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ABSTRACT

In the last decades, software development turned from monolithic software products towards
flexibly combinable software services. Correspondingly, a growing number of service
providers started offering their services in world-wide service markets. As a consequence,
customers, so-called service requesters, can buy software services from such markets. In
general, service requesters buy services that match their functional and non-functional
requirements best. Thus, among all services provided in the market, the services that match
these requirements best need to be discovered by considering these requirements. For the
purpose of this so-called service matching, the requester’s requirements specification and the
providers’ service specifications are compared. As a result, the extent to which the provided
service specification satisfies the requirements specification is returned.

The described scenario leads to two main challenges. (1) Existing matching approaches
deliver inaccurate results because each of them only considers a specific kind of
requirements. The combination of multiple matching approaches, however, is a tedious
and error-prone task and this task had to be done manually up to now. Challenges include
design decisions about control flow and data flow as well as the aggregation of matching
results. (2) The more complex the specifications we are dealing with are, the more the
probability for (partially) imperfect specifications increases. For example, requesters often
have vague requirements or deliver imprecise requirements specifications. Providers often
provide incomplete specifications for several reasons including the high specification effort
or a lack of technical knowledge. Furthermore, matching approaches themselves can be
imprecise on purpose to keep complex matching problems efficiently solvable. In these
cases, traditional matching approaches deliver adulterated and deceptive matching results
that do not notify the users about the induced uncertainty.

In order to deal with complex service specifications, in this thesis, we propose the idea
of matching processes that combine multiple existing matching approaches and aggregate
their matching results. Thereby, a variety of different requirements can be covered. For
this purpose, a model-driven development framework for comprehensive and configurable
service matching, called MatchBox, is introduced. MatchBox simplifies, validates, and
partially automatizes complex integration tasks.

In order to cope with uncertainty induced into the matching procedure, we propose
concepts for Fuzzy Matching. On the basis of well-defined fuzziness sources and types, the
amount of induced fuzziness is quantified and returned as part of an informative matching
result that reflects the induced uncertainty to the user. Thereby, fuzzy matching provides
valuable information about the quality of the matching result, which improves the decision-
making of both service requesters and service providers.
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We realized our concepts in a prototype that was also used for the evaluation including
four case studies. Both researchers and practitioners benefit from the contributions presented
by this thesis. By combining multiple research areas in a novel way, this thesis describes
and evaluates concepts that go significantly beyond the state of the art in service matching.
Thereby, it constitutes an important step to bring service matching into practice.
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ZUSAMMENFASSUNG

Softwareentwicklung hat sich in den letzten Jahren von dem Entwurf und der Erstellung
monolithischer Softwareprodukte zu flexibel kombinierbaren Software-Diensten (Services)
gewandelt. Entsprechend begannen immer mehr Software-Anbieter, solche Dienste auf
weltweiten Märkten bereitzustellen, um es Kunden zu ermöglichen, Software-Dienste
von dort zu kaufen. Kunden kaufen die Dienste, die ihre funktionalen sowie nicht-
funktionalen Anforderungen bestmöglich erfüllen. Daher müssen solche Dienste unter
allen angebotenen Diensten unter Berücksichtigung der Kunden-Anforderungen gesucht
werden. Der zu diesem Zweck erfolgende Abgleich der Anforderungsbeschreibungen mit
den Beschreibungen der angebotenen Dienste nennt sich Service Matching. Das Ergebnis
des Service Matchings stellt dar, in welchem Maße eine angebotene Servicebeschreibung
auf die Anforderungsbeschreibung passt.

Das beschriebene Szenario führt zu zwei wesentlichen Herausforderungen. (1)
Existierende Ansätze zum Service Matching liefern inakkurate Ergebnisse, weil sie
jeweils nur einen Teil der Anforderungen berücksichtigen. Die Kombination mehrerer
solcher Matching-Ansätze ist allerdings eine mühsame und fehleranfällige Aufgabe, die
bisher manuell erledigt werden muss. Herausfordernd hierbei sind unter anderem die
Entwurfsentscheidungen bezüglich Kontrollfluss und Datenfluss oder auch die Aggregation
von Matching-Ergebnissen. (2) Je komplexer die abzugleichenden Beschreibungen sind,
desto größer ist die Wahrscheinlichkeit, dass es sich um (teilweise) unvollkommene
Beschreibungen handelt. Zum Beispiel haben Kunden oft nur vage Anforderungen
oder sie beschreiben ihre Anforderungen ungenau. Anbieter beschreiben zudem oft nur
unvollständig ihre Services, beispielsweise wegen eines zu hohen Beschreibungsaufwandes
oder fehlender Expertise. Weiterhin arbeiten einige Matching-Ansätze approximativ, damit
sie das Matching-Problem schneller lösen können. In all diesen Fällen liefern traditionelle
Matching-Ansätze verfälschte und irreführende Ergebnisse, die den Benutzer nicht über die
vorhandene Ungewissheit informieren.

Um mit komplexen Servicebeschreibungen umzugehen, wurde im Rahmen dieser
Dissertation das Konzept von Matching-Prozessen erarbeitet, die mehrere Matching-Ansätze
kombinieren und ihre Ergebnisse aggregieren können. Durch diese Kombination kann eine
Vielfalt von unterschiedlichen Anforderungen berücksichtigt werden. Ermöglicht wird dies
durch das modellgetriebene Framework MatchBox für umfangreiches und konfigurierbares
Service Matching. Insbesondere vereinfacht, validiert und teilautomatisiert MatchBox die
komplexe Aufgabe der Integration mehrerer Ansätze zum Service Matching.

Um mit Ungewissheiten während des Matchings umgehen zu können, schlagen
wir das Konzept des unscharfen Matchings, das sogenannte Fuzzy Matching vor.
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Basierend auf wohldefinierten Fuzziness-Quellen und -Typen wird dabei das Ausmaß
der auftretenden Ungewissheit quantifiziert und als Teil eines informativen Matching-
Ergebnisses ausgegeben. Dieses Matching-Ergebnis reflektiert die auftretende Ungewissheit
und informiert den Benutzer, der somit bessere Entscheidungen treffen kann.

Die genannten Lösungen wurden im Rahmen eines Prototypen umgesetzt und anhand
von vier Fallstudien evaluiert. Der Nutzen der Ergebnisse liegt sowohl in der Forschung
als auch in der Praxis. Durch die neuartige Kombination mehrerer unterschiedlicher
Forschungsgebiete stellt diese Dissertation Ergebnisse vor, die deutlich über den Stand der
Forschung im Bereich des Service Matchings hinausgehen. Aufgrund dessen stellt sie einen
wichtigen Schritt dar, um Service Matching in der Praxis sinnvoll einzusetzen.
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1

INTRODUCTION

In the last decades, software development has turned from monolithic software products
towards more flexible, reusable solutions. Especially paradigms like component-based
software engineering (CBSE) or service-oriented computing (SOC) reflect this development.
CBSE deals with independently composable software components accessed via well-defined
interfaces [SGM02]. SOC builds on such software components and addresses their provision
as readily deployed and flexibly composable Software-as-a-Service (SaaS) [PTDL08].
Examples for such software services are map services (e.g., Google Maps [Gooa]), hotel
reservation services (e.g., HRS [Ser]), image processing services (e.g., Instagram [Ins]), or
services related to university management tasks (e.g., PAUL [UPBa]).

In the last years, service providers started offering their software components and services
in world-wide software (service) markets. One example is plug-in marketplaces for software
platforms (e.g., Eclipse Marketplace [Ecl]). Especially the number and size of mobile app
markets (e.g., Google Play [Goob], Windows Phone Store [Mica]) as well as markets for
web services and cloud services (e.g., Amazon Web Services [Amab], SalesForce [Sal], IBM
Cloud Marketplace [IBMCM]) is rapidly increasing [SO11].

As a consequence, various kinds of customers can buy software services from such
markets. A customer querying such a market takes the role of a service requester. Service
requesters usually have very specific requirements regarding the software they are interested
in. These requirements can be functional (e.g., “the service should be able to manage exam
registrations”) or non-functional (e.g., “the service should be fast” or “the service should
adhere to my privacy preferences”). Thus, among all services provided in a market, the
service that satisfies these requirements best needs to be discovered [NK13, RKLB09] or to
be composed from several constituent services [DS05].

1.1 Service Matching

Both, service discovery and service composition are based on service matching approaches.
Figure 1.1 illustrates the roles and artifacts relevant for service matching approaches:
The requester provides a Requirements Specification, while the provider offers a Service
Specification of the service(s) she provides. The matching approach takes both specifications
as inputs and returns a Matching Result as an output. The matching result indicates the
extent of in how far the specification of the provided service satisfies the given requirements
specification [PvdH03]. This procedure is repeated for all services and all providers in the
market, such that we get one matching result per service. These results are comparable and
can be used in order to determine which service is the most relevant one for the requester.
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Figure 1.1: The Most Important Roles and Artifacts Involved in Service Matching

Note that a requester does not need to be human; it can also be the required interface of a
software component that is to be composed to the discovered component.

While most established software markets today are still limited to a relatively simple,
keyword-based search, there exists a variety of advanced matching approaches in academia.
These approaches consider more complex specifications describing various requirements and
service properties [DHC12, PvDB+13]. For example, there are approaches for signature
matching (e.g., [ZW97, SW05]), protocol matching (e.g., [CIW99, MXB10]), or for
matching quality-of-service (QoS) properties (e.g., [BBM10]). All these approaches have in
common that they try to detect (and quantify) mismatches, i.e., situations where the provided
service specification does not fully satisfy the given requirements specification.

Service matching approaches trace back to approaches for component search (component
retrieval) [LPDA04] from the research area of component-based software engineering.
The main difference between matching specifications for software components and
matching service specifications is that service matching approaches are able to
incorporate more concrete quality properties because services can be viewed as deployed
components [BPB15]. For example, properties like performance depend on the concrete
hardware a component is deployed on. In contrast, there is no difference in component
and service matching when considering structural properties (e.g., signatures) or behavioral
properties (e.g., protocols). As a consequence, the concepts described in this thesis are
targeted for service matching but most of them can also be applied in the context of
(undeployed) software components or similar software entities (e.g., plug-ins, apps), as long
as they are described by (semi-)formal specifications.

1.2 Running Example

In the following, we describe the domain of university management services that is used as
a running example throughout this thesis. A university management service is a software
service used to simplify tasks related to managing a university, including its teaching
activities. Figure 1.2 shows an example service. This example service is composed from
three services: a Course Manager, an Exam Manager, and a Room Manager. The Room
Manager provides the functionality to reserve lecture halls and seminar rooms. Both the
Course Manager and the Exam Manager depend on the Room Manager, in order to book
rooms for course meetings or for exams.

Figure 1.3 shows a requester’s requirements specification for such a room management
service, as well as an exemplary specification of the Room Manager service from Figure 1.2.
Please note that these specifications are simplified for illustration purposes.
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University Management Service

 
 

Exam Manager

 
 Course Manager

  
    

        Room Manager

Figure 1.2: University Management Example Services

As explained above, requirements can be complex and heterogeneous. The requirements
depicted in Figure 1.3 (a) are related to several specification aspects: signatures, pre- and
post-conditions, protocols, privacy properties, pricing, reputation, and performance. We
explain the depicted requirements specification briefly in the following.

At the top of Figure 1.3 (a), there are two operations: bookRoom and confirm. According
to the signatures, bookRoom takes four input parameters (bookerName, address, time, and
capacity) of the data types String, MailAddress, Date, and Integer. Furthermore, bookRoom
returns an object room of type Room. All data types refer to concepts from an underlying
ontology depicted in Figure 1.3 (c). This ontology captures knowledge from a specific
domain; in this example, knowledge from the university management domain.

Apart from signatures, further functional requirements are specified with pre- and post-
conditions and protocols. The predicates used in the depicted pre- and post-conditions refer
to properties from the underlying ontology in order to specify the semantics of the described
service. The precondition shows that the requested service operates only if there is at least
one Room with the given capacity that is not booked at the given time. In contrast, as
specified in the post-condition, the returned room is to be booked at the given time. As
specified in the protocol, the two operations bookRoom and confirm are to be called one after
another.

Furthermore, there are several non-functional requirements. For example, the requester
wants a service that costs at most 0.01 Euros per invocation. In addition, the service should
be rated with an average reputation value of at least about four stars (following a five star
range as known from today’s app stores). The privacy requirements define that the given
input data is not allowed to be delegated to other services and that this data may only be
stored for 12 months by the current service at most. Referring to the performance of the
required service, the requester specifies the required response time as fast.

In this example, the specification of the provided service looks fairly similar to the
requirements specification (see Figure 1.3 (b)). In general, the provided service Room
Manager provides the requested room reservation functionality. In addition, it provides
an operation editBookingTime for editing a reservation. We assume that the requesters
and the providers follow the same ontology for the specification of requirements and
the provided services. For this, we refer to ontology mapping approaches available in
the literature (see [CSH06] for an overview) that can be applied to take care of an
appropriate transformation. The non-functional properties vary slightly from the non-
functional requirements. For example, the reputation of the service is 3.88 stars, which
is an aggregate of the ratings previous users assigned to this service regarding their own
satisfaction with the service.
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Privacy Policies:

Parameter
Delegation

Depth

Retention

Period

time 1 ?

size 1 ?

res 0 ?

Signatures:
 bookRoom (String bookerName, MailAddress address,

Date time, Integer capacity): Room room 
   pre: exists(r:Room & (!isBooked(r,time) 

& hasCapacity(r,capacity))
   post: isBooked(room,time)
 confirm () : Confirmation conf
   pre: -
   post: -
    

Privacy Requirements:

Parameter
Delegation 

Depth

Retention 

Period

time 0 12

capacity 0 12

Signatures:
 bookHall (MailAddress bookerAddress, Integer size, Time time): 

LectureHall hall, Receipt receipt
   pre: exists(l:LectureHall & hasCapacity(l,capacity))
   post: isBooked(hall,time) & hasCapacity(hall,size)
 editBookingTime (Receipt receipt, Time time) : Receipt receipt
   pre: isValid(receipt)
   post: hasTime(receipt,time)
 sendAck (Reservation res) : Acknowledgement ack
   pre: wasSuccessful(res,true)
   post: -

Protocol:

Protocol:

bookRoom

confirm

bookHall

sendAck
edit

BookingTime

    
Requirements Service  Room Manager 

Price:
   0.01 € per query

Price:
   10 € \ monthReputation:

    more than approx. 4 stars 

Reputation:
   3.88 stars

... ...

Performance:
   reponse time =  fast 

Performance:
   reponse time = ?

(a) Requirements Specification (b) Service Specification

(c) Ontology

Integer

LectureHallBoolean

hasCapacity
isBooked

Room

subclassOf
ReservationwasSuccessful

Date

Receipt

hasTime

isValid

...

Time
subclassOf

AcknowledgementConfirmation equivalent

acknowledges

MailAddress
isValid

String

Figure 1.3: Example Requirements, Service Specification, and Ontology

In order to find out whether the provided service Room Manager satisfies the given
requirements, matching approaches are applied to the two specifications. For example,
standard ontological signature matching approaches (e.g., [KK12b, SW05]) would determine
that the signature of the provided operation bookHall matches the signature of the required
operation bookRoom quite well, while the signature of the provided operation sendAck
partially matches the signature of the required operation confirm. These matching results are
based on the input and output parameters and the relations between the ontological concepts
their types refer to. For example, the ontological concept LectureHall is a subtype of Room.
Other matching approaches apply different calculations to determine a matching result. For
example, pre- and post-conditions are often evaluated using SMT-solving [WHdM09]. On
the contrary, quality properties are often transformed into fuzzy sets [Zad65] in order to
determine a degree of match.

1.3 Problem Statement

Taking a more detailed look at the example described in Section 1.2, two main challenges can
be discovered: The complexity of the given input specifications and the presence of imperfect
information, as discussed in the following.
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C1: Dealing with Complex Input Specifications

Since requesters have diverse requirements related to various service properties, the matching
needs to cover all these requirements and properties. Service providers can be assumed
to be interested in providing comprehensive specifications of their services in order to
improve their sales opportunities. Furthermore, there are methods to derive further parts of
service specifications, for example, behavior protocols [BIPT09]. Consequently, matching
approaches need to handle complex input specifications in order to compute accurate
matching results.

The input specifications from Figure 1.3 are complex in several ways. For example,
there are many different specification aspects that need to be considered. However, current
matching approaches cover only one or few aspects each [PvDB+13, DHC12]. Thus, the
matching results those approaches deliver are inaccurate in a sense that multiple requirements
are ignored, which can lead to false positives (mismatching services incorrectly determined
as well-matching services).

One naive solution is to use several matching approaches one after another. However,
this solution raises several problems, too. For example, we do not get one matching
result but several results leading to a more complicated decision-making for the users
(requester or provider). Here, the question is how to aggregate matching results computed
by single matching approaches to one final matching result. Also, some of these matching
approaches may depend on each other, such that the correct data flow and control flow
matters. All these design decisions have an impact on the overall performance and accuracy
of matching. Accordingly, reconfigurations of the combined matching implementations are
needed frequently. Thus, combining matching approaches is a complex task and doing this
manually is tedious and error-prone. We need a flexible solution that simplifies this task.

C2: Dealing with Imperfect Information

In current service markets, specifications are very often lacking, incomplete, or
unclear [HS07, SO11]. The more complex the specifications we are dealing with, the
more the probability for such imperfect specifications increases. In addition, requirements
specifications as well as service specifications are often imperfect because great parts of them
are typically created by humans. For example, requesters often have vague requirements
or deliver imprecise requirements specifications. This is the case in the requirements
specification in Figure 1.3 (a) for reputation (“approx. 4”) and for response time (“fast”).

In addition, providers often provide incomplete service specifications. For example, in
the depicted specification of the Room Manager service, the provider specified neither
information about the response time nor about retention time. One reason could be that
the provider does not willingly publish all details about her service in order to protect
business interests. Alternatively, she may not know all details of her service. For example,
if her service depends on an imprecisely specified third-party server, it is difficult to provide
reliable information about quality properties such as performance.

Another reason for imperfect information in general is that requesters and providers
often use different specification languages. Thus, transformations into a common language
are needed in order to make the specifications comparable. However, depending on the
expressiveness of this common language, the transformations can be lossy such that the target
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specification becomes incomplete or imprecise, even though the source specification might
be perfect.

In all these cases, the matching result becomes uncertain because information needed
to determine a precise matching result is missing. However, current matching approaches
cannot cope with such fuzziness or they ignore it. As a consequence, they deliver adulterated
matching results that do not notify the users about the induced fuzziness, or they even produce
false positives or false negatives.

1.4 Overview of the Solution

We propose an approach for Fuzzy Matching of Comprehensive Service Specifications in
order to tackle the two challenges discussed above. Figure 1.4 shows different working
packages this approach consists of. In this thesis, we focus on three working packages:
Comprehensive Matching, Fuzzy Matching, and Integrated and Comprehensive Fuzzy
Matching Processes. These working packages are based on Comprehensive Service
Specifications in order to be able to consider many different requirements and service
properties, which is essential to appropriate service matching as explained above. The
working package Comprehensive Service Specifications including concepts for model
transformations for such specifications has been covered in the thesis by Arifulina [Ari].

Solution: 
Fuzzy Matching of Comprehensive Service Specifications

Comprehensive 
Matching

Fuzzy
Matching

Integrated and 
Comprehensive Fuzzy 
Matching Processes

Foundation:
Comprehensive  Service Specifications

Overall Goal:
Service Discovery in Service Markets

Benefit:
 Holistic Matching under 

Realistic Assumptions
 Better Decision-Making 

for Market Participants

motivates (C1, C2)

motivates

is basis for

is basis for

leads to

[Chapter 3]

[Chapter 4]

[Chapter 5]

Figure 1.4: Overview of the Solution

In order to deal with comprehensive and, therefore, complex service specifications (C1),
we propose the idea of Comprehensive Matching Processes in Chapter 3. Such processes
allow for both the integration and combination of multiple existing matching approaches
in order to compute aggregated matching results that consider many different kinds of
requirements. For this purpose, a model-driven development approach and framework for
comprehensive and configurable service matching, called MatchBox, is introduced. This
approach creates and processes matching process models that consist of several matching
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steps and work on a well-defined description of matching components. Using MatchBox,
not only the configuration of single matching components, but also control flow and data
flow can be created, adapted, and validated on model level. After creating the matching
process models, they can be processed on given input specifications fully automatically,
while still maintaining modularization to handle the complexity of huge matching problems.
MatchBox, thereby, simplifies, validates, and partially automatizes complex integration tasks
that were required to be done completely manually before.

However, as discussed above, the more complex service specifications become, the more
the risk of imperfect information within these specifications and, as a consequence, the
uncertainty during matching increases (C2). In order to cope with this uncertainty, we
propose concepts for Fuzzy Matching in Chapter 4. Fuzzy Matching first detects (potential)
sources for uncertainty within the input specifications and classifies them on the basis of
well-defined fuzziness sources and fuzziness types. Furthermore, it quantifies the amount of
induced fuzziness. For this purpose, we developed concepts based on so-called fuzziness
scores and on fuzzy logic and possibility theory. Finally, the classified and quantified
fuzziness is returned as part of a comprehensive matching result that reflects the induced
uncertainty to the user. Thereby, fuzzy matching provides valuable information about the
quality of the matching result, which improves the decision-making of both service requesters
and service providers. In this thesis, we explain our fuzzy matching approaches focusing on
matching non-functional service properties like reputation, privacy, and performance.

In order to enable fuzzy matching of multiple aspects and in order to deal with imperfect
information within matching processes, the concepts of matching processes and fuzzy
matching are brought together and developed further into Integrated and Comprehensive
Fuzzy Matching Processes in Chapter 5. Here, the advantages of both fuzzy matching and
comprehensive matching processes are combined and their integration into service market
infrastructures is discussed.

All in all, most existing matching approaches never made it to practice. One of the reasons
for this fact is that they are based on unrealistic assumptions. In contrast to these approaches,
this thesis provides concepts to integrate comprehensive matching approaches that can cope
with imperfect information. As a benefit, service markets are provided with better matching
approaches that are applicable under realistic assumptions and support the decision-making
of market participants (e.g., service requesters and providers) by providing extra knowledge.
Thereby, the concepts developed in this thesis go significantly beyond the state of the art in
service matching.

The thesis contains multiple interdisciplinary works where several research areas are
combined on a methodological level: In MatchBox (Chapter 3), service matching meets
software architecture as well as concepts from component-based and model-driven software
engineering. For fuzzy matching (Chapter 4), we married service matching concepts with
foundations from theoretical areas like fuzzy logic as well as concepts from psychological
areas like decision theory and uncertainty theory. In Chapter 5, also elements from
economical research are added for investigating transactions in service markets.
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1.5 Application Scenarios

The fact that the concepts presented in this thesis have been developed with a focus on
flexibility and low effort makes them broadly applicable. In the following, we discuss four
example application scenarios.

1.5.1 On-The-Fly Computing

On-The-Fly (OTF) Computing [SFB901] addresses the provision of software and
infrastructure services in heterogeneous, world-wide service markets (so-called OTF
markets). In OTF Computing, we assume that a customer’s requirements are so complex that
only well-evaluated service compositions constructed by intermediaries with special domain
knowledge can satisfy them.

OTF Market

  

  

  

 

Requester

Service Provider
Service Provider

Service Provider

OTF Provider

OTF Provider

  
 

 

 
1. Request

2. Discovery

3. Composition

4. Delivery
2. Discovery

2. Discovery

Figure 1.5: OTF Service Market and Interaction Between its Roles

Figure 1.5 shows how the most important roles interact in an OTF market: The Requester
starts by sending a request. The request contains all requirements the requester has for the
service she wants to buy. As the requester is not able to identify and contact all relevant
service providers that provide a service that satisfies these requirements, she sends the request
to an OTF Provider. An OTF Provider serves as a broker and intermediary between the
requester and the Service Providers. The OTF Provider is a domain expert and in charge of
discovering all services she needs in order to compose and deploy them in a way that they
collectively satisfy the requester’s request.

The special need for matching processes and fuzzy matching in OTF Computing emerges
due to the heterogeneity of the OTF markets. First of all, matching processes are more
flexible and adaptable than state-of-the-art solutions. Thus, they can be optimized to different
instances (e.g., different domains) of such a market. In order to provide appropriate matching
for all these different markets, fuzzy matching is important as we also need to handle markets
with special properties, e.g., a high number of provided services, non-standardized domain
terminology, and inexperienced users.

1.5.2 Mobile Apps

As already mentioned, today’s mobile app stores have constantly been growing over the
years [BK12]. As an example, Google’s Play Store was placed in 2015 at 1.5 million
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apps [Sta, AF]. Thus, proper discovery mechanisms for apps are becoming more and more
important. Furthermore, Android apps also provide means to support composition. As a
consequence, matching concepts for app specifications are required.

At the moment, mobile apps are specified in two ways: Firstly, they are described by the
specification published in the app market, consisting of structured text about general and
technical features (e.g., provider, publishing date, rating, operating system requirements,
privacy permissions) as well as some free text describing the functionality. Secondly, a
machine-readable specification (e.g., in case of Android apps, the Manifest file) is needed
for deployment.

Both specifications can be used in a limited way for the service matching approaches
described in this thesis. For example, a matching process including matching components for
reputation, privacy, and technical deployment information could be applied. Fuzzy matching
makes sense where incomplete or imprecise information is given. This is often the case
for service descriptions based on natural language, for example. Also, the requirements are
given by various kinds of end users with varying background knowledge, which means that
the probability for fuzzy requirements increases.

1.5.3 Business-to-Business Applications

While service matching in On-The-Fly Computing and mobile apps addresses end users
to a great extent, an application to the collaboration between two companies (Business-
to-Business, B2B) may be even more realistic. In such scenarios, services are especially
useful in general if continuously service-oriented application landscapes are applied [EHH+].
Specifications of B2B services as well as corresponding requirements specifications can be
expected to be more complex as they are created by experts. In this case, fuzzy matching
is essential, as there is even more space for incompleteness and imprecision if more service
aspects are described and more expressive specification languages are used. Furthermore,
the need for well-defined and flexible matching processes increases with every added aspect.

1.5.4 Industry 4.0

Industry 4.0 is the movement towards the intelligent interconnectivity between humans,
machines, and industrial processes [BMWI]. Within this scope, production engineering
meets information and communication technologies with the vision that intelligent machines
cooperate with each other autonomously.

As a consequence, the specification and matching of interfaces of these machines is an
essential task. In contrast to the examples focused in this thesis, not only the software
on application level needs to be matched, but also on the platform and infrastructure
level [DMES14]. Thus, a matching process applied to this scenario needs to focus on
matching steps related to such features with a close relation to hardware. But still, matching
steps related to quality properties such as performance and privacy or security properties are
useful as especially real-time properties as well as privacy and security issues need to be
considered in industrial processes, too. Also, fuzzy matching becomes important because it
can often be processed more efficiently than accurate matching approaches. This is important
because matching within industrial processes often has to be performed at runtime in order
to enable self-adaption.
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1.6 Structure of this Thesis

This thesis is structured into six chapters. Chapter 2 describes foundations for this thesis,
e.g., the state of the art within service specification and service matching. Chapter 3 details
on comprehensive service matching processes. Our work on fuzzy matching is described in
Chapter 4. Chapter 5 focuses on integrated and comprehensive fuzzy matching processes.
Last, Chapter 6 concludes the thesis and gives an outlook on possible future work. The
implementation, validation, and scientific contributions are discussed as part of the main
chapters of this thesis.

The appendices contain additional information. Appendix A shows meta models used
within MatchBox. Appendix B lists definitions of matching components integrated into
MatchBox. Appendix C provides additional information on literature surveys conducted
within the scope of this thesis. Finally, Appendix D gives additional information used for the
validation of our concepts.
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2

FOUNDATIONS

In this chapter, the foundations required for the concepts presented in the following chapters
are illustrated. This includes a basic introduction to services and software components
in general. Furthermore, we discuss on the basis of our running example introduced in
Section 1.2 how services are specified and matched.

2.1 Software Components and Services

A service is a software component that is deployed and running on a service provider’s
platform. One example for a service is Google Maps. Google Maps is provided by Google
and offers the functionality of querying and showing a map of a certain location to a user.

Figure 2.1 shows a simplified view of the constituent parts of a Service as a UML class
diagram: An undeployed service is a (Software) Component that has an arbitrary number of
Interfaces. An interface contains at least one Operation. Quality information (Quality-of-
Service, QoS) are most often specified with respect to the deployed service and not to the
component because special context information (e.g., usage profiles, hardware requirements)
have to be taken into account [BPB15]. A service can be deployed on various kinds of
infrastructures, for example, “in the cloud”.

Another important difference between service discovery and the selection of (commercial-
off-the-shelf) components is how they are handled afterward: Commercial-off-the-shelf
component are usually adapted to a system’s needs in the sense of code and interface
modifications, after they have been selected [MRE07]. This possibility is not provided
when dealing with services because, in this case, usually the service’s implementation is not
revealed. Instead, adapters in the sense of additional components or connectors delegating to
the adapted service [GHJV95] can be generated (e.g., [IT13, IMTA05, GMS12]).

2.2 Service Markets

A service market allows trading, i.e., buying and selling services. There are not many
established markets for services in the sense of readily deployed software components till
date although paradigms like Service-Oriented Architectures (SOA) and Service-Oriented
Computing (SOC) have been investigated for several years now. The service registry standard
UDDI that was popular in the area of web services has been officially discontinued in
2006 [Jos07]. Nevertheless, along with the emergence of a number of cloud providers,
multiple platforms to obtain web services for usage in the cloud appeared, e.g., Amazon
Web Services [Amab]. Furthermore, there are markets for software products similar to

11



2 Foundations
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Figure 2.1: Parts of a Service

services, like software components in the form of plug-ins or apps. For example, according
to Schlauderer and Overhage [SO11], StrikeIron [SI], Salesforce’s AppExchange [Sal], and
Google’s Apps Marketplace (now Google Play [Goob]) represented the leading markets in
2010. A well-established market for software plug-ins is the Eclipse Marketplace [Ecl].
Some years later, we can now also add many more app markets to the list, e.g., Apple’s
AppStore [App], Amazon’s App Shop [Amaa], and Microsoft’s Windows Store [Micb]. In
the remainder of this section, we summarize the common traits among these markets and
describe what can be expected to become the future trend for service markets. [PBS14]

Chapter 1 already introduced service requesters and service providers as main roles in a
service market. Furthermore, there can be third parties, e.g., the broker (see Section 1.5.1),
or the market operator, who provides and manages the market [SO11]. Each of these roles
can be responsible for the service discovery [W3C]. One actor can play more than one role
within a market. For example, there can also be intermediaries that act as both requesters
and providers. This is usually the case when a requester buys a service to compose it
with other (third-party of self-developed) services using service composition techniques
and then provides the resulting, more complex service to the market again. In general,
service providers make their service offers available to requesters by publishing service
specifications that enable discovering their services. Such service specifications can be
stored in different locations, e.g., directly on a server provided by the market operator or
distributively by the service providers. [PBS14]

For us, the most important component in a service market is the matcher, which is
a matching component implementing service matching approaches required for service
discovery. In addition, there can also be further components. Examples are: a service
composition engine, a service certification component, service analysis components, a
reputation system, escrow services, or monitoring systems [SO11, SFB901, PBS14]
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Signatures:
 bookRoom (String bookerName, MailAddress address,

    Date time, Integer capacity): Room room
throws RoomNotFoundException

 

 confirm () : Confirmation conf

    

Signatures:
 bookHall (MailAddress bookerAddress, Integer size, Time time): 

    LectureHall hall, Receipt receipt
throws ReservationIllegalException

 editBookingTime (Receipt receipt, Time time) : Receipt receipt

 sendAck (Reservation res) : Acknowledgement ack

    Requirements Service  Room Manager 

Integer

LectureHallBoolean

hasCapacity
isBooked

Room

subclassOf
ReservationwasSuccessful

Date

Receipt

hasTime

isValid

...

(c) Ontology

Time
subclassOf

AcknowledgementConfirmation equivalent

acknowledges

 
  

 

 

 
 

  

 

   

 

(a) Requirements Specification (b) Service Specification

ReservationIllegalException

RoomNotFoundException
subclassOf

MailAddress
isValid

String  

  

Figure 2.2: Signature Specification Example

2.3 Service Specification

In this thesis, we build on comprehensive service specifications comprising a collection
of service specification parts that we call service specification aspects [Ari]. Each aspect
describes a service property or a set of related service properties, e.g., signatures, protocols,
or privacy-related properties. This section illustrates some exemplary service specification
parts that will reappear in the later sections as a basis for the descriptions of different
matching approaches.

2.3.1 Signatures

The Signatures aspect consists of the following language constructs: operation name, input
and output parameters including their types and names, and exception types. Figure 2.2
shows the signatures and the ontology from our running example presented in Figure 1.3.
The signatures follow the principles of signatures known from object-oriented programming
languages like Java. The metamodel we use to specify these signatures and further examples
can be found in our technical report [PJvR+16].

Figure 2.2 highlights the references from the utilized parameter types to an underlying
domain ontology using colored rectangles in green (requirements specification) and in blue
(specification of the provided service) and correspondingly colored ovals for the concepts
that are part of the ontology. In addition, also a signature’s exception types can refer to
ontological concepts (e.g., ReservationIllegalException and RoomNotFoundException. An
ontology defines concepts and relations in a specific application domain. Thereby, it captures
domain knowledge that can be leveraged during specification and matching of services
in this domain. We can assume that requesters and providers follow the same ontology
because ontology mapping approaches available in literature (e.g., [CSH06]) can be applied
to translate between different ontologies.
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The references to the ontology assign more meaning to a data type than just its name is
able to provide. This extra information is especially important for matching, as described in
Section 2.4.1.

Ontologies can be specified in various languages. The specifications presented in this
thesis refer to ontologies defined using the Web Ontology Language, OWL2 [GHM+08].

2.3.2 Behavioral Specifications

In order to specify a service’s required or offered behavior, usually, pre- and post-conditions
are defined (e.g., [HGEJ12a]). Our example language for the specification of pre- and post-
conditions is based on first-order logic and extended with ontological references [PJvR+16].
As an example consider the precondition of the required bookRoom operation introduced in
Figure 1.3:

exists(r : Room & (!isBooked(r, time) & hasCapacity(r, capacity)) (2.1)

Here, the variables time and capacity refer to the parameters Date time and Integer capacity
defined as input parameters within the Signature of bookRoom. Based on these references,
this precondition specifies that, before the service is executed, there has to exist an object of
type Room that is not booked at the given time and that has the given capacity. The predicates
isBooked and hasCapacity are defined in the ontology as object properties referring to the
concepts that represent the data types. As we can learn from this example, conditions allow
us to specify the semantics of an operation much better than the signature alone.

Protocols define allowed operation call sequences for the interaction with a service. They
are often specified using automata. For example, the protocol depicted in Figure 1.3 a)
defines that first bookRoom has to be invoked and then confirm can be invoked.

As we can see from these examples, both pre- and post-conditions as well as protocols
refer to one or more operation signatures. In this way, different aspects are connected with
each other [Ari].

More information about our example languages for conditions and protocols can be found
in [PJvR+16].

2.3.3 Privacy

These days, privacy preservation becomes more and more important, especially in global
software markets [PJP+14]. Thus, we need approaches to describe a user’s preferences as
well as a service’s properties related to privacy handling.

The privacy specification language used within this thesis has been constructed by
combining several existing specification languages: Most parts are based on the privacy
policy model by Costante et al. [CPZ13a, CPZ13b], while further elements stem from
the approaches presented by Kapitsaki [Kap13] and Tbahriti et al. [TMG+13]. We
adapted, united, and extended these approaches for our purposes. In particular, we
connected the privacy specification to the above described signature specification (see
Section 2.3.1) [PAPS15].

Figure 2.3 a) depicts the privacy preferences, i.e., requirements related to a services’s
privacy policies, with the requester’s requirements specification. The privacy preferences are
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Signatures:
  bookRoom (String bookerName, MailAddress address, Date time, Integer capacity): Room room
...

Signatures:
  bookHall (String bookerAddress, Time time): LectureHall hall, Receipt receipt
...

  

  

Requirements

Service  Room Manager 

(a) Requirements Specification

(b) Service Specification

Parameter Purpose Delegation Depth Retention Period Visibility Location Limit

bookerAddress Contact 1 24 - Germany

time RoomBooking 0 24 - Germany

hall Confirmation 1 24 - Germany

receipt Confirmation 1 24 - Germany

Privacy Requirements:

Privacy Policies:

Parameter Purpose Delegation Depth Retention Period Visibility Location Limit Sensitivity

bookerName RoomBooking 1 12 - Europe High

address Contact 0 12 - Europe Very High

time RoomBooking 1 48 Notification Services Europe Medium

capacity RoomBooking 1 ∞ - Europe Low

room Confirmation 1 48 Notification Services Europe Medium

Figure 2.3: Example Specifications of Privacy Preferences and Properties

visualized in a tabular notation. Each row represents one privacy condition. Each privacy
condition refers to a parameter from a requested operation’s signature and specifies what
kind of usage regarding the data corresponding to this parameter the requester accepts. Thus,
the depicted table contains five rows with privacy conditions, one for each parameter from
the operation bookRoom: bookerName, address, time, capacity, and room. The columns
represent the different restrictions that can be specified regarding each parameter [PAPS15]:

Purpose defines the reason for the collection of the corresponding data and its
usage [CPZ13a]. For example, the requirements for the depicted parameters allow
to use the name (bookerName) of the service’s user, i.e., of the reserving person, to be
used only as part of the RoomBooking process. In contrast, the email address (address)
of the reserving person may only be used in order to contact her. The requested time
of the reservation and the capacity of the room to be reserved may be used within the
scope of RoomBooking. The output room may be used for Confirmation purposes. All
terms used as purpose have to be defined in an ontology. A parameter may also appear
in several rows with different purposes.

Delegation Depth refers to the amount of levels (i.e., services) a parameter may be forwarded
to [PAPS15]. This becomes relevant if a service is used as part of a composition. The
privacy requirements for the parameters bookerName, time, capacity, and room are
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rather strict with respect to delegation as they allow only one level delegation of the
given data. The address is not even allowed to be delegated at all. The default range
for delegation depth is [0,10] [CPZ13a]. Additionally, the values undefined and infinity
are supported.

Retention Period defines for how long (here: how many months) the service will store the
given data [PAPS15]. The more privacy-critical a parameter is, the more critical it is to
store. However, storage may be necessary in order to perform certain purposes. In our
example, the RoomManager (see Figure 2.3 b)) stores the address for 24 months. This
is due to the provided functionality for the room management staff to contact people
that booked rooms within the last two years. For retention period, we support values
in [0,100], as suggested in [CPZ13a], as well as undefined and infinity.

Visibility restricts a policy to a set of service providers, service categories, or even specific
services. For example, one can allow certain data to be visible only to services
provided by Google, only to notification services, or only to the Google Alert Service.
In our example, the requester allows the parameters time and room to be visible for all
services of kind Notification Service.

Location Limit restricts privacy policies with respect to a location. For example, the depicted
requirements specification allows provided and delegated data only to be processed in
Europe. The location limit field can contain one or more terms defined in an underlying
ontology of locations [PAPS15]. Thus, the granularity of selectable values (e.g., cities
vs. countries vs. continents) depends on the ontology used.

Sensitivity defines the importance the requester assigns to each requirement. For example,
she could choose between “very low”, “low”, “medium”, “high”, “very high”, and
“mandatory”. In our example specification, the privacy requirements for the user’s
email address (address) are defined as “very high” because it is very sensitive to the
user. Similar, the user’s name bookerName got a sensitivity of “high”. The other data
is no personal data and correspondingly less sensitive.

Figure 2.3 b) depicts the privacy policies of the provided service RoomManager as
specified by the service provider. The provider specifies the privacy policies with the same
concepts as the requester, except for Sensitivity.

Typically, the values specified for different columns correlate with each other. For
example, if a parameter is very sensitive, then, most often, its delegation depth and retention
period are also rather strict, i.e., close to 0.

Privacy specifications are typically used for personal data, e.g., name, or address.
However, in combination with such personal data, also less sensitive data may become
critical as they might be used for development of profiles. For example, location and time in
combination with a person’s name could allow third persons to track down a person’s private
time schedule. Thus, our approach also covers non-personally-identifiable information.

The corresponding metamodel is depicted and described in Appendix A.3.1.

2.3.4 Reputation

The reputation of a service is measured based the experiences of previous users expressed in
the form of ratings. Such ratings represent the users’ satisfaction with a certain service.
Thereby, reputation indicates not only a service’s popularity but also its trustworthiness
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Entity Context # Ratings
Service: RoomManager Overall 200 Rep(200 ratings) = 4.5
Service: RoomManager ResponseTime 80 Rep (80 ratings) = 3
Service: RoomManager Security 40 Rep (40 ratings, 3 months) = 2.75

Service: BookARoomPro Overall 80 Rep (80 ratings) = 3.35

Service: BookARoomPro ResponseTime 20 Rep (20 ratings) = 1.5
Service: BookARoomPro Security 10 Rep (10 ratings, 3 months) = 4.5
… … … …

Provider: UBServices Inc. Overall 130 Rep (130 ratings) = 3.5

b) Available Ratings & Exemplary Reputation Valuesa) Requirements Specification

c2: RepRT(Service)   4
          based on 40 ratings
             (w = 2)

c1: Rep(Service)   4 

c3: RepSec(Service)    3
          based on 20 ratings
              of the last 3 months

c4: Rep(Provider)   4

Figure 2.4: Examples for Reputation Specifications

based on human judgment [Sha83]. Technically, we model the reputation of a service as
an aggregation of a set of ratings. A rating has several properties, including its value (e.g., 4
stars within a 5-star scale), its age (e.g., two months), and its context [WV07] (e.g., a rating
about the performance or about the availability of a service). [PSB+]

Usually, ratings are stored within a secure and privacy-preserving reputation system. For
example, in our earlier work [JBPP14b], we presented a privacy-preserving reputation system
that allows market components (e.g., a matcher) the flexible access of reputation values
aggregated using replaceable aggregation functions.

In the following, we explain the specification language we use to describe reputation
requirements. This language is based on the master’s thesis of Bano [Ban14] and
collaborative work with scientists from the areas of economics, security, and machine
learning [JBPP14b, JBPP14a]

As an example, consider the requirements specification in Figure 2.4 a). As depicted in
this figure, reputation requirements can be modeled as a list of conditions. This example
specification consists of four conditions, c1 – c4.

Each of the conditions in the requirements specification refers to properties related to
service reputation. For example, c1 requires that the overall reputation of a service is greater
or equal to 4 (based on a 5-star scale as it is common in today’s app stores). The conditions
c2 and c3 refer to context-specific reputation values, i.e., the perceived response time of
the service (c2) and the perceived security of a service (c3). As a further restriction to the
reputation values requested by c2 and c3, the reputation value must have been aggregated
based on at least a specific number of ratings (here: 40 and 20, respectively). Such restrictions
are useful as a reputation value’s credibility increases with the number of ratings it has been
calculated from. In c3, there is also a restriction with respect to time. Here, the reputation
value should have been created based on ratings from the last three months. These kinds of
restrictions are based on the idea that recent ratings are more relevant than old ones. This
especially happens if the rated service has been updated or if the environment of the raters
has changed (e.g., the global sensitivity to security increased due to some incident). C4 is
about the reputation of the service’s provider and requires this reputation value to be at least
4 stars. Furthermore, it is possible to introduce weights per condition (e.g., “(w = 2)” in c2).
Using weights, a user can specify that the satisfaction of one condition is more important
(here: twice as important) than the satisfaction of the other conditions.

Figure 2.4 b) shows an exemplary extract of the contents of a reputation system in a tabular
notation. These contents are used to evaluate the conditions of the requirements specification
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explained above. For example, general and context-specific reputation values for the services
RoomManager and BookARoomPro are depicted. Furthermore, the reputation system
contains the reputation of the service provider UBServices Inc., which is the provider of
both services. The third column depicts the total number of ratings that are available for a
service. The rightmost column depicts some exemplary reputation values calculated based
on these ratings. Note that these are dynamic values which are usually not stored in the
reputation system but derived during the matching procedure from the ratings stored in the
system based on a selected aggregation operator. There are several possibilities to aggregate
ratings to reputation values. The example values depicted in the figure are those that are
needed to evaluate the given requirements specification.

The metamodel for the reputation requirements specification and the ratings is described
in Appendix A.3.2.

2.4 Service Matching

In the following, we give some basic information on service matching. Note that we
distinguish between the conceptual matching approach and the implemented matcher.

Figure 2.5 shows a typical matching scenario in the form of a sequence diagram. As can
be seen there, the foundation is that providers publish service specifications (serviceSpecs).
At a later point in time, a requester publishes a requirements specification (reqSpec). The
publication of a requirements specification by the requester is often called a request and it
triggers the following actions. Both specifications are sent to a matcher. Before being able
to match the specifications, they are transformed into an appropriate input for the matcher.
For example, a more formal description could be derived at this point. As a result, the
matcher returns a matchingResult which can be used to select between the most fitting offered
services. Before being able to use a selected service, the different parties need to negotiate
the usage and its costs. The topic of negotiation is out of the scope of this thesis; however, it
is ongoing research by economic scientists [SFB901].

Note that, depending on the concrete market and the concrete application scenario, the
interactions shown in the sequence diagram could vary. For example, the interaction with
the broker could be dropped or the broker could interact in a different way. For example, the
broker could first gather a set of matching results for different services, compare them, and
only send a service recommendation to the requester instead of the concrete matching result.
In the depicted diagram, the requester compares the matching results herself. Matching
results could also be forwarded to the providers in order to deliver early feedback about how
well their offers match on an average and reasons for common mismatches. Furthermore,
the broker could also take part in the negotiations. All in all, the depicted sequence diagram
abstracts from a larger number of services and service providers, from possible repeated
requests, as well as from the requester’s and provider’s negotiations. Also, additional
components could be part of the scenario, e.g., a reputation system or a composition engine
(see Section 2.2).

A variety of existing matchers and matching approaches is already described and compared
in published surveys. For example, Dong et al. [DHC12] enhances an earlier classification
of semantic web service matchers presented by Klusch [Klu08]. Their comparison focuses
on ontological signature matchers. Similarly, Bellur et al. [BVG08] present a classification
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loop 

: Matcher

match(
  serviceSpec,
  reqSpec)

Providers Requester

  : Transformator

 publish(serviceSpecs)

: Broker

requestService(
  reqSpec)

[ ]

transform(
  serviceSpec)

transform(
  reqSpec)

tServiceSpec

tReqSpec

match(
  tReqSpec,
  tServiceSpec)

matchingResult

bestMatchingResults

select(matchingResults)

select(bestMatchingResults)

negotiate

 

Figure 2.5: Example Matching Scenario as a Sequence Diagram

of algorithms used within semantic web service matchers, not regarding specific matching
approaches but the underlying algorithms, e.g., greedy or description logic. The related topic
of component retrieval is surveyed in [LPDA04]. Furthermore, service matching is partly
related to well-researched information retrieval methods. However, information retrieval
does not consider executability [MPMM98].

Next, we describe some exemplary matching approaches that will appear again in later
chapters of this thesis as example matchers. Appendix B shows matcher definitions according
to the MatchBox framework (see Chapter 3) for the matchers described here. The matching
approaches described in the following build on the specification languages that are explained
in Section 2.3. From here on, put a higher focus on privacy and reputation matching than on
other approaches, in correspondence with the main chapters of the thesis.

2.4.1 Ontological Signature Matching

Operation signatures like the ones discussed in Section 2.3.1 can be matched using various
signature matching approaches. The signature matching approach used as an example in this
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confirm vs. sendAck

Date 

Integer 

Room 
Confirmation 

Reservation 

bookRoom vs. bookHall

Time 

Integer 

LectureHall 

Receipt 
Acknowledgement 

Inputs

Outputs

(requested) (provided) (requested) (provided)

String 

MailAddress 

MailAddress 

Figure 2.6: Signature Matching Example

thesis is based on an ontological matching of data types and exceptions and a string similarity
matching for signature and parameter names.

The matching of input and output parameters serves as a basis for our signature matching.
On the one hand, there are usually mandatory input parameters which the service requester
has to provide, so that a service provider’s service is able to perform the functionality desired
by the service requester. On the other hand, the service provider’s service has to deliver all
outputs requested by the service requester.

Accordingly, the main matching principle for signatures is that two signature specifications
match if the following statements hold [APB+15]:

1. The input parameters of the provided service’s signature specification are a subset of
the input parameters of the requested service’s signature specification.

2. The output parameters of the requested service’s signature specification are a subset of
the output parameters of the provided service’s signature specification.

Thus the matcher compares all data types that are part of the signatures pairwise, using a
bipartite graph matching; the bipartite graph with the highest score delivers the final matching
result. In this process, each data type pair is matched based on the given ontology(-ies) and
follows the standard rules of co- and contravariance:

1. An input parameter type in the requested service’s signature specification has to be
either equal or more specific (e.g., a subclass) than a corresponding input parameter
type in the provided service’s signature specification.

2. An output parameter type of the provided service’s signature specification has to be
either equal or more specific (e.g., a subclass) than an output parameter type in the
requested service’s signature specification.

As an example, have a look at Figure 2.6 that shows how we match the parameter
types from the signatures from Figure 2.2. Although each signature from the requirements
specification is matched to each signature from the specification of the provided service, here,
we focus on the two most promising matching pairs: The requested signature bookRoom is
matched to the provided signature bookHall in the left part of the table and the requested
signature confirm is matched to the provided signature sendAck in the right part of the table.
The upper part of the table shows the matching of input parameter types and the lower part
shows the matching of the output parameter types. In particular, the figure shows the graphs
that are built up for the bipartite graph matching in the four inner fields: Types from the
requested signatures bookRoom and confirm on the left side of each field and the types from
the provided signatures bookHall and sendAck on the right side of each field.
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The signature of bookHall matches completely the signature of bookRoom because all
input types of the provided bookHall operation find a corresponding type within the requested
bookRoom operation: MailAddress and MailAddress as well as Integer and Integer match
trivially, while Time and Date match because Time is a supertype of Date, as shown in the
ontology in Figure 2.2. The outputs match because the requested Room finds a match at
the provided side: Here, LectureHall matches to Room because, according to the ontology,
LectureHall is a subtype of Room.

The signatures depicted on the right side of the table do not match perfectly: The provided
signature sendAck requires an input parameter of type Reservation, however, the requested
signature confirm does not expect any input parameter at all. Thus, a mismatch occurs.

The output parameters of sendAck and confirm, however, match. The reason is that,
in contrast to pure co- and contravariance as known from object-oriented programming,
ontological relations also include the notion of equivalence. The reason is that we apply
subsumption reasoning as known from description logics [BHS09]. In this way, synonyms
can be used. The utilization of synonyms is highly common in service specification because
different market participants have a different terminology. For example, in Figure 2.2,
Acknowledgement and Confirmation are specified to be equivalent. Since the equivalence
relation is symmetric, these two types always match each other.

These type matching concepts also correspond to the flexible match introduced by
Zaremski and Wing [ZW95]. In addition to the parameters’ types, our signature matching
approach is also able to compare the parameters’ names using cosine similarity as a string
similarity metric.

Matching exception types follows the principles of matching parameter types:

1. The requested signature’s exceptions have to be either equal or more general (i.e.,
superclasses) as the provided signature’s exceptions.

2. The provided signature’s exceptions have to be a subset of the requested signature’s
exceptions.

Our ontological signature matcher is highly configurable. In particular, the user can define
which parts of a signature should be matched. For example, in many domains, parameter
names and exception types are less conclusive than parameter types. In such cases, a matcher
configured in a way such that only parameter types are matched can lead to better results than
other configurations. Configuration possibilities also include to determine that the matcher
matches only inputs or only outputs in order to support service composition strategies like
forward chaining or backward chaining [DS05, RS05].

2.4.2 Behavioral Matching Approaches

In order to consider a service’s behavior during service matching, matching approaches
that go beyond structural matching approaches are needed [GCB08, BJPW99]. Such
approaches include matching approaches for pre- and post-conditions as well as protocol
matching approaches. As an example for specifications based on pre- and post-conditions
and protocols, refer to Section 2.3.2.

In condition matching, usually, a full match is defined as follows: The required
precondition must be equally strict or stricter than its provided counterpart, whereas
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Figure 2.7: Privacy Matching Algorithm (based on [PAPS15])

the provided post-condition must be equally strict or stricter than its required
counterpart [Mey88].

Protocol matching often involves model-checking approaches. One simple approach is
based on trace-inclusion: Here, the provided protocol matches the required protocol if the
provided protocol accepts at least those sequences that are accepted by the the required
protocol.

As already noted in Section 2.3.2, pre- and post-conditions as well as protocols are often
defined based on signatures. Correspondingly, these matching approaches also required
a preceding signature matching approach to deliver initial mappings: Condition matching
requires a mapping between the required and the provided parameters, protocol matching
requires a mapping between the required and the provided operations.

[PJvR+16] describes more details about behavioral matching approaches defined for our
example specification languages.

2.4.3 Privacy Matching

Next, we present a matching approach for specifications of privacy-related service properties.
This approach is based on the approaches by Costante et al. [CPZ13a, CPZ13b] and
Kapitsaki [Kap13]. It processes specifications defined in the specification language
introduced in Section 2.3.3. Our descriptions refer to the example specifications depicted
in Figure 2.3.

The privacy policies of a provided service specification match the requester’s requirements
specification if the provided policies are more strict than the requested ones [PAPS15]. For
this purpose, the matching algorithm iterates over the privacy requirements (i.e., the rows of
the table) and checks all the columns one after another as depicted in Figure 2.7:

• Step 1: First, the algorithm tries to find a policy in the provider’s specification that
corresponds to the current requirement. This is done based on the parameter mapping
created during a preceding signature matching (see Section 2.4.1). For our running
example, we get (amongst others) the following mapping: address–bookerAddress,
time–time, capacity–size, room–hall. As the parameter bookerName has not been
assigned in the given signature matching result, there has to be no corresponding policy
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for the requester’s bookerName requirement. As a consequence, the requirement can
never be violated by the provided service because bookerName is not taken as an
input; thus, this requirement can be ignored. Furthermore, the specified purposes are
checked with ontological subsumption reasoning, like the types in signature matching
(see Section 2.4.1). The next steps are only performed for the requirements that can be
assigned with a corresponding provided policy.
• Step 2 and Step 3: These very similar steps match delegation depth and retention

period: Both checks succeed with a full match if the provider’s value is lower than
or equal to the requester’s value. In our example, the delegation depth specified for
the policy of bookerAddress does not match the corresponding requirement as the
requester does not allow any delegation of the user’s address at all. In all other cases,
the delegation depths match because the provided policies are more restrictive than
the requirements in this aspect. However, there are mismatches with regard to the
specified retention periods because the provided service would store all data for 24
months, while the requester only allows a storage of 12 months for the highly sensitive
parameters bookerName and address.
• Step 4 and Step 5: These steps match visibility and location limits: Both succeed

with a full match if the provider’s values are a subset of the requester’s values, using
ontological subsumption reasoning, again. In our example, this is the case for all
depicted policies. In particular, the example policies also match regarding the location
limit because the locations specified in the provider’s policies are part of the locations
specified by the requester (like Germany is contained in Europe).
• Aggregate: In order to get a result for one whole row, the results for the single fields

are aggregated. At the end, the final matching result for the whole privacy aspect is
aggregated taking into account the requester’s sensitivity specifications; the final result
is a value between 0 (does not match at all) and 1 (matches perfectly).

