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Abstract

The main objective of this thesis is the numerical simulation of hybrid-forming processes in steel
production with particular focus on phase transformation. In order to display the specific processes
two methods of material modeling, a macroscopic-phenomenological and micromechanical multis-
cale approach are formulated. The thermodynamically consistent phenomenological multiphase mo-
del combines a variety of features such as time- and temperature-dependent phase transformation,
austenitisation, transformation plasticity, volume change, temperature- and microstucture-dependent
elastoplasticity and viscoplasticity. The FEM simulation of the hybrid-forming process is based on nu-
merical implementation and exhibits good agreement with the structure distribution in the real shaft.
Furthermore, it illustrates the possibilities for prediction of the phase distribution by varying the pro-
cess parameters. A physically motivated, thermodynamic-consistent multiscale model for N-grains
and n-bainite variants is developed in the second step, which combines the elasto-viscoplastic behavi-
or with a phase transformation in a polycrystalline structure. This model is capable of capturing both
TRIP effects, the contribution due to load-based orientation of bainite-variants ("Magee effect”) and
plastic accommodation of the new phase (”Greenwood-Johnson effect”). Finally, these phenomena
are evaluated quantitatively for different loads.

Zusammenfassung

Die zentrale Zielsetzung der hier vorliegenden Dissertation ist die numerische Simulation von Hybrid-
umformungsprozessen unter besonderer Beriicksichtigung der Phasenumwandlung. Zur Abbildung
der spezifischen Vorginge in diesem Prozess werden zwei Modellierungsstrategien, ein makrosko-
pisch-phdnomenologischer und ein mikromechanischer Mehrskalenansatz verfolgt. Das entwickel-
te thermodynamisch konsistente, phdnomenologische Mehrphasenmodell vereint in sich vielfiltige
Eigenschaften wie zeit- und temperaturabhéngige Phasenumwandlung, Austenitisierung, Umwand-
lungsplastizitit, Volumenveridnderung, temperatur- und mikrostukturabhingige Elasto- bzw. Visko-
plastizitit. Die auf der numerischen Implementierung basierende FEM-Simulation des Hybridum-
formprozesses zeigt eine sehr gute Ubereinstimmung mit der Gefiigeverteilung in der realen Welle
und veranschaulicht die Moglichkeiten der Vorhersagbarkeit der Phasenverteilung durch Variation
der Prozessparameter.

Ferner wird ein physikalisch motiviertes und thermodynamisch konsistentes Mehrskalenmodell
fiir N-Korner und n-Bainitvarianten entwickelt, welches das elasto-viskoplastische Verhalten mit der
Phasenumwandlung in einer polykristallinen Struktur kombiniert. Das implementierte Mehrskalen-
modell bildet die Volumenénderung infolge der Phasenumwandlung, die Umwandlungsplastizitit, die
Riickverformung der umwandlungsplastischen Verzerrung sowie den Magee- und den Greenwood-
Johnson-Effekt ab. Diese Phinomene werden fiir verschiedene Belastungen quantitativ evaluiert.
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Kapitel 1
Einleitung

1.1 Fertigung im Rahmen eines Hybridumformprozesses

Der Werkstoff Stahl bietet die Moglichkeit mechanische Eigenschaften in einem weiten Duktilitéts-
und Festigkeitsbereich durch einfache Variation des Temperatur-Zeit-Pfades im Herstellungsprozess
gezielt einzustellen und ist daher fiir viele Anwendungen in der Maschinenbau- bzw. der Automobil-
branche das bevorzugte Material. Die stetig wachsende Nachfrage nach Leichtbaukomponenten erfor-
dert eine Anpassung der verbesserten mechanischen Eigenschaften und komplexen Geometrien an das
effektive Belastungsprofil. Aus diesem Grund gewann bei der Entwicklung innovativer Fertigungsver-
fahren in den letzten Jahren insbesondere die Erforschung von Prozessen zur Herstellung funktional
gradierter Bauteile an Bedeutung. Die funktionale Gradierung des Bauelements, d.h. die zielgerichte-
te Einstellung der lokalen Eigenschaften an das im Einsatz auftretende Belastungsprofil, kann durch
unterschiedliche Verfahren erreicht werden. Dies ist unter anderem durch die Kombination von Mate-
rialien mit vollstandig unterschiedlichen Festigkeits-, Steifigkeits- und Duktilitdtseigenschaften, wie
beispielsweise Metall und Keramik [106] moglich. Ferner konnen mehrere verschiedene Stahlgiiten
in maligeschneiderten Platinen, die sogenannten ,tailored blanks“ eingesetzt werden. Dabei kann
die funktionale Gradierung durch eine Variation des lokalen Querschnitts weiter gesteigert werden
[102]. Des Weiteren kann eine funktionale Gradierung durch die Anpassung der lokalen Temperatur-
Zeit-Deformations-Pfade und der damit einhergehenden Variation der lokalen Mikrostruktur erzielt
werden [119]. Diese Verfahrensweise wird bereits im industriellen MaBstab bei der Herstellung von
Automobil-B-Séulen verwendet [101]. Deren Einsatz ist allerdings nicht nur auf Anwendungen in der
Blechbauteilfertigung begrenzt.

Fiir die Herstellung von massiven Bauteilen mit gradierten Eigenschaften werden aktuell hinge-
gen iliberwiegend Verfahren der Pulver- oder der Schmelzmetallurgie mit einfachen Eigenschafts-
verteilungen angewendet [63]. Jedoch gewinnt die umformtechnische Herstellung von komplexen,
funktional gradierten Bauteilen merklich an Bedeutung [122, 109]. Die bislang geringe Verbrei-
tung von funktional gradierten Bauteilen in der Massenproduktion ldsst sich zum einen darauf
zuriickfiihren, dass diese zweistufige Herangehensweise aufgrund des zum Teil sehr unterschiedli-
chen Formiénderungsverhaltens der zuvor durch Pulvermetallurgie hergestellten gradierten Halbzeuge
nicht zum gewiinschten Erfolg gefiihrt hat. Zum anderen ist eine derartige Herstellung vergleichs-
weise aufwindig und kostenintensiv. Eine erhebliche Verbesserung der Flexibilitit und Effizienz lasst
sich bei bestehenden Massivumformverfahren durch eine neue differenzielle thermomechanische Pro-
zessfiihrung erzielen. So zeigt auch der im Sonderforschungsbereich Transregio 30 (SFB/TR TRR 30)
untersuchte Hybridumformprozess das Potential, maigeschneiderte Eigenschaften bereits im Herstel-
lungsprozess einzustellen, so dass insgesamt weniger Nacharbeit und keine zusitzlichen, kostenin-
tensiven Warmebehandlungen mehr notwendig sind. Hierbei wird ein vordefiniertes Temperaturprofil
wihrend der Formgebung in eine vorher festgelegte Materialeigenschaftsverteilung und/oder Geome-
trie tiberfiihrt. Diese neuartige Strategie hingt mit einem Ubergang von einer freien zu einer zuneh-
mend werkzeuggebundenen Formgebung sowie von einem durch freie Konvektion hin zu einem durch
zunehmende Wirmeleitung bestimmten Wirmetransportmechanismus zusammen [119].
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Grundsitzlich setzt sich die konventionelle integrale thermomechanische Prozessfiihrung aus einer
simultanen Formgebung und Wirmebehandlung des gesamten Werkstiicks zusammen. Hierbei be-
stimmt die Wahl der Prozesstemperatur, ob ein umwandlungsgehértetes, ein Mehrphasen-, ein rekris-
tallisiertes oder ein kaltverfestigtes Gefiige entsteht. Bei der differenziellen Prozessfiihrung steuert
das Temperaturprofil sowohl den Werkstoffluss bei der Formgebung als auch die dabei auftreten-
den mikrostrukturellen Phinomene. Eine vielfiltige Zusammensetzung an nebeneinander auftreten-
den Mikrostrukturen charakterisiert je nach lokaler Dehnungs- und Temperaturverteilung Werkstiicke,
die unter diesen Bedingungen gefertigt werden. Bereiche, deren maximale Temperatur die Umwand-
lungstemperatur A3 iiberschreiten, entwickeln bei ausreichend hohen Abkiihlgeschwindigkeiten ein
partiell gehirtetes Gefiige aus Bainit und Martensit. Niedrigere Temperaturmaxima bringen ein Mehr-
phasengefiige aus Ferrit und Perlit sowie Bainit und Martensit mit einer den Phasenanteilen entspre-
chenden Hirteverteilung hervor.

Abb. 1.1 Hybridumformprozess [119]

Abbildung 1.1 veranschaulicht die einzelnen Schritte des betrachteten Hybrid-
umformprozesses, der aus einer Kombination aus Schmiede- und
Hirtungsprozess besteht [119, 118, 143]. Die spezifische Besonderheit des
Prozesses liegt darin, dass erwidrmte und nicht erwirmte Bereiche gleichzeitig
umgeformt werden. Durch die Einstellung eines vordefinierten Temperatur-
profils erhélt man ein festgelegtes Werkstoffeigenschaftsprofil und/oder eine
maBhaltige geometrische Form. Dem induktiven Aufheizen und dem Transfer
in die Presse folgt zunichst eine Freiform- und dann eine gesenkkontrollierte
Verformungssequenz. Die Variationen des Auftheizvorgangs, des verwendeten
Gesenks und der Abkiihlgeschwindigkeit lassen am Ende des Prozesses zahl-
reiche Bauteilgeometrien zu. So konnen neben der hier dargestellten sym-
metrischen auch asymmetrische Flanschwellen und Doppelflanschwellen ge-

fertigt werden [119, 141]. Im Ergebnis entstehen Werkstiicke mit gradier- Abb. 1.2 Gefiige-
ten und somit flexiblen, nach speziellen Bediirfnissen angepassten Werkstoff- verteilung im  Quer-
eigenschaften. schnitt einer thermo-

Es kann festgehalten werden, dass wihrend des Hybridumformprozesses mechanisch gefertigten
Flanschwelle (Teilpro-

beide Prozesskomponenten das Werkzeug im kalten und das Werkstiick im hei- jekt Al des SFB/TR
Ben Zustand mit extrem unterschiedlichen Temperaturen aufeinander treffen, TRR 30)

was Ortlich zu Temperaturschockbeanspruchungen in der Kontaktzone fiihrt.

Aufgrund der komplexen Temperaturverteilungen sowie der zusitzlichen Umformbeanspruchungen
stellen derartige Hybridumformprozesse thermomechanisch gekoppelte Problemstellungen dar. We-
gen der simultan auftretenden kalten und erwirmten Bereiche herrschen im Bauteil verschiedenartig
auftretende Gefiigezustinde vor. In den Zonen, in denen die Temperatur ortlich die Austenitisierung-
stemperatur iiberschreitet, entsteht bei ausreichend hohen Abkiihlraten ein lokal gehirtetes Gefiige
mit bainitisch-martensitischer Struktur, die in Abbildung 1.2 als dunkler Bereich dargestellt wird.
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Erfolgt eine Abkiihlung ausgehend von niedrigen Temperaturen aus einem Zweiphasengebiet, bildet
sich ein mehrphasiger Ubergangsbereich aus perlitischen, bainitischen und martensitischen Anteilen
mit einem Hirteprofil, der vom Austenitphasenanteil abhéngig ist.

1.2 Stand der Forschung

In diesem Abschnitt wird ein Uberblick iiber die Entwicklung in der Modellierung der Festkorper-
phasenumwandlungen im Stahl mit der schwerpunktméBigen Betrachtung der fiir den Hybridum-
formprozess relevanten Umwandlung vom Austenit zum Bainit und/oder Martensit gegeben. Beim
niedriglegierten Stahl spielt neben der Modellierung der Kinetik der Phasentransformation die Mo-
dellierung der Umwandlungsplastizitét (transformation-induced plasticity (TRIP)) eine fundamentale
Rolle. Die Anzahl der Arbeiten, die sich mit dieser Problematik befasst, ist sehr umfangreich. Auf-
grund der Vielzahl der Beitrige werden nur einige ausgewihlte Arbeiten explizit genannt, die sich
mit der phdnomenologischen Modellierung der Kinetik, Umwandlungsplastizitit sowie Mikro- und
Mehrskalenmodellierung von Martensit und/oder Bainit befassen.

Das martensitische Gefiige entsteht durch ein diffusionsloses Umklappen des austenitischen kfz-
Gitters in ein tetragonal verzerrtes, raumzentriertes Gitter und findet bei Temperaturen unterhalb der
Martensitstarttemperatur statt. Die martensitische Umwandlung setzt sich bei einer weiteren Tempera-
turabsenkung bis zum vollstindigen Abbau des austenitischen Gefiiges fort. Dieser Vorgang kann je-
derzeit durch einen Abbruch der Abkiihlung eingestellt werden. Der im Schrifttum am hiufigsten ver-
wendete Ansatz zur Abbildung der Kinetik des martensitischen Gefiiges von KOISTINEN und MAR-
BURGER [65] widmet sich ausschlielich der martensitischen Umwandlung aus einem vollstindig
austenitisierten Gefiige.

Bainitbildung spielt industriell insbesondere in der Warmumformung bzw. Wirmebehandlung von
relativ grolen Komponenten eine wichtige Rolle. Bei diesen Prozessen sind die Abkiihlraten der
groflen Teile der Komponenten zu klein, um Martensit zu produzieren, reichen aber fiir die Bildung ei-
nes erheblichen Anteils der bainitischen Phase aus. Da die Bainitbildung ein diffusionskontrollierter
Prozess ist, ist die genaue Menge von der Verweildauer und damit auch von der Abkiihlrate inner-
halb des entsprechenden Temperaturbereichs abhiingig. Ferner weist die kristallografische Struktur
der Produktphase mehrere verschiedene anisotrope Varianten auf, die der Struktur des Martensits sehr
dhnlich sind. So kann fiir Bainit der gleiche kristallografische Rahmen wie fiir Martensit verwen-
det werden. Die Umwandlung des Austenits in alle Phasen auler Martensit lduft diffusionsgesteuert
ab. Fiir diese Transformationsart wird als Gegenpart zur Koistinen-Marburger-Gleichung haufig die
Johnson-Mehl-Avrami-Gleichung [62, 5] verwendet. Diese Gleichung beschreibt die diffusionsge-
steuerte Phasenumwandlung bei gleich bleibender Temperatur anhand der Keimwachstumsgeschwin-
digkeit und unter der Annahme sphérischer Keime. Der Ansatz der Johnson-Mehl-Avrami-Gleichung
wird u.a. in den Arbeiten von DENG und MURAKAWA [26], BABU und KUMAR [7] zur einfacheren
Beschreibung der isothermen Umwandlung verwendet. Die Forschung auf dem Gebiet der bainiti-
schen Transformation hat sich insbesondere in den letzten zwei Jahrzehnten entwickelt. Es sind unter
anderem die Arbeiten von HUNKEL et al. [60], BHADESHIA et al. [17], LUZGINOVA [82, 81], BUR-
THEN et al. [20], LAMBERS et al. [69], HASAN et al. [53] und USLU et al. [132] zu nennen. GARRET
et al. [42] und AZUMA et al. [6] modellierten die Umwandlung vom Austenit zum Bainit unter beson-
derer Beriicksichtigung der Evolution der bainitische Phase infolge der Keimbildung. Dieses Modell
wurde von MAHNKEN et al. [89] um die Betrachtung der Abhéngigkeit der plastischen Verfestigung
von der chemischen Energie erweitert. Bainit entsteht, wenn die Keimbildung der bainitischen Phase
dem Grenzwert der Inkubationszeit entspricht. Die Entwicklung des Modells stellt den Gegenstand
der Kapitel 3 und 4 dar. Es ermoglicht die Abbildung der Evolutionen des unteren sowie des oberen
Bainits.

Die irreversiblen Phasenumwandlungen vom Austenit zum Bainit und Martensit sind durch kris-
tallografische Umgruppierungen auf atomarer Ebene gekennzeichnet (sieche TJAHJANTO et al. [128]).
Hieraus resultieren inelasische, iiberwiegend plastische Deformationen der weicheren Phase des
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Restaustenits. Auf der makroskopischen Ebene stimmt dieser Effekt mit denen der irreversiblen Ver-
zerrungen selbst dann iiberein, wenn die makroskopische Spannung die FlieBspannung der weicheren
Phase des Materials iibersteigt. Dieses Phanomen ist als Umwandlungsplastizitit bekannt und wurde
bisher von einer Vielzahl von Autoren untersucht. Exemplarisch wird hier auf LEBLOND [72], FI-
SCHER et al. [37, 35, 36], ANTRETTER et al. [3], WOLFF et al. [149] sowie die Referenzen darin
verwiesen. Die am hiufigsten verwendeten makroskopischen Modelle gehen auf LEBLOND [72] und
LEBLOND et al. [74] zuriick. Ferner befassen sich mehrere makroskopische konstitutive Modelle mit
der Simulation des komplexen interaktiven Mechanismus der Phasentransformation und Plastizitét.
Als Referenz sind u.a. die Arbeiten von HALBERG et al. [51] und WOLFF et al. [147, 148] zu nennen.
Dieser Literaturstrang beschiftigt sich mit der Modellierung von Phasenumwandlung, Umwandlungs-
plastizitit und Plastizitét fiir kleine Deformationen. Da die betrachteten makroskopischen Modelle
iiberwiegend nur zwei Phasen beriicksichtigen, sind sie zur Analyse des Hybridumformprozesses fiir
grofle Deformationen und mehrphasige Gefiigeverteilung nicht geeignet.

HALBERG et al. [52] entwickelte ein thermomechanisch gekoppeltes Modell fiir ein Zwei-Phasen-
System (Austenit und Martensit) unter Beriicksichtigung der groen Deformationen. MAHNKEN et
al. [92] integrierten die Mehrphasentransformation und TRIP in das von MAHNKEN und SCHNEIDT
[87] vorgeschlagene thermomechanische Konzept und ermdglichten hiermit eine Simulation von
groflen Deformationen. Dieser Entwicklung widmet sich Kapitel 4. Beziiglich der Modellierung von
nicht lokalen Effekten in der Plastizitit in einem thermodynamischen Rahmenkonzept wird auf VOY-
IADJIS UND DELIKTAS [134], VOYIADIJIS et al. [135], POL1ZZOTTO [105], MAROTTI DE SCIARRA
[115] verwiesen. Modellierung von Schidigung im Hinblick auf Plastizitit bildet den Gegenstand
der Arbeiten von VOYIADIJIS et al. [136, 137] und BAMMANN und SOLANKI [9]. VLADIMIROV et
al. [133] befassten sich mit der anisotropischen Elastoplastizitét einschlieflich der numerischen Im-
plementierung. Im Modell von LEBLOND et al. [74] werden die Wechselwirkungen zwischen der
klassischen Plastizitit und TRIP nicht beriicksichtigt (siehe z.B. TALEB UND PETIT [123]). Um die-
sen Nachteil zu liberwinden, wurden makroskopische Ansitze entwickelt, die die Riickverformung
der umwandlungsplastischen Verzerrung in die Analyse einbeziehen (siche dazu die Diskussion in
WOLFF et al. [149]).

Es existieren bereits thermodynamisch konsistente TRIP-Modelle fiir kleine Deformationen, die
die Wechselwirkungen zwischen der Plastizitidt, TRIP und der Kopplung der Riickverformung (back-
stress) erfassen (siche ANTRETTER et al. [4], WOLFF et al. [146, 147] und FISCHLSCHWEIGER et
al. [38]). Eine Experimentenreihe von NAGAYAMA et al. [98, 97] und TANAKA et al. [125] belegt den
Zusammenhang zwischen der Transformation und der Riickverformung (backstress).

Die ersten Mikromodellierungen der martensitischen Umwandlung gehen auf die Arbeiten von
BAIN und DUNKIRK [8] zuriick. Diese Modelle gehen explizit vom Vorhandensein einer krz-Struktur
zwischen zwei kfz-Strukturen aus. Um ein krz-Gitter mit den richtigen Gitterparametern zu erhalten,
muss demnach die im kfz-Gitter vorhandene krz-Struktur in zwei Richtungen gestreckt und in eine
Richtung gestaucht werden. Damit lassen sich drei moglichen Varianten des Martensits bzw. des Bai-
nits beschreiben. Ferner wurde bei Rontgenbeugungsmessungen an Eisen-Nickel-Legierungen fest-
gestellt, dass die Phasenumwandlung neben Strecken und Stauchen zusitzlich noch eine Scherkom-
ponente aufweisen kann. Auf dieser Grundlage wurden die theoretischen Modelle von KURDJUMOW
und SACHS [67], NISHIYAMA [99] und WASSERMANN [138] enwickelt.

Die Analyse der Mikrostruktur sowie der Kristallographie des bainitischen Gefiiges erfolgt in
Arbeiten von ZHANG und KELLY [151], LUO und L1U [80] FURUHARA et al. [41], PANCHOLI et
al. [103]. Im bainitischen Gefiige bilden sich analog zum martensitischen Gefiige einzelne Varianten,
die samt ihrer anisotropen Forminderungen erst auf der Mikroebene in Erscheinung treten.

Die Herleitung und die Argumentation von makroskopischen Ansitzen fiir Phasenumwandlun-
gen und Umwandlungsplastizitit beinhaltet in der Regel die Beriicksichtigung von Effekten der
Meso- bzw. Mikro-Ebene. Dazu gehort unter anderem die Herleitung der Umwandlungsplastizitit
von GREENWOOD und JOHNSON [46] sowie eine gro3e Anzahl der Weiterentwicklungen bzw. Mo-
difizierungen dieses Ansatzes, wie z.B. LEBLOND [72], LEBLOND et al. [74], FISCHER [33, 34]
STRINGFELLOW et al. [121], BHATTACHARY YA und WENG[19], GOVINDJEE und MIEHE [44], PA-
PATRIANTAFILLOU et al. [104]. Bei stark anisotropen Produktphasen wie Martensit und Bainit kann
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eine unelastische Verformung auch durch eine gezielte Auswahl von energetisch giinstigen Produkt-
phasevarianten in Abhéngigkeit vom angebrachten Spannungszustand erreicht werden. Dieser soge-
nannte Orientierungseffekt wurde erstmals von MAGEE [83] beschrieben und findet insbesondere im
Rahmen der Modellierung des mikrostrukturellen Verhaltens unter Erfassung der einzelnen Varianten
der Formgedéchtnislegierungen Anwendung (vgl. z.B. HACKL et al. [49], HACKL und HEINEN [47],
GOVINDIJEE und MIEHE [44], THAMBURAIJA und ANAND [127]).

Die mikromechanische Modellierung wurde in den letzten Jahren insbesondere in Hinblick auf
eine stirkere Beriicksichtigung der sowohl auf der Meso- als auch der Mikro-Ebene auftretenden Ef-
fekte weiter verfolgt und erweitert. Ferner wurden die makroskopischen Ansétze durch Mehr-Skalen-
Modellierungen vervollstidndigt bzw. vollstindig abgelost. Diese Entwicklung zeichnet sich insbe-
sondere in den Arbeiten von CHERKAOUI et al. [23], FISCHER et al. [36] CHERKAOUI [22], IWA-
MOTO [61], TURTELTAUB und SUIKER[130, 131], BARBE et al. [10], TIAHJANTO et al. [128] und
LEVITAS und Ozsoy [77, 78] ab. Im Beitrag von KOUZNETSOVA und GEERS [66] wurde ein Drei-
Skalen-Ansatz der martensitischen Umwandlung infolge der mechanischen Belastung im TRIP-Stahl
entwickelt. Das Modell vereinigt in sich unterschiedliche Ebenen, die jeweilige Effekte abbilden und
miteinander verkniipfen.

Die erwéhnten Publikationen zeigen verschiedene Methoden zur Modellierung der Festkorper-
phasenumwandlungen in den Stihlen. Trotz der Vielzahl der genannten Beitrdge zu diesem Themen-
komplex fehlen Arbeiten, die einen allgemein giiltigen Ansatz zur liickenlosen Beschreibung der Hy-
bridumformprozesse formulieren.

1.3 Ziele der Arbeit

Die zentrale Zielsetzung der hier vorliegenden Dissertation, die im Rahmen des Teilprojektes B2 des
SFB/TR TRR 30 ,,Prozessintegrierte Herstellung funktional gradierter Strukturen auf der Grundlage
thermo-mechanisch gekoppelter Phidnomene* (detaillierte Informationen z.B. unter www.transregio-
30.com) entstanden ist, ist den oben beschriebenen Hybridumformprozess mit Hilfe der FEM-
Simulation zu verstehen, vorherzusagen und zu optimieren.

Die Analyse der beschriebenen Problemstellung gliedert sich in folgende Etappen:

e Entwicklung eines makroskopischen phinomenologischen Mehrphasenmodells. Zur Erstellung
gehort die Formulierung und die Implementierung von konstitutiven Gleichungen. Das Material-
modell soll das komplexe Materialverhalten wie die temperatur- und zeitabhingige Phasenum-
wandlung, die Umwandlungsplastizitit, die Viskoplastizitit sowie gro3e Deformation abbilden.

e Bestimmung der Materialparameter auf Grundlage von Experimenten mit Hilfe der numerischen
Optimierungsverfahren.

e Vorstellung reprisentativer Beispiele, in denen das modellierte phanomenologische Materialver-
halten getestet wird.

o FEM-Simulation des Hybridumformprozesses mit der Darstellung der Gefiigeverteilung im Tech-
nologietriger ,,Antriebswelle* unter Beriicksichtigung der Kopplung thermischer und mechani-
scher Prozessschritte.

e Aufbau eines mikromechanisch basierenden Modells, welches die makroskopischen Effekte infol-
ge der Phasenumwandlung vom Austenit zum Bainit mit Hilfe von Effekten sowohl auf der Mikro-
als auch auf der Meso-Ebene abbildet.

e Vorstellung reprisentativer Beispiele, in denen das aus dem mikromechanischen Modell resultie-
rende makroskopische Materialverhalten getestet wird.
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1.4 Aufbau der Arbeit

Die mehrphasige phdnomenologische und mehrskalige mikroskopisch basierende Modellierung von
Phasenumwandlungen im Hybridumformprozess gliedert sich in insgesamt sechs Kapitel:

In Kapitel 2 werden die fiir das Versténdnis dieser Arbeit wichtigen, theoretischen Grundlagen zur
Festkorperphasenumwandlungen gelegt. Des Weiteren erfolgt die Darstellung des Versuchsaufbaus
bzw. des Ablaufs der experimentellen Untersuchungen der Phasenumwandlungen.

Kapitel 3 befasst sich mit der phanomenologischen Modellierung der Phasenumwandlung in Kom-
bination mit inelastischem Materialverhalten. Hierbei werden zunéchst die konstitutiven Gleichungen
fiir kleine Deformationen hergeleitet. AnschlieBend werden diese in eine Materialschnittstelle des
FEM Programms Abaqus, die UMAT Subroutine numerisch implementiert. Der Implementierung
folgt die Parameteridentifikation des makroskopischen Materialmodells auf der Grundlage von ein-
axialen Versuchen.

In Kapitel 4 wird das Modell um die Theorie der Grof3deformationen erweitert. Das entwickelte
Modell wird auf die thermodynamische Konsistenz gepriift. Hierbei wird die numerische Implemen-
tierung entsprechend auf die Gro3deformationen ausgedehnt. Im Anschluss daran erfolgt die Simu-
lation des Hybridumformprozesses unter Einsatz der Standardprozessfiihrung. Um unterschiedliche
Gefiigeverteilungen im Werkstiick nachbilden zu konnen, werden im nichsten Schritt Prozesspara-
meter variiert.

Der Gegenstand des Kapitel 5 bildet die Entwicklung eines physikalisch motivierten und thermo-
dynamisch konsistenten Mehrskalenmodells fiir das Materialverhalten eines niedrig legierten Stahls
bei der Umwandlung vom Austeint zum Bainit. Mit Hilfe des Modells werden die makroskopischen
Effekte der Phasenumwandlung auf der Grundlage der Vorginge sowohl auf der Mikro- als auch
der Mesoebene nachgebildet. Zur Erfassung des makroskopischen Verhaltens infolge der Phasen-
umwandlung erfolgt die Abbildung des Polykristalls auf der mesoskopischen Ebene mit Hilfe des
reprasentativen Volumenelements (RVE) mit 512 Elementen.

Abgeschlossen wird die Arbeit durch ein Fazit inklusive eines Ausblicks (Kapitel 6).



Kapitel 2
Grundlagen der Phasenumwandlungen

2.1 Theoretische Grundlagen

Dieser Abschnitt stellt die fiir das Verstindnis dieser Arbeit wichtigen, theoretischen Grundlagen zur
Festkorperphasenumwandlungen dar. Die Vielfalt der Eigenschaften der Stahlwerkstoffe wird durch
das verschiedenartige Mikrogefiige bewirkt. Die Einstellung des Mikrogefiiges erfolgt durch eine
Anderung der chemischen Zusammensetzung bzw. durch eine geeignete thermische und mechani-
sche Behandlung unter Verwendung der Phasenumwandlung. Als eine Phasenumwandlung wird der
Ubergang von einer oder mehreren Ausgangsphase(n) in eine oder mehrere andere Phase(n) bezeich-
net [30]. Diese Phasenédnderungen lassen sich in Umwandlungs- und Ausscheidungsprozesse untertei-
len, wobei Umwandlungsprozesse einen Ubergang einer instabilen Gitterstruktur in eine metastabile
bzw. stabile Gitterstruktur darstellen. Ausscheidungsprozesse kennzeichnen hingegen die diffusions-
bedingte Ausscheidung einer oder mehrerer Phasen aus dem iibersittigten Mischkristall [57], [30].

Unterschiedliche Phasen sind je nach Druck, Temperatur und Zusammensetzung der Legierungs-
elemente stabil. Diese Bereiche konnen in Zustandsdiagrammen anhand der sogenannten Phasen-
grenzlinien separiert werden. Wird eine Phasenlinie beispielsweise durch eine Senkung der Tempera-
tur liberschritten, zeigt sich dies durch einen entstehenden Knick- oder Haltepunkt in der Abkiihlkurve
(Abb. 2.1.b). Die anhand der Abkiihlkurven ermittelten Knick- und Haltepunkte dienen als Grundlage
fiir die Erstellung der Phasendiagramme.
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Abb. 2.1 a) Eisen-Kohlenstoff-Diagramm (EKD), b) Schematische Abkiihlkurve
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Das prominenteste Beispiel fiir ein Phasendiagramm ist das Eisen-Kohlenstoff-Diagramm (EKD)
(Abb. 2.1.a). Das EKD zeigt die Phaseninderungen einer Zweikomponentenlegierung aus Eisen und
Kohlenstoff unter der Bedingung, dass die Abkiihlrate so langsam ist, dass eine vollstandige Diffusi-
on aller Atome gewihrleistet wird. Die Abbildung des Zustandsdiagramms erfolgt dabei entweder in
einer gefiige- oder einer phasenméfBigen Betrachtung. Des Weiteren ldsst sich das EKD in das stabile
Eisen-Graphit- (Fe-C) und das metastabile Eisen-Zementit-Diagramm (Fe-Fe3C) differenzieren. Der
maximale Kohlenstoffanteil im Eisen im EKD liegt bei 6,67 % des Massenanteils und entspricht genau
100 % Zementit. Die charakteristischen Haltepunkte im EKD sind der peritektische (I), der eutekti-
sche (C) und der eutektoide (S) Punkt in Abbildung 2.1.a, bei denen jeweils drei Phasen gleichzeitig
vorliegen. Ferner ist am peritektischen und eutektischen Punkt jeweils eine schmelzfliissige Phase
beteiligt. Am eutektoiden Punkt (S) findet eine Umwandlung von einem festen zu einem anderen
festen Aggregatzustand statt. Dabei wandelt das kubisch-flichenzentrierte (kfz) y-Eisen in kubisch-
raumzentriertes (krz) a-Eisen und FesC um (Abb. 2.2). Bei der gefiigeméBigen Betrachtung trans-
formiert der Austenit () in dem fiir Schmiedestidhle relevanten Kohlenstoffbereich von 0,2 Ma.-%,
der zum Hirten mindestens notwendig ist, bis 2,06 Ma.-% Kohlenstoff entweder zu Ferrit («), Per-
lit (o und Fe3C) oder Perlit mit Sekundidrzementit (Fe3C) um. Am eutektoiden Punkt S (0,8 Ma.-%
Kohlenstoff und 723 °C ) wandelt y-Eisen bei langsamer Abkiihlung in 100 % Perlit um, bei c-Eisen
entsteht streifenformig angeordneter Fes;C. Bei niedrigeren Kohlenstoffgehalten ist der Anteil des Fer-
rits hoher, bei groleren Kohlenstoffanteilen sammelt sich Sekundédrzementit (Ausscheidung von FesC
im Austenit) bevorzugt an den Korngrenzen.

Martensit

Abb. 2.2 Schematische Darstellung der Umwandlung des kubisch-flichenzentrierten Gitters in ein kubisch-
raumzentriertes Gitter mit Kohlenstoffatom

Da das EKD nur fiir das Zweikomponentensystem Eisen und Kohlenstoff und dariiber hinaus nur
bei sehr langsamer Abkiihlung gilt, ist dessen Anwendbarkeit auf thermo-mechanisch gekoppelte Pro-
duktionsprozesse zur Einstellung funktional gradierter Strukturen im Stahl sehr begrenzt. Fiir solche
Vorginge eignet sich vielmehr der Einsatz von Zeit-Temperatur-Umwandlungsschaubildern (ZTU),
die das zeitabhingige Festkorperphasenumwandlungsverhalten von jeweils einer chemischen Zusam-
mensetzung eines Stahls gefiigemifBig abbilden [144]. Das in ZTU-Diagrammen beschriebene Um-
wandlungsverhalten wird generell in einem Dilatometerversuch bestimmt, wobei die Umwandlun-
gen durch Lingeninderungen von Proben mit sehr geringer Masse gemessen werden, wodurch alle
Temperaturbewegungen nahezu trigheitslos erfolgen. ZTU-Diagramme lassen sich in zwei Katego-
rien unterteilen, in kontinuierliche und isotherme. Kontinuierliche ZTU-Diagramme geben das Um-
wandlungsverhalten fiir stetige Abkiihlung von der Austenitisierungstemperatur an. Isotherme ZTU-
Diagramme bilden das Umwandlungsverhalten bei konstanten Haltetemperaturen nach schnellem Ab-
schrecken von der Austenitisierungstemperatur ab.

Es gilt anzumerken, dass jedes ZTU-Diagramm streng genommen nur fiir die verwendete Schmel-
ze und die vorliegenden Abkiihlbedingungen gilt. Vor allem kann eine Anderung der im Stahl
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gelosten Legierungselemente sowohl die Umwandlungsstart- als auch die -endpunkte (isothermes
ZTU-Diagramm) oder die Umwandlungsstart- und -endtemperaturen (kontinuierliches ZTU-Dia-
gramm (Abb. 2.3) stark beeinflussen [144]. Abbildung 2.4 stellt ein isothermes ZTU-Diagramm des
untereutektoiden 51CrV4 Stahls dar.
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Abb. 2.3 Kontinuierliches Zeit-Temperatur-Umwandlungs-Schaubild (ZTU-Schaubild) [29]
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Abb. 2.4 Isothermes Zeit-Temperatur-Umwandlungs-Schaubild (ZTU-Schaubild) [29]

Bei diesem Stahl kénnen abhéngig von den Abkiihlbedingungen zusitzlich zu den bereits aus dem
EKD bekannten Gefiigen Ferrit und Perlit auch Bainit oder Martensit aus dem Austenit entstehen.
Da die Abkiihlraten im betrachteten Hybridumformprozess so hoch sind [142, 141], dass kaum eine
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Umwandlung vom Austenit zum Ferrit oder Perlit moglich ist, wird dieser Vorgang im Rahmen die-
ser Arbeit nicht ndher betrachtet. Vielmehr sind fiir den betrachteten Prozess Umwandlungen in die
Martensit-, Bainitstufe oder in ein Bainit-Martensitgefiige relevant. Da das vor dem Abkiihlvorgang
vorliegende austenitische Gefiige durch eine Variation der Aufheizbedingungen determiniert werden
kann [113, 112] und somit ein groBer Einfluss auf das Umwandlungsverhalten und die daraus resultie-
renden mechanischen Eigenschaften zu erwarten ist [144], sollen im Folgenden die fiir den betrachte-
ten Hybridumformprozess relevanten Gefiige kurz erlautert werden.

