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Abstract

In this thesis, we give new examples and constructions for infinite-dimensional
Lie groups. At the beginning, we construct a smooth Lie group structure on the
group of real analytic diffeomorphisms of a compact real analytic manifold with
corners. In the following part, we examine conditions for the integrability of a
given Banach subalgebra of the Lie algebra of a Lie group that is modelled on
a locally convex space. For that reason, we elaborate a corresponding Frobenius
theorem. In the third part of this thesis, we show that the canonical invariant
symmetric bilinear form on the Lie algebra of compactly supported sections of a
finite-dimensional perfect Lie algebra bundle is universal in a topological sense. At
the end of this thesis, we construct central extensions of Lie groups of compactly
supported sections of Lie group bundles over non-compact base manifolds. In
addition we show the universality of certain examples of these central extensions.

German translation: In dieser Arbeit stellen wir neue Beispiele und Konstruk-
tionen für unendlich-dimensionale Lie-Gruppen vor. Wir beginnen damit, dass
wir eine glatte Lie-Gruppenstruktur auf der Gruppe der reell-analytischen Diffeo-
morphismen einer kompakten reell-analytischen Mannigfaltigkeit mit Ecken kon-
struieren. Daran anschließend untersuchen wir Bedingungen für die Integrabilität
von Banach-Unteralgebren von Lie-Algebren von Lie-Gruppen, die auf lokal kon-
vexen Räumen modelliert sind. Hierfür zeigen wir einen entsprechenden Frobe-
niussatz. Im dritten Teil der Arbeit beweisen wir, dass die kanonische invariante
symmetrische Bilinearform auf der Lie-Algebra der kompakt getragenen Schnitte
eines endlich-dimensionalen perfekten Lie-Algebren-Bündels in einem topologi-
schen Sinn universell ist. Den Schluss der Arbeit bildet ein Kapitel, in dem wir
zentrale Erweiterungen von Lie-Gruppen von kompakt getragenen Schnitten von
Lie-Gruppen-Bündeln mit nicht kompakter Basis konstruieren. Zusätzlich zeigen
wir die Universalität von gewissen Beispielen dieser Erweiterungen.





Introduction and Notations

What is an infinite-dimensional Lie group?

At first we want to introduce our framework for infinite-dimensional Lie groups.1

Finite-dimensional manifolds “are spaces that locally look like some Euclidean
space Rn” ([Lee13, p. 1]). Hence, an infinite-dimensional manifold should be a
topological space that looks locally like an open subset of an infinite-dimensional
vector space. Of course the infinite-dimensional vector space on which our mani-
fold is modelled has to be a topological space. With the option in mind to define
differentiable manifolds the space should even be a topological vector space. One
class of infinite-dimensional manifolds are the so-called “Banach manifolds” that
are manifolds modelled over Banach spaces. Using the concept of Fréchet differen-
tiability it is clear what a FCk-Banach manifold should be. A standard reference
for Banach manifolds is [Lan01]. Moreover, the definition of a Banach-Lie group
is canonical.

Although there are interesting examples of Banach manifolds, there exists no
reasonable structure of a Banach-Lie group on the group of smooth diffeomor-
phisms DiffpMq for a compact finite-dimensional smooth manifold M ([KM97, p.
457], [Omo78]). Hence, one has to model DiffpMq over a more general topological
vector space. It turns out that locally convex spaces are the right choice.

There are several approaches to differential calculus on locally convex spaces
(for details, we recommend [Kel74]). Among the most popular approaches is the
convenient setting, invented by Frölicher, Kriegl and Michor (see [KM97]). A map
is called smooth in the convenient setting if it is smooth along smooth curves
(see [KM97, Definition 3.11]). Of course, this differential calculus is inspired by
Boman’s Theorem (see [KM97, Theorem 3.4] and [Bom67]). The second popular
approach is the differential calculus known as Keller’s Ck

c -theory (obviously the
name is inspired by [Kel74]) going back to Bastiani (see [Bas64]). In this approach,
a continuous map is called continuously differentiable if all directional derivatives
dfpx, vq exist and the map px, vq ÞÑ dfpx, vq is continuous. For details on this
approach, we recommend [Mil84], [Ham82] and [GN]. In this thesis, we will always
use this differential calculus. Because Milnor used Keller’s Ck

c -theory to turn the
diffeomorphism group into a Lie group (see [Mil84]), Lie groups constructed within
Keller’s Ck

c -theory are sometimes called Milnor-Lie groups. One can show that the
convenient differential calculus and Keller’s Ck

c -theory are equivalent on Fréchet
spaces (see [BGN04, p. 270] and [KM97, Theorem 4.11]) but beyond the Fréchet

1This subchapter of the introduction contains material published before in the author’s preprint
[Eyn15].
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Introduction and Notations

case this is false. For example, a map that is smooth in the convenient sense need
not be continuous (see e.g. [Glo06c, p. 1]).

Diff ω(M) as a Milnor-Lie group for a real analytic
manifold M with corners

The prime example of an infinite-dimensional Lie group is the diffeomorphism
group DiffpMq of a finite-dimensional manifold M .2 First, we categorise different
approaches how to construct a Lie group structure on DiffpMq. Then we recall
the exact conditions for the existence of a Lie group structure on DiffpMq.

Having chosen a differential calculus, one has to choose a strategy how to turn
DiffpMq into a Lie group. There are basically two different approaches. The first
one (and most common one), is to turn the space of (Cr respectively smooth
respectively analytic) mappings from M to M (in our notation CrpM ;Mq with
r P N Y t8, ωu) into an infinite-dimensional manifold. To this end, one chooses
a Riemannian metric on M and obtains a Riemannian exponential function exp.
For small η P ΓpTMq, one can define the map Ψη :“ exp ˝η. Now it turns out that
in many cases it is possible to obtain a manifold structure on the mapping space
CrpM ;Mq by charts similar to Ψ: η ÞÑ Ψη. The second step in this strategy is to
show that DiffpMq is an open submanifold of CrpM ;Mq and that the group op-
erations have the required differential property (e.g. Cr, smooth or real analytic).
In the following, we call this strategy the “global approach”(in the table further
down we cite articles that used this approach).

The second approach leads to the same Lie group structure on DiffpMq but
its construction is very different. Again one chooses a Riemannian metric on M .
With the help of the map Ψ: η ÞÑ Ψη one obtains a manifold structure on a subset
of DiffpMq that contains the identity idM . Now one uses the theorem of local
description of Lie groups to extend the manifold structure to DiffpMq and to turn
it into a Lie group. In the following, we call this strategy the “local approach”.
This approach was first used in [Glo06c].

In the following table we cite different articles that constructed Lie group
structures on diffeomorphism groups.3 We emphasize that this list is not compre-
hensive. The list just contains the cases that are of interest for this thesis.

2This subchapter of the introduction consist of material published before in the author’s preprint
[Eyn15].

3We mention that in [Sch15, Remark 5.22] it was stated that the proof of [Sch15] circumvents
some problems which remained in [BB08]. Moreover, in [KM90, p.1] it was stated that the
proof of [Les85] has a gap.
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Diff ω(M) as a Milnor-Lie group for a real analytic manifold M with corners

M
Global, Global, Local,

Convenient Keller-C8c Keller-C8c
C8, compact, no corners [Mil84]
C8, non compact, no corners [KM97] [Glo06c]
C8, non compact, with corners [Mic80]
orbifold, compact [BB08] [Sch15]
orbifold, non compact [Sch15]
Cω

R , compact, no corners [KM90] [DS15], [Les82]

Given a compact real analytic manifold without corners, Kriegl and Michor
constructed in [KM90] a real analytic Lie group structure on DiffωpMq in the con-
venient sense. This structure is modeled over the space of real analytic vector
fields ΓωpTMq of M . A map defined on an open subset of ΓωpTMq is smooth in
the convenient setting if and only if it is smooth in the Keller’s C8c -theory ([DS15,
p.142]). But a map on ΓωpTMq that is real analytic in the convenient sense need
not be real analytic in the conventional sense as in [Mil84, p. 1028] (see also
[DS15, p. 142]). We emphasise that the Lie group structure from [KM90] is only
real analytic in the convenient setting (cf. [DS15, Proposition 1.9]). Because a real
analytic structure induces a smooth structure, the Lie group structure of [KM90]
induces a structure of a smooth Milnor-Lie group on DiffωpMq as mentioned in
[DS15, Proposition 2.9]. One might expect that there also exists a real analytic Lie
group structure in the conventional sense on DiffωpMq. But Dahmen and Schmed-
ing showed in [DS15] that there exists no real analytic structure on DiffωpS1q in
the conventional sense of Milnor. Therefore we cannot expect that there exists a
real analytic structure in the conventional sense on DiffωpMq for a compact real
analytic manifold M with corners. The aim of Chapter 1 of this thesis is to turn
the group DiffωpMq of real analytic diffeomorphisms of a finite-dimensional com-
pact real analytic manifold M with corners into a smooth Milnor-Lie group. This
generalises in some sense parts of [KM90] and [DS15]. More precisely we show the
following theorem:

Theorem A. Let M be a finite-dimensional compact real analytic manifold with
corners such that there exists a boundary respecting real analytic Riemannian met-
ric on a real analytic enveloping manifold M̃ . Then there exists a unique smooth
Lie group structure on the group of real analytic diffeomorphisms DiffωpMq mod-
elled over ΓωstpTMq such that for one (and hence each) boundary respecting Rie-
mannian metric on M̃ the map η ÞÑ Ψη is a diffeomorphism from an open 0-
neighbourhood in ΓωstpTMq onto an open identity neighbourhood in DiffωpMq.

In this context, an enveloping manifold M̃ of M is a real analytic manifold without
boundary that contains M as a submanifold with corners. Moreover, a Riemannian
metric on the enveloping manifold M̃ is called boundary respecting, if the strata
BjM of M are totally geodesic submanifolds of M̃ . The symbol ΓωstpTMq stands
for the space of stratified vector fields. These are analytic vector fields on M that
restrict to vector fields on the strata BjM .
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Introduction and Notations

Dahmen and Schmeding ([DS15, Proposition 2.9]) respectively Kriegl and Mi-
chor ([KM90]) used the global approach to turn DiffωpMq (with M compact and
BM “ H) into a smooth respectively real analytic Lie group. We instead want
to use the local approach for our Theorem A (if M has corners). Hence, to a
certain point our Chapter 1 gives also an alternative construction for [KM90] and
[DS15]. The local approach was developed by Glöckner in [Glo06c], and we follow
the line of thought of [Glo06c]. But Glöckner considered smooth diffeomorphisms
on a manifold without corners. Hence, one obvious obstacle is that we cannot use
bump functions because we work in the real analytic setting. Moreover, because
our manifold M has corners, we will have to model our structure on the space of
stratified vector fields as in [Mic80]4.

We also mention [Les82]. In this paper Leslie used the global approach to turn
the group of real analytic diffeomorphisms of a compact real analytic manifold
without corners into a smooth Lie group. But as pointed out in [KM90, p.1], his
proof has a gap.

In the following, we describe our strategy in more detail. Given a manifold with
boundary, one can use the double of the manifold to embed it into a manifold
without boundary (see, for example, [Lee13, Example 9.32]). However this does
not work in the case of a manifold with corners because the boundary of a manifold
with corners is not a manifold. If one works with a smooth manifold with corners,
one can use a partition of unity to construct a “strictly inner vector field” ([Mic80,
p. 21]). With the help of this vector field, one obtains the analogous result (see
[Mic80, p. 21] and [DH73, Proposition 3.1]). Obviously this approach does not
work if one considers a real analytic manifold with corners. For technical reasons
we show the following theorem in Section 1.1:

Theorem B. Given a compact real analytic finite-dimensional manifold with cor-
ners M , there exists an enveloping manifold M̃ of M . If M̃1 and M̃2 are enveloping
manifolds of M then there exists an open neighbourhood U1 of M in M̃1, an open
neighbourhood U2 of M in M̃2 and a real analytic diffeomorphism ϕ : U1 Ñ U2 with
ϕ|M “ idM .

In [BW59, Proposition 1] Bruhat and Whitney show that given a real analytic
paracompact manifold M (without corners), there exists a complex analytic man-
ifold MC that contains M as a totally real submanifold. The manifold MC is
called complexification of M . We can transfer their proof without difficulties to
show our Theorem B. In addition, we elaborate some technical properties of real
analytic mappings concerning extensions to enveloping manifolds in Section 1.1.
The proofs are analogous to the case of extensions of real analytic mappings to
complexifications (see e.g. [DGS14, Chapter 2]).

That we use the local approach ([Glo06c] and [Sch15]), is reflected in the struc-
ture of Chapter 1 of this thesis: In Section 1.2 we construct a manifold structure
on a subset U of DiffpMq that contains the identity idM . The next step is to show

4In [Mic80] Michor turned the group of smooth diffeomorphisms of a non-compact manifold with
corners into a smooth Lie group. Michor worked with the global approach and as mentioned
above this leads to a very different construction.
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Integrability of Banach subalgebras

the smoothness of the group operations. To this end, we elaborate some impor-
tant preparatory results in Section 1.3. In Section 1.4, we show the smoothness of
the multiplication on U and in Section 1.5 the smoothness of the inversion. The
smoothness of the conjugation is proved in Section 1.6. Our proof of the smooth-
ness of the conjugation map follows closely the ideas of [Glo06c, Section 5]: First
we show that the Lie group structure on DiffωpMq is independent of the choice of
the Riemannian metric (see [Glo06c, Section 5]). With help of this result, we can
show the smoothness of the conjugation map as in [Glo06c, Section 5] (see Lemma
1.87).

Integrability of Banach subalgebras

Given a finite-dimensional Lie group G with Lie algebra g and a Lie subalgebra
h Ď g, the Integral Subgroup Theorem ([HN12, Theorem 9.4.8]) tells us that we
find a subgroup H of G that is a Lie group with Lie algebra h such that the
inclusion is smooth.5 The analogous result for closed Lie subalgebras h is true for
so-called Baker-Campbell-Hausdorff Lie groups (see [GN]). These are real analytic
Lie groups modelled over locally convex spaces that possess an exponential function
that is locally Cω-diffeomorphic around 0. However as mentioned above DiffωpS1q

does not admit the structure of a real analytic Lie group. The same holds for the
group of smooth diffeomorphisms (see [Mil84, Corollary 9.2])6.

Analogously to [Lan01, Chapter VI], [Les68] or [Les92], Frobenius theorems
for manifolds that are modelled over locally convex spaces can be used to show
generalisations of the Integral Subgroup Theorem (this was mentioned in [Glo08b]).

In 2001, Teichmann showed a Frobenius theorem for finite-dimensional distri-
butions on manifolds that are modelled on locally convex spaces in the convenient
sense. It was possible to obtain the analogous result in the author’s master’s thesis
[Eyn12] in the context of manifolds that are modelled over locally convex spaces in
the sense of Keller’s Ck

c -theory. Moreover, in [Eyn12, Chapter 4] it was shown that
if the Lie group G in question has an exponential map then every finite-dimensional
Lie subalgebra h Ď LpGq is integrable7.

Now, it is a natural question to ask if every Lie subalgebra h Ď LpGq that is
complemented as a topological vector subspace and is a Banach space with the
induced topology is integrable as well. The answer is yes. In Chapter 2 we prove
the following theorem.

5This subchapter of the introduction consist of material published before in the author’s preprint
[Eyn14a]

6In the case where G is the Lie group of smooth diffeomorphisms of a smooth compact manifold
without boundary, the Integral Subgroup Theorem has been proved in [Les92]. The special
case G “ DiffωpMq has been considered in [Les85].

7 Frobenius theorems for co-Banach distributions for manifolds that are modelled over locally
convex spaces were obtained in [Hil00] respectively [Eyn12]. Other Frobenius theorems have
also been elaborated in [Les68] and [Les92] but the more complicated conditions of Leslie’s
results are of a quite different kind.
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Introduction and Notations

Theorem C. Let G be a Lie group modelled over a locally convex space and
h Ď LpGq be a Lie subalgebra that is complemented as a topological vector subspace
and is a Banach space with the induced topology. If G admits an exponential
map then we can find a Lie group H that is a subgroup of G and an immersed
submanifold of G such that LpHq “ h.

Although Theorem C can be obtained with the help of [Nee06, Theorem IV.4.9.]8,
we will give an alternative proof by using a Frobenius theorem. Hence the main
work to prove Theorem C, will be to show a Frobenius theorem for Banach distri-
butions for manifolds that are modelled over locally convex spaces:

Theorem D. Let M be a Cr-manifold modelled over a locally convex space E
with r P NY t8u, r ě 4 and F be a complemented subspace of E such that F is a
Banach space with the induced topology from E and D is an involutive subbundle
of TM with typical fibre F . Assume that for all p0 P M there exists an open p0-
neighbourhood U Ď M and a Cr´1-vector field X : U ˆ F Ñ TU with parameters
in F such that:

(a) The map F Ñ ΓpTUq, v ÞÑ Xp‚, vq is linear;
(b) We have impXq Ď D;
(c) The map F Ñ Dp0, v ÞÑ Xpp0, vq is an isomorphism of topological vector

spaces;
(d) The vector field X provides a local flow with parameters of class Cr.
(e) It exists a chart ϕ : U Ñ V of M , such that ϕpp0q “ 0 and dϕpDp0q “ F .

In this situation D is integrable.

Theorem D will be proved in Section 2.1. Besides new arguments, we use meth-
ods from the case where the distribution in question is finite-dimensional ([Tei01]
respectively [Eyn12]). Also, we use methods developed in [CS76], where Chill-
ingworth and Stefan work with singular distributions on Banach manifolds. The
preceding theorem (details of which will be explained later) will be obtained there.
In Theorem D, we have to assume that the vector field admits a local flow because
this is not automatic for initial value problems in locally convex spaces. Indeed, it
is possible to find linear initial value problems in locally convex spaces that have
several solutions, or no solution at all.

Universal bilinear forms for Lie algebras of compactly
supported sections

In Chapter 3, we address a further new construction in infinite-dimensional Lie
theory9. An invariant symmetric bilinear form β on a Lie algebra g taking values
in a vector space is called algebraically universal if any invariant bilinear form on g
factorises over β by composition with a unique linear map. Here invariance means

8This was mentioned by K. H. Neeb in comments to this thesis.
9This subchapter of the introduction consist of material published before in the author’s preprint

[Eyn14c]
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Universal bilinear forms for Lie algebras of compactly supported sections

that βprx, ys, zq “ βpx, ry, zsq for all x, y, z P g. Given any Lie algebra g, such
an algebraically universal bilinear form was constructed in [Gun11, Remark 4.1.5].
It is denoted by κg : g ˆ g Ñ Vg. Analogously, a continuous invariant symmetric
bilinear form β on a locally convex Lie algebra g taking values in a locally convex
space is called topologically universal (we also use the term “universal continuous
invariant symmetric bilinear form”) if we get all other continuous invariant bilinear
forms on g by composing β with a unique continuous linear map. In [Gun11], such
a topologically universal invariant bilinear form was constructed in the case of
Fréchet-Lie algebras (see [Gun11, Proposition 4.5.3]). But the construction works
also in the more general case of locally convex Lie algebras (see Remark 3.3). We
denote the topologically universal invariant bilinear form on g by κctg : g ˆ g Ñ
V ct
g . Although any two topologically universal invariant symmetric bilinear forms

differ only by composition with an isomorphism of topological vector spaces, it
is not enough to know the mere existence of universal bilinear forms in general.
Often, one would like to use more concrete realisations of universal symmetric
invariant bilinear forms. This is the reason why in [Gun11], Gündoğan constructed
a concrete universal continuous bilinear form for the Lie algebra ΓpKq of sections
for a given Lie algebra bundle K with finite-dimensional σ-compact base M . If g
is the finite-dimensional perfect typical fibre of K and V pKq is the vector bundle
with base M and fibres V pKpq for p P M , Gündoğan showed in [Gun11, Theorem
4.6.2] that κK : ΓpKq ˆ ΓpKq Ñ ΓpV pKqq, pη, ζq ÞÑ κK ˝ pη, ζq is a topologically
universal invariant symmetric bilinear form (here κK is the fibrewise universal
invariant bilinear form).

Moreover, Gündoğan showed that the maps κK : ΓpKq ˆ ΓpKq Ñ ΓpV pKqq
and κg˚ : : C8c pM, gq ˆ C8c pM, gq Ñ C8c pM,Vgq are algebraically universal.
Summarising we obtain the following table:

algebraically universal topologically universal
κg˚ : C8pM, gq2 Ñ C8pM,Vgq [Gun11, Prop. 4.3.3] [Gun11, Theo. 4.6.2]
κg˚ : C8c pM, gq2 Ñ C8c pM,Vgq [Gun11, Prop. 4.3.3]
κK : ΓpKq2 Ñ ΓpV pKqq [Gun11, Theo. 4.4.4] [Gun11, Theo. 4.6.2]
κK : ΓcpKq

2 Ñ ΓcpV pKqq

Hence, the first aim of Chapter 3 is to show that the map κK : ΓcpKq
2 Ñ ΓcpV pKqq

is topologically universal, by proving:

Theorem E. For a perfect finite-dimensional Lie-algebra g, a σ-compact man-
ifold M and a Lie algebra bundle K with base M and typical fibre g, the map
κK : ΓcpM,Kq2 Ñ ΓcpV pKqq with κKpη, ζqppq “ κKppηppq, ζppqq is topologically uni-
versal10.

10Obviously this shows that κg˚ : C8c pM, gq2 Ñ C8c pM,Vgq is topologically universal. Moreover
it shows that κK : ΓcpKq

2 Ñ ΓcpV pKqq is algebraically universal. In fact given a vector space
W and an invariant symmetric bilinear form γ : ΓcpKq

2 ÑW , we can equip W with a locally
convex topology such that γ is continuous. Hence we obtain the existence of the required
linear map. Because of Remark 3.3 the image of κK generates ΓcpV pKqq. Therefore we obtain
the uniqueness statement.

7



Introduction and Notations

While the locally convex topology on ΓpKq is a well accessible Fréchet-topology,
the locally convex topology on ΓcpKq is an inductive limit topology. Hence, it is
more difficult to handle.

Universal bilinear forms like κK from Theorem E play an important role in
the extension theory of locally convex Lie algebras. Following [Woc06, Definition
A.2.1] respectively [Nee02b, Chapter 1], we define a central extension of a locally
convex Lie algebra g by a locally convex space V (considered as an abelian Lie

algebra) to be a short exact sequence 0 Ñ V ãÑ ĝ
q
ÝÑ g Ñ 0 of locally convex Lie

algebras such that the map V ãÑ ĝ is a topological embedding, V lies in the center

of ĝ and q has a continuous linear section. A further central extension V ãÑ ĝ1
q1
ÝÑ g

of g by V is called equivalent to V ãÑ ĝ
q
ÝÑ g, if there exists an isomorphism

ϕ : ĝÑ ĝ1 of topological Lie algebras such that ϕ|V “ idV and q “ q1 ˝ϕ on g1 (see
[Woc06, Definition A.2.4]). The set of equivalence classes of central extensions of g
by V is denoted by Extpg, V q. As usual, we can describe central extensions by the
Lie algebra cohomology. Hence, we recall the concept of continuous Lie algebra
cohomology for example from [Nee02b, Chapter 1] respectively [Gun11, Appendix
A] in the following11: A continuous anti-symmetric bilinear map ω : g2 Ñ V is
called 2-cochain (or simply cochain). It is called cocycle if 0 “ ωprx1, x2s, x3q `

ωprx2, x3s, x1q`ωprx3, x1s, x2q and cobounday if there exists a continous linear map
γ : gÑ V such that ωpx1, x2q “ γprx1, x2sq for all x1, x2, x3 P g. We write Z2

ctpg, V q
for the space of 2-cochains andB2

ctpg, V q for the space of 2-coboundaries. One easily
sees B2

ctpg, V q Ď Z2
ctpg, V q and we define H2

ctpg, V q :“ Z2
ctpg, V q{B

2
ctpg, V q . Given

ω P Z2
ctpg, V q, we obtain the locally convex Lie algebra V ˆω g with the Lie bracket

rpv1, x1q, pv2, x2qsω “ pωpx1, x2q, rx1, x2sq for vi P V and xi P g and the central

extension V ãÑ V ˆω g
pr2
ÝÝÑ g. This induces a bijection H2

ctpg, V q Ñ Extpg, V q.
In the following, we recall the concept of universality for example form [Nee02b,

Chapter 1] respectively [Gun11, Appendix A]: Given two central Lie algebra ex-

tensions V1 ãÑ ĝ1
q1
ÝÑ g and V2 ãÑ ĝ2

q2
ÝÑ g of the locally convex Lie algebra g,

we call a morphism ϕ : ĝ1 Ñ ĝ2 of locally convex Lie algebras a morphism of Lie
algebra extensions if q1 “ q2 ˝ ϕ. In this way, one obtains the category of Lie
algebra extensions of g and an object in this category is called universal if it is
initial. This definition yields a definition of universality of equivalence classes of
central extensions. For now, we say that a cocycle ω : g2 Ñ V is universal if the
corresponding central extension is universal12.

The second aim of Chapter 3 is to show the universality of an extension of
certain so-called topological current algebras. In general these are algebras of
the form A b g, where A is a commutative locally convex algebra and g is a
locally convex Lie algebra. In [Mai02, Theorem 16], Maier constructed a universal
continuous central extension for current algebras of the form A b g, where A is a
unital commutative complete locally convex algebra and g is a finite-dimensional
semisimple Lie algebra. The canonical example for such a current algebra is given

11Of course the underlying concept of these definitions is the Chevalley-Eilenberg chain-complex
presented e.g. in [HN12, Chapter 7.5] in the case without topology and [Gun11] in the case
of topological Lie algebras.

12We recall the concept of universality in more detail in Chapter 3.
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Extensions of groups of compactly supported sections

by the smooth functions from a manifold M to g. To show the universality of the

canonical cocycle ω : ΓcpKq
2 Ñ Ω

1

cpM,V pKqq in [JW13, p. 129, (1.1)], Janssens and
Wockel used [Mai02, Theorem 16] to show the universality of the canonical cocycle
for the compactly supported smooth functions from a σ-compact manifold to a
finite-dimensional semisimple Lie algebra g in [JW13, Theorem 2.7]. Gündoğan
showed in [Gun11, Theorem 5.1.14] that the ideas from [JW13] can be used to show
the universality of the canonical cocycle on current algebras A b g with pseudo-
unital commutative algebras A that are inductive limits of unital Fréchet algebras.
But this class of current algebras does not contain the compactly supported smooth
maps C8c pM, gq on a σ-compact finite-dimensional manifold13. So in Section 3.3,
we show that the cocycle constructed in [JW13] respectively [Gun11, Theorem
5.1.14] is universal if the algebra A is a complete locally convex commutative
pseudo-unital algebra which is the inductive limit of subalgebras An Ď A such
that we can find an element 1n P A with 1n ¨ a “ a for all a P An. Obviously,
this class of algebras contains the compactly supported smooth functions on a
σ-compact manifold. More precisely we prove:

Theorem F. Let A be a complete locally convex commutative pseudo-unital algebra
such that it is the inductive limit of subalgebras An Ď A with n P N such that we
find for every n P N an element 1n P A with 1n ¨ a “ a for all a P An. If g is a
finite-dimensional semisimple Lie algebra then ωg,A : A b g ˆ A b g Ñ Vg,A1 with
pab x, bb yq ÞÑ κgpx, yq b ra ¨ dA1pbqs is a universal cocycle for Ab g.

The proof of Theorem F is based on the ideas from [JW13, Theorem 2.7]. But the
discussion of the surjectivity of the map H2

ctpiq in the proof of [JW13, Theorem
2.7] was not complete (see Remark 3.39). Therefore the main work will be to show
that this map is actually surjective.

Extensions of groups of compactly supported
sections

Having discussed central extensions of Lie algebras in Chapter 3, we will con-
tinue with new constructions of central extensions of Lie groups in Chapter 4.14

Like in [Nee02a], we use the following definition of a central extension of infinite-
dimensional Lie groups: Let Z, G and Ĝ be Lie groups modelled over locally
convex spaces. A short exact sequence 0 Ñ Z ãÑ Ĝ

q
ÝÑ G Ñ 0 of Lie groups

is called central extension of G by Z, if Z lies in the center of Ĝ, and Ĝ
q
ÝÑ G

is a smooth Z-principal bundle over the basis G. One easily sees that the con-
dition that Ĝ

q
ÝÑ G is a Z-principal bundle is equivalent to the existence of a

smooth local section of Ĝ
q
ÝÑ G that is defined on an open 1-neighbourhood.

A further central extension Z ãÑ Ĝ1
q1
ÝÑ G of G by Z is called equivalent to

13For a compact subset K of M , the algebras C8K pMq are not unital. Hence, one cannot deduce
[Gun11, Corollary 5.2.14] from [Gun11, Theorem 5.2.13] as has been done in [Gun11].

14This subchapter of the introduction consist of material published before in the author’s preprint
[Eyn14b]
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Introduction and Notations

Z ãÑ Ĝ
q
ÝÑ G, if there exists a Lie group isomorphism ϕ : Ĝ Ñ Ĝ1 such that

ϕ|Z “ idZ and q “ q1 ˝ ϕ on G1 (see [Woc06, Definition A.2.4]). This defines a
natural equivalence relation on the set of Lie group extensions of G by Z. We
write ExtpG,Zq for the set of equivalence classes. Now we consider an abelian
Lie group Z as a trivial G-module and recall the concept of Lie group coho-
mology and its relation to central extensions of Lie groups form [Nee02a]. We
call a map f : G ˆ G Ñ Z that is smooth on a p1, 1q-neighbourhood a cocy-
cle if fp1, g1q “ fpg1, 1q and fpg1, g2q ` fpg1g2, g3q “ fpg1, g1g3qfpg2, g3q for all
g1, g2, g3 P G and write Z2

smpG,Zq for the group of cocycles. Moreover, f is called
coboundary if there exists a map ϕ : GÑ Z which is smooth on an identity neigh-
bourhood such that fpg1, g2q “ ϕpg1g2qϕpg1q

´1ϕpg2q
´1 and ϕp1q “ 1. We write

B2
smpG,Zq for the group of coboundaries. The second group cohomology is defined

as H2
smpG,Zq :“ Z2

smpG,Zq{B
2
smpG,Zq. Now let G be connected. There exists a

canonical bijection H2
smpG,Zq Ñ ExtpG,Zq: If f P Z2

smpG,Zq we obtain a group
Gˆf Z with multiplication pg1, z1q ¨ pg2, z2q :“ pg1g2, z1 ` z2 ` fpg1, g2qq and using
the theorem of local description of Lie groups one obtains a Lie group structure on
Gˆf Z such that Z ãÑ Gˆf Z

q
ÝÑ G becomes a central extension of Lie groups (see

[Nee02a, Proposition 4.2]). Hence, we can describe the Lie group extensions of G
by Z with the Lie group cohomology H2

smpG,Zq. A straightforward calculation

shows that a central extension of Lie groups Z ãÑ Ĝ
q
ÝÑ G induces a central ex-

tension of topological Lie algebras LpZq ãÑ LpĜq
Lpqq
ÝÝÑ LpGq. We say that a given

central extension of topological Lie algebras V ãÑ ĝ Ñ γ integrates to a central
extension of Lie groups Z ãÑ Ĝ Ñ G, if the derived Lie algebra extension of this
Lie group extension is given by V ãÑ ĝÑ γ.

Central extensions play an important role in the theory of infinite-dimensional
Lie groups. For example, every Banach-Lie algebra g is a central extension zpgq ãÑ

gÑ adpgq, where the centre zpgq and adpgq are integrable to a Banach-Lie group;
integrability of g corresponds to the existence of a corresponding central Lie group
extension (see [vK64]).

Inspired by the seminal work of van Est and Korthagen, Neeb elaborated the
general theory of central extensions of Lie groups that are modelled over locally
convex spaces in 2002 (see [Nee02a]). In particular, Neeb showed that certain
central extensions of Lie algebras can be integrated to central extensions of Lie
groups: If the central extension of a locally convex Lie algebra V ãÑ ĝÑ g (with
a sequentially complete locally convex space V ) is represented by a continuous Lie
algebra cocycle ω : g2 Ñ V and G is a Lie group with Lie algebra g, one considers
the so-called period homomorphism

perω : π2pGq Ñ V, rσs ÞÑ

ż

σ

ωl

where ωl P Ω2pG, V q is the canonical left invariant 2-form on G with ωl1pv, wq “
ωpv, wq and σ is a smooth representative of the homotopy class rσs (the map perω
is well-defined and a group homomorphism see [Nee02a, Definition 5.8]). One
writes Πω for the image of the period homomorphism and calls it the period group

10



Extensions of groups of compactly supported sections

of ω. The important result from [Nee02a] is that if Πω is a discrete subgroup
of V and the adjoint action of g on ĝ integrates to a smooth action of G on ĝ
then V ãÑ ĝ Ñ g integrates to a central extension of Lie groups (see [Nee02a,
Proposition 7.6 and Theorem 7.12]).

Given two central Lie group extensions Z1 ãÑ Ĝ1
q1
ÝÑ G and Z2 ãÑ Ĝ2

q2
ÝÑ G, we

call a Lie group homomorphism ϕ : Ĝ1 Ñ Ĝ2 a morphism of Lie group extensions
if q1 “ q2 ˝ ϕ. In this way, one obtains a category of Lie group extensions and
an object in this category is called universal if it is initial (see [Nee02b, Definition
4.3]). In 2002 Neeb showed that under certain conditions a central extension of a
Lie group is universal in the category of Lie group extensions if its corresponding
Lie algebra extension is universal in the category of central locally convex Lie
algebra extensions (see [Nee02b, Recognition Theorem (Theorem 4.13)]).

The natural next step was to apply the general theory to different types of
Lie groups that are modelled over locally convex spaces. Important infinite-
dimensional Lie groups are current groups. These are groups of the form C8pM,Gq
where M is a compact finite-dimensional manifold and G is a Lie group. In 2003
Maier and Neeb constructed universal central extensions for current groups (see
[MN03]) by reducing the problem to the case of loop groups C8pS1, Gq.

The compactness of M is a strong condition but it is not possible to equip
C8pM,Gq with a reasonable Lie group structure if M is non-compact, although
one has a natural Lie group structure on the group C8c pM,Gq of compactly sup-
ported smooth functions from a σ-compact manifold M to a Lie group G. In
this situation, C8c pM,Gq is the inductive limit of the Lie groups C8K pM,Gq :“
tf P C8pM,Gq : supppfq Ď Ku where K runs through a compact exhaustion of
M . The Lie algebra of C8c pM,Gq is given by C8c pM, gq. In this context, C8c pM, gq
is equipped with the canonical direct limit topology in the category of locally con-
vex spaces. In 2004, Neeb constructed a universal central extension for C8c pM,Gq
in important cases (see [Nee04]).

It is possible to turn the group ΓpM,Gq of sections of a Lie group bundle G over
a compact base manifold M into a Lie group by using the construction of the Lie
group structure of the gauge group from [Woc07] (see [NW09, Appendix A]). The
Lie algebra of ΓpM,Gq is the Lie algebra ΓpM,Gq of sections of the Lie algebra
bundle G that corresponds to G. Hence, the question arises if it is possible to
construct central extensions for these groups of sections. Under certain conditions
this is indeed the case and was done in 2009 by Neeb and Wockel in [NW09].

As mentioned above, one way to show the universality of a Lie group extension
is to show the universality of the corresponding locally convex Lie algebra exten-
sion and then use the Recognition Theorem from [Nee02b]. Janssens and Wockel
constructed a universal central extension of the Lie algebra ΓcpM,Gq of compactly
supported smooth sections in a Lie algebra bundle over a σ-compact manifold in
the recent paper [JW13] from 2013. They also applied this result to the central
extension constructed in [NW09]: By assuming the base manifold M to be com-
pact they obtained a universal Lie algebra extension that corresponds to the Lie
group extension described in [NW09]15; they were able to show the universality of

15Analogously to Theorem G a further technical condition about the cardinality of a certain
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this Lie group extension.
In 2013, Schütt generalised the construction of the Lie group structure from

[Woc07] by endowing the gauge group GaucpP q of compactly supported morphisms
of a principal bundle over a not necessary compact base manifold M with a Lie
group structure, under mild hypotheses (see [Sch13]). It is clear that we can use an
analogous construction to endow the group of compactly supported sections of a
Lie group bundle over a σ-compact manifold with a Lie group structure. Similarly,
Neeb and Wockel already generalised the construction of the Lie group structure
on a gauge group with compact base manifold from [Woc07] to the case of section
groups over compact base manifolds.

The principal aim of Chapter 4 is to construct a central extension of the Lie group
of compactly supported smooth sections on a non-compact σ-compact manifold
such that its corresponding Lie algebra extension is represented by the Lie algebra
cocycle described in [JW13] respectively Remark 3.24. This is a complementary
result to the ones obtained in [NW09] (compact base manifold). The proof, which
combines arguments from [Nee04] and [NW09] with new ideas, is discussed in
Section 4.1 and Section 4.2. The main result is Theorem 4.53 where we show:

Theorem G. Let G be a finite-dimensional Lie algebra bundle with non-compact
but σ-compact base manifold that is associated to a principal bundle H ãÑ P ÑM .
If the group H from Definition 4.3 is finite then the canonical cocycle

ω : ΓcpM,Gq2 Ñ Ω1
cpM,Vq{dΓcpM,Vq, pγ, ηq ÞÑ rκpγ, dηqs

can be integrated to a cocycle of Lie groups.