Due to the mismatches within the bookerAddress policy, the final matching result for our
example must be less than 1. The concrete value is calculated as depicted in Figure 2.7.
In the following, we demonstrate Step 3, the retention period matching, on the basis of the
example requirement corresponding to the parameter address. This partial matching result
is calculated as follows:

rtResultr = min(1, rPAddend+
retPeriodprovider − retPeriodrequester

maxRetPeriod
) (2.2)

rtResultaddress = min(1, 0.5 +
retPeriodbookerAddress − retPeriodaddress

100
)

= min(1, 0.5 + ((24− 12)/100))

= 0.62.

The value parameter rPAddend is part of the matcher’s configuration and denotes the
minimal impact of a retention period mismatch. By configuring this value, the user can
customize how much each of the properties contributes to the privacy matching result. In
this example, we set rPAddend = 0.5. The difference is divided by 100 (default maximum
value for retention period) for normalization. [PAPS15]

The results for the other properties (delegation depth, visibility, and location limits)
are calculated similarly and aggregated to one result per requirement. The results per
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requirement are aggregated to a final result for the whole privacy aspect. To this end, we
use a weighted average about the results of each requirement multiplied with a multiplier
corresponding to its sensitivity level. The higher the sensitivity level, the larger is the
multiplier (“very low” = 0.2, “low” = 0.4, “medium” = 0.6, “high” = 0.8, “very high” =
1). For policies with the sensitivity “mandatory”, any kind of mismatch immediately results
in a matching result of 0. According to these values, for our example, we have the following
aggregation function:

mRoomManager =
maddress · 1 +mtime · 0.6 +mcapacity · 0.2 +mroom · 0.6

1 + 0.6 + 0.2 + 0.6
(2.3)

In addition to the final numerical matching result, the requester can be provided with a
detailed log about the matching process including a list of all mismatches per row, such
that the requester is provided with the possibility to selectively relax her privacy preferences,
if no provided service matches. [PAPS15]

More information about this privacy matching approach can be found in our earlier
publications [PAPS15] and [APB+15].

2.4.4 Reputation Matching

In the following, we describe a reputation matching approach based on the specification
language and example described in Section 2.3.4.

First of all, the available ratings need to be aggregated into reputation values [JBPP14b,
JBPP14a]. Several aggregation operators are possible. The selection of the aggregation
operators that are applied to the ratings within the matching procedure depends on
requirements specification. As soon as the required reputation values considering all
requested restrictions have been determined, a simple exact matching approach based on
the specifications presented in Section 2.3.4 comes down to simple numerical comparisons.

As an example, consider the RoomManager service with the ratings depicted in Figure 2.4.
For this service, c1 evaluates to true because the overall reputation value can be calculated
based on 200 ratings and turns out to be 4.5 (cf. the first row of the reputation system depicted
in Figure 2.4). In contrast, BookARoomPro already got a mismatch for c1 because its overall
reputation is only 3.35.

Some of the conditions cannot be evaluated because the restrictions regarding the
requested number of ratings are not satisfied. For example, BookARoomPro has only been
rated 20 times with respect to response time and only 10 times with respect to security. This
means that c2 and c3 do not match regardless of the reputation values for response time and
security.

Mismatching conditions get a result of 0, while matching conditions get a result of 1. The
results per condition are aggregated into an overall result using the weighted average from
all the conditions’ matching results. Hence, the results in our example from Figure 2.4 are as
follows:

RoomManager: (1 + 0 ∗ 2 + 0 + 0)/4 = 0.25

BookARoomPro: (0 + 0 ∗ 2 + 0 + 0)/4 = 0.0

The described matching approach is based on preliminary work from a Master’s
Thesis [Ban14], a Bachelor’s Thesis [Neu15], and collaborative work [JBPP14b, JBPP14a]
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Figure 2.8: Overview of Aggregation Operators (based on [TN07])

within the collaborative research centre 901 [SFB901]. In Chapter 4, this reputation matching
approach is redeveloped into a more advanced fuzzy matching approach.

2.5 Foundations in Aggregation

Aggregation is a well-known task within decision-making problems and in multi-criteria
decision-making problems in particular. Definitions in the literature about aggregation
operators vary, however, they all have in common, that they require an aggregation operator
to be a function that yields a value between the minimum and the maximum of the input
values [TN07]. In our case, we need aggregation in order to derive a final matching result
from several intermediate matching results returned by the different matchers for the different
specification aspects. This situation appears on multiple levels: For example, intermediate
results could stem from multiple matching approaches, or they could be the result of multiple
processing steps within one matching approach. The selection of an appropriate aggregation
operator depends on many characteristics as explained in the following.

As shown in Figure 2.8, the space of aggregation operators can be clustered in different
regions: conjunctive operators (referring to the “and” connective, e.g., the minimum),
disjunctive operators (referring to the “or” connective, e.g., the maximum), and generalized
averaging operators in between [GMMP09]. These operators vary in their strictness,
respectively in their degree of compensation. Using a conjunctive operator, a high overall
value requires all the individual value to be high on all conditions, too. Conjunctive operators
include the class t-norms. In contrast, disjunctive operators are fully compensating such that
a high overall value is already achieved if a single requirement has a high value. Averaging
operators are in-between conjunctive and disjunctive operators. This includes, e.g., the
(weighted) arithmetic mean. Accordingly, we could also call the minimum function “strict”
and the maximum function “tolerant”. Another example for a conjunctive operator is the
product. The product is less strict than the minimum.

Another reason in addition to strictness and compensation to choose not the minimum
or the maximum but something in between is the distinguishability: the minimum and the
maximum can be completely determined by only one value. For matching results, this
means, that we may have many equal matching results even though the services differ in
very different properties. In contrast, when the product or another averaging operator is
chosen, all values contribute to the result.
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The choice of aggregation operators also depends on the level of measurement. As
an example, take the arithmetic and the weighted mean, which are the most widely used
aggregation operators [TN07]. Which mean can be applied on the level of measurement the
underlying data has: For example, for the interval scale, we can use the arithmetic mean,
while, for the ordinal scale, a proper selection would be the median. When applying the
weighted mean within the scope of multi-criteria decision-making, the weighting vector
corresponds to the importance of the criteria, while the single weights correspond to the
degree of compensation allowed among the criteria. In this thesis, for matching results, we
assume an interval scale. The criteria to be weighted when using the weighted mean are
the various matching results for the various service properties. For fuzziness scores (see
Chapter 4), we have an ordinal scale. This restricts the number of available aggregation
operators but allows us to work with other data.

Further alternative and more complex aggregation operators are OWA (ordered weighted
average) operators [TN07]. Here, one is able to assign weights according to a value’s rank
(e.g., weight the best result the highest). However, these operators are less relevant for our
service matching problems because in our case, most often the assignment of the result
to a specific service property (e.g., performance) is the significant factor. More complex
aggregation operators also enable to combine conjunctive, disjunctive, and averaging
operators, e.g., using Fuzzy Pattern Trees [SH11].

2.6 Measures for Validation

Within the scope of our case studies in Section 4.8, we need to measure the homogeneity and
the distinguishability of matching result sets. These properties indicate how well matching
results support a user when selecting between a large set of services.

For measuring the homogeneity we use the following formula:

hom =

∑K
k=1

(
Nk
2

)(
N
2

) , (2.4)

where K is a set of equivalence groups, k ∈ K is one equivalent group, Nk is the number
of items within equivalence group k, and N is the number of all items. In our case, an
equivalence group is a set of equal matching result values. This formula corresponds to
the probability that, when choosing two times randomly from a set of data (i.e., matching
results), the same item will be chosen both times (i.e., two matching results with the same
degree). Note that,

(
1
2

)
= 0 holds by definition.

Correspondingly, we model distinguishability as the inverted homogeneity:

dist = 1−
∑K

k=1

(
Nk
2

)(
N
2

) . (2.5)

Note that there are further measures of statistical dispersion, e.g., the Gini index [Dor79].
We intentionally chose a formula that can also be easily applied to the interval results
discussed in Section 4.6.1.

Furthermore, within the scope of our case studies, we work with precision and recall
metrics known from information retrieval [SM86a]. These metrics have already been
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frequently used in service matching to measure the accuracy of matching results [Bru15].
They are defined as follows:

Precision =
true_positives

true_positives+ false_positives
, (2.6)

Recall =
true_positives

true_positives+ false_negatives
, (2.7)

where true_positives are pairs of requirements and service specifications that the
matching approach correctly identified as successfully matching pairs, false_positives are
specification pairs that the matching approach incorrectly identified as successfully matching
pairs, and false_negatives are pairs that the matching approach incorrectly identified as not
matching pairs.

Recall is often reversely related to precision [BG94]. For example, one can easily construct
a very pessimistic or a very optimistic matching algorithm and thereby reduce the likeliness
of either false positives or false negatives [Bru15].

True positives, false positives, and false negatives are easy to determine in the case of
boolean matching results. However, when working with continuous matching results, it is
unclear which results represent positive and which represent negative results. In this case,
thresholds can be used to setup ranges of positive or negative results.

Moreover, when reporting experiments, we distinguish between dependent variables and
independent variables [Pre00]. Dependent variables are the values that are measured during
an experiment. Subsequent interpretations base on observations of how the dependent
variables develop. On the contrary, independent variables are the factors that are intentionally
manipulated. The dependent variables depend on these manipulations. The measurements
can be adulterated by confounding variables. The influence of confounding variables should
be reduced as much as possible.
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3

COMPREHENSIVE SERVICE MATCHING

There are already many service matching approaches described in the literature
(see [DHC12] or [PvDB+13] for an overview). These approaches are implemented as
software components, so-called Matchers, and typically focus either on structural properties
(e.g., signatures), behavioral properties (e.g., pre- and post-conditions or protocols), or non-
functional properties (e.g., performance, reputation, or privacy-related properties).

Combining different matchers considering multiple service properties leads to a higher
matching accuracy than only employing single matchers [BOR04, BJPW99]. Especially,
both functional and non-functional properties need to be considered during service
matching [MRE07]. The reason is that, by considering as many service properties as
possible, the requesters’ requirements can be covered to the highest possible extent. If large
parts of the requirements are not covered by the utilized matching approach, the matching
results are misleading and may lead to false negatives and false positives. As an example,
consider a situation where only the signatures part of a given requirements specification is
matched. Even though the matching result may indicate a high match, the behavioral or
the non-functional part of the requirements specification may still lead to a mismatch. As
a consequence, the matching result does not reflect the requester’s expectation: It is a false
positive.

However, in order to cope with these issues by combining multiple matchers, one needs
to implement a software component that invokes different matchers in a certain order, that
manages data exchange between these matchers, and that aggregates the results returned by
each single matcher into one combined matching result. This is a tedious and error-prone
task, as matchers may not be compatible with each other and many design decisions need
to be made. For example, some requesters may put a special focus on privacy matching.
In this situation, the matching should take privacy matching steps into account and privacy
matching results should represent a significant part of the end matching results. As another
example, large markets usually require especially fast matching to achieve a scalable service
discovery. In this situation, the matching’s execution time should be optimized by selecting
fast matchers and as few matchers as possible. In general, design decisions can make
matching more successful if they are made on the basis of both a requester’s individual
requirements regarding matching quality and the market’s characteristics. [PSA15]

In the following, we call the role in charge of all these matching-related design decisions
the Matching Designer. In Section 5.4, we discuss why it is not trivial to decide whether the
requester, the provider, or any other market participant, e.g., a third-party like a broker, takes
this role.

There are already approaches that combine matchers to fixed processes. For example,
Jaeger et al. combine input matching, output matching, category matching, and “custom
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matching modules” [JRGL+05]. All these matchers are executed in parallel and the results
are aggregated at the end. In another approach, Huma et al. present a matching process
that executes signature matching, pre- and post-condition matching, and protocol matching
consecutively [HGEJ12b, HGEJ12a]. However, these matching processes are not flexible:
The control flow and data flow between the matchers as well as the matchers’ configurations
and the aggregation of matching results are fixed. As a consequence, in order to provide
strategically designed processes for different situations, matching designers need to either
have many different implementations of combined matchers for different situations, or they
have to change their process implementations every time the situation changes. This makes
the current state tedious, error-prone, and high-effort. For example, if another matcher is
added, the execution order as well as the data exchange of the whole matching process may
have to be adapted. The more different matchers have been integrated, the more serious
these issues become. As a consequence, a flexible and more adaptive approach to matching
processes is needed. [PSA15]

In this chapter, we introduce our solution MatchBox, a framework that realizes a
concept of Configurable Matching Processes and a systematic workflow to work with them.
MatchBox enables comprehensive service matching considering a customized variety of
service properties in order to provide accurate matching results for complex requirements
specifications. In contrast to other service matching approaches, MatchBox supports
a matching designer in combining existing approaches based on well-defined matcher
interfaces and reusing these approaches as part of configurable process models. As soon
as matchers have been integrated, the matching designer can use MatchBox to design and
redesign matching processes arbitrarily often at model level without having to reimplement
any source code. Thereby, the matching designer is able to quickly adapt to different markets’
and different requesters’ requirements, providing the most appropriate matching process for
each situation with low effort. Additionally, the possibility to work at model level provides
her with an abstraction that leads to a better overview than the source code itself. Thereby,
this approach also increases matching maintainability. Furthermore, MatchBox allows
to generate matching processes completely automatically on the basis of a given market
specification. The designed process models are validated, can be executed automatically,
and support the matching designer in inspecting as well as validating the returned matching
results. This can also be used as a simulation in order to collect feedback about whether a
matching process is beneficial with respect to a specific context [PSA15].

Rather than representing a new service matching approach competing with the high
amount of approaches already described in the literature, the work presented in this
chapter applies at a meta level, providing a way to leverage and combine those matching
approaches in an easy way. Processes designed with MatchBox are flexible, providing
many different kinds of configuration possibilities, while, at the same time, MatchBox also
ensures their validity, i.e., the executability of the created matching processes. Thereby,
MatchBox represents one step into the direction of world-wide service markets incorporating
comprehensive, dynamic matching approaches. [PSA15]

This chapter is structured as follows. The next section lists the scientific contributions
provided by this chapter. In Section 3.2, we describe an example scenario and corresponding
matching approaches to be used as a running example throughout the section. In Section 3.3,
we derive requirements from this scenario. Section 3.4 introduces the concept of configurable
matching processes. In Section 3.5, we give an overview of the workflow to apply MatchBox
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in three phases that are described in Sections 3.6 to 3.8, including the integration of
matchers and aggregation strategies, the (manual and automatic) process configuration, and
the execution of matching processes. Section 3.9 briefly describes how we implemented
MatchBox, focusing on technologies and architecture. The described implementation serves
as a basis for the case studies described in Section 3.10. We highlight the most important
limitations of our approach in Section 3.11. Section 3.12 contains a survey about related
work. We conclude the chapter in Section 3.13.

Concepts presented in this chapter have been published in three conference papers [PSA15,
APB+14, APM+15], in a tool paper [BBP15], and in three technical reports [APG+14,
APB+15, PJvR+16]. The concepts are partially based on the Master’s Thesis by
Gao [Gao14]. Furthermore, parts of the concepts are joint work with Arifulina. Her
thesis [Ari] focuses on the parts related to specification languages, while the thesis at hand
focuses on the parts related to matching.

3.1 Scientific Contributions

The scientific contributions of this chapter can be summarized as follows:

• This chapter marries concepts from the area of service matching with the areas
of software architecture, component-based software engineering, and model-driven
software engineering. This combination represents a completely novel approach to a
problem that has been addressed in research for decades.
• With MatchBox, we present the first model-driven approach to create matching process

models used to combine and execute multiple service matching approaches in a flexible
and modularized manner.
• The MatchBox framework contains both a systematic workflow and well-defined

interface definition languages for matchers that allow for a fast, easy, and reliable
integration.
• We are the first to integrate and leverage systematically modeled market knowledge

into our service matching concepts.
• Our hierarchical and aggregated matching results deliver much more valuable

information than the matching results produced by related approaches.

3.2 Example Scenario

Consider an exemplary matching designer who is responsible for service discovery in a
service market where providers trade university management services following our running
example introduced in Section 1.2. In order to match complex requirements specifications
and service specifications considering multiple kinds of service properties (as those depicted
in Figure 1.3), she needs matchers that implement matching approaches for signature
matching, protocol matching, and privacy matching, amongst others.

Our exemplary matching designer already has access to a set of existing matchers: an
Ontological Signature Matcher, a Trace-Inclusion-based Protocol Matcher, and a Privacy
Matcher (see Section 2.4). Each of these matchers processes a part of the given requirements
specification. Her signature matcher analyzes the parameter types of the provided and
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requested service’s operations for co- and contravariance. For example, according to co-
and contravariance rules, Room Manager’s operation bookHall from Figure 1.3 matches
the requested operation bookRoom. The matching designer’s protocol matcher matches the
requested and provided operation call orders. For example, in Room Manager’s protocol,
we can find the requested sequence “first bookRoom, then sendAck”. The privacy matcher
matches the privacy-related properties. As a result, Room Manager matches rather well
with respect to the signatures and the protocol; however, it does not match the depicted
requirements specification with respect to privacy requirements.
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Figure 3.1: Abstract overviews of exemplary matching implementations

Figure 3.1 a) shows an abstract overview of the implementation the matching designer has
to construct for combining the three matchers. Using this implementation, she will be able to
match the whole requirements specification and to return a matching result to the requester
that considers all specified properties instead of delivering three results for different parts
of the requirements specification. The three matchers are reused external code and treated
as black-boxes. The other parts of the implementation have to be created by the matching
designer herself. This includes the Main Routine (serves as a starting point and calls the
Signature Matcher), the Integration Code (invokes the Protocol Matcher and the Privacy
Matcher), and the Aggregation Code.

The Main Routine and the Integration Code procedures are responsible for control and data
flow within the matching implementation. For example, the matchers need to be provided
with the data they require, e.g., the corresponding input specifications of the requester and the
provider as well as other matchers’ results. In addition, the matching designer needs to take
care of the data flow between two matchers. For example, the selected protocol matching
approach may be based on a signature matching result, as the order of operations occurring
in a protocol can be matched only if the single operations have been matched pairwise earlier.
In this case, the protocol matcher has to be provided with extra inputs in the correct format.
A similar situation holds for the privacy matcher: It depends on the mapping of parameters
that is created during signature matching (see Section 2.4.1).

Apart from control and data flow, there are further matcher-specific parameters to be taken
care of when invoking a matcher. For example, an ontological signature matcher needs to be
provided with a file that contains a domain ontology with information about the parameter
types to be matched. Also, depending on the specific signature matcher, the matching
designer could configure whether the signature matcher should only consider parameter types
or also operation names (see Section 2.4.1).
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Furthermore, the matching designer needs to process the output data of all matchers
and aggregate it to a final result by writing Aggregation Code. This code implements a
certain aggregation operator, e.g., an averaging operator that computes the arithmetic mean.
Aggregation is not a trivial task because different matchers may produce results in different
ranges. For example, if a provided service matches the requirements quite good with respect
to signatures (0.84), completely with respect to the protocol (1.0), and not at all with respect
to privacy (0.0), using a simple averaging aggregation would lead to a final matching result of
(0.84+1.0+0.0)/3 = 0.61. However, result formats could also be heterogeneous, e.g., 84%
+ true + 0.00. In this situation, it is not clear how to aggregate the results. Even if all results
are given in percentage values, the results cannot be aggregated in their current form as they
are based on different parts of a service specification: Protocols concern the whole interface
of the considered service (interface level), while a signature only concerns one operation
within an interface (operation level) [PSA15]. Thus, the inconsistency between the levels of
specifications that the matchers work on is a challenge and a potential risk for introducing
errors into the matcher implementation.

Finally, after running this implementation, the matching designer can determine that Room
Manager from Figure 1.3 satisfies the properties specified in the requirements specification
quite well but not perfectly. However, after using the matching process for some time, the
matching designer might find out that, in the current market, i.e., the university management
market, services differ a lot in their behavior. This is a problem because the current
selection of matchers does not cover behavioral properties well. For example, signature
matchers are known to deliver false negatives and false positives when it comes to a service’s
behavior [BJPW99, BV08]. The protocol matcher, on the contrary, addresses the service’s
interaction, but not the semantics of single operations.

Thus, some time later, the matching designer might want to improve the accuracy of
the matching implementation by adding a new matcher that considers behavioral properties
of a service, e.g., a Quick Condition Matcher comparing pre- and post-conditions. When
integrating this matcher into the implementation, the matching designer has to take into
account that a pre-/post-condition matcher typically builds on the results of a preceding
signature matching step. Therefore, she has to adapt the control flow and data flow of her
implementation as well as the aggregation code, again. [PSA15]

Similarly, the matching designer may serve some new requesters for whom privacy is
the most important aspect to be considered. Thus, she needs to adapt the implementation
of the aggregation code by assigning a higher weight to the privacy matching step within
the aggregation of matching results. Some requesters may even say that all other matching
results do not matter if the privacy matching result is not good (e.g., < 0.8). Thus, in order
to serve these requesters well, the matching designer needs to move the privacy matching
step as much as possible to the beginning of her implementation in order to allow early
termination for all services that definitely do not match the privacy requirements. Thereby,
a shorter execution time in general is achieved and, as a consequence, most probably, more
services can be matched in shorter time [PSA15]. However, she has to keep in mind that
the privacy matching step cannot be moved to the very beginning of the implementation
because, like the protocol matcher, it depends on the result of a signature matcher. Last
but not least, the matching designer decides to change the signature matcher’s configuration.
Since she detected that the domain terminology is very unstandardized in the current domain
of university management, she wants the signature matcher to focus on types; operation
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names as well as parameter names should not be considered during signature matching in her
process from now on.

The resulting alternative implementation is depicted in Figure 3.1 b). As we can see from
the figure, only few parts of the code constructed for Implementation 1 can be reused for
Implementation 2: For example, the main routine needs to be revised to invoke the signature
matcher with different configuration parameters. The integration code that invokes the
condition matcher needs to be newly written and the “< 0.8-filter” has to be added. The
aggregation code needs to be revised in order to introduce a weighted aggregation.

The alternative implementation may be better suited for unstandardized domains and for
requesters that put a greater focus on privacy than the first one. However, realizing this
alternative implementation means for the matching designer to reimplement large parts of
her code manually, again. Moreover, other requesters may be served better with the initial
implementation or even other implementations. Thus, the matching designer actually either
needs several alternative instances of her implementation at the same time, or she needs to
adapt her code frequently. In addition, the more complex the matching process, the more
time it takes to set it up and the more error-prone it becomes. For example, inconsistent data
flow or ill-considered dependencies between matchers are typical problems when combining
and running matchers manually.

To sum up, implementing matching processes manually is inflexible, error-prone, and costs
a lot of repetitive effort. In order to improve this situation, we need a solution that supports
the matching designer by automizing and validating as many parts of this work as possible.

3.3 Requirements

From the example scenario introduced in Section 3.2, we can derive nine requirements for
solving the detected challenges [PSA15]:

(R1) Integrate Existing Matchers: The matching designer needs to be able to reuse existing
matchers.

(R2) Combine Matching Steps: Integrated matchers need to be combined in order to solve
one matching problem together within one overall matching implementation.

(R2.1) Specify Control Flow Between Matching Steps: By specifying the order of
matchers, the matching designer can influence the execution time of the complete
matching execution. Furthermore, the control flow determines which matching
steps can build on earlier matching steps. Thus, she needs to explicitly define the
control flow between different matchers.

(R2.2) Specify Data Flow Between Matching Steps: The matching designer needs
to specify data flow between different matchers so that one matcher can use the
results of another matcher, if needed. For example, a protocol matcher most often
requires the result returned by a signature matcher.

(R2.3) Handle Aggregation of Matching Results: As matchers deliver results only for
parts of a specification, the matching designer needs to aggregate these partial
results into one final result. Furthermore, the selected aggregation operators
highly influence the final result and, thereby, the quality of the results delivered
by a matching implementation. Thus, the aggregation has to be configurable.
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This challenge is complicated by the different levels of specifications and
matching results (e.g., operation level vs. interface level) as well as by different
result types (e.g., binary vs. continuous).

(R3) Configure Matcher Properties: If a single matcher itself provides configuration
possibilities, the matching designer must be able to assign concrete parameter values
according to these possibilities. For example, she could configure whether the
signature matcher should only consider parameter types or also names.

(R4) Run Matching Implementation: The matching designer must be able to execute the
designed matching implementation.

(R4.1) Configure Inputs: For the actual execution, the matching designer needs to
specify the inputs that the matching implementation takes at runtime.

(R4.2) Validate Process: Automated execution is only possible if the implementation
is valid. For example, the specified control flow and data flow must not
contradict. The more complex the process is, the more difficult this becomes.
Hence, the matching designer must be supported in this task.

(R5) Result Validation: After having executed a matching implementation, the matching
designer needs to be able to inspect and validate the computed matching results in
terms of accuracy and execution time.

(R6) Low Effort: The whole task of providing comprehensive matching should be possible
without much extra work for the matching designer.

(R6.1) Reconfiguration: As her requirements or her context (e.g., the market
she operates in) may change, the matching designer needs the flexibility to
reconfigure an existing matching implementation with respect to all its properties
as listed above with little effort.

Requirements R1 to R5 can be summed up to the general goal of providing the matching
designer flexibility while supporting her in designing valid (correctly executable) matching
implementations. However, flexibility always builds a trade-off with effort (R6): The more
flexibility is desired, the more effort is required in the design phase. Thus, the overall goal is
to support the matching designer in creating valid matching implementations with as low an
effort as possible, while remaining flexible. [PSA15]

3.4 Matching Process Models

MatchBox supports the matching designer in coping with the requirements listed in
Section 3.3 in a model-driven way. This means, instead of implementing the code, we work
on models of the matching implementation. We call these models matching processes.

A matching process consists of one or more matching steps. One matching step refers
to one matcher that is to be executed as part of the execution of the matching process. We
distinguish between matcher and matching step as there can be different matchers for one
matching type. A matching type defines a set of matchers with common properties, e.g.,
matchers that work on the same part of the specification. Thus, this differentiation supports
substitutability of matchers applied within a matching process.
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Figure 3.2: Exemplary simplified matching processes

Figure 3.2 a) depicts a simplified matching process developed from the implementation
shown in Figure 3.1 a). It consists of three matching steps (Signature Matching, Protocol
Matching, Privacy Matching) and an Aggregation step. Each matching step executes one
of the matchers described above, whereas each aggregation step executes an aggregation
strategy based on one or more aggregation operators. The process is simplified with respect
to the matchers’ configuration possibilities and to the issues that arise from aggregation with
different result levels. We discuss this topic in detail in Section 3.6.2.

The steps in this visualization are connected via control flow (black arrows) and data
flow (gray, dashed arrows) transitions. The process takes a requirements specification and
a provided specification (specification of a provided service) as inputs, e.g., the example
specifications from Figure 1.3. Each matching step matches one specification part and
computes a matching result for this part (msig, mprot, mpriv). At the end, all matching
results are aggregated into a final matching result (m). In addition to the implicit data flow
from the initial node to the single matching steps (not shown) and the data flow from these
matching steps and to the aggregation step, there is data flow between the signature matching
step and the protocol matching step, and between the signature matching step and the privacy
matching step due to the functional dependencies as discussed above. Within each matching
step, the configuration of the matcher it refers to is contained. The configuration contains
a concrete parameter assignment for each defined matcher parameter. For example, the
Ontological Signature Matcher should be executed by also considering matching operation
names (Op. names = true) and parameter names (Param. names = true). The configurations
of the other matchers are omitted for the sake of clarity.
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Figure 3.2 b) depicts the matching process corresponding to the implementation in
Figure 3.1 b). Compared to Figure 3.2 a), this process consists of one more matching
step (Condition Matching), the order of the matching steps has been changed, a guard
(mpriv ≥ 0.8) has been introduced, the signature matcher configuration has been changed
(only parameter types will be matched, but no operation names and no parameter names),
and the aggregation strategy has been substituted.
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Figure 3.3: MatchBox’s metamodel for matching processes

Figure 3.3 shows the metamodel of such matching process models. The metamodel
specifies the different kinds of ProcessSteps (MatchingStep and AggregationStep) and
Transitions (DataFlow and ControlFlow). Each ProcessStep can have one incoming and
one outgoing control flow transition and an arbitrary number of incoming and outgoing
data flow transitions. Furthermore, a control flow condition can have a Guard with
a threshold. This guard again refers to a data flow condition. Each matching step
contains one MatcherConfiguration. Analogously, each aggregation step contains an
AggregationConfiguration. Both, matcher configuration and aggregation configuration, can
contain an arbitrary number of Parameters, which are key-value pairs.

Designed like this, the metamodel lays the foundations for the fulfillment of R2 (R2.1,
R2.2, R2.3) and R3. Note that the depicted version of the metamodel is only an excerpt. The
complete version of the metamodel can be viewed in Appendix A.1.
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Matching process models can be viewed as executable instances of a domain-specific
language defined by the depicted metamodel. Following the terminology of metalevels
defined by the OMG [OMG13], the depicted metamodel is on level M2, while the processes
created by the matching designer are on level M1. When executing the matching process
taking concrete specifications as inputs, we deal with level M0.

As common in MDSD approaches [SV06], there are several benefits of introducing
matching process models instead of directly working with the implementation of the
processes on code level. One of them is that these models allow us to validate the process
for correctness before executing it (R4.2). Also, the matching designer is much more flexible
because it is typically easier to change the model instead of changing an implementation
(R6.1). The reason is that the models are an abstract representation that help to handle the
complexity. This abstraction also improves the maintainability of the matching process.

Matching Process Models can also be seen as a modularization of complex matching
approaches. An alternative to matching processes could also be huge monolithic matching
approaches that match many different service properties. However, such a monolithic
matcher would be difficult to maintain and to extend. The modularization we achieve by
the introduction of our process models helps with handling the complexity because single
parts of a huge matcher can now be seen as building blocks whose outputs are combined
explicitly using (also modularized) aggregation strategies.

3.5 Overview of the MatchBox Workflow

Phase 1:
Setup

Phase 2:
a) Manual Process Configuration 
b) Process Generation

Phase 3:
Execution

Developer

Matching 
Designer

Matching 
Designer

Figure 3.4: Overview of MatchBox’ Workflow

The matching process metamodel is the core of the MatchBox framework. In the
following, we explain how the matching designer can use instances of this metamodel, i.e.,
concrete matching process models, as part of the MatchBox workflow within a systematic
design process.

MatchBox is a framework in a sense that it provides reusable design and components to
be customized and used [Joh97]. For example, the components responsible for creating,
validating, and executing processes can be reused. Figure 3.4 depicts an overview that we
describe in the following.

Using MatchBox involves three different phases managed by two different roles. First of
all, a developer, i.e., a person with technical background, sets up MatchBox. That means
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that she integrates existing matchers by using the interfaces provided by the framework.
We give details about the setup phase in Section 3.6. The second phase is modeling and
configuring a matching process using the matchers that have been integrated in the first
phase. The matching designer is in charge of that phase and this is where she can realize
her business strategies. This can be done (a) manually supported by MatchBox features
like validation or (b) fully automated via a generative approach. Details are explained in
Section 3.7. After a matching process has been configured, the matching designer can execute
this process with concrete requirements specifications and service specifications as input and
validate the returned matching results in Phase 3 (Section 3.8). The execution is performed
by a fully automated interpretation of the matching process model created in the previous
phase. [PSA15]

The different phases build upon each other. From a developer’s point of view, Phase 1
takes place at design time while Phase 2 and 3 take place at runtime. From a matching
designer’s point of view, Phase 2 takes place at design time, while Phase 3 takes place at
runtime. The two roles can also be played by the same actor. For example, the matching
designer could integrate matchers themselves before configuring the process and running it.
Furthermore, there are many possible iterations and reconfigurations (R6.1): For example,
the matching designer can run the same process with different specifications as inputs. She
can also reconfigure matching processes based on the same integrated matchers in order to
compare different matching strategies. In this case, Phase 3 serves as a feedback loop for the
matching designer’s process configuration in Phase 2. [PSA15]. Thanks to the model-driven
design, all these reconfigurations can be done with low effort on an abstraction level that is
easy to understand and to maintain (R6).

Figure 3.5 gives an overview of the models and languages that are used during
the three phases of MatchBox’s workflow. In the setup phase, the most important
parts within the framework are the AbstractMatcher and the MatcherDefinitionLanguage.
The developer integrates new matchers by extending the AbstractMatcher and defining
her matcher’s properties using the MatcherDefinitionLanguage. In the process
configuration phase, the matching designer comes into play by modeling matching
processes, including matching steps. Matching process models are instances of the
MatchingProcessSpecificationLanguage, which is part of the framework. The execution
phase builds on the two previous phases. The Matching Process Execution Engine
(MPExecutionEngine) executes the created matching process and creates matching
results. The matching results are stored in a model that is an instance of the
MatchingResultsMetamodel from the framework. Note that the upper part (modeled by the
matching designer) and the lower part (integrated by the developer) are loosely coupled. The
only connection is the ID specified in the matching step referring to the MatcherDefinition
of the used matcher. Furthermore, the figure shows that the framework is independent from
the integrated matchers which provides us with the possibility for extensions and adaptions
at runtime. Please note that Figure 3.5 omits aggregation strategies and aggregation steps for
a better overview. They are integrated and used in the same ways as matchers are.
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Figure 3.5: Overview of Models and Languages used during the MatchBox Workflow
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3.6 Phase 1: Setup

The first phase, setting MatchBox up, comprises the integration of matchers (see
Section 3.6.1) and the integration of aggregation strategies (see Section 3.6.2). Both kinds
of definitions will be used later in the process configuration phase in order to support the
matching designer during the configuration of her process and in order to validate the
resulting process. In particular, this section explains how to deal with R1. The effort that
the setup needs has to be invested once for each integrated matcher. This means much less
effort in contrast to the traditional approach, where the integration effort is repeated for each
matching process configuration (R6).

In the following, we explain the integration on the basis of examples. The metamodel
for the definition of matchers and aggregation strategies is depicted and described in
Appendix A.1. More examples of matcher and aggregation strategy definitions can be found
in Appendix B.

3.6.1 Integration of Matchers

As explained in the following, in order to integrate an existing matcher, the developer needs
to (a) define the matcher’s interface in a matcher definition and (b) implement delegation
code based on a common superclass provided by the framework.

3.6.1.1 Matcher Definition

In order to provide framework-based support for creation and validation (R4.2) of matching
processes, information about the matchers to be used within these processes needs to be
known. In the following, we collect all relevant matcher properties for this purpose on the
basis of existing matchers, e.g., the matchers introduced in Section 2.4. A criterion is relevant
if it influences the fulfillment of one of the requirements described in Section 3.3. According
to all the collected properties, we create a Matcher Definition Language (cf. Section 3.5),
which can be seen as a DSL (Domain-specific language) for service matching purposes. Two
exemplary matcher definitions based on this language are depicted in Figure 3.6. Figure 3.6
a) shows the definition of the signature matcher introduced in Section 1.2, Figure 3.6 b) shows
the definition of a protocol matcher. In the following, we explain these matcher definitions
and the reasons for the defined properties.

First of all, a matcher should be uniquely identifiable for the framework but also
understandable for the human. These issues raise the need for an Id and a natural language
Description within the matcher definition.

In addition to their names, their IDs, and their natural language description, a number
of further properties are specified per matcher. For example, the most important difference
between matchers is that they work on different (parts of) specifications that are taken as
inputs at runtime (R4.1). The depicted matcher definitions show matchers of two matching
types: matching.signatures and matching.protocols. A matching type defines a class of
matchers that handle the same type of input specification. For example, there can be different
matching approaches that deal with signature matching, e.g., the ontological signature
matching shown in this figure, or also a string-similarity-based signature matching. Both
matching approaches belong to the type “signature matching”. In order to automatize the
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Name:        Ontological Signature Matcher
Id:
Description: 

Type:
Result Format: 
Result Level:
Parameters: 

Class: 

matching.signatures 

continuous [0, 1]
operation
Operation_Names: boolean   (default = false)
Parameter_Names: boolean   (default = false)
 - 
de.upb.crc901.matchers.

OntologicalSigMatcher

matcher.signatures.ont
The ontological signature matcher leverages 
the relations specified in a domain ontology. 
Using these relations, the matcher checks 
for covariance and contravariance in order 
to decide whether two signatures comply...

Name:        Trace-Inclusion-based
Protocol Matcher

Id:
Description: 

Type:
Result Format: 
Result Level:
Parameters: 

Class: 

matching.protocols 

continuous [0, 1]
interface
RollOut : integer    (default = 5)
Level: operation
Format: continuous
de.upb.crc901.matchers

.TIProtocolMatcher

matcher.protocols.ti
This matching approach checks if 
all the traces of the requested 
service find a matching trace in 
the ...

a) Definition of a Signature Matcher b) Definition of a Protocol Matcher

Figure 3.6: Exemplary matcher definitions

execution of matching processes as much as possible (R4, R6), the delegation of inputs to
different matchers needs to be handled. Thus, a matcher’s matching type has to be part of the
matcher definition.

The introduced protocol matcher requires the matching results of an operation level
(one matching result for a pair of two specification parts referring to requested/provided
operations) matcher, e.g., of the depicted signature matcher. If the protocol matcher does not
receive such results within a concrete matching process model, this model is not valid. The
protocol matcher itself, in contrast, delivers results on interface level (one matching result for
a pair of two specification parts referring to requested/provided interfaces). See Section 2.1
for connections between these different matching result levels. Another property where
matching results differentiate is their format. As an example, the two depicted matchers
deliver continuous results within the interval [0, 1], while some other matchers deliver binary
results (true or false). In order to process an incoming matching result, its format has to be
known. As a consequence, for specifying and validating correct data flow between matchers,
the delivered and required Result Level and Result Format have to be specified for every
matcher. Specifying properties like the result level and the result format, allows MatchBox to
automatically validate whether the data flow and the control flow between process steps have
been correctly specified in the configuration phase (R2.2, R2.1). Furthermore, knowledge
about the result levels and the result format is required for the aggregation of matching results
(R2.3). This issue will be explained in Section 3.6.2.

In addition to the result-related properties, also an arbitrary number of Parameters, i.e., the
matchers’ configuration possibilities are defined (R3). For example, the depicted signature
matcher takes the parameters Operation_Names and Parameter_Names, representing the
decisions whether operation names and parameter names should be matched, or not. The
values these parameters can take when the matcher is instantiated is given by the type. For
these two parameters, the type is boolean. Their default values are false. Providing a default
value for each parameter allows MatchBox to simplify the process configuration in the next
phase so that the matching designer is allowed to work with incompletely specified matching
processes to save effort (R6).
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AbstractMatcher
validate (Parameters)
filterInputSpecs (InputPair)
run (InputPair)
match (InputPair)

OntologicalSigMatcher

match(inputPair)

  
match(inputPair)
...

Figure 3.7: Exemplary Template Method application within the MatchBox Framework

The Class property represents the connection between the matcher definition and the
implementation of this matcher.

3.6.1.2 Integration on Code Level

MatchBox interprets the matcher definitions when providing the matching designer with
the possibility to instantiate and configure (see Section 3.7) and to run (see Section 3.8)
a matching process on the basis of the integrated matchers. However, the developer is
still left with some effort on code level: As a bridge between the framework code and the
integrated matcher’s implementation, the developer needs to implement a class according to
an abstract common superclass provided by MatchBox. This class delegates to the specific
matching algorithm needs to be referenced in the matcher’s definition so that the framework
can delegate to this class at runtime.

Following Gamma’s template method pattern [GHJV95], the common superclass
implements the generic part (the same for all matchers) that controls the matcher’s data flow.
Figure 3.7 shows the class design according to this pattern, taking the OntologicalSigMatcher
class as an example and introducing a class AbstractMatcher for the generic parts. If
the interface of the matcher to be integrated is different, an adapter class (see adapter
pattern [GHJV95]) can play the role that implements the template methods.

Thanks to the matcher definition, AbstractMatcher can save a great deal of work to keep the
concrete matchers lightweight. For example, the validation of a matcher’s parameters can be
done on the generic level as parameter types and default values are known. Furthermore, the
AbstractMatcher can filter the input specifications for exactly those specification parts that
are specified in the matcher’s type. The concrete matcher can overwrite the corresponding
method (filterInputSpecs) if special filtering is required. Furthermore, the generic part
includes monitors and logging mechanisms as well as data management between the
matching logic and MatchBox’s user interface, e.g., configuration dialogs and result views
(see Section 3.9).

The implementation of the matcher-specific methods build a trade-off between the effort
the developer puts in and the knowledge the matching designer gains. For example,
if a matching algorithm is adapted so that it extends MatchBox’s logging mechanism,
the matching designer can monitor the matcher’s current internal state while running the
matching process (see Section 3.8). However, if the algorithm is used as a black-box, only
the start and termination of a matcher can be monitored, though the integration takes less
effort. In this case, only the matcher’s starting routine needs to be invoked. For even more
benefit, the developer can apply instrumentation techniques. For example, she could enhance
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the matcher’s code using the MatchBox API in order to create more detailed matching results
that can be inspected after running the matching process (see Section 3.8) but all this is
optional. [PSA15]

The only assumption that the MatchBox framework makes about the matchers to be
integrated is that their implementation is executable and written in an object-oriented
language for easy integration. Our prototype, however, works with java-based matchers (see
Section 3.9). Matchers themselves can also differ in their quality, e.g., their accuracy or their
runtime. The matching designer is responsible for selecting appropriate matchers before
using MatchBox.

3.6.2 Integration of Aggregation Strategies

One important topic when discussing the combination of several matchers is the aggregation
of their matching results (R2.3). Aggregation is necessary for several reasons: First, service
selection based on multiple matching results leads to a multi-criteria optimization problem
where matching results build up a multi-dimensional pareto front. For algorithms, and for
humans all the more, it is much more difficult to decide based on multiple criteria than based
on one. The more matchers are used, the more complex becomes decision making.

Nevertheless, in some cases aggregation is not reasonable as each step of aggregation
loses information. For this reason, MatchBox leaves the decision to the matching designer:
On the one hand, MatchBox was designed to be flexible and configurable, it allows to design
matching processes with and without aggregation steps. Furthermore, it allows to flexibly
configure the aggregation strategies themselves. On the other hand, aggregated matching
results in MatchBox are designed in a way that also the original results from the single
matchers can still be viewed (see Section 3.8.3).

In some cases, aggregation is simple. For example, if the protocol matcher delivers a
result of 1 within a range of [0, 1], and the privacy matcher delivers a result of 0.5 within
the same range, an aggregation strategy computing the arithmetic mean would lead to a
final result of 0.75. However, aggregation is not always as trivial as in this example for
multiple reasons. In this section, we explain some general aggregation concepts for matching
results determined by MatchBox building on the foundations within the topic of aggregation
explained in Section 2.5. On the basis of these concepts, we explain the integration of
aggregation strategies into MatchBox such that they can be used as part of the matching
process.

3.6.2.1 Result Formats and Result Levels

As already explained in Section 3.6.1, two important properties of a matching result regarding
its aggregation are (a) the format of the matching result and (b) the level a matching result has
been calculated for. In the examples introduced above, the aggregation was simple because
the results were homogeneous regarding the format and the level. For example, the selected
protocol and privacy matchers both deliver results on interface level. However, this is not the
case for the example processes depicted in Figure 3.2. In fact, the usage of the aggregation
strategy in the processes depicted in Figure 3.2 is invalid. The reason is that the signature
matcher’s result is defined on operation level and not on interface level as the other matchers’
results.
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Figure 3.8: Complete Example Process

In order to aggregate the signature matcher’s results with the protocol or privacy matcher’s
results, the signature matcher’s results have to be transformed from operation level to
interface level by another aggregation step. This is possible as the different result levels
refer to parts of a service that are related in a “contained”-relationship with each other (see
Section 2.1). For example, one sensible strategy for this transformation is as follows: A
required interface matches if all its operations match operations that are part of the provided
interface. This strategy corresponds to the partial module match described by Zaremski and
Wing [ZW95] who laid the foundations for signature matching.

Figure 3.8 shows the valid version of the process depicted in Figure 3.2 b), including
the additional aggregation steps. In this figure, the above-mentioned aggregation strategy is
called Operation2InterfaceLevel Strategy and it is executed two times. The first occurrence
of the strategy takes the signature matching result msig as an input and delivers an interface
level matching result mif1 as an output. The interface level matching result can then be
taken by the final aggregation step executing the Weighted Averaging Strategy and it can be
treated equally as the other matching results on interface level. The same holds for the second
occurrence with respect to the condition matching result (mcond) because it is on operation
level, too, just as the signature matching result.

One could also argue that, also without the transformation step, the signature matching
result is already indirectly part of the aggregated matching result because it influences the
results of other matching steps due to functional dependencies. It is again the matching
designer’s design decision whether the signature matching result is sufficiently important that
it should nevertheless be considered within the aggregated matching result for its own, or if
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the indirect influence is sufficient in the current context. In the second case, the additional
aggregation steps are not needed.

In the same way as we transform between different matching result levels using
such transforming aggregation steps, we can cope with transformations between different
matching result formats, e.g., between boolean and percentage results. For example, when
dealing with boolean and percentage results, the boolean “false” could be transformed to
0% and the boolean “true” could be transformed to 100%. A transformation into the
other direction is possible based on thresholds (e.g., everything lower than 50% could
be transformed to “false”), but this strategy obviously leads to information loss. In
general, transformations between matching result formats are relevant only if an aggregation
strategy’s implementation is not able to deal with such transformations itself.

3.6.2.2 Definition of Aggregation Strategies

Name:        Weighted Averaging Aggregation Strategy
Id: 
Description: 

Result Format: 
Result Level:
Parameters: 
Required Result:
Class: 

continuous [0,1]
interface
 weight  : double   (default = 1.0)
Level: interface;   Format: continuous [0,1]
de.upb.crc901.aggregation.strategies.WeightedAggregationStrategy

aggregation.weighted_average
This aggregation strategy computes the mean value of all incoming matching 
results under consideration of weights assigned to each matching step.

Figure 3.9: Exemplary definition of an aggregation strategy

Before aggregation strategies are used within a matching process, they have to be
integrated similarly as matchers have to be integrated. This means their properties, e.g.,
accepted input and output formats and levels, have to be defined.

Figure 3.9 shows the definition of the weighted averaging strategy processed as the final
process step of the matching process depicted in Figure 3.8. The weights are defined as
Parameters. The current strategy is defined with interface as the result level (the output
of the aggregation strategy) and of the required result level (the inputs of the aggregation
strategy). However, it is also possible to adapt the same strategy’s implementation to other
result levels, e.g., on operation level, if both levels have to be the same (see Section 3.6.2.1).
In order to transform an operation level result into an interface level result, we need to define
further aggregation strategies as explained above.

Internally, MatchBox applies the strategy pattern [GHJV95] to handle the set of integrated
aggregation strategies. Typically, weighted averaging aggregation strategies are used in
order to generate a final result that considers the results of all matching steps. Such a final
result can be used as a first indicator for the requester about the extent to which a service
specification matches a requirements specification. Simple alternative aggregation strategies
are minimizing and maximizing strategies (see Section 2.5). The matching designer has
to decide which strategies fit best to the context. For example, maximizing strategies
compensate situations where outliers with bad matching results exist, while minimizing
strategies are a better choice for pessimistic service selection, when no risk is acceptable.

46



3.7 Phase 2: Process Configuration

In addition to these obvious, relatively simple aggregation strategies, more complex
aggregation strategies can be integrated, too. Examples are hierarchical aggregation
strategies [YFH09].

3.7 Phase 2: Process Configuration
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Figure 3.10: Process Configuration Phase

The setup of MatchBox, as described in Section 3.6, enables the usage of matchers
as matching steps within a matching process. On the basis of these matching steps,
comprehensive matching processes can be configured. Figure 3.10 gives an overview of
the steps to create and configure a matching process performed by the matching designer and
supported by MatchBox. The process configuration can be performed either manually (see
Section 3.7.1), or automatically (see Section 3.7.2), or by using a mixture of both, starting
with an automatically generated process and then modifying it manually.

3.7.1 a) Manual Process Configuration

The upper part of Figure 3.10 (Manual Process Configuration) shows which steps the
matching designer has to perform in order to model a matching process. First, matching
steps can be selected and added. All matching steps that have been integrated in the previous
phase are available for selection here. For example, after the developer integrated a signature
matcher and a protocol matcher in Phase 1 as explained above, she can now add a signature
matching step as well as a protocol matching step. Both steps can then be configured on the
basis of the parameters that have been specified during the integration (R3). For example,
if the signature matcher has been specified with a boolean parameter to decide whether
operation names should be considered or not, now the matching designer can choose either
“true” or “false” for one specific process instance. [PSA15]

After the matching designer selected one or a collection of matching steps and configured
them, the data flow between these matching steps may be configured (R2.2). For example, if
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a matching designer has added the protocol matcher mentioned earlier, she has to choose a
signature matching step the protocol matcher can take the results from. MatchBox supports
the matching designer in configuring data flow by validating the dependencies to be created
in order to prevent circular dependencies (if Step A requires Step B, Step B must not require
Step A) or conflicts with the control flow (if Step A requires Step B, Step B must not be
executed subsequent to Step A). Note that the framework automatically takes care of the
data flow regarding the propagation of the input specifications: In contrast to the data flow
between process steps, the user does not need to explicitly model the data flow going out
from the initial node. However, she needs to specify the data flow from matching results
to aggregation steps and in between aggregation steps as these flows are not automatically
derivable and part of the design decisions. [PSA15]

On the basis of the data flow, the matching designer can determine the order of the
matching steps, i.e., add the control flow (R2.1). Most often, some sequences are already
given by the dependencies created by the specified data flow (e.g., configured as explained
above, the protocol matching step cannot be performed before the signature matching step).
When adding control flow, each control flow transition can also be constrained with a guard.
For example, the guard “[mpriv ≥ 0.8]” (cf. Figure 3.2 b) means that the matching process
terminates if the privacy matching result is less than 0.8. Note that Figure 3.2 shows our
simplified notation where the paths for early termination, i.e., control flow from a decision
node to the final node, are not shown. Such an early termination strategy can speed up
the matching process significantly because, when executing a matching process for a high
amount of input pairs, guards like this work as a filter. [PSA15]

Apart from implicit decisions at runtime regarding control flow produced by guards, at
the moment, MatchBox only allows pure sequential ordering of steps. A comparison and
discussion of further possible structures can be found in [Gao14]. Although our matching
processes are inspired by UML Activity Diagrams [Obj10], we intentionally decided against
the support of alternative or parallel control flow within matching processes for several
reasons: For alternative control flow, we could not find any good application examples as
matching steps are, typically, not alternative to each other. For example, it makes no sense
to decide between a protocol matching step and a privacy matching step because they handle
different aspects of a service. A more useful example is to decide between two different
matchers of the same property, e.g., between two different signature matchers or between
two different signature matcher configurations. However, such a decision is usually not made
on the basis of the information a matching process holds during the execution. Instead, such
decisions are typically based on further information (e.g., market size) that already can be
utilized offline, during the modeling phase. Furthermore, the comparability of matching
results matched by the same matching process decreases as soon as the matching process
contains alternatives to be evaluated at runtime. We also refrained from supporting parallel
control flow within a matching process because we already expect the whole matching
process to run parallel on multiple input pairs such that the introduced complexity is expected
to be too high in comparison to the gained benefit.

Furthermore, we introduce Aggregation Steps. As noted earlier, aggregation steps are
similar to matching steps as they are part of the matching process and can be connected
to other matching or aggregation steps using control flow and data flow transitions. An
aggregation step always refers to an aggregation strategy integrated in Phase 1 (see
Section 3.6) in order to aggregate the matching results from the matching steps (R2.3).
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All tasks that are part of the manual modeling of a matching process can be repeated
arbitrarily often. The matching designer can reconfigure the matching process whenever she
needs to (R6.1). This flexibility is one of MatchBox’s benefits because the specification of the
matching process influences the runtime as well as the quality of matching results computed
in the execution phase.

3.7.2 b) Process Generation

As an alternative to the manual matching process creation as described in Section 3.7.1,
we developed an approach to automatically generate matching process models completely
automatically from a given market specification [APB+14, APM+15].
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Figure 3.11: Matching Process Generation Overview

Figure 3.11 shows an overview of the Matching Process Generator (MPG). It takes
a Market Specification as an input and produces a Generated Matching Process as an
output. For this purpose, MatchBox needs to be set up with a set of concrete Matchers
and Aggregation Strategies. Furthermore, a RuleSet needs to be defined.

The MPG is at the same metalevel as MatchBox itself. However, the rule set is specific to
a certain setup of MatchBox. The reason is that a rule needs to refer to a specific matcher
and its configuration possibilities. Furthermore, the usable aggregation strategies need to be
known. For this reason, a rule set can only be created after the setup phase (see Section 3.6).
In the following, we illustrate the approach and the artifacts of the generation under the
assumption that a specific set of matchers and aggregation strategies has been integrated.

Market Specification
By formalizing the current market’s properties in the form of a well-defined market
specification, we can leverage market knowledge using a systematic, repeatable approach.

The left side of Figure 3.11 shows an exemplary specification of the university
management market mentioned in Section 1.2. The university management market has
certain characteristics that influence the performance and quality service matching. For
example, university structure and its management varies significantly from university to
university. There are only few common traits if compared globally. Therefore, neither
terminology nor business processes are standardized for services and their specifications in
this market [APB+15]. Thus, Standardization is set to NONE. In addition, the UM service
market’s MarketSize is SMALL. This means, there are currently only few service offers. The
ServiceComplexity property has been set to HIGH because most of the services offered in this
market offer a complex functionality. SensitiveData is true because university management
services typically deal with sensitive data of students and employees whose privacy must be
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secured. The metamodel for the market specification language is depicted and described in
Appendix A.2.

The ranges of market properties such as MarketSize or ServiceComplexity consisting of
fuzzy terms like SMALL and HIGH need to be standardized using universal metrics so that
they are comparable. This way, we can prevent situations where a certain market is “small”
in the opinion of one matching designer but the same market is judged at “medium-sized”
by another matching designer. Examples for such metrics are discussed in [APG+14] and
in [Ari].