2.1.1 Austenit

Das austenitische Gefiige (kfz), das auch Hochtemperaturphase genannt wird, entsteht bei untereutek-
toiden Stihlen aus ferritisch-perlitischem Gefiige (krz) durch Aufheizen auf eine Temperatur iiber A
im ~y-Bereich (Abb. 2.1) [30]. Hierbei sind die Bereichsgrenzen von der Zusammensetzung, der Auf-
heizrate sowie der Haltezeit abhingig. Die im EKD angegebenen Phasengrenzlinien gelten allerdings
nur fiir moderate Aufheizraten und extrem lange Haltezeiten. Da dies den im betrachteten techni-
schen Prozess vorliegenden Bedingungen nicht entspricht, wurden fiir diverse Stahlgiiten sogenannte
Zeit-Temperatur-Austenitisierungs-Schaubilder (ZTA-Diagramme (Abb. 2.5)) entwickelt [144]. Bei
den ZTA-Diagrammen kann man analog zum Vorgehen bei den ZTU-Diagrammen eine Differenzie-
rung in isotherme (Abb. 2.5) und kontinuierliche (Abb. 2.6) Diagramme vornehmen. So ldsst sich
auf der Grundlage des kontinuierlichen ZTA-Diagramms beispielsweise die fiir eine bestimmte Auf-
heizrate bendtigte Temperatur zur Einstellung eines homogenen Austenits ermitteln. Ein isothermes
ZTA-Diagramm liefert bei vorgegebener Austenitisierungstemperatur und Aufheizrate die benotigte
Haltezeit zur Einstellung des gewiinschten austenitischen Zustandes. Des Weiteren kénnen sowohl
die gewihlte Austenitisierungstemperaturen als auch die Haltezeiten Einfluss auf die sich einstellen-
den AustenitkorngroBen nehmen. Die Austenitisierungstemperaturen A.; und A.3 werden wiederum
von der Zusammensetzung der Legierungselemente beeinflusst. Deren Schitzwerte lassen sich nach
HOLLOMON und JAFFE wie folgt ermitteln [30]:

Aa[°C) = 739—22- (%C) +2- (%Si) — 7+ (%Mn) + 14 - (%Cr)
+13 - (%Mo) — 13- (%Ni) + 20 - (%V),
@.1)
Ag[°C] = 902 — 255 - (%C) + 19 - (%84) — 11 - (%Mn) — 14 - (%C'r)
+13 - (%Mo) — 20 - (%Ni) + 55 - (%V).

Viele technische Anwendungen setzen ein gleichmifiges austenitisches Gefiige voraus, um wih-
rend der anschlieBenden Abkiihlung nach Moglichkeit homogene Gefiige zu erhalten. Im betrachteten
thermomechanischen Hybridumformprozess werden hingegen verschiedenartige Austenitisierungs-
bedingungen eingestellt. Dies fiihrt auBer zu lokal verschiedenartigen Austenitisierungsgraden und
Austenitkorngréf3en auch zu Unterschieden im lokalen FlieBverhalten. Die Erkenntnisse zum Warm-
flieBverhalten des stabilen Austenits (Temperaturen oberhalb der A 3-Linie) lassen sich aus der Litera-
tur entnehmen (vgl. dazu beispielsweise [50]). Daten zum FlieBverhalten des unterkiihlten Austenits
(Temperaturen unterhalb der A.;-Linie) liegen hingegen zumeist nicht vor. Ahrens [1] hat gezeigt,
dass eine Abschitzung des FlieBverhaltens des unterkiihlten Austenits aus dem experimentell ermit-
telten Spannungs-Dehnungs-Verhalten der stabilen austenitischen Stihlen zu grolen Ungenauigkeiten
fiihren kann. Da aber diese metastabile Phase wihrend der Verformungssequenz des relevanten Pro-
zesses vorliegt, erweist sich eine exakte Prozesssimulation des Spannungs-Dehnungs-Verhaltens des
unterkiihlten Austenits als zwingend notwendig.
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Abb. 2.5 Kontinuierliches Zeit-Temperatur-Austenitisierungsschaubild (ZTA) [144]
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Abb. 2.6 Isothermes Zeit-Temperatur-Austenitisierungsschaubild (ZTA) [144]

2.1.2 Martensit

Das martensitische Gefiige entsteht durch ein diffusionsloses, spontanes, schlagartiges Umklappen
des austenitischen kfz-Gitters in ein tetragonal verzerrtes, raumzentriertes Gitter (Abb. 2.2) fiir tiefe
Temperaturen. Die Umwandlung beginnt bei Unterschreiten der Martensitstarttemperatur M, und
lduft bei einer weiteren Abkiihlung kaskadenartig in Bruchteilen von Sekunden ab. Die martensitische
Umwandlung stoppt, wenn der Abkiihlvorgang unterbrochen wird und setzt sich bei einer weiteren
Temperaturabsenkung fort [8, 15, 67, 99, 138]. Wegen der wihrend der martensitischen Umwandlung
herrschenden relativ tiefen Temperaturen ist die Diffusion der Atome ausgeschlossen.
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Die martensitische Transformation ist durch eine kooperative Scherbewegung der Atome gekenn-
zeichnet, wobei sich jedes einzelne Atom nur minimal bewegt [100]. Dementsprechend bleibt die
Verteilungskonzentration der Legierungsatome unverindert. Es gilt allerdings auf eine ausreichend
hohe Abkiihlrate wihrend der Temperatursenkung bis zur Martensitstarttemperatur zu achten, um
die diffusionsgesteuerte Phasenumwandlung, d.h. die Transformation von Austenit zu Ferrit/Perlit
oder Bainit, zu vermeiden. Die M -Temperatur, die Struktur des Martensits sowie die sich einstel-
lende Gitterverzerrung hingen mafgeblich vom Kohlenstoffgehalt des jeweiligen Stahlwerkstoffs ab.
Wihrend es bei sehr hohen Kohlenstoffgehalten und niedrigeren Umwandlungstemperaturen zumeist
zur Bildung von so genanntem Plattenmartensit (engl. plate martensite) kommt, wird bei niedrigen
Kohlenstoffgehalten und Temperaturen knapp unterhalb von Mg vornehmlich Lanzettmartensit (engl.
lath martensite) gebildet. Die Martensitstarttemperatur in °C kann nach HOLLOMON und JAFFE [30]
anhand der Zusammensetzung der Legierungselemente abgeschitzt werden:

M,[°C] = 550 — 350 - (%C) — 40 - (%Mn) — 35 - (%V) — 20 - (%C'r)
—17 - (%Ni) — 10 - (%Cu) — 10 - (%Mo) — 8 - (%W) 2.2)
+15 - (%Co) + 30 - (%AI).

Die Phasenumwandlung ist mit Eintreten der Martensit-Finish-Temperatur (M), einem Temperatur-
niveau unterhalb von M vollendet. Oft wird wie beispielsweise bei KOISTINEN und MARBURGER
[65] angenommen, dass zwischen dem martensitischen Phasenanteil und der Unterkiihlung ein linea-
rer Zusammenhang besteht. Um gerade noch 100 % Martensit zu erhalten, werden sowohl M und
My als auch die kritische Abkiihlrate durch die Legierungszusammensetzung des jeweiligen Stahls
beeinflusst. Dementsprechend sinken M, und My mit wachsendem geldsten Kohlenstoffgehalt, so
dass ab Kohlenstoffgehalten von iiber 0,6 Ma.-% bei Raumtemperatur Restaustenit im Gefiige ver-
bleiben kann [114, 21, 100, 58, 107]. Bei mittleren Kohlenstoffgehalten von ca. 0,5 bis 1,0 Ma.-%
konnen beide Arten (Platten-, Lanzettmartensit) gleichzeitig entstehen [114, 152]. Ferner stabilisieren
unter anderem die Legierungselemente Chrom (Cr), Vanadium (V) und Molybdidn (Mo) die ferriti-
sche Phase und die Legierungselemente Nickel (Ni) und Mangan (Mn) die austenitische Phase. Die
resultierende Morphologie des Martensits ist vor allem vom gelosten Kohlenstoffgehalt im Austenit-
gefiige abhéngig, da dieser die Stapelfehlerenergie und die Streckgrenze des unterkiihlten Austenits
bestimmt. Martensit beginnt in der Regel an den Austenitkorngrenzen bzw. anderen gestorten Berei-
chen zu wachsen und verlauft mit der Schallgeschwindigkeit des Stahls bis zu einem Hindernis wie
beispielsweise einer weiteren Korngrenze oder schon entstandenem Martensit. Dabei bildet sich bei
Kohlenstoffgehalten von tiber 0,6 Ma-% bei Raumtemperatur iiberwiegend Plattenmartensit, meist
unter Zuriickbleiben von Restaustenit (Abb. 2.7 a). Dieser ist deutlich weicher als das martensiti-
sche Gefiige, so dass die erreichbaren Hirten mit wachsendem Kohlenstoffgehalt ohne zusitzliche
MalBnahmen nicht weiter steigen [11]. Bei Kohlenstoffgehalten von unter 0,6 Ma-% entwickelt sich
iiberwiegend Lanzettmartensit (Abb. 2.7 b).

Abb. 2.7 Verschiedene Auspragungen von (a) Plattenmartensit und (b) Lanzettmartensit nach Bargel [114]
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Fiir den Beginn der Umwandlung vom Austenit zum Martensit ist neben einer ausreichend ho-
hen Abkiihlrate auch ein bestimmtes Maf} an Unterkiihlung erforderlich (Abb. 2.8). Ein spontanes
Umklappen des austenitischen Gitters ist erst dann moglich, wenn nach Unterschreiten der Gleichge-
wichtstemperatur 0 die benétigte Energie AG., ¢ zur Bildung neuer Grenzflichen und Behebung von
Gitterstorungen zur Verfiigung steht. Der Einsatz der martensitischen Phasenumwandlung bei Vorlie-
gen einer hoheren Temperatur erfordert zusitzlich zur temperaturabhéngigen Gibbs-Energie AG[0)
die Anwendung einer angemessenen mechanischen Triebkraft Uy, () [124].

oA

AG,,

o WU il 01]

<Y

M, 0, 4,

Abb. 2.8 Schematische Darstellung der Gibbs-Energie G in Abhingigkeit von der Temperatur 6 [124]

Die mechanischen Eigenschaften des eingestellten martensitischen Gefiiges sind entscheidend vom
Kohlenstoffgehalt abhéingig. So nehmen aufgrund der ansteigenden tetragonalen Gitterverzerrung im
Martensit sowohl die Hérte und die Festigkeit als auch die Sprodigkeit mit steigendem Kohlenstoff-
gehalt zu. Dies gilt allerdings nur dann, wenn bei Raumtemperatur kein Restaustenit vorhanden ist
(bis 0,6 Ma-% C) [100, 107, 21]. Zur Verbesserung der mechanischen Eigenschaften und in erster
Linie der Duktilitdt des Martensits kann dieser angelassen werden. Dadurch entspannt das verzerrte
Gitter, und es bilden sich Karbide aus. Eine steigende Anlasstemperatur verursacht eine Zunahme der
Duktilitdt und eine Abnahme der Festigkeit bzw. der Harte [11, 21].

2.1.3 Bainit

Das bainitische Gefiige bildet sich bei der Abkiihlung in einem Temperaturbereich, der sich zwischen
den fiir die Perlit- bzw. die Martensitbildung relevanten Bereichen befindet. Aus diesem Grund wird
es auch als Zwischenstufengefiige bezeichnet [17]. Hierbei erfolgt der Umklappprozess vom auste-
nitischen kfz-Gitter in das tetragonal verzerrte krz-Gitter analog zu der martensitischen Phasenum-
wandlung nach dem Prinzip der scherungsdominierten Phasenumwandlung [8, 17, 67, 99, 138]. Im
Gegensatz zum Prozess der Martensitbildung ist die Bainitbildung nicht ausschlielich von der Un-
terkiihlung abhingig. Sie folgt ebenso einer zeitabhingigen Komponente, was durch die Tatsache,
dass sich 100 % Bainit nur in einem isothermen Prozess einstellen ldsst, verdeutlicht wird.

Die Temperatur, bei der die Bainitbildung einsetzt, wird als Bainitstarttemperatur B bezeichnet.
In der Literatur existiert fiir die Ermittlung von B, in Abhingigkeit von der Legierungelementen-
zusammensetzung eine Reihe von empirischen Gleichungen [75, 120]. LEE [75] geht beispielsweise
vom folgenden Zusammenhang der B, Temperatur in Abhéngigkeit vom Masssenanteil der Legie-
rungselementen aus:
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B,[°Cl = 745 — 110 - (%C) — 59 - (%Mn) — 39 - (%Ni) — 68 - (%C')

106 - (%Mo) + 17 - (%MnNi) + 6 - (%Cr)2 + 29 - (%Mo)>. 2:3)

Die Umwandlung setzt ausgehend von Austenitkorngrenzen mit Keimbildung nach dem Unterschrei-
ten der B,-Temperatur ein. Im Gegensatz zum Perlit, wo die Keimbildung aus dem Zementit erfolgt,
prigen sich beim Bainit zuerst das a-Mischkristall aus. Wenn die Keimgrofle den kritischen Wert er-
reicht, kommt es zum Wachstum einer Untereinheit (engl. sub-unit). Eine schematische Darstellung
des Wachstums bainitischer Nadeln (engl. sheaf) ist in Abbildung 2.9 gegeben.

austenite grain boundary

t |E sub-unit

lower bainite upper bainite
microstructure % microstructure

N

" >
cementite
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> ©:©
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Abb. 2.9 Schematische Darstellung des Wachstums von bainitischen Nadeln und Karbidbildung bei oberen und unte-
rem Bainit [6]

Der Kohlenstoff bleibt im Laufe dieses Umklappprozesses zunichst im tetragonal verzerrten ferriti-
schen Gitter (Abb. 2.2) zwangsgeldst (Zeitpunkt ¢; in Abbildung 2.9). Ist die Umwandlungstempe-
ratur und somit auch die Diffusionsfahigkeit ausreichend groB, diffundiert dieser vollstindig in den
noch nicht umgewandelten angrenzenden Austenit (Zeitpunkt {2 in Abbildung 2.9). Bei Vorliegen
niedriger Umwandlungstemperaturen verbleibt jedoch ein Teil des Kohlenstoffs im bainitischen Fer-
rit und bildet dort Karbide. In diesem Fall handelt sich um den unteren Bainit. Zum nichsten Zeit-
punkt (f3 in Abbildung 2.9) kann es an der Spitze einer Bainituntereinheit zunéchst zu einer autoka-
talytischen Keimbildung und einem darauf folgenden Wachstum einer neuen Untereinheit kommen.
Hierbei begrenzen Austenitkorngrenzen und bereits bestehende bainitische Nadeln das Wachstum
[14,17,55,56, 110, 111].

Da bei beiden Bainitarten die Diffusion des Eisens vollstindig gehemmt ist, ergeben sich die fiir
die Differenzierung des unteren und oberen Bainit verwendeten Erscheinungsformen allein aus der
unterschiedlichen Diffusionsfihigkeit des Kohlenstoffs. Als charakteristisches Merkmal des unteren
Bainit sind die fein verteilten Karbide innerhalb der bainitischen Ferrit-Matrix zu nennen, die sich
zumeist in einem Winkel von 50-60 °C zur Hauptachse der Ferritnadeln anordnen. Ferner konnen
zwischen den einzelnen Ferritnadeln vereinzelt grobere Karbide entstehen, die sich lokal aus kohlen-
stoffiibersittigtem Austenit bilden konnen. Die typischen Vorgiinge fiir die Entstehung von oberem
und unterem Bainit werden in Abbildung 2.9 veranschaulicht [6].

Der untere Bainit zeichnet sich aufgrund der fein verteilten Karbide im bainitischen Ferritgitter
durch ausgezeichnete mechanische Eigenschaften, wie hohe Festigkeit bei gleichzeitiger guter Dukti-
litdt aus. Beim oberen Bainit fehlen hingegen die fein verteilten Karbide in der Ferrit-Matrix. Es bilden
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sich hier aus dem {iibersittigten Austenit zwischen den einzelnen Ferritnadeln sehr grobe Karbide. Im
Ergebnis entsteht eine Mikrostruktur, die dem perlitischen Gefiige dhnlich ist und im Vergleich zum
unteren Bainit schlechtere mechanische Eigenschaften aufweist [11]. Ferner kann bei Temperaturen
knapp unterhalb der B; Temperatur das Phinomen der sogenannten ,,unvollstindigen Bainitbildung*
(engl.: incomplete reaction phenomenon) auftreten, das dadurch gekennzeichnet ist, dass auch bei
sehr langen isothermen Haltezeiten keine 100%-ige Bainitbildung erreicht wird [55]. Das Auftreten
dieses Phidnomens wird u.a. mit der zunehmend gehemmten Karbidbildung bei einer steigenden Tem-
peratur und der damit einhergehenden Erhohung des Kohlenstoffgehalts im Austenit erklart. Erreicht
die Kohlenstoffkonzentration einen kritischen Wert, ist eine diffusionslose Bildung des bainitischen
Ferrits nicht mehr moglich. Es kommt hierbei vielmehr zu einer Stabilisierung des austenitischen
Gefiiges [16, 110].

2.1.4 Das kristallographische Modell

Scherungsdominierte Festkorperphasenumwandlungen sind mehrfach durch verschiedene Modelle
beschrieben worden. Ein Grofteil davon wurde urspriinglich fiir die Austenit-zu-Martensit-Phasen-
umwandlung entwickelt. Allerdings lassen sich diese auch fiir die Austenit-zu-Bainit-Phasenumwand-
lung iibertragen. Das erste Modell, dass die martensitische Phasenumwandlung beschreibt, wurde von
BAIN und DUNKIRK [8] entwickelt. Hierbei gingen beide Verfasser davon aus, dass die Umwandlung
vom kfz-Gitter ins krz-Gitter mit einer minimalen Verformung einhergeht. Die minimale Verformung
liegt vor, wenn angenommen wird, dass eine krz-Struktur bereits an der Grenzfldche zwischen zwei
kfz-Strukturen existiert (siche Abb. 2.10).

Austenite

)
N\

Martensite

Abb. 2.10 Modellvorstellung der Phasenumwandlung vom Austenit zum Martensit nach BAIN UND DUNKIRK [8, 131]

Um jedoch ein krz-Gitter mit den erwiinschten Gitterparametern zu erhalten, muss die im kfz-Gitter
vorhandene krz-Struktur in eine Raumrichtung gestaucht und in zwei Raumrichtungen gestreckt wer-
den. Demnach kann sich eine resultierende Martensit- oder Bainit-Orientierung aus drei verschiede-
nen Austenit-Orientierungen entwickeln. Im Bain-Modell wird angenommen, dass die kristallographi-
sche Richtungsannahme [110], // [100],, beziiglich der Kristallebenen (110),, // (100),, maBgeblich
ist. Fiir die Bain-Verformungsmatrix gilt entsprechend
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Hierbei reprisentiert a“ die Gitterkonstante des Austenits, ¢ und ¢™ beschreiben jeweils die Git-
terkonstanten des Martensits und des Bainits. An dieser Stelle sind fiir die Komponente, die die Stau-

chung beschreibt (%) , drei Konstellationen moglich: sie kann sich auf jedem der drei Plétze der

Matrixdiagonalen befinden. Die zwei anderen Komponenten, die die Streckung beschreiben ( ‘/g‘},M ) ,

fiillen dann die iibrigen Plédtze der Matrixdiagonalen aus [18, 8].

Spitere Rontgenbeugungsmessungen haben aber gezeigt, dass die Phasenumwandlung neben der
Deviationskomponente auch eine Scherkomponente aufweisen kann. Auf diesen Erkenntnissen auf-
bauend entwickelten NISHIYAMA und WASSERMANN (N-W) [99] sowie KURDJUMOV und SACHS
(K-S) [67] weitere Modelle (vgl. Abb. 2.11).

Kurdjumov-Sachs Nishiyama-Wasserman
1), II (111) O1D), Il (111)
[110]y
[T11],
[017]y
[1011y
[(111]g m <001>¢
" <0115
o <001>y

Abb. 2.11 Darstellung der o/ /y-Orientierungszusammenhinge in einer stereogpahischen Projektion nach (a) KURD-
JUMOV und SACHS [67] und (b) NISHIYAMA-WASSERMANN [99].

Bei der N-W Orientierungsbeziehung geht man davon aus, dass vor und nach der Phasenumwand-
lung fiir die Kristallebenen (111),//(011), z.B. die Kristallrichtungen [101],//[111], maBgeblich
sind, so dass es zu einer Scherung kommt. Dies entspricht einer Drehung von 9°44’ um die [100],-
Achse. Diese Scherung kann fiir jede parallele Ebenen-Beziehung in vier verschiedene Richtungen
erfolgen. Demnach kann bei drei moglichen parallelen Ebenen-Beziehungen eine Martensit- oder
Bainit-Orientierung aus zwolf verschiedenen Austenitorientierungen resultieren. Dies entspricht ei-
ner, im Vergleich zum Modell von Bain und Dunkirk, Vervierfachung der Variantenvielfalt [8].

Die K-S Orientierungsbeziehung erweitert die N-W Orientierungsbeziehung um eine weitere Dre-
hung von 5°16" um die [011],-Achse, so dass bei (111).,//(011),, beispielsweise [110],//[111], gilt.
Die zusitzliche in zwei Richtungen erfolgte Drehung ermdglicht eine Beschreibung der Gittersrtuktur
des Martensit bzw. des Bainit mit 24 mdglichen Varianten.
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An dieser Stelle gilt anzumerken, dass die Orientierungsbeziehungen nach N-W und K-S lediglich
Niaherungslosungen darstellen, da die tatsidchlich in der Rontgenbeugung beobachteten Orientierungs-
beziehungen sich nicht durch reelle Zahlen beschreiben lassen [17, 21, 100, 64, 107]. Ferner gilt zu
beriicksichtigen, dass fiir die Phasenumwandlung vom Austenit zum Martensit bzw. zum Bainit theo-
retisch eine gemeinsame Grenzlinie notwendig ist, damit die Rotation um diese Achse (RB) moglich
wird. Fiir die Realisierbarkeit der Phasenumwandlung muss diese Grenzlinie wéahrend der Transfor-
mation unverzerrt bleiben und wird daher als invariante Habituslinie bezeichnet. Um die Irrationalitit
der Orientierungsbeziehungen sowie das Auftreten einer Habitusebene anstatt einer —linie zu erkldren,
werden im Rahmen dieser Analyse phdnomenologische Theorien fiir die Austenit-zu-Bainit- sowie
die Austenit-zu-Martensit-Umwandlung herangezogen. Als Beispiel dafiir, wird in Abbildung 2.12
die Theorie von BHADESHIA [17] veranschaulicht.

/-——RB\‘

w w z z
P Observed
1 P2 Martensite
——» | shape,
— (wrong
y wrong h
structure shape)
X X y X y
(a) (b) (c)
LATTICE
-INVARIANT
DEFORMATION
Twin v z v z
Boundary
X y X y
Twinned Slipped
Martensite Martensite

Correct macroscopic shape, correct structure

Abb. 2.12 Schematische Darstellung der phanomenologischen Theorie der Martensitbildung nach BHADESHIA [17]

Der Kerngedanke ist, dass eine gitterinvariante Verformung durch Bildung von Substrukturen im
Martensit oder Bainit durch Zwillingsbildung bzw. Abgleiten infolge der Reduzierung der Verzer-
rungsenergie auftritt. Als Folge zeigt sich keine einfache Rotation (RB) um eine Habituslinie, sondern
eine Scherung entlang einer Habitusebene. Die irrationalen Orientierungsbeziehungen resultieren aus
den sich bildenden verzwillingten oder abgeglittenen Strukturen, die keine glatte Oberfliche aufwei-
sen und folglich eine irrationale Ebene darstellen [17, 64, 100, 57].

2.1.5 Umwandlungsplastizitiit

Eine martenisitische bzw. bainitische Umwandlung fiihrt bei vielen Stihlen zu einer so genanten Um-
wandlungsplastizitdt. Die Umwandlungsplastizitéit (TRIP) beschreibt die inelastischen Verformungen
wihrend der Phasenumwandlung fiir den Fall, dass die thermisch und/oder mechanisch induzierte
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Spannung die FlieBspannung der weicheren Phase unterschreitet. Die Ursachen der umwandlungs-
plastischen Dehnungen liegen in der Volumen- und Forménderung eines Kristalls (Abschnitt 2.1.4)
wihrend der Phasenumwandlung, bei der sich die weichere der an der Umwandlung beteiligten Pha-
sen an die Umgebung der hirteren Phase anpassen muss. Dadurch entstehen in der Umgebung der
Umwandlungsfront komplizierte Eigenspannungszustiinde, die auch ohne Wirkung duflerer Spannun-
gen lokal zu plastischen Dehnungen und somit zur Umwandlungplastizitit fithren. Dieses Verhalten
wird als Greenwood-Johnson-Effekt [46] bezeichnet. Ferner tritt bei martensitischen und bainitischen
Umwandlungen eine Forménderung infolge einer Scherung der umgewandelten Region auf. Aufgrund
der aufgebrachten Belastung wird die Bildung von Martensit- oder Bainitvarianten in einigen, energe-
tisch giinstig orientierten Richtungen bevorzugt, so dass eine inelastische Verformung eintritt. Diese
Art der Umwandlungsplastizitit ist als Magee-Effekt bekannt ([83]).

2.2 Experimente zu Phasenumwandlungen

2.2.1 Versuchsstand

Zur Untersuchung des Umwandlungsverhaltens und zur Bestimmung des Einflusses von einachsigen
Zugspannungen auf das Umwandlungsverhalten des niedriglegiertes Stahl 51CrV4 wurde am Lehr-
stuhl fiir Werkstoffkunde der Universitit Paderborn ein speziell entwickeltes Belastungsdilatometer
(Abb. 2.13) errichtet. Die Legierungselemente von diesem Stahl sind in Tabelle 2.1 zusammengefasst.

Element| C Cr Mn S Pb Si Cu Al Ni Mo Nb Ti P Fe

min 0,5 | 099 | 0,84 |0,005|0,003 | 0,23 | 0,22 | 0,01 | 0,07 | 0,03 | 0,006 | 0O |0,002| Rest
max 0,5 | 1,07 | 091 |0,014|0,005| 0,28 | 0,23 | 0,026 | 0,07 | 0,03 | 0,008 0 |0,015]| Rest

Tabelle 2.1 Chemische Zusammensetzung des Versuchswerkstoffs mit den jeweils minimalen und maximalen Werten
der gemessenen Massenanteilen in Prozent von den Legierungskomponenten des niedriglegierten Stahls 51CrV4

Im Verlauf der Experimente werden die Hohlproben mit 10 mm AuBendurchmesser und 1 mm
Wandstirke (Abb. 2.14) zunichst konduktiv auf die Austenitisierungstemperatur gebracht und ge-
halten (z.B. 880 °C/5 Min.). Dem folgt eine rasche Abkiihlung im Gasdiisenfeld auf die, fiir die
Transformation in eine Bainitphase notwendige, vorgegebene Umwandlungstemperatur. Nach Errei-
chen der Umwandlungstemperatur wird die vordefinierte dulere Spannung aufgebracht und wihrend
der fortlaufenden Umwandlung konstant gehalten. Martensitische Umwandlung findet bei einer kon-
tinuierlichen Abkiihlung auf die Raumtemperatur statt. Analog zur bainitischen Umwandlung wird
bei der Untersuchung der martensitischen Phasentransformation die vordefinierte duflere Spannung
kurz vor Erreichen der Martensitstarttemperatur aufgebracht und konstant gehalten.

Abbildung 2.14 zeigt schematisch das Funktionsprinzip der verwendeten belastungsdilatometri-
schen Versuchseinrichtung. Die Probenerwidrmung erfolgt hierbei konduktiv mittels einer regelbaren
Gleichstromquelle. Die Steuerung der Temperatur geschieht iiber einen Regler, der die mit einem
Pyrometer gemessene Oberflichentemperatur auf der Probenmitte zur Regelung nutzt.

Zur Messungskorrektur und Uberpriifung der Austenitisierungs- und der Bainitumwandlungstem-
peratur wihrend des isothermen stationdren Zustandes wird ein Thermoelement im Inneren der Probe
eingesetzt. Die Ermittlung des Verlaufs der Phasenumwandlung erfolgt durch simultane Messung der
Léngs- und Querdehnung (g, €4,). Dazu wird aus der relativen Volumenénderung

av

= (1+e)(1+eg)*—1 (2.4)
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der volumetrische Phasenanteil mithilfe der Normierung fiir die isotherme und kontinuierliche Um-
wandlung bestimmt:

A A
1. Zeitabhingig 2(t) = “//(t)/ V(tV—> o) 7
2.5)
2. Temperaturabhéngig 2(0) = AI‘//(G) /AV(HV% Or) )
F
S
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3 :: E : Gasabschreckung
()
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Abb. 2.13 Belastungsdilatometer: a) Fotographie (erkennbar sind die Probe (1), die Stromzufiihrung (2), das
Gasdiisenfeld (3) sowie der Extensometer fiir die Messung der Querdehnung (4)), b) Schematischer Versuchsaufbau
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Abb. 2.14 Hohlprobengeometrie fiir Phasenumwandlungen unter Zugspannungen [1]
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2.2.2 Experimentelle Ergebnisse der martensitischen Umwandlung

Im Laufe der experimentellen Untersuchungen des Phasenumwandlungsverhaltens des betrachteten
Werkstoffs in der Martensitstufe wurden Proben kontinuierlich bis auf die Raumtemperatur abge-
schreckt (Abb. 2.15). Die Abkiihlrate wurde mit 70 K s~! zunichst so gewihlt, dass bis zur Mar-
tenitstarttemperatur (M) keine Umwandlung einsetzen kann. Erst nach Erreichen von M, bei der
nur martensitische zeitunabhéingige Umwandlung méglichst ist, wurde die Abkiihlrate auf 15 K s—!
reduziert, um Temperaturgradienten wihrend der Umwandlung minimal zu halten.

N
T
Volumenanderung
Nennspannung
Temperatur
Zeit

Abb. 2.15 Versuchsablauf zur Ermittlung des spannungsabhingigen Umwandlungsverhaltens, kontinuierliche Um-
wandlung [1]
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Abb. 2.16 Entwicklung der Lings- und Querdehnungen mit der Temperatur bei kontinuierlicher martensitischer Um-
wandlung unter 0 und 100 MPa iiberlagerter Spannung [70]
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Wihrend der kontinuierlichen martensitischen Umwandlung treten neben den umwandlungsbe-
dingten Dehnungen auch thermische Dehnungen auf. Sollte wihrend des Versuches ein Temperatur-
gradient in der Messlidnge vorkommen, wiirde dies bei der Abkiihlung von der Austenitisierungs- zur
Raumtemperatur zu Abweichungen zwischen dem Verlauf von Léangs- und Querdehnungen mit der
Temperatur fiihren. Aus Abbildung 2.16 wird ersichtlich, dass bei den Untersuchungen in der Mar-
tensitstufe nach einer Austenitisierung bei 880 °C fiir 5 min kein signifikanter Temperaturgradient in
der Messldnge auftrat. Es wurde hierbei vielmehr der fiir eine spannungslose Umwandlung erwartete,
isotrope Verlauf der Langs- und Querdehnungen ermittelt. Ferner war die Volumenzunahme wihrend
einer spannungslosen martensitischen Umwandlung nach Austenitisierungen bei 1050 °C fiir 10 s und
1200 °C fiir 10 s ungerichtet. Bei einer Aufbringung der Spannung von 100 MPa vor Erreichen der
M-Temperatur und einem Konstanthalten der ersten wihrend der anschlieBenden Umwandlung un-
terschied sich der Verlauf der Querdehnungen deutlich von dem der Léngsdehnungen. Diese Differenz
ist auf die Entwicklung umwandlungsplastischer Dehnungen zuriickzufiihren [68].

2.2.3 Experimentelle Ergebnisse der bainitischen Umwandlung

Um das Umwandlungsverhalten in der Bainitstufe zu untersuchen, wurden die Proben im Anschluss
an die Austenitisierungsbehandlung auf eine isotherme Umwandlungstemperatur oberhalb der Mar-
tensitstarttemperatur M abgeschreckt. Diese Temperatur wurde fiir eine bestimmte Zeit konstant
gehalten, so dass tiber die Variation der Haltezeit unterschiedliche Bainitanteile eingestellt werden
konnten (Abbildung 2.17). Fiir Phasenumwandlungsversuche in der Bainitstufe wurde eine isotherme
Haltezeit von 30 Minuten gewéhlt. Diese lange Haltezeit stellte sicher, dass der unterkiihlte Austenit
vollstindig zu Bainit umgewandelt wurde, bevor die Proben auf die Raumtemperatur abkiihlten.

I

Volumenanderung

\

Temperatur

—

Nennspannung

Zeit

Abb. 2.17 Versuchsablauf zur Ermittlung des spannungsabhidngigen Umwandlungsverhaltens, isotherme Umwandlung

(1]

Bei einer Phasenumwandlung, die ohne Einwirkung du3erer Spannungen erfolgte, war die zeitliche
Entwicklung von Quer- und Lingsdehnung wihrend der isothermen bainitischen Umwandlung fast
identisch (Abb. 2.18). Die Volumenzunahme erfolgte demzufolge isotrop, ohne mafigebliche Entwick-
lung umwandlungsplastischer Dehnungen. Eine im Anschluss an die zehnsekiindige Austenitisierung
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bei 1200 °C erfolgte Abkiihlung auf eine Temperatur von 340 °C und eine anschlieBende Aufbringung
der Spannung von 140 MPa fiihrte bei der isothermen Bildung des Bainits zu deutlich unterschied-
lichen Verldufen der Quer- und Lingsdehnung. Dies wird durch umwandlungsplastische Dehnungen
verursacht [68].
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Abb. 2.18 Einfluss des iiberlagerten Spannungszustandes wihrend der Umwandlung auf den Verlauf der Langs- und
Querdehnungen iiber die Zeit wihrend einer isothermen bainitischen Phasenumwandlung bei 340 °C [68]

Mit steigendem Spannungsniveau nehmen die am Ende der isothermen bainitischen Phasenum-
wandlung vorliegenden Lingsdehnungen zu. Dies wird aus der Abbildung 2.19 aus der Entwicklung
der Langsdehnungen im Verlauf der Zeit, wihrend einer isothermen bainitischen Transformation bei
340°C unter der Wirkung unterschiedlicher Spannungen ersichtlich.
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Abb. 2.19 Einfluss des Spannungszustandes auf den Verlauf der Langsdehnungen mit der Zeit wéhrend der isothermen
bainitischen Phasenumwandlung bei 340 °C [68]
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2.2.4 Mechanische Eigenschaften des unterkiihlten Austenits

Die im betrachteten Hybridumformprozess verwendeten Erwédrmungsstrategien resultieren nicht nur
in ortlich unterschiedlichen Austenitisierungsbedingungen, sondern beeinflussen auch die wéhrend
der anschlieBenden Abkiihlung ortlich vorliegenden Temperaturen. Die Umformung des mittleren
Bereichs der Probe, wobei aufgrund der vorhergehenden Erwédrmung iiberwiegend Austenit vorliegt,
erfolgt in einem weiten Temperaturbereich von ca. 400-1200 °C [141]. Somit ist es fiir die Abbil-
dung des Prozesses notwendig, die mechanischen Eigenschaften des austenitischen Gefiiges in die-
sem Temperaturfenster zu kennen. Neben dem temperaturabhéngigen Spannung-Dehnung-Verhalten
des stabilen Austenits (Temperatur > A.3 Linie), auf das in den experimentellen Untersuchungen
des Lehrstuhls fiir Werkstoffkunde der Universitit Paderborn nicht ndher eingegangen wurde (siehe
dazu [68, 57, 129, 50, 118]), ist insbesondere das temperaturabhiingige mechanische Verhalten des
metastabilen unterkiihlten Austenits (Temperatur < A.; Linie) von Interesse.

