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Abstract

The main objective of this thesis is the numerical simulation of hybrid-forming processes in steel
production with particular focus on phase transformation. In order to display the specific processes
two methods of material modeling, a macroscopic-phenomenological and micromechanical multis-
cale approach are formulated. The thermodynamically consistent phenomenological multiphase mo-
del combines a variety of features such as time- and temperature-dependent phase transformation,
austenitisation, transformation plasticity, volume change, temperature- and microstucture-dependent
elastoplasticity and viscoplasticity. The FEM simulation of the hybrid-forming process is based on nu-
merical implementation and exhibits good agreement with the structure distribution in the real shaft.
Furthermore, it illustrates the possibilities for prediction of the phase distribution by varying the pro-
cess parameters. A physically motivated, thermodynamic-consistent multiscale model for N-grains
and n-bainite variants is developed in the second step, which combines the elasto-viscoplastic behavi-
or with a phase transformation in a polycrystalline structure. This model is capable of capturing both
TRIP effects, the contribution due to load-based orientation of bainite-variants (”Magee effect”) and
plastic accommodation of the new phase (”Greenwood-Johnson effect”). Finally, these phenomena
are evaluated quantitatively for different loads.

Zusammenfassung

Die zentrale Zielsetzung der hier vorliegenden Dissertation ist die numerische Simulation von Hybrid-
umformungsprozessen unter besonderer Berücksichtigung der Phasenumwandlung. Zur Abbildung
der spezifischen Vorgänge in diesem Prozess werden zwei Modellierungsstrategien, ein makrosko-
pisch-phänomenologischer und ein mikromechanischer Mehrskalenansatz verfolgt. Das entwickel-
te thermodynamisch konsistente, phänomenologische Mehrphasenmodell vereint in sich vielfältige
Eigenschaften wie zeit- und temperaturabhängige Phasenumwandlung, Austenitisierung, Umwand-
lungsplastizität, Volumenveränderung, temperatur- und mikrostukturabhängige Elasto- bzw. Visko-
plastizität. Die auf der numerischen Implementierung basierende FEM-Simulation des Hybridum-
formprozesses zeigt eine sehr gute Übereinstimmung mit der Gefügeverteilung in der realen Welle
und veranschaulicht die Möglichkeiten der Vorhersagbarkeit der Phasenverteilung durch Variation
der Prozessparameter.

Ferner wird ein physikalisch motiviertes und thermodynamisch konsistentes Mehrskalenmodell
für N-Körner und n-Bainitvarianten entwickelt, welches das elasto-viskoplastische Verhalten mit der
Phasenumwandlung in einer polykristallinen Struktur kombiniert. Das implementierte Mehrskalen-
modell bildet die Volumenänderung infolge der Phasenumwandlung, die Umwandlungsplastizität, die
Rückverformung der umwandlungsplastischen Verzerrung sowie den Magee- und den Greenwood-
Johnson-Effekt ab. Diese Phänomene werden für verschiedene Belastungen quantitativ evaluiert.
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Kapitel 1
Einleitung

1.1 Fertigung im Rahmen eines Hybridumformprozesses

Der Werkstoff Stahl bietet die Möglichkeit mechanische Eigenschaften in einem weiten Duktilitäts-
und Festigkeitsbereich durch einfache Variation des Temperatur-Zeit-Pfades im Herstellungsprozess
gezielt einzustellen und ist daher für viele Anwendungen in der Maschinenbau- bzw. der Automobil-
branche das bevorzugte Material. Die stetig wachsende Nachfrage nach Leichtbaukomponenten erfor-
dert eine Anpassung der verbesserten mechanischen Eigenschaften und komplexen Geometrien an das
effektive Belastungsprofil. Aus diesem Grund gewann bei der Entwicklung innovativer Fertigungsver-
fahren in den letzten Jahren insbesondere die Erforschung von Prozessen zur Herstellung funktional
gradierter Bauteile an Bedeutung. Die funktionale Gradierung des Bauelements, d.h. die zielgerichte-
te Einstellung der lokalen Eigenschaften an das im Einsatz auftretende Belastungsprofil, kann durch
unterschiedliche Verfahren erreicht werden. Dies ist unter anderem durch die Kombination von Mate-
rialien mit vollständig unterschiedlichen Festigkeits-, Steifigkeits- und Duktilitätseigenschaften, wie
beispielsweise Metall und Keramik [106] möglich. Ferner können mehrere verschiedene Stahlgüten
in maßgeschneiderten Platinen, die sogenannten ”tailored blanks“ eingesetzt werden. Dabei kann
die funktionale Gradierung durch eine Variation des lokalen Querschnitts weiter gesteigert werden
[102]. Des Weiteren kann eine funktionale Gradierung durch die Anpassung der lokalen Temperatur-
Zeit-Deformations-Pfade und der damit einhergehenden Variation der lokalen Mikrostruktur erzielt
werden [119]. Diese Verfahrensweise wird bereits im industriellen Maßstab bei der Herstellung von
Automobil-B-Säulen verwendet [101]. Deren Einsatz ist allerdings nicht nur auf Anwendungen in der
Blechbauteilfertigung begrenzt.

Für die Herstellung von massiven Bauteilen mit gradierten Eigenschaften werden aktuell hinge-
gen überwiegend Verfahren der Pulver- oder der Schmelzmetallurgie mit einfachen Eigenschafts-
verteilungen angewendet [63]. Jedoch gewinnt die umformtechnische Herstellung von komplexen,
funktional gradierten Bauteilen merklich an Bedeutung [122, 109]. Die bislang geringe Verbrei-
tung von funktional gradierten Bauteilen in der Massenproduktion lässt sich zum einen darauf
zurückführen, dass diese zweistufige Herangehensweise aufgrund des zum Teil sehr unterschiedli-
chen Formänderungsverhaltens der zuvor durch Pulvermetallurgie hergestellten gradierten Halbzeuge
nicht zum gewünschten Erfolg geführt hat. Zum anderen ist eine derartige Herstellung vergleichs-
weise aufwändig und kostenintensiv. Eine erhebliche Verbesserung der Flexibilität und Effizienz lässt
sich bei bestehenden Massivumformverfahren durch eine neue differenzielle thermomechanische Pro-
zessführung erzielen. So zeigt auch der im Sonderforschungsbereich Transregio 30 (SFB/TR TRR 30)
untersuchte Hybridumformprozess das Potential, maßgeschneiderte Eigenschaften bereits im Herstel-
lungsprozess einzustellen, so dass insgesamt weniger Nacharbeit und keine zusätzlichen, kostenin-
tensiven Wärmebehandlungen mehr notwendig sind. Hierbei wird ein vordefiniertes Temperaturprofil
während der Formgebung in eine vorher festgelegte Materialeigenschaftsverteilung und/oder Geome-
trie überführt. Diese neuartige Strategie hängt mit einem Übergang von einer freien zu einer zuneh-
mend werkzeuggebundenen Formgebung sowie von einem durch freie Konvektion hin zu einem durch
zunehmende Wärmeleitung bestimmten Wärmetransportmechanismus zusammen [119].
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2 1 Einleitung

Grundsätzlich setzt sich die konventionelle integrale thermomechanische Prozessführung aus einer
simultanen Formgebung und Wärmebehandlung des gesamten Werkstücks zusammen. Hierbei be-
stimmt die Wahl der Prozesstemperatur, ob ein umwandlungsgehärtetes, ein Mehrphasen-, ein rekris-
tallisiertes oder ein kaltverfestigtes Gefüge entsteht. Bei der differenziellen Prozessführung steuert
das Temperaturprofil sowohl den Werkstoffluss bei der Formgebung als auch die dabei auftreten-
den mikrostrukturellen Phänomene. Eine vielfältige Zusammensetzung an nebeneinander auftreten-
den Mikrostrukturen charakterisiert je nach lokaler Dehnungs- und Temperaturverteilung Werkstücke,
die unter diesen Bedingungen gefertigt werden. Bereiche, deren maximale Temperatur die Umwand-
lungstemperatur Ac3 überschreiten, entwickeln bei ausreichend hohen Abkühlgeschwindigkeiten ein
partiell gehärtetes Gefüge aus Bainit und Martensit. Niedrigere Temperaturmaxima bringen ein Mehr-
phasengefüge aus Ferrit und Perlit sowie Bainit und Martensit mit einer den Phasenanteilen entspre-
chenden Härteverteilung hervor.

Abb. 1.1 Hybridumformprozess [119]

Abb. 1.2 Gefüge-
verteilung im Quer-
schnitt einer thermo-
mechanisch gefertigten
Flanschwelle (Teilpro-
jekt A1 des SFB/TR
TRR 30 )

Abbildung 1.1 veranschaulicht die einzelnen Schritte des betrachteten Hybrid-
umformprozesses, der aus einer Kombination aus Schmiede- und
Härtungsprozess besteht [119, 118, 143]. Die spezifische Besonderheit des
Prozesses liegt darin, dass erwärmte und nicht erwärmte Bereiche gleichzeitig
umgeformt werden. Durch die Einstellung eines vordefinierten Temperatur-
profils erhält man ein festgelegtes Werkstoffeigenschaftsprofil und/oder eine
maßhaltige geometrische Form. Dem induktiven Aufheizen und dem Transfer
in die Presse folgt zunächst eine Freiform- und dann eine gesenkkontrollierte
Verformungssequenz. Die Variationen des Aufheizvorgangs, des verwendeten
Gesenks und der Abkühlgeschwindigkeit lassen am Ende des Prozesses zahl-
reiche Bauteilgeometrien zu. So können neben der hier dargestellten sym-
metrischen auch asymmetrische Flanschwellen und Doppelflanschwellen ge-
fertigt werden [119, 141]. Im Ergebnis entstehen Werkstücke mit gradier-
ten und somit flexiblen, nach speziellen Bedürfnissen angepassten Werkstoff-
eigenschaften.

Es kann festgehalten werden, dass während des Hybridumformprozesses
beide Prozesskomponenten das Werkzeug im kalten und das Werkstück im hei-
ßen Zustand mit extrem unterschiedlichen Temperaturen aufeinander treffen,
was örtlich zu Temperaturschockbeanspruchungen in der Kontaktzone führt.
Aufgrund der komplexen Temperaturverteilungen sowie der zusätzlichen Umformbeanspruchungen
stellen derartige Hybridumformprozesse thermomechanisch gekoppelte Problemstellungen dar. We-
gen der simultan auftretenden kalten und erwärmten Bereiche herrschen im Bauteil verschiedenartig
auftretende Gefügezustände vor. In den Zonen, in denen die Temperatur örtlich die Austenitisierung-
stemperatur überschreitet, entsteht bei ausreichend hohen Abkühlraten ein lokal gehärtetes Gefüge
mit bainitisch-martensitischer Struktur, die in Abbildung 1.2 als dunkler Bereich dargestellt wird.
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Erfolgt eine Abkühlung ausgehend von niedrigen Temperaturen aus einem Zweiphasengebiet, bildet
sich ein mehrphasiger Übergangsbereich aus perlitischen, bainitischen und martensitischen Anteilen
mit einem Härteprofil, der vom Austenitphasenanteil abhängig ist.

1.2 Stand der Forschung

In diesem Abschnitt wird ein Überblick über die Entwicklung in der Modellierung der Festkörper-
phasenumwandlungen im Stahl mit der schwerpunktmäßigen Betrachtung der für den Hybridum-
formprozess relevanten Umwandlung vom Austenit zum Bainit und/oder Martensit gegeben. Beim
niedriglegierten Stahl spielt neben der Modellierung der Kinetik der Phasentransformation die Mo-
dellierung der Umwandlungsplastizität (transformation-induced plasticity (TRIP)) eine fundamentale
Rolle. Die Anzahl der Arbeiten, die sich mit dieser Problematik befasst, ist sehr umfangreich. Auf-
grund der Vielzahl der Beiträge werden nur einige ausgewählte Arbeiten explizit genannt, die sich
mit der phänomenologischen Modellierung der Kinetik, Umwandlungsplastizität sowie Mikro- und
Mehrskalenmodellierung von Martensit und/oder Bainit befassen.

Das martensitische Gefüge entsteht durch ein diffusionsloses Umklappen des austenitischen kfz-
Gitters in ein tetragonal verzerrtes, raumzentriertes Gitter und findet bei Temperaturen unterhalb der
Martensitstarttemperatur statt. Die martensitische Umwandlung setzt sich bei einer weiteren Tempera-
turabsenkung bis zum vollständigen Abbau des austenitischen Gefüges fort. Dieser Vorgang kann je-
derzeit durch einen Abbruch der Abkühlung eingestellt werden. Der im Schrifttum am häufigsten ver-
wendete Ansatz zur Abbildung der Kinetik des martensitischen Gefüges von KOISTINEN und MAR-
BURGER [65] widmet sich ausschließlich der martensitischen Umwandlung aus einem vollständig
austenitisierten Gefüge.

Bainitbildung spielt industriell insbesondere in der Warmumformung bzw. Wärmebehandlung von
relativ großen Komponenten eine wichtige Rolle. Bei diesen Prozessen sind die Abkühlraten der
großen Teile der Komponenten zu klein, um Martensit zu produzieren, reichen aber für die Bildung ei-
nes erheblichen Anteils der bainitischen Phase aus. Da die Bainitbildung ein diffusionskontrollierter
Prozess ist, ist die genaue Menge von der Verweildauer und damit auch von der Abkühlrate inner-
halb des entsprechenden Temperaturbereichs abhängig. Ferner weist die kristallografische Struktur
der Produktphase mehrere verschiedene anisotrope Varianten auf, die der Struktur des Martensits sehr
ähnlich sind. So kann für Bainit der gleiche kristallografische Rahmen wie für Martensit verwen-
det werden. Die Umwandlung des Austenits in alle Phasen außer Martensit läuft diffusionsgesteuert
ab. Für diese Transformationsart wird als Gegenpart zur Koistinen-Marburger-Gleichung häufig die
Johnson-Mehl-Avrami-Gleichung [62, 5] verwendet. Diese Gleichung beschreibt die diffusionsge-
steuerte Phasenumwandlung bei gleich bleibender Temperatur anhand der Keimwachstumsgeschwin-
digkeit und unter der Annahme sphärischer Keime. Der Ansatz der Johnson-Mehl-Avrami-Gleichung
wird u.a. in den Arbeiten von DENG und MURAKAWA [26], BABU und KUMAR [7] zur einfacheren
Beschreibung der isothermen Umwandlung verwendet. Die Forschung auf dem Gebiet der bainiti-
schen Transformation hat sich insbesondere in den letzten zwei Jahrzehnten entwickelt. Es sind unter
anderem die Arbeiten von HUNKEL et al. [60], BHADESHIA et al. [17], LUZGINOVA [82, 81], BUR-
THEN et al. [20], LAMBERS et al. [69], HASAN et al. [53] und USLU et al. [132] zu nennen. GARRET
et al. [42] und AZUMA et al. [6] modellierten die Umwandlung vom Austenit zum Bainit unter beson-
derer Berücksichtigung der Evolution der bainitische Phase infolge der Keimbildung. Dieses Modell
wurde von MAHNKEN et al. [89] um die Betrachtung der Abhängigkeit der plastischen Verfestigung
von der chemischen Energie erweitert. Bainit entsteht, wenn die Keimbildung der bainitischen Phase
dem Grenzwert der Inkubationszeit entspricht. Die Entwicklung des Modells stellt den Gegenstand
der Kapitel 3 und 4 dar. Es ermöglicht die Abbildung der Evolutionen des unteren sowie des oberen
Bainits.

Die irreversiblen Phasenumwandlungen vom Austenit zum Bainit und Martensit sind durch kris-
tallografische Umgruppierungen auf atomarer Ebene gekennzeichnet (siehe TJAHJANTO et al. [128]).
Hieraus resultieren inelasische, überwiegend plastische Deformationen der weicheren Phase des
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Restaustenits. Auf der makroskopischen Ebene stimmt dieser Effekt mit denen der irreversiblen Ver-
zerrungen selbst dann überein, wenn die makroskopische Spannung die Fließspannung der weicheren
Phase des Materials übersteigt. Dieses Phänomen ist als Umwandlungsplastizität bekannt und wurde
bisher von einer Vielzahl von Autoren untersucht. Exemplarisch wird hier auf LEBLOND [72], FI-
SCHER et al. [37, 35, 36], ANTRETTER et al. [3], WOLFF et al. [149] sowie die Referenzen darin
verwiesen. Die am häufigsten verwendeten makroskopischen Modelle gehen auf LEBLOND [72] und
LEBLOND et al. [74] zurück. Ferner befassen sich mehrere makroskopische konstitutive Modelle mit
der Simulation des komplexen interaktiven Mechanismus der Phasentransformation und Plastizität.
Als Referenz sind u.a. die Arbeiten von HALBERG et al. [51] und WOLFF et al. [147, 148] zu nennen.
Dieser Literaturstrang beschäftigt sich mit der Modellierung von Phasenumwandlung, Umwandlungs-
plastizität und Plastizität für kleine Deformationen. Da die betrachteten makroskopischen Modelle
überwiegend nur zwei Phasen berücksichtigen, sind sie zur Analyse des Hybridumformprozesses für
große Deformationen und mehrphasige Gefügeverteilung nicht geeignet.

HALBERG et al. [52] entwickelte ein thermomechanisch gekoppeltes Modell für ein Zwei-Phasen-
System (Austenit und Martensit) unter Berücksichtigung der großen Deformationen. MAHNKEN et
al. [92] integrierten die Mehrphasentransformation und TRIP in das von MAHNKEN und SCHNEIDT
[87] vorgeschlagene thermomechanische Konzept und ermöglichten hiermit eine Simulation von
großen Deformationen. Dieser Entwicklung widmet sich Kapitel 4. Bezüglich der Modellierung von
nicht lokalen Effekten in der Plastizität in einem thermodynamischen Rahmenkonzept wird auf VOY-
IADJIS UND DELIKTAS [134], VOYIADJIS et al. [135], POLIZZOTTO [105], MAROTTI DE SCIARRA
[115] verwiesen. Modellierung von Schädigung im Hinblick auf Plastizität bildet den Gegenstand
der Arbeiten von VOYIADJIS et al. [136, 137] und BAMMANN und SOLANKI [9]. VLADIMIROV et
al. [133] befassten sich mit der anisotropischen Elastoplastizität einschließlich der numerischen Im-
plementierung. Im Modell von LEBLOND et al. [74] werden die Wechselwirkungen zwischen der
klassischen Plastizität und TRIP nicht berücksichtigt (siehe z.B. TALEB UND PETIT [123]). Um die-
sen Nachteil zu überwinden, wurden makroskopische Ansätze entwickelt, die die Rückverformung
der umwandlungsplastischen Verzerrung in die Analyse einbeziehen (siehe dazu die Diskussion in
WOLFF et al. [149]).

Es existieren bereits thermodynamisch konsistente TRIP-Modelle für kleine Deformationen, die
die Wechselwirkungen zwischen der Plastizität, TRIP und der Kopplung der Rückverformung (back-
stress) erfassen (siehe ANTRETTER et al. [4], WOLFF et al. [146, 147] und FISCHLSCHWEIGER et
al. [38]). Eine Experimentenreihe von NAGAYAMA et al. [98, 97] und TANAKA et al. [125] belegt den
Zusammenhang zwischen der Transformation und der Rückverformung (backstress).

Die ersten Mikromodellierungen der martensitischen Umwandlung gehen auf die Arbeiten von
BAIN und DUNKIRK [8] zurück. Diese Modelle gehen explizit vom Vorhandensein einer krz-Struktur
zwischen zwei kfz-Strukturen aus. Um ein krz-Gitter mit den richtigen Gitterparametern zu erhalten,
muss demnach die im kfz-Gitter vorhandene krz-Struktur in zwei Richtungen gestreckt und in eine
Richtung gestaucht werden. Damit lassen sich drei möglichen Varianten des Martensits bzw. des Bai-
nits beschreiben. Ferner wurde bei Röntgenbeugungsmessungen an Eisen-Nickel-Legierungen fest-
gestellt, dass die Phasenumwandlung neben Strecken und Stauchen zusätzlich noch eine Scherkom-
ponente aufweisen kann. Auf dieser Grundlage wurden die theoretischen Modelle von KURDJUMOW
und SACHS [67], NISHIYAMA [99] und WASSERMANN [138] enwickelt.

Die Analyse der Mikrostruktur sowie der Kristallographie des bainitischen Gefüges erfolgt in
Arbeiten von ZHANG und KELLY [151], LUO und LIU [80] FURUHARA et al. [41], PANCHOLI et
al. [103]. Im bainitischen Gefüge bilden sich analog zum martensitischen Gefüge einzelne Varianten,
die samt ihrer anisotropen Formänderungen erst auf der Mikroebene in Erscheinung treten.

Die Herleitung und die Argumentation von makroskopischen Ansätzen für Phasenumwandlun-
gen und Umwandlungsplastizität beinhaltet in der Regel die Berücksichtigung von Effekten der
Meso- bzw. Mikro-Ebene. Dazu gehört unter anderem die Herleitung der Umwandlungsplastizität
von GREENWOOD und JOHNSON [46] sowie eine große Anzahl der Weiterentwicklungen bzw. Mo-
difizierungen dieses Ansatzes, wie z.B. LEBLOND [72], LEBLOND et al. [74], FISCHER [33, 34]
STRINGFELLOW et al. [121], BHATTACHARYYA und WENG[19], GOVINDJEE und MIEHE [44], PA-
PATRIANTAFILLOU et al. [104]. Bei stark anisotropen Produktphasen wie Martensit und Bainit kann
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eine unelastische Verformung auch durch eine gezielte Auswahl von energetisch günstigen Produkt-
phasevarianten in Abhängigkeit vom angebrachten Spannungszustand erreicht werden. Dieser soge-
nannte Orientierungseffekt wurde erstmals von MAGEE [83] beschrieben und findet insbesondere im
Rahmen der Modellierung des mikrostrukturellen Verhaltens unter Erfassung der einzelnen Varianten
der Formgedächtnislegierungen Anwendung (vgl. z.B. HACKL et al. [49], HACKL und HEINEN [47],
GOVINDJEE und MIEHE [44], THAMBURAJA und ANAND [127]).

Die mikromechanische Modellierung wurde in den letzten Jahren insbesondere in Hinblick auf
eine stärkere Berücksichtigung der sowohl auf der Meso- als auch der Mikro-Ebene auftretenden Ef-
fekte weiter verfolgt und erweitert. Ferner wurden die makroskopischen Ansätze durch Mehr-Skalen-
Modellierungen vervollständigt bzw. vollständig abgelöst. Diese Entwicklung zeichnet sich insbe-
sondere in den Arbeiten von CHERKAOUI et al. [23], FISCHER et al. [36] CHERKAOUI [22], IWA-
MOTO [61], TURTELTAUB und SUIKER[130, 131], BARBE et al. [10], TJAHJANTO et al. [128] und
LEVITAS und OZSOY [77, 78] ab. Im Beitrag von KOUZNETSOVA und GEERS [66] wurde ein Drei-
Skalen-Ansatz der martensitischen Umwandlung infolge der mechanischen Belastung im TRIP-Stahl
entwickelt. Das Modell vereinigt in sich unterschiedliche Ebenen, die jeweilige Effekte abbilden und
miteinander verknüpfen.

Die erwähnten Publikationen zeigen verschiedene Methoden zur Modellierung der Festkörper-
phasenumwandlungen in den Stählen. Trotz der Vielzahl der genannten Beiträge zu diesem Themen-
komplex fehlen Arbeiten, die einen allgemein gültigen Ansatz zur lückenlosen Beschreibung der Hy-
bridumformprozesse formulieren.

1.3 Ziele der Arbeit

Die zentrale Zielsetzung der hier vorliegenden Dissertation, die im Rahmen des Teilprojektes B2 des
SFB/TR TRR 30 ”Prozessintegrierte Herstellung funktional gradierter Strukturen auf der Grundlage
thermo-mechanisch gekoppelter Phänomene“ (detaillierte Informationen z.B. unter www.transregio-
30.com) entstanden ist, ist den oben beschriebenen Hybridumformprozess mit Hilfe der FEM-
Simulation zu verstehen, vorherzusagen und zu optimieren.

Die Analyse der beschriebenen Problemstellung gliedert sich in folgende Etappen:

• Entwicklung eines makroskopischen phänomenologischen Mehrphasenmodells. Zur Erstellung
gehört die Formulierung und die Implementierung von konstitutiven Gleichungen. Das Material-
modell soll das komplexe Materialverhalten wie die temperatur- und zeitabhängige Phasenum-
wandlung, die Umwandlungsplastizität, die Viskoplastizität sowie große Deformation abbilden.

• Bestimmung der Materialparameter auf Grundlage von Experimenten mit Hilfe der numerischen
Optimierungsverfahren.

• Vorstellung repräsentativer Beispiele, in denen das modellierte phänomenologische Materialver-
halten getestet wird.

• FEM-Simulation des Hybridumformprozesses mit der Darstellung der Gefügeverteilung im Tech-
nologieträger ,,Antriebswelle“ unter Berücksichtigung der Kopplung thermischer und mechani-
scher Prozessschritte.

• Aufbau eines mikromechanisch basierenden Modells, welches die makroskopischen Effekte infol-
ge der Phasenumwandlung vom Austenit zum Bainit mit Hilfe von Effekten sowohl auf der Mikro-
als auch auf der Meso-Ebene abbildet.

• Vorstellung repräsentativer Beispiele, in denen das aus dem mikromechanischen Modell resultie-
rende makroskopische Materialverhalten getestet wird.
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1.4 Aufbau der Arbeit

Die mehrphasige phänomenologische und mehrskalige mikroskopisch basierende Modellierung von
Phasenumwandlungen im Hybridumformprozess gliedert sich in insgesamt sechs Kapitel:

In Kapitel 2 werden die für das Verständnis dieser Arbeit wichtigen, theoretischen Grundlagen zur
Festkörperphasenumwandlungen gelegt. Des Weiteren erfolgt die Darstellung des Versuchsaufbaus
bzw. des Ablaufs der experimentellen Untersuchungen der Phasenumwandlungen.

Kapitel 3 befasst sich mit der phänomenologischen Modellierung der Phasenumwandlung in Kom-
bination mit inelastischem Materialverhalten. Hierbei werden zunächst die konstitutiven Gleichungen
für kleine Deformationen hergeleitet. Anschließend werden diese in eine Materialschnittstelle des
FEM Programms Abaqus, die UMAT Subroutine numerisch implementiert. Der Implementierung
folgt die Parameteridentifikation des makroskopischen Materialmodells auf der Grundlage von ein-
axialen Versuchen.

In Kapitel 4 wird das Modell um die Theorie der Großdeformationen erweitert. Das entwickelte
Modell wird auf die thermodynamische Konsistenz geprüft. Hierbei wird die numerische Implemen-
tierung entsprechend auf die Großdeformationen ausgedehnt. Im Anschluss daran erfolgt die Simu-
lation des Hybridumformprozesses unter Einsatz der Standardprozessführung. Um unterschiedliche
Gefügeverteilungen im Werkstück nachbilden zu können, werden im nächsten Schritt Prozesspara-
meter variiert.

Der Gegenstand des Kapitel 5 bildet die Entwicklung eines physikalisch motivierten und thermo-
dynamisch konsistenten Mehrskalenmodells für das Materialverhalten eines niedrig legierten Stahls
bei der Umwandlung vom Austeint zum Bainit. Mit Hilfe des Modells werden die makroskopischen
Effekte der Phasenumwandlung auf der Grundlage der Vorgänge sowohl auf der Mikro- als auch
der Mesoebene nachgebildet. Zur Erfassung des makroskopischen Verhaltens infolge der Phasen-
umwandlung erfolgt die Abbildung des Polykristalls auf der mesoskopischen Ebene mit Hilfe des
repräsentativen Volumenelements (RVE) mit 512 Elementen.

Abgeschlossen wird die Arbeit durch ein Fazit inklusive eines Ausblicks (Kapitel 6).



Kapitel 2
Grundlagen der Phasenumwandlungen

2.1 Theoretische Grundlagen

Dieser Abschnitt stellt die für das Verständnis dieser Arbeit wichtigen, theoretischen Grundlagen zur
Festkörperphasenumwandlungen dar. Die Vielfalt der Eigenschaften der Stahlwerkstoffe wird durch
das verschiedenartige Mikrogefüge bewirkt. Die Einstellung des Mikrogefüges erfolgt durch eine
Änderung der chemischen Zusammensetzung bzw. durch eine geeignete thermische und mechani-
sche Behandlung unter Verwendung der Phasenumwandlung. Als eine Phasenumwandlung wird der
Übergang von einer oder mehreren Ausgangsphase(n) in eine oder mehrere andere Phase(n) bezeich-
net [30]. Diese Phasenänderungen lassen sich in Umwandlungs- und Ausscheidungsprozesse untertei-
len, wobei Umwandlungsprozesse einen Übergang einer instabilen Gitterstruktur in eine metastabile
bzw. stabile Gitterstruktur darstellen. Ausscheidungsprozesse kennzeichnen hingegen die diffusions-
bedingte Ausscheidung einer oder mehrerer Phasen aus dem übersättigten Mischkristall [57], [30].

Unterschiedliche Phasen sind je nach Druck, Temperatur und Zusammensetzung der Legierungs-
elemente stabil. Diese Bereiche können in Zustandsdiagrammen anhand der sogenannten Phasen-
grenzlinien separiert werden. Wird eine Phasenlinie beispielsweise durch eine Senkung der Tempera-
tur überschritten, zeigt sich dies durch einen entstehenden Knick- oder Haltepunkt in der Abkühlkurve
(Abb. 2.1.b). Die anhand der Abkühlkurven ermittelten Knick- und Haltepunkte dienen als Grundlage
für die Erstellung der Phasendiagramme.

Abb. 2.1 a) Eisen-Kohlenstoff-Diagramm (EKD), b) Schematische Abkühlkurve

7
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Das prominenteste Beispiel für ein Phasendiagramm ist das Eisen-Kohlenstoff-Diagramm (EKD)
(Abb. 2.1.a). Das EKD zeigt die Phasenänderungen einer Zweikomponentenlegierung aus Eisen und
Kohlenstoff unter der Bedingung, dass die Abkühlrate so langsam ist, dass eine vollständige Diffusi-
on aller Atome gewährleistet wird. Die Abbildung des Zustandsdiagramms erfolgt dabei entweder in
einer gefüge- oder einer phasenmäßigen Betrachtung. Des Weiteren lässt sich das EKD in das stabile
Eisen-Graphit- (Fe-C) und das metastabile Eisen-Zementit-Diagramm (Fe-Fe3C) differenzieren. Der
maximale Kohlenstoffanteil im Eisen im EKD liegt bei 6,67 % des Massenanteils und entspricht genau
100 % Zementit. Die charakteristischen Haltepunkte im EKD sind der peritektische (I), der eutekti-
sche (C) und der eutektoide (S) Punkt in Abbildung 2.1.a, bei denen jeweils drei Phasen gleichzeitig
vorliegen. Ferner ist am peritektischen und eutektischen Punkt jeweils eine schmelzflüssige Phase
beteiligt. Am eutektoiden Punkt (S) findet eine Umwandlung von einem festen zu einem anderen
festen Aggregatzustand statt. Dabei wandelt das kubisch-flächenzentrierte (kfz) γ-Eisen in kubisch-
raumzentriertes (krz) α-Eisen und Fe3C um (Abb. 2.2). Bei der gefügemäßigen Betrachtung trans-
formiert der Austenit (γ) in dem für Schmiedestähle relevanten Kohlenstoffbereich von 0,2 Ma.-%,
der zum Härten mindestens notwendig ist, bis 2,06 Ma.-% Kohlenstoff entweder zu Ferrit (α), Per-
lit (α und Fe3C) oder Perlit mit Sekundärzementit (Fe3C) um. Am eutektoiden Punkt S (0,8 Ma.-%
Kohlenstoff und 723 ◦C ) wandelt γ-Eisen bei langsamer Abkühlung in 100 % Perlit um, bei α-Eisen
entsteht streifenförmig angeordneter Fe3C. Bei niedrigeren Kohlenstoffgehalten ist der Anteil des Fer-
rits höher, bei größeren Kohlenstoffanteilen sammelt sich Sekundärzementit (Ausscheidung von Fe3C
im Austenit) bevorzugt an den Korngrenzen.
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Abb. 2.2 Schematische Darstellung der Umwandlung des kubisch-flächenzentrierten Gitters in ein kubisch-
raumzentriertes Gitter mit Kohlenstoffatom

Da das EKD nur für das Zweikomponentensystem Eisen und Kohlenstoff und darüber hinaus nur
bei sehr langsamer Abkühlung gilt, ist dessen Anwendbarkeit auf thermo-mechanisch gekoppelte Pro-
duktionsprozesse zur Einstellung funktional gradierter Strukturen im Stahl sehr begrenzt. Für solche
Vorgänge eignet sich vielmehr der Einsatz von Zeit-Temperatur-Umwandlungsschaubildern (ZTU),
die das zeitabhängige Festkörperphasenumwandlungsverhalten von jeweils einer chemischen Zusam-
mensetzung eines Stahls gefügemäßig abbilden [144]. Das in ZTU-Diagrammen beschriebene Um-
wandlungsverhalten wird generell in einem Dilatometerversuch bestimmt, wobei die Umwandlun-
gen durch Längenänderungen von Proben mit sehr geringer Masse gemessen werden, wodurch alle
Temperaturbewegungen nahezu trägheitslos erfolgen. ZTU-Diagramme lassen sich in zwei Katego-
rien unterteilen, in kontinuierliche und isotherme. Kontinuierliche ZTU-Diagramme geben das Um-
wandlungsverhalten für stetige Abkühlung von der Austenitisierungstemperatur an. Isotherme ZTU-
Diagramme bilden das Umwandlungsverhalten bei konstanten Haltetemperaturen nach schnellem Ab-
schrecken von der Austenitisierungstemperatur ab.

Es gilt anzumerken, dass jedes ZTU-Diagramm streng genommen nur für die verwendete Schmel-
ze und die vorliegenden Abkühlbedingungen gilt. Vor allem kann eine Änderung der im Stahl
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gelösten Legierungselemente sowohl die Umwandlungsstart- als auch die -endpunkte (isothermes
ZTU-Diagramm) oder die Umwandlungsstart- und -endtemperaturen (kontinuierliches ZTU-Dia-
gramm (Abb. 2.3) stark beeinflussen [144]. Abbildung 2.4 stellt ein isothermes ZTU-Diagramm des
untereutektoiden 51CrV4 Stahls dar.

Abb. 2.3 Kontinuierliches Zeit-Temperatur-Umwandlungs-Schaubild (ZTU-Schaubild) [29]

Abb. 2.4 Isothermes Zeit-Temperatur-Umwandlungs-Schaubild (ZTU-Schaubild) [29]

Bei diesem Stahl können abhängig von den Abkühlbedingungen zusätzlich zu den bereits aus dem
EKD bekannten Gefügen Ferrit und Perlit auch Bainit oder Martensit aus dem Austenit entstehen.
Da die Abkühlraten im betrachteten Hybridumformprozess so hoch sind [142, 141], dass kaum eine
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Umwandlung vom Austenit zum Ferrit oder Perlit möglich ist, wird dieser Vorgang im Rahmen die-
ser Arbeit nicht näher betrachtet. Vielmehr sind für den betrachteten Prozess Umwandlungen in die
Martensit-, Bainitstufe oder in ein Bainit-Martensitgefüge relevant. Da das vor dem Abkühlvorgang
vorliegende austenitische Gefüge durch eine Variation der Aufheizbedingungen determiniert werden
kann [113, 112] und somit ein großer Einfluss auf das Umwandlungsverhalten und die daraus resultie-
renden mechanischen Eigenschaften zu erwarten ist [144], sollen im Folgenden die für den betrachte-
ten Hybridumformprozess relevanten Gefüge kurz erläutert werden.

2.1.1 Austenit

Das austenitische Gefüge (kfz), das auch Hochtemperaturphase genannt wird, entsteht bei untereutek-
toiden Stählen aus ferritisch-perlitischem Gefüge (krz) durch Aufheizen auf eine Temperatur über A3

im γ-Bereich (Abb. 2.1) [30]. Hierbei sind die Bereichsgrenzen von der Zusammensetzung, der Auf-
heizrate sowie der Haltezeit abhängig. Die im EKD angegebenen Phasengrenzlinien gelten allerdings
nur für moderate Aufheizraten und extrem lange Haltezeiten. Da dies den im betrachteten techni-
schen Prozess vorliegenden Bedingungen nicht entspricht, wurden für diverse Stahlgüten sogenannte
Zeit-Temperatur-Austenitisierungs-Schaubilder (ZTA-Diagramme (Abb. 2.5)) entwickelt [144]. Bei
den ZTA-Diagrammen kann man analog zum Vorgehen bei den ZTU-Diagrammen eine Differenzie-
rung in isotherme (Abb. 2.5) und kontinuierliche (Abb. 2.6) Diagramme vornehmen. So lässt sich
auf der Grundlage des kontinuierlichen ZTA-Diagramms beispielsweise die für eine bestimmte Auf-
heizrate benötigte Temperatur zur Einstellung eines homogenen Austenits ermitteln. Ein isothermes
ZTA-Diagramm liefert bei vorgegebener Austenitisierungstemperatur und Aufheizrate die benötigte
Haltezeit zur Einstellung des gewünschten austenitischen Zustandes. Des Weiteren können sowohl
die gewählte Austenitisierungstemperaturen als auch die Haltezeiten Einfluss auf die sich einstellen-
den Austenitkorngrößen nehmen. Die Austenitisierungstemperaturen Ac1 und Ac3 werden wiederum
von der Zusammensetzung der Legierungselemente beeinflusst. Deren Schätzwerte lassen sich nach
HOLLOMON und JAFFE wie folgt ermitteln [30]:

Ac1[◦C] = 739− 22 · (%C) + 2 · (%Si)− 7 · (%Mn) + 14 · (%Cr)
+13 · (%Mo)− 13 · (%Ni) + 20 · (%V ),

Ac3[◦C] = 902− 255 · (%C) + 19 · (%Si)− 11 · (%Mn)− 14 · (%Cr)
+13 · (%Mo)− 20 · (%Ni) + 55 · (%V ).