Generator Rules
Table 3.1 shows some example rules applied within the generation of a matching process
based on the given market specification. Most of these example rules are created with the
goal to optimize the trade-off between matching accuracy and matching runtime.

Each rule has a type, e.g., Selection, Matcher Configuration, Control Flow Configuration,
and Aggregation Configuration. The generation procedure will determine the order in which
the rules are applied according to their types.

As an example, consider Rule 1 and Rule 2. These rules denote that only a signature
matching step is created if there is Standardization in the considered market. Otherwise, a
pre-/post-condition and a protocol matching step are added as well. The rationale behind this
is that well-established terminology can replace behavioral specifications of single operations
because the semantics of the used names is commonly understandable. If the processes
are standardized, matching of the invocation order of operations is not needed because the
behavior of equally named services is understood in the same way. In other words, if
services in the market are highly standardized, then signatures alone already result in accurate
matching because the common terminology and processes prevent behavioral mismatches to
a great extent. In this case, we can save runtime by omitting expensive matching steps like
pre-/post-condition or protocol matching. Otherwise, we need these additional matching
steps that are better able to cover behavioral properties because accuracy would suffer so
badly that the lower runtime is not worth it. [APB+15]

The reasoning behind such rules can be very disparate. For example, Rule 3 specifies that
reputation matching should be added to the matching process, if the considered market is
small, i.e., if it consists of a small amount of service. The idea behind this rule is that in
small markets, most service providers are known from earlier purchases. Thus, reputation
data is transparent and especially reliable for matching. In contrast, the probability that
we have reliable reputation data for every provider and every service is lower in large
markets. [APB+15]

Rule 4 focuses on privacy: If a market deals with sensitive data, e.g., student IDs or
other personal data that can foster user profiling, then privacy matching should be part of
the matching process.

Rule 5 is an exemplary rule for the setting of a matcher’s configuration parameters. The
idea is that, due to the lack of standardization in the market, signature matching cannot rely
on operation and parameter names. Instead, it should focus on well-defined types, which can
be matched ontologically.

In Rule 6, the matching process’ control flow is configured based on the market size
property. This rule states to decrease all thresholds within guards by 0.2 in the matching
process for a market with a small size. This results in more services running through the
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whole matching process because of a weaker filter effect. The reason for this rule is that,
in a small market, the probability of a perfect match is lower than in a large market. By
decreasing the thresholds, we can receive more matching results. This increases the mean
runtime of the matching process but we can afford this because there are only few services
to be matched in small markets.

An example for the configuration of the aggregation of matching results is Rule 7. It says
that, if there is sensitive data, we assign a higher weight to the privacy matching step within
the results’ aggregation. This rule assumes that the final result is determined by a weighted
averaging aggregation strategy.

Table 3.1: Exemplary Generation Rules
Rule Rule Type Rule Definition
Rule 1 Selection Standardization = BOTH→ select Signatures Matcher
Rule 2 Selection Standardization = NONE→ select Signatures & Pre-/post-conditions & Protocols
Rule 3 Selection Market size = SMALL→ select Reputation
Rule 4 Selection Sensitive data = true→ select Privacy
Rule 5 Matcher Config. Standardization = NONE→ configure Signature Matcher:

Op. names = false; param. names = false
Rule 6 Control Flow Config. Market size = SMALL→ decrease all thresholds by 0.2
Rule 7 Aggregation Config. Sensitive Data = true→ multiply Privacy result weight with 2

Such rules have to be created by a consortium of domain experts after evaluating a set of
domains. This challenge is also addressed in Section 3.11.

Although examples for standardized and comparable metric ranges are discussed
in [APG+14] and in [Ari], these example rules still show the heuristic nature of such a
generation. The generalisability of these rules and the metrics they are based on needs
to be evaluated within different kinds of service markets. The rule set metamodel and
its description are depicted in Appendix A.2. For a larger table with more example rules
including an initial evaluation of these rules, we refer to our Technical Report [APG+14].

Generation Procedure
The generation procedure applies rules like the ones in Table 3.1 to a market specification
like the one depicted in the left part of Figure 3.11. The lower part of Figure 3.10 (Process
Generation) shows the order of modeling steps the generator follows:

• Add Matching Steps: In this step, the generator applies all rules of type Selection and
all rules of type Matcher Configuration. For each applied selection rule, a matching step
with a corresponding matcher configuration is created. The configuration parameters
are set as defined in the matcher configuration rules. Parameters that are not set by
these rules get the values specified as default values in the matcher definition. This
feature also allows MatchBox to cope with incomplete matcher configurations, which
again keeps also the manual configuration effort low.
• Add Aggregation Steps: Next, aggregation steps are generated. The generation

strategy used in this generation step depends on the kind of integrated aggregation
strategies. As a default strategy, the generator adds one final aggregation step
applying a weighted averaging strategy in order to gain expressive final results and
aggregation steps that transform operation level matching results into interface level
matching results where needed. In this way, the number of such transforming
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aggregation steps equals the number of added matching steps that deliver operation
level matching results. Furthermore, the generator applies rules of type Aggregation
Configuration. Such rules typically address the weights considered by final aggregation
step performing the weighted averaging aggregation strategy.
• Add Data Flow: In this step, the data flow between matching steps and the data

flow required by aggregation steps is generated. For this purpose, the definitions of
matchers and aggregation strategies are analyzed with respect to required matching
results. Depending on the integrated matchers, heuristics can be applied. An
appropriate heuristic in our example is: Each matcher that requires operation level
results will be provided with the matching results of the signature matching step as this
is the most basic matching step that delivers results on operation level. As typically
all matching steps are to be considered in the final matching result and the final result
in our examples is on interface level, data flow from each matching step that delivers
operation level results to a transforming aggregation step is generated. In addition, the
generator adds data flow from every matching step that delivers interface level results
to the final aggregation step.
• Add Control Flow: On the basis of the created process steps and the data flow between

them, the control flow, i.e., the execution order, has to be determined. An arbitrary
ordering is not possible due to dependencies between process steps. Hence, the data
flow already determines part of the control flow. However, if there are independent
steps within the process, there is still room for strategical decisions regarding their
order. MatchBox allows to integrate different strategies to select the best order of
matching steps. One example strategy is to move to the front matching steps with
simple matchers that are usually finished quickly. The idea behind this strategy is, if
the matching process contains guards, this strategy increases the possibility to avoid
expensive matching steps by early termination and thereby speeds up the matching
process execution in general. For this strategy, we incorporate heuristic estimations of
the expected mean runtime of each matching step. This mean runtime may again be
influenced by the matcher configurations. Furthermore, the rules of type Control Flow
Configuration are applied. For example, guards are created.

Applying this generation procedure to the market specification from Figure 3.11 and the
rules from Table 3.1, a matching process similar to the process depicted in Figure 3.8 is
created, except that the reputation matching step is missing.

3.8 Phase 3: Execution

The steps of the execution phase are depicted in Figure 3.12. After having finished the
matching process configuration described in Section 3.7, the requirements specifications and
service specifications the matching process will consume and handle at runtime need to be
assembled and assigned to the process in the form of input pairs. Afterwards, the matching
designer is provided with an executable matching process. After the execution, matching
results can be inspected manually or using automated matching result validation methods.
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Figure 3.12: Process Execution Phase

3.8.1 Input Assignment

As soon as a matching process has been created either manually or automatically, it needs
to be prepared for the execution phase. Thus, the next step configures the concrete inputs
the matching process consumes at runtime (R4.1). For this, first, the given inputs have to
be composed into specification collections representing either requirements specifications
or provided services’ specifications. Depending on the matching types that are used in
the matching steps configured earlier, a specification collection can consist of several
specification parts. For example, in order to match the specifications shown in Figure 1.3,
specifications of signatures, protocols, and privacy properties should be a part of the
specification collection. [PSA15]

The composition of the single specification parts within requirements specifications and
service specification parts to one specification collection per request and per service is
required because of the potentially loose coupling of these specifications. Allowing loosely
coupled specification parts to contribute to one requirements or service specification together,
allows to use various specification languages (potentially described on different specification
levels, e.g., operation level and interface level) in combination with each other. This also
clarifies the semantics of an aggregated matching result taking into account all specification
parts that belong to one requirements specification respectively to one service.

After a specification collection has been composed, pairs of requirements specifications
and service specifications can be assembled and assigned to the matching process. In the
following, we call these pairs input pairs. In our running example, the input pair consists
of the requirements specification for the room reservation service and the specification of
the provided service Room Manager. The execution of the matching process processing this
input pair will determine to which extent the provided service’s specification satisfies the
requirements specification.

This procedure also enables to assign several input pairs to a process. This possibility
becomes interesting if (a) the matching results of several provided service specifications
matched to the same requirements specification are to be compared with each other, or if
(b) the matching results of several requirements specifications matched to the same service
specification are to be compared with each other. In this case, the process matches the input
pairs in parallel, independent from each other, and returns one matching result per pair.

Figure 3.13 shows an excerpt of the MatchBox metamodel for the configuration of
input pairs. This metamodel is designed such that it allows us to be independent from a
concrete specification languages. All information specified in the input configuration phase
is encapsulated in an InputSpecification object which is contained in a MatchingProcess. An
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InputSpecification consists of an arbitrary number of requesters and providers, both of type
SpecificationCollection. A SpecificationCollection refers to at least one Object. Here, Object
serves as a placeholder for the common superclass of all model elements that can be part
of a service specification or requirements specification. Furthermore, an InputSpecification
consists of an arbitrary number of InputPairs. One InputPair refers to one requester and one
provider. It can be enabled or not. Disabled input pairs will be ignored during the execution
phase. In addition, an InputPair keeps an ontologyPath. This path defines the location of
the ontologies that a pair’s contents (e.g., the data types) refer to. After the execution, each
InputPair will be assigned with a MatchingResult. More information about matching results
and their structure are given in Section 3.8.3.

MatchingProcess

SpecificationCollectionInputPair

*  pairs 1 

requester
1 

provider
MatchingResult0 .. 1

result

* requesters*  providers

InputSpecification
0..1

inputSpecification

enabled : boolean
ontologyPath : URI

1..* 

models
Object

Figure 3.13: Metamodel for Input Assignment

3.8.2 Execution

MatchBox takes care of performing all selected matching and aggregation steps in the
defined order fully automatically (R4). For this purpose, the instance of the matching
process metamodel (see Section 3.4) that has been created during the configuration phase
is interpreted. [PSA15]

We call the component responsible for the matching process execution Matching Process
Execution Engine. The matching process execution engine contains an interpreter for the
matching process models. In model-driven software development, an alternative to using
an interpreter is code generation [SV06]. In our case, an interpreter is more suitable as it
analyzes the model not at design time but at execution time. Furthermore, interpreters are
better suited for models that describe behavioral aspects rather than structural aspects [SV06].
The drawback is that interpreters are usually slower than generated code. However, in our
case, the time to interpret the matching process is insignificant compared to the time the
invoked matchers take (see Section 3.10).

Figure 3.14 shows on an abstract level how the matching process execution engine
(MPExecutionEngine) interacts with other parts of the framework in order to execute a
matching process: After the MPExecutionEngine has been triggered, it instantiates an
MPValidator. This validator checks the given matching process model with respect to
modeling flaws, e.g., conflicting control flow and data flow or illegal values for configuration
parameters. For valid processes, the execution then starts by iterating over all given input
pairs. For each input pair, a RootResult is created. This root result represents the highest
level of the hierarchical matching result constructed during the execution of the matching
process. After that, the engine iterates over all process steps according to the control flow
specified by the matching designer within the matching process model. Depending on
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Figure 3.14: Overview of Interactions during the Matching Process Execution

whether the currently considered process step is a matching step or an aggregation step, either
a MatchingJob or an AggregationJob is instantiated. Both jobs work equally: The matching
job initiates a Matcher and the aggregation job initiates an Aggregation Strategy. At this
point, the framework connects to “third party” components (i.e., matchers or aggregation
strategies). These components extend components that are part of the framework (e.g.,
the AbstractMatcher class). Such a low coupling is achieved by reflection: The correct
matcher class is invoked via the class name specified within the matcher definition. Low
coupling is important in order to stay independent from the matchers, such that any matcher
can be integrated at runtime without having to change the framework. The matcher starts
with preparing its inputs. This means, the parts of the requirements specification and the
service specification to be considered are extracted from the given input pairs. Furthermore,
if required, matching results that have been created during the execution of earlier matching
steps, may have to be extracted, too. As mentioned in Section 3.6, the input preparation
can be implemented in the common super class (e.g., AbstractMatcher) or, if the data
structures are rather exceptional, this part can be overridden by the concrete matcher. For
aggregation strategies, this works vice versa. After a process step has been processed, the
engine determines the step to be executed next under consideration of the modeled control
flow. Guards are also taken into account here.
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3.8.3 Matching Results Inspection

During the execution of a matching process, matching results for the different matching steps
are created and composed in a tree structure. On the topmost level, there are the aggregated
matching results serving as overall results for the whole process. During the execution of a
matching process, matching results for the different matching steps are created and composed
in a tree structure. On the topmost level, there are the aggregated matching results serving
as overall results for the whole process. On the next level, there are the results for the
matching steps. Below, depending on the matcher, there are different intermediate results that
have been determined during the execution of one matching step. For example a signature
matcher’s result may consist of a result for the comparison of the operation names and a
result for the comparison of the parameters. The result for a parameter may again consist of
a result for the comparison of the parameter’s name and a result for the type matching. The
included parts of a result depend on the depending on the matcher’s configuration. [PSA15]

Aggregated Matching Result: 0.61
  Signatures Matching Result: 0.91

  bookRoom: 0.83
  operation name: 1.0
  parameters: 0.66

  Date time: 1.0
  Date: 1.0
  time: 1.0

  Integer capacity: 0.5
  Integer: 1.0
  capacity: 0.0

  Room room: 0.5
  Room: 1.0
  room: 0.0

  sendAck: 1.0
  operation name: 1.0
  parameters: 1.0

  ...

  Protocol Matching Result: 1.0
  ...

  Privacy Matching Result: 0.0
  ...

Aggregated Matching Result: 0.5
  Signatures Matching Result: 1.0

  bookRoom: 1.0
  parameters: 1.0

  Date time: 1.0
  Date: 1.0

  Integer capacity: 1.0
  Integer: 1.0

  Room room: 1.0
  Room: 1.0

  sendAck: 1.0
  parameters: 1.0

   

  Privacy Matching Result: 0.0 (*2)
  ...

  Condition Matching Result: 0.5
  ...

  Protocol Matching Result: 1.0
  ...

a) Example results for first example process b) Example results for alternative process

Figure 3.15: Exemplary Matching Results

Figure 3.15 shows such matching result structures for both matching processes depicted
in Figure 3.2. Both processes have been executed with our example specifications described
in Section 1.2 as an input. Nevertheless, the results differ (0.61 for Figure 3.15 a) and 0.5
for Figure 3.15 b)) because of the differing matching process configurations: The results
in Figure 3.15 a) stem from three matching steps, while the results in Figure 3.15 b) stem
from four matching steps. The results from the signature matching in b) are higher than in a)
because the mismatches in a) are caused by operation and parameter names, which have been
ignored in b). The privacy matching result received a double weight, thus, this low result has
more impact on the final result in b) than in a). This shows that it is important to provide
the user with such hierarchical matching results: even though there is only a slight difference
between the two results when considering only the aggregated matching result on the highest
level, the lower levels show the difference much clearer.

After the matching process has been executed as specified, for all enabled input pairs,
the matching designer (or other roles, e.g., the requesters or the providers) can inspect the
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returned matching results (R5). MatchBox’s data structure for matching results shown above
enables the presentation of all the matching results in a tree view and allows to inspect single
matching results on a more detailed level because the corresponding excerpt of the MatchBox
metamodel uses Gamma’s (degenerated) composite pattern [GHJV95]. Figure 3.16 shows
this metamodel excerpt. An instance of one of the subclasses of MatchingResult can be the
parent of child MatchingResults. Such an instance is either a BinaryMatchingResult or a
ContinuousMatchingResult. The number of result types is easily extensible. Each matching
result has a title, a message, and a runtime. Furthermore, it refers to the ProcessStep the
matching result has been computed for.

ProcessStep

InputPair

MatchingResult
0 .. 1

result

«abstract» 

BinaryMatchingResult

result : boolean

ContinuousMatchingResult

result : double

title : String
message : String
runtime : double

*  children

0..1 
processStep

«abstract» 

Figure 3.16: Matching Results Metamodel

Comprehensive matching results are required as user feedback [PvDB+13, ZSK15].
They provide requesters with a more informed service selection and indicate possible
improvements for their requirements specifications in order to provide more helpful matching
results in a next iteration. Furthermore, service providers can benefit from comprehensive
matching results in order to create strategies to adjust their offers [PBS14]. The hierarchically
structured matching results produced by MatchBox allow a very detailed but also very
individual view of matching results for each matching step.

3.8.4 Matching Results Validation

In addition to the possibility to view and validate the matching results manually, MatchBox
also provides automatic validation mechanisms. For this purpose, the matching designer
needs to specify the expected matching results for the considered input pairs before running
the matching process. Expected matching results serve as a “ground truth” here. Usually,
they can be determined by domain experts.

After the matching results have been calculated by the process, MatchBox can
automatically compare the expected to the calculated results. Thereby, it can determine
false positives and false negatives. Based on these measures, MatchBox computes accuracy
metrics like precision and recall. In addition, the required execution time for each matching
step is recorded by MatchBox so that the matching designer can use it to decide whether
the current matching process is appropriate for her application scenario from a performance
point of view. [PSA15]
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3.9 Prototype Implementation

Our MatchBox prototype has been published within the scope of a tool demonstration
paper [BBP15]. It is part of the SeSAME (Service Specification, Analysis, and Matching
Environment) tool-suite [AWBP14, UPBe] and is freely available via our website [UPBc].
In the following, we describe the prototype’s architecture and its main features.

3.9.1 Architecture and Technologies

MatchBox has been implemented as a set of plug-ins for the integrated development
environment Eclipse. It utilizes the extension point mechanism provided by the Eclipse
plug-in framework for realizing a component-based construction of the matching processes
that enables low coupling. In addition to some user interface related extensions (e.g.,
configuration wizards, editors, and a result view), MatchBox provides extension points for
the matching types, the matchers, and the aggregation strategies. Thereby, every matcher
can be integrated very easily by implementing the extension points in its own project
using standard Eclipse plug-in development tools. The extension point mechanisms make
MatchBox itself easily extensible, too. For example, new matching types can be integrated
promptly. [PSA15]
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Figure 3.17: Architecture of the MatchBox Prototype

Figure 3.17 shows the components that have been created as part of the implementation.
Each component has been realized by a set of Eclipse plug-ins. In the following, we briefly
describe each component’s purpose with references to the artifacts introduced in Figure 3.5:

Core: The main component Core defines all the models used during the MatchBox
Workflow. In total, it includes: the MatchingProcessSpecificationLanguage,
the MatchingResultsMetamodel, the MatcherDefinitionLanguage, and the definition
language for aggregation strategies. All metamodels have been defined using the
Eclipse Modeling Framework (EMF). The definition of matchers and aggregation
strategies is integrated via Eclipse Extension Points.

ExecutionLogic: The ExecutionLogic component contains everything MatchBox needs to
execute a modeled matching process. This includes the AbstractMatcher and
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the MatchingProcessExecutionEngine as well as an abstract aggregation strategy.
Furthermore, validation and logging mechanisms are provided.

UI: Amongst others, MatchBox’s user interface includes a matching process editor, a
dialog for assigning input specifications to a matching process, and the matching
results view. The editor has been realized using the Graphical Modeling Framework
(GMF), while the other views and dialogs apply other Eclipse visualization
frameworks like the Standard Widget Toolkit (SWT) and JFace.

Aggregation: Aggregation strategies can be plugged into MatchBox during its setup as well
as matchers. However, MatchBox also comes with a collection of default aggregation
strategies, e.g., a weighted averaging strategy, and a minimizing strategy. These default
aggregation strategies are part of the component Aggregation.

MatchingProcessGenerator: The MatchingProcessGenerator realizes the generation of
matching processes from market properties as introduced in Section 3.7.2.

Eclipse: Eclipse is a foundation of all MatchBox plug-ins. In particular, we apply EMF,
GMF, SWT, JFace, and Eclipse’s extension point mechanism. The latter is based on
the OSGI platform [OSGI].

SSE: The Service Specification Environment SSE includes a collection of languages used
for service specification [UPBd]. MatchBox is mostly decoupled from a concrete
specification language, but some standard elements from there are used as superclasses
to refer to input specification elements.

PalladioComponentModel: SSE depends on the PalladioComponentModel [BKR09]. Thus,
MatchBox depends on it indirectly, too.

Matchers: The framework concept realized by MatchBox allows to stay decoupled from any
concrete matcher. In principle, the concepts realized within MatchBox are independent
from any programming language. However, for easier usage, our current prototype
focuses on matchers implemented in Java. Nevertheless, the low coupling principle
that MatchBox follows allows us to plug in also components written in other languages,
with only a few adaptions.

Figure 3.18: Screenshot Matcher Integration
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3.9.2 Main Features

Figure 3.18 shows how matcher definitions are specified using Eclipse Extension Points.
The depicted example shows the matcher definition of the Ontological Signature Matcher.
For example, the definition contains multiple matcher parameters for the consideration of
single language constructs, e.g., Signature Names or Parameter Names. The right side
depicts more details for the selected matcher parameter. In this example, we can see that the
Parameter Names parameter is defined as a boolean parameter (parameter names can either
be considered, or not), with the default value false.

Figure 3.19 shows the matching process editor. The shown extract of the process
shows two matching steps (Signature Matching and Condition Matching) as well as two
aggregation steps (Condition Matching Result 2 Interface Level Result Aggregation and
the final Aggregation). Each step contains a white rectangle that depicts the concrete
configuration of this step including the parameter values set by the user.

The matching results view depicting hierarchical matching results is shown in Figure 3.20.
As we can see there, a matching result can be “opened” to show its child results. For example,
within the matching results the signature matcher delivered for the operations search and
extensiveSearchRoom, we can also inspect the results for each parameter.

3.10 Validation

MatchBox has been applied and validated within the scope of CRC 901 “On-The-Fly
Computing” [SFB901] on the basis of two case studies. In the following, we introduce
the validation questions, the case studies, and their results. Last, we discuss the results with
respect to threats to validity and the satisfaction of our requirements.

3.10.1 Validation Questions

According to Section 3.3, MatchBox’s applicability and success comes down to the
fulfillment of the two major goals of (1) flexibility and (2) low effort. Flexibility is achieved
by satisfying Requirements R1 to R5 (see Section 3.10.5). The impacts of flexibility can
mainly be observed by the variability of matching processes that can be constructed using
MatchBox. Thus, our first case study focuses on matching process variations. Our second
case study focuses on investigating the effort (R6) needed to apply MatchBox.

This leads to the following validation questions:

(VQ1.1) Matching Process Variability: Can MatchBox be flexibly used such that matching
processes that significantly vary in their impact are obtained?

(VQ1.2) Matcher Integration Effort: Is using MatchBox a benefit to the matching designer
with respect to effort, compared with traditional matcher combination approaches?

VQ1.1 is addressed in Case Study 1.1 (see Section 3.10.2), while VQ1.2 is addressed
in Case Study 1.2 (see Section 3.10.3). The outcome of both case studies is discussed in
Section 3.10.4. While Case Study 1.1 deals with MatchBox’ Phase 2 (Process Configuration),
Case Study 1.2 focuses on Phase 1 (Setup). Appendix D gives additional information about
where to access all data to repeat our case studies.
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Figure 3.19: Screenshot Process Configuration: Matchers and Aggregation Strategies

61



3 Comprehensive Service Matching

Figure 3.20: Screenshot Hierarchical Matching Results

Note that the validity of service matching approaches in general is already difficult to
validate. Correspondingly, Bruns [Bru15] showed in her survey of evaluation strategies
utilized for existing service matching publications that most matching approaches have
only been validated to a very limited extent. One reason for the difficulty of evaluating
service matching approaches is, for example, that – for most evaluation strategies – we need
a collection of suitable example specifications for both the requirements and a variety of
provided services. There are already multiple test collections for signature matching [Bru15],
but as soon as a matching approach is based on a specification language that is less common,
there is a lack of example specifications. The manual specification always leads to the
risk of biased results because the generality of these specifications is not ensured [Pre00].
Especially if the evaluator herself constructed the specifications already with a research
hypothesis in mind, the external validity of the case study decreases. In addition to the
example specifications, for common evaluation strategies, a “ground truth” is needed, i.e.,
expert results that the computed matching results can be compared to. Sometimes, results
already published for another matching approach can be used as reference results, however,
this is only feasible if the approaches are comparable to a certain extent.

The specifications we used as inputs for matching in Case Study 1.1 are manually created
within the scope of our Collaborative Research Center 901 “On-The-Fly Computing” [UPBb]
by ourselves serving as domain experts. Thereby, we overcome the issue that there
are no published example specifications or benchmarks for service matching based on
comprehensive service specifications available, while accepting the lowered external validity
of our case study for now. This and further threats to validity are discussed in Section 3.10.6.

3.10.2 Case Study 1.1: Matching Process Variability

In order to validate MatchBox with respect to VQ1.1, we applied the Goal Question Metric
(GQM) approach [vSBCR02]. Table 3.2 shows the corresponding GQM goal definition
template.

This goal definition refines VQ1.1. Following GQM, we derived a question and
corresponding metrics (depicted in Table 3.3) from this goal. We measure variability by
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Table 3.2: GQM Goal Definition
Goal Definition
Low Purpose Demonstrate to which extent
Effort Issue MatchBox can be used to produce

Object variable matching processes
Viewpoint from a matching designer’s viewpoint

comparing between different matching process. In detail, we compare the best matching
results per request on a given test collection of input pairs and the mean variance of the
matching result scores per request. Furthermore, we determine the mean runtime for the
computation of the matching results per input pair. The mean runtime is again the mean of
multiple executions to get more reliable values.

Table 3.3: GQM Questions and Metrics
Goal Question Metrics
Variability To which extent do matching results – comparison of top results per request

(and their computation time) – mean standard deviation per request
vary for different matching processes? – mean runtime per input pair

Procedure
In order to compare the outcome of several matching processes, we modeled seven matching
process variations using MatchBox:

MatchingProcess 1 (MP1): The matching process depicted in Figure 3.2 a) in a valid version
(including additional aggregation steps).

MatchingProcess 2 (MP2): The matching process depicted in Figure 3.2 b) in a valid version
(including additional aggregation steps).

MatchingProcess 3 (MP3): Like MP1, but with an additional reputation matching step.
MatchingProcess 4 (MP4): Like MP1, but with an aggregation based on different weights

(lower signature matching weight).
MatchingProcess 5 (MP5): Like MP1, but with an aggregation based on different weights

(lower protocol matching weight).
MatchingProcess 6 (MP6): Like MP1, but with another signature matcher configuration (op.

names = false and param. names = false).
MatchingProcess 7 (MP7): Like MP1, but with another signature matcher configuration

(exceptions are also matched).

These processes have been executed with 21 input pairs composed from three example
requirements specifications and seven exemplary provided specifications from the domain
of university management. Table 3.4 shows the expected results for these input pairs. The
expectations have been made based on manual inspection before matching results calculated
with MatchBox have been known.

These processes and the input pairs are the independent variables in this case study. The
dependent variables are the matching results, the extent to which they deviate, and the
runtime needed for their calculation.
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Table 3.4: Exemplary Input Pairs from the University Management Example Domain
Input Pair Expected Result

Request Provider Funct. Prop. Non-Funct. Prop.
1 ... simpleReservationService good match medium match
2 for editableLectureRoomReservationService good match bad match
3 a fancyRoomBookingService perfect match medium match
4 Reser- examRegistrationService bad match medium match
5 vation examRegistrationDeregistrationService bad match medium match
6 Service overviewOfGradesPrinter bad match medium match
7 historicalOverviewOfGradesPrinter bad match medium match
8 ... simpleReservationService bad match medium match
9 for editableLectureRoomReservationService bad match bad match
10 a fancyRoomBookingService bad match good match
11 Regis- examRegistrationService perfect match medium match
12 tration examRegistrationDeregistrationService good match medium match
13 Service overviewOfGradesPrinter bad match medium match
14 historicalOverviewOfGradesPrinter bad match medium match
15 ... simpleReservationService bad match medium match
16 for editableLectureRoomReservationService bad match bad match
17 a fancyRoomBookingService bad match good match
18 Prin- examRegistrationService bad match medium match
19 ting examRegistrationDeregistrationService bad match medium match
20 Service overviewOfGradesPrinter good match medium match
21 historicalOverviewOfGradesPrinter good match medium match

As a control experiment, we used the same setting (including the same matching processes)
for one further domain: image processing services.

Results
Table 3.5 shows the matching results for the seven matching process variants. The best
results per request are depicted in bold font. Here we see that, depending on the requirements
specification, the variability regarding the matching results between the matching processes
differs a lot. For example, for the request for a reservation service, always the same service
(fancyRoomBookingS.) received the best result. However, in the other two categories, the
best services differ. Also the mean standard deviations of the matching results differ. In
particular, the standard deviations differ more for MP1-MP3, where the processes differ in
their steps, as expected. The same holds for the mean runtime.

Comparing the calculated matching results to the expected matching results from
Table 3.4, we can see that the results match each other to a great extent. For example,
the fanceRoomBookingS. was expected to be the best match within the first group of input
pairs, i.e., the best match for the reservation service request. This finding is also reflected in
the matching results for each matching process. Considering the calculated matching results
for the two printing services overviewOfGradesP. and histOverviewOfGradesP., we can see
that they make the best matches for the printing service request for most matching processes,
however, their results are not as convincing as the best results in the other two groups.

In general, some matching processes fit better to the expectations than others. For example,
MP2 only reflects the expected results in a very abstract way because of the high number
of full mismatches. MP4 reflects the results better, however, it produces a noticeable false
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Table 3.5: Results for Matching Process Variations for Inputs from the University
Management Example

Input Pair Aggregated Results
Request Provider MP1 MP2 MP3 MP4 MP5 MP6 MP7

1 ... simpleReservationS. 0.416 0 0.503 0.317 0.433 0.445 0.366
2 for editableLectureRoomResS. 0.056 0 0.172 0.067 0.033 0.056 0.056
3 a fancyRoomBookingS. 0.656 0.593 0.742 0.627 0.753 0.722 0.656
4 Reser- examRegistrationS. 0.056 0 0.091 0 0 0.056 0.056
5 vation examRegistrationDeregS. 0.111 0 0.1 0 0 0 0
6 Service overviewOfGradesP. 0.333 0 0.25 0.4 0.2 0.333 0.333
7 histOverviewOfGradesP. 0.333 0 0.25 0.4 0.2 0.333 0.333
8 ... simpleReservationS. 0.333 0 0.375 0.4 0.2 0.333 0.333
9 for editableLectureRoomResS. 0 0 0.188 0 0 0 0
10 a fancyRoomBookingS. 0 0 0.125 0 0 0 0
11 Regis- examRegistrationS. 0.656 0 0.375 0.2 0.4 0.667 0.667
12 tration examRegistrationDeregS. 0.656 0.4 0.625 0.4 0.4 0.333 0.333
13 Service overviewOfGradesP. 0.333 0 0.25 0.4 0.2 0.333 0.333
14 histOverviewOfGradesP. 0.333 0 0.25 0.4 0.2 0.333 0.333
15 ... simpleReservationS. 0.111 0 0.233 0.133 0.067 0.111 0.111
16 for editableLectureRoomResS. 0.056 0 0.192 0.067 0.033 0.056 0.056
17 a fancyRoomBookingS. 0.056 0 0.042 0.067 0.033 0.056 0.056
18 Prin- examRegistrationS. 0.056 0 0 0 0 0.056 0.056
19 ting examRegistrationDeregS. 0.111 0 0.334 0 0 0 0
20 Service overviewOfGradesP. 0.333 0 0.25 0.4 0.2 0.667 0.333
21 histOverviewOfGradesP. 0.333 0 0.25 0.4 0.2 0.833 0.333

Mean standard deviation per request: 0.206 0.125 0.175 0.202 0.176 0.278 0.201
Mean runtime per pair in seconds: 0.187 0.151 0.151 0.113 0.117 0.114 0.122

positive regarding simpleReservationS. for the registration service request. In contrast to the
other processes, MP3, MP6, and MP7 always lead to distinct decisions with one significantly
best service per request.

Table 3.6 shows the results for two example image processing services matched to the
same requirements specification using the same seven matching processes. Here we can see
that the results again differ very much between the different matching process even though
the inputs were the same. For example MP6 determined a full match for IPService2, while
MP2 determined a match of only 0.667.

Table 3.6: Results for Matching Process Variations with Input Specifications from the Image
Processing Example Domain

Input Pair Aggregated Results
Request Provider MP1 MP2 MP3 MP4 MP5 MP6 MP7

IPRequest IPService1 0.4 0.333 0.558 0.267 0.533 0.5 0.4
IPRequest IPService2 0.9 0.667 0.708 0.933 0.867 1 0.9
Mean runtime per pair in seconds: 0.088 0.07 0.124 0.105 0.098 0.091 0.084

In addition, we measured how long it took to adapt the matching processes as explained.
These times are as follows:

• Creation of MP1: 103.66 sec
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• Adaption of MP1 to MP2: 31.43 sec
• Adaption of MP1 to MP3: 19.40 sec
• Adaption of MP1 to MP4: 6.40 sec
• Adaption of MP1 to MP5: 6.22 sec
• Adaption of MP1 to MP6: 12.57 sec
• Adaption of MP1 to MP7: 6.53 sec

We discuss these results in Section 3.10.4.

3.10.3 Case Study 1.2: Matcher Integration Effort

Table 3.7 shows the GQM goal definition template for the goal of low effort.

Table 3.7: GQM Goal Definition
Goal Definition
Low Purpose Analyze whether
Effort Issue effort is reduced in creating

Object configurations of matching processes
Viewpoint from a matching designer’s viewpoint

This goal definition refines VQ1.2.
The most significant effort in using MatchBox is located in Phase 1: Setup. Thus, Case

Study 1.2 compares the effort of integrating matchers based on an experiment involving
test persons and a comparison to the traditional combination approach and based on
another experiment that compares MatchBox’s effort with the most related work, SME2 (cf.
Section 3.12).

Following GQM, we derived a question and corresponding metrics depicted in Table 3.8
from our goal. We measure effort by counting lines of code needed for integrating specific
matchers as well as the time the developers required for this integration. [PSA15]

Table 3.8: GQM Questions and Metrics
Goal Question Metrics
Low How much effort does – LOC per matcher
Effort it take to setup MatchBox? – Hours per matcher

3.10.3.1 Experiment 1.2.1: Integration by Test Persons

This experiment reports how test persons use MatchBox, with focus on the integration of
matchers. This experiment’s results have been published in [PSA15].

Procedure
In order to measure the metrics introduced above, we let students of computer science
integrate example matchers developed within the scope of Bachelor’s Theses, Master’s
Theses, or student jobs. In total, these students integrated 11 matchers (7 matching types).
Each matcher has been integrated once:
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Ontological Signature Matcher: This matcher has already been partly introduced in
Section 2.4.1. In addition to operation names, parameters, and exception types,
configuration possibilities also include special quality thresholds.

Validated Ontological Signature Matcher: This matcher represents an extended version
of the ontological signature matcher. In addition to the concepts implemented there,
the validated version also implements concepts on the basis of fuzzy sets to cope with
transformation-induced fuzziness (see Chapter 4). This matcher has been developed
within the scope of Bunse’s Bachelor’s Thesis [Bun14].

Quick Condition Matcher: This condition matcher matches pre- and post-conditions in a
quick way so that it can be used as a filter. If this matcher determines that the conditions
are too complex to be matched like this, it delegates to an SMT solver. This matcher
has been developed within the scope of Börding’s Bachelor’s Thesis [Boe15].

Trace-Inclusion-based Protocol Matcher: This matcher matches protocol specifications
on the basis of finite automata by calculating how many paths defined in the required
protocol are also covered by the provided protocol.

UPPAAL-based Protocol Matcher: Here, the model checker UPPAAL [LPY97] is used to
match protocols.

Henshin-based Protocol Matcher: This matcher matches protocols by checking for graph
morphisms using the Henshin graph transformation tool [ABJ+10].

Privacy Matcher: As already partly introduced in Section 2.4.3, this matcher addresses
specifications of privacy-related properties.

Reputation Matcher: The reputation matcher takes ratings stored in a reputation system,
calculates reputation values, and matches these values. All this is done on the basis of
fuzzy logic (see Section 4.6.1). This matcher has been implemented within the scope
of Neumann’s Bachelor’s Thesis [Neu15].

Simple Price Matcher: This matcher matches simple prices, i.e., single integer numbers.
Price Model Matcher: This matcher considers more complex price models in comparison

to the simple price matcher. These price models can include a collection of
price-related concepts, like accounts and flat rates. This matcher was realized by
Merschjohann within the scope of his Master’s Thesis [Mer14].

Keyword Matcher: The keyword matcher takes lists of keywords and matches them
ontologically.

As a control experiment, we compared the effort to use matching processes created with
MatchBox to the effort produced by a manual matching process implementation that has
been used for half a year within a service market simulation created within the Collaborative
Research Center 901 “On-The-Fly Computing” [UPBb]. In this market simulation, 200
service specifications for two domains (water network optimization and image processing)
have been traded among 6 service providers, 2 brokers, and one requester within a distributed
peer-to-peer system. This matching process used for service discovery in this system
integrated three of the matchers listed above: the Ontological Signature Matcher, the
Privacy Matcher, and the Simple Price Matcher. The integration code has been written and
maintained by three students which were not the students that developed the matchers.
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The dependent variables are the lines of code and the time needed for their integration.
The lines of code have been identified by manual code inspection, while the integration time
has been determined based on interviews.

Results

Table 3.9 shows the values per matcher for the two metrics defined above. The lines of
code are lines in the matchers that are responsible for integrating them into MatchBox
and not contributing to the matching algorithms themselves. The time was determined by
interviewing the students. The rightmost column shows our own judgement regarding the
experience level of the subject, i.e., the student (low, medium, high). We assigned the
level “low” to subjects that were experienced with Java but not with Eclipse technologies,
“medium” to subjects that had some experience with Eclipse technologies but not with
MatchBox, and “high” to subjects that already worked with MatchBox before.

To sum up the results from the table, lines of code for matcher integration varied between
14 and 84 lines. Integration times start with 15 minutes and ends by 8 hours, however,
the latter is an outlier. The average time (excluding the 8-hour-outlier but including all
experience levels) is 47 minutes.

Table 3.9: Measured Metric Values [PSA15]

Matcher Integration Expe-
LOC Time rience

Ontological Signature M. 84 0:30 med.
Validated Ontological Sig. M. 19 8:00 low
Quick Condition M. 28 0:30 low
Trace-Inclusion-b. Protocol M. 18 1:15 low
UPPAAL-based Protocol M. 15 0:15 med.
Henshin-based Protocol M. 15 0:30 med.
Privacy M. 36 0:15 high
Reputation M. 13 0:15 high
Simple Price M. 14 0:15 high
Price Model M. 65 0:15 high
Keyword M. 24 3:50 low

In contrast to the results for the integration of matchers into MatchBox, the control
experiment lead to the following results: During the time that the manually implemented
matching process was in use, we got 10 change requests. These change requests addressed
different process steps, e.g., changes in the requested aggregation strategy and changes in the
configuration of the signature matcher. With each change request, we needed to change and
test the integration code manually. This situation was even complicated because the changes
had to be performed by different developers and each new developer needed to get used to
the implementation. As a consequence, the adaptation work became time-consuming and
error-prone: In total, it took multiple working days.

68



3.10 Validation

3.10.3.2 Experiment 1.2.2: Comparison with SME2

In this experiment, we integrated a third-party matcher into MatchBox. The purpose of this
experiment was twofold: First, we wanted to investigate whether a matcher implementations
that was taken from an unrelated project can be integrated without any problems. Second,
we wanted to compare the effort this integration took with integration into comparable
frameworks.

Procedure
We integrated OWLS-MX [KFS06], a semantic web service matcher for services specified
in OWL-S into MatchBox. OWLS-MX was developed by Matthias Klusch et al. and is
the foundation for various further matchers, e.g., OWLS-MX3 [KK09a, KK12a]. All these
matchers successfully participated in the S3 Service Selection Contest [Klu12].

We selected OWLS-MX because there is example code available for integrating
the matcher into SME2 [KP], a framework related to MatchBox (see comparison in
Section 3.12.2). Within the scope of our experiment, we compared this integration code
with the code used for integration into MatchBox.

Results
For the integration of OWLS-MX into MatchBox, we needed – in addition to the matcher
definition – 10 lines of code. These lines included the instantiation of the matcher, its setup,
and the creation of a matching result according to the MatchBox metamodel. The integration
took two hours. Most of this time had been used for the integration of the various java
libraries OWLS-MX uses and their integration as an Eclipse plug-in.

Similar to this result, the java class for integrating OWLS-MX into SME2 that was
provided for download together with SME2 contains 60 lines of code of which 24 lines
were relevant for the integration.

3.10.4 Discussion

The results we collected during Case Study 1.1 confirm our assumption that different
matching processes lead to considerably different matching results even if they have been
executed with the same input specifications. In some cases, the selected service is expected
to be the same for all matching processes, but the certainty of this choice according to
the difference from the best service to the second best differs a lot: For example, in the
image processing domain, IPService2 is a clearly better match than IPService1 in MP4
(0.933 − 0.267 = 0.666) while the results of MP3 do not show such a clear contrast
(0.708 − 0.558 = 0.15). Furthermore, these results show that a matching designer using
MatchBox is able to perform matching process adaptions with such significant consequences
in little time (seconds to minutes).

The mean matching runtime measured during Case Study 1.1 differed only a bit. However,
summed up within a market with hundreds of services to be matched before an end result can
be delivered to the requester, some milliseconds make a great change.

These results for Case Study 1.1 have been reflected in both test domains. However, the
sensitivity of the matching results regarding process reconfigurations obviously depends on
the considered input pair. Some pairs (e.g., the pairs involving the request for a reservation
service as well as the image processing pairs) are more “stabel” in their results than others.
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On the contrary, for the input pairs involving the request for a registration service, the
expected selection of the service with the best matching result potentially changes according
to the used matching process: Using MP4, the simpleReservationService is an actual option,
while for all other matching processes, this service is not among the best choices. The same
holds for the examRegistrationDeregService: as an offer to the request for a printing service,
this service would only be a choice when MP3 is used. From these observations, we can learn
that the reconfiguration of a matching process is more likely to have impact in some markets
than in others.

An alternative way to measure variability is to create feature models defining the different
matching process configurations. A first attempt to this can be viewed in our Technical
Report [APG+14]. The problem with this method is to capture the infinite configurations
regarding certain matching process constructs, like aggregation possibilities and guards.
Furthermore, the variability is always determined by the set of currently integrated matchers
to a great extent.

Our results of Case Study 1.2 show that MatchBox supports the matching designer in
terms of integration effort. Even though the integration times from Experiment 1.2.1 highly
correlated with the subject’s experience, the average integration time was less than an hour,
which we view as acceptable when taking into account that the integration only has to
be done once. After this integration, as a benefit, MatchBox offers a large variety of
configuration possibilities and user support with less effort (seconds to minutes for a process
reconfiguration according to Case Study 1.1) afterwards.

Our experiences with our manually implemented matching process support this finding.
Compared to the control experiment, reconfiguring matching processes on a model level
using MatchBox seems to be always easier, faster, and less likely to induce errors.

Additionally, Experiment 1.2.2 shows that the integration of third-party matchers into
MatchBox is possible with acceptable effort and that the effort is comparable with the well-
known environment SME2.

As a consequence, both validation questions can be answered positively. We take this as
an encouraging result. However, in the future, more extensive evaluations are required and
the list of threats to validity needs to be reduced, as explained below.

3.10.5 Satisfaction of the Requirements

In the following, we take up the requirements collected in Section 3.3 and discuss the extent
to which they are satisfied by the MatchBox framework.

(R1) Integrate Existing Matchers: MatchBox’ setup phase addresses the integration of
existing matchers into the framework. Case Study 1.2 shows that the matching
designer is able to integrate existing matchers.

(R2) Combine Matching Steps: In order to combine matchers, matching process models
have been introduced. Case Study 1 shows that multiple matchers can be combined
using matching process models. The matching process models investigated there
describe control flow (R2.1), data flow (R2.2), and deliver aggregated matching results
(R2.3).

(R3) Configure Matcher Properties: The matching process models also contain matcher
configurations where parameters defined in the matcher definitions can be set. As
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investigated in Case Study 1.1, configuration of the parameters of the single matchers
also has an impact on the matching results.

(R4) Run Matching Implementation: Matching process execution is handled in the third
phase of the MatchBox workflow. The matching processes used within Case Study 1.1
have been executed correctly on the basis of the specified input specifications.

(R5) Result Validation: The matching results model based on a tree structure provides all
details about a matching result needed for validation. As shown in Case Study 1.1, we
were able to inspect and validate the computed matching results in terms of metrics
including matching accuracy and execution time.

(R6) Low Effort: As the results of Case Study 1.2 indicate, the effort for using MatchBox
turned out to be acceptable. When compared to manually implemented matching
processes, MatchBox saves extra effort for reconfigurations thanks to the model-driven
approach. Further reasons are the supported validation possibilities, the automated
generation of matching processes, and the ability to handle incomplete matcher
configurations.

3.10.6 Threats to Validity

There are several threats to the validity of our two case studies. In the following, we discuss
the most important issues.

First of all, the origin of the example specifications used as an input for matching in Case
Study 1.1 is a threat to validity. We created these specifications ourselves, within the scope
of our Collaborative Research Center 901 “On-The-Fly Computing” [UPBb]. There was
no alternative because the test collections for service matching that are publicly available
only cover very simple service specifications based on signatures or on single numbers
representing quality properties. However, this solution lowers the external validity [Pre00]
because we cannot ensure that these specifications are in fact good examples for the addressed
domain and we can be biased due to our research goals.

Furthermore, the time needed to create and adapt matching processes with MatchBox
depends not only on the complexity of the process but also on the user’s experience. Thus, the
adaption times collected in Case Study 1.1 are only partially representative. This experiment
needs to be repeated with multiple users with varying grade of experience in MatchBox and
modeling tools in general. From this, we expect that the mean time is a bit higher as the times
we measured because we had a rather experienced user. However, we also expect no huge
changes in the outcome as MatchBox’ graphical matching process editor already provides
its users with good support. Another idea to investigate this topic into more detail is to also
compare the time needed for manual matching process creation with the time to setup and
use MatchBox’ generative solutions.

The same issue also holds for Case Study 1.2: The time spans required to integrate a
matcher as collected based on the students’ judgments are hardly comparable. Reasons
include that students have different experiences with technologies MatchBox builds on, like
Eclipse extension points. On the one hand, some students did not have any experience with
Eclipse at all (e.g., cf. time to integrate the Validated Ontological Signature Matcher in
Table 3.9). On the other hand, some students integrated multiple matchers one after another
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and became more experienced with each one (e.g., cf. Protocol Matchers). These varieties
explain outliers. [PSA15]

Manual inspection also showed that both lines of code and time depended on the number
of configuration possibilities. For example, our Ontological Signature Matcher has many
parameters that can be configured, while the integrated Reputation Matcher has none.
Furthermore, the effort in terms of time and lines of code depends on how “deeply” a matcher
is integrated into the framework. For example, if very detailed hierarchical matching results
are to be produced, this takes more effort as if only one number is returned as an output of
the matcher. Also, optional features like logging and input validation can be implemented
in more or less complex ways. In addition, some students simplified their task by grouping
several matchers. For example, the three protocol matchers all inherit from one abstract super
class, which is responsible for most of the integration code. [PSA15]

Furthermore, our control experiment, where a manually implemented matching process
has been used, highly depends on the context to which the matching process has been applied.
More valid results could be extracted from a larger number of manually implemented
matching processes, such that their development effort can be compared with each other.

However, all in all, the collected times and LOC are all still small compared to the effort it
would take to implement different matching processes based on existing matchers manually.

Another threat to validity is that only a few metrics have been taken into account to validate
the identified research questions. In a more advanced validation, multiple analytical metrics
should be used in order to compare their results [BR08].

In general, there is a realistic possibility that our experiments lead to significantly other
results when applied to another context, e.g., to another domain, to another set of example
specifications, or to other matchers. Future research activities should include more repetitions
of these experiments to ensure the validity with respect to this threat.

Furthermore, we only present a level-I-validation here [BR08]. To extend this by a level-
II-validation, more extensive user studies are needed as discussed in Section 6.2.

3.11 Limitations

The most important limitation of our concepts is that we assume the presence of complex
specifications. However, the creation of such specifications costs a lot of effort and
knowledge. In reality, requesters and providers may not be able or not be willing to
provide all these details. For example, in today’s app markets, discovery is only based
on simple strings and offers are specified using a more or less large amount of natural
language text and pictures. There are methods to derive specifications, for example, behavior
protocols [BIPT09], however, these methods do not work for all aspects we consider to
be part of a service specification. In Chapter 4, we address this issue by providing more
means to work with incomplete specifications. Furthermore, in Section 5.3, we show how
we can apply our concepts to natural language specifications. The current lack of complex
and formal specifications is also caused by the lack of functioning service markets: It is a
chicken and egg problem. Our approach does a first step in addressing this problem for future
service markets.

Furthermore, the effort to integrate a matcher as part of Phase 1 still provides room
for improvements. For example, there are classes of similar matchers that only differ in
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some characteristics. For such matcher classes, there could be an approach (e.g., based
on templates) offering even more integration support for repetitive parts. In Chapter 4.7,
we describe how we realized this for one kind of matching approach: fuzzy-logic-based
matching approaches.

Another limitation is that the matching process generation from market specifications
requires rules and metrics defined by domain experts on the basis of heuristics. This situation
should be improved by empirical work as well as standardization: On the one hand, it needs
to be evaluated which of these metrics perform well in multiple markets and, on the other
hand, we need to provide some more standardized measuring methods that can be used in
order to set the metric values for a specific market. For example, regarding our example
rules, one could ask: “When is a market regarded as small?”. The issue of well-defined
metrics and ranges is addressed in [APG+14] and in [Ari]. Another possibility to cope with
this limitation is to apply approaches for developing a consensus for the interpretation of
fuzzy terms [HLCY06, HLL+05]. This problem is also discussed in Chapter 4, where fuzzy
terms are used within requirements specifications and service specifications.

Moreover, our concepts end with the delivery of the comprehensive matching results.
However, in order to support users of these matching results (e.g., requesters or providers, or
automated composition algorithms) in the most optimal way, we need to investigate service
recommendation strategies that recommend services fully or semi-automatically based on
such matching results. For example, Jungmann et al. integrated machine learning techniques
for the purpose of automated service recommendation [JKK13]. Furthermore, strategies and
tools for SLA (service level agreement) negotiations [YWK+11] based on such matching
results need to be developed. Alternatively, empirical studies about how human user’s deal
with such comprehensive matching results are needed.

A smaller issue is that, at the moment, we consider three levels of matching results:
operation level, interface level, and service level. Also more fine-grained classifications are
possible. For example, actually, most condition matchers and our privacy matcher do not
require the whole operation level result but only the parameter mapping. Thus, we could also
introduce a parameter level result. For now, we did not introduce a parameter level result
because such results are not as commonly used for signature matching results. Instead, we
focused on the classification common in related matching approaches starting with operation
level results.

Our prototype is also limited with respect to several aspects: Currently, control flow within
matching processes modeled with the MatchBox prototype is restricted in a way that guards
can only be used in combination with gradual matching result formats. Furthermore, our
prototype is based on Eclipse’s (respectively OSGI’s) extension point mechanism. Thus, the
matching processes cannot be used standalone by now. As Eclipse-based implementations
usually come with a lot of overhead, an application of MatchBox within the context of a
larger market architecture requires some reengineering effort.

3.12 Related Work

Approaches related to the work described in this chapter have been surveyed according
to the guidelines for systematic literature reviews by Kitchenham et al. [KBB+09, KC07,
BKB+07]. This well-established method aims at the construction and documentation of
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objective, unbiased, and repeatable results. In the following, we give more details about the
survey procedure we followed and the results we produced based on this procedure.

3.12.1 Survey Procedure

One important step in Kitchenham’s method is the construction of appropriate survey
questions. In line with our requirements, flexibility and effort are relevant comparison
criteria. However, the surveyed approaches differentiate in very basic principles when it
comes to flexibility. As the evaluation of effort is relative to the provided flexibility, this
property is hardly comparable on the basis of a survey. Thus, we focused on flexibility,
leading to the following survey question: How flexibly can matching approaches be combined
in related work?

The literature has been collected during the time period from October 2011 to
November 2015. For the collection, we primarily utilized the meta search engine Google
Scholar [Gooc], which also includes search results from the most important digital libraries
in software engineering, e.g., ACM Digital Library, IEEE Xplore, SpringerLink, and Science
Direct. Papers that have been identified as relevant have also been used as a source for
snowballing, i.e., scanning the references lists for more relevant papers.

Papers were included according to lists of predefined keywords. We distinguish
between Service/Component Keywords, Matching Keywords, and MatchBox Keywords.
Service/Component keywords are substantives representing the matched software entities.
Examples are “Service”, “Web Service”, or “Software Component”. Matching keywords
are substantives and verbs denoting matching tasks, e.g., “Matching”, “Matchmaking”,
“Discovery”, and “Retrieval”. MatchBox keywords are keywords that indicate (a) any
kind of service matching framework, (b) the combination of matchers targeting multiple
service aspects or multiple matching algorithms, or (c) configurable and flexible matching
approaches. Examples are “Framework”, “Hybrid”, “Process”, and “Rich Descriptions”.
The keyword sets have been identified in our primary surveys [Pet13, PvDB+13] and later
refined iteratively on the basis of the scanned abstracts. The complete keyword lists can be
found in Appendix C.

The keywords have been used in different steps of our survey process explained in the
following:

1. In the first step of our survey process, we collected all service matching publications
where at least one service/component keyword and at least one matching keyword
appeared in the title. The matching keyword had to refer to the service/component
keyword.

2. In the second step, we scanned all the abstracts for MatchBox keywords that refer
to matching keywords. As the collected MatchBox keywords are rather broad and
ambiguous, the third survey step was required to get rid of false positives.

3. Next, we excluded further papers according to the exclusion criteria (see Appendix C)
by considering the full text.

4. Furthermore, similar papers have been grouped. We classified two papers as similar, if
the authors were the same or almost the same and if the same or similar contributions
are discussed.
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Using this strategy, we started with a number of 410 publications in the first step. 271
papers had been excluded via title and abstract. Further 71 papers had been excluded by
further exclusion criteria. Thus, we ended up with 50 papers (grouped into 31 approaches)
for detailed reviews. These approaches are discussed in the following.