Abbildung 2.20 stellt das Spannung-Dehnung-Verhalten des unterkiihlten Austenits im Tempera-
turbereich von 340 bis 700 °C dar. Alle Proben sind zuvor bei 1200 °C fiir 10 Sekunden austeniti-
siert worden. Erwartungsgemél nimmt die 0,2%-Dehngrenze des unterkiihlten Austenits mit fallender
Temperatur zu. Wihrend bei 340 °C ein Wert von 195 MPa ermittelt wurde, lag die 0,2%-Dehngrenze
bei 700 °C nur noch bei 130 MPa. Ferner ist jeweils lediglich ein leichtes Verfestigungsverhalten des
betrachteten Werkstoffs zu verzeichnen.
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Abb. 2.20 Spannung-Dehnung-Verhalten des unterkiihlten Austenits bei verschiedenen Temperaturen [71]






Kapitel 3
Phanomenologische Modellierung fiir kleine
Deformationen

Den Gegenstand dieses Kapitels bildet die phinomenologische Formulierung eines thermodyna-
misch konsistenten Modells unter der Annahme kleiner Deformationen. Im ersten Schritt erfolgt auf
der Grundlage der Kontinuumsthermodynamik die Ableitung der konstitutiven Gleichungen unter
Beriicksichtigung der unterschiedlichen n, Phasen und des viskoplastischen Materialverhaltens. Im
darauf folgenden Abschnitt wird das Modell auf den Hybridumformprozess angepasst. Die im Rah-
men dieser Adaptation entwickelten Gleichungen des Prototypmodells werden numerisch implemen-
tiert. Die auf der Grundlage der experimentellen Daten durchgefiihrte Parameteridentifikation schlief3t
das Kapitel ab.

3.1 Konstitutive Gleichungen

3.1.1 Kinematik

Es werden ein Korper B in dem Euklidischen Raum R3 mit der Konfiguration 2 C R? sowie dem
Verschiebungsfeld w betrachtet. Der Verzerrungssensor lisst sich basierend auf der geometrisch li-
nearen Theorie

e=sym{u®V}= % (Vu + (Vu)™) 3.1

an der Stelle P € #x]0, T'[ bestimmen. Die Definition des Nabla-Operators erfolgt innerhalb eines
kartesischen Koordinatensystems als V = 9/0x;e; mit den Basisvektoren e;,7 = 1,2, 3 und den Ko-
ordinaten x;,7 = 1,2, 3. Fiir die Gesamtverzerrung gilt unter Einsatz der additiven Dekompensation
folgender Ausdruck:

e=c 4?4 el et (3.2)

Die einzelnen Terme représentieren entsprechend:

den elastischen Verzerrungstensor,

€ den thermischen Verzerrungstensor,

€ den umwandlungsbedingten Verzerrungstensor,

€"P den viskoplastischen Verzerrungstensor und

€ den umwandlungsplastischen (TRIP) Verzerrungstensor.

Die ausfiihrlichen Formulierungen der einzelnen Verzerrungstensoren werden im spiteren Verlauf der
Arbeit bei der Entwicklung des Prototypmodells in Abschnitt 3.2 vorgenommen.

25
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3.1.2 Massen- und Volumenanteile der Phasen

Dieser Abschnitt geht auf den in Zusammenarbeit mit Herrn Michael Wolff entwickelten Beitrag
zuriick, deren Gegenstand die Analyse und Darstellung der Massen- und Volumenanteile der Phasen
sowie die Ermittlung von absoluten und relativen Fehler zwischen den Massen- und Volumenanteilen
bildet [92].

Generell wird bei niedrig legierten Stihlen wihrend der Phasenumwandlung eine Mischung von
mindestens zwei Phasen (n, > 2) betrachtet. Diese Mischung wird als homogen angenommen, d.h.

alle Phasenverhiltnisse sind gleich verteilt. Fiir die Dichte der Mischung p gilt

_dm

= (3.3)

p
Innerhalb des Volumeninkrements dV weist die i*¢ Phase das Volumen dV; und die Masse dm; auf.
Der Volumenphasenanteil z§”), der Massenphasenanteil zi(m) und die Dichte der i**" Phase p; sind
definiert als

(v) _ dVi (m) _ dm; ~dmy

T T dme P

3.4

Generell ist das Gefiige rdumlich nicht homogen. Die Grofien p, zi(v), z,gm) und p; werden basierend

auf Gleichungen (3.3) und (3.4) in einem Materialpunkt P € % mit dem Volumenbereich dV auf
diesen Punkt definiert. Auf diese Weise stellen diese Groen sowohl Funktionen des Raums als auch
Funktionen der Zeit dar. In jedem Materialpunkt und zu jedem Zeitpunkt #x]0, T'[ gelten folgende
Bedingungen:

n

S =1, Y=, 2V>0,2™>0 Vi=1,...,n..  (35)
i=1 i=1

Die Phasenanteile werden zum Zwecke einer kompakten Darstellung in einem Vektor
T
z=[2,22,.,%n.] (3.6)

zusammengefasst.
Die in ein fixes Volumen eingefiigte Masse ist unabhédngig von den moglichen Volumenénderungen,
die als Folge von Temperatur- oder Dehnungsinderungen auftreten. Dadurch hat der Massenphasen-

anteil zi(m) den Vorteil temperatur- und deformationsunabhéngig zu sein. Des Weiteren folgt aus (3.3)

und (3.4) der Zusammenhang zwischen den Massen- und Volumenphasenanteilen

m % 0 v .

ZZ( ):p—Hzf)[Q] Vi=1,...,n,. 3.7
plo]

Dies gilt bei allen zuldssigen Temperaturen 6 sowohl fiir die folgende Mischungsregel fiir die Dichte

p als auch fiir ihre Inverse

(@ 1 L (m
Lop=Y pz", 2.;:2525 ), (3.8)
=1 =1

An dieser Stelle wird darauf verwiesen, dass einige der oben aufgefiihrten Formeln ebenfalls in RA-
NIECKI und BRUHNS [108] zu finden sind.

Grundsitzlich sind Massen- und Volumenphasenanteile in der gleichen Phase nicht identisch. Be-
trachtet man in dieser Hinsicht speziell den Werkstoff Stahl, sind diese Differenzen jedoch so gering,
dass sie vernachlissigbar sind. Diese Aussage wird anhand der Analyse des absoluten bzw. relativen
Fehlers begriindet. Definiert man den absoluten Fehler A;[6] als Differenz zwischen dem Massen-
und Volumenanteil, erhédlt man durch die Formulierung der Dichte p iiber die Mischungsregel in (3.8)
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Al] =[5 — 2V 10]] = [Z[[;)]] 2900 (3.9

K3

-1

o= | N~ (ilo = pill]y )

Fiir eine Zweiphasenmischung (n, = 2) ergibt sich

1. Al = W]Zg%ma], 2. Aslf] = \W\zgm&gm (3.10)

Durch den Einsatz der Schitzungen
4" <A™ + Mfe),

2" = (12" <

=

kann Gleichung (3.10.1) wie folgt umgeformt werden:
prll] = p2[0] 1 am) m) | |P11O) = palb] | om)
Aq]0] < zs 27+ zy  Aqp[6 3.11
1[ ] ,02[9] ‘ 2 1 ‘ pg[@] ‘ 2 1[ ] ( )

p1(6] — pa[f] p1[6] — p2[0)]
P e R L

1
4
4
Unter Annahme des Zusammenhangs
7‘ <1 (3.12)

folgt aus (3.11)

(3.13)

bzw.

1
11_ ‘Pl[e] —92[9]" G149

Eine analoge Vorgehensweise bietet sich fiir die Ermittlung des relativen Fehlers 0;[0] zwischen den
Massen- und Volumenanteilen an. Fiir einen nicht verschwindenden Massenanteil Zli"”) gilt fiir den
relativen Fehler zwischen dem Massen- und Volumenanteil der '™ Phase in Abhingigkeit von der

Temperatur 6

(m) (v)
z - —z (0] _ | pilf] = pl0]
0;10] = |- 2 < . 3.15
g ‘ 2™ ‘ — L pild] ‘ G
Wird p iiber die Mischungsregel in (3.8) ausgedriickt, folgt:
(v Pil0] — ;[0
Me]g‘ 3 )[Q]LGPJH‘. (3.16)
=L pilf]

Fiir eine Zweiphasenmischung (n, = 2) ergibt sich
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o] < 4jg)| 2Ll ol < 70| 20 e

Im Folgenden soll ein numerisches Beispiel fiir den niedriglegierten Stahl 51CrV4, der eine
Austenit-zu-Martensit Transformation durchléuft, betrachtet werden. Die temperaturabhiingigen Dich-
ten des Austenit (,,a* ) bzw. des Martensit (,,m* ) werden mit Hilfe des Programms ,,JMatPro 5 unter
Verwendung der chemischen Zusammensetzung aus Tabelle 1.1 errechnet und betragen abhéngig von
der Temperatur in Grad Celsius:

palf] = 8069,4 — 0,58816 + 3,61107° 62,

pml0] = T788,7 — 0,2855460 — 7,0750 10~° 62. (3.18)

Aus der Beriicksichtigung des Intervalls zwischen 25 °C und 290 °C (Starttemperatur des Martensit)
sowie der Ermittlung des korrespondierenden maximalen Volumens in (3.13), (3.14) und (3.17) erhalt
man fiir alle 6 € [25,290] die maximalen Schitzwerte

A,l6] < 0.0091, A [0] <0.0088,
5 (v) (v) (3.19)
a[0] <0.0332r,",  Om[f] <0.0352 .

Ahnliche Ergebnisse konnen fiir andere Phasentransformationen im Stahl erwartet werden. Demnach
betrdgt der absolute Fehler zwischen den Massen- und Volumenanteilen der Phasen im Stahl bei Vor-
liegen der gleichen Temperatur weniger als 1%. Des Weiteren liegt der relative Fehler zwischen den
Massen- und Volumenanteilen der Phasen im Stahl im ungiinstigen Fall unter 3.5%. Aufgrund der nur
sehr geringen absoluten und relativen Fehler zwischen den Massen- und Volumenanteilen der Phasen
im betrachteten Werkstoff, werden im weiteren Verlauf der Arbeit die Volumen- und Massenphasen-
anteile gleich gesetzt.

3.1.3 Thermodynamisch konsistente Formulierung

Bilanzgleichungen bilden die physikalische Grundlage der Kontinuumsmechanik und beschreiben
allgemeingiiltige Prinzipien bzw. universelle Naturgesetze unabhingig von den speziellen Konti-
nuumseigenschaften. Sie gelten fiir alle Materialmodelle der Kontinuumsmechanik und werden in
der Integralform als globale Aussagen fiir den Gesamtkorper angegeben. Bei hinreichend glatten
Korperrandern konnen die zu bilanzierenden Groflen auch lokal in Form von Differentialgleichun-
gen [2] formuliert werden. Des Weiteren miissen die Bilanzen fiir Impuls, Energie und Entropie im
Orts-Zeit-Gebiet #x]0, T erfiillt sein. Im Rahmen dieser Untersuchung werden folgende Bilanzglei-
chungen verwendet (siche z.B. HAUPT [54]):

1. pott — Div o] = po f, Impuls- oder Bewegungsgleichung,
2. poé+Divgy = L+ poro, Energiegleichung, (3.20)

3. igz —— 977 — Lqo - V6 > 0 Clausius-Duhem-Ungleichung,
Po pob

mit

u - Verschiebungsvektor,

€ - Verzerrungstensor,

o - Spannungstensor,

f - Massendichte der aueren Krifte,

¥ - freie Helmholtz-Energiefunktion,

n - Entropie,

g, - Wirmestromdichtevektor,

rg - Massendichte der Warmezufuhr.
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Die Spannungsleistung & wird durch das doppelte Skalarprodukt des Spannungstensors und des
Verzerrungsgeschwindigkeitstensors € ausgedriickt:

P =0 ¢ (3.21)

Der Punkt iiber dem Argument kennzeichnet dessen Zeitableitung.

Abb. 3.1 Konfiguration % und Randbedingungen eines Korpers B

Die als Clausius-Duhem-Ungleichung bekannte Ungleichung (3.20.3) wird zundchst um Nebenbe-
dingungen, d.h. unter anderem auch die Randbedingungen sowie die Anfangswerte fiir den Verschie-
bungsvektor u und die Temperatur 6 vervollstindigt

u(z,0) =0, u(z,0)=0, 6(x,0) =6y =konst. firxz € A,
u=0 in 9%,x]0,T[, o -n=1 in 9.8, %10, T|, (3.22)
0=190 in 0%y x]0,T[, qo-n=74q in 08,x]0,T.

Zur Vereinfachung werden die Startwerte von v und w auf Null gesetzt. Des Weiteren wird das
Anfangstemperaturfeld 6 als homogen angenommen. Ohne die Allgemeingiiltigkeit des Modells zu
verletzen, konnen Nullwerte fiir w in 04, x]0, T angenommen werden. n ist der Normalvektor an
den Rindern 04,, C 0% und 0%, C 0Z. t steht fiir die duBere Belastung an 0%, C 0%, 0%,
und 0.%; stellen die getrennten Teile des Korperrandes 0.4 dar. 6 ist die vorgegebene Temperatur am
0% und q ein vorgegebener Wirmestrom, der durch den iibrig gebliebenen Rand 0.4, fliefit.

Fiir die freie Helmholtz-Energie ¥ wird folgender funktionaler Zusammenhang angenommen:

¥ =l q,z,0], (3.23)

mit e als elastischen Verzerrungstensor und ¢ = [giy-- -, qnq]T als den Vektor der verzerrungsihnli-
chen internen Verfestigungsvariablen. Der in Gleichung (3.6) eingefiihrte Vektor 2z beriicksichtigt die
unterschiedlichen Phasen n, und spielt gleichzeitig die Rolle der internen Variablen.

Im néchsten Schritt erfolgt die Definition des Spannungstensors o, der Entropie 7 sowie der ther-

modynamischen Krifte fiir die Verfestigungsspannungen Q = [Q1,Q2, .. ., an]T sowie die chemi-
schen Kriifte der Phasentransformation Z = [Z1, Za, ..., Z,_]*
ov ov ov ov
l.o=po— 2n=——, 3. Q=po—=— 4. Z = po—. 3.24
o Po 86617 n 96’ Q Po ag? 4 = po aé ( )

Die notwendigen Bedingungen der Clausius-Duhem-Ungleichung (3.20.3) werden eingehalten, wenn
folgende Bedingungen erfiillt sind:
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. . 1
1. 9"=0:6"-Qi—Z2%>0, 2. .@":—gqo.vezo. (3.25)

Den giingigen Ansatz fiir den Warmestromvektor in Gleichung (3.25.2) liefert das Fourier-Gesetz:
qo = —X\g - V0, (3.26)

mit Ay als nicht-negativem Wirmeleitungskoeffizient.

Demzufolge ist die Wirmeleitungsdissipation stets positiv. Um die thermodynamische Konsistenz
des Modells nachzuweisen, ist es daher hinreichend, wenn die Ungleichung der reduzierten Dissipa-
tion (3.25.1) erfiillt ist. Zur Formulierung der reduzierten Dissipationsbeziehung ist die Aufstellung
folgender Evolutionsgleichungen notwendig:

L ¢m=¢"[0,Q,2,q,2,0), 2.4=ql0,Q,Z,q,2,0], 3.2=2%[0,Q,Z,q,2,0]. 3.27)

Die an den betrachteten Hybridumformprozess angepasste Formulierung dieser Evolutionsgleichun-
gen sowie der anschlieBende Nachweis der thermodynamischen Konsistenz des Modells erfolgt in
den nachfolgenden Abschnitten.

3.2 Ein Prototypmodell fiir den Hybridumformprozess

Dieser Abschnitt befasst sich mit der Adaptation des in Abschnitt 3.1 formulierten allgemeinen Mo-
dells auf den in Abschnitt 1.1 vorgestellten Hybridumformprozess. Dazu werden im ersten Schritt
konkrete Vorschldage sowohl fiir die freie Helmholtz-Energie als auch fiir die Evolution der internen
Variablen herausgearbeitet. Im Anschluss daran wird die thermodynamische Konsistenz des entwi-
ckelten Modells diskutiert.

Im betrachteten Hybridumformprozess treten hauptsichlich vier Phasen auf. Zu einer einfacheren
Handhabung werden diese wie folgt nummeriert:

1 Ferrit/Perlit (Ausgangsgefiige),
2 Austenit,

3 Bainit,

4 Martensit.

(3.28)

Infolgedessen liegt die Gesamtzahl der in den Beziehungen (3.5) eingefiihrten Phasen bei n, = 4.

3.2.1 Freie Helmholtz-Energie

Die freie Helmholtz-Energie eignet sich insbesondere zur Beschreibung der verschiedenen Speiche-
rungsmechanismen, wie z.B. der Energieverdnderungen, die aufgrund von Grenzflicheneffekten oder
Versetzungen auftreten. Im Rahmen dieser Analyse wird die freie Helmholtz-Energiefunktion fiir das
Prototypmodell in Anlehnung an WOLFF et al. [147] wie folgt definiert:



3.2 Ein Prototypmodell fiir den Hybridumformprozess 31

1. @ — y‘,iso[sel’§7 9] + ol [sel7§’ 9] 4 V44 [9] + @p[g7 2, 9] + W,y [g’ 9}7 mit

2. Yo = Gl (dev[sel])2 ,
Po
1 2
3. wvel = —K10] (tr[e®])”,
2po[]([])
o 0 . 1G] _ (3.29)
400 = / caag—o [ <
6o 6o 9
5. WP ::Ak—Qobq2+4gf]¥q2
2po Y

4
6. W = > (21 — 201) Penil6]-
=1

Hierbei beriicksichtigt der Term W = ¥#s° 4 @l Speichermengen, die sich auf elastische Verzer-
rungen beziehen. Der Teil ¥**° in Gleichung (3.29.2) befasst sich mit isochoren Verzerrungen, die auf
isochore elastische Verzerrungen zuriickzufiihren sind. Gleichung (3.29.3) beschreibt die volumetri-
schen Verzerrungen. Des Weiteren reprisentieren G[f] und K [f] = x[0] ~! den Schub- bzw. Kompres-
sionsmodul. Beide sind von der Temperatur 6 abhingig und beziehen sich auf den Elastizitdtsmodul
FE, die Querkontraktion v und den Kompressibilititskoeffizienten x in folgender Weise:

E[6]

L2000 = 7= 2. K[0] =

Ef]
3(1—2v)

= r[A] . (3.30)

Die in Abbildung 3.2 dargestellten experimentellen Ergebnisse vom unterkiihlten Austenit zeigen eine
lineare Abhingigkeit des Elastizititsmoduls E von der Temperatur 6 [129]. Dies wird durch folgende
Relation beriicksichtigt:

E= Eo + Cg (0 — 00), (331)

mit 0, als Referenztemperatur und cg als einer Konstante. Aus der Beriicksichtigung der additiven
Zerlegung der Gesamtverzerrung in Gleichung (3.2) ergibt sich fiir den volumetrischen Anteil der
freien Helmholtz-Energie

2 L K10 (trfe — £°16) — €™ [))°. (3.32)

WW:iKMWWD_%o

2po

Analog zu HALLBERG et al. [51] wird in Gleichung (3.29.2) das gleiche elastische isotrope Ver-
halten fiir alle Phasen angenommen. Infolgedessen ist es ausreichend, die Temperaturabhingigkeit,
wie sie in Gleichung (3.31) eingefiihrt wurde, zu beriicksichtigen. Eine Betrachtung der Abhéngigkeit
der Schub- bzw. Kompressionsmodule G und K vom Vektor der Phasenanteile z ist somit nicht not-
wendig.

Der Term ¥? in Gleichung (3.29.4) reprisentiert die thermische gespeicherte Energie. An dieser
Stelle wird die Abhingigkeit der Phase von der spezifischen Wirmekapazitit ¢y vernachlissigt. Der
inelastische Teil ¥? der freien Helmholtz-Energie in Gleichung (3.29.5) beschreibt die Energiespei-
cherung, die durch inelastische Verzerrungen entsteht. Das Verhalten der plastischen Verzerrungen
wird mit einer kombinierten linearen und nichtlinearen isotropen Verfestigung unter Einsatz der po-
sitiven Konstanten (Qg, b sowie H definiert. ¢g; und ¢o stellen hierbei skalare verzerrungsihnliche
interne Variablen dar, deren Anzahl n,= 2 betriigt. ¥,;, in Gleichung (3.29.6) reprisentiert die che-
mische Energiespeicherung in Folge von Phasentransformationen. Dieser Term verschwindet, wenn
keine Phasenumwandlungen stattfinden (z.B. fiir z = z).
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Abb. 3.2 Abhingigkeit des Elastizititsmoduls und Rp0,2 (gemessen mit einem Hochtemperaturextensometer) des un-
terkiihlten Austenits von der Temperatur. Isotherme Austenitisierung fiir 5 Minuten bei 880 °C [129]

3.2.2 Thermodynamische Kriifte
Die thermodynamischen Krifte lassen sich aus den Gleichungen (3.24) ableiten. Die Entwicklung des
Spannungstensors erfolgt auf der Grundlage der Gleichungen (3.24.1) und (3.2)

S
= P0Gl (3.33)
— 2G(O)T : €€l 4 K ()1 : el 1.

Gleichung (3.33) erlaubt die deviatorisch-volumetrische Aufspaltung des Spannungstensors
l.o =0 4ov, mit
2. o4V = 2G ()14 : g, (3.34)
3.0 = K(0)1:e% 1.

19 = T — 11 ® 1 steht hier fiir einen Projektionstensor mit den Einheitstensoren zweiter (1) bzw.
vierter Ordnung (I). Der Zusammenhang zwischen dem elastischen Verzerrungstensor € und dem
Spannungsvektor o in den Gleichungen (3.34) lisst sich folgendermafen formulieren

l.o=C(®):e%, mit 2.C=2GO)1" +K(9)1®1, (3.35)

wobei C als ein elastischer Tensor vierter Stufe bekannt ist.
Die Verfestigungsspannungen sowie die chemischen Krifte lassen sich auf Grundlage der Glei-
chungen (3.24.3-4), (3.32) und (3.29.5-6) definieren

ov ov
1L.Qi=poz—=Qobq, Q2= por— = Hpyg,

0 0
551 gl 2 (3.36)
2.7, = o = o + po enill] = po denilf], i=1,2,...,4.

Die Ergebnisse der Gleichungen (3.36.1) représentieren die nichtlineare bzw. die lineare isotrope Ver-
festigung. Stahlwerkstoffe zeigen eine nur sehr geringe Volumeninderung im elastischen Bereich,
sodass der erste Term in Gleichung (3.36.2) vernachléssigbar ist. Demzufolge kann die chemische
Kraft Z; als die freie Enthalpie der Phase z; betrachtet werden.
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Im betrachteten Prozess mit niedrig legiertem Stahl findet die Phasenumwandlung von einer be-
liebigen Phase zum Austenit wihrend des Aufheizprozesses bei Uberschreiten der Gleichgewichts-
temperatur A.; und umgekehrt vom Austenit zum Bainit bzw. zum Martensit bei der Abkiihlung
(0 < A.p) statt. Weitere Umwandlungspaarungen sind fiir den betrachteten Werkstoff ausgeschlos-
sen. Damit ist Austenit in allen zuldssigen Phasentransformationen vertreten. Demnach kann die Aus-
tenitrate unter Verwendung der Nebenbedingung (3.5) sowie der Rate der verbleibenden Phasen aus-
gedriickt werden als:

Sy = — Z %. (3.37)

Dieses erlaubt die Formulierung der Beziehung

4 4

4
= Ziti=— Y Ziti—Takr=— Y (Zi— Za) 4. (3.38)

i=1 i=1,i#2 i=1

Auf diese Weise kann der Dissipationsterm bezogen auf die Phasentransformationen in Gleichung
(3.25) unter Einsatz der Approximation (3.36.2) fiir die chemischen Krifte Z; umformuliert werden

4 4

4
N Ziti==> (Zi—Za) i~ —po Y (Geni — ben) b (3.39)
1=1

i=1 =1

Eine mogliche Beziehung fiir die Differenz der chemischen Potenziale ¢, ; — ¢cn,2 kann aus folgen-
dem Zusammenhang abgeleitet werden:

2, @
Zi= 2o = po(@ani = bon2) = pol®0 = 00°) Gy =14, (3.40)
0

Hiebei wird 05;72) als Gleichgewichtstemperatur definiert, bei der die i-te Phase die gleiche Energie

wie der Austenit aufweist. Somit représentiert die Temperaturdifferenz (6 — Héi’Q)) die Unterkiihlung
bzw. Uberhitzung im Vergleich zum Gleichgewichtszustand. Dariiber hinaus reprisentiert in Glei-
chung (3.40) Q7 , die Aktivierungsenergie fiir die Umwandlung von 1 — 2 bzw. von 2 — 3,4. Sie
ist annahmegemal fiir ¢ # 2 positiv und Null fiir ¢ = 2. Diese Annahme ist plausibel, weil eine
Phasenumwandlung nur dann stattfindet, wenn die gespeicherte chemische Energie (Enthalpie) der
Ausgangsphase die Enthalpie der generierten Phase iibersteigt (vgl. Abb. 2.8).

3.2.3 Verzerrungstensoren

Die Gesamtverzerrung € wird durch die Summe der einzelnen Verzerrungstensoren in Gleichung
(3.2) beschrieben. Die Formulierung der Verzerrungen infolge der Spannung, der Temperatur sowie
der Phasenumwandlung erfolgt im weiteren Verlauf der Arbeit auf der Grundlage der beobachteten
Phinomene.

3.2.3.1 Umwandlungsplastischer Verzerrungstensor

Die Umwandlungsplastizitdt (TRIP) beschreibt den Effekt der plastischen Deformationen wéhrend
der Phasenumwandlung, wenn die thermisch und/oder mechanisch induzierte Spannung die FlieB3-
spannung der weicheren Phase unterschreitet. Der phdnomenologische Ansatz von LEBLOND [72]
fiir die umwandlungsplastische Deformationsgeschwindigkeit in einer allgemein formulierten, zwei-
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phasigen Beziehung lautet:

dflz] .
dev
dz %

3
gl = 5Ktpa (3.41)
wobei a9¢V den deviatorischen Spannungstensor aus Gleichung (3.34.2) darstellt. Der Wert der Ma-
terialumwandlungskonstanten Ky, die auch als Greenwood-Johnson-Parameter bezeichnet wird, ist
abhingig vom betrachteten Werkstoff. Der Greenwood-Johnson-Parameter kann nach LEBLOND [72]
fiir niedriglegierte Stihle unter Verwendung der Gleichung
51 AV

K, =-——__ 3.42
Y60, V (3.42)

mit Hilfe der Streckgrenze der umgewandelten Phase (des Austenits) o, und der Volumenveridnderung
niherungsweise bestimmt werden.
Dariiber hinaus hiingt die umwandlungsplastische Deformationsgeschwindigkeit von der Anderung

der Sittigungsfunktion f(z), die eine heuristische Funktion von z mit den Bedingungen f(z = 0) =0
und f(z = 1) = 1 ist, ab. Als Beispiel fiir die Funktion f(z) wird von LEBLOND [72] der Ausdruck

flz] = 2(1 = In[2])

vorgeschlagen. Im Rahmen dieser Analyse findet die von DENIS [27] entwickelte Formulierung An-
wendung

df []
dz

flel=2=-2)z = =2(1-2). (3.43)

Der Term (1 — z) entspricht dem Rest der austenitischen Phase. Damit lautet die Formulierung von
DENIS fiir eine Mehrphasenbetrachtung:

df [i]
dZZ'

f[ZZ] = (2 — Zi) Zi = =2 (1 — Zi) =2zy fiir ¢ € [3,4} . (3.44)
Die Evolutionsgleichung des umwandlungsplastischen Verzerrungstensors (3.41) wird sowohl fiir die
martensitische als auch fiir die bainitische Umwandlung in gleicher Weise eingesetzt. Aus der Addi-
tion dieser Gleichungen erhilt man die Evolutionsgleichung fiir die gesamte umwandlungsplastische
Verzerrung wihrend der martensitischen und der bainitischen Phasentransformation

-ip __ 3 dev df[z3] » 3 dev df[z4] 4

EP = 5Kypploy |0V =2 23 4+ 5 Kypn[0y]o Y S5 2y

! dr T 2T e (3.45)

= 3Kth [UU]O'deVZ.,?,ZQ + 3Ktp]% [O'U}O'dev,éleQ.

Die Konstanten Ky,p und Kyppr stellen jeweils den Greenwood-Johnson-Parameter fiir Bainit und
Martensit dar.

Die in Abbildung 3.3 dargestellten, experimentell ermittelte Maximalwerte der umwandlungspla-
stichen Verzerrung in Abhingigkeit von der Haltespannung zeigen ein nichtlineares Verhalten. Dieses
Phénomen kann nicht durch einen einzelnen Skalar K, fiir den umwandlungplastischen Verzerrungs-
ratentensor in Gleichung (3.45) abgebildet werden. Demzufolge wird eine lineare Abhingigkeit der
Parameter K;,p und K, von der Vergleichsspannung nach von Mises angenommen

Kiypp = Kipp1 + Kipp2 0v,

3.46
Kipm = Kipavn + Kepirz 0. (3.46)

Siamtliche Materialparameter, die sich auf ’? in Gleichung (3.2) beziehen, lassen sich zusammenfas-
sen

Kip = [Kipp1, Kipp2, Kipa, Kepara)]. (3.47)
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Abb. 3.3 Maximalwerte der umwandlungsplastischen Verzerrung als Funktion der Spannung infolge der martensiti-
schen (a) und bainitischen (b) Umwandlung extrahiert aus den experimentellen Ergebnissen [1, 89]

3.2.3.2 Viskoplastischer Verzerrungstensor

Zur Simulation des zeitabhiingigen Verhaltens wird ein viskoplastischer Ansatz in Kombination mit
einer nichtlinearen isotropen Verfestigung gewihlt. Beziiglich einer weitgehenden Beschreibung des
Ansatzes wird auf LEMAITRE und CHABOCHE [76] verwiesen. Eine Zusammenfassung der konstitu-
tiven Gleichungen lautet:

3.
1. FlieBregel el = \/;)\n, mit
. By \
2. Flieffakt A=(—
ieffaktor <K,\> ,
a.dev
3. Normalenvektor n= oo’ (3.43)
o ev
4. Uberspannungsfunktion by = \/g Ha‘de"H = (Y(0) + Q1lq1] + Q2]ez]),

2 .
5. inelastische Vergleichsverzerrung é, = \/; | €PIl = A

Hierbei stellt o9V den deviatorischen Spanungstensor aus Gleichung (3.34.2) dar. Die Notation |||

= (o: o)l/ % in den Gleichungen (3.48.3) und (3.48.5) reprisentiert den Betrag des Tensors zweiter
Stufe und n den Normalvektor, der die Bedingung ||n| = 1 erfiillt. Mit Hilfe dieser Definitionen kann
aus Gleichung (3.48.1) zwischen dem FlieBfaktor A und der inelastischen Vergleichsverzerrung e,, die
Beziehung A = ¢, verifiziert werden.

Fiir die internen Variablen ¢; and g2 werden folgende Evolutionsgleichungen angenommen:
1. ¢1 = (1 — Ql) €v,
Qo (3.49)
2. 4o = €.

Aus Gleichung (3.36.1) erhélt man den Zusammenhang: ()1 /Qo = bq; . Einsetzen in Gleichung (3.49)
resultiert in

1
Gh=01-bqp)e, = q= 3 (1 — exp[—be,]). (3.50)
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Fiir die Summe der beiden Verfestigungsspannungen aus Gleichungen (3.36.1) ergibt sich

RQ=Q1+ Q2= QO(1 - exp[fbev]) + He,. (3.51)

Damit einspricht ) der aus der Literatur bekannten, isotropen Verfestigungsspannung R (vgl. dazu
z.B. LEMAITRE und CHABOCHE [76]).

Die in Abbildung 3.2 dargestellten experimentellen Ergebnisse bringen ferner eine lineare Ab-
héngigkeit der FlieBpannung R, 2 von der Temperatur ¢ zum Vorschein. Konsequenterweise wird
fiir den in Gleichung (3.48.4) erscheinenden und einen Grenzbereich fiir inelastisches Verhalten re-
préasentierenden Skalar Y eine lineare Beziehung verwendet

Y(g) = YO +cy (9 - 90) . (352)

Folglich konnen alle Materialparameter, die sich auf den viskoplastischen Verzerrungstensor €“? in
Gleichung (3.2) beziehen, zusammengefasst werden

Kuop = [Yo, ey, H,Q, b, Kx,m]. (3.53)

3.2.3.3 Thermischer Verzerrungstensor

Bei steigender Temperatur nehmen die Abstdnde zwischen den Atomen im Kristallgitter ab. Als Fol-
ge dehnen sich Feststoffe aus. Dieser Effekt ist als Wirmeausdehnung bekannt und kann anhand
des thermischen Lingenausdehnungskoeffizienten bzw. Wirmeausdehnungskoeffizienten o’ sowie
des Volumenausdehnungskoeffizienten 7Y beschrieben werden. Fiir einen isotropen Festkorper ver-
halten sich diese Koeffizienten proportional zueinander v = 3af. Damit stellt der Wirmeausdeh-
nungskoeffizient eine Proportionalititskonstante zwischen der Temperaturidnderung und der relativen
Léngenidnderung bzw. Volumenédnderung dar. Um die verschiedenen Koeffizienten fiir die thermische
Ausdehnung in den unterschiedlichen Phasen z; zu beriicksichtigen, wird der wirmebedingte Verzer-
rungstensor mit Hilfe der linearen Mischungsregel berechnet

4
e =) alAbz1. (3.54)
=1

af, ab, of, af reprisentieren hierbei jeweils den thermischen Ausdehnungskoeffizienten von Fer-
rit/Perlit, Austenit, Bainit und Martensit. A§ = 6 — 0 ist die Temperaturdifferenz zwischen der
aktuellen Temperatur 6 und der Starttemperatur 6. 1 stellt einen Einheitstensor zweiter Stufe dar.
Die schematische Darstellung der linearen Mischungsregel vom wirmebedingten Verzerrungstensor
erfolgt in Abbildung 3.4.b.

Die thermischen Ausdehnungskoeffizienten werden zum Zwecke einer kompakteren Darstellung
in einem Vektor o/ = [af, a§, af, af]’ zusammengefasst. Damit kann Gleichung (3.54) in einer Ma-
trixschreibweise formuliert werden

el = 2Taf A01. (3.55)

Die Materialparameter, die sich auf den wirmebedingten Verzerrungstensor €’ in Gleichung (3.2)
beziehen, werden zusammengefasst zu

0 0 6 6 0T
K, = o’ = [af, a5, a5, 04]" . (3.56)
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Abb. 3.4 a) Ergebnis eines Dilatometerversuchs, b) schematische Darstellung der linearen Mischungsregel von Wir-
meausdehnungstensoren [32]

3.2.3.4 Umwandlungsbedingter Verzerrungstensor

Da der a-Mischkristall mit der dazugehorigen martensitischen (), bainitischen (o) und perli-
tische Phase ein im Vergleich zum ~y-Mischkristall (Austenit) groleres Volumen aufweist, wichst
das Korpervolumen wihrend der Phasenumwandlung vom Austenit zum Martensit, Bainit oder Fer-
rit. Ferner kommt es zur Volumenverkleinerung des Mischgefiiges bei der Austenitbildung. Dieses
Phidnomen ist anhand der in Abbildung 3.4.a dargestellten Ergebnissen aus den Dilatometeruntur-
suchungen zu beobachten. Fiir den Verzerrungstensor infolge der Phasentransformation wird in An-
lehnung an den Ansatz von BESSERDICH [13] fiir die Austenit-Martensit-Umwandlung folgender
Ausdruck angenommen:

1
el = 3 K% 21, (3.57)
wobei die Konstante K die Volumeninderung AV/V nach vollstindiger Umwandlung darstellt.
Diese allgemeine Beziehung gilt fiir eine einphasige Umwandlung, wie z.B. fiir eine Transformation
vom vollstindig austenitisierten Gefiige zum Martensit bzw. zum Bainit oder Perlit. Fiir den Fall einer
mehrphasigen Umwandlung wird fiir das Prototypmodell die Beziehung (3.57) angepasst

4
1 1
el = 3 (K"™)T21, bzw. & = 3 ZKf”zil. (3.58)
i=1
Der Vektor K = [K!’, K&’ Kt KT vereinigt die Konstanten, die den Volumenunterschied

zwischen der Ausgangsphase z; und der jeweiligen resultierenden Phase z; charakterisieren. Damit
ist die Konstante K!V gleich Null und K" negativ.

