differential
equations, image processing or satisfiability problems in logics. Suited semantic
representations of such models from other domains would also be required for
the composition approach.

• Model Formulation Tools: Model formulation should be supported by
respective tools that make use of the means provided by the semantic
representations of models. Considering again ontology-represented
optimization models, suited tool support might allow modelers to specify
complex mathematical programming models in a very simple way with a small
number of required specifications. Furthermore, the tool support should also
cover development environments that lead to the respective executable systems
by the means provided within this thesis.

• AML Reengineering: As AML environments provide common tools for
developing optimization models and systems, means to integrate AML
represented models and the AML tool functionalities into the development
process should be provided. AML Reengineering was outlined in this thesis as

231

9. Conclusion and Outlook

a method to allow for the latter, but its realization is still open for the future
research.

232

Bibliography

[ABKW08] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter.
Constraint Integer Programming: a New Approach to Integrate CP and
MIP. In Integration of AI and OR techniques in constraint programming
for combinatorial optimization problems, pages 6–20. Springer, 2008.

[AM05] M. H. Afshar and M. A. Marino. A Convergent Genetic Algorithm for
Pipe Network Optimization. Scientia Iranica, 12(4):392–401, 2005.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
flows: Theory, algorithms, and applications. Prentice Hall, Upper Saddle
River and NJ [u.a.], 1993.

[Apa15] Apache Software Foundation. ARQ - A SPARQL Processor for Jena.
https://jena.apache.org/documentation/query/index.html. Retrieved
2015-07-07, 2015.

[APG+14] Svetlana Arifulina, Marie Christin Platenius, Christian Gerth, Steffen
Becker, Gregor Engels, and Wilhelm Schäfer. Configuration of
Specification Language and Matching for Services in On-The-Fly
Computing - Version 0.1. Technical Report, University of Paderborn,
2014.

[Baa03] Franz Baader. The description logic handbook: Theory, implementation,
and applications. Cambridge University Press, Cambridge and UK and
New York, 2003.

[BBI+12] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Achille Fokoue, and
Zhe Wu. OWL 2 Web Ontology Language Profiles (Second Edition).
W3C Recommendation, 2012.

[BDL+06] Cristiana Bragalli, Claudia D’Ambrosio, Jon Lee, Andrea Lodi, and
Paolo Toth. An MINLP solution method for a water network problem.
In Algorithms–ESA 2006, pages 696–707. Springer, 2006.

[Ben62] J. F. Benders. Partitioning procedures for solving mixed-variables
programming problems. Numerische Mathematik, 4(1):238–252, 1962.

[BG14] Dan Brickley and R. V. Guha. RDF Schema 1.1. W3C
Recommendation, 2014-02-25/2014.

233

Bibliography

[BGS09] Jens Burgschweiger, Bernd Gnädig, and Marc C. Steinbach. Nonlinear
programming techniques for operative planning in large drinking water
networks. Open Applied Mathematics Journal, 3:14–28, 2009.

[BHM+04] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael
Champion, Chris Ferris, and David Orchard. Web Services Architecture.
W3C Working Group Note, 2004-02-11/2004.

[Bin96] Meral Binbasioglu. Building Linear Programming Models from
Structural Model Components. Int. Trans. Opl. Res., 3(2):151–168,
1996.

[BK93] Hemant K. Bhargava and Steven O. Kimbrough. Model management:
An embedded languages approach. Decision Support Systems,
10(3):277–299, 1993.

[BKK91] Hemant K. Bhargava, Steven O. Kimbrough, and Ramayya Krishnan.
Unique names violations, a problem for model integration or you say
tomato, I say tomahto. ORSA Journal on Computing, 3(2):107–120,
1991.

[BKM08] Christoph Bussler, Vipul Kashyap, and Matthew Moran. The Semantic
Web: Semantics for Data and Services on the Web ; with 17 tables.
Data-Centric Systems and Applications. Springer, Berlin [u.a.], 2008.

[BL04] Shawn Bowers and Bertram Ludäscher. An Ontology-Driven Framework
for Data Transformation in Scientific Workflows. In Erhard Rahm,
editor, Data Integration in the Life Sciences, volume 2994 of Lecture
Notes in Computer Science, pages 1–16. Springer Berlin Heidelberg,
2004.

[BL15] T. Berners-Lee. Linked Data. Personal Note,
http://www.w3.org/DesignIssues/LinkedData.html, Retrieved
2015-06-17, 2015.

[BLHL01] T. Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific America, 2001.

[BLK06] Paul F. Boulos, Kevin E. Lansey, and Bryan W. Karney. Comprehensive
water distribution systems analysis handbook for engineers and planners.
American Water Works Association, 2006.

[BLPF06] Jos de Bruijn, Holger Lausen, Axel Polleres, and Dieter Fensel. The web
service modeling language WSML: An overview. In Y.Sure and J.
Domingue (Eds.): ESWC 2006, LNCS 4011. pages 590–604, 2006.

234

Bibliography

[BMC03] Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG Description
Logic Interface. Description Logics, 81, 2003.

[BPB12] Bernardo Cuenca Grau, Peter Patel-Schneider, and Boris Motik. OWL 2
Web Ontology Language Direct Semantics (Second Edition). W3C
Recommendation, 2012.

[Bra12] Tim Bray. WS-Pagecount. Personal Note,
http://www.tbray.org/ongoing/When/200x/2004/09/21/WS-Research,
retrieved 2015-06-12, 2012.

[Bri15] Lukas Brinkmeyer. Modellierung und Lösung des
Ersatzerneuerungsproblemes in Wasserversorgungsnetzen unter
AIMMS/BARON. Bachelorarbeit. Universität Paderborn, Paderborn,
2015.

[BW08] Thadthong Bhrammanee and Vilas Wuwongse. ODDM: A framework
for modelbases. Decision Support Systems, 44(3):689–709, 2008.

[CHJK02] Ivica Crnkovic, Brahim Hnich, Torsten Jonsson, and Zeynep Kiziltan.
Specification, implementation, and deployment of components.
Communications of the ACM, 45(10):35–40, 2002.

[CHRR04] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers.
UDDI Version 3.0.2: UDDI Spec Technical Committee Draft, Dated
20041019, 2004.