These numbers already indicate that it was reasonable to use the Kitchenham method for
systematic literature reviews as we started with a very high number of potentially related
publications. Following this method allowed us to narrow down the search space in a
systematic, repeatable way.

3.12.2 Comparison of Processes in Service Matching Approaches

MatchBox is not competing with the high amount of service matching approaches already
described in the literature. Instead, it applies at a meta level, providing a way to leverage
and combine existing matching approaches in an easy way. Also, the set of papers selected
for this survey can be clustered into two groups: Meta Matching Approaches [KvdHD06]
and further matching approaches. The Meta Matching Approaches are closer related to
MatchBox and are compared in Table 3.10. These approaches do not describe concrete
matchers but ways to combine existing matchers, similar to how MatchBox does. The other
approaches also combine several matchers but not in a flexible way: The user is restricted
to given matchers and has no or only few customization possibilities. A comparison of such
approaches is depicted in Table 3.11.

For each listed approach, the tables depict an assessment with respect to the following
comparison criteria:

• Integratable Matchers (only Table 3.10): This criterion compares the restrictions to the
kind of matchers that can be integrated. This refers to Requirement R1.
• Combined Matching Steps (only Table 3.11): With this criterion, we compare which

matching steps are part of the matching processes of the different approaches. Values
include matching steps for different aspects (e.g., “Keywords”, “QoS”, inputs and
outputs “IO”, inputs and outputs and preconditions and effects “IOPE”) and matching
steps with different strategies for the same aspect (e.g., “Logic-based”, “Hybrid”). We
use the value “flexible” if any kind of matching step can be part of the process. This
criterion refers to Requirement R1, too.
• Configurability of Matching Steps: This criterion indicates to which extent

matching steps are configurable. Values include “extensible” (if matching steps
can be extended), “addition” (if completely new matching steps can be added),
“parameterized” (if a matching step can be customized by setting parameters), and
“-” (if there is no configuration possibility for matching steps in this approach). This
criterion refers to Requirements R1, R3, and R6.1.
• Configurability of the Process: This criterion indicates whether the matching process

is configurable, i.e., whether control flow and/or data flow can be modified by the user.
Possible values include “flexible” (if the whole process can be modified), “order” (if
the order of steps within the process is configurable), “extension” (if the process is
extensible, i.e., if steps can be added), “reduction” (if the process is reducible, i.e., if
steps can be removed or ignored). This criterion refers to Requirements R2.1, R2.2,
and R6.1.
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• Configurability of Aggregation: To which extent is the aggregation of matching results
configurable? Values are “weights” (if weights can be set for a weighted aggregation
strategy), “selection” (if the user can select between several aggregation strategies).
This criterion refers to Requirement R2.3.

Meta Matching Approaches
Table 3.10 lists all approaches that we classified as meta matching approaches. We describe
these approaches with respect to the comparison criteria in the following.

Table 3.10: Comparison of Meta Matching Approaches
Integratable Configurability

Approach Matchers M. Steps Process Aggregation
[KvdHD06] flexible addition flexible weights

GLUE2 [CCC+08] flexible addition flexible -
S2M2 [KK12b] restricted to matching expressions replaceable

in a given meta model addition extensible strategies
and text similarity

SME2 [Klu12, KP] Matchers based on standard addition - -
ontological service descriptions

[VPAH07] Ontological matchers addition - weights

MatchBox flexible flexible flexible sequences flexible

The meta matching approach proposed by Kokash et al. [KvdHD06] is described in only
a sketchy way. Matchers can be integrated and the user is also able to influence the control
flow. The approach provides three compositional operators to combine matching approaches:
parallel, sequences with thresholds, and switching (decisions between parallel and sequential
execution by predefined criteria, e.g., based on the number of services). The only way to
influence the aggregation is to configure the weights.

GLUE2 [CCC+08] is a web service discovery engine that allows to integrate matchers for
matching functional and non-functional properties. The user can define a matching process
(“execution workflow”) and thereby change the order of matchers. GLUE2 has been designed
on the basis of WSMO [DBBD+05]; however, the authors claim that it can also be used
in combination with other specification languages with some effort. The major limitations
compared to MatchBox are that, in GLUE2, there is no data flow allowed between matchers.
Furthermore, the aggregation is not configurable.

S2M2’s [KK12b] main purpose was to abstract from multiple specification languages used
to specify semantic web services, e.g., OWL-S or SAWSDL. In S2M2, the user can add
new matchers but these matchers have to be composed of matching expressions following
a predefined metamodel. Alternatively, also text-similarity expressions are allowed. S2M2
does not allow to configure control flow and data flow at all. However, it is possible to
implement own ranking strategies including aggregation.

SME2 [Klu12, KP] is the extensible Semantic Service Matchmaker Evaluation
Environment used within the Semantic Service Selection contest (S3) [Klu12, S3C].
Matchers can be integrated in a flexible way into SME2; however, these matchers are not
combined as matching steps that contribute to one final matching results. Instead, these
matchers are executed separately and their effectiveness and efficiency is compared using
several evaluation strategies (e.g., precision and recall or runtime). Similar to the MatchBox
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workflow, users can integrate Matchers into SME2 by providing an implementation of a
provided interface and a matcher specification. The implementation mediates between
the framework and the concrete matcher implementation. The matcher specification is
much simpler than the one used by MatchBox: It focuses on technical details like paths
and versions. The reason that this is sufficient is that, in contrast to MatchBox, SME2
only considers matchers based on standard ontological service description languages like
OWL-S, SAWSDL, or WSML. These are the most familiar web service specification
languages, however, they only take into account inputs and outputs and (to a limited
extent) preconditions and post-conditions (referred to as “effects”). MatchBox needs
more information to integrate a matcher into a matching process as it allows much
more heterogeneous matchers that address very different service specification aspects and
languages. Furthermore, MatchBox allows integrated matchers to be configurable and to set
up their parameters within the framework. This is not addressed by SME2. Additionally,
SME2 does not support the creation and execution of matching processes but only executes
the available matchers separately for comparison. As a consequence, neither an aggregation
of matching results from different matchers nor reconfiguration of existing matching
processes are supported. However, SME2’s comparing evaluation functionalities would
make a useful addition to the MatchBox framework.

The approach presented by Vu et al. [VPAH07] allows the integration of customized
matchers, too. It, however, assumes these matchers to be based on a derived version of a
given QoS ontology. Furthermore, it distinguishes between mandatory and optional matching
results. This feature is not explicitly available in MatchBox; however, it can be simulated
using guards, which leaves the matching designer with more flexibility. Apart from that,
the control flow is not configurable: All matchers are executed in parallel, followed by a
ranking phase based on an aggregation. A supported configuration possibility with respect
to aggregation is the modification of weights. Furthermore, reputation can be taken into
account explicitly. However, the reputation-based step is not treated as a flexibly applicable
matcher. Instead, it is fixed and only the extent to which it contributes to the final result is
customizable via weights.

In addition to the listed restrictions, the listed related approaches are not model-based like
MatchBox: Any new matcher has to be integrated completely on code level and the matching
processes are not as easily usable and maintainable as in MatchBox. However, there is not
much information available about how to integrate a matcher into the framework in these
approaches. SME2 is the only approach where we actually know what kind of information
needs to be specified in order to integrate a matcher. In the other cases, we assume that the
integration is done on code level completely. There is also no information about whether
the integrated matchers are still configurable, as in MatchBox, or not. Furthermore, the
approach proposed by Kokash et al. and GLUE2 are the only ones that do not restrict the
kind of matchers that can be integrated.

Matching Processes in Further Matching Approaches
Table 3.11 shows matching approaches that perform several matching steps in a predefined
ways. These approaches do not mention matcher descriptions or define an interface for
matchers to be integrated. The matching steps are fixed to the largest part, and so are their
order and their configuration, as well. On reason for lacking flexibility in these approaches
could be that they just do not require complex process concepts as they do not contain many
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Table 3.11: Comparison of Matching Processes in Further Matching Approaches
Configurability

Approach Combined Matching Steps M. Steps Process Aggregation
[AMM10] Keyword, QoS - - weights

[BW03] Keywords, IO - - -
[CTO10] Syntactic, Semantic (IOPE) - (thresholds) (thresholds)

[ESAEA04] Protocols, Reputation - - -
[GTRRC08] QoS, Non-QoS addition order, weights
[GRRC+07] extension,

two modes
[GNM+96] Keywords, Profiles, - - -

Signatures, Conditions
[vdHYP01] Semantic, Capability, Syntactic - - -
[HGEJ12a] Signatures, Conditions, - - -
[HGEJ12b] Protocols - - -
[JRGL+05] IO, Category, Custom addition, extension weights

[JT04] (e.g., QoS) extensible rules
[KKF08, KFS09] Logic-based IOPE, Hybrid IOPE metrics - -

replaceable
[KK12b, KK10] Logic-based IOPE, Hybrid IOPE - - -

[KK12a, KK09a] IO (logic-based, - - -
text-sim., structural-sim.)

[KK08, KKZ09b] IO (logic-based + text-sim.) - - -
[KK09b, KK06] IOPE: types, relations, constr., - reduction weights

syntactic, parameters, intentional
[KKZ09b, KKZ12] IO (logic-based, - - -

text-sim., structural-sim.)
[Kon95] Screening, Evaluation, Analysis - - weights

[KCL+95] (Functional, Non-Functional,
[Kon96] Strategic, Domain, Architecture)

[LASG07, LA07] IOPE, Ranking Variants extensible, - -
parameterized

[MSZ11] Structural, Behavioral, - - weights
[ZSDS13, SZ11] Constraint

[MHB+12] Servers, Text, Taxonomy, Cond. - reduction weights
[DA09, DKRA08] IOPE, improved IOPE, QoS - - weights

[DAS08b]
[MXB10] Signatures, Protocols - - -

[WS03b, WS03a] IO (Word-Net, - - -
[SW05] semantic/structural)

[SWKL02] Context, Profiles, sim., - 4 modes -
Signatures, Constraints

[SMSA+05] Domain-indep., Domain-specific - - -
[WWWB11] Name, Text, IO, Semantic extensible, - selection

reducible,
substitutable

[WW05] Name, IO, QoS parameterized flexible -
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steps (most often two to four) and they are functionally dependent such that another kind
of combination is not possible anyway. As an example, take the approaches by Huma et
al. [HGEJ12a, HGEJ12b] and by Motahari-Nezhad et al. [MXB10]. Like the example in
our foundational chapter (see Section 2.4), these approaches first execute signature matching
and use the matching results for a preceding protocol matching (and for condition matching
in Huma’s case). Any reconfiguration of this process would be deep interventions into the
matching algorithms and their underlying logic. This fact makes these approaches difficult
to extend.

Other approaches do not require flexible matching process concepts as they work on
very simple service specifications that can be matched homogeneously to a high extent
without much effort. Examples for such specifications are pure integer vectors (e.g.,
in [DA09, WW05]). Some of these approaches even work on many different service
properties to be matched in the same way based on these simple specifications. Some
of these matching approaches then only consist of one matching step (e.g., [MS04]). In
these approaches, service matching is mapped into a pure multi-criteria decision-making
problem. Matching problems addressed by MatchBox are also multi-criteria decision-
making problems. However, MatchBox also addresses heterogeneous service specifications,
where different service properties are specified using different specification languages. This
functionality raises further issues that go beyond pure multi-criteria decision-making as
illustrated the preceding sections of this chapter.

As we can learn from Table 3.11, three kinds of matching processes are common: (a)
There are processes starting with syntactic/structural matching (e.g., signature matching
approaches) and ending with semantic/behavioral matching (e.g., condition matching
approaches) [CTO10, HGEJ12a, MSZ11, MHB+12, MXB10, WWWB11]. (b) Other
processes start with matching steps that match functional properties and then perform
matching based on non-functional properties [ESAEA04, JRGL+05, Kon95, DA09, VHA06,
WW05]. The reason for this could be, on the one hand, that syntactic/structural matching
approaches are viewed as less complex and, therefore, can be used as a filter before executing
more expensive matching approaches. On the other hand, they are often seen as hard
constraints, while good matching results for other matching steps are “nice-to-have” but
not mandatory, which again supports filtering actions. Accordingly, there are also many
approaches in addition to the listed ones, that first perform matching and then ranking
(e.g., [AL05, PKCH05, SZ11]). (c) Furthermore, another common combination of matching
approaches is logic-based vs. non-logic-based approaches [KKF08, KK12b, KK12a, KK08].
These approaches come from the area of semantic service matching based on ontologies.
“Logic-based” refers to matchers based on description logic, which is the logic underlying
the most common ontology description language OWL2 [GHM+08]. These matchers are
usually combined with “non-logic-based” approaches like text-similarity matching in order
to reduce false positives or false negatives. However, these approaches all only address input-
output matching and sometimes also conditions (PE, preconditions and effects). They have
not been combined with matching approaches from another category, like protocol matching
or QoS matching.

In some of the listed approaches, the control flow can be changed in many simple ways.
For example, [KK09a] and [MHB+12] allow a reduction of the process, meaning that
single steps can be ignored. Sycara et al. [SWKL02] provides four “modes” of matcher
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combinations. Compared to MatchBox, these modes are equivalent to four different (but
fixed) processes.

All these discussions explain why the Configurability columns in Table 3.11 are rather
empty. The configuration possibility appearing most often is weighted aggregation
(e.g., [AMM10, GTRRC08, JRGL+05, KK09b, MSZ11]). It is common for service matching
approaches considering multiple service properties to allow the user to configure the weights
determining the final matching result. By providing the possibility to integrate various
configurable aggregation strategies, MatchBox goes substantially beyond these approaches.

Our reviews also showed that many of the approaches we sorted out use the terms
“matching framework” or “discovery framework” in a broader sense. Those approaches
addressed matching in combination with tasks apart from matching like monitoring the
service execution [BPDRL07, CDG+06, MSZ11]. MatchBox focuses on matching only,
however, in future more, extensions in these directions could become interesting in order to
cover more activities relevant for service markets.

On a more general level, there are process languages like BPEL (Business Process
Execution Language). BPEL is executable and allows specifying business processes and
invoking web services. Based on BPEL, Mietzner and Leymann presented a generative
approach [ML08] that derives processes from a specification of variations and conditions.
As such approaches are much more general than MatchBox, they provide much flexibility
but integrating matchers and the possibility to configure them leads to a much higher effort.
One of the reasons is that the matcher interfaces are not yet defined there. In comparison,
MatchBox is tailored to matching processes explicitly and, thereby, able to provide exactly
those features the matching designer needs. For example, our matcher definition language is
the result of extensive research regarding the variety of matcher characteristics.

3.13 Conclusion

In this chapter, we presented MatchBox, a framework that allows a matching designer to
integrate and combine multiple service matching approaches. This has been achieved by
a model-driven approach that incorporates well-defined matcher descriptions and matching
process models that can be configured and executed. Thereby, we maintain a modularization
of matchers on an abstract level to handle the complexity that comes with the combination
of very different functionality. Nevertheless, aggregation strategies allow the computation of
one holistic but user-friendly matching result based on the results of all combined matchers.

Our two case studies showed that MatchBox provides the matching designer with the
flexibility to create many different matching variations, while the effort for integration and
adaption is kept low. This benefit makes our approach broadly applicable. Future research
challenges are listed in Section 6.2.
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FUZZY SERVICE MATCHING

In Chapter 3, we present an approach to match complex service specifications using several
matchers. This allows us to gain holistic and, thereby, more accurate matching results
compared to a single matcher because more parts of the requirements specification can
be taken into consideration. However, the more complex a specification becomes, the
higher the risk of imperfection within this specification becomes. Furthermore, we have
to expect even more imperfect specifications because the requirements specifications and
service specifications we are dealing with are typically created by humans. As a result,
in current service markets, service descriptions are very often lacking, incomplete, or
unclear [HS07, SO11].

Some service properties and requirements are imperfect in their nature and cannot be
exactly evaluated and specified [ŞT06]. Additional reasons for requesters to create imperfect
requirements specifications include indecisiveness, high specification effort, lacking ability,
as well as tolerance regarding service variations [Pla13]. For example, a requester may
require a service to be “fast” (see Figure 1.3) without specifying what “fast” exactly means.
Providers may provide incomplete specifications of the services they offer intentionally or
unintentionally [Pla13]. As an example, recall Figure 1.3. Here, the provider did not
publish details about her service’s performance. This could be because some providers
do not want to provide all details about their services in order to protect their business
interests. Alternatively, they may not be able to specify details because they do not know
them. For example, if a service depends on other (third-party) services, the provider might
have difficulties to provide reliable information about quality properties like performance
or availability. In general, especially quality properties of a service are typically specified
vaguely [YT97].

Furthermore, requesters and providers make different abstractions when creating
requirements and service specifications due to their different contexts [MPMM98]. For the
same reason, we cannot assume that all requesters and all providers use the same specification
languages. Much more likely, they use different specification languages, e.g., the web
service description language (WSDL) or the unified modeling language (UML) because
they have different backgrounds. As a consequence, model transformations into a common
language are applied in order to make the specifications comparable [Ari]. Depending on the
expressiveness of this common language, these transformations can be lossy such that the
target specification (i.e., the transformation result) becomes imperfect. Moreover, service
matching itself does not always have to be precise [ŞT06]. One reason is that service
specifications are often described by complex specification languages (e.g., first-order logic
for pre- and post-conditions and state charts for protocols). For such languages, solving the
matching problem can be inefficient or even not decidable [PvDB+13]. However, during
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service discovery or service composition, typically a wide range of services needs to be
matched. Thus, the efficiency of each single matching run is crucial for the scalability in a
large service market. There are matching approaches that try to cope with these issues by
simplifying the matching problem [PvDB+13], e.g., approximative matching approaches or
approaches based on heuristics. These simplifications are at the expense of the accuracy of
the matching results. However, this is regarded as acceptable compared to the risk of getting
no results at all [MPMM98].

In all these cases, matching becomes fuzzy because information needed to calculate
a precise matching result is missing. Note that we use a broad definition of the term
“fuzziness” as a collection for different types of imperfect information including gradedness,
vagueness, imprecision, variability, incompleteness, approximations, and uncertainty.
Current matching approaches lack in coping with this problem as they make unrealistic
assumptions, i.e., that the available information is specified and processed in a complete
and perfect way [PvDB+13]. As a consequence, existing matching approaches deliver
adulterated matching results that do not notify the users about the fuzziness that emerged.
This illusion of certainty leads to an unassessable risk of false positives (mismatching
services incorrectly determined as good matches) or false negatives (well matching services
incorrectly determined as mismatches). For example, if a matching approach delivers “50%”
as a matching result, this can mean a) “the service specification matches 50%” or b) “we are
50% certain that the service specification matches”. These two cases need to be distinguished
because Case a) denotes that we certainly know that half of the requirements specification is
satisfied, while Case b) denotes that we cannot be sure to which extent the service matches.
Taking signature matching as an example, Case a) could mean that the service’s input
parameters match but the outputs do not. Case b) could mean that either inputs or outputs
are completely unknown such that it is not possible to assess the risk in buying and using
that service. An example of an approach that mixes these two cases is presented by Zilci et
al. [ZSK15]. This approach is pessimistic in a way that, a missing part of a specification is
treated in the same ways as a mismatch even though the extent to which the service matches is
actually unknown, which is not communicated to the user. Furthermore, existing approaches
do not properly distinguish between different sources and different forms of fuzziness as
shown in our examples. This complicates the understanding of the matching results once
more. According to these issues, we need to find a way to deal with unknowns, and how to
support the user in making decisions in the presence of these unknowns [RS03].

The Fuzzy Matching concepts proposed in this thesis introduce a more transparent way
to cope with imperfect information and imperfect information processing. Fuzzy matching
deals with fuzziness occurrences that (potentially) lead to fuzzy matching results, classifies
them on the basis of well-defined fuzziness sources and fuzziness types, and quantifies them.
This is accomplished by incorporating formal concepts and tools from fuzzy logic. These
allow for capturing and modeling various types of imperfect information within a unified and
coherent mathematical framework. The matching results computed based on these principles
inform the user about the fuzziness that emerged. Thereby, fuzzy matching improves the
user’s decision-making based on the computed matching result. In particular, it allows us
to distinguish between the two statements a) and b) discussed above. Psychological and
economic studies underline the importance of this benefit (see [ANW09] for an overview).
For example, Ellsberg’s studies [Ell61, Ell15] show that people prefer taking a known risk
rather than taking an unknown risk even though the probability for a better outcome may
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be low. Lipshitz and Strauss point out that coping with uncertainty “lies at the heart of
making a decision” because uncertainty constitutes a “major obstacle to effective decision-
making” [LS97]. Also Frisch and Fox agree that human choices often depend on how
much relevant information is missing [FB88, FT95]. Our results address this issue by
turning the unknown risks of adulterated matching results into known risks by informing
about induced fuzziness. All in all, we enable service matching under more realistic
circumstances compared to the related work: We are able to explicitly deal with imperfect
service specifications, which makes our approach well applicable in practice.

In general, our approach extends traditional approaches from the areas of service discovery
and component retrieval. The targeted end users of our approach depend on the service
market’s scenario as either service requesters, service providers, or intermediaries (brokers)
could be in charge of the matching approach. In particular, requesters get the benefit of
an improved decision-making when selecting between services due to the awareness of
present fuzziness. Corresponding to their risk aversion and ambiguity aversion [Haz89],
they become able to choose either services that are certainly a good match or services that
may potentially (but not necessarily) be perfect matches. On the other hand, if providers
obtain these matching results too, they could profit from additional information regarding
how to raise interest in their services. For them, the matching results indicate whether
service specifications need to be improved in order to lead to less fuzzy matching results,
satisfying a greater range of requesters. In this chapter, we condense the roles interpreting
the matching result into one role called the user. The user can be represented by different
market participants and it can be a human or also a machine, i.e., an artificial intelligence.

Concepts presented in this chapter have been published in [Pla13, PvDB+13, PAPS15] and
are under revision in [PSB+]. They are based on the Master’s Theses by Vijapurwala [Vij14]
and Merschjohann [Mer14], and the Bachelor’s Theses by Bunse [Bun14], Börding [Boe15],
Neumann [Neu15], and Bruns [Bru15].

This chapter is structured as follows. In Section 4.1, we summarize the most important
scientific contributions provided by this chapter. Section 4.2 introduces foundations about
fuzzy logic needed to follow the concepts described in this chapter. In Section 4.3, we derive
requirements for our fuzzy matching concepts. The classification of fuzziness sources and
types is described in Section 4.4. Based on this, we introduce a general fuzzy matching
procedure in Section 4.5, while Section 4.6 builds on this procedure and describes two
concrete approaches for fuzzy matching. We briefly present our prototype implementing
the introduced concepts in Section 4.7. The validation described in Section 4.8 is based on
this prototype. Section 4.9 highlights limitations of the concepts presented in this chapter.
Section 4.10 presents our survey about related approaches and we draw conclusions in
Section 4.11.

4.1 Scientific Contributions

The scientific contributions of this chapter can be summarized as follows:

• This chapter connects concepts from the area of service matching with the areas of
fuzzy logic from mathematics and theoretical computer science as well as decision
theory and uncertainty theory from humanities and social sciences like psychology.
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Thereby, we brought together research areas that seldom met before, leading to new
results.
• We are the first to distinguish between different fuzziness types in service matching,

e.g., fuzziness in the sense of graded user satisfaction and fuzziness in the sense of
incomplete information about service properties.
• We constructed a new fuzzy matching method that combines these types of fuzziness in

a methodologically sound manner. This method provides matching results consisting
of a degree of necessity and a degree of possibility of meeting the requirements, i.e., a
lower and an upper bound regarding the degree of user satisfaction. In contrast, related
methods produce a single degree as a matching result, that is often chosen arbitrarily
and lacking a clear semantics.
• Furthermore, we are the first to quantify the extent of further fuzziness sources, e.g.,

transformation-induced fuzziness. Thereby, we support the user in decision-making
based on her own risk/ambiguity aversion.
• We are the first in the area of service matching to explicitly investigate and discuss

the characteristics a fuzzy matching result should have, incorporating concepts from
decision theory.
• We evaluate our fuzzy matching approach on the basis of real service data.

4.2 Foundations of Fuzzy Modeling

In the following, we discuss the foundations of our approach with a focus on fuzzy sets and
possibility theory.

4.2.1 Fuzzy Sets and Fuzzy Logic

A fuzzy subset A of a reference set U is identified by a membership function µA [Zad65].
For each element x ∈ U , µA specifies the degree of membership of x in the fuzzy set A.
Membership degrees µA(x) are in the interval [0, 1]. Based on this, fuzzy sets formalize
the idea of graded membership. Considering the set of services with good reputation as an
example, any sharp boundary in the form of a threshold on the average rating will appear
rather arbitrary. Modeling the concept as a fuzzy set A, we are able to express non-sharp
boundaries. For example, a service with rating 4.5 could be viewed as completely good
(µA(4.5) = 1), a rating of 3.7 as ’more or less’ good (e.g., µA(3.7) = 1/2), and 2.5 as
definitely not good (µA(2.5) = 0). Fuzzy sets are often associated with natural language
expressions and used to capture their meaning in a precise, mathematical form. Thus, they
represent a human-machine interface between a symbolic and a numeric level of modeling.

However, a fuzzy set can have different semantic interpretations [DP97]: On the one hand,
the membership degrees of a fuzzy set can be interpreted in terms of preference, on the
other hand, they can represent uncertainty. As an example, consider the fuzzy set A of
services with a good reputation, formalized by a membership function µA on U = [0, 5].
As a requirement by a service requester, µA(x) can be interpreted as the degree to which
the requester is satisfied with a service having an average rating of x. As opposed to this,
if ‘good’ is given by a service provider as (imprecise) information about the reputation of a
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provided service, µA(x) is the degree to which x is considered possible as the true value of
the average rating.

To operate with fuzzy sets in a formal way, fuzzy logic offers logical connectives,
e.g., a class of operators called triangular norms (t-norms) [KMP02]. A t-norm > is a
[0, 1] × [0, 1] −→ [0, 1] mapping. It can be used as a generalized logical conjunction and to
define the intersection of fuzzy subsets A,B as follows: µA∩B(x) = >(µA(x), µB(x)) for
all x ∈ U . The standard negation operator α 7→ 1−α can be used to model the set-theoretical
complement: Ā = U \A of A in U : µĀ(x) = 1− µA(x) for all x ∈ U .

4.2.2 Possibility Theory

Possibility theory is a general uncertainty calculus with a close connection to fuzzy
logic because possibility distributions are often derived from fuzzy sets by interpreting
membership degrees in terms of degrees of possibility [Zad78]. Formally, a possibility
distribution π is a mapping U −→ [0, 1]. A distribution of that kind induces a possibility
measure defined by the supremum of π for all A ⊆ U . The measure Π captures uncertain
information about u0 ∈ U : For each subset A ⊆ U , Π(A) is the degree of plausibility that
u0 ∈ A.

A a lack of information can be captured more adequately by means of possibility than
by probability distributions. In particular, complete ignorance is adequately formalized by
the distribution π ≡ 1. For example, if nothing is known about the true reputation u0 of
a service, for example, because the service is completely new in the market, then each
value x ∈ U = [0, 5] is fully plausible. In probability theory, this situation could be
modeled by the uniform distribution with density p(x) ≡ 1/5, the same distribution that also
models perfect knowledge about the equal probability of each value. Thus, in this situation,
standard probability theory cannot distinguish between a complete ignorance and complete
knowledge. In contrast, in possibility theory, implausibility can be captured by a necessity
measure. A subset A is considered necessary to the same extent to which the complement of
A is considered implausible. The domain of possibility/necessity measures for fuzzy subsets
are defined as follows:

Π(A) = sup
x∈U

min
(
π(x), µA(x)

)
, (4.1)

N(A) = 1− sup
x∈U

min
(
π(x), 1− µA(x)

)
. (4.2)

All in all, in contrast to probability theory, possibility theory can model several kinds
of uncertainty [DFMP04], e.g., vagueness and incompleteness. As shown above, given a
uniform probability distribution, we cannot tell pure randomness and ignorance apart, i.e.,
we cannot distinguish between uncertainty due to variability and uncertainty due to missing
information. In contrast, possibility distributions can be used to explicitly model full or
partial ignorance, i.e., the lack of knowledge. In particular, the possibility and necessity
measures defined in possibility theory are useful for representing matching results as we will
show later in this chapter

When the available information to be processed is frequentist, probabilistic modeling is
natural [DFMP04]. In contrast, possibility theory is better suited than probability theory
if we do not have statistical data. The latter is most often the case in service matching.
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Furthermore, in contrast to probability theory, possibility theory does not require a numerical
setting.

Another important criterion in our context is efficiency: Possibilistic problems can be
solved much more efficiently than stochastic problems [IR00]. One reason for this is that the
possibilistic representation is weaker because possibility measures are based on an ordinal
structure rather than an additive one. [DFMP04]

However, there are transformations possible between both kinds of measures due to the
Possibility/Probability Consistency Principle [Zad78]. A transformation from a probability
measure to a possibility measure looses information. However, according to Dubois et
al. [DFMP04], turning a probability measure into a possibility measure may be useful if
we deal with other weak sources of information. We make use of such a transformation in
Section 4.6.1.3.

4.3 Requirements

From the challenges described in the beginning of this chapter, we can derive seven
requirements that an appropriate fuzzy matching solution has to satisfy:

(R1) Deliver Unadulterated Matching Results: In the presence of fuzziness, an appropriate
matching approach should still deliver matching results that are not misleading in a
way that they inevitably lead to false positives and false negatives. No false certainty
should be pretended.

(R2) Handle Different Types and Sources of Fuzziness: A fuzzy matching approach
has to cope with different sources of fuzziness, e.g., requester-induced fuzziness,
provider-induced fuzziness, algorithm-induced fuzziness, and transformation-induced
fuzziness. Furthermore, different types of fuzziness also need to be distinguished, e.g.,
vagueness, gradedness, and uncertainty.

(R3) Make Source of Fuzziness Transparent: The user needs to know which source of
fuzziness a matching result is inflicted with, in order to be able to undertake potential
countermeasures, if needed. For example, in the presence of provider-induced
fuzziness, the provider could check whether she can and should provide more detailed
information within the provided service specifications. Thus, the source of fuzziness
needs to be returned along with the matching result.

(R4) Make Extent of Fuzziness Transparent: In order to assess the usefulness of a returned
matching result, the user needs to know how much fuzziness emerged. For example,
if the fuzziness is very high, she may decide to not take the risk and turn to matching
results for other services.

(R5) Support Diverse Matching Approaches: There is a variety of matching approaches
that work in very different ways. They are based on different specification languages
(e.g., automata vs. text-based specifications vs. numerical specifications) as well as on
different theoretical principles (e.g., graph matching vs. first-order logic vs. fuzzy
logic). Thus, we need fuzzy matching concepts not only for one specific kind of
language and one kind of underlying theory. Instead, we need a more generalizable
concept that works for several approaches with common properties.
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(R6) Support Complex Specification Languages: As shown in the example scenario,
specifications are not trivial, e.g., they do not only consist of single numbers and a
simple integer comparison is not enough. In reality, they are heterogeneous and consist
of a more complex structure. Our fuzzy matching concepts need to be applicable to
such complex specifications.

(R7) Efficiency: Our matching approaches need to be utilized within different kinds of
service markets, including large, dynamic markets. Thus, these matching approaches
have to be sufficiently fast, such that service discovery in such markets is still scalable.

(R8) Non-Invasiveness: As many matching approaches for service specifications already
exist and it is not practical to “reinvent the wheel”, we need concepts for fuzzy
matching to be used as an extension for existing non-fuzzy approaches.

All these requirements can be summed up to the general goal of providing a general
approach that provides the user with valuable information about the matching result while
imperfect information is taken into account.

Note that this thesis does not aim at fully satisfying all listed requirements. For example, a
detailed evaluation of efficiency is beyond the scope of this thesis and, therefore, left for
future work. Nevertheless, it is important to take such requirements into account when
developing appropriate concepts. We also describe one experiment that addresses efficiency
indirectly (see Section 4.8.2.3).

4.4 Fuzziness Classification

In order to investigate different manifestations of fuzziness as well as different sources
inducing fuzziness, we conducted an initial systematic literature review about how related
matching approaches consider fuzziness [PvDB+13]. On the basis of this survey and the
market scenario described in Section 1, we define fuzziness types as well as fuzziness sources
in this section. Furthermore, we discuss fuzziness occurrences that can be seen as instances
of fuzziness sources and types. Later sections build on this classification.

4.4.1 Fuzziness Types

We refer to Fuzziness Type as a kind of imperfect information or imperfect information
processing. Figure 4.1 shows an overview of different fuzziness types and their interrelations.
In the following, we describe each fuzziness type with reference to service matching and the
involved roles.

4.4.1.1 Vagueness / Imprecision

Vagueness, respectively Imprecision, can occur in the requirements specification as well as
in the provided service specification. An expression is vague if it has more than one possible
interpretation [Zha98].

For example, requirements on services are often specified vaguely, e.g., using natural
language expressions such as “close to 4 stars” (see Requester-induced Fuzziness,
Section 4.4.2). Especially non-functional requirements are usually vague and imprecise in
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Figure 4.1: Fuzziness Types and their Interrelations

nature [YT97]. Such vague expressions are not immediately amenable to computational
processing. In the provided service specification, vagueness may appear if a provider is not
sure about the precise value of a certain property, or if she intentionally tries to obscure
certain details (see Provider-induced Fuzziness, Section 4.4.2.1).

Vagueness within a requirements specification may indicate a requester’s Gradedness.
Furthermore, vagueness may lead to Uncertainty.

4.4.1.2 Optionality / Variability

We refer to Optionality, respectively Variability, if a requester indicates that there are several
options to satisfy her requirements or if the provider offers several alternatives in her service
specification.

For example, a requester may state that she wants a service with a price of either “100
Euros” or “10 Euros per month” or “one Euro per invocation”. In another example, a provider
may offer a service with either “a response time of 1ms for a price of 10 Euros per month”
or “a response time of 50ms for free”.

Optionality leads to Gradedness if multiple options satisfy the requester’s requirements to
different degrees.

4.4.1.3 Gradedness

In this thesis, the term Gradedness always refers to someone’s satisfaction. Within the scope
of service matching, it is the requester whose satisfaction is the main subject. Thus, in the
following, gradedness always refers to the requester.

The Vagueness of a requirements specification is in direct correspondence with the
Gradedness of a requester’s satisfaction. Typically, a requester will not only distinguish
between good and bad services. Instead, a service can match the requirements to some
degree, such that the requester can be partially satisfied with a service. [PSB+]

For example, requesters are often tolerant with regard to slight deviations from the
requested characteristics (see Requester-induced Fuzziness, Section 4.4.2.2).

4.4.1.4 Incompleteness

Incompleteness in a provided service specification shows cases, where the provider did
not deliver all possible information on a service. Incompleteness within specifications
can reach various dimensions. For example, the provider might not offer a behavioral
specification of the service, including pre- and post-conditions and protocols (high amount
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of incompleteness); alternatively, single values within a privacy specification could be
unspecified (low amount of incompleteness).

Such incomplete specifications can be due to multiple reasons (see Provider-induced
Fuzziness, Section 4.4.2.1). Furthermore, incompleteness often leads to Uncertainty during
the matching procedure as information needed to determine a correct matching result may be
missing.

Incompleteness in requirements specifications can be interpreted as irrelevance of certain
service properties. These properties then do not need to be matched as the requester
has no constraints related to them. Thus, only incompleteness within a provided service
specification is relevant for fuzzy matching.

4.4.1.5 Approximations / Relaxations

Unlike the other fuzziness types, Approximations and Relaxations do not refer to the
underlying imperfect information but to the imperfect processing of (potentially completely
precise) information. Algorithms in general and matching algorithms in particular apply
approximations and relaxations due to multiple reasons (see Algorithm-induced Fuzziness,
Section 4.4.2.3).

Approximations within an algorithm potentially introduce Uncertainty as they lead to the
risk that the result has been distorted because of the approximations during its calculation. In
addition, a requirement relaxed during the matching phase can become a vague requirement.

4.4.1.6 Uncertainty

In the literature, there are various definitions of Uncertainty or, in other words, partial
ignorance [WHR+03]. We adopt a general definition given by Walker et al. [WHR+03]
and taken up by Perez-Palacin and Mirandola [PPM14]: Uncertainty is “any deviation from
the unachievable ideal of completely deterministic knowledge of the relevant system.”. This
definition was intended for the research area of software modeling and it also fits within
the scope of our service matching concepts as they are based on models of services and
requirements.

The literature in decision-making theories reports that uncertainty constitutes a major
obstacle to effective decision-making [LS97]. This is also true for the user of service
matching approaches. Uncertainty is a problem during service matching in particular because
it leads to the fact that the user’s interpretation of the matching result is not based on “correct”
data any more. In current matching approaches, uncertainty is not transparent to the user,
such that a matching result may become misleading and the user’s risk is not assessable.

There are various reasons for why properties of a service or their specification can be
afflicted with uncertainty. As explained above, most of the already introduced fuzziness
types lead to uncertainty. Moreover, uncertainty literature distinguishes between aleatory
uncertainty (or variability uncertainty) and epistemic uncertainty [PPM14, WHR+03].
While the first kind refers to data that is stochastic in nature (e.g., reputation data), the
second refers to a lack of knowledge (e.g., incompletely specified privacy policies). This
distinction is required as it influences the possibilities to deal with uncertainty: Epistemic
uncertainty can be reduced by providing more knowledge, which is not the case for aleatory
uncertainty. However, in both cases, there is a benefit of making the user aware even of
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irreducible uncertainty as the awareness enables the user to assess her risk when acting on
the basis of a given matching result.

Current literature distinguishes between five orders of ignorance/uncertainty [PPM14,
Arm00], of which the first three can be immediately transferred to fuzziness in service
matching:

• 0th order of uncertainty: The lack of uncertainty, i.e., the user knows exactly how
well a service matches the requirements.
• 1st order of uncertainty: The lack of knowledge (i.e., known uncertainty), i.e., the

user knows that she does not know exactly how well a service matches.
• 2nd order of uncertainty: The lack of knowledge and the lack of awareness, i.e., the

user does not know that she does not know how well a service matches.

The 0th order represents the ideal case. However, this case cannot always be achieved,
due to the reasons explained above. Existing (fuzzy) service matching approaches lead to the
2nd order of uncertainty because there, uncertainty is not reflected within the matching result
and the user is lead to believe in a potentially adulterated matching result. By estimating
and presenting the extent of induced uncertainty to the user, our fuzzy matching concepts
presented in this thesis reduce the level of uncertainty from the 2nd order to the 1st. As a
benefit, the user obtains the opportunity to cope with the known uncertainty and to assess
the risk of an uncertain matching result. Furthermore, the user may even get to the 0th
order by eliminating the known uncertainty, provided that we deal with epistemic uncertainty.
Reaching the 1st order is essential to enable strategies to completely eliminate uncertainty.
Thus, our goals are also in line with Garlan, who states that “uncertainty needs to be
considered as a first-class concern to be dealt with systematically because we live in a world
where we cannot hope to achieve perfection, so, we must rethink many of the ways in which
we conceive, engineer, and validate our software-based systems” [Gar10].

4.4.1.7 Further Properties of Fuzziness Types

Different fuzziness types can be specified and determined using different mathematical
concepts, e.g., fuzzy logic or probability theory. Different concepts con cope differently well
with different fuzziness types. Section 4.2 goes into more detail regarding these concepts
and their advantages and disadvantages.

To sum up, many fuzziness types lead to Uncertainty. Hence, we need to cope with all
these fuzziness types because uncertainty can lead to serious problems in service matching,
as discussed. Nevertheless, we need to distinguish between different fuzziness types because
they all come with different characteristics and require different actions

From decision-making literature, we can learn that coping with uncertainty can be
done applying three basic strategies: reducing uncertainty, acknowledging uncertainty, and
suppressing uncertainty [LS97]. Later in this chapter, we adopt these uncertainty coping
strategies to coping with fuzziness types in service matching including especially (a) to
inform the user and (b) to find and apply appropriate strategies to reduce fuzziness, if
necessary and if possible. By these two countermeasures, we can support the user in decision-
making.
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Figure 4.2: Classification of Fuzziness Sources

4.4.2 Fuzziness Sources

The distinction between different fuzziness types is related to the distinction between
different fuzziness sources. A Fuzziness Source is a potential cause for fuzziness. It describes
a specific situation that possibly may lead to a fuzzy matching result. Depending on occurring
fuzziness types (see Section 4.4.1), a fuzzy matching result is either a gradual matching
result, an uncertain matching result, or both.

In this thesis, we distinguish between four main fuzziness sources depicted in Figure 4.2:
Provider-induced Fuzziness, Requester-induced Fuzziness, Algorithm-induced Fuzziness,
and Transformation-induced Fuzziness. Provider-induced Fuzziness and Requester-induced
Fuzziness can be subclassified again into Specification-induced Fuzziness because they both
originate within the input specifications. In the following, each fuzziness source is explained
on the basis of our initial definitions given in [Pla13].

4.4.2.1 Provider-induced Fuzziness

Provider-induced fuzziness originates within the service specification delivered by the
service provider. Service providers do not always provide complete and precise service
specifications [KKRKS07].

There are various reasons for providing imperfect service specifications [Pla13]:

• Providers do not want to present details of the realization of their offered services in
order to protect business interests,
• they do not know all details about their services’ characteristics themselves because

some characteristics depend on a variety of influencing factors,
• they only know their perspective and have no overview of all options of how a service

might be used by other parties, or
• they are not able or not willing to specify their knowledge in an appropriate (e.g., a

machine-interpretable and comprehensive) specification language as this requires a lot
of effort and extra knowledge.

For example, map service providers, such as Google, may not be willing to provide the
precise resolution of their maps within a publicly available specification. In another example,
a room management service provider cannot give details about the service’s response time or
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its availability because it relies on third-party servers providing room databases [BBM10].
In addition, providers often do not specify non-functional properties, e.g., privacy policies,
formally. In reputation matching, provider-induced fuzziness occurs for new services with
only few ratings so far, or because of unrateability of a service that has only been used as
part of a composition [dSZ13]. For example, if a service consists of several image processing
services, not each of these sub-services’ effects may be immediately visible to the user.

Summing up, the origin for provider-induced fuzziness is the providers’ intentional
aversion as well as their disability or missing expertise regarding specific service properties
or specification languages. Accordingly, service specifications are often expected to be
incomplete or imprecise.

As a consequence, especially a provider can benefit from the knowledge whether
provider-induced fuzziness emerged in a matching result because this source for uncertainty
can potentially be eliminated or at least be reduced by improving the provided service
specifications. Depending on the reason for the provider-induced fuzziness, this can be
done by the service provider herself, or also by other roles performing additional analysis,
e.g., different kinds of performance prediction [SDMIS04, BKR09], if suitable models are
available. A service provider may be willing to improve her specifications if this effort
promises better revenues. However, note that this is only possible in the case of epistemic
uncertainty and not in the case of aleatory uncertainty (see Section 4.4.1). For example, if
the uncertainty is due to the stochastic nature of reputation data, the provider is not able to
improve the situation.

4.4.2.2 Requester-induced Fuzziness

Requester-induced fuzziness refers to a requirements specification delivered by a service
requester that contains vague requirements or further indications that she tolerates certain
variations [Pla13].

As an example, the requester could specify soft thresholds for QoS properties. For
example, she could request a maximal response time of 5 seconds for the required room
management service, but the best matching service could have a maximal response time of
5.25 seconds. In this case, this service could nevertheless be of interest for the requester,
at least to some extent. Similarly, the requester can use a fuzzy term and just specify
the requested response time to be “fast”. Further reasons for requesters to specify their
requirements incomplete or imprecise include high specification effort, indecisiveness, and
lacking ability [EKM11].

In contrast to provider-induced fuzziness, requester-induced fuzziness does not lead to
uncertainty in the general case. Instead, it may reflect a requester’s gradedness towards the
satisfaction of her requirements specification. As a consequence, requester-induced fuzziness
does not need to be eliminated in general. However, in order to cope with gradedness, a
gradual matching result format is beneficial.

Accordingly, requester-induced fuzziness is the only fuzziness source that does not
inevitably lead to uncertainty during the matching procedure. However, requester-
induced fuzziness can occur in combination with transformation-induced fuzziness (see
Section 4.4.2.4). For example, the transformation of fuzzy terms like “fast” into a formal
construct could be uncertain. In these cases, requester-induced fuzziness is indirectly
involved into the emergence of uncertainty.
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4.4.2.3 Algorithm-induced Fuzziness

Fuzziness may not only be introduced by the requester or the provider, but also by the
matching approach itself [Pla13]. For example, some matching algorithms are based on
heuristics or on other kinds of approximations or simplifications [PRVM13]. In these cases,
the matching results inevitably become uncertain. One reason to introduce such a fuzziness is
that complex specification languages require matching algorithms with a high computational
complexity. For example, some matching approaches rely on subgraph matching, which is
NP-hard [CF11]. Similarly, pre- and post-condition matching is often based on expensive
SMT-solving [WHdM09]. In such cases, approximations are necessary to keep the matching
process efficient and the whole service discovery scalable.

Just like Requester-induced Fuzziness and Provider-induced Fuzziness, also Algorithm-
induced fuzziness induced into a matching procedure should be made transparent to the user.
Only then can she assess the risk within the uncertain matching result that is produced by the
matching algorithm.

4.4.2.4 Transformation-induced Fuzziness

Usually, requirements specifications as well as service specifications need to be (partially)
transformed into the same specification language in order to enable matching without having
to define matching algorithms for numerous combinations of specification languages [Ari].
One reason is that the different backgrounds of the involved requesters and providers may
lead to the usage of different specification languages that are not immediately comparable
with each other. For example, an exam management service’s protocol could be described
with hierarchical state charts, while the required room management service could be
described with a protocol on the basis of petri nets.

The specification language used for matching needs to adhere to certain characteristics.
For example, it needs to be machine-readable such that automated matching is possible. In
addition, it should not be too expressive such that specifications written in this language
can still be matched using efficient algorithms. The expressiveness of the common target
language and the degree to which matching can be (efficiently) automated become a trade-
off. [Pla13]

As a consequence, even if both the requirements specification and the service specification
are instances of the same specification language, transformations may become essential. This
issue becomes even more serious as specifications are typically constructed by human users,
which raises the need for languages that are easy to learn and easy to read for humans.
However, such languages are often not appropriate for service matching. For example,
natural language requirements specifications are easy to use for humans as no additional
knowledge is required, but they are not interpretable by most matching approaches. Such
specifications need to be transformed into a language with formally defined semantics (see
Section 5.3).

However, each transformation between specification languages contains risks. For
example, the target language of the transformation could be less expressive than the source
language (which is realistic considering the trade-off regarding expressiveness and efficiency
mentioned above). For example, petri nets, which allow parallel control flow, are not totally
mappable to the simpler (but easier matchable) flat automata. In such a case, information
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gets lost during the transformation. [Pla13] This is a problem because the matching result
is based on the transformed specification and does not reflect the compliance of the original
specifications. Thus, the user cannot rely on a matching result based on such specifications.
This situation is worsend as transformations are often invisible to the user so that she has no
idea of the adulteration of the matching result.

Yet, this is not the only situation where transformation-induced fuzziness leads to
uncertainty. Consider the case where the target language is more expressive than the
source language. Even though there is no information loss, the mapping of language
constructs might still be unclear. For example, using the fuzzy reputation matching approach
presented in Section 4.6.1, a requirement “approx. larger than 4 stars” is transformed into
the membership function for a fuzzy set. However, it is unclear what the membership
function should exactly look like because different users may have different opinions and
preferences [HLL+05]. For example, is 3.5 stars still accepted in the above mentioned case
or not? In this example, the target language is more expressive than the source language, but
the transformation still leads to uncertainty.

In general, transformation-induced fuzziness can be subdivided into fuzziness induced
within the transformation of the requirements specification and fuzziness induced within
the transformation of the provided service specification. It can occur in combination with
requester-induced fuzziness or with provider-induced fuzziness, but also separately.

Transformation-induced fuzziness can only be detected on instance-level, i.e., considering
concrete specifications and not only the definition of the transformation itself on language-
level [Bun14]. Accordingly, we can detect it only at runtime but not at design time. However,
the transformation itself indicates potential occurrences. This issue is explained in detail
below.

4.4.3 Fuzziness Occurrences

The fuzziness types and sources introduced above are detected semi-automatically within
the scope of a fuzzy matching approach as we propose in Section 4.5. If a fuzziness source
is detected and if this source leads to a fuzzy matching result, we speak of a Fuzziness
Occurrence. There can be multiple fuzziness occurrences of the same or of different
fuzziness sources and of different fuzziness types in one matching procedure.

As an example, consider Figure 4.3, which shows the example specifications described in
Section 1 with annotated fuzziness sources. Each annotation represents a potential fuzziness
occurrence in a simplified way. For example, Requester-induced Fuzziness occurs where
the requirements specifications contain imperfect information, i.e., the soft threshold in
the reputation requirements (“approx. 4 stars”) and the fuzzy term in the performance
requirements (“fast”). On the other hand, Provider-induced Fuzziness occurs where the
provider delivered imperfect information, i.e., the missing knowledge in the performance
properties (“response time = ?”) and the incomplete privacy specification (retention period =
[?,?,?]).

Please note that Figure 4.3 abstracts from the fact that Algorithm-induced Fuzziness and
Transformation-induced Fuzziness cannot be detected within the input specifications alone.
As their names suggest, the matching algorithm and the transformations respectively need
to be considered, too. Given a protocol matching algorithm that applies simplifications,
the protocols may lead to Algorithm-induced Fuzziness. Similarly, given a provider’s
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Privacy Policies:

Parameter
Delegation

Depth

Retention

Period

time 1 ?

size 1 ?

res 0 ?

Signatures:
 bookRoom (String bookerName, MailAddress address,

Date time, Integer capacity): Room room 
   pre: exists(r:Room & (!isBooked(r,time) 

& hasCapacity(r,capacity))
   post: isBooked(room,time)
 confirm () : Confirmation conf
   pre: -
   post: -
    

Privacy Requirements:

Parameter
Delegation 

Depth

Retention 

Period

time 0 12

capacity 0 12

Signatures:
 bookHall (MailAddress bookerAddress, Integer size, Time time): 

LectureHall hall, Receipt receipt
   pre: exists(l:LectureHall & hasCapacity(l,capacity))
   post: isBooked(hall,time) & hasCapacity(hall,size)
 editBookingTime (Receipt receipt, Time time) : Receipt receipt
   pre: isValid(receipt)
   post: hasTime(receipt,time)
 sendAck (Reservation res) : Acknowledgement ack
   pre: wasSuccessful(res,true)
   post: -

Protocol:

Protocol:

bookRoom

confirm

bookHall

sendAck
edit

BookingTime

    
Requirements Service  Room Manager 

Price:
   0.01 € per query

Price:
   10 € \ month

Reputation:
    more than approx. 4 stars 

Reputation:
   3.88 stars

... ...

Performance:
   reponse time =  fast 

Performance:
   reponse time = ?
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Figure 4.3: Example Specifications with Annotated Fuzziness Sources

specification language that is able to describe signatures more expressively than the language
used for matching, the signatures may lead to Transformation-induced Fuzziness.

Potential fuzziness occurrences of different fuzziness sources and types occurs in different
points in time during the matching scenario. An example scenario is shown in Figure 4.4.
The depicted sequence diagram shows at which times during the interactions which fuzziness
source occurs. Provider-induced fuzziness occurs directly during the provider’s specification
of her services. Analogously, requester-induced fuzziness occurs while the requester
specifies her requirements. Only after that can transformation-induced fuzziness occur. The
fuzziness source that comes into play last is algorithm-induced fuzziness.

Furthermore, we need to distinguish between potential fuzziness occurrences and relevant
fuzziness occurrences because a potential fuzziness occurrence is not always problematic
during the matching procedure. Fuzziness occurrences may have no effect at all, so that the
matching result is not inflicted with fuzziness/uncertainty even though there is a potential
fuzziness source involved. For example, the transformation of the specification language a
provider uses for signatures may be lossy with respect to a specific language construct (e.g.,
cardinalities of parameters). However, if the specifications to be transformed do not use this
language construct, then no fuzziness arises. In other words, you can only detect a relevant
fuzziness source on the instance level (within the concrete specifications) and not on the meta
level (within the language definition) [Bun14].

Another example for the difference between potential fuzziness occurrences and relevant
fuzziness occurrences is provider-induced fuzziness: Even though a provider may provide
an incomplete specification lacking certain information about a provided service, this
incompleteness has no effect if the requester’s requirements specification does not address
these information anyway. For example, if a provider gives no or only imprecise information
on performance, fuzziness only emerges if the requester has no performance-related
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Figure 4.4: Temporal Order of the Origins of Potential Fuzziness Occurrences

requirements. As a consequence, the relevance of a fuzziness occurrence can only be judged
during matching or on the basis of knowledge of the matching algorithm to be performed.

Although the fuzziness occurrences annotated in Figure 4.4 are not necessarily relevant
fuzziness occurrences, we can learn that the number of potential fuzziness occurrences
depends on the concrete market scenario. For example, consider the following four cases:
(1) In scenarios, where the matcher gathers data from further parties or components, further
fuzziness occurrences could come into play. (2) The broker could reject all imperfect
requirements specifications or all imperfect specifications of provided services such that the
corresponding fuzziness occurrences can be avoided in the first place. (3) Transformation-
induced fuzziness does not emerge in a market scenario where transformators are not
included such that requesters and providers must use fixed specification languages. (4) If
the selection based on the matching result is not made by the human but by an algorithm
(e.g., as part of a composition algorithm), this could induce additional fuzziness occurrences
within this algorithm.

Independent from the temporal order of their origins, fuzziness occurrences can influence
each other: For example, a specification that is incomplete due to provider-induced fuzziness
contains less risks with respect to transformation-induced fuzziness because less constructs
have to be transformed. Thus, if a provider manages to reduce provider-induced fuzziness,
i.e., if she extends the specification, transformation-induced fuzziness could become worse.
Similarly, if algorithm-induced fuzziness is reduced by modifying the algorithm, this
could mean that provider-induced fuzziness occurrences could become more relevant if
the modified algorithm addresses more missing or imprecise elements from the provided
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Figure 4.5: Overview of the Fuzzy Matching Procedure

specification, as the original algorithm. Nevertheless, in both examples, the general situation
was improved because the overall extent of potential fuzziness is reduced and the occurrences
that became relevant can potentially be extinguished in an easier way.