In the case of a compact base manifold M , corresponding results were obtained in
[NW09, Theorem 4.24 and Theorem 4.26]16. One step is to show that the period

group of ω is a discrete subgroup of Ω
1

cpM,Vq :“ Ω1
cpM,Vq{dΓcpM,Vq. This will

be discussed in Theorem 4.36 and is a complementary result to [NW09, Theorem

4.14]. In Section 4.2, we show that the adjoint action of ΓcpGq on {ΓcpGq :“

Ω
1

cpM,Vq ˆω ΓcpGq can be integrated to a Lie group action of ΓcpGq on {ΓcpGq.
This is a complementary result to [NW09, Theorem 4.25].

In the second part of Chapter 4 (Section 4.3), we turn to the question of uni-
versality. Once the central extension is constructed, its universality is not hard to
see, mainly because we can use the arguments from the compact case ([JW13]).

We prove:

Theorem H. Let G ãÑ G Ñ M be a finite-dimensional Lie group bundle with a
semisimple connected typical fibre G such that it is associated to the frame principal
bundle AutpGq ãÑ FrpGq Ñ M and the group AutpGq is finite. Moreover, let M
be non-compact and σ-compact. Then we obtain a universal Lie group cocycle that

group is needed.
16In [NW09] Neeb and Wockel also considered the case where the typical fibre of the Lie group

bundle is infinite-dimensional where as we only consider the case of a finite-dimensional typical
fibre.
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corresponds to the continuous Lie algebra cocycle ω described in Theorem G (or
[JW13]).

Notations and conventions

In the following, we fix some general notations and conventions.17 Notation per-
taining to the respective chapters will be introduced there.

• We write N for the set of integers t1, 2, 3, ...u.
• All locally convex spaces considered are assumed Hausdorff.
• If E is a locally convex vector space and M a manifold, we write C8c pM,Eq

for the space of compactly supported smooth functions from M to E.
• For a fibre bundle q : F Ñ M with total space F , finite-dimensional base

manifold M , projection q and typical fibre E we write E ãÑ F
q
ÝÑ M . For

the space of smooth sections of such a fibre bundle we write ΓpM,F q. If it is
clear form the context what our base manifold M is, we simply write ΓpF q.
In the case that F is a vector bundle we write ΓcpM,F q respectively ΓcpF q
for the space of compactly supported smooth sections.
• Let V be a finite-dimensional vector bundle over a finite-dimensional σ-

compact manifold M . As usual, we write ΩkpM,Vq for the space of V-valued
k-forms on M and Ωk

c pM,Vq for the space of compactly supported V-valued
k-forms on M .
• If V and W are vector spaces, we write LinpV,W q for the space of linear maps

from V to W and in the case of topological vector spaces we write LpV,W q
for the space of continuous linear maps. As usual, we write LpV q :“ LpV, V q
and LpV q˚ for the group of automorphisms of V .
• If g and h are Lie algebras, we write Hompg, hqfor the space of Lie algebra

homomorphisms from g to h and in the case of topological Lie algebras we
write Homctpg, hq for the space of continuous Lie algebra homomorphisms.

• Given a finite-dimensional vector bundle V ãÑ V q
ÝÑ M over a σ-compact

manifold M , a compact set K Ď M and k P N0 we write Ωk
KpM,Vq for the

space of k-forms on M with values in the vector bundle V and support in
K. Using the identification ΩkpM,Vq – ΓpM,ΛkT ˚M b V q we give these
spaces the locally convex vector topology described e.g. in [Glo13] and equip
Ωk
c pM,Vq with the canonical locally convex direct limit topology. Especially

the spaces ΓpVq and ΓcpVq carry the natural locally convex topology de-
scribed e.g. in [Glo13]. (See also Definition 3.8 for further details).
• If V and W are two vector bundles we write V‘W for their Whitney sum.
• Given a group G and an element g P G, we write λg : G Ñ G, h ÞÑ gh

for the left multiplication with g and %h : G Ñ G, h ÞÑ hg for the right
multiplication on G.
• Let f : X ˆ Y Ñ Z be a map. For x0 P X and y0 P Y , we define the maps
fpx0, ‚q : Y Ñ Z, y ÞÑ fpx0, yq and fp‚, y0q : X Ñ Z, x ÞÑ fpx, y0q. Moreover,

17This subchapter of the introduction consist of material published before in the author’s
preprints [Eyn14c] and [Eyn14b]
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we define the map f̌ : X Ñ ZY , x ÞÑ fpx, ‚q. If g : X Ñ ZY is a map, we
define the map ĝ : X ˆ Y Ñ Z, px, yq ÞÑ gpxqpyq.
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1. Diffω(M) as a Lie group for a
manifold M with corners

The first aim of this thesis is to turn the group of real analytic diffeomorphisms of
a compact real analytic manifold with corners into a smooth infinite-dimensional
manifold modelled on the locally convex space of real analytic stratified vector
fields.1 As mentioned in the introduction this generalises results of [DS15] re-
spectively [KM90] to the case of a manifold with corners. Moreover, we follow
[Glo06c] and use the local approach (see introduction). Hence, we also obtain a
new construction for the case of a manifold without boundary.

1.1. Enveloping manifold

Fist, we will prove basic facts about real analytic maps on manifolds with cor-
ners and enveloping manifolds. The primary aim of this section is to show that a
real analytic manifold with corners can be embedded into a real analytic manifold
without corners. As mentioned in the introduction we cannot use a construction
like the double of a manifold because the boundary of a manifold with corners is
not a manifold. Moreover, we cannot use the construction from the smooth case
([DH73, Proposition 3.1] or [Mic80, p. 21]) because of the lack of real analytic
bump functions. Instead we adapt the proof of the existence and uniqueness of
complexifications of real analytic manifolds (see [BW59, Proposition 1] or [DGS14,
Section 2 and Section 3]). With the help of Lemma 1.11, our proof of the exis-
tence of enveloping manifolds (Theorem 1.12) is completely analogous to [BW59,
Proposition 1] (see Appendix B). For technical reasons, in this section we work
with manifolds that are modelled on a quadrant r0,8rm. Of course this definition
of a manifold with corners is equivalent to the one where manifolds with corners
are modelled on sets of the form r0,8rkˆRm´k with k ď m. In Appendix A we
recall some basic definitions and facts concerning manifolds with corners that are
used in this chapter.

Convention 1.1. (a) If x P Rm and ε ą 0 we write Bεpxq (respectively Bεpxq)
for the open (respectively closed) ball in Rm with respect to the Euclidean
norm. Moreover, we write B8ε pxq for the ball in Rm with respect to the
maximum norm.

(b) Let M be an m-dimensional manifold with corners. We write BjM for the
set of points in M of index j (like, for instance, in [Mic80]). Therefore, BjM
is an pm´ jq-dimensional manifold. We write BM :“

Ťm
j“1 B

jM and call BM

1This chapter consist of material published before in the author’s preprint [Eyn15]
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1 Diff ω(M) as a Lie group for a manifold M with corners

the boundary of M . The set B0M is called the interior of M (see Appendix
A for more details).

Remark 1.2. We recall some common definitions and well-known basic facts:
(a) Let U Ď Rm be open and f : U Ñ Rn be a map. The map f is called real

analytic if we can find an open neighbourhood V Ď Cm of U and a complex
analytic function f˚ : V Ñ Cn with f˚|U “ f (see e.g. [GN]2). We write
CωpU ;Rmq for the space of real analytic maps from U to Rm. The space of
complex analytic maps from V to Cm is denoted HolpV ;Cmq; we endow it
with the compact-open topology (see [DS15, Lemma A.7]).

(b) Given a real analytic map f : Rm Ě U Ñ Rn and x P U there exists a 0-
neighbourhood V Ď Rm such that x ` V Ď U and for all v P V we get

fpx ` vq “
ř8

k“0
δkxfpvq
k!

. In this context, δkxf is the k-th Gateaux differential
of f in x. (See [GN]3).

(c) If U is an open connected subset of Rm, f : U Ñ Rn is a real analytic map
and x P U with δkxf “ 0 for all k P N0, then f “ 0 (see e.g. [GN]4).

(d) Let U be an open subset of r0,8rm. We call a map f : U Ñ Rn real analytic
if every x P U has a neighbourhood Ũ Ď Rm such that there exists a real
analytic map f̃ : Ũ Ñ Rn with f̃ |U “ f .

(e) A corner-atlas of a Hausdorff space M is a set of homeomorphisms ϕ : Uϕ Ñ
Vϕ between open subsets U of M and V of r0,8rm such that the transition
maps ψ ˝ ϕ´1 : ϕpUψ X Uϕq Ñ Vψ are real analytic. The space M together
with a maximal corner-atlas is called real analytic manifold with corners.

(f) Let M and N be real analytic manifolds (without corners) and g1, g2 : M Ñ N
be real analytic maps that coincide on a non-empty open subset V Ď M . If
M is connected then g1 “ g2. (See e.g. [DGS14, Lemma 1.7]).

Lemma 1.3. If C Ď Rm is convex, U Ď Rm is open, C̊ ‰ H and CXU ‰ H then
C̊ X U ‰ H.

Proof. Let z P C X U . If z P C̊ we are done. Hence, we can assume that z P BC.

Because C is convex and C̊ ‰ H we have C̊ “ C (see, e.g., [Jar81, p. 104,

Theorem 5]) and BC “ CzC̊ “ C̊zC̊ “ BC̊. Hence z P BC̊. Therefore, every
z-neighbourhood intersects C̊. Thus U X C̊ ‰ H.

Lemma 1.4. Let U be an open subset of r0,8rm and f : U Ñ Rn be a real analytic
map. There exists an open neighbourhood Ũ Ď Rm of U and a real analytic map
f̃ : Ũ Ñ Rn with f̃ |U “ f .

Proof. Given x P U we find εx ą 0 and a real analytic map f̃x : Ũx Ñ Rn defined
on Ũx :“ B8εxpxq such that Ũx X r0,8r

mĎ U and f̃x|UXŨx “ f . Let x, y P U with

Ũx X Ũy ‰ H and z P Ũx X Ũy. Now we define z̃ by z̃i :“ zi if zi ě 0 and z̃i :“ ´zi
if zi ă 0. Obviously z̃ P r0,8rm. We show that z̃ P Ũx X Ũy. If zi ě 0 we have

2Probably this will be stated in Definition 2.2.2.
3Probably this will be stated in Lemma 2.2.6.
4Probably this will be stated in Theorem 2.2.8.
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1.1 Enveloping manifold

|z̃i´xi| ă εx. On the other hand, if zi ă 0, we have xi ě 0, xi´zi “ |xi´zi| ă εx.
We calculate |xi ´ z̃i| “ |xi ` zi| ď xi ´ zi ă εx. Hence, z̃ P Ũx. Analogously one
can show that z̃ P Ũy. We conclude that r0,8rmXŨxX Ũy ‰ H. Using Lemma 1.3,
we deduce that C :“s0,8rmXŨx X Ũy ‰ H. We have f̃x|C “ f |C “ f̃y|C . Since
Ũx X Ũy is convex, we get f̃x|ŨxXŨy “ f̃y|ŨxXŨy . Now we define Ũ :“

Ť

xPU Ũx and

f̃ : Ũ Ñ Rn, z ÞÑ f̃xpzq if z P Ũx. The construction above ensures that the map f̃
is well-defined. Moreover, f̃ is real analytic and f̃ |U “ f .

Convention 1.5. Given a manifold M we write AMx for the set of charts around
a point x P M . If N is a further manifold, f : M Ñ N a map and ψ P ANfpxq, we

write fϕ,ψ :“ ψ ˝ f ˝ ϕ´1|ϕpf´1pUψqq for the local representative of f in the charts
ϕ : Uϕ Ñ Rm of M and ψ : Uψ Ñ Rm of N .

Definition 1.6. (Cf. [DH73, Proposition 3.1] respectively [Mic80, p. 21]) Let M
be a real analytic manifold with corners. A real analytic manifold without corners
M̃ is called an enveloping manifold for M if M Ď M̃ and for every x P M there
exists a chart ϕ̃ : Ũ Ñ Ṽ of M̃ around x such that ϕ̃pŨ XMq “ Ṽ X r0,8rm and

ϕ̃|
ŨXr0,8rm

ŨXM
is a chart of M . In other words: M is an equidimensional submanifold

of M̃ with corners such that its submanifold structure coincides with its original
manifold structure. The chart ϕ̃ is called an enveloping chart of M .

Lemma 1.7. Let M ‰ H be a real analytic manifold with corners and M̃ an
enveloping manifold of M . Moreover, let N be a real analytic manifold without
corners and g1, g2 : M̃ Ñ N be real analytic maps. If g1|M “ g2|M , then there
exists an open neighbourhood V Ď M̃ of M such that g1|V “ g2|V .

Proof. Let x PM and ϕ P AM̃x with ϕpMXUϕq “ VϕXr0,8r
m such that ϕ|

VϕXr0,8rm

MXUϕ

is a chart of M . Let ψ be a chart of N around g1pxq “ g2pxq. Without loss of
generality, we can assume that g1pUϕq, g2pUϕq Ď Uψ and we assume that Vϕ is

connected. We get gϕ,ψ1 |VϕXr0,8rm “ gϕ,ψ2 |VϕXr0,8rm . Because of Lemma 1.3 the maps

gϕ,ψ1 and gϕ,ψ2 coincide on Vϕ. Hence, g1 and g2 coincide on an open neighbourhood
of x.

The following lemma comes from [DGS14, Lemma 2.1 (a)].

Lemma 1.8. Let X be a regular topological Hausdorff space, K Ď X be a compact
subset and pUiqiPI be an open cover of K. Then there exists an open cover pVjqjPJ
of K such that, given j1, j2 P J with Vj1 X Vj2 ‰ H, there exists i P I with
Vj1 Y Vj2 Ď Ui.

In the following lemma, we prove an existence result for extensions of real an-
alytic maps on real analytic manifolds with corners. The proof follows the idea
of [DGS14, Lemma 2.2 (a)], where Dahmen, Glöckner and Schmeding showed an
analogous result for extensions to complexifications.

Lemma 1.9. Let M and N be real analytic manifolds with corners, M be com-
pact and M̃ (respectively Ñ) be an enveloping manifold of M (respectively N). If
f : M Ñ N is a real analytic map, then there exists an open neighbourhood U Ď M̃
of M and a real analytic map g : U Ñ Ñ with g|M “ f .

17



1 Diff ω(M) as a Lie group for a manifold M with corners

Proof. Given x P M , let ϕ1 : U1 Ñ V1 be an enveloping chart of M around x and
ϕ2 : U2 Ñ V2 be an enveloping chart of N around fpxq with fpU1XMq Ď U2XN .

In particular, ϕ1|
V1Xr0,8rm

U1XM
and ϕ2|

V2Xr0,8rn

U2XN
are charts of M and N respectively with

n : dimpNq. There exists a real analytic map ψ : V1 X r0,8r
mÑ V2 X r0,8r

n such
that the diagram

U1 XM
f //

ϕ1

��

U2 XN

ϕ2

��
V1 X r0,8r

m ψ // V2 X r0,8r
n

commutes. Let ψx : Vx Ñ Rn be a real analytic map defined on an open neighbour-
hood Vx of V1 X r0,8r

m such that ψx|V1Xr0,8rm “ ψ. Without loss of generality,
we can assume that Vx Ď V1 and ψxpVxq Ď V2. Now we define the open set
Ux :“ ϕ´1

1 pVxq and the real analytic map gx : Ux Ñ U2 Ď Ñ by gx :“ ϕ´1
2 ˝ψx ˝ϕ1.

We have gx|UxXM “ f |UxXM . By applying [DGS14, Lemma 2.1 (a)] or Lemma
1.8 we can find an open cover pWjqjPI of M such that given j1, j2 P I with
Wj1 XWj2 ‰ H there exists x P M with Wj1 YWj2 Ď Ux. Every point x P M is
contained in a set Wi. We can replace Wi with the connected component of x in
Wi and hence we can assume all Wi to be connected and intersecting M . For i P I
there exists xi P M with Wi Ď Uxi . Now let gi : Wi Ñ Ñ be given by gi :“ gxi |Wi

.
If i, k P I with Wi XWk ‰ H, there exists x P M with Wi YWk Ď Ux. We have
gi|WiXM “ f |WiXM “ gx|WiXM . Because Wi is connected, Lemma 1.7 implies that
gi “ gx|Wi

. Analogously, we get gk “ gx|Wk
and hence, gi|WiXWk

“ gk|WiXWk
. Now,

we define the open set U :“
Ť

iPI Ui and the real analytic map g : U Ñ Ñ by
g|Wi

:“ gi. By construction g is well-defined and real analytic.

In the following lemma, we show that a real analytic diffeomorphism of mani-
folds with corners has a diffeomorphic real analytic extension to open subsets of
enveloping manifolds. Our proof is analogous to [DGS14, Lemma 2.2 (e)] (the
analogous result for extensions to complexifications).

Lemma 1.10. Let f : M Ñ N be a real analytic diffeomorphism between real
analytic manifolds with corners. Moreover, let M̃ and Ñ be enveloping manifolds
of M and N respectively and U Ď M̃ be an open neighbourhood of M . Furthermore,
let V Ď Ñ be an open neighbourhood of N , f̃ : U Ñ Ñ be an extension of f and
g̃ : V Ñ M̃ be an extension of g :“ f´1. We can find a neighbourhood X Ď U of M
such that f̃ |X is a real analytic diffeomorphism onto its open image Y :“ f̃pXq Ď V
with inverse g̃|XY .

Proof. Let X be the union of all connected components of f̃´1pV q that intersect
M . Thus g̃ ˝ f̃ |X : X Ñ M̃ is real analytic and g̃ ˝ f̃ |XXM “ idXXM . Hence
g̃ ˝ f̃ |X “ idX . Let Y be the union of all connected components of g̃´1pXq that
intersect N . As above f̃ |X ˝ g̃|Y : Y Ñ M̃ is real analytic and f̃ |X ˝ g̃|Y “ idY .
Now we show that Y “ f̃pXq. The inclusion “Ď” follows from f̃ |X ˝ g̃|Y “ idY . It
remains to show that f̃pXq Ď Y . With g̃ ˝ f̃ |X “ idX we get f̃pXq Ď g̃´1pXq. If C
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1.2 Local manifold structure

is a connected component of f̃´1pV q that intersects M then f̃pCq is a connected
subset of g̃´1pXq and intersects N . Hence, f̃pCq Ď Y .

The following technical lemma is a crucial tool for proving Theorem 1.12.

Lemma 1.11. Let U Ď r0,8rm be open. Given an open neighbourhood O of

U in Rm there exists an open neighbourhood Ũ of U in Rm such that Ũ Ď O,

Ũ X r0,8rm“ U and Ũ X r0,8rm“ U .

Proof. Given z P Rm, we define z` P r0,8r
m by pz`qi :“ |zi|. Hence, the map

λ : Rm Ñ r0,8rm, z ÞÑ z` is continuous and λ´1pUq is open in Rm. Given x P U
there exists εx ą 0 with Bεxpxq X r0,8r

mĎ U and Bεxpxq Ď λ´1pUq. The set
Ũ1 :“

Ť

xPU Bεxpxq is open in Rm. We also have Ũ1 X r0,8r
m“ U because U Ď Ũ1

and Ũ1 X r0,8r
m“

Ť

xPUpBεxpxq X r0,8r
mq Ď U . Hence U “ Ũ1 X r0,8rm Ď

Ũ1 X r0,8r
m. Now let z P Ũ1 X r0,8r

m. There exists a sequence pznqnPN in Ũ1

with limnÑ8 zn “ z. Hence, z “ λpzq “ limnÑ8 λpznq. But with Ũ1 Ď λ´1pUq we

get λpznq P U . Thus z P U . We conclude that Ũ1 X r0,8r
m“ U . Now let W be a

neighbourhood of U in Rm with U Ď W Ď W Ď O. We define Ũ :“ Ũ1XW and get

Ũ Ď W Ď O and ŨXr0,8rm“ UXW “ U . Hence U “ Ũ X r0,8rm Ď ŨXr0,8rm.
Moreover,

Ũ X r0,8rm“ Ũ1 XW X r0,8rmĎ Ũ1 XW X r0,8rm“ W X U “ U.

Hence, Ũ X r0,8rm“ U .

With Lemma 1.11 it is possible to transfer the proof of [BW59, Proposition 1] or
[DGS14, Proposition 3.1] (existence of complexifications of real analytic manifolds)
to our situation. Making use of Lemma 1.11, our proof is complete analogous to
the one of [BW59, Proposition 1] or [DGS14, Proposition 3.1].

Theorem 1.12. Given a compact real analytic finite-dimensional manifold with
corners M , there exists an enveloping manifold M̃ of M . If M̃1 and M̃2 are
enveloping manifolds of M , then we can find a neighbourhood U1 of M in M̃1, a
neighbourhood U2 of M in M̃2 and a real analytic diffeomorphism ϕ : U1 Ñ U2 with
ϕ|M “ idM .

Proof. See Appendix B.

1.2. Local manifold structure

As mentioned in the introduction we use the “local approach” developed in [Glo06c]
and transfer its line of thought to the case of a compact real analytic manifold M
with corners. In this section we construct an open subset V of ΓωstpTMq that
is small enough such that U :“ texp ˝η : η P Vu is a subset of DiffωpMq. As in
[Glo06c] we control the uniform norm of the vector fields of V and the norms
of the first derivative simultaneously. For the rest of the chapter the manifolds
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1 Diff ω(M) as a Lie group for a manifold M with corners

with corners are modelled on spaces of the form Rm
k :“ r0,8rkˆRm´k instead of

quadrants r0,8rm (see Section 1.1). Of course, both definitions are equivalent.
As in [Mic80], we model groups of diffeomorphisms on spaces of stratified vector
fields.

Conventions and notations

First, we fix conventions and our notation.

Definition 1.13. LetM be a Riemannian manifold without boundary andN ĎM
be a Riemannian submanifold without boundary. We call N totally geodesic if all
geodesics of N are also geodesics of M (cf. [ONe83, Chapter 4; Definition 12 and
Proposition 13]).

Convention 1.14. (a) Let M be an m-dimensional compact real analytic man-
ifold with corners and M̃ be an enveloping manifold of M . Moreover, let MC
be a complexification of M̃ . We assume that there exists a real analytic Rie-
mannian metric g on M̃ such that the submanifolds BjM are totally geodesic
for all j P t1, . . . ,mu. We call such a metric boundary respecting. In this
context Ω̃ Ď TM̃ is the maximal domain of definition of the Riemannian ex-
ponential map exp: Ω̃ Ñ M̃ . Analogously let ΩBjM be the maximal domain
of definition of the Riemannian exponential map that comes from induced
Riemannian metric on BjM for j P t0, . . . ,mu.

(b) We write Brpxq for balls with radius r in Rm and BC
r pxq for balls with radius r

in Cm. Moreover, we define Bk
r pxq :“ BrpxqXRm

k with Rm
k “ r0,8r

kˆRm´k.

Example 1.15. An example of a real analytic manifold with corners is e.g. a
tetrahedron as a submanifold of R3.

Remark 1.16. There exist finitely many enveloping charts ϕ̃i : Ũi,6 Ñ B6p0q
with i “ 1, . . . , n and induced M-charts ϕi : Ui,6 Ñ Bki

6 p0q such that M Ď
Ťn
i“1 ϕ

´1
i pB

ki
1 p0qq (Compare the smooth case in [Glo06c, 4.1] or [Lan01, Theo-

rem 3.3]). We use the shorthand notation Ki :“ ϕ̃´1
i pB5p0qq. There exist an open

subset U˚i of MC :“ pM̃qC, an open subset V ˚i of Cm and a complex analytic dif-
feomorphism ϕ˚i : U˚i Ñ V ˚i such that Ki Ď U˚i , B5p0q Ď V ˚i and ϕ˚i |Ki “ ϕ̃i|Ki
(see [DGS14, Lemma 2.2 (a) and (e)]).

Convention 1.17. • On Rm and Cm we use the Euclidean norm.
• If f is a differentiable map on an open subset U of Rm

k (respectively Rm

respectively Cm) then f 1 always means the first derivative as a map from U
to LpRmq (respectively LpCmq). We equip LpRmq (respectively LpCmq) with
the operator norm }‚}op.
• Let K P tR,Cu. If f : X Ñ Km is a map and Y Ď X, we write
}f}Y8 :“ sup t}fpxq} : x P Y u and }f}8 :“ }f}X8 for the uniform norm. More-
over we write }f}08 :“ }f}8 and define }g}8 :“ sup t}gpxq} : x P Xu for
g : X Ñ LpKmq. If X Ď Km and f is differentiable, we write }f}18 :“
maxp}f}8, }f

1}8q and }f}1Y :“ sup t}fpxq}, }f 1pxq}op : x P Y u.
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1.2 Local manifold structure

• We fix charts ϕi, ϕ̃i and ϕ˚i as in Remark 1.16. Moreover, we define

Ũi,r :“ ϕ̃´1
i pBrp0qq and Ui,r :“ ϕ´1

i pB
ki
r p0qq

for i P t1, . . . , nu and r Ps0, 6s.
• If U is a finite-dimensional real analytic manifold, we write ΓωpTUq for the

space of real analytic vector fields of U .
• If U is a complex finite-dimensional manifold, we write Γ8C pTUq for the space

of complex analytic vector fields of U .
• Let gi be the Riemannian metric on B6p0q that is induced by g via ϕ̃i and

let expi : Ω̃i Ñ B6p0q be the exponential map on B6p0q that is induced by gi.
• If η P ΓωpTMq we define ηpiq :“ dϕi ˝ η ˝ϕ

´1
i : Bki

6 p0q Ñ Rm. If U is an open

neighbourhood of M in M̃ (respectively in MC) and η P ΓωpTUq (respectively
η P Γ8C pTUq) we define ηpiq :“ dϕ̃i ˝ η ˝ ϕ̃

´1
i : ϕ̃ipUi,6 X Uq Ď B6p0q Ñ Rm

(respectively ηpiq :“ dϕ˚i ˝ η ˝ ϕ
˚
i
´1 : ϕ˚i pU

˚
i X Uq Ď V ˚i Ñ Cm).

• If η P ΓωpTMq we can use the Lemma 1.7 and Lemma 1.9 to obtain an
extension that is a real analytic vector field η̃ of a neighbourhood of M in M̃ .
Analogously, we write η˚ for a complex analytic extension to a vector field on
an open neighbourhood of M in the complex analytic manifold MC “ pM̃qC.

• If f P CωpB
k

Rp0q;Rmq we write f̃ for an real analytic extension to an open

neighbourhood of B
k

Rp0q in Rm and f˚ for an real analytic extension to an

open neighbourhood of B
k

Rp0q in Cm.
• Given a compact connected subset K of a topological space X, we call a

sequence of open connected relatively compact subsets pUnqnPN of X a con-
nected fundamental sequence of K if Un Ě Un`1 Ě K for all n P N and
pUnqnPN is a neighbourhood basis of K in X (cf. [DS15, A.9]).
• If U is open in Cm and k P t0, 1u we define

Holkb pU ;Cm
q :“

 

f P HolpU ;Cm
q : }f}k8 ă 8

(

.

With }‚}18 : Hol1bpU ;Cmq Ñ r0,8r, f ÞÑ maxp}f}8, }f
1}8q (respectively

}‚}08 :“ }‚}8) the space Holkb pU ;Cmq becomes a Banach space 5. We also
define

HolkεpU ;Cm
q :“

 

f P Holkb pU ;Cm
q|}f}k8 ă ε

(

for ε ą 0 and k P t0, 1u.
• If V is a vector bundle over a manifold M and K is a compact subset of M

then write ΓpV|Kq for the space of germs of vector fields along K. If K is a
compact subset of Cm then we write GpCm;Cm|Kq, for the space of germs of
complex analytic Cm-valued functions along K. If f : U Ñ Cm is a complex
analytic map we write rf sK for the germ of f along K.

5This follows easily from [DS15, A7 and A8].
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1 Diff ω(M) as a Lie group for a manifold M with corners

• If U Ď Cm is open, then we define

Holkb pU ;Cm
q
R :“

 

f P Holkb pU ;Cm
q : fpU X Rm

q Ď Rm
(

.

Analogously, we define GpCm;Cm|KqR.

Definition 1.18. (a) We call a vector field η P ΓωpTMq stratified if

p P BjM ñ ηppq P TpB
jM

for all p P M and write ΓωstpTMq for the subspace of stratified vector fields
of M . (Cf. [Mic80, p. 107]).

(b) A map η : U Ñ Rm defined on a subset U Ď Rm
k is called stratified if

xj “ 0 ñ ηpxqj “ 0

for all x P U and j “ 1, . . . , k. With respect to the canonical identification
this definition coincides with the one of (a). If U is open in Rm

k , we write
CωpU ;Rmqst for the subspace of stratified real analytic maps. (Cf. [Gor13,
Definition 4.0.7])

(c) Let K P tR,Cu, U Ď Km be open and Bk
r p0q Ď U . A K-analytic map

f : U Ñ Km is called stratified along Bk
r p0q if

xj “ 0 ñ ηpxqj “ 0

for all x P Bk
r p0q and j “ 1, . . . , k. We write CωpU ;Rmqst (in the case K “ R)

and HolpU ;Cmqst (in the case K “ C) for the subspaces of stratified maps
along Bk

r p0q on U .

(d) A germ rf s P GpCm;Cm|B
k

rp0qq is called stratified if one and hence all

representatives are stratified along Bk
r p0q. We write GpCm;Cm|B

k

rp0qqst
for the subspaces of stratified germs along Bk

r p0q. Analogously, we define

GpCm;Cm|B
k

rp0qq
R
st.

Remark 1.19. A section η P ΓωpTMq is stratified if and only if for all i P
t1, . . . , nu there exists R P r1, 5s such that ηpiq : B

ki
R p0q Ñ Rm is stratified.

Topological considerations

In this subsection, we elaborate on topological foundations for constructions in the
sequel. As we want to model DiffωpMq over the space of stratified real analytic
vector fields, the so called Silva spaces play an important role.

In the following definition we recall the definition of a Silva space for the con-
venience of the reader from [Glo11, p. 260] respectively [Les85]:

Definition 1.20. A locally convex space is called a Silva space if it is the direct
limit of Banach spaces in the category of locally convex spaces over the index set
N such that the transition maps are injective compact operators.
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1.2 Local manifold structure

The facts from the following lemma about Silva spaces are direct consequences
of [Glo11, p. 261, Proposition 4.5]. See also [Les85] and [Flo71].

Lemma 1.21. Let E be a Silva space over an inductive system pEi, Ti,jq with the
canonical morphisms ϕi : Ei Ñ E. Then the following holds:

(a) The space E is Hausdorff.
(b) The topology on E coincides with the inductive limit topology in the category

of topological spaces.
(c) Let pUiqiPN be a sequence of open sets Ui Ď Ei such that pϕipUiqq is an

ascending sequence of subsets of E. Then U :“
Ť

iPN Ui Ď E is open in E.
Moreover, a map f : U Ñ F to a Hausdorff locally convex space F is smooth
if f ˝ ϕn : Un Ñ F is smooth for all n P N.

Remark 1.22. Using Lemma 1.21 (b), we can conclude that a closed subspace F
of E is a Silva space over the inductive system pFi, Ti,j|Fiq with Fi :“ ϕ´1

i pF q.
6

As in the proof of [DS15, Appendix A.7], we use the Cauchy integral formula,
in the following lemma, to obtain an upper bound of the derivative of a complex
analytic function.

Lemma 1.23. If U and V are open subsets of Cm such that V is relatively compact
and V Ď V Ď U then the map res : Hol0bpU ;Cmq Ñ Hol1bpV ;Cmq, f ÞÑ f |V is
continuous and linear.

Proof. Let µ : Cm ˆ Cm Ñ Cm, px, yq ÞÑ x ` y be the addition on Cm. Now

V ˆt0u Ď µ´1pUq. With Wallace’s Lemma we can find ε ą 0 with V `B
C
ε p0q Ď U .

Hence, for all p P V we have Bεppq Ď U . If v P Cm with }v} “ 1 we can use the
Cauchy integral formula and we obtain

}f 1ppqpvq} ď
2

ε
¨ sup
qPB

C
ε ppq

}fpqq} ď
2

ε
¨ }f}8.

Hence, }f 1}V8 ď
2
ε
¨ }f}U8.

Definition 1.24. Let K be a connected compact subset of Cm and pUnqnPN
a connected fundamental sequence of K. As in [DS15, Appendix A.10] we
give GpCm;Cm|Kq the direct limit topology induced by the inductive system
Hol0bpUn;Cmq Ñ Hol0bpUn`1;Cmq, f ÞÑ f |Un`1 in the category of locally convex
spaces. The following commutative diagram

¨ ¨ ¨Hol0bpUn;Cmq

res

((

res // Hol0bpUn`1;Cmq ¨ ¨ ¨

¨ ¨ ¨Hol1bpUn;Cmq

) 	

77

res // Hol1bpUn`1;Cmq ¨ ¨ ¨

) 	

66

6In fact let X “
Ť

iPNXi be an ascending sequence of topological spaces. We give X the
inductive limit topology in the category of topological spaces. If Y Ď X is closed we write
Oi for the induced topology of X on Y and Ol for the inductive limit topology of the system
Y “

Ť

iPNpXi X Y q. The map id: pY,Olq Ñ pY,Oiq is obviously continuous and bijective. It
is also a closed map because Y is closed.
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1 Diff ω(M) as a Lie group for a manifold M with corners

implies that GpCm;Cm|Kq is the direct limit of the inductive system
Hol1bpUn;Cmq Ñ Hol1bpUn`1;Cmq, f ÞÑ f |Un`1 in the category of locally convex
spaces.

In [DS15, A.10] it was shown that GpCm;Cm|Kq is a Silva space realised as the
inductive limit lim

ÝÑ
Hol0bpUn;Cmq. In the following we show that GpCm;Cm|Kq also

is a Silva space realised as the inductive limit lim
ÝÑ

Hol1bpUn;Cmq.

Lemma 1.25. Let U and V be open subsets of Cm such that V is relatively compact
and V Ď V Ď U . Then the restriction T1 : Hol1bpU ;Cmq Ñ Hol1bpV ;Cmq, η ÞÑ η|V
is a compact operator. Hence, if K Ď Cm is connected and compact with a con-
nected fundamental sequence pUnqnPN then the space GpCm;Cm|Kq is a Silva space

realised as the inductive limit lim
ÝÑ

Hol1bpUn;Cmq. Moreover, GpCm;Cm|B
k

rp0qq
R
st is

a Silva space realised as the inductive limit lim
ÝÑ

Hol1bpUn;CmqRst (see Remark 1.22).

Proof. We choose an open relatively compact subset W of Cm such that V Ď

W Ď W Ď U . From [KM90, Theorem 3.4] and [DS15, A. 10] we deduce that the
map T0 : Hol0bpU ;Cmq Ñ Hol0bpW ;Cmq, η ÞÑ η|W is a compact operator. Now we
consider the following diagram:

Hol1bpU ;Cmq
T1 //

_�

��

Hol1bpV ;Cmq

Hol0bpU ;Cmq
T0 // Hol0bpW ;Cmq

res

OO

where the second vertical arrow is the restriction to V . Because T0 is compact and
both vertical arrows are continuous and linear, T1 is also compact.

Definition 1.26. (a) We put a topology on the germs of vector fields around
a compact set in the same way as Kriegl and Michor (see [KM90]) or Dah-
men and Schmeding (see [DS15]). Hence, we give ΓωpTM̃ |Mq the subspace
topology with respect to ΓωpTM̃ |MqC “ Γ8C pTMC|Mq. With help of the
bijection ΓωpTMq Ñ ΓωpTM̃ |Mq, η ÞÑ rη̃s we turn ΓωpTMq into a locally
convex space. Therefore, the closed subspace ΓωstpTMq becomes a locally
convex space. Given R P r1, 6r we use [DS15, Lemma A.16] and see that

ΓωstpTMq Ñ
n
ź

i“1

GpCm;Cm
|B

ki
R p0qq

R
st, η ÞÑ rη˚piqs

is a linear topological embedding with closed image.
(b) Given ε ą 0, r P r1, 6r and k P t0, 1u we write

Bkr,ε :“
!

η P ΓωstpTMq : p@i P t1, . . . , nuq }ηpiq}
k

B
ki
r p0q

ă ε
)

.

Lemma 1.27. If r Ps0, 6r, ε ą 0 and f : Bk
6 p0q Ñ Rm is a real analytic map with

}f}1
B
k
r p0q

ă ε then there exists a complex analytic map f˚ : U Ñ Cm with }f˚}18 ă ε

on an open subset U Ď Cm with B
k

rp0q Ď U such that f˚|
B
k
r p0q

“ f |
B
k
r p0q

.

24



1.2 Local manifold structure

Proof. We define the real analytic map

ϕ : B
k

rp0q Ñ BCm
ε p0q ˆBLpCmq

ε p0q, x ÞÑ pfpxq, f 1pxqq,

where we consider B
k

rp0q as a real analytic manifold with corners. We find a

connected open neighbourhood U Ď Cm of B
k

rp0q and an extension ϕ˚ : U Ñ

BCm
ε p0qˆB

LpCmq
ε p0q of ϕ. If x P Bki

r p0q and v P Rm, we get ϕ˚1
1
pxqpvq “ f 1pxqpvq “

ϕ˚2pxqpvq ([GN]). Using the linearity over C we conclude that ϕ˚1
1
pxq “ ϕ˚2pxq for

x P Bki
r p0q. Hence ϕ˚1

1
“ ϕ˚2 . Therefore, ϕ˚1 is an extension of f as needed.