[CK90] Srikanth Chari and Ramayya Krishnan. Towards a logical
reconstruction of structured modeling. In System Sciences, 1990.,
Proceedings of the Twenty-Third Annual Hawaii International
Conference on, volume 3, pages 524–533, 1990.

[CMM98] Joseph Czyzyk, Michael P. Mesnier, and Jorge J. Moré. The NEOS
server. Computing in Science & Engineering, (3):68–75, 1998.

[CRC11] CRC 901. CRC 901 On-The-Fly Computing website.
https://sfb901.uni-paderborn.de/, retrieved 2015-06-16, 2011.

[Cro36] Hardy Cross. Analysis of flow in networks of conduits or conductors.
University of Illinois, 1936.

[DBP15] DBPedia. DBPedia project page. http://wiki.dbpedia.org/, retrieved
2015-06-17, 2015.

235

Bibliography

[DCT+11] Kathrin Dentler, Ronald Cornet, Anette ten Teije, Nicolette de Keizer,
et al. Comparison of reasoners for large ontologies in the OWL 2 EL
profile. 2011.

[DFG+08] Elizabeth D. Dolan, Robert Fourer, Jean-Pierre Goux, Todd S. Munson,
and Jason Sarich. Kestrel: An Interface from Optimization Modeling
Systems to the NEOS Server. INFORMS Journal on Computing,
20(4):525–538, 2008.

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy.
Learning to map between ontologies on the semantic web. In Proceedings
of the 11th international conference on World Wide Web, pages
662–673, 2002.

[DMR14] David Wood, Markus Lanthaler, and Richard Cyganiak. RDF 1.1
Concepts and Abstract Syntax. W3C Recommendation, 2014.

[dR04] da Conceicao Cunha, Maria and Luisa Ribeiro. Tabu search algorithms
for water network optimization. European Journal of Operational
Research, 157(3):746–758, 2004.

[DSM96] Graeme C. Dandy, Angus R. Simpson, and Laurence J. Murphy. An
Improved Genetic Algorithm for Pipe Network Optimization. Water
Resources Research, 32(2):449–458, 1996.

[EGD13] Omar El-Gayar and Amit Deokar. A semantic service-oriented
architecture for distributed model management systems. Decision
Support Systems, 55(1):374–384, 2013.

[EGT07] Omar El-Gayar and Kanchana Tandekar. An XML-based schema
definition for model sharing and reuse in a distributed environment.
Decision Support Systems, (43):791–808, 2007.

[EM03] Obi C. Ezechukwu and Istvan Maros. OOF: Open Optimization
Framework. Imperial College London, Department of Computing,
Departmental Technical Report, (7):1–49, 2003.

[Erl05] Thomas Erl. Service-oriented architecture: concepts, technology, and
design. Pearson Education India, 2005.

[EV+04] Jérôme Euzenat, Petko Valtchev, et al. Similarity-based ontology
alignment in OWL-lite. In ECAI, volume 16, page 333, 2004.

[FG14] Fabien Gandon and Guus Schreiber. RDF 1.1 XML Syntax. W3C
Recommendation, 2014.

236

Bibliography

[FGK03] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A
modeling language for mathematical programming. Thomson Brooks
Cole, Pacific Grove and Calif, 2. edition, 2003.

[FIC16] FICO. FICO Xpress Optimization Suite website.
http://www.fico.com/en/products/fico-xpress-optimization-
suite#overview, retrieved 2016-01-19,
2016.

[FMM10a] Robert Fourer, Jun Ma, and Kipp Martin. Optimization Services: A
Framework for Distributed Optimization. Operations Research,
58(6):1624–1636, 2010.

[FMM10b] Robert Fourer, Jun Ma, and Kipp Martin. OSiL: An instance language
for optimization. Computational Optimization and Applications,
45(1):181–203, 2010.

[GE14] Gavin Carothers and Eric Prud’hommeaux. RDF 1.1 Turtle. W3C
Recommendation, 2014.

[Geo87] Arthur M. Geoffrion. An Introduction to Structured Modeling.
Management Science, 33(5):547–588, 1987.

[Geo89] Arthur M. Geoffrion. Reusing structured models via model integration.
In System Sciences, 1989. Vol. III: Decision Support and Knowledge
Based Systems Track, Proceedings of the Twenty-Second Annual Hawaii
International Conference on System Sciences, volume 3, pages 601–611,
1989.

[Geo92a] Arthur M. Geoffrion. Indexing in Modeling Languages for Mathematical
Programming. Management Science, 38(3):325–344, 1992.

[Geo92b] Arthur M. Geoffrion. The SML language for structured modeling: Levels
1 and 2. Operations Research, 40(1):38–57, 1992.

[Geo92c] Arthur M. Geoffrion. The SML language for structured modeling: Levels
3 and 4. Operations Research, 40(1):58, 1992.

[GGMO03] Aldo Gangemi, Nicola Guarino, Claudio Masolo, and Alessandro
Oltramari. Sweetening wordnet with dolce. AI magazine, 24(3):13, 2003.

[GK05] Michael Gruninger and Joseph B. Kopena. Semantic integration through
invariants. AI magazine, 26(1):11, 2005.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2):199–220, 1993.

237

Bibliography

[Gru03] M. Gruninger. A guide to the ontology of the Process Specification
Language. In “Hand-book on Ontologies in Information Systems”, R.
Studer and S. Staab Eds, 2003.

[GS95] Marco Gagliardi and Cosimo Spera. Toward a formal theory of model
integration. Annals of Operations Research, 58(6):403–440, 1995.

[GS97] Marco Gagliardi and Cosimo Spera. BLOOMS: A prototype modeling
language with object oriented features. Decision Support Systems,
19(1):1–21, 1997.

[Gur15] Gurobi Optimization. Gurobi Optimizer Reference Manual: Version 6.5,
2015.

[Hal15] Corinna Hallmann. Optimierung von Wasserbehältern in einem
Wasserversorgungssystem mittels einer Kombination aus Netzreduktion,
mathematischer Optimierung und hydraulischer Simulation. PhD thesis,
Universität Paderborn, Paderborn, 2015.

[HB04] Hugo Haas and Allen Brown. Web Services Glossary. W3C Working
Group Note, http://www.w3.org/TR/ws-gloss/, 2004-02-11/2004.