4.5 Fuzzy Matching Procedure

As discussed above, we need to take care of fuzziness induced into the matching procedure.
For this purpose, we developed a general fuzzy matching procedure to be applied in
combination with any matching approach. Figure 4.5 depicts the steps to be performed
within this procedure in their general form. For actual usage, this procedure needs to be
“instantiated” as shown on the basis of two examples in Section 4.6.

1. Fuzziness Pre-Check
In order to judge whether matching is applicable and useful at all, a first estimation about the
presence of potential fuzziness occurrences is performed. If the fuzziness is too high (e.g.,
the provided specification is so superficial that none of the requester’s requirements can be
verified), we can save time by omitting the matching step from the beginning. The judgment
whether the fuzziness is too high cannot only be made on the basis of the input specifications,
but must also take further sources into account, e.g., the matching algorithms to be executed
or the user’s risk or ambiguity aversion. The general users’ risk aversion again may depend
on the domain: For example, in the domain of banking service, only perfect matches may
be interesting. So, in this domain, fuzzy matching may not be applicable at all. In other
domains, fuzziness can be tolerated to a higher extent.

As the fuzziness pre-check’s result determines whether the following steps are performed
or not, it keeps the fuzzy matching procedure from performing unnecessary computations.
Thereby, it contributes to efficiency (R7). As a consequence, this check is more useful if it is
based on simple computations, too. A very simple example check is only considering very
significant fuzziness occurrences, e.g., cases where a specification part is not specified at all.
For this check, no internals, e.g., lists of language constructs, need to be checked.
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2. (Fuzzy) Matching
Step 2 of the general fuzzy matching procedure is the actual matching action. Here, we can
insert different kinds of matching approaches. We show an example for inserting a fuzzy
matching approach in Section 4.6.1. However, also any other (“unfuzzy”) existing matching
approach can be performed here, as shown in Section 4.6.2. Enabling the integration of
existing matching approaches is important in order to satisfy R5 (support diverse matching
approaches) and R8 (non-invasiveness).

Accordingly, this step can also lead to different kinds of matching result formats, e.g.,
gradual result formats and interval result formats (see Section 4.6).

3. Final Fuzziness Estimation
Next, the extent of fuzziness that emerged is determined. This is a foundation in order to
satisfy R4 (make extent of fuzziness transparent). In many cases, not a precise measurement
but only an estimation is possible. The extent is classified into one group of a fixed set of
groups. For example, a set of three groups could be: High, Medium, and Low. Fuzzy terms
are suited for the representation of fuzziness estimations because they do not require an exact
measurement and they are user-friendly [Zad96].

Furthermore, it is beneficial to distinguish between different fuzziness sources here, such
that the user is well-informed and can select between multiple coping strategies (see result
construction step), if necessary. Thus, each detected fuzziness occurrence is classified by the
fuzziness sources presented in Section 4.4.2. This is a foundation in order to satisfy R2 and
R3 because the distinction between fuzziness sources is required in order to support the user
in finding appropriate countermeasures to reduce uncertainty, if needed.

Regarding the format in which fuzziness estimations are stored, we can refine R4 into
further sub-requirements [PAPS15]:

(R4.1) Normalization: The user has to be able to judge whether the fuzziness is low or high.
This means that the maximum and minimum of the scale used to present fuzziness
have to be known.

(R4.2) Comparability/Commensurability: Fuzziness measures for different matching runs
have to be comparable. For example, a requester should be able to choose between
different alternative services on the basis of the fuzziness within the matching results.
This way, she can choose the service with the result that is less fuzzy, if the matching
results are similar apart from that.

(R4.3) Relevance: Fuzziness without impact should not be reflected in order to not burden
the user with irrelevant information.

4. Result Construction
In order to inform the user about detected fuzziness occurrences as well as about their source
and extent, the matching result to be returned to the user is annotated with the information
gathered in the previous steps. Thereby, R3 and R4 can be fulfilled.

The annotated matching results can be leveraged in order to give automatic
recommendations for coping with fuzziness, e.g., strategies that could potentially reduce
fuzziness. In the following, we call such strategies fuzziness coping strategies. Table 4.1
shows four recommendations for exemplary fuzziness occurrences:
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Table 4.1: Exemplary Recommended Fuzziness Coping Strategies
Fuzziness Occurrence Fuzziness Coping Strategy

Concerned Fuzziness Action & Artifact Possible Prio-
Spec. Part Source (Type) (Role) Side Effects rity
Prov. Performance Provider- Deliver additional Increased Transf.-ind. F. high
Spec. is missing induced monitoring data (target language less
an execution (Epis. Unc.) (Provider) expressive wrt. exec.
environment environments than

source language), ...
Prov. Reputation Provider- No actions possible - -
data based induced
on Ratings (Alea. Unc.)
Req. Performance Requester- Concretize Performance Increased Prov.-ind. F. medium
= “fast” induced Req. wrt. Response (Provided Response Time

(Vagueness) Time, e.g., as a fuzzy info is incomplete), ...
set (Requester)

Reputation Req. Requester- No actions required - -
specified as a induced
fuzzy set (Gradedness)

In the first example, there is a provider-induced fuzziness occurrence of type epistemic
uncertainty within the performance concerning the performance aspect. The recommended
strategy suggests the provider to extend her provided service specification with more
information. As discussed above each reduction of fuzziness comes with possible side
effects. Here, the side effect concerning transformation-induced fuzziness is mentioned as
one example. The second example addresses provide-induced fuzziness of type aleatory
uncertainty. As discussed in Section 4.4.1, such an occurrence cannot be reduced by
providing more information as it refers to data that is stochastic in nature. The third example
is a fuzziness occurrence where the requester specified “fast” as a performance requirement.
Such vagueness can be reduced by concretizing the requirements specification. One option
to do this suggested here is to specify the property response time as a fuzzy set. As a possible
side effect, provider-induced fuzziness could increase if the data about response time on
the provider side is fuzzy, too. In the last example, requester-induced fuzziness of type
gradedness is addressed. As discussed in Section 4.4.1, this fuzziness type does not lead to
uncertainty. Thus, there is no need to reduce this occurrence. Furthermore, a prioritization
of the suggested fuzziness coping strategies can be automatically derived on the basis of the
estimated extent of a fuzziness occurrence. Also the number and severity of possible side
effects could contribute to the derived priorities. Such a prioritization is important because,
in real-world examples, the user can expected to be provided with a much longer list of such
recommendations depending on how complex the requirements specification is.

4.6 Fuzzy Matching Approaches

In the following, we present two approaches that both follow the general fuzzy matching
procedure described in Section 4.5. The choice of which approach should be applied depends
on (a) the nature of the specification language to be matched and (b) the grade of intended
“invasiveness”.
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Regarding (a), we cannot use one concrete approach in order to support any matching
approach based on any service specification language (R5, R6) because service specification
languages can be very different. For example, there are matching approaches that operate on
numerical specifications, while others operate on graph-based specifications.

Regarding (b), there are two possibilities when integrating a fuzzy matching approach:
Inventing it from scratch or extending an existing matching approach. The first solution has
the advantage that the approach can be optimized from the beginning with respect to dealing
with fuzziness. However, there are already a lot of service matchers out there [PvDB+13].
Thus, it often makes sense to extend one of the existing approaches in order to enable fuzzy
matching. Such an existing approach could be already available as an implemented matcher
either with its source code or as a black-box component, (e.g., ”matching-as-a-service“). As
a consequence, we also need a “non-invasive” approach to deal with fuzziness in the presence
of black-box matching approaches (R8).

Section 4.6.1 presents a fuzzy matching approach invented from scratch and optimized
to dealing with fuzziness. It is applicable for specifications that comprise a (hierarchical)
collection of numerical values or simple linguistic terms. In contrast, Section 4.6.2 describes
an approach to extend a given (“unfuzzy”) matching approach with fuzziness quantifications.
This approach is applicable for various kinds of specification languages.

4.6.1 Fuzzy Matching Based on Fuzzy Logic

The approach presented in the following is based on formal concepts and tools from fuzzy
logic: fuzzy sets and possibility theory (see Section 4.2). The concrete meaning of vague
expressions can be captured by fuzzy sets. In the context of the matching problem, the
fuzzy set will then serve as a soft constraint. Gradedness is naturally captured by the
membership function of a fuzzy set, which can assume intermediate values between 0
(complete dissatisfaction) and 1 (full satisfaction). Modeling a linguistic expression in
terms of a membership function (i.e., a precise mathematical object) is sometimes referred
to as a process of “precisiation” [Zad08]. The possibility to specify the expressions in
linguistic terms, however, is often more intuitive for users, than specifying fuzzy sets on
their own [TT08, PRVM13].

For the purpose of illustration, we describe our approach using the example of reputation
matching (cf. Section 2.4.4) because reputation “plays a key role” in today’s software
markets [SO11]. Moreover, we show how the same approach can be applied to the matching
of other service properties, e.g., performance matching.

Our approach operates on specifications that allow for describing service properties
and requirements using a list of conditions that argue about numerical values. It
addresses requester-induced fuzziness, provider-induced fuzziness, and transformation-
induced fuzziness, as well as vagueness, gradedness, incompleteness, and uncertainty.

This section is based on our paper [PSB+] and extends it with more explanations,
illustrations, and further concepts. These further concepts include estimating transformation-
induced fuzziness and considering more complex requirements specifications.
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Figure 4.6: Procedure for Fuzzy Matching Based on Fuzzy Logic

Entity Context # Ratings
Service: RoomManager Overall 200 Rep(200 ratings) = 4.5
Service: RoomManager ResponseTime 80 Rep (80 ratings) = 3
Service: RoomManager Security 40 Rep (40 ratings, 3 months) = 2.75

Service: BookARoomPro Overall 80 Rep (80 ratings) = 3.35

Service: BookARoomPro ResponseTime 20 Rep (20 ratings) = 1.5
Service: BookARoomPro Security 10 Rep (10 ratings, 3 months) = 4.5
… … … …

Provider: UBServices Inc. Overall 130 Rep (130 ratings) = 3.5

b) Available Ratings & Exemplary Reputation Valuesa) Requirements Specification

c2: RepRT(Service)   4
         based on many ratings
             (w = 2)

c1: Rep(Service)   4 

c3: RepSec(Service)   3
         based on many ratings
             of the last 3 months

c4: Rep(Provider)   4

Figure 4.7: Exemplary Fuzzy Reputation Requirements and Reputation Values

4.6.1.1 Overview

Figure 4.6 visualizes an overview of the general procedure applied using fuzzy matching
based on fuzzy logic. In addition to the steps of the general matching procedure shown in
Figure 4.5, the matching step has been refined into three substeps: 1. Translation into Fuzzy
Sets, 2. calculation of Matching results, and 3. Aggregation.

In the following, we explain each step of the procedure on the basis of the example
requirements specification depicted in Figure 4.7 a). The depicted requirements specification
is a fuzzy version of the requirements specification depicted in Figure 2.4 a). In contrast
to the unfuzzy version, in Figure 4.7 a), requester-induced fuzziness is immediately visible
because there are two language constructs that indicate the requester’s vagueness: the soft
threshold denoted by v and the fuzzy term many.

In addition to requester-induced fuzziness, provider-induced fuzziness emerges in
reputation matching because of the uncertain reputation data available at the provider side:
A reputation value is always just an expected value developed from the aggregation of single
ratings. Special cases, e.g., a service new in the market that did not receive any ratings yet,
lead to the highest possible amount of uncertainty.

4.6.1.2 Step 1: Fuzziness Pre-Check

One of the most severe sources for fuzziness in this approach is the provided service’s
specification, i.e., the user ratings collected for a service to be matched. As provider-induced
fuzziness may lead to uncertainty, the fuzziness pre-check becomes relevant.
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Figure 4.8: Example Fuzzy Sets for the Requirements Specification from Figure 4.7

As explained in Section 4.5, the fuzziness pre-check’s purpose is to improve efficiency by
suppressing unnecessary matching computations (R7), the check itself should be able to be
performed quickly. Thus, it is based on simple heuristics.

For example, we can compare the number of available ratings per context to the mentioned
ratings in the requirements specification. If there are no appropriate ratings available in order
to evaluate the majority of the conditions in the requirements specification, we can directly
return the most uncertain matching result and skip Steps 2 and 3.

4.6.1.3 Step 2.1: Translation into Fuzzy Sets

In order to perform the main matching algorithm, the input specifications, i.e., the
requirements specification as well as the reputation value based on the available set of
ratings, need to be transformed into fuzzy sets modeled as membership functions. The
benefit of a translation into fuzzy sets is that it enables us to use a coherent mathematical
framework that is able to cope with several fuzziness types, in particular, both vagueness and
uncertainty. [PSB+]

Creation of fuzzy sets from requirements specifications
Fuzzy parts of the requirements specifications, i.e., conditions containing a soft threshold,
are transformed into membership functions denoting fuzzy sets. On the contrary, all other
conditions are transformed into conventional sets. Conventional sets are actually special
cases of fuzzy sets with {0, 1}-valued membership functions. [PSB+]

Figure 4.8 depicts membership functions of the (fuzzy) sets created from Conditions c1 –
c4 from Figure 4.7 a) in green color. “The x-axes denote reputation values in a scale from 0
to 5, while the y-axes represent the membership as a number between 0 and 1. For example,
the lower threshold for the requested reputation in c1 is 4. Thus, the membership is 0 from
0 to 4 and 1 between 4 and 5. This means that, if a service’s reputation value is higher than
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Figure 4.9: Transformation into the Membership Function in Function 4.3

a reputation of 4, it matches completely. As there are only “hard” transitions between the
membership of 0 and the membership of 1, we speak of a “crisp” set.” [PSB+]

In contrast to c1, the conditions c2, c3 and c4 are transformed into membership functions
denoting fuzzy sets as they indicate soft thresholds. Thus, we specify a set of rules that
define how to turn the expressions included in these conditions into membership functions.
This includes the rules to

1. turn an expression “reputation_value v x0”,

• for example: “RepRT v 4”, see c3 in Figure 4.7

2. turn an expression “fuzzy_term ratings”,

• for example: “many ratings”, see c3 in Figure 4.7

into fuzzy sets.
The first case, i.e., an expression “reputation_value v x0”, is transformed into a fuzzy

set with a membership function µ defined as follows in (4.3):

µ(x) =


0 x ≤ (x0 − g)
x−x0+g

g (x0 − g) < x < x0

1 x ≥ x0

, (4.3)

where g represents a configurable parameter ≥ 0 for the gradient of the fuzzy set: The
size of the interval between the point where the fuzzy part begins (x = x0− g) and the point
where the fuzzy part ends (x = x0), i.e., the interval where 0 < µ(x) < 1. In order to obtain
a crisp set, we transform into the same function with g = 0. Figure 4.9 visualizes these
values correspondingly.

Furthermore, Figure 4.8 shows the transformation results for the four example conditions
from Figure 4.7:

• For c1, the expression Rep(Service) ≥ 4 is transformed with g = 0 and x0 = 4.
• For c2, the expression RepRT (Service) v 4 is transformed with g = 1 and x0 = 4.
• For c3, the expression RepSec(Service) v 3 is transformed with g = 1 and x0 = 3.
• For c4, the expression Rep(Provider) v 4 is transformed with g = 1 and x0 = 4.

Function (4.4) shows the membership function obtained from an expression “fuzzy_term
ratings”.
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Figure 4.10: Example Transformation Results for Condition c3

µconstr1(x) =


0 x ≤ (x0 − gconstr1)
x−x0+gconstr1

gconstr1
(x0 − gconstr1) < x < x0

1 x ≥ x0

, (4.4)

where g represents a parameter ≥ 0 for the gradient of the fuzzy set and x0 is a value
transformed according to a given mapping from fuzzy terms to values. For example, there
could be a mapping with many ratings → 50 ratings in large markets with many
customers or a mapping with many ratings → 10 ratings for rather new markets. The
utilized mapping should be based on the knowledge and the experience of a domain expert.
Using the same method, fuzzy terms could also be used for the reputation value (e.g., “high”).

The functions shown above have been derived from the standard trapezoidal function. In
the example of reputation matching, (4.4) and (4.3) are monotonically increasing. The reason
is that the reputation value as well as the number of ratings becomes better with decreasing
numbers. These values are to be at least as high as the given threshold but higher is always
accepted, too. However, when applied to other kinds of specifications, these functions have
to be adapted to monotonically decreasing functions in some cases. As an example, take
properties related to a service’s performance, where the service’s mean response time is to
be minimized [BLB13].

Using these transformations, we obtain one to two fuzzy sets per condition. For example,
for c3, using the example mapping mentioned above, we transform into the fuzzy sets
depicted in Figure 4.10. Note that the expression “of the last 3 months” has not been taken
into account so far. We discuss this matter in the next subsection.

The key parameters (including the mapping from fuzzy terms) within these transformation
rules are configurable. However, we actually never know how well these transformation rules
truly reflect the user’s satisfaction. Some user’s satisfaction might be reflected better with
steeper fuzzy sets, some others better with less steep fuzzy sets. Similarly, different users
would choose completely different mappings for the fuzzy terms (e.g. starting at a lower or
higher reputation value). For this reason, transformation-induced fuzziness emerges at this
point and introduces uncertainty into the matching procedure. In order to inform the user
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about the induced uncertainty, we quantify these fuzziness occurrences, see Step 4 described
in Section 4.6.1.6.

Creation of fuzzy sets from ratings
The first step when creating a fuzzy set from ratings is to select which ratings will be
considered. Here, the requirements specification needs to be considered again. As an
example, recall the “of the last 3 months” expression. This expression cannot be handled like
the other expressions from the requirements specification: While the required rating value
and the required number of ratings are constraints related to the whole set of considered
ratings, the expression about the age is a constraint related to each single rating. The degree
to which the constraint about the age is satisfied can be adapted by deselecting single ratings
from the set of considered ratings. Thus, it will be used to filter the set of ratings considered
in the other two constraints. Accordingly, this expression will be taken into account when
considering the data for the provided service and is not part of the fuzzy sets that represent
the requirements specification. Thus, we call such a constraint a service data restriction. In
general, service data restrictions are expressions that influence the reputation modeled for
the provided service on the basis of a set of considered ratings. Other examples for such
restrictions are a “newer > older” constraint (i.e., newer ratings should get a higher priority
than older ratings when calculating the reputation value [JBPP14a]) or a constraint defining
the aggregation strategy to be used, e.g., a minimum aggregation of ratings.

Recall that our current matching problem involves both fuzziness and (frequentist)
statistical information. We expect that the requester will be interested in a characteristic value
like the expectation, i.e., the average rating of a service. She then specifies a soft constraint
in the form of a fuzzy set A on this characteristic value. For example, the mean rating should
be v 4 in c2. In practice, the true expectation m is unknown. Instead, we can only assume
to get an estimation m̂ of this value, e.g., the arithmetic mean of a finite set of ratings.
Correspondingly, there are two problems to be considered. First, we need to characterize
the uncertainty about m, i.e., the reliability of the average m̂, in an appropriate way. For
this purpose, we use a statistical resampling technique, so-called bootstrapping, that allows
for estimating a probability distribution for the expectation [ET93]. The larger the sample
size, the more peaked this probability density function p(·) will be around the average m̂. In
particular, the distribution provides an idea of the variance of the estimation. [PSB+]

Figure 4.11 shows an example bootstrapping procedure. Example ratings are shown on
the left. On the basis of these ratings, the samples in the middle are drawn. In this simple
example, the sample size is n = 4. For each sample, we determine the expectation e. Next,
we count how often each expectation occurs, as depicted on the right. These numbers form
the probability distribution, visualized in the graph below. Note that this example is largely
simplified. For example, in reality, sample sizes should be much larger, as explained later.

The variance of the resulting probability distribution in our example application does not
only depend on the overall sample, i.e., the number of ratings. There are various other
characteristics that lead to the fact that users perceive and evaluate the same service more
or less divergently. For example, some services come with a wide range of functionality
such that the probability that each user uses a different part with different quality increases.
Other services may be simpler such that users evaluate on a more unique basis. Furthermore,
some services may target a very heterogeneous user base that evaluates services very
heterogenously. For example, Google Maps is used by business people as well as teenagers.
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Figure 4.11: Example for a Simple Bootstrapping Procedure

Other services have a smaller user base where users have similar background and evaluate
on a common basis. Examples for such services are pure business services in a very specific
domain. Furthermore, most services are not static but depend on a rapidly changing data
base. This might also influence typical evaluation tendencies varying over time.

As a second step, the information on the ratings should be represented in a way that makes
it amenable to further processing within our approach. To this end, the probability function
p(·) is to be represented in the form of a possibility distribution. We realize this by applying
an established probability-possibility transformation [DFMP04] that interprets possibility as
upper probability:

πm(x) = sup
{
α ∈ [0, 1] |x ∈ C1−α

}
, (4.5)

where C1−α is the 1 − α confidence interval derived from the distribution p(·). Thus, it
represents the shortest interval around m̂ covering a probability mass of 1− α. [PSB+]

Two special cases of the above problem that allow for a simplified specification of πm are
(a) a very small and (b) a very large sample of ratings. Regarding (a): If only a few ratings
are available (e.g., only 2 or 3), bootstrapping will hardly make sense. The same holds if no
rating at all is available. In such a case, we define πm ≡ 1, thereby reflecting the highest
grade of uncertainty, i.e., complete ignorance, about m. Regarding (b): If the number of
ratings is very large, m̂ will approximate m so well that m can be assumed to be known
with a high certainty. As an example, consider a situation where there are more than 1000
ratings for the service ImagePro1 in c1, with an average of m̂ = 4.5. Then, this value will be
extremely close to the true expectation. Pretending full certainty, information about m can
then be modeled in terms of the possibility distribution πm with πm(x) = 1 if x = m̂ and
πm(x) = 0 if x 6= m̂. In general, the more ratings are available, the more peaked πm will
be around the average m̂. Thereby, the sample size directly influences the specificity of the
possibility distribution πm. Thus, the reliability of the information about m is appropriately
reflected by πm. [PSB+]
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Figure 4.12: Example Fuzzy Sets for the Ratings for the Provided Services from Figure 4.7

The transformation from the information needed to match the “minimum number of ratings
constraint” is simpler. The reason is that this information is typically known precisely.
Therefore, it can be represented in terms of a possibility distribution πs that yields a value of
1 for the current number of ratings and 0 otherwise. If the sample size is s, the requester will
be satisfied to the degree µC(s).

In Figure 4.12, the possibility distributions informing about ratings (Bc) of the services
RoomManager and BookARoomPro are shown in orange and blue, respectively.

4.6.1.4 Step 2.2: Matching

In the previous sections, we have explained how each of the expressions within the
requester’s conditions c is translated into a corresponding fuzzy set Ac with the membership
function µAc . Furthermore, we showed how information Bc about a service can be
formalized in terms of a possibility distribution πBc . This distribution usually reflects
uncertainty about the true value. In our running example of reputation data, πBc is derived
from user ratings.

Figure 4.13 shows the corresponding fuzzy sets for the requested reputation values from
our running example put on top of each other. In order to determine to which extent the
information about a provided service satisfies the requirements specification, we need to
compare Ac and Bc for each of the four conditions c1 to c4. For this purpose, we apply
possibility theory by computing the possibility and the necessity of the condition Ac under
the distribution πBc according to (4.1) and (4.2):

ΠBc(Ac) = sup
x∈U

min
(
πBc(x), µAc(x)

)
, (4.6)

NBc(Ac) = 1− sup
x∈U

min
(
πBc(x), 1− µAc(x)

)
. (4.7)
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Figure 4.13: Matching the Example Fuzzy Sets from Figures 4.8 and 4.12

Thus, the satisfaction of the requester will be characterized by two values representing an
interval [n, p] ⊆ [0, 1] such that

nc = NBc(Ac) ≤ ΠBc(Ac) = pc . (4.8)

This means the requester is certainly not satisfied in cases where [nc, pc] = [0, 0] and
Ac ∩ Bc = ∅. The requester is definitely satisfied in cases where [nc, pc] = [1, 1] and
Bc ⊆ Ac. Otherwise, if either Ac or Bc are fuzzy, both nc and pc may take intermediate
values within [0,1]. This means, the requester is possibly but not necessarily satisfied to
some degree. In the extreme case where [nc, pc] = [0, 1] we know absolutely nothing about
the necessary and possible satisfaction of the requester. [PSB+]

Accordingly, the necessity and possibility degrees in (4.8) represent a lower and an upper
bound on the satisfaction of the requester: nc is the degree to which the requester is
necessarily satisfied, and pc the degree to which she is possibly satisfied. The length of
the interval reflects the level of ignorance regarding the service properties, here, reputation.
If this uncertainty is reduced because more precise information is acquired, the interval
will shrink. In the special case where the provider offers precise information, the interval
degenerates to a point that reflects complete certainty about the satisfaction of the requester’s
requirements specification.

For some of the conditions depicted in Figure 4.13, matching is trivial: For example, we
have a full match for RoomManager in the case of c1, and for BookARoomPro in the case of
c3. Here,Bc ⊆ Ac and nc = pc = 1. Likewise, we have a full mismatch for BookARoomPro
in the cases of c1 and c2. In this case, Bc ∩Ac = ∅ and, therefore, nc = pc = 0.

In the other cases, the fuzzy set derived from the requirements specification cuts the fuzzy
set derived from the ratings of a provided service within the interval where the membership
changes from zero to one in a smooth transition, i.e., within the gradient. These cases are
fuzzy matches. Thus, we need to obtain necessity-possibility intervals [nc, pc] according to
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a) Determination of p b) Determination of n

Figure 4.14: Example for Calculation of p and n for Condition c4

(4.6 – 4.7). The complete results for our running example in the form of these intervals are
depicted in Table 1.

Requirements Spec. Matching Results
Condition Expression RoomManager BookARoomPro

c1 ≥ 4 [1, 1] [0, 1]
c2 v 4 [0.0, 0.5] [0, 0]
c3 v 3 [0.5, 0.828] [1, 1]
c4 v 4 [0.385, 0.615] [0.385, 0.615]

Table 4.2: Results for the Sets in Figure 4.13

In the following, we show the calculation of n and p step-by-step on the example of c4
from the requirements specification and the ratings for the provided service RoomManager.
The function freq derived from c4 is depicted in (4.9) and the function fp derived from the
provided ratings is depicted in (4.10):

freq(x) =


0 x ≤ 3
x−3

1 3 < x < 4

1 x ≥ 4

(4.9)

fp(x) =


0 x < 3.2
x−3.2

3.5−3.2 3.2 ≤ x ≤ 3.5
3.8−x

3.8−3.5 3.5 < x < 3.8

1 x ≥ 3.8

(4.10)

Next, we construct the intersection set freq ∩ fp in order to determine p. The x values for
the intersection points are s1 = 3.286 and s2 = 3.615, also depicted in Figure 4.14 a).
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In fuzzy set theory, the intersection set is defined as the minimum function (cf.
Section 4.2):

µ1 ∩ µ2(x) = MIN(µ1(x), µ2(x)) (4.11)

Thus, freq ∩ fp is defined as follows:

freq ∩ fp(x) =


0 x < 3.2

min(x− 3, x−3.2
0.3 ) 3.2 ≤ x ≤ 3.5

min(x− 3, 3.8−x
0.3 ) 3.5 < x < 3.8

0 x ≥ 3.8

(4.12)

Figure 4.14 a) shows the resulting function in gray color. As defined in (4.1), the
supremum of the minimum function denotes the possibility p. For our kinds of functions (a
monotonically increasing or decreasing function on the one hand vs. a function with exactly
one local maximum on the other hand), the supremum always needs to be one of the two
intersection points. In this case, p = freq ∩ fp(s2) = 0.615.

In order to determine n, we need to intersect fp with the inverse function of freq:

µC = 1− µ(x) (4.13)

(1− freq) ∩ fp(x) =


0 x < 3.2

min(1− (x− 3), x−3.2
0.3 ) 3.2 ≤ x ≤ 3.5

min(1− (x− 3), 3.8−x
0.3 ) 3.5 < x < 3.8

0 x ≥ 3.8

(4.14)

Figure 4.14 b) depicts the resulting function in gray color. The intersection points are
s′1 = 3.385 and s′2 = 3.714. Again, we need to determine the supremum, which is at x = s′1,
but this time, we need the inverse. Here, n = 1− ((1− freq) ∩ fp(s′1)) = 0.385. Thus, we
get the interval [0.385, 0.615] as the matching result for c4.

The most certain matching results following this approach are [n, p] = [0, 0] (we have a
complete match with full satisfaction) and [n, p] = [1, 1] (we have a complete mismatch with
full dissatisfaction). In both cases, the result is precise and unambiguous. In practice, the
result will often be more fuzzy for two reasons:

• First, there is uncertainty about the requester’s satisfaction because of uncertainty on
the side of the provider, i.e., the interval [n, p] will get wider.
• Second, the result is more ambiguous in the sense that the interval moves closer to the

middle point 0.5, such that we neither have a clear match nor a clear mismatch, but
something in-between.

In the second case, the location of the interval [n, p] is mainly influenced by the requester:
The more ‘fuzzily’ she specifies her requirements, the more ‘mediocre’ the evaluation will
be. [PSB+]
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Figure 4.15: Matching Results for the Ratings Constraints in c2 and c3

The fuzzy sets for the other constraints, e.g., the requested number of available ratings,
are matched in the same way. However, since there is no uncertainty on the provider side
in those cases, always n = p holds. For example, the 80 response time ratings of the
service RoomManager fully match the many_ratings constraint in c2. In contrast, the 40
security ratings for the same service only partially match themany_ratings constraint in c3.
Figure 4.15 visualizes the fuzzy sets for these constraints. In Section 4.6.1.5, the matching
results for the single constraints are aggregated into a matching result for the whole condition
c.

4.6.1.5 Step 2.3: Aggregation

For the next step, recall the foundations on aggregation introduced in Section 2.5. There, we
compare different aggregation operators based on different criteria. This comparison is used
for a selection of operators in the following.

Furthermore, recall that nc and pc are interpreted as a lower and upper bound of the
requester’s satisfaction on condition c. The set of possible degrees of overall satisfaction can
be obtained by aggregating, respectively, the lower bounds and the upper bounds [PSB+]:

[n, p] =
{

AGG(s1, . . . , sq) | si ∈ [nci , pci ]
}

(4.15)

=
[

AGG(nc1 , . . . , ncq), AGG(pc1 , . . . , pcq)
]

In our matching approach, we need two different aggregation tasks: a) the aggregation of
several constraints within one condition into one matching result per condition and b) the
aggregation of the matching results per condition into one matching result per one pair of
requirements specification and service.

Aggregation of Matching Results per Constraint
We suggest to aggregate the matching results of a condition’s constraints using a conjunctive
operator based on a t-norm, e.g., the minimum [PSB+]. Combining the constraints on m and
s, the overall satisfaction of the requester is then characterized by the interval[

min(Nm(A), µC(s)),min(Πm(A), µC(s))
]
.

As an example, take Condition c3 from our running example: As known from Table 4.2,
the reputation value matches with an interval [0.5, 0.828]. Furthermore, the constraint
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Figure 4.16: Services associated with degrees n/p to which they necessarily/possibly meet
the requirements specification (based on [PSB+])

about the minimum number of ratings matches with [0.5, 0.5] (see Figure 4.15). Then, the
aggregated matching result for c3 is [0.5, 0.5].

Aggregation of Matching Results per Condition
In order to obtain an overall matching result, the intervals need to be aggregated. Here, we
suggest to use the arithmetic mean.

However, two services are not necessarily comparable to each other if the overall
evaluation of a service is given in the form of an interval. Instead, one service can dominate
another one only in a Pareto sense (cf. Figure 4.16). Nevertheless, a total order on services
can be enforced by reducing intervals to scalars, e.g.:

r = αn+ (1− α) p ∈ [0, 1] , (4.16)

where the parameter α ∈ [0, 1] reflects the risk aversion of the requester. For α = 1, the
requester is completely risk-averse and fully focuses on the lower bound of the matching
result. For α = 0, she is completely risk-affine and, thus, will be decide on the basis of
the upper bound. Requesters can decide for an α based on different factors. One example
is the domain of the service that they are searching: If a banking service is searched, the
requester assumable does not want to be very risky. Another example is the market size: If
a requester knows that there are many services provided on the current market that probably
fit her interests, so she probably does not need to accept high risks. [PSB+]

4.6.1.6 Step 3: Final Fuzziness Estimation

Next, we quantify the fuzziness that has emerged during the matching. As noted above, we
need to distinguish between occurrences of different fuzziness sources:

Provider-induced Fuzziness
Provider-induced Fuzziness has already been taken into account during matching. In
particular, it is already reflected in the matching result: The size of the interval, i.e., p − n,
indicates how fuzzy (in terms of uncertain) the matching procedure has been: If the provided
information is precise, then p = n holds and there is no uncertainty. This is the case, for
example, for the constraints on the number of ratings. If p 6= n holds, there has been
uncertainty induced by the imprecise information on the provided side, i.e., provider-induced
fuzziness.

In particular, the interval between n and p usually grows with the variance of the fuzzy set
for the provided value. Figure 4.17 a) shows this fact on an example.
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Figure 4.17: Examples for Varying n-p Intervals

As the minimum size of the interval (0) and the maximum size (1) are both known, R4.1
is satisfied. The size of the interval is also easily comparable, which satisfies R4.2. As the
interval directly represents the impact of fuzziness, also R4.3 is satisfied.

Requester-induced Fuzziness
Note that there is also requester-induced fuzziness in our example reputation matching
approach. This is induced by allowing the requester to use soft constraints and fuzzy
terms within her requirements specification. However, this fuzziness source does not induce
uncertainty but the requester’s gradedness towards the satisfaction of her requirements
specification. Thus, there is no need to measure such occurrences (cp. Section 4.4.2).

For example, Figure 4.17 b) shows, how the interval between n and p becomes sometimes
even smaller while the requester’s fuzzy set becomes “fuzzier”.

Transformation-Induced Fuzziness
As noted in Section 4.6.1.3, also transformation-induced fuzziness occurs in this example.
More precisely, the transformations from the conditions specified by the requester into fuzzy
sets are uncertain in a way that we do not know whether the resulting fuzzy set really
represents the requester’s opinion [HLL+05]. Referring to the transformation defined in
Formula 4.3, the value of parameter g is unknown, while the others are given. This means,
we do not know where the smooth transition from a membership of 0 to a membership of 1
begins.
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Figure 4.18: Variables used to Estimate Transformation-induced Fuzziness

In order to estimate how much uncertainty has been induced due to this transformation, we
investigate each fuzzy set derived from the fuzzy expressions that are part of the conditions in
the requirements specification. However, not each of the fuzzy sets leads to transformation-
induced fuzziness. As an example, consider the green fuzzy set in Figure 4.18. The size of
g determines the interval between xr2 and xr1. While xr2 is given within the investigated
expression, g and, therefore, xr1 are uncertain. However, as g can only be assigned with
values between 0 to xr2 in order to define a valid fuzzy set, we know that, for the depicted
fuzzy set, xr1 must be somewhere in between 0 and xr2, too. Based on that and the fact that
xr2 < xp1 holds in this example, also xr1 < xp1 has to be true for every g. As a consequence,
in this example, it does not matter which g is chosen, the expression certainly leads to a full
match.

This is, obviously, not always the case. In general, the induced uncertainty depends on the
location of xr2. There are four cases, as shown in Table 4.3. Case 1 is the case explained
above and shown in Figure 4.18. In Case 2, always p = 1 holds, while n is dependent on
the concrete position of the currently uncertain xr1. Similarly, in Case 3, p > 0 always
holds, while n is dependent on the uncertain xr1. In Case 4, p and n can take any value.
Furthermore, the larger xr2 becomes, the higher is the risk for false negatives and false
positives. The reason is that, with an increasing xr2, the number of cases where xr1 makes
the difference between a full mismatch (p = n = 0) and a partial/fuzzy match increases, too.

Table 4.3: Different Cases of Transformation-induced Fuzziness
Position Explanation Fuzziness Score

Case 1: xr2 ≤ xp1 Full match (p = n = 1). NONE
Case 2: xp1 < xr2 ≤ xp2 p = 1 holds, n is uncertain LOW
Case 3: xp2 < xr2 ≤ xp3 p > 0 holds, n is uncertain MEDIUM
Case 4: xr2 > xp3 p and n uncertain (as long as p ≤ n). xr2 ≤ xp3 +

xmax−xp3

2
The larger xr2, the higher the risk ⇒ HIGH
for false negatives and false positives. else ⇒ VERY HIGH

It is noticeable that the uncertainty continuously increases from Case 1 to Case 4. More
generally, the uncertainty increases with an increasing xr2, which is natural as we consider
the upper bound to be fixed but the lower bound to be highly variable.

On the basis of this finding, we assign fuzzy terms to be used as fuzziness scores to
each case. A fuzzy term makes the extent of uncertainty immediately assessable even for
inexperienced human users. Furthermore, it indicates that the result of the quantification
should not be viewed as a precise value but as an estimation. Alternatively, more fine-
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grained mappings with more cases or a continuous function depending on the size of xr2
(e.g., f(x) = min(0,

xr2−xp1
xmax

)) are possible in order to improve the comparability. We chose
the more coarse-grained mappings based on the four (respectively five) cases so that the
semantics of each fuzziness score is clear and easy to understand. As a consequence, the
scores are easily distinguishable and interpretable for more experienced users. The fourth
case has been divided into two cases as this case seems to be the most serious one for the
reason stated above. As a benefit, the distinction leads to a slightly better comparability.

Later, we aggregate the fuzziness scores for each expression into a fuzziness score for a
condition using the maximum such that the final fuzziness score represents the highest grade
of contained uncertainty such that it can be used to assess the risk of using this matching
result. After that, the fuzziness scores for each condition can be aggregated into a fuzziness
score for the whole requirements specification using the same strategy. In our running
example, the scores are as follows:

• c2: RoomManager⇒MEDIUM; BookARoomPro⇒ VERY HIGH
• c3: RoomManager⇒MEDIUM; BookARoomPro⇒ NONE
• c4: RoomManager⇒ HIGH; BookARoomPro⇒ HIGH

Note that, for a clearer illustration, these values have only been derived from the fuzzy sets
for the rating values. In fact, we can apply the same procedure to the fuzzy sets that represent
the constraints.

Still, this approach is to be viewed as a heuristic. It abstracts from further possibilities for
fuzziness. For example, we make the assumption that the upper bound for the interval that
defines the smooth transition (xr2) is always correctly chosen as it is directly derived from
the threshold given by the requester.

The minimum fuzziness score here is obviously NONE. The maximum is VERY HIGH.
If the latter is made transparent to the user, R4.1 is satisfied. The fuzziness scores are
comparable—at least to some extent—, which partially satisfies R4.2. By design, R4.3 is
satisfied due to the derivation from the four cases which take into account the relevance.

4.6.1.7 Step 4: Result Construction

In order to support the user in the best possible way, we provide both, aggregated overall
values for quick comparison as well as detailed results in a hierarchical structure (see
Chapter 3). This hierarchical structure allows the user to inspect all intermediate results,
i.e., the matching results and fuzziness scores for every condition and for every expression
within these conditions. In this way, the user can inspect the results and find out the reasons
for a bad matching result. On the highest level, the n-p-interval and the aggregated fuzziness
score is presented.

The fuzziness coping strategies relevant for this matching approach have already been
presented in Section 4.5. They can be applied on the basis of these matching results.

4.6.1.8 Further Applications

The reputation matching approach is only one example the fuzzy matching approach
described above can be applied to. As a second example, we selected performance matching
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Figure 4.19: Performance Matching Example [PSB+]

based on (model-based) performance prediction [BKR09, SDMIS04]. Figure 4.19 shows an
example explained in the following.

The representation of requirements and information about a service here is similar to the
representation in Figure 4.7: Again, requirements consist of several conditions, as depicted
in the left part of the figure. In this example, the conditions address the performance metrics
response time (RT) and mean time to quality repair (MTTQR) [BLB15]. RT is the time
that a service requires to serve a response for a call. MTTQR is a metric for measuring the
elasticity of a software service, i.e., the mean time that a service needs to adapt to increasing
or decreasing workload by, for example, scaling its execution environment out or in. [PSB+]

Information about how services perform wrt. these metrics are depicted in the right part
of Figure 4.7. The table contains different rows for different architectures and different
contexts because performance metrics are always specific to a service’s internal architecture
and its external context. The internal architecture is determined by the software architecture
of the service, its implementation, and its execution environment. The external context is
represented by the service’s input (work) and call rate (load). For example, the response time
of an image processing service can expected to be much lower if the service is executed in
a high-performance compute center in contrast to the service being executed on a standard
mobile phone. Furthermore, the response time depends on the number of concurrent service
invocations. The representation of execution environments and usage scenarios is heavily
simplified in Figure 4.7: All abbreviations (e.g., “Arch_A”, “Ctx_A”) refer to more complex
models as known from performance engineering (e.g., [BKR09]). [PSB+]

Fuzziness may occur in different ways. For example, Condition c1 contains an
approximation operator which potentially leads to requester-induced fuzziness. In addition,
the requester did not specify any internal architecture for c2. Often, the internal architecture
may be even not fixed but vary in case of elastic services, e.g., in cloud computing settings
where the execution environment can be scaled out or in. Accordingly, the value for the
service to compare with is uncertain. If a value is not available for a certain environment
or for a certain usage scenario, provider-induced fuzziness may occur. For all these
reasons, similar as in our reputation example, it is recommendable to model performance
specifications as fuzzy sets, as described in [BLB13], and to apply our approach as described
in this Section.
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Fuzziness Quantification as an Extension

[matching not 
applicable]

[else]1. Fuzziness 
Pre-Check

2. Third-Party 
Matching Approach

3. Final Fuzziness 
Estimation

4. Result 
Construction

Figure 4.20: Procedure for Fuzziness Quantification as an Extension

4.6.2 Fuzziness Quantification as an Extension

The fuzzy matching approach based on fuzzy logic described in Section 4.6.1 is designed
to build a new matching approach from scratch: The whole matching algorithm has been
constructed for the purpose of fuzzy matching based on fuzzy logic. However, for several
reasons, this cannot be the whole solution in order to enable fuzzy matching in practice:

On the one hand, a lot of service matchers already exist [PvDB+13]. Thus, it makes sense
to extend one of the existing approaches in order to enable fuzzy matching. On the other
hand, we can hardly use the approach based on fuzzy logic if we do not want to reinvent
the whole matching approach. The presented fuzzy matching approach based on fuzzy logic
can hardly be integrated into already existing matching approaches as the underlying logic of
the whole main matching procedure would need to be adapted. The sources of an obtained
third-party matcher may not even be available to the responsible person. As a consequence,
we need a “non-invasive” approach to deal with fuzziness in the presence of black-box
matching approaches (R8). Furthermore, there are specifications based on concepts that
are not compatible to fuzzy logic, e.g., pre- and post-conditions specified on the basis of
predicate logic. This requires a more general approach (R5).

Thus, we propose a second fuzzy matching approach that can be used on top of existing
matchers. This approach is similar to the fuzziness estimation step from Section 4.6.1.6. But
instead of an integration into the deep logics of a matching approach, we propose to examine
the specifications a matcher takes as an input and to annotate the matching result the matcher
delivers as an output. Further notes about the applicability of this approach are given in
Section 4.6.2.3.

4.6.2.1 Overview

Figure 4.20 visualizes an overview of the general fuzzy matching procedure applied as an
extension. In addition to the steps of the general matching procedure shown in Figure 4.5,
the matching step is represented by a Third-Party Matching Approach to be viewed as a black-
box. In our example, this step applies our exemplary privacy matching approach exactly as
described in Section 2.4.3.

As Step 1, 2, and 4 do not contain any new concepts compared to the ones explained
earlier, in the following, we focus on Step 3, the fuzziness estimation. The estimation
is explained using the example specifications depicted in Figure 4.21. The example is
based on the example specifications depicted in Figure 2.3. In contrast to the specification
for the RoomManager service from Figure 2.3 b), the specification for BookARoomPro in
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Signatures:
  bookRoom (String bookerName, MailAddress address, Date time, Integer capacity): Room room
...

Signatures:
  bookRoom (String bookerAddress, Time time): LectureHall hall, Receipt receipt
...

  

  

Requirements

Service  BookARoom Pro 

(a) Requirements Specification

(b) Service Specification

Parameter Purpose Delegation Depth Retention Period Visibility Location Limit

bookerAddress Contact 1 ? - Germany

time RoomBooking 0 ? - Germany

hall Confirmation 1 ? - Germany

receipt Confirmation 1 ? - Germany

Privacy Requirements:

Privacy Policies:

Parameter Purpose Delegation Depth Retention Period Visibility Location Limit Sensitivity

bookerName RoomBooking 1 12 - Europe High

address Contact 0 12 - Europe Very High

time RoomBooking 1 48 Notification Services Europe Medium

capacity RoomBooking 1 ∞ - Europe Low

room Confirmation 1 48 Notification Services Europe Medium

Figure 4.21: Example Specifications for Fuzzy Privacy Matching

Figure 4.21 b) is incomplete in a sense that retention periods are unknown. Thus, provider-
induced fuzziness occurs.

In the example of privacy, a provider often must provide policies for legal reasons.
However, this neither means that she also provides a formal representation as required
for matching, nor that this representation includes all properties used during the matching
process. Thus, privacy properties make a realistic example [PAPS15].

4.6.2.2 Fuzziness Estimation

After the matching step, in our example, both services, RoomManager and BookARoomPro,
receive a very similar matching result according to the specifications depicted in Figures 2.3
and 4.21. The reason is that, in both cases, retention periods do not match. However,
considering RoomManager, there is certainly a mismatch because the requested retention
period is smaller than the retention period specified for the provided service (12<24).
Considering BookARoomPro, we are uncertain about whether the specifications match or not.
The service could potentially match well with respect to retention periods. As a consequence,
for a requester, BookARoomPro would be a better choice as it matches at least as good
as RoomManager, but probably even better. However, on the basis of standard matching
results, this difference is not visible to the user. Thus, due to such uncertainties, we need
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to determine fuzziness scores reflecting the confidence a requester can have regarding the
delivered matching result. [PAPS15]

In the following, we focus on estimating provider-induced fuzziness based on our
approach described in [PAPS15]. To this end, we examine the input specifications the
matching approach processes. Note that, although provider-induced fuzziness occurs in
the specification of the provided service, the fuzziness estimation needs the requirements
specification, too, in order to find out which language constructs are relevant, as we will see
in the example discussed below.

We iterate through the specified language constructs in a similar way as the matching
approach itself (see Section 2.4.3). For each requirement, the algorithm checks whether
one of the requested properties is not specified at the provider’s side. In general, the
more values are missing at the provider’s side, the higher the fuzziness score for a service,
fScore(service). [PAPS15] For simplicity, we use the same scale of fuzziness scores as
in Section 4.6.1.6. If nothing is missing, fScore(service) = NONE is assigned. If
everything is missing (the provider didn’t specify privacy policies at all), fScore(service) =
COMPLETE is assigned.

The fuzziness score for a service’s whole privacy specification fScore(service) is an
aggregation of fuzziness scores fScore(pol) for the different policies the specification
of the provided service consists of. The score fScore(pol) for a policy is constructed
on the basis of the fuzziness scores fScore(prop) for each property that is part of the
policy. fScore(prop) increases with respect to (a) the requester’s sensitivity sens for
the requirement corresponding to this policy and (b) the severity sev of the requester’s
restrictions derived from the specified value for a certain property, e.g., retention period.

The rationale for taking sensitivity into account is that sensitivity denotes how important
a requirement is to the requester. For example, if a policy p cannot be checked
due to incompleteness and the requester’s sensitivity sensi regarding the requirement
corresponding to this policy is VERY HIGH, the fuzziness for this property is critical; if
her sensitivity for this policy is rather low, fuzziness is less critical. [PAPS15]

The rationale for taking the severity of the requester’s restrictions into account is the
possibility for false negatives or false positives: If a requester allows an infinite retention
period (or delegation depth respectively) for a certain policy, this requirement will always
match; but the stricter the requester, i.e., the lower the value for the required retention period,
the more likely this value will lead to a mismatch. [PAPS15]

Considering the fact that the privacy matching approach that is extended in our example is
a pessimistic approach if fuzziness occurs (uncertain conditions always lead to mismatches),
the severity sevr should increase with an increasing required value r. For example,
the required retention period for the time parameter in the requirements specification in
Figure 4.21 is rtime = 48, while the required retention period for the bookerAddress
parameter is rba = 12. The corresponding provided values ptime and pba needed for
comparison are unknown. Following the matching rules described in Section 2.4.3, all values
ptime ≥ 48 (respectively pba ≥ 12) would lead to a match instead of the mismatch the privacy
matcher assumes for these cases. Consequently, a false negative is likely in both cases but
even more likely for pba than for ptime.

An exemplary fuzziness score assignment for severity sev based on fuzzy sets is depicted
in Figure 4.22. There, we see four membership functions for the fuzzy sets LOW, MEDIUM,
HIGH, and VERY_HIGH. In cases where the requested retention period value r is located in a
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Figure 4.22: Exemplary Mapping from Retention Period Values to Severity Fuzziness Scores

region where membership µ = 1 holds for one of the four functions, the assignment is clear.
The regions where the functions become fuzzy, i.e., 0 < µ < 1 for more than one function
at the same x-location, we need further information in order to assign a fuzziness score. For
example, the severity sev could be determined depending on the membership degrees and
the requester’s risk aversion.

Note, that also other, e.g., more or less fine-grained mappings, are possible. The most
appropriate mapping for a certain domain needs to be determined in an empirical way. In our
case, we simplified the decision for the granularity by sticking to the same scale as used for
the sensitivity in order to simplify the aggregation of both values done later. Also note that,
for optimistic matching approaches (treating uncertain conditions as matches), the mapping
would be the other way around: The fuzziness score should decrease with an increasing
required value.

On the basis of this mapping, we can now calculate fuzziness scores per property, per
policy, and per service using Formula 4.17:

fScore(propr) =


NONE provided value available
NONE required value r =∞
AGG(sensr, sevp) else

fScore(polp) = AGG(fScore(propp..n))

fScore(services) = AGG(fScores..n)) (4.17)

with propr referring to one property within a policy/requirement, polp referring to one
policy within a service specification, and services referring to a service specification. Which
aggregation operator AGG to choose is a design decision: We could argue to always use a
maximizing aggregation operator here because the fuzziness score will be used to assess
the risk of a bad decision. This risk should always be handled pessimistically and no
compensations should be made, e.g., the risk per service is the highest risk per policy.
However, using an averaging operator (here: e.g., the median) would lead to the advantage
that we get more distinguishable results. In general, the best decision also depends on the
number of the available offers and their specifications.

For our example specifications in Figure 4.21, using the maximum aggregation operator
leads to the fuzziness scores depicted in Table 4.4. As we can see there, we get a final
fuzziness score of VERY HIGH, although only one property has been evaluated with a
fuzziness score of VERY HIGH and the severity of this property is even LOW. This is
reasonable if the very high sensitivity of the corresponding policy is taken very seriously
as it indicates that violations to this property are very crucial to the requester.
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Table 4.4: Estimated Fuzziness Scores for the Running Example
Requirement Sensitivity Severity Fuzziness Score

/ Policy (Retention Period) (max)
bookerAddress / bookerAddress VERY HIGH LOW VERY HIGH

time / time MEDIUM MEDIUM MEDIUM
room / hall MEDIUM MEDIUM MEDIUM

Measuring incompleteness, as is done here, has already been proposed by decision-
making theorists, as decisions generally can depend on how much relevant information is
missing [FB88, FT95]. But up to now, it has never been applied to service matching (see
survey in Section 4.10).

As the fuzziness scores have the same format that we used above for transformation-
induced fuzziness (see Section 4.6.1.6), again, R4.1 and R4.2 are satisfied. R4.3 is satisfied
because severity is taken into account.

4.6.2.3 Further Applications

Again, the extension of the privacy matching approach is only an example. In general,
the fuzziness quantification as an extension is broadly applicable to various matching
approaches. For example, Bunse developed in his thesis [Bun14] a signature matcher
where transformation-induced fuzziness on the example for parameter multiplicities has been
considered. Moreover, Merschjohann [Mer14] developed a price model matcher including
a fuzziness estimation step that quantifies algorithm-induced fuzziness. Börding [Boe15]
worked out a concept for estimating algorithm-induced fuzziness occurring during the
matching of pre- and post-conditions.

The application of our concepts to matching approaches based on specification languages
for protocols is challenging as such specification languages often do not reveal whether the
specification is complete or not. For example, for a protocol specified as an automaton, there
is no possibility to decide whether it is complete or not only on the basis of this specification.
For provided service’s, we could compare the specification with runtime behavior in order to
detect some flaws in the specification, but also this approach does not ensure completeness.
Furthermore, for requirements specification, this approach is not feasible. Current research
activities [SFB901] include the application of evolutionary algorithms to synthesize complete
behavioral specifications.

The same challenges hold for pre- and post-conditions. For example, if a precondition
is left empty, this could mean that the service is always applicable. However, an empty
precondition could also be understood as an unknown precondition. These two options have
a totally different impact on matching.

One possibility to apply our concepts to such specifications is to extend these specification
languages with special language constructs that indicate a missing entity, e.g., a missing
condition, or a missing part of a protocol. In case of conditions, a language construct that
defines a pre- or a post-conditions as “not defined” needs to be introduced [Vij14, Boe15].
This way, the matcher can distinguish between cases where a precondition of a provided
service is “not defined” or just not existent. The first case leads to fuzziness, while the
second case leads to a full match with any required precondition.
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Figure 4.23: Architecture of the Fuzzy Matching Prototypes

Usually, we can identify cases where we need such language constructs within the meta
model of the considered specification language: Anywhere, where an arbitrary number of
model elements can be inserted (e.g., an arbitrary number of transitions within a protocol,
or an arbitrary number of parts within a condition), there is potential uncertainty about
completeness. However, there are also many languages where the size of a specification
is fixed. For example, in the privacy specification constructs used as an example, there is a
fixed set of properties to be specified for each parameter: The cardinality for both delegation
depth and for retention period is “1”.

4.7 Prototype Implementation

In order to realize fuzzy matching based on fuzzy logic as described in Section 4.6.1, we
realized a fuzzy logic framework. The framework part is independent of the particular
matcher, e.g., the framework can be used for reputation matching, but also for other
approaches, e.g., performance matching. This has been achieved by designing an architecture
based on three substitutable layers: the fuzzy logic layer, the matching strategy layer, and
the concrete matcher. The approach presented in Section 4.6.2 is implemented by further
extensions.

4.7.1 Architecture and Technologies

Figure 4.23 depicts the components that have been created as part of the implementation.
Each component has been realized by a set of Eclipse plug-ins, briefly described in the
following:

FuzzyLogic: The FuzzyLogic component provides an API to help with concepts from fuzzy
logic, e.g., different membership functions and operations defined on them. This
component can be substituted by third-party fuzzy logic frameworks.