(2.1)

Viele technische Anwendungen setzen ein gleichmäßiges austenitisches Gefüge voraus, um wäh-
rend der anschließenden Abkühlung nach Möglichkeit homogene Gefüge zu erhalten. Im betrachteten
thermomechanischen Hybridumformprozess werden hingegen verschiedenartige Austenitisierungs-
bedingungen eingestellt. Dies führt außer zu lokal verschiedenartigen Austenitisierungsgraden und
Austenitkorngrößen auch zu Unterschieden im lokalen Fließverhalten. Die Erkenntnisse zum Warm-
fließverhalten des stabilen Austenits (Temperaturen oberhalb derAc3-Linie) lassen sich aus der Litera-
tur entnehmen (vgl. dazu beispielsweise [50]). Daten zum Fließverhalten des unterkühlten Austenits
(Temperaturen unterhalb der Ac1-Linie) liegen hingegen zumeist nicht vor. Ahrens [1] hat gezeigt,
dass eine Abschätzung des Fließverhaltens des unterkühlten Austenits aus dem experimentell ermit-
telten Spannungs-Dehnungs-Verhalten der stabilen austenitischen Stählen zu großen Ungenauigkeiten
führen kann. Da aber diese metastabile Phase während der Verformungssequenz des relevanten Pro-
zesses vorliegt, erweist sich eine exakte Prozesssimulation des Spannungs-Dehnungs-Verhaltens des
unterkühlten Austenits als zwingend notwendig.
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Abb. 2.5 Kontinuierliches Zeit-Temperatur-Austenitisierungsschaubild (ZTA) [144]
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Abb. 2.6 Isothermes Zeit-Temperatur-Austenitisierungsschaubild (ZTA) [144]

2.1.2 Martensit

Das martensitische Gefüge entsteht durch ein diffusionsloses, spontanes, schlagartiges Umklappen
des austenitischen kfz-Gitters in ein tetragonal verzerrtes, raumzentriertes Gitter (Abb. 2.2) für tiefe
Temperaturen. Die Umwandlung beginnt bei Unterschreiten der Martensitstarttemperatur Ms und
läuft bei einer weiteren Abkühlung kaskadenartig in Bruchteilen von Sekunden ab. Die martensitische
Umwandlung stoppt, wenn der Abkühlvorgang unterbrochen wird und setzt sich bei einer weiteren
Temperaturabsenkung fort [8, 15, 67, 99, 138]. Wegen der während der martensitischen Umwandlung
herrschenden relativ tiefen Temperaturen ist die Diffusion der Atome ausgeschlossen.
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Die martensitische Transformation ist durch eine kooperative Scherbewegung der Atome gekenn-
zeichnet, wobei sich jedes einzelne Atom nur minimal bewegt [100]. Dementsprechend bleibt die
Verteilungskonzentration der Legierungsatome unverändert. Es gilt allerdings auf eine ausreichend
hohe Abkühlrate während der Temperatursenkung bis zur Martensitstarttemperatur zu achten, um
die diffusionsgesteuerte Phasenumwandlung, d.h. die Transformation von Austenit zu Ferrit/Perlit
oder Bainit, zu vermeiden. Die Ms-Temperatur, die Struktur des Martensits sowie die sich einstel-
lende Gitterverzerrung hängen maßgeblich vom Kohlenstoffgehalt des jeweiligen Stahlwerkstoffs ab.
Während es bei sehr hohen Kohlenstoffgehalten und niedrigeren Umwandlungstemperaturen zumeist
zur Bildung von so genanntem Plattenmartensit (engl. plate martensite) kommt, wird bei niedrigen
Kohlenstoffgehalten und Temperaturen knapp unterhalb von Ms vornehmlich Lanzettmartensit (engl.
lath martensite) gebildet. Die Martensitstarttemperatur in ◦C kann nach HOLLOMON und JAFFE [30]
anhand der Zusammensetzung der Legierungselemente abgeschätzt werden:

Ms[
◦C] = 550− 350 · (%C)− 40 · (%Mn)− 35 · (%V )− 20 · (%Cr)

−17 · (%Ni)− 10 · (%Cu)− 10 · (%Mo)− 8 · (%W )
+15 · (%Co) + 30 · (%Al).

(2.2)

Die Phasenumwandlung ist mit Eintreten der Martensit-Finish-Temperatur (Mf ), einem Temperatur-
niveau unterhalb von Ms vollendet. Oft wird wie beispielsweise bei KOISTINEN und MARBURGER
[65] angenommen, dass zwischen dem martensitischen Phasenanteil und der Unterkühlung ein linea-
rer Zusammenhang besteht. Um gerade noch 100 % Martensit zu erhalten, werden sowohl Ms und
Mf als auch die kritische Abkühlrate durch die Legierungszusammensetzung des jeweiligen Stahls
beeinflusst. Dementsprechend sinken Ms und Mf mit wachsendem gelösten Kohlenstoffgehalt, so
dass ab Kohlenstoffgehalten von über 0,6 Ma.-% bei Raumtemperatur Restaustenit im Gefüge ver-
bleiben kann [114, 21, 100, 58, 107]. Bei mittleren Kohlenstoffgehalten von ca. 0,5 bis 1,0 Ma.-%
können beide Arten (Platten-, Lanzettmartensit) gleichzeitig entstehen [114, 152]. Ferner stabilisieren
unter anderem die Legierungselemente Chrom (Cr), Vanadium (V) und Molybdän (Mo) die ferriti-
sche Phase und die Legierungselemente Nickel (Ni) und Mangan (Mn) die austenitische Phase. Die
resultierende Morphologie des Martensits ist vor allem vom gelösten Kohlenstoffgehalt im Austenit-
gefüge abhängig, da dieser die Stapelfehlerenergie und die Streckgrenze des unterkühlten Austenits
bestimmt. Martensit beginnt in der Regel an den Austenitkorngrenzen bzw. anderen gestörten Berei-
chen zu wachsen und verläuft mit der Schallgeschwindigkeit des Stahls bis zu einem Hindernis wie
beispielsweise einer weiteren Korngrenze oder schon entstandenem Martensit. Dabei bildet sich bei
Kohlenstoffgehalten von über 0,6 Ma-% bei Raumtemperatur überwiegend Plattenmartensit, meist
unter Zurückbleiben von Restaustenit (Abb. 2.7 a). Dieser ist deutlich weicher als das martensiti-
sche Gefüge, so dass die erreichbaren Härten mit wachsendem Kohlenstoffgehalt ohne zusätzliche
Maßnahmen nicht weiter steigen [11]. Bei Kohlenstoffgehalten von unter 0,6 Ma-% entwickelt sich
überwiegend Lanzettmartensit (Abb. 2.7 b).

Abb. 2.7 Verschiedene Ausprägungen von (a) Plattenmartensit und (b) Lanzettmartensit nach Bargel [114]
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Für den Beginn der Umwandlung vom Austenit zum Martensit ist neben einer ausreichend ho-
hen Abkühlrate auch ein bestimmtes Maß an Unterkühlung erforderlich (Abb. 2.8). Ein spontanes
Umklappen des austenitischen Gitters ist erst dann möglich, wenn nach Unterschreiten der Gleichge-
wichtstemperatur θ0 die benötigte Energie∆Gerf zur Bildung neuer Grenzflächen und Behebung von
Gitterstörungen zur Verfügung steht. Der Einsatz der martensitischen Phasenumwandlung bei Vorlie-
gen einer höheren Temperatur erfordert zusätzlich zur temperaturabhängigen Gibbs-Energie ∆G[θ]
die Anwendung einer angemessenen mechanischen Triebkraft Ukrit(θ) [124].

Abb. 2.8 Schematische Darstellung der Gibbs-Energie G in Abhängigkeit von der Temperatur θ [124]

Die mechanischen Eigenschaften des eingestellten martensitischen Gefüges sind entscheidend vom
Kohlenstoffgehalt abhängig. So nehmen aufgrund der ansteigenden tetragonalen Gitterverzerrung im
Martensit sowohl die Härte und die Festigkeit als auch die Sprödigkeit mit steigendem Kohlenstoff-
gehalt zu. Dies gilt allerdings nur dann, wenn bei Raumtemperatur kein Restaustenit vorhanden ist
(bis 0,6 Ma-% C) [100, 107, 21]. Zur Verbesserung der mechanischen Eigenschaften und in erster
Linie der Duktilität des Martensits kann dieser angelassen werden. Dadurch entspannt das verzerrte
Gitter, und es bilden sich Karbide aus. Eine steigende Anlasstemperatur verursacht eine Zunahme der
Duktilität und eine Abnahme der Festigkeit bzw. der Härte [11, 21].

2.1.3 Bainit

Das bainitische Gefüge bildet sich bei der Abkühlung in einem Temperaturbereich, der sich zwischen
den für die Perlit- bzw. die Martensitbildung relevanten Bereichen befindet. Aus diesem Grund wird
es auch als Zwischenstufengefüge bezeichnet [17]. Hierbei erfolgt der Umklappprozess vom auste-
nitischen kfz-Gitter in das tetragonal verzerrte krz-Gitter analog zu der martensitischen Phasenum-
wandlung nach dem Prinzip der scherungsdominierten Phasenumwandlung [8, 17, 67, 99, 138]. Im
Gegensatz zum Prozess der Martensitbildung ist die Bainitbildung nicht ausschließlich von der Un-
terkühlung abhängig. Sie folgt ebenso einer zeitabhängigen Komponente, was durch die Tatsache,
dass sich 100 % Bainit nur in einem isothermen Prozess einstellen lässt, verdeutlicht wird.

Die Temperatur, bei der die Bainitbildung einsetzt, wird als Bainitstarttemperatur Bs bezeichnet.
In der Literatur existiert für die Ermittlung von Bs in Abhängigkeit von der Legierungelementen-
zusammensetzung eine Reihe von empirischen Gleichungen [75, 120]. LEE [75] geht beispielsweise
vom folgenden Zusammenhang der Bs Temperatur in Abhängigkeit vom Masssenanteil der Legie-
rungselementen aus:
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Bs[
◦C] = 745− 110 · (%C)− 59 · (%Mn)− 39 · (%Ni)− 68 · (%Cr)

−106 · (%Mo) + 17 · (%MnNi) + 6 · (%Cr)2 + 29 · (%Mo)2.
(2.3)

Die Umwandlung setzt ausgehend von Austenitkorngrenzen mit Keimbildung nach dem Unterschrei-
ten der Bs-Temperatur ein. Im Gegensatz zum Perlit, wo die Keimbildung aus dem Zementit erfolgt,
prägen sich beim Bainit zuerst das α-Mischkristall aus. Wenn die Keimgröße den kritischen Wert er-
reicht, kommt es zum Wachstum einer Untereinheit (engl. sub-unit). Eine schematische Darstellung
des Wachstums bainitischer Nadeln (engl. sheaf) ist in Abbildung 2.9 gegeben.

	
  

t1

t2

t3

Abb. 2.9 Schematische Darstellung des Wachstums von bainitischen Nadeln und Karbidbildung bei oberen und unte-
rem Bainit [6]

Der Kohlenstoff bleibt im Laufe dieses Umklappprozesses zunächst im tetragonal verzerrten ferriti-
schen Gitter (Abb. 2.2) zwangsgelöst (Zeitpunkt t1 in Abbildung 2.9). Ist die Umwandlungstempe-
ratur und somit auch die Diffusionsfähigkeit ausreichend groß, diffundiert dieser vollständig in den
noch nicht umgewandelten angrenzenden Austenit (Zeitpunkt t2 in Abbildung 2.9). Bei Vorliegen
niedriger Umwandlungstemperaturen verbleibt jedoch ein Teil des Kohlenstoffs im bainitischen Fer-
rit und bildet dort Karbide. In diesem Fall handelt sich um den unteren Bainit. Zum nächsten Zeit-
punkt (t3 in Abbildung 2.9) kann es an der Spitze einer Bainituntereinheit zunächst zu einer autoka-
talytischen Keimbildung und einem darauf folgenden Wachstum einer neuen Untereinheit kommen.
Hierbei begrenzen Austenitkorngrenzen und bereits bestehende bainitische Nadeln das Wachstum
[14, 17, 55, 56, 110, 111].

Da bei beiden Bainitarten die Diffusion des Eisens vollständig gehemmt ist, ergeben sich die für
die Differenzierung des unteren und oberen Bainit verwendeten Erscheinungsformen allein aus der
unterschiedlichen Diffusionsfähigkeit des Kohlenstoffs. Als charakteristisches Merkmal des unteren
Bainit sind die fein verteilten Karbide innerhalb der bainitischen Ferrit-Matrix zu nennen, die sich
zumeist in einem Winkel von 50-60 ◦C zur Hauptachse der Ferritnadeln anordnen. Ferner können
zwischen den einzelnen Ferritnadeln vereinzelt gröbere Karbide entstehen, die sich lokal aus kohlen-
stoffübersättigtem Austenit bilden können. Die typischen Vorgänge für die Entstehung von oberem
und unterem Bainit werden in Abbildung 2.9 veranschaulicht [6].

Der untere Bainit zeichnet sich aufgrund der fein verteilten Karbide im bainitischen Ferritgitter
durch ausgezeichnete mechanische Eigenschaften, wie hohe Festigkeit bei gleichzeitiger guter Dukti-
lität aus. Beim oberen Bainit fehlen hingegen die fein verteilten Karbide in der Ferrit-Matrix. Es bilden
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sich hier aus dem übersättigten Austenit zwischen den einzelnen Ferritnadeln sehr grobe Karbide. Im
Ergebnis entsteht eine Mikrostruktur, die dem perlitischen Gefüge ähnlich ist und im Vergleich zum
unteren Bainit schlechtere mechanische Eigenschaften aufweist [11]. Ferner kann bei Temperaturen
knapp unterhalb der Bs Temperatur das Phänomen der sogenannten ”unvollständigen Bainitbildung“
(engl.: incomplete reaction phenomenon) auftreten, das dadurch gekennzeichnet ist, dass auch bei
sehr langen isothermen Haltezeiten keine 100%-ige Bainitbildung erreicht wird [55]. Das Auftreten
dieses Phänomens wird u.a. mit der zunehmend gehemmten Karbidbildung bei einer steigenden Tem-
peratur und der damit einhergehenden Erhöhung des Kohlenstoffgehalts im Austenit erklärt. Erreicht
die Kohlenstoffkonzentration einen kritischen Wert, ist eine diffusionslose Bildung des bainitischen
Ferrits nicht mehr möglich. Es kommt hierbei vielmehr zu einer Stabilisierung des austenitischen
Gefüges [16, 110].

2.1.4 Das kristallographische Modell

Scherungsdominierte Festkörperphasenumwandlungen sind mehrfach durch verschiedene Modelle
beschrieben worden. Ein Großteil davon wurde ursprünglich für die Austenit-zu-Martensit-Phasen-
umwandlung entwickelt. Allerdings lassen sich diese auch für die Austenit-zu-Bainit-Phasenumwand-
lung übertragen. Das erste Modell, dass die martensitische Phasenumwandlung beschreibt, wurde von
BAIN und DUNKIRK [8] entwickelt. Hierbei gingen beide Verfasser davon aus, dass die Umwandlung
vom kfz-Gitter ins krz-Gitter mit einer minimalen Verformung einhergeht. Die minimale Verformung
liegt vor, wenn angenommen wird, dass eine krz-Struktur bereits an der Grenzfläche zwischen zwei
kfz-Strukturen existiert (siehe Abb. 2.10).
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Abb. 2.10 Modellvorstellung der Phasenumwandlung vom Austenit zum Martensit nach BAIN UND DUNKIRK [8, 131]
.

Um jedoch ein krz-Gitter mit den erwünschten Gitterparametern zu erhalten, muss die im kfz-Gitter
vorhandene krz-Struktur in eine Raumrichtung gestaucht und in zwei Raumrichtungen gestreckt wer-
den. Demnach kann sich eine resultierende Martensit- oder Bainit-Orientierung aus drei verschiede-
nen Austenit-Orientierungen entwickeln. Im Bain-Modell wird angenommen, dass die kristallographi-
sche Richtungsannahme [11̄0]γ // [100]α bezüglich der Kristallebenen (11̄0)γ // (100)α maßgeblich
ist. Für die Bain-Verformungsmatrix gilt entsprechend
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Hierbei repräsentiert aA die Gitterkonstante des Austenits, aM und cM beschreiben jeweils die Git-
terkonstanten des Martensits und des Bainits. An dieser Stelle sind für die Komponente, die die Stau-
chung beschreibt

(
cM

aA

)
, drei Konstellationen möglich: sie kann sich auf jedem der drei Plätze der

Matrixdiagonalen befinden. Die zwei anderen Komponenten, die die Streckung beschreiben
(√

2aM

aA

)
,

füllen dann die übrigen Plätze der Matrixdiagonalen aus [18, 8].
Spätere Röntgenbeugungsmessungen haben aber gezeigt, dass die Phasenumwandlung neben der

Deviationskomponente auch eine Scherkomponente aufweisen kann. Auf diesen Erkenntnissen auf-
bauend entwickelten NISHIYAMA und WASSERMANN (N-W) [99] sowie KURDJUMOV und SACHS
(K-S) [67] weitere Modelle (vgl. Abb. 2.11).

Abb. 2.11 Darstellung der α//γ-Orientierungszusammenhänge in einer stereogpahischen Projektion nach (a) KURD-
JUMOV und SACHS [67] und (b) NISHIYAMA-WASSERMANN [99].

Bei der N-W Orientierungsbeziehung geht man davon aus, dass vor und nach der Phasenumwand-
lung für die Kristallebenen (111)γ//(011)α z.B. die Kristallrichtungen [101]γ //[111]α maßgeblich
sind, so dass es zu einer Scherung kommt. Dies entspricht einer Drehung von 9◦44′ um die [100]α-
Achse. Diese Scherung kann für jede parallele Ebenen-Beziehung in vier verschiedene Richtungen
erfolgen. Demnach kann bei drei möglichen parallelen Ebenen-Beziehungen eine Martensit- oder
Bainit-Orientierung aus zwölf verschiedenen Austenitorientierungen resultieren. Dies entspricht ei-
ner, im Vergleich zum Modell von Bain und Dunkirk, Vervierfachung der Variantenvielfalt [8].

Die K-S Orientierungsbeziehung erweitert die N-W Orientierungsbeziehung um eine weitere Dre-
hung von 5◦16′ um die [011]α-Achse, so dass bei (111)γ//(011)α beispielsweise [110]γ//[111]α gilt.
Die zusätzliche in zwei Richtungen erfolgte Drehung ermöglicht eine Beschreibung der Gittersrtuktur
des Martensit bzw. des Bainit mit 24 möglichen Varianten.
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An dieser Stelle gilt anzumerken, dass die Orientierungsbeziehungen nach N-W und K-S lediglich
Näherungslösungen darstellen, da die tatsächlich in der Röntgenbeugung beobachteten Orientierungs-
beziehungen sich nicht durch reelle Zahlen beschreiben lassen [17, 21, 100, 64, 107]. Ferner gilt zu
berücksichtigen, dass für die Phasenumwandlung vom Austenit zum Martensit bzw. zum Bainit theo-
retisch eine gemeinsame Grenzlinie notwendig ist, damit die Rotation um diese Achse (RB) möglich
wird. Für die Realisierbarkeit der Phasenumwandlung muss diese Grenzlinie während der Transfor-
mation unverzerrt bleiben und wird daher als invariante Habituslinie bezeichnet. Um die Irrationalität
der Orientierungsbeziehungen sowie das Auftreten einer Habitusebene anstatt einer –linie zu erklären,
werden im Rahmen dieser Analyse phänomenologische Theorien für die Austenit-zu-Bainit- sowie
die Austenit-zu-Martensit-Umwandlung herangezogen. Als Beispiel dafür, wird in Abbildung 2.12
die Theorie von BHADESHIA [17] veranschaulicht.

Abb. 2.12 Schematische Darstellung der phänomenologischen Theorie der Martensitbildung nach BHADESHIA [17]

Der Kerngedanke ist, dass eine gitterinvariante Verformung durch Bildung von Substrukturen im
Martensit oder Bainit durch Zwillingsbildung bzw. Abgleiten infolge der Reduzierung der Verzer-
rungsenergie auftritt. Als Folge zeigt sich keine einfache Rotation (RB) um eine Habituslinie, sondern
eine Scherung entlang einer Habitusebene. Die irrationalen Orientierungsbeziehungen resultieren aus
den sich bildenden verzwillingten oder abgeglittenen Strukturen, die keine glatte Oberfläche aufwei-
sen und folglich eine irrationale Ebene darstellen [17, 64, 100, 57].

2.1.5 Umwandlungsplastizität

Eine martenisitische bzw. bainitische Umwandlung führt bei vielen Stählen zu einer so genanten Um-
wandlungsplastizität. Die Umwandlungsplastizität (TRIP) beschreibt die inelastischen Verformungen
während der Phasenumwandlung für den Fall, dass die thermisch und/oder mechanisch induzierte
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Spannung die Fließspannung der weicheren Phase unterschreitet. Die Ursachen der umwandlungs-
plastischen Dehnungen liegen in der Volumen- und Formänderung eines Kristalls (Abschnitt 2.1.4)
während der Phasenumwandlung, bei der sich die weichere der an der Umwandlung beteiligten Pha-
sen an die Umgebung der härteren Phase anpassen muss. Dadurch entstehen in der Umgebung der
Umwandlungsfront komplizierte Eigenspannungszustände, die auch ohne Wirkung äußerer Spannun-
gen lokal zu plastischen Dehnungen und somit zur Umwandlungplastizität führen. Dieses Verhalten
wird als Greenwood-Johnson-Effekt [46] bezeichnet. Ferner tritt bei martensitischen und bainitischen
Umwandlungen eine Formänderung infolge einer Scherung der umgewandelten Region auf. Aufgrund
der aufgebrachten Belastung wird die Bildung von Martensit- oder Bainitvarianten in einigen, energe-
tisch günstig orientierten Richtungen bevorzugt, so dass eine inelastische Verformung eintritt. Diese
Art der Umwandlungsplastizität ist als Magee-Effekt bekannt ([83]).

2.2 Experimente zu Phasenumwandlungen

2.2.1 Versuchsstand

Zur Untersuchung des Umwandlungsverhaltens und zur Bestimmung des Einflusses von einachsigen
Zugspannungen auf das Umwandlungsverhalten des niedriglegiertes Stahl 51CrV4 wurde am Lehr-
stuhl für Werkstoffkunde der Universität Paderborn ein speziell entwickeltes Belastungsdilatometer
(Abb. 2.13) errichtet. Die Legierungselemente von diesem Stahl sind in Tabelle 2.1 zusammengefasst.

Element C Cr Mn S Pb Si Cu Al Ni Mo Nb Ti P Fe
min 0,5 0,99 0,84 0,005 0,003 0,23 0,22 0,01 0,07 0,03 0,006 0 0,002 Rest
max 0,5 1,07 0,91 0,014 0,005 0,28 0,23 0,026 0,07 0,03 0,008 0 0,015 Rest

Tabelle 2.1 Chemische Zusammensetzung des Versuchswerkstoffs mit den jeweils minimalen und maximalen Werten
der gemessenen Massenanteilen in Prozent von den Legierungskomponenten des niedriglegierten Stahls 51CrV4

Im Verlauf der Experimente werden die Hohlproben mit 10 mm Außendurchmesser und 1 mm
Wandstärke (Abb. 2.14) zunächst konduktiv auf die Austenitisierungstemperatur gebracht und ge-
halten (z.B. 880 ◦C/5 Min.). Dem folgt eine rasche Abkühlung im Gasdüsenfeld auf die, für die
Transformation in eine Bainitphase notwendige, vorgegebene Umwandlungstemperatur. Nach Errei-
chen der Umwandlungstemperatur wird die vordefinierte äußere Spannung aufgebracht und während
der fortlaufenden Umwandlung konstant gehalten. Martensitische Umwandlung findet bei einer kon-
tinuierlichen Abkühlung auf die Raumtemperatur statt. Analog zur bainitischen Umwandlung wird
bei der Untersuchung der martensitischen Phasentransformation die vordefinierte äußere Spannung
kurz vor Erreichen der Martensitstarttemperatur aufgebracht und konstant gehalten.

Abbildung 2.14 zeigt schematisch das Funktionsprinzip der verwendeten belastungsdilatometri-
schen Versuchseinrichtung. Die Probenerwärmung erfolgt hierbei konduktiv mittels einer regelbaren
Gleichstromquelle. Die Steuerung der Temperatur geschieht über einen Regler, der die mit einem
Pyrometer gemessene Oberflächentemperatur auf der Probenmitte zur Regelung nutzt.

Zur Messungskorrektur und Überprüfung der Austenitisierungs- und der Bainitumwandlungstem-
peratur während des isothermen stationären Zustandes wird ein Thermoelement im Inneren der Probe
eingesetzt. Die Ermittlung des Verlaufs der Phasenumwandlung erfolgt durch simultane Messung der
Längs- und Querdehnung (εl, εq ,). Dazu wird aus der relativen Volumenänderung

∆V

V
= (1 + εl) (1 + εq)

2 − 1 (2.4)
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der volumetrische Phasenanteil mithilfe der Normierung für die isotherme und kontinuierliche Um-
wandlung bestimmt:

1. Zeitabhängig z(t) =
∆V (t)

V

/
∆V (t→∞)

V
,

2. Temperaturabhängig z(θ) =
∆V (θ)

V

/
∆V (θ → θR)

V
.

(2.5)

Abb. 2.13 Belastungsdilatometer: a) Fotographie (erkennbar sind die Probe (1), die Stromzuführung (2), das
Gasdüsenfeld (3) sowie der Extensometer für die Messung der Querdehnung (4)), b) Schematischer Versuchsaufbau
[1]

Abb. 2.14 Hohlprobengeometrie für Phasenumwandlungen unter Zugspannungen [1]
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2.2.2 Experimentelle Ergebnisse der martensitischen Umwandlung

Im Laufe der experimentellen Untersuchungen des Phasenumwandlungsverhaltens des betrachteten
Werkstoffs in der Martensitstufe wurden Proben kontinuierlich bis auf die Raumtemperatur abge-
schreckt (Abb. 2.15). Die Abkühlrate wurde mit 70 K s−1 zunächst so gewählt, dass bis zur Mar-
tenitstarttemperatur (Ms) keine Umwandlung einsetzen kann. Erst nach Erreichen von Ms, bei der
nur martensitische zeitunabhängige Umwandlung möglichst ist, wurde die Abkühlrate auf 15 K s−1

reduziert, um Temperaturgradienten während der Umwandlung minimal zu halten.

Abb. 2.15 Versuchsablauf zur Ermittlung des spannungsabhängigen Umwandlungsverhaltens, kontinuierliche Um-
wandlung [1]

Abb. 2.16 Entwicklung der Längs- und Querdehnungen mit der Temperatur bei kontinuierlicher martensitischer Um-
wandlung unter 0 und 100 MPa überlagerter Spannung [70]
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Während der kontinuierlichen martensitischen Umwandlung treten neben den umwandlungsbe-
dingten Dehnungen auch thermische Dehnungen auf. Sollte während des Versuches ein Temperatur-
gradient in der Messlänge vorkommen, würde dies bei der Abkühlung von der Austenitisierungs- zur
Raumtemperatur zu Abweichungen zwischen dem Verlauf von Längs- und Querdehnungen mit der
Temperatur führen. Aus Abbildung 2.16 wird ersichtlich, dass bei den Untersuchungen in der Mar-
tensitstufe nach einer Austenitisierung bei 880 ◦C für 5 min kein signifikanter Temperaturgradient in
der Messlänge auftrat. Es wurde hierbei vielmehr der für eine spannungslose Umwandlung erwartete,
isotrope Verlauf der Längs- und Querdehnungen ermittelt. Ferner war die Volumenzunahme während
einer spannungslosen martensitischen Umwandlung nach Austenitisierungen bei 1050 ◦C für 10 s und
1200 ◦C für 10 s ungerichtet. Bei einer Aufbringung der Spannung von 100 MPa vor Erreichen der
Ms-Temperatur und einem Konstanthalten der ersten während der anschließenden Umwandlung un-
terschied sich der Verlauf der Querdehnungen deutlich von dem der Längsdehnungen. Diese Differenz
ist auf die Entwicklung umwandlungsplastischer Dehnungen zurückzuführen [68].

2.2.3 Experimentelle Ergebnisse der bainitischen Umwandlung

Um das Umwandlungsverhalten in der Bainitstufe zu untersuchen, wurden die Proben im Anschluss
an die Austenitisierungsbehandlung auf eine isotherme Umwandlungstemperatur oberhalb der Mar-
tensitstarttemperatur Ms abgeschreckt. Diese Temperatur wurde für eine bestimmte Zeit konstant
gehalten, so dass über die Variation der Haltezeit unterschiedliche Bainitanteile eingestellt werden
konnten (Abbildung 2.17). Für Phasenumwandlungsversuche in der Bainitstufe wurde eine isotherme
Haltezeit von 30 Minuten gewählt. Diese lange Haltezeit stellte sicher, dass der unterkühlte Austenit
vollständig zu Bainit umgewandelt wurde, bevor die Proben auf die Raumtemperatur abkühlten.

Abb. 2.17 Versuchsablauf zur Ermittlung des spannungsabhängigen Umwandlungsverhaltens, isotherme Umwandlung
[1]

Bei einer Phasenumwandlung, die ohne Einwirkung äußerer Spannungen erfolgte, war die zeitliche
Entwicklung von Quer- und Längsdehnung während der isothermen bainitischen Umwandlung fast
identisch (Abb. 2.18). Die Volumenzunahme erfolgte demzufolge isotrop, ohne maßgebliche Entwick-
lung umwandlungsplastischer Dehnungen. Eine im Anschluss an die zehnsekündige Austenitisierung
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bei 1200 ◦C erfolgte Abkühlung auf eine Temperatur von 340 ◦C und eine anschließende Aufbringung
der Spannung von 140 MPa führte bei der isothermen Bildung des Bainits zu deutlich unterschied-
lichen Verläufen der Quer- und Längsdehnung. Dies wird durch umwandlungsplastische Dehnungen
verursacht [68].

Abb. 2.18 Einfluss des überlagerten Spannungszustandes während der Umwandlung auf den Verlauf der Längs- und
Querdehnungen über die Zeit während einer isothermen bainitischen Phasenumwandlung bei 340 ◦C [68]

Mit steigendem Spannungsniveau nehmen die am Ende der isothermen bainitischen Phasenum-
wandlung vorliegenden Längsdehnungen zu. Dies wird aus der Abbildung 2.19 aus der Entwicklung
der Längsdehnungen im Verlauf der Zeit, während einer isothermen bainitischen Transformation bei
340◦C unter der Wirkung unterschiedlicher Spannungen ersichtlich.

Abb. 2.19 Einfluss des Spannungszustandes auf den Verlauf der Längsdehnungen mit der Zeit während der isothermen
bainitischen Phasenumwandlung bei 340 ◦C [68]
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2.2.4 Mechanische Eigenschaften des unterkühlten Austenits

Die im betrachteten Hybridumformprozess verwendeten Erwärmungsstrategien resultieren nicht nur
in örtlich unterschiedlichen Austenitisierungsbedingungen, sondern beeinflussen auch die während
der anschließenden Abkühlung örtlich vorliegenden Temperaturen. Die Umformung des mittleren
Bereichs der Probe, wobei aufgrund der vorhergehenden Erwärmung überwiegend Austenit vorliegt,
erfolgt in einem weiten Temperaturbereich von ca. 400-1200 ◦C [141]. Somit ist es für die Abbil-
dung des Prozesses notwendig, die mechanischen Eigenschaften des austenitischen Gefüges in die-
sem Temperaturfenster zu kennen. Neben dem temperaturabhängigen Spannung-Dehnung-Verhalten
des stabilen Austenits (Temperatur > Ac3 Linie), auf das in den experimentellen Untersuchungen
des Lehrstuhls für Werkstoffkunde der Universität Paderborn nicht näher eingegangen wurde (siehe
dazu [68, 57, 129, 50, 118]), ist insbesondere das temperaturabhängige mechanische Verhalten des
metastabilen unterkühlten Austenits (Temperatur < Ac1 Linie) von Interesse.

Abbildung 2.20 stellt das Spannung-Dehnung-Verhalten des unterkühlten Austenits im Tempera-
turbereich von 340 bis 700 ◦C dar. Alle Proben sind zuvor bei 1200 ◦C für 10 Sekunden austeniti-
siert worden. Erwartungsgemäß nimmt die 0,2%-Dehngrenze des unterkühlten Austenits mit fallender
Temperatur zu. Während bei 340 ◦C ein Wert von 195 MPa ermittelt wurde, lag die 0,2%-Dehngrenze
bei 700 ◦C nur noch bei 130 MPa. Ferner ist jeweils lediglich ein leichtes Verfestigungsverhalten des
betrachteten Werkstoffs zu verzeichnen.

Abb. 2.20 Spannung-Dehnung-Verhalten des unterkühlten Austenits bei verschiedenen Temperaturen [71]





Kapitel 3
Phänomenologische Modellierung für kleine
Deformationen

Den Gegenstand dieses Kapitels bildet die phänomenologische Formulierung eines thermodyna-
misch konsistenten Modells unter der Annahme kleiner Deformationen. Im ersten Schritt erfolgt auf
der Grundlage der Kontinuumsthermodynamik die Ableitung der konstitutiven Gleichungen unter
Berücksichtigung der unterschiedlichen nz Phasen und des viskoplastischen Materialverhaltens. Im
darauf folgenden Abschnitt wird das Modell auf den Hybridumformprozess angepasst. Die im Rah-
men dieser Adaptation entwickelten Gleichungen des Prototypmodells werden numerisch implemen-
tiert. Die auf der Grundlage der experimentellen Daten durchgeführte Parameteridentifikation schließt
das Kapitel ab.

3.1 Konstitutive Gleichungen

3.1.1 Kinematik

Es werden ein Körper B in dem Euklidischen Raum R3 mit der Konfiguration B ⊂ R3 sowie dem
Verschiebungsfeld u betrachtet. Der Verzerrungssensor lässt sich basierend auf der geometrisch li-
nearen Theorie

ε = sym {u⊗∇} =
1

2

(
∇u + (∇u)T

)
(3.1)

an der Stelle P ∈ B×]0, T [ bestimmen. Die Definition des Nabla-Operators erfolgt innerhalb eines
kartesischen Koordinatensystems als∇ = ∂/∂xiei mit den Basisvektoren ei, i = 1, 2, 3 und den Ko-
ordinaten xi, i = 1, 2, 3. Für die Gesamtverzerrung gilt unter Einsatz der additiven Dekompensation
folgender Ausdruck:

ε = εel + εtp + εvp + εθ + εtv. (3.2)

Die einzelnen Terme repräsentieren entsprechend:

εel den elastischen Verzerrungstensor,
εθ den thermischen Verzerrungstensor,
εtv den umwandlungsbedingten Verzerrungstensor,
εvp den viskoplastischen Verzerrungstensor und
εtp den umwandlungsplastischen (TRIP) Verzerrungstensor.

Die ausführlichen Formulierungen der einzelnen Verzerrungstensoren werden im späteren Verlauf der
Arbeit bei der Entwicklung des Prototypmodells in Abschnitt 3.2 vorgenommen.

25
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3.1.2 Massen- und Volumenanteile der Phasen

Dieser Abschnitt geht auf den in Zusammenarbeit mit Herrn Michael Wolff entwickelten Beitrag
zurück, deren Gegenstand die Analyse und Darstellung der Massen- und Volumenanteile der Phasen
sowie die Ermittlung von absoluten und relativen Fehler zwischen den Massen- und Volumenanteilen
bildet [92].

Generell wird bei niedrig legierten Stählen während der Phasenumwandlung eine Mischung von
mindestens zwei Phasen (nz ≥ 2) betrachtet. Diese Mischung wird als homogen angenommen, d.h.
alle Phasenverhältnisse sind gleich verteilt. Für die Dichte der Mischung ρ gilt

ρ =
dm

dV
. (3.3)

Innerhalb des Volumeninkrements dV weist die ite Phase das Volumen dVi und die Masse dmi auf.
Der Volumenphasenanteil z(v)

i , der Massenphasenanteil z(m)
i und die Dichte der iten Phase ρi sind

definiert als

z
(v)
i =

dVi
dV

, z
(m)
i =

dmi

dm
, ρi =

dmi

dVi
. (3.4)

Generell ist das Gefüge räumlich nicht homogen. Die Größen ρ, z(v)
i , z(m)

i und ρi werden basierend
auf Gleichungen (3.3) und (3.4) in einem Materialpunkt P ∈ B mit dem Volumenbereich dV auf
diesen Punkt definiert. Auf diese Weise stellen diese Größen sowohl Funktionen des Raums als auch
Funktionen der Zeit dar. In jedem Materialpunkt und zu jedem Zeitpunkt B×]0, T [ gelten folgende
Bedingungen:

nz∑

i=1

z
(v)
i = 1,

nz∑

i=1

z
(m)
i = 1, z

(v)
i ≥ 0, z

(m)
i ≥ 0 ∀ i = 1, . . . , nz. (3.5)

Die Phasenanteile werden zum Zwecke einer kompakten Darstellung in einem Vektor

z = [z1, z2, . . . , znz
]T (3.6)

zusammengefasst.
Die in ein fixes Volumen eingefügte Masse ist unabhängig von den möglichen Volumenänderungen,

die als Folge von Temperatur- oder Dehnungsänderungen auftreten. Dadurch hat der Massenphasen-
anteil z(m)

i den Vorteil temperatur- und deformationsunabhängig zu sein. Des Weiteren folgt aus (3.3)
und (3.4) der Zusammenhang zwischen den Massen- und Volumenphasenanteilen

z
(m)
i =

ρi[θ]

ρ[θ]
z

(v)
i [θ] ∀ i = 1, . . . , nz. (3.7)

Dies gilt bei allen zulässigen Temperaturen θ sowohl für die folgende Mischungsregel für die Dichte
ρ als auch für ihre Inverse

1. ρ =

nz∑

i=1

ρi z
(v)
i , 2.

1

ρ
=

nz∑

i=1

1

ρi
z

(m)
i . (3.8)

An dieser Stelle wird darauf verwiesen, dass einige der oben aufgeführten Formeln ebenfalls in RA-
NIECKI und BRUHNS [108] zu finden sind.