[Hen08] P. Hensel. Optimierung großer Gas- und Wasserversorgungsnetze:
Vergleich der Gemischt-Ganzzahligen Linearen Optimierung mit
Genetischen Algorithmen: Diplomarbeit. Freie Universität Berlin, Berlin,
2008.

[HHMW12] Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel. The
RacerPro knowledge representation and reasoning system. Semantic
Web, 3(3):267–277, 2012.

[HKRS08] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, and York Sure.
Semantic Web: Grundlagen. eXamen.press. Springer-Verlag Berlin
Heidelberg, Berlin and Heidelberg, 1. edition, 2008.

[HLWW12] William E. Hart, Carl Laird, Jean-Paul Watson, and David L. Woodruf.
Pyomo – Optimization modeling in Python, volume 67 of Springer
optimization and its applications. Springer, New York, 2012.

[Hor11a] Matthew Horridge. A Practical Guide To Building OWL Ontologies
Using Protege 4 and CO-ODE Tools Edition 1.3, 2011.

[Hor11b] Matthew Horridge. Protege OWL Tutorial P4_v1_3, 2011-03-24/2011.

238

Bibliography

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, Mike Dean, et al. SWRL: A semantic web rule
language combining OWL and RuleML. W3C Member Submission,
2004-05-21/2004.

[HWW11] William E. Hart, Jean-Paul Watson, and David L. Woodruff. Pyomo:
modeling and solving mathematical programs in Python. Mathematical
Programming Computation, 3(3):219–260, 2011.

[IBM15] IBM. IBM ILOG CPLEX Optimization Studio webpage, http://www-
01.ibm.com/software/commerce/optimization/cplex-optimizer/,
retrieved 2015-11-07, 2015.

[Inn07] Innovation 24. LocalSolver 5.5 Documentation.
http://www.localsolver.com/documentation/index.html, retrieved
2015-11-07.

[JD13] Jeen Broekstra and Dave Beckett. SPARQL Query Results XML
Format (Second Edition). W3C Recommendation, 2013.

[JNM+07] Jean-Jacques Moreau, Noah Mendelsohn, Martin Gudgin, Marc Hadley,
Henrik Frystyk Nielsen, Yves Lafon, and Anish Karmarkar. SOAP
Version 1.2 Part 1: Messaging Framework (Second Edition). W3C
Recommendation, 2007.

[KC00] R. Krishnan and K. Chari. Model Management: Survey, Future
Research Directions and a Bibliography. The Interactive Transactions of
OR/MS, 3(1), 2000.

[KCLH08] Rosemarie Karger, Klaus Cord-Landwehr, and Frank Hoffmann.
Wasserversorgung. Springer, 2008.

[KS89] Avner Kessler and Uri Shamir. Analysis of the linear programming
gradient method for optimal design of water supply networks. Water
Resources Research, 25(7):1469–1480, 1989.

[KTSW08] Dominik Kuropka, Peter Tröger, Steffen Staab, and Mathias Weske,
editors. Semantic Service Provisioning. Springer, Berlin, ©2008.

[KW08] Dominik Kuropka and Mathias Weske. Implementing a semantic service
provision platform. Wirtschaftsinformatik, 50(1):16–24, 2008.

[LF07] Holger Lausen and Joel Farrell. Semantic annotations for WSDL and
XML schema. W3C recommendation, W3C, 2007.

239

Bibliography

[LIN07] LINDO Systems Inc. Lindo website. http://www.lindo.com/, retrieved
2015-11-07.

[LPW14] Christopher Lovelock, Paul G. Patterson, and Jochen Wirtz. Services
Marketing. Pearson Australia, 2014.

[LW07] Kung-Kiu Lau and Zheng Wang. Software component models. Software
Engineering, IEEE Transactions on, 33(10):709–724, 2007.

[Mad07] Therani Madhusudan. A web services framework for distributed model
management. Information Systems Frontiers, 9(1):9–27, 2007.

[MB13] Felix Mohr and Hans Kleine Büning. Semi-Automated Software
Composition Through Generated Components. Proceedings of the 15th.
International Conference on Information Integration and Web-based
Applications and Services, iiWAS2013, 2013.

[McC14] Bruce A. McCarl. McCarl GAMS User Guide: Version 24.0, 2014.

[MH09] Ralf Möller and Volker Haarslev. Tableau-based reasoning. In Handbook
on Ontologies, pages 509–528. Springer, 2009.

[Mic12] Michael Schneider. OWL 2 Web Ontology Language RDF-Based
Semantics (Second Edition). W3C Recommendation, 2012.

[MMS96] Pai-Chun Ma, Frederic H. Murphy, and Edward A. Stohr. An
Implementation of LPFORM. INFORMS Journal on Computing,
8(4):383–401, 1996.

[MN05] M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut
approach to global optimization. Mathematical Programming,
103(2):225–249, 2005.

[Mot06] Boris Motik. Reasoning in description logics using resolution and
deductive databases. PhD thesis, Universität Friedericiana zu Karlsruhe,
Karlsruhe, 2006.

[Mot09] Boris Motik. Resolution-Based Reasoning for Ontologies. In Handbook
on Ontologies, pages 529–550. Springer, 2009.

[MP12] Matthew Horridge and Peter Patel-Schneider. OWL 2 Web Ontology
Language Manchester Syntax (Second Edition). W3C Working Group
Note, 2012.

[MPPS09] Boris Motik, Bijan Parsia, and Peter F. Patel-Schneider. OWL 2 Web
Ontology Language XML serialization. W3C Recommendation. W3C
Recommendation, W3C–World Wide Web Consortium, 2009.

240

Bibliography

[MSM92] Frederic H. Murphy, Edward A. Stohr, and Pai-Chun Ma. Composition
Rules For Building Linear Programming Models From Component
Models. Management Science, 38(7):948–963, 1992.

[MSS05] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for
OWL-DL with rules. Web Semantics: science, services and agents on
the World Wide Web, 3(1):41–60, 2005.

[MSZ01] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic web
services. IEEE intelligent systems, (2):46–53, 2001.

[MU06] Therani Madhusudan and Naveen Uttamsingh. A declarative approach
to composing web services in dynamic environments. Decision Support
Systems, 41(2):325–357, 2006.

[N. 15] N. V. Sahinidis. BARON User’s Manual v. 15.2, 2015.