The sets Bkr,ε in the following lemma will be the domains of definition of the
chart around the identity of DiffωpMq in the next section.

Lemma 1.28. Given ε ą 0, r P r1, 6r and k P t0, 1u, the set Bkr,ε is an open
0-neighbourhood in ΓωstpTMq.

Proof. For i “ 1, . . . , n, let pU i
nqnPN be a connected fundamental sequence of B

ki
r p0q

in Cm. Then

U i :“ Gkε pCm;Cm
|B

ki
r p0qq :“

ď

nPN

“

HolkεpU
i
n;Cm

q
‰

B
ki
r p0q

is open in GpCm;Cm|B
ki
r p0qq because the right-hand side is an ascending union.

Hence, the set

p:q :“
 

η P ΓωstpTMq : p@iq rη˚piqs P U i
(

is open in ΓωstpTMq. Using Lemma 1.27, we find:

p:q “
 

η P ΓωstpTMq : p@iq pDn P Nq rpη˚qpiqs “ rpηpiqq˚s P
“

HolkεpU
i
n;Cm

q
‰(

“
 

η P ΓωstpTMq : p@iq pDn P Nq ηpiq has an extension η˚piq P HolkεpU
i
n;Cm

q
(

“

!

η P ΓωstpTMq : p@iq }ηpiq}
k

B
ki
r p0q

ă ε
)

“ Bkr,ε.

A local chart around the identity

In order to apply the theorem about the local description of Lie groups in the
sequel, we now endow a special subset of DiffωpMq that contains the identity with
a manifold structure.

The following remark transfers considerations from [Glo06c, p. 11] to the real
analytic case.

Remark 1.29. Obviously we have

expipT ϕ̃ipvqq “ ϕ̃ipexppvqq

25



1 Diff ω(M) as a Lie group for a manifold M with corners

for all v P T ϕ̃´1
i pΩ̃iq and

expipx, vq “ ϕ̃ipexppT ϕ̃´1
i px, vqqq

for px, vq P Ω̃i. Moreover, we have

expipx, 0q “ x and d2 expipx, 0; ‚q “ idRm

for all x P B6p0q.

Weakening [Glo06a, Theorem 2.3] to our situation, the analogous statement to
[Glo06c, Proposition 3.1] in the analytic case is:

Lemma 1.30. Let K P tR,Cu, P Ď Kn and U Ď Km be open and f : P ˆU Ñ Km

be a K-analytic map. Moreover, let px0, y0q P P ˆ U and d2fpx0, y0; ‚q P GLpKmq.
There exists an open y0-neighbourhood U 1 Ď U and an open x0-neighbourhood
P 1 Ď P such that:

• For all x P P 1 the map fpx, ‚q : U 1 Ñ Km has open image and is a K-analytic
diffeomorphism onto its image;
• The set W :“

Ť

xPP 1 txuˆfpx, U
1q is open in KnˆKm and the map P 1ˆU 1 Ñ

W, px, yq ÞÑ px, fpx, yqq is a K-analytic diffeomorphism with inverse function
W Ñ P 1 ˆ U 1, px, zq ÞÑ px, fpx, ‚q´1pzqq;
• There exists δ ą 0 such that for all x P P 1 we have Bδpfpx, y0qq Ď fpx, U 1q

and W 1 :“
Ť

xPP 1 txu ˆBδpfpx, y0qq Ď W is open.

The analogous statement to [Glo06c, 3.2] in the real analytic case is:

Lemma 1.31. There exists an εexp ą 0 such that:

(a) We have B5p0q ˆBεexpp0q Ď Ω̃i Ď B6p0q ˆ Rm for all i P t1, ..., nu;

(b) For all x P B5p0q and i P t1, ..., nu the map expi,x :“ expipx, ‚q : Bεexpp0q Ñ Rm

has open image and is a real analytic diffeomorphism onto its image. Moreover,
the map B5p0qˆBεexpp0q Ñ B5p0qˆRm, px, yq ÞÑ px, expipx, yqq has open image
and is a real analytic diffeomorphism onto its image.

Proof. Let i P t1, ..., nu. Given x P B6p0q we use Lemma 1.30 to find rx ą 0 and
εx ą 0 such that Brxpxq ˆ Bεxp0q Ď Ω̃i and expipy, ‚q : Bεxp0q Ñ B6p0q has open
image and is a real analytic diffeomorphism onto its image for all y P Brxpxq
and Brxpxq ˆ Bεxp0q Ñ Brxpxq ˆ Rm, py, vq ÞÑ py, expipy, vqq is a real ana-
lytic diffeomorphism onto its image. We find finitely many x1, . . . , xk P B6p0q
such that B5p0q Ď

Ťk
j“1Brxj

pxjq and set εiexp :“ minj εxj ą 0. Now we set

εexp :“ mini“1,...,n ε
i
exp. Given i P t1, ..., nu and y P B5p0q we find j such that

y P Brxj
pxjq. Hence, tyu ˆ Bεexpp0q Ď Ω̃i and expipy, ‚q : Bεexpp0q Ñ B5p0q

is a real analytic diffeomorphism onto its open image. Moreover, the map
B5p0q ˆ Bεexpp0q Ñ B5p0q ˆ Rm, px, yq ÞÑ px, expipx, yqq is injective and a local
diffeomorphism. Hence, it has open image and is a real analytic diffeomorphism
onto its image. Therefore, we find εexp as needed.
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Remark 1.32. Using Remark 1.29, we make the following observation: For all
i P t1, . . . , nu, x P B5p0q and w P Bεexpp0q we have exppT ϕ̃´1

i px,wqq P Ui,6 and
exppT ϕ̃´1

i px,wqq “ ϕ̃´1
i pexpipx,wqq.

In the following definition, we construct a map M Ñ M̃ from a vector field with
the help of the Riemannian metric in the usual way (cf., e.g., [Glo06c, 4.8]).

Definition 1.33. (a) Let r P r1, 5s. If η P B0
r,εexp

then impηq Ď Ω̃ because

px, ηpiqpxqq P Ω̃i for x P B
ki
r p0q. In this situation, we define the real analytic

map

ψη : M Ñ M̃, p ÞÑ exppηppqq.

(b) For i P t1, . . . , nu, U Ď Bki
5 p0q open and η P CωpU ;Rmqst with }η}U8 ă εexp

we define the real analytic map

ψiη : U Ñ B6p0q, x ÞÑ expipx, ηpxqq.

Lemma 1.34. For r P r1, 5s and η P B0
r,εexp

we get ψηpUi,rq Ď Ũi,6 and

ψη|Ui,r “ ϕ̃´1
i ˝ ψiηpiq ˝ ϕi|Ui,r .

Proof. Given p P Ui,r we use Remark 1.32 and calculate

ψηppq “ ψηpϕ
´1
i pϕippqqq “ exppTϕ´1

i ˝ Tϕi ˝ η ˝ ϕ
´1
i ˝ ϕippqqq

“ exppTϕ´1
i pϕippq, ηpiqpϕippqqq “ ϕ̃´1

i pexpipϕippq, ηpiqpϕippqqqq “ ϕ̃´1
i ˝ ψiηpiq ˝ ϕippq

As is [Glo06c] the next step is to choose the vector fields η P Γωst.pTMq small
enough, so that ψηpMq ĎM and ψη P DiffωpMq.

Remark 1.35. If A P LpRmq then pid, Aq : Rm Ñ Rm ˆ Rm is linear with
}pid, Aq}op ď 1` }A}op.

The following lemma is a stronger version of [Glo06c, Lemma 3.7] in the case
of open sets with corners and with a variable radius and control of the norms.
In order to control the distance of ψη to the identity we have to choose η small
enough.

Lemma 1.36. Given R Ps0, 5s, l Ps0, Rr and r Ps0, 1r, we find ε Ps0, εexps such
that for all η P CωpBki

R p0q;Rmqst with }η}1
B
ki
l p0q

ă ε and i P t1, . . . , nu the following

assertions hold:
(a) }ψiη

1
pxq ´ idRm }op ă r for all x P Bki

l p0q;

(b) }ψiηpxq ´ x} ă r for all x P Bki
l p0q.

Proof. Obviously it is enough to show the lemma for a fixed i P t1, . . . , nu. Hence,
let i P t1, . . . , nu be fixed for the rest of the proof. As in [Glo06c, Lemma 3.7]
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1 Diff ω(M) as a Lie group for a manifold M with corners

we define H : B5p0q ˆ Bεexpp0q Ñ Rm, px, yq ÞÑ expipx, yq ´ x ´ y and h : B5p0q ˆ
Bεexpp0q Ñ r0,8r, px, yq ÞÑ }H 1px, yq}op. For all x P B5p0q we get d1Hpx, 0; ‚q “
0 and d2Hpx, 0; ‚q “ 0 and so H 1px, 0q “ dHpx, 0; ‚q “ 0 in LpRm ˆ Rm;Rmq.
Hence, Blp0q ˆ t0u Ď h´1pr0, r

r`10
rq and with Wallace’s Lemma we can find ε P

s0,minpεexp,
r
2
qr such that }H 1px, yq}op ă

r
r`10

for all x P Blp0q and y P Bεp0q. Now

let η P CωpBki
R p0q,Rmqst with }η}1

B
ki
l p0q

ă ε.

(a) We have

ψiηpxq “ Hpx, ηpxqq ` x` ηpxq (1.1)

for all x P Bki
l p0q. Hence,

ψiη
1
pxq “ H 1

px, ηpxq; ‚q ˝ pidRm , η
1
pxqq ` idRm `η

1
pxq

for all x P Bki
l p0q. Using Remark 1.35, we see that

}ψiη
1
pxq ´ idRm }op ď }H

1
px, ηpxqq}op ¨ }pidRm , η

1
pxqq}op ` }η

1
pxq}op

ă
r

r ` 10
¨ p1` εq ` ε ď

r

r ` 2
¨

´

1`
r

2

¯

`
r

2
“ r. (1.2)

(b) Let x P Blp0q and y P Bεp0q. Then }px, yq} ď }x} ` }y} ă l ` ε ď 5 ` r
2
.

Hence,

}Hpx, yq} “ }Hpx, yq ´Hp0, 0q} “

›

›

›

›

ż 1

0

dHptx, ty;x, yqdt

›

›

›

›

ď

ż 1

0

}H 1
ptx, tyq} ¨ }px, yq}dt ă

r

r ` 10
¨ }px, yq} ď

r

2
.

Thus, given x P Bki
l p0q, (1.1) implies

}ψiηpxq ´ x} ď }Hpx, ηpxqq} ` }ηpxq} ă r. (1.3)

As in [Glo06c, Lemma 3.7] we will use the following well known fact:

Remark 1.37. Let K P tR,Cu, U Ď Km be open and convex and f : U Ñ Km

be K-analytic with }dfpxq ´ idKm }op ă 1 for all x P U . In this situation, f is
injective and hence, f has open image and is a diffeomorphism onto its image: Let
x ‰ y P U . Since U is convex we can define

τ : r0, 1s Ñ Cm, t ÞÑ dfpp1´ tqx` ty; y ´ xq ´ py ´ xq.

We get }τptq} ă }y ´ x} for t P r0, 1s and so }
ş1

0
τptqdt} ă }y ´ x}. With fpyq ´

fpxq “ y ´ x`
ş1

0
τptqdt we get fpyq ‰ fpxq.

Lemma 1.38. There exists an ε Ps0, εexpr such that for all η P B1
1,ε the map

ψη : M Ñ M̃ is injective.
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1.2 Local manifold structure

Proof. Because of Lemma 1.36, Remark 1.37 and Remark 1.32, we can find ε1 P

s0, εexpr such that ψη|Ul,1 : Ul,1 Ñ M̃ is injective for all η P B1
1,ε1

and l P t1, . . . , nu7.
Similar to [Glo06c, 4.10] one can show that given i, j P t1, . . . , nu we can find
εi,j Ps0, ε1r such that ψη is injective on Ui,1 Y Uj,1 for all η P B1

1,εi,j
: Suppose the

opposite. Then there exist sequences pηkqkPN in ΓωstpTMq, ppkqkPN in Ui,1 and pqkqkPN
in Uj,1 such that for all k P N we have ηk P B1

1, 1
k

, pk ‰ qk and ψηkppkq “ ψηkpqkq.

Because Ui,1 and Uj,1 are compact, we can assume without loss of generality that
there exists p P Ui,1 and q P Uj,1 such that pk Ñ p and qk Ñ q. Hence, ηkppkq Ñ 0p
and ηkpqkq Ñ 0q in TM . Therefore, ψηkppkq Ñ p and ψηkpqkq Ñ q. Thus p “ q.
There exists l P t1, . . . , nu such that p “ q P Ul,1. Hence, there exists k0 such
that pk0 , qk0 P Ul,1. The map ψηk0 : Ul,1 Ñ M is injective. But pk0 ‰ qk0 and
ψηk0 ppk0q “ ψηk0 pqk0q which is a contradiction. Now ε :“ mintεi,j : i, j P t1, . . . , nuu
is as required.

In order to show that the functions ψη map M to M we need the following
definition.

Definition 1.39. For j P t0, . . . ,mu and each connected component C of BjM we
fix a point pjC P C. The submanifold BjM is totally geodesic in M̃ . Hence, for
fixed pjC P B

jM there exists an open neighbourhood U of 0pjC
in TpjC

BjM such that

exppjC
pUq Ď C and exppjC

: U Ñ C is continuous. Thus, we find εjC Ps0, εexpr such

that for all η P B0
1,εjC

we have ψηpp
j
Cq P C.

Remark 1.40. Let j P t0, . . . ,mu and v P TpB
jM with r0, 1sv Ď Ω̃ and

exppr0, 1svq Ď BjM . We consider the curve γ : r0, 1s Ñ BjM , t ÞÑ expptvq. Be-
cause BjM is totally geodesic, we see that γ is also a geodesic for BjM . Hence,
v lies in the domain of definition of the exponential map expBjM of BjM and
expBjMpvq “ exppvq.

Now we can show that the images of the maps ψη lie in M .

Lemma 1.41. There exists ε Ps0, εexpr such that for all η P B1
1,ε the map ψη is

injective and ψηpB
jMq “ BjM . Moreover, if C is a connected component of BjM

then ψηpCq “ C.

Proof. In this proof we use the following special notation: We write expM̃ : ΩM̃ Ñ

M̃ for the exponential map on M̃ and expBjM : ΩBjM Ñ BjM for the exponential
map on BjM for j P t0, . . . ,mu. We use Lemma 1.38 and Definition 1.39 to
choose ε ą 0 such that for all η P B1

1,ε the map ψη : M Ñ M̃ is injective and

ψηpp
j
Cq P C for all j P t0, . . . ,mu and all connected components C Ď BjM . Note

that the strata of M have only finitely many connected components because M
is compact. Now we show by induction over j from m to 0 that ψηpB

jMq “ BjM
for all η P B1

1,ε. The case j “ m is clear. For the inductive step, let C be a

7We can find a real analytic extension f of ψlηplq on an open convex neighbourhood U Ď Rm of

Bkl1 p0q such that }dfpxq ´ id }op ă 1 for all x P U .
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1 Diff ω(M) as a Lie group for a manifold M with corners

connected component of BjM , η P B1
1,ε and Z :“ tx P C : p@t P r0, 1sqψtηpxq P Cu.

Because pjC P Z we get Z ‰ H. Now let p P Z. We have r0, 1sη|Cppq Ď ΩM̃

and expM̃ptη|Cppqq P C for all t P r0, 1s. Remark 1.40 implies η|Cppq P ΩBjM
and expBjMpη|Cppqq “ expM̃pη|Cppqq P C. Hence, there exists a p-neighbourhood
V Ď C such that expBjM ˝η|CpV q Ď C. Let q P V . Because the map r0, 1s Ñ BjM ,
t ÞÑ expBjM ˝ptη|Cpqqq makes sense, is continuous and r0, 1s is connected, we get
expBjMptη|Cpqqq P C for all t P r0, 1s. We conclude that Z is open in C. Now let
p P CzZ. We find t P r0, 1s with ψtηppq P M̃zC. First suppose ψtηppq P CzC Ď
Ť

jăi B
iM . Because ψtη is injective and ψtηpB

iMq “ BiM for all i ą j, we obtain a

contradiction. Now suppose ψtηppq P M̃zC. Then there exists a p-neighbourhood
V in M such that ψtηpV q Ď M̃zC. But C X V is a p-neighbourhood in C. Hence,
Z is closed. Therefore Z “ C. We conclude that ψηpCq Ď C and obtain a
continuous injective map ψη|

C
C : C Ñ C. From ψηpCzCq X C “ H, we conclude

that ψηpCq “ ψηpCq X C. Because C is compact, we see that ψηpCq is closed in
C. But ψη is also an open map because it is injective and continuous (invariance
of domain). We conclude that ψηpCq “ C.

The following Lemma 1.42 is a direct consequence of [MO92, Lemma 2.2.3] and
a tool in the sequel.

Lemma 1.42. Let f̃ : Ũ Ñ Ṽ be a homeomorphism between open subsets of Rm

and Ṽ be convex such that

f̃pŨ X BRm
k q Ď Ṽ X BRm

k and f̃pŨ X B0Rm
k q X B

0Rm
k ‰ H;

then

f̃pŨzRm
k q Ď Ṽ zRm

k .

In the following lemma we show a qualitative inverse function theorem for open
sets with corners in the real analytic case. The proof is analogous to the one of
the smooth case see e.g. [MO92, Theorem 2.2.4].

Lemma 1.43. Let U Ď Rm
k be open, f : U Ñ Rm

k be a real analytic map and
x0 P U such that

fpU X BRm
k q Ď BRm

k and f 1px0q P GLpRm
q.

We can find an open x0-neighbourhood U 1 Ď U and an open fpx0q-neighbourhood
V Ď Rm

k such that f |VU 1 : U
1 Ñ V is a real analytic diffeomorphism.

Proof. Without loss of generality, we can assume that x0 P BU :“ UXBRm
k because,

otherwise, we can use the standard inverse function theorem. Now let f̃ : Ũ Ñ Rm

be a real analytic extension of f . Without loss of generality we can assume that
Ũ X Rm

k “ U . We have f̃ |U “ f and f̃ 1px0q “ f 1px0q P GLpRmq. Let Ũ 1 Ď Ũ be a
x0-neighbourhood, Ṽ Ď Rm an fpx0q-neighbourhood such that f̃ |Ũ 1 : Ũ

1 Ñ Ṽ is a
real analytic diffeomorphism between open sets of Rm. Without loss of generality
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1.2 Local manifold structure

we can assume that Ṽ is convex. We have

f̃pŨ 1 X BRm
k q “ fpŨ 1 X BRm

k q Ď Ṽ X BRm
k .

On the other hand, f̃pŨ 1 X B0Rm
k q Ď Rm is open in Rm and non-empty. As it

contains x0 P BRm
k , it contains a point in B0Rm

k . Lemma 1.42 implies f̃pŨ 1zRm
k q Ď

Ṽ zRm
k . Hence,

f̃pŨ 1 X Rm
k q “ Ṽ X Rm

k .

Now we define U 1 :“ Ũ 1XRm
k Ď Ũ 1 and V :“ Ṽ XRm

k Ď Ṽ . The map f |VU 1 : U
1 Ñ V

is bijective real analytic and also pf |VU 1q
´1 “ f̃´1|V is real analytic.

Now we come to the first central result in this chapter. If η P ΓωpTMq is chosen
to be small enough then ψη is a diffeomorphism of M .

Theorem 1.44. There exists εdiff Ps0, εexpr such that, if η P B1
1,εdiff

then ψη : M Ñ

M, p ÞÑ ψηppq is a diffeomorphism.

Proof. We simply use the ε defined in Lemma 1.41. Then ψη is a real analytic
diffeomorphism because it is bijective and a local real analytic diffeomorphism (see
Lemma 1.43).

The idea of Lemma 1.45 below, is based mainly on [Glo06c, 4.12]. However,
since our manifold is compact we can find a single ε and shorten the proof.

Lemma 1.45. There exists εinj Ps0, εexpr such that for all p P M the map
expp : Ω̃p :“ Ω̃X Ď TpM̃ Ñ M̃ is injective on

WpM :“
n
ď

i“1

Tϕ´1
i ptϕippqu ˆBεinjp0qq Ď TpM.

Proof. Let εinj Ps0, εexpr such that

T pϕi ˝ ϕ
´1
j q

`

tϕjppqu ˆBεinjp0q
˘

Ď tϕippqu ˆBεexpp0q

for all p P U4,i X U4,j and i, j P t1, . . . , nu (Wallace’s Lemma). For i P t1, . . . , nu
and p P M let A1i :“ Tϕ´1

i ptϕippqu ˆ Bεinjp0qq Ď TpM and Ai :“ Tϕ´1
i ptϕippqu ˆ

Bεexpp0qq Ď TpM . Now let v, w P
Ť

iA
1
i, say v P A1i and w P A1j, with exppvq “

exppwq. We know that exp is injective on Aj. But obviously v, w P Aj by the
choice of εinj.

In the following we define the canonical local chart around the identity to obtain
a local manifold structure (cf. e.g. [Glo06c, 4.13]).

Definition 1.46. We define

εU :“ minpεdiff , εinjq.
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1 Diff ω(M) as a Lie group for a manifold M with corners

Moreover, we define V :“ B1
1,εU

Ď ΓωstpTMq, U :“ tψη : η P Vu Ď DiffpMq and

Ψ: V Ñ U , η ÞÑ ψη.

Given α P U we find η P V with α “ ψη. We get ηpiqpxq P Bεinjp0q for all x P B
ki
1 p0q.

Hence ηppq P WpM for all p P Ui,1 and all i “ 1, . . . , n. Thus ηppq P WpM for
all p P M . Therefore, αppq “ ψηppq “ exp |WpMpηppqq P exp |WpMpWpMq and
ηppq “ exp |´1

WpM
pαppqq. Hence, the map

Φ: U Ñ V , α ÞÑ Φpαq

with Φpαqppq “ exp |´1
WpM

pαppqq makes sense and is inverse to Ψ.

1.3. Preparation for results of smoothness

To show the smoothness of the group operations we need some further definitions
and results. In particular, we need results concerning extensions of real analytic
maps on Bk

ε p0q to open sets of Cm. In this section we elaborate these foundations.

The following lemma is the standard quantitative inverse function theorem for
Lipschitz continuous maps (see [Glo05, Theorem 5.3] and [Wel76]) applied to our
setting.

Lemma 1.47. Let A : Rm Ñ Rm be a linear isomorphism, x0 P Rm, r ą 0
and g : Brpx0q Ñ Rm Lipschitz continuous with Lippgq ă 1

}A´1}op
. If we define

a :“ 1
}A´1}op

´ Lippgq, b :“ }A}op ` Lippgq and f : Brpx0q Ñ Rm, x ÞÑ Ax ` gpxq

we have

Baspfpxqq Ď fpBspxqq Ď Bbspfpxqq

for all x P Brpx0q and s Ps0, r ´ }x ´ x0}s. Moreover, f has open image and is a
homeomorphism onto its image.

In [Gor13] Gorny showed a qualitative inverse function theorem for Lipschitz
continuous maps on open sets of half-spaces in Banach spaces (“open sets with
boundary” that means the local “boundary”-case). In [Gor13, Remark on p 47]
she asks whether there is also a qualitative inverse function theorem for Lipschitz
continuous functions on “open sets with corners” (that means the local ”corner”-
case).

Our Lemma 1.49 is a not only a qualitative but also a quantitative inverse
function theorem for Lipschitz continuous maps on open sets with corners in Rm

(the proof can be transferred to the Banach case verbatim by substituting Rm with
a Banach space).

Lemma 1.48. Let k P t0, . . . ,mu, x0 P Rm
k and g : Bk

r px0q Ñ Rm be Lipschitz
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1.3 Preparation for results of smoothness

continuous with Lippgq “: L. Let }‚}k : Brpx0q Ñ Rm
k , x ÞÑ }x}k with

p}x}kqi “

#

|xi| : i ď k

xi : otherwise

and g̃ : Brpx0q Ñ Rm, x ÞÑ gp}x}kq. In this situation g̃|Bkr px0q
“ g and Lippg̃q “

Lippgq.

Proof. The map }‚}k : Brpx0q Ñ Rm
k is Lipschitz continuous with Lipschitz constant

1. The assertion now follows from Lippg̃q “ Lippg ˝ }‚}kq ď Lippgq.

Lemma 1.49. Let A : Rm Ñ Rm be a linear isomorphism, x0 P Rm
k , r ą 0

and g : Bk
r px0q Ñ Rm be Lipschitz continuous with Lippgq ă 1

}A´1}op
. We define

a :“ 1
}A´1}op

´ Lippgq, b :“ }A}op ` Lippgq and f : Bk
r px0q Ñ Rm, x ÞÑ Ax ` gpxq.

If fpBBk
r px0qq Ď BRm

k and fpBk
r px0qq Ď Rm

k then we have

Bk
aspfpxqq Ď fpBk

s pxqq Ď Bk
bspfpxqq (1.4)

for all x P Bk
r px0q and s Ps0, r ´ }x ´ x0}s. Moreover, fpBk

r px0qq is open in Rm
k

and f is a homeomorphism onto its image.

Proof. We define g̃ : Brpx0q Ñ Rm as in Lemma 1.48. Then Lippg̃q “ Lippgq ă
1

}A´1}op
. Let f̃ : Brpx0q Ñ Rm, x ÞÑ Ax ` g̃pxq and a :“ 1

}A´1}op
´ Lippg̃q “

1
}A´1}op

´ Lippgq. Using Lemma 1.47 we get:

(a) The map f̃ : Brpx0q Ñ Rm has open image and is a homeomorphism onto its
image;

(b) For all x P Brpx0q and s Ps0, r ´ }x ´ x0}r we have Baspf̃pxqq Ď f̃pBspxqq Ď
Bbspf̃pxqq;

(c) f̃ |Bkr px0q
“ f .

Let x P Bk
r px0q and s Ps0, r´}x´x0}r. The inclusion fpBk

s pxqq Ď Bk
bspfpxqq follows

directly from (b) and (c). We show that

Bk
aspfpxqq Ď fpBk

s pxqq.

From (b) and (c) we get Bk
aspfpxqq Ď Baspf̃pxqq Ď f̃pBspxqq. Now let y P

Bk
aspfpxqq. We find z P Bspxq such that y “ f̃pzq. It remains to show that z P Rm

k .
Let Ũ :“ f̃´1pBaspfpxqqq and Ṽ :“ Baspfpxqq. Then Ũ is an open subset of Brpx0q

and f̃ : Ũ Ñ Ṽ “ Baspfpxqq is a homeomorphism. Because f̃pzq “ y P Baspfpxqq
and f̃pxq “ fpxq P Baspfpxqq, we get

z P Ũ and x P Ũ .

Hence, Ũ XRm
k ‰ H and so Ũ XB0Rm

k ‰ H. We have H ‰ Ũ XB0Rm
k Ď B

0Bk
r px0q.

The map f̃ |B0Bkr px0q
: B0Bk

r px0q Ñ Rm is open. Therefore, W :“ f̃pŨ X B0Rm
k q is an

open subset of Rm and not empty. Because Ũ X B0Rm
k Ď Bk

r px0q and fpBk
r px0qq Ď

Rm
k we get W Ď Rm

k . The set Rm
k is convex. We conclude that W X B0Rm

k ‰ H
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and hence

f̃pŨ X B0Rm
k q X B

0Rm
k ‰ H. (1.5)

Moreover, we get

f̃pŨ X BRm
k q “ fpŨ X BRm

k q Ď BRm
k . (1.6)

Using (1.5), (1.6) and the convexity of Ṽ , Lemma 1.42 leads to

f̃pŨzRm
k q Ď Ṽ zRm

k .

Suppose z R Rm
k , then f̃pzq “ y R Rm

k . But this would be a contradiction. Hence z P
Rm
k . Next, we show that f : Bk

r px0q Ñ Rm
k has open image and is a homeomorphism

onto its image. Because of (1.4), f : Bk
r px0q Ñ Rm

k has open image. Let X̃ :“
Brpx0q, X :“ Bk

r px0q, Ỹ :“ f̃pX̃q Ď Rm and Y :“ fpXq Ď Rm
k . The assertion now

follows from the fact that f̃ : X̃ Ñ Ỹ is a homeomorphism and f̃ |YX “ f : X Ñ

Y .

Definition 1.50. Given r Ps0, 1r we choose rop Ps0, 1r such that for all A P LpCmq˚

we have

}A´ id }op ă rop ñ }A´1
´ id }op ă r.

The observation in the following remark is, of course, well-known.

Remark 1.51. Let K P tR,Cu, U Ď Kn and f : U Ñ Kn be an injective map.
Then

}pf |fpUqq´1
´ idfpUq }8 “ }f ´ idU }8.

In fact let g :“ f ´ idU : U Ñ Km. Then fpxq “ x ` gpxq for all x P U . Hence,
f´1pyq “ y ´ gpf´1pyqq for all y P fpUq. Thus f´1 “ idfpUq´g ˝ f

´1. Therefore

}f´1
´ idfpUq }8 “ }g ˝ f

´1
}8 “ }g}8 “ }f ´ idU }8.

In the following lemma the points (b) and (c) are in some sense a stronger version
of [Sch15, Lemma D.4 (b), (c)] (smooth case without boundary).

Lemma 1.52. Let l Ps0,8r and r Ps0, 1r such that l1 :“ p1 ´ rql ´ r ą 0. For
all f P CωpBk

l p0q;Rmq with }f ´ id }18 ă minpr, ropq, fpBpBk
l p0qqq Ď BRm

k and
fpBk

l p0qq Ď Rm
k we get:

(a) fpBk
l p0qq Ď Bk

l`rp0q;
(b) f : Bk

l p0q Ñ Rm
k has open image and is a real analytic diffeomorphism onto

its image;
(c) Bk

l1p0q Ď fpBk
l p0qq and the map f´1 : Bl1p0q Ñ Bk

l p0q has open image and is
a real analytic diffeomorphism onto its image;

(d) }f´1pxq ´ x} ă r for all x P Bk
l1p0q;
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(e) }pf´1q1pxq ´ idRm }op ă r for all x P Bk
l1p0q.

Proof. (a) Given x P Bk
l p0q, we calculate

}fpxq} “ }fpxq ´ x` x} ď r ` l.

Hence fpBk
l p0qq Ď Bk

l`rp0q.
(b) We define g : Bk

l p0q Ñ Rm, g :“ f ´ idRm . Given x, y P Bk
l p0q, we have

}gpxq ´ gpyq} “

›

›

›

›

ż 1

0

g1pp1´ tqx` ty;x´ yqdt

›

›

›

›

ď

ż 1

0

}f 1pp1´ tqx` ty;x´ yq ´ idRmpx´ yq}dt ď r}x´ y}.

Hence, g is Lipschitz continuous with Lippgq ď r ă 1. Moreover, fpBk
l p0qq Ď

Rm
k and fpBBk

l p0qq Ď BRm
k . Therefore, we can apply Lemma 1.49. Hence,

fpBk
l p0qq is open in Rm

k and f : Bk
l p0q Ñ fpBk

l p0qq is a bijection. Because
rop ă 1, the map f is a local real analytic diffeomorphism and so f : Bk

l p0q Ñ
fpBk

l p0qq is a real analytic diffeomorphism.
(c) Using Lemma 1.49, we get Bk

p1´rqlpfp0qq Ď fpBk
l p0qq. It remains to prove

Bk
l1p0q Ď Bk

p1´rqlpfp0qq. Given x P Bk
l1p0q, we calculate

}fp0q ´ x} ď }fp0q ´ 0} ` }x} ă r ` p1´ rql ´ r “ p1´ rql.

(d) This follows directly from Remark 1.51.
(e) We have }f 1pxq ´ idRm }op ă rop for all x P Bk

l p0q. Hence, }pf 1pxqq´1 ´

idRm }op ă r for all x P Bk
l p0q. Now, let y P Bk

l1p0q. We deduce that

}pf´1
q
1
pyq ´ idRm }op “ }pf

1
pf´1

pyqqq´1
´ idRm }op ă r.

Definition 1.53. Given l Ps0, 5r and r Ps0, 1r such that p1´ rql ´ r ą 0 we write
εl,r for the ε constructed in Lemma 1.36 with R “ 5 and minpr, ropq instead of r.

The analogous statement to [Glo06c, 3.3] in the real analytic case is:

Lemma 1.54. Given ε Ps0, εexps there exists δpεq Ps0, 1r such that:
(a) For x P B4` 1

2
p0q and i P t1, ..., nu, we have Bδpεqpxq Ď expipx,Bεp0qq;

(b) The set Dε :“
Ť

xPB
4` 1

2
p0q txu ˆBδpεqpxq is open in B6p0q ˆ Rm and

Dε Ñ Bεp0q, px, zq ÞÑ expipx, ‚q
´1
pzq

is real analytic for all i P t1, ..., nu.

Proof. (a) Let i P t1, . . . , nu and consider the map expi : B5p0qˆBεp0q Ñ B6p0q.
Now we use Lemma 1.30. Given x P B4` 1

2
p0q, we can find rx Ps0,

1
2
r and

δx ą 0 such that for all y P Brxpxq and i P t1, . . . , nu, we have Bδxpyq “

35



1 Diff ω(M) as a Lie group for a manifold M with corners

Bδxpexpipy, 0qq Ď expipy,Bεp0qq. We find finitely many x1, . . . , xk P B4` 1
2
p0q

with B4` 1
2
p0q Ď

Ťk
j“1Brxj

pxjq and set δpεq :“ minj δxj . Given i P t1, ..., nu

and x P B4` 1
2
p0q, we can find j such that x P Brxj

pxjq. Hence Bδpεqpxq Ď

expipx,Bεp0qq.
(b) For px0, y0q P Dε, we get }y0 ´ x0} ă δpεq. Let τ :“

min
´

4` 1
2
´ }x0},

δpεq´}y0´x0}

2

¯

. Then Bτ px0q ˆ Bτ py0q Ď Dε. Hence Dε

is open. Because Dε is open and contained in the image of B5p0q ˆBεp0q Ñ
B5p0q ˆ Rm, px, yq ÞÑ px, expipx, yqq, we conclude that Dε Ñ Bεp0q,
px, zq ÞÑ expipx, ‚q

´1pzq makes sense and is a real analytic diffeomorphism.

In the following, we define open subsets of Cm that form a connected fundamen-

tal sequence of the balls B
k

Rpxq in Cm (see Remark 1.56).

Definition 1.55. Let k P t0, . . . ,mu, R ą 0, r ą 0 and x P Rm
k . We define

Bk,C
R,rpxq :“ Bk

Rpxq `B
C
r p0q Ď Cm and B

k,C
R,rpxq :“ B

k

Rpxq `B
C
r p0q “ Bk,C

R,rpxq.

Obviously Bk,C
R,rpxq is an open neighbourhood of B

k

Rpxq in Cm. We also write

BC
R,rpxq :“ BRpxq `B

C
r p0q and B

C
R,rpxq :“ BRpxq `B

C
r p0q for x P Rm.

Remark 1.56. If U Ď Cm is open, k P t0, . . . ,mu, x P Rm
k and B

k

Rpxq Ď U then

B
k

Rpxq ˆ t0u Ď µ´1pUq for µ : Cm ˆ Cm Ñ Cm, px, yq ÞÑ x ` y. Using Wallace’s

Lemma we can find r ą 0 such that B
k

Rpxq `B
C
r p0q “ B

k,C
R,rpxq Ď U .

Definition 1.57. For i P t1, . . . , nu, let exp˚i : Ω˚i Ñ BC
6 p0q be a complex analytic

extension of expi : Ω̃i Ñ B6p0q along the compact set B5p0q ˆ Bεexpp0q Ď Ω̃i (see

[DGS14, Lemma 2.2 (a)]). Because B5p0qˆt0u Ď Ω˚i we can use Remark 1.56 and

find rexp˚ ą 0 and ε˚1 ą 0 such that B
C
5,rexp˚

p0qˆBC
ε˚1
p0q Ď Ω˚i for all i P t1, . . . , nu.

Remark 1.58. (a) For all i P t1, . . . , nu, the map exp˚i p‚, 0q : B
C
5,rexp˚

p0q Ñ Cm,

x ÞÑ exp˚i px, 0q is an extension of expip‚, 0q : B5p0q Ñ Rm, x ÞÑ x. Hence,
we have

exp˚i px, 0q “ x,

for all x P BC
5,rexp˚

p0q, because BC
5,rexp˚

p0q is connected. Therefore,

exp˚i px, 0q “ x for all x P B
C
5,rexp˚

p0q.

(b) For all i P t1, . . . , nu the map d2 exp˚i p‚, 0q : B
C
5,rexp˚

p0q Ñ LpCmq, x ÞÑ

d2 exp˚i px, 0q is a complex analytic extension of d2 expip‚, 0q : B5p0q Ñ LpRmq,
x ÞÑ d2 expipx, 0q “ idRm. Hence, we have

d2 exp˚i px, 0q “ idCm
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for all x P BC
5,rexp˚

p0q, because BC
5,rexp˚

p0q is connected. Therefore,

d2 exp˚i px, 0q “ idCm for all x P B
C
5,rexp˚

p0q.

The following lemma is similar to our Lemma 1.31 as well as [Glo06c, 3.2].

Lemma 1.59. There exists εexp˚ ą 0 such that:

(i) We have

B
C
5,rexp˚

p0q ˆB
C
εexp˚

p0q Ď Ω˚i Ď BC
6 p0q ˆ Cm

for all i P t1, ..., nu.