Grundsätzlich sind Massen- und Volumenphasenanteile in der gleichen Phase nicht identisch. Be-
trachtet man in dieser Hinsicht speziell den Werkstoff Stahl, sind diese Differenzen jedoch so gering,
dass sie vernachlässigbar sind. Diese Aussage wird anhand der Analyse des absoluten bzw. relativen
Fehlers begründet. Definiert man den absoluten Fehler ∆i[θ] als Differenz zwischen dem Massen-
und Volumenanteil, erhält man durch die Formulierung der Dichte ρ über die Mischungsregel in (3.8)
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∆i[θ] = |z(m)
i − z(v)

i [θ]| =
∣∣∣ρi[θ]
ρ[θ]

− 1
∣∣∣ z(v)
i [θ] =

∣∣∣
nz∑

j=1,j 6=i

(ρi[θ]− ρj [θ]
ρj [θ]

)
z

(m)
j

∣∣∣ z(v)
i [θ]. (3.9)

Für eine Zweiphasenmischung (nz = 2) ergibt sich

1. ∆1[θ] =
∣∣∣ρ1[θ]− ρ2[θ]

ρ2[θ]

∣∣∣ z(m)
2 z

(v)
1 [θ], 2. ∆2[θ] =

∣∣∣ρ2[θ]− ρ1[θ]

ρ1[θ]

∣∣∣ z(m)
1 z

(v)
2 [θ]. (3.10)

Durch den Einsatz der Schätzungen

z
(v)
1 ≤ z(m)

1 +∆1[θ],

z
(m)
2 z

(m)
1 = (1− z(m)

1 )z
(m)
1 ≤ 1

4

kann Gleichung (3.10.1) wie folgt umgeformt werden:

∆1[θ] ≤
∣∣∣ρ1[θ]− ρ2[θ]

ρ2[θ]

∣∣∣ z(m)
2 z

(m)
1 +

∣∣∣ρ1[θ]− ρ2[θ]

ρ2[θ]

∣∣∣ z(m)
2 ∆1[θ] (3.11)

≤ 1

4

∣∣∣ρ1[θ]− ρ2[θ]

ρ2[θ]

∣∣∣+
∣∣∣ρ1[θ]− ρ2[θ]

ρ2[θ]

∣∣∣∆1[θ].

Unter Annahme des Zusammenhangs

∣∣∣ρ1[θ]− ρ2[θ]

ρ2[θ]

∣∣∣ < 1 (3.12)

folgt aus (3.11)

∆1[θ] ≤ 1

4

∣∣∣ρ1[θ]−ρ2[θ]
ρ2[θ]

∣∣∣

1−
∣∣∣ρ1[θ]−ρ2[θ]

ρ2[θ]

∣∣∣
(3.13)

bzw.

∆2[θ] ≤ 1

4

∣∣∣ρ1[θ]− ρ2[θ]

ρ1[θ]

∣∣∣

1−
∣∣∣ρ1[θ]− ρ2[θ]

ρ1[θ]

∣∣∣
. (3.14)

Eine analoge Vorgehensweise bietet sich für die Ermittlung des relativen Fehlers δi[θ] zwischen den
Massen- und Volumenanteilen an. Für einen nicht verschwindenden Massenanteil z(m)

i gilt für den
relativen Fehler zwischen dem Massen- und Volumenanteil der iten Phase in Abhängigkeit von der
Temperatur θ

δi[θ] =
∣∣∣z

(m)
i − z(v)

i [θ]

z
(m)
i

∣∣∣ ≤
∣∣∣ρi[θ]− ρ[θ]

ρi[θ]

∣∣∣. (3.15)

Wird ρ über die Mischungsregel in (3.8) ausgedrückt, folgt:

δi[θ] ≤
∣∣∣

nz∑

j=1,j 6=i
z

(v)
j [θ]

ρi[θ]− ρj [θ]
ρi[θ]

∣∣∣. (3.16)

Für eine Zweiphasenmischung (nz = 2) ergibt sich
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δ1[θ] ≤ z(v)
2 [θ]

∣∣∣ρ1[θ]− ρ2[θ]

ρ1[θ]

∣∣∣, δ2[θ] ≤ z(v)
1 [θ]

∣∣∣ρ2[θ]− ρ1[θ]

ρ2[θ]

∣∣∣. (3.17)

Im Folgenden soll ein numerisches Beispiel für den niedriglegierten Stahl 51CrV4, der eine
Austenit-zu-Martensit Transformation durchläuft, betrachtet werden. Die temperaturabhängigen Dich-
ten des Austenit (,,a“ ) bzw. des Martensit (,,m“ ) werden mit Hilfe des Programms ,,JMatPro 5“ unter
Verwendung der chemischen Zusammensetzung aus Tabelle 1.1 errechnet und betragen abhängig von
der Temperatur in Grad Celsius:

ρa[θ] = 8069, 4− 0, 5881 θ + 3, 61 10−5 θ2,
ρm[θ] = 7788, 7− 0, 28554 θ − 7, 0750 10−5 θ2.

(3.18)

Aus der Berücksichtigung des Intervalls zwischen 25 ◦C und 290 ◦C (Starttemperatur des Martensit)
sowie der Ermittlung des korrespondierenden maximalen Volumens in (3.13), (3.14) und (3.17) erhält
man für alle θ ∈ [25, 290] die maximalen Schätzwerte

∆a[θ] ≤ 0.0091, ∆m[θ] ≤ 0.0088,

δa[θ] ≤ 0.033 z
(v)
m , δm[θ] ≤ 0.035 z

(v)
a .

(3.19)

Ähnliche Ergebnisse können für andere Phasentransformationen im Stahl erwartet werden. Demnach
beträgt der absolute Fehler zwischen den Massen- und Volumenanteilen der Phasen im Stahl bei Vor-
liegen der gleichen Temperatur weniger als 1%. Des Weiteren liegt der relative Fehler zwischen den
Massen- und Volumenanteilen der Phasen im Stahl im ungünstigen Fall unter 3.5%. Aufgrund der nur
sehr geringen absoluten und relativen Fehler zwischen den Massen- und Volumenanteilen der Phasen
im betrachteten Werkstoff, werden im weiteren Verlauf der Arbeit die Volumen- und Massenphasen-
anteile gleich gesetzt.

3.1.3 Thermodynamisch konsistente Formulierung

Bilanzgleichungen bilden die physikalische Grundlage der Kontinuumsmechanik und beschreiben
allgemeingültige Prinzipien bzw. universelle Naturgesetze unabhängig von den speziellen Konti-
nuumseigenschaften. Sie gelten für alle Materialmodelle der Kontinuumsmechanik und werden in
der Integralform als globale Aussagen für den Gesamtkörper angegeben. Bei hinreichend glatten
Körperrändern können die zu bilanzierenden Größen auch lokal in Form von Differentialgleichun-
gen [2] formuliert werden. Des Weiteren müssen die Bilanzen für Impuls, Energie und Entropie im
Orts-Zeit-Gebiet B×]0, T [ erfüllt sein. Im Rahmen dieser Untersuchung werden folgende Bilanzglei-
chungen verwendet (siehe z.B. HAUPT [54]):

1. ρ0 ü−Div [σ] = ρ0 f , Impuls- oder Bewegungsgleichung,

2. ρ0 ė+ Div q0 = P + ρ0 rθ, Energiegleichung,

3.
1

ρ0
P − Ψ̇ − θ̇η − 1

ρ0θ
q0 · ∇θ ≥ 0 Clausius-Duhem-Ungleichung,

(3.20)

mit

u - Verschiebungsvektor,
ε - Verzerrungstensor,
σ - Spannungstensor,
f - Massendichte der außeren Kräfte,
Ψ - freie Helmholtz-Energiefunktion,
η - Entropie,
q0 - Wärmestromdichtevektor,
rθ - Massendichte der Wärmezufuhr.
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Die Spannungsleistung P wird durch das doppelte Skalarprodukt des Spannungstensors und des
Verzerrungsgeschwindigkeitstensors ε̇ ausgedrückt:

P = σ : ε̇. (3.21)

Der Punkt über dem Argument kennzeichnet dessen Zeitableitung.

Abb. 3.1 Konfiguration B und Randbedingungen eines Körpers B

Die als Clausius-Duhem-Ungleichung bekannte Ungleichung (3.20.3) wird zunächst um Nebenbe-
dingungen, d.h. unter anderem auch die Randbedingungen sowie die Anfangswerte für den Verschie-
bungsvektor u und die Temperatur θ vervollständigt

u(x, 0) = 0, u̇(x, 0) = 0, θ(x, 0) = θ0 = konst. für x ∈ B,
u = 0 in ∂Bu×]0, T [, σ · n = t in ∂Bt×]0, T [,

θ = θ in ∂Bθ×]0, T [, q0 · n = q in ∂Bq×]0, T [.
(3.22)

Zur Vereinfachung werden die Startwerte von u und u̇ auf Null gesetzt. Des Weiteren wird das
Anfangstemperaturfeld θ als homogen angenommen. Ohne die Allgemeingültigkeit des Modells zu
verletzen, können Nullwerte für u in ∂Bu×]0, T [ angenommen werden. n ist der Normalvektor an
den Rändern ∂Bu ⊂ ∂B und ∂Bq ⊂ ∂B. t steht für die äußere Belastung an ∂Bt ⊂ ∂B, ∂Bu

und ∂Bt stellen die getrennten Teile des Körperrandes ∂B dar. θ ist die vorgegebene Temperatur am
∂Bθ und q ein vorgegebener Wärmestrom, der durch den übrig gebliebenen Rand ∂Bq fließt.

Für die freie Helmholtz-Energie Ψ wird folgender funktionaler Zusammenhang angenommen:

Ψ = Ψ [εel, q, z, θ], (3.23)

mit εel als elastischen Verzerrungstensor und q = [qi, . . . , qnq
]T als den Vektor der verzerrungsähnli-

chen internen Verfestigungsvariablen. Der in Gleichung (3.6) eingeführte Vektor z berücksichtigt die
unterschiedlichen Phasen nz und spielt gleichzeitig die Rolle der internen Variablen.

Im nächsten Schritt erfolgt die Definition des Spannungstensors σ, der Entropie η sowie der ther-
modynamischen Kräfte für die Verfestigungsspannungen Q = [Q1, Q2, . . . , Qnq ]T sowie die chemi-
schen Kräfte der Phasentransformation Z = [Z1, Z2, . . . , Znz

]T

1. σ = ρ0
∂Ψ

∂εel
, 2. η = −∂Ψ

∂θ
, 3. Q = ρ0

∂Ψ

∂q
, 4. Z = ρ0

∂Ψ

∂z
. (3.24)

Die notwendigen Bedingungen der Clausius-Duhem-Ungleichung (3.20.3) werden eingehalten, wenn
folgende Bedingungen erfüllt sind:



30 3 Phänomenologische Modellierung für kleine Deformationen

1. D i = σ : ε̇in −Q q̇ − Z ż ≥ 0, 2. Dθ = −1

θ
q0 · ∇θ ≥ 0. (3.25)

Den gängigen Ansatz für den Wärmestromvektor in Gleichung (3.25.2) liefert das Fourier-Gesetz:

q0 = −λθ · ∇θ, (3.26)

mit λθ als nicht-negativem Wärmeleitungskoeffizient.
Demzufolge ist die Wärmeleitungsdissipation stets positiv. Um die thermodynamische Konsistenz

des Modells nachzuweisen, ist es daher hinreichend, wenn die Ungleichung der reduzierten Dissipa-
tion (3.25.1) erfüllt ist. Zur Formulierung der reduzierten Dissipationsbeziehung ist die Aufstellung
folgender Evolutionsgleichungen notwendig:

1. ε̇in = ε̇in [σ, Q, Z, q, z, θ], 2. q̇ = q̇ [σ, Q, Z, q, z, θ], 3. ż = ż [σ, Q, Z, q, z, θ]. (3.27)

Die an den betrachteten Hybridumformprozess angepasste Formulierung dieser Evolutionsgleichun-
gen sowie der anschließende Nachweis der thermodynamischen Konsistenz des Modells erfolgt in
den nachfolgenden Abschnitten.

3.2 Ein Prototypmodell für den Hybridumformprozess

Dieser Abschnitt befasst sich mit der Adaptation des in Abschnitt 3.1 formulierten allgemeinen Mo-
dells auf den in Abschnitt 1.1 vorgestellten Hybridumformprozess. Dazu werden im ersten Schritt
konkrete Vorschläge sowohl für die freie Helmholtz-Energie als auch für die Evolution der internen
Variablen herausgearbeitet. Im Anschluss daran wird die thermodynamische Konsistenz des entwi-
ckelten Modells diskutiert.

Im betrachteten Hybridumformprozess treten hauptsächlich vier Phasen auf. Zu einer einfacheren
Handhabung werden diese wie folgt nummeriert:

1 Ferrit/Perlit (Ausgangsgefüge),
2 Austenit,
3 Bainit,
4 Martensit.

(3.28)

Infolgedessen liegt die Gesamtzahl der in den Beziehungen (3.5) eingeführten Phasen bei nz = 4.

3.2.1 Freie Helmholtz-Energie

Die freie Helmholtz-Energie eignet sich insbesondere zur Beschreibung der verschiedenen Speiche-
rungsmechanismen, wie z.B. der Energieveränderungen, die aufgrund von Grenzflächeneffekten oder
Versetzungen auftreten. Im Rahmen dieser Analyse wird die freie Helmholtz-Energiefunktion für das
Prototypmodell in Anlehnung an WOLFF et al. [147] wie folgt definiert:
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1. Ψ = Ψ iso[εel, z, θ] + Ψvol[εel, z, θ] + Ψθ[θ] + Ψp[q, z, θ] + Ψch[z, θ], mit

2. Ψ iso =
G[θ]

ρ0

(
dev[εel]

)2
,

3. Ψvol =
1

2ρ0
K[θ]

(
tr[εel]

)2
,

4. Ψθ =

∫ θ

θ0

cd[θ̄]dθ̄ − θ
∫ θ

θ0

cd[θ̄]

θ̄
dθ̄,

5. Ψp =
1

2ρ0
Q0 b q

2
1 +

1

2ρ0
H q2

2 ,

6. Ψch =

4∑

i=1

(zi − z0i)φch,i[θ].

(3.29)

Hierbei berücksichtigt der Term Ψel = Ψ iso + Ψvol Speichermengen, die sich auf elastische Verzer-
rungen beziehen. Der Teil Ψ iso in Gleichung (3.29.2) befasst sich mit isochoren Verzerrungen, die auf
isochore elastische Verzerrungen zurückzuführen sind. Gleichung (3.29.3) beschreibt die volumetri-
schen Verzerrungen. Des Weiteren repräsentierenG[θ] undK[θ] = κ[θ]−1 den Schub- bzw. Kompres-
sionsmodul. Beide sind von der Temperatur θ abhängig und beziehen sich auf den Elastizitätsmodul
E, die Querkontraktion ν und den Kompressibilitätskoeffizienten κ in folgender Weise:

1. 2G[θ] =
E[θ]

1 + ν
, 2. K[θ] =

E[θ]

3(1− 2ν)
= κ[θ]−1. (3.30)

Die in Abbildung 3.2 dargestellten experimentellen Ergebnisse vom unterkühlten Austenit zeigen eine
lineare Abhängigkeit des Elastizitätsmoduls E von der Temperatur θ [129]. Dies wird durch folgende
Relation berücksichtigt:

E = E0 + cE (θ − θ0), (3.31)

mit θ0 als Referenztemperatur und cE als einer Konstante. Aus der Berücksichtigung der additiven
Zerlegung der Gesamtverzerrung in Gleichung (3.2) ergibt sich für den volumetrischen Anteil der
freien Helmholtz-Energie

Ψvol =
1

2ρ0
K[θ]

(
tr[εel]

)2
=

1

2ρ0
K[θ]

(
tr[ε− εθ[θ]− εtv[z]]

)2
. (3.32)

Analog zu HALLBERG et al. [51] wird in Gleichung (3.29.2) das gleiche elastische isotrope Ver-
halten für alle Phasen angenommen. Infolgedessen ist es ausreichend, die Temperaturabhängigkeit,
wie sie in Gleichung (3.31) eingeführt wurde, zu berücksichtigen. Eine Betrachtung der Abhängigkeit
der Schub- bzw. Kompressionsmodule G und K vom Vektor der Phasenanteile z ist somit nicht not-
wendig.

Der Term Ψθ in Gleichung (3.29.4) repräsentiert die thermische gespeicherte Energie. An dieser
Stelle wird die Abhängigkeit der Phase von der spezifischen Wärmekapazität cd vernachlässigt. Der
inelastische Teil Ψp der freien Helmholtz-Energie in Gleichung (3.29.5) beschreibt die Energiespei-
cherung, die durch inelastische Verzerrungen entsteht. Das Verhalten der plastischen Verzerrungen
wird mit einer kombinierten linearen und nichtlinearen isotropen Verfestigung unter Einsatz der po-
sitiven Konstanten Q0, b sowie H definiert. q1 und q2 stellen hierbei skalare verzerrungsähnliche
interne Variablen dar, deren Anzahl nq= 2 beträgt. Ψch in Gleichung (3.29.6) repräsentiert die che-
mische Energiespeicherung in Folge von Phasentransformationen. Dieser Term verschwindet, wenn
keine Phasenumwandlungen stattfinden (z.B. für z = z0).
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Abb. 3.2 Abhängigkeit des Elastizitätsmoduls und Rp0,2 (gemessen mit einem Hochtemperaturextensometer) des un-
terkühlten Austenits von der Temperatur. Isotherme Austenitisierung für 5 Minuten bei 880 ◦C [129]

3.2.2 Thermodynamische Kräfte

Die thermodynamischen Kräfte lassen sich aus den Gleichungen (3.24) ableiten. Die Entwicklung des
Spannungstensors erfolgt auf der Grundlage der Gleichungen (3.24.1) und (3.2)

σ = ρ0
∂Ψ

∂εel
,

= 2G(θ)Idev : εel +K(θ)1 : εel 1.

(3.33)

Gleichung (3.33) erlaubt die deviatorisch-volumetrische Aufspaltung des Spannungstensors

1. σ = σdev + σvol, mit

2. σdev = 2G(θ)Idev : εel,

3. σvol = K(θ)1 : εel 1.

(3.34)

Idev = I − 1
31 ⊗ 1 steht hier für einen Projektionstensor mit den Einheitstensoren zweiter (1) bzw.

vierter Ordnung (I). Der Zusammenhang zwischen dem elastischen Verzerrungstensor εel und dem
Spannungsvektor σ in den Gleichungen (3.34) lässt sich folgendermaßen formulieren

1. σ = C(θ) : εel, mit 2. C = 2G(θ)Idev +K(θ)1⊗ 1, (3.35)

wobei C als ein elastischer Tensor vierter Stufe bekannt ist.
Die Verfestigungsspannungen sowie die chemischen Kräfte lassen sich auf Grundlage der Glei-

chungen (3.24.3-4), (3.32) und (3.29.5-6) definieren

1. Q1 = ρ0
∂Ψ

∂q1
= Q0 b q1, Q2 = ρ0

∂Ψ

∂q2
= Hpq2,

2. Zi = ρ0
∂Ψ

∂zi
=
∂Ψvol

∂zi
+ ρ0 φch,i[θ] ≈ ρ0 φch,i[θ], i = 1, 2, . . . , 4.

(3.36)

Die Ergebnisse der Gleichungen (3.36.1) repräsentieren die nichtlineare bzw. die lineare isotrope Ver-
festigung. Stahlwerkstoffe zeigen eine nur sehr geringe Volumenänderung im elastischen Bereich,
sodass der erste Term in Gleichung (3.36.2) vernachlässigbar ist. Demzufolge kann die chemische
Kraft Zi als die freie Enthalpie der Phase zi betrachtet werden.
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Im betrachteten Prozess mit niedrig legiertem Stahl findet die Phasenumwandlung von einer be-
liebigen Phase zum Austenit während des Aufheizprozesses bei Überschreiten der Gleichgewichts-
temperatur Ac1 und umgekehrt vom Austenit zum Bainit bzw. zum Martensit bei der Abkühlung
(θ < Ac1) statt. Weitere Umwandlungspaarungen sind für den betrachteten Werkstoff ausgeschlos-
sen. Damit ist Austenit in allen zulässigen Phasentransformationen vertreten. Demnach kann die Aus-
tenitrate unter Verwendung der Nebenbedingung (3.5) sowie der Rate der verbleibenden Phasen aus-
gedrückt werden als:

ż2 = −
4∑

i=1,i6=2

żi. (3.37)

Dieses erlaubt die Formulierung der Beziehung

−
4∑

i=1

Ziżi = −
4∑

i=1,i6=2

Ziżi − Z2ż2 = −
4∑

i=1

(Zi − Z2) żi. (3.38)

Auf diese Weise kann der Dissipationsterm bezogen auf die Phasentransformationen in Gleichung
(3.25) unter Einsatz der Approximation (3.36.2) für die chemischen Kräfte Zi umformuliert werden

−
4∑

i=1

Ziżi = −
4∑

i=1

(Zi − Z2) żi ≈ −ρ0

4∑

i=1

(φch,i − φch,2) żi. (3.39)

Eine mögliche Beziehung für die Differenz der chemischen Potenziale φch,i−φch,2 kann aus folgen-
dem Zusammenhang abgeleitet werden:

Zi − Z2 = ρ0(φch,i − φch,2) = ρ0(θ − θ(i,2)
0 )

Q∗i,2

θ
(i,2)
0

, i = 1, . . . , 4. (3.40)

Hiebei wird θ(i,2)
0 als Gleichgewichtstemperatur definiert, bei der die i-te Phase die gleiche Energie

wie der Austenit aufweist. Somit repräsentiert die Temperaturdifferenz (θ − θ(i,2)
0 ) die Unterkühlung

bzw. Überhitzung im Vergleich zum Gleichgewichtszustand. Darüber hinaus repräsentiert in Glei-
chung (3.40) Q∗i,2 die Aktivierungsenergie für die Umwandlung von 1 → 2 bzw. von 2 → 3, 4. Sie
ist annahmegemäß für i 6= 2 positiv und Null für i = 2. Diese Annahme ist plausibel, weil eine
Phasenumwandlung nur dann stattfindet, wenn die gespeicherte chemische Energie (Enthalpie) der
Ausgangsphase die Enthalpie der generierten Phase übersteigt (vgl. Abb. 2.8).

3.2.3 Verzerrungstensoren

Die Gesamtverzerrung ε wird durch die Summe der einzelnen Verzerrungstensoren in Gleichung
(3.2) beschrieben. Die Formulierung der Verzerrungen infolge der Spannung, der Temperatur sowie
der Phasenumwandlung erfolgt im weiteren Verlauf der Arbeit auf der Grundlage der beobachteten
Phänomene.

3.2.3.1 Umwandlungsplastischer Verzerrungstensor

Die Umwandlungsplastizität (TRIP) beschreibt den Effekt der plastischen Deformationen während
der Phasenumwandlung, wenn die thermisch und/oder mechanisch induzierte Spannung die Fließ-
spannung der weicheren Phase unterschreitet. Der phänomenologische Ansatz von LEBLOND [72]
für die umwandlungsplastische Deformationsgeschwindigkeit in einer allgemein formulierten, zwei-
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phasigen Beziehung lautet:

ε̇tp =
3

2
Ktpσ

dev df [z]

dz
ż, (3.41)

wobei σdev den deviatorischen Spannungstensor aus Gleichung (3.34.2) darstellt. Der Wert der Ma-
terialumwandlungskonstanten Ktp, die auch als Greenwood-Johnson-Parameter bezeichnet wird, ist
abhängig vom betrachteten Werkstoff. Der Greenwood-Johnson-Parameter kann nach LEBLOND [72]
für niedriglegierte Stähle unter Verwendung der Gleichung

Ktp =
5

6

1

σy

∆V

V
(3.42)

mit Hilfe der Streckgrenze der umgewandelten Phase (des Austenits) σy und der Volumenveränderung
näherungsweise bestimmt werden.

Darüber hinaus hängt die umwandlungsplastische Deformationsgeschwindigkeit von der Änderung
der Sättigungsfunktion f(z), die eine heuristische Funktion von z mit den Bedingungen f(z = 0) = 0
und f(z = 1) = 1 ist, ab. Als Beispiel für die Funktion f(z) wird von LEBLOND [72] der Ausdruck

f [z] = z(1− ln[z])

vorgeschlagen. Im Rahmen dieser Analyse findet die von DENIS [27] entwickelte Formulierung An-
wendung

f [z] = (2− z) z ⇒ df [z]

dz
= 2 (1− z) . (3.43)

Der Term (1− z) entspricht dem Rest der austenitischen Phase. Damit lautet die Formulierung von
DENIS für eine Mehrphasenbetrachtung:

f [zi] = (2− zi) zi ⇒ df [zi]

dzi
= 2 (1− zi) = 2z2 für i ∈ [3, 4] . (3.44)

Die Evolutionsgleichung des umwandlungsplastischen Verzerrungstensors (3.41) wird sowohl für die
martensitische als auch für die bainitische Umwandlung in gleicher Weise eingesetzt. Aus der Addi-
tion dieser Gleichungen erhält man die Evolutionsgleichung für die gesamte umwandlungsplastische
Verzerrung während der martensitischen und der bainitischen Phasentransformation

ε̇tp = 3
2KtpB [σv]σ

dev df [z3]
dz3

ż3 + 3
2KtpM [σv]σ

dev df [z4]
dz4

ż4

= 3KtpB [σv]σ
devż3z2 + 3KtpM [σv]σ

devż4z2.
(3.45)

Die Konstanten KtpB und KtpM stellen jeweils den Greenwood-Johnson-Parameter für Bainit und
Martensit dar.

Die in Abbildung 3.3 dargestellten, experimentell ermittelte Maximalwerte der umwandlungspla-
stichen Verzerrung in Abhängigkeit von der Haltespannung zeigen ein nichtlineares Verhalten. Dieses
Phänomen kann nicht durch einen einzelnen SkalarKtp für den umwandlungplastischen Verzerrungs-
ratentensor in Gleichung (3.45) abgebildet werden. Demzufolge wird eine lineare Abhängigkeit der
Parameter KtpB und KtpM von der Vergleichsspannung nach von Mises angenommen

KtpB = KtpB1 +KtpB2 σv,
KtpM = KtpM1 +KtpM2 σv.

(3.46)

Sämtliche Materialparameter, die sich auf εtp in Gleichung (3.2) beziehen, lassen sich zusammenfas-
sen

κtp = [KtpB1,KtpB2,KtpM1,KtpM2]. (3.47)
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Abb. 3.3 Maximalwerte der umwandlungsplastischen Verzerrung als Funktion der Spannung infolge der martensiti-
schen (a) und bainitischen (b) Umwandlung extrahiert aus den experimentellen Ergebnissen [1, 89]

3.2.3.2 Viskoplastischer Verzerrungstensor

Zur Simulation des zeitabhängigen Verhaltens wird ein viskoplastischer Ansatz in Kombination mit
einer nichtlinearen isotropen Verfestigung gewählt. Bezüglich einer weitgehenden Beschreibung des
Ansatzes wird auf LEMAITRE und CHABOCHE [76] verwiesen. Eine Zusammenfassung der konstitu-
tiven Gleichungen lautet:

1. Fließregel ε̇vp =

√
3

2
λ̇n, mit

2. Fließfaktor λ̇ =

〈
ΦY
Kλ

〉m
,

3. Normalenvektor n =
σdev

‖σdev‖ ,

4. Überspannungsfunktion ΦY =

√
3

2

∥∥σdev
∥∥− (Y (θ) +Q1[q1] +Q2[q2]) ,

5. inelastische Vergleichsverzerrung ėv =

√
2

3
‖ ε̇vp‖ = λ̇.

(3.48)

Hierbei stellt σdev den deviatorischen Spanungstensor aus Gleichung (3.34.2) dar. Die Notation ‖•‖
= (• : •)1/2 in den Gleichungen (3.48.3) und (3.48.5) repräsentiert den Betrag des Tensors zweiter
Stufe und n den Normalvektor, der die Bedingung ‖n‖ = 1 erfüllt. Mit Hilfe dieser Definitionen kann
aus Gleichung (3.48.1) zwischen dem Fließfaktor λ̇ und der inelastischen Vergleichsverzerrung ev die
Beziehung λ̇ = ėv verifiziert werden.

Für die internen Variablen q1 and q2 werden folgende Evolutionsgleichungen angenommen:

1. q̇1 =

(
1− Q1

Q0

)
ėv,

2. q̇2 = ėv.

(3.49)

Aus Gleichung (3.36.1) erhält man den Zusammenhang:Q1/Q0 = bq1. Einsetzen in Gleichung (3.49)
resultiert in

q̇1 = (1− bq1) ėv =⇒ q1 =
1

b
(1− exp[−bev]). (3.50)
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Für die Summe der beiden Verfestigungsspannungen aus Gleichungen (3.36.1) ergibt sich

Q = Q1 +Q2 = Q0(1− exp[−bev]) +Hev. (3.51)

Damit einspricht Q der aus der Literatur bekannten, isotropen Verfestigungsspannung R (vgl. dazu
z.B. LEMAITRE und CHABOCHE [76]).

Die in Abbildung 3.2 dargestellten experimentellen Ergebnisse bringen ferner eine lineare Ab-
hängigkeit der Fließpannung Rp0,2 von der Temperatur θ zum Vorschein. Konsequenterweise wird
für den in Gleichung (3.48.4) erscheinenden und einen Grenzbereich für inelastisches Verhalten re-
präsentierenden Skalar Y eine lineare Beziehung verwendet

Y (θ) = Y0 + cY (θ − θ0) . (3.52)

Folglich können alle Materialparameter, die sich auf den viskoplastischen Verzerrungstensor εvp in
Gleichung (3.2) beziehen, zusammengefasst werden

κvp = [Y0, cY , H,Q, b,Kλ,m]. (3.53)

3.2.3.3 Thermischer Verzerrungstensor

Bei steigender Temperatur nehmen die Abstände zwischen den Atomen im Kristallgitter ab. Als Fol-
ge dehnen sich Feststoffe aus. Dieser Effekt ist als Wärmeausdehnung bekannt und kann anhand
des thermischen Längenausdehnungskoeffizienten bzw. Wärmeausdehnungskoeffizienten αθ sowie
des Volumenausdehnungskoeffizienten γθ beschrieben werden. Für einen isotropen Festkörper ver-
halten sich diese Koeffizienten proportional zueinander γθ = 3αθ. Damit stellt der Wärmeausdeh-
nungskoeffizient eine Proportionalitätskonstante zwischen der Temperaturänderung und der relativen
Längenänderung bzw. Volumenänderung dar. Um die verschiedenen Koeffizienten für die thermische
Ausdehnung in den unterschiedlichen Phasen zi zu berücksichtigen, wird der wärmebedingte Verzer-
rungstensor mit Hilfe der linearen Mischungsregel berechnet

εθ =

4∑

i=1

αθi∆θzi1. (3.54)

αθ1, αθ2, αθ3, αθ4 repräsentieren hierbei jeweils den thermischen Ausdehnungskoeffizienten von Fer-
rit/Perlit, Austenit, Bainit und Martensit. ∆θ = θ − θ0 ist die Temperaturdifferenz zwischen der
aktuellen Temperatur θ und der Starttemperatur θ0. 1 stellt einen Einheitstensor zweiter Stufe dar.
Die schematische Darstellung der linearen Mischungsregel vom wärmebedingten Verzerrungstensor
erfolgt in Abbildung 3.4.b.

Die thermischen Ausdehnungskoeffizienten werden zum Zwecke einer kompakteren Darstellung
in einem Vektor αθ = [αθ1, α

θ
2, α

θ
3, α

θ
4]T zusammengefasst. Damit kann Gleichung (3.54) in einer Ma-

trixschreibweise formuliert werden

εθ = zTαθ∆θ1. (3.55)

Die Materialparameter, die sich auf den wärmebedingten Verzerrungstensor εθ in Gleichung (3.2)
beziehen, werden zusammengefasst zu

κth = αθ = [αθ1, α
θ
2, α

θ
3, α

θ
4]T . (3.56)



3.2 Ein Prototypmodell für den Hybridumformprozess 37

-0.005

0

0.005

0.010

0.015

ε

200 400 600 800 1000 θ (˚C)

Austenitic 
transformation 

( )θεγ

( )θεα

Transformation 
during cooling 

a

-0.005

0.005

0.010

0.015

ε

200 400 600 800 1000 θ(˚C)

0

b

θ

θ

α

εγ
θ

εθ

εθ = z2εθ2 + z4εθ4

Abb. 3.4 a) Ergebnis eines Dilatometerversuchs, b) schematische Darstellung der linearen Mischungsregel von Wär-
meausdehnungstensoren [32]

3.2.3.4 Umwandlungsbedingter Verzerrungstensor

Da der α-Mischkristall mit der dazugehörigen martensitischen (α′m), bainitischen (α′b) und perli-
tische Phase ein im Vergleich zum γ-Mischkristall (Austenit) größeres Volumen aufweist, wächst
das Körpervolumen während der Phasenumwandlung vom Austenit zum Martensit, Bainit oder Fer-
rit. Ferner kommt es zur Volumenverkleinerung des Mischgefüges bei der Austenitbildung. Dieses
Phänomen ist anhand der in Abbildung 3.4.a dargestellten Ergebnissen aus den Dilatometeruntur-
suchungen zu beobachten. Für den Verzerrungstensor infolge der Phasentransformation wird in An-
lehnung an den Ansatz von BESSERDICH [13] für die Austenit-Martensit-Umwandlung folgender
Ausdruck angenommen:

εtv =
1

3
Ktv z1, (3.57)

wobei die Konstante Ktv die Volumenänderung ∆V/V nach vollständiger Umwandlung darstellt.
Diese allgemeine Beziehung gilt für eine einphasige Umwandlung, wie z.B. für eine Transformation
vom vollständig austenitisierten Gefüge zum Martensit bzw. zum Bainit oder Perlit. Für den Fall einer
mehrphasigen Umwandlung wird für das Prototypmodell die Beziehung (3.57) angepasst

εtv =
1

3
(Ktv)T z 1, bzw. εtv =

1

3

4∑

i=1

Ktv
i zi1. (3.58)

Der Vektor Ktv = [Ktv
1 ,K

tv
2 ,K

tv
3 ,K

tv
4 ]T vereinigt die Konstanten, die den Volumenunterschied

zwischen der Ausgangsphase z1 und der jeweiligen resultierenden Phase zi charakterisieren. Damit
ist die Konstante Ktv

1 gleich Null und Ktv
2 negativ.

Es gilt zu beachten, dass sowohl der Wärmeausdehnungstensor εθ als auch der Ausdehnungsten-
sor infolge der Phasenumwandlung εtv lediglich volumetrische Teile aufweisen. Konsequenterweise
sind die deviatorische Teile gleich Null. Des Weiteren ist der Ausdehnungstensor εtv weder von der
Spannung noch von der Temperatur abhängig. Die für Gleichung (3.58) relevanten Materialparameter
lassen sich in einem Vektor zusammenfassen

κtv =
[
Ktv

2 ,K
tv
3 ,K

tv
4

]
. (3.59)
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3.2.4 Evolutionsgleichungen der Phasenumwandlungen

3.2.4.1 Evolution der austenitischen Phase

Im betrachteten Prozess ist eine Austenitbildung nur aus ferritsch-perlitischem Ausgangsgefüge wäh-
rend der Induktionsaufheizung des zentralen Teils des Werkstücks möglich. Anschließend kann der
Austenit in Bainit bzw. in Martensit ohne eine Rücktransformation umgewandelt werden. Das Auf-
heizen erfolgt vergleichsweise schnell und führt zu hohen Temperaturen. Demzufolge wird für die
Evolution des Anteils der austenitischen Phase z2 ein Ansatz nach LEBLOND und DEVAUX [73] ver-
folgt

ż2 = µ12 [θ] (1− z2)H [θ −Ac1]− ż3 − ż4. (3.60)

Hierbei ist µ12 > 0 eine temperaturabhängige Konstante und Ac1 die austenitische Starttemperatur,
deren Schätzung auf Basis der Gleichung (2.1) erfolgt. Die Heaviside-Funktion H nimmt für jede
beliebige negative Zahl den Wert Null an (H [s] = 0), andernfalls liegt der Wert bei Eins (H [s] = 1
für s > 0). Somit erfüllt die Heaviside-Funktion die Rolle eines Schalters, der die Austenitbildung
erst nach dem Uberschreiten der Austenit-Starttemperatur Ac1 aktiviert.

3.2.4.2 Keimbildung in der bainitischen Phase

Im Gegensatz zu der martensitischen Umwandlung, die durch einen schnellen diffusionslosen Um-
klappvorgang des Atomgitters gekennzeichnet ist, findet bei der bainitischen Phasenumwandlung eine
Kopplung von Umklappvorgängen im Kristallgitter und Diffusionsvorgängen, die zeit- und tempera-
turabhängig sind, statt. Damit sind bei der bainitischen Phasenumwandlung verschiedene Umwand-
lungsmechanismen möglich. Es wird hierbei zwischen dem oberen und dem unteren Bainit differen-
ziert. Die ausführliche Beschreibung der bei der Bildung dieser Phasen ablaufenden Vorgänge erfolgte
in Abschnitt 2.1.3. Das bainische Gefüge wird auch als Zwischengefüge bezeichnet und befindet sich
im ZTU-Diagramm (Abb. 2.4) zwischen Perlit und Martensit. In Abbildung 3.5 wird dieses Dia-
gramm um die detailliertere Darstellung der bainitischen Bereiche erweitert. Es ist ersichtlich, dass
die Umwandlung nicht sofort nach Erreichen der Bainitstarttemperatur (Gleichung 2.3) beginnt, son-
dern erst nach einer temperaturabhängigen Verweildauer einsetzt. Diese Verzögerungszeit wird auch
als Inkubationszeit bezeichnet [17, 30, 42]. In Abbildung 3.5 kennzeichnet θ∗ die mit der kürzesten
Inkubationszeit t∗ korrespondierende Temperatur. Nach GARRETT et al. [42] kann diese von der in-
elastischen Verzerrung ev abhängig sein, so dass θ∗ = θ∗[ev] gilt.

In Anlehnung an [42] bezieht sich die Inkubationszeit in dieser Arbeit auf das Keimwachstum.
Im Folgenden werden zwei verschiedene Fälle, nämlich für den oberen und unteren Bainit getrennt
voneinander betrachtet.

Fall 1: Oberer Bainit:

Als erstes wird die Bildung des oberen Bainits unter der Einwirkung der Temperatur von θ > θ∗

in Abbildung 3.5 betrachtet. r stellt hier den Keimradius dar. Für dessen Wachstum wird eine For-
mulierung der Evolutionsgleichung in Bezug auf die chemische Kraft Z in Gleichung (3.40) und die
isotrope Verfestigungsspannung Q in Gleichung (3.36) mit den Materialparametern Q0, Hp und b
vorgenommen

θ > θ∗ : ṙ = exp [−K1uZ +K2uθ
∗[ev] +K3u −K4uQ] . (3.61)

Gleichungen (3.36), (3.40) und (3.61) können kombiniert werden zu
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Abb. 3.5 ZTU-Diagramm [51CrV4] mit der Temperatur θ∗ entsprechend der kürzesten Inkubationszeit t∗ für die
bainitische Phase [29]

θ > θ∗ : ṙu = exp[ K1uρ0(θ − θ0)
Q∗

θ0
+K2uθ

∗[ev] +K3u−
K4u([Q0(1− exp[−bev]) +Hpev)].