[Noy09] Natalya F. Noy. Ontology Mapping. In Steffen Staab and Rudi Studer,
editors, Handbook on Ontologies, International Handbooks on
Information Systems, pages 573–590. Springer Berlin Heidelberg, 2009.

[NP01] Ian Niles and Adam Pease. Towards a standard upper ontology. In
Proceedings of the international conference on Formal Ontology in
Information Systems-Volume 2001, pages 2–9, 2001.

[OAS12] OASIS. Reference Architecture Foundation for Service Oriented
Architecture Version 1.0: OASIS Committee Specification 01,
2012-12-04/2012.

[Pad00] Manfred Padberg. Approximating separable nonlinear functions via
mixed zero-one programs. Operations Research Letters, 27(1):1–5, 2000.

[PBB12] Peter Patel-Schneider, Boris Motik, and Bijan Parsia. OWL 2 Web
Ontology Language XML Serialization (Second Edition), 2012.

[PL04] Terry R. Payne and Ora Lassila. Semantic web services. IEEE
intelligent systems, 19(1):14–15, 2004.

[PLA+08] Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Gérard Cornuéjols,
Ignacio E. Grossmann, Carl D. Laird, Jon Lee, Andrea Lodi, François
Margot, Nicolas Sawaya, and Andreas Wächter. An algorithmic
framework for convex mixed integer nonlinear programs. Discrete
Optimization, 5(2):186–204, 2008.

241

Bibliography

[PMW92] P. Piela, R. McKelvey, and A. Westerberg. An introduction to
ASCEND: Its language and interactive environment. Proceedings of the
Twenty-Fifth Hawaii International Conference on System Sciences,
3:449, 1992.

[PP14] Patrick Hayes and Peter Patel-Schneider. RDF 1.1 Semantics. W3C
Recommendation, 2014.

[PTRC07] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir
Chatterjee. A Design Science Research Methodology for Information
Systems Research. Journal of Management Information Systems,
24(3):45–77, 2007.

[RB13] G.H.M. Roelofs and J. J. Bisschop. AIMMS - The Language Reference:
AIMMS 3.13, 2013.

[RK03] Roland T. Rust and P. K. Kannan. E-service: a new paradigm for
business in the electronic environment. Communications of the ACM,
46(6):36–42, 2003.

[Ros00] Lewis A. Rossman. EPANET 2: users manual. 2000.

[RR08] Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly
Media, Inc, 2008.

[SAJR07] Sanjiva Weerawarana, Arthur Ryman, Jean-Jacques Moreau, and
Roberto Chinnici. Web Services Description Language (WSDL) Version
2.0 Part 1: Core Language. W3C Recommendation, 2007.

[SE13] Pavel Shvaiko and Jérôme Euzenat. Ontology matching: state of the art
and future challenges. IEEE Transactions on Knowledge and Data
Engineering, 25(1):158–176, 2013.

[SMH08] Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A
Highly-Efficient OWL Reasoner. In OWLED, volume 432, 2008.

[Som12] Ian Sommerville. Software Engineering. Pearson Studium - IT. Pearson,
München, 9. edition, 2012.

[SP07] Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL Query for
OWL-DL. In OWLED, volume 258, 2007.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,
and Yarden Katz. Pellet: A practical owl-dl reasoner. Web Semantics:
science, services and agents on the World Wide Web, 5(2):51–53, 2007.

242

Bibliography

[SSL01] Hanif D. Sherali, Shivaram Subramanian, and G. V. Loganathan.
Effective relaxations and partitioning schemes for solving water
distribution network design problems to global optimality. Journal of
Global Optimization, 19(1):1–26, 2001.

[Szy02] Clemens Szyperski. Component software: beyond object-oriented
programming. Pearson Education, 2002.

[TBB03] M. Turner, D. Budgen, and P. Brereton. Turning software into a service.
Computer, 36(10):38–44, 2003.

[TD99] T. Maschler and D. A. Savic. Simplification of Water Supply Network
Models Through Linearization. Technical Report, 1999.

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner:
System description. In Automated reasoning, pages 292–297. Springer,
2006.

[The15] What Is SOA? The Open Group Website, retrieved 2015-06-10, 2015.

[TP88] E. Todini and S. Pilati. A gradient algorithm for the analysis of pipe
networks. In Computer applications in water supply: vol. 1—systems
analysis and simulation, pages 1–20, 1988.

[Tsa98] Yao-Chuan Tsai. Model integration using SML. Decision Support
Systems, 22(4):355–377, 1998.

[VM07] Patrick Valente and Gautam Mitra. The evolution of web-based
optimisation: From ASP to e-Services. Decision Support Systems,
43(4):1096–1116, 2007.

[W+12] World Wide Web Consortium et al. OWL 2 web ontology language
document overview. W3C Recommendation,
http://www.w3.org/TR/owl2-overview/. Retrieved 2016-01-14,
2012-12-11/2012.

[W+13] W3C SPARQL Working Group et al. SPARQL 1.1 Overview. W3C
Recommendation, 2013-03-21/2013.

[W3C15a] W3C. W3C Data Activity: Building the Web of Data. Retrieved
2015-06-16, 2015-06-16/2015.

[W3C15b] W3C. RDF Current Status.
http://www.w3.org/standards/techs/rdf#w3c_all, retrieved 2015-06-17,
2015-06-17/2015.

243

Bibliography

[WB06] Andreas Wächter and Lorenz T. Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106(1):25–57, 2006.

[Wik16] Wikimedia Commons. Public Ontology Visualization Example.
https://de.wikipedia.org/wiki/Ontologie_%28Informatik%29, retrieved
2016-01-14, 2016.

[WK03] Jos B. Warmer and Anneke G. Kleppe. The object constraint language:
getting your models ready for MDA. Addison-Wesley Professional, 2003.

[WVM+11] Mark D. Wilkinson, Benjamin P. Vandervalk, E. Luke McCarthy, et al.
The Semantic Automated Discovery and Integration (SADI) Web
service Design-Pattern, API and Reference Implementation. J.
Biomedical Semantics, 2(8), 2011.

[Zus07] Zuse Institut Berlin. SCIP Optimization Suite Documentation.
http://scip.zib.de/doc/html/, retrieved 2015-11-07.

244

Appendix A.

Common Shortcuts

A definition of common shortcuts will be given in this part of the appendix.
Shortcuts will be listed with their full names and references where appropriate.