(ii) For all x P B
C
5,rexp˚

p0q and i P t1, ..., nu, the mapping exp˚i,x :“

exp˚i px, ‚q : B
C
εexp˚

p0q Ñ Cm has open image and is a complex analytic dif-

feomorphism onto its image. Moreover, the map BC
5,rexp˚

p0q ˆ BC
εexp˚

p0q Ñ

BC
5,rexp˚

p0q ˆ Cm, px, yq ÞÑ px, exp˚i px, yqq has open image and is a complex

analytic diffeomorphism onto its image.

Proof. Obviously it is enough to show the assertions for a fixed i P t1, . . . , nu. Let

i P t1, . . . , nu. For every x P B
C
5,rexp˚

p0q we find rx ą 0 and εx ą 0 such that:

• BC
rxpxq ˆB

C
εxp0q Ď Ω˚i ;

• For all y P BC
rxpxq, the map

exp˚i py, ‚q : B
C
εxp0q Ñ Cm

has open image and is a diffeomorphism onto its image;
• The map BC

rxpxq ˆB
C
εxp0q Ñ BC

rxpxq ˆ Cm, px, yq ÞÑ px, exp˚i px, yqq has open
image and is a diffeomorphism onto its image.

We find finitely many x1, . . . , xl such that B
C
5,rexp˚

p0q Ď
Ťl
j“1Brxj

pxjq. Let εexp˚ :“

minj εxj . Obviously we have

B
C
5,rexp˚

p0q ˆB
C
εexp˚

p0q Ď Ω˚i .

Moreover, the map BC
5,rexp˚

p0q ˆ BC
εexp˚

p0q Ñ BC
5,rexp˚

p0q ˆ Cm, px, yq ÞÑ

px, exp˚i px, yqq is injective and a local diffeomorphism. Hence, it has open im-
age and is a complex analytic diffeomorphism onto its image. Thus, we find εexp˚

as needed.

The following lemma is the analogous statement to our Lemma 1.54 as well as
[Glo06c, 3.3] in the complex case.

Lemma 1.60. Let r`˚ :“ rexp˚{2. For all ε Ps0, εexp˚s, there exists δCpεq Ps0, 1r
such that:

(i) For all x P B
C
4,r`˚

p0q and i P t1, . . . , nu, we have BC
δCpεqpxq Ď exp˚i px,B

C
ε p0qq;
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(ii) The set

DC
ε :“

ď

xPBC
4,r
`˚
p0q

txu ˆBC
δCpεqpxq Ď Cm

ˆ Cm

is open and DC
ε Ñ BC

ε p0q, px, zq ÞÑ exp˚i px, ‚q
´1pzq is complex analytic.

Proof. (i) We consider the map exp˚i : BC
5,rexp˚

p0qˆBC
ε p0q Ñ Cm for i “ 1, . . . , n.

Given x P B
C
4,r`˚

p0q, we use Lemma 1.30 and find rx ą 0 and δx ą 0 such

that BC
rxpxq Ď BC

5,rexp˚
p0q and, for all y P BC

rxpxq and i P t1, . . . , nu

BC
δxpyq “ BC

δxpexp˚i py, 0qq Ď exp˚i py,B
C
ε p0qq.

We choose finitely many x1, . . . , xn P B
C
4,r`˚

p0q such that

B
C
4,r`˚

p0q Ď
n
ď

j“1

Brxj
pxjq.

We set δCpεq :“ minj δxj . If i P t1, . . . , nu and x P B
C
4,r`˚

p0q, then BC
δCpεqpxq Ď

exp˚i px,B
C
ε p0qq.

(ii) Given px0, y0q P DC
ε , we find σ ą 0 with BC

σ px0q Ď BC
4,r`˚

p0q. Defining

τ :“ min
´

σ, δ
Cpεq´}y0´x0}

2

¯

, we get Bτ px0q ˆ Bτ py0q Ď DC
ε . The rest of the

statement is clear.

Definition 1.61. (a) Let N0 P N with 1
N0
ă r`˚ ă rexp˚ . For R P r0, 4s, k P

t1, . . . ,mu and n P N, we define

V k
R,n :“ Bk,C

R, 1
n`N0

p0q “ Bk
Rp0q `B

C
1

n`N0

p0q

and get a connected fundamental sequence of B
k

Rp0q in Cm with V k
R,n Ď

BC
4,rexp˚

p0q. Moreover, we define

V
k

R,n :“ B
k

Rp0q `B
C

1
n`N0

p0q “ V k
R,n.

(b) For i P t1, . . . , nu, R P r1, 4s, n P N and f P Hol0εexp˚
pVR,n;Cmq, we define the

map ψif : V ki
R,n Ñ Cm, x ÞÑ exp˚i px, fpxqq.

The following lemma is the analogous statement to our Lemma 1.36 in the
complex case and is inspired by [Glo06c, Lemma 3.7].

Lemma 1.62. For r0 Ps0, 1r there exists ε Ps0, εexp˚s such that for all n P N,
i P t1, . . . , nu, R P t3, 4u and η P Hol1bpV

ki
R,n;Cmq with }η}18 ă ε, we have }ψiη ´

idCm }
1

V
ki
R,n

ă r0.
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Proof. Obviously it is enough to show that for all r0 Ps0, 1r there exists ε Ps0, εexp˚s

such that for all n P N, i P t1, . . . , nu, R P t3, 4u and η P Hol1bpV
ki
R,n;Cmq with

}η}18 ă ε, we have }ψiη ´ idCm }
1

V
ki
R,n

ď r0. In order to shorten the notation, we

define Uexp˚ :“ BC
5,rexp˚

p0q. Obviously it is enough to show the lemma for a fixed

i P t1, . . . , nu. Hence, let i P t1, . . . , nu be fixed for the rest of the proof. We define
H : Uexp˚ˆB

C
εexp˚

p0q Ñ Cm, px, yq ÞÑ exp˚i px, yq´x´y and h : Uexp˚ˆB
C
εexp˚

p0q Ñ

r0,8r, px, yq ÞÑ }H 1px, yq}op. For all x P Uexp˚ , we get d1Hpx, 0; ‚q “ 0 and
d2Hpx, 0; ‚q “ 0 and so H 1px, 0q “ dHpx, 0; ‚q “ 0 in LpCm ˆ Cm;Cmq. Hence,

V ki
4,1ˆt0u Ď h´1pr0, r0

r0`10
rq and with Wallace’s Lemma we find ε Ps0,minpεexp,

r0
2
qr

such that }H 1px, yq}op ă
r0

r0`10
for all x P V ki

4,1 and y P BC
ε p0q. Now let η P

Hol1bpV
ki
R,n;Cmq with }η}18 ă ε. We have

ψiηpxq “ Hpx, ηpxqq ` x` ηpxq (1.7)

for all x P V ki
R,n. Hence,

ψiη
1
pxq “ H 1

px, ηpxq; ‚q ˝ pidCm , η
1
pxqq ` idCm `η

1
pxq

for all x P V ki
R,n. Remark 1.35 implies

}ψiη
1
pxq ´ idCm }op ď }H

1
px, ηpxqq}op ¨ }pidCm , η

1
pxqq}op ` }η

1
pxq}op

ă
r0

r0 ` 10
¨ p1` εq ` ε ď

r0

r0 ` 2
¨

´

1`
r0

2

¯

`
r0

2
“ r0. (1.8)

Now, let x P V ki
R,n and y P BC

ε p0q. Then }px, yq} ď }x} ` }y} ă 5` r0
2

. Hence,

}Hpx, yq} “ }Hpx, yq ´Hp0, 0q} “

›

›

›

›

ż 1

0

dHptx, ty;x, yqdt

›

›

›

›

ď

ż 1

0

}H 1
ptx, tyq} ¨ }px, yq}dt ă

r0

r0 ` 10
¨ }px, yq} ď

r0

2
.

Thus, given x P V ki
R,n, we calculate with (1.7)

}ψiηpxq ´ x} ď }Hpx, ηpxqq} ` }ηpxq} ă r0. (1.9)

Definition 1.63. Given r0 Ps0, 1r, we write εCr0 for the ε constructed in Lemma
1.62 with minpr0, r

op
0 q instead of r0.

The following lemma is the analogous statement to Lemma 1.52 in the complex
case.

Lemma 1.64. Let R Ps0,8r, r Ps0,8r and r0 Ps0, 1r such that R1 :“ p1´ r0qR´
r0 ą 0. We write r1 :“ p1 ´ r0qr, R

2 :“ R ` r0 and r2 :“ p1 ` r0qr. For all
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k P t0, . . . ,mu and f P Hol1bpB
k,C
R,rp0q;Cmq such that }f ´ idCm }

1
8 ă minpr0, r

op
0 q,

fpBpBk
Rp0qqq Ď BRm

k and fpBk
Rp0qq Ď Rm

k , we get the following assertions:
(a) f : Bk,C

R,rp0q Ñ Cm has open image and is a complex analytic diffeomorphism
onto its image;

(b) Bk,C
R1,r1p0q Ď fpBk,C

R,rp0qq and the map f´1 : Bk,C
R1,r1p0q Ñ Bk,C

R,rp0q has open image
and is a complex analytic diffeomorphism onto its image;

(c) fpBk,C
R,rp0qq Ď Bk,C

R,r`r0
p0q and fpBk,C

R,rp0qq Ď Bk,C
R2,r2p0q;

(d) }f´1pxq ´ x} ă r0 for all x P Bk,C
R1,r1p0q;

(e) }pf´1q1pxq ´ idCm }op ă r0 for all x P Bk,C
R1,r1p0q.

Proof. (a) From Remark 1.37 and r0 ă 1 we get that f : Bk,C
R,rp0q Ñ Cm has open

image and is a complex analytic diffeomorphism onto its image.
(b) Let g :“ f ´ idCm : Bk,C

R,rp0q Ñ Cm. Then, as in Lemma 1.52, we get }gpxq ´

gpyq} ă r0}x ´ y} for all x, y P Bk,C
R,rp0q. Hence Lippgq ď r0 ă 1. Now let

x P Bk
Rp0q. Then BC

r pxq “ x`BC
r p0q Ď Bk,C

R,rp0q. We consider the map f |BC
r pxq

.
Thus, using the identification Cm – R2m in combination with Lemma 1.47,
we get BC

p1´r0qr
pfpxqq Ď fpBC

r pxqq Ď fpBk,C
R,rp0qq. Hence, BC

p1´r0qr
p0q` fpxq Ď

fpBk,C
R,rp0qq for all x P Bk

Rp0q. Therefore, BC
p1´r0qr

p0q`fpBk
Rp0qq Ď fpBk,C

R,rp0qq.

From Lemma 1.52 we get Bk
R1p0q Ď fpBk

Rp0qq because fpBpBk
Rp0qqq Ď BRm

k

and fpBk
Rp0qqq Ď Rm

k . Therefore

Bk,C
R1,r1p0q “ Bk

R1p0q `B
C
r1p0q Ď fpBk,C

R,rp0qq.

Hence, the map f´1 : Bk,C
R1,r1p0q Ñ Bk,C

R,rp0q makes sense, has open image and
is a complex analytic diffeomorphism onto its image.

(c) Let x P Bk,C
R,rp0q. Then fpxq “ x`pfpxq´xq P Bk,C

R,rp0q`B
C
r0
p0q “ Bk,C

R,r`r0
p0q.

Now let x0 P B
k
Rp0q. Using Lemma 1.52, we get fpx0q P B

k
R2p0q. Again we

consider the map f |BC
r px0q. Lemma 1.47 yields

fpBC
r px0qq Ď BC

p1`r0qr
pfpx0qq “ BC

r2p0q ` fpx0q Ď BC
r2p0q `B

k
R2p0q “ Bk,C

R2,r2p0q.

(d) Because }f ´ id }08 ă r0, we can use Remark 1.51 and get }f´1pxq ´ x} ă r0

for all x P Bk,C
R1,r1p0q.

(e) Because }f 1pxq ´ id }op ă rop0 for all x P Bk,C
R,rp0q, we get

}pf´1
q
1
pxq ´ idCm }op “ }f

1
pf´1

pxqq´1
´ idCm }op ă r0

for all x P Bk,C
R1,r1p0q.

We will use the following technical lemma later to secure that the composition
and inversion in the local chart stay in the subspace of stratified vector fields.

Lemma 1.65. There exists εB ą 0 such that for all i P t1, . . . , nu, j P t1, . . . ,mu,
all connected components C Ď BjBki

5 p0q, x, y P C with }x´ y} ă εB
2

and v P BεBp0q

with y “ expipx, vq, we get v P TxB
jBki

5 p0q.
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1.4 Smoothness of composition

Proof. There exists εB Ps0, εexps such that }d expi,xpyq ´ idRm } ă
1
2

for all i P
t1, . . . , nu, x P B4p0q and y P BεBp0q. Given x P BjBk

5 p0q, we define the subset
Jx Ď t1, . . . ,mu such that xl “ 0 if and only if l P Jx. Moreover, we write Ix :“
t1, . . . ,mu zJx and Rm

Ix
:“ span tei : i P Ixu. Obviously, we have TxB

jBk
5 p0q “ Rm

Ix
.

Let v P Bεexpp0q X TxB
jBki

5 “ Bεexpp0q X Rm
Ix
“: B

RmIx
εexpp0q. Because BjM is totally

geodesic there exists t0 Ps0, 1r such that dxϕ
´1
i ptvq P ΩBjM for all t P r0, t0s. Hence,

for all t P r0, t0s we have expi,xptvq P B
jBki

5 p0q. Therefore, prl ˝ expi,xptvq “ 0 for all
t P r0, t0s and l P Jx (note that t ÞÑ expi,xptvq stays in the connected component
of x). Because exp i, x is real analytic we can use the Identity Theorem and

obtain prl ˝ expi,xpvq “ 0. Therefore expi,xpB
RmIx
εexpp0qq Ď Rm

Ix
. In particular, we

can consider the real analytic map expi,x : B
RmIx
εB p0q Ñ Rm

Ix
. We write C for the

connected component of x in BjBki
5 p0q. Because }d expi,xpyq ´ id } ă 1

2
, we get

C X BjBki
1
2
εB
pxq Ď B

RmIx
1
2
εB
pxq “ B

RmIx
1
2
εB
pexpi,xp0qq Ď expi,xpB

RmIx
εB p0qq

with the quantitative inverse function theorem. Now the assertion follows from
the injectivity of expi,x : Bεexpp0q Ñ Rm.

Definition 1.66. We use the notation of Lemma 1.54 and define δU :“
δpminpεU , εBqq, DU :“ DminpεU ,εBq and

`i : DU Ñ BminpεU ,εBqp0q, px, zq ÞÑ expipx, ‚q
´1
pzq

for all i P t1, . . . , nu, where εU is as in Definition 1.46 and εB as in Lemma 1.65.

Remark 1.67. For all j P t1, . . . ,mu, i P t1, . . . , nu and all connected components
C in BjBki

1 p0q, we choose pi,jC P C. After shrinking εU , we may assume without loss
of generality that ψiηpiqpp

i,j
C q P C for all i, j, C as above and η P B1

1,εU
(see Lemma

1.36).

Definition 1.68. Let i P t1, . . . , nu. We define the real analytic map

αi : B4` 1
2
p0q ˆBδU p0q Ñ BεU p0q, px, yq ÞÑ `ipx, x` yq

and get αipx, 0q “ 0 for all x P B4` 1
2
p0q. Hence, d1αipx, 0q “ dαip‚, 0qpxq “ 0 in

LpRmq for all x P B4` 1
2
p0q. Therefore B4p0q ˆ t0u Ď pd1αiq

´1pt0uq. We find να P

s0, δU r such that }d1αipx, yq}op ă
εU
4

for all x P B4p0q, y P Bναp0q and i P t1, . . . , nu.

Let Kα ě sup
 

}d2αipx, yq}op : x P B4p0q, y P Bναp0q
(

for all i P t1, . . . , nu.

1.4. Smoothness of composition

In this section, we show the smoothness of the composition in the local chart Φ.

At first we have to fix a “radius” ε˛ to obtain a 0-neighbourhood on which the
composition is smooth.
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1 Diff ω(M) as a Lie group for a manifold M with corners

Definition 1.69. Let r˛ “ minp δU
2
, εU ,

εU
16Kα

, να
2
, εB

4
, 1

4
q, rC˛ :“ minp

δCpεexp˚ q

2
, 1

4
q and

ε˛ :“ minpεU , ε4,r˛ , ε
C
rC˛
q.

The result corresponding to the following lemma, in the case of a non compact
smooth manifold without corners, is [Glo06c, 4.17].

Lemma 1.70. Let η, ζ P B1
4,ε˛.

(a) The maps ψiηpiq ˝ ψ
i
ζpiq

: Bki
3 p0q Ñ Rm

ki
and

ηpiq ˛ ζpiq : B
ki
3 p0q Ñ Rm, x ÞÑ `ipx, ψ

i
ηpiq
˝ ψiζpiqpxqq

make sense8 and are real analytic functions with }ηpiq ˛ζpiqpxq} ă minpεU , εBq

for all x P Bki
3 p0q. Moreover, we have

ψiηpiq˛ζpiq “ ψiηpiq ˝ ψ
i
ζpiq

(1.10)

on Bki
3 p0q and ηpiq ˛ ζpiq is stratified.

(b) For the map ψη ˝ ψζ : M ÑM , we have ψη ˝ ψζpUi,3q Ď Ui,4 and

ϕi ˝ ψη ˝ ψζ ˝ ϕ
´1
i |Bki3 p0q

“ ψiηpiq ˝ ψ
i
ζpiq
|
B
ki
3 p0q

. (1.11)

(c) The vector field

η ˛ ζ : M Ñ TM, p ÞÑ exp |´1
WpM

pψη ˝ ψζppqq

makes sense and is real analytic and stratified. Moreover, we have

pη ˛ ζqpiqpxq “ ηpiq ˛ ζpiqpxq

for all i P t1, . . . , nu and x P Bki
3 p0q and

ψη˛ζ “ ψη ˝ ψζ .

(d) The vector field η ˛ ζ is in V.

Proof. (a) Using Lemma 1.36 and Lemma 1.52, we get ψiζpiqpB
ki
3 p0qq Ď Bki

4 p0q.

Hence, ψiηpiq ˝ ψ
i
ζpiq

: Bki
3 p0q Ñ Rm

ki
makes sense. We have r˛ ď

δU
2

and so

}ψiηpiq ´ id } ă δU
2

and }ψiζpiq ´ id } ă δU
2

on Bki
4 p0q, by Lemma 1.36. Hence,

ψiηpiqpψ
i
ζpiq
pxqq ´ x P BδU p0q. Therefore, ηpiq ˛ ζpiq : B

ki
3 p0q Ñ Rm makes sense

and }ηpiq ˛ ζpiqpxq} ă minpεU , εBq for all x P Bki
3 p0q and so

ψiηpiq˛ζpiq “ ψiηpiq ˝ ψ
i
ζpiq

on Bki
3 p0q (note εU ă εexp). Now we show that ηpiq ˛ ζpiq is stratified. With

8In this context ψiηpiq and ψiζpiq are defined on Bki4 p0q.
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1.4 Smoothness of composition

r˛ ď minpνα
2
, εB

2
q, we calculate for x P Bki

3 p0q:

}ψiηpiq ˝ ψ
i
ζpiq
pxq ´ x} ď }ψiηpiqpψ

i
ζpiq
pxqq ´ ψiζpiqpxq} ` }ψ

i
ζpiq
pxq ´ x}

ă min
´

να,
εB
2

¯

. (1.12)

Now let x P BjBki
3 p0q and C the connected component of x in BjBki

5 p0q. We
define y :“ ψiηpiq ˝ψ

i
ζpiq
pxq and v :“ ηpiq ˛ ζpiqpxq P BεBp0q. From Remark 1.67,

we deduce that x, y P C and y “ expi,xpvq. From (1.12) and Lemma 1.65,

we deduce that v P TxB
jBki

5 p0q. Hence, ηpiq ˛ ζpiq is stratified.
(b) The maps ψη and ψζ make sense because r˛ ă εexp. From Lemma 1.34 we

obtain

ψηpψζpUi,3qq “ ψηpψζpϕ
´1
i pB

ki
3 p0qqqq “ ψηpϕ

´1
i pψ

i
ζpiq
pBki

3 p0qqqq

“ϕ´1
i pψ

i
ηpiq
˝ ψiζpiqpB

ki
3 p0qqq.

With (1.12) and να ă δU ă 1, the first assertion follows. An analogous
calculation shows (1.11).

(c) Let p P M and i P t1, . . . , nu with p P Ui,1. Let x :“ ϕippq P B
ki
1 p0q and

v :“ Tϕ´1
i px, ηpiq ˛ ζpiqpxqq P TpM . Thus v P Ω̃ and because εU ď εinj, we get

v P WpM . Now we calculate

exppvq “ ϕ´1
i pexpipx, ηpiq ˛ ζpiqpxqqq “ ϕ´1

i ˝ ψiηpiq ˝ ψ
i
ζpiq
˝ ϕippq “ ψη ˝ ψζppq.

Hence, the vector field η˛ζ makes sense. Next let x P Bki
3 p0q and p :“ ϕ´1

i pxq.
We calculate

pη ˛ ζqpiqpxq “ dϕi ˝ exp |´1
WpM

˝ ψη ˝ ψζppq

“dpϕi ˝ exp |´1
WpM

˝ ϕ´1
i ˝ ψiηpiq ˝ ψ

i
ζpiq
pϕippqq

“pϕi ˝ exp |WpM ˝ dpϕ
´1
i q

´1
˝ ψiηpiq ˝ ψ

i
ζpiq
pxq

“ expipx, ‚q
´1
pψiηpiq ˝ ψ

i
ζpiq
pxqq “ ηpiq ˛ ζpiqpxq.

Obviously, we have ψη˛ζ “ ψη ˝ψζ . The vector field η ˛ ζ is stratified because
its local representation is stratified. For the same reason η˛ζ is real analytic.

(d) We show that

}pη ˛ ζqpiq}
1

B
ki
1 p0q

“ }ηpiq ˛ ζpiq}
1

B
ki
1 p0q

ă εU

for all i P t1, . . . , nu. From ψiηpiq ˝ ψ
i
ζpiq
pBki

3 p0qq Ď BδU p0q, we get }ηpiq ˛

ζpiq}
0

B
ki
1 p0q

ă εU . Now, we show that }pηpiq ˛ ζpiqq
1pxq}op ă εU for all x P Bki

3 p0q.

We define the auxiliary function h :“ ψiηpiq ˝ ψ
i
ζpiq
´ id on Bki

3 p0q. Let x P

Bki
3 p0q. Using (1.12), we see that }hpxq} ă να. With r˛ ď minp εU

4Kα
¨ 1

4
, 1q, we
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1 Diff ω(M) as a Lie group for a manifold M with corners

calculate using Lemma 1.36

}h1pxq}op “ }ψ
i
ηpiq

1
pψiζpiqpxqq ˝ ψ

i
ζpiq

1
pxq ´ id }op

ď}ψiηpiq
1
pψiζpiqpxqq ˝ ψ

i
ζpiq

1
pxq ´ id ˝ψiζpiq

1
pxq}op ` }ψ

i
ζpiq

1
pxq ´ id }op

ď}ψiηpiq
1
pψiζpiqpxqq ´ id }op ¨ }ψ

i
ζpiq

1
pxq}op ` }ψ

i
ζpiq

1
pxq ´ id }op

ă
εU

4Kα

¨
1

4
¨ 2`

εU
4Kα

¨
1

4
ď

εU
4Kα

.

For all x P Bki
3 p0q, we have

ηpiq ˛ ζpiqpxq “ αi

´

x, pψiηpiq ˝ ψ
i
ζpiq
´ idqpxq

¯

“ αipx, hpxqq.

Let x P Bki
3 p0q and v P Rm. We show that }dpηpiq ˛ ζpiqqpx; vq} ď εU

2
}v}:

}dpηpiq ˛ ζpiqqpx; vq} “ }dαipx, hpxq; v, dhpx, vqq}

ď}d1αipx, hpxq; vq} ` }d2αipx, hpxq; dhpx, vqq}

ď p}d1αipx, hpxq; ‚q}op ` }d2αipx, hpxq; ‚q}op ¨ }dhpx, ‚qq}opq ¨ }v}

ă

ˆ

εU
4
`Kα ¨

εU
4Kα

˙

}v} “
εU
2
}v}.

Definition 1.71. Let R P r1, 5s, i P t1, . . . , nu and j P N. We use the shorthand

notation Ki :“ B
ki
R p0q and define the space

HR,j :“

#

pfiqi P
n
ź

i“1

Hol1bpV
ki
R,j;C

m
q
R
st : pDη P ΓωstpTMqq p@iq fi|Ki “ ηpiq|Ki

+

.

Moreover, we define the open subset

WR,j
ε :“

 

pfiqi P HR,j : p@iq }fi}
1
8 ă ε

(

for ε ą 0.

Remark 1.72. Let R P r1, 5s. We use the shorthand notation Ki :“ B
ki
R p0q. Let

Φ: ΓωstpTMq ãÑ
śn

i“1 GpCm;Cm|Kiq
R
st, η ÞÑ prηpiqsq be the canonical embedding (see

Definition 1.26). We write F :“ impΦq for the closed image of Φ (see Defini-
tion 1.26) and Ej :“

śn
i“1 Hol1bpV

ki
R,j;CmqRst. We identify Hol1bpV

ki
R,j;CmqRst with the

corresponding germs in GpCm;Cm|Kiq. As finite products and inductive limits of
ascending sequences of locally convex spaces commute, we get

n
ź

i“1

GpCm;Cm
|Kiq

R
st “ lim

ÝÑ
jPN

n
ź

i“1

Hol1bpV
ki
R,j;C

m
q
R
st “ lim

ÝÑ
Ej

as Silva spaces (see [Glo11, p. 260, Proposition 4.4 (d)] and Lemma 1.25). As
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1.4 Smoothness of composition

HR,j “ Ej X F , we see that HR,j is a Banach space. From Remark 1.22, we see
that F “ lim

ÝÑ
Ej X F “ lim

ÝÑ
HR,j. Now F “

Ť

jPNHR,j and ΦpB1
R,εq Ď

Ť

jPNWR,j
ε

for ε ą 0.

Lemma 1.73. For all l P N, we define l1 :“ 2l ` N0 (with N0 like in Definition
1.61). Let j P N, i0 P t1, . . . , nu, pfiqi PW4,j

ε˛ , l P N with l ě j and R Ps1, 4r. Then

ψi0fi0
pV

ki0
R´1,l1q Ď V

ki0
R,l and }ψi0fi0

´ id }0
V
ki0
4,j

ă rC˛ ď
δCpεexp˚q

2
.

Proof. This follows from Lemma 1.62 and Lemma 1.64 with r0 ă 1.

The following lemma is a consequence of [AS15, Remark 4.10].

Lemma 1.74. Let U Ď Cm be open and f : R ˆ U Ñ Cm a map that is complex
analytic in the second argument. In this situation, the map f considered as a
map between finite dimensional R-vector spaces is smooth if and only if the map
f̌ : RÑ HolpU ;Cmq considered as a map between locally convex R-vector spaces is
smooth.

Lemma 1.75. For all l P N, we define l1 :“ 2l ` N0. Let j P N, i0 P t1, . . . , nu,
pfiqi, pgiqi PW4,j

ε˛ . Then the map

fi0 ˛ gi0 : V
ki0

3,j1 Ñ Cm,

x ÞÑ exp˚i0px, ‚q
´1
pψi0fi0

˝ ψi0gi0 pxqq

makes sense and is complex analytic. Moreover, the map Φ: W4,j
ε˛ ˆ W

4,j
ε˛ Ñ

HolpV
ki0

3,j1 ;Cmq, ppfiqi, pgiqiq ÞÑ fi0˛gi0 is smooth over R if we consider HolpV
ki0

3,j1 ;Cmq

as a vector space over R.

Proof. Lemma 1.73 implies that fi0 ˛ gi0 : V
ki0

3,j1 Ñ Cm makes sense and is complex
analytic. Now we show the smoothness of Φ. As mentioned above, we consider

HolpV
ki0

3,j1 ;Cmq as a vector space over R. In our situation, a map is smooth in the
sense of Keller’s C8c -theory if and only if it is smooth in the sense of the convenient
setting (see [BGN04, p. 270] and [KM97, Theorem 4.11]). Let β, γ : RÑW4,j

ε˛ be
smooth curves. We write cptq :“ pβptq, γptqq and βi :“ pri β respectively γi :“ pri γ

for the i-th component. We have to show that Φ ˝ c : R Ñ HolpV
ki0

3,j1 ;Cmq is

smooth over R. Because of Lemma 1.74, it suffices to show that R ˆ V
ki0

3,j1 Ñ Cm,
pt, xq ÞÑ Φpcptqqpxq is smooth over R. Unwinding the definitions we get

Φpcptqqpxq

“ exp˚i0px, ‚q
´1

ˆ

exp˚i0

ˆ

exp˚i0
`

x, βi0ptqpxq
˘

, βi0ptq
`

exp˚i0px, γi0ptqpxqq
˘

˙˙

. (1.13)

The inclusion Hol1bpV
ki0

4,j ;CmqRst ãÑ HolpV
ki0

4,j ;Cmq is continuous linear. Therefore,

the maps Rˆ V ki0
4,j Ñ Cm, pt, xq ÞÑ βi0pt, xq and Rˆ V ki0

4,j Ñ Cm, pt, xq ÞÑ γi0pt, xq
are smooth over R. Now the assertion follows from (1.13).
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1 Diff ω(M) as a Lie group for a manifold M with corners

Now we come to the central lemma of this subsection.

Lemma 1.76. The map

˛ : B1
4,ε˛ ˆ B

1
4,ε˛ Ñ B

1
1,εU

, pη, ζq ÞÑ η ˛ ζ

defined in Lemma 1.70 is smooth.

Proof. In this proof, all vector spaces except for Cm are considered as R vector
spaces. If k P N we write k1 :“ 2k ` N0. After identification we have B1

1,εU
Ď

śn
i“1 GpCm;Cm|B

ki
1 p0qq

R
st (see Definition 1.26) and it is left to show the smoothness

of

B1
4,ε˛ ˆ B

1
4,ε˛ Ñ GpC

m;Cm
|B

ki0
1 p0qqRst,

pη, ζq ÞÑ
”

pη ˛ ζq˚
pi0q

ı

B
ki0
1 p0q

“
“

pηpi0q ˛ ζpi0qq
˚
‰

B
ki0
1 p0q

for all i0 P t1, . . . , nu. Because of Remark 1.72 and Remark 1.22 it suffices to

show the smoothness of W4,j
ε˛ ˆ W

4,j
ε˛ Ñ GpCm;Cm|B

ki0
1 p0qq, ppfiqi, pgiqiq ÞÑ

rfi0 ˛ gi0sB
ki0
1 p0q

over R for all j P N. But this follows from Lemma 1.75.

1.5. Smoothness of the inversion

In this section, we prove the smoothness of the inversion in the local chart Φ.

Lemma 1.77. Let l P N. As before, we define l1 :“ 2l ` N0. There exists σ P
s0, εexp˚r such that for all i P t1, . . . , nu, x P V ki

2,l1 and y P BC
σ p0q we have

(i) exp˚i px, yq P V
ki

3,l ;

(ii) }d2 exp˚i px, y; ‚q ´ id }op ă
1
2
.

In particular, we have }d2 exp˚i px, yq}op ď
3
2
.

Proof. Let i P t1, . . . , nu. We have exp˚i px, 0q P V ki
3,l for all x P V

ki
2,l1 and so

V
ki
3,l1 ˆ t0u Ď pexp˚i q

´1pV ki
3,l q. Moreover, d2 exp˚i px, 0; ‚q ´ idCm “ 0 for all x P

V
ki
2,l1 . Let h : V ki

3,l ˆ BC
εexp˚

p0q Ñ r0,8r, px, yq ÞÑ }d2 exp˚i px, yq ´ idCm }op. Then

V
ki
2,l1 ˆ t0u Ď h´1pr0, 1

2
rq. The rest follows from Wallace’s Lemma.

Definition 1.78. We use the constants of Lemma 1.68 and Lemma 1.77. Let
r‹ :“ min

´

1
4
, δU ,

εU
4¨Kα

, να,
εB
2

¯

, rC‹ :“ minp1
4
, δCpσqq and ε‹ :“ minpεU , ε3,r‹ , ε

C
rC‹
q.

In the case of a smooth manifold without corners, one can use smooth bump
functions to show the smoothness of the inversion [Glo06c, Lemma 3.8]. Obviously
this is not possible in the real analytic case. As in [Sch15, Lemma D.4], we use
a quantitative inverse function theorem to show the smoothness of the inversion.
Therefore, it was necessary to show the quantitative inverse function theorem for
open sets with corners (Lemma 1.49) to apply it to show Lemma 1.52.
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1.5 Smoothness of the inversion

Lemma 1.79. Let η P B1
3,ε‹ and i P t1, . . . , nu

(a) The map ψiηpiq
´1

: Bki
2 p0q Ñ Rm

ki
makes sense. Moreover, the map

pηpiqq
‹ : Bki

2 p0q Ñ Rm, x ÞÑ `i

´

x, ψiηpiq
´1
pxq

¯

makes sense and is a stratified real analytic function with }pηpiqq
‹pxq} ă

minpεU , εBq for all x P Bki
2 p0q and ψi

pηpiqq‹
“ pψiηpiqq

´1 on Bki
2 p0q.

(b) The map ψ´1
η : M Ñ M makes sense and ψ´1

η pUi,2q Ď Ui,3. Moreover,

ψ´1
η |Ui,2 “ ϕ´1

i ˝ pψiηpiqq
´1 ˝ ϕi|Ui,2.

(c) The vector field

η‹ : M Ñ TM, p ÞÑ exp |´1
WpM

pψ´1
η ppqq

makes sense, is real analytic and stratified. Moreover, we have ψη‹ “ ψ´1
η

and

pη‹qpiq|Bki2 p0q
“ pηpiqq

‹. (1.14)

(d) We have η‹ P V “ B1
1,εU

.

Proof. (a) Because ε‹ ď ε3,r‹ and r‹ ď minpδU ,
1
4
, εB

2
q, we can use Lemma 1.36

and see that pψiηpiqq
´1 : Bki

2 p0q Ñ Rm
ki

makes sense and that }pψiηpiqq
´1pxq ´

x} ă minpδU ,
εB
2
q for all x P Bki

2 p0q. Hence, the map pηpiqq
‹ : Bki

2 p0q Ñ Rm,
x ÞÑ `ipx, pψ

i
ηpiq
q´1pxqq makes sense and }pηpiqq

‹pxq} ă minpεU , εBq ď εexp for

all x P Bki
2 p0q. Thus

expipx, η
‹
piqpxqq “ pψ

i
ηpiq
q
´1
pxq for all x P Bki

2 p0q. (1.15)

Now let x P BjBki
2 p0q. Obviously y :“ pψiηpiqq

´1pxq P BjBki
3 p0q. Let C be the

connected component of x in BjBki
5 p0q. Remark 1.67 implies y P C. We have

v :“ η‹
piqpxq P BεBp0q and expixpvq “ y and }y ´ x} ă εB

2
. From Lemma 1.65,

we get v P TxB
jBki

5 p0q and so pηpiqq
‹ P CωpBki

2 p0q;Rmqst.
(b) Because ε‹ ď εU , the map ψη : M Ñ M is a real analytic diffeomorphism.

Using Lemma 1.34, Lemma 1.36 and r‹ ď
1
4
, we calculate

Ui,2 “ ϕ´1
i pB

ki
2 p0qq Ď ϕ´1

i pψ
i
ηpiq
pBki

3 p0qqq “ ϕ´1
i ˝ ψiηpiq ˝ ϕipUi,3q “ ψηpUi,3q.

Let p P Ui,2. To see ψ´1
η ppq “ ϕ´1

i ˝ pψiηpiqq
´1 ˝ϕippq, we use Lemma 1.34 and

obtain ψη

´

ϕ´1
i ˝ pψiηpiqq

´1 ˝ ϕippq
¯

“ p.

(c) We show that the map η‹ : M Ñ TM , p ÞÑ exp |´1
WpM

pψ´1
η ppqq makes sense.

Let p P M and i P t1, . . . , nu such that p P Ui,1. We define x :“ ϕippq and
v :“ Tϕ´1

i px, pηpiqq
‹pxqq. As εU ď εinj, we get v P WpM . Next we calculate

exppvq “ ϕ´1
i ˝ expipx, η

‹
piqpxqq “ ϕ´1

i ˝ ψiηpiq ˝ ϕippq “ ψ´1
η ppq.
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Hence, η‹ makes sense. Obviously ψη‹ “ ψ´1
η . Now let x P Bki

2 p0q and

p :“ ϕ´1
i pxq. We calculate

pη‹qpiqpxq “ dpϕi ˝ exp |´1
WpM

˝ ψ´1
η ppq

“dpϕi ˝ exp |´1
WpM

˝ ϕ´1
i ˝ pψiηpiqq

´1
pϕippqq

“
`

ϕi ˝ exp |WpM ˝ dpϕ
´1
i

˘´1
˝ pψiηpiqq

´1
pxq

“ expipx, ‚q
´1
˝ pψiηpiqq

´1
pxq “ pηpiqq

‹
pxq.

This shows (1.14). We conclude with this local representation and (a) that
η‹ is real analytic and stratified.

(d) It is enough to show that }dη˚
piqpx, vq} ď

εU
2
¨}v} for all x P Bki

2 p0q and v P Rm.