(3.62)

Q∗ repräsentiert hierbei die Aktivierungsenergie, θ0 die Gleichgewichtstemperatur und θ∗ die mit
der kürzesten Inkubationszeit t∗ korrespondierende Temperatur. Ferner stellen K1u,K2u,K3u,K4u

Konstanten dar. Mehrere Umformungen liefern

θ > θ∗ : ṙu = α2u exp

[
−θ − θ

∗[ev]
Bu

]
exp [−β2uev] , (3.63)

wobei gilt

1.
1

Bu
= K2u = K1uρ0Q

∗ 1

θ0
,

2. α2u = exp [K1uρ0Q
∗ +K3u −K4uQ0] ,

3. β2u = K4uHp,
4. Q0 exp [−bev]→ 0.

(3.64)

In Gleichung (3.64.4) wird die Abhängigkeit des nichtlinearen Verfestigungsterms von der Keimbil-
dung vernachlässigt. Diese Annahme wird mit großen auftretenden plastischen Verzerrungen ev im
Hybridumformprozess begründet, d.h. je größer ev ist, desto kleiner fällt exp [−bev] aus.

Fall 2: Unterer Bainit:

In diesem Abschnitt wird die Bildung des unteren Bainits unter Einwirken der Temperatur θ < θ∗

anhand der Abbildung 3.5 betrachtet. Für die Illustration des Wachstums des oberen Bainits wird
folgende Evolutionsgleichung verwendet:

θ < θ∗ : ṙl = exp [K1lZ −K2lθ
∗[ev] +K3l −K4lQ] , (3.65)

mit K1l,K2l,K3l,K4l als Konstanten. Analog zum Vorgehen bei der Analyse des oberen Bainits,
wird Gleichung (3.65) umformuliert



40 3 Phänomenologische Modellierung für kleine Deformationen

θ < θ∗ : ṙl = α2l exp

[
θ − θ∗[ev]

Bl

]
exp [−β2lev] , (3.66)

mit

1.
1

Bl
= K2l = K1lρ0Q

∗ 1

θ0
,

2. α2l = exp [−K1lρ0Q
∗ +K3l −K4lQ0] ,

3. β2l = K4lHp,
4. Q0 exp [−bev]→ 0.

(3.67)

Aus dem ZTU-Diagramm (Abb. 3.5) ist ersichtlich, dass die für die Keimbildung in der bainiti-
schen Phase sowie für die Erstellung einer asymmetrischen C-Kurve relevanten Evolutionsgleichun-
gen (3.63) und (3.66) unter Verwendung der Bedingung ṙl[θ = θ∗] = ṙr[θ = θ∗] kombiniert werden
können

ṙ = α2 exp

[
− |θ − θ∗[ev]|
Bu 〈θ − θ∗〉+Bl 〈θ∗ − θ〉

]
exp [−β2ev] , (3.68)

wobei Bu für θ > θ∗, Bl für θ < θ∗, α2 = α2u = α2l, β2 = β2u = β2l Materialparameter darstellen.
Somit erweitert die Evolutionsgleichung (3.68) den empirischen Ansatz von GARRETT et al. [42] um
die Anwendung der treibenden Kräfte sowohl für den oberen als auch den unteren Bainit.

3.2.4.3 Evolution der bainitischen Phase

Übersteigt der Radius eines bainitischen Partikels r den Grenzwert r∗, hat sich nach GARRETT et
al. [42] der Volumenanteil des Bainits z gebildet. Bei diesem Ansatz bezieht sich dieser sowohl auf
die chemische treibende Kraft Z als auch auf die Aktivierungsenrgie G∗. Die Werte des kritischen
Keimradius r∗ und der freien Energie G∗ erhält man aus den in [42] vorgeschlagenen Beziehungen

r∗ =
A1θ0∆θ

0.5

θ∆θQ∗ +A2θ0evσv
, G∗ =

A3θ
2
0∆θ

1.5

(∆θQ∗ +A4θ0evσv)
2 . (3.69)

Hierbei kennzeichnen A1, A2, A3 Materialkonstanten, ∆θ = θ0− θ die Unterkühlung gegenüber der
Gleichgewichtstemperatur und σv die Vergleichsspannung nach von Mises. Demnach wird für den
Bainit folgende Evolutionsgleichung verwendet:

ż3 = exp

[
−K5Z +K6θ

∗[ev]−
G∗

Rθ

]〈
r − r∗
r

〉n
(z2)

γ
, (3.70)

wobeiK5,K6, n, γ Konstanten sind undR die universelle Gaskonstante darstellt. Die Notation< x >
= x für x > 0, < x >= 0 für x ≤ 0 sichert, dass sich der Volumenanteil nur dann entwickelt, wenn
der Bainitradius r den kritischen Wert r∗ erreicht. Das Minuszeichen vor K5 berücksichtigt, dass Z
negativ ist. Die Verwendung der chemischen treibenden Kraft aus Gleichung (3.40) erlaubt folgende
Formulierung der Gleichung (3.70)

ż3 = exp

[
K5ρ0(θ0 − θ)

Q∗

θ0
+K6θ

∗[ev]−
G∗

Rθ

]〈
r − r∗
r

〉n
(z2)

γ
. (3.71)

Wie schon erwähnt, entspricht die Zeit bei r = r∗ der Inkubationszeit. Der Wachstum der bainitischen
Phase hängt vom vorhandenen Austenitphasenanteil z2 ab. Je weniger Austenit vorhanden ist, desto
langsamer verläuft die Umwandlung. Dieses Verhalten ist in den experimentellen Untersuchungen zur
Kinetik des bainitischen Gefüges (Abb. 2.18) als eine Sättigung der Bainitumwandlung zu beobach-
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ten. Ferner soll dieser Term sicherstellen, dass kein Bainit gebildet wird, wenn kein Austenit mehr
vorhanden ist.

Einige Umformungen der Gleichung (3.71) liefern den Ausdruck

ż3 = A5 exp

[
θ∗[ev]− θ

B1

]
exp

[
−G

∗

Rθ

]〈
r − r∗
r

〉n
(z2)

γ
, (3.72)

mit

1.
1

B1
=

1

K6
= K5ρ0Q

∗,

2. A5 = exp [K5ρ0Q
∗] .

(3.73)

Somit ist hier die Ableitung einer auf der Grundlage der treibenden Kräfte und auf der empirisch
formulierten Evolutionsgleichung von GARRETT et al. [42] erfolgt.

3.2.4.4 Evolution der martensitischen Phase

Martensit kann aus Austenit während der schnellen Abkühlung unterhalb der Martensit-Starttemperatur
entstehen. Im Hybridumformprozess wird diese schnelle Abkühlung durch den Oberflächenkontakt
zwischen dem Werkstück und Werkzeug realisiert. Bezüglich der Grundlagen zur martensitischen
Umwandlung wird auf Abschnitt 2.1.2 verwiesen. Für die Formulierung der Evolutiongleichung der
martensitischen Phasenumwandlung wird der Koistinen-Marburger-Ansatz verwendet

ż4 =

〈
−θ̇
kθ

〉
(z2 − z4)H [Ms − θ]. (3.74)

Hier stellt kθ > 0 für den Koistinen-Marburger-Parameter und Ms die martensitische Starttemperatur
dar. Der Wert der martensitischen Starttemperatur wird auf Grundlage der Gleichung (2.2) geschätzt.
Die Heaviside-Funktion H erfüllt die Rolle eines Schalters, der die Martensitbildung erst nach Errei-
chen der Martensit-Starttemeratur Ms aktiviert. Der (z2 − z4) Term dient als Obergrenzenfunktion
und stellt sicher, dass Martensit nur bei Vorhandensein des Austeints gebildet wird.

3.2.5 Thermodynamische Konsistenz

Die thermodynamische Konsistenz des betrachteten Modells ist gewährleistet, wenn die Clausius-
Planck-Ungleichung (3.25.1) erfüllt ist. Es wird an dieser Stelle darauf hingewiesen, dass das visko-
plastische Verhalten aktiviert ist, wenn die Überspannungsfunktion φ in Gleichung (3.48.4) positiv
ist

1. φ = σv − (Y [θ] +Q1 +Q2) > 0 =⇒ λ̇ > 0, σv −Q1 −Q2 > Y [θ],

2. φ = σv − (Y [θ] +Q1 +Q2) ≤ 0 =⇒ λ̇ = 0.
(3.75)

Mit der additiven Zerlegung des Verzerrungstensors in Gleichung (3.2), der Fließregel (3.48.1), der
Evolutionsgleichungen (3.45) für TRIP und die internen Variablen q1 und q2 sowie der Gleichungen
(3.48.4) und (3.48.5) kann die Clausius-Planck-Ungleichung (3.25.1) wie folgt umformuliert werden:
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D i = σ : ε̇in −Q1q̇1 −Q2q̇2 −
∑4
i=1 Ziżi

= λ̇︸︷︷︸
>0

(σv −Q1 −Q2)︸ ︷︷ ︸
>Y [θ]

+ λ̇
Q0
Q2

1

+
(
ż3

3
2f
′
1KtpB [σv] + ż4

3
2f
′
1KtpM [σv]

)
‖σdev‖2 −∑4

i=1 Ziżi ≥ 0.

(3.76)

Wegen Ktp1 > 0 and Ktp2 > 0 sind die ersten drei Terme in (3.76) nichtnegativ. Daher muss für den
Beweis der thermodynamischen Konsistenz des Modells lediglich der letzte Term untersucht werden.
Unter Berücksichtigung der Beziehung (3.40) bleibt zu prüfen, ob der Zusammenhang

−
4∑

i=1

Ziżi = −ρ0

4∑

i=1

(θ − θ(i,2)
0 )

Q∗i,2

θ
(i,2)
0

żi ≥ 0 (3.77)

erfüllt ist. Übersteigt die Temperatur θ die Gleichgewichtstemperatur θ(i,2)
0 , setzt die Umwandlung des

Ausgangsgefüges zum Austenit ein. Damit sinkt der Phasenanteil des Ausgangsgefüges z1 (ż1 ≤ 0)
entsprechend. Daraus folgt, dass der Summand (θ−θ(1,2)

0 )
Q∗1,2

θ
(1,2)
0

ż1 negativ ist. Während der Umwand-

lung von 2 → 3, 4 (Austenit zu Bainit oder Martensit) gilt hingegen θ(i,2)
0 > θ und ż3, ż4 ≥ 0. Auch

bei dieser Transformation sind die Summanden (θ − θ
(3,2)
0 )

Q∗3,2

θ
(3,2)
0

ż3 und (θ − θ
(4,2)
0 )

Q∗4,2

θ
(4,2)
0

ż4 nega-

tiv. Durch Multiplikation mit der negativen Dichte (−ρ0) wird Gleichung (3.77) positiv bzw. gleich
Null. Somit kann festgestellt werden, dass das betrachtete Modell thermodynamisch konsistent ist.
Darüber hinaus ist dieser Beweis unabhängig von den Spezialansätzen der Evolutionsgleichungen für
die Phasenumwandlung, wie z.B. Johnson-Mehl-Avrami-Kolmogoroff oder Koistinen-Marburger.

3.3 Numerische Implementierung

3.3.1 Implizites Integrationsschema

Um die konstitutiven Gleichungen aus Abschnitt 3.1 numerisch zu implementieren, wird nach der
Standartintegrationsmethode der Finite-Elemente-Methode ein verzerrungsgesteuerter Algorithmus
verwendet, wobei der Gesamtverzerrungstensor n+1ε, die Anfangswerte von nεvp,n εtp,n ev und die
Temperatur nθ, n+1θ vorgegeben sind (vgl. dazu SIMO und HUGHES [117] sowie die Referenzen
darin). Hierbei beziehen sich die Indizes n und n+ 1 auf die Zeit nt bzw. n+1t, ∆n+1t = n+1t− nt
kennzeichnen den Zeitschritt. Diese Größen lassen sich als Inputvariablen zusammenfassen

n+1q = [n+1ε, nεvp, nεtp, nev,
nθ, n+1θ, nt ,n+1 t]. (3.78)

Zur Vereinfachung der Darstellung wird der auf die aktuelle Zeitstufe verweisende Index n + 1 im
Folgenden vernachlässigt.

Die primäre Zielsetzung dieses Abschnitts ist die Bestimmung der korrespondierenden Outputva-
riablen

Q = [σ, εvp, εtp, ev], (3.79)

die mit den Evolutionsgleichungen aus Abschnitt 3.1 konsistent sind. Es wird darauf hingewiesen,
dass die Verzerrungstensoren εθ und εtv vom Spannungstensor σ in Gleichung (3.2) unabhängig
sind. Unter Verwendung des impliziten Euler-Algorithmus in Bezug auf Evolutionsgleichungen (3.48)
ergeben sich die Ausdrücke für die Verzerrungstensoren εtp, εvp bzw. die inelastische äquivalente
Vergleichsdehnung ev
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1. εtp = nεtp + ∆εtp, mit ∆εtp = 3KtpB [σv]σ
dev∆z3z2 + 3KtpM [σv]σ

dev∆z4z2,

2. εvp = nεvp + ∆εvp, mit ∆εvp =

√
3

2
∆λ n,

3. ev = nev + ∆ev, mit ∆ev = ∆λ =

〈
ΦY
Kλ

〉m
∆t.

(3.80)

Im nächsten Schritt erfolgt die Ermittlung des elastischen Verzerrungstensors aus Gleichung (3.2) für
den Zeitpunkt n+1t

εel = ε− εtp − εvp − εθ − εtv. (3.81)

Die Multiplikation von Gleichung (3.81) mit dem Elastzitätstensor vierter Stufe aus Gleichung (3.35)
unter Berücksichtigung der Gleichungen (3.80) liefert nach einigen Umstellungen folgende Diskreti-
sierung der Gleichungen (3.48) und (3.45):

1. Spannungen σ = σvol + σdev, mit

σdev = σdev,tr − 2G∆εvp − 2G∆εtp,

σdev,tr = 2GIdev : (ε−n εvp −n εtp) ,
σvol = K

(
tr(ε− εθ − εtv)

)
1,

2. Fließregel ∆εvp =

√
3

2
∆λn,

3. Fließrichtung n =
σdev

‖σdev‖ ,

4. Fließfaktor ∆λ =

〈
ΦY
Kλ

〉m
∆t,

5. Umwandlungsplastische Verzerrung ∆εtp = 3 σdevz2 (KtpB [σv]∆z3 +KtpM [σv]∆z4) ,

6. Fließfunktion ΦY =

√
3

2

∥∥σdev
∥∥−R− Y0,

7. Äquivalente plastische Verzerrung ev = nev +∆λ,

8. Isotrope Verfestigung R = Hev +Q (1− exp(−bev)) .

(3.82)

Die Verzerrungstensoren εθ and εtv werden an dieser Stelle auf der Grundlage der Gleichungen (3.54)
und (3.57) ermittelt. Die Beziehungen (3.82) können als Zustandsgleichungen für die Outputvariablen
Q, die in Gleichung (3.79) definiert sind, betrachtet werden. Im folgenden Abschnitt wird gezeigt, wie
Gleichungen (3.82) auf eine eindimensionale skalare Gleichung reduziert werden können.

3.3.2 Lokale Iteration

Die folgenden Ableitungen machen von der Tatsache Gebrauch, dass die Ausdrücke für σdev in Glei-
chung (3.82.1) umformuliert werden können

σdev = σdev,tr − 2G

√
3

2
∆λ

σdev

‖σdev‖ − 2G3 σdevz2 (KtpB [σv]∆z3 +KtpM [σv]∆z4) , (3.83)
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wobei Gleichungen (3.82.2), (3.82.3) sowie (3.82.5) verwendet wurden. Die Anwendung der Radial-
Return-Methode [117] auf Gleichung (3.83) liefert folgende Anpassung der Gleichungen (3.82):
Als erstes wird beobachtet, dass σdev und σdev,tr koaxial sind, so dass die Fließrichtung in Gleichung
(3.82.3) wie folgt ausgedrückt wird:

n =
σdev

‖σdev‖ =
σdev,tr

‖σdev,tr‖ . (3.84)

Im zweiten Schritt wird die skalare Beziehung erzeugt

∥∥σdev
∥∥ =

∥∥σdev,tr
∥∥− 2G

√
3
2∆λ

Cp
, mit

Cp = 1 + 3Gf ′1 (∆z3KtpB [σv] +∆z4KtpM [σv]) .

(3.85)

Als nächstes erfolgt die Bestimmung des Residuums aus Gleichung (3.82.4)

r(∆λ) = ΦY −
(
∆λ

∆t

) 1
m

Kλ = 0, (3.86)

das sich durch Verwendung der Fließbedingung (3.82.6) und des Ergebnisses aus (3.85) umformulie-
ren lässt

r(∆λ) =

√
3

2

∥∥σdev,tr
∥∥− 2G

√
3
2∆λ

Cp
−
(
∆λ

∆t

) 1
m

Kλ −R(∆λ)− Y0 = 0. (3.87)

In dieser Weise werden die diskreten Gleichungen (3.82) auf ein eindimensionales Problem redu-
ziert, das lediglich vom Fließfaktor ∆λ abhängig ist. Für dessen Lösung wird die Newton-Methode
eingesetzt

∆λ(k+1) = ∆λk −
r(∆λk)

J(∆λk)
, k = 0, 1, 2, . . .

J(∆λ) =
∂r(∆λ)

∂∆λ
=
∂ΦY
∂∆λ

− Kλ

m

1

∆t
,

∂ΦY
∂∆λ

= −
(

3G

Cp
+H + bQ exp (−b(nev +∆λ))

)
,

(3.88)

wobei sich der Index k auf die Iterationsnummer bezieht.

3.3.3 Tangentenmodul

Die meisten impliziten Finite-Element-Implementierungen, wie beispielsweise das FEM-Programm
ABAQUS/Standard verwenden zur Lösung der Differentialgleichungen des globalen Gleichgewichts-
problems die iterative Newton-Methode. Bei dieser Methode ist die Bestimmung des Tangentenmo-
duls, das durch die Ableitung der Spannung σ in Bezug auf die Totalverzerrung ε formuliert wird,
notwendig. Da die Spannung σ außerdem vom plastischen Multiplikator ∆λ abhängig ist, gilt

σ = σ (ε, ∆λ(ε)) ⇒ dσ

dε
=
∂σ

∂ε
+

∂σ

∂∆λ
⊗ ∂∆λ

∂ε
. (3.89)

Hiebei erhält man ∂∆λ/∂ε aus der Residuumgleichung (3.86)
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r (ε, ∆λ(ε)) = 0 ⇒ dr

dε
=
∂r

∂ε
+

∂r

∂∆λ
⊗ ∂∆λ

∂ε
⇒ ∂∆λ

∂ε
= −

(
∂r

∂∆λ

)−1
∂r

∂ε
. (3.90)

Im nächsten Schritt erfolgt die Auswertung des Ergebnisses ∂r/∂∆λ = J in Gleichung (3.88) und
die Bestimmung der partiellen Ableitungen

1.
∂σ

∂ε
= K1⊗ 1 +

2G

Cp

(
Idev −

√
3

2
∆λ

∂n

∂ε

)
,mit

2.
∂n

∂ε
=

2G

‖σdev,tr‖
(
Idev − n⊗ n

)
,

3.
∂σ

∂∆λ
=

√
3

2

2G

Cp
n,

4.
∂r

∂ε
=

2G

Cp
n.

(3.91)

Daraus ergibt sich das Endergebnis für den symmetrische Tangentenmodul

C =
dσ

dε
= K1⊗ 1 +

2G

Cp
Idev −

√
3

2
∆λ

(2G)2

Cp

1

‖σdev,tr‖
(
Idev − n⊗ n

)

−
√

3

2

(
2G

Cp

)2
1

J
n⊗ n.

(3.92)

Bezüglich der Definitionen von Cp und J wird auf die Gleichungen (3.85.2) und (3.88) verwiesen.

3.4 Parameteridentifikation

Um bei einer Simulation des Hybridumformprozesses möglichst gute Vorhersagen treffen zu können,
wurde in Abschnitt 3.2 auf der Grundlage von experimentellen Daten ein Materialmodell entwickelt,
das die beobachteten Phänomene qualitativ beschreiben kann. Die Parameteridentifikation beschäftigt
sich zusätzlich mit der Bestimmung der im Modell ermittelten Materialparameter auf der Grundlage
eines Vergleichs zwischen den experimentellen und den simulierten Daten. Für die Parameteridenti-
fikation wird das im Rahmen der Habilitation von MAHNKEN [48] entwickelte Optimierungspro-
gramm ,,PARA“ verwendet. Es basiert auf dem ,,Simplex Algorithmus von Nelder und Mead“, der
auch unter dem Begriff ,,Downhill Simplex“ bekannt ist und ermöglicht ausgehend von einem aktu-
ellen Parametervektor die Generierung eines neuen Parametervektors, der die Zielfunktion minimiert.
Als Zielfunktion wird ein Fehlerquadratfunktional verwendet

f [κ] =
1

2

ndaten∑

i=1

(
di[κ]− di

)2
. (3.93)

Die Differenz zwischen den experimentell gemessenen Größen d und den errechneten Größen d[κ]
in Abhängigkeit von den Parametern κ in einem identischen Zeitpunkt wird quadriert und über die
Anzahl der vorhandenen Versuchsdaten aufsummiert. Die simulierten Größen werden im Unterpro-
gramm ,,UMA“ , das das direkte Problem an einem Materialpunkt löst, ermittelt.

Ein schematischer Ablaufplan zur Parameteridentifikation ist in Abbildung 3.6 dargestellt. Die Pa-
rameteridentifikation erfolgt in mehreren Etappen. Als erstes werden vorhandene Versuchsdaten in
die Input-Dateien (*.dat) eingetragen. Die Startwerte sind ausschlaggebend für die Qualität der Pa-
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Abb. 3.6 Ablaufdiagramm der Parameteridentifikation

rameteridentifikation. Es gilt hier zu berücksichtigen, dass zwecks Einsparung der Rechenzeit die
Parameteridentifikation zur Anpassung der gemessenen und simulierten Kurve nur lokale Minima
ermittelt werden. Es ist daher möglich, dass bei der Wahl eines ungünstigen Startwerts das loka-
le Minimum nicht gleichzeitig das globale Minimum ist. Diese Problematik wird durch Variierung
der Startwerte behoben. Während der Parameteridentifikation werden, wie in Abbildung 3.6 darge-
stellt, Werte an die ,,UMA“ Subroutine übergeben, die die Funktion eines FEM-Programms simuliert
und eindimensionale Berechnungen durchführt. Hier werden Verzerrungen, Spannungen und inne-
re Variablen ermittelt und an die Materialroutine ,,kbtrip.f“, welche die konstitutiven Gleichungen
des Modells beinhaltet, übergeben. Diese Materialroutine berechnet die neuen Spannungen, die Ge-
schichtsvariablen sowie den konsistenten Tangentenoperator und gibt diese an die ,,UMA“ Subroutine
zurück. Diese wiederum liefert die Spannungen an die ,,PARA“ Subroutine, die die Parameteridenti-
fikation mittels eines Fehlerquadratfunktionals durchführt. Diese Schritte werden so oft durchlaufen,
bis die ,,PARA“ Subroutine Minima des Fehlerquadrats und somit Parameter gefunden hat oder ei-
ne Toleranzgrenze erreicht ist, bei deren Erreichen das Programm abgebrochen wird. Das Einbinden
der konstitutiven Gleichungen des Modells in Abaqus geschieht durch den Austausch der ,,UMA“
Subroutine mit der in Abaqus zur Verfügung gestellten Schnittstelle ,,UMAT“ . Mit den ermittelten
Parametern kann nun das experimentell ermittelte Materialverhalten in Abaqus angewendet werden.
Die Parameteridentifikation des oben beschriebenen Materialmodells wird im folgenden Abschnitt
beispielhaft dargestellt.

3.4.1 Phasenumwandlungen

3.4.1.1 Inkubationszeit und Kinetik der bainitischen Phase

Als erstes werden die Parameter, die für die Keimbildung des bainitischen Gefüges zuständig sind, auf
Basis des isothermen ZTU-Diagramms (Abb. 3.5) ermittelt. Dabei entspricht die im ZTU-Diagramm
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abgebildete Inkubationszeit dem Zeitpunkt t∗, bei dem der Keimradius rmit dem kritischen Keimradi-
us r∗ übereinstimmt. Die temperaturabhängige Inkubationszeit kann beim isothermen Verlauf durch
Lösung der Differenzialgleichung (3.68) und anschließender Gleichsetzung mit Gleichung (3.69.1)
mit Hilfe der Randbedienung

θ = Konst., ev = 0, t ∈ [0, tin] (3.94)

definiert werden

tin[θ] =
A1θ0∆θ

0.5

θ∆θQ∗α2 exp

[
− |θ − θ∗|
Bu 〈θ − θ∗〉+Bl 〈θ∗ − θ〉

] . (3.95)

Damit lässt sich die Inkubationszeit anhand der Materialparameter κit = [Q∗, Bu, Bl, α2, A1] errech-
nen.

Als Zielfunktion der Parameteridentifikation wird folgendes Fehlerquadratfunktional verwendet:

f(κ) =
1

2

∥∥∥tin(κ)− tin
∥∥∥ → min,

mit tin =
[
tin1 (κ), · · · , tinndt(κ)

]T
, t

in
=
[
t
in
1 , · · · , t

in
ndt

]T
.

(3.96)

Die Lösung dieses indirekten Optimierungsproblems erfolgt mit Hilfe des nichtlinearen Optimie-
rungstools GRG2 (Generalized Reduced Gradient) von Microsoft Excel Solver. tin(κ) und tin stellen
entsprechend die errechnete und die experimentelle Inkubationszeit dar. ndt repräsentiert die Anzahl
der experimentellen Daten der Inkubationszeitkurve [t(r = r∗)].

Die Endergebnisse des Parametervektors κit sind in Tabelle 3.1 zusammengefasst. In Abbildung
3.7 wird der Vergleich zwischen der Inkubationszeitkurve aus dem ZTU-Diagramm (Abb. 3.5) und der
errechneten Inkubationszeit veranschaulicht. Es zeichnet sich hierbei eine sehr gute Übereinstimmung
ab.
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Abb. 3.7 Inkubationszeitkurve der bainitischen Phase (Punkte: experimentelle Ergebnisse, Linien: Simulationsergeb-
nisse)

Den nächsten Schritt der Parameteridentifikation stellt die Ermittlung des Parametersvektors κz3
dar. Als Zielfunktion im Optimierungsverfahren wird ein Fehlerquadratfunktional verwendet

f(κ) =
1

2
‖z(κ)− z‖ → min, mit z = [z1(κ), · · · , zndz(κ)]

T
, z = [z1, · · · , zndz]T . (3.97)

Das Optimierungsproblem wird mit Hilfe des Programms PARA unter Einsatz des Simplex Nelder
Algorithmus gelöst. Die Ergebnisse der Optimierung werden in Abbildung 3.8 wiedergegeben. Es
zeichnet sich eine gute Übereinstimmung zwischen den experimentellen Daten und Ergebnissen der
Simulation ab. Die hier ermittelten Parameter κz3 sind in Tabelle 3.1 zusammengefasst.
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Abb. 3.8 Evolution des Volumenanteils der bainitischen Phase, isotherm bei 340 ◦C (Punkte: experimentelle Ergebnis-
se, Linien: Simulationsergebnisse)

3.4.1.2 Umwandlungsplastizität

Im nächsten Schritt der Identifikation erfolgt eine Konzentration auf die in Abbildung 2.18 darge-
stellten experimentelle Ergebnisse für die isothermen spannungsgesteuerten Tests, die die Umwand-
lungsplastizität repräsentieren. Die Formulierung eines Fehlerquadrat-Minimierungsproblems, das die
Differenz zwischen den simulierten und den experimentellen Daten berücksichtigt (siehe dazu bei-
spielsweise MAHNKEN [85]), erfolgt hierbei auf Basis der Längsdehnungen

f(κ) =
1

2
‖ε(κ)− ε‖ → min, mit ε = [ε1(κ), · · · , εnde(κ)]

T
, ε = [ε1, · · · , εnde]T . (3.98)

Hierbei kennzeichnet nde die Anzahl der experimentellen Daten für verschiedene Dehnungen. Um
ein lokales Minimum zu bestimmen, sind zahlreiche Iterationsschritte im Optimierungsvorgang not-
wendig. Das Ergebnis der Parameterindentifikation liefert die Approximation für die Parameter Ktp1

and Ktp2 in Gleichung (3.46). Abbildung 3.9 zeigt eine sehr gute Übereinstimmung zwischen den
experimentellen und simulierten Daten.

Abb. 3.9 Dehnungs-Zeit-Diagramm für verschiedene Spannungen und Umwandlungsplastizitäten (Punkte: experimen-
telle Ergebnisse, Linien: Simulationsergebnisse)
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Abb. 3.10 Spannungs-Dehnungsdiagramm (Punkte: experimentelle Ergebnisse, Linien: Simulationsergebnisse)

3.4.2 Elasto-Viskoplastizität des unterkühlten Austenits

Die Verifizierung der mechanischen Eigenschaften des Modells erfolgt in zwei Schritten. Im ersten
Schritt werden die Parameter bestimmt, die direkt aus den Versuchsergebnissen abgeleitet werden
können. Dazu gehören Parameter, die das elastische Verhalten des Materials beschreiben κel = [E0,
cE , ρ, ν[−]]. Der Elastizitätsmodul E0 und dessen Temperaturkoeffizient cE lassen sich direkt aus
Diagramm 3.2 bestimmen. Die Querkontraktion ν und die Dichte ρ werden dem Werkstoffdatenblatt
(1.8159 Dörrenberg Edelstahl GmbH) entnommen. Die Parameterκvp = [Y0, cY , H,Q, b,Kλ,m] aus
Gleichung (3.53) lassen sich nicht direkt aus den experimentellen Daten ablesen und müssen daher
im zweiten Schritt erst mit Hilfe des Parameteridentifikationsprogramms ,,PARA“ ermittelt werden.
Zu diesem Zweck werden die experimentellen Spannungs-Dehnungs-Kurven verwendet (Abb. 3.10).
Aus der Verbindung von experimentellen Ergebnissen mit den Resultaten der Simulation ergibt sich
das Fehlerquadrat-Minimierungsproblem mit der Zielfunktion:

f(κ) =
1

2
‖σ(κ)− σ‖ → min, mit σ = [σ1(κ), · · · , σnde(κ)]

T
, σ = [σ1, · · · , σnde]T . (3.99)

Die Resultate der Parameterindentifikation, die auf der Grundlage des Vergleichs zwischen Versuchs-
und Simulationsergebnissen ermittelt wurden, zeigen eine sehr gute Übereinstimmung mit den expe-
rimentellen Daten. Die daraus resultierenden Parameter κel und κvp sind in Tabelle 3.1 zusammen-
gefasst.

Fazit

In diesem Kapitel wird ein makroskopisch-phänomenologisches Mehrphasenmodell auf der Grundla-
ge der geometrisch linearen Theorie entwickelt. Im Rahmen dieses Modells werden die zeit- und
temperaturabhängige Phasenumwandlung, Austenitisierung des Ausgangsgefüges und die aus der
Phasenumwandlung resultierenden Effekte, wie Umwandlungsplastizität, Volumenveränderung so-
wie temperatur- und mikrostukturabhängige Elasto- bzw. Viskoplastizität abgebildet und analysiert.
Die Verwendung dieses Ansatzes in der makroskopischen Modellierung der bainitischen Umwand-
lung unter Betrachtung der Evolution der Keimradien sowohl für den oberen als auch für den unteren
Bainit gestattet die Abbildung des unsymmetrischen Inkubationszeitverlaufs sowie eine Entwicklung
der Evolutionsgleichungen der bainitischen Phase unter Verwendung der treibenden Kräfte.
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κel : E0[MPa] cE [MPa
K

] θE0 [K] ν[−] ρ[ kg
mm3 ]

2.2581E+05 2.1292E+02 293 0.23 7.83E-06

κvp : Y0 [MPa] cY [−] θY0 [K] m [−] D [MPa]

2.52001E+04 0.344 293 1.0 1.0E-09

Hp [GPa] Q0 [MPa] b [−]

5.27 2.8085E+03 3.62E+01

κθ : α1 [ 1
K

]

0.12776E-04

κr : A1 [−] θ0 [K] θ∗ [K] αθi [s−1] Bu [K] Bl [K]

3.8568E+04 850 826 3.3931E-03 0.11294E+03 0.20539E+03

κz2 : Ac1 [K] µ [ 1
K

]

850 1.2106E-02

κz3 : A5 [−] B1 [K] n [−] γ [−] A3 [−] Q∗ [−]

3.3245E-04 26.44 22.65 1.66 0.1E-03 3.0843E+05

κz4 : Ms[K] kθ[K]

5.647E+02 8.264E+01

κtp : Ktp1B [ 1
MPa

] Ktp2B [
(

1
MPa

)2
] Ktp1M [ 1

MPa
] Ktp2M [

(
1

MPa

)2
]

0.76243E-04 0.47E-06 6.1469E-05 5.8669E-07

κtc : λθ
[

W
mmK

]
cd

[
J

kgK

]
4.6E-02 4.52E+02

Tabelle 3.1 Materialparameter für den niedriglegierten Stahl 51CrV4



Kapitel 4
Phänomenologische Modellierung für große
Deformationen

Im betrachteten Hybridumformprozesses tritt eine massive Umformung im Flanschbereich auf. Um
diesen Vorgang simulieren zu können, bedarf es der Entwicklung eines makroskopischen Modells,
das große Deformationen berücksichtigt. Dessen Formulierung erfolgt hierbei auf der Grundlage des
im vorigen Kapitel entwickelten Modells. Im ersten Schritt werden basierend auf der Theorie der
Kontinuumsthermodynamik unter besonderer Berücksichtigung der unterschiedlichen Phasen nz und
des viskoplastischen Materialverhaltens konstitutive Gleichungen abgeleitet. Im Anschluss daran wird
das Modell auf den Hybridumformprozess angepasst. Die im Rahmen dieser Adaptation entwickelten
Gleichungen des Prototypmodells werden numerisch implementiert und anschließend zur Simulation
des Hybridumformprozesses verwendet.

4.1 Thermodynamisch konsistente Formulierung

4.1.1 Kinematik

Analog zum Abschnitt 3.1.1 wird ein Körper B betrachtet, der aus einer Menge von materiellen
Punkten in einem dreidimensionalen Euklidischen Raum R3 besteht. Jeder Materialpunkt X ∈ B
wird durch seinen Ortsvektor X ∈ B0 ⊂ R3 identifiziert (Abb. 4.1). B0 stellt die Referenzkonfigu-
ration dar, die der unbelastete Körper bei vorgegebener Referenztemperatur einnimmt. Die eindeutige
Abbildung ϕ : B0 −→ R3 zur Beschreibung der Konfiguration des Körpers bei variierender Zeit
t ∈ R+ platziert die Materialpunkte des Körpers B in R3. Die Funktion ϕt = ϕ[•, t] bildet die
Partikelposition X ∈ B in ihrer aktuellen Position x = ϕt[X] der deformierten Konfiguration B
zum Zeitpunkt t ab und beschreibt somit die Bewegung des Körpers in Bezug auf die festgelegte
Referenzkonfiguration.

Der Deformationsgradient F wird für den Zeitpunkt t definiert als

F =
∂ϕt[X]

∂X
. (4.1)

Die für die Transformation der Volumenelemente der Ausgangskonfiguration B0 in die Momentan-
konfiguration B geltende Jacobi-Determinate des Deformationsgradients wird wie folgt festgelegt:

1. J = detF, 2. dv = JdV . (4.2)

Durch die Bedingung J > 0 werden Materialdurchdringungen ausgeschlossen. Der Deformations-
gradient F : TB0 → TB definiert eine Abbildung von Inkrementen dX ⊂ TB0 des lokalen Tan-
gentenraumes TB0 (Referenzkonfiguration) nach Inkrementen dx ⊂ TB des lokalen Tangentenrau-
mes TB (Momentankonfiguration). Zur Parametrisierung der Referenz- und Momentankonfiguration

51
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Abb. 4.1 Konvektive Koordination der Konfigurationen B0 und B [150]

werden konvektive Koordinaten Θ mit den Tangentenräumen TB0 und TB und den entsprechenden
kovarianten Metriktensoren G[, g[ verwendet.

Im Rahmen dieser Analyse wird in Bezug auf das elastoplastische Verhalten unter Berücksichtigung
der Phasenumwandlung in Anlehnung an das Multi-Mechanismen-Plastizitätsmodell von MAHNKEN
et al. [91] von einer multiplikativen Zerlegung des Deformationsgradienten in einen volumetrischen
Teil Fvol und einen isochoren Teil Fiso ausgegangen

1. F = Fvol · Fiso, mit
2. Fvol = J

1
31,

3. Fiso = Fisoe · Fi,
4. J = Je · Jθ · Jz.

(4.3)

Dabei repräsentieren Fisoe und Je den isochoren bzw. den volumetrischen Teil der elastischen Defor-
mation bzw. Rotation und Fi den inelastischen (plastischen und umwandlungsplastishen [TRIP]) Teil
des Deformationsgradienten. Es wird davon ausgegangen, dass sowohl der thermische Jθ als auch der
umwandlungsbedingte Deformationsgradient Jz nur volumetrische Anteile aufweist. Im Rahmen der
multiplikativen Zerlegung wird neben der Referenzkonfiguration B0 und der momentanen Konfigu-
ration B die Zwischenkonfiguration B̄ eingeführt. Die dreifach verbundenen Tangentenräume TB0,
TB und T B̄ sind mit kovarianten Metriktensoren G[, g[, G

[
ausgestattet und korrespondieren mit

den zweifach verbundenen Tangentenräumen TB∗, TB∗. T B̄∗ stimmt mit kontravarianten Metrik-
tensoren G] = (G[)−1, g] = (g[)−1, G

]
= (G

[
)−1 überein (siehe dazu beispielsweise MAHNKEN

[86], MARSDEN & HUGHES [93] und GIESSEN & KOLLMANN [43]).
Die Tensorenobjekte können zur Definition von Invarianten der Tensoren zweiter Stufe verwendet

werden. Hier erfolgt die Definition eines gemischtvarianten Tensors zweiter Stufe Ā′ = Ā j
i Ḡ

i ⊗ Ḡj

bezogen auf die Zwischenkonfiguration

Ā′Ii :=
1

i
1
8

:
(
Ā′
)i

=
1

i
1̄′ :

(
Ā8
)i

=
1

i
G
]

:
(
Ā′ ·G[

)i
, i = 1, 2, 3. (4.4)

Ā8 = G] · Ā′ ·G[ und 1
8 = Ḡi ⊗ Ḡi = (1̄′)t stellen gemischtvariante Einheitstensoren zweiter Stufe

mit den Basisvektoren Ḡi and Ḡi dar. Insofern repräsentiert Gleichung (4.4) Invarianten, die unter
Verwendung des Zusammenhangs 18 = G

[ ·G]
als zweifache Paarung von ko- und kontravarianten
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Tensoren ausgedrückt werden kann. Es gilt anzumerken, dass die Invarianten in Analogie mit (4.4)
relativ zu der Referenzkonfiguration bzw. der räumlichen Konfiguration definiert werden können.
Anschließend werden die gemischtvarianten Einheitstensoren zweiter Stufe 18 = Gi⊗Gi = (1′)t und
18 = gi ⊗ gi = ( 1′)t eingeführt.