AIMMS Advanced Integrated Multidimensional Modeling Software, see, 3.3.2

AML Shortcut for Algebraic Modeling Language, see, 3.3.2

AMPL A Mathematical Programming Language, see, 3.3.2

ASCEND Advanced System for Computations in Engineering Design, see, 3.2.2

BARON Branch-And-Reduce-Optimization Navigator, see, 3.3.1

BLOOMS Basic Language Object Oriented for Modeling Systems, see, 3.2.2

Bonmin A MINLP solver, see, 3.3.1

CBSE Component-Based Software Engineering, see, 2.1

CDO/cdo Concrete Domain Ontology, see, 5.3

CPLEX Abbreviation for the solver software IBM ILOG CPLEX Optimization
Studio, see, 3.3.1

DSS/dss Decision Support System, see, 3.1

LPFORM A system for formulating linear programs, see, 3.2.1

GAMS General Algebraic Modeling System, see, 3.3.2

Gurobi Abbreviation for the solver software Gurobi Optimizer, see, 3.3.1

LINGO An AML and a modeling system, see, 3.3.2

LP Linear Programming

MDO/mdo Meta Domain Ontology, see, 5.3

MINLP Mixed Integer Nonlinear Programming

245

Appendix A. Common Shortcuts

MIP Mixed Integer Programming, means only linear problems within this thesis

ODDM OWL Declarative Description for Modelbases, see, 3.2.4

OO Object-orientation

OOF Open Optimization Framework, see, 3.3.3

OS Optimization Services, see, 3.3.3

OWL Web Ontology Language, see, 2.5.1

RDF Resource Description Framework, see, 2.5.1

SaaS Software as a Service, see, 2.2

SAWSDL Semantic Annotations for WSDL and XML Schema, see, 2.6.1

SM Structured Modeling, see, 3.2.2

SML Structured Modeling Language, see, 3.2.2

SMML Structured Modeling Markup Language, see, 3.2.2

SOA Service-oriented Architecture, see, 2.2

SOAP Primarily Simple Object Access Protocol but now a proper name, see, 2.3

SPARQL SPARQL Protocol And RDF Query Language, see, 2.5.3

SPARQL-DL Query language that is related to SPARQL, see, 2.5.3

SSL Here: Service Specification Language, see, 2.6.1

UDDI Universal Description, Discovery and Integration, see, 2.3

WSDL Web Service Description Language, see, 2.3

WSML Web Service Modeling Language, see, 2.6.1

WSMO Web Service Modeling Ontology, see, 2.6.1

XML Extensible Markup Language

XSD XML Schema Definition

XSLT Extensible Stylesheet Language Transformation

246

Appendix B.

Ontology Definitions and Digital Material

This part of the appendix shall provide the definitions of some fundamental
ontologies defined within this thesis. Furthermore, the data that is contained in the
digital material accompanying this thesis should be explained in short. To that end,
the digital material comes in form of a DVD containing the following files and
programs:

• Files for all ontology vocabularies defined in this thesis.

• The demonstrator for AML Derivation from Chapter 8 as an archive file
without external libraries due to license restrictions. For installation support or
a "live demo" you may contact the author of this thesis.

• Ontology representations of the three network flow models, respective
derivation implementations and queries. With the aid of these files, the
demonstrator can be tested on the network flow case study models.

• An ontology model definition for the water network case study model from
Chapter 6. There are no derivation implementations and queries such that an
AML model can not be derived with the demonstrator, but the instance model
can be tested in an ontology form for freeness of contradictions by reasoning.

• An AMPL XSD for validating the results of AML Derivation.

• The AMPL models of all case study models from the network and water
network domains. Furthermore, some modeling excerpts of further examples.

• The renewal planning model from Chapter 7 in the AMPL version together
with the data files for the numerical experiments with Bonmin in .dat-format.

In order to make a statement on the validity of the delivered tools and data, the
following is stated: "All ontologies were checked for freeness of contraditions by using
the reasoner HermiT version 1.3.8 in Protégé version 4.3. Queries and derivation
implementations have been applied to derive the three network flow models with the
demonstrator tool. All AMPL models and excepts were checked for syntactical
correctness and static semantics by AMPL via AMPL IDE version 1.0.0. The pipe
renewal planning model in AMPL and the data files where not only compiled

247

Appendix B. Ontology Definitions and Digital Material

correctly but also solved with the solver Bonmin in version 1.4.2, as it has been
desribed in Chapter 7."
Vocabularies:
In what follows, vocabulary definitions of fundamental ontologies will be given in
Manchester Syntax. As the ontology definitions of all vocabuaries and models
presented in this thesis would be too big to print, this part of the appendix is
reduced to the central top-level vocabularies that make up the ontology optimization
framework from a language perspective. To that end, no ontologies for the network
and water network domains will be printed here. The latter meta domain and
formulation ontologies can be found on the accompanying DVD.

Optimization Modeling Vocabulary
The prefix of this ontology is OM. The specifications can be found from Figure B.1
onwards.
Set-Parameter-Indexing Ontology
The prefix of this ontology is SPI. The specifications can be found from Figure B.4
onwards.
Mathematical Properties Vocabulary
The prefix of this ontology is OM.MProps. The specifications can be found from
Figure B.9 onwards.
Technical Constants
The prefix of this ontology is TechConst. The specifications can be found in Figure
B.13.
Time Horizons
The prefix of this ontology is TimeHorizons. The specifications can be found in from
Figure B.14 onwards.
Mathematical Operations Parameters
The prefix of this ontology is MathOpParams. The specifications can be found from
Figure B.16 onwards.