Since r‹ ă δU , we have pψiηpiqq
´1pxq ´ x P BδU p0q (Lemma 1.36) and so

η‹piqpxq “ αi

´

x, pψiηpiqq
´1
pxq ´ x

¯

for all x P Bki
2 p0q. Now let x P Bki

2 p0q and v P Rm. We get

dη‹piqpx, vq “ d1αi

´

x, pψiηpiqq
´1
pxq ´ x; v

¯

` d2αi

´

x, pψiηpiqq
´1
pxq ´ x; dpψiηpiqq

´1
px; vq ´ v

¯

. (1.16)

Using r‹ ď να and Lemma 1.36, we see that pψiηpiqq
´1pxq ´ x P Bναp0q and so

}d1αipx, pψ
i
ηpiq
q´1pxq ´ x; vq} ď εU

4
}v}. Analogously we get

}d2αipx, pψ
i
ηpiq
q
´1
pxq ´ x; dpψiηpiqq

´1
px; vq ´ vq}

ďKα ¨ }dpψ
i
ηpiq
q
´1
px; ‚q ´ id }op ¨ }v} ď

εU
4
}v}.

Now the assertion follows from (1.16).

Lemma 1.80. Let j P N, i0 P t1, . . . , nu, j
1 :“ 2j `N0 (with N0 from Definition

1.61) and pfiqi PW3,j
ε‹ .

(a) We have V
ki0

2,j1 Ď ψi0fi0
pV

ki0
3,j q, the map pψi0fi0

q´1 : V
ki0

2,j1 Ñ V
ki0

3,j is complex an-

alytic and }pψi0fi0
q´1 ´ idCm }

1

V
ki0
2,j1

ă δCpσq. Moreover, the map f ‹i0 : V
ki0

2,j1 Ñ

BC
σ p0q, x ÞÑ exp˚i0px, ‚q

´1ppψi0fi0
q´1pxqq makes sense and is complex analytic.

(b) For all i0 P t1, . . . , nu, the map Φ: W3,j
ε‹ Ñ HolpV

ki0
2,j1 ;Cmq, pfiqi ÞÑ f ‹i0 is

smooth over R.

Proof. (a) This follows from Lemma 1.64.
(b) We follow the ideas of [Glo06c, Lemma 3.8]. It suffices to show the assertion

in the convenient setting. Let c : RÑW3,j
ε‹ , t ÞÑ ct be smooth. We write pctqi0

for the i0-th component of ct. We have to show that zΦ ˝ c : Rˆ V ki0
2,j1 Ñ Cm,
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pt, xq ÞÑ c‹t pxq is smooth over R. From (a), we get c‹t P Hol0σpV
ki0

2,j1 ;Cmq.

Hence, ψi0c‹t pV
ki0

2,j1 q Ď V
ki0

3,j . Therefore, ψi0
pctqi0

˝ ψi0c‹t makes sense and ψi0
pctqi0

˝

ψi0c‹t pxq “ x for all x P V
ki0

2,j1 . Therefore

exp˚i0pexp˚i0px, c
‹
t pxqq, pctqi0pexp˚i0px, c

‹
t pxqqqq ´ x “ 0 for all x P V

ki0
2,j1 (1.17)

for all x P V
ki0

2,j1 . We define the smooth function

Λ: Rˆ V ki0
2,j1 ˆB

C
σ p0q Ñ Cm

pt, x, yq ÞÑ exp˚i0pexp˚i0px, yq, pctqi0pexp˚i0px, yqqq ´ x “ ψi0
pctqi0

pexp˚i0px, yqq ´ x

For pt, x, yq P Rˆ V ki0
2,j1 ˆB

C
σ p0q, we use Lemma 1.77 and calculate

}d3Λpt, x, y; ‚q ´ id }op “ }dψpctqi0 pexp˚i0px, yq; d2 exp˚i0px, y; ‚qq ´ id }op

“}dψpctqi0 pexp˚i0px, yq; ‚q ˝ d2 exp˚i0px, y; ‚q ´ id }op

ď}dψpctqi0 pexp˚i0px, yq; ‚q ˝ d2 exp˚i0px, y; ‚q ´ id ˝d2 exp˚i0px, y; ‚q}op

` } id ˝d2 exp˚i0px, y; ‚q ´ id }op

ď}dψpctqi0 pexp˚i0px, yq; ‚q ´ id }op ¨ }d2 exp˚i0px, y; ‚q}op ` }d2 exp˚i0px, y; ‚q ´ id }op

ă
1

4
¨

3

2
`

1

2
“

7

8
.

Hence, d3Λpt, x, y; ‚q P GLpCmq. Obviously, Λpt, x, ‚q : BC
σ p0q Ñ Cm is in-

jective. From the implicit function theorem and (1.17), we see that Φ is
smooth.

Lemma 1.81. The map

iM : B1
3,ε‹ Ñ B

1
1,εU

, η ÞÑ η‹

defined in Lemma 1.79 is smooth.

Proof. Analogous to the proof of Lemma 1.76, this follows from Lemma 1.80 (b).

1.6. Existence and uniqueness of the Lie group
structure

In this section, we follow the strategy of [Glo06c, Section 5]: First, we use the
theorem about the local description of Lie groups to obtain a Lie group structure
on a subgroup DiffωpMq0 of DiffωpMq. Then we show that this structure does not
depend on the choice of the Riemannian metric (Lemma 1.85). With the help of
this result, we show the smoothness of the conjugation map (Lemma 1.87).

49



1 Diff ω(M) as a Lie group for a manifold M with corners

The following lemma comes from [Glo06c, Proposition 1.20]:

Lemma 1.82 (Theorem about the local description of Lie groups). Let G be a
group and U Ď G a subset that is a smooth manifold such that there exists a
symmetric subset V Ď U that contains the identity and fulfils V ¨ V Ď U . If the
restriction of the inversion and the multiplication on V are smooth maps then there
exists a unique manifold structure on xV y such that:

(i) xV y is a Lie group;
(ii) V is open in xV y;

(iii) U and xV y induce the same manifold structure on V .
Moreover, if xV y is a normal subgroup of G and for all g P G the conjugation
intg : xV y Ñ xV y, h ÞÑ ghg´1 is smooth, then there exists a unique manifold
structure on G such that

(i) G becomes a Lie group;
(ii) V is an open submanifold of G.

In the following we introduce a notational convention (cf. [GN] and [Str06,
Definition 9.1]).

Convention 1.83. Let X and Y be sets. If X 1 Ď X and Y 1 Ď Y , we write
tX 1, Y 1u :“ tf : X Ñ Y : fpX 1q Ď Y 1u.

Adapting [Glo04, Proposition 4.23] to our situation, we obtain the following
lemma.

Lemma 1.84. Let U,Z, Ug, Vg Ď Cm be open subsets such that Y Ď U Ď Ug and
Y is compact (here the closure of Y is taken in Cm). If g : Ug ˆ Vg Ñ Cm is a
complex analytic map then

HolpU ;Cm
q X tY , Vgu Ñ HolpY ;Cm

q, γ ÞÑ gp‚, γp‚qq|Y

is a complex analytic map.

We follow the line of thought of [Glo06c, 4.28, 5.1 and 5.3] in the following
lemma.

Lemma 1.85. (a) Let iM : B1
3,ε‹ Ñ B

1
1,εU

, η ÞÑ η‹ be the map defined in Lemma

1.81. There exists ε0 Ps0, ε‹r such that B1
4,ε0

Ď i´1
M pB1

3,ε‹q.
(b) Let U‹ :“ ΨpB1

3,ε‹q and ι : U‹ Ñ U be the inversion of DiffωpMq. The set
U1

0 :“ ΨpB1
4,ε0
q is an open connected 1-neighbourhood. Moreover, the set

U0 :“ U1
0 Y ιpU1

0 q Ď U‹ is an open connected symmetric 1-neighbourhood. We
define V0 :“ Φ´1pU0q and V1

0 :“ B1
4,ε0

.
(c) Analogous to [Glo06c, 6.2], we can use Lemma 1.82 to find a unique Lie

group structure on DiffωpMq0 :“ xU0y.
(d) The Lie group structure in (c) is independent of the choice of the atlas

ϕi : Ui,5 Ñ Bki
5 p0q (see Lemma 1.16).

(e) The Lie group structure in (c) is independent of the choice of the Riemannian
metric g.

50
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Proof. (a) This follows from the same argument as in Lemma 1.81.
(b) Obviously, U1

0 :“ ΨpB1
4,ε0
q is an open connected 1-neighbourhood. As in

[Glo06c, p. 4.28], the rest of the assertion follows from ι´1pU1
0 q “ ιpU1

0 q. In
fact U0 :“ U1

0 Y ιpU1
0 q is open because of ι´1pU1

0 q “ ιpU1
0 q and obviously it is

connected. Moreover U0 is obviously symmetric.
(c) Clear.

(d) Let ϕ1i : U
1
i,5 Ñ B

k1i
5 p0q with i P t1, . . . , n1u be another atlas with the same

properties. We find an analogous open 0-neighbourhood V 10 Ď ΓωstpTMq such
that U 10 :“ ΦpV 10q generates a Lie group DiffωpMq10 Ď DiffωpMq. We define
the open 0-neighbourhood W :“ V0 X V 10. Then X :“ ΦpW q Ď DiffωpMq.
Obviously, we get X Ď DiffωpMq0 X DiffωpMq10. Moreover, X is open in
DiffωpMq0 and in DiffωpMq10. Because both Lie groups are connected, we get
DiffωpMq0 “ xXy “ DiffωpMq10 in the sense of sets and in the sense of Lie
groups.

(e) Let g1 be another Riemannian metric with the same properties as g. In the
following, all objects induced by g1 are written with an extra “1”. Considering
Definition 1.68, we find ν Ps0, ναr such that }d1αipx, y; ‚q}op ă

ε0
4

for all

x P B4p0q and y P Bνp0q. Moreover, we can choose N0 in Definition 1.61 so
large that 1

N0
ă minpr`˚ , r

1
`˚q. We choose ε ą 0 with

ε ă minpε14,δU , ε
1

4,
εB
2
, ε14,δp ε0

2
q
, ε14,ν , ε

1
U , ε

1

4,
ε0

4Kα

, ε1
C
δCpexp˚qq

Let η P B1
4,ε. For i P t1, . . . , nu, the map η:

piq : B
ki
4 p0q Ñ Rm, x ÞÑ

`ipx, exp1ipx, ηpxqqq makes sense and is real analytic. Moreover, the map is
stratified: Let x P BjBki

4 p0q and C the connected component of x in BjBki
5 p0q.

We define y :“ pψ1qiηpiqpxq and v :“ η:
piqpxq P BεBp0q. We have }y ´ x} ă εB

2
.

From Remark 1.67 we deduce that x, y P C and y “ expixpvq. From (1.12)
and Lemma 1.65 we deduce that v P TxB

jBki
5 p0q. Hence, ηpiq is stratified.

Moreover, the map η: : M Ñ TM , p ÞÑ exp |´1
WpM

pexp1pηppqqq makes sense
and is a stratified, real analytic vector field of M . To see this, we choose a
chart ϕi around p and define x :“ ϕippq and v :“ `ipx, exp1ipx, ηpiqpxqqq. Since
v P BminpεU ,εBqp0q, we get Tϕ´1

i px, vq P WpM . The map η: makes sense be-
cause exppTϕ´1

i px, vqq “ exp1pηppqq. Obviously we have pη:qpiq “ pηpiqq
:.

Thus η: is stratified and real analytic. We claim that η: P B1
4,ε0

. Let

i P t1, . . . , nu. We have η:
piqpxq “ αipx, exp1ipx, ηpiqpxqq ´ xq for all x P Bki

4 p0q.
Hence,

dη:
piqpx, vq “ d1αipx, ψ

1i
ηpiq
pxq ´ x; vq ` d2αipx, ψ

1i
ηpiq
pxq ´ x; dψ1

i
ηpiq
px, vq ´ vq

and so

}dη:
piqpx, ‚q}op ď }d1αipx, ψ

1i
ηpiq
pxq ´ x; ‚q}op ` }d2αipx, ψ

1i
ηpiq
pxq ´ x; ‚q}op

¨ }dψ1
i
ηpiq
pxq ´ id }op ă

ε0

4
`Kα ¨

ε0

Kα ¨ 4
“
ε0

2
.
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1 Diff ω(M) as a Lie group for a manifold M with corners

Because ε ă ε1
4,δp

ε0
2
q

we have }ηpiqpxq} ă
ε0
2

for all x P Bki
4 p0q. We conclude

that η: P B1
4,ε0

. Hence, the map

∆: B1
4,ε Ñ B1

4,ε0
, η ÞÑ η:

makes sense. This also shows that Ψ1pB1
4,εq Ď ΨpB1

4,ε0
q Ď U0 and that

∆ is nothing else than the inclusion in the charts Φ1 and Φ. In the
following, we use notation of the proof of Lemma 1.28. We want to
show that ∆: B1

4,ε Ñ ΓωstpTMq is smooth. For this we have to show

the smoothness of the corresponding map between G1
ε pCm;Cm|B

ki
4 p0qq and

GpCm;Cm|B
ki
4 p0qq. If n P N and f P Hol1εpV

ki
4,n;Cmq then f : : V ki

4,n Ñ Cm,

x ÞÑ exp˚i px, ‚q
´1pψ1if pxqq makes sense and is complex analytic (because of

Lemma 1.62 we have }ψ1if pxq´x} ă δCpεexp˚q). We want to show the smooth-

ness of Hol1εpV
ki

4,n;Cmq Ñ HolpV ki
4,n`2q, f ÞÑ f :. We can write this map as the

following composition

Hol1εpV
ki

4,n;Cm
q
τ1
ÝÑ HolpV ki

4,n`1;Cm
q X

´

tV
ki
4,n`2;BC

δCpεexp˚ q
p0qu` id

¯

τ2
ÝÑ HolpV ki

4,n`2;Cm
q

with τ1pηq “ ψ1
i
η and τ2pfqpxq “ exp˚i px, ‚q

´1
pfpxqq.

Now the smoothness of τ1 and τ2 follows from Lemma 1.84. From Lemma
1.21 we deduce that ∆ is smooth. The set Ψ1pB1

4,εq is an open identity
neighbourhood on DiffωpMq10 and with Ψ1pB1

4,εq Ď ΨpB1
4,ε0
q Ď U0 we get

DiffωpMq10 Ď DiffωpMq0. The inclusion DiffωpMq10 ãÑ Diff ωpMq0 is smooth
because ∆ is smooth. Analogously we see that DiffωpMq0 Ď DiffωpMq10 and
that DiffωpMq0 ãÑ DiffωpMq10 is smooth.

Lemma 1.86. Given f P DiffωpMq the map

Pf : ΓωstpTMq Ñ ΓωstpTMq, η ÞÑ Pfη :“ Tf ˝ η ˝ f´1

is continuous linear.

Proof. Because we can embed ΓωstpTMq into
śn

i“1 GpCm;Cm|B
ki
4 p0qq, it suffices

to show that ΓωstpTMq Ñ GpCm;Cm|B
ki
4 p0qq, η ÞÑ rppPfηq

˚qpiqs “ rppPfηqpiqq
˚s is

continuous. The map ϕ1i : f
´1pUi,5q Ñ Bki

5 p0q, ϕ
1
i “ ϕi ˝ f is a chart of M . Given

ζ P ΓωstpTMq we write ζϕ1i :“ dϕ1i ˝ ζ ˝ ϕ
1
i
´1 for the local representative. We get

pPfηqpiq “ dϕi ˝ Pfη|Ui,5 ˝ ϕ
´1
i “ ηϕ1i .

Hence,

rppPfηqpiqq
˚
s “ rpηϕ1iq

˚
s “ rpη˚qϕ1i

˚s.
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The map ΓωstpTMq Ñ GpCm;Cm|B
ki
4 q, η ÞÑ pη˚qϕ1i

˚ is continuous because of [DS15,

Lemma A.15].

The following lemma and its proof are completely analogous to [Glo06c,
5.5,5.6,5.8]. For the convenience of the reader, we recall Glöckners arguments:

Lemma 1.87. The subgroup DiffωpMq0 of DiffωpMq is normal and for f P

DiffωpMq the conjugation intf : DiffωpMq0 Ñ DiffωpMq0, h ÞÑ f ˝h˝f´1 is smooth.

Proof. Let f P DiffωpMq. Then the pullback metric g1 from g over f induces a
Riemannian exponential function exp1 : Ω1 Ñ M , with Ω1 “ TfpΩq and exp1 “
f ˝ exp ˝Tf´1|Ω1 . Hence, for η P V1

0 , we get f ˝ Ψη ˝ f
´1 “ exp1 ˝Pfη “ Ψ1

Pfη
.

Now we can use Lemma 1.85 and find a 0-neighbourhood V 10 Ď ΓωstpTMq such
that Φ1 : V 10 Ñ DiffωpMq0 is a diffeomorphism onto an identity neighbourhood.
Because the map Pf : ΓωstpTMq Ñ ΓωstpTMq is continuous linear, we can find a
0-neighbourhood W Ď V1

0 Ď ΓωstpTMq such that Pf pW q Ď V 10. Hence, intf ˝Ψη “

Ψ1
Pfη

P DiffωpMq0 for all η P W . Therefore, intf pΨpW qq Ď DiffωpMq0. Thus

intf pDiffωpMq0q “ intf pă ΨpW q ąq Ď DiffωpMq0. Moreover, we have intf |ΨpW q “
Ψ1 ˝ Pf ˝ Φ|ΨpW q. Hence, intf is smooth.

Now we get the main result of this chapter. As in the case of [Glo06c] we just
have to use Lemma 1.82 and the results above.

Theorem 1.88. There exists a unique smooth Lie group structure on DiffωpMq
modelled over ΓωstpTMq such that for one (and hence for all) boundary respect-
ing Riemannian metrics on M the map η ÞÑ Ψη is a smooth diffeomorphism
from an open 0-neighbourhood of ΓωstpTMq onto an open identity neighbourhood
of DiffωpMq.
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2. Integrability of Banach
subalgebras

As mentioned in the introduction, Teichmann showed a Frobenius theorem for
finite-dimensional vector distributions on convenient manifolds that are modelled
over locally convex spaces (see [Tei01, Theorem 2]).1 A similar result for manifolds
that are modelled over locally convex spaces in the sense of Keller’s Ck

c -theory
was obtained in [Eyn12, Chapter 2; Theorem 2.6]2. The primary aim of this
chapter is to obtain a Frobenius theorem for Banach distributions on manifolds
that are modelled over locally convex spaces (see Theorem 2.15). Hence, we obtain
a generalisation of [Eyn12, Theorem 2.6] respectively [Tei01, Theorem 2]. In [CS76]
Chillingworth and Stefan considered distributions on Banach manifolds that are
not necessarily subbundles of the tangent bundle but such that each fibre Dp of
the distribution is a Banach space which is complemented in TpM . Our proof of
Theorem 2.15 is inspired by the proofs of [CS76, Section 4] and [Tei01, Theorem
2] respectively [Eyn12, Theorem 2.6]. Whereas Chillingworth and Stefan consider
Banach manifolds, we are interested in manifolds that are modelled over locally
convex spaces. So one of the main problems will be that we have no solution
theory for initial value problems in locally convex spaces. The idea to generalise
the methods used in [CS76] was suggested to the author by Glöckner.

In Section 2.2 we apply our Frobenius theorem to obtain Theorem 2.17 con-
cerning the integration of Lie subalgebras of Lie algebras of Lie groups that are
modelled over locally convex spaces. It is a standard strategy to show the integra-
bility of Lie subalgebras with the help of a Frobenius theorem (see e.g. [Lan01,
Chapter VI, Theorem 5.4], [Les68], [Les92], or [Eyn12, Theorem 4.1]).

2.1. The Frobenius theorem for Banach distributions

Convention 2.1. Throughout this section, E will be a locally convex space, r P
NY t8u and M a Cr-manifold modelled over E.

Remark 2.2. Because ordinary differential equations in locally convex spaces do
not have a unique solution in general we sometimes assume that certain vector
fields admit a local flow.

At first we recall some standard definitions concerning distributions of manifolds,
see e.g. [Lee13], [Eyn12], [Lan01], [Hil00] or [Tei01]:

1This chapter consists of material published before in the author’s preprint [Eyn14a].
2As mentioned in the introduction the Frobenius theorems in [Les68] respectively [Les92] are of

a different kind because they require other conditions and their proofs use different methods
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2 Integrability of Banach subalgebras

Definition 2.3. (a) A subset D Ď TM is called vector distribution or just dis-
tribution of M , if for every point p P M the set Dp :“ D X TpM is a vector
subspace of TpM . Important examples for vector distributions are subbun-
dles of TM . (See e.g. [Eyn12, Definition 1.7], cf. [Lee13, p. 491])

(b) A subset N Ď M is called an immersed submanifold of M , if it is a Cr-
manifold modelled over a closed complemented vector subspace F of E such
that the inclusion ιMN : N ÑM , p ÞÑ p is continuous and given p P N we find
a chart ϕ : Uϕ Ñ Vϕ of N around p and a chart ψ : Uψ Ñ Vψ of M around p
such that Uϕ Ď Uψ and ψ ˝ ιMN ˝ ϕ

´1 “ ιEF |Vϕ . (See e.g. [Eyn12, Definition
1.9], cf. [Lee13, p. 108])

(c) Let F Ď E be a closed vector subspace of E and D Ď TM be a subbundle
of TM with typical fibre F . A connected immersed submanifold N Ď M is
called integral manifold for D, if TpN “ Dp for every p P N . Given p0 P M ,
we call an integral manifold N containing p0 maximal if every other integral
manifold L for D that contains p0 is a subset of N and the inclusion map
ι : L ãÑ N , p ÞÑ p is of class Cr. (Cf. e.g. [Eyn12, Definition 1.10] or [Lee13,
p. 491])

(d) Let F Ď E be a closed vector subspace and D Ď TM be a subbundle of TM
with typical fibre F . Assume that F is complemented in E, say E “ F ‘H
topologically with a vector subspace H of E. A chart ϕ : Uϕ Ñ Vϕ of M is
called a Frobenius chart for D, if there are open sets V1 Ď F and V2 Ď H
such that Vϕ “ V1 ˆ V2 and for y P V2 the submanifold

Sϕy :“ tϕ´1
px, yq : x P V1u (2.1)

is an integral manifold for D|Uϕ . If M admits an atlas of Frobenius charts
for D, we call D a Frobenius distribution.

(e) If F is a closed vector subspace of E, we call a subbundle D Ď TM of TM
with typical fibre F involutive, if for all Cr-vector fields X, Y : U Ñ TM on
an open set U ĎM with impXq Ď D and impY q Ď D, also imprX, Y sq Ď D.
(See [Eyn12, Definition 2.5], cf. [Lee13, p. 492])

The following theorem is a straightforward generalisation of the finite-
dimensional case ([War83]), and was proved in [Eyn12, Satz 1.13.].

Theorem 2.4. Let E be a locally convex space, M be a Cr-manifold with r ě 2,
F be a complemented vector subspace of E and D Ď TM be a subbundle of TM
with typical fibre F . If D is a Frobenius distribution then given p0 PM there exists
a unique maximal integral manifold that contains p0.

Remark 2.5. Let F be a complemented vector subspace of E with vector comple-
ment H and D Ď TM be a subbundle of TM with typical fibre F . For a chart
ϕ : U Ñ V1ˆV2 Ď F‘H “ E of M and the inclusion ιy : V1 Ñ V1ˆV2, x ÞÑ px, yq,
we get the following equivalences:

ϕ is a Frobenius chart

ôp@y P V2q S
ϕ
y “ ϕ´1

p‚, yqpV1q is an integral manifold for D
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ôp@y P V2qp@x P V1q Tϕ´1px,yqS
ϕ
y “ Txpϕ

´1
˝ ιyqptxu ˆ F q “ Dϕ´1px,yq

ôp@p P Uϕq dϕpDpq “ F.

Definition 2.6. Let N be a Cr-manifold, X : N Ñ TN be a Cr´1-vector field
on N and f : M Ñ N be a Cr-diffeomorphism. In this situation we define the
Cr´1-vector field f˚X :“ Tf´1 ˝X ˝ f on M .

The following lemma is a straightforward generalisation of the finite-dimensional
case (cf. [GN] or [Lan01, Chaper V, Section 2]).

Lemma 2.7. Let r ě 2. If X, Y : M Ñ TM are Cr-vector fields and X provides
a local flow then we have d

ds

ˇ

ˇ

s“0

`

pΦX
s q
˚Y ppq

˘

“ rX, Y sppq for all p PM .

Proof. It is enough to prove the assertion locally. Let U Ď E be an open subset and
f, g : U Ñ E be Cr-maps such that f provides a local flow. We write Φ: Ω Ñ U
for the global flow of f . For p P U , we calculate

d

ds

ˇ

ˇ

ˇ

s“0
pΦ˚sgppqq “

d

ds

ˇ

ˇ

ˇ

s“0
dΦ´s pΦsppq, gpΦsppqqq

“
d

ds

ˇ

ˇ

ˇ

s“0
dΦp´s,Φps, pq; 0, gpΦps, pqqq

“d1pdΦq

ˆ

0,Φp0, pq, 0, gpΦp0, pqq;´1,
d

ds

ˇ

ˇ

ˇ

s“0
Φps, pq

˙

` dΦ

ˆ

0,Φp0, pq; 0,
d

ds

ˇ

ˇ

ˇ

s“0
gpΦps, pqq

˙

“d1pdΦqp0, p, 0, gppq;´1, 0q ` d1pdΦqp0, p, 0, gppq; 0, fppqq

` dΦp0, p; 0, dgpp, fppqqq

“ ´
d

dt

ˇ

ˇ

ˇ

t“0
dΦpt, p; 0, gppqq `

d

dt

ˇ

ˇ

ˇ

t“0
dΦp0, p` tfppq; 0, gppqq

` d2Φp0, p; dgpp, fppqqq

“ ´
d

dt

ˇ

ˇ

ˇ

t“0

d

ds

ˇ

ˇ

ˇ

s“0
Φpt, p` sgppqq `

d

dt

ˇ

ˇ

ˇ

t“0
dΦ0pp` tfppq; gppqq ` dgpp, fppqq

“ ´
d

ds

ˇ

ˇ

ˇ

s“0
fpp` sgppqq `

d

dt

ˇ

ˇ

ˇ

t“0
gppq ` dgpp, fppqq

“ ´ dfpp, gppqq ` dgpp, fppqq

The following result comes from [Glo06b, Theorem 2.3].

Theorem 2.8. Let r P N Y t8u, E be a locally convex space, F be a Banach
space, P Ď E and U Ď F be open sets and f : P ˆ U Ñ F be a Cr-map with
r P N. We write fp :“ fpp, ‚q : U Ñ F for p P P . Let p0 P P and x0 P U with
f 1p0
px0q P GLpF q. If r ě 2 or r “ 1 and

sup
pp,xqPPˆU

}f 1p0
px0q ´ f

1
ppxq}op ă

1

}f 1p0
px0q

´1}op
, (2.2)
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then we find an open p0-neighbourhood P0 Ď P and an open x0-neighbourhood
U0 Ď U such that
(a) fppU0q is open in F for all p P P and fp|U0 : U0 Ñ fppU0q is a Cr-

diffeomorphism.
(b) W :“

Ť

pPP0
ptpu ˆ fppU0qq is open in E ˆ F and g : W Ñ U0, pp, yq ÞÑ f´1

p pyq
is a Cr-map.

(c) Φ: P0 ˆ U0 Ñ W, pp, xq ÞÑ pp, fppxqq is a Cr-diffeomorphism with inverse
Ψ: W Ñ P0 ˆ U0, pp, zq Ñ pp, gpp, zqq.

Definition 2.9. Let E and F be locally convex spaces. We write LpE,F qb for the
space of continuous linear maps equipped with the topology of uniform convergence
on bounded sets and LpE,F qc.o. if we equip the space with the topology of uniform
convergence on compact sets (see [Glo, p. 5]).

The following lemma is taken from [Glo, Proposition 2.1] (also cf. [GN]).

Lemma 2.10. If E, F and H are locally convex spaces, r P N, U Ď E is an open
set and f : U ˆ F Ñ H is a Cr-map that is linear in the second argument then
f_ : U Ñ LpF,Hqc.o. is of class Cr and f_ : U Ñ LpF,Hqb is of class Cr´1.

Lemma 2.11. Let E be a locally convex space, F be a Banach space, PE be the
set of all continuous seminorms on E and B1 be the closed unit ball in F . If we
write }‚}B,q for a typical seminorm on LpF,Eqb, where B is a bounded set in F
and q P PE then the family of seminorms

`

}‚}B1,q

˘

qPPE
defines the locally convex

topology of LpF,Eqb.

Proof. Obviously the topology that comes from
`

}‚}B1,q

˘

qPPE
is coarser than the

one of LpF,Eqb. To show that it is also finer let B Ď F be bounded and q P PE.
We find r ą 0 with r ¨B1 Ě B and calculate

}f}B,q ď }f}rB1,q “ suptqpfpxqq : x P rB1u “ suptr ¨ qpfpxqq : x P B1u

“}f}B1,r¨q.

Lemma 2.12. Let E be a locally convex space, F be a Banach space and q be a
continuous seminorm on E. For Eq :“ E{q´1p0q and πq : E Ñ Eq, x ÞÑ x`q´1p0q,
the map ι : LpF,Eqb{p}‚}B1,qq

´1p0q ãÑ L pF,Eqq, f ` p}‚}´1
B1,q
p0qq ÞÑ πq ˝ f is a

well-defined topological embedding. Moreover, for f P LpF,Eq, g P LpF q and
π}‚}B1,q

: LpF,Eq Ñ LpF,Eq{p}‚}´1
B1,q
p0qq, f ÞÑ f ` }‚}´1

B1,q
p0q, we get

ι ˝ π}‚}B1,q
pf ˝ gq “ pι ˝ π}‚}B1,q

pfqq ˝ g. (2.3)

Proof. Let f P LpF,Eq with }f}B1,q “ 0. For x P F zt0u, we get

q ˝ fpxq “ }x} ¨ q ˝ f

ˆ

x

}x}

˙

“ 0.
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2.1 The Frobenius theorem for Banach distributions

Hence ι is well-defined. To show that ι is an isometry we choose f P LpF,Eq and
calculate

}πq ˝ f}op “ suptq ˝ fpxq : x P B1u “ }f}B1,q

“}f ` p}‚}B1,qq
´1
p0q}.

To show (2.3) we calculate

ι ˝ π}‚}B1,q
pf ˝ gq “ πq ˝ f ˝ g “ pι ˝ π}‚}B1,q

pfqq ˝ g.

If E is a locally convex space one considers the induced Banach space Eq :“
E{q´1pt0uq for continuous seminorms q, to obtain information about the existence
and uniqueness of initial value problems in E. This is a standard strategy in
infinite-dimensional analysis and was shown to the author by Glöckner in a related
context (cf. [Omo78] and [DGV16]). We use this method in the following lemma.

Lemma 2.13. If E is a locally convex space, F is a Banach space, λ : I Ñ LpF q
is a C1-curve and µ0 P LpF,Eq then the initial value problem

#

ϕ1ptq “ ϕptq ˝ λptq

ϕp0q “ µ0

(2.4)

in LpF,Eqb has at most one solution.

Proof. Let ϕ1, ϕ2 : s´ε, εrÑ LpF,Eq be solutions of the initial value problem (2.4)
and q a continuous seminorm of E. Moreover, let π}‚}B1,q

and ι be as in Lemma
2.12. For i “ 1, 2, we define the map ϕi,q : s ´ ε, εrÑ LpF,Eqq, t ÞÑ ι ˝ π}‚}B1,q

˝ ϕi
and get

ϕ1i,qptq “ ι ˝ π}‚}B1,q
pϕ1iptqq “ ι ˝ π}‚}B1,q

pϕiptq ˝ λptqq

“ι ˝ π}‚}B1,q
pϕiptqq ˝ λptq “ ϕi,qptq ˝ λptq

and ϕi,qp0q “ πq ˝ µ0. Let Ẽq be a completion of Eq such that Eq Ď Ẽq. The
composition LpF qˆLpF, Ẽqq Ñ LpF, Ẽqq, pµ, ψq ÞÑ ψ˝µ is continuous and bilinear.
Hence, f : I ˆ LpF, Ẽqq Ñ LpF, Ẽqq, pt, ψq ÞÑ ψ ˝ λptq is Fréchet-differentiable of
class C1. Thus, f is continuous and locally Lipschitz-continuous in the second
argument. Because LpF, Ẽqq is a Banach space, we have ϕ1,q “ ϕ2,q. Hence
π}‚}B1,q

˝ϕ1 “ π}‚}B1,q
˝ϕ2. Because q was an arbitrary continuous seminorm of E,

we get ϕ1 “ ϕ2.

In [Eyn12] the author worked with flows (without parameters) of vector fields
(without parameters) on infinite-dimensional manifolds (see [Eyn12, Definition
1.19]). For the more general result in this thesis we have to consider flows with
parameters of vector fields with parameters. We recall the basic well-known defi-
nitions in the following (cf. e.g. [Lan01, Chapter IV, Section 2]).
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2 Integrability of Banach subalgebras

Definition 2.14. Let P be a locally convex space, r P N and M be a Cr-manifold
that is modeled over a locally convex space. Moreover let Ω Ď RˆM ˆF be open
and Φ: Ω ÑM a Cr-map such that:

(i) t0u ˆM ˆ P Ď Ω.
(ii) Φp0, x, pq “ x for all x PM and p P P .
(iii) For all x0 P M , p0 P P we find a symmetric interval I, a x0-neighbourhood

U in M and a p0-neighbourhood V in P such that I ˆ U ˆ V Ď Ω, I ˆ
Ť

pPV ΦpI ˆ U ˆ tpuq ˆ tpu Ď Ω and Φpt,Φps, x, pq, pq “ Φpt ` s, x, pq for all
x P U , p P V and t, s P I with s` t P I.

Then we call Φ a Cr-R-action on M with parameters. A Cr´1-map X : M ˆ P Ñ
TM is called vector field with parameters, if Xp‚, pq is a Cr´1-vector field of M for
all p P P . We say that X provides a local flow with parameters of class Cr, if we
find a local Cr-R-action on M with parameters such that B

Bt

ˇ

ˇ

t“0
Φpt, x, pq “ Xpx, pq

for all x PM and p P P .

As mentioned above, the following Frobenius theorem is inspired by [CS76,
Section 4] and [Tei01, Theorem 2] respectively the author’s result [Eyn12, Theorem
2.6]. Also in [Les68] and [Les92], Frobenius theorems have been proved. But
Leslie’s results require different conditions and he used very different methods to
prove his statements.

Theorem 2.15. Let E be a locally convex space, F be a complemented vector
subspace of E such that F is a Banach space with the induced topology from E.
Moreover, let r P NYt8u with r ě 4, M be a Cr-manifold modeled over E and D
be an involutive subbundle of TM with typical fibre F . Assume that p0 PM , there
exists an open p0-neighbourhood U ĎM and a Cr´1-vector field X : U ˆ F Ñ TU
with parameters in F such that:

(a) The map F Ñ ΓpTUq, v ÞÑ Xp‚, vq is linear;
(b) impXq Ď D;
(c) The map F Ñ Dp0, v ÞÑ Xpp0, vq is an isomorphism of topological vector

spaces;
(d) The Cr´1-vector field X provides a local flow with parameters of class Cr.
(e) It exists a chart ϕ : U Ñ V of M , such that ϕpp0q “ 0 and dϕpDp0q “ F .

In this situation D is a Frobenius distribution.

Proof. Let p0 P M and φ be a chart around p0 with φpp0q “ 0E, dφpDp0q “ F
and dp0ϕ ˝Xpp0, ‚q|

Dp0 “ idF . To be a Frobenius distribution is a local property,
hence it is enough to show the statement in the local chart φ. This means we
have the following situation. The set U is an open 0-neighbourhood in E. The
vector distribution D Ď U ˆ E is a subbundle of U ˆ E with typical fibre F .
Hence, given x P U we find a Cr-diffeomorphism ψ : U ˆ E Ñ U ˆ E such that
ψptyuˆEq “ tyuˆE, pr2 ˝ψpy, ‚q : E Ñ E is an isomorphism of topological vector
spaces and ψpDq “ U ˆ F . Given x P U , we write Dx for the vector subspace
pr2pD X ptxu ˆ Eqq of E. By our choice of φ we have D0E “ F . We write again
X for the local representative of X in the chart φ. Hence, X : U ˆ F Ñ E is a
Cr-map such that:

(a) The map X̌ : F Ñ CrpU,Eq, v ÞÑ Xp‚, vq is linear;
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2.1 The Frobenius theorem for Banach distributions

(b) Xpp, vq P Dp for all p P U and v P F ;
(c) The map Xp0, ‚q : F Ñ D0 “ F , v ÞÑ Xp0, vq is an isomorphism of topologi-

cal vector spaces (we have Xp0, ‚q “ idF );
(d) X provides a local flow with parameters.

We write Φ: Ω Ñ U for the global flow with parameters of X. For convenience we
write Xv :“ Xp‚, vq, Φv :“ Φp‚, ‚, vq and Ωv :“ tpt, xq P RˆU : pt, x, vq P Ωu for v P
F . Since X : U ˆF Ñ E is a C1-map, also X̃ : U ˆF Ñ F , px, vq ÞÑ ψpx,Xpx, vqq

is of class C1. This provides the continuity of ˇ̃X : U Ñ LpF q, x ÞÑ ψpx,Xpx, ‚qq
because of Lemma 2.10. Since Xp0E, ‚q is an isomorphism of topological vector
spaces, we can assume that Xpx, ‚q|Dx : F Ñ Dx is an isomorphism of topological
vector spaces for all x P U . We divide the proof in three steps.