Die Ermittlung der Verzerrungstensoren kann mithilfe des Grundgerüsts der multiplikativen Plas-
tizität erfolgen (siehe dazu z.B. HAUPT [54]). In dieser Arbeit sind für weitere Modellierung insbe-
sondere folgende Größen von Interesse:

1. C−1
i := ∗Φ]i [G

]
] = F−1

i ·G
] · F−ti = F−1 · be · F−t = ∗Φ][be],

2. be := ∗Φ]e[G
]
] = Fe ·G

] · Fte = F ·C−1
i · Ft = ∗Φ][C

−1
i ].

(4.5)

Hierbei stellen die Operatoren ∗Φ]i ,
∗Φ], ∗Φ]e, ∗Φ

] jeweils den inelastischen ,,pull-back“ , den gesamten
,,pull-back“ , den elastischen ,,push-forward“ und den gesamten ,,push-forward“ Operator der kontra-
varianten Tensoren dar. Diese Operatoren können als Erweiterungen der standardisierten ,,pull-back“
und ,,push-forward“ Operatoren, wie beispielsweise in MARSDEN UND HUGHES [93] oder SIMO
UND HUGHES [117] beschrieben, betrachtet werden. Ein erweiterter Überblick über die Methoden ist
in MAHNKEN [86] gegeben. Ferner repräsentieren C−1

i den inversen inelastischen rechten Cauchy-
Green Tensor und be den elastischen linken Cauchy-Green Tensor in Gleichung (4.5). Setzt man statt
des kontravarianten Metriktensors G

]
den kovarianten rechten elastischen Cauchy-Green Tensor

Ce = Fte · g[ · Fe, (4.6)

ein, lassen sich Relationen (4.5) wie folgt umformulieren:

1. C := ∗Φ[i [Ce] = Fti ·Ce · Fi = Ft · g] · F = ∗Φ[[g]],
2. g[ := ∗Φ[e[Ce] = F−te ·Ce · F−1

e = F−t ·C · F−1 = ∗Φ[[C].
(4.7)

Hierbei stellen die Operatoren ∗Φ[i ,
∗Φ[, ∗Φ[e, ∗Φ

[ jeweils den plastischen ,,pull-back“ , den gesam-
ten ,,pull-back“ , den elastischen ,,push-forward“ und den gesamten ,,push-forward“ Operator des
kovarianten Tensors dar. Des Weiteren bezieht sich C−1

i auf die Referenzkonfiguration und Ce auf
die Zwischenkonfiguration. Mit Hilfe des rechten Cauchy-Green Tensors C lässt sich der Green’sche
Verzerrungstensor

E =
1

2

(
C−G[

)
(4.8)

mit der Eigenschaft F = 1=⇒E = 0 errechnen. Als Nächstes werden die multiplikative Zerlegungen
des Ce und be vorgestellt

1.) be = J2/3
e b̂e, 2.) Ce = J2/3

e Ĉe, mit 3.) Je =
(

det[Ce ·G
]
]
)1/2

=
(
det[g] · be]

)1/2
.

(4.9)
Somit repräsentieren Ĉe, b̂e und Je den isochoren bzw. den volumetrischen Anteil der elastischen

Deformationen. Ferner geben die Metriktensoren G
]

und g] den eindeutigen Zusammenhang zwi-
schen unterschiedlichen Konfigurationen wieder.

Geschwindigkeitsgradienten lassen sich in Hinblick auf bestimmte Konfigurationen unterscheiden
(siehe dazu beispielsweise MIEHE [96]). Als Ausgangspunkt dienen die bekannten Größen

1.) l = gradv = Ḟ · F−1 =⇒ 2.) d = sym[g[ · l], (4.10)

wobei die Zeitableitung der Verschiebung u die Geschwindigkeit v = u̇ definiert. l = lijgi⊗gj stellt
an dieser Stelle einen gemischtvarianten Tensor aus Ko- und Kontravarianz dar. Aus der multiplikati-
ven Dekomposition (4.3) folgt für l:
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l =
1

3

d

dt
(ln J)1 + Ḟisoe ·

(
Fisoe

)−1
+ Fisoe · Ḟi · Fi ·

(
Fisoe

)−1
(4.11)

(siehe dazu MAHNKEN et al. [91]) . Ein elastischer ,,pull-back“ liefert den Zusammenhang

L = ∗Φ8
e[l] = F−1

e · l · Fe =
1

3

d

dt
(ln J)1 +

(
Fisoe

)−1 · Ḟisoe + Ḟi · Fi. (4.12)

Für L resultiert aus der additiven Zerlegung der Jacobi-Determinate ln J = ln Ji+lnJe+lnJθ+lnJz

und der Beziehung Fe = J
1
3
e Fisoe

1. L := Le + Li + Lθ + Lz, mit

2. Li := Ḟi · F−1
i = −Fi · Ḟ−1

i , 3. Le := F−1
e · Ḟe,

4. Lθ :=
1

3

d

dt
(ln Jθ)1, 5. Lz :=

1

3

d

dt
(ln Jz)1.

(4.13)

Demzufolge repräsentieren Le, Li, Lθ, Lz jeweils den elastischen, inelastischen, thermischen sowie
den Umwandlungsteil. Es gilt anzumerken, dass im Gegensatz zu l in Gleichung (4.10) die Tensoren
L,Le,Li in Gleichungen (4.12) und (4.13) nicht als Gradienten eines räumlichen Feldes abgeleitet
sind, so dass hier der Fachbegriff Geschwindigkeitsgradient nicht im strengeren Sinn gebraucht wer-
den kann.

4.1.2 Volumenänderung infolge von Druck, Temperatur und Phasenanteilen

In diesem Abschnitt soll eine Mischung von nz ≥ 2 Phasen berücksichtigt werden, die einzeln die
Volumendifferenz dV mit einer Massendifferenz dm in der Referenzkonfiguration füllen. Diese Mi-
schung wird als homogen angenommen, d.h. alle Phasenverhältnisse sind gleich verteilt. In Bezug auf
die Referenz- bzw. die aktuelle Konfiguration werden die Dichten ρ0 und ρ der Mischung wie folgt
definiert:

1. ρ0 =
dm

dV
, 2. ρ =

dm

dv
. (4.14)

Bei einem Volumen dv soll die ite Phase die Masse dmi besitzen. Die Massenphasenfraktion zi und
die Dichte der iten Phase werden an einem Körperpunkt X ∈ B0 durch

1. zi =
dmi

dm
, 2. ρi =

dmi

dvi
(4.15)

festgesetzt. Darüber hinaus gelten in jedem Körperpunkt und für alle Zeitpunkte die Bedingungen:

1.

nz∑

i=1

zi = 1, 2. zi ≥ 0 ∀ i = 1, . . . , nz. (4.16)

Zwecks kompakter Darstellung wird dafür die Notation festgelegt z = [z1, z2, . . . , znz
]T . Des Weite-

ren folgt aus (4.14) und (4.15) der Zusammenhang zwischen den Massen- und Volumenphasenanteilen
für alle zulässigen Temperaturen θ

z
(m)
i =

ρi[θ]

ρ[θ]
z

(v)
i [θ] ∀ i = 1, . . . , nz. (4.17)

Unter Verwendung der Gleichung (4.14.2) ergibt sich sowohl aus der Relation dv =
∑3
i=1 dvi als

auch aus den Gleichungen (4.15.2) und (4.15.1) die Mischungsregel für die Inverse der Massendichte
ρ
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1

ρ
=

dv

dm
=

∑3
i=1 dvi
dm

=

3∑

i=1

dmi

ρidm
=

nz∑

i=1

zi
ρi
. (4.18)

Setzt man die Relationen (4.14) in Gleichung (4.2) ein und berücksichtigt zusätzlich die multiplikative
Zerlegung des Deformationsgradienten in Gleichung (4.3) erhält man

J =
dv

dV
=
ρ0

ρ
= Ji · Je · Jθ · Jz = Je · Jθ · Jz, (4.19)

wobei Ji, Je, Jθ, Jz jeweils die inelastische, elastische, thermische und Umwandlungsteile sind. We-
gen der plastischen Inkompressibilität wird für den inelastischen Teil die Beziehung Ji = 1 verwen-
det. Ferner wird angenommen, dass sich das ändernde Volumen dV mit dem Dichtewechsel infolge
der Änderung des Drucks (p− p0), der Temperatur (θ− θ0) und der Phasenanteile (z− z0) zu einem
neuen Volumen dv mit einer neuen Dichte ρ führt. Somit kann die Dichte ρ als Funktion des Drucks p,
der Temperatur θ und der Massenanteile der Phasen z mit einem Referenzvolumen ρ0 = ρ[p0, θ0, z0]
dargestellt werden.

Definiert man den Zustandsvektor als s = [p, θ, z], liefert die Taylor-Reihe bis zum Term erster
Ordnung

J =
ρ0

ρ
≈ 1− 1

ρ0

∂ρ

∂p

∣∣∣∣
s0

(p− p0) − 1

ρ0

∂ρ

∂θ

∣∣∣∣
s0

(θ − θ0)− 1

ρ0

nz∑

i=1

∂ρ

∂zi

∣∣∣∣
s0

(zi − z0i). (4.20)

Mehrere Umformungen der Relation (4.20) unter Anwendung der Mischungsregel für die inverse
Dichte aus (4.18) resultieren in:

J =
ρ0

ρ
≈ 1 −

nz∑

i=1

ρ0z0i

ρi[p0, θ0]

(
1

ρi[p0, θ0]

∂ρi
∂p

[p0, θ0]

)
(p− p0)

+

nz∑

i=1

ρ0z0i

ρi[p0, θ0]

(
− 1

ρi[p0, θ0]

∂ρi
∂θ

[p0, θ0]

)
(θ − θ0)

+

nz∑

i=1

ρ0

ρi[p0, θ0]
(zi − z0i).

(4.21)

Der letzte Summand in Gleichung (4.21) kann durch Einsatz der Gleichungen (4.16) und (4.17) mo-
difiziert werden

nz∑

i=1

ρ0

ρi[p0, θ]
(zi − z0i) =

nz∑

i=1

ρ0

ρi[p0, θ]
zi −

nz∑

i=1

z
(v)
i [p0, θ0] =

nz∑

i=1

ρ0

ρi[p0, θ]
zi − 1

=

nz∑

i=1

ρ0

ρi[p0, θ]
zi −

nz∑

i=1

zi =

nz∑

i=1

ρ0

ρi[p0, θ]
(zi − 1).

(4.22)

Folgende Definitionen des Kompressibilitätskoeffizienten κ[s0], des isothermischen Kompressibi-
litätskoeffizienten der iten Phase κi[p0, θ0], des Wärmeausdehnungskoeffizienten der iten Phase
αi[p0, θ0], des Wärmeausdehnungskoeffizienten α und des Phasenausdehnungskoeffizieten βi der iten

Phase (alle bezogen auf den Referenzdruck p0, -temperatur θ0 und die -phasenmischung z0):

κ[s0] :=

nz∑

i=1

ρ0z0i

ρi[p0, θ0]
κi[p0, θ0], κi[p0, θ0] :=

1

ρi[p0, θ0]

∂ρi
∂p

[p0, θ0],

α[s0] :=

nz∑

i=1

ρ0z0i

ρi[p0, θ0]
αi[p0, θ0], αi[p0, θ0] := − 1

3ρi[p0, θ0]

∂ρi
∂θ

[p0, θ0],

β[p0, θ0] := [β1, ..., βnz
]
T
, βi[p0, θ0] :=

1

3

(
ρ0

ρi[p0, θ0]
− 1

)
,

(4.23)
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erlauben die Darstellung der Gleichung (4.21) in kompakter Form

J ≈ 1− κ[s0](p− p0) + 3α[s0](θ − θ0) + 3βT [p0, θ0]z. (4.24)

Nimmt man im nächsten Schritt für kleine elastische, thermische und Umwandlungsdehnungen die
Näherung J − 1 ≈ ln J an, kann die multiplikative Form der Gleichung (4.19) unter Verwendung der
Gleichung (4.24) in eine additive Form transformiert werden

ln J ≈ −κ[s0](p− p0) + 3α[s0](θ − θ0) + 3βT [p0, θ0]z. (4.25)

4.1.3 Thermodynamisches Konzept

Analog zu HAUPT [54] werden folgende Bilanzgleichungen verwendet:

1. ρ0 ü−Div [F · S] = ρ0 f Impuls- oder Bewegungsgleichung,

2. ρ0 ė+ Div q0 = S : Ė + ρ0 rθ Energiegleichung,

3.
1

ρ0
S : Ė− Ψ̇ − θ̇η − 1

ρ0θ
q0 ·Grad θ ≥ 0 Clausius-Duhem-Ungleichung,

(4.26)

mit E als Green’schen Verzerrungstensor und S als (symmetrischen) 2. Piola-Kirchhoff-Spannungs-
tensor. Die Spannungsleistung P ist als duale Paarung zwischen dem Kirchhoff-Spannungstensor
τ und dem räumlichen Deformationsgeschwindigkeitstensor d in Gleichung (4.10.2) relativ zur Mo-
mentankonfiguration B definiert P = τ : d. Sie lässt sich in Bezug auf die Zwischenkonfiguration
unter Anwendung des elastischen ,,pull-back“ Operators festlegen

P = M : L, (4.27)

mit M = ∗Φ
′

e[m] = Fte ·m · F−te als gemischtvarianaten (kontra-kovarianten) Mandel’schen Span-
nungstensor. Hierbei gilt

P = M : L = τ : d = S : Ė. (4.28)

Für die freie Helmholtz-Energiefunktion Ψ wird der funktionale Zusammenhang

Ψ = Ψ [Ce, q, z, θ] (4.29)

angenommen, wobei Ce = FTe · Fe den elastischen rechten Cauchy-Green-Tensor (4.6) und q =
[qi, . . . , qnq

] einen Vektor der verzerrungsähnlichen internen Verfestigungsvariablen darstellt. Der in
Abschnitt 4.1.2 eingeführte Vektor z = [z1, z2, ..., znz

] berücksichtigt die unterschiedlichen Phasen nz
und spielt gleichzeitig die Rolle interner Variablen.

Unter Verwendung der additiver Zerlegung des Geschwindigkeitsgradienten (4.13.1) für die Span-
nungsleistung in Gleichung (4.27) und der Beziehung ∂Ψ/∂Ce : Ċe = 2(Ce ·∂Ψ/∂Ce) : Le (MIEHE
[96] ) folgt für die Clausius-Duhem-Ungleichung (4.26)

θγ =

(
1

ρ0
M− 2Ce ·

∂Ψ

∂Ce

)
: L + 2Ce ·

∂Ψ

∂Ce

: Li −
∂Ψ

∂q
q̇ − ∂Ψ

∂z
ż

−
(
η +

∂Ψ

∂θ

)
θ̇ − 1

ρ0θ
q0 ·Grad θ ≥ 0.

(4.30)
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Die Klammernausdrücke
(

1
ρ0
M− 2Ce · ∂Ψ

∂Ce

)
und

(
η + ∂Ψ

∂θ

)
werden nach der Standardargumen-

tation der klassischen rationalen Thermodynamik [25] gleich Null gesetzt. Daraus folgen die Relatio-
nen

1.M = ρ02Ce ·
∂Ψ

∂Ce

, 2. η = −∂Ψ
∂θ

, (4.31)

Damit können M und η als thermodynamische Kräfte betrachtet werden. Darüber hinaus werden
die thermodynamischen Kräfte für Verfestigungsspannungen Q = [Q1, Q2, . . . , Qnq

]T sowie die
chemischen Kräfte für die Phasentransformationen Z = [Z1, Z2, . . . , Znz ]T definiert

1. Q = ρ0
∂Ψ

∂q
, 2. Z = ρ0

∂Ψ

∂z
. (4.32)

Die Bedingungen der Clausius-Duhem-Ungleichung (4.26) werden eingehalten, wenn folgende Dis-
sipationgleichungen erfüllt sind:

1. D i = M : Li −Q q̇ − Z ż ≥ 0, 2. Dθ = −1

θ
q0 ·Grad θ ≥ 0. (4.33)

Der gängige Ansatz für den Wärmestromvektor in Gleichung (4.33.2) in Bezug auf die Referenzkon-
figuration ist das Fourier-Gesetz

q0 = −λθ(detF)C−1 ·Grad θ,

mit λθ als nichtnegativen Wärmeleitungskoeffizienten.
Darüber hinaus ist es notwendig, Evolutionsgleichungen zu formulieren:

1. Li = Li [M, Q, Z, q, z, θ], 2. q̇ = q̇ [M, Q, Z, q, z, θ], 3. ż = ż [M, Q, Z, q, z, θ]. (4.34)

Die Evolutionsgleichungen sind vom Mandel’schen Spannungstensor M, den Verfestigungsspannun-
gen Q sowie den chemischen Kräften Z, die als konjugierte duale Variablen Li, q̇ und ż in der Glei-
chung (4.33.1) erscheinen, abhängig. Die an den betrachteten Hybridumformprozess angepasste For-
mulierung dieser Evolutionsgleichungen sowie der anschließende Nachweis der thermodynamischen
Konsistenz des Modells erfolgt in den nachfolgenden Abschnitten.

4.1.4 Wärmeleitungsgleichung

Die Wärmeleitungsgleichung kann aus der Energiegleichung (4.26.2) abgeleitet werden (vgl. dazu
z.B. HAUPT [54]). Durch die Berücksichtigung der Gleichungen (4.31) und Umformung der Span-
nungsleistung P = S : Ė = M : L, ergibt sich

ρ0 cd θ̇ + Div q0 = M : Li −Q q̇ − Z ż + θ
∂M

∂θ
: Le + θ

∂Q

∂θ
q̇ + θ

∂Z

∂θ
ż + ρ0rθ, (4.35)

mit der Wärmekapazität

cd := −θ ∂
2Ψ

∂θ2

(
=
∂e

∂θ

)
. (4.36)

Die weiterführende Analyse der Gleichung (4.35) erfolgt in Abschnitt 4.2.5.



58 4 Phänomenologische Modellierung für große Deformationen

4.2 Prototypmodell für den Hybridumformprozess

In diesem Abschnitt wird das in Abschnitt 4.1 entwickelte allgemeine Modell für den betrachteten
Hybridumformungsprozess spezifiziert. Das Ziel hierbei ist, konkrete Vorschläge sowohl für die freie
Helmholtz-Energie als auch für die Evolution der internen Variablen herauszuarbeiten. Des Weiteren
erfolgt eine Diskussion der thermodynamischen Konsistenz des entwickelten Modells.

4.2.1 Freie Helmholtz-Energie

Im Rahmen dieser Analyse wird die freie Helmholtz-Energiefunktion in Anlehnung an RANIECKI
and BRUHNS [108] für das Prototypmodell wie folgt definiert:

1. Ψ = Ψ iso[Ce, z, θ] + Ψvol[Ce, z, θ] + Ψθ[θ] + Ψp[q, z, θ] + Ψch[z, θ], mit

2. Ψ iso =
G[θ]

4ρ0

(
tr
[
ln Ĉe

]2)
,

3. Ψvol =
1

2ρ0
K[θ] (lnJe)

2
,

4. Ψθ =

∫ θ

θ0

cd[θ̄]dθ̄ − θ
∫ θ

θ0

cd[θ̄]

θ̄
dθ̄,

5. Ψp =
1

2ρ0
Q0 b q

2
1 +

1

2ρ0
H q2

2 ,

6. Ψch =

4∑

i=1

(zi − z0i)φch,i[θ].

(4.37)

Hierbei beschreibt der Term Ψel = Ψ iso + Ψvol Speichermengen, die sich auf elastische Verzerrun-
gen beziehen. Der Teil Ψ iso in Gleichung (4.37.2) handelt von isochoren Verzerrungen, die auf iso-
chore elastische Verzerrungen zurückzuführen sind, wobei Ĉe = J

−2/3
e Ce gilt. Gleichung (4.37.3)

betrifft die volumetrischen Verzerrungen, die durch den in Gleichung (4.2.2) definierten elastischen
Teil der Jacobi-Determinante Je dargestellt werden. Die bereits in den Gleichungen (3.30) festge-
legten Schub- bzw. Kompressionsmodule G[θ] und K[θ] repräsentieren deren Beziehung zum Elas-
tizitätsmodul E, der Querkontraktion ν und dem Kompressibilitätskoeffizienten κ. Ferner wird eine
lineare Abhängigkeit des Elastizitätsmoduls von der Temperatur in Gleichung (3.31) eingeführt. Des
Weiteren wird die Erweiterung des Kompressionsmoduls (3.30.2) in Definition (4.23) eingefügt. Die
Annahme, dass die Volumenänderungen, die aus der Elastizität, der Temperaturänderung und der Pha-
senumwandlung resultieren, gering sind, erlaubt die Anwendung der Näherung ln J ≈ J − 1. Aus der
Berücksichtigung dieser Annahme sowie der additiven Zerlegung der Jacobi-Determinante in (4.25)
ergibt sich für den volumetrischen Anteil der freien Helmholtz-Energie

Ψvol =
1

2ρ0
K[θ] (lnJe)

2
=

1

2ρ0
K[θ] (lnJ − ln[JθJz])

2

≈ 1

2ρ0
K[θ]

(
ln J − 3

(
α[s0](θ − θ0) + βT [p0, θ0]z

))2

.

(4.38)

Aufgrund des Annahme des gleichen elastischen isotropen Verhaltens für alle Phasen ist die Betrach-
tung der Abhängigkeit der Schub- bzw. KompressionsmoduleG undK vom Vektor der Phasenanteile
z nicht notwendig. Bezüglich der Definitionen der Variablen wird auf Abschnitt 3.2.1 verwiesen.
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4.2.2 Thermodynamische Kräfte

Die thermodynamischen Kräfte lassen sich aus den Gleichungen (4.31) ableiten. Die Bestimmung des
Mandel’schen Spannungstensors basiert auf den Gleichungen (4.31.1) und (4.38)

M = ρ02Ce ·
∂Ψ

∂Ce

= K[θ] lnJ 1̄′ +G[θ]dev ln
[
Ce ·G

]
]
− 3K[θ]

(
α[s0](θ − θ0) + βT [p0, θ0]z

)
1̄′.

(4.39)

Die ersten zwei Terme in Gleichung (4.39) repräsentieren die aus Deformationen resultierenden volu-
metrische und deviatorische Spannungstensoren. Der dritte Term berücksichtigt die thermo- bzw. die
chemomechanische Abhängigkeit des Spannungstensors.

Auf Grundlage der Gleichungen (4.32), (4.38) und (4.37.5-6) werden sowohl die Verfestigungs-
spannungen als auch die chemischen Kräfte definiert

1. Q1 = ρ0
∂Ψ

∂q1
= Q0 b q1, Q2 = ρ0

∂Ψ

∂q2
= Hpq2,

2. Zi = ρ0
∂Ψ

∂zi
= −K[θ]

(
ρ0

ρi[θ0]
− 1

)
ln Je + ρ0 φch,i[θ], i = 1, 2, . . . , 4.

(4.40)

Die Ergebnisse der Gleichungen (4.40.1) repräsentieren die nichtlineare bzw. die lineare isotrope Ver-
festigung. Stahlwerkstoffe zeigen eine nur sehr geringe Volumenänderung im elastischen Bereich, so
dass gilt:

ρ0

ρi[θ0]
− 1 ≈ 0, Je ≈ 1. (4.41)

Damit ist der erste Term in Gleichung (4.40.2) vernachlässigbar

K[θ]

(
ρ0

ρi[θ0]
− 1

)
ln Je ≈ 0 =⇒ Zi ≈ ρ0 φch,i[θ]. (4.42)

Als Folge kann die chemische Kraft Zi als die freie Enthalpie der Phase zi betrachtet werden. Die
Anwendung des Spur-Operators (eng. trace-operator) tr[•] = 1 : [•] auf die Gleichung (4.39) erlaubt
die Umformulierung der hydrostatischen Druckspannung

−3p = trM = 3K[θ]
(

ln J − 3
(
α[s0](θ − θ0) + βT [p0, θ0]z

))
. (4.43)

Diese entspricht für den Fall p0 = 0 und θ = θ0 der Gleichung (4.25).

4.2.3 Evolutionsgleichungen der Viskoplastizität und umwandlungsinduzierter
Plastizität

Der inelastische Teil Li des Geschwindigkeitsgradientes L in Gleichung (4.13.4) wird wie folgt auf-
gespalten:

Li = Lp + Lt, (4.44)

wobei Lp und Lt den viskoplastischen Teil bzw. den umwandlungsplastischen Teil repräsentieren
(vgl. dazu z.B. HALLBERG et al. [51]).

Für Lp wird für das viskoplastische Verhalten die üblich verwendete Fließregel (vgl. dazu z.B.
[76]) angenommen
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1. Lp = λ̇

√
3

2
N
t
, mit

2. λ̇ =

(
< φ >

D

)m
,

3. φ = σv − (Y [θ] +Q1 +Q2),

4. σv =

√
3

2
||M||,

5. N =
M

dev

||Mdev||
.

(4.45)

λ̇ stellt hierbei den viskoplastischen Multiplikator, φ die Überspannungsfunktion, D > 0 den Materi-
alparameter der Viskosität, der in diesem Fall eine Konstante ist, σv die von-Mises-Vergleichsspannung
und N den normierten Mandel’schen Spannungstensor dar. Der ,,McCauley-Operator“ im Term
< φ > soll sicher stellen, dass das viskoplastische Fließen nur dann auftritt, wenn die von-Mises-
Spannung σv den Barriereterm (Y [θ] + Q1 + Q2) überschreitet. Der Barriereterm setzt sich wie-
derum aus der Fließspannung und den Verfestigungsspannungen zusammen. Die Fließspannung Y [θ]
repräsentiert die Anfangsbarriere für das inelastische Verhalten. An dieser Stelle wird eine lineare
Abhängigkeit zwischen der Fließspannung und der Temperatur angenommen

Y [θ] = Y0 + cY (θ − θY0
), (4.46)

mit cY als einen Materialparameter, der die Senkung der Fließspannung während der Temperatur-
zunahme beschreibt. θY0

ist die Temperatur, bei der Y [θ] = Y0 gilt. Der Skalar Q = Q1 + Q2

stellt die Verfestigungsspannung aus Gleichung (3.51) dar. Folglich kann der Skalar Y [θ] + Q0(1 −
exp[−bev]) +Hev physikalisch als eine Barrierekraft gegen das plastische Fließen interpretiert wer-
den.

Umwandlungsplastizität tritt bei bainitischen und martensitischen Umwandlungen auch unter Ein-
fluss der wirkenden Lastspannung, die unter der Fließspannung der weicheren Phase liegt, auf. Dem-
nach wird vorausgesetzt

Lt = ż3
3

2
f ′1KtpB [σv] (M

dev
)t + ż4

3

2
f ′1KtpM [σv] (M

dev
)t. (4.47)

Der Term Lt entspricht dem TRIP-Ansatz von LEBLOND [72]. Die KostantenKtpB andKtpM stellen
die Greenwood-Johnson-Parameter dar und werden wie folgt modifiziert:

1. KtpB [σv] = Ktp1B + Ktp2Bσv,
2. KtpM [σv] = Ktp1M + Ktp2Mσv.

(4.48)

Um eine bessere Übereinstimmung mit den experimentellen Ergebnissen für Martensit und Bainit
zu erzielen, werden die Greenwood-Johnson-Parameter als Funktionen der von-Mises-Vergleichsspa-
nnung gestaltet. Die Sättigungsfunktion f1[z] in Gleichung (4.47) ist eine heuristische Funktion, die
die Bedingungen erfüllt:

1. f1[0] = 0, 2. f1[1] = 1, 3. f ′1[z] =
df1

dz
≥ 0. (4.49)

Hier wird die von DENIS [27] entwickelte Formulierung in Gleichung (3.44) verwendet. Aus Glei-
chung (4.45.1) folgt der Zusammenhang

λ̇ =

√
2

3
Lp : (Lp)t =: ėv. (4.50)
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Damit verallgemeinert ev die Akkumulation der plastischen Verzerrung analog zum Fall der kleinen
Deformationen in Gleichung (3.48.5).

4.2.4 Thermodynamische Konsistenz

Um die thermodynamische Konsistenz des betrachteten Modells zu gewährleisten, muss die Clausius-
Plank-Ungleichung (4.33.1) erfüllt sein. Das viskoplastische Verhalten ist aktiviert, wenn die Über-
spannungsfunktion φ in Gleichung (4.45.3) positiv ist. Zwecks der mathematischen Formulierung
wird auf Gleichungen (3.75) verwiesen. Unter Verwendung der additiven Zerlegung des Geschwin-
digkeitsgradienten (4.44), der Fließregel (4.45.1), der Evolutionsgleichungen (4.47), (3.49.1), (3.49.2)
für TRIP und der internen Variablen q1 und q2 sowie der Gleichungen (4.45) und (4.50) kann die
Clausius-Planck-Ungleichung (4.33.1) wie folgt formuliert werden:

D i = M : Li −Q1q̇1 −Q2q̇2 −
∑4
i=1 Ziżi

= λ̇ (σv −Q1 −Q2)︸ ︷︷ ︸
>Y [θ]

+ λ̇
Q0
Q2

1 +
(
ż3

3
2f
′
1KtpB [σv] + ż4

3
2f
′
1KtpM [σv]

)
‖Mdev‖2

−∑4
i=1 Ziżi ≥ 0.

(4.51)

Aus Gleichungen (4.50) und (3.75) geht hervor, das die ersten zwei Terme in Gleichung (4.51) stets
nichtnegativ sind. Wegen Ktp1 > 0 und Ktp2 > 0 ist der dritte Term in Gleichung (4.51) ebenfalls
nichtnegativ. Daher muss für den Nachweis der thermodynamischen Konsistenz lediglich der letzte
Term auf Nichtnegativität untersucht werden. Dieser wird zunächst unter Einsatz der Beziehung (3.38)
und der Annahme (3.40) umgeformt

−
4∑

i=1

Ziżi = −ρ0

4∑

i=1

(θ − θ(i,2)
0 )

Q∗i,2

θ
(i,2)
0

żi ≥ 0. (4.52)

Bezüglich des Beweises der Nichtnegativität dieser Beziehung wird auf den Beweis zur Ungleichung
(3.77) in Abschnitt 3.2.5 verwiesen. Somit kann festgestellt werden, dass das betrachtete Modell
thermodynamisch konsistent ist. Dieser Beweis ist unabhängig von den Spezialansätzen der Evoluti-
onsgleichungen für die Phasenumwandlung, wie z.B. von Johnson-Mehl-Avrami-Kolmogoroff oder
Koistinen-Marburger.

4.2.5 Spezielle Form der Wärmeleitungsgleichung

Sind alle vier Phasen in den Prozess involviert, kann die Wärmeleitungsgleichung (4.35) in Abhängigkeit
von der austenitischen Phase wie folgt umformuliert werden:

ρ0 cd θ̇ + Div q0 = M : Li −Q q̇ + θ
∂M

∂θ
: Le + θ

∂Q

∂θ
q̇ +

4∑

i=1

Li2żi + ρ0rθ, (4.53)

wobei die latente Wärme Li2 der Umwandlung i→ 2 oder 2→ i eingesetzt wird

Li2 :=

(
−Zi + Z2 + θ

∂Zi
∂θ
− θ ∂Z2

∂θ

)
. (4.54)

Damit gilt weiterhin die Relation L22 = 0. Unter Verwendung der Approximation (4.41) und der
Annahme (3.40) erhält man aus (4.54) für den Fall konstanter Q∗i,2
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Li2 = ρ0Q
∗
i,2. (4.55)

Folglich stellt die Aktivierungsenergie ρ0Q
∗
i,2 der Umwandlungen 1 → 2 oder 2 → 3, 4 die latente

Wärme der korrespondierenden Umwandlung dar. Diese Aussage wird durch die experimentelle Be-
obachtung der exothermen Bildung von Bainit und Martensit untermauert. Im Gegensatz dazu ist die
Bildung von Austenit endotherm. Demnach sind die isotropen Verfestigungsspannungen nicht von der
Temperatur abhängig. So kann die Wärmeleitungsgleichung in der folgenden Form

ρ0 cd θ̇ + Div q0 = M : Li −Q q̇ + θ
∂M

∂θ
: Le +

4∑

i=1

Li2żi + ρ0rθ (4.56)

geschrieben werden.

4.2.6 Zusammenfassung der konstitutiven Gleichungen

Die konstitutiven Gleichungen bezüglich der Zwischenkonfiguration B̄ in Form der kontravarian-
ten Tensoren werden in Tabelle 4.1 zusammengefasst. Unter Verwendung der elastischen push-
forward-Beziehung be = ∗Φ]e[G

]
] in Gleichung (4.5.2) und der Umformung der Gleichung (4.7.2)

zu g[ = ∗Φ[e[Ce] gilt für den elastischen push-forward-Operator des gemischtvarianten Mandel-
Spannungstensors sowie des inelastischen Geschwindigkeitsgradienten bezüglich der Zwischenkon-
figuration

1. m = ∗Φ
′

e[M], 2. li = ∗Φ
8
e[Li]. (4.57)

Somit repräsentieren die in Tabelle (4.1) aufgeführten Gleichungen (I) und (II) den gemischtvarianten
Kirchhoff-Spannungstensor sowie den gemischtvarianten Geschwindigkeitstensor in der momentanen
Konfiguration

1. m = ρ02g[ · ∂Ψ
∂g[

= K[θ] lnJe 1′ +G[θ]dev ln
(
g[ · be

)
−

− K[θ]

(
3∆θ α1[θ] +

4∑

i=2

(
ρ1[θ0]

ρi[θ0]
− 1

)
zi

)
1′,

2. li = λ̇

√
3

2
nt +

(
ż3

3
2f
′
1KtpB [σv] + ż4

3
2f
′
1KtpM [σv]

)
(mdev)t, n =

mdev

||mdev|| .

(4.58)

Ferner werden in der Tabelle 4.1 Materialparameter zusammengefasst. Zur Vereinfachung wird der
gleiche Wärmeausdehnungskoeffizient α1[θ] für alle Phasen angenommen. Es existieren in Bezug auf
die Anwendungsmöglichkeiten der Gleichung (4.58) für generelle Belastungs- sowie Entlastungspfa-
de mehrere Beschränkungen. Dennoch wird in dieser Arbeit die Gleichung (4.58) der Einfachheit
halber und unter der Annahme, dass für die betrachteten Probleme mehr oder weniger proportionale
Belastungspfade erwartet werden können, als Arbeitsthese verwendet.
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4.3 Numerische Implementierung

Für die Simulation von Hybridumformprozessen, wie z.B. in STEINHOFF [119] und WEIDIG et
al. [141] dargestellt, ist eine Lösung von partiellen Differentialgleichungen notwendig, wobei die me-
chanische Gleichgewichtsgleichung und die thermische Wärmegleichung gekoppelt sind. Bezüglich
des Ansatzes zur Lösung des Randwertproblems wird auf weiterführende Literatur verweisen (siehe
z.B. ZIENKIEWICZ und TAYLOR [153], SIMO und HUGHES [117]).

Grundsätzlich können gekoppelte Randwertprobleme monolithisch bzw. simultan gelöst werden.
Dennoch wird hier ein gestaffelter Algorithmus verwendet, der im Gegensatz zu einem vollgekop-

I. Mandel’scher Spannungstensor

1. M = K[θ] ln Je1̄′ +G[θ]dev ln
(
Ce ·G

]
)

− K[θ]

(
3∆θ α1[θ] +

∑4
i=2

(
ρ1[θ0]

ρi[θ0]
− 1

)
zi

)
1̄′

2. G(θ) =
2E(θ)

1 + ν
, K(θ) =

E(θ)

3(1− 2ν)
, E = E0 + cE

(
θ − θE0

)

II. Inelastisches Fließen
- Additive Zerlegung

1. Li = Lp + Lt

- Viskoplastizität

2. Li = λ̇

√
3

2
N
t

3. N =
M
dev

||Mdev ||

4. λ̇ =

〈
φ

D

〉m
= ėv

5. φ[M, Q] = σv − (Y [θ] +Q)

6. σv =

√
3
2 ||M

dev ||

7. Y [θ] = Y0 + cY
(
θ − θY0

)
8. Q[ev ] = Q0 (1− exp (−bev)) +Hpev

- Umwandlungsplastizität

9. Lt = ż3
3
2f
′
1KtpB [σv ](M

dev
)t + ż4

3
2f
′
1KtpM [σv ](M

dev
)t

10. KtpB [σv ] = Ktp1B +Ktp2Bσv ,

11. KtpM [σv ] = Ktp1M +Ktp2Mσv

12. f ′1[z] = 2 (1− z) ,

Tabelle 4.1 Konstitutive Gleichungen der Viskoplastizität und der Umwangsplastizität für die Zwischenkonfiguration
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III. Umwandlungskinetik
- Ferrit/Perlit→ Austenit (1→ 2):

1. ż2 = µ12 (1− z2)H(θ −Ac1)− ż3 − ż4

- Austenit→ Bainit (2→ 3):

2. ṙ = α2u exp

[
−
θ − θ∗[ev ]

Bu

]
exp [−β2uev ]H(θb − θ)H(θ − θ∗[ev ])

+ α2l exp

[
−
θ∗[ev ]− θ

Bl

]
exp [−β2lev ]H(θ∗[ev ]− θ)H(θ − θMS)

3. ż3 = A5 exp

[
θ∗[ev ]− θ

B1

]
exp

[
−
G∗

Rθ

]〈
r − r∗

r

〉n
zγ2 H(θb − θ)H(θ − θMS),

4. G∗ =
A3θ20∆θ

1.5

(∆θQ∗ +A4θ0evσv)2

- Austenit→Martensit (2→ 4):

5. ż4 =

〈
−θ̇
kθ

〉
(z2 − z4)H(θMS − θ).