248

Prefix : : <http://www.w3.org/2002/07/owl#>
Prefix : sp: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter.owl#>
Prefix : owl: <http://www.w3.org/2002/07/owl#>
Prefix : rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
Prefix : xml: <http://www.w3.org/XML/1998/namespace>
Prefix : xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix : rdfs : <http://www.w3.org/2000/01/rdf−schema#>
Ontology: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl>
Import: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl>
Datatype: xsd:string
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#

expRequires>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
ExpressionEntity>

Range:
Thing

ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
requires>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
FormulationEntity>

Range:
Thing

ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
dataMProp>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
DataEntity>

Range:
<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#

DataEntityProperty>
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#

formulationMProp>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
FormulationEntity>

Range:
<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#

FormulationEntityProperty>

Figure B.1.: OM Ontology - Part 1

249

Appendix B. Ontology Definitions and Digital Material

DataProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
EName>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
ModelEntity>

Range:
xsd: string

Class: Thing
Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#

Constraint>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
Constraints>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#Goal>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
FormulationEntity>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#Set>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
DataEntity>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
ModelEntity>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
FormulationEntity>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
ModelEntity>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
DataEntityProperty>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
ExpressionEntity>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
DataEntity>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
ModelEntity>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
FormulationEntityProperty>

Figure B.2.: OM Ontology - Part 2

250

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
Parameter>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
DataEntity>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#Variable
>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
DataEntity>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
Constraints>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
FormulationEntity>

Figure B.3.: OM Ontology - Part 3

251

Appendix B. Ontology Definitions and Digital Material

Prefix : : <http://www.w3.org/2002/07/owl#>
Prefix : owl: <http://www.w3.org/2002/07/owl#>
Prefix : rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
Prefix : xml: <http://www.w3.org/XML/1998/namespace>
Prefix : xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix : rdfs : <http://www.w3.org/2000/01/rdf−schema#>
Ontology: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl>
Datatype: xsd:boolean
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set
−Parameter−Indexing.owl#SetIndexedBy>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SetOfSets>

Range:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#IndexingIndice>
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set
−Parameter−Indexing.owl#IndiceForSet>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#IndexingIndice>

Range:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#SimpleSet>
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set
−Parameter−Indexing.owl#hasOperand>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#UnionSet>

Range:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#Set>
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set
−Parameter−Indexing.owl#hasIndexingElement>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#Indexing>

Range:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#IndexingElement>

Figure B.4.: Set-Parameter-Indexing - Part 1

252

ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set
−Parameter−Indexing.owl#hasIndexSet>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#IndexingElement>

Range:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#Set>
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set
−Parameter−Indexing.owl#definedOn>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#ParameterCollection>

Range:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#SPITopLevelConcept>
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set
−Parameter−Indexing.owl#TimeSetgivenBy>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#TimeSet>

Range:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#SimpleParameter>
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set
−Parameter−Indexing.owl#WithinCartProductTwoSame>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#Set>

Range:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#Set>
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set
−Parameter−Indexing.owl#Within>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#Set>

Range:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#Set>

Figure B.5.: Set-Parameter-Indexing - Part 2

253

Appendix B. Ontology Definitions and Digital Material

DataProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#NonInstantiable>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPIEntity>

Range:
xsd:boolean

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#OrderedParameterCollection>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#definedOn> only <http://www.semanticweb.org/
florianstapel/ontologies/2014/8/Top−Set−Parameter−Indexing.owl#
OrderedParameterCollection>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#ParameterCollection>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SimpleSingleElementIndexing>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#Indexing>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#hasIndexingElement> max 0 <http://www.
semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−Parameter−
Indexing.owl#IndexingElement>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#UnionSet>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#hasOperand> min 1 <http://www.semanticweb.org
/florianstapel/ontologies/2014/8/Top−Set−Parameter−Indexing.owl#Set>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#Set>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#IndexingIndice>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#IndiceForSet> exactly 1 <http://www.semanticweb
.org/florianstapel/ontologies/2014/8/Top−Set−Parameter−Indexing.owl#
SimpleSet>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPITopLevelConcept>

Figure B.6.: Set-Parameter-Indexing - Part 3

254

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPITopLevelConcept>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#Set>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SimpleSingleElementIndexing>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPIEntity>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SetOfSets>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SetIndexedBy> exactly 1 <http://www.
semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−Parameter−
Indexing.owl#IndexingIndice>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#Set>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPIEntity>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPITopLevelConcept>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SimpleParameter>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#definedOn> max 0 <http://www.semanticweb.org/
florianstapel/ontologies/2014/8/Top−Set−Parameter−Indexing.owl#Set>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPIEntity>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#IndexingElement>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPITopLevelConcept>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#hasIndexSet> min 1 <http://www.semanticweb.org
/florianstapel/ontologies/2014/8/Top−Set−Parameter−Indexing.owl#Set>

Figure B.7.: Set-Parameter-Indexing - Part 4

255

Appendix B. Ontology Definitions and Digital Material

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPIIndexing>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPITopLevelConcept>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#ParameterCollection>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#definedOn> only <http://www.semanticweb.org/
florianstapel/ontologies/2014/8/Top−Set−Parameter−Indexing.owl#
SPITopLevelConcept>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPIEntity>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#Indexing>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SPITopLevelConcept>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#OrderedSet>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SimpleSet>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SimpleSet>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#Set>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#TimeSet>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#TimeSetgivenBy> max 1 <http://www.
semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−Parameter−
Indexing.owl#SimpleParameter>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#OrderedSet>

Figure B.8.: Set-Parameter-Indexing - Part 5

256

Prefix : : <http://www.w3.org/2002/07/owl#>
Prefix : owl: <http://www.w3.org/2002/07/owl#>
Prefix : rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
Prefix : xml: <http://www.w3.org/XML/1998/namespace>
Prefix : xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix : rdfs : <http://www.w3.org/2000/01/rdf−schema#>
Ontology: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.

owl>
Datatype: xsd:double
DataProperty: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.

MProps.owl#hasUpperRange>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
RangeProperty>

Range:
xsd:double

DataProperty: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.
MProps.owl#hasLowerRange>
Domain:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
RangeProperty>

Range:
xsd:double

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
DataEntityProperty>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
TopLevelMathProp>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
C2Formulation>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
C1Formulation>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
FormulationEntityProperty>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
TopLevelMathProp>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
TopLevelMathProp>

Figure B.9.: OM.MProps - Part 1

257

Appendix B. Ontology Definitions and Digital Material

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
GeneralNonLinearFormulation>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
FormulationEntityProperty>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
IntegerData>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
DataEntityProperty>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
BinaryData>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
IntegerData>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
ContinuousFormulation>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
FormulationEntityProperty>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
C1Formulation>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
ContinuousFormulation>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
NonNegativeLowerBound>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
DataEntityProperty>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
LinearFormulation>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
FormulationEntityProperty>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
RangeProperty>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
DataEntityProperty>,