Step 1: Given a vector field Y : U Ñ E with Y pxq P Dx for all x P U , we show
that

`

pΦv
t q
˚Y

˘

pxq P Dx for all pt, x, vq P Ω. Moreover, we prove

d2Φpt, y, v; ‚qpDyq “ DΦpt,y,vq (2.5)

for pt, y, vq P Ω. This generalises parts of the proof of [CS76, Lemma 4.3].

For pt, x, vq P Ω, we have to show that pΦv
t q
˚Y pxq P Dx. There exists w P F

with XpΦpt, x, vq, wq “ Y pΦpt, x, vqq. Thus

pΦv
t q
˚Y pxq “ pdΦv

t px, ‚qq
´1
˝ Y ˝ Φv

t pxq “ pdΦv
t px, ‚qq

´1
˝Xw ˝ Φv

t pxq

“pΦv
t q
˚Xwpxq.

So we only have to show that pΦv
t q
˚Xwpxq P Dx for all w P F and pt, x, vq P Ω. Let

v P F and x P U . On the interval Iv,x :“ tt P R : pt, x, vq P Ωu, for all w P F we
have

B

Bt

´

pΦv
t q
˚Xwpxq

¯

“
B

Bs

ˇ

ˇ

ˇ

s“0

`

pΦv
t`sq

˚Xwpxq
˘

“
B

Bs

ˇ

ˇ

ˇ

s“0
ppΦv

sq
˚
pΦv

t q
˚Xwpxqq

“ rXv, pΦ
v
t q
˚Xws pxq “ rpΦ

v
t q
˚Xv, pΦ

v
t q
˚Xws pxq “ pΦ

v
t q
˚
rXv, Xws pxq

using Lemma 2.7, [Eyn12, Lemma 2.3] and [Eyn12, Lemma 2.4]3. Now we define
the curve gw : Iv,x Ñ E, gwptq :“ pΦv

t q
˚Xwpxq for w P F and write λy :“ Xpy, ‚q|Dy

for y P U . Moreover, we define xt :“ Φv
t pxq for t P Iv,x. From rXv, Xwspxtq “

Xpxt, λ
´1
xt prXv, Xwspxtqqq we conclude that

g1wptq “ pΦ
v
t q
˚
rXv, Xwspxq “ pΦ

v
t q
˚Xλ´1

xt prXv ,Xwspxtqq
pxq “ gλ´1

xt prXv ,Xwspxtqq
ptq.

For t P Iv,x, we define the maps Aptq : F Ñ E, u ÞÑ guptq and Bptq : F Ñ F ,
w ÞÑ λ´1

xt prXv, Xwspxtqq. We also define A : Iv,x Ñ LpF,Eqb, t ÞÑ Aptq and
B : Iv,x Ñ LpF q, t ÞÑ Bptq. The curve A is of class C1 because Iv,x ˆ F Ñ

E, pt, wq ÞÑ gwptq is of class C2 (see Lemma 2.10). For p P U , let ψp : E Ñ E be the
canonical isomorphism that is induced by ψ. We define the map f : Iv,xˆF Ñ F ,
pt, wq ÞÑ ψxtpXpxt, wqq. Let pt0, w0q P Ix,v ˆ F , w1 :“ ψxt0 prXv, Xw0spxt0qq and

3From [Eyn12, Lemma 2.3] we deduce Xv “ pΦvt q
˚Xv and from [Eyn12, Lemma 2.4] we get

rpΦvt q
˚Xv, pΦ

v
t q
˚Xws pxq “ pΦ

v
t q
˚ rXv, Xws pxq (cf. [Lan01, Chapter V Section 1]).
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z0 :“ fpt0, ‚q
´1pw1q. We have d2fpx0, z0q P GLpF q and with Theorem 2.8 we see

that f2 : Iv,x ˆ F Ñ F , pt, yq ÞÑ fpt, ‚q´1pyq “ λ´1
xt pψ

´1
xt pyqq is C2 on a pt0, w1q-

neighbourhood. Hence, Iv,x ˆ F Ñ F, pt, wq ÞÑ λ´1
xt prXv, Xwspxtqq is C2 on a

pt0, w0q-neighbourhood. Because pt0, w0q P Iv,x ˆ F was arbitrary we see that this
map is C2 and so the curve B is of class C1 (see Lemma 2.10). For w P F we write
εw : LpF,Eq Ñ E, B ÞÑ Bpwq and get

A1ptq.w “ εwpA
1
ptqq “ dpεw ˝ Aqpt, 1q “

B

Bt

`

gwptq
˘

“ gλ´1
xt prXv ,Xwspxtqq

ptq

“Aptq.λ´1
xt prXv, Xwspxtqq “ pAptq ˝Bptqqpwq.

Hence, A solves the initial value problem

#

ϕ1ptq “ ϕptq ˝Bptq

ϕp0q “ Xpx, ‚q
(2.6)

in LpF,Eqb. There exists a solution of the initial value problem (2.6) in LpF,Dxq.
From Lemma 2.13, we conclude that the image of A lies in LpF,Dxq. It re-
mains to show (2.5). To this end let pt, y, vq P Ω and f : U Ñ E be a Cr-map
with fppq P Dp for all p P U . We define x :“ Φpt, y, vq and get p´t, x, vq P Ω.
Hence, dΦv

t pΦ
v
´tpxq, fpΦ

v
´tpxqqq P Dx. We conclude that dΦv

t py, fpyqq P DΦvt pyq
.

Because Φpt, ‚, uq is a diffeomorphism, we get d2Φpt, y, u; ‚q P GLpEq. This shows
d2Φpt, y, v; ‚qpDyq Ď DΦpt,y,vq for all pt, y, vq P Ω. Again let pt, y, vq P Ω. With
Φpt,Φp´t, y, vq, vq “ y, we get

`

d2Φpt, y, v; ‚q
˘´1

“ d2Φp´t,Φpt, y, vq, v; ‚q. (2.7)

We conclude d2Φpt, y, v; ‚qpDyq “ DΦpt,y,vq for all pt, y, vq P Ω. Our second aim is
to show the following statement.

Step 2: Given pt, y, uq P Ω, we have

d3Φpt, y, u; ‚qpF q Ď DΦpt,y,uq (2.8)

for the map d3Φpt, y, u; ‚q : F Ñ E. This generalises [CS76, Lemma 4.3].

Indeed, we have

d1Φpt, y, u; 1q “ XpΦpt, y, uq, uq, (2.9)

Φp0, y, uq “ y. (2.10)

By differentiating the right-hand side of (2.9) in y in the direction h P E, we get

dy
`

XpΦpt, y, uq, uq
˘

py, hq “ d1X
`

Φpt, y, uq, u; d2Φpt, y, u;hq
˘

.

Differentiation of the left-hand side of (2.9) in y in the direction h P E leads to
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B

Bs
B

Bt
pΦpt, y ` sh, uqq “ B

Bt
d2Φpt, y, u;hq. We conclude that

B

Bt
d2Φpt, y, u;hq “ d1X

`

Φpt, y, uq, u; d2Φpt, y, u;hq
˘

(2.11)

d2Φp0, y, u;hq “ h. (2.12)

Now we differentiate the right-hand side of (2.9) in u in the direction h P F and
get

du
`

XpΦpt, y, uq, uq
˘

pu, hq “ dX
`

pΦpt, y, uq, uq; pd3Φpt, y, u;hq, hq
˘

“d2X
`

Φpt, y, uq, u;h
˘

` d1X
`

Φpt, y, uq, u; d3Φpt, y, u;hq
˘

“X
`

Φpt, y, uq, h
˘

` d1X
`

Φpt, y, uq, u; d3Φpt, y, u;hq
˘

.

Differentiation of the left-hand side of (2.9) leads to

B

Bs

B

Bt
pΦpt, y, u` shqq “

B

Bt
d3Φpt, y, u;hq.

Hence,

B

Bt
d3Φpt, y, u;hq “ X

`

Φpt, y, uq, h
˘

` d1X
`

Φpt, y, uq, u; d3Φpt, y, u;hq
˘

,

d3Φp0, y, u;hq “ 0.

Thus, t ÞÑ d3Φpt, y, u; ‚q solves the initial value problem

#

σ1ptq “ X
`

Φpt, y, uq, ‚
˘

` d1X
`

Φpt, y, uq, u; ‚
˘

˝ σptq,

σp0q “ 0
(2.13)

in LpF,Eq. We use the shorthand notation I :“ Iu,y. The map f : I ˆ F Ñ

Dy Ď E, pt, vq ÞÑ d2Φp´t,Φpt, y, uq, u;XpΦpt, y, uq, vqq (see (2.7)) is of class C2

and
şt

0
fps, vqds “ t ¨

ş1

0
fpts, vqds (the weak integral exists because Dy is a Banach

space). Thus, f1 : I ˆ F Ñ E, pt, vq ÞÑ
şt

0
fps, vqds is of class C2. We conclude

that f2 : I ˆ F Ñ E, pt, vq ÞÑ d2Φpt, y, u;
şt

0
fps, vqdsq is of class C2. Hence,

η :“ qf2 : I Ñ LpF,Eqb is a C1-map. We want to show that η is a solution of the
initial value problem (2.13). Given v P F , the evaluation map ε : LpF,Eq Ñ E,
λ ÞÑ λpvq is continuous and linear. Therefore we only need to show that for all
v P F the curve τ : I Ñ E, t ÞÑ d2Φpt, y, u;

şt

0
fps, vqdsq is a solution of the initial

value problem

#

d
dt
σptq “ d1XpΦpt, y, uq, u;σptqq `XpΦpt, y, uq, vq

σp0q “ 0,
(2.14)

where σ is a curve in E. We define the map H : IˆE Ñ E, pt, wq ÞÑ d2Φpt, y, u;wq
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and get

τ 1ptq “
B

Bt
pH ˝ pidIptq, f1pt, vqqq “ d

`

H ˝ pidI , f1p‚, vqq
˘

pt, 1q

“dHppt, f1pt, vqq; p1, fpt, vqqq

“d1H
`

t, f1pt, vq; 1
˘

` d2H
`

t, f1pt, vq; fpt, vq
˘

.

On the one hand we have

d2Hpt, f1pt, vq; fpt, vqq “ Hpt, fpt, vqq

“d2Φ
`

t, y, u; d2Φp´t,Φpt, y, uq, u;XpΦps, y, uq, vqq

“pd2Φpt,y,u;‚qq´1pXpΦps,y,uq,vqq

˘

“ XpΦps, y, uq, vq (2.15)

and on the other

d1Hpt, f1pt, vq; 1q “
B

Bh

´

d2Φph, y, u; f1pt, vqq
¯
ˇ

ˇ

ˇ

h“t

“
B

Bh1

´

B

Bh

´

Φph, y ` h1 ¨ f1pt, vq, uq
¯ˇ

ˇ

ˇ

h“t

¯ˇ

ˇ

ˇ

h1“0

“
B

Bh1

´

XpΦpt, y ` h1 ¨ f1pt, vq, uq, uq
¯
ˇ

ˇ

ˇ

h1“0

“d1XpΦpt, y, uq, u; d2Φpt, y, u; f1pt, vqqq “ d1XpΦpt, y, uq, u; τptqq. (2.16)

Thus, τ is a solution of (2.14) and so η solves the initial value problem (2.13). Now
we show that the solution of (2.13) is unique. It is enough to show that for every
h P F the initial value problem

#

g1ptq “ XpΦpt, y, uq, hq ` d1XpΦpt, y, uq, u; gptqq

gp0q “ 0,

where g is a curve in E, has a unique solution. Obviously it is sufficient to show
that the initial value problem

#

g1ptq “ d1XpΦpt, y, uq, u; gptqq

gp0q “ 0
(2.17)

has at most one solution. We define Ω̃ :“ tpt, yq P R ˆ U : pt, y, uq P Ωu ˆ E and
consider the map Φ̃ : Ω̃ Ñ U ˆ E, pt, y, wq ÞÑ TΦu

t py, wq which is a local Cr-R-
action on U ˆ E because of the chain rule of tangential-maps. The vector field
X̃ : U ˆE Ñ EˆE, py, wq ÞÑ pXpy, uq, d1Xpy, u;wqq has the local flow Φ̃ because
with (2.11) we get

d

dt

`

Φ̃pt, y, wq
˘

ˇ

ˇ

ˇ

t“0
“

d

dt

`

Φu
t pyq, d2Φpt, y, u;wq

˘

ˇ

ˇ

ˇ

t“0

“
`

Xpy, uq, d1Xpy, u;wq
˘

.
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Now let g1 and g2 be solutions of (2.17), defined on the interval I. For i “ 1, 2,
the curve Gi : I Ñ U ˆ E, t ÞÑ pΦpt, y, uq, giptqq is a solution of the initial value
problem

#

G1iptq “ X̃pGiptqq

Gip0q “ py, 0q,

because

G1iptq “
`

XpΦpt, y, uq, uq, d1XpΦpt, y, uq, u; giptqq
˘

“ X̃pGiptqq.

Hence, G1ptq “ G2ptq and so g1ptq “ g2ptq. This implies the uniqueness-statement.
Now we conclude that

d3Φpt, y, u; ‚q “ ηptq “

ˆ

v ÞÑ d2Φ

ˆ

t, y, u;

ż t

0

fps, vqds

˙˙

. (2.18)

Since impfq Ď Dy, with (2.18) and Step 1, we get d3Φpt, y, u; ‚qpF q Ď

d2Φpt, y, u; ‚q.Dy “ DΦpt,y,uq.

Step 3: Now we construct a Frobenius chart around 0E (this construction gen-
eralises parts of the proof of [Eyn12, Theorem 2.6] or [Tei01, Theorem 2]). To
this end let F̃ be a topological vector complement of F in E. We choose open
0-neighbourhoods V p1q Ď F̃ , V p2q Ď F and a symmetric interval I Ď R such
that V :“ V p1q ˆ V p2q Ď U and I ˆ V ˆ V p2q Ď Ω. We have B

Bs
Φps, 0, 0q “

XpΦpt, 0, 0q, 0q “ 0 and Φp0, 0, 0q “ 0. Hence, Φpt, 0, 0q “ 0 for all t P I. We have
seen impfq Ď Dy in the calculation above. Taking y “ 0E and u “ 0F , we get
d2Φp´s, 0E, 0F ; vq P F for s P I and v P F . We define the map λ : I ˆ F Ñ F ,
ps, vq ÞÑ d2Φp´s, 0E, 0F ; vq. Because λ̌ : I Ñ LpF q, s ÞÑ d2Φp´s, 0, 0, ‚q is continu-
ous and λ̌p0q “ idF we find 0 ă t ă 1 such that r´t, ts Ď I and }λ̌psq ´ id }op ă

1
2

for all s P r´t, ts. We have

}λps, tvq ´ v} ď }λps, tvq ´ tv} ` }v ´ tv} ď
1

2
¨ t}v} ` p1´ tq}v} “

ˆ

1´
t

2

˙

}v}

for all s P r´t, ts. We show that

d3Φpt, 0E, 0F ; ‚q P LpF q˚ and d3Φp´t, 0E, 0F ; ‚q P LpF q˚. (2.19)

With (2.18), we get d3Φpt, 0, 0; ‚q “ pv ÞÑ d2Φpt, 0E, 0F ;
şt

0
λps, vqdsqq. The map

d2Φpt, 0, 0; ‚q : E Ñ E is an isomorphism of topological vector spaces. With (2.7)
and Step 1 we see that d2Φpt, 0, 0; ‚q|FF P LpF q˚. Hence, we have to show that the
map µt : F Ñ F, v ÞÑ

şt

0
λps, vqds is an isomorphism. To see }µt ´ idF }op ă 1 we

choose v P F and calculate
›

›

›

›

ż t

0

λps, vqds´ v

›

›

›

›

“

›

›

›

›

ż 1

0

λpts, vq ¨ t´ vds

›

›

›

›

ď

ż 1

0

}λps, tvq ´ v} ds ď

ˆ

1´
t

2

˙

}v}.

(2.20)
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Analogously, we get d2Φp´t, 0, 0; ‚q|FF P LpF q˚. To show that d3Φp´t, 0E, 0F ; ‚q P
LpF q˚ it is enough to show that µ´t : F Ñ F , v ÞÑ

ş´t

0
λps, vqds is an isomorphism.

A calculation analogous to (2.20) shows that ´µ´t is an isomorphism. Hence we
obtain (2.19). Now we show that ζ : V p1q ˆ V p2q Ñ E, px,wq ÞÑ Φp´t, x, wq has
open image and is a diffeomorphism onto its image. To this end we consider the
Cr-map b : V p1q ˆ V p2q ˆ V p2q Ñ F̃ ˆ F, pz, w, vq ÞÑ Φpt, pz, vq, wq. We write
b2 :“ pr2 ˝B. We have Φpt, 0, 0q “ 0. With the information from Step 2, we get
d3Φpt, 0, 0; ‚q.F Ď DΦpt,0,0q “ F and with (2.19) we conclude that

d2b2p0, 0, 0; ‚q “ pr2pd3Φpt, 0E, 0F ; ‚qq “ d3Φpt, 0E, 0F ; ‚q|FF P LpF q˚.

With Theorem 2.8, we get that after shrinking V p1q and V p2q the map
b2pz, ‚, vq : V

p2q Ñ F has open image and is a diffeomorphism onto its im-
age. Moreover, we get that Ψ: V p1q ˆ V p2q ˆ V p2q Ñ E ˆ F, pz, w, vq ÞÑ
ppz, vq, b2pz, w, vqq has open image and is a diffeomorphism onto its image. We
have Φpt, 0, 0q “ 0 and so Ψp0, 0, 0q “ p0, 0q. We choose 0-neighbourhoods
W p1q Ď V p1q Ď F̃ and W p2q Ď V p2q Ď F such that W p1q ˆ W p2q ˆ W p2q Ď

impΨq. Hence, Ψ´1pz, v, 0q “ pz, b2pz, ‚, vq
´1p0q, vq for pz, vq P W p1q ˆ W p2q.

We define W :“ W p1q ˆ W p2q. We write pΨ´1q2 :“ pr2 ˝Ψ
´1. For the map

u : W p1q ˆW p2q Ñ V p2q, pz, vq ÞÑ pΨ´1q2pz, v, 0q, we get b2pz, upz, vq, vq “ 0 be-
cause of pΨ´1q2pz, v, 0q “ b2pz, ‚, vq

´1p0q. We define the map ξ : W p1q ˆW p2q Ñ

E, pz, vq ÞÑ pb1pz, upz, vq, vq, upz, vqq. In the following we show that ξ|ξ´1pV q is
inverse to ζ|ζ´1pW q. To this end we calculate

ζ ˝ ξpz, vq “ ζpb1pz, upz, vq, vq, upz, vqq “ Φp´t, b1pz, upz, vq, vq

“bpz,upz,vq,vq

, upz, vqq

“Φp´t,Φpt, pz, vq, upz, vqq, upz, vqq “ pz, vq.

Given px,wq P ζ´1pW q, we have

bpζ1px,wq, w, ζ2px,wqq “ Φpt, ζpx,wq, wq “ x. (2.21)

Thus, b2pζ1px,wq, w, ζ2px,wqq “ 0 respectively upζpx,wqq “ w. Hence

ξ ˝ ζpx,wq “ pb1pζ1px,wq, upζpx,wqq, ζ2px,wqq, upζpx,wqqq

“pb1pζ1px,wq, w, ζ2px,wqq, wq “ px,wq.

We define Uϕ :“ ξ´1pV q, Vϕ :“ ζ´1pW q and ϕ :“ ξ|
Vϕ
Uϕ

. In particular, we get

ϕ´1 “ ζ|Vϕ . After shrinking Vϕ we assume that Vϕ “ V
p1q
ϕ ˆ V

p2q
ϕ with V

p1q
ϕ Ď V p1q

and V
p2q
ϕ Ď V p2q. We show that ϕ is a Frobenius chart around 0. It is sufficient to

show that dϕptpuˆDpq “ F respectively ppdϕqpp, ‚qq´1pF q “ Dp for all p P Uϕ be-
cause of Remark 2.5. This is equivalent to show that dϕ´1px,w; ‚qpF q “ Dϕ´1px,wq

respectively d2ζpx,w; ‚qpF q “ Dζpx,wq for all px,wq P Vϕ “ V
p1q
ϕ ˆ V

p2q
ϕ . Because

of (2.8), the map λ : V
p1q
ϕ ˆ V

p2q
ϕ Ñ LpF q px,wq ÞÑ ψ2pΦp´t, x, wq, d3Φp´t, x, w; ‚qq

is well-defined and continuous. Because of λp0F̃ , 0F q P LpF q˚ we assume
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that λpx,wq P LpF q˚ for all px,wq P V
p1q
ϕ ˆ V

p2q
ϕ . Hence, d3Φp´t, x, w; ‚q “

ψ2pΦp´t, x, wq, ‚q
´1 ˝ λpx,wq P LpF,DΦp´t,x,wqq is an isomorphism of topological

vector spaces for x P V
p1q
ϕ .

2.2. Application of our Frobenius theorem to Lie
theory

Remark 2.16. From [Lan01, Chapter VI.] respectively [Eyn12, Chapter 4], we
get the following facts:

(a) Given a Lie group G and a closed Lie subalgebra h Ď LpGq, the vector
distribution D :“

Ť

gPG Tλgphq is an involutive subbundle of TG with typical
fibre h, if we identify the modelling space of G with LpGq (see e.g. [Eyn12,
Lemma 4.6]; cf. [Lan01, Chapter VI]).

(b) If the vector bundle D in (a) is a Frobenius distribution then we can find a
Lie group H that is an integral manifold for D and a subgroup of G (see e.g.
[Eyn12, Lemma 4.7]; cf. [Lan01, Chapter VI]).

As in [Lan01, Chapter VI, Theorem 5.4], [Les68], [Les92], or [Eyn12, Theorem
4.1] we use a Frobenius theorem to show a result of integrability of Lie subalgebras
in the context of infinite-dimensional Lie groups. The following theorem gener-
alises [Eyn12, Theorem 4.1] respectively [Lan01, Chapter VI, Theorem 5.4]. Note
also that it is complementary to [Les92, Theorem 4.1] because of the different con-
ditions on the considered Lie groups. However an alternative proof of the following
statement can be obtained with the help of [Nee06, Theorem IV.4.9.]4.

Theorem 2.17. Let G be a Lie group modelled over a locally convex space and
h Ď LpGq be a Lie subalgebra that is complemented as a topological vector subspace
and is a Banach space. If G provides an exponential map then we can find a Lie
group H that is a subgroup of G and an immersed submanifold of G such that
LpHq “ h.

Proof. Again we define D :“
Ť

gPG Tλgphq. The vector field with parameters
X : G ˆ h Ñ TG, pg, vq ÞÑ Tλgpvq obviously satisfies the conditions (a)–(c) of
Theorem 2.15. Also condition (d) is satisfied because Φ: RˆGˆhÑ G, pt, g, vq ÞÑ
λgpexpGptvqq is a local flow with parameters of X which follows from

d

dt

ˇ

ˇ

ˇ

t“0
Φpt, g, vq “ Tλgpvq “ Xpg, vq.

4This was mentioned by K. H. Neeb in comments to this thesis.
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3. Constructions for Lie algebras of
compactly supported sections

Now we turn our attention to topologically universal bilinear forms for Lie algebras
of compactly supported sections in Section 3.2. As mentioned in the introduction
this a natural continuation of the considerations in [Gun11, Chapter 4]. In Section
3.3 we consider a certain class of pseudo-unital locally convex algebras A that
contains the so called CPUSLF-algebras from [Gun11] as well as the algebra of
compactly supported smooth functions on a σ-compact manifold. Given such an
algebra A, we show the universality of the canonical cocycle on Ab g (for g finite-
dimensional and semisimple).

We fix the following specific notation for this chapter1:
• Let M be a finite-dimensional σ-compact manifold, U Ď M be an open

subset, V be a finite-dimensional vector space and V a vector bundle with
base M . For f P C8c pU, V q, X P ΓcpU,Vq and θ P Ωk

c pU,Vq, we write f„, X„
and θ„, respectively, for the extension of f , X and θ to M by 0 outside of
U .
• We write A1 for the unitalisation of a commutative algebra A.

3.1. Some basic concepts and results

First, we recall the basic concepts of universal continuous invariant symmetric
bilinear forms in the following definition. See e.g. [Gun11, Chapter 4].

Definition 3.1. Let g be a Lie algebra. A pair pV, βq with a vector space V and
a symmetric bilinear map β : gˆ gÑ V is called an invariant symmetric bilinear
form on g if βprx, ys, zq “ βpx, ry, zsq for all x, y, z P g. The invariant symmetric
bilinear form pV, βq is called algebraically universal if for every invariant symmetric
bilinear form pW, γq on g, there exists a unique linear map ψ : V Ñ W such that
γ “ ψ ˝ β. It is clear that if β is algebraically universal then another invariant
symmetric bilinear form pW, γq on g is algebraically universal if and only if there
exists an isomorphism of vector spaces ϕ : V Ñ W with γ “ ϕ˝β. In the case that
g is a locally convex Lie algebra and V is a locally convex space, the pair pV, βq is
called a continuous invariant symmetric bilinear form on g if β is continuous and
it is called topologically universal or a universal continuous invariant symmetric
bilinear form if for every continuous invariant symmetric bilinear form pW, γq on
g, there exists a unique continuous linear map ψ : V Ñ W such that γ “ ψ ˝ β.
It is clear that if β is topologically universal then another invariant symmetric

1This chapter consist of material published before in the author’s preprint [Eyn14c].
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bilinear form pW, γq on g is topologically universal if and only if we can find an
isomorphism ϕ : V Ñ W of topological vector spaces with γ “ ϕ ˝ β.

Definition 3.2. If g is a Lie algebra then we call

Centpgq :“ tf P Linpgq : p@x, y P gq fprx, ysq “ rfpxq, ysu

the Centroid of g. (Cf. [Gun11, Definition 2.1.15]).

Remark 3.3. [Gun11, Remark 4.1.5 and Proposition 4.1.7] tell us that there al-
ways exists an algebraically universal invariant symmetric bilinear form pVg, κgq
for a given Lie algebra g. The same argumentation as in [Gun11, Remark 4.5.6]
and [Mai02, Lemma 15] shows the existence of a universal continuous invariant
symmetric bilinear form pV ct

g , κ
ct
g q for a given locally convex Lie algebra g. The

argument goes as follows: If g is a locally convex Lie algebra and H Ď gb g is the
subspace that is generated from elements of the form xb y´ yb x, we write S2pgq
for the locally convex space g bπ g{H (one can show that the space H is a closed
subspace of g b gq see [Mai02, p. 63]). We write πH : g bπ g Ñ g bπ g{H for the
canonical quotient map and define _ : gˆgÑ S2pgq, px, yq ÞÑ x_y :“ πHpxbyq. It
is well known that for every continuous symmetric bilinear map β : gˆgÑ V into a
locally convex space V , there exists a unique continuous linear map ϕ : S2pgq Ñ V
such that β “ ϕ ˝ _ (see [Mai02, Theorem 3]). Let D Ď S2pgq be the subspace
generated by elements of the form rx, ys _ z ´ x _ ry, zs. We define the locally
convex space V ct

g :“ pg _ gq{D and the continuous invariant symmetric bilinear

map κctg : gˆ gÑ V ct
g , px, yq ÞÑ rx_ ys “ x_ y `D. It is clear that the image of

κctg generates V ct
g and that pκctg , V

ct
g q is a universal topological invariant symmetric

bilinear form. For this result, it is crucial not to take the completion of g bπ g
because otherwise κctg would be universal just for complete locally convex spaces.
Sometimes we use the notation Vctpgq :“ V ct

g . If g is finite-dimensional then the
universal continuous invariant symmetric bilinear form and the algebraically uni-
versal invariant symmetric bilinear form coincide. Therefore, we write pVg, κgq for
pV ct

g , κ
ct
g q in this case.

With [Gun11, Proposition 4.3.3] we get directly the following Lemma 3.4.

Lemma 3.4. For a σ-compact finite-dimensional manifold M and a finite-
dimensional perfect Lie algebra g, the map

κg˚ : C8c pM, gq ˆ C8c pM, gq Ñ C8c pM,Vgq, pf, gq ÞÑ κg ˝ pf, gq

is an algebraically universal invariant symmetric bilinear form. Notably the image
of κg˚ spans C8c pM,Vgq.

In the case that M is connected, the preceding Lemma 3.4 can be found in
[Gun11, Corollary 4.3.4].

The following Lemma 3.5 can be found in [Gun11, Lemma 4.1.6].

Lemma 3.5. Let g be a Lie algebra, W a vector space and β : g ˆ g Ñ W an
invariant symmetric bilinear map. Then βpfpxq, yq “ βpx, fpyqq for all x P rg, gs,
y P g and f P Centpgq.
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The next Lemma 3.6 comes from [Gun11, Remark 4.2.7].

Lemma 3.6. The Lie algebra C8c pM, gq is perfect for every finite-dimensional
σ-compact manifold M and perfect finite-dimensional Lie algebra g.

3.2. Topological universal bilinear forms

The aim of this section is to construct a universal invariant continuous bilinear
form on the space of compactly supported sections of a Lie algebra bundle. To
this end, we first show the “local statement”. We construct a universal continuous
invariant symmetric bilinear form on the compactly supported smooth functions on
a σ-compact manifold with values in a Lie algebra g (Theorem 3.12). Afterwards
we glue the local constructions together to a global one (Theorem 3.19). This
strategy is inspired by [Gun11, Theorem 4.4.4].

In the following definition we recall the well-known concept of a Lie algebra
bundle.

Definition 3.7. Let M be a manifold, g a finite-dimensional Lie algebra and
π : K Ñ M a vector bundle with typical fibre g. If for every x P M the space
π´1ptxuq is endowed with a Lie algebra structure and there exists an atlas of
local trivialisations ϕ : π´1pUϕq Ñ Uϕ ˆ g of K such that for every p P Uϕ the
map ϕpp, ‚q : Kp Ñ g is a Lie algebra homomorphism then we call K a Lie algebra
bundle.

In Definition 3.8 we endow both the vector space of sections and the space
of compactly supported sections of a given vector bundle with a locally convex
topology. We follow the definitions from [Glo13, Chapter 3].

Definition 3.8. Let M be a finite-dimensional manifold, V a finite-dimensional
vector space and π : VÑM a vector bundle with typical fibre V . If η P ΓpVq and
ϕ : π´1pUq Ñ Uϕ ˆ V is a local trivialisation of V we write ηϕ :“ pr2 ˝ϕ ˝ η|Uϕ P
C8pUϕ, V q for the local representation of η. Let A be an atlas of V. As mentioned
in the introduction of this thesis, we equip ΓpVq with the initial topology with
respect to the maps σϕ : ΓpVq Ñ C8pUϕ, V q, η ÞÑ ηϕ as described in [Glo13,
Chapter 3]. [Glo13, Lemma 3.9] tells us that this topology does not depend on
the choice of the atlas. Moreover, [Glo13, Lemma 3.7] tells us that the topological
embedding ΓpVq Ñ

ś

ϕPAC
8pUϕ, V q, η ÞÑ pηϕqϕPA has closed image and so ΓpVq

becomes a locally convex space. In particular we see that ΓpVq is a Fréchet space if
there exists a countable atlas of local trivialisations of V. If K ĎM is compact we
write ΓKpVq for the closed subspace of sections of V with support in K. If there
exists a countable atlas of local trivialisations of V then it is clear that ΓKpVq
is a Fréchet space. We give ΓcpVq the topology making it the inductive limit of
the spaces ΓKpVq in the category of locally convex spaces, where K runs through
all compact sets. If g is a finite-dimensional Lie algebra and K a Lie algebra
bundle with typical fibre g, we define the Lie bracket r‚, ‚s : ΓpKq ˆ ΓpKq Ñ ΓpKq
by rη, ζsppq “ rηppq, ζppqs for η, ζ P ΓpKq, where the latter Lie bracket is taken in
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3 Constructions for Lie algebras of compactly supported sections

Kp. Together with this Lie bracket ΓpKq becomes a topological Lie algebra. (The
concepts in this Definition 3.8 come from [Glo13, Chapter 3]).

Lemma 3.9. Let M be a finite-dimensional σ-compact manifold, g a finite-
dimensional Lie algebra and K a Lie algebra bundle with typical fibre g. Then
ΓcpKq is a topological Lie algebra.

Proof. The map K‘KÑ K that maps pv, wq to rv, wsKp for v, w P Kp and p PM is
continuous. With the Ω-Lemma (see, e.g. [Mic80, Theorem 8.7] or [Glo04, F.24])
we see that ΓcpKq is a topological Lie algebra.

Lemma 3.10. Let M be a σ-compact finite-dimensional manifold, E a finite-
dimensional vector space and pρmqmPN a partition of unity that is subordinate to
a locally finite cover pVnqnPN of open relatively compact subsets Vn Ď M . Then
Φ:

À

mPNC
8pM,Eq Ñ C8c pM,Eq, pfmqmPN ÞÑ

ř

mPN ρm ¨ fm is a quotient map.

Proof. First we show the continuity of Φ. Because Φ is linear, it suffices to show
that C8pM,Eq Ñ C8c pM,Eq, f ÞÑ ρm ¨ f is continuous for every m P N. The
locally convex space C8c pM,Eq is the inductive limit of spaces C8KnpM,Eq with
n P N, where pKnqnPN is a compact exhaustion of M . Because the support of
ρm is compact we can find n P N with supppρmq Ď Kn. We see that the map
C8pM,Eq Ñ C8c pM,Eq, f ÞÑ ρm ¨ f takes its image in the subspace C8KnpM,Eq.
Now we conclude that Φ is continuous since C8pM,Eq Ñ C8KnpM,Eq, f ÞÑ ρm ¨ f
is continuous. For n P N, we choose a smooth function σn : M Ñ r0, 1s such
that σn|supppρnq ” 1 and supppσnq Ď Vn. Because a compact subset of M is only
intersected by a finite number of sets of the cover pVnqnPN, we can define the map
Ψ: C8c pM,Eq Ñ

À8

n“1C
8pM,Eq, γ ÞÑ pσn ¨ γqnPN, which is obviously a right-

inverse for Φ. If K Ď M is compact, we find N P N such that K X Vn “ H for
n ě N . We conclude that ΨpC8K pM,Eqq Ď

śN
n“1C

8pM,Eq. Obviously the map

C8pM,Eq Ñ
śN

n“1C
8pM,Eq, γ ÞÑ pσn¨γqn“1,...,N is continuous. We conclude that

Ψ is a continuous linear right-inverse for Φ and so we see that Φ is a continuous,
open surjective map.

Lemma 3.11. If M is a finite-dimensional σ-compact manifold and g a finite-
dimensional Lie algebra then κg˚ : C8c pM, gq2 Ñ C8c pM,Vgq, pf, gq ÞÑ κg ˝ pf, gq is
continuous.

Proof. This follows directly from [Glo02, Lemma 4.12 and Corollary 4.17].

As mentioned in the introduction Gündoğan showed that the map κg˚ is univer-
sal in the algebraic sense (see Lemma 3.4). We now show that it is also universal
in the topological sense.

Theorem 3.12. Let g be a perfect finite-dimensional Lie algebra and M a finite-
dimensional σ-compact manifold. Then κg˚ : C8c pM, gq2 Ñ C8c pM,Vgq is topologi-
cally universal.
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3.2 Topological universal bilinear forms

Proof. We know that κg˚ : C8c pM, gq2 Ñ C8c pM,Vgq is an algebraically universal
invariant symmetric bilinear form. Moreover, κctC8c pM,gq : C

8
c pM, gq2 Ñ V ct

C8c pM,gq

is a topologically universal invariant symmetric bilinear form. Because κg˚ is a
continuous invariant symmetric bilinear map, we find a continuous linear map
f : VctpC

8
c pM, gqq Ñ C8c pM,Vgq such that κg˚ “ f ˝κctC8c pM,gq and because κctC8c pM,gq

is an invariant symmetric bilinear map, we find a linear map g : C8c pM,Vgq Ñ
V ct
C8c pM,gq with κctC8c pM,gq “ g ˝κg˚ (as in the proof of [Gun11, Theorem 4.6.2] we use

the interplay of algebraic and topologically universality). We get the commutative
diagram

C8c pM, gq2
κg˚ //

κct
C8c pM,gq

��

C8c pM,Vgq

gqqV ct
C8c pM,gq

f
55

With f ˝ g ˝ κg˚ “ κg˚ and the fact that κg˚ is algebraically universal, we get

f ˝ g “ idC8c pM,Vgq. (3.1)

Let pVnqnPN be a locally finite cover of M that consists of relatively compact open
subsets Vn Ď M and pρmqmPN be a partition of unity of M that is subordinate to
the cover pVnqnPN. From Lemma 3.10 we know the quotient map Φ and get the
commutative diagram

À

mPNC
8pM,Vgq

h //

Φ
��

V ct
C8c pM,gq

C8c pM,Vgq

g

44

with h :
À

mPNC
8pM,Vgq Ñ V ct

C8c pM,gq, pϕmqmPN ÞÑ
ř

mPN gpϕm ¨ ρmq. If we can
show that h is continuous, we get that also g is continuous. Because h is linear
it suffices to show that C8pM,Vgq Ñ V ct

C8c pM,gq, ϕ ÞÑ gpϕ ¨ ρmq is continuous for

all m P N. The space V ct
g is finite-dimensional because g is finite-dimensional.