MatchingStrategy: The MatchingStrategy component is a layer between the FuzzyLogic
component and concrete matchers. It realizes most of the concepts described in
Section 4.6.1 but is independent from a concrete matcher and a concrete specification
language.
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FuzzyReputationMatcher: In order to apply fuzzy matching based on fuzzy logic, we
implemented a FuzzyReputationMatcher that uses the FuzzyLogicFramework as an
example fuzzy matcher. By the help of the framework, this matcher realizes the
example fuzzy reputation matcher used as an illustration in Section 4.6.1.

Eclipse: The FuzzyLogicFramework uses the Eclipse Modeling Framework (EMF).
FuzzyExtensions: The FuzzyExtensions contain the fuzziness estimation as explained in

Section 4.6.2.2.
FuzzinessCopingStrategies: An extensible set of FuzzinessCopingStrategies as explained

in Section 4.5.
PrivacyMatcher: The PrivacyMatcher is used as an example application for our

implementation of FuzzyExtensions. It realizes the privacy matching approach
described in Section 2.4.3.

4.7.2 Main Features

The fuzzy matching implementation is highly configurable. For example, membership
functions of fuzzy sets can be derived in a more soft or in a more strict way. Figure 4.24
shows a screenshot that depicts the fuzzy reputation matcher’s configuration parameters:
ValueFSFuzzyPartSize refers to the size of the interval where the membership within the
fuzzy sets that represent the required reputation value turns from 0 to 1 or from 1 to 0
(parameter g in Figure 4.9). ConstraintFSFuzzyPartSize refers to the same parameter for
the fuzzy sets constructed from additional constraints within the requirements specification.
ConstraintFSThreshold refers to the point where these fuzzy sets begin/end. RiskAversion
is used for mapping the resulting n-p-interval to a scalar as described in Section 4.6.1.
Bootstrapping defines whether the fuzzy sets for the provided values are constructed via
bootstrapping (see Section 4.6.1.3) or using standard values. Note that each integrated fuzzy
matcher could extend this list of parameters, for example, in order to realize the performance
fuzzy matcher described in Section 4.6.1.8.

Below, the matching results view shows some matching results calculated with this
matcher configuration. In particular, we can see the intervals in the column Result and the
estimated fuzziness within the column Fuzziness. For example, in Input pair 2, we have
a low provider-induced fuzziness of type aleatory uncertainty (al. unc.) leading to a result
interval of [0.3393;0.5536]. In contrast, Input pair 3 got a result of [1;1] where no fuzziness
has been induced, while the matching result of Input pair 4 is completely uncertain.

4.8 Validation

Our fuzzy matching concepts have been applied and validated within the scope of CRC 901
“On-The-Fly Computing” [SFB901] on the basis of two case studies. In the following, we
introduce the validation questions, the case studies, and their results. Finally, we discuss the
results with respect to threats to validity and the satisfaction of the collected requirements.
Appendix D describes where to find all evaluation data, e.g., utilized example specifications.

In Section 3.10, we discussed the difficulties regarding service matching evaluation in
general. For fuzzy matching approaches, even more difficulties can be added, as surveyed
by Bruns [Bru15]. For example, for fuzzy matching results, there does not always exist a
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Figure 4.24: Screenshot of Some Fuzzy Matching Results for the Reputation Matcher

“ground truth” regarding how well a specification should match. In addition, fuzzy matching
results, as we propose them in this chapter, have an extended format compared to traditional
matching results, which makes fuzzy matching approaches hardly comparable to traditional
matching approaches on the basis of the matching results. In addition to all this, there is the
general trade-off between expressiveness of a validation metric and its applicability [BR08]:
validation metrics that a very expressive are most often not applicable, while metrics that are
easily applicable often only capture the behavior to be measured to a limited extent.

In the following, we present our validation attempts taking into account these difficulties
and focusing on the most important validation questions. The threats to the validity of our
validation are discussed in Section 4.8.6, while ideas for more advanced validation strategies
are sketched in Section 6.2.

4.8.1 Validation Questions

Inspired by studies about uncertainty and risk by Letier et al. [LSB14], our evaluation goal
was to investigate whether modeling fuzziness explicitly and reflecting it in the final matching
results improves decision-making of the involved users.

Following the guidelines of evidence-based software engineering by Kitchenham et
al. [KDJ04], we formulated our evaluation question as follows:

(VQ2.1) Decision-Making: Do fuzzy matching results improve the user’s decision-making
in the presence of fuzziness?

This question needs to be investigated with respect to the fuzzy-logic-based approach
presented in Section 4.6.1 and also with respect to the fuzziness quantification approaches
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presented in Sections 4.6.1.6 and 4.6.2.2. The first is addressed in Case Study 2.1 (see
Section 4.8.2), while the latter is addressed in Case Study 2.2 (see Section 4.8.3).

4.8.2 Case Study 2.1: Evaluation of Fuzzy Reputation Matching based
on Fuzzy Logic

In the following, we report about four experiments we performed using the implementation
presented in Section 4.7. In order to answer the evaluation question, within the scope of these
experiments, we applied our approach to a set of handmade specifications as well as real-
world specifications. Following the example by Esfahani et al. [EKM11], we compared our
new fuzzy approach to an alternative approach that does not take fuzziness into account in any
way. The alternative approach is represented by the traditional reputation matching approach
described in Section 2.4.4. The traditional approach ignores all emerged fuzziness by turning
fuzzy terms into hard thresholds and using the arithmetic mean as an estimated reputation
value instead of representing it in terms of a possibility distribution. As a consequence, in the
traditional approach, we only distinguish between mismatching conditions (result = 0) and
matching conditions (result = 1). The results per condition are aggregated using the average
– the same aggregation operator as used for aggregating the results in our new approach.
Because of this aggregation of the boolean results computed per condition to an overall result,
the overall traditional results can be gradual to a specific extent.

Predominantly, our experiments are intended to show two important advantages of
the interval matching results delivered by our fuzzy-logic based matching approach in
comparison to the traditional results:

• Distinguishability: Specifying requirements and services using fuzzy sets will often
allow for distinguishing services that matched equally well using the traditional
approach. Given the evaluation of a set of services, we define the degree of
distinguishability as the probability that two services randomly selected from all pairs
(and a level of risk aversion in [0, 1]) do not have the same score (see Section 2.6).
• Uncertainty representation: The width of the interval [n, p] informs about the

uncertainty of the matching result, which is expected to be important for decision-
making. In particular, the upper bound p informs about the potential of a service.
The suboptimality of a service with a matching result [n, p] is not proven unless there
is another service with a result [n′, p′] such that p < n′; in this case, the former is
dominated by the latter. To make sure the best service is not missed, the requester
should in principle check all non-dominated ones, or modify the requirements until a
clear winner is found.

In addition, we investigated further properties that contribute to the applicability of our
approach: scalability in terms of the amount of matched data in Experiment 2.1.3 and
transferability to other specifications as well as correctness of matching results compared
to the literature in Experiment 2.1.4.

4.8.2.1 Experiment 2.1.1: Toy Example

The first experiment is a toy example. The main purpose of this experiment was to test the
evaluation setting.
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Procedure
In this experiment, we applied our approach to 10 services within the domain of university
management with 500 ratings in total as well as one requirements specification including five
conditions. All specifications in this experiment have been constructed manually. The service
specifications are the independent variables in this experiment. The dependent variables are
the matching results and their distinguishability as defined above.

Results and Discussion
Figure 4.25 a) shows the matching results for each service. One interesting result is that
s2 and s3 both have a matching result of 0.4, and s8 and s9 both have a matching result
of 0.8. Selecting one of the services on the basis of these results becomes a difficult task
for the requester because she cannot differentiate between services with the same matching
result. This situation occurs especially often when considering the traditional results. This is
also reflected within the computed degree of distinguishability for the traditional approach:
0.8. [PSB+]

In contrast, the degree of distinguishability for the fuzzy approach is higher, namely 1.
The degree of 1 means that all services can be distinguished from each other on the basis
of the [n, p] intervals. Figure 4.25 a) shows the [n, p] intervals as well as the best and worst
ranks possible for each service. The best rank is obtained by considering a service’s upper
bound p while considering all other services’ lower bounds n. The worst rank is obtained by
considering a service’s lower bound n while considering all other services’ upper bounds p.
For example, s10 could be assigned with rank one, if complete information would lead to a
matching result similar to the upper bound of 0.85. However, complete information could
also have negative consequences for this service, e.g., the matching result could develop
towards the lower bound of 0.1 while the other services develop towards higher results. In
this situation, s10 would get the very worst rank. In contrast to these high variances between
possible ranks for s10, Service s8 —having a smaller interval— is a good choice in any
way as it could be ranked first, but it will never be worse than Rank 4. In addition to this
knowledge especially valuable for the service requesters, this information is also of a high
importance for service providers because it allows them to evaluate whether they should
spend effort in providing more information.

Moreover, Figure 4.25 b) depicts the results in a possibility/necessity diagram. In this
diagram, each service is represented as a point. The upper right corner represents services
that can be viewed as certainly good matches (both n and p are high). In contrast, results in
the upper left corner are potentially but not necessarily good. The more certain the matching
result [n, p] of a service, the closer it is located to the diagonal (because n ≈ p, forming a
narrow interval). The currently depicted matching results contain a high amount of fuzziness
reflected by large intervals. This indicates that the representation on the basis of [n, p]
intervals provides more information than the traditional results in the table and, thereby,
supports decision-making much better. [PSB+]

4.8.2.2 Experiment 2.1.2: TrustRadius Ratings

The setting for Experiment 2.1.2 is similar to the first one except for the use of real instead of
manually specified input data. Furthermore, this experiment handles much more input data.
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Figure 4.25: Results of Experiment 2.1.1 (based on [PSB+])

Table 4.5: Degrees of Distinguishability (Exp. 2)
A&B (F) A&B (T) CMS (F) CMS (T)

Req 1 0.802 0.498 0.652 0.471
Req 2 0.447 0.435 0.223 0.116
Req 3 0.087 0.000 0.116 0.000
Req 4 0.763 0.237 0.898 0.508
Req 5 0.170 0.087 0.622 0.114
Req 6 0.968 0.569 0.936 0.568
Req 7 0.826 0.660 0.813 0.570
Req 8 0.842 0.498 0.886 0.487
Req 9 0.941 0.743 0.909 0.729
Req 10 0.648 0.597 0.447 0.514

Procedure
In order to perform this experiment on the basis of real data, we collected ratings from the
software rating website TrustRadius.com [Tru], where software is classified into different
categories regarding the functionality. Ratings are given by real people that used the software
in the past and thereby judge different properties of the software, e.g., its usability, its
availability, and its performance. At time of evaluation, TrustRadius listed 34 services with
in total 520 Ratings in the category ’Content Management Systems’ (CMS) and 23 services
with a total of 615 Ratings in the category ’Accounting and Budgeting Services’ (A&B).

We matched these services against 25 requirements specifications (including one to five
conditions) that have been specified by computer science students and PhD students. None
of these test persons had prior knowledge about the internals of the matching algorithm
and how the matching results are produced exactly. Figure 4.26 shows two examples of
the requirements specifications produced by the test persons. The contexts allowed to be
used within the conditions in these requirements specifications were limited to the kinds of
ratings TrustRadius contained most data for at time of evaluation: Overall Rating, Usability
Rating, Availability Rating, and Performance Rating. In addition to the Content Management
Systems, we repeated this experiment for the A&B category. In total, we analyzed 340
matching results for CMS and 230 matching results for A&B. [PSB+]
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Figure 4.26: Example Requirements Specifications for Experiments 2.1.1–2.1.3 [PSB+]

Results and Discussion
Table 4.5 provides a summary of the degrees of distinguishability of the matching results
for the first ten requirements specifications within the two data sets. The results are shown,
both for the new, fuzzy (F) and for the traditional approach (T). As can be seen, the fuzzy
approach consistently improves distinguishability across all requesters. This finding is in line
with our expectations. In the following, we discuss a selection of the results in more detail.
For the complete list of results, refer to Appendix D.

As an illustration, Figure 4.27 shows the diagrams for Requester 1, 6, 8 and 9 for the A&B
and for the CMS services. As can be seen, for the specification of Requester 1, the points are
located closer to the diagonal than those of the three others. This means that the matching for
Requester 1 lead to more precise evaluations of the services. In line with Figure 4.26 a), the
diagram also shows that the highest possibility degrees do not exceed 0.5. This fact indicates
that Req 1 is quite demanding. The requirements of Req 9 (see Figure 4.26 b)) are lighter
(at least for the availability ratings), as can be seen from the many services with matching
results having a possibility degree of 1. Nevertheless, there are only a few services having
a high necessity degree, too, suggesting some obvious choices for this requester. In order to
achieve even more useful results, she may consider tightening her requirements and starting
a new matching iteration. As we can learn from these facts, the new matching results are
more informative and, thus, much more useful than the simple scores of 0 that are likely to
be obtained in the traditional approach.

Taking a closer look at the matching results, we can find further indications for the benefit
of our new interval results. For example, when matching requirements specification Req 6 to
the CMS services, the traditional results are only able to distinguish between three groups of
services: Services that do not match at all (result of 0), services that match with a result
of 0.25, and two services that match with a result 0.5. The services with the result of
0.5 include the well-known CMS services Joomla! and Drupal. In contrast, considering
the interval results, Joomla! having a result of [0.4,0.65] dominates Drupal having a result
of [0.217,0.55]. According to these intervals, Joomla! is potentially the better match and
more certainly a good match as well. Interestingly, the interval results also reveal that some
services among those with a traditional result of 0.25 are potentially a better choice. Among
these is WordPress which is potentially a much better match according to its interval result of
[0.375, 0.75], even though Joomla! is more certainly a good match: p is lower but n is higher.
On the basis of these results, a risk-averse requester would choose WordPress, and a risk-
affine requester would rather choose Joomla!. Thereby, the interval results support requesters
in finding the most appropriate choice according to their own user-specific characteristics
much better than the traditional results. In general, when considering the traditional results,
some services often hide within a group of equal matching results, complicating the selection,
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Figure 4.27: Results of Experiment 2.1.2 [PSB+]
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while the interval results more clearly identify single services as good candidates depending
on the amount of risk a requester is willing to take. Furthermore, the matching results
strongly depend on the requirements specification again: In the results for most of the
requirements specifications, Joomla! clearly dominates WordPress, but not for Req 6. This
indicates that it is useful to work with more complex requirements specifications allowing
the requesters more freedom in specifying the services they are satisfied with than related
approaches do. [PSB+]

4.8.2.3 Experiment 2.1.3: Scalability

Unlike the first two experiments within this case study, the next experiment addresses
scalability.

Procedure
In a third experiment, we tested how our approach scales to a broader range of input data, i.e.,
a high number of requirements specifications as well as a high number of services and a high
number of ratings. For this purpose, we randomly generated 1000 requirements specifications
and matched them against all the services in all the categories available from TrustRadius.
At evaluation time, these were in total 924 services with altogether 10907 ratings. Based on
these 924 services, we executed 924000 matching runs and measured the runtime on a Dell
Latitude notebook operating Windows 8.1, 64-bit with 8GB RAM and an Intel(R) Core(TM)
i7-2640M CPU @2.80GHz. [PSB+]

Results and Discussion
The mean total runtime for all 924000 matching runs took 642 seconds (10.7 minutes). With
respect to the high amount of input data, we take this number as a satisfying result because, in
general, we do not expect that so many services need to be matched at the same time in most
usage scenarios. The matching on the basis of reputation data can often be ommitted for a
number of services because they can be filtered out by matching steps being executed earlier
within the matching process with respect to structural or behavioral properties. Furthermore,
manual inspection showed that much of the measured time is spent on saving matching
results in the form of MatchBox’ hierarchical matching result trees that are constructed in
order to provide the user with as much information about the matching as possible, including
intermediate matching results. For example, the result file for the 924000 matching results
constructed within the scope of this experiment was 2.28 GB. [PSB+]

4.8.2.4 Experiment 2.1.4: Performance Matching

This experiment is based on data from a performance simulation of self-adaptive services,
as described in [BLB13]. In [BLB13], three different service variants have been simulated
with varying architectures (5s vs. 10s vs. 20s batches) of a cloud-based web service. In the
following, we call these three services S_a, S_b, and S_c. [PSB+]

Procedure
The performance simulation described in [BLB13] predicts response times and the MTTQR
for each self-adaptive service architecture with an exponentially distributed interarrival rate
λ = 4 1

second for 100 seconds. Within these 100 seconds, 393 respectively 376 predicted
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response times as well as one MTTQR value for each of the services have been obtained.
According to the results reported in [BLB13], S_a is the best performing service, dominating
S_b, while S_b again dominates S_c.

Within the scope of our experiment, we compared the reported results according to this
simulation data to the matching results computed by our fuzzy performance matcher. The
simulated data was matched against four manually specified requirements specifications
Req 1’, Req 2’, Req 3’, and Req 4’. These requirements specifications increase in their
strictness starting with a requested response time lower than 3 seconds and a requested
MTTQR lower than 40 seconds in Req 1’ down to a requested response time lower than
1.5 seconds and a requested MTTQR lower than 10 seconds in Req 4’.

Results and Discussion

Table 4.6: Matching Results for Experiment 2.1.4 [PSB+]
S_a S_b S_c

Req 1’ [1.0 , 1.0] [1.0 , 1.0] [0.0 , 0.041]
Req 2’ [1.0 , 1.0] [0.649 , 0.725] [0.0 , 0.0]
Req 3’ [0.9 , 1.0] [0.300 , 0.467] [0.0 , 0.0]
Req 4’ [0.599 , 0.765] [0.146 , 0.39] [0.0 , 0.0]

Best/Worst Ranks 1/1 1/2 3/3
Rank in [BLB13] 1 2 3

Table 4.6 shows the matching results for Req 1’, Req 2’, Req 3’, and Req 4’ matched to
S_a, S_b, and S_c. As we can see, Service S_a receives the best rank for all requirements
specifications, while S_c always receives the worst rank. S_b is on Rank 2 for Req 2’ to
Req 4’ and on Rank 1 for Req 1’ together with S_a because Req 1’ is very undemanding.

Thus, all in all, our matching results are in line with the results reported in [BLB13].
However, in addition, our results also provide the extra information of fuzziness. For
example, regarding Req 3’, S_a is not necessarily a full match. Due to imperfect information,
we can only determine that the matching result is somewhere between 0.9097 and 1. This
information is helpful for a very risk-averse requester when selecting a service. But also the
provider of S_b can learn a lot from the results: Providing more information can potentially
improve her ranking in general. However, providing more information is definitely not
sufficient to rank her service best for most of the example requirements specifications. To
improve her revenue, she also needs to do internal changes. [PSB+]

4.8.3 Case Study 2.2: Evaluation of Fuzziness Quantification

In the following, we describe how we evaluated the fuzziness quantification concepts
introduced in Section 4.6.1.6. This includes three experiments. While the first one focuses
on reputation matching, the others deal with privacy matching.
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4.8.3.1 Experiment 2.2.1: Reputation Matching

Following the ideas presented by Esfahani et al. [EKM11], we applied a sensitivity analysis
in order to evaluate our fuzziness estimation regarding transformation-induced fuzziness in
fuzzy reputation matching.

Procedure
In order to evaluate the fuzziness scores assigned during the fuzziness estimation in fuzzy
reputation matching (see Section 4.6.1.6), we simulated set of matching executions by
systematically varying the fuzzy set parameters xr1, xr2, xp1, xp2, and xp3 (see Figure 4.18).
This is done by iterating different values using a fixed increment (e.g., 0.5 and 0.15) in
nested loops. xr1 has been incremented in the most inner loop so that we could investigate
result groups where xr2, xp1, xp2, and xp3 are equal but xr1 varies. This is important
because xr1 is the uncertain parameter while the other parameters are known, as explained
in Section 4.6.1.6.

Accordingly, the independent variables in this experiment are the different fuzzy sets.
The dependent variables are the result groups as defined above. For each result group,
we measured the dispersion regarding the p-values, the n-values, and the difference p − n.
This allows us to aggregate average differences per fuzziness score. The higher the average
differences, the more sensitive to uncertainty are the matching results for this fuzziness score.

Furthermore, we measured the differences in the result groups with fuzziness scores HIGH
and VERY HIGH. This is done by measuring homogeneity as introduced in Section 2.6.
The more homogeneous the results are, the more balanced the proportion of mismatches
to fuzzy matches within a group. For example, if all results within one result group are full
mismatches, then homogeneity is 1 and there is no risk that the uncertain location of xr1
leads to a false positive or a false negative. In contrast, the more imbalanced the proportion
of mismatches to fuzzy matches is, the higher the probability that the actual returned result is
wrong. Accordingly, a lower average homogeneity indicates a higher risk for false negatives
and false positives cased by uncertainty. Like in the above described experiment, we repeated
this experiment for different increments.

Results and Discussion

Table 4.7: Statistics for Fuzziness Scores in Reputation Matching
Fuzziness avg avg avg Mismatch&Fuzzy all

Score PDiffs NDiffs DiffDiffs Cases Cases
NONE 0 0 0 0 330

incr LOW 0 0.1966 0.1966 0 484
= 0.5 MEDIUM 0.27 0.4362 0.311 0 506

(VERY) HIGH 0.5656 0.4682 0.4223 130 130
NONE 0 0 0 0 46376

incr LOW 0 0.2451 0.2451 0 51486
= 0.15 MEDIUM 0.2993 0.4787 0.385 0 53234

(VERY) HIGH 0.5927 0.4804 0.4562 21760 21760

As Table 4.7 shows in the first five columns, the differences increase with an increasing
fuzziness score. Especially the p-differences show this development: There are no
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differences for p in all matching executions where the fuzziness score is LOW as p is always
0; there is an average difference of 0.27 (resp. 0.2993) within matching executions with
the fuzziness score MEDIUM, so p varies a bit in those cases; for cases with the fuzziness
score (VERY) HIGH (including HIGH and VERY HIGH), p varies with a far higher average
difference of 0.5656 (resp. 0.5927).

The rightmost column shows how many result groups have been assigned to each fuzziness
score. Remember that each result group has a different assignment of xr2, xp1, xp2, and xp3.
The second column from the right shows the amount of result groups that contain both full
mismatches (n = p = 0) and fuzzy matches (0 ≤ n ≤ p ≤ 1). These are interesting cases
as these are the cases where the uncertain xr1 makes the difference between a full mismatch
and a fuzzy match, i.e., cases where serious false negatives and false positives can occur. As
we see in the table, such cases only occur for matching executions with the fuzziness score
(VERY) HIGH. This finding demonstrates the correctness of our discussion about these cases
in Section 4.6.1.6. Moreover, the table shows that all cases with a fuzziness score of (VERY)
HIGH are such cases (130 from 130, respectively 21760 from 21760). This makes sense as
xr1 < xp3 and xr1 > xp3 can both hold, independent from xr2, xp1, xp2, and xp3, as long as
xr2 > xp3 holds.

Regarding the homogeneity measurements, we found the following: For an increment of
0.5, we measured an average group homogeneity within HIGH cases of 0.6394 and within
VERY HIGH cases of 0.5754. For an increment of 0.15, we measured an average group
homogeneity within HIGH cases of 0.7384 and within VERY HIGH cases of 0.6116. As a
result, both times, the homogeneity for the VERY HIGH cases is higher. This means that,
taking the increment of 0.15 as an example, matching results with a fuzziness score of VERY
HIGH lead to more false negatives and false positives than matching results with a fuzziness
score of HIGH in approximately 12% of the cases.

These findings indicate the effectiveness of our fuzziness scores: The scores truly reflect
the uncertainty within matching results and are, thus, useful for the user’s decision-making.
We also performed this experiment with further increments lower, higher and in between 0.5
and 0.15 and the findings were the same.

4.8.3.2 Experiment 2.2.2: Privacy Matching with Expert Results

In this experiment, we performed our fuzzy privacy matching approach on 21 pairs
of exemplary requirements specifications and provided service specifications from the
university management domain. This experiment has been published in [PAPS15].

Procedure
For all these pairs, we first determined the matching results manually by expert knowledge,
on the basis of complete specifications. After that, we ran our fuzziness estimation approach
introduced in Section 4.6.2.2 on incomplete versions of these specifications. Next, the
experts’ matching results based on full knowledge were compared to the results the matcher
determined for the incomplete specifications. Thereby, we could determine correct matches
(the calculated matching result was equal to the expert’s result, i.e., a true positive or a true
negative) as well as mismatches (the calculated matching result was not equal to the expert’s
result, i.e., a false positive or a false negative). Furthermore, we measured fuzziness scores
and compared them to the matching results. [PAPS15]
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Results and Discussion

Table 4.8: Matching Results and Fuzziness Scores from Experiment 2.2
Result Expected Result Actual Result Fuzziness Score

IP 1 TP 1 1 LOW
IP 2 TP 1 0.583 LOW
IP 3 FP 0 1 MEDIUM
IP 4 TN 0 0 LOW
IP 5 TN 0 0 LOW
IP 6 TN 0 0 NONE
IP 7 TN 0 0 NONE
IP 8 TN 0 0 LOW
IP 9 TN 0 0 NONE

IP 10 TN 0 0 NONE
IP 11 TP 1 0.589 MEDIUM
IP 12 TP 1 1 MEDIUM
IP 13 TN 0 0 NONE
IP 14 TN 0 0 NONE
IP 15 TN 0 0 NONE
IP 16 TN 0 0 NONE
IP 17 TN 0 0 NONE
IP 18 TN 0 0 NONE
IP 19 TN 0 0 NONE
IP 20 TP 1 1 VERY_HIGH
IP 21 FP 0 1 VERY_HIGH

Table 4.8 shows the expected matching results determined by expert knowledge, the
actual matching results our matching approach calculated, and the estimated fuzziness
scores. Furthermore, the results are classified as true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). On the basis of these results, we determined
precision (0.714) and recall (1) as defined in Section 2.6.

All in all, the results show that the fuzziness scores for correct matching results (true
positives and true negatives) were rather low while the results for false positives (and false
negatives) were comparatively high in 95% of all cases. Assuming that a user uses the
matching results in combination with the fuzziness scores, false positives are reduced. For
example, with a selection strategy that does not select services with a high (> 0.5) fuzziness
score, the precision increases to 0.857. [PAPS15]

From these results, we learn that fuzziness scores are worth considering when selecting a
service based on a matching result, at least in the context of the analyzed example situation.

4.8.3.3 Experiment 2.2.3: Optimistic/Pessimistic Privacy Matching

For this experiment, remember the difference between an optimistic and a pessimistic
matching approach. “(1) The optimistic case is to consider all missing information on the
provider side as the most strict case, e.g., retention period = 0. This potentially increases
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the number of false positives. This means, the matcher returns a high matching result
although, in reality, the service does not match. (2) The pessimistic case is to substitute
missing information with the least strict case, e.g., retention period = *. This can lead to
false negatives because, in uncertain cases, the matcher might return low matching results
although, in reality, the service would be a good match.” [PAPS15]

Procedure
In reality, the user is not able to influence a third-party’s matcher in a way that she can
choose between optimistic and pessimistic execution. For evaluation purposes, we used
a configurable matching approach and executed it in both strategies on the basis of 28
exemplary input pairs in order to measure the differences. In particular, we expected a
correlation between the differences and the estimated fuzziness scores, as explained below.

Results and Discussion
Table 4.9 shows the results from both matching runs and their difference for each pair.
Furthermore, the estimated fuzziness is depicted. As the results show, high fuzziness scores
do not always correlate with a high difference. This is due to the fact that the fuzziness also
incorporates characteristics like sensitivity and not only the likelihood for false positives
or false negatives. However, when comparing the average difference for low fuzziness
scores (NONE, LOW, MEDIUM) to the average difference for high fuzziness scores (HIGH,
VERY_HIGH, COMPLETE), we find that the difference for low scores is significantly lower
(0.416) than for high scores (0.714). This is in line with our expectations because it shows
that false positives and false negatives are more likely for matching results assigned with
higher fuzziness scores than for results with lower scores.

4.8.4 Discussion Summary

All in all, from our evaluation results, we can conclude that a user can make a more informed
decision based on the results delivered by our new approach compared to traditional results.

Especially Experiment 2.1.1 and Experiment 2.1.2 show the effectiveness of the intervals
calculated in our fuzzy-logic-based approach. Furthermore, we showed in Experiment 2.1.3
that this approach is also able to handle a big amount of data, which makes it applicable
in practice. The broad applicability to further specifications as well as the correctness of
our matching results compared to reference results from the literature have been shown in
Experiment 2.1.4.

Experiment 2.2.1 to 2.2.3 address the fuzziness scores from the fuzziness estimation step
and show that these scores indicate the dimension of the risk the usage of a fuzzy matching
result is inflicted with in an appropriate way.

However, there are several threats to the validity of our evaluation as discussed in
Section 4.8.6.

4.8.5 Satisfaction of the Requirements

As discussed in the following, the requirements that we collected in Section 4.3 are satisfied
to a high degree:
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Table 4.9: Matching Results and Fuzziness Scores from Experiment 2.3
Result Opt. Result Pess. Diff Fuzziness

IP 22 1 0 1 MEDIUM
IP 23 1 1 0 NONE
IP 24 1 1 0 NONE
IP 25 0.75 0 0.75 VERY_HIGH
IP 26 1 1 0 NONE
IP 27 0.1819 0.1819 0 NONE
IP 28 0.5 0.5 0 NONE
IP 29 1 0.5 0.5 LOW
IP 30 1 0 1 MEDIUM
IP 31 1 0.3572 0.6428 LOW
IP 32 0.75 0.125 0.625 HIGH
IP 33 1 0.2 0.8 MEDIUM
IP 34 0.5 0 0.5 HIGH
IP 35 0.6364 0.3637 0.2727 LOW
IP 36 1 0 1 MEDIUM
IP 37 1 1 0 MEDIUM
IP 38 1 1 0 NONE
IP 39 0.875 0 0.875 VERY_HIGH
IP 40 1 0 1 VERY_HIGH
IP 41 0.5 0 0.5 COMPLETE
IP 42 0.5 0.3637 0.1363 LOW
IP 43 1 0.5 0.5 LOW
IP 44 1 0 1 MEDIUM
IP 45 1 0.3572 0.6428 LOW
IP 46 0.75 0 0.75 VERY_HIGH
IP 47 1 0 1 VERY_HIGH
IP 48 0.6819 0 0.6819 COMPLETE
IP 49 0.6364 0.1819 0.4545 HIGH

(R1) Deliver Unadulterated Matching Results: Fuzzy Matching approaches constructed in a
way as described above do not deliver adulterated matching results. The reason is that
they explicitly distinguish between the matching result and the quantified fuzziness
and present them in a separate way.

(R2) Handle Different Types and Sources of Fuzziness: In general, our fuzzy matching
concepts are constructed in a way that they cope with all fuzziness types and fuzziness
sources introduced in Section 4.4. The concrete approaches presented in Section 4.6
cover gradedness, vagueness, uncertainty, and incompleteness as well as requester-
induced, provider-induced, and transformation-induced fuzziness. Other types and
source, e.g., algorithm-induced fuzziness are left for future work, as discussed in
Section 6.2.
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(R3) Make Source of Fuzziness Transparent: Step 3 (Final Fuzziness Estimation) and Step 4
(Result Construction) take care of determining and presenting the arisen fuzziness
sources.

(R4) Make Extent of Fuzziness Transparent: Step 3 (Final Fuzziness Estimation) and Step 4
(Result Construction) take care of determining and presenting the arisen extent of
fuzziness. The evaluation presented in Section 4.8 shows that the determined fuzziness
scores form an appropriate basis towards supporting a more informed decision-making.

(R5) Support Diverse Matching Approaches: This requirement is not completely satified:
While the fuzzy matching approach presented in Section 4.6.1 is tailored to
approaches based on fuzzy logic, the approach introduced in Section 4.6.2 is used for
approaches based on (numerical) specifications where incompleteness is identifiable
(see Section 4.6.2.3). Future work should also target further matching approaches. For
example approaches based on graph matching still represent a challenge.

(R6) Support Complex Specification Languages: The satisfaction of this requirement is
related to R5. As mentioned above, future work should cover further kinds of
specification languages, e.g., graph-based languages for protocol specifications.

(R7) Efficiency: The experiment described in Section 4.8.2.3 indicated the scalability
of our fuzzy logic-based approach. The scalability of an approach extended with
our fuzziness estimations depends on the concrete matching approach. A detailed
evaluation of the efficiency is subject to future work.

(R8) Non-Invasiveness: Section 4.6.2 describes an approach where fuzzy matching is
applied as an extension to a non-fuzzy approach. The experiment described in
Section 4.8.3.3 showed that it was able to treat that approach as a black-box and still
get useful fuzzy matching results.

Section 4.10 compares the extent to which our approach satisfies the requirements with
related work.

4.8.6 Threats to Validity

In the following, we discuss the most significant threats to the validity of our validation.
Although we were able to apply our reputation matching approach to a lot of real data taken

from the TrustRadius website, we still have rather few ratings per service and per property.
This leads to a number of large intervals (almost [0,1]). However, in these cases, the user is
at least provided with the information that the matching result is unknown. This is not the
case for the traditional results where the user is lead to believe in an adulterated result which
may consequently cause a bad choice. Using the more informance interval results, the user is
provided with the possibility to decide on her own how much risk she is willing to take when
selecting a service based on a matching result. [PSB+]

Another threat to the validity of our validation is the fact that the traditional matching
approach we used as a baseline could also perform differently. For example, another
(unfuzzy) matching approach leading to more gradual results, also for the single conditions,
would also make an interesting comparison. The same holds for the results gained
from performance simulations and used for comparison to our matching results. For
future evaluation activities, we need to find more possibilities to compare our matching
results to other approaches in spite of issues like availability of example specifications
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and comparability of fuzzy matching results to results in simpler formats complicating the
evaluation of our approach. [PSB+]

Similar to Section 3.10.4, another threat to validity is that only a few metrics have been
taken into account. For example, instead of using one metric to measure distinguishability,
multiple analytical metrics should be used in order to compare their results to each
other [BR08].

Some of our experiments also included manually specified specifications. As already
discussed in the beginning of this section, such a procedure is always inflicted with a risk
for biased results. The same holds for manual interpretation of matching results.

Furthermore, also in this part of the thesis, we only present a level-I-validation [BR08].
To extend this by a level-II-validation, more extensive user studies are needed as discussed
in Section 6.2.

In general, we cannot exclude the possibility that our experiments lead to significantly
other results when applied to another context, e.g., to another domain, to another set of
example specifications, or to other matchers. Thus, there is a need for more repetitions of
these experiments.

4.9 Limitations

Currently, we investigated fuzzy matching concepts only for a small set of matching
approaches. In the future, this research needs to be extended with further matching
approaches covering other service properties.

For example, the fuzziness quantification as an extension that we presented in Section 4.6.2
currently only works for numerical values. We need to extend it in order to cover further
properties. Examples are ontological terms like the visibility property from the considered
privacy specifications, or graph-based specifications used for protocols or conditions. The
latter is especially difficult: For protocols specified as automata, the specifications themselves
do not reveal whether they are complete or incomplete. The same holds for pre- and post-
conditions specified in formalisms like first-order logic. We propose a first step towards a
solution to deal with such specification languages in Section 4.6.2.3. However, this solution
requires extra knowledge and effort spent by the requesters or providers. Future studies
should also address the more general case.

Furthermore, the applicability of the fuzziness quantification as an extension is limited also
in another way: The integrated matching approaches can be used as a black-box, however, the
one adding the fuzziness extension still needs knowledge about how the matching approach
works in order to deal with the arisen fuzziness in an appropriate way. For example, she needs
to know whether the integrated matching approach follows an optimistic or a pessimistic
strategy, which is not always realistic.

Possibilities for the improvement of our fuzzy-logic-based approach include the
refinement of service data restrictions (see Section 4.6.1.3). At the moment, we work with
hard thresholds here. However, also for such constraints, fuzzy thresholds could be more
useful because requesters’ do not necessarily have hard constraints regarding properties like
the age of ratings.
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Furthermore, in our fuzzy-logic-based approach, we exclusively use trapezoidal fuzzy sets.
However, sigmoidal fuzzy sets could be even more appropriate, as the requester’s gradedness
does not necessarily increase linearly. It could also increase exponentially.

The derivation of fuzzy sets is only one example where our approach is based on domain
knowledge. Another example is the selection of aggregation operators. We can propose
a certain aggregation operator based on its characteristics, like compensation, however, in
order to determine which aggregation really works best in a real-world scenario, user studies
are needed.

Our prototype is limited to the main concepts and does not realize every detail described
in this chapter. For example, we also did not fully implement fuzziness pre-checks and
fuzziness coping strategies as their realization is trivial and they have not been used within
the experiments.

4.10 Related Work

Just like in Section 3.12, approaches related to the work described in this chapter have
been rigorously surveyed according to the guidelines for systematic literature reviews by
Kitchenham et al. [KBB+09, KC07, BKB+07]. In the following, we give more details about
the survey procedure we followed and the results this procedure lead to.

4.10.1 Survey Procedure

The survey procedure used for this section is similar to the survey procedure described in
Section 3.12. Thus, only the varying parts are highlighted in the following.

The survey described in the following is based on our earlier published surveys [Pet13,
PvDB+13] which serve as a primary study. This primary study already showed that the
survey procedure was applicable and lead to useful results. In addition to the primary study,
we have now concretized our definitions of fuzziness. Our survey question is: To which
extent do existing approaches deal with fuzziness with respect to our requirements?

Like in Section 3.12, papers were included according to lists of predefined keywords.
In addition to Service/Component Keywords and Matching Keywords, here, we also use
Fuzziness Keywords. Fuzziness keywords describe terms that indicate one of the fuzziness
types. Examples are “fuzzy”, “uncertain”, “approximate”, and “vague”. The complete
keyword lists can be found in Appendix C.

We used the same survey process as in Section 3.12. Only the second step changed:

1. see Section 3.12
2. In the second step, we scanned all the abstracts for the fuzziness keywords. Only

papers with at least one fuzziness keyword mentioned in the abstract have been
included into the next step. Furthermore, the fuzziness keyword had to refer to the
matching keyword and to the approach described in the publication. For example, if
not the matching but other activities, e.g., composition, are described to be fuzzy, the
paper is excluded.

3. see Section 3.12
4. see Section 3.12
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Using this strategy, we started with a number of 409 publications in the first step. 340
papers had been excluded via title and abstract. Further 31 papers had been excluded by
further exclusion criteria listed in Appendix C. Thus, we ended up with 49 papers (grouped
into 33 approaches) for detailed reviews and to be discussed in the following.

4.10.2 Comparison of Fuzzy Service Matching Approaches

We reviewed the selected publications with respect to seven criteria that reflect the
requirements described in Section 4.3:

• Considered Fuzziness Types: This criterion answers, which of the fuzziness
types introduced in Section 4.4.1 have been considered in the described
matching approach. Possible values range from Gradedness (“Gra”), over
Optionality/Variability (“Opt/Var”), Vagueness/Imprecision (“Vag/Imp”), Uncertainty
(“Unc”), and Approximations/Relaxations (“App/Rel”), to Incompleteness (“In”).
Note that always only the most significant fuzziness types are listed. For example,
even though vagueness may lead to uncertainty in most cases, only vagueness is listed.
This criterion refers to Requirement R2.
• Considered Fuzziness Sources: This criterion answers, which of the fuzziness sources

introduced in Section 4.4.2 have been considered in the described matching approach.
Possible values are Requester (“Req”), Provider (“Prov”), Algorithm (“Algo”), and
Transformation (“T”). This criterion refers to Requirement R2.
• Result Format: This criterion indicates how comprehensive the matching results

returned by the described matching approach are and to which extent they reflect
induced fuzziness. Possible values include “score” (one numerical value out of a
continuous range of values, e.g., percentage values), “degree” (one result out of a
fixed number of result classes), “boolean” (e.g., “select/reject” results), and others.
This criterion refers to Requirements R1, R3, and R4.
• Aspect: Which kind of service properties are matched? Possible values are Non-

Functional Properties including Quality Properties (“NFPs”), inputs/outputs (“IO”),
inputs, outputs, preconditions, effects/post-conditions (“IOPE”), (“Keywords”), and
(“various”). This criterion refers to Requirement R6.
• Complexity: This helps to answer the question of how complex or how expressive the

underlying specification language is. Possible values are “low” (e.g., used for purely
numerical or simple and strongly restricted linguistic representations), “medium”
(for more complex representations, e.g., incorporating ontologies), and ”high” (very
expressive languages, e.g., including a flexible description of preconditions and
effects). This criterion refers to Requirement R6.
• Kind: The kind of specification language supported by the described matching

approach. Possible values are numerical (“num.”), “ontological” (“ontol.”), linguistic
terms (“ling.”), fuzzy sets (“FS”), natural language (“NL”), and “various” (including
several of the other values). This criterion refers to Requirements R5 and R6.
• Logic: Which kind of logic underlies the proposed matching approach? Possible

values include Fuzzy Logic (“FL”), Ontologic, respectively Description Logic
(“ont/DL”), and others. This criterion refers to Requirement R5.
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Table 4.10: Comparison of Fuzzy Matching Approaches: Fuzziness and Result
Considered Considered Matching Result

Approach Fuzziness Types Fuzziness Sources Format
[AAY11] Gra, Vag/Imp Req score

[BBM09, BBM10] Gra, Vag/Imp, Prov, Req, score
App/Rel Algo

[BL08, BL11] App/Rel Algo score
[LSH+12, LSHY09]

[CBF05] App/Rel Algo score
[DCCH07] Vag/Imp, Gra Req score
[CCL+05] Vag/Imp Req, Prov score

[CYLT05, HCL05]
[HLCY06, HLL+05] Vag/Imp Req score
[LLCY06, LLCY08]

[FLS08] App/Rel Req, Algo multiple scores
[JCL09] App/Rel Algo score

[KFS06, KF07] App/Rel Algo degree
[KKF08, KFS09]

[KKR09, KKRKS07] Opt/Var, Req, Prov score
[KKRSK07, KKR07] Vag/Imp, Gra

[KK12b, KK10] App/Rel Algo degree
[LFT12] Vag/Imp, Gra Req score

[LL08] App/Rel Algo score
[MZH08] App/Rel Algo score
[PCP09] In Req, Prov score
[PHC08] Vag/Imp Req, Prov boolean

[PRVM13] Vag/Imp Req, Prov score
[QWO13] Vag/Imp Prov score

[RS03] Vag/Imp Prov Reuse decisions
[SCS10] App/Rel Algo boolean

[SFHC13] App/Rel Algo score
[SS08] In Req, Prov degree

[ŞT09, ŞT06] Vag/Imp Req, Prov (weak/strong) select/reject
[SWKL02] App/Rel Algo score

[TAS11] Vag/Imp Req score
[TCM08] App/Rel Algo score

[TGRBD07] App/Rel Algo score
[TOAD07] App/Rel Algo score

[Wan09, WCL+06] Vag/Imp, In Req, Prov score
[WLH07] Vag/Imp Req, Prov score

[XF07] Vag/Imp Req, Prov score
[ZSK15] Opt/Var, Req, Prov score

Vag/Imp
Our approach All All Interval / Score+Fuzziness
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Table 4.11: Comparison of Fuzzy Matching Approaches: Specifications and Complexity
Specified Specification Specification Matching

Approach Aspect Complexity Kind Logic
[AAY11] NFPs low num. FL

[BBM09, BBM10] NFPs low ling. FL
[BL08, BL11] IOPE medium ontol. FL

[LSH+12, LSHY09]
[CBF05] IOPE high num. + NL ont/DL

[DCCH07] NFPs low FS FL
[CCL+05] NFPs low ling., num. FL

[CYLT05, HCL05]
[HLCY06, HLL+05] IOPE medium num., ontol. FL
[LLCY06, LLCY08]

[FLS08] IOPE medium ontol. FL
[JCL09] NFPs low ling. -

[KFS06, KF07] IO medium ontol. ont/DL
[KKF08, KFS09]

[KKR09, KKRKS07] various high ontol. FL
[KKRSK07, KKR07]

[KK12b, KK10] IOPE medium ontol. ont/DL
[LFT12] NFPs low ling. FL

[LL08] IO low ontol. ont/DL
[MZH08] keywords low NL Prob. Theory
[PCP09] NFPs high ontol. ont/DL
[PHC08] keywords low ontol. ont/DL + FL

[PRVM13] NFPs medium ling., num. FL
[QWO13] Ratings low ling. FL

[RS03] various medium various FL
[SCS10] IO medium ontol. ont/DL

[SFHC13] various high NL ont/DL
[SS08] IO low-medium ontol. ont/DL

FL
[ŞT09, ŞT06] NFPs low ling. FL

[SWKL02] various high? ontol. ont/DL
[TAS11] NFPs low ling. FL

[TCM08] various medium ontol. ont/DL
[TGRBD07] IO medium ontol. ont/DL

[TOAD07] various medium ontol. ont/DL
[Wan09, WCL+06] NFPs low num. / ling. FL

[WLH07] NFPs low ling. FL
[XF07] NFPs low ling. FL

[ZSK15] NFPs medium various Constraints, Opt.
Our approach various high various FL
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An overview of the comparison with respect to these criteria is given by Tables 4.10 and
4.11. From the comparison, we can conclude that related approaches are limited with respect
to multiple issues:

Multiple fuzziness types and sources
During our reviews, we noticed that the majority of approaches motivated fuzzy matching
by the case that exact matching approaches do not find any service because no service
description matches the requirements exactly but only partially (e.g., [KKRKS07]). By
introducing gradual matching results, they want to reduce the number of false negatives.
These motivations indicate that these approaches have another understanding of fuzzy
matching than we do: They only consider gradedness but do not target uncertainty. Thus,
these approaches are not interested in reflecting further types of fuzziness in their matching
results. However, for us, a gradual result is not enough. The reason is that, as explained
earlier, there is a difference between “a service matches 50%” and “we are 50% sure that a
service matches”. Existing approaches either only consider the first case or they mix both
semantics within one value, leaving the user misinformed. For example, [ZSK15] treats
missing specifications as a mismatch, mixing mismatches with uncertainty.

It is striking that we did not find any approach that explicitly takes into account uncertainty
induced during the matching procedure. Correspondingly, no approach quantified or even
reflected uncertainty in the matching result. In general, most of the approaches hardly
mentioned the result format and its properties at all.

Furthermore, unlike our approach, no approach explicitly distinguished between multiple
types of fuzziness. Most of them handle either fuzzy requirements or fuzzy service properties
(e.g., [BL11, RS03, Wan09, TAS11]), or they address fuzzy data that the service takes as
inputs [CYLT05, HCL05]. In some of the selected publications, we detected several types,
e.g., vagueness and gradedness or vagueness and uncertainty; however, the approaches did
not consider the difference or ignored one of the types (most often uncertainty). The same
holds for fuzziness sources. In many approaches, provider-induced as well as requester-
induced fuzziness emerges; however, the approaches do not treat them in different ways (if
they treat them at all).

Only Bacciu et al. [BBM09, BBM10] mention that fuzziness on the requested side is more
about preferences, while fuzziness on the provided side is more about approximate estimates
and that both can be specified using fuzzy sets. This is similar to the principles our fuzzy-
logic based approach follows. Furthermore, they emphasize that their approach works with
fuzzy numbers throughout the whole process. Unlike other approaches that start with fuzzy
requirements to be transformed into crisp values for determining the matching result, Bacciu
et al. only transform their result into a crisp result at the very end. This idea comes closest
to our idea of fuzzy matching; however, we keep the fuzzy values even longer as we reflect
the fuzziness also within the matching result. The matching results determined in Bacciu et
al.’s approach neither reflect the fuzziness (uncertainty) that is left, nor do they leverage the
distinction of different fuzziness types.

Furthermore, in their approach, Bacciu et al. [BBM09, BBM10] consider a confidence
level. This is a value that can be specified in order to indicate a probability that the provided
specification accurately reflects the reality. This refers to an inherent uncertainty within the
provider’s specification. Moreover, they use a proximity-based index in order to assess the
uncertainty of the similarity between two fuzzy sets. This comes close to our approach of
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quantifying the difference between n and p. However, as they still apply approximations
within their matching algorithm that are not reflected within the matching result, the results
are still adulterated.

In [KKRKS07], the user is able to specify fuzzy missing strategies that encode what to do
in general when a service specification does not provide some kind of information that has
been specified in the requirements specification. Possible strategies are to ignore the missing
information or to assume to a certain degree that a requirement will be met by a service
not specifying it. These additional configuration parameters increase the user’s awareness of
possible fuzziness within the matching result and gives her some control. However, there is
still no information whether fuzziness actually emerged during one specific matching process
and to which extent.

Algorithm-induced fuzziness potentially occurs in approaches that apply approximate
subsumption reasoning (e.g., [SCS10, KKF08, KK10]). They aim at improving the
matching’s recall, i.e., reducing the number of false negatives, however, precision inevitably
decreases, i.e., the number of false positives increases. Following our argumentation, the
user’s decision-making is complicated if the matching results do not reflect whether and to
how much extent approximations have been applied within a concrete matching process. One
step into addressing this issue is made by LARKS [SWKL02]. There, in case of a relaxed
match, the user is provided with a numerical distance value that shows how “far away” the
match is from an exact match. By configuring a threshold, the user is able to define how large
the distance needs to be in order to be considered as a match. Similarly, like in [TCM08], the
user could define on her own, which requirements may be relaxed and which not.

Note that the listed Considered Fuzziness Sources/Types in Table 4.10 are not necessarily
equal to the actually arisen fuzziness sources/types, i.e., fuzziness that should have been
considered in order to avoid adulterated matching results. For example, many approaches
potentially lead to algorithm-induced fuzziness, but they ignore it (e.g., [BBM10]).

One exception is the approach described by Fenza et al. based on ontologies [FLS08].
In this approach, the user provides a precision degree as an input. This degree defines the
allowed distance a requested ontological type may have from a provided ontological type
in order to lead to a match. The ontological types may appear within the specified inputs,
outputs, preconditions, post-conditions, or further describing text in natural language. The
distance can be viewed as algorithm-induced fuzziness because it is an approximation during
the calculation of the matching result.

Moreover, none of the collected approaches quantified transformation-induced fuzziness
although it emerges in several approaches. For example, Almulla et al. [AAY11] transform
(“fuzzify”) crisp QoS values into fuzzy sets using a simple algorithm. This algorithm
takes as an input the borders of the interval that limit the “fuzzy part”; however, the actual
function, e.g., the gradient is uncertain. This issue is not taken into account in Almulla et
al.’s approach. Similar issues hold for other approaches, e.g., [Wan09, WCL+06, CYLT05,
LFT12, PRVM13]. The only approach that addresses similar problems applies methods
to reach a consensus about different fuzzy sets for the same concept using group decision
resolution strategies [HLL+05, HLCY06]. Here, the fuzzy sets specified by different users
build the basis for a majority vote. Torres et al. [TAS11] apply a clustering approach
in order to solve the requesters’ problem to select fuzzy terms for quality requirements
in dynamic markets, where quality judgments vary all the time. All these methods may
be applicable to reduce transformation-induced fuzziness, but they do not eliminate it
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completely. Furthermore, they neither make the users aware of the fuzziness’ existence nor
of its extent. Approaches where the values are directly specified using membership functions,
e.g., [BBM10, DCCH07], do not suffer from transformation-induced fuzziness.

Constantinescu et al. [CBF05] transform the request into a relaxed request that is used
for approximated matching. This means that they intentionally induce transformation-
induced fuzziness. However, in this case, fuzziness does not lead to adulterated matching
results: The relaxations assure that no false negatives or false positives are produced as
they are followed by a refined, up to an exact matching if necessary. Because of this
pruning approach, mismatching services can be sorted out very early without suffering from
inaccuracy. However, if there are many well matching services, the approach is inefficient as
it requires many iterations in this case. Furthermore, the approach is tailored to subsumption
reasoning as a matching technique, i.e., only IOPE descriptions can be matched this way.

Also apart from transformations into fuzzy sets, some of the listed approaches include
transformations into a specific specification language, like [PCP09]. However, they do not
consider concepts like transformation-induced fuzziness, either.

We see the differentiation of different types of fuzziness as an important benefit of our
approach that distinguishes it from related approaches. Informing about fuzziness on the
basis of different sources gives the requesters and providers more insights about the matching
results. Consequently, they can overcome different fuzziness targeted by different means
(e.g., adapting the requirements specification or the provider specifications).

Informativeness of the matching result

Most of the matching approaches mentioned return either a boolean (e.g., [CCL+05, SCS10])
or a scalar value (score) as a matching result (e.g., [AAY11, BL08, LSHY09]). Our approach
delivers more information along with the matching result, in order to give feedback about the
extent of fuzziness that had been introduced into the matching process.

The result format used most often are scores, i.e., single numerical values that represent
how well a service specification matches the given requirements specification. Exceptions
are [FLS08] as explained above, [RS03], and [ŞT06]. In [RS03], the matching approach
results in one of four different reuse decisions that denote to which extent the matched
component has to be adapted. This can be explained by the fact that this approach
comes from the domain of component-based software engineering and not from service-
oriented computing. They assume that the component’s implementation can be adapted after
discovery. For services, this is not true, as the user typically does not have access to the
service. Adaptations are only possible as non-invasive extensions (e.g., [MXB10]). Sora and
Todinca’s approach [ŞT09, ŞT06] provides as output either “select” or “reject” combined
with either “weak” or “strong”. The latter addition helps to assess the certainty of the result,
but only to a limited extent. The reason for the uncertainty, i.e., its source, as well as its
extent is not known to the user.

Almost all approaches based on fuzzy logic transform into a crisp matching result after
having matched on the basis of fuzzy sets. This transformation leads to a loss of information.
In particular, the crisp matching result does not reflect fuzziness anymore. Bacciu et
al. [BBM10] criticize this issue, too, and try to overcome it by transforming at the very
end of the matching procedure only.
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The approach suggested by Fenza et al. [FLS08] mentioned above returns a distance score,
in addition to a membership degree. This distance score can be viewed as a calculation of
the extent of algorithm-induced fuzziness.

Similar to this, in Thakker et al.’s approach [TOAD07], a factor of tolerance is given. This
factor defines a tolerance region in relation to the value to be matched in order to receive
more flexible matching results. In other words, an approximation within the algorithm leads
to algorithm-induced fuzziness. This again leads to uncertainty as the matching result does
not reveal to the user, to which extent a specific matching process for a specific service-
request-pair has actually been approximated.

Within our selected set of publications, we did not find any approach that returns interval
matching results. Up to now, intervals are only considered as inputs, i.e., within the
requirements or service specification (e.g., [AAY11, CBF05, ZSK15]).

All in all, publications did not discuss the format of the matching results much. We cannot
exclude that the actual realizations of the described approaches additionally provide their
users with more comprehensive matching results as described in the papers.