Es gilt zu beachten, dass sowohl der Wirmeausdehnungstensor € als auch der Ausdehnungsten-
sor infolge der Phasenumwandlung €' lediglich volumetrische Teile aufweisen. Konsequenterweise
sind die deviatorische Teile gleich Null. Des Weiteren ist der Ausdehnungstensor €' weder von der
Spannung noch von der Temperatur abhingig. Die fiir Gleichung (3.58) relevanten Materialparameter
lassen sich in einem Vektor zusammenfassen

ke = K5, K, K] . (3.59)
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3.2.4 Evolutionsgleichungen der Phasenumwandlungen

3.2.4.1 Evolution der austenitischen Phase

Im betrachteten Prozess ist eine Austenitbildung nur aus ferritsch-perlitischem Ausgangsgefiige wih-
rend der Induktionsaufheizung des zentralen Teils des Werkstiicks moglich. Anschliefend kann der
Austenit in Bainit bzw. in Martensit ohne eine Riicktransformation umgewandelt werden. Das Auf-
heizen erfolgt vergleichsweise schnell und fiihrt zu hohen Temperaturen. Demzufolge wird fiir die
Evolution des Anteils der austenitischen Phase z9 ein Ansatz nach LEBLOND und DEVAUX [73] ver-
folgt

22 = MU12 [9] (1 — 2’2) H [9 — Acl] — 23 — 2’4. (360)

Hierbei ist 112 > 0 eine temperaturabhingige Konstante und A.; die austenitische Starttemperatur,
deren Schitzung auf Basis der Gleichung (2.1) erfolgt. Die Heaviside-Funktion ' nimmt fiir jede
beliebige negative Zahl den Wert Null an (H [s] = 0), andernfalls liegt der Wert bei Eins (H [s] = 1
fiir s > 0). Somit erfiillt die Heaviside-Funktion die Rolle eines Schalters, der die Austenitbildung
erst nach dem Uberschreiten der Austenit-Starttemperatur A.; aktiviert.

3.2.4.2 Keimbildung in der bainitischen Phase

Im Gegensatz zu der martensitischen Umwandlung, die durch einen schnellen diffusionslosen Um-
klappvorgang des Atomgitters gekennzeichnet ist, findet bei der bainitischen Phasenumwandlung eine
Kopplung von Umklappvorgingen im Kristallgitter und Diffusionsvorgingen, die zeit- und tempera-
turabhiingig sind, statt. Damit sind bei der bainitischen Phasenumwandlung verschiedene Umwand-
lungsmechanismen moglich. Es wird hierbei zwischen dem oberen und dem unteren Bainit differen-
ziert. Die ausfiihrliche Beschreibung der bei der Bildung dieser Phasen ablaufenden Vorgénge erfolgte
in Abschnitt 2.1.3. Das bainische Gefiige wird auch als Zwischengefiige bezeichnet und befindet sich
im ZTU-Diagramm (Abb. 2.4) zwischen Perlit und Martensit. In Abbildung 3.5 wird dieses Dia-
gramm um die detailliertere Darstellung der bainitischen Bereiche erweitert. Es ist ersichtlich, dass
die Umwandlung nicht sofort nach Erreichen der Bainitstarttemperatur (Gleichung 2.3) beginnt, son-
dern erst nach einer temperaturabhingigen Verweildauer einsetzt. Diese Verzogerungszeit wird auch
als Inkubationszeit bezeichnet [17, 30, 42]. In Abbildung 3.5 kennzeichnet 8* die mit der kiirzesten
Inkubationszeit t* korrespondierende Temperatur. Nach GARRETT et al. [42] kann diese von der in-
elastischen Verzerrung e, abhingig sein, so dass * = 0*[e,] gilt.

In Anlehnung an [42] bezieht sich die Inkubationszeit in dieser Arbeit auf das Keimwachstum.
Im Folgenden werden zwei verschiedene Fille, ndmlich fiir den oberen und unteren Bainit getrennt
voneinander betrachtet.

Fall 1: Oberer Bainit:

Als erstes wird die Bildung des oberen Bainits unter der Einwirkung der Temperatur von 6 > 6*
in Abbildung 3.5 betrachtet. r stellt hier den Keimradius dar. Fiir dessen Wachstum wird eine For-
mulierung der Evolutionsgleichung in Bezug auf die chemische Kraft Z in Gleichung (3.40) und die
isotrope Verfestigungsspannung () in Gleichung (3.36) mit den Materialparametern (), H),, und b
vorgenommen

0>0": r= exp [—KluZ + KQUQ*[eU] + K3, — K4uQ] . (3.61)

Gleichungen (3.36), (3.40) und (3.61) konnen kombiniert werden zu
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Abb. 3.5 ZTU-Diagramm [51CrV4] mit der Temperatur 6* entsprechend der kiirzesten Inkubationszeit ¢* fiir die
bainitische Phase [29]

6 >0*: 7, =exp| Kiupo(6 — 90)% + Ko, 0%[ey] + K3u—

0 (3.62)
K4u([QO(]— - eXp[_bev]) + Hpev)]'

Q™ reprisentiert hierbei die Aktivierungsenergie, 6y die Gleichgewichtstemperatur und 6* die mit
der kiirzesten Inkubationszeit ¢t* korrespondierende Temperatur. Ferner stellen K., Koy, K3y, K4y
Konstanten dar. Mehrere Umformungen liefern

0 — 0*le,
0>6": 7,=ayexp [_B[e]] exp [—Baues] (3.63)
u
wobei gilt
1 1
1 — — Koy = KiupoQ*—,
B 2 1upoQ %

2. agy = exp [K1upoQ* + K3y — K4.Qo] , (3.64)
3. BZu - K4qu7

4. Qo exp [—bey] — 0.

In Gleichung (3.64.4) wird die Abhingigkeit des nichtlinearen Verfestigungsterms von der Keimbil-
dung vernachlassigt. Diese Annahme wird mit grolen auftretenden plastischen Verzerrungen e, im
Hybridumformprozess begriindet, d.h. je groBer e, ist, desto kleiner féllt exp [—be,] aus.

Fall 2: Unterer Bainit:

In diesem Abschnitt wird die Bildung des unteren Bainits unter Einwirken der Temperatur § < 6*
anhand der Abbildung 3.5 betrachtet. Fiir die Illustration des Wachstums des oberen Bainits wird
folgende Evolutionsgleichung verwendet:

0 <0*: 7] = exp [KllZ — KQZH*[ev] + K3 — K41Q] s (3.65)

mit Ky, Ko, K3;, K4 als Konstanten. Analog zum Vorgehen bei der Analyse des oberen Bainits,
wird Gleichung (3.65) umformuliert
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0 — 0*le,
0<0": 7,=ayexp {B[e]} exp [—faes], (3.66)
1
mit
1 1
1. — = Koy =K *—
B, 21 11p0Q 0’
2. ay = exp [~ KupoQ* + Kz — KuQol, (3.67)
3. B = KyH,,

4. Qo exp[—bey] — 0.

Aus dem ZTU-Diagramm (Abb. 3.5) ist ersichtlich, dass die fiir die Keimbildung in der bainiti-
schen Phase sowie fiir die Erstellung einer asymmetrischen C-Kurve relevanten Evolutionsgleichun-
gen (3.63) und (3.66) unter Verwendung der Bedingung [0 = 6*] = 7..[0 = 0*] kombiniert werden
kénnen

0 — 6" [e.]|
Bo (067 + B, (0" —

T = Qg exp |— 7 exp [—Bz264] , (3.68)
wobei B,, fiir 6 > 6*, B; fiir 0 < 0%, ay = gy = g, B2 = P2y = Po; Materialparameter darstellen.
Somit erweitert die Evolutionsgleichung (3.68) den empirischen Ansatz von GARRETT ef al. [42] um
die Anwendung der treibenden Krifte sowohl fiir den oberen als auch den unteren Bainit.

3.2.4.3 Evolution der bainitischen Phase

Ubersteigt der Radius eines bainitischen Partikels » den Grenzwert r*, hat sich nach GARRETT et

al. [42] der Volumenanteil des Bainits z gebildet. Bei diesem Ansatz bezieht sich dieser sowohl auf

die chemische treibende Kraft Z als auch auf die Aktivierungsenrgie G*. Die Werte des kritischen

Keimradius 7* und der freien Energie G* erhilt man aus den in [42] vorgeschlagenen Beziehungen

_ A190A90'5 , G — A398A91'5 . (369)
0A0Q* + Azxbpe,0, (A0Q* + Asbpe,0,)°

*

r

Hierbei kennzeichnen A;, Ao, A3 Materialkonstanten, Af = 6y — 6 die Unterkiihlung gegeniiber der
Gleichgewichtstemperatur und o, die Vergleichsspannung nach von Mises. Demnach wird fiir den
Bainit folgende Evolutionsgleichung verwendet:

i3 = exp | —KsZ + Kgf*[es] — 16;9] <T TT > (22)7, (3.70)
wobei K5, Kg, n, v Konstanten sind und R die universelle Gaskonstante darstellt. Die Notation < = >
=g firx > 0, < x >=0 fiir x < 0 sichert, dass sich der Volumenanteil nur dann entwickelt, wenn
der Bainitradius r den kritischen Wert 7* erreicht. Das Minuszeichen vor K3 beriicksichtigt, dass Z
negativ ist. Die Verwendung der chemischen treibenden Kraft aus Gleichung (3.40) erlaubt folgende
Formulierung der Gleichung (3.70)

) Q" G*l /r—r\"
= Ks5p0(0g — 0)— + Kg0*[ey] — — T, 3.71
Z3 = exp | Ks5po(6o — 0) 0 + Ko0"[e,] RO , (22) (3.71)
Wie schon erwihnt, entspricht die Zeit bei r» = r* der Inkubationszeit. Der Wachstum der bainitischen
Phase hidngt vom vorhandenen Austenitphasenanteil zo ab. Je weniger Austenit vorhanden ist, desto
langsamer verlduft die Umwandlung. Dieses Verhalten ist in den experimentellen Untersuchungen zur
Kinetik des bainitischen Gefiiges (Abb. 2.18) als eine Sittigung der Bainitumwandlung zu beobach-
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ten. Ferner soll dieser Term sicherstellen, dass kein Bainit gebildet wird, wenn kein Austenit mehr
vorhanden ist.
Einige Umformungen der Gleichung (3.71) liefern den Ausdruck

. 0*le,] — 0 G Jr—r\", .,
%3 = Asexp [ B } exp {— RH] < " > (22)7, (3.72)
mit
1 1
1 = = = = KspoQ",
B K, Kerol (3.73)

2. As = exp [K5p0Q"] .

Somit ist hier die Ableitung einer auf der Grundlage der treibenden Krifte und auf der empirisch
formulierten Evolutionsgleichung von GARRETT et al. [42] erfolgt.

3.2.4.4 Evolution der martensitischen Phase

Martensit kann aus Austenit wihrend der schnellen Abkiihlung unterhalb der Martensit-Starttemperatur
entstehen. Im Hybridumformprozess wird diese schnelle Abkiihlung durch den Oberflichenkontakt
zwischen dem Werkstiick und Werkzeug realisiert. Beziiglich der Grundlagen zur martensitischen
Umwandlung wird auf Abschnitt 2.1.2 verwiesen. Fiir die Formulierung der Evolutiongleichung der
martensitischen Phasenumwandlung wird der Koistinen-Marburger-Ansatz verwendet

2:’4 = </€0> (Zg — Z4)H [Ms — 9] (374)
0

Hier stellt ky > O fiir den Koistinen-Marburger-Parameter und M die martensitische Starttemperatur

dar. Der Wert der martensitischen Starttemperatur wird auf Grundlage der Gleichung (2.2) geschiitzt.

Die Heaviside-Funktion H erfiillt die Rolle eines Schalters, der die Martensitbildung erst nach Errei-

chen der Martensit-Starttemeratur M, aktiviert. Der (22 — z4) Term dient als Obergrenzenfunktion

und stellt sicher, dass Martensit nur bei Vorhandensein des Austeints gebildet wird.

3.2.5 Thermodynamische Konsistenz

Die thermodynamische Konsistenz des betrachteten Modells ist gewihrleistet, wenn die Clausius-
Planck-Ungleichung (3.25.1) erfiillt ist. Es wird an dieser Stelle darauf hingewiesen, dass das visko-
plastische Verhalten aktiviert ist, wenn die Uberspannungsfunktion ¢ in Gleichung (3.48.4) positiv
ist

Lg=0,—(Y[]+Q1+Q2)>0 = A>0, 0, —Q1—Qy>Y[b],

. (3.75)
2. 0=0,— Y[+ Q1+ @2) <0 = X=0.

Mit der additiven Zerlegung des Verzerrungstensors in Gleichung (3.2), der FlieBregel (3.48.1), der
Evolutionsgleichungen (3.45) fiir TRIP und die internen Variablen ¢; und g5 sowie der Gleichungen
(3.48.4) und (3.48.5) kann die Clausius-Planck-Ungleichung (3.25.1) wie folgt umformuliert werden:
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P =0 " —Qid1 — Qado — Z?:l Zi%
_ _ A2
A (O—’U Ql Q2)+Qo Ql (376)
SY[0]

0
+ (23 1 Kipplo] + 23 fi Kipu[on]) llo V|2 = S, Zizi > 0.

WV

Wegen K1 > 0 and Kyps > 0 sind die ersten drei Terme in (3.76) nichtnegativ. Daher muss fiir den
Beweis der thermodynamischen Konsistenz des Modells lediglich der letzte Term untersucht werden.
Unter Beriicksichtigung der Beziehung (3.40) bleibt zu priifen, ob der Zusammenhang

4
> Zz = poz —05"%) 72)2120 3.7
i=1

O

erfiillt ist. Ubersteigt die Temperatur 6 die Gleichgewichtstemperatur Oéi’Q), setzt die Umwandlung des

Ausgangsgefiiges zum Austenit ein. Damit sinkt der Phasenanteil des Ausgangsgefiiges z; (21 < 0)

(1, 2)) Qi

entsprechend. Daraus folgt, dass der Summand (6 — 6, D)
0

Z1 negativ ist. Wahrend der Umwand-

lung von 2 — 3,4 (Austenit zu Bainit oder Martensit) gilt hingegen 0“’2) > 6 und Z3, 24 > 0. Auch

bei dieser Transformation sind die Summanden (6 — 0(()3’2)) 9%’ —% 43 und (6 — 9(4 2)) 9%4 25 24 nega-

tiv. Durch Multiplikation mit der negativen Dichte (—pp) W1rd Gleichung (3.77) positlv bzw. gleich
Null. Somit kann festgestellt werden, dass das betrachtete Modell thermodynamisch konsistent ist.
Dariiber hinaus ist dieser Beweis unabhéngig von den Spezialansitzen der Evolutionsgleichungen fiir
die Phasenumwandlung, wie z.B. Johnson-Mehl-Avrami-Kolmogoroff oder Koistinen-Marburger.

3.3 Numerische Implementierung

3.3.1 Implizites Integrationsschema

Um die konstitutiven Gleichungen aus Abschnitt 3.1 numerisch zu implementieren, wird nach der
Standartintegrationsmethode der Finite-Elemente-Methode ein verzerrungsgesteuerter Algorithmus
verwendet, wobei der Gesamtverzerrungstensor ntle die Anfangswerte von "e"P.)" g " e, und die
Temperatur "6, "t16 vorgegeben sind (vgl. dazu SIMO und HUGHES [117] sowie die Referenzen
darin). Hierbei beziehen sich die Indizes n und n + 1 auf die Zeit ™t bzw. "1t Antlt =ntly _ ny
kennzeichnen den Zeitschritt. Diese GroBen lassen sich als Inputvariablen zusammenfassen

n+1q _ [n+1€7 nevp’ netp’ nev, n97 11—0—197 nt ,n+1 t] (378)

Zur Vereinfachung der Darstellung wird der auf die aktuelle Zeitstufe verweisende Index n + 1 im
Folgenden vernachlissigt.

Die primire Zielsetzung dieses Abschnitts ist die Bestimmung der korrespondierenden Outputva-
riablen

Q=[o, €7, P ¢, (3.79)

die mit den Evolutionsgleichungen aus Abschnitt 3.1 konsistent sind. Es wird darauf hingewiesen,
dass die Verzerrungstensoren €’ und € vom Spannungstensor o in Gleichung (3.2) unabhingig
sind. Unter Verwendung des impliziten Euler-Algorithmus in Bezug auf Evolutionsgleichungen (3.48)
ergeben sich die Ausdriicke fiir die Verzerrungstensoren &P, €’? bzw. die inelastische dquivalente
Vergleichsdehnung e,
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1. e ="e? + Aet?, mit Ae'? = 3K,,p(0,]0%Y Azz2zs + 3K pnr[0,]o9 Azyzo,

2. VP = "g" 4 AP mit Ae'P = \/EA)\ n, (3.80)
. @Y m
3. ey, ="e, + Ae,, mit Ae, = A\N={ — At.
Ky

Im néchsten Schritt erfolgt die Ermittlung des elastischen Verzerrungstensors aus Gleichung (3.2) fiir
den Zeitpunkt "T1¢

0

el

el=eg— P — g — gV — g, (3.81)

Die Multiplikation von Gleichung (3.81) mit dem Elastzitdtstensor vierter Stufe aus Gleichung (3.35)
unter Berlicksichtigung der Gleichungen (3.80) liefert nach einigen Umstellungen folgende Diskreti-
sierung der Gleichungen (3.48) und (3.45):

1. Spannungen o = o + o mit

a.dev — a.dev,tr — 292G Ae?P — QGAé‘tp,
o.dcv,tr — QGIdCV . (6 _ngup _n Etp) ,
o

vl = K (tr(e — e’ — ™)) 1,

2. FlieBregel Ag’? = \/gA)\n,
O.dev
3. FlieBrichtung n = W,
o v
(3.82)
. Py \"
4. FlieBfaktor AN = — At,
Ky
5. Umwandlungsplastische Verzerrung Ae'? = 3 09 2y (Kypp[0y]| Azz + Kipar[ow])Azd),
. . 30 4a
6. FlieBfunktion oy =43 ||| — R — Yo,
7. Aquivalente plastische Verzerrung e, = "e, + AN,
8. Isotrope Verfestigung R = He, + Q (1 — exp(—bey)).

Die Verzerrungstensoren €? and et werden an dieser Stelle auf der Grundlage der Gleichungen (3.54)
und (3.57) ermittelt. Die Beziehungen (3.82) konnen als Zustandsgleichungen fiir die Outputvariablen
Q, die in Gleichung (3.79) definiert sind, betrachtet werden. Im folgenden Abschnitt wird gezeigt, wie
Gleichungen (3.82) auf eine eindimensionale skalare Gleichung reduziert werden konnen.

3.3.2 Lokale Iteration

Die folgenden Ableitungen machen von der Tatsache Gebrauch, dass die Ausdriicke fiir 9°" in Glei-
chung (3.82.1) umformuliert werden konnen

dev
gV = gdevitr 2G\/§A)\”U —2G3 0% 2y (Kypplou| Azs + Kipnr[o,]Azs) , (3.83)

o.dev ||
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wobei Gleichungen (3.82.2), (3.82.3) sowie (3.82.5) verwendet wurden. Die Anwendung der Radial-
Return-Methode [117] auf Gleichung (3.83) liefert folgende Anpassung der Gleichungen (3.82):

Als erstes wird beobachtet, dass o4¢¥ und o-4°V-t* koaxial sind, so dass die FlieBrichtung in Gleichung
(3.82.3) wie folgt ausgedriickt wird:

o.dev 0.dev,tr
n= = . (3.84)
Ha-devH Ho-devﬂ;r”
Im zweiten Schritt wird die skalare Beziehung erzeugt
T L e T
ot = c , mit (3.85)
C,  =143Gf (AzKypslo.) + AzKiplo)).
Als nichstes erfolgt die Bestimmung des Residuums aus Gleichung (3.82.4)
AN\ 7
r(AN) = &y — (At> Ky, =0, (3.86)

das sich durch Verwendung der FlieBbedingung (3.82.6) und des Ergebnisses aus (3.85) umformulie-
ren lésst

gdevitr|| — 2G, /3 AN i
r(AN) = \/EH | C \E - (i?) Ky — R(AN) — Yy = 0. (3.87)
p

In dieser Weise werden die diskreten Gleichungen (3.82) auf ein eindimensionales Problem redu-
ziert, das lediglich vom FlieBfaktor A\ abhingig ist. Fiir dessen Losung wird die Newton-Methode
eingesetzt

T(AN:)’
Cor(AN) 0By Ky 1

M(rsr) = ANy — k=0,1,2,...

TN =54 T 0N m Ar 59
oby (3G .
% = — <qj+H+erXp (*b( 61)+A>‘))) >

wobeli sich der Index k auf die Iterationsnummer bezieht.

3.3.3 Tangentenmodul

Die meisten impliziten Finite-Element-Implementierungen, wie beispielsweise das FEM-Programm
ABAQUS/Standard verwenden zur Losung der Differentialgleichungen des globalen Gleichgewichts-
problems die iterative Newton-Methode. Bei dieser Methode ist die Bestimmung des Tangentenmo-
duls, das durch die Ableitung der Spannung o in Bezug auf die Totalverzerrung € formuliert wird,
notwendig. Da die Spannung o aulerdem vom plastischen Multiplikator A\ abhingig ist, gilt

do Oo Jo O0AN
_ _ P may 3.89
o=o0(g,A\e)) = =~ 2c T3 © 6e (3.89)

Hiebei erhilt man 0 A\ /Oe aus der Residuumgleichung (3.86)
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dr 9r  Or _ 9AX DAN or \ ' or
_ _ __ I (390
redNe) =0 = =5 T am® e T oe <am> ge O

Im néchsten Schritt erfolgt die Auswertung des Ergebnisses Or/0AX = J in Gleichung (3.88) und
die Bestimmung der partiellen Ableitungen

oo 2G 3 . On
. — =K1®1+ — [T - [ZAN— i
9 ® +Cp < \/g /\8€>,mlt

on 2G
2. — = (Tdev —
De [ordevair]| ( n®n),
(3.91)
oo \/§2G
3. —— =4/=-—n,
0AN 20,
or 2G
4. — = —
e C, "
Daraus ergibt sich das Endergebnis fiir den symmetrische Tangentenmodul
(C—do-—K1®]_+2GIdev_\/§A)\(2G)2 1 (Idev_n®n)
de Cp 2 Cp |odev:tr||
(3.92)

f 26\ 1
2\ ¢, Jn n.

Beziiglich der Definitionen von C), und J wird auf die Gleichungen (3.85.2) und (3.88) verwiesen.

3.4 Parameteridentifikation

Um bei einer Simulation des Hybridumformprozesses moglichst gute Vorhersagen treffen zu konnen,
wurde in Abschnitt 3.2 auf der Grundlage von experimentellen Daten ein Materialmodell entwickelt,
das die beobachteten Phdnomene qualitativ beschreiben kann. Die Parameteridentifikation beschaftigt
sich zusitzlich mit der Bestimmung der im Modell ermittelten Materialparameter auf der Grundlage
eines Vergleichs zwischen den experimentellen und den simulierten Daten. Fiir die Parameteridenti-
fikation wird das im Rahmen der Habilitation von MAHNKEN [48] entwickelte Optimierungspro-
gramm ,,PARA* verwendet. Es basiert auf dem ,,Simplex Algorithmus von Nelder und Mead*, der
auch unter dem Begriff ,,Downhill Simplex* bekannt ist und erméglicht ausgehend von einem aktu-
ellen Parametervektor die Generierung eines neuen Parametervektors, der die Zielfunktion minimiert.
Als Zielfunktion wird ein Fehlerquadratfunktional verwendet

1 Ndaten

flK =5 > (dils] ;)" (3.93)

Die Differenz zwischen den experimentell gemessenen GroBen d und den errechneten GroBen d[x)
in Abhingigkeit von den Parametern « in einem identischen Zeitpunkt wird quadriert und iiber die
Anzahl der vorhandenen Versuchsdaten aufsummiert. Die simulierten Gréen werden im Unterpro-
gramm ,,UMA® , das das direkte Problem an einem Materialpunkt 16st, ermittelt.

Ein schematischer Ablaufplan zur Parameteridentifikation ist in Abbildung 3.6 dargestellt. Die Pa-
rameteridentifikation erfolgt in mehreren Etappen. Als erstes werden vorhandene Versuchsdaten in
die Input-Dateien (*.dat) eingetragen. Die Startwerte sind ausschlaggebend fiir die Qualitit der Pa-
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Input-Dateien Output-Dateien
N
inl.fea — PA RA => valtl.dat
h2

daten Temperatur: 6]t] valtl.dat
*.dat Zeit: t
Materialparameter: k

Verzerrungen: g[t] Spannungen: o[t]
oder (Spannungen: o[t]) oder (Verzerrungen: g[t] )

UMA

Verzerrungen: "g, Ag Spannungen: "*lg
. n
Spannungen: no Geschichtsvariablen: "*1h
Geschichtsvariablen: "h antlg
Temperatur: "6, A0 Tangentenmodul:  Zrer
Zeit: "t, At

UMA-Subroutine

Abb. 3.6 Ablaufdiagramm der Parameteridentifikation

rameteridentifikation. Es gilt hier zu beriicksichtigen, dass zwecks Einsparung der Rechenzeit die
Parameteridentifikation zur Anpassung der gemessenen und simulierten Kurve nur lokale Minima
ermittelt werden. Es ist daher moglich, dass bei der Wahl eines ungiinstigen Startwerts das loka-
le Minimum nicht gleichzeitig das globale Minimum ist. Diese Problematik wird durch Variierung
der Startwerte behoben. Wihrend der Parameteridentifikation werden, wie in Abbildung 3.6 darge-
stellt, Werte an die ,,UMA* Subroutine iibergeben, die die Funktion eines FEM-Programms simuliert
und eindimensionale Berechnungen durchfiihrt. Hier werden Verzerrungen, Spannungen und inne-
re Variablen ermittelt und an die Materialroutine ,,kbtrip.f**, welche die konstitutiven Gleichungen
des Modells beinhaltet, ibergeben. Diese Materialroutine berechnet die neuen Spannungen, die Ge-
schichtsvariablen sowie den konsistenten Tangentenoperator und gibt diese an die ,,UMA* Subroutine
zuriick. Diese wiederum liefert die Spannungen an die ,,PARA* Subroutine, die die Parameteridenti-
fikation mittels eines Fehlerquadratfunktionals durchfiihrt. Diese Schritte werden so oft durchlaufen,
bis die ,,PARA* Subroutine Minima des Fehlerquadrats und somit Parameter gefunden hat oder ei-
ne Toleranzgrenze erreicht ist, bei deren Erreichen das Programm abgebrochen wird. Das Einbinden
der konstitutiven Gleichungen des Modells in Abaqus geschieht durch den Austausch der ,,UMA*
Subroutine mit der in Abaqus zur Verfiigung gestellten Schnittstelle ,,UMAT* . Mit den ermittelten
Parametern kann nun das experimentell ermittelte Materialverhalten in Abaqus angewendet werden.
Die Parameteridentifikation des oben beschriebenen Materialmodells wird im folgenden Abschnitt
beispielhaft dargestellt.

3.4.1 Phasenumwandlungen

3.4.1.1 Inkubationszeit und Kinetik der bainitischen Phase

Als erstes werden die Parameter, die fiir die Keimbildung des bainitischen Gefiiges zustdndig sind, auf
Basis des isothermen ZTU-Diagramms (Abb. 3.5) ermittelt. Dabei entspricht die im ZTU-Diagramm



3.4 Parameteridentifikation 47

abgebildete Inkubationszeit dem Zeitpunkt t*, bei dem der Keimradius r mit dem kritischen Keimradi-
us r* iibereinstimmt. Die temperaturabhédngige Inkubationszeit kann beim isothermen Verlauf durch
Losung der Differenzialgleichung (3.68) und anschlieBender Gleichsetzung mit Gleichung (3.69.1)
mit Hilfe der Randbedienung

0 = Konst., e, =0,t € [0,t""] (3.94)
definiert werden
A1 90A90'5

t[h] = ) (3.95)

) 10— 0]
§AQ az exp [ B (60— 6%) + B, (0" — 0)

Damit lsst sich die Inkubationszeit anhand der Materialparameter k;; = [Q*, By, By, aa, A1] errech-
nen.
Als Zielfunktion der Parameteridentifikation wird folgendes Fehlerquadratfunktional verwendet:

f) =5

. ‘ ) » - . T
mit ﬁn = [tzln(’{"“)v e 7t?r:zit(K’)]Tv tln = [tllnv e 7t:1r;ti| .

in

fn(h‘,) 7i

— min,
(3.96)

Die Losung dieses indirekten Optimierungsproblems erfolgt mit Hilfe des nichtlinearen Optimie-
rungstools GRG2 (Generalized Reduced Gradient) von Microsoft Excel Solver. tin (k) und 1" stellen
entsprechend die errechnete und die experimentelle Inkubationszeit dar. ndt reprasentiert die Anzahl
der experimentellen Daten der Inkubationszeitkurve [t(r = r*)].

Die Endergebnisse des Parametervektors «;; sind in Tabelle 3.1 zusammengefasst. In Abbildung
3.7 wird der Vergleich zwischen der Inkubationszeitkurve aus dem ZTU-Diagramm (Abb. 3.5) und der
errechneten Inkubationszeit veranschaulicht. Es zeichnet sich hierbei eine sehr gute Ubereinstimmung
ab.

— @ Exp
— ] .
o 500 4 ——Sim
2
=]
©
2 400 -
€
o
'_
300 T T T T ,
0 20 40 60 80 100

(Incubation) Time [s]

Abb. 3.7 Inkubationszeitkurve der bainitischen Phase (Punkte: experimentelle Ergebnisse, Linien: Simulationsergeb-
nisse)

Den nichsten Schritt der Parameteridentifikation stellt die Ermittlung des Parametersvektors &,
dar. Als Zielfunktion im Optimierungsverfahren wird ein Fehlerquadratfunktional verwendet

F(r) = % 2(k) — 2] — min, mit 2 = [21(K), - 2nas (&), Z = Fry e+ Fnas]T - (3.97)

Das Optimierungsproblem wird mit Hilfe des Programms PARA unter Einsatz des Simplex Nelder
Algorithmus gelost. Die Ergebnisse der Optimierung werden in Abbildung 3.8 wiedergegeben. Es
zeichnet sich eine gute Ubereinstimmung zwischen den experimentellen Daten und Ergebnissen der
Simulation ab. Die hier ermittelten Parameter & ., sind in Tabelle 3.1 zusammengefasst.
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1,000 A
0,800 A
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bainitischer Phasenanteil[-]

0,000 T ——TTT oo 8= T — T
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Zeit[s]

Abb. 3.8 Evolution des Volumenanteils der bainitischen Phase, isotherm bei 340 °C (Punkte: experimentelle Ergebnis-
se, Linien: Simulationsergebnisse)

3.4.1.2 Umwandlungsplastizitit

Im néchsten Schritt der Identifikation erfolgt eine Konzentration auf die in Abbildung 2.18 darge-
stellten experimentelle Ergebnisse fiir die isothermen spannungsgesteuerten Tests, die die Umwand-
lungsplastizitiit reprasentieren. Die Formulierung eines Fehlerquadrat-Minimierungsproblems, das die
Differenz zwischen den simulierten und den experimentellen Daten beriicksichtigt (siehe dazu bei-
spielsweise MAHNKEN [85]), erfolgt hierbei auf Basis der Langsdehnungen

f(r) = % le(k) —&|| — min, mit € =[e1(k), - ,Enge(k)]", E=[E1,  Enae]” -(3.98)

Hierbei kennzeichnet nde die Anzahl der experimentellen Daten fiir verschiedene Dehnungen. Um
ein lokales Minimum zu bestimmen, sind zahlreiche Iterationsschritte im Optimierungsvorgang not-
wendig. Das Ergebnis der Parameterindentifikation liefert die Approximation fiir die Parameter Ky,
and Kjpo in Gleichung (3.46). Abbildung 3.9 zeigt eine sehr gute Ubereinstimmung zwischen den
experimentellen und simulierten Daten.

0,020 1
100 MPa
0,015 1
)
E e 50 MPa
=
[}
T
0
© 0,005 - 0 MPa
5
. seeeses o 8 8 o & o s & -5MPa
0,000 ¢
-100 MPa
""""-'-'-' A 4 v A A v v A v
-0,005

0 50 100 150 200 250 300 350 400 450

Zeit [s]

Abb. 3.9 Dehnungs-Zeit-Diagramm fiir verschiedene Spannungen und Umwandlungsplastizititen (Punkte: experimen-
telle Ergebnisse, Linien: Simulationsergebnisse)
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Abb. 3.10 Spannungs-Dehnungsdiagramm (Punkte: experimentelle Ergebnisse, Linien: Simulationsergebnisse)

3.4.2 Elasto-Viskoplastizitiit des unterkiihlten Austenits

Die Verifizierung der mechanischen Eigenschaften des Modells erfolgt in zwei Schritten. Im ersten
Schritt werden die Parameter bestimmt, die direkt aus den Versuchsergebnissen abgeleitet werden
konnen. Dazu gehoren Parameter, die das elastische Verhalten des Materials beschreiben k., = [E),
cg, p, v[—]]. Der Elastizititsmodul Ey und dessen Temperaturkoeffizient cg lassen sich direkt aus
Diagramm 3.2 bestimmen. Die Querkontraktion v und die Dichte p werden dem Werkstoffdatenblatt
(1.8159 Dorrenberg Edelstahl GmbH) entnommen. Die Parameter k.., = [Yp, ¢y, H, Q, b, K, m] aus
Gleichung (3.53) lassen sich nicht direkt aus den experimentellen Daten ablesen und miissen daher
im zweiten Schritt erst mit Hilfe des Parameteridentifikationsprogramms ,,PARA* ermittelt werden.
Zu diesem Zweck werden die experimentellen Spannungs-Dehnungs-Kurven verwendet (Abb. 3.10).
Aus der Verbindung von experimentellen Ergebnissen mit den Resultaten der Simulation ergibt sich
das Fehlerquadrat-Minimierungsproblem mit der Zielfunktion:

T a=[01, ) - (3.99)

1 _ . .

f(w) = 5 llo(k) —2l| = min, mito = [o1(k), -, Onde (k)]
Die Resultate der Parameterindentifikation, die auf der Grundlage des Vergleichs zwischen Versuchs-
und Simulationsergebnissen ermittelt wurden, zeigen eine sehr gute Ubereinstimmung mit den expe-
rimentellen Daten. Die daraus resultierenden Parameter «.; und k., sind in Tabelle 3.1 zusammen-
gefasst.