Let pviqi“1,...,n be a basis of Vg. We write ϕi for the i-th component of a map
ϕ P C8pM,Vgq. Since κg˚ : C8c pM, gq2 Ñ C8c pM,Vgq is algebraically universal, the
image impκg˚q generates C8c pM,Vgq. Therefore, we find ξij, ζij P C

8
c pM, gq such

that ρm ¨ vi “
řni
j“1 κg˚pξij, ζijq. For ϕ P C8pM,Vgq, we calculate

gpϕ ¨ ρmq “
n
ÿ

i“1

gpϕi ¨ ρm ¨ viq “
n
ÿ

i“1

ni
ÿ

j“1

g
`

ϕi ¨ κg˚pξij, ζijq
˘

“

n
ÿ

i“1

ni
ÿ

j“1

g
`

κg˚pϕi ¨ ξij, ζijq
˘

“

n
ÿ

i“1

ni
ÿ

j“1

κctC8c pM,gqpϕi ¨ ξij, ζijq.

Because C8pM,Rq Ñ V ct
C8c pM,gq, ψ ÞÑ κctC8c pM,gqpψ ¨ξij, ζijq is continuous, we see that
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3 Constructions for Lie algebras of compactly supported sections

also g is continuous. We have g ˝ f ˝κctC8c pM,gq “ κctC8c pM,gq. Since g is continuous we

get g ˝ f “ idV ct
C8c pM,gq

. With (3.1), we see that f is an isomorphism of topological

vector spaces.

Remark 3.13. If g and h are Lie algebras and f : h Ñ g is a Lie algebra homo-
morphism then there exists a unique linear map fκ : Vh Ñ Vg with fκpκhpx, yqq “
κgpfpxq, fpyqq.

The following definition of the vector bundle V pKq is equivalent to [Gun11,
Definition 4.1.10] and coincides with the definition of V pKq described in [JW13, p.
1].

Definition 3.14. Let M be a manifold, g a finite-dimensional Lie algebra and
π : KÑM a Lie algebra bundle with base M and typical fibre g. If A is an atlas
of local trivialisations of K, we define V pKq :“

Ť

xPM V pKxq and the surjection
ρ : V pKq Ñ M , v ÞÑ x for v P Kx. For a local trivialisation ϕ : π´1pUϕq Ñ Uϕ ˆ g
of K, we define the map ϕ̃ : ρ´1pUϕq Ñ Uϕ ˆ Vg, v ÞÑ

`

ρpvq, ppr2 ˝ϕ|K|ρpvqqκpvq
˘

.

Together with the atlas of local trivialisations tϕ̃ : ϕ P Au we get a vector bundle2

ρ : V pKq ÑM . In this chapter we will always write ϕ̃ for the trivialisation of V pKq
that comes from a trivialisation ϕ of K.

Definition 3.15. (Cf. [Gun11, Definition 4.1.13]) For a finite-dimensional man-
ifold M , a finite-dimensional Lie algebra g and a Lie algebra bundle K with
base M and typical fibre g, we define the map κK : ΓcpKq

2 Ñ ΓcpV pKqq by
κKpX, Y qpxq “ κKxpXpxq, Y pxqq for x PM and X, Y P ΓcpKq.

Lemma 3.16. If M is a σ-compact, finite-dimensional manifold, g a finite-
dimensional Lie algebra and K a Lie algebra bundle with base M and typical fibre
g then κK : ΓcpKq

2 Ñ ΓcpV pKqq is continuous.

Proof. The map K ‘ K Ñ V pKq that maps pv, wq to κKppv, wq for v, w P Kp and
p P M is continuous. The assertion now follows from the Ω-Lemma (see, e.g.
[Mic80, Theorem 8.7] or [Glo04, F.24]).

Lemma 3.17. The image of κK spans ΓcpV pKqq, if g is a perfect finite-dimensional
Lie algebra, M a σ-compact finite-dimensional manifold and πK : K Ñ M a Lie
algebra bundle with base M and typical fibre g.

Proof. To show the assertion of the lemma, we only need to show that the global
statement can be reduced to the local one because the local statement follows from
Lemma 3.4. Let η P ΓcpV pKqq and K :“ supppηq. We find local trivialisations
ϕi : π

´1pUiq Ñ Ui ˆ g of K for i “ 1, . . . , k with K Ď
Ťn
i“1 Ui. Let pλiqi“0,...,k be a

partition of unity of M that is subordinate to the open cover that consists of the
sets MzK and Ui for i “ 1, . . . , k. We get η “

řk
i“1 λi ¨η and λi ¨η P ΓcpV pKqq with

supppλi ¨ ηq Ď Ui. The assertion now follows from the fact that ϕ̃i : ρ
´1
V pKqpUiq Ñ

Ui ˆ Vg is a local trivialisation of V pKq.

2In fact given ψ,ϕ P A we write ϕx :“ pr2 ˝ϕpx, ‚q and ψx :“ pr2 ˝ψpx, ‚q for x PM . We obtain
ϕ̃ ˝ ψ̃´1px, vq “ px, pϕx ˝ ψ

´1
x qκpvqq. By choosing a basis v1, . . . , vn of g one can construct

a basis of V pgq that consists of vectors of equivalence classes of vectors of the form vi _ vj .
Now a standard argument shows that the map px, vq ÞÑ pϕx ˝ ψ

´1
x qκpvq is smooth.
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3.2 Topological universal bilinear forms

With [JW13, Proposition 2.4.] we get the following lemma:

Lemma 3.18. Let M be a finite-dimensional σ-compact manifold, g a finite-
dimensional Lie algebra and K a Lie algebra bundle with typical fibre g. If g
is perfect then also ΓcpKq is perfect.

In [Gun11, Theorem 4.4.4] a local statement for algebraically universal invariant
symmetric bilinear forms is used to get an analogous global statement for spaces
of sections of a Lie algebra bundle. We now transfer this approach to a topological
statement for compactly supported sections of a Lie algebra bundle in Theorem
3.19.

Theorem 3.19. For a perfect finite-dimensional Lie algebra g, a σ-compact, finite-
dimensional manifold M and a Lie algebra bundle K with base M and typical fibre
g, the map κK : ΓcpM,Kq2 Ñ ΓcpV pKqq is topologically universal.

Proof. Let pψi : π
´1pUψiq Ñ Uψi ˆ gqiPI be a bundle atlas of K with relatively

compact subsets Uψi Ď M such that pUψiqiPI is locally finite and pρiqiPI be a
partition of unity of M with supppρiq Ď Uψi . Let γ : ΓcpKq

2 Ñ W be a continuous
invariant symmetric bilinear form. For i P I, we define

γi : C
8
c pUψi , gq

2
Ñ W

pf, gq ÞÑ γ
`

pψ´1
i ˝ pid, fqq„, pψ

´1
i ˝ pid, gqq„

˘

.

The bilinear map γi is an invariant symmetric bilinear form. We want to show that
it is also continuous. Obviously it suffices to show that τ : C8c pUψi , gq Ñ ΓcpKq,
f ÞÑ pψ´1 ˝ pid, fqq„ is continuous. Given a compact subset K Ď Uψi , we have
τpC8K pUψi , gqq Ď ΓKpKq. The map C8K pUψi , gq Ñ ΓpGq, f ÞÑ pψ´1 ˝ pid, fqq„ is
continuous because ΓpKq is initial with respect to ΓpKq Ñ C8pUψi , gq, X ÞÑ Xψi

(see [Glo13, p. 10]). So we can find a continuous linear map βi : C
8
c pUψi , Vgq Ñ W

such that the diagram

C8c pUψi , gq
2 γi //

κg˚
��

W

C8c pUψi , V pgqq

βi

55

commutes. For i P I let ψ̃i be the corresponding bundle-chart of V pKq that comes
from ψi. We define β : ΓcpV pKqq Ñ W , X ÞÑ

ř

iPI βi
`

pρi ¨ Xqψ̃i
˘

with pρiXqψ̃i “

pr2 ˝ψ̃i ˝ pρiXq|Uψi . Let K Ď M be compact. Then K X Uψi ‰ H only for a
finite number of i P I. To show that β is continuous it suffices to show the
continuity of ΓKpV pKqq Ñ W , X ÞÑ βippρi ¨ Xqψ̃iq. Since the map ΓKpV pKqq ãÑ

C8supppρiq
pUψi , V pgqq, X ÞÑ pρi ¨Xqψ̃i is continuous, we see that β is continuous. It

remains to show that

β ˝ κK “ γ.
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3 Constructions for Lie algebras of compactly supported sections

This can be seen analogously to the second part of the proof of [Gun11, Theorem
4.4.4]: Let ζi : M Ñ r0, 1s be a smooth map with supppζiq Ď Uψi and ζi|supppρiq “ 1
for i P I. With Lemma 3.17 in mind we calculate for X, Y P ΓcpKq

βpκKpX, Y qq “
ÿ

iPI

βi
`

pρiζiκKpX, Y qqψ̃i
˘

“
ÿ

iPI

βi
`

κKpρiX, ζiY qψ̃i
˘

“
ÿ

iPI

βiκg˚ ppρiXqψi , pζiY qψiq “
ÿ

iPI

γi ppρiXqψi , pζiY qψiq “
ÿ

iPI

γpρiX, ζiY q

“
ÿ

iPI

γpζiρi
“ρi

X, Y q “ γpX, Y q.

Here we used that ΓcpKq Ñ ΓcpKq, X ÞÑ ζi ¨X is in CentpΓcpKqq and that ΓcpKq is
a perfect Lie algebra (see Lemma 3.5). The uniqueness of β follows from Lemma
3.17.

An application of universal continuous invariant symmetric
bilinear forms

In Definition 3.20 we fix our notation concerning k-forms and connections and
recall some basic facts. All this is well known, for instance see [Dar94] and [Gun11,
Chapter 2.2. and 2.3.].

Definition 3.20. Let M be a finite-dimensional σ-compact manifold, V be a
vector bundle with base M , K be a Lie algebra bundle with base M and k P N.
(a) The space Ωk

c pM,Vq becomes a C8pM,Rq-module by the multiplication
C8pM,Rq ˆ Ωk

c pM,Vq Ñ Ωk
c pM,Vq, pf, θq ÞÑ f ¨ θ with pf ¨ θqp “ fppq ¨ θp.

(b) We get a bilinear map Ωk
c pM,Rq ˆ ΓpVq Ñ Ωk

c pM,Vq pθ, ηq ÞÑ θ ¨ η with
pθ ¨ ηqppv1, .., vkq “ θppv1, .., vkq ¨ ηppq for vi P TpM .

(c) We call a R-linear map d : ΓcpVq Ñ Ω1
cpM,Vq a covariant derivation, if dpfηq “

fdη ` ηdf for all η P ΓpVq and f P C8pM,Rq.
(d) We define the continuous C8pM,Rq-bilinear map ΓcpKq ˆ Ω1

cpM,Kq Ñ

Ω1
cpM,Kq, pη, θq ÞÑ rη, θs with prη, θsqppvq “ rηppq, θppvqs. Moreover, we set
rθ, ηs :“ ´rη, θs.

(e) We call a covariant derivation D : ΓcpKq Ñ Ω1
cpM,Kq a Lie connection, if

Drη, τ s “ rDη, τ s ` rη,Dτ s for η, τ P ΓcpKq.

In [Gun11, Remark 2.3.14], Gündoğan showed the existence of a Lie connection
for a given Lie algebra bundle K. In the following lemma we use a different argu-
mentation to show the existence of a Lie connection from ΓcpKq to Ω1

cpM,Kq that
is also continuous.

Lemma 3.21. For every finite-dimensional σ-compact manifold M and Lie algebra
bundle π : KÑM , there exists a continuous Lie connection D : ΓcpKq Ñ Ω1

cpM,Kq.

Proof. Let pViqiPN be a locally finite open cover of M and pλiqiPN a partition of
unity that is subordinate to Vi. For i P I, we can choose Vi such that we get
a continuous Lie connection di : ΓpK|Viq Ñ Ω1pVi,K|Viq. It is easily checked that
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3.2 Topological universal bilinear forms

d : ΓcpKq Ñ Ω1
cpM,Kq, η ÞÑ

ř8

i“1pλi ¨ dipη|Viqq„ is a Lie connection. Because
d is local we have dpΓKpKqq Ď Ω1

KpM,Kq and because d is linear it suffices to
show that d : ΓKpKq Ñ Ω1

KpM,Kq is continuous. But the compact set K is only
intersected by finitely many Vi, say V1, . . . , Vn. The map ΓKpKq Ñ Ω1

KpM,Kq,
η ÞÑ

řn
i“1pλi ¨ dipη|Viqq„ is obviously continuous because the corresponding map

from ΓpKq to Ω1pM,Kq is continuous.

Lemma 3.22. If M is a finite-dimensional σ-compact manifold and π : KÑM a
Lie algebra bundle with finite-dimensional typical fibre g then we define the map

κ̃K : Ω1
cpM,Kq ˆ ΓcpKq Ñ Ω1

cpM,V pKqq

by pκ̃Kpθ, ηqqppvq “ κKppθppvq, ηppqq. The map κ̃K is C8pM,Rq-bilinear and con-
tinuous. If moreover D : ΓcpKq Ñ Ω1

cpM,Kq is a continuous Lie connection then

β : ΓcpKq
2
Ñ Ω1

cpM,V pKqq, pζ, ηq ÞÑ κ̃KpDζ, ηq ` κ̃KpDη, ζq

is a continuous, invariant, symmetric bilinear form.

Proof. To show the continuity of β we only have to prove that κ̃K is continuous.
The map

pT ˚M b Kq ‘ KÑ T ˚M b V pKq, pλb v, wq ÞÑ κKppλp‚q ¨ v, wq

is continuous. With the identifications Ω1
cpM,Kq – ΓcpT

˚M b Kq and
Ω1
cpM,V pKqq – ΓcpT

˚M b V pKqq the continuity follows from the Ω-Lemma (see,
e.g. [Mic80, Theorem 8.7] or [Glo04, F.24]). In the following we use the shorthand
notation κ :“ κKp . We show that β is invariant:

βprη1, η2s, η3qppvq “ κppDrη1, η2sqppvq, η3ppqq ` κprη1ppq, η2ppqs, pDη3qppvqq

“κprpDη1qppvq, η2ppqs, η3ppqq ` κprη1ppq, pDη2qppvqs, η3ppqq

` κprη1ppq, η2ppqs, pDη3qppvqq

“κppDη1qppvq, rη2ppq, η3ppqsq ` κpη1ppq, rpDη2qppvq, η3ppqsq

` κpη1ppq, rη2ppq, pDη3qppvqsq

“κppDη1qppvq, rη2ppq, η3ppqsq ` κpη1ppq, Drη2, η3sppvqq “ βpη1, rη2, η3sqppvq.

The rest of the statement is clear.

In the following remark we use our Theorem 3.19 to argue that the covariant
derivative d∇ constructed in [JW13, p. 129] is actually a continuous map (the
continuity of d∇ was not discussed in [JW13]).3

Remark 3.23. Let M be a finite-dimensional σ-compact manifold, π : K Ñ M
a Lie algebra bundle with perfect, finite-dimensional typical fibre g, D : ΓcpKq Ñ
Ω1
cpM,Kq a continuous Lie connection and β as in Lemma 3.22. Then there exists

3Note that the continuity of d∇ is not necessary for the considerations in [JW13].
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3 Constructions for Lie algebras of compactly supported sections

a unique continuous covariant derivation d : ΓcpV pKqq Ñ Ω1
cpM,Kq such that the

diagram

ΓcpKq
2 β //

κK
��

Ω1
cpM,V pKqq

ΓcpV pKqq

d

77

commutes.

Proof. With Theorem 3.19 we find a unique continuous R-linear map
d : ΓcpV pKqq Ñ Ω1

cpM,Kq such that the above diagram commutes. We show that
dpf ¨ ηq “ df ¨ η ` f ¨ dη for f P C8pM,Rq and η P ΓcpV pKqq in the following4.
Because the image of κK spans ΓcpV pKqq, it is sufficient to show the assertion for
η “ κKpξ, ζq with ξ, ζ P ΓcpKq. We use the shorthand κ :“ κKp .

dpf ¨ κKpξ, ζqqppvq “ pdpκKpfξ, ζqqqppvq

“κpDpf ¨ ξqppvq, ζppqq ` κpfppq ¨ ξppq, pDζqppvqq

“κpdfpvq ¨ ξppq, ζppqq ` κpfppqpDξqppvq, ζppqq ` κpfppqξppq, Dζppvqq

“dfpvq ¨ κpξppq, ζppqq ` fppqκpDξppvq, ζppqq ` fppqκpξppq, Dζppvqq

“pdf ¨ κKpξ, ζqqppvq ` fppq ¨ pβpξ, ζqqppvq

“pdf ¨ κKpξ, ζqqppvq ` fppq ¨ pdκKpξ, ζqqppvq.

Remark 3.24. In this remark we recall the construction of the cocycle ω from
[JW13, p. 129]. Janssens and Wockel used the covariant derivation d described in

Remark 3.23 to define Ω
1

cpM,V pKqq :“ Ω1
cpM,V pKqq{pdΓcpV pKqqq (as mentioned

above the continuity of d is not important for this construction). The cocycle is
defined as

ω : ΓcpKq
2
Ñ Ω

1

cpM,V pKqq, pη, ζq ÞÑ rκ̃KpDη, ζqs

with κ̃K as in Lemma 3.23. The continuity of ω was not discussed in [JW13] but
this follows immediately from Lemma 3.22.

3.3. Universal continuous extensions of certain
current algebras

Maier constructed in [Mai02] a universal cocycle for current algebras with a unital
complete locally convex algebra. In [JW13, Theorem II.7] Janssens and Wockel
showed that an analogous cocycle is also universal for the algebra of compactly sup-
ported functions on a σ-compact finite-dimensional manifold. Gündoğan showed

4This easy calculation was not discussed in [JW13]. We give it here for the convenience of the
reader.
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in [Gun11] that this approach also works for a certain class of locally convex
pseudo-unital algebras, the so called CPUSLF-algebras5. However this class of
locally convex algebras does not contain the compactly supported functions on a
σ-compact finite-dimensional manifold. Our aim in this section is to use concepts
from [Gun11] to show that the cocycle constructed in [JW13, Theorem 2.7] re-
spectively [Mai02] is universal for a class of locally convex algebras without unity
that contains the compactly supported smooth functions on a σ-compact alge-
bra. Hence, taking C8c pMq as the considered algebra, we obtain a more detailed
argumentation for [JW13, Theorem 2.7] (see Remark 3.39).

In the following Definitions 3.25 and 3.26 we recall the concept of universality
from [Gun11, Chapter A.2] and [Nee02b, Definition 1.9 and Remark 1.10].

Definition 3.25. Let g be a locally convex Lie algebra and V a locally convex
space considered as a trivial g-module. Moreover, let E :“ V ãÑ ĝ

q
ÝÑ g be a

central extension of locally convex Lie algebras and W be a locally convex space
considered as a trivial g-module.

(i) We call the extension E weakly universal for W , if for every central extension

E 1 :“ W ãÑ ĝ1
q1
ÝÑ g of locally convex Lie algebras there exists a homomor-

phism of extensions of topological Lie algebras ϕ : ĝÑ ĝ1 from E to E 1.
(ii) We call E weakly universal if it is weakly universal for every locally convex

space.

(iii) We call E universal for W , if for every central extension E 1 :“ W ãÑ ĝ1
q1
ÝÑ g

of locally convex Lie algebras we can find a unique extension homomorphism
ϕ : ĝÑ ĝ1 from E to E 1.

(iv) We call E universal if it is universal for every locally convex space.

Definition 3.26. Let g be a locally convex Lie algebra and V be a locally convex
space considered as a trivial g-module. Moreover, let ω P Z2

ctpg, V q be a continuous
cocycle and W be a locally convex space considered as a trivial g-module.

(i) We call ω weakly universal for W if the map δW : LpV,W q Ñ H2
ctpg,W q,

θ ÞÑ rθ ˝ ωs is bijective.
(ii) We call ω weakly universal if it is weakly universal for every locally convex

space.
(iii) We call ω universal for W if it is weakly universal for W and Homctpg,W q “

t0u (compare [Nee02b, Remark 1.10]).
(iv) We call ω universal if it is universal for every locally convex space.

The following theorem is well known.

Theorem 3.27. Let g be a locally convex Lie algebra and V a locally convex
space considered as a trivial g-module, E :“ V ãÑ ĝ

q
ÝÑ g a central extension of

locally convex Lie algebras, ω P Z2
ctpg, V q the corresponding cocycle and W a locally

5Although CPUSLF stands for “commutative pseudo-unital strict LF-algebra” (see [Gun11,
Definition 5.1.12]) the actual definition is less general. In fact a commutative locally convex
algebra is called CPUSLF-algebra if it is the strict inductive limit (in the category of locally
convex spaces) of unital Fréchet algebras (see [Gun11, Definition 5.1.12]).
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3 Constructions for Lie algebras of compactly supported sections

convex space considered as a trivial g-module. Then E is weakly universal for W
respectively universal for W , if and only if ω is so.

Proof. This follows from [Nee02b, Remark 1.10 (a)] and [Gun11, Remark A.2.11].

The following Lemma 3.28 comes from [Nee02b, Lemma 1.12 (iii)].

Lemma 3.28. Let g be a locally convex Lie algebra, W and V be a locally convex
spaces considered as trivial g-modules and ω P Z2

ctpg, V q a weakly universal cocycle
for W . If g is topologically perfect then ω is universal for W .

Remark 3.29. Actually the Lemma 1.12 in [Nee02b] requires the condition that
the considered extension is weakly universal for the underlying field K of the vector
spaces. But this condition is only used in the proof of statement 1.12 (ii). The
proof of statement (iii) neither requires statement 1.12 (ii) nor this condition.

In Definition 3.30 we recall the basic concept of current algebras for the conve-
nience of the reader (see e.g. [Gun11, Chapter 4]).

Definition 3.30. (a) A commutative algebra A is called pseudo-unital if for
x, y P A there exists z P A with xz “ x and yz “ y (see e.g. [Gun11,
Definition 4.2.3]). If x1, . . . , xn P A and A is commutative then [Gun11,
Remark 4.2.4] tells us that we find z P A such that xiz “ xi for all i “
1, . . . , n.

(b) If A is a commutative pseudo-unital algebra and g is a finite-dimensional Lie
algebra, we endow the tensor product Abg with the unique Lie bracket that
satisfies rab x, bb ys “ abb rx, ys for a, b P A and x, y P g.

(c) If A is a locally convex R-algebra then we endow A b g with the topology
of the projective tensor product of locally convex spaces. This Lie algebra
is even a locally convex algebra as one can see in [Gun11, Remark 2.1.9.].
Moreover, [Gun11, Remark 4.2.7] tells us that Ab g is perfect if g is so.

In the following definition we remind the reader of the concept of topologically
universal differential modules. This concept is for example presented in [Gun11,
Chapter 5.2] and [Mai02].

Definition 3.31. Let A be a unital commutative complete locally convex
R-algebra.

(a) A continuous R-linear mapD : AÑ E to a complete locally convexA-module
E is called a derivation, if Dpxyq “ xDpyq ` yDpxq for x, y P A.

(b) For a complete locally convex commutative unital algebra A, a pair pE,Dq
with a complete locally convex A-module E and a continuous derivation
D : A Ñ E of E is called universal topological differential module of A if
there exists a unique continuous linear map ϕ : E Ñ F such that

A
T //

D
��

F

E

ϕ

??
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3.3 Universal continuous extensions of certain current algebras

commutes for every complete locally convex A-module F and continuous
F -derivation T : AÑ F .

(c) [Gun11, Chapter 5.2] or [Mai02] tell us that there always exists a universal
topological differential module pΩpAq, dAq for a given complete locally convex
commutative unital algebra A.

The following definition can be found in [Gun11, Definition 5.29] and [Mai02,
p. 73] in the case where the algebra A is unital instead of pseudo-unital. It is also
the canonical generalisation of the cocycle ωM,g in [JW13, Theorem 2.7].

Definition 3.32. If g is a finite-dimensional semisimple Lie algebra and A is a
commutative pseudo-unital complete locally convex algebra, then we define the
cocycle

ωg,A : Ab gˆ Ab gÑ Vg b pΩpA1q{dA1pA1qq

pab x, bb yq ÞÑ κgpx, yq b ra ¨ dA1pbqs.

For convenience we write Vg,A :“ Vg b pΩpA1q{dA1pA1qq. As mentioned in [Gun11,
Definition 5.2.9] the map ωg,A satisfies the cocycle condition because κg is invariant.

With [Mai02, Theorem 16] we get the following Lemma 3.33.

Lemma 3.33. Let g be a finite-dimensional semisimple Lie algebra and A a com-
mutative unital complete algebra. If W is a complete locally convex space considered
as a trivial g-module then the map δW : LpVg,A,W q Ñ H2

ctpAbg,W q, θ ÞÑ rθ˝ωg,As

is bijective.

The following definition is based on [Gun11, Definition 5.1.5 and Lemma 5.1.6].

Definition 3.34. For a locally convex algebra A and a finite-dimensional Lie
algebra g the Lie algebra Abg is locally convex. Let A be a commutative pseudo-
unital locally convex R-algebra and g be a finite-dimensional Lie algebra. For y P g,
we get a continuous bilinear map Aˆ gÑ Ab g pc, xq ÞÑ cb ry, xs which induces
a continuous linear map δy : A b g Ñ A b g with δypc b xq “ c b ry, xs. We get a
linear map δ : gÑ LpAb gq, y ÞÑ δy such that gˆpAb gq Ñ Ab g, py, vq ÞÑ δypvq
is continuous. Moreover, δ is a Lie algebra homomorphism because δry1,y2spcbxq “
c b rry1, y2s, xs “ c b ry1, ry2, xss ´ c b ry2, ry1, xss “ δy1δy2pc b xq ´ δy2δy1pc b xq.
Also we have δy P derpA b gq because δyprc b x, c1 b x1sq “ cc1 b ry, rx, x1ss “
cc1 b rry, xs, x1s ` cc1 b rx, ry, x1ss “ rδypc b xq, c1 b x1s ` rc b x, δypc

1 b x1qss. We
define ry, ‚s :“ δy for y P g. With the Lie algebra homomorphism δ we can
define the semidirect product pAb gq ¸ g with the Lie-bracket rpz1, y1q, pz2, y2qs “

prz1, z2s`δy1pz2q´δy2pz1q, ry1, y2sq “ prz1, z2s`ry1, z2s´ry2, z1s, ry1, y2sq for zi P Abg
and yi P g, where we wrote ry, ‚s :“ δy for y P g. The Lie algebra A b g ¸ g
is a locally convex Lie algebra. We identify A b g with the ideal impiq, where
i : Ab gÑ Ab g¸ g, z ÞÑ pz, 0q is a topological embedding that is a Lie algebra
homomorphism. Obviously the image of i is a closed subspace. Moreover, we
identify g with the subalgebra impigq, where ig : g Ñ pA b gq ¸ g, x ÞÑ p0, xq is a
topological embedding with closed image that is a Lie algebra homomorphism. As
usual we write pz, xq “ pz, 0q ` p0, xq “ z ` x for pz, xq P Ab g¸ g.
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3 Constructions for Lie algebras of compactly supported sections

[Gun11, Remark 5.1.7 and Lemma 5.1.8] lead to the following Lemma 3.35.

Lemma 3.35. For a pseudo-unital commutative locally convex algebra A, its uni-
talisation A1 and a finite-dimensional Lie algebra g we have an isomorphism of
locally convex Lie algebras ϕ : A1b gÑ pAb gq ¸ g with pλ, aq bw ÞÑ pabw, λwq
for all λ P K, a P A and w P g.

Lemma 3.36. If g and h are locally convex Lie algebras, V is a locally convex
space considered as a trivial g-module and h-module respectively and ϕ : g Ñ h
is a continuous Lie algebra homomorphism then Hctpϕq : H

2
ctph, V q Ñ H2

ctpg, V q,
rωs ÞÑ rω ˝ pϕ, ϕqs is a well-defined and linear map.

Proof. For η P Lph, V q and ω P Z2
ctph, V q with ω “ η ˝ r‚, ‚s we have pϕ, ϕq˚pωq “

η ˝ ϕ ˝ r‚, ‚s.

We will use the concept of neutral triple from [Gun11, Definition 5.1.3] and
recall it in the next Definition 3.37.

Definition 3.37. Let A be a pseudo-unital commutative locally convex algebra
A and g be a finite-dimensional perfect Lie algebra.
(a) There is an A-module structure ¨ : AˆpAbgq Ñ Abg with a¨pbbyq “ pa¨bqby

for a, b P A and y P g. Actually Abg is an A-module in the category of locally
convex spaces because g is finite-dimensional. In this situation we call ν P A
neutral for f P Ab g, if ν ¨ f “ f .

(b) For f P A b g (resp. ϕ P A) we call pλ, ν, µq P A3 a neutral triple for f (resp.
ϕ), if µ ¨ f “ f (resp. µ ¨ ϕ “ ϕ), ν ¨ µ “ µ and λ ¨ ν “ ν.

(c) Let pviqi“1,..,n be a basis of g. For f “
řn
i“1 ϕi b vi P A b g with ϕi P A,

we choose µf P A such that µf is neutral for all ϕi. Moreover, we choose νf
such that it is neutral for µf and λf such that it is neutral for νf . Clearly
pλf , νf , µf q is a neutral triple for f and for all ϕi. We fix this notation for
the rest of this section. For ϕ P A, we choose a neutral triple pλϕ, νϕ, µϕq.
Obviously pλϕ, νϕ, µϕq is a neutral triple for ϕb v for all v P g.

From the proof of [Gun11, Theorem 5.1.10] we can extract the following lemma.

Lemma 3.38. Let A be a pseudo-unital commutative locally convex algebra, g a
finite-dimensional perfect Lie algebra and V a locally convex space considered as
a trivial A b g-module. Moreover let ω P Z2

ctpA b g, V q, f P A b g and y P g. If
pλ1, ν1, µ1q and pλ2, ν2, µ2q are neutral triples for f then ωpf, λ1byq “ ωpf, λ2byq.

Remark 3.39. In the following theorem (Theorem 3.40) we prove that [Gun11,
Theorem 5.1.14] also holds for a class of locally convex algebras that contains the
compactly supported smooth functions on a σ-compact finite-dimensional mani-
fold6. In [JW13, Theorem 2.7] Janssens and Wockel considered the unitalisation
C8c pM, gq ¸ g of C8c pM, gq to use [Mai02, Theorem 16] (we follow this strategy).

6[Gun11, Corollary 5.2.14] does not follow from [Gun11, Theorem 5.2.13] as claimed in [Gun11]:
Given a compact subset K Ď M , the algebras C8K pMq are not unital and hence C8c pMq is
not a CPUSLF-algebra in the sense of [Gun11, Defintion 5.1.12].
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3.3 Universal continuous extensions of certain current algebras

In this context they showed that the canonical map H2
ctpiq : H

2
ctpC

8
c pM, gq¸g, V q Ñ

H2
ctpC

8
c pM, gq, V q is bijective. But the proof of the surjectivity was not complete.

It was not discussed whether the constructed cocycle ω that is mapped to ω0 by
H2
ctpiq is actually continuous. Therefore, taking A “ C8c pMq in Theorem 3.40 we

obtain a more detailed argument for [JW13, Theorem 2.7.].

Theorem 3.40. Let A be a locally convex commutative pseudo-unital algebra that
is the inductive limit of locally convex subalgebras Am Ď A for which there exists
an element 1m P A with 1m ¨ a “ a for all a P Am. Moreover, let g be a semisimple
finite-dimensional Lie algebra, V a locally convex space and i : Ab gÑ Ab g¸ g
the natural inclusion. Then H2

ctpiq : H
2
ctpAbg¸g, V q Ñ H2

ctpAbg, V q is bijective7.

Proof. Surjectivity: Let pviqi“1,...,n be a basis of g. We use the notation of Definition
3.37. Let ω0 P Z

2
ctpA b g, V q. We follow the idea of [Gun11, Theorem 5.1.14] or

[JW13, Theorem 2.7] and define ω : pAbgq2¸gÑ V pf1, y1q, pf2, y2q ÞÑ ω0pf1, f2q`

ω0pf1, λf1by2q´ω0pf2, λf2by1q. The argument that ω is a cocycle works exactly as
in the proof [Gun11, Theorem 5.1.14] or [JW13, Theorem 2.7]. For the convenience
of the reader we will recall this argument in Appendix C. We show that ω is also
continuous. For this, we just have to show that the bilinear map ψ : AbgˆgÑ V ,
pf, yq ÞÑ ω0pf, λf b yq is continuous. Because we can identify pA b gq b g with
pA b gqn, it is sufficient to prove the continuity of pA b gqn Ñ V , pfiqi“1,...,n ÞÑ
řn
i“1 ω0pfi, λfi b viq. To show the continuity of Ab gÑ V , f ÞÑ ω0pf, λf b vq, we

again identify A b g with An and prove the continuity of An Ñ V , pϕiqi“1,...,n ÞÑ
řn
i“1 ω0pϕi b vi, λf b yq with f “

řn
i“1 ϕi b vi and an arbitrary y P g. Because of

the construction of the neutral triple pλf , νf , µf q (see Definition 3.37 (c)) we get
ω0pϕi b vi, λf b yq “ ω0pϕi b vi, λϕi b yq for i P t1, . . . , nu. It remains to show
that the linear map AÑ V , ϕ ÞÑ ω0pϕb x, λϕ b yq is continuous for x, y P g. For
m P N, we find an element 1m P A with 1m ¨ a “ a for all a P Am. We choose

an element 1̃m P A that is unital for 1m and an element ˜̃1m that is unital for 1̃m
and see that p˜̃1m, 1̃m, 1mq is a unital triple for all ϕ P Am. We see that Am Ñ V ,

ϕ ÞÑ ω0pϕ b x, λϕ b yq “ ω0pϕ b x, ˜̃1m b yq is continuous and conclude that also
the map A Ñ V , ϕ ÞÑ ω0pϕ b xλϕ b yq is continuous because A is the inductive
limit of the subalgebras Am Ď A. The equation H2

ctpiqprωsq “ rω0s is easily checked
because for f, g P Abg we have ω ˝ pi, iqpf, gq “ ωpf, gq “ ω0pf, gq. The argument
that H2

ctpiq is injective works exactly as in the proof of [Gun11, Theorem 5.1.14] or
[JW13, Theorem 2.7]. For the convenience of the reader, we recall this argument
in Appendix C.

The application of Theorem 3.40 in the following theorem is completely analo-
gous to [JW13, Theorem 2.7].

Theorem 3.41. Let A be a complete locally convex commutative pseudo-unital
algebra such that it is the inductive limit of subalgebras An Ď A with n P N such

7The class of algebras A we consider in this theorem obviously contains the so called CPUSLF-
algebras considered in [Gun11, Theorem 5.1.14] as well as the compactly supported smooth
functions on M .
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3 Constructions for Lie algebras of compactly supported sections

that we find for n P N an element 1n P A with 1n¨a “ a for all a P An. Moreover, let
g be a finite-dimensional semisimple Lie algebra. Then ωg,A : AbgˆAbgÑ Vg,A1

with pab x, bb yq ÞÑ κgpx, yq b ra ¨ dA1pbqs is a universal cocycle for Ab g.

Proof. The assertion follows directly from Lemma 3.28, Lemma 3.33 and Theorem
3.40.

The transition of the fact stated in Theorem 3.41 for current algebras of the
form A b g to the special case of Lie algebras of the form C8c pM, gq can be done
as in [Gun11, Chapter 5.2] or [JW13, Theorem 2.7]. We recall this approach in
Remark 3.42.8

Remark 3.42. [Mai02, Theorem 11] tells us that if M is a σ-compact manifold
and ΩpC8c pMq1q the universal C8c pMq1-module in the category of complete locally
convex spaces, then d˝pr1 : C8c pMq1 Ñ Ω1

cpMq induces an isomorphism of topolog-
ical C8c pMq1-modules ΩpC8c pMq1q Ñ Ω1

cpMq. Let g be a semisimple Lie algebra.
For f P C8c pM, gq and η P Ω1

cpM, gq we define the 1-form κgpf, dgq P Ω1
cpM,Vgq by

κgpf, ηqppvq :“ κgpfppq, ηppvqq. Because dpC8c pM,Vgqq is closed in Ω1
cpM,Vgq (see

[Nee04, Lemma 4.11]) the map

C8c pM, gq ˆ C8c pM, gq Ñ Ω1
cpM,Vgq{dpC

8
c pM,Vgqq

pf, gq ÞÑ rκgpf, dgqs.

is a universal cocycle for all complete locally convex spaces.

8As mentioned in [JW13, Theorem 2.7], [Mai02, Corollary 18] does not follow from [Mai02,
Theorem 16].
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4. Extensions of groups of
compactly supported sections

In the previous chapter, we considered extensions of infinite-dimensional Lie alge-
bras. Now, we turn our attention to extensions of infinite-dimensional Lie groups1.
More precisely, we consider central extensions of groups of compactly supported
sections as mentioned in the introduction.

4.1. Construction of the Lie group extension

For this chapter, we fix the following notation:
(a) If H ãÑ P

q
ÝÑ M is a principal bundle with right action R : P ˆH Ñ P , we

write V P :“ kerpTqq for the vertical bundle of TP and VpP :“ TpP X V P
for the vertical space in p P P . Analogously, if HP Ď TP is a principal
connection (HP ‘ V P “ TP and TRhHpP “ HphP ), we write HpP :“
TpP XHP for the horizontal space in p P P .