IV. Materialparameter

Elastizität κel : E0 cE θE0
ν

ρ1 ρ2 ρ3 ρ4 θ0

Wärmeausdehnung: κθ : α1

Viskoplastiztät: κvp : Y0 cY θY0 m D Hp Q0 b

Ferrit/Perlit→ Austenit.: κz2 : µ12 Ac1

Keimbildung des Bainit: κr : A1 θb θ∗ α2u α2l Bu Bl

Austenit→ Bainit: κz3 : A5 B1 n γ A3 Q∗

Austenit→Martensit: κz4 : Ms kθ

TRIP flow: κtp : Ktp1B Ktp2B Ktp1M Ktp2M

Parameter für Wärmeleitungsgleichung: κtc : λθ cd L12 L23 L24

Tabelle 4.1 Konstitutive Gleichungen der Viskoplastizität und der Umwangsplastizität für die Zwischenkonfiguration

pelten Algorithmus aus der Lösung des thermischen Problems, gefolgt von der Lösung des mechani-
schen Problems für jeden Zeitschritt besteht. Durch dessen Anwendung wird der Implementierungs-
aufwand des Prototypmodells verringert, so dass auch eine etwas schlechtere Konvergenz toleriert
werden kann.

Ferner wird im Rahmen dieser Analyse angenommen, dass der Einfluss der latenten Wärme, die
sich aus der Phasenumwandlung ergibt sowie die Wirkung der aus plastischer Deformation resultie-
renden Dissipationswärme auf das Temperaturfeld vernachlässigbar sind. Diese Annahme wird da-
durch begründet, dass die äußere Wärmequelle (Induktionheizung) sehr viel größere Wärmemengen
liefert, als die durch den irreversiblen Prozess erzeugte Wärme. Damit haben die latente Wärme sowie
die Dissipationswärme einen marginalen Einfluss auf der Wärmeverteilung. Konsequenterweise folgt
daraus, dass sich die Analyse auf die numerische Integration der in Tabelle 4.1 zusammengefassten
konstitutiven Gleichungen konzentriert.
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4.3.1 Integrationsschema

In Anlehnung an das Integrationsverfahren der Finite-Elemente-Methode wird hier ein dehnungsge-
steuerter Algorithmus über einen endlichen Zeitschritt ∆t = n+1t −n t verwendet. Darüber hinaus
wird davon ausgegangen, dass die Temperaturen nθ, n+1θ als Ergebnis des thermischen Problems im
Rahmen des oben erklärten gestaffelten Algorithmus übermittelt werden.

Als Ausgangspunkt der numerischen Integration dient die Fließregel (vgl. Gleichung (13) und (18)
in MAHNKEN und SCHNEIDT [87]) in der Materialkonfiguration

B0 : Li = ∗Φ8
i[Li] = F−1

i · Li · Fi = −1
2Ċi

−1 ·Ci, (4.59)

mit ∗Φ8
i[.] als inelastischen pull-back Operator. Die Multiplikation mit 2C−1

i ergibt

Ċi
−1

= −2 Li ·C−1
i . (4.60)

Aus der Anwendung des exponentiellen Integrators auf die Differentialgleichung (4.60) erhält man
(vgl. z.B. WEBER und ANAND [139], ETEROVIC und BATHE [31], SIMO [116])

n+1C−1
i = exp

[
−2 n+1Li

]
·n C−1

i

= exp
[
−2 n+1F−1 · li · n+1F

]
·n C−1

i ,
(4.61)

wobei von Gleichung (4.12) Gebrauch gemacht wurde.
Für die Integration der Wachstumsgeschwindigkeit der plastischen Dehnung in Gleichung (II) (Ta-

belle 4.1) wird das implizite Euler-Verfahren verwendet

n+1ev = nev +∆ev, (4.62)

wobei gilt

1. ∆ev = ∆λ,

2. ∆λ = ∆t

〈
n+1φ

D

〉m
.

(4.63)

Die Phasenanteile des Martensits n+1z4 (Gleichung (III) in Tabelle 4.1) und desen Inkrement ∆z
können für gegebene Temperatur n+1θ und für jeden neuen Zeitschritt n+1t direkt mit Hilfe der mo-
difizierten Koistinen-Marburger-Beziehung berechnet werden

n+1z4 =

{(
1−n+1 z1 −n+1 z3

)
f
(
n+1θ

)
, ∆z4 =n+1 z4 −n z4 für θ(t) ≤ θm

nz4, ∆z4 = 0 sonst . (4.64)

Die Anteile des Austenits n+1z2 lassen sich für den gegebenen Zeitpunkt n+1t und Temperatur n+1θ
analog ermitteln

n+1z2 =

{
f
(
n+1t,n+1 θ

)
, ∆z2 =n+1 z2 −n z2, für θ(t) ≥ Ac1

nz2 +∆z2, ∆z2 = −∆z3 −∆z4 sonst. (4.65)

Für die Integration der Phasenumwandlung vom Austenit zum Bainit (Gleichung (III) in Tabelle 4.1)
wird ebenfalls das implizite Euler-Verfahren angewendet
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1. n+1r =n r +∆r 2. ∆r =




∆t ṙ

(
n+1θ,n+1 t,κvp(Bu)

)
für Ac1 > θ(t) > θ∗

∆t ṙ
(
n+1θ,n+1 t,κvp(Bl)

)
für θ∗ > θ(t) > θm

0 sonst

3. n+1z3 =n z3 +∆z3 4. ∆z3 =

{
∆t ż3

(
n+1θ,n+1 t

)
, für Ac1 > θ(t) > θm

0 sonst.

(4.66)

Zur besseren Übersicht wird im Folgenden auf den Index n + 1, der auf den aktuellen Zeitschritt
hinweist, verzichtet. Fügt man Gleichung (4.61) in (4.5.2) ein und verwendet die Beziehung

exp
[
F−1 ·A · F

]
= F−1 · exp [A] · F,

gelangt man zu folgendem Ausdruck für den rechten Cauchy-Green-Tensor:

be = F ·C−1
i · Ft = exp [−2li] · btr, mit btr = F · nC−1

i · Ft. (4.67)

Hierbei bezieht sich btr auf den Prädiktor (trial) des linken elastischen Cauchy-Green-Tensors.
Im nächsten Schritt wird be entsprechend der Gleichung (4.9) in einen volumetrischen und

einen deviatorischen Teil aufgeteilt. Dessen Logarithmierung wandelt die räumlichen logarithmischen
Hencky-Dehnungen um

1. ln Je = ln J tr, mit J tr = det[btr]1/2,
2. ln b̂e = ln b̂tr − 2g] · lti, mit b̂tr = J tr

−2/3
btr.

(4.68)

Konsequenterweise kann der Kirchhoff-Spannungstensor τ = g] ·m unter Einsatz der Gleichungen
(4.58.1) und (4.58.2) umformuliert werden

1. τ = τ vol + τ dev, mit

2. τ vol = K[θ] lnJ trg] −K[θ]

(
3∆θ α1[θ] +

4∑

i=2

(
ρ1[θ0]

ρi[θ0]
− 1

)
zi

)
g],

3. τ dev = τ dev,tr − 2G∆λ

√
3

2

τ dev

||τ dev|| − 3Gf ′1 (∆z3KtpB [σv] +∆z4KtpM [σv]) τ
dev,

(4.69)

mit

τ dev,tr = Gdev lnbtr. (4.70)

Aus Gleichung (4.69.3) lässt sich folgern, dass τ dev,tr and τ dev koaxial sind, so dass die Gleichungen
(4.69) umgeformt werden können

1. τ = τ vol + τ dev, mit

2. τ vol = 1
3
τI1g

], 1
3
τI1 = K[θ] lnJ tr −K[θ]

(
3∆θ α1[θ] +

4∑

i=2

(
ρ1[θ0]

ρi[θ0]
− 1

)
zi

)
,

3. τ dev =
1

Cp

(
τ dev,tr − 2G

√
3

2
∆λn

)
, n =

τ dev,tr

||τ dev,tr|| ,

4. Cp = 1 + 3Gf ′1 (∆z3KtpB [σv] +∆z4KtpM [σv]) .

(4.71)

Es wird darauf hingewiesen, dass die Skalare KtpB [σv] und KtpM [σv] in den Gleichungen II.10 und
II.11 von der Vergleichsspannung nach von Mises abhängig sind. Grundsätzlich kann dies mit Hilfe
eines impliziten Ansatzes berücksichtigt werden. An dieser Stelle wird für diese Beziehungen ein
expliziter Algorithmus verwendet

KtpB [σv] = Ktp1B +Ktp2B
nσv, KtpM [σv] = Ktp1M +Ktp2M

nσv, (4.72)
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wobei nσv aus der vorangegangenen Zeitstufe gewonnen wird. Damit kann, ohne Einschränkungen in
der Konvergenz zu tolerieren, eine erhebliche Vereinfachung in der Implementierung und gleichzeitig
eine gute Übereinstimmung mit experimentellen Daten erreicht werden [88].

4.3.2 Spektralzerlegung

Aufgrund der Annahme des isotropen Materialverhaltens und der isotropen Verfestigung stimmen die
Basen der Eigenvektoren des linken elastischen Trial-Cauchy-Green-Tensors btr und der Kirchhoff-
Spannungen τ überein. Demnach lässt sich die spektrale Zerlegung dieser Tensoren durchführen

1. btr =

3∑

A=1

(
λA

tr
)2

mA =⇒ 2. τ =

3∑

A=1

βAmA. (4.73)

Hierbei stellen
(
λA

tr
)2

und mA mit A = 1, 2, 3 die Eigenwerte bzw. die Eigenvektoren von btr dar.
βA repräsentieren die Hauptwerte der Kirchhoff-Spannungen, welche unter Verwendung von Vektor-
bzw. Matrixnotationen wie folgt zusammengefasst werden können:

εtr :=




lnλtr1
lnλtr2
lnλtr3


 , β :=



β1

β2

β3


 , 1 :=




1
1
1


 , I3 :=




1
1

1


 , Idev3 := I3 −

1

3
1⊗ 1. (4.74)

Die Hauptspannungen werden aus den Relationen

1. β = βvol + βdev mit

2. βvol = 1
3
β I11, 1

3
β I1 = K[θ]1 · εtr −K[θ]

(
3∆θ α1[θ] +

4∑

i=2

(
ρ1[θ0]

ρi[θ0]
− 1

)
zi

)
,

3. βdev =
1

Cp

(
βdev,tr − 2G

√
3

2
∆λν

)
, ν =

βdev,tr

||βdev,tr||
,

4. Cp = 1 + 3Gf ′1 (∆z3KtpB [σv] +∆z4KtpM [σv])

(4.75)

mit β I1 = β1 +β2 +β3 ermittelt. Dieses Gleichungsset stellt einen Pendant zu Gleichungen (4.71) in
der Hauptachsendarstellung dar. Ferner ist dessen Struktur komplett mit dem in Abschnitt 3.3 vorge-
stelltem Schema (Gleichungen (3.82)) zur Berücksichtigung der geometrisch linearen Theorie iden-
tisch (vgl. dazu auch SIMO [116]). Dabei entsprechen β, βvol, βdev jeweils σ, σvol und σdev in
Gleichungen (3.3.1) und (3.83). Die in Gleichung II.4 (Tabelle 4.1) definierte Fließfunktion lässt sich
in Bezug auf Hauptspannungen beschreiben

1. φ = σv − (Y0 +Q) mit 2. σv =

√
3

2
||βdev||. (4.76)

4.3.3 Lokale Iteration

Da das Gleichungssystem (4.75) mit der Struktur des geometrischen linearen Fall übereinstimmt,
können die Erkenntnisse aus Abschnitt 3.3.2 transferiert werden. Aus Gleichung (4.75.3) wird die
skalare Beziehung
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∥∥∥βdev
∥∥∥ =

∥∥∥βdev,tr
∥∥∥− 2G

√
3

2
∆λ

Cp
(4.77)

gewonnen, wobei Cp in der Gleichung (4.75.4) definiert wird.
Als nächstes kann Gleichung (4.63.2) durch die Verwendung des Ergebnisses aus (4.77) für die

Fließbedinung (4.76) als Residuum formuliert werden

r[∆λ] =

√
3

2

∥∥∥βdev,tr
∥∥∥− 2G

√
3
2∆λ

Cp
−R[∆λ]− Y0−

(
∆λ

∆t

) 1
m

D = 0. (4.78)

Auf diese Weise werden die diskretisierten Evolutionsgleichungen (4.60) und (4.62) auf ein eindi-
mensionales Problem reduziert, das einzig vom plastischen Multiplikator∆λ abhängig ist. Für dessen
Lösung wird das Newton-Verfahren eingesetzt

1. ∆λ(k+1) = ∆λk −
r[∆λk]

J [∆λk]
, k = 0, 1, 2, . . .

2. J [∆λ] =
∂r[∆λ]

∂∆λ
=
∂ΦY
∂∆λ

−D
m

1

∆λ

(
∆λ

∆t

) 1
m

,

3.
∂ΦY
∂∆λ

= −
(

3G

Cp
+H + bQ exp [−b(nev +∆λ)]

)
,

(4.79)

wobei sich der Index k auf die Iterationnummer bezieht.

4.3.4 Spektralzerlegung des Tangentenmoduls

Für die iterative Lösung des Randwertproblems im Rahmen der Finite-Elementen-Methode mit Hil-
fe des Newton-Raphson-Verfahrens ist der Einsatz des Tangentenmoduls, der als c = 2∂τ/∂g[ de-
finiert wird, notwendig. Das Tangentenmodul wird durch die Differenzierung des Kirchhoffschen
Spannungstensors ermittelt. Die Berücksichtigung der Abhängigkeit βA [εtr, J ] resultiert in

c =
3∑

A=1

3∑

B=1

dβA
dεtrB

mA ⊗mB +

3∑

A=1

2βA
dmA

dg[
. (4.80)

Die Herleitung und das Ergebnis für dmA/dg
[ wird in SIMO [116] präsentiert. Die in Gleichung

(4.80) erscheinenden Terme dβA/dεtrB und dβA/dJ werden mit Hilfe der Ableitung von βA in Glei-
chung (4.75) ermittelt. Unter Verwendung der Gleichungen (4.75) erhält man:

dβ

dεtr
= K1⊗ 1 +

2G

Ctp
Idev3 −

√
3

2
∆λ

(2G)2

Cp

1∥∥∥βdev,tr
∥∥∥

(
Idev3 − 1⊗ 1

)

−
√

3

2

(
2G

Cp

)2
1

J [∆λ]
1⊗ 1,

(4.81)

wobei bezüglich der Definition von J [∆λ] auf Gleichung (4.79) verwiesen wird.
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4.4 Simulation des Hybridumformprozesses

In diesem Abschnitt wird der Hybridumformprozess auf der Grundlage des in den Kapiteln 3 und
4 entwickelten und implementierten, phänomenologischen, makroskopischen Materialmodells si-
muliert. Als erstes erfolgt die Abbildung des Hybridumformprozesses mit den Prozessparametern
nach WEIDIG et al. [143] im FEM-Programm Abaqus/Standard. Um zu veranschaulichen, welche
Gefügeverteilungen im Hybridumformprozess möglich sind, werden im nächsten Schritt die Prozess-
parameter variiert.

4.4.1 Prozessbeschreibung

Die Abläufe des thermomechanisch gekoppelten Hybridumformprozesses werden in der Abbildung
4.2 veranschaulicht. Die Prozesskette kann in drei Schritte unterteilt werden:

1. Erwärmung und Transfer,
2. Umformung,
3. Abkühlung.

Im ersten Prozessschritt wird ein zylindrisches Werkstück aus niedriglegiertem Schmiedestahl 51CrV4
mit einer Länge von 200 mm und einem Durchmesser von 30 mm in die Aufheiztstation eingeführt.
Dabei wird die Mitte des Zylinders in einem Bereich von 60 mm induktiv erwärmt. Die Erwärmung
erfolgt in zwei Stufen. Die Haupterwärmung mit 42 kW (70% der max. Leistung) dauert 12 Sekun-
den mit einem abschließenden, fünf Sekunden langem Nachwärmen mit einer reduzierten Leistung
von 15 kW. Das Nachwärmen dient zur Einstellung eines homogenen Temperaturprofils im Inne-
ren des Werkstücks. Die dafür benötigte Wärmeleistung kompensiert die Wärmeverluste infolge der
Wärmestrahlung und des Wärmeübergangs an die Umgebung und liefert die benötigte Wärmemenge
zur Erwärmung der tieferen Schichten. Die maximale Oberflächentemperatur beträgt nach der Auf-
heizphase 1350 ◦C. Für den Transport in die Umformstation werden ca. 4 Sekunden benötigt.

Abb. 4.2 Prozesskette der Hybridumformung [141]

Im nächsten Schritt wird die Freiumformung des Flanschbereichs der Welle mit einer abschließen-
den Ausformung im Werkzeug kombiniert. Nach der Umformung wird die Welle in einem geschlos-
senen, relativ kalten Werkzeug abgekühlt. Dabei wird der hohe Wärmeüberganskoeffizient zwischen
Festkörpern ausgenutzt, um eine höhere Abkühlrate des Wellenflansches zu erzielen.
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4.4.2 Simulation des Standardprozesses

Im Rahmen der Simulation wird die thermomechanisch gekoppelte FEM-Berechnung des Werk-
stücks, analog zum realen Prozess, in drei Teile, Erwärmung, Umformung und Abkühlung (Abb.
4.3.a) unterteilt. Aufgrund der rotationssymmetrischen Geometrie und Belastung sowie der Randbe-
dingungen sowohl des Werkstücks als auch des Werkzeuges kann eine Simulation des FEM-Modells
mit axialsymmetrischem Elemententyp CAX4RT verwendet werden. Die dazu notwendigen Randbe-
dingungen sind in Abbildung 4.3.b veranschaulicht. Die Starttemperatur sowohl vom Werkstück als
auch vom Werkzeug beträgt 27 ◦C (300 K). Die induktive Erwärmung wird aufgrund der geringen
Eindringtiefe des elektromagnetischen Feldes (siehe dazu z.B. [94]) mit Wärmestrom Q1 an der Zy-
linderoberfläche modelliert. Der zeitliche Verlauf und die Höhe des Wärmestroms ist in Abbildung
4.3.a dargestellt. Des Weiteren bildet dieses Diagramm die Verschiebung u des Werkzeuges ab und
beschreibt damit den zweiten Prozessschritt. Dem folgt eine vollständige Abkühlung des Werkstücks,
die sich in 279 Sekunden vollzieht. Diese wird im Rahmen der Simulation durch einen thermomecha-
nischen Kontakt zwischen dem Werkstück und dem Werkzeug abgebildet.
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Abb. 4.3 Randbedingungen: a) Zeitlicher Verlauf der Werkzeugverschiebung und des Wärmestroms b) mechanische
und thermische Randbedingungen

Die Simulationsergebnisse des Temperaturprofils in der ersten Prozessphase sind in Abbildung 4.4
dargestellt. Abbildungen 4.5 und 4.6 veranschaulichen die Temperaturverteilung während der Umfor-
mung und der Abkühlphase. Die Simulationsergebnisse der Phasenverteilung werden in Abbildung
4.8 zusammengeführt. Diese zeichnen sich dadurch aus, dass sich bei der Standardprozessführung
[143] kaum eine bainitische Phase gebildet hat. Die Verteilung der martensitischen Phase zeigt deut-
liche Übereinstimmungen mit der Gefügeverteilung im Schliffbild der realen Welle (Abb. 4.7).

θ[K]

(4,36s) (7,84s) (10,5s) (12,3s) (21,0s)

Abb. 4.4 Simulation des Standardprozesses: Temperaturverteilung in der Aufheizphase und nach dem Transport zur
Pressstation (21s) (Prozessschritt 1 (Abb. 4.3.a))
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(21,00s) (21,08s) (21,1s)

Abb. 4.5 Simulation des Standardprozesses: Temperaturverteilung während der Umformung (Prozessschritt 2)

(23,1s) (48,4s) (300s)

Abb. 4.6 Simulation des Standardprozesses: Temperaturverteilung in der Abkühlphase (Prozessschritt 3)

Abb. 4.7 Simulation des Standardprozesses: Vergleich des martensitischnen Gefügeferlaufs zwischen der Simulation
und der realen Flanschwelle (Teilprojekt A1 des SFB/TR TRR 30)



72 4 Phänomenologische Modellierung für große Deformationen

θ[K]

zi[−]

θ
Temperatur

z2
Austenit

z3
Bainit

z4
Martensit

Abb. 4.8 Simulation des Standardprozesses: Temperatur- und Phasenverteilung von Austenit, Bainit und Martensit
nach Prozessschritt 1, 2 und 3 (Abb. 4.3.a)
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4.4.3 Variation der Ausgangstemperatur

Die Erhöhung der Duktilität des Wellenflanschs mit gleichzeitiger Beibehaltung der Festigkeit kann
durch die Steigerung der Anteile der bainitischen Phaseanteile erreicht werden. Als eine der Stra-
tegien dafür bietet sich das Vorheizen der zylindrischen Halbzeuges in einem Hochtemperaturofen
an. Es werden hierbei unterschiedliche Starttemperuturen [500 K, 774 K, 874 K, 924 K] des Rol-
lings simuliert. Aufgrund der im Vergleich zum Standardprozess höheren Starttemperatur muss die
Wärmestrommenge, die die Leistung der Induktionheizung repräsentiert, insoweit angepasst werden,
dass die maximale Temperatur dem Höchstwert des Standardprozesses entspricht. Die restlichen Pro-
zessparameter entsprechen denen des Standardprozesses. Die Ergebnisse der Temperatur- und Pha-
senverteilung für Austenit, Bainit und Martensit in Abhängigkeit von der Starttemperatur werden in
den Abbildungen 4.9, 4.11 und 4.10 präsentiert. Die in Abbildung 4.10 dargestellten Simulations-
ergebnisse veranschaulichen eine Steigerung des Bainitanteils im Wellenflansch bei Vorliegen einer
höheren Vorheiztemperatur.

θ0 =300 K θ0 =500 K θ0 =774 K θ0 =874 K θ0 =924 K

θ[K]

zi[−]

Abb. 4.9 Variation der Ausgangstemperatur: Temperatur- und Phasenverteilung von Austenit nach Prozessschritt 1
(Abb. 4.3.a)
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zi[−]

z2 Austenit

z3 Bainit

z4 Martensit

θ0 =300 K θ0 =500 K θ0 =774 K θ0 =874 K θ0 =924 K

Abb. 4.10 Variation der Ausgangstemperatur: Phasenverteilungen von Austenit nach Prozessschritt 2 (Abb. 4.3.a),
Martensit und Bainit nach Prozessschritt 3 (Abb. 4.3.a)



4.4 Simulation des Hybridumformprozesses 75

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300

P
h
as
e
n
an

te
il
[-
]

Te
m
p
e
ra
tu
r
[K
]

Zeit [s]

Bainit

Temperatur

Elem. 220

Abb. 4.11 Variation der Ausgangstemperatur: Temperatur- und Phasenverlauf von Austenit, Bainit und Martensit über
die Zeit mit Starttemperatur von 500 K in Element 220 (Mitte der Probe)

4.4.4 Variation der Prozessführung

Den Gegenstand der Untersuchung dieses Abschnitts bildet die Analyse der Entwicklung der marten-
sitischen Phase in Abhängigkeit vom Zeitprofil der induktiven Erwärmung. Als Referenz dient der
in Abschnitt 4.4.2 beschriebene Standardprozess. Dieser entspricht der Variante 1 in Abbildung 4.12.
Im Rahmen der Analyse wird das Profil des Zeitverlaufs in Abhängigkeit von der Wärmestrommenge
variiert. Bei diesem Prozess wird die induktive Erwärmung aufgrund der geringen Eindringtiefe des
elektromagnetischen Feldes mit dem Wärmestrom Q1 an der Zylinderoberfläche modelliert. Der zeit-
liche Verlauf und die Höhe des Wärmestroms wird in Abbildung 4.12 dargestellt. Dieser Verlauf kann
in zwei Bereiche, die Haupterwärmung und die Nachwärmung, aufgeteilt werden (siehe Abschnitt
4.4.1). Für die Variante 1 wird die Haupterwärmung mit einer Wärmestrommenge von 2,5 W/mm2

über 10 s. und die Nachwärmung mit 0,5 W/mm2 über 4 s. gewählt. Bei diesem Prozess bildet sich
Martensit über den ganzen Querschnitt des Flansches aus.

Bei der Variante 2 wird der Haupterwärmung mit einer geringeren Wärmestrommenge von 20
W/mm2, aber über einen längeren Zeitraum und die Nachwärmung über einen kürzeren Zeitraum
modelliert. Damit wird die Bildung des Martensits nur am Rande des Flansches erreicht.

Variante 3 ist durch eine am Anfang geringere Wärmestrommenge, die zu einer langsamen und ho-
mogenen Erwärmung führt und eine abschließende kurze und hohe Wärmeeinbringung gekennzeich-
net. Da die Temperatur nach dem ersten Erwärmungsbereich unterhalb der Austenitisierungstempe-
ratur liegt, bildet sich der Martensit nur als dünne Schicht am Rand des Flansches. Austentbildung
erfolgt hierbei durch das abschließende schnelle Aufheizen in der zweiter Phase.

Die gleiche Strategie wird auch für die Variante 4 verwendet mit der Ausnahme, dass die zweite
Erwärmungsphase durch eine außermittig liegende Wärmequelle (Q2 in Abbildung 4.3) realisiert
wird. Dieses Verfahren resultiert in einer Verteilung des Martensit an den Flanschflächen und dem
relativ weichen Gefüge am Umlaufrand.

Mit Hilfe dieser Untersuchung wird die Vielfältigkeit des Hybridumformprozesses gezeigt. Insbe-
sondere wird veranschaulicht, dass die Erstellung der unterschiedlichen Gradientverläufe allein durch
die Veränderung der Erwärmungsprofils beeinflusst werden kann.
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Abb. 4.12 Variation der Prozessführung: Verteilung des martensitischen Gefüges infolge von Variierung des Verlaufs
der Wärmestrommenge
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Fazit

Den Gegenstand des vierten Kapitels bildet die Entwicklung eines thermodynamisch konsistenten
Mehrphasenmodells für große Deformationen. Auf der Grundlage dieses makroskopischen Modells
wurde sowohl die Austenitisierung während der Aufheizphase als auch die Bildung von Martensit,
Bainit und Mischgefügen während der Umform- und der Abkühlphase untersucht. Die Beschreibung
der Umwandlungsplastizität erfolgte hierbei auf der Grundlage des Leblond-Ansatzes. Für die Ana-
lyse des allgemeinen plastischen Verhaltens wurde der klassische Ansatz der von-Mises-Plastizität
eingesetzt. Ferner wurde die Implementierung des Modells um die spektrale Zerlegung des linken
elastischen Cauchy-Green-Tensors sowie die Kirchhoff-Spannung erweitert. Die anschließende FEM-
Simulation des Hybridumformprozesses liefert Ergebnisse, die eine sehr gute Übereinstimmung zwi-
schen der errechneten Verteilung der martensitischen Phase mit der Gefügeverteilung im Schliffbild
der realen Welle aufweisen. Des Weiteren wurde die Möglichkeit des Einsatzes der Finite-Elemente-
Methode für die Vorhersage der resultierenden Phasenverteilung durch die Variation der Prozesspara-
meter analysiert. Die Untersuchung des Einflusses der Ausgangstemperatur auf die Phasenverteilung
in der Welle hat aufgezeigt, dass durch das vorherige Vorheizen des Werkstücks eine signifikante Bil-
dung des bainitischen Gefüges im Flansch ermöglicht wird. Ferner steigt der bainitische Anteil bei
höheren Ausgangstemperaturen. Die Veränderung des Leistungsprofils der induktiven Erwärmung
stellt eine weitere Möglichkeit sowohl zur Veränderung der Verteilung als auch der Form des harten
Bereiches dar. Im Rahmen dieser Analyse erfolgte die Modifikation der Phasengradierung exempla-
risch anhand von drei Variationen des Aufheizprofils.





Kapitel 5
Mehrskalenmodellierung

Die makroskopischen Effekte der Phasenumwandlung, Umwandlungsplastizität und Umwandlungs-
kinetik basieren auf Vorgängen sowohl auf der Mikro- als auch auf der Mesoebene des Gefüges. Um
diese Effekte anhand der numerischen Simulation nachbilden zu können, bedarf es eines physika-
lisch motivierten Materialmodells, das die Phänomene auf allen Ebenen der Materialstruktur und die
Verbindung zwischen diesen Ebenen abbilden kann.

5.1 Konstitutive Gleichungen - Verallgemeinertes Modell

5.1.1 Thermodynamische Formulierung der Makroebene

Die im Rahmen dieses Kapitels verwendeten konstitutiven Gleichungen basieren auf der geometri-
schen linearen Theorie. Die Grundlagen sowie die verwendeten Annahmen wurden bereits in Ab-
schnitt 3.1.1 dargestellt und werden an dieser Stelle nicht näher beleuchtet.

a) b) c)

Abb. 5.1 Mehrskalenmodell: a) makroskopische Konfiguration B, b) mesoskopische Konfiguration eines Polykristalls
mit einem Volumenanteil ξi, c) Mikroskopische Konfiguration eines Einzelkorns mit den Varianten λij ; Temperatur θ
ist homogen

In Abbildung 5.1 wird das Material sowohl als eine koexistierende Mischung von Polykristallen
als auch in Bainit und Austenit aufgespalten dargestellt. Im allgemeinen Fall ist die makroskopische
Konzentration der Legierungselemente im Material konstant und unabhängig von der Zeit. Eine Aus-
nahme stellt z.B. die nicht homogene makroskopische Kohlenstoffverteilung nach einem Aufkohlpro-
zess dar. Da diese Sonderverfahren beim betrachteten Hybridumformprozesses keine Rolle spielen,
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wird die Kohlenstoffkonzentration im Material als homogen angenommen. Ferner wird korrespondie-
rend dazu auch die Temperatur θ als eine makroskopische Größe verstanden, die sich gleichmäßig
im Polykristall verteilt. Die Kohlenstoffdiffusion auf dem mesoskopischen Niveau, d.h. innerhalb des
Polykristalls während der Phasentransformation (siehe dazu beispielsweise BHADESHIA [17]) wird
im Modell nicht berücksichtigt. Bezüglich der Zusammenfassung der Bilanzgleichungen für Mehr-
skalenmodellierung wird auf Abschnitt 3.1.3 verwiesen.

5.1.2 Meso-Mikro-Ebene

Die in Abbildung 5.1.b dargestellte mesoskopische Ebene beschreibt sowohl die mechanischen als
auch die umwandlungsspezifischen Eigenschaften eines Polykristalls, der mit jedem Materialpunkt
der makroskopischen Konfiguration verbunden ist. Das Polykristall soll in Anlehnung an HACKL
UND HEINEN [48] ausN Kristallen bestehen. Im Allgemeinen kann die Anzahl der Kristalle in einem
Polykristall in Abhängigkeit von der Position von x zum Punkt P in der makroskopischen Konfigu-
ration B (siehe Abb. 5.1.a) variieren. Da im Rahmen dieser Arbeit die spezifische Anzahl der Körner
in einem Polykristall nicht definiert wird, erlaubt die Form N = N(x) zwischen grob- und fein-
gekörnten Arealen innerhalb des Materials zu differenzieren. Der Volumenanteil eines Kristalls mit
der Kristallorientierung i wird als ξi bezeichnet. Ferner erfüllen alle Polykristalle auf der Mesoskala
die normierte Bedingung

N∑

i=1

ξi = 1. (5.1)

Im Folgenden werden für alle Kristalle konstante Volumenanteile ξ̇i = 0 angenommen. Jedes Kristall
auf der Mikroskala hat n Varianten, wobei der Index j eine Spannbreite von 0 für den Austenit bis zur
Anzahl der bainitischen Varianten n aufweist. Hierbei erfüllt der Volumenanteil von austenitischen λi0

und bainitischen Varianten λij , j = 1, ..., n, i = 1, ..., N den Massenerhaltungssatz und jede Variante
hat eine Spannweite, die zwischen Null und Eins liegt. Zusammenfassend gilt für alle i ∈ {1, . . . , N}
und j ∈ {1, . . . , n}:

1.
n∑
j=0

λij = 1,

2. λij ≥ 0,
3. λij ≤ 1.

(5.2)

Prinzipiell kann das Ergebnis mit Hilfe der ersten zwei Bedingungen bestimmt werden. Die Bedin-
gung (5.2.3) wird lediglich zur Kontrolle des projizierten Newton-Algorithmus im späteren Abschnitt
5.3 eingesetzt.

Die Austenitisierung vom niedriglegierten Stahl ist nur oberhalb der Gleichgewichtstemperatur
Ac1 möglich (siehe dazu Abschnitt 2.1.1). Daher kann Austenit bei Temperaturen unter Ac1 und über
MS (martensitische Starttemperatur) in Ferrit, Perlit und Bainit transformieren. Eine umgekehrte Um-
wandlung ist bei dieser Temperaturführung nicht zu erwarten. Im betrachteten Hybridumformprozess
tritt die Austenit-zu-Ferrit-Umwandlung und die Austenit-zu-Perlit-Transformation verfahrensbedingt
nicht auf. Aus diesem Grund wird im Folgenden lediglich die Transformation vom Austenit zum Bai-
nit berücksichtigt. Die Evolution derer Varianten muss folgende Bedingungen erfüllen:

1.
n∑
j=0

λ̇ij = 0,

2. Austenit λ̇i0 ≤ 0,

3. Bainit λ̇ij ≥ 0.

(5.3)
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Des Weiteren wird eine additive Zerlegung des gesamten mesoskopischen Verzerrungstensors der
j-ten Variante vom i-ten Kristall angenommen

εij = εijte + εijpl + ηijt = εijel + εijth + εijpl + ηijt . (5.4)

εij besteht aus einem thermoelastischen εijte, einem plastischen εijpl und einem Transformationsteil
ηijt . Ferner stellt der thermoelastische Teil εijte die Summe aus einem elastischen εijel und einem ther-
mischen Teil εijth dar. Der letzte Teil repräsentiert die thermische Ausdehnung

εijth = (θ − θ0)Aij , (5.5)

mitAij als thermischen Ausdehnungstensor des i-ten Kristalls und der j-ten bainitischen Variante für
j > 0 bzw. vom Austenit für j = 0. Bei Vorliegen einer thermalen Isotropie gilt

Aij = αijI, (5.6)

mit αij als thermischen Ausdehnungskoeffizienten.
In Gleichung (5.4) stellt ηijt die rotierte Transformationsverzerrung für die Variante j des Kristalls

i dar. Diese erhält man aus dem Zusammenhang

ηijt =
(
Ri
)T · ηjt ·Ri, mit ηjt = UJ − I, (5.7)

wobei ηjt die linearisierte Transformationsverzerrung vom Austenit zur bainitischen Variante j, Ri ∈
SO3, i = 1, ..., N den Rotationstensor vom Kristall i, UJ den symmetrischen Verschiebungstensor
und I den Einheitstensor darstellen. Der Austenit wird als Referenzkonfiguration für die Transforma-
tionsverzerrung ηi0 = 0 verwendet.

5.1.3 Makro-Meso-Beziehung

Für die weitere Analyse werden unter Verwendung der Reussähnlichen-Mischungsregel zwischen der
makroskopischen und mesoskopischen Verzerrung folgende Beziehungen angenommen:

1. ε :=
N∑
i=1

ξi
n∑
j=0

λijεij , 2. εte :=
N∑
i=1

ξi
n∑
j=0

λijεijte, 3. εel :=
N∑
i=1

ξi
n∑
j=0

λijεijel,

4. εth :=
N∑
i=1

ξi
n∑
j=0

λijεijth, 5. η :=
N∑
i=1

ξi
n∑
j=0

λijηijt , 6. εpl :=
N∑
i=1

ξi
n∑
j=0

λijεijpl.

(5.8)

Hierbei ist ε der makroskopische Verzerrungstensor aus Gleichung (3.2), εte = εel + εth, η, εpl
stellen jeweils den makroskopische thermoelastischen, den makroskopische Transformationstensor
bzw. den makroskopische plastischen Verzerrungstensor dar.

Durch Einsetzen des gesamten makroskopischen Verzerrungstensor (5.8.1) in Gleichung (3.21)
erhält man die Spannungsleistung

P = σ : ε̇ = σ :
d

dt




N∑

i=1

ξi
n∑

j=0

λijεij


 =

N∑

i=1

ξi
n∑

j=0

λijσ : ε̇ij +

N∑

i=1

ξi
n∑

j=0

λ̇ijσ : εij . (5.9)
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5.1.4 Clausius-Duhem-Ungleichung

Die freie Helmholtz-Energie Ψ

Ψ = Ψ [εijel, q
ij
k , λ

ij , θ] (5.10)

ist eine Funktion der εijel elastischen Tensoren aus Gleichung (5.4), der internen verzerrungsähnlichen
Verfestigungsvariablen qijk , = 1, ..., nq , der Varianten λij mit den Nebenbedingungen (5.2) und der
Temperatur θ. Hierbei spielen λij die Rolle der internen Variablen. Wie schon in Abschnitt 5.1.1
erwähnt, wird die Temperatur θ als eine homogenisierte Größe für den Polykristall in Abbildung 5.1
betrachtet.

Setzt man die additive Zerlegung (5.4) für den totalen mesoskopischen Verzerrungstensor und Glei-
chung (5.9) für die Spannungsleistung ein, lässt sich die Clausius-Duhem-Ungleichung (3.20.3) um-
formen zu:

θγ =

N∑

i=1

n∑

j=0

(
1

ρ0
ξiλijσ − ∂Ψ

∂εijel

)
: ε̇ijel +

N∑

i=1

n∑

j=0

ξiλijσ : ε̇ijpl −
N∑

i=1

n∑

j=0

nq∑

k=1

∂Ψ

∂qijk
q̇ijk

−
N∑

i=1

n∑

j=0

λ̇ij
(
∂Ψ

∂λij
− 1

ρ0
ξiσ : εij

)
−
(
η +

∂Ψ

∂θ

)
θ̇ − 1

ρ0θ
q0 ·Grad θ ≥ 0.