Fazit

In diesem Kapitel wird ein makroskopisch-phinomenologisches Mehrphasenmodell auf der Grundla-
ge der geometrisch linearen Theorie entwickelt. Im Rahmen dieses Modells werden die zeit- und
temperaturabhingige Phasenumwandlung, Austenitisierung des Ausgangsgefiiges und die aus der
Phasenumwandlung resultierenden Effekte, wie Umwandlungsplastizitit, Volumenverdnderung so-
wie temperatur- und mikrostukturabhingige Elasto- bzw. Viskoplastizitit abgebildet und analysiert.
Die Verwendung dieses Ansatzes in der makroskopischen Modellierung der bainitischen Umwand-
lung unter Betrachtung der Evolution der Keimradien sowohl fiir den oberen als auch fiir den unteren
Bainit gestattet die Abbildung des unsymmetrischen Inkubationszeitverlaufs sowie eine Entwicklung
der Evolutionsgleichungen der bainitischen Phase unter Verwendung der treibenden Krifte.
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Kop

Ko :

Ky :

Kzt

Kzg t

Kzy :

K

-

Eo[MPa) cp [ME2)
2.2581E+05  2.1292E+02

Yo [MPa] cy [—]
2.52001E+04 0.344

H, [GPa] Qo [MPa]

5.27 2.8085E+03
a1 (%]
0.12776E-04
A [-] 6o [K]
3.8568E+04 850
Act [K] 1 (%)
850 1.2106E-02
As [-] B [K]
3.3245E-04 26.44
M, [K] ko[K]

5.647E+02 8.264E+01

0.76243E-04 0.47E-06

Yo 282 e |ik]

4.6E-02 4.52E+02

Om, [K] v[=]
293 0.23
Oy, [K] m [-]
293 1.0
b[-]
3.62E+01
AN of [s71]
826 3.3931E-03
n (-] v [
22.65 1.66

2 2
p - KtplB[ﬁ] KtPQB[(ﬁ> ] Ktle[ﬁ} KtPQM[(ﬁ) ]

6.1469E-05 5.8669E-07

ke
P[mf’ls]

7.83E-06

D [MPa)
1.0E-09

0.11294E+03 0.20539E+03

Az [-] Q" [-]
0.1E-03  3.0843E+05

Tabelle 3.1 Materialparameter fiir den niedriglegierten Stahl 51CrvV4



Kapitel 4
Phanomenologische Modellierung fiir groB3e
Deformationen

Im betrachteten Hybridumformprozesses tritt eine massive Umformung im Flanschbereich auf. Um
diesen Vorgang simulieren zu konnen, bedarf es der Entwicklung eines makroskopischen Modells,
das groB3e Deformationen berticksichtigt. Dessen Formulierung erfolgt hierbei auf der Grundlage des
im vorigen Kapitel entwickelten Modells. Im ersten Schritt werden basierend auf der Theorie der
Kontinuumsthermodynamik unter besonderer Beriicksichtigung der unterschiedlichen Phasen n, und
des viskoplastischen Materialverhaltens konstitutive Gleichungen abgeleitet. Im Anschluss daran wird
das Modell auf den Hybridumformprozess angepasst. Die im Rahmen dieser Adaptation entwickelten
Gleichungen des Prototypmodells werden numerisch implementiert und anschlieend zur Simulation
des Hybridumformprozesses verwendet.

4.1 Thermodynamisch konsistente Formulierung

4.1.1 Kinematik

Analog zum Abschnitt 3.1.1 wird ein Korper B betrachtet, der aus einer Menge von materiellen
Punkten in einem dreidimensionalen Euklidischen Raum R?3 besteht. Jeder Materialpunkt X € B
wird durch seinen Ortsvektor X € %, C R? identifiziert (Abb. 4.1). % stellt die Referenzkonfigu-
ration dar, die der unbelastete Korper bei vorgegebener Referenztemperatur einnimmt. Die eindeutige
Abbildung ¢ : By — R? zur Beschreibung der Konfiguration des Korpers bei variierender Zeit
t € Ry platziert die Materialpunkte des Korpers B in R3. Die Funktion ¢, = ¢[e, ] bildet die
Partikelposition X € 4 in ihrer aktuellen Position x = ¢,[X] der deformierten Konfiguration %
zum Zeitpunkt ¢ ab und beschreibt somit die Bewegung des Korpers in Bezug auf die festgelegte
Referenzkonfiguration.
Der Deformationsgradient F' wird fiir den Zeitpunkt ¢ definiert als
_ O [X]

F = X 4.1

Die fiir die Transformation der Volumenelemente der Ausgangskonfiguration % in die Momentan-
konfiguration # geltende Jacobi-Determinate des Deformationsgradients wird wie folgt festgelegt:

1. J = detF, 2. dv=JdvV. 4.2)

Durch die Bedingung J > 0 werden Materialdurchdringungen ausgeschlossen. Der Deformations-
gradient F : T, — T2 definiert eine Abbildung von Inkrementen dX C T'%, des lokalen Tan-
gentenraumes 1'%, (Referenzkonfiguration) nach Inkrementen dx C T'% des lokalen Tangentenrau-
mes T'% (Momentankonfiguration). Zur Parametrisierung der Referenz- und Momentankonfiguration
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Abb. 4.1 Konvektive Koordination der Konfigurationen %y und % [150]

werden konvektive Koordinaten © mit den Tangentenrdumen 7'%, und 7% und den entsprechenden
kovarianten Metriktensoren G?, gb verwendet.

Im Rahmen dieser Analyse wird in Bezug auf das elastoplastische Verhalten unter Beriicksichtigung
der Phasenumwandlung in Anlehnung an das Multi-Mechanismen-Plastizititsmodell von MAHNKEN
et al. [91] von einer multiplikativen Zerlegung des Deformationsgradienten in einen volumetrischen
Teil F¥°! und einen isochoren Teil F**° ausgegangen

1.LF =Fvl.Fiso  mit
2. Fvol = Ji1,

3. Fs0 = Fiso . F,,
4.0 =JeJo- .

4.3)

Dabei reprisentieren Fi*° und .J, den isochoren bzw. den volumetrischen Teil der elastischen Defor-
mation bzw. Rotation und F; den inelastischen (plastischen und umwandlungsplastishen [TRIP]) Teil
des Deformationsgradienten. Es wird davon ausgegangen, dass sowohl der thermische Jy als auch der
umwandlungsbedingte Deformationsgradient .J, nur volumetrische Anteile aufweist. Im Rahmen der
multiplikativen Zerlegung wird neben der Referenzkonfiguration %, und der momentanen Konfigu-
ration % die Zwischenkonfiguration 4 eingefiihrt. Die dreifach verbundenen Tangentenriume 7' %,

T% und T sind mit kovarianten Metriktensoren Gb, gb, éb ausgestattet und korrespondieren mit
den zweifach verbundenen Tangentenrdumen T'%*, T %*. T%* stimmt mit kontravarianten Metrik-
tensoren Gf = (G*)~1, gf = ("), G’ = (@b)_1 iiberein (siche dazu beispielsweise MAHNKEN
[86], MARSDEN & HUGHES [93] und GIESSEN & KOLLMANN [43]).

Die Tensorenobjekte konnen zur Definition von Invarianten der Tensoren zweiter Stufe verwendet
werden. Hier erfolgt die Definition eines gemischtvarianten Tensors zweiter Stufe A’ = A/G' @ G;
bezogen auf die Zwischenkonfiguration

i 1 — i 1o —wi 1l T —, .
=21 (A) =21 (A) =G (A’ .G ) C i=1,2,3. (4.4)
i i i
A'=G!' A’ -G’ und T) = G; ® G’ = (1')" stellen gemischtvariante Einheitstensoren zweiter Stufe
mit den Basisvektoren G; and G dar. Insofern reprisentiert Gleichung (4.4) Invarianten, die unter

A b = . :
Verwendung des Zusammenhangs 1=G - Gti als zweifache Paarung von ko- und kontravarianten
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Tensoren ausgedriickt werden kann. Es gilt anzumerken, dass die Invarianten in Analogie mit (4.4)
relativ zu der Referenzkonfiguration bzw. der rdumlichen Konfiguration definiert werden konnen.
AnschlieBend werden die gemischtvarianten Einheitstensoren zweiter Stufe 1' = G; ® G* = (1’)* und
1'=g; ® gl = (1) eingefiihrt.

Die Ermittlung der Verzerrungstensoren kann mithilfe des Grundgeriists der multiplikativen Plas-
tizitdt erfolgen (sieche dazu z.B. HAUPT [54]). In dieser Arbeit sind fiir weitere Modellierung insbe-
sondere folgende Grofen von Interesse:

.G = @G =F;' G . F,'=F'.b, - F' = *&[b,],
(3 7 711 (3 711 7 . . (45)
2. b, := *QEQ[G] =F.-G'-F! =F-C; -F! :*sl')ﬁ[Ci ]
Hierbei stellen die Operatoren *@?, *Pph @ﬁe, ot jeweils den inelastischen ,,pull-back*, den gesamten
,,pull-back* , den elastischen ,,push-forward* und den gesamten ,,push-forward* Operator der kontra-
varianten Tensoren dar. Diese Operatoren konnen als Erweiterungen der standardisierten ,,pull-back*
und ,,push-forward“ Operatoren, wie beispielsweise in MARSDEN UND HUGHES [93] oder SIMO
UND HUGHES [117] beschrieben, betrachtet werden. Ein erweiterter Uberblick iiber die Methoden ist
in MAHNKEN [86] gegeben. Ferner reprisentieren C;l den inversen inelastischen rechten Cauchy-
Green Tensor und b, den elastischen linken Cauchy-Green Tensor in Gleichung (4.5). Setzt man statt

des kontravarianten Metriktensors Cﬁ den kovarianten rechten elastischen Cauchy-Green Tensor
C.=F .g" F., (4.6)
ein, lassen sich Relationen (4.5) wie folgt umformulieren:

1.C :=*®[C|=F:-C.-F, =F'.gt.F =*¢[gf],
2.g":=[C.] =F;" C,-F,' =F'.C-F ! = &[C].

%))

Hierbei stellen die Operatoren *@',’;, *@P ,@i, i jeweils den plastischen ,,pull-back® , den gesam-
ten ,,pull-back , den elastischen ,,push-forward” und den gesamten ,,push-forward* Operator des
kovarianten Tensors dar. Des Weiteren bezieht sich C; ! auf die Referenzkonfiguration und C, auf
die Zwischenkonfiguration. Mit Hilfe des rechten Cauchy-Green Tensors C lisst sich der Green’sche
Verzerrungstensor

E— (c _ Gb) (4.8)

N | =

mit der Eigenschaft F =1 —> E = 0 errechnen. Als Néchstes werden die multiplikative Zerlegungen
des C, und b, vorgestellt
2/37, = 2/3 ¢ : = i) /2 , 1/2
1) b, = J¥3b,, 2)C, = J>3C,, mit 3.)J. = (det[Ce el ]) = (detg? - b))%
o (4.9)

Somit reprisentieren C., b, und J. den isochoren bzw. den volumetrischen Anteil der elastischen
Deformationen. Ferner geben die Metriktensoren éﬁ und g den eindeutigen Zusammenhang zwi-
schen unterschiedlichen Konfigurationen wieder.

Geschwindigkeitsgradienten lassen sich in Hinblick auf bestimmte Konfigurationen unterscheiden
(siehe dazu beispielsweise MIEHE [96]). Als Ausgangspunkt dienen die bekannten Gréen

1)l=gradv=F-F! — 2)d=sym[g’-]], (4.10)

wobei die Zeitableitung der Verschiebung u die Geschwindigkeit v = u definiert. 1 = lij g ®gl stellt
an dieser Stelle einen gemischtvarianten Tensor aus Ko- und Kontravarianz dar. Aus der multiplikati-
ven Dekomposition (4.3) folgt fiir 1:
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1d » o . o
1= 52 )1+ F - (F) LLFSLR R, (FE0) ) @.11)

(sieche dazu MAHNKEN et al. [91]) . Ein elastischer ,,pull-back* liefert den Zusammenhang

= 1 1. )
L="¢,[]=F,'-1.F, = 3%(111 N1+ (F°) 7 R0 4 B, . F,. (4.12)
Fiir L resultiert aus der additiven Zerlegung der Jacobi-Determinate In J = In .J;+In J,+1n Jg+1n J,

1
und der Beziehung F, = JJ F.*°

1.L =L.+L,+Lg+L., mit
2. fz = Fz . F;l =-F,- F;l, 3. fe = F;l . Fe, (4.13)
_ 1d — 1d
4. Ly = =—(1 1 . L, = ——(1 1.
0i= 5oL 5 Lo =3 ()

Demzufolge reprisentieren L. L;, Ly L, jeweils den elastischen, inelastischen, thermischen sowie
den Umwandlungsteil. Es gilt anzumerken, dass im Gegensatz zu 1 in Gleichung (4.10) die Tensoren
L, L., L; in Gleichungen (4.12) und (4.13) nicht als Gradienten eines riumlichen Feldes abgeleitet
sind, so dass hier der Fachbegriff Geschwindigkeitsgradient nicht im strengeren Sinn gebraucht wer-
den kann.

4.1.2 Volumendinderung infolge von Druck, Temperatur und Phasenanteilen

In diesem Abschnitt soll eine Mischung von n, > 2 Phasen beriicksichtigt werden, die einzeln die
Volumendifferenz dV' mit einer Massendifferenz dm in der Referenzkonfiguration fiillen. Diese Mi-
schung wird als homogen angenommen, d.h. alle Phasenverhiltnisse sind gleich verteilt. In Bezug auf
die Referenz- bzw. die aktuelle Konfiguration werden die Dichten py und p der Mischung wie folgt

definiert: J J
m m
= — 2. p=—. 4.14
o dv ) P dv ( )
Bei einem Volumen dv soll die i*® Phase die Masse dm; besitzen. Die Massenphasenfraktion z; und
die Dichte der i**" Phase werden an einem Kérperpunkt X € %, durch

1.

~dm’

1. 2 =
5 dvi

2. p; (4.15)

festgesetzt. Dariiber hinaus gelten in jedem Korperpunkt und fiir alle Zeitpunkte die Bedingungen:

1. 221:1, 2.2,>0 Vi=1,...,n,. (4.16)
i=1
Zwecks kompakter Darstellung wird dafiir die Notation festgelegt z = [z1, 29, . . . , z,,,]T . Des Weite-

ren folgt aus (4.14) und (4.15) der Zusammenhang zwischen den Massen- und Volumenphasenanteilen
fiir alle zuldssigen Temperaturen 6

m) _ pil0] (v :
z, ==z, [0 Vi=1,...,n,. 4.17)
a0 =

Unter Verwendung der Gleichung (4.14.2) ergibt sich sowohl aus der Relation dv = Z§:1 dv; als
auch aus den Gleichungen (4.15.2) und (4.15.1) die Mischungsregel fiir die Inverse der Massendichte

p
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3
1 dv _ Y, dv Z dm; Z Zi (4.18)

p dm dm pidm

Setzt man die Relationen (4.14) in Gleichung (4.2) ein und beriicksichtigt zusitzlich die multiplikative
Zerlegung des Deformationsgradienten in Gleichung (4.3) erhdlt man

dv

Po
:7:—:Ji-Je-J~JZ:Je-J-JZ7 4,]9
v 9 9 (4.19)

wobei J;, J., Jy, J, jeweils die inelastische, elastische, thermische und Umwandlungsteile sind. We-
gen der plastischen Inkompressibilitdt wird fiir den inelastischen Teil die Beziehung .J; = 1 verwen-
det. Ferner wird angenommen, dass sich das dndernde Volumen dV' mit dem Dichtewechsel infolge
der Anderung des Drucks (p — po), der Temperatur (§ — 6) und der Phasenanteile (z — z,) zu einem
neuen Volumen dv mit einer neuen Dichte p fiihrt. Somit kann die Dichte p als Funktion des Drucks p,
der Temperatur 6 und der Massenanteile der Phasen z mit einem Referenzvolumen py = p[po, 6o, 20]
dargestellt werden.

Definiert man den Zustandsvektor als s = [p, 6, z], liefert die Taylor-Reihe bis zum Term erster
Ordnung

7]
J=2r1-= 221 (p-p) - % (0 —6o) — Z L

o
N poz‘:182

(zi — 20i)-  (4.20)

)

Mehrere Umformungen der Relation (4.20) unter Anwendung der Mischungsregel fiir die inverse
Dichte aus (4.18) resultieren in:

Po <= P00 1 Jp; )
J=—=1- ,0 —
p Pi[poﬁo} (pl[po,%] Op [P0, 0ol | (» = po)
POZ0i 1 6/% )
+ ,0 0—06 4.21
; Pi 0790 ( Pz[po,eo] 00 [po O] ( 0) ( )
14
+ ——(2; — 20i)-
— Pz’[Poﬁo}( o)

Der letzte Summand in Gleichung (4.21) kann durch Einsatz der Gleichungen (4.16) und (4.17) mo-
difiziert werden

N N,

ZL(%-%HZZ ZZ( )[Pm@o Z

“— pi[po. 0] — pilp pi [po,9]

~1).

Zi —

(4.22)

Folgende Definitionen des Kompressibilititskoeffizienten x[sy], des isothermischen Kompressibi-
litidtskoeffizienten der ‘°™ Phase k; [po, 0], des Wirmeausdehnungskoeffizienten der it¢" Phase
a;[po, o], des Wirmeausdehnungskoeffizienten o und des Phasenausdehnungskoeffizieten 3; der iten
Phase (alle bezogen auf den Referenzdruck py, -temperatur 6, und die -phasenmischung z):

P020i 1 Op;i
Kls = ————K4[po, Bol, Kilpo, Bo] = , 0
[70] = pz [p07 60} [pO O] [pO 0] pz [p07 60] ap [pO 0]
<~ P020; 1 0p;
als = Q; ,9 ’ Qg 79 = 79 ’ (423)
[0 “— pi[po, o] [Po- o] [po. o 3pi[po, o] 00 lpo. o

._ - _ N
Blpo,b0] = [B1, - Bu. ", Bilpo, Oo] := 3 (pq;[poﬁo] 1>’



56 4 Phinomenologische Modellierung fiir groe Deformationen

erlauben die Darstellung der Gleichung (4.21) in kompakter Form
J ~ 1 = K[s](p = po) + 3ase)(0 — bo) + 38" [po, 0o (4.24)

Nimmt man im nichsten Schritt fiir kleine elastische, thermische und Umwandlungsdehnungen die
Niherung J — 1 ~ In J an, kann die multiplikative Form der Gleichung (4.19) unter Verwendung der
Gleichung (4.24) in eine additive Form transformiert werden

InJ =~ —k[sy](p — po) + 3alsy](0 — 0o) + 3§T [po, 0o)z. (4.25)

4.1.3 Thermodynamisches Konzept

Analog zu HAUPT [54] werden folgende Bilanzgleichungen verwendet:
1.pott —Div[F -S| =po f Impuls- oder Bewegungsgleichung,
2. ppé+Divgy=S: E + PO T Energiegleichung, (4.26)

3. piS E - — 97} — ﬁqo - Grad # > 0 Clausius-Duhem-Ungleichung,
0 0

mit E als Green’schen Verzerrungstensor und S als (symmetrischen) 2. Piola-Kirchhoff-Spannungs-

tensor. Die Spannungsleistung &7 ist als duale Paarung zwischen dem Kirchhoff-Spannungstensor

7 und dem rdumlichen Deformationsgeschwindigkeitstensor d in Gleichung (4.10.2) relativ zur Mo-

mentankonfiguration £ definiert & = 1 : d. Sie ldsst sich in Bezug auf die Zwischenkonfiguration

unter Anwendung des elastischen ,,pull-back* Operators festlegen

P =M:L, (4.27)

mit M = *@; [m] = F! - m - F_! als gemischtvarianaten (kontra-kovarianten) Mandel’schen Span-
nungstensor. Hierbei gilt

P=M:L=7:d=S:E. (4.28)

Fiir die freie Helmholtz-Energiefunktion ¥ wird der funktionale Zusammenhang

v =VI[C,,q,z0] (4.29)

angenommen, wobei C, = FeT - F. den elastischen rechten Cauchy-Green-Tensor (4.6) und ¢ =
[, - -, qn,] einen Vektor der verzerrungsihnlichen internen Verfestigungsvariablen darstellt. Der in
Abschnitt 4.1.2 eingefiihrte Vektor z = [21, 29, ..., 2y, | beriicksichtigt die unterschiedlichen Phasen 7,
und spielt gleichzeitig die Rolle interner Variablen.

Unter Verwendung der additiver Zerlegung des Geschwindigkeitsgradienten (4.13.1) fiir die Span-
nungsleistung in Gleichung (4.27) und der Beziehung 0¥/9C, : C, =2(C,.-0¥/dC.) : L. (MIEHE
[96] ) folgt fiir die Clausius-Duhem-Ungleichung (4.26)

1 . O\ — . O _ QU OF
9 = fM_QCe' — L+2CETLZ—7_77
! (Po ace> aC. oql” 9z°

VAN 1
_ <n+(ge>9—q0-(}rad920.

(4.30)
pot
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Die Klammernausdriicke pLOM -2C, - gg und (17 + %g) werden nach der Standardargumen-

tation der klassischen rationalen Thermodynamik [25] gleich Null gesetzt. Daraus folgen die Relatio-
nen

ov ov
1. M = py2 2.n=—— 431
po2Ce o n="gg (431

Damit kénnen M und 7 als thermodynamische Kriifte betrachtet werden. Dariiber hinaus werden
die thermodynamischen Krifte fiir Verfestigungsspannungen @ = [Q1,Qo, ... ,an]T sowie die
chemischen Krifte fiir die Phasentransformationen Z = [Zy, Za, ..., Z,.]|T definiert

ov ov
— . L =po—-.
ag ) 43 Po a§

[\

1.Q = po (4.32)

Die Bedingungen der Clausius-Duhem-Ungleichung (4.26) werden eingehalten, wenn folgende Dis-
sipationgleichungen erfiillt sind:

o 1
1. 2"=M:L;-Q¢—2Z:>0, 2 @gz—éqO-GradGEO. (4.33)

Der gingige Ansatz fiir den Warmestromvektor in Gleichung (4.33.2) in Bezug auf die Referenzkon-
figuration ist das Fourier-Gesetz

qo = —Ng(detF)C™! - Grad 0,

mit Ag als nichtnegativen Warmeleitungskoeffizienten.
Dariiber hinaus ist es notwendig, Evolutionsgleichungen zu formulieren:

1. Ei :El [MaQ7Zag7§a 9]7 Q.QZQ[M7Q’Z7Q’§7 9]) 3§:§[M7Q7Z7ga§79] (434)

Die Evolutionsgleichungen sind vom Mandel’schen Spannungstensor M, den Verfestigungsspannun-
gen (Q sowie den chemischen Kriften Z, die als konjugierte duale Variablen L;, g und Z in der Glei-
chung (4.33.1) erscheinen, abhingig. Die an den betrachteten Hybridumformprozess angepasste For-
mulierung dieser Evolutionsgleichungen sowie der anschlieende Nachweis der thermodynamischen
Konsistenz des Modells erfolgt in den nachfolgenden Abschnitten.

4.1.4 Wirmeleitungsgleichung

Die Wirmeleitungsgleichung kann aus der Energiegleichung (4.26.2) abgeleitet werden (vgl. dazu
z.B. HAUPT [54]). Durch die Beriicksichtigung der Gleichungen (4.31) und Umformung der Span-
nungsleistung & =S : E =M : L, ergibt sich

0 + Di M:L;,— Qg Z'+98M eaQ +9 + (4.35)
1 = L — — v —_ .
Po Cd vVdqy i q— 4z 90 90 q 5 — 2+ pory,
mit der Wirmekapazitit
o g PO Oe (4.36)
T 0 T 0e) '

Die weiterfiihrende Analyse der Gleichung (4.35) erfolgt in Abschnitt 4.2.5.
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4.2 Prototypmodell fiir den Hybridumformprozess

In diesem Abschnitt wird das in Abschnitt 4.1 entwickelte allgemeine Modell fiir den betrachteten
Hybridumformungsprozess spezifiziert. Das Ziel hierbei ist, konkrete Vorschlidge sowohl fiir die freie
Helmbholtz-Energie als auch fiir die Evolution der internen Variablen herauszuarbeiten. Des Weiteren
erfolgt eine Diskussion der thermodynamischen Konsistenz des entwickelten Modells.

4.2.1 Freie Helmholtz-Energie

Im Rahmen dieser Analyse wird die freie Helmholtz-Energiefunktion in Anlehnung an RANIECKI
and BRUHNS [108] fiir das Prototypmodell wie folgt definiert:

L. =U°[C,,z,0] + ¥ [C,,z 0] +¥°[0] + UP(q,z,0] + WYenlz,0], mit

C.,
2'Lpiso:< )7
P
1

3. wvol = In J,

5 K161 ().

' 6 4.37)
4. 00 =/ camag—o [ g

6o 6o 9

1

P o = 2 - 2

5. ¥ 2 QObQ1+2pOHQQ7

4

6. Yen :Z i 20i stch L[]

Hierbei beschreibt der Term ¥¢ = ws° 4+ wv°! Speichermengen, die sich auf elastische Verzerrun-
gen beziehen. Der Teil ¥**° in Gleichung (4.37.2) handelt von isochoren Verzerrungen, die auf iso-
chore elastische Verzerrungen zuriickzufiihren sind, wobei Ce =Je 2/ 366 gilt. Gleichung (4.37.3)
betrifft die volumetrischen Verzerrungen, die durch den in Gleichung (4.2.2) definierten elastischen
Teil der Jacobi-Determinante .J. dargestellt werden. Die bereits in den Gleichungen (3.30) festge-
legten Schub- bzw. Kompressionsmodule G[f] und K [] reprisentieren deren Beziehung zum Elas-
tizitatsmodul F, der Querkontraktion v und dem Kompressibilitdtskoeffizienten «. Ferner wird eine
lineare Abhingigkeit des Elastizititsmoduls von der Temperatur in Gleichung (3.31) eingefiihrt. Des
Weiteren wird die Erweiterung des Kompressionsmoduls (3.30.2) in Definition (4.23) eingefiigt. Die
Annahme, dass die Volumenéinderungen, die aus der Elastizitit, der Temperaturdnderung und der Pha-
senumwandlung resultieren, gering sind, erlaubt die Anwendung der Niherung In J ~ J — 1. Aus der
Beriicksichtigung dieser Annahme sowie der additiven Zerlegung der Jacobi-Determinante in (4.25)
ergibt sich fiir den volumetrischen Anteil der freien Helmholtz-Energie

vl = L nJe)’ = = nJ —1In 2
gl — 50 K101 ()" = 5= K[6] (In ] — In[JoJ. ] .
~ 5 K16) (107 =3 (alsgl6 — 00) + 57l fulz))

Aufgrund des Annahme des gleichen elastischen isotropen Verhaltens fiir alle Phasen ist die Betrach-
tung der Abhingigkeit der Schub- bzw. Kompressionsmodule G und K vom Vektor der Phasenanteile
2 nicht notwendig. Beziiglich der Definitionen der Variablen wird auf Abschnitt 3.2.1 verwiesen.
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4.2.2 Thermodynamische Krifte

Die thermodynamischen Krifte lassen sich aus den Gleichungen (4.31) ableiten. Die Bestimmung des
Mandel’schen Spannungstensors basiert auf den Gleichungen (4.31.1) und (4.38)

— — oY

0C, 4.39)
= K[0)In J1' + G[f]dev In [@e -éﬂ — 3K10] (a[§01(9 —00) + 8" [po, 90]§) 1.

Die ersten zwei Terme in Gleichung (4.39) reprisentieren die aus Deformationen resultierenden volu-
metrische und deviatorische Spannungstensoren. Der dritte Term beriicksichtigt die thermo- bzw. die
chemomechanische Abhingigkeit des Spannungstensors.

Auf Grundlage der Gleichungen (4.32), (4.38) und (4.37.5-6) werden sowohl die Verfestigungs-
spannungen als auch die chemischen Krifte definiert

ov
1.Q1 = po

ov
B Qobaqr, Q2 =po— = Hpqo,
q1

02

ov Po .
2. Z; = =—-KI[0 —1)InJ, eh.il0], =1,2,...,4.
pe = K16 (SHo — 1) et podn 8],
Die Ergebnisse der Gleichungen (4.40.1) représentieren die nichtlineare bzw. die lineare isotrope Ver-
festigung. Stahlwerkstoffe zeigen eine nur sehr geringe Volumenénderung im elastischen Bereich, so
dass gilt:

(4.40)

Po
pilbo]

Damit ist der erste Term in Gleichung (4.40.2) vernachlissigbar

—1~0, J.~1. (4.41)

K[G] ( po_ _ 1) InJ.=0 = Z;=pg ¢ch,z’[9]~ 4.42)
pilfo]

Als Folge kann die chemische Kraft Z; als die freie Enthalpie der Phase z; betrachtet werden. Die
Anwendung des Spur-Operators (eng. trace-operator) tr[e] = 1 : [e] auf die Gleichung (4.39) erlaubt
die Umformulierung der hydrostatischen Druckspannung

—3p = trM = 3K0] (ln J -3 (a[§0](6‘ — o) + B” [po, Qo]g)) . (4.43)

Diese entspricht fiir den Fall pg = 0 und 8 = 6y der Gleichung (4.25).

4.2.3 Evolutionsgleichungen der Viskoplastizitit und umwandlungsinduzierter
Plastizitdit

Der inelastische Teil L; des Geschwindigkeitsgradientes L in Gleichung (4.13.4) wird wie folgt auf-
gespalten:

Li=L, +L, (4.44)

wobei L, und L; den viskoplastischen Teil bzw. den umwandlungsplastischen Teil reprisentieren
(vgl. dazu z.B. HALLBERG et al. [51]).

Fiir fp wird fiir das viskoplastische Verhalten die iiblich verwendete FlieBregel (vgl. dazu z.B.
[76]) angenommen
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1. = )\\/7N mit

<>
2.)\—<D>,

3. ¢ =0, — Y[+ Q1+ Q2), (4.45)
i o = \/7||M||
fdev
5 N =
T —dev,,
M|

\ stellt hierbei den viskoplastischen Multiplikator, ¢ die Uberspannungsfunktion, D > 0 den Materi-
alparameter der Viskositit, der in diesem Fall eine Konstante ist, o,, die von-Mises- Vergleichsspannung
und N den normierten Mandel’schen Spannungstensor dar. Der ,,McCauley-Operator* im Term
< ¢ > soll sicher stellen, dass das viskoplastische Flieen nur dann auftritt, wenn die von-Mises-
Spannung o, den Barriereterm (Y'[¢)] + Q1 + Q) iiberschreitet. Der Barriereterm setzt sich wie-
derum aus der FlieBspannung und den Verfestigungsspannungen zusammen. Die FlieBspannung Y'[6]
reprasentiert die Anfangsbarriere fiir das inelastische Verhalten. An dieser Stelle wird eine lineare
Abhingigkeit zwischen der FlieBspannung und der Temperatur angenommen

Y[@] =Yy +cy ((9 — QYO), (4.46)

mit cy als einen Materialparameter, der die Senkung der Fliespannung wihrend der Temperatur-
zunahme beschreibt. 0y, ist die Temperatur, bei der Y[0] = Yj gilt. Der Skalar Q = Q1 + Q2
stellt die Verfestigungsspannung aus Gleichung (3.51) dar. Folglich kann der Skalar Y[0] + Qo(1 —
exp[—be,|) + He, physikalisch als eine Barrierekraft gegen das plastische FlieBen interpretiert wer-
den.

Umwandlungsplastizitit tritt bei bainitischen und martensitischen Umwandlungen auch unter Ein-
fluss der wirkenden Lastspannung, die unter der FlieBspannung der weicheren Phase liegt, auf. Dem-
nach wird vorausgesetzt

dev )t dev)t.

= .3 — .3 —
L, = Z3§f{Kth[Jv] (M + Z4§f{KtpM[0u] (M (4.47)
Der Term L; entspricht dem TRIP-Ansatz von LEBLOND [72]. Die Kostanten K;,p and Kyps stellen

die Greenwood-Johnson-Parameter dar und werden wie folgt modifiziert:

1. Kth[UU] = KtplB + KthBgva (4 48)

2. KtpM[Uv} = Ktpl]V[ + Ktp2M0v~ '
Um eine bessere Ubereinstimmung mit den experimentellen Ergebnissen fiir Martensit und Bainit
zu erzielen, werden die Greenwood-Johnson-Parameter als Funktionen der von-Mises-Vergleichsspa-
nnung gestaltet. Die Sittigungsfunktion f1[z] in Gleichung (4.47) ist eine heuristische Funktion, die
die Bedingungen erfiillt:

Lfijo]=0, 2 fAlll=1, 3. fl[z] = % > 0. (4.49)

Hier wird die von DENIS [27] entwickelte Formulierung in Gleichung (3.44) verwendet. Aus Glei-
chung (4.45.1) folgt der Zusammenhang

. o _ _
A= ng D (Lp)t = €. (4.50)
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Damit verallgemeinert e, die Akkumulation der plastischen Verzerrung analog zum Fall der kleinen
Deformationen in Gleichung (3.48.5).

4.2.4 Thermodynamische Konsistenz

Um die thermodynamische Konsistenz des betrachteten Modells zu gewéhrleisten, muss die Clausius-
Plank-Ungleichung (4.33.1) erfiillt sein. Das viskoplastische Verhalten ist aktiviert, wenn die Uber-
spannungsfunktion ¢ in Gleichung (4.45.3) positiv ist. Zwecks der mathematischen Formulierung
wird auf Gleichungen (3.75) verwiesen. Unter Verwendung der additiven Zerlegung des Geschwin-
digkeitsgradienten (4.44), der FlieBregel (4.45.1), der Evolutionsgleichungen (4.47), (3.49.1), (3.49.2)
fiir TRIP und der internen Variablen ¢; und ¢s sowie der Gleichungen (4.45) und (4.50) kann die
Clausius-Planck-Ungleichung (4.33.1) wie folgt formuliert werden:

P =M:L; — Qi1 — Quio — Y1y Zi%i

. X . . —dev
= /\(JU _Ql _QQ) +&Q%+ (Z3%f{Kth[O'v]+Z4%f{Ktp]M[av}) ||M ||2 (451)
N—— ———
>Y[6)
— Y1 Ziz > 0.

Aus Gleichungen (4.50) und (3.75) geht hervor, das die ersten zwei Terme in Gleichung (4.51) stets
nichtnegativ sind. Wegen K;,; > 0 und Ky > 0 ist der dritte Term in Gleichung (4.51) ebenfalls
nichtnegativ. Daher muss fiir den Nachweis der thermodynamischen Konsistenz lediglich der letzte
Term auf Nichtnegativitit untersucht werden. Dieser wird zunéchst unter Einsatz der Beziehung (3.38)
und der Annahme (3.40) umgeformt

- ZZ 5 = —poz 6 — 05 2> 2) 2 > 0. (4.52)

Beziiglich des Beweises der Nichtnegativitit dieser Beziehung wird auf den Beweis zur Ungleichung
(3.77) in Abschnitt 3.2.5 verwiesen. Somit kann festgestellt werden, dass das betrachtete Modell
thermodynamisch konsistent ist. Dieser Beweis ist unabhingig von den Spezialansitzen der Evoluti-
onsgleichungen fiir die Phasenumwandlung, wie z.B. von Johnson-Mehl-Avrami-Kolmogoroff oder
Koistinen-Marburger.

4.2.5 Spezielle Form der Wiirmeleitungsgleichung

Sind alle vier Phasen in den Prozess involviert, kann die Wirmeleitungsgleichung (4.35) in Abhéingigkeit
von der austenitischen Phase wie folgt umformuliert werden:

. - ™M — 0
pocd9—|—Divq0:M:Li—Qg—|—98—:L + 0 —= Q.

T 50 1+ Z Lis%i + porg,  (4.53)

wobei die latente Wirme L;» der Umwandlung ¢ — 2 oder 2 — ¢ eingesetzt wird

s YNy
Lis = <_ ; - aa) (4.54)

Damit gilt weiterhin die Relation Ly = 0. Unter Verwendung der Approximation (4.41) und der
Annahme (3.40) erhilt man aus (4.54) fiir den Fall konstanter Q;‘Q
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Liz = po Q5 2- (4.55)

Folglich stellt die Aktivierungsenergie po(); , der Umwandlungen 1 — 2 oder 2 — 3,4 die latente
Wirme der korrespondierenden Umwandlung dar. Diese Aussage wird durch die experimentelle Be-
obachtung der exothermen Bildung von Bainit und Martensit untermauert. Im Gegensatz dazu ist die
Bildung von Austenit endotherm. Demnach sind die isotropen Verfestigungsspannungen nicht von der
Temperatur abhéngig. So kann die Wirmeleitungsgleichung in der folgenden Form
oM .
p()Cd0+Ddi0 :M : fl _QQ"‘GW Zfe +ZL1222 +p()7’9 (456)
i=1

geschrieben werden.