Complexity of considered service specifications
Many of the surveyed approaches deal with single fuzzy numbers used to model QoS
properties. For example, Bacciu et al. [BBM10] model a service’s response time, availability,
and trustworthiness by trapezoidal fuzzy sets and corresponding requirements by triangular
fuzzy sets. In another example, Torres et al. [TAS11], match fuzzy requirements with precise,
numerical service data.

Our approach goes beyond single numbers or linguistic variables but deals with their
composition in the form of more complex conditions aiming to model more complex service
properties. In particular, also quality properties need to be described with expressive
specification language [PCP09]. For example, a service’s response time depends on the
context of a service, e.g., the execution environment and the usage behavior [MM07, FGT12,
BKR09]. Consequently, a simplification to just one number is too abstract and not realistic.

In addition, there are more existing approaches using fuzzy sets that consider other kinds
of simple service specifications. These specifications are often based on keywords only
(e.g., [CYLT05, HCL05]), often referring to simple ontologies that consist only of kind-of
relations between these keywords (e.g., [BL08, BL11]). Many approaches focus on keywords
modeled as linguistic terms (e.g., [Wan09]).

Most of the fuzzy matching approaches target matching of non-functional properties,
especially QoS. The reason could be that people agree that non-functional properties are
usually vague and imprecise in nature [TAS11, YT97].

All these approaches have in common that they cannot deal with complex and
heterogeneous specifications as we need for our scenarios.

Further discussion
Bacciu et al. [BBM09, BBM10] are the only authors that explicitly state that their approach
can be applied as an extension of non-fuzzy approaches. All other approaches assume a
completely new development.

As we can learn from Table 4.10 and Table 4.11 and the discussion derived from this data,
existing fuzzy matching approaches are limited with respect to several of our requirements.
In particular, only few fuzziness types and fuzziness sources are considered and neither of
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them is reflected within the matching result. All in all, we can say that, although fuzziness
is already widespread in service matching, uncertainty is not often dealt with explicitly.
Existing approaches focus rather on vagueness and gradedness.

The keyword-based search we used to conduct our survey leads to a few threats to
validity as we may have sorted out too many papers: For example, in papers about service
composition, matching is also an important part. These matching approaches are not included
in our survey. Furthermore, our set of keywords may be too limited and also our abstract-
based search involves the risk of excluding relevant papers [BKB+07]. However, our survey
is still based on a lot of data such that we, nevertheless, expect our findings altogether to be
transferable.

4.10.3 Fuzziness in Related Software Engineering Disciplines

Our survey revealed that only few service matching approaches explicitly dealt with fuzziness
in terms of uncertainty although we consider this as an important aspect of our research.
Thus, we extended our survey by taking into account literature from related software
engineering disciplines.

For example, in his position paper [Gar10], David Garlan lists several sources of
uncertainty in software engineering. These sources include (a) the “human in the loop”
because humans are not fully controllable or predictable, (b) mobility (variety of platforms),
especially if these platforms change dynamically and frequently, and (c) rapid evolution
due to an increasing demand on a short time to market and required adaptions to new
requirements. These aspects fit well to our service matching problem as we have (a) the
human involved in both specifying services and requirements as well as in making the
final decisions before acquiring a service on the basis of the matching results, (b) different
platforms services can be applied on ranging from the cloud centers to mobile devices, and (c)
due to the high competition developing in global markets, service offers and requirements are
expected to change often. Though Garlan does not provide any concrete solutions applicable
to our domain, he repeatedly emphasizes that software engineers should not “maintain the
illusion of certainty” and that “uncertainty needs to be considered as a first-class concern
to be dealt with systematically”, which is in line with our idea of fuzziness estimation and
presentation.

Based on [WHR+03], Perez-Palacin and Mirandola [PPM14] constructed a classification
of uncertainty in software models. This is related to the classes of specification-based
fuzziness in Section 4.4.2 as our specifications are also software models. Perez-Palacin and
Mirandola took into account three dimensions of uncertainties: location (does uncertainty
emerge due to the model, due to the metamodel, or due to the meta meta model?), level
(how much knowledge is missing?), and nature (is uncertainty due to imperfect knowledge
or due to inherent variability?). The relation of fuzziness in service matching to the
location dimension has already been discussed in Section 4.4.3, while the relation to the
level dimension has been discussed in Section 4.4.1.6. The nature dimension distinguishes
between aleatory uncertainty and epistemic uncertainty as discussed in Section 4.4.1.6, too.

Esfahani et al. distinguish between external and internal uncertainty within the field of
self-adaptive software systems [EKM11]. Considering the matcher as the software system,
we could refer to algorithm-induced fuzziness as a source for internal uncertainty, while all
other fuzziness sources refer to the environment, i.e., external uncertainty.
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Similar limitations hold for further approaches related to requirements specification for
self-adaptive systems under consideration of uncertainty, e.g., RELAX [WSB+09] and
FLAGS [BPS10]. Both approaches are based on temporal fuzzy logic. For example,
RELAX allows to address uncertainty in requirements specifications for adaptive systems.
It deals with two key sources of uncertainty: environmental changes of a system’s execution
environment and behavioral changes at runtime. RELAX is a potential language for
specifying behavioral requirements in the presence of requester-induced fuzziness. However,
it does not address how those specifications can be handled during automated matching and
how matching results could look like in the presence of relaxed requirements. Furthermore,
it typically requires deeper knowledge of the system’s internal behavior, which we typically
do not have when working with service-based systems.

In reliability analysis (e.g., [YST01, MMAG11, GPK04, CGMS07]), models like fault
trees, Markov chains, and stochastic Petri nets are utilized to predict the reliability
of a software system. These models contain parameters obtained from uncertain field
data [YST01]. Yin et al. [YST01] discuss three ways to present this uncertainty: bounds,
confidence intervals, and probability distributions. The confidence intervals are comparable
to the n-p-intervals determined in Section 4.6.1. However, the presented analytical
approaches are limited to special kinds of models and parameter distributions; they are hard
to generalize (see R5). In particular, they are not applicable to our specification languages
for reputation or privacy.

In general, reliability models require internal information about a system (e.g., failure rate
and repair rate) that we typically do not have within the domain of deployed services whose
internals are not exposed to potential customers. Furthermore, simulation-based approaches
are discussed as a way to compute uncertainty in reliability analysis [YST01, MMAG11].
Simulation-based approaches are infeasible for application in service matching as they
require intensive computation which is too cost-intensive in a running service market
(see R7).

4.11 Conclusions

In this chapter, we presented our concepts for fuzzy matching. On the basis of well-
defined fuzziness types and sources, fuzzy matching aims to make fuzziness induced into
the matching result transparent to the user. This is achieved by applying methods from fuzzy
logic and possibility theory. As a consequence, the user is provided with more knowledge
about the risk she is going to take when acting on the basis of a fuzzy matching result. Our
approach allows users to participate in and to control the decision making process based on
informative matching results.

The results of our case studies indicate that handling fuzziness during the matching process
explicitly and reflecting it in the matching result supports decision-making in the analyzed
situations to a satisfying extent. As our survey confirms, our approach goes beyond existing
approaches because existing approaches do not properly consider and reflect fuzziness within
the matching results. Future research challenges are listed in Section 6.2.
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INTEGRATED AND COMPREHENSIVE
FUZZY MATCHING PROCESSES

In this chapter, we combine the matching processes presented in Chapter 3 with concepts for
fuzzy matching presented in Chapter 4. This leads to a concept of Fuzzy Matching Processes.
Furthermore, we discuss matching results created by such fuzzy matching processes with
respect to understandability for the user. Last, we propose a method about how to integrate
fuzzy matching processes into a service market architecture.

5.1 Scientific Contributions

The scientific contributions of this chapter can be summarized as follows:

• We show how to integrate the two ideas of comprehensive service matching and fuzzy
matching in order to get a combined approach that leverages from both.
• We present an approach to back-translate matching results into the original

specification language of the service requester in order to improve her understanding.
Thereby, we go beyond the state of the art in service matching approaches that only
discusses the presentation of matching results in a superficial way.
• We demonstrate how to integrate a matcher into a service market on the architectural

level using a systematic process based on architectural tactics. In particular, we discuss
the trade-offs complicating the decision-making process.
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5.2 Combining Comprehensive and Fuzzy Matching

In order to leverage the benefits of both fuzzy matching and comprehensive matching
processes, we bring these two concepts together in this section. The goal is to achieve
matching of specifications that are comprehensive on the one hand, but also imperfect on
the other hand, at the same time. This combination is not an easy task as demonstrated by
our requirements presented in the following.

5.2.1 Requirements

In the following, we derive and explain the requirements for a solution that combines fuzzy
matching and comprehensive matching processes.

(R1) Integrate Fuzzy Matching Steps: Users must be provided with means to integrate fuzzy
matching steps into matching processes. This can also have an impact on control- and
data flow because now not only matching results are propagated through the matching
process but also information about fuzziness.

(R2) Aggregate Fuzzy Matching Results: Aggregating fuzzy matching results can be more
difficult than aggregating traditional matching results because they contain more
information, e.g., in terms of interval results and in terms of fuzziness scores.

(R3) Enable Fuzziness Coping Strategies: Our general fuzzy matching procedure allows
to recommend fuzziness coping strategies (see Section 4.5). Thus, this functionality
should also become part of the MatchBox framework.

(R4) Optimize Matching Processes on the Basis of Fuzzy Matching: Matching processes are
designed to cope with comprehensive service specifications. Fuzzy service matching
usually speeds up matching steps. This characteristic should be leveraged in order to
optimize matching processes.

5.2.2 Framework Extensions for Fuzzy Matching

Some parts of the MatchBox framework need to be extended in order to cope with
fuzzy matching steps. For example, in order to allow MatchBox to recommend
fuzziness coping strategies (R3), the matching result model needs to be enhanced by
information about the induced fuzziness. The extension is depicted in Figure 5.1. As
can be seen there, the MatchingResult class now refers to a class FuzzinessAnnotation.
An arbitrary number of fuzziness annotations can be part of one matching result.
FuzzinessAnnotation has an attribute score that represents the fuzziness scores. Each
FuzzinessAnnotation refers to one FuzzinessOccurrence. A FuzzinessOccurrence is
characterized by its type and its source. The types and sources comply with the classification
presented in Section 4.4; however, we refined the lists of sources and types by extra
information needed to display valuable information to the user and to automatically
recommend how to cope with fuzziness as discussed in Section 4.5. For this reason, we
distinguish between transformation-induced fuzziness occurring within the transformation
of the requirements specification (REQ_TRANS_INDUCED) and transformation-induced
fuzziness occurring within the transformation of the provided service’s specification
(PROV_TRANS_INDUCED). Similarly, we distinguish between aleatory uncertainty
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Figure 5.1: Matching Results Metamodel Extended with Fuzzy Matching Results

(ALEA_UNCERTAINTY) and epistemic uncertainty (EPIS_UNCERTAINTY) because only
aleatory uncertainty can be reduced by one of the involved roles.

Furthermore, Figure 5.1 shows that another subtype of MatchingResult has been
added: the IntervalMatchingResult. IntervalMatchingResult could also be a subtype of
ContinuousMatchingResult because it delivers a special kind of continuous result, however,
there is no added value as the result attribute in this case has to be represented by an aggregate
of the lowerThreshold and the upperThreshold. Such an aggregate could be the mean, or the
weighted mean using the risk aversion parameter α as introduced in Section 4.6.1.5, however,
it will always lose information.

The integration of the new matching result type is a foundation for the aggregation of
fuzzy matching results explained in Section 5.2.3. Furthermore, the integration of the new
matching result type also requires the adaption of the Matcher Definition Language (see
Section 3.6). As this adaption is trivial, we do not describe it further.

One special case we need to take care of is when integrated fuzzy matching steps deliver
their matching result to further matching steps. For example, if a protocol matching step
depends on the matching result of a signature matching step that applies a fuzzy matching
approach, the protocol matching step will build on potentially uncertain matching results.
We suggest two extensions to deal with this issue: (a) The fuzziness score returned by the
dependent step should be propagated to the depending step such that the depending step
can take into account the fuzziness, too. Note that, as a consequence, the depending step is
inflicted with fuzziness, too. This means, the fuzziness score returned by the depending step
may have to be aggregated with the fuzziness score of the depending step.

Furthermore (b), the guard element should be extended such that also runtime decisions
based on the extent of induced fuzziness can be made. For example, this allows us to specify
that the protocol matching will only be executed with signature matching results that have
maximum fuzziness “low”. This extension is presented in Figure 5.2. As can be seen
there, we introduce two subtypes of the (now abstract) type Guard: MatchingResultGuard
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Figure 5.2: Matching Process Metamodel Extended with Fuzzy Guards

(representing the old semantics of Guard) and FuzzinessScoreGuard (representing the new
guards refering to fuzziness scores).

Figure 5.2 also shows how to extend the guards such that interval matching results can
be considered. For this purpose, we added a type IntervalResultGuard being a subtype of
MatchingResultGuard. In addition to the threshold, an IntervalResultGuard also contains an
attribute lower that defines whether the guard refers to the lower threshold or, otherwise, to
the upper threshold.

All described extensions to the matching process metamodel contribute to the fulfillment
of R1.

5.2.3 Aggregating Fuzzy Matching Results

Fuzzy matching leads to new aggregation problems to be solved (R2): On the one hand, new
result formats, e.g., the interval matching results, need to be aggregated. On the other hand,
fuzziness scores need to be aggregated.

As mentioned in Section 3.6.2.1, MatchBox provides two ways to aggregate matching
results of different formats: (a) A new aggregation strategy needs to be defined and this
strategy has to be able to cope with these different formats, e.g., by internally transforming
them into one intermediate format. Alternatively (b), these transformations can be made
explicit by introducing additional aggregation strategies similar to the “operation level to
interface level” strategy (see Section 3.6.2.1).

Since we already proposed a way to transform from binary matching results to continuous
matching results and back again, in the following, we only discuss how to transform
between continuous matching results and interval matching results. Such transformations
are quite trivial and work in both directions: An interval matching result can be mapped to a
continuous matching result as explained in Section 4.6.1.5. However, this way, information
is lost. Thus, it may be a better way to map a continuous result to a (trivial) interval result
by setting lowerThreshold = result and upperThreshold = result. This way, the
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subsequent aggregation step only deals with intervals. However, the downside of this solution
is the lost reusability of matching processes defined without these extensions.

The aggregation of fuzziness scores has already been addressed in Section 4. We can use
the same strategies when aggregating fuzziness scores of the same types and sources but from
different matching steps to one overall fuzziness score. However, the child results should still
be maintained as fuzziness coping strategies could use the knowledge about which matching
step has been fuzzy.

As the fuzzy matching results (including fuzziness scores) are the only output of
a fuzzy matching procedure (see Section 4.5), all sub steps being part of the fuzzy
matching procedure can be hidden within the matching step: The fuzzy matching step then
encapsulates the sub steps and the fuzzy matching result serves as an interface. Thus, we also
fulfill R1.

5.2.4 Coping with Imperfect Information by Self-Adaption

Due to their modular structure and the well-defined matcher interfaces, matching processes
modeled and executed in MatchBox can easily be extended to include dynamic self-adaption
concepts [Mur04]. Using dynamic self-adaption can then be used to optimize matching
with respect to quality and performance criteria (R4). Consider the following example: A
matching process is used within a market and, over time, it is recognized that matching
became rather slow, while market participants are usually very satisfied with the accuracy
of matching results. Then, the matching process could adapt itself with respect to a better
runtime. For example, it could remove matching steps that did not perform well in terms of
performance or quality, or it could substitute matchers by (fuzzy) matchers that are expected
to run faster in some cases. This reconfiguration can be performed step-by-step, while the
matching process is monitored over the whole time not only with respect to runtime but also
with respect to accuracy. This way, the accuracy-runtime trade-off matching is always faced
with can be optimized.

In particular, such a self-adaptive matching process can be used to cope with incomplete
or imprecise specifications. For example, if the monitor detects that certain matching steps
deliver highly uncertain matching results all the time in a certain market, these steps could
be removed or their matchers could be reconfigured or substituted.

Another idea could be to observe the typical requesters’ risk aversions over time. In
domains where the requester’s risk aversion has been detected to be extremely high or
extremely low, the matching process could adapt the number of integrated fuzzy matching
steps and favor more respectively less matching steps that deliver fuzzy results.

As a consequence, runtime monitoring for matching processes has to be extended.
According to the examples mentioned above, properties like average runtime, average
accuracy, average fuzziness, and typical requester properties could be worth monitoring. As
all these properties can develop through time in a dynamic market, self-adaption at runtime
becomes more and more important.
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Figure 5.3: Architecture of FuzzyMatchBox

5.2.5 Prototype Implementation

This prototype combines the two prototypes from the previous chapters (see Sections 3.9
and 4.7) as depicted in Figure 5.3. The combination required adaptions in some of the
components of the MatchBox framework:

Core: The adaptions within the Core component affect the meta models for matching
processes and for matching results.

ExecutionLogic: The ExecutionLogic had to be adapted such that guards can also consider
fuzziness. Also the components needed to realize self-adaptive behavior have to be
added here.

UI: The extended UI now is also able to display fuzzy matching results.
Aggregation: Aggregation strategies have been extended by a default aggregation strategy to

handle the aggregation of interval matching results as well as fuzziness scores.
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5.3 Back-Transformation of Matching Results

In order to provide a broad range of service requesters the possibility to discover
services using service matching, the effort and the required knowledge to construct
appropriate requirements specifications should be kept as low as possible. For this reason,
current research [SFB901] investigates more user-friendly possibilities for requirements
specifications in contrast to the complex requirements specifications used for service
matching within the state of the art. Examples are natural language specifications or
specification “by-example” (e.g., [CZC08]). Typically, such specifications are revised and
optimized and then transformed into specification languages with formally defined semantics
such that they serve as an appropriate input for service matching. This task can be done by
the service provider or by an intermediary like a broker or the matching designer.

Furthermore, service requesters need informative matching results not only for successful
decision-making when selecting a service. For example, they need feedback about which
parts of the requirements specification should be modified in order receive more interesting
results in the next search run. MatchBox produces such informative matching results by
listing all considered language constructs that contribute to the matching result in form
of child results (see Section 3.8.3). The child results and parent results together form a
hierarchically structured matching result appropriate for extensive inspection.

Approaches dealing with requirements specifications in natural language are already well-
known in the software engineering literature [ACC+02, PR11]. However, there are two
problems when applying such approaches to service matching problems: First, the matching
results in their current form are on a different level than the user-friendly requirements
specifications mentioned above as they are based on different language constructs: The
transformations from user-friendly requirements specifications into another, formally defined
specification format enable the usage of matchers working on different forms of the
specifications than the requesters delivered. This procedure makes matchers more universally
applicable. However, as a downside, matchers produce matching results based on the format
of the consumed specifications and not in the format of the specifications as defined by the
requesters. Thus, there is a gap between the representation of the matching results and the
representations the requesters understand.

Figure 5.4 a) shows this situation on an example: The requester searches for “a simple
room reservation service that is fast and cheap and does not save personal data”. She receives
a matching result per provided service which is an aggregate from a signature matching
result, a performance matching result, a price matching result, and a privacy matching result.
In order to understand such matching results, the requester at least needs to know which
part of her initial requirements specification has been transformed into which part of the
requirements specification the matcher takes as an input. From the matching result, an expert
user (i.e., someone knowing the formal specification language the matcher takes as well as
the transformation logic) can understand that the matcher got as an input a signature with the
name bookRoom with an input parameter time of type Date and an output parameter room
of type Room. Domain knowledge had to be leveraged when transforming the expression
“simple room reservation service” into such a signature. An example for such domain
knowledge is the knowledge that a room reservation is always based on a defined time
slot which can be encoded as a date. The performance-related part of the requirements
specification (“fast”) has been transformed into a fuzzy set for the performance property
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Figure 5.4: Problem of Understanding Matching Results and Proposed Solution

response time. This fuzzy set has a smooth transition from the membership of 1 to the
membership of 0 between the values of 2 and 2.8 seconds (FS(2;2.8)). The price-related
part (“cheap”) has been transformed into a price model where one user’s query of the service
should cost 0.01 Euros maximum (<0.01E p.q.). Furthermore, the expression “does not save
personal data” has been used to derive a specification of privacy requirements where the
attribute retention time as well as the attribute delegation depth have been set to 0. Note that
the matching result displayed in Figure 5.4 a) is simplified in the sense that the values of
the provided service as well as fuzziness annotations are omitted. A requester that initially
used natural language to specify her requirements will be unfamiliar and, thus, probably be
overstrained with such a matching result.

As a consequence, we need a back-transformation that transforms the matching result
returned by the matchers into a representation more understandable for the requester while
still preserving the semantics. In particular, we assume that, the more similar the matching
result appears to the initial requirements specification, the more understandable it is for the
requester who created the initial requirements. Figure 5.4 b) shows this idea using the
same example as described above. This time, we added a step Back-Transformation after
the matching step. This step takes the original Matching Result (as depicted in Figure 5.4
a) as an input and returns a representation of the matching result that follows the natural
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language requirements specification and is therefore more useful for requesters without
expert knowledge. For example, the Translated Matching Result, as shown in Figure 5.4
b), could be represented by a copy of the initial requirements specification but highlight parts
that are not fully satisfied according to the matching result.

Moreover, a transformation from “informal” specifications (like natural language
specifications) into a well-defined, unambiguous specification (like the inputs a matcher
expects) can always lead to uncertain results. The reason is that semantics are expressed
in another format and it is unclear to which extent these semantics still match the requester’s
idea of her requirements specified in the first place. This problem is similar to transformation-
induced fuzziness emerging from a requirements specification as discussed in Section 4.4.2.

Thus, along with the translated matching result, our approach proposed in Figure 5.4
b) provides a fuzziness annotation that depicts an estimation of not only how fuzzy the
matching result is in general but also how fuzzy it is with respect to the initial requirements
specification. This fuzziness (in terms of uncertainty) is estimated during the forward
transformation based on several heuristics and refined later, when it is known which
parts of the transformation are relevant in the concrete matching result determined by the
matcher. Hence, the fuzziness annotations suggested here build on the fuzziness annotations
introduced in Chapter 4 and are extended to cope with the additional challenge introduced
by the transformation as discussed above.

In the following, we proceed by describing our approach using the example of a requester
delivering input in controlled natural language. Nevertheless, the concepts are designed in a
general way such that they can also be applied to other kinds of user-friendly specifications.
The concepts described in the following are based on matching processes introduced in
Section 3 as well as fuzzy matching as introduced in Section 4.

In the next section, we derive some basic requirements for the solution to be presented
afterwards: Section 5.3.2 details on the transformation into the specifications to be matched
and the fuzziness estimation performed along. Section 5.3.3 explains how matching is
applied in this scenario. Section 5.3.4 focuses on the back-transformation. Furthermore, we
describe the prototypical implementation in Section 5.3.5 and related work in Section 5.3.7.

5.3.1 Requirements

In the following, we derive and explain the requirements for a solution that realizes the
approach proposed above. This includes both an appropriate transformation of a user-friendly
requirements specification into a requirements specification accepted by a matcher and a
corresponding back-transformation from the matching results into a representation of the
matching results inspired by the initial requirements specification.

(R1) Matching Trade-Off: Even though matching in this scenario is based on specifications
created from natural language, the matching should still be sufficiently accurate on
the one hand and sufficiently fast on the other hand. More extensive inputs may
lead to more accurate results but also to slower matching. Thus, the concepts for
the transformation into the matcher’s input have to take this trade-off into account and
optimize it with respect to the current situation.

(R2) Understandable Matching Results: The main requirement within this section is to
achieve the creation of understandable matching results. As noted above, we consider
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a matching result as understandable if it can be represented with a similar appearance
as the requester’s initial input.

(R3) Efficiency: The forward as well as the back-transformation should not lead to a high
overhead in terms of computation time as well as the transformation developer’s
(maintenance) effort.

(R4) Transparent Fuzziness: As discussed in Chapter 4, it is important to enable the
requester to assess the risk she takes when relying on a matching result. In combination
with specifications in natural language this is even more important because of the
introduced uncertainties as explained above. Thus, we still need to display fuzziness
induced during matching (as explained in Chapter 4) but also fuzziness induced
because of the transformations from natural language into the matchers’ inputs.

5.3.2 Step 1: Transformation into a Matcher’s Input

As a foundation for the transformation, we present an exemplary controlled natural language
grammar in the following. Furthermore, within the transformation from the natural language
requirements specification into the matcher’s input, three tasks have to be accomplished: (a)
the creation of a comprehensive specification, (b) the creation of traceability links, and (c)
the estimation of fuzziness. In the following, we explain these three tasks on the basis of our
running example and the exemplary grammar.

5.3.2.1 Controlled Natural Language for Service Requirements Specifications

Our approach is based on controlled natural language (e.g., [Fuc10, WAB+10]) which is
limited to a fixed syntax and a fixed vocabulary. In the following, we present an exemplary
grammar for a controlled natural language within the scope of service requirements
specifications:

CNLRequirementsSpec ::= “I need a” ServiceKind Restriction∗
ServiceKind ::= (ServiceModifier) ServiceCategory

Restriction ::= (“and”|“,”) “that” (“is”) (RestrModifier) RestrProperty

ServiceModifier ::= ... see service modifier ontology
ServiceCategory ::= ... see service category ontology
RestrModifier ::= ... see restriction modifier ontology
RestrProperty ::= ... see restriction property ontology

| “takes a” ParameterType “as an input”
| “returns a” ParameterType “as an output”

ParameterType ::= ... see parameter type ontology

The depicted grammar defines that a template of a requirements specification
(CNLRequirementsSpec) always consists of a ServiceKind and an arbitrary number of
Restrictions. The placeholder ServiceKind consists of an optional ServiceModifier and a
mandatory ServiceCategory. The terminals to insert into these placeholders are defined
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in ontologies. For example, service modifiers could be “simple” (as in our example
sentence) or “fancy”. Examples for service categories are “Room Reservation Service”
(as in our example), “Map Service”, “Image Processing Service”, and many more. A
Restriction consists of an optional RestrModifier and a mandatory RestrProperty. Examples
for restriction modifiers are “some” or “very”. As exemplary restriction properties, our
example specification inserted “fast”, “cheap”, and “does not save personal data”. Alternative
restriction properties are also expressions like “that takes/returns XY as an input/output”,
where “XY” is defined in an ontology, as well.

5.3.2.2 Creation of a Comprehensive Specification

Figure 5.5 shows an example transformation. In accordance with Figure 5.4, four kinds
of specifications are created from the natural language sentence: operation signatures,
a performance specification, a price specification, and a privacy specification. The
transformation is based on heuristics and domain knowledge. For example, in order to
transform an expression “simple room reservation service” into a signature bookRoom
(Date time): Room room we assume a database with different common variations of room
reservation service signatures. Using the modifier “simple” helps to select the best fitting
signature from this database. In a more complex example, the requester could also request a
“simple room reservation service that takes a date as an input parameter”. In that case, we
have even more criteria for the selection of the signature.

All in all, the amount of added and refined information, as in this example, is only one of
the sources that can be leveraged to derive requirements specifications from natural language
requests:

Amount of added information: As noted above, as much information as possible should be
extracted from the initial requirements specification. In terms of signatures, input and
output parameters are good indicators for the target signature. If the requester also
describes more detailed behavior, even pre- and post-conditions could be generated.

Manual inspection: Another source of information used for the selection can be the requester
herself if she inspects the transformation’s output, i.e., the created specifications. Such
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inspections could be introduced in an iterative way, leading to several repetitions
of transformations with slightly changed inputs. Such an iterative approach enables
the transformation to take into account a requester’s judgement like “the signature is
exactly what I meant” or “the performance specification does not really fit my interests,
the service should be even faster”. The feasibility of this source of information depends
on the requester’s knowledge and on her willingness to spend effort.

Market knowledge: Additionally, also knowledge from the market can be leveraged for the
creation of an appropriate specification in different variants:

Earlier feedback: For example, a reputation system could provide information
on the feedback earlier requesters gave. Especially requesters that stated
similar requests and that were provided with similar transformed requirements
specifications are interesting for this purpose. For example, the reputation data
indicates that if earlier requesters that requested a “simple room reservation
service” were satisfied with the result that has been determined based on the
bookRoom signature, the transformation should stay with this approach. If
earlier requesters were not satisfied, the transformation should lead to other
target specifications in the future. Such an approach can be realized by machine
learning mechanisms like reinforcement learning [SB98, KLM96]. However, the
reliability is relatively low because of the introduced indirection: a bad feedback
regarding a service can also mean that the translated requirements specification
was perfect but the market offered only mismatching services.

Available offers: A requirements specification can also leverage knowledge from the
offers that are available in the market. For example, if it is already known that
all offered services within the category “room reservation” take the parameter
time as an input, it is likely that this parameter should also be part of the derived
signature. Similarly, if services in the current market all vary in their response
time between five and ten seconds, an expression “low” could be interpreted in a
different way than in a market where all services respond in under one second.

For the transformation of fuzzy terms like “fast”, we follow the principles of
“fuzzification” that we already applied within the scope of Chapter 4. Furthermore, the
considered structured natural language still contains the risk of ambiguous specifications.
For example, a requirements specification could use different modifiers in combination with
the same property (e.g., “quite fast” and “very fast”). Our approach resolves such cases by
considering the strictest restriction. In the future, we could extend our approach by deriving
prioritized alternatives.

The usage of predefined target language patterns, among which has to be selected during
the creation of the specifications, also enables us to take care of creating good-quality
specifications that take into account the matching trade-off (see R1). Reasons include that
the available patterns can already be evaluated with respect to how well they can be matched.
Furthermore, this restriction can prevent problematic cases like over-specification occurring
when depending completely on specifications created by (inexperienced) humans.
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5.3.2.3 Creation of Traceability Links

The dotted lines in Figure 5.5 represent traceability links created together with the target
models. Based on these links, the back-translation can trace back which model element
within the matching result corresponds to which element in the initial controlled natural
language requirements specification.

Figure 5.6 shows an extract of the same transformation in abstract syntax. Note that
the shown object diagrams abstract from certain details, e.g., concrete subclass names or
additional references, for a better overview. Here, we see four levels: the requirements
specification in controlled natural language that is transformed into the requirements
specification in the matcher’s input language. The latter again is an input for the matcher,
together with the specification(s) of one or more provided services. Last, the matching result
is the matcher’s output to be transformed into the controlled natural language used for the
initial requirements specification. In Figure 5.6, the blue dotted arrows represent traceability
links. As we can see there, for us, a traceability link is a simple one-to-one relation between
a model element on the source side (the requirements specification in controlled natural
language) and a model element on the target side (the same requirements specified in the
matcher’s input language).

In the software engineering literature, traceability usually occurs within the area of
requirements engineering. There, traceability refers to the ability to describe, follow, and
reconstruct a requirement within a software system [GF94]. Thus, usually, traceability
links have been used for the purpose of (bidirectional) transformations between a software
system’s source code and its (requirements) documentation [ACC+02]. In contrast to these
approaches, in our case, we have one more level of indirection because we need to trace
back the original requirements specification not only from the transformed requirements
specification, but from the matching results that have been calculated based on the model.
Accordingly, for us, a traceability link actually includes two links: (a) the one between the
natural language model element and the model element the matcher takes as an input and (b)
the one between the model the matcher takes as an input and the matching result. However,
the MatchBox framework already takes care of the latter by directly referring to the matched
model elements from the matching result (see Section 3.8.3). A similar approach has also
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been applied by Gerking et al. [GDHS15]. There, tracebility links have been utilized within
the scope of model-to-model transformations, too, but for model checking purposes.

In Figure 5.6, this is indicated by the requester/provider references that the sub matching
results hold to the matched model elements.

5.3.2.4 Estimation of Fuzziness

The potential sources listed in Section 5.3.2.2 to be used for the transformation, e.g., for the
selection of appropriate signatures, also influence the fuzziness estimation. For example, the
more information the requester delivers, the more certain it is that the transformation result
corresponds to her expectation. The signature in Figure 5.5 has been derived on the basis
of little information. Thus, its fuzziness has been judged with high. More knowledge about
the parameters can reduce this score. For example, additional information like “... that takes
a date as an input parameter” can reduce a fuzziness score high to medium, or even lower,
depending on how much more information can be extracted. The specifications of some
service properties leave less room for uncertainties than others. For example, the expression
“does not save personal data” is pretty clear. There is no fuzziness because properties like
delegation depth and retention time clearly have to be most strict, i.e., set to zero, in this
situation.

Furthermore, if a requester inspected the transformation result and evaluated it to be
good, the fuzziness score can also be reduced. Depending on the requester’s expertise, this
information can get a higher or a lower emphasis.

As already noted, feedback accessible from a reputation system can also be used to select
between parts of the transformation target based on earlier experience. Similarly, selections
that have been made based on a high reputation for a very similar situation can be judged as
more reliable than selections that only lead to bad feedback in the past or selections where
reputation is rather unknown. The reason is that, in the latter case, the requirements are
totally new and no similar requirements specifications have been received yet.

The information from all these sources can be prioritized based on the concrete situation,
e.g., based on the requester’s expertise, and then be aggregated to an overall fuzziness score,
as known from fuzzy matching (see Chapter 4). We also can use the same concepts for
representation of fuzziness scores as known from fuzzy matching. Thereby, our approach
fulfills R4 (transparent fuzziness).

5.3.3 Step 2: Matching Process Generation and Enhanced Matching

The matching process framework introduced in Chapter 3 serves as a basis for matching all
those target specifications describing different service properties. Especially the automated
generation of matching processes (see Section 3.7.2) can be leveraged for the purpose of
automatically deriving an appropriate matching process subsequent to the transformation on
the basis of the transformed matching result. An appropriate matching process is a matching
process that includes matching steps in order to match all parts of the derived requirements
specification.

Since the natural language specifications form the basis for matching in this scenario, we
can expect specifications to be imperfect (see Section 4.4.1). This raises the need to add fuzzy
matching steps to the matching process. The fuzziness estimated during the transformation
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from natural language then contributes to the fuzziness score for transformation-induced
fuzziness and propagates to the next step, the back-transformation.

Furthermore, depending on the integrated matchers, the matchers’ configuration
parameters could be optimized with respect to potentially incomplete input specifications
due to the transformation from natural language. For example, if the derived signatures have
been annotated with a high fuzziness score, the signature matcher could be configured in
a way that it returns not only one parameter mapping but several alternative mappings to
proceed with in the dependent matching steps like condition matching (see Section 2.4.1).
As a consequence, several alternative matching results will be returned and can serve as a
feedback for a better transformation in the next iteration.

5.3.4 Step 3: Back-Transformation and Representation

Because of the traceability links created during the forward transformation, the back-
transformation is straightforward: While iterating through the tree of matching results, the
collection of traceability links can be accessed for each model element.

An alternative approach here would be to derive the traceability information automatically
based on the knowledge that has already been used within the forward transformation. This
way, traceability links do not need to be stored, which reduces the complexity of the forward
transformation. However, storing the links leads to two important advantages concerning R3:
(a) efficiency in terms of the developer’s effort regarding maintainability of the specification
languages and the transformation and (b) efficiency in terms of a reduced computation cost.

• Better Maintainability: Storing traceability links during the forward transformation
allows to keep the back-transformation simple and “stupid” because the back-
transformation needs no knowledge about the forward transformation. This is a fact
of special importance in our scenario because the knowledge leveraged during the
forward transformation is heuristic and vague. Thus, the transformation logic is likely
to change on the basis of experiences collected over the time. In addition, the source
language is also subject to frequent changes as the terminology from the underlying
ontologies may be adapted and extended. For example, more synonyms for “fast”
could be introduced, or we could introduce a transformation rule that transforms “fast”
not into an attribute of the performance model but into a performance context of
the reputation model (cf. Section 2.3.4). Using an automated construction of the
traceability information during the back-transformation would mean to adapt both
transformations if something changes. In contrast, storing traceability links beforehand
allows us to keep the logic that is subject to change in only one place which makes
future adaptions and extensions easier reduces the effort. Furthermore, such an
independent back-transformation allows us to maintain multiple alternative forward
transformations and using the same back-transformation for all of them. Multiple
forward transformations are useful if different heuristics used for the transformation
make sense in different situations, e.g., in different domains. Furthermore, the source
language, i.e., the controlled natural language, could look different for different
domains.
• Reduced Computation Costs: Usually, the back-transformation can be expected to be

executed much more often than the forward transformation. The reason is that one
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requirements specification is usually matched to a large number of provided service
specifications. For each provided service specification, one matching result is created
and each matching result needs to be transformed back. As a consequence, it is
beneficial to keep the back-transformation simple and rather increase the complexity
of the forward transformation by the construction of traceability links.

An approach to present the results created on the basis of fuzzy set matching in
an appropriate way has already been proposed in Section 4.6.1. In addition, standard
fuzzification and defuzzification approaches can be applied in order to adjust the
representation of the matching result to the requester’s terminology.

The back-transformation also propagates the fuzziness scores to the final matching result
(R4). On the basis of all this information, the requester’s original text can be annotated with
hints that show which parts of the requirements specification are not satisfied or which parts
are uncertain (R2). An example for such a representation is shown in Figure 5.4 b).

Note that “back-transformation” is actually not completely correct term as our
transformation is not just the reverse direction of the forward transformation: While the
forward transformation transforms from Language A (e.g., controlled natural language)
to Language B (a matcher’s input language), the “back-transformation” transforms from
Language C (the language used to present matching results) to Language A. For the same
reason, bidirectional model transformation languages like triple graph grammars [GW06,
LAS+14] are no solution to our problem. However, as in our case Language C refers to
language constructs from Language B, the term “back-transformation” is appropriate.

5.3.5 Prototype Implementation

As shown in Figure 5.7, three plug-ins have been added to the FuzzyMatchBox framework
in order to realize the concepts presented in this section:Fuzzy

ControlledNaturalLanguage: A plug-in that represents a controlled natural language realized
by an ecore metamodel following the grammar introduced in Section 5.3.2.

ControlledNL2RequirementsSpecsTransformation: Realizes our example transformation
including the creation of traceability links. There are different ways to realize
traceability links. For example, model transformation languages like QVT [OMG11]
or triple graph grammars [GW06, LAS+14] already come with a solution. However,
as we have two levels of transformations, we constructed a trivial ecore metamodel as
a more flexible solution for this purpose and to keep the integration and maintenance
effort low.

MatchingResult2ControlledNLBackTransformation: Realizes a back-transformation based
on the traceability links. This functionality has been encapsulated into its own plug-
in in order to improve low coupling to foster substitutability for alternative back-
transformations.

5.3.6 Limitations

The natural language specifications our solution focuses on are simple controlled natural
language texts restricted to a set of predefined constructs. These constructs include
a predefined collection of modifiers, a predefined collection of service categories,
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Figure 5.7: Extended Architecture to include Back-Transformations

and a predefined collection of service properties. In order to work with free
natural language specifications, various techniques from natural language processing like
disambiguation [Les86, IV98] would need to be taken into account. Furthermore, the
selection process during the forward transformation would become more complicated.
However, the requesters gain more flexibility.

Furthermore, our prototype is also restricted on the target side of the transformation:
Some exemplary service specification languages have been selected as target languages for
the transformation. An extension of our approach could consider more and other service
specification languages for the same or for further specification aspects.

5.3.7 Related Work

There are numerous software engineering approaches working on natural language
requirements and their traceability. Most of these approaches work on controlled
natural language. Ilieva and Ormandjieva [IO05] as well as Bryant [Bry00] and
Moreno [Mor97] transform natural language requirements specifications into object-oriented
models. Mencl [Men04] derives behavioral specifications, e.g., automata, from textual
use cases, while Li [Li99] generates sequence diagrams and Ravenflow [Man06] generates
activity diagrams. Weston et al. [WCR09] automatically transform natural language
requirements specifications into feature models. Fockel and Holtmann [FH14] derive a
SysML model.

However, all these approaches vary from our concepts with respect to three issues:
(a) None of these approaches is concerned with matching results. This is an important

issue because, as discussed above, it introduces an additional indirection. This leads to
the fact that no bidirectional transformation can be used (as, e.g., in [FH14]) because
the back-transformation significantly differs from the forward transformation. The back-
transformation from a model-checker’s output into the original input language as reported
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by Gerking et al. [GDHS15] comes closest to our approach considering this issue. However,
this approach is, nevertheless, limited with respect to issues (b) and (c).

(b) Related approaches only transform into structural models (e.g., [IO05, Bry00, Mor97])
or behavioral models (e.g., [Men04, Li99, Man06]). They do not derive a set of
heterogeneous and comprehensive specifications covering both structural and behavioral
properties as well as non-functional properties.

(c) Related approaches do not consider the induced fuzziness or uncertainty in any way.
The reason for this finding could be that, in the other approaches, the risk of changed
semantics due to the transformation is not that high as the specification languages are more
similar to each other. Accordingly, they are not relying on other sources of information like
heuristics and domain-knowledge as much as our approach does. The only publication of the
ones listed above that mentions domain knowledge is the work by Weston et al. [WCR09].
They discuss that a domain expert’s knowledge helps to identify irrelevant details in the
source specification, i.e., to derive a more abstract target model. In our case, the target model
is typically less abstract than the source model.
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5.4 Integrating a Matcher into a Service Market
Architecture

Established markets today are still limited to a relatively simple, keyword-based search.
Keyword matching, however, neither captures the semantics of the services to be
searched [MPMM98] nor non-functional properties. Thus, in academia, there is a mass of
research for more complex service matching approaches as discussed in Sections 2 and 3.
However, integrating a service matcher component implementing such a service matching
approach into an existing service market is complicated. The reason is that there are different
architectural possibilities with different consequences on market success that makes a trial-
and-error approach risky and expensive. For example, integrating a service matcher into
the requester’s client, instead of integrating it at the provider’s side, provides the benefit
of customizability without losing comparability between matching results. However, this
architecture may lead to a bottleneck that can slow down the whole discovery because
requester’s usually only have limited computing power accessible such that many matching
processes probably have to be performed sequentially. On the other hand, integrating a
service matcher into the provider’s system can lead to serious security problems allowing
service providers to manipulate matching results. However, a better performance may be
attainable, at least for market’s where providers can be expected to have more computation
power accessible than the requesters. This is often true in markets where requester’s also take
the role of the end users, e.g., app markets. For other markets, e.g., in a business-to-business
scenario, this could be different.

As we can learn from these examples, the best solution has to weight many trade-offs and it
is context-specific: Different market scenarios lead to different environmental circumstances,
which require different solutions. Especially for comprehensive specifications and complex
matching approaches as dealt with in this thesis, an appropriate solution is relevant. This
leads to the conclusion that a more systematic approach for the integration of service
matchers on the architectural level is needed. However, until now, in literature, architectural
decisions wrt. service matchers have rarely been discussed and there is no systematic
approach for finding a good architecture for the integration of service matchers into a service
market. Also applying classic software architecture decision-making methods has not been
analysed with respect to service matchers and their influence on market success yet.

In this section, we present a systematic approach for the integration of service matchers
into a service market. This includes the definition of requirements and a discussion on
architectural tactics based on these requirements. We exemplarily apply our approach to
a specific service market taken from the research area of On-The-Fly Computing [SFB901].
As a contribution, a systematic approach that can be used to integrate service matchers into
existing markets, but also to support the creation of new service markets from scratch is
proposed. Thereby, the general success of service markets influenced by the use of service
matching approaches can be improved. [PBS14]

In Subsection 5.4.1, we derive requirements for integrating a matcher into a service
market architecture. Based on these requirements, we discuss different architectural tactics
in Subsection 5.4.2. Subsection 5.4.3 presents an example application of our approach to
service markets in On-The-Fly Computing based on the discussions in the previous chapters.
Subsection 5.4.4 deals with related work.
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The concepts presented in this section have been published in a conference paper [PBS14]
and in a technical report [PBS14].

5.4.1 Requirements

“This section derives requirements for a service matcher’s integration into a service market
architecture by analyzing the current state of service markets as described in Section 2.2.
There may be further, more fine-grained requirements that have to be considered for the
matcher’s implementation but we focus on the requirements with the largest impact on higher
level design decisions.

In the first part of this section, an overview of the requirements and a short explanation
of how we collected them are given. After that, the requirements and their derivation
are explained in detail. At the end of the section, we discuss trade-offs between different
requirements.” [PBS14]

5.4.1.1 Overview and Method

“Figure 5.8 depicts an overview of the collected requirements including their dependencies
and their trade-offs. A dependency from A to B means that the fulfillment of B supports the
fulfillment of A. For example, R5 and R6 have an impact on R4 but their fulfillment alone
does not guarantee the fulfillment of R4. Also note that neither the list of requirements, nor
the depicted dependencies are meant to be a complete collection. We only focused on the
ones that are most important in our context.

As we can see in Figure 5.8, the starting point for all requirements is the overall goal:
Market Success. Only successful service markets will be accepted by a broad range of
service requesters and service providers. In order to be successful, service markets need
to optimize all market participants’ profits while providing all market participants the same
prospects [SO11]. Thus, the first two requirements are market optimality (R1) and market
fairness (R2). The latter is highly determined by manipulability (R3).

All further requirements are rather technical requirements and can be derived from the
market requirements. We derived them by analyzing current markets and the desired
operations to be performed in a perfect service market, and looking at a variety of service
matchers. We also reflect some of the requirements for a perfect market defined by
Schlauderer and Overhage [SO11] but we had to extend them because we put a stronger
focus on the technical integration of matcher and not on market mechanisms. Furthermore,
we collected our requirements in an iterative process. After obtaining and evaluating an
initial set of requirements, some of them had to be refined while others could be aggregated.

In Section 5.4.1.2, we describe all requirements depicted in Figure 5.8 and explain why
they are important for our work. Trade-offs between these requirements are explained in
Section 5.4.1.3.” [PBS14]

5.4.1.2 Requirements Specification

“All market participants’ profits are related to the allocation of the services traded on these
markets: The requester’s goal is to obtain the service which serves her purpose best and the
provider’s goal is to increase its revenue by selling as many services as possible. The matcher
controls the allocation of services by providing matching results that are used to decide which
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Figure 5.8: Overview of the requirements for integrating a matcher into a market [PBS14]

service is responded for a certain request. Thus, the ability to produce an optimal allocation
becomes one of the key requirements of the matcher’s integration.

(R1) Market Optimality: All requesters should obtain those service offers which fit their
requirements best.

Being tightly coupled with market optimality is the requirement for market fairness. From
market fairness, we can directly derive a requirement for avoiding manipulability.

(R2) Market Fairness: All market participants should have the same prospects of achieving
their goals in the market so that the market remains attractive for them [SO11].

(R3) No Manipulability: It must not be possible to manipulate matching results such that
one market participant improves its prospects over another one, while the service offer
stays the same.

As shown in Figure 5.8, in order to satisfy the market requirements, several technical
requirements need to be satisfied as well. One of them is the discovery’s efficiency which is
related to the latency in answering a request. Latency has been proven to be a critical factor
for the acceptance of online interactions [Bru09]. Thus, we can assume that requesters do
not want to wait long after they have requested a service. Therefore, only service offers that
reach the requester after a short time will be considered.
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(R4) Efficiency: Efficiency measures how much resources (e.g., time) are needed to answer
a request including the complete search process. The more efficient a discovery runs,
the more services can be taken into account and the higher is the probability that the
requester can be provided with an optimal service. Thus, the efficiency should be as
high as possible.

Since the matcher is part of all transactions during discovery, both failed and successful,
the matcher’s design has a huge impact on the discovery’s efficiency. Especially performance
and elasticity are important.

(R5) Performance: Performance refers to the time to perform one matching process, i.e.,
the time to determine how much a particular service satisfies the request. It needs to
be high in order to gain a good efficiency of the overall discovery process (R4).

(R6) Elasticity: Even if the performance of one matching process is good, the discovery’s
efficiency is still problematic when a huge amount of matching processes is required.
Thus, similar to cloud computing systems, in service markets, the matching system
needs to be elastic [HKR13] in a way that it adapts to the amount of required matching
processes.

Another essential requirement that is needed to satisfy market optimality is accuracy. A
matching result gained fast is still of no value if it is not accurate.

(R7 ) Accuracy: The matching result should be as accurate as possible and false positives as
well as false negatives should be minimized, i.e., services with a good matching result
have to satisfy the request’s requirements well and services with a bad matching result
must not satisfy the requirements.

The matching result is not only relevant for the requester to select adequate services.
It is also useful for the service provider in order to give feedback about missed potential
transactions. Thereby, it contributes to market optimality because, based on this feedback,
service providers are able to improve their service offers with respect to the customers’ needs.
In contrast to the provider, the requester does not necessarily need the matching result if she
is directly provided with the description of the best service instead.

(R8) Provider Feedback: Matching results should be returned to the provider as feedback.

The matching result can be an aggregate of matching results for different matching
conditions. However, different parties could have different preferences regarding calculation
and the weights for different conditions and the aggregated end result (e.g., signatures
matching with a higher priority as protocols matching). Thus, a configurable matcher could
produce matching results more useful for the requester or the provider.

(R9) Configurability: It should be possible to configure the matcher wrt. someone’s
preferences.

However, matching results also need to be comparable so that a requester can be supplied
optimally if several adequate services, e.g., from different service providers are available.
Furthermore, matching results are only comparable if they are consistent.
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(R10) Comparability: If different services are matched to the same request, services with
the same matching result should satisfy the request equally well. Similarly, services
with better matching results should satisfy the requester more than services with lower
matching results. This has to hold, even and especially, if those services are offered by
different providers.

(R11) Consistency: Dynamic markets, where providers can appear and disappear or change
their offers at any time, can lead to situations in which several versions of a service
or a service description are available. It has to be avoided that this dynamics leads to
inconsistent matching results between different providers so that comparability can be
ensured.

Another class of properties needed to achieve optimal and fair markets is dependability.
In general, dependability captures several attributes, e.g., availability, maintainability, and
reliability [ALR01]. For service matchers in service markets, bad maintainability and bad
reliability both lead to a bad availability. Thus, we summarize these properties into one
availability requirement R12.

(R12) Availability: A matcher needs to be available as much as possible because unavailable
matchers reduce the number of potential service offers that could be forwarded to the
requester.

From R1 and R2 (respectively R3), we can also derive several security requirements. We
summarize them into one requirement R13. The security requirement is critical. For example,
if aspects like reputation ratings of a service are to be matched, service providers have to be
prevented from cheating in a way that they claim to have a better reputation than they actually
have.

(R13) Security: Matching results have to be secure so that they cannot be manipulated
by any service provider. Similarly, the service specifications the matcher receives as
inputs must be secured wrt. manipulability by unauthorized actors: only the provider
of the specified service should be able to edit the service specification. However,
service specifications may also refer to information that must not be manipulated by
the provider itself, e.g., reputation.

In order to create a fair market, market barriers have to be avoided, i.e., the effort to enter the
market and to request or to provide a service on this market, should be low. Market barriers
are a general problem on service markets [SO11].

(R14) No Market Barrier: Market barriers need to be avoided to keep a market fair and
attractive for all market participants.

However, with the effort related to enter a market also comes the possibility for
independence. For example, for some providers, a market in which they are not dependent
on some third-party servers but on their own resources, may be more attractive because of
their own requirements for qualities like availability and security. Thus, the requirement for
avoiding market barriers may not be relevant for all markets.” [PBS14]
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5.4.1.3 Trade-offs

“As already noted, some of the requirements described in Section 5.4.1.2 result in trade-offs.
Figure 5.8 shows these trade-offs by dotted arrows annotated with a flash symbol.

One trade-off is between accuracy (R7) and performance (R5). The more time the
matcher has, the more information can be considered during matching and the more precise
algorithms can be run. If only little time is available, [...] fuzzy matching can be used to
speed-up the matching process [Pla13, PvDB+13].

Since a service market is a large distributed system, the CAP theorem [Aba12] becomes
relevant. It means that a distributed system, e.g., a cloud system, cannot provide the
three properties consistency, availability, and partition-tolerance at the same time. In our
case, especially consistency (R11) and availability (R12) lead to a trade-off because a high
availability can be achieved by replicated data (here: service specifications) which increases
the probability of inconsistencies due to different versions in the market.

Furthermore, there is a trade-off between configurability (R9) and comparability (R10).
If a matcher is configurable, matching results are calculated in different ways or based on
different inputs. Thus, they are not comparable anymore.

An additional well-known trade-off is between performance (R5) and security (R13) as
adding security-improving mechanisms, e.g., additional encryption, inevitably influences the
performance negatively [BHKMT13].

Because of such conflicting requirements, there may not be one general best solution for
all service markets. It depends on the specific environment and assumptions, how to balance
the different requirements best.” [PBS14] As we can see, creating an appropriate architecture
always also means to weight of these trade-offs. In addition, the created design decisions can
open up new trade-offs, as we will see in the following sections.

5.4.1.4 What makes these requirements special to a matcher?

Many of the listed requirements do not only hold for the matcher but also for further market
components. However, some are also specific to the matcher or at least more distinctive
for the matcher. Let us consider a certification component as an example. A certification
component is responsible for verifying that a service’s functional specification is consistent
to its actual implementation [SO11, Jak15]. If this is the case, the certification component
provides this service with a certificate. This certificate serves as further guarantee for
potential requesters and thereby increases the sales opportunities of the certified service.

Requirements like accuracy (R7), consistency (R11), and security (R13) are definitely
also relevant for a certification component. Also, requirements like availability (R12) and
response time (R5) play a role but they are not as crucial as in the matching scenario: The
matcher is part of much more transactions than the certification component. Each request
leads to multiple matching processes, not only for all successfully matched services, but
also for all services that do not match. In contrast, the certification is only performed once
when a new service version or service specification version appears in the market. Therefore,
requirements like availability and response time are much more crucial for the matcher than
for a certification component.

Other examples for components in the market with similar requirements as the matcher
are an analyzer (analysis service descriptions wrt. functional and non-functional attributes,
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e.g., performance predictions) or a monitoring component. Since an analyzer only runs once
for each service composition and a monitoring component only runs for each successfully
sold service, the same argumentation as for the certification component holds. All in all, at
the moment, there seems to be no component, which is as crucial for the overall performance
and scalability of the service market and therefore, as important for market success, as the
matcher. Thus, design decisions wrt. these requirements are especially interesting when
considering the matcher.

Furthermore, a matcher faces special security challenges. We discuss these challenges in
one of our earlier publications [PJP+14].

5.4.2 Integrating a Matcher based on Architectural Tactics

Based on the requirements derived in Section 5.4.1, we create architectural tactics [BBK03]
regarding how to integrate a matcher into a service market architecture.

When integrating the matcher into the market, based on the given market components,
there are different architectural alternatives. Note that there are many different market
architectures possible as many different market components can be selected and interaction
can vary between different market scenarios. In the following, we focus on one of the
most basic scenario in incorporating a requester component, a provider component, and a
discovery system mediating between the former two. Three main example alternatives are
depicted in Figure 5.9 and discussed in the following.