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
hasUpperRange> max 1 xsd:double,

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
hasLowerRange> max 1 xsd:double

Figure B.10.: OM.MProps - Part 2

258

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
StrictlyPositiveLowerBound>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
DataEntityProperty>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
ConvexFormulation>
SubClassOf:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
FormulationEntityProperty>

Individual : <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.
owl#ContinuousFormulationInd>
Types:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
ContinuousFormulation>

Individual : <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.
owl#BinaryPropertyInd>
Types:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
BinaryData>

Individual : <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.
owl#IntegralityPropertyInd>
Types:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
IntegerData>

Individual : <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.
owl#GeneralNonLinearFormulationInd>
Types:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
GeneralNonLinearFormulation>

Individual : <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.
owl#ZeroLowerBoundInd>
Types:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
NonNegativeLowerBound>

Figure B.11.: OM.MProps - Part 3

259

Appendix B. Ontology Definitions and Digital Material

Individual : <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.
owl#ConvexFormulationInd>
Types:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
ConvexFormulation>

Individual : <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.
owl#StrictlyPositiveLowerBoundInd>
Types:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
StrictlyPositiveLowerBound>

Individual : <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.
owl#C2FormulationInd>
Types:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
C2Formulation>

Individual : <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.
owl#LinearFormulationInd>
Types:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
LinearFormulation>

Individual : <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.
owl#C1FormulationInd>
Types:

<http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
C1Formulation>

Figure B.12.: OM.MProps - Part 4

260

Prefix : : <http://www.w3.org/2002/07/owl#>
Prefix : owl: <http://www.w3.org/2002/07/owl#>
Prefix : rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
Prefix : xml: <http://www.w3.org/XML/1998/namespace>
Prefix : xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix : rdfs : <http://www.w3.org/2000/01/rdf−schema#>
Ontology: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−

TechConst.owl>
Import: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl>
AnnotationProperty: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/

MDO−TechConst.owl#hasDLQuery>
SubPropertyOf:

rdfs :comment
AnnotationProperty: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/

MDO−TechConst.owl#hasAMPLXMLDerivation>
SubPropertyOf:

rdfs :comment
AnnotationProperty: rdfs:comment
Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−TechConst.

owl#EarthGravitation>
Annotations:

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−TechConst.
owl#hasAMPLXMLDerivation> <http://www.semanticweb.org/florianstapel
/ontologies/2015/9/TechConst.owl#EarthGravitationXSL>,

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−TechConst.
owl#hasDLQuery> <http://www.semanticweb.org/florianstapel/ontologies
/2015/9/TechConst.owl#EarthGravitationDLQuery>

SubClassOf:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#SimpleParameter>
Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−TechConst.

owl#Pi>
Annotations:

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−TechConst.
owl#hasDLQuery> <http://www.semanticweb.org/florianstapel/ontologies
/2015/9/TechConst.owl#PiDLQuery>,

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−TechConst.
owl#hasAMPLXMLDerivation> <http://www.semanticweb.org/florianstapel
/ontologies/2015/9/TechConst.owl#PiXSL>

SubClassOf:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#SimpleParameter>
Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#SimpleParameter>

Figure B.13.: Technical Constants
261

Appendix B. Ontology Definitions and Digital Material

Prefix : : <http://www.w3.org/2002/07/owl#>
Prefix : owl: <http://www.w3.org/2002/07/owl#>
Prefix : rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
Prefix : xml: <http://www.w3.org/XML/1998/namespace>
Prefix : xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix : rdfs : <http://www.w3.org/2000/01/rdf−schema#>
Ontology: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−

TimeHorizons.owl>
Import: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl>
Import: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl>
AnnotationProperty: rdfs:comment
AnnotationProperty: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/

MDO−TimeHorizons.owl#hasAMPLXMLDerivation>
SubPropertyOf:

rdfs :comment
AnnotationProperty: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/

MDO−TimeHorizons.owl#hasDLQuery>
SubPropertyOf:

rdfs :comment
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#

dataMProp>
Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#

IntegerData>
Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−

TimeHorizons.owl#PlanningHorizonLength>
Annotations:

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
TimeHorizons.owl#hasAMPLXMLDerivation> <http://www.semanticweb.
org/florianstapel/ontologies/2015/9/MDO−TimeHorizons.owl#
PlanningHorizonLengthXSL>,

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
TimeHorizons.owl#hasDLQuery> <http://www.semanticweb.org/
florianstapel/ontologies/2015/9/MDO−TimeHorizons.owl#
PlanningHorizonLengthDLQuery>

SubClassOf:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#

dataMProp> exactly 1 <http://www.semanticweb.org/florianstapel/
ontologies/2015/6/OM.MProps.owl#IntegerData>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SimpleParameter>

Figure B.14.: Time Horizons - Part 1

262

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
TimeHorizons.owl#PeriodNumber>
Annotations:

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
TimeHorizons.owl#hasAMPLXMLDerivation> <http://www.semanticweb.
org/florianstapel/ontologies/2015/9/MDO−TimeHorizons.owl#
PeriodNumberXSL>,

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
TimeHorizons.owl#hasDLQuery> <http://www.semanticweb.org/
florianstapel/ontologies/2015/9/MDO−TimeHorizons.owl#
PeriodNumberDLQuery>

SubClassOf:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#

dataMProp> exactly 1 <http://www.semanticweb.org/florianstapel/
ontologies/2015/6/OM.MProps.owl#IntegerData>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SimpleParameter>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SimpleParameter>

Figure B.15.: Time Horizons - Part 2

263

Appendix B. Ontology Definitions and Digital Material

Prefix : : <http://www.w3.org/2002/07/owl#>
Prefix : owl: <http://www.w3.org/2002/07/owl#>
Prefix : rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
Prefix : xml: <http://www.w3.org/XML/1998/namespace>
Prefix : xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix : rdfs : <http://www.w3.org/2000/01/rdf−schema#>
Ontology: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−

MathOpParams.owl>
Import: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl>
Import: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl>
AnnotationProperty: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/

MDO−MathOpParams.owl#hasAMPLXMLDerivation>
SubPropertyOf:

rdfs :comment
AnnotationProperty: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/