4.2.6 Zusammenfassung der konstitutiven Gleichungen

Die konstitutiven Gleichungen beziiglich der Zwischenkonfiguration % in Form der kontravarian-
ten Tensoren werden in Tabelle 4.1 zusammengefasst. Unter Verwendung der elastischen push-

forward-Beziehung b, = @g [@ﬁ] in Gleichung (4.5.2) und der Umformung der Gleichung (4.7.2)
g = *452 [C.] gilt fiir den elastischen push-forward-Operator des gemischtvarianten Mandel-
Spannungstensors sowie des inelastischen Geschwindigkeitsgradienten beziiglich der Zwischenkon-
figuration

’

L. m=.0[M, 2 1=.90[L] (4.57)

Somit reprisentieren die in Tabelle (4.1) aufgefiihrten Gleichungen (I) und (II) den gemischtvarianten
Kirchhoff-Spannungstensor sowie den gemischtvarianten Geschwindigkeitstensor in der momentanen
Konfiguration

ov
1. m = py2g” - —
Og
= K[0]InJ. 1 + G[f]devIn (g" - b.) —

~ K] <3A9 alt]+3 (Zl[[z(?}] _ 1) Zi) v, 4.58)

1=2

mdev

2. 17, = )\\/gnt + (23%f{Kth[O'v] + é4%f{KtpM[0'v]) (mde’u)t, n— W
Ferner werden in der Tabelle 4.1 Materialparameter zusammengefasst. Zur Vereinfachung wird der
gleiche Wirmeausdehnungskoeffizient oy [f] fiir alle Phasen angenommen. Es existieren in Bezug auf
die Anwendungsmoglichkeiten der Gleichung (4.58) fiir generelle Belastungs- sowie Entlastungspfa-
de mehrere Beschrinkungen. Dennoch wird in dieser Arbeit die Gleichung (4.58) der Einfachheit
halber und unter der Annahme, dass fiir die betrachteten Probleme mehr oder weniger proportionale
Belastungspfade erwartet werden konnen, als Arbeitsthese verwendet.
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4.3 Numerische Implementierung

Fiir die Simulation von Hybridumformprozessen, wie z.B. in STEINHOFF [119] und WEIDIG et
al. [141] dargestellt, ist eine Losung von partiellen Differentialgleichungen notwendig, wobei die me-
chanische Gleichgewichtsgleichung und die thermische Warmegleichung gekoppelt sind. Beziiglich
des Ansatzes zur Losung des Randwertproblems wird auf weiterfiithrende Literatur verweisen (siehe
z.B. ZIENKIEWICZ und TAYLOR [153], SIMO und HUGHES [117]).

Grundsitzlich kénnen gekoppelte Randwertprobleme monolithisch bzw. simultan geldst werden.
Dennoch wird hier ein gestaffelter Algorithmus verwendet, der im Gegensatz zu einem vollgekop-

I. Mandel’scher Spannungstensor

1. M = K[f]lnJ.1’ + G[f)devin (66 -6”)
4 91[90] 37
— K[6] [ 3A0a1(0] + >, —1)z )1
=2\ pil6o]
2E(0) E(0)
2. G®) = ——=, K()=—"—, E=EF 0—6
) 1t (9) 31— 20) o+CE( EO)
IL. Inelastisches FlieBen
- Additive Zerlegung
1. L, -L,+L
- Viskoplastizitit
2 L — A /oN
2
~xdev
— M

3 N = ~=dev

(M|
4. A= <£> =€y

D
5 ¢[M,Q] = oy — (Y[0] + Q)
~—dev

6. ou = /3IIM")
7. Y] = Yo +cy (6 — 0yy)

1

Q[ev] = QO (1 — €xp (_bev)) + HPEU

- Umwandlungsplastizitit

9. Ly

. ~rd 5 Vi
235 F{ Kepploo) (M)t 4 243 f{ K low] (M)
10. Kth[O'v] = Kip1B + Kip2B0v,

11. Ktpzu[au] = Ktpllw + KthIMUU

12 Al =20-2),

Tabelle 4.1 Konstitutive Gleichungen der Viskoplastizitit und der Umwangsplastizitit fiir die Zwischenkonfiguration
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III. Umwandlungskinetik
- Ferrit/Perlit — Austenit (1 — 2):

1. 2o :/—L12(1*22)H(9*A61)7i3724

- Austenit — Bainit (2 — 3):

2. 7 = agyexp [_%{ev}] exp [—Bauev] H(Op — 0)H (0 — 0*[ey])
u
0*[ey] — 0
+ g exp [— %} exp [—Barev] H(6*[ev] — 0)H (0 — Onrs)
1
. 0*ley] — 0 G* r—r*\"
3. %3 = Agexp {%} exp [_R9:| < . > zg H(6p —0)H(0 — Oprs),
Lo — A302A015

T (A0Q* + Agbpenoy)?
- Austenit — Martensit (2 — 4):

5. 4 = <_—0> (22 —z4)H(Ops — 0).

IV. Materialparameter

Elastizitit kel @ Eo CE 08, v

p1 P2 p3 pa fo
Wirmeausdehnung: Kg: o1
Viskoplastiztit: Kop © Y0 cy Oy, m D HpQob
Ferrit/Perlit — Austenit.: Kzo @ [12 At
Keimbildung des Bainit: Kyt Ay 0y 0* a9y a9 By B
Austenit — Bainit: Kzy : As By n 0% As Q*
Austenit — Martensit: Kzy @ Ms ko
TRIP flow: wtp © Kipip Kipo Kipinm Kipamr
Parameter fiir Warmeleitungsgleichung: x¢c : Ag cq Lo Los Loy

Tabelle 4.1 Konstitutive Gleichungen der Viskoplastizitit und der Umwangsplastizitét fiir die Zwischenkonfiguration

pelten Algorithmus aus der Losung des thermischen Problems, gefolgt von der Lésung des mechani-
schen Problems fiir jeden Zeitschritt besteht. Durch dessen Anwendung wird der Implementierungs-
aufwand des Prototypmodells verringert, so dass auch eine etwas schlechtere Konvergenz toleriert
werden kann.

Ferner wird im Rahmen dieser Analyse angenommen, dass der Einfluss der latenten Wérme, die
sich aus der Phasenumwandlung ergibt sowie die Wirkung der aus plastischer Deformation resultie-
renden Dissipationswirme auf das Temperaturfeld vernachlissigbar sind. Diese Annahme wird da-
durch begriindet, dass die dulere Wirmequelle (Induktionheizung) sehr viel grolere Wiarmemengen
liefert, als die durch den irreversiblen Prozess erzeugte Wirme. Damit haben die latente Wirme sowie
die Dissipationswérme einen marginalen Einfluss auf der Warmeverteilung. Konsequenterweise folgt
daraus, dass sich die Analyse auf die numerische Integration der in Tabelle 4.1 zusammengefassten
konstitutiven Gleichungen konzentriert.
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4.3.1 Integrationsschema

In Anlehnung an das Integrationsverfahren der Finite-Elemente-Methode wird hier ein dehnungsge-
steuerter Algorithmus iiber einen endlichen Zeitschritt At = "*1¢ —" ¢ verwendet. Dariiber hinaus
wird davon ausgegangen, dass die Temperaturen "6, 16 als Ergebnis des thermischen Problems im
Rahmen des oben erklirten gestaffelten Algorithmus tibermittelt werden.
Als Ausgangspunkt der numerischen Integration dient die FlieBregel (vgl. Gleichung (13) und (18)
in MAHNKEN und SCHNEIDT [87]) in der Materialkonfiguration
— 1

* - T 1~
By :Li =)L) =F; ' -L;-F; = —5C;, -G, 4.59)

mit *@}[.] als inelastischen pull-back Operator. Die Multiplikation mit 2C; " ergibt

¢ =L, CL (4.60)

Aus der Anwendung des exponentiellen Integrators auf die Differentialgleichung (4.60) erhilt man
(vgl. z.B. WEBER und ANAND [139], ETEROVIC und BATHE [31], SIMO [116])

n+10;1 = exp [_2 n+1Li} n C;l
(4.61)
= exp [_2 n+lp-1. L - n+1F} n (};17
wobei von Gleichung (4.12) Gebrauch gemacht wurde.
Fiir die Integration der Wachstumsgeschwindigkeit der plastischen Dehnung in Gleichung (I) (Ta-
belle 4.1) wird das implizite Euler-Verfahren verwendet

ntle, = "e, + Ae,, (4.62)
wobei gilt
1. Ae, = A, .
2. AN = At < n-;¢> . (4.63)

Die Phasenanteile des Martensits "*'z, (Gleichung (IIT) in Tabelle 4.1) und desen Inkrement Az
konnen fiir gegebene Temperatur 10 und fiir jeden neuen Zeitschritt "*'¢ direkt mit Hilfe der mo-
difizierten Koistinen-Marburger-Beziehung berechnet werden

ng1. (=t =) f(MHE), Azy =" 2 =2y fiir 0(8) < 6,
S K Az =0 sonst . (4.64)

n+1

Die Anteile des Austenits 2o lassen sich fiir den gegebenen Zeitpunkt "*'¢ und Temperatur "+10

analog ermitteln

n+122 _ {f (n+1t’n+1 9) s AZQ —=n+l zZ92 —n 22, fur G(t) Z Acl (465)

29 + Azo, Azy = —Azz — Az, sonst.

Fiir die Integration der Phasenumwandlung vom Austenit zum Bainit (Gleichung (III) in Tabelle 4.1)
wird ebenfalls das implizite Euler-Verfahren angewendet
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At ("0, Ky (By)) fiir A > 6(t) > 6*
YL Ky (By)) fiir 6% > 6(t) > 0,

1. "mtlp=npt Ar 2. Ar ={ Atr
0 sonst (4.66)
At 23 ("H10,7T1 1) | fiir Ay > 0(t) > 6
- . B 3 s 5 cl m
3. 25 =" 25 + Azz 4. Azg = {0 sonst.

Zur besseren Ubersicht wird im Folgenden auf den Index n + 1, der auf den aktuellen Zeitschritt
hinweist, verzichtet. Fiigt man Gleichung (4.61) in (4.5.2) ein und verwendet die Beziehung

exp [F_l “A - F] =F ! .exp[A]-F,
gelangt man zu folgendem Ausdruck fiir den rechten Cauchy-Green-Tensor:
b, =F-C;' -F'=exp[-2L]-b", mith" =F."C;'.F' (4.67)

Hierbei bezieht sich b*" auf den Priidiktor (trial) des linken elastischen Cauchy-Green-Tensors.

Im nidchsten Schritt wird b, entsprechend der Gleichung (4.9) in einen volumetrischen und
einen deviatorischen Teil aufgeteilt. Dessen Logarithmierung wandelt die rdumlichen logarithmischen
Hencky-Dehnungen um

1' hl Je = hl Jtr’ mlt Jtr == det[btr]l/Qv

’ ’ ’ P 4.68
2. Inb, = Inb!" — 2gt - 1, mitbtr = jtr—*/3ptr, (4.68)

Konsequenterweise kann der Kirchhoff-Spannungstensor 7 = g - m unter Einsatz der Gleichungen
(4.58.1) und (4.58.2) umformuliert werden

1.7  =7volppdev it
. ( p1[6o]
2. 7 = K[f]In Ji" gt — K[A] | 340 oy [0] + < L0 —1)z- f
d dev,t 3 i / dev
3. pdev — pdevitr _ 9 AN §M - 3Gf] (AZ3Kth[UU] + AZ4KtpM[UU])T )
mit
730t — GdevInb?". (4.70)

Aus Gleichung (4.69.3) lisst sich folgern, dass 79V>!" and 79¢* koaxial sind, so dass die Gleichungen
(4.69) umgeformt werden konnen

1.7t =7vol 4 rdev it

4
o]
2. 7vol = Lot Lo — Kio)in gt — K[0] | 34004 [0] + (pl[o
5 "he', 570 = K[d] 6] 0+ o]

, pil
1=2
1 3 Tdev,tr
3. dev _ dev,tr —QGfAA _
e (T 220 ) R e

4.C, =1+3Gf] (AzsKipplow] + AzaKipnrloy]) -

@71

Es wird darauf hingewiesen, dass die Skalare K;,pg[0,] und Kyy,as[0,] in den Gleichungen I1.10 und
II.11 von der Vergleichsspannung nach von Mises abhéngig sind. Grundsitzlich kann dies mit Hilfe
eines impliziten Ansatzes beriicksichtigt werden. An dieser Stelle wird fiir diese Beziehungen ein
expliziter Algorithmus verwendet

Kth [UU] = KtplB + Ktp?B nU'w KtpM[U'U] = Ktle + KthM nOU? (472)
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wobei "o, aus der vorangegangenen Zeitstufe gewonnen wird. Damit kann, ohne Einschrankungen in
der Konvergenz zu tolerieren, eine erhebliche Vereinfachung in der Implementierung und gleichzeitig
eine gute Ubereinstimmung mit experimentellen Daten erreicht werden [88].

4.3.2 Spektralzerlegung

Aufgrund der Annahme des isotropen Materialverhaltens und der isotropen Verfestigung stimmen die
Basen der Eigenvektoren des linken elastischen Trial-Cauchy-Green-Tensors b®" und der Kirchhoff-
Spannungen 7 iiberein. Demnach lésst sich die spektrale Zerlegung dieser Tensoren durchfiihren

3

3
1. b = Z (/\AtT)QmA — 2.1 = ZﬁAmA. 4.73)
A=1 A=1

Hierbei stellen ()\ A”) und m 4 mit A = 1,2, 3 die Eigenwerte bzw. die Eigenvektoren von b?" dar.
B4 reprisentieren die Hauptwerte der Kirchhoff-Spannungen, welche unter Verwendung von Vektor-
bzw. Matrixnotationen wie folgt zusammengefasst werden konnen:

In Al By 1 1 .
emi= N |, Bi= By | L= | 1|, L= 1| I =1, 1oL (474
In AL By 1 1

Die Hauptspannungen werden aus den Relationen

1. é _ éUOl _"_édev mit

4
9. ﬁvol _ % BI1, % AL = K[A)1 - — K[6] <3A0a1[0] + Z <P1[90] _ 1) zz> ,
4.75)

“— \ pilfo]
. 3 5dev,tr
3. ﬁdev _ 5dev,tr _ 2G\/7A)\V , V= ﬁ7
0= o ( 2 8™

4. Cp =1+ 3Gf{ (AZgKth[O'U] + AZ4KtpM [O'U])

mit #I; = 81 + B2 + B3 ermittelt. Dieses Gleichungsset stellt einen Pendant zu Gleichungen (4.71) in
der Hauptachsendarstellung dar. Ferner ist dessen Struktur komplett mit dem in Abschnitt 3.3 vorge-
stelltem Schema (Gleichungen (3.82)) zur Beriicksichtigung der geometrisch linearen Theorie iden-
tisch (vgl. dazu auch SMo [116]). Dabei entsprechen 3, 3%, 39" jeweils o, o*°' und o9V in
Gleichungen (3.3.1) und (3.83). Die in Gleichung I1.4 (Tabelle 4.1) definierte FlieBfunktion lisst sich
in Bezug auf Hauptspannungen beschreiben

1. (b =0y — (YQ +Q) mit 2. o, = \/glﬂdevH. (476)

4.3.3 Lokale Iteration

Da das Gleichungssystem (4.75) mit der Struktur des geometrischen linearen Fall {ibereinstimmt,
konnen die Erkenntnisse aus Abschnitt 3.3.2 transferiert werden. Aus Gleichung (4.75.3) wird die
skalare Beziehung
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— QG\/§A>\
2 4.77)

Cp

Hﬂdev,tr

Hﬂdev

gewonnen, wobei C), in der Gleichung (4.75.4) definiert wird.
Als néchstes kann Gleichung (4.63.2) durch die Verwendung des Ergebnisses aus (4.77) fiir die
FlieBbedinung (4.76) als Residuum formuliert werden

- R v (2) pee e

At
Auf diese Weise werden die diskretisierten Evolutionsgleichungen (4.60) und (4.62) auf ein eindi-
mensionales Problem reduziert, das einzig vom plastischen Multiplikator AX abhéngig ist. Fiir dessen
Losung wird das Newton-Verfahren eingesetzt

’I“[A)\k]
J[AN]

L ANpyn) = ANy — k=0,1,2,...

ar[AN  0dy D 1 [AN\7

_ _9by D 1 (A 479

2. J[AA AN 9AN mAA(At) : @
0By (3G

3oy = <Q,+H+erXp[ b(" 6v+A)\)]>,

wobei sich der Index k auf die Iterationnummer bezieht.

4.3.4 Spektralzerlegung des Tangentenmoduls

Fiir die iterative Losung des Randwertproblems im Rahmen der Finite-Elementen-Methode mit Hil-
fe des Newton-Raphson-Verfahrens ist der Einsatz des Tangentenmoduls, der als ¢ = 207/ agb de-
finiert wird, notwendig. Das Tangentenmodul wird durch die Differenzierung des Kirchhoffschen
Spannungstensors ermittelt. Die Beriicksichtigung der Abhéngigkeit 84 ['", J] resultiert in

3 3
=3 > e mp + Z 284 g (4:80)
A=1 B=1

Die Herleitung und das Ergebnis fiir dm 4 /dg® wird in SIMO [116] prisentiert. Die in Gleichung
(4.80) erscheinenden Terme df34 /de’; und df34 /d.J werden mit Hilfe der Ableitung von 3, in Glei-
chung (4.75) ermittelt. Unter Verwendung der Gleichungen (4.75) erhilt man:

d
£:K1®;+ 2G1d5” [AAQG) ! (Ee”—l@l)
dgtr Otp Hﬁdev tr

3 (&) s

wobei beziiglich der Definition von J[AM] auf Gleichung (4.79) verwiesen wird.

(4.81)
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4.4 Simulation des Hybridumformprozesses

In diesem Abschnitt wird der Hybridumformprozess auf der Grundlage des in den Kapiteln 3 und
4 entwickelten und implementierten, phdnomenologischen, makroskopischen Materialmodells si-
muliert. Als erstes erfolgt die Abbildung des Hybridumformprozesses mit den Prozessparametern
nach WEIDIG et al. [143] im FEM-Programm Abaqus/Standard. Um zu veranschaulichen, welche
Gefiigeverteilungen im Hybridumformprozess moglich sind, werden im néchsten Schritt die Prozess-
parameter variiert.

4.4.1 Prozessbeschreibung

Die Ablidufe des thermomechanisch gekoppelten Hybridumformprozesses werden in der Abbildung
4.2 veranschaulicht. Die Prozesskette kann in drei Schritte unterteilt werden:

1. Erwidrmung und Transfer,
2. Umformung,
3. Abkiihlung.

Im ersten Prozessschritt wird ein zylindrisches Werkstiick aus niedriglegiertem Schmiedestahl 51CrV4
mit einer Lange von 200 mm und einem Durchmesser von 30 mm in die Aufheiztstation eingefiihrt.
Dabei wird die Mitte des Zylinders in einem Bereich von 60 mm induktiv erwérmt. Die Erwidrmung
erfolgt in zwei Stufen. Die Haupterwirmung mit 42 kW (70% der max. Leistung) dauert 12 Sekun-
den mit einem abschlieenden, fiinf Sekunden langem Nachwirmen mit einer reduzierten Leistung
von 15 kW. Das Nachwirmen dient zur Einstellung eines homogenen Temperaturprofils im Inne-
ren des Werkstiicks. Die dafiir benotigte Warmeleistung kompensiert die Warmeverluste infolge der
Wirmestrahlung und des Wirmeiibergangs an die Umgebung und liefert die bendtigte Warmemenge
zur Erwidrmung der tieferen Schichten. Die maximale Oberflachentemperatur betridgt nach der Auf-
heizphase 1350 °C. Fiir den Transport in die Umformstation werden ca. 4 Sekunden benétigt.
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Abb. 4.2 Prozesskette der Hybridumformung [141]

Im néchsten Schritt wird die Freiumformung des Flanschbereichs der Welle mit einer abschlieBen-
den Ausformung im Werkzeug kombiniert. Nach der Umformung wird die Welle in einem geschlos-
senen, relativ kalten Werkzeug abgekiihlt. Dabei wird der hohe Wirmeiiberganskoeffizient zwischen
Festkorpern ausgenutzt, um eine hohere Abkiihlrate des Wellenflansches zu erzielen.
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4.4.2 Simulation des Standardprozesses

Im Rahmen der Simulation wird die thermomechanisch gekoppelte FEM-Berechnung des Werk-
stiicks, analog zum realen Prozess, in drei Teile, Erwdrmung, Umformung und Abkiihlung (Abb.
4.3.a) unterteilt. Aufgrund der rotationssymmetrischen Geometrie und Belastung sowie der Randbe-
dingungen sowohl des Werkstiicks als auch des Werkzeuges kann eine Simulation des FEM-Modells
mit axialsymmetrischem Elemententyp CAX4RT verwendet werden. Die dazu notwendigen Randbe-
dingungen sind in Abbildung 4.3.b veranschaulicht. Die Starttemperatur sowohl vom Werkstiick als
auch vom Werkzeug betrigt 27 °C (300 K). Die induktive Erwadrmung wird aufgrund der geringen
Eindringtiefe des elektromagnetischen Feldes (siehe dazu z.B. [94]) mit Wirmestrom ()7 an der Zy-
linderoberfliche modelliert. Der zeitliche Verlauf und die Hohe des Wérmestroms ist in Abbildung
4.3.a dargestellt. Des Weiteren bildet dieses Diagramm die Verschiebung u des Werkzeuges ab und
beschreibt damit den zweiten Prozessschritt. Dem folgt eine vollstindige Abkiihlung des Werkstiicks,
die sich in 279 Sekunden vollzieht. Diese wird im Rahmen der Simulation durch einen thermomecha-
nischen Kontakt zwischen dem Werkstiick und dem Werkzeug abgebildet.
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Abb. 4.3 Randbedingungen: a) Zeitlicher Verlauf der Werkzeugverschiebung und des Wirmestroms b) mechanische
und thermische Randbedingungen

Die Simulationsergebnisse des Temperaturprofils in der ersten Prozessphase sind in Abbildung 4.4
dargestellt. Abbildungen 4.5 und 4.6 veranschaulichen die Temperaturverteilung wihrend der Umfor-
mung und der Abkiihlphase. Die Simulationsergebnisse der Phasenverteilung werden in Abbildung
4.8 zusammengefiihrt. Diese zeichnen sich dadurch aus, dass sich bei der Standardprozessfiihrung
[143] kaum eine bainitische Phase gebildet hat. Die Verteilung der martensitischen Phase zeigt deut-
liche Ubereinstimmungen mit der Gefiigeverteilung im Schliffbild der realen Welle (Abb. 4.7).
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Abb. 4.4 Simulation des Standardprozesses: Temperaturverteilung in der Aufheizphase und nach dem Transport zur
Pressstation (21s) (Prozessschritt 1 (Abb. 4.3.a))
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Abb. 4.5 Simulation des Standardprozesses: Temperaturverteilung wihrend der Umformung (Prozessschritt 2)
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Abb. 4.6 Simulation des Standardprozesses: Temperaturverteilung in der Abkiihlphase (Prozessschritt 3)

T

Abb. 4.7 Simulation des Standardprozesses: Vergleich des martensitischnen Gefiigeferlaufs zwischen der Simulation
und der realen Flanschwelle (Teilprojekt A1 des SFB/TR TRR 30)
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Abb. 4.8 Simulation des Standardprozesses: Temperatur- und Phasenverteilung von Austenit, Bainit und Martensit
nach Prozessschritt 1, 2 und 3 (Abb. 4.3.a)
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4.4.3 Variation der Ausgangstemperatur

Die Erhohung der Duktilitit des Wellenflanschs mit gleichzeitiger Beibehaltung der Festigkeit kann
durch die Steigerung der Anteile der bainitischen Phaseanteile erreicht werden. Als eine der Stra-
tegien dafiir bietet sich das Vorheizen der zylindrischen Halbzeuges in einem Hochtemperaturofen
an. Es werden hierbei unterschiedliche Starttemperuturen [S00 K, 774 K, 874 K, 924 K] des Rol-
lings simuliert. Aufgrund der im Vergleich zum Standardprozess hoheren Starttemperatur muss die
Wirmestrommenge, die die Leistung der Induktionheizung représentiert, insoweit angepasst werden,
dass die maximale Temperatur dem Hochstwert des Standardprozesses entspricht. Die restlichen Pro-
zessparameter entsprechen denen des Standardprozesses. Die Ergebnisse der Temperatur- und Pha-
senverteilung fiir Austenit, Bainit und Martensit in Abhéngigkeit von der Starttemperatur werden in
den Abbildungen 4.9, 4.11 und 4.10 prisentiert. Die in Abbildung 4.10 dargestellten Simulations-
ergebnisse veranschaulichen eine Steigerung des Bainitanteils im Wellenflansch bei Vorliegen einer
hoheren Vorheiztemperatur.
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Abb. 4.9 Variation der Ausgangstemperatur: Temperatur- und Phasenverteilung von Austenit nach Prozessschritt 1
(Abb. 4.3.a)
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Abb. 4.10 Variation der Ausgangstemperatur: Phasenverteilungen von Austenit nach Prozessschritt 2 (Abb. 4.3.a),
Martensit und Bainit nach Prozessschritt 3 (Abb. 4.3.a)
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Abb. 4.11 Variation der Ausgangstemperatur: Temperatur- und Phasenverlauf von Austenit, Bainit und Martensit iiber
die Zeit mit Starttemperatur von 500 K in Element 220 (Mitte der Probe)

4.4.4 Variation der Prozessfiihrung

Den Gegenstand der Untersuchung dieses Abschnitts bildet die Analyse der Entwicklung der marten-
sitischen Phase in Abhingigkeit vom Zeitprofil der induktiven Erwdrmung. Als Referenz dient der
in Abschnitt 4.4.2 beschriebene Standardprozess. Dieser entspricht der Variante 1 in Abbildung 4.12.
Im Rahmen der Analyse wird das Profil des Zeitverlaufs in Abhidngigkeit von der Warmestrommenge
variiert. Bei diesem Prozess wird die induktive Erwdarmung aufgrund der geringen Eindringtiefe des
elektromagnetischen Feldes mit dem Wirmestrom @)1 an der Zylinderoberfliche modelliert. Der zeit-
liche Verlauf und die Hohe des Wirmestroms wird in Abbildung 4.12 dargestellt. Dieser Verlauf kann
in zwei Bereiche, die Haupterwidrmung und die Nachwirmung, aufgeteilt werden (siehe Abschnitt
4.4.1). Fiir die Variante 1 wird die Haupterwirmung mit einer Wirmestrommenge von 2,5 W /mm?
tiber 10 s. und die Nachwirmung mit 0,5 W /mm? iiber 4 s. gewihlt. Bei diesem Prozess bildet sich
Martensit iiber den ganzen Querschnitt des Flansches aus.

Bei der Variante 2 wird der Haupterwdrmung mit einer geringeren Wirmestrommenge von 20
W /mm?, aber iiber einen lingeren Zeitraum und die Nachwirmung iiber einen kiirzeren Zeitraum
modelliert. Damit wird die Bildung des Martensits nur am Rande des Flansches erreicht.

Variante 3 ist durch eine am Anfang geringere Wirmestrommenge, die zu einer langsamen und ho-
mogenen Erwidrmung fiihrt und eine abschlieende kurze und hohe Wirmeeinbringung gekennzeich-
net. Da die Temperatur nach dem ersten Erwdrmungsbereich unterhalb der Austenitisierungstempe-
ratur liegt, bildet sich der Martensit nur als diinne Schicht am Rand des Flansches. Austentbildung
erfolgt hierbei durch das abschlieBende schnelle Aufheizen in der zweiter Phase.

Die gleiche Strategie wird auch fiir die Variante 4 verwendet mit der Ausnahme, dass die zweite
Erwidrmungsphase durch eine auBermittig liegende Wirmequelle ()2 in Abbildung 4.3) realisiert
wird. Dieses Verfahren resultiert in einer Verteilung des Martensit an den Flanschflachen und dem
relativ weichen Gefiige am Umlaufrand.

Mit Hilfe dieser Untersuchung wird die Vielfiltigkeit des Hybridumformprozesses gezeigt. Insbe-
sondere wird veranschaulicht, dass die Erstellung der unterschiedlichen Gradientverldufe allein durch
die Verdnderung der Erwarmungsprofils beeinflusst werden kann.
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Abb. 4.12 Variation der Prozessfithrung: Verteilung des martensitischen Gefiiges infolge von Variierung des Verlaufs
der Wirmestrommenge
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Fazit

Den Gegenstand des vierten Kapitels bildet die Entwicklung eines thermodynamisch konsistenten
Mehrphasenmodells fiir groe Deformationen. Auf der Grundlage dieses makroskopischen Modells
wurde sowohl die Austenitisierung wihrend der Auftheizphase als auch die Bildung von Martensit,
Bainit und Mischgefiigen wihrend der Umform- und der Abkiihlphase untersucht. Die Beschreibung
der Umwandlungsplastizitit erfolgte hierbei auf der Grundlage des Leblond-Ansatzes. Fiir die Ana-
lyse des allgemeinen plastischen Verhaltens wurde der klassische Ansatz der von-Mises-Plastizitét
eingesetzt. Ferner wurde die Implementierung des Modells um die spektrale Zerlegung des linken
elastischen Cauchy-Green-Tensors sowie die Kirchhoff-Spannung erweitert. Die anschlieBende FEM-
Simulation des Hybridumformprozesses liefert Ergebnisse, die eine sehr gute Ubereinstimmung zwi-
schen der errechneten Verteilung der martensitischen Phase mit der Gefiigeverteilung im Schliffbild
der realen Welle aufweisen. Des Weiteren wurde die Moglichkeit des Einsatzes der Finite-Elemente-
Methode fiir die Vorhersage der resultierenden Phasenverteilung durch die Variation der Prozesspara-
meter analysiert. Die Untersuchung des Einflusses der Ausgangstemperatur auf die Phasenverteilung
in der Welle hat aufgezeigt, dass durch das vorherige Vorheizen des Werkstiicks eine signifikante Bil-
dung des bainitischen Gefiiges im Flansch ermoglicht wird. Ferner steigt der bainitische Anteil bei
hoheren Ausgangstemperaturen. Die Verdnderung des Leistungsprofils der induktiven Erwirmung
stellt eine weitere Moglichkeit sowohl zur Veridnderung der Verteilung als auch der Form des harten
Bereiches dar. Im Rahmen dieser Analyse erfolgte die Modifikation der Phasengradierung exempla-
risch anhand von drei Variationen des Aufheizprofils.






Kapitel 5
Mehrskalenmodellierung

Die makroskopischen Effekte der Phasenumwandlung, Umwandlungsplastizitidt und Umwandlungs-
kinetik basieren auf Vorgiingen sowohl auf der Mikro- als auch auf der Mesoebene des Gefiiges. Um
diese Effekte anhand der numerischen Simulation nachbilden zu konnen, bedarf es eines physika-
lisch motivierten Materialmodells, das die Phidnomene auf allen Ebenen der Materialstruktur und die
Verbindung zwischen diesen Ebenen abbilden kann.

5.1 Konstitutive Gleichungen - Verallgemeinertes Modell

5.1.1 Thermodynamische Formulierung der Makroebene

Die im Rahmen dieses Kapitels verwendeten konstitutiven Gleichungen basieren auf der geometri-
schen linearen Theorie. Die Grundlagen sowie die verwendeten Annahmen wurden bereits in Ab-
schnitt 3.1.1 dargestellt und werden an dieser Stelle nicht ndher beleuchtet.

Abb. 5.1 Mehrskalenmodell: a) makroskopische Konfiguration %, b) mesoskopische Konfiguration eines Polykristalls
mit einem Volumenanteil £%, c) Mikroskopische Konfiguration eines Einzelkorns mit den Varianten A% ; Temperatur 0
ist homogen

In Abbildung 5.1 wird das Material sowohl als eine koexistierende Mischung von Polykristallen
als auch in Bainit und Austenit aufgespalten dargestellt. Im allgemeinen Fall ist die makroskopische
Konzentration der Legierungselemente im Material konstant und unabhéngig von der Zeit. Eine Aus-
nahme stellt z.B. die nicht homogene makroskopische Kohlenstoffverteilung nach einem Aufkohlpro-
zess dar. Da diese Sonderverfahren beim betrachteten Hybridumformprozesses keine Rolle spielen,
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wird die Kohlenstoffkonzentration im Material als homogen angenommen. Ferner wird korrespondie-
rend dazu auch die Temperatur 6 als eine makroskopische Grofe verstanden, die sich gleichméBig
im Polykristall verteilt. Die Kohlenstoffdiffusion auf dem mesoskopischen Niveau, d.h. innerhalb des
Polykristalls wéihrend der Phasentransformation (siehe dazu beispielsweise BHADESHIA [17]) wird
im Modell nicht beriicksichtigt. Beziiglich der Zusammenfassung der Bilanzgleichungen fiir Mehr-
skalenmodellierung wird auf Abschnitt 3.1.3 verwiesen.

5.1.2 Meso-Mikro-Ebene

Die in Abbildung 5.1.b dargestellte mesoskopische Ebene beschreibt sowohl die mechanischen als
auch die umwandlungsspezifischen Eigenschaften eines Polykristalls, der mit jedem Materialpunkt
der makroskopischen Konfiguration verbunden ist. Das Polykristall soll in Anlehnung an HACKL
UND HEINEN [48] aus N Kristallen bestehen. Im Allgemeinen kann die Anzahl der Kristalle in einem
Polykristall in Abhéngigkeit von der Position von @ zum Punkt P in der makroskopischen Konfigu-
ration Z (siche Abb. 5.1.a) variieren. Da im Rahmen dieser Arbeit die spezifische Anzahl der Kérner
in einem Polykristall nicht definiert wird, erlaubt die Form N = N(x) zwischen grob- und fein-
gekornten Arealen innerhalb des Materials zu differenzieren. Der Volumenanteil eines Kristalls mit
der Kristallorientierung i wird als £? bezeichnet. Ferner erfiillen alle Polykristalle auf der Mesoskala
die normierte Bedingung

N .
}:8=1~ (5.1
=1

Im Folgenden werden fiir alle Kristalle konstante Volumenanteile f i = (0 angenommen. Jedes Kristall
auf der Mikroskala hat n Varianten, wobei der Index j eine Spannbreite von 0 fiir den Austenit bis zur
Anzahl der bainitischen Varianten n aufweist. Hierbei erfiillt der Volumenanteil von austenitischen A\*
und bainitischen Varianten A%/, j = 1,...,n,i = 1, ..., N den Massenerhaltungssatz und jede Variante
hat eine Spannweite, die zwischen Null und Eins liegt. Zusammenfassend gilt fiir alle ¢ € {1,..., N}
und j € {1,...,n}:

LY A9 =1,

) =0
2? N >0, (5.2)
3. A< 1.

Prinzipiell kann das Ergebnis mit Hilfe der ersten zwei Bedingungen bestimmt werden. Die Bedin-
gung (5.2.3) wird lediglich zur Kontrolle des projizierten Newton-Algorithmus im spéteren Abschnitt
5.3 eingesetzt.

Die Austenitisierung vom niedriglegierten Stahl ist nur oberhalb der Gleichgewichtstemperatur
A1 moglich (siehe dazu Abschnitt 2.1.1). Daher kann Austenit bei Temperaturen unter A.; und iiber
Mg (martensitische Starttemperatur) in Ferrit, Perlit und Bainit transformieren. Eine umgekehrte Um-
wandlung ist bei dieser Temperaturfiihrung nicht zu erwarten. Im betrachteten Hybridumformprozess
tritt die Austenit-zu-Ferrit-Umwandlung und die Austenit-zu-Perlit-Transformation verfahrensbedingt
nicht auf. Aus diesem Grund wird im Folgenden lediglich die Transformation vom Austenit zum Bai-
nit berticksichtigt. Die Evolution derer Varianten muss folgende Bedingungen erfiillen:

1. 3 A7 =0,
2. Austenit A\ < 0, (5.3)

3. Bainit \¥ > 0.
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Des Weiteren wird eine additive Zerlegung des gesamten mesoskopischen Verzerrungstensors der
j-ten Variante vom ¢-ten Kristall angenommen

EZJ_EtJeJFE +Tltj_€ +€th+€ Jrn' (54)

€% besteht aus einem thermoelastischen Ete, einem plastischen € und einem Transformationsteil
ntJ. Ferner stellt der thermoelastische Teil ;) die Summe aus einem elastischen 531 und einem ther-
mischen Teil €,) dar. Der letzte Teil reprisentiert die thermische Ausdehnung

el = (0 —6p) A", (5.5)

mit A” als thermischen Ausdehnungstensor des i-ten Kristalls und der j-ten bainitischen Variante fiir
j > 0 bzw. vom Austenit fiir j = 0. Bei Vorliegen einer thermalen Isotropie gilt

A7 =], (5.6)

mit a*/ als thermischen Ausdehnungskoeffizienten.
In Gleichung (5.4) stellt ;’ die rotierte Transformationsverzerrung fiir die Variante j des Kristalls
1 dar. Diese erhélt man aus dem Zusammenhang

. T . . . -
n’ = (R -nl R, mity] =U, -1, (5.7)
wobei 17{ die linearisierte Transformationsverzerrung vom Austenit zur bainitischen Variante j, R’ €
S0Os, i = 1,..., N den Rotationstensor vom Kristall <, U ; den symmetrischen Verschiebungstensor

und I den Einheitstensor darstellen. Der Austenit wird als Referenzkonfiguration fiir die Transforma-
tionsverzerrung °° = 0 verwendet.