“These alternatives could be understood as different architectural patterns [BMR+96].
In Alternative A, the matcher is integrated into the requester’s system and, therefore,
deployed on the requester’s hardware. Here, the requester’s system accesses the discovery
system to get the specifications of the provided services and forwards them to the matcher.
Alternative B lets the providers deploy the matcher on their own resources. In this case,
the discovery system forwards the request to the providers, where each provider matches
its service specifications against the request. In Alternative C, the matcher is part of the
discovery system and deployed on the market operator’s resources. Instead of the market
operator, this role can also be played by another trusted third-party which is part of the
market. The specifications of the provided services could still be located at the providers,
or, alternatively, stored on the market operator’s resources, too. As we can see, the question
of where to integrate the matcher is related to the question of who deploys the matcher,
whereas, in our case, in particular, the installation phase of the deployment lifecycle is
relevant [Dea07].

Each of the three alternatives has different benefits and drawbacks and, in particular, a
different impact on the fulfilment of our requirements. Table 5.1 lists these benefits and
drawbacks with respect to the requirements collected in Section 5.4.1. A minus in the table
means that it is difficult to satisfy the corresponding requirement, whereas a plus means that
it is easier to satisfy it. In the minus case, the table also displays the reason. Similarly to the
architectural tactics described by Bachmann et al. [BBK03], the table depends on bound and
free parameters: Bound parameters are already fixed because their assignment is the same
for all service markets. Free parameters (highlighted in italics) need further assumptions
to be assigned, i.e., the evaluation can have a different result depending on the properties
of a concrete service market. Furthermore, there is a column about weights in order to
allow influencing the overall evaluation by assigning special priorities to some requirements.
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Figure 5.9: Architectural alternatives for matcher integration [PBS14]
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Table 5.1: Where to integrate the matcher? [PBS14]
Alternative A: Alternative B: Alternative C: w

Requester Provider Market Operator
(R4) - (much transfer) depends on location and size of specs ?Efficiency
(R5) - (no caching) + +

?Performance depends on kind of requesters/providers
(R6)

depends on number of providers and requests at a time ?Elasticity
(R8) - (much transfer) + - (much transfer) ?Feedback
(R9) + - (conflict R10) - (conflict R10) ?Configurability

(R10) + - (conflict with R9 and R13) - (conflict with R9) ?Comparability
(R11) - (not insurable) + - (not insurable) ?Consistency
(R12) + - + ?

Availability depends on market size
(R13) + - (high risk for manipulation) + ?Security
(R13) - (critical) + + ?Barriers

Weights can be positive (e.g., +1), if a requirement is particularly important, or negative (e.g.,
-1), if it is less important compared to the other ones. Similar to free parameters, weights
depend on properties of concrete service markets, too. Thus, they are not yet assigned in
this version of the table. We will discuss an example for a concrete service market with a
completed version of Table 5.1 in Section 5.4.3.

The table only covers the technical requirements from Figure 5.8 because these are
the ones that we can directly influence with the selection among the three architectural
alternatives from Figure 5.9. One exception is accuracy (R7) which is not part of the table
because it is mostly influenced by the internal design of the matcher and not by its integration
into the market architecture. However, we still need to take it into account because of its
trade-off with performance.

In the following paragraphs, we describe the evaluation shown in the table for each
requirement.

(R4) Efficiency

As depicted in Table 5.1, the possibility to satisfy R4 depends on where the specifications
of the provided services are stored and how large they are because the matcher needs the
request and the provided specifications as input. The provided specifications could either
be stored somewhere in the market or each provider stores the specifications of its provided
services. As a conclusion, if we assume that requesters run the matchers, Alternative A,
this would lead to a lot of data transfer in any case. Many service specifications (also
including the specifications of all not matching services) need to be transferred to the
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requester before matching can be performed, which costs a lot of bandwidth, increasing
with the specifications’ size. For Alternative B and C, the evaluation depends on the location
and the size of the specifications: If specifications are stored by the providers, having the
matcher there, too, would be the most efficient; if specifications have been sent to the market
it is more efficient to match them there.

(R5) Performance

Also regarding the performance, Alternative A seems not to be a good solution. Matchers
located at the service provider or a third party provide the possibility to cache matching
results and benefit from it when similar requests from different requesters come in. This
possibility is not available for matchers deployed at the requester’s because it would only pay
off, if one requester repeatedly states similar requests, which is not the case if the discovery
scenario works well and the requester already gets a satisfying result after her first request.

Furthermore, if the matcher runs on hardware with high computation power, e.g., compute
centers, this could speed up the matching process, too. In contrast, if the matcher runs on a
mobile device, a matching process takes longer. Which role can provide the more appropriate
resources depends (amongst others) on the domain. For example, service requesters in some
technical domain could be assumed to have better hardware available than the typical hotel
booking service user, whereas service providers can be expected to have access to more
computation power than the requester in both cases.

(R6) Elasticity

Elasticity refers to the extent to which the amount of matchers adapts. For Alternative A, the
amount of matchers increases with each new requester and thereby indirectly also with the
amount of stated requests. This is good if there are many requests but only few service offers.
For Alternative B, the amount increases with each new provider, and, thereby, also with the
amount of service offers. If we have a market with many providers but only few requesters,
Alternative B is preferable. Alternative C suffers from the fact that the market operator has
to provide or pay a cloud infrastructure in order to provide an elastic matching architecture.

(R8) Feedback

According to R8, matching results need to be transferred to the provider. Naturally, this
produces the least data transfer costs if the matcher is running on the provider’s site, too.

(R9) Configurability

As already discussed in Section 5.4.1.3, configurability is in conflict with comparability.
This especially holds for Alternative B and C: if each provider uses a different matching
configuration, the matching results for service offers of different providers are not
comparable for the requester. However, if the requester has the matcher and the possibility
to configure it, this is no problem as all services from different providers are matched with
the same configuration. In contrast, comparability among different requests is not needed
as matching on service markets is one-sided. This means, we are searching for an optimal
allocation of services to requests but not the other way around, as software services are
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immaterial and there are (almost) no capacity constraints. Thus, for these requirements,
Alternative A is the best solution.

(R10) Comparability

For comparability, the same argumentation as for configurability holds because of their trade-
off. However, in addition, comparability is also influenced by security as in the case of
manipulation of matching results, comparability cannot be ensured. This is a disadvantage
of Alternative B because it is most susceptible for manipulation, as we will explain below
when discussing R13.

(R11) Consistency

Regarding consistency, Alternative A as well as Alternative C both have the disadvantage that
it is not necessarily ensured that they match the service specification describing the provider’s
current offer. Compared to this, the provider has a better chance to ensure consistency
because the provider manages the service specifications herself.

(R12) Availability

The availability of the matcher is only certain if it is deployed at the requester’s side because
if the requester is not available, there is no request to be matched. A similar argumentation
holds for the provider: if a provider deploying a matcher is not available, this provider’s
offers are not matched but all other providers’ offers are (by the other providers’ matchers).
If the market operator deploys the matcher, the matcher as well as the specifications could
be unavailable with the consequence that potentially successful transactions fail. However,
depending on the number of matchers, the market operator can provide, the invocation of
an unavailable matcher can easily be forwarded to another matcher. This option is harder to
be realized for Alternative B as the providers are not necessarily connected with each other.
Furthermore, for Alternative B, the importance of the availability requirement depends on
the size of the particular service market: at least for the requester, it is not a huge problem if
some matchers are not available if there are many providers.

(R13) Security

Security becomes a problem, in particular, if the provider deploys the matcher. In this case,
it is hard to keep the provider from manipulating matching results. In contrast, the requester
or the market provider can be assumed not to be interested in faking the results.

(R14) Market Barriers

The effort of deploying a matcher (even if the software itself is provided) introduces a market
barrier. However, we need to distinguish between the impact of market barriers for the
requesters and the impact of the barriers for the providers. If the requester needs to provide
hardware to deploy a matcher, the whole market acceptance of customers is questionable.
For providers, it seems to be more realistic to assume that they accept a high market barrier
induced by the effort of deploying the matcher because they gain profit by selling their
services.
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Conclusion

As we can see, there is no obvious answer to the question of where to integrate the matcher.
Each alternative has its advantages and disadvantages and many aspects depend on the
concrete environment, e.g., the domain the market’s services belong to or the size of the
market.” [PBS14]

5.4.3 Exemplary Application: Service Matchers in OTF Markets

“In this [subsection], we take service markets in On-The-Fly (OTF) Computing [SFB901]
as an example. OTF Computing investigates markets based on different research areas and
addresses different service domains as examples. In this paper, we focus on the service
market in the domain of water network optimization [DS12a]. We give more information
about the assumptions of our example market in Section 5.4.3.1.

5.4.3.1 Context-specific Assumptions

The vision of OTF Computing tries to solve the problem of serving a large variety of
customer-specific service requests. Using service composition techniques, basic services
provided by service providers on so-called OTF markets can be flexibly combined in order
to create complex but individually tailored services that satisfy unique customer requests.

The market for water network optimization services makes a list of assumptions:

A1 The world-wide water network optimization service market is large and highly dynamic
with many providers that can appear and disappear at any time. Thus, there are many
provided services, while requests can be expected to be stated distributedly over time
(because of different time zones a world-wide market has to cope with.

A2 The specifications of the provided services are stored at the providers’ systems.

A3 The providers describe their services in a comprehensive way, resulting in detailed
service specifications.

A4 Service requesters are mathematicians as well as water network analysts. They request
services from desktop computers but their hardware cannot be expected to be high-end.

A5 In addition to the discovery system and the matcher, the market also contains a service
composition engine and a reputation system [JBPP14b, JBPP14a].

5.4.3.2 Resolved Dependencies

Based on the assumptions listed before, we can now assign all free parameters of Table 5.1
and create a specifically completed table with respect to OTF Computing. The OTF-specific
table is depicted in Table 5.2. [Remember that a minus in the table does not mean the
corresponding requirement is not possible to be satisfied. It only means that it is difficult
to satisfy it. On the other hand, a plus means that it is easier to satisfy the corresponding
requirement and not that the requirement is inevitably satisfied.]

Based on this and the assumptions A1-A5, the table is completed as follows: Regarding
efficiency, Alternative B is beneficial because only the request needs to be transferred which
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Table 5.2: Adapted version of Table 5.1: Where to integrate the matcher in OTF
markets? [PBS14]

A: B: C: w
Req. Prov. Market O.

(R4) Efficiency - + - +1
(R5) Performance - + + +1

(R6) Elasticity - + - +1
(R8) Feedback - + - 0

(R9) Configurability + - - +1
(R10) Comparab. + - + 0

(R11) Consistency - + - 0
(R12) Availability + + + 0

(R13) Security + - + -1
(R14) M. Barriers + - - 0

Sum 5 6 4 0
Sum (incl. weights) 5 9 4 0

costs less bandwidth than in Alternative A and B, where many large specifications (see A3)
need to be transferred (A2). The performance can be assumed to be better in general if
the matcher is deployed at the provider’s because we cannot assume that the requesters are
technical advanced people as their requests can come from many different domains (A4).
Regarding Alternative C, a third party like the market operator can be expected to be able
to provide resources with high computation power. Regarding elasticity the provider is
to be preferred because of A1: With Alternative A, the matcher needs to perform many
matching processes for one request. In contrast, with Alternative B, the number of matchers
increases with an increasing number of services and thereby with an increasing number of
required matching processes. In this case, each matcher only has to take care of the matching
processes needed to match the request with services of one service provider. Alternative C
can easily become a bottleneck because it cannot be expected to scale with the provided
services, nor with the requests (except when the market operator runs a cloud environment).
In order to judge availability, we can use Assumption A1, that OTF markets contain many
providers. Thus, when deploying the matcher on the provider side, the unavailability of one
matcher is not that serious, if there are many substitutable providers, so Alternative B is still
a plus.

Due to the market barrier problem, we need to determine that the matching software is
always delivered to market participants when they enter the market. Without this assumption,
neither Alternative A would be possible as the effort for a requester providing an appropriate
matcher is too high and complicates the market entrance drastically, nor Alternative B would
be possible because of the conflict with comparability (R10).

Based on Table 5.2, we can now make an informed decision. As we can see from the table,
Alternative B outweights the other two but the difference is not significant enough to allow a
secure decision. For this reason, in the next step, the weights become relevant.
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5.4.3.3 Assigned Weights

Next, we need to take into account which requirements are more important to achieve market
optimality (R1) and market fairness (R2) in our application context from OTF Computing
and for which drawbacks we can still find acceptable solutions. As shown in Table 5.2, we
assigned special weights to efficiency, performance, elasticity, configurability, and security.
We discuss these decisions in the following paragraphs.

(R4) Efficiency, (R5) Performance, (R6) Elasticity
In OTF Computing, we put a special focus on the discovery’s efficiency (and thereby also
on performance and elasticity) because the idea is not only to discover services but also to
compose them on the fly (see A5). The composition includes the decomposition of a request
into subrequests and the discovery for each subrequest. Leading to a recursive scenario, each
subrequest can be decomposed again.

Thus, in order to satisfy one request, not only one but many discoveries and, therefore,
multiple matching processes are needed. However, still, a request should be answered in
acceptable time. This makes these three requirements important in particular.

(R9) Configurability
As described in Section 5.4.1.3, one trade-off to be solved is between accuracy (R7) and
performance (R5). If we give a special weight to performance, what happens to accuracy?

We suggest to cope with this trade-off by using a configurable matcher. Based on
the properties of a request’s application domain, the matcher can choose a different
implementation. Amongst others, different matcher configurations could be achieved by
substituting, simplifying, or even omitting matching conditions. For example, in a domain
with a very standardized terminology, e.g., touristic, complicated behavioral matching, e.g.,
pre- and post condition matching, may not be needed because signature matching is already
very successful.

However, as we pointed out in Section 5.4.2, configurable matchers may lead to a
conflict with comparability (R10) when deployed on the provider side: Matching results
of different services determined by matchers using different implementations are not
comparable anymore. Because of this, we propose that matching configurations only differ
between different domains. Thereby, comparability within a domain is given. Comparability
between different domains can be neglected because the matching should always fail in such
cases, anyway.

(R13) Security
We assigned a negative weight to the security requirement because we propose to take actions
agains security problems in two ways: (1) The secure interaction with the matcher can be
ensured using appropriate security mechanisms, e.g., Service Automata [GMS12]. (2) If
proactive security mechanisms fail, a reliable reputation system [JBPP14b, JBPP14a] (A5)
could prevent service providers from cheating: Reputation systems provide requesters the
possibility to rate a service (or its provider) after using it in order to share their experiences
with future requesters. If a service provider manipulates the matcher in a way that it the
requester is tricked into buying a service that does not really comply to the request, the
requester can submit a bad rating. Thereby, by and by, the service provider’s reputation will
decrease, lowering its sales opportunities.
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Figure 5.10: Interaction with the matcher on OTF water network optimization service market

5.4.3.4 Resulting System

Evaluating Table 5.2 taking into account the weights, the clear winner is Alternative B:
integrating the matcher into the provider’s system.

Figure 5.10 shows how the interaction with the matcher integrated into the provider’s
system works in our exemplary OTF water network optimization market as a sequence
diagram. Note that [...] the interaction has been simplified [to achieve a better overview].
For example, the case that a provider provides more than one service has been intentionally
neglected here in order to reduce the complexity. However, the sequence diagram
nevertheless describes an abstract view of the interaction of the components shown in
Alternative B of Figure 5.9 corresponding to the interfaces depicted in Figure 5.9.

As depicted in Figure 5.10, the Requester’s request is forwarded to a set of
Provider components. These providers invoke a Composition Engine because in
OTF Computing, we assume that for satisfying a request, a composition of multiple services
provided in the market is necessary. In this case, the search is performed recursively with
the Provider becoming a Requester and searching for services that can be composed
to satisfy the request. Furthermore, each Provider forwards incoming requests to its
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Matcher. At the end, the Discovery System obtains many service offers in form
of specifications of the provided services ProvidedSpec with corresponding matching
results. The main search itself is performed asynchronously. Only for services that
successfully match, an offer is sent back. After ranking the received service offers, the
Discovery System sends the best service (or alternatively a set of best services) back
to the Requester component. An exemplary instance of this sequence diagram for a
concrete service composition from the water network optimization domain can be found
in [Appendix D.3].” [PBS14] This scenario demonstrates that a more informed decision can
be made based on our requirements and tactics.

5.4.4 Related Work

“Our related work is located in the intersection of the research areas of software architectures,
service matchers, and service market mechanisms. Even though there is a lot of research
for the single areas, the integration of service matchers into a service market has not been
addressed on the architectural level, yet. Thus, related work in this intersection is limited to
some discussion of general service discovery architectures.

Klusch [Klu08] gives an overview of semantic service discovery architectures and
classifies them into centralized and decentralized architectures. However, the alternatives are
not discussed with respect to requirements for a matcher’s integration nor taking into account
market mechanisms. [Centralized architectures have a central service repository which
manages the discovery, i.e., contains the matcher. In contrast, the decentralized architecture
is characterized by several service repositories, distributed over the network, e.g., peer-to-
peer systems.] In their survey [DHC12], Dong et al. build on Klusch’s results and classify
their surveyed matching approaches regarding discovery architectures into centralized and
decentralized architectures, too. In their survey, they categorized most of the SWS matchers
as centralized and only some as decentralized, however, they do to go into details regarding
how these architectures are realized and which impact they have on the market.

Referring to the architecture description of web services by the W3C [W3C], Jaeger et
al. [JRGL+05] describe three main discovery scenarios: a centralized registry, an index, and
a peer-to-peer scenario. Based on this, Jaeger et al. distinguish between a (centralized)
server-sided and a (index or peer-to-peer) client-sided matching scenario. In the server-
sided scenario, the matcher is located at a third-party server, similar to our Alternative C.
The requester efforts are described to be low in this scenario. In the client-sided scenario, the
requester has the matcher (Alternative A), providing the possibility for the requester to use its
own, customized matcher. However, most of our requirements are not discussed in this work.
The original architecture description [W3C] briefly mentions some high level advantages of
the different architectures but only the requirements wrt. the dynamics and the scalability of
the environment are taken into account.

For an overview of general decision-making approaches to choose among different
architectural alternatives, we refer to the survey conducted by Falessi et al. [FCKK11].
Many of such approaches could be applied to integrate matchers into service markets as a
second step subsequently to our approach. For example, PerOpterix [KKR11] is also about
supporting a software architect to make well-informed trade-off decisions when choosing
an architecture based on architectural tactics. However, it requires already a rather concrete
model of the architecture as input, which we do not have yet in the stage of design where
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our approach takes place. PerOpterix could be applied to a service market architecture after
requirements and trade-offs are have been explored using our work. In general, a combination
of our matching-specific approach and a general approach could thereby provide support on
a more detailed level.” [PBS14]

5.5 Conclusions

In this chapter, we brought together the concepts we introduced with respect to
comprehensive matching processes (Chapter 3) and the concepts we introduced with respect
to fuzzy service matching (Chapter 4). This combination has been discussed from three
different viewpoints: the development and benefits of fuzzy matching processes, the back-
transformation of fuzzy matching results, and the integration of a matcher into a service
market’s architecture.

For the purpose of user-friendly matching results, we propose incorporating additional
sources of information, estimating and presenting fuzziness, and a back-transformation of
the matching-results based on traceability links. Our systematic approach for integrating
a service matcher into a service market includes the discussion of requirements and
architectural tactics in order to enable a more informed decision-making regarding
architectural alternatives.

As a benefit of these three working packages, service discovery in service markets becomes
more attractive to all market participants as their market entry is supported and their goals
are taken into account explicitly. Thereby, service markets become more successful.

All in all, our concepts also represent a first attempt to bridge the gap between real software
markets and the mass of existing matching approaches available in the literature.
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CONCLUSION

This chapter presents the conclusions that can be drawn from this thesis. It also points out
future research challenges which can be derived from the results of this thesis.

6.1 Results and Conclusions

This thesis addresses two main research challenges within the area of matching service
specifications in service markets: How to deal with complex input specifications and how to
deal with imperfect information. In four case studies including altogether ten experiments,
we demonstrated the validity of the concepts we proposed to cope with these challenges. In
the following, we briefly conclude our research findings.

• Challenge 1: Dealing with Complex Input Specifications
On the one hand, service matching has to be able to manage complex requirements and
service specifications in order to provide a holistic and customer-specific evaluation
of a service offer. With our model-driven framework MatchBox, we introduced
the possibility to combine multiple service matching approaches to comprehensive
matching processes taking into account a variety of service properties. Our case
studies showed that such matching processes provide a flexible and low-effort solution
to design and execute matching tailored to diverse scenarios.
• Challenge 2: Dealing with Imperfect Information

On the other hand, service matching has to cope with imperfect information, i.e.,
requirements and service specifications that are incomplete or imprecise due to effort
aversion, indecisiveness, intentional concealment, or lacking knowledge of market
participants. As a solution, we propose concepts for fuzzy matching that provide
decision-making support by quantifying and presenting uncertainty induced by such
fuzziness sources. Our case studies showed that such an explicit consideration of
fuzziness provides market participants with much more valuable knowledge about
offered services than related approaches.

Applying theories and methods from various research areas, allowed us to present
interdisciplinary solutions and lead to the fact that our contributions go beyond the state
of the art in service matching.

Since we tackle challenges that kept service matching from being broadly applied in
practice in the past, both researchers and practitioners benefit from the concepts and tools
introduced in this thesis.
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6.2 Future Research Challenges

The results of this thesis raise several possibilities for future research. This section discusses
a few of these research challenges. Minor possibilities for improvements are pointed out in
the discussion and limitations sections of the previous chapters.

Extended Fuzziness Classification
In this thesis, we focused on a fixed set of fuzziness types that we identified as the most
important. However, there are further types and their impact on matching results should
be investigated. Two examples are Ambiguity (i.e., expressions which have more than one
semantically unrelated meaning [Zha98]) and Inconsistency (i.e., parts of a specification
contradict other parts of a specification). These fuzziness types are likely to occur if a
requester or a provider is not sufficiently careful while specifying or when she over-specifies
her offer. In computer linguistics, there are special methods to eliminate ambiguity. These
methods have already been applied to requirements engineering [SJ15]. However, the
question whether such methods are applicable and beneficial for service matching, is an
open issue.

Algorithm-Induced Fuzziness
The fuzzy matching approaches presented in this thesis focus on provider-induced, requester-
induced, and transformation-induced fuzziness. In the future, it would be interesting to
also investigate algorithm-induced fuzziness more deeply. Unlike the other three fuzziness
sources, we expect algorithm-induced fuzziness to occur especially in matching steps
considering functional properties, e.g., matching pre- and post-conditions or protocols, as
these often require algorithms of high computational complexity. For example, in Boerding’s
thesis [Boe15], algorithm-induced fuzziness in combination with a matching approach based
on SMT solving is discussed.

Improving Matching Results by Adaptation
In the literature, there are various approaches (e.g. [BR04, GMS12, HA10, IT13, IMTA05,
MPS12]) for adaption of software components and services in cases of mismatches, e.g.,
by the automated generation of adapters. Considering comprehensive as well as fuzzy
service matching, new research questions rise up. For example, current adaption approaches
focus on either signatures or protocols. But how can we adapt services with respect to
comprehensive specifications also describing multiple functional as well as non-functional
properties? Existing approaches only target one or two kinds of specifications. Furthermore,
we should address coping with fuzziness using adaption approaches. Concerning this subject,
the question is: How can we leverage adaption approaches in cases where the matching
results are not necessarily bad but uncertain? In order to investigate questions like these,
our comprehensive and fuzzy matching concepts could be combined with an extension of
adaption approaches like Service Automata [GMS12] which enforce service properties by
monitoring and suppressing method calls at runtime.

Service Composition based on Fuzzy Matching Results
Service matching is the foundation for both service discovery and service composition as
both require service selection based on some matching result. Up to now, we discussed

186



6.2 Future Research Challenges

how to select a service based on the matching result and additional information about the
fuzziness. However, it is unclear, how the information about fuzziness should be used
within the composition. For example, one approach to service composition are one-to-
many matching approaches (e.g., [HGEJ12b, BCP08]). Unlike the one-to-one-matching
approaches addressed in this thesis, one-to-many matching approaches already consider
situations where a partial match requires to select further services on order to achieve a
full match. We could leverage these approaches in order to cope with uncertain matches,
however, this could lead to oversized services with redundant capabilities. This is especially
a problem as it is unclear how non-functional properties should be taken into account in these
approaches: For functional properties, one-to-many matching approaches usually assume
a “the more the better” approach. However, when considering properties like price or
performance, this solution fails because of the arising trade-offs. Hence, there is research
potential in this area, too.

Interdisciplinary Extensions
The research subjects addressed in this thesis could also be investigated from another point
of view taking into account further research areas. For example, the question how to deal
with uncertain decisions based on fuzzy matching results could be investigated more deeply
by consulting psychological theories about human decision-making (e.g., [RCS97, Sve90,
MS76]). Similarly, a more extensive cooperation with economics regarding market theories
could contribute to bringing comprehensive and fuzzy matching into practice. For example,
research regarding “two-sided matching markets” (e.g., [DG85]) could be leveraged.

User Studies
The incorporation of interdisciplinary collaborations is beneficial for the subject of the
evaluation of service matching concepts, too. For example, psychologists could collaborate
in planning and executing user studies regarding human decision-making based on (fuzzy)
matching results. Exemplary research questions are: “Do human requesters find extra
information on fuzziness helpful when selecting a service based on a matching result?”, or
“What is an appropriate level of abstraction for matching results that are understandable for
human requesters?”. The applied methods should also be compared with suggestions from
the literature about empirical software engineering (e.g., [Kit96, KPP+02, KDJ04, Pre00]).

Moreover, user studies would not only be highly interesting in order to investigate how
potential service requesters and providers deal with (fuzzy) matching results, but also
how potential matching designers work with matching process configurations for different
application domains using MatchBox.

In general, user studies are needed for a level-II-validation [BR08] of our concepts. One
idea for a validation strategy incorporating human subjects has already been proposed by
Bruns [Bru15].

Service Matching Evaluation Framework
As we pointed out in the validation sections of the previous chapters, evaluating service
matching approaches is a complex task coming with many difficulties. Nevertheless,
evaluation of service matching approaches needs more attention and tools to support this
task also going beyond user studies. Like, SME2 [KP], MatchBox also already provides an
environment to measure simple metrics like precision and recall and runtime for matching
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runs. However, this functionality does not solve questions like “where to get example
specifications?” or “how to get expert results to compare to?”. The same problems also
hold for pure testing purposes. One idea for addressing the first question could be to
improve generative approaches. For example, PerOpterix [KKR11] could be leveraged
to systematically generate a variety of service specifications. PerOpterix applies multi-
objective evolutionary algorithms in order to generate alternative software architectures for
the purpose of performance analysis. Similarly, such a meta-heuristic learning mechanism
could contribute to generating exactly those service specification variants that are most
interesting when comparing their evaluation results.

Service Matching meets Reengineering
Concepts from the area of reverse engineering, have already been taken into account in
service matching in our earlier work [PvDS+13]. Here, we applied concepts used for rating
detected design pattern occurrences for the quantification of partial matches based on the
graph-based condition language Visual Contracts [HHL05, NHOH10].

In our reengineering approach Archimetrix [PvDB12, vDPB13], we presented a process
to detect and remove design deficiencies during architecture reconstructions from monolithic
software systems. There are two ways to combine this work with fuzzy matching of
comprehensive service specifications:

On the one hand (1), Archimetrix’ detection of design deficiencies could benefit from
our fuzzy matching results because the detection of design deficiencies can be inflicted with
fuzziness occurrences from various fuzziness sources. For example, deficiencies could be
specified imprecisely, or the graph matching algorithm used for detection could be speed up
by introducing faster approaches based on approximations and heuristics. In these cases, a
detected design deficiency could be assigned with a fuzzy matching result indicating how
certain this deficiency really is.

On the other hand (2), our matching concepts could leverage Archimetrix’ concepts for
a deficiency ranking and the previewed deficiency removal when presenting and applying
fuzziness reduction strategies. For example, just like in Archimetrix, the reduction of
fuzziness occurrences could also have side-effects, like the aggravation of other fuzziness
occurrences. Such side-effects could be foreseen in a similar way than Archimetrix foresees
the impact of architectural changes.
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A

METAMODELS

In the following, we describe the most important metamodels defining the abstract syntax of
the specifications used throughout this thesis.

A.1 MatchBox Main Metamodels

Figure A.1 shows the metamodel that serves as the main data model of MatchBox. Using
an instance of this model, matching processes can be created, edited, saved, and loaded.
In particular, they can also be executed via interpretation at runtime. The metamodel is
structured in three parts: the model elements in the green part on the left are involved during
process configuration (see Section 3.7); the model elements in the blue part in the upper
right corner are created when assembling input specifications (see Section 3.8.1), and the
model elements in the red part in the lower right corner are created during the execution
of a matching process (see Section 3.8). The blue classes and references are added when
integrating fuzzy matching concepts (see Chapter 4 and Section 5.2) into MatchBox.

The left part of the model specifies the elements that are instantiated during the “Configure
process” phase. In particular, there are different kinds of ProcessSteps (MatchingStep
and AggregationStep) and Transitions (DataFlow and ControlFlow). MatchingStep elements
refer to concrete matchers via the matcherID given in the matcher definition. In the same
way, AggregationStep elements refer to aggregation strategies via the aggregationID. A
MatcherConfiguration as well as a AggregationConfiguration can be specified by adding
Parameter elements. In addition, AggregationConfigurations may refer to weight elements.
ControlFlow transitions can contain different kinds of Guards, which refer to DataFlow
transitions. The distinction between MatchingResultGuards, IntervalResultGuards, and
FuzzinessScoreGuards has been introduced with fuzzy matching processes.

The classes in the upper right corner specify the InputPairs that serve as an input for
the matching process at runtime. They are instantiated during the “Configure inputs”
phase. InputPair elements can be enabled or not, and they hold an ontologyPath referring
to the ontologies the contained specifications are associated with. An InputPair has
exactly one requester and exactly one provider, both of type SpecificationCollection. A
SpecificationCollection is a collection of references to external models of any type. All
instantiated InputPairs and all SpecificationCollections form an InputSpecification.

For each input, a MatchingResult will be set during the execution of the matching
process. A MatchingResult can consist of several children. There are different kinds of
MatchingResult subclasses specifying the result value in different ways. Furthermore, a
MatchingResult can contain a list of FuzzinessAnnotation elements, each of which refers to
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Figure A.1: Main MatchBox Metamodel
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A.2 Matching Process Generator Metamodels

a FuzzinessOccurrence. The type and the source of a FuzzinessOccurrence as well as the
score of a FuzzinessAnnotation can be selected in predefined enumerations. More subclasses
can be added easily.

Figure A.2 shows the abstract syntax for matcher and aggregation strategy definitions in
form of a metamodel. As this metamodel shows, both definitions are pretty similar.

Matcher
ConfigurationParameter

id : String
name : String
description : String
type : ParameterTypeKind
default_value: String

Matcher

*   parameters

id : String
name : String
description : String
class : JavaFile
resultKind : JavaFile
resultLevel : ResultLevel
requiredResult: ResultLevel

ResultLevel
OPERATION
INTERFACE
SERVICE

«enum» 

ParameterTypeKind

BOOLEAN
INTEGER
DECIMAL
STRING
ENUMERATION
DIRECTORY
FILE

«enum» 

MatchingType

1   matchingType

id : String
name : String
description : String
job : JavaFile

Aggregation
ConfigurationParameter

id : String
name : String
description : String
type : ParameterTypeKind
default_value: String

AggregationStrategy

*   parameters

id : String
name : String
description : String
class : JavaFile
resultLevel : ResultLevel
requiredResult: ResultLevel

Figure A.2: Metamodel for Definition of Matchers and Aggregation Strategies

A.2 Matching Process Generator Metamodels

Figure A.3 shows the market specification metamodel. A MarketSpecification consists
of an arbitrary number of MarketProperty objects. For each considered market
property, there is one subclass of MarketProperty. For example, there is the class
Standardization. This property can have a property within the range defined by the
enumeration StandardizationValues. Each property has its own range, most often defined
by an enumeration. New properties can easily be added by creating another subclass of
MarketProperty. The subclass solution also allows instances, where not all properties are set.
This is intended because not every user may have knowledge about every property in every
market. The generation process (see Section 3.7.2) is designed to be also able to deal with
such incomplete market specifications.

Figure A.4 shows the metamodel for the rules user for the matching process generation
procedure. The root class is GeneratorRuleSet. It contains an arbitrary number
of rules of type GeneratorRule. There are four different subclasses for different
rule types: SelectionRule, MatcherConfigurationRule, ControlFlowConfigurationRule and
AggregationConfigurationRule. A rule’s type is important because it determines at which
point in time within the generation procedure a rule is applied. Furthermore, a rule refers to
an instance of the MarketProperty class from Figure A.3 and to an Operator. Depending
on the rule’s type, an operator can be a SelectionOperator, a ConfigurationOperator, a
ControlFlowConfigurationOperator, or an AggregationConfiguationOperator. Each operator
has a matcherID in order to determine which matcher is selected or configured. Here, we
assume that each matcher appears only once in a matching step. We decided to identify a
matcher via its ID instead of providing an enumeration of selectable matchers in order to
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Appendix A Metamodels

MarketSpecification

MarketProperty

*   properties

«abstract» 

Standardization

value : StandardizationValues

MarketSize

value : MarketSizeValues

ServiceComplexity

value : ServiceComplexityValues

SensitiveData

value : boolean Profit

value : ProfitValues

Adapters

value : AdapterValues

UseCase

value : UseCaseValues

RequesterTolerance

value : RequesterToleranceValues

PrivacyImportance

TradeOffFocus

 
getValue() : Object

StandardizationValues

BOTH
TERMINOLOGY
PROCESSES
NONE

«enum» 

MarketSizeValues
LARGE
MEDIUM
SMALL

«enum» 

ServiceComplexityValues
HIGH
MEDIUM
LOW

«enum» 

Profit

LICENSE
ADS

«enum» AdapterValues

BOTH
SIGNATURE_ADAPTERS
PROTOCOL_ADAPTERS
NONE

«enum» 

UseCaseValues

FIRST_FILTER
DISCOVERY
COMPOSITION

«enum» 

RequesterToleranceValues
HIGH
MEDIUM
LOW

«enum» 

TradeOffFocusValues

HIGH_ACCURACY
LOW_EFFORT

«enum» 

value : boolean

value : TradeOffFocusValues

Figure A.3: Market Specification Metamodel

GeneratorRuleSet

MarketProperty

*   rules
«abstract» 

GeneratorRule
1
property

Operator
«abstract» 

1   operator

Selection
Operator

Matcher
ConfigurationOperator

matcherID : String

paramKey : String
paramValue : String

«abstract» 

Selection
Rule

Matcher
ConfigurationRule

ControlFlow
ConfigurationRule

Aggregation
ConfigurationRule

1   operator 1   operator

ControlFlow
ConfigurationOperator
decrease : boolean
addend : double

1   operator

Aggregation
ConfigurationOperator
weightFactor : double

Figure A.4: Rule Set Metamodel

make the rule set metamodel applicable to different sets of integrated matchers so that it is
independent of the setup phase (in contrast to its instance). For the same reason, we refer to
configuration parameters within a matcher using the paramKey.

A.3 Service Specification Metamodels

In the following, we briefly describe the metamodels that define the syntax of the
specification languages used for the privacy and reputation specifications from our running
example throughout this thesis. All other metamodels that are mentioned can be found in our
technical report [PJvR+16].
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PrivacyPolicyModel

 

PrivacyPolicy

delegationDepth : int
retentionPeriod : int

Purpose

 

Visibility

 

LocationLimit

 

Service

 

ServiceProvider

address : URI

    privacyPolicies    *    

    purposes    *     locationLimits    *

PCM :: Interface
interface 0..1

1
purpose

visibleTo      0..1

    locationLimit 1

privacyPolicy   *

core.metadata :: 
Keyword

keyword     0..1

*

categories

services    * providers    *

core.structure :: 
OntologyEntity

ontologyReference : URI

PCM :: Parameter
parameter 1

Part of Privacy Specification (& Requirements) Metamodel
Part of Privacy Requirements Metamodel
Part of External Metamodels

Legend

PCM :: Signature
signature 0..1

xor

SensitivityAnnotation

 level : SensitivityLevel

PrivacyRequirementsModel

 

sensitivityAnnos

*

Sensitivity Level

VERY_LOW
LOW
MEDIUM
HIGH
VERY_HIGH
MANDATORY

«enum» 

1   policy

Figure A.5: Metamodel for Privacy Specifications (based on [PJvR+16])

A.3.1 Privacy Specification

Figure A.5 shows a metamodel for the privacy specifications used as examples in Chapters 2
and 4. Conceptually, the privacy metamodel is partially based on the language defined by
Costante et al. [CPZ13a].

A PrivacyPolicyModel contains an arbitrary number of PrivacyPolicy objects. There may
be one or more elements of type PrivacyPolicy per Parameter of the Interface or the Signature
the privacy specification is associated with. Here, the interfaces and all its constituent parts
are specified using the palladio component model (PCM) [BKR09, RBH+07]. Alternatively,
also other specification languages like WSDL (Web Service Description Language) could be
used for this purpose. For a clearer view, Figure A.5 abstracts from some technical details.
For example, all model elements implement a name and an ID attribute from PCM’s Entity
interface.

Each PrivacyPolicy specifies the two integers delegationDepth and retentionPeriod.
Furthermore, it can refer to a Purpose element, which refers to a Keyword. A Keyword is
an OntologyEntity and, thus, references an ontological concepts via an ontologyReference.
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Rating

time : Date

Value
 

RatedEntity
 

    ratings    *

RatedService

serviceID : String

RatedProvider

providerID : String

    value    1

    ratedEntities

*

FiveStarValue

value : int

«abstract» 

«abstract» 

NegativePositiveNeutralValue

value : NegativePositiveNeutralRange

TrustModel

 

RatedService
Composition

serviceID : String

    containedIn    *

BooleanValue

value : boolean

NegativePositiveNeutral
Range

POSITIVE
NEGATIVE
NEUTRAL

«Enum» 

ServiceContextKind

NONE
PERFORMANCE
PRIVACY
SECURITY
AVAILABILITY
ALL
OTHER
UNDEFINED

«Enum» 

ProviderContextKind

NONE
PAYMENT
DELIVERY
SUPPORT
SERVICE
ALL
OTHER
UNDEFINED

«Enum» 

«abstract» 

ServiceRating

serviceContext  : ServiceContextKind

ProviderRating

providerContext : ProviderContextKind

TenPointValue

value : int

0   value   10

1   value   5

Figure A.6: Metamodel for Ratings (based on [PJvR+16])

Furthermore, a PrivacyPolicy refers to the class Visibility. Visibility an be specified using
either (service) categories based on Keyword elements, using Service elements, or using
ServiceProvider elements. Last but not least, a PrivacyPolicy refers to a LocationLimit, which
is also an OntologyEntity.

The same metamodel can also be used to model privacy requirements. For this
purpose, a PrivacyRequirementsModel is created. Such a model contains a number of
SensitivityAnnotation elements, each of one can be associated with a PrivacyPolicy.

Another description of our privacy specification language including a more technical
view and more examples can be found in our paper [PAPS15] and in our technical
report [PJvR+16].

A.3.2 Reputation Specification

The reputation of a service describes how a service has been rated by previous users in the
past. Usually reputation data is stored in a a reputation system. Following related work,
we realized service’s reputation as an aggregated value based on a set of user ratings stored
in a “trust model” [Ban14]. This model captures trust towards different entities in form of
ratings. Figure A.6 shows the metamodel we use to model and store ratings for our examples
in Chapters 2 and 4.
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ReputationCondition

weight : int
operator : Operators

Operators

GREATER
GREATER_OR_EQUAL
APPROX_GREATER_OR_EQUAL

«Enum» 

ServiceDataRestriction
 

Context
 

NumberOfRatings
Constraint

value : FuzzyNumber

RequestedValue
 *

conditions

(see TrustModel)

    context    1

numberOfRatings    0..1

    

requestedValue

1

(see TrustModel)

«abstract» 

«abstract» 

ReputationRequirements
Specification

 

    *      sdRestrictions

AgeRestriction

ageInMonths : int

«abstract» 

FuzzyNumber

FEW
MANY

«Enum» 

Figure A.7: Metamodel for Reputation Requirements Specifications (based on [PJvR+16])

A Trustmodel consists of an arbitrary number of Ratings. Each Rating is either a
ProviderRating, i.e., a rating of a service provider, or a ServiceRating, i.e., a rating of a
service itself. A ProviderRating always refers to a RatedProvider identified by a providerID.
A ServiceRating, in contrast, refers to a RatedService identified by a serviceID. For future
extensions regarding reputation of service compositions, we already prepared the class
RatedServiceComposition which contains an arbitrary number of RatedService elements.
This class is not used for our current approaches, though. RatedEntity

Both, ProviderRating and ServiceRating refer to enumerations of different context
elements. This way, we can model ratings for a certain characteristic of a service or a
provider, e.g., a service’s performance, or a provider’s support.

Each Rating has a time, defining the exact time the rating has been given. Furthermore,
it has a value which can be specified by one of four different ranges: A FiveStarValue is
an integer between 1 and 5 as common in today’s app stores, a BooleanValue represents a
“like” or “did not like” statement, aNegativePositiveNeutralValue comes with an additional
neutral value, and a TenPointValue is an integer between 0 and 10 like the ratings given
by TrustRadius [Tru]. Internally, all values can be transformed into the same range before
matching.

The whole model is designed to be extensible. For example, new ranges, new rated entities,
or new context kinds can easily be added.

Requirements specifications in our examples are based on the metamodel depicted in
Figure A.7. A ReputationRequirementsSpecification consists of an arbitrary number of
ReputationCondition elements. A ReputationCondition contains a RequestedValue. Like
in Figure A.6, different ranges can be supported using inheritance. For example, we
could use the same or similar subclasses as in the trustmodel. The same holds for a
ReputationCondition’s Context. Furthermore, each ReputationCondition has a weight and an
operator. Optionally, the condition refers to elements of type ServiceDataRestriction and to
a NumberOfRatingsConstraint. ServiceDataRestriction are specified using subclasses, e.g.,
the AgeRestriction, which specifies the maximum age in months a rating may have to be
considered.
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B

INTEGRATED MATCHERS AND
AGGREGATION STRATEGIES

In the following, we show the matcher definitions of some of the matchers we exemplarily
integrated into the MatchBox framework as well as aggregation strategies.

B.1 Matcher Definitions

Figure B.1 shows the matcher definition of the ontological signature matcher. This definition
has already been described in Section 3.6.1. In addition, we added some more matcher
parameters: The parameter Parameter_Types enables the matching designer to switch on
and off the functionality to match types. Input_Parameters and Output_Parameters allow the
matching designer to determine whether only input or also output parameters or both should
be considered during matching. Exceptions determines whether an operation’s exception is
taken into account.

Figure B.2 shows the matcher definition of an exemplary condition matcher based on the
Bachelor’s Thesis by Boerding [Boe15]. The depicted matcher delivers continuous operation
level results. The matcher internally calls an SMT solver for matching conditions, if it cannot
manage the condition on its own, due to the condition’s complexity. Using the parameter
SMTSolvingThreshold, the matching designer can determine whether the SMT solver should
always be called (=0.0) or only for intermediate matching results above the given threshold.
Furthermore, this matcher comes with multiple matching strategies that can be switched
using the Strategy parameter. For functioning, the matcher needs continuous operation level
results.

The protocol matcher’s definition depicted in Figure B.3 has already been explained in
Section 3.6.1.

Figure B.4 defines a privacy matcher, like the one described in Section 2.4.3, and
Figure B.5 describes a reputation matcher, like the one described in Section 2.4.4.

B.2 Aggregation Strategy Definitions

The Weighted Averaging Aggregation Strategy and its definition depicted in Figure B.6 has
already been explained in Section 3.6.2. Figure B.7 and B.8 show two additional aggregation
strategies: a minimum aggregation strategy and the Operation2Interface Aggregation
Strategy addressed in Section 3.6.2.
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Appendix B Integrated Matchers and Aggregation Strategies

Name:        Ontological Signature Matcher
Id:
Description: 

Type:
Result Format: 
Result Level:
Parameters: 

Required Result:
Class: 

matching.signatures 

continuous [0,1]
operation
Operation_Names : boolean   (default = false)
Parameter_Names : boolean   (default = false)
Parameter_Types : boolean   (default = true)
Input_Parameters : boolean   (default = true)
Output_Parameters : boolean   (default = true)
Exceptions : boolean   (default = false)
 - 
de.upb.crc901.matchers.OntologicalSigMatcher

matcher.signatures.ont
The ontological signature matcher leverages the relations specified in a domain ontology. 
Using these relations, the matcher checks for covariance and contravariance in order to decide 
whether two signatures comply wrt. parameter types. The matcher is highly configurable such 
that also other parts of the signature can be considered, e.g., operation names or exceptions.

Figure B.1: Ontological Signature Matcher Definition

Name:        Quick Condition Matcher
Id:
Description: 

Type:
Result Format: 
Result Level:
Parameters: 

Required Result:
Class: 

matching.condition 

continuous
operation 
SMTSolvingThreshold : double   (default = 0.0)
Strategy : enum {SIMPLE, COMPLEX, DC}    (default = SIMPLE)
Level: operation;   Format: continuous
de.upb.crc901.matchers.QuickConditionsMatcher

matcher.condition.quick
Matches pre- and postconditions specified in a FOL-based language and returns a fuzzy 
matching result. Needs signature matching results to run.

Figure B.2: Fuzzy Condition Matcher Definition

Name:        Trace-Inclusion-based Protocol Matcher
Id:
Description: 

Type:
Result Format: 
Result Level:
Parameters: 
Required Result:
Class: 

matching.protocols 

continuous
interface
RollOut_Threshold : integer   (default = 5)
Level: operation; Format: continuous
de.upb.crc901.matchers.TIProtocolMatcher

matcher.protocols.ti
This matching approach checks if all the traces of the requested service find a matching 
trace in the provided protocol.

Figure B.3: Trace-Includion-based Protocol Matcher Definition
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B.2 Aggregation Strategy Definitions

Name:        Privacy Matcher
Id:
Description: 

Type:
Result Format: 
Result Level:
Parameters: 
Required Result:
Class: 

matching.privacy 

continuous
interface
GradualResult : boolean   (default = true)
Level: operation, Format: continuous
de.upb.crc901.matchers.DefaultPrivacyMatcher

matcher.privacy
Checks whether the privacy specification of the provided service is at least as strict as the 
given privacy preferences based on several properties, e.g., retention time, delegation depth.

Figure B.4: Privacy Matcher Definition

Name:        Traditional Reputation Matcher
Id:
Description: 

Type:
Result Format: 
Result Level:
Parameters: 
Required Result:
Class: 

matching.reputation 

continuous
service
-
-
de.upb.crc901.matchers.reputation.TraditionalReputationMatcher

matcher.reputation.trad
Matches reputation requirements to ratings stored in a TrustModel in a strict way: Each 
required condition can either be a full match or a mismatch; results per condition are 
aggregated for the final result.

Figure B.5: Reputation Matcher Definition

Name:        Weighted Averaging Aggregation Strategy
Id: 
Description: 

Result Format: 
Result Level:
Parameters: 
Required Result:
Class: 

continuous [0,1]
interface
 weight  : double   (default = 1.0)
Level: interface;   Format: continuous [0,1]
de.upb.crc901.aggregation.strategies.WeightedAggregationStrategy

aggregation.weighted_average
This aggregation strategy computes the mean value of all incoming matching 
results under consideration of weights assigned to each matching step.

Figure B.6: Weighted Averaging Aggregation Strategy

Name:        Minimum Aggregation Strategy
Id: 
Description: 

Result Format: 
Result Level:
Parameters: 
Required Result:
Class: 

continuous [0,1]
interface
-
Level: interface;   Format: continuous
de.upb.crc901.aggregation.strategies.MinimumAggregationStrategy

aggregation.minimum
This strategy computes the minimum value of all incoming matching results.

Figure B.7: Minimum Aggregation Strategy
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Appendix B Integrated Matchers and Aggregation Strategies

Name:        OperationResultLevel2InterfaceResultLevel Aggregation
Id: 
Description: 

Result Format:
Result Level:
Parameters: 
Required Result:
Class: 

continuous [0,1]
operation
-
Level: interface;   Format: continuous
de.upb.crc901.aggregation.strategies.OperationResult2InterfaceResultAggregationStrategy

aggregation.operationlevel2interfacelevel
This aggregation strategy takes an arbitrary number of matching results on operation level 
and aggregates them into a matching result on interface level.  For this purpose, it tries to 
create an injective mapping.

Figure B.8: Operation2Interface Aggregation Strategy
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C

LITERATURE SURVEYS

In the following, we give some more information on the conduction of our literature surveys
presented in Sections 3.12 and 4.10.

C.1 Keywords

In the following, we list the complete keywords used to select literature as explained in
Section 3.12 and Section 4.10. These keywords have been identified during our primary
survey [PvDB+13] and refined during later reviews. These refinements were due to our
refined definitions of terms like matching and fuzziness and they lead to the fact that we
came to another number of publications to be reviewed than in our primary survey.

Service/Component Keywords
The following set of keywords has been used to identify literature within the most relevant
research areas for matching of software entities, e.g., Service-Oriented Computing and
Component-Based Software Engineering. At least one of the following keywords had to
appear in the publication’s title in order to potentially included for further review.

• Service (including Web Service and Cloud Service)
• Component
• COTS (Commercial-off-the-Shelf Components)
• Interface
• Software (including Software agents)

Matching Keywords
The following set of keywords has been used to identify literature about matching of software
entities. At least one of the following keywords had to appear in the publication’s title in order
to potentially included for further review. Furthermore, the keyword had to refer to one of
the Service/Component keywords listed above.

• Matcher / Matching / Match
• Matchmaker / Matchmaking
• Selection / Select
• Discovery / Discover
• Ranking / Rank
• Retrieval / Retrieve
• Search / Searching
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Appendix C Literature Surveys

• Find / Finding

MatchBox Keywords
The following set of keywords has been used to identify literature related to MatchBpx. At
least one of the following keywords had to appear in the publication’s abstract in order to be
potentially included for further review. Furthermore, the keyword had to refer to one of the
Matching keywords listed above. As explained in Section 3.12, many publications included
because of such keywords were often excluded after a fulltext review as they turned out to be
not related to MatchBox for reasons like only considering a single matching approach.

• Framework / Engine
• Combines / Combined
• Process
• Multiple Criteria / Different Types of Requirements
• Personalized
• Custom / Customizable
• Discovery Components
• Steps
• Variants
• Hybrid
• Filtering / Filters
• Rich Descriptions
• Flexible
• Extensible
• Strategies / Assessment Methods

Fuzziness Keywords
The following set of keywords has been used to identify literature within the area of fuzzy
matching. At least one of the following keywords had to appear in the publication’s abstract
in order to be potentially included for further review. Furthermore, the keyword had to refer
to one of the Matching keywords listed above. The keywords’ relevance decreases from the
first to the last items in the list. As explained in Section 4.10, publications included because
of the keywords “Relaxed / Relaxing”, “Partial Match”, and “Flexible / Flexibility” were
often excluded after a fulltext review as they turned out to be not relevant for our definition
of fuzzy matching.

• Fuzzy / Fuzziness
• Uncertain / Uncertainty
• Vague / Vagueness
• Imprecise / Imprecision
• Approximate /Approximation
• Probabilistic
• Incompleteness
• Imperfect Information
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C.2 Exclusion Criteria

• Missing Information
• Estimate / Estimation
• Relaxed / Relaxing
• Flexible / Flexibility
• Soft

C.2 Exclusion Criteria

• Service composition: A couple of publications address both the service matching and
the service composition problem within one step by applying one-to-many or many-to-
many matching. These approaches most often do not work with matching results but
directly insert a service into a service composition. Furthermore, service composition
is future work of this thesis and we focus on one-to-one matching for now. Thus, we
excluded these approaches.
• Literature written in other languages than English: in order to achieve high

repeatability, only papers written in English are considered.
• Publications with the length of less than 6 pages: in order to achieve a high validity,

literature sources which have less than six pages are excluded as they cannot present
enough details to be interesting for our survey.
• Literature unavailable via common digital libraries: in order to achieve high

repeatability, only papers that are available in common digital libraries are considered.
This should also ensure a certain degree of quality.
• Old literature: Only literature published within the last 20 years (year 1995 and

newer) was considered. We chose such a long time span because we also wanted
to consider approaches that developed before the “semantic web wave” in order
to get very different viewpoints influenced by different technologies and research
trends. Furthermore, 1995 seemed to be a good threshold because the most
cited specification-based matching approaches including Zaremski’s and Wing’s
approach [ZW95] and OTSO [Kon95] which are considered important milestones
in COTS selection [MRE07] were published in 1995. Moreover, we assume that
valuable research results from earlier publications are also reflected in the more recent
approaches.
• (Only for matching processes survey:) In order to find approaches that are related

to MatchBox, we excluded all approaches that only consider one single matching
approach.
• (Only for fuzzy matching survey:) Ambiguous fuzziness keywords: A few papers have

been excluded after manual inspection revealed that they do not contain any of the
fuzziness types we defined. Examples for fuzziness keywords that lead to such papers
are “partial match(ing)”, “relaxed match(ing)”, and “flexible match(ing)”/“flexibility”.
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D

EVALUATION DATA

In the following, we describe how to access all data that is utilized for the case studies within
this thesis.

D.1 Validation of Matching Processes

The MatchBox prototype used for the case studies within this thesis can be downloaded via
our Eclipse UpdateSite as describe on the MatchBox Website [UPBc]. The specifications
used within the scope of the case studies are accessible within a MatchBox installation as
Eclipse Example Projects (with one exception, see Section D.2). The specifications include
requirements specifications, service specifications, and matching processes with matching
results. Furthermore, all mentioned matchers have been integrated into the available
MatchBox prototype.

D.2 Validation of Fuzzy Matching

Case Study 2.1 is part of our paper [PSB+]. For more detailed data, refer to the paper’s
website [PSB+b]. The specifications used within the scope if Case Study 2.2 are accessible
within a MatchBox installation as described in Section D.1.

D.3 Validation of Market Integration

An example interaction for the market integration application described in 5.4.3 is depicted
in Figure D.1.
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All failed matching runs have been omitted in this 
example sequence.

search(ReqOpt)

search(ReqOpt)

0.91

match(ReqOpt, SpecOpt)

SpecOpt, 0.91

ref ranking

0.89

match(ReqWNO, SpecWNO)

SpecWNO, 0.89

SpecWNO

ref ranking

SpecOpt

ref composition of discovered services
(WNR+Opt into WNO)

ref ranking

SpecWNR

ref ranking

SpecRC

ref ranking

SpecRPP

Figure D.1: Example Interaction between Market Components in the Waternet Example
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