MDO−MathOpParams.owl#hasDLQuery>
SubPropertyOf:

rdfs :comment
AnnotationProperty: rdfs:comment
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#

dataMProp>
ObjectProperty: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set
−Parameter−Indexing.owl#definedOn>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
IntegerData>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#LinearizationGridValues1D>
Annotations:

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#hasAMPLXMLDerivation> <http://www.semanticweb.
org/florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
LinearizationGridValues1DXSL>,

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#hasDLQuery> <http://www.semanticweb.org/
florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
LinearizationGridValues1DDLQuery>

SubClassOf:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#ParameterCollection>,
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#definedOn> exactly 1 <http://www.semanticweb.
org/florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
LinearizationStepNumber1D>

Figure B.16.: Mathematical Operation Parameters - Part 1

264

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#LinearizationStepNumber1D>
Annotations:

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#hasDLQuery> <http://www.semanticweb.org/
florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
LinearizationStepNumber1DDLQuery>,

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#hasAMPLXMLDerivation> <http://www.semanticweb.
org/florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
LinearizationStepNumber1DXSL>

SubClassOf:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#

dataMProp> exactly 1 <http://www.semanticweb.org/florianstapel/
ontologies/2015/6/OM.MProps.owl#StrictlyPositiveLowerBound>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#
dataMProp> exactly 1 <http://www.semanticweb.org/florianstapel/
ontologies/2015/6/OM.MProps.owl#IntegerData>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SimpleParameter>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#LinearizationStartEndValues>
Annotations:

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#hasAMPLXMLDerivation> <http://www.semanticweb.
org/florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
LinearizationStartEndValuesXSL>,

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#hasDLQuery> <http://www.semanticweb.org/
florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
LinearizationStartEndValuesDLQuery>

SubClassOf:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#ParameterCollection>
Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#ParameterCollection>

Figure B.17.: Mathematical Operation Parameters - Part 2

265

Appendix B. Ontology Definitions and Digital Material

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#AbsoluteValueSquareRootSmoothingAlpha>
Annotations:

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#hasDLQuery> <http://www.semanticweb.org/
florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
AbsoluteValueSquareRootSmoothingAlphaDLQuery>,

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#hasAMPLXMLDerivation> <http://www.semanticweb.
org/florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
AbsoluteValueSquareRootSmoothingAlphaXSL>

SubClassOf:
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/OM.owl#

dataMProp> exactly 1 <http://www.semanticweb.org/florianstapel/
ontologies/2015/6/OM.MProps.owl#StrictlyPositiveLowerBound>,

<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SimpleParameter>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#LinearizationGrid1D>
Annotations:

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#hasAMPLXMLDerivation> <http://www.semanticweb.
org/florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
LinearizationGrid1DXSL>,

<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−
MathOpParams.owl#hasDLQuery> <http://www.semanticweb.org/
florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
LinearizationGrid1DDLQuery>

SubClassOf:
<http://www.semanticweb.org/florianstapel/ontologies/2015/9/MDO−

MathOpParams.owl#LinearizationStartEndValues>,
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#ParameterCollection>,
<http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−

Parameter−Indexing.owl#definedOn> exactly 1 <http://www.semanticweb.
org/florianstapel/ontologies/2015/9/MDO−MathOpParams.owl#
LinearizationStepNumber1D>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2015/6/OM.MProps.owl#
StrictlyPositiveLowerBound>

Class: <http://www.semanticweb.org/florianstapel/ontologies/2014/8/Top−Set−
Parameter−Indexing.owl#SimpleParameter>

Figure B.18.: Mathematical Operation Parameters - Part 3

266

	Introduction
	Approach within this Thesis
	Outline and Methodology

	Software Services and Ontologies
	Component-Based Software Engineering
	Services, SaaS and SOA
	Web Services
	The Visions of Semantic Web and OTF Computing
	Ontologies
	Ontology Languages and Semantics
	Visualization of Ontologies within this Thesis
	Reasoning, Queries and Rules
	Ontology Imports and Ontology Mapping

	Semantic Services
	Semantic Service Description Languages
	Semantic Service Composition
	Data Mediation in Sequential Workflows

	Model Management and Optimization Software
	Basic Notions
	Model Management
	Modeling Lifecycle and Model Formulation
	Structured Modeling
	Model Integration and Composition
	Distributed Model Management and SOA

	Optimization Software
	Solver Software
	Algebraic Modeling Systems
	Distributed Optimization, Frameworks and SOA

	Conclusion

	Problem Identification and Objectives
	Problem Identification and Motivation
	Requirements

	Ontology-based Representation of Optimization Models
	Basic Approach
	A First Example Model: Min-Cost-Flow with integrality Requirements
	Structure of the Representation
	Ontology Structure
	Top Level Definitions in OM
	The Set-Parameter-Indexing Vocabulary
	The Mathematical Properties Ontology
	Ontology Specifications for the Min-Cost-Flow Problem

	Expression Structure Separation and AML Derivation
	Flow Type Example of a Statement Derivation
	Requirements and Design Considerations for Queries and Derivation Implementations
	A Balance-Type Example of a Statement Derivation
	Algebraic Model Derivation Process
	Conclusion of Statement Derivation and Structure

	Reengineering of AML Models
	Model Instantiation Services
	Obtaining Model Properties from the Ontology Representation
	Generating Model Instantiation and Solver Service Descriptions

	Conclusion

	Reusability and Model Formulation in the Ontology Representation
	Considerations for Min-Cost-Flow Models
	The Single Commodity Balance Hierarchies
	Considerations for a Multicommodity Flow Model
	Two Types with Generic Summations
	Ontology Specifications for a general Min-Cost-Flow Model

	Discussion of MDO and Formulation Ontology Type Design
	Considerations for a Water Network Case Study
	Introduction to Water Distribution Systems Planning
	The Case Study Model
	Pipe Headloss and Linearization Types
	Model Formulation Considerations
	Types and Formulation Choices concerning Integrality Requirements

	Soft Constraints
	Conclusion

	Consolidation: A MINLP Model for Pipe Renewal Planning
	Literature Review: Pipe Renewal Planning and Optimization
	Multiperiod Renewal Planning: Problem Statement and Approach
	MINLP Model
	Numerical Results
	Test Network
	Results with Bonmin
	Results with Baron
	Conclusion

	Tool Support
	Funtionality
	Design

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Common Shortcuts
	Ontology Definitions and Digital Material