5.1.3 Makro-Meso-Beziehung

Fiir die weitere Analyse werden unter Verwendung der Reussdhnlichen-Mischungsregel zwischen der
makroskopischen und mesoskopischen Verzerrung folgende Beziehungen angenommen:

Mz

Nigii| 2 g, 1=

Z )‘Uete’ 3. gel = Z §L Z AUE&I’

o)
|
™=
r%s

=1 7=0 z:l 7=0 =1 7=0
4 ey =Y 63 NIED 5. =2 ¢ Z NIn, 6. ep =30 & Y Aep).
i=1 j=0 i=1 j5=0 i=1 j5=0

Hierbei ist € der makroskopische Verzerrungstensor aus Gleichung (3.2), €, = e + g4, 1, €pl
stellen jeweils den makroskopische thermoelastischen, den makroskopische Transformationstensor
bzw. den makroskopische plastischen Verzerrungstensor dar.

Durch Einsetzen des gesamten makroskopischen Verzerrungstensor (5.8.1) in Gleichung (3.21)
erhilt man die Spannungsleistung

P=c:é=o0: % Zglz/\” i ZfZZA”U e”+Z§’Zwa €. (5.9)

= 7=0 = 7=0
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5.1.4 Clausius-Duhem-Ungleichung

Die freie Helmholtz-Energie ¥
U=Vl ’e]l,q,C XN (5.10)

ist eine Funktion der (-: elastlschen Tensoren aus Gleichung (5.4), der internen verzerrungséhnlichen
Verfestlgungsvarlablen qk , = 1,...,ny, der Varianten A% mit den Nebenbedingungen (5.2) und der
Temperatur 6. Hierbei spielen )\’J die Rolle der internen Variablen. Wie schon in Abschnitt 5.1.1
erwihnt, wird die Temperatur 6 als eine homogenisierte Grofe fiir den Polykristall in Abbildung 5.1
betrachtet.

Setzt man die additive Zerlegung (5.4) fiir den totalen mesoskopischen Verzerrungstensor und Glei-
chung (5.9) fiir die Spannungsleistung ein, lisst sich die Clausius-Duhem-Ungleichung (3.20.3) um-
formen zu:

97—22( N aae

IEES TR w9 o

== el i=1 j=0 =1 =0 =1 O (5.11)
1 . g /A 1
_ZZ ”( —510':5”)—(77-1-6)9—QO'GTadGZO-
=1 j=0 )\” Po % /)09

Die Klammernausdriicke (piofi)\ij o—0ov/ 855) und (n + 0¥ /90) werden nach der Standardar-

gumentation der klassischen rationalen Thermodynamik [25] gleich Null gesetzt. Daraus folgen die
Relationen

- o ov ov ov
]_. v = l)\” = —_— = —_— 2 = — Q= 512
o I3 o = po aé‘lejl 0 85?67 n 20 ( )

wobei o/ als gewichteter Spannungstensor mit dem Volumenanteil der Variante j im Kristall 4 in-
terpretiert wird. Es gilt zu beachten, das diese nicht der realen Spannung der Variante j im Kristall ¢
entsprechen muss. Daher konnen o/ und 7 auch als thermodynamische Krifte betrachtet werden. Im
nichsten Schritt werden weitere thermodynamische Krifte definiert

o ow ; >
1. QY :POW, 2. AY = P05 —&o:eY. (5.13)
k

Hierbei représentiert sz die Verfestigungsspannung und A% die chemisch-mechanischen Treibkriifte
der Phasentransformation. Mithilfe der Dissipationstherme

N n n Mg N n
SR IIE S DAL » WY
i=1 j=0 i=1 j=0 k=1 i=1 j=0 (5.14)

2. 99 = —%qo - Grad @

kann die Clausius-Duhem-Ungleichung (5.11) umgeformt werden
poby = 2"+ 2° > 0. (5.15)

Diese Ungleichung ist auch erfiillt, wenn die einzelnen Summanden positiv sind (hinreichende Be-
dingung). Damit kann die notwendige Bedingung in Ungleichung (5.15) durch zwei hinreichende
Bedingungen ersetzt werden:
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1. Clausius-Planck-Ungleichung: 2° > 0,
(5.16)
2. Wirmeleitungsungleichung: ~ 2¢ > 0.

Der giingige Ansatz fiir den Wirmestromvektor in Gleichung (5.14.2) ist das Fourier-Gesetz
qo = — Mg - Grad @, (5.17)

mit \g als nichtnegativen Wirmeleitungskoeffizienten. Bei diesem Ansatz ist die Warmeleitungsfunk-
tion (5.14.2) fiir alle mogliche Temperaturwerte stets positiv und die Bedingung (5.16.2) immer erfiillt.
Fiir eine allgemeine Darstellung der inelastischen Dissipation (5.14.1) erweist es sich als notwendig,
die Evolutionsgleichungen

1 &Y = & (o, QY, A, N 6], .
2. N = A [0, QU AV, g, X 0]

so zu formulieren, dass die Clausius-Planck-Ungleichung (5.16.1) erfiillt ist. Damit soll die thermody-
namische Konsistenz des entwickelten Modells bewiesen werden. Die Evolutionsgleichungen (5.18)
sind in Bezug auf den Cauchy-Spannungstensor o, die Verfestigungsspannung @}’ und die chemi-
schen Krifte A%, die konjugierte GroBen der Variablen éZ, qff ,und A%/ in Gleichung (5.14.1) sind,
erfasst. Die Formulierung dieser Evolutionsgleichungen im Hinblick auf die thermodynamische Kon-
sistenz des Modells bildet den Gegenstand des nidchsten Abschnitts.

5.2 Konstitutive Gleichungen - Prototypmodell

5.2.1 Freie Helmoltz-Energie

Die Ermittlung des verallgemeinerten Ausdrucks fiir die freie Helmoltz-Energie gestaltet sich fiir den
n-Varianten-Fall kompliziert. Um die Evolution fiir n Varianten zu erméglichen, wird im Rahmen
dieser Analyse die Reussidhnliche-Mischungsregel verwendet (vgl. dazu z.B. [45]). Bei dieser Mi-
schungsregel werden die bainitischen Varianten als Schichtaufbau quer zur Belastung betrachtet.

Fiir die freie Helmoltz-Energie wird ein quadratischer funktionaler Verlauf angenommen, wobei
die elastischen Konstanten C7,,,,, der j-ten Variante des Kristalls ¢ analog zur Gleichung (5.7) trans-
formiert werden

Cie = Ri,RL R Ry Clp- (5.19)

pqrs

Die Energiedichte der Variante j vom Kristall ¢ lidsst sich demnach wie folgt definieren:

L Wil ¢ 00 = WS + v+, mit

el’ pl>?
9 i (el g = i iy Lo (g _ i
Yaleal = 9, Cel "€ = T(Ete K (el — €1
£o £o (5.20)
i i 1 g\?, 1 i\
3. Yplay] = TPOQOjb (Q1 ) + %Hj (Q2 ) ,
4. 9316) = AQ + Ad o0

Fiir die gesamte freie Energie gilt
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L wled, qf X9, &1 o= Wy + 0l + w4+ 0,
2. g,el[s “/\7] rf] = Z gz Z )\”ww [ el]
= =0
effr,i i = % < ij ij
3' LD [ )‘]5} Z;f ]z:o)‘ [1aQ2] (521)
4. w5 AY, € Zlf Zo ()\” - )\oj) (Ag3, +A¢ch0 0),
i=1 j
6 6 n
5. w0 ::/ caag—o [ g
0o 0, O

Der elastische Teil der freien Helmholtz-Energie ¥ beriicksichtigt die gespeicherte Energie in
Abhiingigkeit von der elastischen Verzerrung. C% reprasentiert in Gleichung (5.20.2) den Elasti-
zitétstensor vierter Ordnung mit den Koeffizienten (C’ pars- Im weiteren Verlauf der Analyse wird vom
effektiven Elastizitétstensor Gebrauch gemacht. Dieser wird definiert als

Cess)” ZSZA” (c)~". (5.22)

Geht man von einem isotropen Material aus, kann dieser Tensor in einen deviatorischen und einen
volumetrischen Teil aufgespalten werden

Cepp = G[O]I™ + K[9)I, (5.23)

wobei I"®” = I - ' und 1" = (1/3)1 ® 1 die deviatorische und volumetrische Einheitstenso-
ren vierter Stufe mit den Einheitstensoren zweiter 1 bzw. vierter Stufe I darstellen. Des Weiteren
reprisentieren K [f] und G[#] den temperaturabhingige Kompressions- bzw. den Schubmodul.

Der in Gleichung (5.21.3) definierte inelastische Teil ¥,, der freien Helmholtz-Energie reprisentiert
die Energiespeicherung infolge der inelastischen Deformationen, die unter anderem durch lineare und
nichtlineare isotrope Verfestigung verursacht werden. ¢;’ und g5’ sind verzerrungsihnliche interne
Variablen mit den dazugehdrigen Materialparametern H;, (,; und b. Dies bedeutet, dass die Anzahl
der verfestigungsabhiingigen Variablen in Gleichung (5.10) n, = 2 betrégt.

Der Term ¥, in Gleichung (5.21.4) stellt die aus den Phasentransformationen resultierende, ef-
fektive chemisch gespeicherte Energie dar. Die konstante chemische Energie A¢ sowie der tempe-
raturabhéngige Teil A(ngz,@ des chemischen Potentials werden mit der j-ten Variante im ¢-ten Kristall
verbunden. Fiir die Anfangswerte der Varianten gelten die Beziehungen

1LA] <XV fiirj > 1, 2. A0 > \I0, (5.24)

Fiir den Fall fehlender Phasentransformationen, der beispielsweise bei A% = )\éj vorliegt, tritt der
Term fiir die chemische Energie in Gleichung (5.21.4) nicht auf.

Die Variable ¥? in Gleichung (5.21.5) reprisentiert die thermische gespeicherte Energie (siehe
dazu z.B. RANIECKI und BRUHNS [108]). Hierbei wird zur Vereinfachung die Abhéngigkeit der spe-
zifischen Wirmekapazitit cq von den Varianten vernachlissigt. In Ubereinstimmung mit Gleichung
(5.21.4) kann cq als spezifische Wirmekapazitit der anfinglichen Zusammensetzung der Varianten
Ag ' verstanden werden.
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5.2.2 Thermodynamische Krifte

Die thermodynamischen Krifte ergeben sich aus Gleichungen (5.12) und (5.13). Folglich stellt der
makroskopische Cauchy-Spannungsstensor fiir die freie Helmholtz-Energie in Gleichung (5.20) die
konstitutive Gleichung (5.12.1) fiir die Variante j im Kristall ¢ dar
ij iyij ov QNG viG . oA i\ id [vid N\
1. o =&\ ijg)\J(Cj:sel = 2. {"AV[CY]™ lo = ¢ \Ue! el  (5.25)
5

el

Die Anwendung der gewichteten Summen iiber alle Kristalle und Varianten in Gleichung (5.25.2)
resultiert in

Z ¢ Z NI [C) g = Zgl Z A, (5.26)
i=1  j=0

Gleichung (5.26) lisst sich unter Finsatz der Definition (5.8) fiir die makroskopischen Verzerrungs-
tensoren sowie der Gleichung (5.22) fiir den effektiven Elastizititstensor umformen zu:

o =C.pp:e (5.27)

Definiert man die totale elastische freie Energie als
el i 1 el el
U (e, AV, €)== —e® : Cepyp : %, (5.28)
2po

erhilt man in Ubereinstimmung mit Gleichung (5.27) die makroskopische konstitutive Gleichung

or
8€el

Die additive volumetrisch-deviatorische Zerlegung in Gleichung (5.29) ist das Ergebnis der Darstel-
lung von C. in Gleichung (5.23).

Ferner lassen sich aus Gleichungen (5.13), (5.20) und (5.21) sowohl die Verfestigungsspannungen
als auch die chemischen Treibkrifte ermitteln

o =po = Ceyy : €% = G[f]deve + K[0]tre®'1. (5.29)

i ov ii ov ii
]-~Q1J = P07~ Qoybq ) = i ijJv
8@‘11 8q2
2. N0 = 00 NI ,gl el
) (5.30)
=[50 (€ oo (€ e ) — vy

—po(Ad, + Add 4 0)

In Gleichung (5.30.1) reprisentiert Q% die nichtlineare und Q;j die lineare isotrope Verfestigung. Die
chemische Treibkraft, die einen Teil der totalen treibenden Kraft in Gleichung (5.30.2) darstellt

AV = Epo(Ad, + Adgh - 0), (531)

kann als Volumendichte der freien Enthalpie der Variante A/ im deformationslosen Fall interpretiert
werden. Abbildung 5.2 veranschaulicht die Variation der chemischen treibenden Krifte vom Bainit
und Austenit in Abhéngigkeit von der Temperatur.

Im betrachteten Prozess stellt der Austenit das Ausgangsgefiige in allen Kornern ¢ € [1--- N]
dar. Ferner erfolgt, wie schon in Abschnitt 5.1.2 begriindet, die Umwandlung nur in eine Richtung,
ndmlich vom Austenit zum Bainit. Daher kann die Rate des Austenitanteils der jeweiligen Korner mit
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A, p

Abb. 5.2 Schematische Abbildung der chemischen treibenden Kraft des Bainits und des Austenits in Abhéngigkeit von
der Temperatur

Hilfe von verbliebenen Raten der Bainitvarianten unter Einsatz der Nebenbedingung (5.3) bestimmt
werden

NO — Z N (5.32)
j=1

Dies erlaubt eine Umformulierung der Dissipation in Anlehnung an Gleichung (5.14)

SN =[S A0 R g 4040 | = 3 (A% - g (5:33)
j=0

Jj=1 Jj=1

5.2.3 Evolutionsgleichungen der Phasentransformationen

In Gegensatz zu der martensitischen displazive Phasentransformation wird die bainitische Phasen-
umwandlung durch Diffusionsprozesse begleitet. Dies macht die Bainitbildung zeitabhingig. Die
ausfiihrliche Beschreibung der Bainitbildung ist in Abschnitt 2.1.3 gegeben. Es wird hier postuliert,
dass die Bainitvarianten sich unabhingig voneinander bilden konnen und allein von der treibenden
Kraft der jeweiligen Variante abhéngig sind. Die Analogie dazu ist in der Modellierung der Kristall-
plastizitit [59] zu finden. Zur Formulierung der Evolutionsgleichungen der Phasentransformationen
werden die aus der Modellierung des viskoplastischen Verhaltens stammende Methoden verwendet.
Demnach lassen sich die Evolutionsgleichungen fiir die bainitischen Varianten mit Hilfe des Perzyna-
Ansatzes wie folgt formulieren:

1\ e I
1. Evolution der bainitischen Varianten \¥/ = — <Q5;JT> ' (H N0, N9)™ 4,5 >0,

ntr
2. Evolution des Austenits N0 = — > A )
= (5.34)
3. FlieBfunktion Plr = A — fo, (A0 — AV) — [,

4. Sattigungsfunktion H N0 = (/\1'0)Sl ()\ij)SQ )
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Die Macaulay’schen Klammern (o) in der Evolutionsgleichung (5.34.2) gewihrleisten, dass die Be-
dingung (5.3.3)

X7 >0

stets erfiillt ist. Zudem stellt die Uberspannungsfunktion 43?, in Gleichung (5.34.1) sicher, dass die
Bildung der bainitischen Varianten erst dann beginnt, wenn die Differenz zwischen den freien En-
thalpien von Austenit und Bainit die energetische Barriere f. iibersteigt. Dieser Sachverhalt wird in
Abbildung 5.2 veranschaulicht. Die Evolution des Austenits wird aus der Nebenbedingung (5.3.1) als
negative Summe iiber die Raten der bainitischen Varianten berechnet. Die Wachstumsrate des Bainits
(Gleichung (5.34.1) ) ist von der Siattigung H in Gleichung (5.34.4) abhingig. Dies gewdhrleistet
in Ubereinstimmung mit den experimentellen Daten eine verlangsamte Bildung des Bainits bei ei-
ner abnehmenden Menge an Austenit. Folglich konnen alle erforderlichen Materialparameter fiir die
Beschreibung der Evolution der bainitischen Varianten zusammengefast werden

K’{p = [fcantr;ntm’YvSlvAgb?ﬁvAd)?ﬁ,e]' (535)

Grundsitzlich konnen in diesem Modell jeder einzelnen bainitischen Variante verschiedene Ma-
terialparameter zugewiesen werden. Zur Vereinfachung wird im Rahmen dieser Analyse auf diese
Moglichkeit verzichtet und der gleiche Satz von Materialparametern fiir alle Varianten verwendet.
Dies bedeutet, dass fiir jede Evolutionsvariante lediglich ein Parametersatz existiert (siche Tabelle
5.9).

5.2.4 Evolutionsgleichungen der Viskoplastizitiit

Fiir die Simulation des inelastischen Verhaltens wird die zeitabhéngige Viskoplastizitéit in Kombinati-
on mit nichtlinearer isotropischen Verfestigung ausgewéhlt. Fiir é;jz der j-ten Variante des i-ten Kris-
talls wird die allgemein gebriuchliche FlieBregel (vgl. dazu beispielsweise LEMAITRE AND CHABO-
CHE [76]) angewandt

y 3
1. FlieBregel é;]z = \/; [ n,
. s 1 - pl Npj
2. FlieBfaktor il = )i <¢ij> ,
Mpj
o'
3. FlieBrichtung n = —dev_. (5.36)
|
dev
4. Uberspannungsfunktion @f]l- =0l —(V; + QY +Q5),

)

5. Vergleichspannung (von-Mises) o/ = \/; HU”

dev

wobei /i den viskoplastischen Multiplikator, @f} die viskoplastische Uberspannungsfunktion, agw
den deviatorischen Spannungstensor und n den Normalvektor, der die Bedingung ||n| = 1 erfiillt,
darstellen. Die Notation ||e|| = (e : .)1/ ? reprisentiert die Norm des Tensors zweiter Stufe.

Aus Gleichung (5.36.1) folgt die Beziehung

L 2 |
5] — - =]
“ —\/;H “pl

— i (5.37)
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Demnach verallgemeinert e/ die akkumulierte plastische Verzerrung. Fiir die internen Variablen qij
und g5’ werden folgende Evolutionsgleichungen angenommen:

ij
L g = (1 - QE) ey, 2. g5 = ¢l (5.38)

Aus der Verwendung der Beziehung (5.30.1) erhilt man den Zusammenhang Q / Qo = blq1 , der
anschlieBend in Gleichung (5.38) integriert wird

0 = (1-bai?) é. (5.39)
Die Losung dieser Differenzialgleichung lautet:
¢7 =1 — exp[—beid]. (5.40)
Somit ergibt sich fiir die Summe der beiden Verfestigungsspannungen aus (5.30.1) der Ausdruck
Q" = QY + QY = Qo;(1 — exp[—beld]) + Hjell. (5.41)

Samtliche Materialparameter der j-ten Variante in allen Kristallen, bezogen auf den viskoplastischen
Verzerrungstensor s” konnen zusammengefast werden zu

K’]vlp = [npj7npj7§/j7on7vab]' (542)

5.2.5 Thermodynamische Konsistenz

Die thermodynamische Konsistenz des betrachteten Modells ist gewihrleistet, wenn die Clausius-
Planck-Ungleichung (5.16.1) erfiillt ist. Es wird an dieser Stelle darauf hingewiesen, dass das visko-
plastische Verhalten aktiviert ist, wenn die Uberspannungsfunktion ¢ in Gleichung (5.36) positiv ist

Pl =g — (Y +QV +QY) >0 = >0, of —QF —Q¥ >Y4l.
Dieses bleibt bei einer negativen Uberspannungsfunktion ¢ in Gleichung (5.36) unverindert
P =0 —(V;+Q +Q¥) <0 = i =0.

Die Verwendung der FlieBregel (5.36. 1) der Evolutlonsglelchungen (5.38.1), (5.38.2) fiir die Visko-
plastizitit und die internen Variablen q1 und q2 , der Bezeichnungen (5.24) (5.37) sowie der Akti-
visierungsenergie (5.34.1), der Uberspannungsfunktion in Gleichung (5.34.2) resultiert in folgender
Formulierung der Clausius-Planck-Ungleichung (5.14.1):

n

N
=0 (o ey - Qva - @Yay — 49AY)

i=1 j=0

. . (5.43)
-3 (o 0 —a) et |+ 3 (a0 vz
i=1 j=0 0 i=1j=1

>Y[0)] >fc

Da Y'[#] und A% — A% stets nichtnegativ sind, ist das entwickelte Modell thermodynamisch konsistent.
Ferner ist dieses Ergebnis von der Wahl der jeweiligen Evolutionsgleichung fiir die Bainitvarianten
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unabhingig. Die Zusammenfassung der konstitutiven Gleichungen des vorgestellten Mehrskalenmo-

dells erfolgt in Tabelle 5.1.

Makroskopische Gleichungen
Impuls und Wirmeleitung:

po it — Div(e) = po fin «%X]O.T[

n
po ¢ — Div(Ag V8) = ZZO’ £l ZZZQ i+

i=135=0 i=17j=0k=1
N n 80’” B N n
+ 0—— : &Y + LU0\ 0

mit Rand- und Anfangsbedingungen aus Gleichung (3.22).

Effektiver Elastizitétstensor Ces: (Ce f f) = Z g Z;l: o A (CH) ™ 1

Makro-Meso-Ubergang der Spannung und Verzerrung
Mesoskopischer Spannungs- und Verzerrungstensor:

ij _ (i) o ij ZJ ij i _ i i
o =CY, € €t e, +n], mit e;] = e +¢€,,

Makroskopischer Verzerrungstensor:

N n N n
e=D ¢ AeT ew=) € e, en= Zé ZA” e
=1 7=0 =1 J=0

Mesoskopischer Spannungstensor: o/ = ¥ \¥ o.

Evolutionsgleichungen der Phasenumwandlung und Viskoplastizitiit
Evolutionsgleichungen des Phasenanteils der bainitischen Varianten

A= L (A0 — A9 — )™ (HAN)™" fiird,j >0, A0 =
Ntr

mit den Anfangsbedingungen: A%/ = 0 fiir4,5 > 0 und \%© = 1.
Evolutionsgleichungen der viskoplastischen Verzerrungen und internen Variablen:

i = 3L iy Qi g Qe T
Epl = 57_«70 (Y; + Q7 +Q3')) T I

77pJ llo g,

G 2
& = 17—1 \ﬂe q;J=\£ue;’l||

mit den Anfangsbedingungen SZ (0) =0, qij([)) =0 und q;j(O) =0.

Makroskopische Spannungs—Dehnungs—Beziehung' o =Cqyy (s(u) — &y — Ep1 — nt>.

in x]0.T],

N n
=) &> Nin.
=1 7=0

n

S> .

Jj=1

Tabelle 5.1 Zusammenfassung der konstitutiven Gleichungen des Mehrskalenmodells
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5.3 Numerische Implementierung

In diesem Abschnitt erfolgt die numerische Implementierung der konstitutiven Gleichungen.

5.3.1 Formulierung der diskreten Zustandsgleichungen

Zur numerischen Implementierung der konstitutiven Gleichungen aus Abschnitt 5.2 wird das ver-
zerrungsgesteuerte Verfahren angewendet, wobei der totale Verzerungstensor "*'e die Anfangswer-
te der Varianten "% und der viskoplastische Multiplikator "% zu jedem Zeitpunkt "*'¢ gegeben
sind. Folglich gilt es korrespondierende Mengen "T*\% und "*! 4% zum Zeitpunkt "*1¢ zu finden,
die mit den konstitutiven Gleichungen des vorangegangenen Kapitel konsistent sind. Zwecks einer
iibersichtlichen Darstellung wird der Index n + 1, der den aktuellen Zeitschritt kennzeichnet, wegge-
lassen.

Fiir die numerische Integration der Phasentransformationsvarianten A%/ wird das implizite Euler-
Verfahren mit folgendem Aktualisierungsschema verwendet:

N = m\G AN, (5.44)
Das Inkrement der Phasentransformationvarianten wird aus Evolutionsgleichungen (5.34) ermittelt

AN — Atni (AT — AT\ — fN"T (HN0)™ (5.45)
tr

Ferner ergibt sich aus Gleichung (5.3.1) das Inkrement der Austenitphasentransformation
ANO = — Z AN, (5.46)
j=1

Analog dazu wird das implizite Euler-Verfahren im Aktualisierungsschema
ptd ="t A, (5.47)

fiir die numerische Integration von viskoplastischen Variablen 1™/ verwendet, wobei das Inkrement
des viskoplastischen Multiplikators aus Evolutionsgleichungen (5.36) abgeleitet wird

. N\ né
Apid = AtnT <¢;fl> " (5.48)
pl

Aus Gleichungen (5.45) und (5.48) werden zwei Zustandsresiduen definiert

L rlANT] = A — 49N — fo = (F2) T (Axi) T H[\O]
o (5.49)
ij ij ij ij Apv 77Jl "l
2 rilAn?) = 71 - < Arai)

Es ist erkennbar, dass die Ergebnisse eines stark gekoppelten Modells unter Beriicksichtigung des
Einflusses der Varianten A% sich auf das viskoplastische Materialverhalten in Gleichungen (5.36)
auswirken und die plastischen Verzerrungen s;]l einen Einfluss auf die chemischen Krifte fiir die
Phasentransformation in Gleichung (5.30) haben.
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Weil es sich hierbei um ein hoch komplexes, stark gekoppeltes nichtlineares Problem handelt, stellt
die numerische Implementierung eine anspruchsvolle Aufgabe dar. Zur Reduzierung des Implemen-
tierungsaufwands wird ein zweistufiges Verfahren verwendet, das wie folgt aufgebaut ist:

Schritt I:  Bestimmung der Varianten A\*/ mit Hilfe des projizierten N ewton-Verfahrens, kombiniert
mit einem Arbeits-Set-Algorithmus, wobei die viskoplastische Verzerrung €;Jl als konstant ange-
nommen wird.

Schritt II:  Bestimmung der Viskoplastizitit unter Einsatz der Newton-Iteration und der Radial-
Return-Methode, mit konstanten Varianten A%/ .
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Abb. 5.3 Numerische Implementierung: zweistufig gestaffeltes Verfahren

Die Staffelung des Verfahrens wird damit begriindet, dass zwischen den zwei Schritten eine Semi-
Kopplung besteht. Wihrend der getrennten Priifung ist die Bestimmung der Varianten im ersten
Schritt und die Ermittlung der Plastizitit im zweiten Schritt implizit. Des Weiteren muss aufgrund
der Tatsache, dass die FlieBspannung in der austenitischen Phase wesentlich kleiner ist als in der bai-
nitischen Phase, nur das plastische Verhalten in der austenitischen Phase wihrend der Umwandlung
beriicksichtigt werden. Daher wird die Relation (5.49.2) nur fiir den Fall 5 = 0 behandelt. Dariiber
hinaus werden isothermische Umwandlungen anhand der im néchsten Abschnitt prisentierten Bei-
spiele simuliert. Da thermische Verzerrungen e,; nur einen marginalen Teil der Gesamtverzerrung
darstellen, werden diese vernachléssigt.

Die detaillierte Beschreibung des projizierten Newton-Verfahrens im Algorithmus I und der
Newton-Iteration kombiniert mit der Radial-Return-Methode geschieht in den folgenden zwei Ab-
schnitten.
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5.3.2 Projizierte Newton-lIteration, Algorithmus 1

Um die von den Variantenvolumenanteilen A/ abhiingigen Residuen aus Gleichung (5.49.1) so 16sen
zu konnen, dass sowohl die Zustandsbedingungen (5.2) als auch die Entwicklungsbedingungen (5.3)
gleichzeitig erfiillt sind, wird eine Newton-dhnliche Projektionsmethode verwendet. Das Grundprin-
zip dieser Methode stammt von BERTSEKAS [12], die Anwendung wurde von MAHNKEN [84]
iibernommen. Zunichst werden die Unbekannten in einem Vektor X zusammengefasst. Ferner wird
ein residualer Vektor definiert, der die reduzierten Zustandsresiduen 7% aus Gleichung (5.49) mitein-
ander verbindet

L.X={\4 j=0,.,ni=1,.,N}

I _ (5.50)
2R ={rY,7=0,..,n,i=1,..,N}

Eine Zusammenfassung des projizierten Newton-Algorithmus, kombiniert mit einer Line-Search-
Backtracking-Strategie [84], erfolgt in Tabelle 5.2.

0. Setze k = 0, initialisiere den Vektor der Unbekannten, das Residuum und die Suchrichtung
Setze 5 =0.1,ap = 1.0

Xy = {BNfgysi = L, myj = 1,y N}

S(k=0) = 0, HEZ;C:())H —* 0o

1. Schrittweitenalgorithmus: Bestimme die kleinste Zahl I = 0,1,2, ... fiir o) = Blag, so dass ||R* Xl <

12" (X[, mit
Unbekannten Xy = 3”. (g(k) + a(l)§(k)>
Residuen Ry = {ry ki =1Lomi=1., N}
Arbeits-Sets I = {igl(AT (NG, ) — fe) < 0}

g = (A, = 0}
Fyt = {ig\{ I} or I0}
ij . tr (k1)
o . . [px _ gy W E Ip
projizierten Residuum E(k,b [El ] 1) { 0 sonst.
2. Uberpriife Toleranz: Wenn || R* (X (k)| < tol, dann
Post-Processing: Bestimme die Spannungen: o = C.ff (€6 — m — sZ) und den Tangentenmodul: C = do /de,

aktualisiere Varianten: A%/, Ende
3. Berechne Jacobi-Matrix

OR ij
Iy =73 = 787””..

0X DANY
4. projizierte Jacobi-Matrix ~ J¢, ) = [lfm](k) =P 1))

-1
5. Berechne Suchrichtung 5.1y = — [l?’ﬂ] R0
6. Aktualisiere XUCJH) =X(k,l)’ Ry = B(k,l)’ k— k+1,gehezul

Tabelle 5.2 Projizierter Newton-Algorithmus fiir ALGO I zum Zeitpunkt ®t1¢. Die Indizes k und [ beziehen sich
entsprechend auf die Newton- und Line-Search-Iteration

Hierbei nehmen der Vektor der Unbekannten, das Residuum aus Gleichung (5.50) und die Jacobi-
Matrix aus Schritt 3 in Tabelle 5.2 unter Verwendung der Matrixnotation die Form an
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ok ok} o} ]
AnlL T OANT 9ANZ T gANNT
A\L2 rtlf E)rtlz (97}12 8rt12
1. X =A\= A/\Em ,2.R=1,. = J:V1 3.0 = 9ANT 9AN2Z T gANNT
. Tir : : : :
AXN® ijn argN  orpN arpN
" | OANT 0ANZ T 9 AN |

(5.51)

Die Dimensionen der Vektoren und der Jakobi-Matrix sind abhiingig von der Anzahl der Korner sowie
der Bainitvarianten und entsprechen dim(r) = dim(\) = N (n + 1) und dim(J) = (N (n + 1))2. Unter
der Annahme, dass Indizes in Tabelle 5.2 mit4j € J;r beginnen, konnen fiir das projizierte Residuum
und die projizierte Jacobi-Matrix folgende Ausdriicke verwendet werden:

T O
1.R* = P(R) = L2 =)= | 0AN | . (5.52)
0 0 I

Hierbei stellt I die Einheitsmatrix dar und die Dimension des Vektors der projizierten Residuen ist
dim(r},) = |szr|. Der in Tabelle 5.2 représentierte, projizierte Newton-Algorithmus findet den Zu-
stand fiir das Residuum, fiir den gilt

R'[X]=0. (5.53)

Im néchsten Schritt wird die Merit-Funktion als f[X] = ||R*[X]|| definiert. Ferner werden mit Hilfe
der Bedingung f[X] = 0 die Unbekannten X bestimmt. Aus dem Produkt der Suchrichtung und des
Gradienten von f in Abhéingigkeit von X folgt:

g of

J|R"|| 1 1 B
T ZH= 1 T gT p* _ T 1x—T 1T p*
5 ox s IR R JJ R

ox |IE[ T |4

=S

(5.54)
= —||R*|| < 0.

Demnach dient die Suchrichtung s in Schritt 5 des Algorithmus (Tabelle 5.2) als abnehmende Rich-
tung fiir die Merit Funktion ||R"|| (sieche dazu auch LUENBERGER [79]). Auf diesem Weg wird die
globale Konvergenz gewéhrleistet. Beziiglich der quadratischen lokalen Konvergenz eines projizierten
Newton-Algorithmus wird auf BERTSEKAS [12] verwiesen.

Der Projektionsoperator &2 in Schritt 1 des Algorithmus wird wie folgt definiert:

P[z] = max{min{z, Tmin }, Tmaz }- (5.55)

Ferner werden fiir die Varianten A"/ sowohl die unteren als auch die oberen Schranken x,,;, =
0, Timae = 1 festgelegt.

Lésst sich der Vektor der Unbekannten X in der Weise bestimmen, dass alle Zustandsbedingungen
erfiillt sind, wird in Schritt 2 des Algorithmus ein Post-Processing durchgefiihrt. AnschlieBend wer-
den die Spannungen o entsprechend der Gleichung (5.27) bestimmt. Die detaillierte Herleitung des
Tangentenmoduls C = do/de wird in Abschnitt 5.3.4 erldutert.

Fiir eine groe Anzahl an Kornern NV ist die Bestimmung der Suchrichtung s in Schritt 5 mit der
Losung eines linearen Systems an Gleichungen verbunden und kann sehr aufwiéndig werden. Dieses
Problem kann durch den Einsatz unterschiedlicher Iterationsmatrizen umgangen werden (siehe dazu
[28, 84]). Im einfachsten Fall kann die Jacobi-Matrix durch eine Einheitsmatrix ersetzt werden. Dies
reduziert den projizierten Newton-Algorithmus auf einen projizierten Gradientenalgorithmus (siche
dazu [24, 84, 90, 145]).
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5.3.3 Viskoplastizitdit, Algorithmus I1

Im nichsten Schritt der Implementierung wird das Modell um die Anwendung des Greenwood-
Johnsson-Effekts (siehe dazu Abschnitt 2.1.5) erweitert. Dieser Effekt wird durch die Plastifizierung
in der austenitischen Phase generiert und beriicksichtigt auler der Wirkung des reinen Magee-Effekts,
der lediglich durch die energetisch bevorzugte Anordnung der bainitischen Varianten in Bezug auf Be-
lastungsrichtung verursacht wird, plastische Verzerrungen. Dies impliziert, dass die lokale Spannung
in verschiedenen Kornern grofer sein muss, als die FlieBspannung des Austenits, selbst fiir den Fall,
dass die globale Spannung die FlieBspannung des Austenits unterschreitet.

In diesem Abschnitt wird ein einzelnes Korn i betrachtet. Zur Losung des Residuums (2) in Tabelle
5.3 unter Beriicksichtigung der Inkremente des viskoplastischen Multiplizieres 1* wird der Newton-
Algorithmus in Kombination mit der Radial-Return-Methode eingesetzt. Die Grundprinzipien dieser
Methode sind von SIMO and HUGHES [117] entwickelt worden und wurden im Rahmen dieser Ana-
lyse zur Formulierung der konstitutiven Gleichungen (5.36) verwendet.