(5.11)

Die Klammernausdrücke
(

1
ρ0
ξiλijσ − ∂Ψ/∂εijel

)
und (η + ∂Ψ/∂θ) werden nach der Standardar-

gumentation der klassischen rationalen Thermodynamik [25] gleich Null gesetzt. Daraus folgen die
Relationen

1. σij = ξiλijσ = ρ0
∂Ψ

∂εijel
= ρ0

∂Ψ

∂εijte
, 2. η = −∂Ψ

∂θ
, (5.12)

wobei σij als gewichteter Spannungstensor mit dem Volumenanteil der Variante j im Kristall i in-
terpretiert wird. Es gilt zu beachten, das diese nicht der realen Spannung der Variante j im Kristall i
entsprechen muss. Daher können σij und η auch als thermodynamische Kräfte betrachtet werden. Im
nächsten Schritt werden weitere thermodynamische Kräfte definiert

1. Qijk = ρ0
∂Ψ

∂qijk
, 2. Λij = ρ0

∂Ψ

∂λij
− ξiσ : εij . (5.13)

Hierbei repräsentiertQijk die Verfestigungsspannung und Λij die chemisch-mechanischen Treibkräfte
der Phasentransformation. Mithilfe der Dissipationstherme

1. D i =

N∑

i=1

n∑

j=0

σij : ε̇ijpl −
N∑

i=1

n∑

j=0

nq∑

k=1

Qijk q̇ijk −
N∑

i=1

n∑

j=0

Λij λ̇ij

2. Dθ = −1

θ
q0 ·Grad θ

(5.14)

kann die Clausius-Duhem-Ungleichung (5.11) umgeformt werden

ρ0θγ = D i + Dθ ≥ 0. (5.15)

Diese Ungleichung ist auch erfüllt, wenn die einzelnen Summanden positiv sind (hinreichende Be-
dingung). Damit kann die notwendige Bedingung in Ungleichung (5.15) durch zwei hinreichende
Bedingungen ersetzt werden:
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1. Clausius-Planck-Ungleichung: D i ≥ 0,

2. Wärmeleitungsungleichung: Dθ ≥ 0.
(5.16)

Der gängige Ansatz für den Wärmestromvektor in Gleichung (5.14.2) ist das Fourier-Gesetz

q0 = −λθ ·Grad θ, (5.17)

mit λθ als nichtnegativen Wärmeleitungskoeffizienten. Bei diesem Ansatz ist die Wärmeleitungsfunk-
tion (5.14.2) für alle mögliche Temperaturwerte stets positiv und die Bedingung (5.16.2) immer erfüllt.
Für eine allgemeine Darstellung der inelastischen Dissipation (5.14.1) erweist es sich als notwendig,
die Evolutionsgleichungen

1. ε̇ijpl = ε̇ijpl [σ, Qijk , Λ
ij , qijk , λ

ij , θ],

2. λ̇ij = λ̇ij [σ, Qijk , Λ
ij , qijk , λ

ij , θ]
(5.18)

so zu formulieren, dass die Clausius-Planck-Ungleichung (5.16.1) erfüllt ist. Damit soll die thermody-
namische Konsistenz des entwickelten Modells bewiesen werden. Die Evolutionsgleichungen (5.18)
sind in Bezug auf den Cauchy-Spannungstensor σ, die Verfestigungsspannung Qijk und die chemi-
schen Kräfte Λij , die konjugierte Größen der Variablen ε̇ijpl, q̇

ij
k , und λ̇ij in Gleichung (5.14.1) sind,

erfasst. Die Formulierung dieser Evolutionsgleichungen im Hinblick auf die thermodynamische Kon-
sistenz des Modells bildet den Gegenstand des nächsten Abschnitts.

5.2 Konstitutive Gleichungen - Prototypmodell

5.2.1 Freie Helmoltz-Energie

Die Ermittlung des verallgemeinerten Ausdrucks für die freie Helmoltz-Energie gestaltet sich für den
n-Varianten-Fall kompliziert. Um die Evolution für n Varianten zu ermöglichen, wird im Rahmen
dieser Analyse die Reussähnliche-Mischungsregel verwendet (vgl. dazu z.B. [45]). Bei dieser Mi-
schungsregel werden die bainitischen Varianten als Schichtaufbau quer zur Belastung betrachtet.

Für die freie Helmoltz-Energie wird ein quadratischer funktionaler Verlauf angenommen, wobei
die elastischen Konstanten Cjtuvw der j-ten Variante des Kristalls i analog zur Gleichung (5.7) trans-
formiert werden

Cijpqrs = RitpR
i
uqR

i
vrR

i
wsC

j
tuvw. (5.19)

Die Energiedichte der Variante j vom Kristall i lässt sich demnach wie folgt definieren:

1. Ψ ij [εijel, q
ij
k , θ] = Ψ ijel + ψijch + ψijpl, mit

2. ψijel [ε
ij
el] =

1

2ρ0
εijel : Cij : εijel =

1

2ρ0

(
εijte − εijth

)
: Cij :

(
εijte − εijth

)
,

3. ψijpl[q
ij
k ] =

1

2ρ0
Qoj b

(
qij1

)2

+
1

2ρ0
Hj

(
qij2

)2

,

4. Ψ ijch[θ] = ∆φijch +∆φijch,θ · θ

(5.20)

Für die gesamte freie Energie gilt
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1. Ψ [εijel, q
ij
k , λ

ij , ξi] := Ψel + Ψeffpl + Ψeffch + Ψθ,

2. Ψel[εijel, λ
ij , ξi] :=

N∑
i=1

ξi
n∑
j=0

λijψijel
[
εel
]
,

3. Ψeffp [qijk , λ
ij , ξi] :=

N∑
i=1

ξi
n∑
j=0

λijψijpl[q
ij
1 , q

ij
2 ],

4. Ψeffch [λij , ξi] :=
N∑
i=1

ξi
n∑
j=0

(
λij − λij0

)
(∆φijch +∆φijch,θ · θ),

5. Ψθ[θ] :=

∫ θ

θ0

cd[θ̄]dθ̄ − θ
∫ θ

θ0

cd[θ̄]

θ̄
dθ̄.

(5.21)

Der elastische Teil der freien Helmholtz-Energie Ψel berücksichtigt die gespeicherte Energie in
Abhängigkeit von der elastischen Verzerrung. Cij repräsentiert in Gleichung (5.20.2) den Elasti-
zitätstensor vierter Ordnung mit den Koeffizienten Cijpqrs. Im weiteren Verlauf der Analyse wird vom
effektiven Elastizitätstensor Gebrauch gemacht. Dieser wird definiert als

(Ceff )
−1

:=

N∑

i=1

ξi
n∑

j=0

λij
(
Cij
)−1

. (5.22)

Geht man von einem isotropen Material aus, kann dieser Tensor in einen deviatorischen und einen
volumetrischen Teil aufgespalten werden

Ceff = G[θ]Idev +K[θ]Ivol, (5.23)

wobei Idev = I - Ivol und I
vol = (1/3)1 ⊗ 1 die deviatorische und volumetrische Einheitstenso-

ren vierter Stufe mit den Einheitstensoren zweiter 1 bzw. vierter Stufe I darstellen. Des Weiteren
repräsentieren K[θ] und G[θ] den temperaturabhängige Kompressions- bzw. den Schubmodul.

Der in Gleichung (5.21.3) definierte inelastische Teil Ψp der freien Helmholtz-Energie repräsentiert
die Energiespeicherung infolge der inelastischen Deformationen, die unter anderem durch lineare und
nichtlineare isotrope Verfestigung verursacht werden. qij1 und qij2 sind verzerrungsähnliche interne
Variablen mit den dazugehörigen Materialparametern Hj , Qoj und b. Dies bedeutet, dass die Anzahl
der verfestigungsabhängigen Variablen in Gleichung (5.10) nq = 2 beträgt.

Der Term Ψch in Gleichung (5.21.4) stellt die aus den Phasentransformationen resultierende, ef-
fektive chemisch gespeicherte Energie dar. Die konstante chemische Energie ∆φijch sowie der tempe-
raturabhängige Teil ∆φijch,θ des chemischen Potentials werden mit der j-ten Variante im i-ten Kristall
verbunden. Für die Anfangswerte der Varianten gelten die Beziehungen

1. λij0 ≤ λij für j ≥ 1, 2. λi00 ≥ λi0. (5.24)

Für den Fall fehlender Phasentransformationen, der beispielsweise bei λij = λij0 vorliegt, tritt der
Term für die chemische Energie in Gleichung (5.21.4) nicht auf.

Die Variable Ψθ in Gleichung (5.21.5) repräsentiert die thermische gespeicherte Energie (siehe
dazu z.B. RANIECKI und BRUHNS [108]). Hierbei wird zur Vereinfachung die Abhängigkeit der spe-
zifischen Wärmekapazität cd von den Varianten vernachlässigt. In Übereinstimmung mit Gleichung
(5.21.4) kann cd als spezifische Wärmekapazität der anfänglichen Zusammensetzung der Varianten
λij0 verstanden werden.
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5.2.2 Thermodynamische Kräfte

Die thermodynamischen Kräfte ergeben sich aus Gleichungen (5.12) und (5.13). Folglich stellt der
makroskopische Cauchy-Spannungsstensor für die freie Helmholtz-Energie in Gleichung (5.20) die
konstitutive Gleichung (5.12.1) für die Variante j im Kristall i dar

1. σij = ξiλijσ = ρ0
∂Ψ

∂εijel
= ξiλijCij : εijel =⇒ 2. ξiλij [Cij ]−1σ = ξiλijεijel. (5.25)

Die Anwendung der gewichteten Summen über alle Kristalle und Varianten in Gleichung (5.25.2)
resultiert in

N∑

i=1

ξi
n∑

j=0

λij [Cij ]−1 σ =

N∑

i=1

ξi
n∑

j=0

λijεijel. (5.26)

Gleichung (5.26) lässt sich unter Einsatz der Definition (5.8) für die makroskopischen Verzerrungs-
tensoren sowie der Gleichung (5.22) für den effektiven Elastizitätstensor umformen zu:

σ = Ceff : εel. (5.27)

Definiert man die totale elastische freie Energie als

Ψel(ε, λij , ξ) :=
1

2ρ0
εel : Ceff : εel, (5.28)

erhält man in Übereinstimmung mit Gleichung (5.27) die makroskopische konstitutive Gleichung

σ = ρ0
∂Ψ

∂εel
= Ceff : εel = G[θ]devεel +K[θ]trεel1. (5.29)

Die additive volumetrisch-deviatorische Zerlegung in Gleichung (5.29) ist das Ergebnis der Darstel-
lung von Ceff in Gleichung (5.23).

Ferner lassen sich aus Gleichungen (5.13), (5.20) und (5.21) sowohl die Verfestigungsspannungen
als auch die chemischen Treibkräfte ermitteln

1. Qij1 = ρ0
∂Ψ

∂qij1
= Qoj b q

ij
1 , Q

ij
2 = ρ0

∂Ψ

∂qij2
= Hjq

ij
2 ,

2. Λij = ρ0
∂Ψ

∂λij
− ξiσ : εij

= −ξi
[1

2
σ : (Cijeff )−1 : σ + σ : (εij + εijpl + ηijt )− ρ0ψ

ij
pl

−ρ0(∆φijch +∆φijch,θ · θ)
]
.

(5.30)

In Gleichung (5.30.1) repräsentiertQij die nichtlineare undQij2 die lineare isotrope Verfestigung. Die
chemische Treibkraft, die einen Teil der totalen treibenden Kraft in Gleichung (5.30.2) darstellt

Λij ≈ ξiρ0(∆φijch +∆φijch,θ · θ), (5.31)

kann als Volumendichte der freien Enthalpie der Variante λij im deformationslosen Fall interpretiert
werden. Abbildung 5.2 veranschaulicht die Variation der chemischen treibenden Kräfte vom Bainit
und Austenit in Abhängigkeit von der Temperatur.

Im betrachteten Prozess stellt der Austenit das Ausgangsgefüge in allen Körnern i ∈ [1 · · ·N ]
dar. Ferner erfolgt, wie schon in Abschnitt 5.1.2 begründet, die Umwandlung nur in eine Richtung,
nämlich vom Austenit zum Bainit. Daher kann die Rate des Austenitanteils der jeweiligen Körner mit
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Abb. 5.2 Schematische Abbildung der chemischen treibenden Kraft des Bainits und des Austenits in Abhängigkeit von
der Temperatur

Hilfe von verbliebenen Raten der Bainitvarianten unter Einsatz der Nebenbedingung (5.3) bestimmt
werden

λ̇i0 = −
n∑

j=1

λ̇ij . (5.32)

Dies erlaubt eine Umformulierung der Dissipation in Anlehnung an Gleichung (5.14)

−
n∑

j=0

Λij λ̇ij = −




n∑

j=1

Λij λ̇ij + Λi0λ̇i0


 =

n∑

j=1

(
Λi0 − Λij

)
λ̇ij . (5.33)

5.2.3 Evolutionsgleichungen der Phasentransformationen

In Gegensatz zu der martensitischen displazive Phasentransformation wird die bainitische Phasen-
umwandlung durch Diffusionsprozesse begleitet. Dies macht die Bainitbildung zeitabhängig. Die
ausführliche Beschreibung der Bainitbildung ist in Abschnitt 2.1.3 gegeben. Es wird hier postuliert,
dass die Bainitvarianten sich unabhängig voneinander bilden können und allein von der treibenden
Kraft der jeweiligen Variante abhängig sind. Die Analogie dazu ist in der Modellierung der Kristall-
plastizität [59] zu finden. Zur Formulierung der Evolutionsgleichungen der Phasentransformationen
werden die aus der Modellierung des viskoplastischen Verhaltens stammende Methoden verwendet.
Demnach lassen sich die Evolutionsgleichungen für die bainitischen Varianten mit Hilfe des Perzyna-
Ansatzes wie folgt formulieren:

1. Evolution der bainitischen Varianten λ̇ij =
1

ηtr

〈
Φijtr

〉ntr (
Hs[λ

i0, λij ]
)ntr

, i, j > 0,

2. Evolution des Austenits λ̇i0 = −
n∑
j=1

λ̇ij ,

3. Fließfunktion Φtrij = Λij − fc, (Λi0 − Λij)− fc,

4. Sättigungsfunktion Hs[λ
i0] =

(
λi0
)s1 (

λij
)s2

.

(5.34)
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Die Macaulay’schen Klammern 〈•〉 in der Evolutionsgleichung (5.34.2) gewährleisten, dass die Be-
dingung (5.3.3)

λ̇ij ≥ 0

stets erfüllt ist. Zudem stellt die Überspannungsfunktion Φijtr in Gleichung (5.34.1) sicher, dass die
Bildung der bainitischen Varianten erst dann beginnt, wenn die Differenz zwischen den freien En-
thalpien von Austenit und Bainit die energetische Barriere fc übersteigt. Dieser Sachverhalt wird in
Abbildung 5.2 veranschaulicht. Die Evolution des Austenits wird aus der Nebenbedingung (5.3.1) als
negative Summe über die Raten der bainitischen Varianten berechnet. Die Wachstumsrate des Bainits
(Gleichung (5.34.1) ) ist von der Sättigung Hs in Gleichung (5.34.4) abhängig. Dies gewährleistet
in Übereinstimmung mit den experimentellen Daten eine verlangsamte Bildung des Bainits bei ei-
ner abnehmenden Menge an Austenit. Folglich können alle erforderlichen Materialparameter für die
Beschreibung der Evolution der bainitischen Varianten zusammengefast werden

κjtp = [fc, ηtr, ntr, γ, s1, ∆φ
ij
ch, ∆φ

ij
ch,θ]. (5.35)

Grundsätzlich können in diesem Modell jeder einzelnen bainitischen Variante verschiedene Ma-
terialparameter zugewiesen werden. Zur Vereinfachung wird im Rahmen dieser Analyse auf diese
Möglichkeit verzichtet und der gleiche Satz von Materialparametern für alle Varianten verwendet.
Dies bedeutet, dass für jede Evolutionsvariante lediglich ein Parametersatz existiert (siehe Tabelle
5.5).

5.2.4 Evolutionsgleichungen der Viskoplastizität

Für die Simulation des inelastischen Verhaltens wird die zeitabhängige Viskoplastizität in Kombinati-
on mit nichtlinearer isotropischen Verfestigung ausgewählt. Für ε̇ijpl der j-ten Variante des i-ten Kris-
talls wird die allgemein gebräuchliche Fließregel (vgl. dazu beispielsweise LEMAITRE AND CHABO-
CHE [76]) angewandt

1. Fließregel ε̇ijpl =

√
3

2
µ̇ijn,

2. Fließfaktor µ̇ij =
1

ηpj
λij
〈
Φplij

〉npj

,

3. Fließrichtung n =
σijdev∥∥∥σijdev

∥∥∥
,

4. Überspannungsfunktion Φplij = σijv − (Yj +Qij1 +Qij2 ),

5. Vergleichspannung (von-Mises) σijv =

√
3

2

∥∥∥σijdev
∥∥∥ ,

(5.36)

wobei µ̇ij den viskoplastischen Multiplikator, Φplij die viskoplastische Überspannungsfunktion, σijdev
den deviatorischen Spannungstensor und n den Normalvektor, der die Bedingung ‖n‖ = 1 erfüllt,
darstellen. Die Notation ‖•‖ = (• : •)1/2 repräsentiert die Norm des Tensors zweiter Stufe.
Aus Gleichung (5.36.1) folgt die Beziehung

ėijv =

√
2

3

∥∥∥ ε̇ijpl
∥∥∥ = µ̇ij . (5.37)
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Demnach verallgemeinert eijv die akkumulierte plastische Verzerrung. Für die internen Variablen qij1
und qij2 werden folgende Evolutionsgleichungen angenommen:

1. q̇ij1 =

(
1− Qij1

Q0

)
ėijv , 2. q̇ij2 = ėijv . (5.38)

Aus der Verwendung der Beziehung (5.30.1) erhält man den Zusammenhang Qij1 /Q0 = b1q
ij
1 , der

anschließend in Gleichung (5.38) integriert wird

q̇ij1 =
(

1− bqij1
)
ėijv . (5.39)

Die Lösung dieser Differenzialgleichung lautet:

qij1 = 1− exp[−beijv ]. (5.40)

Somit ergibt sich für die Summe der beiden Verfestigungsspannungen aus (5.30.1) der Ausdruck

Qij = Qij1 +Qij2 = Qoj(1− exp[−beijv ]) +Hje
ij
v . (5.41)

Sämtliche Materialparameter der j-ten Variante in allen Kristallen, bezogen auf den viskoplastischen
Verzerrungstensor εijpl können zusammengefast werden zu

κjvp = [ηpj , npj , Yj , Qoj , Hj , b]. (5.42)

5.2.5 Thermodynamische Konsistenz

Die thermodynamische Konsistenz des betrachteten Modells ist gewährleistet, wenn die Clausius-
Planck-Ungleichung (5.16.1) erfüllt ist. Es wird an dieser Stelle darauf hingewiesen, dass das visko-
plastische Verhalten aktiviert ist, wenn die Überspannungsfunktion φ in Gleichung (5.36) positiv ist

Φplij = σijv − (Yj +Qij1 +Qij2 ) > 0 =⇒ µ̇ij > 0, σijv −Qij1 −Qij2 > Y [θ].

Dieses bleibt bei einer negativen Überspannungsfunktion φ in Gleichung (5.36) unverändert

Φplij = σijv − (Yj +Qij1 +Qij2 ) ≤ 0 =⇒ µ̇ij = 0.

Die Verwendung der Fließregel (5.36.1), der Evolutionsgleichungen (5.38.1), (5.38.2) für die Visko-
plastizität und die internen Variablen qij1 und qij2 , der Bezeichnungen (5.24) (5.37) sowie der Akti-
visierungsenergie (5.34.1), der Überspannungsfunktion in Gleichung (5.34.2) resultiert in folgender
Formulierung der Clausius-Planck-Ungleichung (5.14.1):

D i =

N∑

i=1

n∑

j=0

(
σ : ε̇ijpl −Q

ij
1 q̇

ij
1 −Qij2 q̇ij2 − Λij λ̇ij

)

=

N∑

i=1

n∑

j=0


µ̇

ij
(
σijv −Qij1 −Qij2

)

︸ ︷︷ ︸
>Y [θ]

+
µ̇ij

Q0
Q2

1


 +

N∑

i=1

n∑

j=1


Λi0 − Λij︸ ︷︷ ︸

>fc


 λ̇ij ≥ 0.

(5.43)

Da Y [θ] undΛi0−Λij stets nichtnegativ sind, ist das entwickelte Modell thermodynamisch konsistent.
Ferner ist dieses Ergebnis von der Wahl der jeweiligen Evolutionsgleichung für die Bainitvarianten
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unabhängig. Die Zusammenfassung der konstitutiven Gleichungen des vorgestellten Mehrskalenmo-
dells erfolgt in Tabelle 5.1.

Makroskopische Gleichungen
Impuls und Wärmeleitung:

ρ0 ü−Div(σ) = ρ0 f in B×]0.T [,

ρ0 cd θ̇ −Div(λθ∇θ) =

N∑
i=1

n∑
j=0

σij : ε̇ij −
N∑
i=1

n∑
j=0

nq∑
k=1

Qijk q̇
ij
k +

+

N∑
i=1

n∑
j=0

θ
∂σij

∂θ
: ε̇ijel +

N∑
i=1

n∑
j=1

Lij0λ̇ij + ρ0 rθ in B×]0.T [,

mit Rand- und Anfangsbedingungen aus Gleichung (3.22).
Makroskopische Spannungs-Dehnungs-Beziehung: σ = Ceff

(
ε(u)− εth − εpl − ηt

)
.

Effektiver Elastizitätstensor Ceff :
(
Ceff

)−1
=
∑N
i=1 ξ

i
∑n
j=0 λ

ij
(
Cij
)−1.

Makro-Meso-Übergang der Spannung und Verzerrung
Mesoskopischer Spannungs- und Verzerrungstensor:

σij = Cijεijel, εij = εijte + εijpl + ηijj , mit εijte = εijel + εijth.

.
Makroskopischer Verzerrungstensor:

ε =

N∑
i=1

ξi
n∑
j=0

λijεij , εte =

N∑
i=1

ξi
n∑
j=0

λijεijte, εpl =

N∑
i=1

ξi
n∑
j=0

λijεijpl, ηt =

N∑
i=1

ξi
n∑
j=0

λijηijt .

Mesoskopischer Spannungstensor: σij = ξi λij σ.

Evolutionsgleichungen der Phasenumwandlung und Viskoplastizität
Evolutionsgleichungen des Phasenanteils der bainitischen Varianten

λ̇ij =
1

ηtr

〈
(Λi0 − Λij)− fc

〉ntr
(
Hs[λ

i0]
)ntr für i, j > 0, λ̇i0 = −

n∑
j=1

λ̇ij .

mit den Anfangsbedingungen: λij = 0 für i, j > 0 und λi0 = 1.
Evolutionsgleichungen der viskoplastischen Verzerrungen und internen Variablen:

ε̇ijpl =

√
3

2

1

ηpj
〈σij0 − (Yj +Qij1 +Qij2 )〉npj

σijdev

‖σijdev‖
,

q̇ij1 =
(

1−
Qij1
Q0

)√2

3
‖ε̇ijpl‖, q̇ij2 =

√
2

3
‖ε̇ijpl‖.

mit den Anfangsbedingungen εijpl(0) = 0, qij1 (0) = 0 und qij2 (0) = 0.

Tabelle 5.1 Zusammenfassung der konstitutiven Gleichungen des Mehrskalenmodells
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5.3 Numerische Implementierung

In diesem Abschnitt erfolgt die numerische Implementierung der konstitutiven Gleichungen.

5.3.1 Formulierung der diskreten Zustandsgleichungen

Zur numerischen Implementierung der konstitutiven Gleichungen aus Abschnitt 5.2 wird das ver-
zerrungsgesteuerte Verfahren angewendet, wobei der totale Verzerungstensor n+1ε die Anfangswer-
te der Varianten nλij und der viskoplastische Multiplikator nµij zu jedem Zeitpunkt n+1t gegeben
sind. Folglich gilt es korrespondierende Mengen n+1λij und n+1µij zum Zeitpunkt n+1t zu finden,
die mit den konstitutiven Gleichungen des vorangegangenen Kapitel konsistent sind. Zwecks einer
übersichtlichen Darstellung wird der Index n+ 1, der den aktuellen Zeitschritt kennzeichnet, wegge-
lassen.

Für die numerische Integration der Phasentransformationsvarianten λij wird das implizite Euler-
Verfahren mit folgendem Aktualisierungsschema verwendet:

λij = nλij +∆λij . (5.44)

Das Inkrement der Phasentransformationvarianten wird aus Evolutionsgleichungen (5.34) ermittelt

∆λij = ∆t
1

ηtr

〈
Λi0 − Λij [λij ]− fc

〉ntr
(
H[λi0]

)ntr
. (5.45)

Ferner ergibt sich aus Gleichung (5.3.1) das Inkrement der Austenitphasentransformation

∆λi0 = −
n∑

j=1

∆λij . (5.46)

Analog dazu wird das implizite Euler-Verfahren im Aktualisierungsschema

µij = nµij +∆µij , (5.47)

für die numerische Integration von viskoplastischen Variablen µij verwendet, wobei das Inkrement
des viskoplastischen Multiplikators aus Evolutionsgleichungen (5.36) abgeleitet wird

∆µij = ∆t
λij

ηjpl

〈
Φijpl

〉nj
pl

. (5.48)

Aus Gleichungen (5.45) und (5.48) werden zwei Zustandsresiduen definiert

1. rijtr[∆λ
ij ] = Λi0 − Λij [λij ]− fc −

(ηtr
∆t

) 1
ntr
(
∆λij

) 1
ntr

1

H[λi0]
,

2. rijpl[∆µ
ij ] = Φijpl[∆µ

ij ]−
(
∆µij

∆t

ηjpl
λij

) 1

n
j
pl

.

(5.49)

Es ist erkennbar, dass die Ergebnisse eines stark gekoppelten Modells unter Berücksichtigung des
Einflusses der Varianten λij sich auf das viskoplastische Materialverhalten in Gleichungen (5.36)
auswirken und die plastischen Verzerrungen εijpl einen Einfluss auf die chemischen Kräfte für die
Phasentransformation in Gleichung (5.30) haben.
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Weil es sich hierbei um ein hoch komplexes, stark gekoppeltes nichtlineares Problem handelt, stellt
die numerische Implementierung eine anspruchsvolle Aufgabe dar. Zur Reduzierung des Implemen-
tierungsaufwands wird ein zweistufiges Verfahren verwendet, das wie folgt aufgebaut ist:

Schritt I: Bestimmung der Varianten λij mit Hilfe des projizierten Newton-Verfahrens, kombiniert
mit einem Arbeits-Set-Algorithmus, wobei die viskoplastische Verzerrung εijpl als konstant ange-
nommen wird.

Schritt II: Bestimmung der Viskoplastizität unter Einsatz der Newton-Iteration und der Radial-
Return-Methode, mit konstanten Varianten λij .

Setze: k = 0,
λij = nλij , µij =n µij

εi = εi − εi0pl(k)

Algorithmus I
(Tab.5.2)

εi = εi − ηi
(k)

Algorithmus II
(Tab.5.3)

IF:
‖∆µi0

(k) −
∆µi0

(k−1)‖ <
TOL

σ = σ
(
ε, λij(ε)

)

C = dσ
dε

no

k=k+1:

Abb. 5.3 Numerische Implementierung: zweistufig gestaffeltes Verfahren

Die Staffelung des Verfahrens wird damit begründet, dass zwischen den zwei Schritten eine Semi-
Kopplung besteht. Während der getrennten Prüfung ist die Bestimmung der Varianten im ersten
Schritt und die Ermittlung der Plastizität im zweiten Schritt implizit. Des Weiteren muss aufgrund
der Tatsache, dass die Fließspannung in der austenitischen Phase wesentlich kleiner ist als in der bai-
nitischen Phase, nur das plastische Verhalten in der austenitischen Phase während der Umwandlung
berücksichtigt werden. Daher wird die Relation (5.49.2) nur für den Fall j = 0 behandelt. Darüber
hinaus werden isothermische Umwandlungen anhand der im nächsten Abschnitt präsentierten Bei-
spiele simuliert. Da thermische Verzerrungen εijth nur einen marginalen Teil der Gesamtverzerrung
darstellen, werden diese vernachlässigt.

Die detaillierte Beschreibung des projizierten Newton-Verfahrens im Algorithmus I und der
Newton-Iteration kombiniert mit der Radial-Return-Methode geschieht in den folgenden zwei Ab-
schnitten.
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5.3.2 Projizierte Newton-Iteration, Algorithmus I

Um die von den Variantenvolumenanteilen λij abhängigen Residuen aus Gleichung (5.49.1) so lösen
zu können, dass sowohl die Zustandsbedingungen (5.2) als auch die Entwicklungsbedingungen (5.3)
gleichzeitig erfüllt sind, wird eine Newton-ähnliche Projektionsmethode verwendet. Das Grundprin-
zip dieser Methode stammt von BERTSEKAS [12], die Anwendung wurde von MAHNKEN [84]
übernommen. Zunächst werden die Unbekannten in einem Vektor X zusammengefasst. Ferner wird
ein residualer Vektor definiert, der die reduzierten Zustandsresiduen rij aus Gleichung (5.49) mitein-
ander verbindet

1. X = {λij , j = 0, ..., n, i = 1, ..., N},
2. R = {rij , j = 0, ..., n, i = 1, ..., N}.

(5.50)

Eine Zusammenfassung des projizierten Newton-Algorithmus, kombiniert mit einer Line-Search-
Backtracking-Strategie [84], erfolgt in Tabelle 5.2.

0. Setze k = 0, initialisiere den Vektor der Unbekannten, das Residuum und die Suchrichtung
Setze β = 0.1, α0 = 1.0

X(k=0) = {∆λij
(k=0)

, i = 1, ..., n, j = 1, ..., N}
s(k=0) = 0, ||R∗(k=0)|| → ∞

1. Schrittweitenalgorithmus: Bestimme die kleinste Zahl l = 0, 1, 2, ... für α(l) = βlα0, so dass ||R∗(X(k,l))|| <
||R∗(Xk)||, mit

Unbekannten X(k,l) = P
(
X(k) + α(l)s(k)

)
Residuen R(k,l) = {rij

tr (k,l)
, i = 1, ..., n, j = 1, ..., N}

Arbeits-Sets I tr
al = {ij|(Λij(λij

(k,l)
)− fc) ≤ 0}

I tr
au = {ij|λi0

(k,l)
= 0}

I tr
p = {ij}\{I tr

al or I tr
au}

projizierten Residuum R∗(k,l) =
[
R∗l
]
(k,l)

=

{
rij
tr (k,l)

, ij ∈ I tr (k,l)
p

0, sonst.

2. Überprüfe Toleranz: Wenn ||R∗(X(k,l))|| < tol, dann
Post-Processing: Bestimme die Spannungen: σ = Ceff (ε − η − εijpl) und den Tangentenmodul: C = dσ/dε,
aktualisiere Varianten: λij , Ende

3. Berechne Jacobi-Matrix

J(k) =
∂R

∂X
=

[
∂rijtr
∂∆λij

]
4. projizierte Jacobi-Matrix J∗(k) =

[
J∗lm

]
(k)

= P(J(k))

5. Berechne Suchrichtung s(k+1) = −
[
J∗(k)

]−1
R(k,l)

6. Aktualisiere X(k+1) = X(k,l), Rk+1 = R(k,l), k → k + 1, gehe zu 1

Tabelle 5.2 Projizierter Newton-Algorithmus für ALGO I zum Zeitpunkt n+1t. Die Indizes k und l beziehen sich
entsprechend auf die Newton- und Line-Search-Iteration

Hierbei nehmen der Vektor der Unbekannten, das Residuum aus Gleichung (5.50) und die Jacobi-
Matrix aus Schritt 3 in Tabelle 5.2 unter Verwendung der Matrixnotation die Form an
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1. X = ∆λ =




∆λ11

∆λ12
...

∆λN1
...

∆λNn



, 2. R = rtr =




r11
tr

r12
tr...
rN1
tr...
rNntr



, 3. J =




∂r11
tr

∂∆λ11

∂r11
tr

∂∆λ12 ...
∂r11
tr

∂∆λNn

∂r12
tr

∂∆λ11

∂r12
tr

∂∆λ12 ...
∂r12
tr

∂∆λNn...
...

...
...

∂rnNtr
∂∆λ11

∂rnNtr
∂∆λ12 ...

∂rnNtr
∂∆λNn




.

(5.51)

Die Dimensionen der Vektoren und der Jakobi-Matrix sind abhängig von der Anzahl der Körner sowie
der Bainitvarianten und entsprechen dim(r) = dim(λ) = N(n+ 1) und dim(J) = (N(n+ 1))2. Unter
der Annahme, dass Indizes in Tabelle 5.2 mit ij ∈I tr

p beginnen, können für das projizierte Residuum
und die projizierte Jacobi-Matrix folgende Ausdrücke verwendet werden:

1. R∗ = P(R) =

[
r∗tr

0

]
, 2. J∗ = P(J) =



∂r∗tr
∂∆λ

0

0 I


 . (5.52)

Hierbei stellt I die Einheitsmatrix dar und die Dimension des Vektors der projizierten Residuen ist
dim(r∗tr) = |I tr

p |. Der in Tabelle 5.2 repräsentierte, projizierte Newton-Algorithmus findet den Zu-
stand für das Residuum, für den gilt

R∗[X] = 0. (5.53)

Im nächsten Schritt wird die Merit-Funktion als f [X] = ||R∗[X]|| definiert. Ferner werden mit Hilfe
der Bedingung f [X] = 0 die Unbekannten X bestimmt. Aus dem Produkt der Suchrichtung und des
Gradienten von f in Abhängigkeit von X folgt:

sT
∂f

∂X
= sT

∂||R∗||
∂X

=
1

||R∗|| s
TJ∗TR∗ =

−1

||R∗|| R
TJ∗−TJ∗TR∗

= −||R∗|| < 0.

(5.54)

Demnach dient die Suchrichtung s in Schritt 5 des Algorithmus (Tabelle 5.2) als abnehmende Rich-
tung für die Merit Funktion ||R∗|| (siehe dazu auch LUENBERGER [79]). Auf diesem Weg wird die
globale Konvergenz gewährleistet. Bezüglich der quadratischen lokalen Konvergenz eines projizierten
Newton-Algorithmus wird auf BERTSEKAS [12] verwiesen.

Der Projektionsoperator P in Schritt 1 des Algorithmus wird wie folgt definiert:

P[x] = max{min{x, xmin}, xmax}. (5.55)

Ferner werden für die Varianten λij sowohl die unteren als auch die oberen Schranken xmin =
0, xmax = 1 festgelegt.

Lässt sich der Vektor der Unbekannten X in der Weise bestimmen, dass alle Zustandsbedingungen
erfüllt sind, wird in Schritt 2 des Algorithmus ein Post-Processing durchgeführt. Anschließend wer-
den die Spannungen σ entsprechend der Gleichung (5.27) bestimmt. Die detaillierte Herleitung des
Tangentenmoduls C = dσ/dε wird in Abschnitt 5.3.4 erläutert.

Für eine große Anzahl an Körnern N ist die Bestimmung der Suchrichtung s in Schritt 5 mit der
Lösung eines linearen Systems an Gleichungen verbunden und kann sehr aufwändig werden. Dieses
Problem kann durch den Einsatz unterschiedlicher Iterationsmatrizen umgangen werden (siehe dazu
[28, 84]). Im einfachsten Fall kann die Jacobi-Matrix durch eine Einheitsmatrix ersetzt werden. Dies
reduziert den projizierten Newton-Algorithmus auf einen projizierten Gradientenalgorithmus (siehe
dazu [24, 84, 90, 145]).
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5.3.3 Viskoplastizität, Algorithmus II

Im nächsten Schritt der Implementierung wird das Modell um die Anwendung des Greenwood-
Johnsson-Effekts (siehe dazu Abschnitt 2.1.5) erweitert. Dieser Effekt wird durch die Plastifizierung
in der austenitischen Phase generiert und berücksichtigt außer der Wirkung des reinen Magee-Effekts,
der lediglich durch die energetisch bevorzugte Anordnung der bainitischen Varianten in Bezug auf Be-
lastungsrichtung verursacht wird, plastische Verzerrungen. Dies impliziert, dass die lokale Spannung
in verschiedenen Körnern größer sein muss, als die Fließspannung des Austenits, selbst für den Fall,
dass die globale Spannung die Fließspannung des Austenits unterschreitet.

In diesem Abschnitt wird ein einzelnes Korn i betrachtet. Zur Lösung des Residuums (2) in Tabelle
5.3 unter Berücksichtigung der Inkremente des viskoplastischen Multiplizieres µi0 wird der Newton-
Algorithmus in Kombination mit der Radial-Return-Methode eingesetzt. Die Grundprinzipien dieser
Methode sind von SIMO and HUGHES [117] entwickelt worden und wurden im Rahmen dieser Ana-
lyse zur Formulierung der konstitutiven Gleichungen (5.36) verwendet.

0. Setze k = 0, i=1, initialisiere den Vektor der Unbekannten und das Residuum

X(k=0) = {∆µi0(k+1), i = 0, ..., n}

1. Überprüfe Fließbedinung: wenn (Φtri,i0pl ≤ 0), dann gehe zu 5
2. Berechne die Unbekannten ∆µi0

(k+1)

mit Residuen ri0pl [∆µ
i0] = Φi0pl[∆µ

i0]−
(
∆µi0

∆t
ηpl

) 1
npl

und Jacobi-Matrix Ji0[∆µi0] =
∂ri0pl [∆µ

i0]

∂∆µi0

∆µi0
(k+1)

= ∆µi0
(k)
−
(
Ji0[∆µi0]

)−1
ri0pl [∆µ

i0]

3. Überprüfe Toleranz: wenn |ri0p | > tol, dann gehe k → k + 1 zu 1.

4. Aktualisiere εi0pl =n εi0pl +∆εi0pl, mit ∆εi0pl =

√
3

2
∆µi0 , i→ i+ 1, wenn i 6 n dann gehe zu 1.

5. STOP

Tabelle 5.3 Newton-Algorithmus für ALGO II zum Zeitpunkt n+1t. Die Indizes k und l beziehen sich entsprechend
auf die Newton- und Line-Search Iteration

Im Algorihitmus II sind die Anteile der bainitischen Varianten λij konstant. Damit kann der Tensor
der umwandlungsplastischen Verzerrung aus Gleichung (5.8.5) berechnet werden

ηi =
n∑
j=0

λijηijt . (5.56)

Die Verwendung des impliziten Eulerschen Integrationsschemas für die Evolutionsgleichungen (5.36)
liefert den Verzerrungstensor im Korn i

εi0pl = nεi0pl + ∆εi0pl. (5.57)

Der elastische Verzerrungstensor im Zeitpunkt n+1t lässt sich aus Gleichung (5.4) ermitteln

εiel = εi − ηi − εi0pl. (5.58)
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Die anschließende Multiplikation der Gleichung (5.58) mit dem elastischen Tensor vierter Ordnung
und die Berücksichtigung der Gleichungen (5.57) liefert nach mehreren Umformungen das Pendant
der Gleichungen (5.36)

1. Spannung im Korn i σi = σivol + σidev, mit

σidev = σtr,idev − 2G∆εi0pl,

σtr,idev = 2GIdev :
(
εi −n εi − ηi

)
,

σivol = K
(
tr(εi − ηi)

)
1,

2. Fließregel ∆εi0pl =

√
3

2
∆µi0n,

3. Fließrichtung ni =
σidev∥∥σidev

∥∥ ,

4. Fließfaktor ∆µi0 = λi0
1

ηpl

〈
Φi0pl

〉npl

∆t,

5. Fließbedingung Φi0pl =

√
3

2

∥∥σidev
∥∥−Ri0 − Y0,

6. Äquivalente plastische Verzerrung ei0v = nei0v +∆µi0,

7. Isotrope Verfestigung Ri0 = Hei0v +Q0

(
1− exp(−bei0v )

)
.