0. Setze k = 0, i=1, initialisiere den Vektor der Unbekannten und das Residuum
K(k:()) = {AM22+1)7i =0,.., n}

1. Uberpriife FlieBbedinung: wenn (4527’"0 < 0), dann gehe zu 5
2. Berechne die Unbekannten A;ﬂ(g +1)

) ) ) ) Api0 npl
mit Residuen r;(l)[A,ulo] = 45;3 [Apt0] — Aut Wpl) "
] ) a,r,i() A 10
und Jacobi-Matrix J*[Ap0] = L’g]
OAu®
Apay = Ay — (JO[ARC]) T rRAR®]

3. Uberpriife Toleranz: wenn \T;O\ > tol, dann gehe k — k + 1 zu 1.

4. Aktualisiere e;ﬁ =n s;(l) + Aazol, mit A€;3 = \/; Ap®9 i — i 41, wenn i < n dann gehe zu 1.
5. STOP

Tabelle 5.3 Newton-Algorithmus fiir ALGO II zum Zeitpunkt *1¢. Die Indizes k und I beziehen sich entsprechend
auf die Newton- und Line-Search Iteration

Im Algorihitmus II sind die Anteile der bainitischen Varianten A%/ konstant. Damit kann der Tensor
der umwandlungsplastischen Verzerrung aus Gleichung (5.8.5) berechnet werden

n'= 3 N ny. (5.56)
J:

Die Verwendung des impliziten Eulerschen Integrationsschemas fiir die Evolutionsgleichungen (5.36)
liefert den Verzerrungstensor im Korn ¢

E;‘D(; _ né:;,)(? + As;‘)(l)_ (5.57)

Der elastische Verzerrungstensor im Zeitpunkt "¢ lisst sich aus Gleichung (5.4) ermitteln

eu=¢—n'— ey (5.58)
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Die anschlieBende Multiplikation der Gleichung (5.58) mit dem elastischen Tensor vierter Ordnung
und die Beriicksichtigung der Gleichungen (5.57) liefert nach mehreren Umformungen das Pendant
der Gleichungen (5.36)

1. Spannung im Korn ¢ ol = ol + ailev, mit
A U i0
Odev = Oden 2GA€pl7
tra dev . (i _n i i
og =2GI : (e =" el —n'),

ol, =K (tr(e' —n")) 1,

. i 3 A
2. FlieBregel Ael) = \/;A,u‘on,
3. FlieBrichtung n = Ufe” , (5.59)

Ha-devH

- i0 o 1 io\""!

4. FlieBfaktor Ap® = X0 _— <<15;,l> At,
Tlpt

- - i0 31 i i0
5. FlieBbedingung Dy = 5 Hade — R™ - Yy,
6. Aquivalente plastische Verzerrung el = "ei0 + Ayi0,
7. Isotrope Verfestigung R = Hel” + Qo (1 — exp(—bell)) .

Folgende Ableitungen machen von der Tatsache Gebrauch, dass a'fiev aus Gleichung (5.59.1) unter
Verwendung der Gleichungen (5.59.2), (5.59.3) und (5.59.5) umformuliert werden kann

Oy = o0 QG\FAMO Tdev . (5.60)
2 H dev ||

Nach der Argumentation der Radial-Return-Methode (siehe dazu beispielsweise SIMO und HUGHES

[117] und die Referenzen darin) hat Gleichung (5.60) zwei Konsequenzen. Erstens ist ersichtlich, dass

sowohl o, als auch affei koaxial sind, so dass die FlieBrichtung in Gleichung (5.59.3) sich wie folgt

ausdriicken ldsst:

tr,e

nt = pTge, - e (5.61)
Ho-devH ’ O'de’v
Zweitens erhélt man die Skalarbeziehung
Lol = Haﬂ - 2G\/§Aui°. (5.62)

Im néchsten Schritt wird das Residuum aus Gleichung (5.59.4) definiert

. . . X Aﬂlo ,,] ! npl
7 201 __ 510 70 _
ri [ Ap®) = 6 A ]( ST =0. (5.63)

Aus der Verwendung der FlieBbedingung (5.59.5) sowie der Gleichung (5.62) ergibt sich:

i 7 3 tr,i
rpl [A:u’ O] = \/;’ o-de’v

A N\
3G AL° — (A“t Z”é) " ROALY] Yy =0.  (5.64)
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Dadurch werden die diskretisierten Gleichungen (5.59) auf ein eindimensionales, ausschlielich vom
FlieBfaktor Ay abhiingiges Problem reduziert. Fiir dessen Losung wird die Newton-Methode ein-
gesetzt

I I Til[AM;CO]
AM(%—}-l) = Ap’ko - LI],[TN}P]’ k=0,1,2,... (5.65)
A = 31";1 [Ayio} _ 345;(; [Afuio] B 1 Api® ny \ Tt 566
aAluzO aAluzO nplAMiO At \i0 ’ :
aQSY n 10
DAN = — (3G + H + bQo exp [-b("e, + Au™)]) , (5.67)

wobei sich der Index k auf die Iterationsnummer bezieht.

5.3.4 Der Tangentenmodul

Die iterative Losung der globalen Finite-Elementen-Gleichgewichtsgleichungen mit Hilfe der Newton-
Methode erfordert den Einsatz eines algorithmischen Tangentenmoduls, welches durch Ableitung des
Spannungstensors o nach dem Verzerrungstensor € definiert wird. Fiir den Fall der Abhiingigkeit des
Spannungstensors o von den Unbekannten X = [A\| Api®]T gelten die Bedingungen:

_do  Oo o HANY

— \id - - S 5.68
o=o0(e,\Ni(e)) = =~ 3 EYV ® —2 (5.68)
DANY /e lisst sich aus der Residuumgleichung (5.52) ableiten
y dR* OR" OR* DANI
* (e, ANY =0 = == = _ =0. 5.69
R* (e, (e)) =0 = T 5c AN ® =52 0 (5.69)
Unter Verwendung der Jacobi-Matrix erhilt man den Zusammenhang
DANY OR* \ ' OR 1 OR*
Oe <8A)\”> Oe L] Oe (5.70)

Daraus lisst sich der geforderte Term AN /O ableiten. Die partiellen Ableitungen des Spannungs-
tensors nach den bainitischen Varianten der Spannung liefern folgende Ergebnisse:

oo
ONY

= —fi (Ceff : ((Cij)_l : Ceff) : (E — n) — (Ceff fl ’I’]ij . (5.71)

5.4 Numerische Beispiele

Dieses Kapitel befasst sich zundhst mit den Simulationen von Materialverhalten in einer monokris-
tallinen Mikroskala wihrend der Phasentransformation vom Austenit zum Bainit. Die daraus resul-
tierenden Effekte werden auf eine polykristalline Makroskala iibertragen. Die Simulation umfasst
24 mogliche bainitische Varianten fiir Mono- und Polykristalle. Im letzten Fall handelt es sich um
stochastisch unterschiedlich orientierte Korner. Da fiir niedriglegiere Stdhle keine gemessenen Trans-
formationstensoren existieren, werden hier anhand des Ansatzes von WECHSLER et al. [140] synthe-
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tisch ermittelten Werte verwendet. Die Umwandlungstensoren fiir die Varianten sind in Tabelle 5.4
aufgefiihrt.

Uy 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
U; 1.0000 1.0296 1.0000 0.1860 0.0000 0.0000
Uz 1.0000 1.0000 1.0296 0.0000 —0.1860 0.0000
Us 1.0000 1.0000 1.0296 0.0000 0.1860 0.0000
U4 1.0000 1.0296 1.0000 —0.1860 0.0000 0.0000
Us 1.0000 1.0000 1.0296 0.0000 0.1860 0.0000
Ug 1.0000 1.0000 1.0296 0.0000 —0.1860 0.0000
U7 1.0000 1.0296 1.0000 —0.1860 0.0000 0.0000
Usg 1.0000 1.0296 1.0000 0.1860 0.0000 0.0000
Ug 1.0000 1.0000 1.0296 0.0000 0.0000 0.1860
Ujyp 1.0000 1.0000 1.0296 0.0000 0.0000 —0.1860
Uy; 1.0296 1.0000 1.0000 0.1860 0.0000 0.0000
Uy 1.0296 1.0000 1.0000 —0.1860 0.0000 0.0000
U3 1.0000 1.0000 1.0296 0.0000 0.0000 0.1860
U4 1.0000 1.0000 1.0296 0.0000 0.0000 —0.1860
U5 1.0296 1.0000 1.0000 —0.1860 0.0000 0.0000
Ui 1.0296 1.0000 1.0000 0.1860 0.0000 0.0000
U7 1.0000 1.0296 1.0000 0.0000 0.0000 0.1860
Ujs 1.0000 1.0296 1.0000 0.0000 0.0000 —0.1860
Uig 1.0296 1.0000 1.0000 0.0000 0.1860 0.0000
Uz 1.0296 1.0000 1.0000 0.0000 —0.1860 0.0000
Usz; 1.0000 1.0296 1.0000 0.0000 0.0000 —0.1860
Uzz 1.0000 1.0296 1.0000 0.0000 0.0000 0.1860
Usz3 1.0296 1.0000 1.0000 0.0000 0.1860 0.0000
Uz4 1.0296 1.0000 1.0000 0.0000 —0.1860 0.0000

Tabelle 5.4 Transformationstensoren (Voigtsche Notation) fiir 24 bainitische Varianten

Materialparameter fiir Simulationen sind derart angepasst worden, dass diese das Materialverhalten
vom Bainit bei einer Temperatur von 340 °C abbilden.

Tabelle 5.5 liefert einen Uberblick iiber die Parameterreihe, die in beiden, in dieser Arbeit vorge-
stellten Beispielrechnungen verwendet wurde.

Phasenumwandlung n¢r [—] e [—] fe [MPa] v [-] s1[—]
83285.1 2 25 0.76 0.6

52 [_] A¢:»Jh [MPa] A¢Zc]h lVIPa} ¢ch,i0 [MPa] A‘bgh,m [MPa

0 17°C °C
0.37 5.0 0.3 5.01 0.5
Viskoplastizitit et (=] npr [ Yy [MPa] Qo [MPa] H [GPa] b[-]
1 1 252.11 28.52 52.52 36.2

Tabelle 5.5 Materialparameter der Phasenumwandlung und der Viskoplastizitét

Die im oberen Block der Tabelle aufsummierten Parameter beziehen sich auf die Routine fiir die Be-
rechnung der Phasentransformation der bainitischen Varianten. Die Parameter im unteren Block neh-
men Bezug auf die Routine fiir die Berechnung des viskoplastischen Materialverhaltens. Die in den
Beispielrechnungen verwendeten Materialparameter sind fiktiv, erfiillen dennoch den erwiinschten
Zweck, die Moglichkeiten des Modells zu prisentieren.
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5.4.1 Variantenselektion in einem Einzelkorn

Zur Untersuchung des Modellverhaltens und insbesondere der Bildung der Bainitvarianten wird in
diesem Abschnitt zunichst die Simulation des Einzelkorns durchgefiihrt, welches einer externen
Spannung und einer konstanten Temperatur unterzogen wird. Die Randbedienungen der Simula-
tion werden exemplarisch in Abbildung 5.4 aufgezeigt. Hierbei gilt zu beriicksichtigen, dass die

0,4 > Acg

340°C

Abb. 5.4 Variantenauswahl: Schaubild der thermomechanischen Belastung (Punktierlinie: Temperatur, gestrichelte Li-
nie: Spannung)

Kornerzahl ¢ Eins entspricht und die Varianten j Werte zwischen 1 und 24 annehmen konnen.
Die hellgrau markierte Zone représentiert den Austenitisierungsprozess sowie die darauf folgende
Abkiihlphase in Abhingigkeit von der fiir die Initialisierung der bainitischen Transformation notwen-
digen Solltemperatur. Wihrend dieser Austenitisierungsphase wird der Stahl solange erhitzt, bis sein
Gefiige vom Ferrit zum Austenit transformiert. Nach Erreichen der homogenen austenitischen Mi-
krostruktur erfolgt eine Abkiihlung. Damit eine Bainitbildung zustande kommt, wird das Material mit
einer moderaten Abkiihlgeschwindigkeit auf eine Temperatur von 340 °C gebracht. Dieser Punkt soll
als Startpunkt fiir alle Simulationen in diesem Kapitel dienen. Fiir den weiteren Verlauf der Simulation
wird eine konstante Temperatur von 340 °C (Starttemperatur) angenommen. Dariiber hinaus werden
externe Spannungen als Randbedingungen angebracht und iiber die Zeit konstant gehalten.

5.4.1.1 Zugbelastung

Im Rahmen dieser Untersuchung werden vier unterschiedliche Belastungsfille unter besonderer Be-
riicksichtigung des Richtungseffekts untersucht. Damit soll die Frage gekliart werden, welcher Va-
riantensatz bei gegebener Spannung ausgewdhlt wird und wie dieser die im Experiment gemessene
Gesamtverzerrung beeinflusst.

Abbildung 5.5 zeigt die Evolution der Volumenanteile der aktiven Varianten fiir den Fall der un-
iaxialen Zugspannung von 0 MPa, 50 MPa, 250 MPa und 500 MPa bei Vorliegen konstanter Tempe-
ratur. Bei fehlender Spannung wird Bainit lediglich durch chemische Treibkraft gleichmiBig fiir alle
Varianten gebildet. Die Einfiihrung einer externen Belastung fiihrt dazu, dass acht Varianten mit den
Nummern 11, 12, 15, 16, 19, 20, 23 und 24 einen vergleichsweise hoheren Volumenanteil aufwei-
sen. Dies ldsst sich dadurch erkldren, dass das Auswahlverfahren Varianten vorzieht, die die hochsten
mechanischen Treibkrifte erzeugen.

Sowohl der kinetische als auch der Volumenateil der bainitischen Varianten sind von der Magni-
tude der aufgebrachten Zugspannung abhingig. Dieser Effekt wird in der Abbildung 5.6 am Beispiel
der elften bainitischen Variante, die zu den energetisch priferierten Varianten gehort, demonstriert.
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Abb. 5.5 Entwicklung der bainitischen Varianten unter Zugbelastung von a) 0 MPa, b) 5 MPa, c¢) 250 MPa, d) 500 MPa

Der Volumenanteil der bevorzugten Varianten, die wihrend der bainitischen Transformation gebil-
det werden, wichst mit steigender mechanischen Belastung. Dies stimmt mit den Ergebnissen der
Untersuchungen der Formgedéchtnislegierungen von ANTRETTER et al. [3] iiberein.
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Abb. 5.6 Variantenauswahl: Evolution der 11. Variante fiir unterschiedliche Spannungsstufen

5.4.1.2 Druckbelastung

Analog zum Zugsspannungsfall werden bei Untersuchung des Einflusses der Druckbelastung vier
verschiedene Belastungsfille verglichen. Abbildung 5.7 zeigt die Evolution des Volumenanteils der
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Abb. 5.7 Entwicklung der bainitischen Varianten unter Druckbelastung von a) 0 MPa, b) -50 MPa, c¢) -250 MPa, d)
-500 MPa

aktiven Varianten fiir den Fall der unaxialen Kompression von 0 MPa, -50 MPa, -250 MPa und -500
MPa bei Vorliegen konstanter Temperatur. Es tritt hier der gleiche Effekt wie im Zugspannungsfall
auf: einige bainitische Varianten bilden sich schneller und in einem groeren Umfang. Bei der Analyse
der Druckbelastung werden 16 bainitische Varianten 1-10, 13, 14, 17, 18, 21 und 22 bevorzugt. Dies
hat zur Folge, dass die korrespondierenden Volumenanteile jeder dieser 16 Varianten im Vergleich
zum Zugspannungsfall bei geringeren Werten der Volumenanteile gesittigt sind.

5.4.2 Modellierung eines Polykristalls (RVE)

Fiir die Simulation eines Polykristalls wird das Materialmodell mittels der UMAT-Subroutine im
Finite-Elementen-Programm Abaqus implementiert. Dieses Beispiel konzentriert sich auf den Trans-
fer der Forschungsergebnisse fiir eine Einkristallebene auf eine polykristalline Makroskala mittels
der Homogenisierung der stochastisch orientierten Korner. Fiir diesen Zweck wird ein représentatives
Volumenelement (RVE) in einer reguliren kubischen Matrix mit 8% Elementen zusammengesetzt,
wobei jedes dieser Elemente mit einem Korn vertreten ist. Abbildung 5.8 gibt einen schematischen
Uberblick iiber die Randbedingungen fiir simtliche FEM-Simulationen in diesem Beispiel. Abbildung
5.8.a zeigt die Verschiebung von RVE am Ende der Simulation.

Wie schon in Abschnitts 5.4.1 angedeutet und erneut in Abbildung 5.8.b gezeigt, stimmt das Be-
lastungsschema des Polykristalls mit der Belastung eines Monokristalls iiberein. Hierbei wird an das
RVE eine isothermische Belastung in Kombination mit verschiedenen Spannungen aufgebracht. Des
Weiteren wirken sich periodische Randbedingungen auf das RVE aus. Aus Abbildung 5.8.c wird
ersichtlich, dass mehrfache Kopien des deformierten RVE zu einem raumfiillenden Kontinuum zu-
sammengefast werden konnen. Dies wird dadurch gewihrleistet, dass die Verschiebungen der ge-
geniiberliegenden Seiten der RVE sich um den Mittelwert des Verschiebungsvektors unterscheiden.
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Abb. 5.8 Simulation des TRIP-Effekts an einem Polykristall: ~ a) RVE mit 512 Elementen - schematisch fiir Ver-
schiebung b) thermomechanische Belastung (Punktierlinie: Temperatur, gestrichelte Linie: Spannung) c¢) Periodische
Randbedingungen und d) randomisierte Materialrichtungen

Abbildung 5.8.d stellt die Variation der Materialorientierungen in verschiedenen Monokristallen des
Polykristalls dar. Die Materialorientierung und daher auch die Basisvektoren der Transformations-
verzerrungen werden stochastisch jedem einzelnen von 512 im RVE enthaltenen Korner zugewiesen.
Dadurch sollen die energetisch am meisten favorisierten Varianten beeinflusst werden. Spezifische
Varianten werden im Umwandlungsprozess, wie bereits in Abschnitt 5.4.1 erldutert, in Abhiingigkeit
von der Orientierung des Kristallgitters und der externen mechanischen Belastung favorisiert. Der
Materialparametersatz, der in diesem Beispiel verwendet wird, stimmt mit dem Satz aus dem ersten
Beispiel (vgl. Tabelle 5.5) iiberein.

Abbildung 5.9 stellt Verzerrungen in x-Richtung fiir unterschiedliche Belastungsfille dar. Sie zeigt
eine signifikant ansteigende inelastische Verzerrung (TRIP) wihrend eines Phasenwechsels auf. In
diesen Simulationen werden unterschiedliche, aber konstante mechanische Spannungen im Bereich
von —140 MPa bis 140 MPa an das reprisentative Volumenelement aufgebracht, wobei fiir die Tem-
peratur ein konstanter Wert von 340 °C angenommen wird. Es wird an dieser Stelle darauf hinge-
wiesen, dass bei fehlender duBeren Belastung die Transformation ausschlieBlich durch Anderung der
chemischen Energie getrieben wird und die Gesamtverzerrung die umwandlungsbedingte Volumenzu-
nahme représentiert. Jede Abweichung von dieser Kurve hat einen geringeren Einfluss auf elastische
Verzerrungen, als auf die sogenannte Umwandlungsplastizitit (TRIP).

Die Analyse der auftrennenden Spannungen und der plastischen Verzerrungen im RVE offenbart,
dass die Spannungen im betrachteten polykristallinen reprisentativen Volumenausschnitt nicht homo-
gen verteilt sind und die angebrachte duflere Belastung deutlich iibersteigen. Dies fiihrt zu plastischen
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Abb. 5.9 Simulation des TRIP-Effekts an einem Polykristall: Verzerrung-Zeitkurven unter Zug- und Druckbelastung
(mit Plastizitit)

Verzerrung in den Bereichen, wo die FlieBspannung des Austenits iiberschritten wird. Dieser Effekt
wird in Abbildung 5.11 anhand der Verteilungen der von Mises-Spannung und der entsprechenden
inelastischen Verzerrung €, in einem RVE mit 512 Elementen mit einer aufgebrachten Spannung
von 125 MPa veranschaulicht. Die ausgewihlten Zeitpunkte sind im Verzerrung-Zeitdiagramm 5.10
aufgetragen.
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Abb. 5.10 Simulation des TRIP-Effekts an einem Polykristall: Verzerrung in z-Richtung (Punktierlinie) infolge einer
angebrachten Spannung von 125 MPa (durchgezogene Linie). Zeitpunkte a) - d) stellen Markierungen fiir die Darstel-
lung in Abbildung 5.11 dar

Die Frage, welcher der zwei, den TRIP beeinflussenden Phinomene, der Magee-Effekt oder
der Greenwood-Johnson-Effekt bei der Umwandlungsplastizitit eine grolere Rolle spielt, kann mit
Hilfe der Untersuchung der Einfliisse der plastischen Verzerrungen im Austenit beantwortet wer-
den. Dazu werden die Simulationen eines repridsentativen Volumenelement (RVE) mit und ohne
Beriicksichtigung der viskoplastischen Materialverhaltens des Austenits durchgefiihrt. Der Vergleich
von jeweils zwei Simulationen bei gleicher externen Belastung zeigt eine signifikante Differenz zwi-
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Abb. 5.11 Simulation des TRIP-Effekts an einem Polykristall: Evolution der von Mises-Spannung und der dquivalenten
inelastische Verzerrung €, (SDV71) am RVE mit 512 Elementen fiir eine angebrachte Spannung von 125MPa

schen den resultierenden Verzerrungen auf. Dieser Effekt wird in Abbildung 5.12 exemplarisch fiir
die mechanischen Belastungen von 100 MPa und 140 MPa aufgezeigt.

Neben elastischen Verzerrungen und Anderungen des Transformationsvolumens beinhaltet die Si-
mulationskurve ohne Beriicksichtigung der Plastizitit die inelastische Verzerrung infolge der asym-
metrischen Bildung der Bainitvarianten (Magee-Effekt). Die Differenz zwischen diesen zwei Kurven
geht allein aus der viskosplastischen Verzerrung des austenitischen Gefiiges (Greenwood-Johnson-
Effekt) hervor. Wihrend der Umwandlung entwickeln sich hohe Spannungen im Kristallgitter. Ob-
wohl die aufgebrachte Spannung (< 140 MPa) die FlieBspannung des Austenits (im Beispiel Yy; =
252 MPa, vgl. Tabelle 5.5) unterschreitet, treten plastischen Verzerrungen auf.

Ein weiterer Effekt, der im Modell nachgebildet werden kann, ist die Riickverformung der um-
wandlungsplastischen Verzerrung (backstress effect) nach Entlastung der Nennspannung wihrend der
Phasenumwandlung auf 0 MPa. Abbildung 5.13 stellt die Entwicklung der umwandlungsplastischen
Verzerrungen und deren Riickentwicklung infolge der Spannungsentlastung von 100 MPa auf 0 MPa
nach 90 bzw. 200 Sekunden dar. Das AusmaB der Riickverformung betréigt, abhdngig vom Entlas-
tungszeitpunkt, 0, 14% bzw. 0,1% und entspricht dem Niveau der experimentell ermittelten Werte
[1, 57].
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Abb. 5.12 Simulation des TRIP-Effekts an einem Polykristall: Gesamtverzerrungszeitkurven fiir die Simulation mit
und ohne Plastizitit ( aufgebrachte Spannungen: 100 MPa und 140 MPa)
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Abb. 5.13 Simulation des TRIP-Effekts an einem Polykristall: Entwicklung umwandlungsplastischer Verzerrungen in
Abhingigkeit von der Zeit und Riickverformung nach Entlastung bei isothermer, bainitischer Umwandlung: a) Entlas-
tung nach 90 s b) Entlastung nach 200 s ¢) ohne Entlastung

Fazit

Die aus der Literatur bekannten Ansitze zur mikromechanischen Mehrskalenmodellierung befassen
sich lediglich mit der Umwandlung vom Austenit zum Martensit. Die Untersuchung in diesem Kapi-
tels konzentriert sich hingegen auf die Simulation der Umwandlung vom Austenit zum Bainit. Dieses
physikalisch motivierte und thermodynamisch konsistente, fiir N-Korner und n-Bainitvarianten ent-
wickelte Modell kombiniert das elastisch-viskoplastische Verhalten mit einer Phasenumwandlung in
einer polykristallinen Struktur. Dabei werden die makroskopischen Effekte der Phasenumwandlung
anhand der Prozesse sowohl auf der Mikro- als auch der Mesoebene nachgebildet. Die Anwendung
des Mehrskalenmodells findet nach der Implementierung in das Finite Elemente Programm Abaqus
zur Simulation eines reprisentativen Volumenelements (RVE) mit 512 Elementen, das das makrosko-
pische Materialverhalten reproduziert, statt. Zu den dargelegten Effekten zihlen die Volumenédnderung
infolge der Phasenumwandlung, die Umwandlungsplastizitit sowie die Riickverformung der um-
wandlungsplastischen Verzerrung. Ferner konnten mit Hilfe der FEM-Simulation der Magee-Effekt
sowie der Greenwood-Johnson-Effekt abgebildet und separiert werden.



Kapitel 6
Zusammenfassung und Ausblick

Die zentrale Zielsetzung der vorliegenden Dissertation ist die numerische Simulation von Hybridum-
formprozessen unter besonderer Beriicksichtigung der Phasenumwandlung. Beim betrachteten Hybri-
dumformprozess handelt es sich um eine Kombination aus Schmiede- und Hértungsprozess [119, 118,
143]. Aufgrund der komplexen Temperaturverteilungen sowie der zusitzlichen Umformbeanspru-
chungen stellen derartige Hybridumformprozesse thermomechanisch gekoppelte Problemstellungen
mit verschiedenartig auftretenden Gefiigezustéinden im Bauteil dar. Im Ergebnis entstehen Werkstiicke
mit gradierten und somit flexiblen, nach speziellen Bediirfnissen angepassten Werkstoffeigenschaf-
ten. Zur genauen Abbildung der spezifischen Vorginge in diesem Prozess wurden im Rahmen dieser
Arbeit zwei Modellierungsstratiegien, ein makroskopisch-phéanomenologischer und ein mikromecha-
nischer Mehrskalenansatz zur Simulation der Phasenumwandlung unter Beriicksichtigung von visko-
plastischem Verhalten eines niedriglegierten 51CrV4 Stahls in der Bainit- sowie der Martensitstufe
verfolgt.

Als erstes wurde ein makroskopisch-phinomenologisches Mehrphasenmodell aufgebaut, das in
sich vielfiltige Figenschaften vereint. Dazu zéhlen die zeit- und temperaturabhéingige Phasenum-
wandlung, Austenitisierung des Ausgangsgefiiges und die aus der Phasenumwandlung resultieren-
den Effekte wie Umwandlungsplastizitit, Volumenverdanderung sowie temperatur- und mikrostuktu-
rabhingige Elasto- bzw. Viskoplastizitit. Zur Vereinfachung der Implementierung wurde ein Mehr-
phasenmodell unter Verwendung der geometrisch linearen Theorie entwickelt. Dieses Modell analy-
siert insbesondere die Austenitisierung wihrend des Autheizens, die Bildung von Martensit, Bainit
und Mischgefiigen sowie das inelastische Verhalten in Form von Umwandlungsplastizitit und Visko-
plastizitit wihrend der Abkiihlung. Dabei erfolgte die makroskopische Modellierung der bainitischen
Umwandlung unter Betrachtung der Evolution der Keimradien sowohl fiir den oberen als auch den
unteren Bainit mit dem daraus resultierenden, nicht symmetrischen Inkubationszeitverlauf und an-
schlieBender Entwicklung der Evolutionsgleichungen der bainitischen Phase unter Verwendung der
Treibkréfte. Das fiir kleine Deformationen entwickelte, thermodynamisch konsistente Mehrphasen-
modell wurde numerisch implementiert. Zur Ermittlung der Materialparameter auf der Grundlage
der experimentellen Untersuchungen wurde das Parameteridentifikationstool ,,PARA* eigesetzt. Die
ermittelten Parameter werden zur FEM-Simulation des Hybridumformprozesses verwendet.

Da im Hybridumformprozess massive Umformungen im Flanschbereich auftreten, erwies sich
die Entwicklung eines makroskopischen Modells fiir groBe Deformationen unter Beriicksichtigung
der Phasenumwandlungen als unumginglich. In diesem makroskopischen Modell wurde sowohl die
Austenitisierung wihrend der Aufheizphase als auch die Bildung von Martensit, Bainit und Misch-
gefiigen wihrend der Umform- und der Abkiihlphase untersucht. Die Beschreibung der Umwand-
lungsplastizitit erfolgte auf der Grundlage des Leblond-Ansatzes. Fiir die Analyse des allgemei-
nen plastischen Verhaltens wurde der klassische Ansatz der von-Mises-Plastizitéit eingesetzt. Die
Implementierung wurde um die spektrale Zerlegung des linken elastischen Cauchy-Green-Tensors,
der Kirchhoff-Spannung sowie des Tangentenmoduls erweitert. Die daraus resultierenden FEM-
Simulationsergebnisse des Hybridumformprozesses zeigen eine sehr gute Ubereinstimmung zwischen
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der errechneten Verteilung der martensitische Phase mit der Gefiigeverteilung im Schliffbild der rea-
len Welle.

Ferner wurde im Rahmen dieser Dissertation die Moglichkeit des Einsatzes der Finite Elemente
Methode fiir die Vorhersage der resultierenden Phasenverteilung durch die Variation der Prozesspara-
meter untersucht. Den Gegenstand der Analyse bildete unter anderem die Untersuchung des Einflus-
ses der Ausgangstemperatur auf die Phasenverteilung in der Welle. Es konnte aufgezeigt werden, dass
durch das vorherige Vorheizen des Werkstiicks eine signifikante Bildung des bainitischen Gefiiges im
Flansch ermoglicht wird. Des Weiteren steigt der bainitische Anteil bei hoheren Ausgangstemperatu-
ren. Die Verdanderung des Leistungsprofils der induktiven Erwirmung stellt eine weitere Moglichkeit
der Verdnderung der Verteilung sowie der Form des harten Bereiches dar. Die Modifikation der Pha-
sengradierung erfolgte hier exemplarisch anhand von drei Variationen des Aufheizprofils. Diese Bei-
spiele repriasentieren die Moglichkeit der Anpassung der Hartegradiente in Hinblick auf die Form und
die Position im Bauteil entsprechend den Anforderungen mittels einer Anderungen der Prozesspara-
meter.

Die spezifischen Vorginge, die wihrend der Phasenumwandlung im Werkstiick auftreten, finden
in der Regel sowohl auf der Mikro- sowie der Mesoebene des Materials statt. Um den Ursprung der
makroskopischen Phinomene zu ermitteln, ist es notwendig, Simulationen des Materialverhaltens auf
niedriger gelegenen Skalen durchzufiihren und diese in das Materialverhalten auf der Makroebene
einflieBen zu lassen. Zu diesem Zweck wurde in Kapitel 5 ein Mehrskalenmodell entwickelt, des-
sen Gegenstand die Simulation der Umwandlung vom Austenit zum Bainit zum Gegenstand hat. Mit
Hilfe dieses Modells wurden die makroskopischen Effekte der Phasenumwandlung anhand der kris-
tallographischen Vorginge sowohl auf der Mikro- als auch auf der Mesoebene nachgebildet. Dieses
physikalisch motivierte und thermodynamisch konsistente, fiir NV-Koérner und n-Bainitvarianten ent-
wickelte Modell kombiniert das elastisch-viskoplastische Verhalten mit der Phasenumwandlung in
einer polykristallinen Struktur. Des Weiteren wurde das Mehrskalenmodell auf den niedriglegierten
Stahl 51CrV4 adaptiert und in eine ,,UMAT* -Subroutine des Finite Elemente Programms Abaqus im-
plementiert. Hierbei wurde die Bildung von 24 moglichen Bainitvarianten im Einzelkristall (Mikro-
Ebene) beriicksichtigt. Um das wihrend der Phasenumwandlung auftretende makroskopische Ver-
halten erfassen zu konnen, erfolgte die Abbildung des Polykristalls auf der mesoskopischen Ebene
mit Hilfe eines représentativen Volumenelements (RVE) mit 512 Elementen. Zu den dargelegten Ef-
fekten zihlen die Volumeninderung infolge der Phasenumwandlung, die Umwandlungsplastizitit so-
wie die Riickverformung der umwandlungsplastischen Dehnung. Ferner konnten mit Hilfe der FEM-
Simulation der Magee-Effekt sowie der Greenwood-Johnson-Effekt abgebildet und separiert werden.

Die Simulationsergebnisse des Hybridumformprozesses auf der Grundlage des makroskopischen
phinomenologischen Mehrphasenmodells zeigen bereits eine gute Ubereinstimmung mit der Rea-
litait. Um die Abhingigkeit der Umwandlungskinetik von der vorherigen Austenitisierungsbehand-
lung zu beriicksichtigen und damit die Vorhersagbarkeit des Prozesses verbessern zu kdnnen, ist eine
Erweiterung des phdnomenologischen Mehrphasenmodells erforderlich. Dafiir eignet sich insbeson-
dere der Einsatz von weiteren internen Variablen, die unterschiedliche Austnitisierungsszenarien re-
prasentieren und die Evolution sowie die Eigenschaften der bainitischen und der marterstitischen Pha-
sen beeinflussen. Ferner muss das entwickelte Materialmodell wegen seiner rein phinomenologischen
Natur beziiglich der Beriicksichtigung der tatsidchlich im Material ablaufenden Vorgidnge auf der
Grundlage von aufwindigen experimentellen Untersuchungen parametrisiert werden.

Um die wihrend einer unvollstindigen, inhomogenen Austenitisierung entstehenden Phianomene,
zu beschreiben und deren Ursachen zu untersuchen, erweist sich die Entwicklung eines Ansatzes,
das in sich die Eigenschaften sowohl eines mikromechanischen Mehrskalenmodells als auch eines
Phasenfeldmodells vereint, als zweckméBig. Eine Phasenfeldmodellierung eignet sich insbesondere
zur Beschreibung der Evolution des Austenitgefiiges sowie des Abbaus des Zementits und erméglicht
die Abbildung der inhomogenen Kohlenstoffverteilung bzw. des inhomogenen austeintischen Volu-
menanteils im einzelnen Korn bei unterschiedlichen Zeit-Temperatur-Verldufen. Die inhomogenen
Kohlestoff- sowie Austenitverteilung wirken sich wiederum auf die Evolution der bainitischen Va-
rianten aus. Hiermit wird in Abhédngigkeit von der vorherigen Austenitisierungsbehandlung auf die
Umwandlungskinetik Einfluss genommen.
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Das in Kapitel 5 entwickelte Mehrskalenmodell ist durch eine entsprechende Anpassung der
thermischen und chemischen Treibkrifte sowie der Materialparameter im Stande die martensitische
Umwandlung abzubilden. Damit kénnten sdmtliche Phasenumwandlungseffekte wihrend der FE-
Simulation des Hybridumformprozesses in jedem Materialpunkt des zugrunde liegenden FE-Netzes
mit einer weiteren FE-Simulation zum Verhalten der Mikrostruktur modelliert werden. Dieses Vor-
gehen basiert auf der FE2-Methode, deren Anwendung mit hohem numerischen Aufwand verbunden
ist. Die Rechengeschwindigkeit des homogenisierten Verfahrens ldsst sich durch die Verwendung
paralleler Programmierung fiir mehrere CPUs oder die Verwendung von GPGPU (General Purpose
Computation on Graphics Processing Unit) z.B. OpenCL oder CUDA drastisch erhohen (siehe dazu
z.B. [40]). Dies ist darauf zuriickfiihren, dass die mikroskopischen Probleme innerhalb einer makro-
skopischen Iteration voneinander unabhéngig sind und deshalb parallel gelost werden konnen.

Aufgabe der weiterfithrenden Forschung liegt in der Suche nach einer geeigneten Alternative zur
Homogenisierung der Simulationsergebnisse auf der Mikroskala. Dazu bietet sich insbesondere die
Nonuniform Transformation Field Analysis (NTFA)-Methode [95, 39] an, die den numerischen Auf-
wand beim irreversiblen Materialverhalten durch eine Ordnungsreduktion senkt. Dabei konnen die
benotigten plastischen Moden fiir einzelne RVEs in Abhéngigkeit von den Phasenanteilen bereits im
Vorfeld bestimmt werden und als eine Art innere Variablen bzw. Materialparameter in einer Daten-
bank abgespeichert werden. Die Aktualisierung der Datenbank fiir zuvor nicht abgedeckte Lastfdden
oder Anderung der Mikrostruktur erfolgt wihrend der Simulation des Hybridumformprozesses. Auf
diese Weise ldsst sich ein schnelles, flexibles und numerisch homogenisiertes Verfahren entwickeln.
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