(5.59)

Folgende Ableitungen machen von der Tatsache Gebrauch, dass σidev aus Gleichung (5.59.1) unter
Verwendung der Gleichungen (5.59.2), (5.59.3) und (5.59.5) umformuliert werden kann

σidev = σtr,idev − 2G

√
3

2
∆µi0

σidev∥∥σidev
∥∥ . (5.60)

Nach der Argumentation der Radial-Return-Methode (siehe dazu beispielsweise SIMO und HUGHES
[117] und die Referenzen darin) hat Gleichung (5.60) zwei Konsequenzen. Erstens ist ersichtlich, dass
sowohl σidev als auch σtr,idev koaxial sind, so dass die Fließrichtung in Gleichung (5.59.3) sich wie folgt
ausdrücken lässt:

ni =
σidev∥∥σidev

∥∥ =
σtr,idev∥∥∥σtr,idev

∥∥∥
. (5.61)

Zweitens erhält man die Skalarbeziehung

1.
∥∥σidev

∥∥ =
∥∥∥σtr,idev

∥∥∥− 2G
√

3
2∆µ

i0. (5.62)

Im nächsten Schritt wird das Residuum aus Gleichung (5.59.4) definiert

ripl[∆µ
i0] = Φi0pl[∆µ

i0]−
(
∆µi0

∆t

ηpl
λi0

) 1
npl

= 0. (5.63)

Aus der Verwendung der Fließbedingung (5.59.5) sowie der Gleichung (5.62) ergibt sich:

ripl[∆µ
i0] =

√
3

2

∥∥∥σtr,idev

∥∥∥− 3G∆µi0 −
(
∆µi0

∆t

ηpl
λi0

) 1
npl

−Ri0[∆µi0]− Y0 = 0. (5.64)
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Dadurch werden die diskretisierten Gleichungen (5.59) auf ein eindimensionales, ausschließlich vom
Fließfaktor ∆µi0 abhängiges Problem reduziert. Für dessen Lösung wird die Newton-Methode ein-
gesetzt

∆µi0(k+1) = ∆µi0k −
ripl[∆µ

i0
k ]

J [∆µi0k ]
, k = 0, 1, 2, . . . (5.65)

J [∆µi0] =
∂ripl[∆µ

i0]

∂∆µi0
=
∂Φi0pl[∆µ

i0]

∂∆µi0
− 1

npl∆µi0

(
∆µi0

∆t

ηpl
λi0

) 1
npl

, (5.66)

∂ΦY

∂∆µi0
= −

(
3G+H + bQ0 exp

[
−b(nev +∆µi0)

])
, (5.67)

wobei sich der Index k auf die Iterationsnummer bezieht.

5.3.4 Der Tangentenmodul

Die iterative Lösung der globalen Finite-Elementen-Gleichgewichtsgleichungen mit Hilfe der Newton-
Methode erfordert den Einsatz eines algorithmischen Tangentenmoduls, welches durch Ableitung des
Spannungstensors σ nach dem Verzerrungstensor ε definiert wird. Für den Fall der Abhängigkeit des
Spannungstensors σ von den Unbekannten X = [∆λij , ∆µi0]T gelten die Bedingungen:

σ = σ
(
ε, λij(ε)

)
⇒ C =

dσ

dε
=
∂σ

∂ε
+

∂σ

∂∆λij
⊗ ∂∆λij

∂ε
. (5.68)

∂∆λij/∂ε lässt sich aus der Residuumgleichung (5.52) ableiten

R∗
(
ε, ∆λij(ε)

)
= 0 ⇒ dR∗

dε
=
∂R∗

∂ε
+

∂R∗

∂∆λij
⊗ ∂∆λij

∂ε
= 0. (5.69)

Unter Verwendung der Jacobi-Matrix erhält man den Zusammenhang

∂∆λij

∂ε
= −

(
∂R∗

∂∆λij

)−1
∂R∗

∂ε
= − [J∗]−1 ∂R

∗

∂ε
. (5.70)

Daraus lässt sich der geforderte Term ∂∆λij/∂ε ableiten. Die partiellen Ableitungen des Spannungs-
tensors nach den bainitischen Varianten der Spannung liefern folgende Ergebnisse:

∂σ

∂λij
= −ξi

(
Ceff : (Cij)−1 : Ceff

)
: (ε− η)− Ceff ξi ηijt . (5.71)

5.4 Numerische Beispiele

Dieses Kapitel befasst sich zunähst mit den Simulationen von Materialverhalten in einer monokris-
tallinen Mikroskala während der Phasentransformation vom Austenit zum Bainit. Die daraus resul-
tierenden Effekte werden auf eine polykristalline Makroskala übertragen. Die Simulation umfasst
24 mögliche bainitische Varianten für Mono- und Polykristalle. Im letzten Fall handelt es sich um
stochastisch unterschiedlich orientierte Körner. Da für niedriglegiere Stähle keine gemessenen Trans-
formationstensoren existieren, werden hier anhand des Ansatzes von WECHSLER et al. [140] synthe-
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tisch ermittelten Werte verwendet. Die Umwandlungstensoren für die Varianten sind in Tabelle 5.4
aufgeführt.

U0 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
U1 1.0000 1.0296 1.0000 0.1860 0.0000 0.0000

U2 1.0000 1.0000 1.0296 0.0000 −0.1860 0.0000

U3 1.0000 1.0000 1.0296 0.0000 0.1860 0.0000
U4 1.0000 1.0296 1.0000 −0.1860 0.0000 0.0000

U5 1.0000 1.0000 1.0296 0.0000 0.1860 0.0000

U6 1.0000 1.0000 1.0296 0.0000 −0.1860 0.0000
U7 1.0000 1.0296 1.0000 −0.1860 0.0000 0.0000

U8 1.0000 1.0296 1.0000 0.1860 0.0000 0.0000

U9 1.0000 1.0000 1.0296 0.0000 0.0000 0.1860
U10 1.0000 1.0000 1.0296 0.0000 0.0000 −0.1860

U11 1.0296 1.0000 1.0000 0.1860 0.0000 0.0000

U12 1.0296 1.0000 1.0000 −0.1860 0.0000 0.0000
U13 1.0000 1.0000 1.0296 0.0000 0.0000 0.1860

U14 1.0000 1.0000 1.0296 0.0000 0.0000 −0.1860
U15 1.0296 1.0000 1.0000 −0.1860 0.0000 0.0000

U16 1.0296 1.0000 1.0000 0.1860 0.0000 0.0000

U17 1.0000 1.0296 1.0000 0.0000 0.0000 0.1860
U18 1.0000 1.0296 1.0000 0.0000 0.0000 −0.1860

U19 1.0296 1.0000 1.0000 0.0000 0.1860 0.0000

U20 1.0296 1.0000 1.0000 0.0000 −0.1860 0.0000
U21 1.0000 1.0296 1.0000 0.0000 0.0000 −0.1860

U22 1.0000 1.0296 1.0000 0.0000 0.0000 0.1860

U23 1.0296 1.0000 1.0000 0.0000 0.1860 0.0000
U24 1.0296 1.0000 1.0000 0.0000 −0.1860 0.0000

Tabelle 5.4 Transformationstensoren (Voigtsche Notation) für 24 bainitische Varianten

Materialparameter für Simulationen sind derart angepasst worden, dass diese das Materialverhalten
vom Bainit bei einer Temperatur von 340 ◦C abbilden.

Tabelle 5.5 liefert einen Überblick über die Parameterreihe, die in beiden, in dieser Arbeit vorge-
stellten Beispielrechnungen verwendet wurde.

Phasenumwandlung ηtr [−] ntr [−] fc [MPa] γ [−] s1 [−]

83285.1 2 25 0.76 0.6

s2 [−] ∆φijch [MPa] ∆φijch,θ [MPa
◦C ] φch,i0 [MPa] ∆φθch,i0 [MPa

◦C ]

0.37 5.0 0.3 5.01 0.5

Viskoplastizität ηpl [−] npl [−] Y0 [MPa] Q0 [MPa] H [GPa] b [−]

1 1 252.11 28.52 52.52 36.2

Tabelle 5.5 Materialparameter der Phasenumwandlung und der Viskoplastizität

Die im oberen Block der Tabelle aufsummierten Parameter beziehen sich auf die Routine für die Be-
rechnung der Phasentransformation der bainitischen Varianten. Die Parameter im unteren Block neh-
men Bezug auf die Routine für die Berechnung des viskoplastischen Materialverhaltens. Die in den
Beispielrechnungen verwendeten Materialparameter sind fiktiv, erfüllen dennoch den erwünschten
Zweck, die Möglichkeiten des Modells zu präsentieren.
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5.4.1 Variantenselektion in einem Einzelkorn

Zur Untersuchung des Modellverhaltens und insbesondere der Bildung der Bainitvarianten wird in
diesem Abschnitt zunächst die Simulation des Einzelkorns durchgeführt, welches einer externen
Spannung und einer konstanten Temperatur unterzogen wird. Die Randbedienungen der Simula-
tion werden exemplarisch in Abbildung 5.4 aufgezeigt. Hierbei gilt zu berücksichtigen, dass die

t

θ, σ

340◦C

θA > Ac3

t=0

θ (340◦C)

σ (z.B. = 100MPa)

Abb. 5.4 Variantenauswahl: Schaubild der thermomechanischen Belastung (Punktierlinie: Temperatur, gestrichelte Li-
nie: Spannung)

Körnerzahl i Eins entspricht und die Varianten j Werte zwischen 1 und 24 annehmen können.
Die hellgrau markierte Zone repräsentiert den Austenitisierungsprozess sowie die darauf folgende
Abkühlphase in Abhängigkeit von der für die Initialisierung der bainitischen Transformation notwen-
digen Solltemperatur. Während dieser Austenitisierungsphase wird der Stahl solange erhitzt, bis sein
Gefüge vom Ferrit zum Austenit transformiert. Nach Erreichen der homogenen austenitischen Mi-
krostruktur erfolgt eine Abkühlung. Damit eine Bainitbildung zustande kommt, wird das Material mit
einer moderaten Abkühlgeschwindigkeit auf eine Temperatur von 340 ◦C gebracht. Dieser Punkt soll
als Startpunkt für alle Simulationen in diesem Kapitel dienen. Für den weiteren Verlauf der Simulation
wird eine konstante Temperatur von 340 ◦C (Starttemperatur) angenommen. Darüber hinaus werden
externe Spannungen als Randbedingungen angebracht und über die Zeit konstant gehalten.

5.4.1.1 Zugbelastung

Im Rahmen dieser Untersuchung werden vier unterschiedliche Belastungsfälle unter besonderer Be-
rücksichtigung des Richtungseffekts untersucht. Damit soll die Frage geklärt werden, welcher Va-
riantensatz bei gegebener Spannung ausgewählt wird und wie dieser die im Experiment gemessene
Gesamtverzerrung beeinflusst.

Abbildung 5.5 zeigt die Evolution der Volumenanteile der aktiven Varianten für den Fall der un-
iaxialen Zugspannung von 0 MPa, 50 MPa, 250 MPa und 500 MPa bei Vorliegen konstanter Tempe-
ratur. Bei fehlender Spannung wird Bainit lediglich durch chemische Treibkraft gleichmäßig für alle
Varianten gebildet. Die Einführung einer externen Belastung führt dazu, dass acht Varianten mit den
Nummern 11, 12, 15, 16, 19, 20, 23 und 24 einen vergleichsweise höheren Volumenanteil aufwei-
sen. Dies lässt sich dadurch erklären, dass das Auswahlverfahren Varianten vorzieht, die die höchsten
mechanischen Treibkräfte erzeugen.

Sowohl der kinetische als auch der Volumenateil der bainitischen Varianten sind von der Magni-
tude der aufgebrachten Zugspannung abhängig. Dieser Effekt wird in der Abbildung 5.6 am Beispiel
der elften bainitischen Variante, die zu den energetisch präferierten Varianten gehört, demonstriert.
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a) b)

c) d)

Abb. 5.5 Entwicklung der bainitischen Varianten unter Zugbelastung von a) 0 MPa, b) 5 MPa, c) 250 MPa, d) 500 MPa

Der Volumenanteil der bevorzugten Varianten, die während der bainitischen Transformation gebil-
det werden, wächst mit steigender mechanischen Belastung. Dies stimmt mit den Ergebnissen der
Untersuchungen der Formgedächtnislegierungen von ANTRETTER et al. [3] überein.

Abb. 5.6 Variantenauswahl: Evolution der 11. Variante für unterschiedliche Spannungsstufen

5.4.1.2 Druckbelastung

Analog zum Zugsspannungsfall werden bei Untersuchung des Einflusses der Druckbelastung vier
verschiedene Belastungsfälle verglichen. Abbildung 5.7 zeigt die Evolution des Volumenanteils der
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a) b)

c) d)

Abb. 5.7 Entwicklung der bainitischen Varianten unter Druckbelastung von a) 0 MPa, b) -50 MPa, c) -250 MPa, d)
-500 MPa

aktiven Varianten für den Fall der unaxialen Kompression von 0 MPa, -50 MPa, -250 MPa und -500
MPa bei Vorliegen konstanter Temperatur. Es tritt hier der gleiche Effekt wie im Zugspannungsfall
auf: einige bainitische Varianten bilden sich schneller und in einem größeren Umfang. Bei der Analyse
der Druckbelastung werden 16 bainitische Varianten 1-10, 13, 14, 17, 18, 21 und 22 bevorzugt. Dies
hat zur Folge, dass die korrespondierenden Volumenanteile jeder dieser 16 Varianten im Vergleich
zum Zugspannungsfall bei geringeren Werten der Volumenanteile gesättigt sind.

5.4.2 Modellierung eines Polykristalls (RVE)

Für die Simulation eines Polykristalls wird das Materialmodell mittels der UMAT-Subroutine im
Finite-Elementen-Programm Abaqus implementiert. Dieses Beispiel konzentriert sich auf den Trans-
fer der Forschungsergebnisse für eine Einkristallebene auf eine polykristalline Makroskala mittels
der Homogenisierung der stochastisch orientierten Körner. Für diesen Zweck wird ein repräsentatives
Volumenelement (RVE) in einer regulären kubischen Matrix mit 83 Elementen zusammengesetzt,
wobei jedes dieser Elemente mit einem Korn vertreten ist. Abbildung 5.8 gibt einen schematischen
Überblick über die Randbedingungen für sämtliche FEM-Simulationen in diesem Beispiel. Abbildung
5.8.a zeigt die Verschiebung von RVE am Ende der Simulation.

Wie schon in Abschnitts 5.4.1 angedeutet und erneut in Abbildung 5.8.b gezeigt, stimmt das Be-
lastungsschema des Polykristalls mit der Belastung eines Monokristalls überein. Hierbei wird an das
RVE eine isothermische Belastung in Kombination mit verschiedenen Spannungen aufgebracht. Des
Weiteren wirken sich periodische Randbedingungen auf das RVE aus. Aus Abbildung 5.8.c wird
ersichtlich, dass mehrfache Kopien des deformierten RVE zu einem raumfüllenden Kontinuum zu-
sammengefast werden können. Dies wird dadurch gewährleistet, dass die Verschiebungen der ge-
genüberliegenden Seiten der RVE sich um den Mittelwert des Verschiebungsvektors unterscheiden.
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Abb. 5.8 Simulation des TRIP-Effekts an einem Polykristall: a) RVE mit 512 Elementen - schematisch für Ver-
schiebung b) thermomechanische Belastung (Punktierlinie: Temperatur, gestrichelte Linie: Spannung) c) Periodische
Randbedingungen und d) randomisierte Materialrichtungen

Abbildung 5.8.d stellt die Variation der Materialorientierungen in verschiedenen Monokristallen des
Polykristalls dar. Die Materialorientierung und daher auch die Basisvektoren der Transformations-
verzerrungen werden stochastisch jedem einzelnen von 512 im RVE enthaltenen Körner zugewiesen.
Dadurch sollen die energetisch am meisten favorisierten Varianten beeinflusst werden. Spezifische
Varianten werden im Umwandlungsprozess, wie bereits in Abschnitt 5.4.1 erläutert, in Abhängigkeit
von der Orientierung des Kristallgitters und der externen mechanischen Belastung favorisiert. Der
Materialparametersatz, der in diesem Beispiel verwendet wird, stimmt mit dem Satz aus dem ersten
Beispiel (vgl. Tabelle 5.5) überein.

Abbildung 5.9 stellt Verzerrungen in x-Richtung für unterschiedliche Belastungsfälle dar. Sie zeigt
eine signifikant ansteigende inelastische Verzerrung (TRIP) während eines Phasenwechsels auf. In
diesen Simulationen werden unterschiedliche, aber konstante mechanische Spannungen im Bereich
von −140 MPa bis 140 MPa an das repräsentative Volumenelement aufgebracht, wobei für die Tem-
peratur ein konstanter Wert von 340 ◦C angenommen wird. Es wird an dieser Stelle darauf hinge-
wiesen, dass bei fehlender äußeren Belastung die Transformation ausschließlich durch Änderung der
chemischen Energie getrieben wird und die Gesamtverzerrung die umwandlungsbedingte Volumenzu-
nahme repräsentiert. Jede Abweichung von dieser Kurve hat einen geringeren Einfluss auf elastische
Verzerrungen, als auf die sogenannte Umwandlungsplastizität (TRIP).

Die Analyse der auftrennenden Spannungen und der plastischen Verzerrungen im RVE offenbart,
dass die Spannungen im betrachteten polykristallinen repräsentativen Volumenausschnitt nicht homo-
gen verteilt sind und die angebrachte äußere Belastung deutlich übersteigen. Dies führt zu plastischen
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Abb. 5.9 Simulation des TRIP-Effekts an einem Polykristall: Verzerrung-Zeitkurven unter Zug- und Druckbelastung
(mit Plastizität)

Verzerrung in den Bereichen, wo die Fließspannung des Austenits überschritten wird. Dieser Effekt
wird in Abbildung 5.11 anhand der Verteilungen der von Mises-Spannung und der entsprechenden
inelastischen Verzerrung εv in einem RVE mit 512 Elementen mit einer aufgebrachten Spannung
von 125 MPa veranschaulicht. Die ausgewählten Zeitpunkte sind im Verzerrung-Zeitdiagramm 5.10
aufgetragen.

a) b) c) d)

Abb. 5.10 Simulation des TRIP-Effekts an einem Polykristall: Verzerrung in x-Richtung (Punktierlinie) infolge einer
angebrachten Spannung von 125 MPa (durchgezogene Linie). Zeitpunkte a) - d) stellen Markierungen für die Darstel-
lung in Abbildung 5.11 dar

Die Frage, welcher der zwei, den TRIP beeinflussenden Phänomene, der Magee-Effekt oder
der Greenwood-Johnson-Effekt bei der Umwandlungsplastizität eine größere Rolle spielt, kann mit
Hilfe der Untersuchung der Einflüsse der plastischen Verzerrungen im Austenit beantwortet wer-
den. Dazu werden die Simulationen eines repräsentativen Volumenelement (RVE) mit und ohne
Berücksichtigung der viskoplastischen Materialverhaltens des Austenits durchgeführt. Der Vergleich
von jeweils zwei Simulationen bei gleicher externen Belastung zeigt eine signifikante Differenz zwi-
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b) 44,01 s

a) 7,59 s

c) 55,41 s

d) 125,5 s

Abb. 5.11 Simulation des TRIP-Effekts an einem Polykristall: Evolution der von Mises-Spannung und der äquivalenten
inelastische Verzerrung εv (SDV71) am RVE mit 512 Elementen für eine angebrachte Spannung von 125MPa

schen den resultierenden Verzerrungen auf. Dieser Effekt wird in Abbildung 5.12 exemplarisch für
die mechanischen Belastungen von 100 MPa und 140 MPa aufgezeigt.

Neben elastischen Verzerrungen und Änderungen des Transformationsvolumens beinhaltet die Si-
mulationskurve ohne Berücksichtigung der Plastizität die inelastische Verzerrung infolge der asym-
metrischen Bildung der Bainitvarianten (Magee-Effekt). Die Differenz zwischen diesen zwei Kurven
geht allein aus der viskosplastischen Verzerrung des austenitischen Gefüges (Greenwood-Johnson-
Effekt) hervor. Während der Umwandlung entwickeln sich hohe Spannungen im Kristallgitter. Ob-
wohl die aufgebrachte Spannung (6 140 MPa) die Fließspannung des Austenits (im Beispiel Y0j =
252 MPa, vgl. Tabelle 5.5) unterschreitet, treten plastischen Verzerrungen auf.

Ein weiterer Effekt, der im Modell nachgebildet werden kann, ist die Rückverformung der um-
wandlungsplastischen Verzerrung (backstress effect) nach Entlastung der Nennspannung während der
Phasenumwandlung auf 0 MPa. Abbildung 5.13 stellt die Entwicklung der umwandlungsplastischen
Verzerrungen und deren Rückentwicklung infolge der Spannungsentlastung von 100 MPa auf 0 MPa
nach 90 bzw. 200 Sekunden dar. Das Ausmaß der Rückverformung beträgt, abhängig vom Entlas-
tungszeitpunkt, 0, 14% bzw. 0, 1% und entspricht dem Niveau der experimentell ermittelten Werte
[1, 57].
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Abb. 5.12 Simulation des TRIP-Effekts an einem Polykristall: Gesamtverzerrungszeitkurven für die Simulation mit
und ohne Plastizität ( aufgebrachte Spannungen: 100 MPa und 140 MPa)

Abb. 5.13 Simulation des TRIP-Effekts an einem Polykristall: Entwicklung umwandlungsplastischer Verzerrungen in
Abhängigkeit von der Zeit und Rückverformung nach Entlastung bei isothermer, bainitischer Umwandlung: a) Entlas-
tung nach 90 s b) Entlastung nach 200 s c) ohne Entlastung

Fazit

Die aus der Literatur bekannten Ansätze zur mikromechanischen Mehrskalenmodellierung befassen
sich lediglich mit der Umwandlung vom Austenit zum Martensit. Die Untersuchung in diesem Kapi-
tels konzentriert sich hingegen auf die Simulation der Umwandlung vom Austenit zum Bainit. Dieses
physikalisch motivierte und thermodynamisch konsistente, für N-Körner und n-Bainitvarianten ent-
wickelte Modell kombiniert das elastisch-viskoplastische Verhalten mit einer Phasenumwandlung in
einer polykristallinen Struktur. Dabei werden die makroskopischen Effekte der Phasenumwandlung
anhand der Prozesse sowohl auf der Mikro- als auch der Mesoebene nachgebildet. Die Anwendung
des Mehrskalenmodells findet nach der Implementierung in das Finite Elemente Programm Abaqus
zur Simulation eines repräsentativen Volumenelements (RVE) mit 512 Elementen, das das makrosko-
pische Materialverhalten reproduziert, statt. Zu den dargelegten Effekten zählen die Volumenänderung
infolge der Phasenumwandlung, die Umwandlungsplastizität sowie die Rückverformung der um-
wandlungsplastischen Verzerrung. Ferner konnten mit Hilfe der FEM-Simulation der Magee-Effekt
sowie der Greenwood-Johnson-Effekt abgebildet und separiert werden.



Kapitel 6
Zusammenfassung und Ausblick

Die zentrale Zielsetzung der vorliegenden Dissertation ist die numerische Simulation von Hybridum-
formprozessen unter besonderer Berücksichtigung der Phasenumwandlung. Beim betrachteten Hybri-
dumformprozess handelt es sich um eine Kombination aus Schmiede- und Härtungsprozess [119, 118,
143]. Aufgrund der komplexen Temperaturverteilungen sowie der zusätzlichen Umformbeanspru-
chungen stellen derartige Hybridumformprozesse thermomechanisch gekoppelte Problemstellungen
mit verschiedenartig auftretenden Gefügezuständen im Bauteil dar. Im Ergebnis entstehen Werkstücke
mit gradierten und somit flexiblen, nach speziellen Bedürfnissen angepassten Werkstoffeigenschaf-
ten. Zur genauen Abbildung der spezifischen Vorgänge in diesem Prozess wurden im Rahmen dieser
Arbeit zwei Modellierungsstratiegien, ein makroskopisch-phänomenologischer und ein mikromecha-
nischer Mehrskalenansatz zur Simulation der Phasenumwandlung unter Berücksichtigung von visko-
plastischem Verhalten eines niedriglegierten 51CrV4 Stahls in der Bainit- sowie der Martensitstufe
verfolgt.

Als erstes wurde ein makroskopisch-phänomenologisches Mehrphasenmodell aufgebaut, das in
sich vielfältige Eigenschaften vereint. Dazu zählen die zeit- und temperaturabhängige Phasenum-
wandlung, Austenitisierung des Ausgangsgefüges und die aus der Phasenumwandlung resultieren-
den Effekte wie Umwandlungsplastizität, Volumenveränderung sowie temperatur- und mikrostuktu-
rabhängige Elasto- bzw. Viskoplastizität. Zur Vereinfachung der Implementierung wurde ein Mehr-
phasenmodell unter Verwendung der geometrisch linearen Theorie entwickelt. Dieses Modell analy-
siert insbesondere die Austenitisierung während des Aufheizens, die Bildung von Martensit, Bainit
und Mischgefügen sowie das inelastische Verhalten in Form von Umwandlungsplastizität und Visko-
plastizität während der Abkühlung. Dabei erfolgte die makroskopische Modellierung der bainitischen
Umwandlung unter Betrachtung der Evolution der Keimradien sowohl für den oberen als auch den
unteren Bainit mit dem daraus resultierenden, nicht symmetrischen Inkubationszeitverlauf und an-
schließender Entwicklung der Evolutionsgleichungen der bainitischen Phase unter Verwendung der
Treibkräfte. Das für kleine Deformationen entwickelte, thermodynamisch konsistente Mehrphasen-
modell wurde numerisch implementiert. Zur Ermittlung der Materialparameter auf der Grundlage
der experimentellen Untersuchungen wurde das Parameteridentifikationstool ,,PARA“ eigesetzt. Die
ermittelten Parameter werden zur FEM-Simulation des Hybridumformprozesses verwendet.

Da im Hybridumformprozess massive Umformungen im Flanschbereich auftreten, erwies sich
die Entwicklung eines makroskopischen Modells für große Deformationen unter Berücksichtigung
der Phasenumwandlungen als unumgänglich. In diesem makroskopischen Modell wurde sowohl die
Austenitisierung während der Aufheizphase als auch die Bildung von Martensit, Bainit und Misch-
gefügen während der Umform- und der Abkühlphase untersucht. Die Beschreibung der Umwand-
lungsplastizität erfolgte auf der Grundlage des Leblond-Ansatzes. Für die Analyse des allgemei-
nen plastischen Verhaltens wurde der klassische Ansatz der von-Mises-Plastizität eingesetzt. Die
Implementierung wurde um die spektrale Zerlegung des linken elastischen Cauchy-Green-Tensors,
der Kirchhoff-Spannung sowie des Tangentenmoduls erweitert. Die daraus resultierenden FEM-
Simulationsergebnisse des Hybridumformprozesses zeigen eine sehr gute Übereinstimmung zwischen

105
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der errechneten Verteilung der martensitische Phase mit der Gefügeverteilung im Schliffbild der rea-
len Welle.

Ferner wurde im Rahmen dieser Dissertation die Möglichkeit des Einsatzes der Finite Elemente
Methode für die Vorhersage der resultierenden Phasenverteilung durch die Variation der Prozesspara-
meter untersucht. Den Gegenstand der Analyse bildete unter anderem die Untersuchung des Einflus-
ses der Ausgangstemperatur auf die Phasenverteilung in der Welle. Es konnte aufgezeigt werden, dass
durch das vorherige Vorheizen des Werkstücks eine signifikante Bildung des bainitischen Gefüges im
Flansch ermöglicht wird. Des Weiteren steigt der bainitische Anteil bei höheren Ausgangstemperatu-
ren. Die Veränderung des Leistungsprofils der induktiven Erwärmung stellt eine weitere Möglichkeit
der Veränderung der Verteilung sowie der Form des harten Bereiches dar. Die Modifikation der Pha-
sengradierung erfolgte hier exemplarisch anhand von drei Variationen des Aufheizprofils. Diese Bei-
spiele repräsentieren die Möglichkeit der Anpassung der Härtegradiente in Hinblick auf die Form und
die Position im Bauteil entsprechend den Anforderungen mittels einer Änderungen der Prozesspara-
meter.

Die spezifischen Vorgänge, die während der Phasenumwandlung im Werkstück auftreten, finden
in der Regel sowohl auf der Mikro- sowie der Mesoebene des Materials statt. Um den Ursprung der
makroskopischen Phänomene zu ermitteln, ist es notwendig, Simulationen des Materialverhaltens auf
niedriger gelegenen Skalen durchzuführen und diese in das Materialverhalten auf der Makroebene
einfließen zu lassen. Zu diesem Zweck wurde in Kapitel 5 ein Mehrskalenmodell entwickelt, des-
sen Gegenstand die Simulation der Umwandlung vom Austenit zum Bainit zum Gegenstand hat. Mit
Hilfe dieses Modells wurden die makroskopischen Effekte der Phasenumwandlung anhand der kris-
tallographischen Vorgänge sowohl auf der Mikro- als auch auf der Mesoebene nachgebildet. Dieses
physikalisch motivierte und thermodynamisch konsistente, für N -Körner und n-Bainitvarianten ent-
wickelte Modell kombiniert das elastisch-viskoplastische Verhalten mit der Phasenumwandlung in
einer polykristallinen Struktur. Des Weiteren wurde das Mehrskalenmodell auf den niedriglegierten
Stahl 51CrV4 adaptiert und in eine ,,UMAT“ -Subroutine des Finite Elemente Programms Abaqus im-
plementiert. Hierbei wurde die Bildung von 24 möglichen Bainitvarianten im Einzelkristall (Mikro-
Ebene) berücksichtigt. Um das während der Phasenumwandlung auftretende makroskopische Ver-
halten erfassen zu können, erfolgte die Abbildung des Polykristalls auf der mesoskopischen Ebene
mit Hilfe eines repräsentativen Volumenelements (RVE) mit 512 Elementen. Zu den dargelegten Ef-
fekten zählen die Volumenänderung infolge der Phasenumwandlung, die Umwandlungsplastizität so-
wie die Rückverformung der umwandlungsplastischen Dehnung. Ferner konnten mit Hilfe der FEM-
Simulation der Magee-Effekt sowie der Greenwood-Johnson-Effekt abgebildet und separiert werden.

Die Simulationsergebnisse des Hybridumformprozesses auf der Grundlage des makroskopischen
phänomenologischen Mehrphasenmodells zeigen bereits eine gute Übereinstimmung mit der Rea-
lität. Um die Abhängigkeit der Umwandlungskinetik von der vorherigen Austenitisierungsbehand-
lung zu berücksichtigen und damit die Vorhersagbarkeit des Prozesses verbessern zu können, ist eine
Erweiterung des phänomenologischen Mehrphasenmodells erforderlich. Dafür eignet sich insbeson-
dere der Einsatz von weiteren internen Variablen, die unterschiedliche Austnitisierungsszenarien re-
präsentieren und die Evolution sowie die Eigenschaften der bainitischen und der marterstitischen Pha-
sen beeinflussen. Ferner muss das entwickelte Materialmodell wegen seiner rein phänomenologischen
Natur bezüglich der Berücksichtigung der tatsächlich im Material ablaufenden Vorgänge auf der
Grundlage von aufwändigen experimentellen Untersuchungen parametrisiert werden.

Um die während einer unvollständigen, inhomogenen Austenitisierung entstehenden Phänomene,
zu beschreiben und deren Ursachen zu untersuchen, erweist sich die Entwicklung eines Ansatzes,
das in sich die Eigenschaften sowohl eines mikromechanischen Mehrskalenmodells als auch eines
Phasenfeldmodells vereint, als zweckmäßig. Eine Phasenfeldmodellierung eignet sich insbesondere
zur Beschreibung der Evolution des Austenitgefüges sowie des Abbaus des Zementits und ermöglicht
die Abbildung der inhomogenen Kohlenstoffverteilung bzw. des inhomogenen austeintischen Volu-
menanteils im einzelnen Korn bei unterschiedlichen Zeit-Temperatur-Verläufen. Die inhomogenen
Kohlestoff- sowie Austenitverteilung wirken sich wiederum auf die Evolution der bainitischen Va-
rianten aus. Hiermit wird in Abhängigkeit von der vorherigen Austenitisierungsbehandlung auf die
Umwandlungskinetik Einfluss genommen.
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Das in Kapitel 5 entwickelte Mehrskalenmodell ist durch eine entsprechende Anpassung der
thermischen und chemischen Treibkräfte sowie der Materialparameter im Stande die martensitische
Umwandlung abzubilden. Damit könnten sämtliche Phasenumwandlungseffekte während der FE-
Simulation des Hybridumformprozesses in jedem Materialpunkt des zugrunde liegenden FE-Netzes
mit einer weiteren FE-Simulation zum Verhalten der Mikrostruktur modelliert werden. Dieses Vor-
gehen basiert auf der FE2-Methode, deren Anwendung mit hohem numerischen Aufwand verbunden
ist. Die Rechengeschwindigkeit des homogenisierten Verfahrens lässt sich durch die Verwendung
paralleler Programmierung für mehrere CPUs oder die Verwendung von GPGPU (General Purpose
Computation on Graphics Processing Unit) z.B. OpenCL oder CUDA drastisch erhöhen (siehe dazu
z.B. [40]). Dies ist darauf zurückführen, dass die mikroskopischen Probleme innerhalb einer makro-
skopischen Iteration voneinander unabhängig sind und deshalb parallel gelöst werden können.

Aufgabe der weiterführenden Forschung liegt in der Suche nach einer geeigneten Alternative zur
Homogenisierung der Simulationsergebnisse auf der Mikroskala. Dazu bietet sich insbesondere die
Nonuniform Transformation Field Analysis (NTFA)-Methode [95, 39] an, die den numerischen Auf-
wand beim irreversiblen Materialverhalten durch eine Ordnungsreduktion senkt. Dabei können die
benötigten plastischen Moden für einzelne RVEs in Abhängigkeit von den Phasenanteilen bereits im
Vorfeld bestimmt werden und als eine Art innere Variablen bzw. Materialparameter in einer Daten-
bank abgespeichert werden. Die Aktualisierung der Datenbank für zuvor nicht abgedeckte Lastfäden
oder Änderung der Mikrostruktur erfolgt während der Simulation des Hybridumformprozesses. Auf
diese Weise lässt sich ein schnelles, flexibles und numerisch homogenisiertes Verfahren entwickeln.





Literaturverzeichnis

1. Ahrens, U.: Beanspruchungsabhängiges Umwandlungsverhalten und Umwandlungsplastizität niedrig legierter
Stähle mit unterschiedlich hohen Kohlenstoffgehalten. Dissertation, Universität Paderborn (2003)

2. Altenbach, H.: Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Glei-
chungen, 2. Auflage, Springer-Verlag, Berlin Heidelberg New York (2012)

3. Antretter, T., Fischer, F., Cailletaud, G.: A numerical model for transformation induced plasticity (TRIP). Journal
de Physique IV, 115, 233–241, (2004)

4. Antretter, T., Fischer, F.D., Tanaka, K., Cailletaud, G.: Theory, experiments and numerical modelling of phase
transformations with emphasis on TRIP. Steel research, 73(6-7), 225–235, (2002)

5. Avrami, M.: Kinetics of phase change. i general theory. The Journal of Chemical Physics, 7(12), 1103–1112,
(1939)

6. Azuma, M., Fujita, N., Takahashi, M., Iung, T.: Modelling upper and lower bainite transformation in steels. Ma-
terials Science Forum, 426, 1405–1412, (2003)

7. Babu, K., Kumar, T.P.: Comparison of austenite decomposition models during finite element simulation of water
quenching and air cooling of aisi 4140 steel. Metallurgical and Materials Transactions B, 45(4), 1530–1544,
(2014)

8. Bain, E.C., Dunkirk, N.: The nature of martensite. Trans. AIME, 70(1), 25–47, (1924)
9. Bammann, D., Solanki, K.: On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycry-

stalline material. International Journal of Plasticity, 26(6), 775–793, (2010)
10. Barbe, F., Quey, R., Taleb, L.: Numerical modelling of the plasticity induced during diffusive transformation. case

of a cubic array of nuclei. European Journal of Mechanics-A/Solids, 26(4), 611–625, (2007)
11. Bargel, H.J., Schulze, G.: Werkstoffkunde, Springer-Verlag, Berlin, Heidelberg (2005)
12. Bertsekas, D.P.: Projected newton methods for optimization problems with simple constraints. SIAM Journal on

control and Optimization, 20(2), 221–246, (1982)
13. Besserdich, G.: Untersuchung zur Eigenspannungs-und Verzugsausbildung beim Abschrecken von Zylindern aus
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bearing components. Strojniški vestnik, 55(3), 155–159, (2009)
21. Cahn, R.W., Haasen, P.: Physical metallurgy, Band 1, 4. Auflage, North-Holland, North (1996)
22. Cherkaoui, M.: Transformation induced plasticity: mechanisms and modeling. Journal of engineering materials

and technology, 124(1), 55–61, (2002)
23. Cherkaoui, M., Berveiller, M., Sabar, H.: Micromechanical modeling of martensitic transformation induced pla-

sticity (TRIP) in austenitic single crystals. International Journal of plasticity, 14(7), 597–626, (1998)
24. Ciarlet, P.G.: Introduction to numerical linear algebra and optimisation, Cambridge University Press, Cambridge

(1989)
25. Coleman, B.D., Gurtin, M.E.: Thermodynamics with internal state variables. The Journal of Chemical Physics,

47(2), 597–613, (1967)

109



110 Literaturverzeichnis

26. Deng, D., Murakawa, H.: Finite element analysis of temperature field, microstructure and residual stress in multi-
pass butt-welded 2.25 Cr–1Mo steel pipes. Computational materials science, 43(4), 681–695, (2008)

27. Denis, S., Simon, A., Beck, G.: Analysis of the thermomechanical behaviour of steel during martensitic quen-
ching and calculation of internal stresses. Internal Stress: Origin–Measurement–Evaluation(Eigenspannungen:
Entstehung–Messung–Bewertung)., 1, 211–238, (1983)

28. Dennis Jr, J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations, Siam,
Philadelphia (1996)

29. Dörrenberg Edelstahl GmbH: Werkstoffdatenblatt 1.8159
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