(b) Let H ãÑ P
q
ÝÑM be a finite-dimensional principal bundle over a connected

σ-compact manifold M with right action R : P ˆ H Ñ P and a princi-
pal connection HP Ď TP . Given a finite-dimensional linear representation
ρ : H Ñ GLpV q and k P N0, we write

Ωk
pP, V qρ “

 

θ P Ωk
pP, V q : p@g P Hq ρpgq ˝R˚gθ “ θ

(

for the space of H-invariant V -valued k-forms on P and ΩkpP, V qhor
ρ for

the space of H-invariant V -valued k-forms that are horizontal with re-
spect to HP (Di : vi P VpP ñ θpv1, . . . , vkq “ 0) (see [Bau14, Definition
3.3]). Moreover, given a compact set K Ď M we define Ωk

KpP, V qρ :“
 

θ P Ωk
KpP, V qρ : supppθq Ď q´1pKq

(

and write Ωk
KpP, V q

hor
ρ for the analo-

gous subspace in the horizontal case. We emphasise that these forms are
in general not compactly supported on P itself. As mentioned in the intro-
duction, we equip these spaces with the natural Fréchet-topology and write
Ωk
c pP, V qρ, respectively Ωk

c pP, V q
hor
ρ , for the locally convex inductive limit of

the spaces Ωk
KpP, V qρ, respectively Ωk

KpP, V q
hor
ρ . This convention also clari-

fies what we mean by C8pP, V qρ, respectively C8c pP, V qρ.
(c) In Lemma D.1, we recall that if V is the vector bundle associated to a prin-

cipal bundle as in (b) then the canonical isomorphism of chain complexes
Ω‚

cpP, V q
hor
ρ – Ω‚

cpM,Vq (see e.g. [Bau14, Theorem 3.5]) induces isomor-
phisms of locally convex spaces Ωk

c pP, V q
hor
ρ – Ωk

c pM,Vq.
1This chapter consist of material published before in the author’s preprint [Eyn14b].
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4 Extensions of groups of compactly supported sections

(d) Given a manifold M , we write C8p pR,Mq for the set of proper smooth maps

from R to M . However, if F is the total space of a fibre bundle E ãÑ F
q
ÝÑM ,

we define C8p pR, F q :“
 

f P C8pR, F q : q ˝ f P C8p pR,Mq
(

.
Now that we have fixed the basic notation, we introduce the following conven-

tions:

Convention 4.1. (a) All finite-dimensional manifolds are assumed to be σ-
compact.

(b) Analogously to [NW09, p. 385 and p.388], we consider the following setting2:

If not defined otherwise, H ãÑ P
q
ÝÑM denotes a finite-dimensional principal

bundle over a connected non-compact σ-compact manifold M and h the Lie
algebra of H.3 Moreover, let G be a finite-dimensional Lie group with Lie
algebra g and κg : g ˆ g Ñ V pgq “: V be the universal invariant symmetric
bilinear map on g (see Definition 3.1, respectively [Gun11, Chapter 4]). Let
ρG : HˆGÑ G be a smooth action of H on G by Lie group automorphisms
and ρg : HˆgÑ g be the derived action on g by Lie algebra automorphisms
(ρgph, ‚q “ LpρGph, ‚qq P Autpgq). In view of Remark 3.13, we find a unique
map ρV : H ˆ V Ñ V that is linear in the second argument and fulfils
ρV ph, κgpx, yqq “ κgpρgph, xq, ρgph, yqq for x, y P g and h P H. The vector
space V is generated by elements of the form κgpx, yq with x, y P g. To
see that ρV is also a representation, we show that ρV pg, ρV ph, κgpx, yqqq “
ρV pgh, κgpx, yqq for x, y P g and g, h P H:

ρV pg, ρV ph, κgpx, yqqq “ ρV pg, κgpρgph, xq, ρgph, yqqq

“κgpρgpg, ρgph, xqq, ρgpg, ρgph, yqqq “ ρV pgh, κgpx, yqq.

Because we can find a basis of V consisting of vectors of the form κgpx, yq,
the smoothness of ρV follows. We write G :“ P ˆρG G for the associated
Lie group bundle4, G :“ P ˆρg g for the associated Lie algebra bundle and
V :“ P ˆρV V for the associated vector bundle to H ãÑ P Ñ M . Let V P
be the vertical bundle of TP . We fix a principal connection HP Ď TP on
the principal bundle P and write prh : TP Ñ HP for the projection onto the
horizontal bundle. As pointed out in [NW09, p. 385] no generality is lost
if we assume that the total space P is connected. Hence, we do so in this
chapter.

(c) Let Dρg : C8c pP, gqρg Ñ Ω1
cpP, gq

hor
ρg , f ÞÑ df ˝ prh and DρV : C8c pP, V qρV Ñ

Ω1
cpP, V q

hor
ρV

, f ÞÑ df ˝ prh be the absolute derivatives corresponding to HP
(see [Bau14, Definition 3.8]). Moreover, let dG : ΓcpM,Gq Ñ Ω1

cpM,Gq and
dV : ΓcpM,Vq Ñ Ω1

cpM,Vq be the induced covariant derivations on the Lie
algebra bundle G and the vector bundle V respectively (see [Bau14, p. 100

2In [NW09] Neeb and Wockel also consider situations where the Lie groups H and G can be
infinite-dimensional locally exponential Lie groups.

3Like in [Nee04] it is crucial for our proof that the manifold M is not compact. Hence, our
argumentation is not an alternative for the proof of [NW09]

4The definition of a Lie group bundle, respectively associated Lie group bundle, is completely
analogous to the definition of a vector bundle, respectively associated vector bundle.
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4.1 Construction of the Lie group extension

ff] and Lemma D.1).

In [NW09, Appendix A], where M is compact, Neeb and Wockel endowed the
group of sections ΓpM,Gq of a Lie group bundle G that is associated to a principal
bundle P with a Lie group structure. They used the identification ΓpM,Gq –
C8pP,GqρG and endowed the group C8pP,GqρG of G-invariant smooth maps from
P toG with a Lie group structure by using the construction of a Lie group structure
on the gauge group GaupP q described in [Woc07]. To this end, they replaced
the conjugation of the structure group on itself by the Lie group action ρG. In
the following Definition 4.2, we proceed analogously in the case where M is non-
compact but σ-compact. As the construction from [NW09] is based on [Woc07], our
analogous definition is based on [Sch13, Chapter 4], the generalisation of [Woc07]
to the non-compact case.

Definition 4.2. (a) For a set X, a group G with unity 1 and a map ϕ : X Ñ G
we define

supppϕq :“ tx P X : ϕpxq ‰ 1u.

(b) We equip the group

C8c pP,GqρG “ tϕ P C
8
pP,Gq : pDK ĎM compactq supppϕq Ď q´1

pKq

and p@h P H, p P P q ρGphq ˝ ϕpphq “ ϕppqu

with the infinite-dimensional Lie group structure described in [Sch13, Chap-
ter 4]. We just replace the conjugation of H on itself by the action ρG of H
on G. We emphasise that the functions f P C8c pP,GqρG are not compactly
supported on P itself. The Lie algebra of C8c pP,GqρG is given by the locally
convex Lie algebra

C8c pP, gqρg “ tf P C
8
pP, gqρg : pDK ĎM compactq supppfq Ď q´1

pKqu

“ lim
ÝÑ

C8K pP, gqρg ,

where K runs through the compact subsets of M .
(c) If η P ΓpM,Gq we define

supppηq :“ tx PM : ηpxq ‰ 1u

and write ΓcpM,Gq for the subgroup of sections with compact support in M .
(d) From [Sch13, Chapter 4] (see also [Bau14, Theorem 3.5] and Lemma D.1) we

know that ΓcpM,Gq – C8c pP, gqρg in the sense of topological vector spaces.
Now, we endow ΓcpM,Gq with the Lie group structure that turns the group
isomorphism ΓcpM,Gq – C8c pP,GqρG into an isomorphism of Lie groups.
Hence, ΓcpM,Gq becomes an infinite-dimensional Lie group modelled on the
locally convex space ΓcpM,Gq.

In the following definition, we fix our notation for the quotient principal bun-
dle. For details on the well-known concept of quotient principal bundles see e.g.
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4 Extensions of groups of compactly supported sections

[Gun11, Proposition 2.2.20].

Definition 4.3. Let N :“ kerpρV q Ď H and H{N ãÑ P {N
q
ÝÑ M be the quotient

bundle with projection q : P {N Ñ M, pN ÞÑ qppq and right action R : H{N ˆ

P {N Ñ P {N, prgs, pNq ÞÑ ppgqN . We write H :“ H{N and P :“ P {N . Let
ρV : H{N Ñ GLpV q be the factorisation of ρV over N and π : P Ñ P {N the orbit
projection. If ψ : q´1pUq Ñ U ˆ H is a trivialisation of P then ψ1 : q´1pUq Ñ
U ˆH, pN ÞÑ pqppq, rpr2 ˝ψppqsq is a typical trivialisation of P . It is well-known

that V is isomorphic to the associated bundle to H ãÑ P
q
ÝÑ M via ρV (see e.g.

[Gun11, Remark 2.2.21]). Moreover, we write HP :“ TπpHP q for the canonical
principal connection on P that comes from P (see D.2 (a)). We mention that
π˚ : Ωk

c pP , V q
hor
ρ Ñ Ωk

c pP, V q
hor
ρV

is an isomorphism of topological vector spaces and
induces an isomorphism of chain complexes (see D.2 (c)).

Convention 4.4. Analogously to [NW09], we introduce the following convention.
We assume that the identity-neighbourhood of H acts trivially on V by ρV (cf.
[NW09, p. 385])5. Hence, H is a discrete Lie group. Moreover, we even assume H
to be finite (cf. [NW09, p. 386, p.398 f and Theorem 4.14])6.

Definition 4.5. Let H ãÑ P Ñ M be a principal bundle with connected total
space P and ρV : HˆV Ñ V be a linear representation. Moreover, fix a connection
HP on TP and let DρV be the induced absolute derivative of the associated vector
bundle V.

(a) We define

Z1
dR,cpP, V qρV :“

 

θ P Ω1
cpP, V q

hor
ρV

: DρV θ “ 0
(

and

B1
dR,cpP, V qρV :“ DρV pC

8
c pP, V qρV q,

and equip these spaces with the induced topology of Ω1
cpP, V q

hor
ρV

.
(b) We define

Z1
dR,cpP, V qfix :“ Z1

dR,cpP, V q X Ω1
cpP, V qρV and

B1
dR,cpP, V qfix :“ B1

dR,cpP, V q X Ω1
cpP, V qρV

and equip these spaces with the induced topology of Ω1
cpP, V qρV . In this

context Z1
dR,cpP, V q (respectively B1

dR,cpP, V q) stands for the closed (respec-
tively exact) compactly supported V -valued 1-forms on P with respect to
the compactly supported de Rham cohomology.

Lemma 4.6. Let H ãÑ P Ñ M be a principal bundle and ρV : H ˆ V Ñ V be a
linear representation. Moreover, fix a connection HP on TP and let DρV be the
induced absolute derivative of the associated vector bundle V.

5In Section 4.3 we will see that this is a quite natural assumption.
6Even the case H “ t1u is a generalisation of [Nee04] if the typical fibre is finite-dimensional.

If H is trivial then so is the vector bundle V. However, the Lie algebra bundle G and the Lie
group bundle G do not have to be trivial.
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4.1 Construction of the Lie group extension

(a) If H is discrete, we have

Z1
dR,cpP, V qρV “ Z1

dR,cpP, V qfix and B1
dR,cpP, V qρV Ď B1

dR,cpP, V qfix.

Because in this situation all forms on P are horizontal the topologies on
Z1
dR,cpP, V qρV and Z1

dR,cpP, V qfix coincide.
(b) If H is finite we get B1

dR,cpP, V qρV “ B1
dR,cpP, V qfix. Again the topologies on

these subspaces coincide, because Ω1
cpP, V q

hor
ρV

and Ω1
cpP, V qρV are exactly the

same topological vector spaces.

Proof. (a) If H is discrete there is only one connection on P , namely HP “ TP .
Hence, in this case, DρV is the ordinary exterior derivative.

(b) Let n :“ #H and θ P B1
dR,cpP, V qfix with θ “ df for f P C8c pP, V q.

For ϕ P C8c pP, V q and g P H we write g.ϕ :“ ρV pgq ˝ R
˚
gϕ and get

1
n
¨
ř

gPH g.f P C8c pP, V qρV . Moreover, dp 1
n
¨
ř

gPH g.fq “ θ. Hence,

B1
dR,cpP, V qρV “ B1

dR,cpP, V qfix.

Lemma 4.7. Let H ãÑ P
q
ÝÑM be a principal bundle with finite structure group H

and connected total space P . Moreover, let ρV : HˆV Ñ V be a finite-dimensional
linear representation, HP a connection on TP and DρV be the induced absolute
derivative of the associated vector bundle V. Then the following holds:

(a) The map q is proper. Hence, in this case the forms in Ωk
c pP, V q are exactly

the compactly supported forms on P .
(b) The space B1

dR,cpP, V q “ dC8c pP, V q is a closed subspace of Ω1
cpP, V q.

Proof. (a) We see from [NR11, Lemma 10.2.11] that if F ãÑ F q
ÝÑM is a contin-

uous fibre bundle of finite-dimensional topological manifolds and F is finite
then q is a proper map.7

(b) From [Nee04, Lemma IV.11] we see that, if M is a connected finite-
dimensional manifold and V a finite-dimensional vector space then
B1
dR,cpM,V q “ dC8c pM,V q is a closed subspace of Ω1

cpM,V q.

For a corresponding statement of the following lemma in the case of a compact
base manifold M , compare [NW09, p. 385 f].

Lemma 4.8. The subspace DρV C
8
c pP, V qρV Ď Ω1

cpP, V q
hor
ρV

is closed.

Proof. The lemma simply says that dΓcpM,Vq is closed in Ω1
cpM,Vq. Hence, it

is enough to show that the subspace dC8c pP , V qρV is closed in Ω1
cpP , V q

hor
ρV

“

Ω1
cpP , V qρV . We know that B1

dR,cpP , V q is closed in Ω1
cpP , V q. We calculate

dC8c pP , V qρV “ B1
dR,cpP , V qfix “

č

gPH

!

θ P B1
dR,cpP , V q : ρV pgq ˝R

˚

gθ “ θ
)

7A more general statement in the setting of topological spaces is stated in [Lee13, Exercise
A.75.].
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4 Extensions of groups of compactly supported sections

“
č

gPH

pρV pgq ˝R
˚

g ´ idq´1
t0u

and see that dC8c pP , V qρV is closed in Ω1
cpP , V q. Because the topology of

Ω1
cpP , V qρV is finer than the induced topology of Ω1

cpP , V q, the space dC8c pP , V qρV
is also closed in Ω1

cpP , V qρV .

Definition 4.9. Let H ãÑ P Ñ M be a principal bundle with connected total
space P and ρV : HˆV Ñ V be a linear representation. Moreover, fix a connection
HP on TP and let DρV be the induced absolute derivative of the associated vector
bundle V.

(a) If the quotient group H{ kerpρV q is finite (this of course includes the case
where the group H is finite), we define

H1
dR,cpP, V qρV :“ Z1

dR,cpP, V qρV {B
1
dR,cpP, V qρV – H1

dR,cpM,Vq.

Because of Lemma 4.8 this is a Hausdorff locally convex space.
(b) We have a canonical H-module structure on H1

dR,cpP, V q given by H ˆ

H1
dR,cpP, V q Ñ H1

dR,cpP, V q, ph, rθsq ÞÑ rρV phq ˝ R
˚
hθs. As usual, we call

the fixed points of this action ρV -invariant. If the group H is finite we define

H1
dR,cpP, V qfix :“

 

rθs P H1
dR,cpP, V q : rθs is ρV -invariant

(

and because of Lemma 4.7 the space H1
dR,cpP, V qfix becomes a Hausdorff

locally convex space as a closed subspace of the Hausdorff locally convex
space H1

dR,cpP, V q.

It is possible to show the following lemma by a more abstract argument using
that under certain conditions the fixed point functor is exact like it was done in
the compact case in [NW09, Remark 4.12]. Here, we give a more elementary proof.

Lemma 4.10. Let H ãÑ P ÑM be a principal bundle and ρV : H ˆ V Ñ V be a
linear representation. If H is finite we get

H1
dR,cpP, V qfix – Z1

dR,cpP, V qfix{B
1
dR,cpP, V qfix,

as topological vector spaces.

Proof. Let n :“ #H. We consider the linear map ψ : Z1
dR,cpP, V qfix Ñ

H1
dR,cpP, V qfix, θ ÞÑ rθs. The map ψ is continuous because the inclusion

ZdR,cpP, V qfix ãÑ Ω1
cpP, V q is continuous and so the canonical map ZdR,cpP, V qfix Ñ

H1
dR,cpP, V q is continuous. If rθs P H1

dR,cpP, V qfix with θ “ df for f P C8c pP, V q

then rθs “ rdp 1
n

ř

gPH g.fqs and dp 1
n

ř

gPH g.fq P B1
dR,cpP, V qfix so kerpψq Ď

B1
dR,cpP, V qfix. Obviously, B1

dR,cpP, V qfix Ď kerpψq. Now, we show that ψ is

surjective. If rθs P H1
dR,cpP, V qfix then rθs “ r 1

n
¨
ř

gPH g.θs and 1
n
¨
ř

gPH g.θ P

Z1
dR,cpP, V qfix. Hence, ψ factors through a continuous bijective linear map

ψ : Z1
dR,cpP, V qfix{B

1
dR,cpP, V qfix Ñ H1

dR,cpP, V qfix. It is left to show that ψ is also
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4.1 Construction of the Lie group extension

open. We define

τ : H1
dR,cpP, V q Ñ Z1

dR,cpP, V qfix{B
1
dR,cpP, V qfix, rθs ÞÑ

«

1

n
¨
ÿ

gPH

g.θ

ff

.

Obviously τ |H1
dR,cpP,V qfix

is inverse to ψ. The map

Ω1
cpP, V q Ñ Ω1

cpP, V qρV , θ ÞÑ
1

n
¨
ÿ

gPH

g.θ

is continuous, because the action g.θ “ ρpgq ˝R˚gθ does not enlarge the support of
a given form.

Corollary 4.11. Considering the principal bundle H ãÑ P Ñ M with the action
ρV , we have

H1
dR,cpP , V qfix – Z1

dR,cpP , V qfix{B
1
dR,cpP , V qfix – H1

dR,cpP , V qρV .

The following lemma is a generalisation of considerations in [NW09, p. 399 and
Remark 4.12] from the compact case to the non-compact case.8

Lemma 4.12. (a) If we endow H1
dR,cpM,V q with the canonical H-module struc-

ture H ˆH1
dR,cpM,V q Ñ H1

dR,cpM,V q, ph, rθsq ÞÑ rρV phq ˝ θs, then the map

q˚ : H1
dR,cpM,V q Ñ H1

dR,cpP , V q becomes an isomorphism of H-modules such

that H1
dR,cpM,V qfix –q˚ H

1
dR,cpP , V qfix.

(b) We have

H1
dR,cpM,Vfixq – H1

dR,cpM,V qfix, (4.1)

where Vfix is the subspace of fixed points of the action ρV in V .
(c) The map

H1
dR,cpM,Vfixq Ñ H1

dR,cpP, V qρV , rθs ÞÑ rq˚θs

is an isomorphism of topological vector spaces.

Proof. (a) For h P H we calculate

q˚rρphq ˝ θs “ rρphq ˝ q˚θs “ rρphq ˝ pq ˝Rhq
˚θs “ rρphq ˝R

˚

hq
˚θs “ h.q˚rθs.

Hence, q˚ is an isomorphism of H-modules. Now the second assertion follows
from Lemma D.3.

(b) We exchange P with M and the action g.θ “ ϕpgq˝R˚gϕ with g.θ “ ρV pgq˝θ
in the proof of Lemma 4.10 and get

H1
dR,cpM,V qfix – Z1

dR,cpM,V qfix{B
1
dR,cpM,V qfix.

8As mentioned above, in [NW09] Neeb and Wockel also consider situations where the Lie groups
H and G can be infinite-dimensional locally exponential Lie groups.
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4 Extensions of groups of compactly supported sections

Now we show that the isomorphism ϕ : Ω1
cpM,Vfixq Ñ Ω1

cpM,V qfix, θ ÞÑ θ is a
homeomorphism, where Ω1

cpM,V qfix is equipped with the induced topology
from Ω1

cpM,V q. Given a compact set K Ď M the map Ω1
KpM,Vfixq Ñ

Ω1
KpM,V q is continuous. Hence, Ω1

cpM,Vfixq Ñ Ω1
cpM,V q is continuous and

therefore ϕ is continuous. Considering the continuous map Ω1
cpM,V q Ñ

Ω1
cpM,Vfixq, θ ÞÑ

ř

hPH h.θ, we see that ϕ is an isomorphism of topological
vector spaces. Now the assertion follows from Z1

dR,cpM,V qfix “ Z1
dR,cpM,Vfixq

and B1
dR,cpM,V qfix “ B1

dR,cpM,Vfixq.
(c) We have the commutative diagram

H1
dR,cpM,Vfixq

q˚ //

��

H1
dR,cpP, V qρV

H1
dR,cpM,V qfix

q˚ // H1
dR,cpP , V qfix

// H1
dR,cpP , V qρV .

π˚

OO

The assertion now follows from (a), (b) and Corollary 4.11.

Convention 4.13. From now on we write q˚ : H1
dR,cpP, V qρV Ñ H1

dR,cpM,Vfixq for
the inverse of q˚ : H1

dR,cpM,Vfixq Ñ H1
dR,cpP, V qρV , rθs ÞÑ rq˚θs.

Remark 4.14. Given an infinite-dimensional Lie group G with Lie algebra g, a
trivial locally convex g-module z and a Lie algebra cocycle ω : gˆ gÑ z, [Nee02a,
Theorem 7.12] gives us conditions under which we can integrate ω to a Lie group
cocycle of the Lie group G. These conditions were recalled in the introduction to
this thesis. Theorem 7.12 in [Nee02a] is formulated in the case where z is sequen-
tially complete. However, it also holds in a special case when z is not sequentially
complete: Let E be a Mackey complete space, F Ď E be a closed vector subspace,
z “ E{F . If ω lifts to a continuous bilinear map α : g ˆ g Ñ E then the results
of [Nee02a] remain valid. To see this, consider the following: Let ωl be the left
invariant 2 form on G corresponding to ω. The completeness of z is only used to
guarantee the existence of weak integrals in the following settings:

(a)
ş

σ
ωl “

ş

M
σ˚ωl where M is a 2-dimensional manifold (namely M “ S1) or

simplex and σ : M Ñ G is a smooth map (see [Nee02a, Section 5 and 6]),

(b)
ş1

0
ωlpfptqqdt where f : r0, 1s Ñ TG‘ TG is a smooth map into the Whitney

sum (see [Nee02a, Section 7]).

The integrals
ş

σ
ωl and

ş1

0
ωlpfptqqdt are weak integrals but such integrals do not

have to exist in arbitrary locally convex spaces. However, they exist in sequentially
complete (respectively Mackey complete) locally convex spaces. This is the reason
why Neeb assumes z to be sequentially complete. Now we consider the situation
where z is not itself sequentially complete but z “ E{F with a Mackey complete
locally convex space E and a closed subspace F and ω “ π ˝ α is a Lie algebra
cocycle with the canonical projection π : E Ñ E{F and a continuous bilinear map
α : g2 Ñ E. We show the existence of the weak integral

ş

σ
ωl. We define α̃ : g2 Ñ

E, pv, wq ÞÑ 1
2
αpv, wq´ 1

2
αpw, vq (see [NW09, Remark 2.2]). It follows that π˝α̃ “

ω with a continuous Lie algebra 2-cochain α̃. Let α̃l P Ω2pG,Eq be the left invariant
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4.1 Construction of the Lie group extension

differential form on G that comes from α̃. We get ωl “ π˝ α̃l and the weak integral
ş

σ
ωl is given by

ż

M

σ˚ωl “ π

ˆ
ż

M

σ˚α̃l
˙

.

The existence of the weak integral
ş1

0
ωlpfptqqdt follows analogously.

Theorem 4.15. Let g be a locally convex Lie algebra, V be a locally convex space,
considered as a trivial g-module and ω : g ˆ g Ñ V be a continuous Lie algebra
cocycle, such that there exists a Mackey complete locally convex space E, a closed
vector subspace F Ď E and a continuous bilinear map α : gˆgÑ E, with V “ E{F
and ω “ π ˝ α (where π is the canonical projection E Ñ V ). Moreover, let
G be a connected Lie group with Lie algebra g. If the image of the period map
perω : π2pGq Ñ V (denoted by Πω) is discrete and the adjoint action of g on V ˆω g
given by gˆ pV ˆω gq Ñ V ˆω g, px,wq ÞÑ rx,wsω integrates to a smooth action of
G on V ˆω g, then the central extension of g by V represented by ω integrates to
a central extension of Lie groups V {Πω ãÑ pGÑ G of the Lie group G by V {Πω.

Proof. This is just [Nee02a, Proposition 7.6] and [Nee02a, Theorem 7.12] combined
with Remark 4.14.

Definition 4.16. We define the locally convex spaces Ω
1

cpP, V q
hor
ρV

:“

Ω1
cpP, V q

hor
ρV
{DρV C

8
c pP, V qρV and Ω

1

cpM,Vq :“ Ω1
cpM,Vq{dVΓcpM,Vq (see [JW13,

p. 129]). With Lemma D.2 and Lemma D.1, we get

Ω
1

cpM,Vq – Ω
1

cpP, V q
hor
ρV
– Ω

1

cpP , V q
hor
ρV
.

Remark 4.17. (a) Considering the vector bundles V pGq from [JW13] respec-
tively Definition 3.14, we have a vector bundle isomorphism V Ñ V pGq
given by

ϕ : P ˆρV V “ VÑ V pGq “ V pP ˆρg gq,

rp, κgpx, yqs ÞÑ κGqppqprp, xs, rp, ysq for x, y P g.

In fact, ϕ is well-defined, because for p P P there exists a unique linear
map ϕp : V “ V pgq Ñ V pGqppqq given by ϕppκgpx, yqq “ κGqppqprp, xs, rp, ysq.
Furthermore, for x P M the map pP ˆρV V qx Ñ V pGxq, rp, vs ÞÑ ϕppvq is
well-defined. The bundle morphism ϕ is smooth, because locally it has the
form U ˆ V Ñ U ˆ V , px0, κgpx, yqq ÞÑ px0, κgpx, yq for a domain U ĎM of
a trivialisation of P , x0 P U and x, y P g in the canonical charts. Hence, ϕ
is locally given by the identity U ˆ V Ñ U ˆ V .

(b) Given θ P Ω1
cpP, gq

hor
ρg and f P C8c pP, gqρg, we have κg ˝ pθ, fq P Ω1

cpP, V q
hor
ρV

.
In fact κg˝pθ, fq is obviously horizontal and compactly supported with respect

to the principal bundle P
q
ÝÑM . Moreover, given h P H, p P P and v P TpP ,

we calculate

R˚hpκg ˝ pθ, fqqppvq “ κgpθphpTRhpvqq, fpphqq
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4 Extensions of groups of compactly supported sections

“κgpρgph
´1
q.θppvq, ρgph

´1
q.fppqq “ ρV ph

´1
q.κgpθppvq, fppqq.

Therefore, the map κ̃g : Ω1
cpP, gq

hor
ρg ˆ C8c pP, gqρg Ñ Ω1

cpP, V q
hor
ρV

, pθ, fq ÞÑ
κg ˝ pθ, fq makes sense and we obtain the commutative diagram

Ω1
cpP, gq

hor
ρg ˆ C

8
c pP, gqρg

��

κ̃g // Ω1
cpP, V q

hor
ρV

��
ΩcpM,Vq

��
Ω1
cpM,Gq ˆ ΓcpGq

κ̃G // Ω1
cpM,V pGqq,

where the lower horizontal arrow is given by the map κ̃G described in Lemma
3.22 and the vertical arrows are the canonical isomorphisms of topological
vector spaces. In particular, κ̃g is continuous. We write κ̃gpη, θq :“ κ̃gpθ, ηq
for θ P Ω1

cpP, gq
hor
ρg and η P ΓcpGq.

(c) The map C8c pP, gqρg ˆ Ω1
cpP, gq

hor
ρg Ñ Ω1

cpP, gq
hor
ρg , pη, θq ÞÑ rη, θs with

rη, θsppwq “ rηppq, θppwqs for p P P and w P TpP makes sense. In fact rη, θs is
horizontal, rη, θs P Ω1

cpP, gq and the form rη, θs is ρg-invariant because ρg acts
by Lie algebra automorphisms on g. Under the canonical isomorphisms of
topological vector spaces Ω1

cpP, gq
hor
ρg – Ω1

cpM,Gq and C8c pP, gqρg – ΓcpM,Gq

this map corresponds to the map Ω1
cpM,GqˆΓcpM,Gq Ñ ΩcpM,Gq, pθ, ηq ÞÑ

rθ, ηs with rθ, ηsxpvq “ rθxpvq, ηpxqsGx for x PM and v P TxM (see Definition
3.20). As in Definition 3.20 we define rη, θs :“ ´rθ, ηs for θ P Ω1

cpP, gq
hor
ρg

and η P ΓcpGq.
(d) We write prh : TP Ñ HP for the projection onto the horizontal bundle. In

view of the definition of a Lie connection in Definition 3.20, we see directly
that Dρg : C8c pP, gqρg Ñ Ω1

cpP, gq
hor
ρg , f ÞÑ df ˝ prh is a Lie connection.

(e) We define the map β : C8c pP, gqρg ˆ C8c pP, gqρg Ñ Ω1
cpP, V q

hor
ρV

, βpf, gq “
κ̃gpDρgf, gq ` κ̃gpDρgg, fq. Because DρV and Dρg are induced by the same
principal connection on P , we obtain a commutative diagram

C8c pP, gqρg ˆ C
8
c pP, gqρg

β //

pκgq˚
��

Ω1
cpP, V q

hor
ρV
,

C8c pP, V qρV

DρV

33

where pκgq˚pf, gq “ κg ˝ pf, gq.

Definition 4.18. We define the map

ωM : C8c pP, gqρg ˆ C
8
c pP, gqρg Ñ Ω

1

cpP, V q
hor
ρV
, pf, gq ÞÑ rκgpf,Dρggqs,

which is analogous to the cocycle ω defined in the compact case in [NW09,
Proposition 2.1]. Because Dρg is linear, DρgpC

8
K pP, gqρgq Ď Ω1

KpP, gq
hor
ρg and
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4.1 Construction of the Lie group extension

Dρgpfq “ df ˝ prh, we see that Dρg : C8c pP, gqρg Ñ Ω1
cpP, gq

hor
g is continuous. Con-

sidering Remark 4.17 (b), we see that ωM is continuous. Repeating the argumen-
tation of the proof of Remark 3.24 with the help of Remark 4.17 (d) and (e), we
see that ωM is anti-symmetric and a cocycle. This is the same argumentation as
in [NW09, Proposition 2.1].

Remark 4.19. Let g be perfect in this remark. Because pκgq˚ : C8c pP, gqρg ˆ
C8c pP, gqρg Ñ C8c pP, V qρV corresponds to the universal continuous invariant bi-
linear form κG : ΓcpGq ˆ ΓcpGq Ñ ΓcpV pGqq from Theorem 3.19, the absolute
derivative DρV corresponds to the covariant derivative d constructed in Remark
3.23. In particular, we have d “ dV. Hence, our Lie algebra cocycle ωM from
Definition 4.18 corresponds to the cocycle ω∇ from [JW13, Chapter 1, (1.1)] re-
spectively Remark 3.24.

In [NW09] Neeb and Wockel used Lie group homomorphisms that are pull-
backs by horizontal lifts of smooth loops α : S1 Ñ M to reduce the proof of the
discreteness of the period group to the case of M “ S1 (see [NW09, Definition 4.2
and Remark 4.3]). However this approach does not work in the non-compact case.
Instead we want to use the results from [Nee04] on current groups on non-compact
manifolds. Hence, we use pull-backs by horizontal lifts of proper maps α : RÑM
(see the next definition). A corresponding definition in the case of a compact base
manifold was given in [NW09, Definition 4.2].

Definition 4.20. We fix x0 P M , p0 P Px0 and α P C8p pR,Mq with αp0q “ x0.
Let α̂ P C8pR, P q be the unique horizontal lift of α with α̂p0q “ p0. We define the
group homomorphism

α̂˚G : C8c pP,GqρG Ñ C8c pR, Gq, ϕ ÞÑ ϕ ˝ α̂

and the Lie algebra homomorphism

α̂˚g : C8c pP, gqρg Ñ C8c pR, gq, f ÞÑ f ˝ α̂.

In this context, the maps in C8c pR, Gq respectively C8c pR, gq are compactly sup-
ported in R itself. These maps make sense because given ϕ P C8c pP,Gq we have
supppϕq Ď q´1pLq for a compact set L Ď M . We have supppϕ ˝ α̂q Ď α´1pLq
because if ϕpα̂ptqq ‰ 1, we get α̂ptq P q´1pLq and so αptq “ q ˝ α̂ptq P L. Hence,
t P α´1pLq. Now, we take the closure. Moreover, we define the integration map

Iα : Ω
1

cpP, V q
hor
ρV
Ñ V, rθs ÞÑ

ż

R
α̂˚θ.

This map is well-defined: Let θ P Ω1
cpP, V qρV with supppθq Ď q´1pLq for a compact

set L Ď M . We have supppα̂˚θq Ď α´1pLq because if pα̂˚θqt ‰ 0, we get α̂ptq P
q´1pLq and so αptq “ q ˝ α̂ptq P L. Moreover,

pα̂˚DρV fqptq “ pDρV fqα̂ptqpα̂
1
ptqq “ pdfqα̂ptqpα̂

1
ptqq “ pf ˝ α̂q1ptq.
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4 Extensions of groups of compactly supported sections

Hence,
ş

Rpα̂
˚DρV fq “

ş

Rpf ˝ α̂q
1ptq “ 0 for f P C8c pP, V qρV because f ˝ α̂ has

compact support in R.

The following remark is obvious.

Remark 4.21. Let W “
Ťn
i“1 Ii be a union of finitely many closed intervals in R.

Then W is a submanifold with boundary. In fact, let W “
Ť

jPJ Cj be the disjoint
union of the connected components of W . For j P J and x P Cj, we find ij with
x P Iij . Hence, Iij Ď Cj. If j1 ‰ j2 then Iij1 X Iij2 “ H and so ij1 ‰ ij2. Therefore
#J ď n. Obviously, the sets Cj are intervals.

The proof of the following lemma is a modification of the proofs of [Sch13,
Lemma 3.7 and Corollary 3.10].

Lemma 4.22. Let pUiqiPN be a relatively compact open cover of R with Ui ‰ H.
Then there exists an open cover pWiqiPN of R such that Wi Ď Ui, Wi ‰ H and W i

is a submanifold with boundary.

Proof. Let Kn :“ r´n, ns for n P N. For all x P K1 there exists ix P N such that
x P Uix . Let Bεxpxq Ď Uix . We find x1, . . . , xN1 , such that K1 Ď

ŤN1

k“1Bεxk
pxkq.

We define V1,k :“ Bεxk
pxkq and Ui1,k :“ Uixk for k “ 1, . . . , N1. Thus we have

K1 Ď
ŤN1

k“1 V1,k and V 1,k Ď Ui1,k . We can argue analogously for the compact set

Knz ˚Kn´1 with n ě 2 and find open intervals Vn,1, . . . , Vn,Nn and indices in,k such

that Knz ˚Kn´1 Ď
ŤNn
k“1 Vn,k and V n,k Ď Uin,k . We obtain R Ď

Ť8

n“1

ŤNn
k“1 Vn,k. For

i P N, we define Ii :“ tpn, kq : in,k “ iu. Then #Ii ă 8 because Ui is relatively
compact. Now, we define

Wi :“

#

Ť

pn,kqPIi
Vpn,kq : Ii ‰ H

J,

where J is an arbitrary non-degenerated interval that is contained in Ui. We obtain
Ť

iPNWi “ R and Wi Ď Ui for all i P N. Moreover, Wi is a finite union of open
intervals. Let Wi “

Ťn
j“1 Jj with intervals Jj. We have W i “

Ťn
j“1 J j. Hence, W i

is a manifold with boundary (see Remark 4.21).

In the proof of following lemma, we use the concept of weak direct products of
infinite-dimensional Lie groups (cf. [Glo03, Section 7] respectively [Glo07, Section
4]).

Lemma 4.23. In the situation of Definition 4.20, the group homomorphism

α̂˚G : C8c pP,GqρG Ñ C8c pR, Gq, ϕ ÞÑ ϕ ˝ α̂

is in fact a Lie group homomorphism such that the corresponding Lie algebra ho-
momorphism is given by α̂˚g : C8c pP, gqρg Ñ C8c pR, gq, f ÞÑ f ˝ α̂.

Proof. Using the construction of the Lie group structure described in [Sch13, Chap-
ter 4], we can argue in the following way. Let pV i, σiqiPN be a locally finite compact
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4.1 Construction of the Lie group extension

trivialising system of H ãÑ P
q
ÝÑM (see [Sch13, Definition 3.6 and Corollary 3.10]).

We define Ui :“ α´1pViq for i P N. The map α is proper. Because pα´1pV iqqiPN is
a compact locally finite cover of R, also pU iqiPN is a compact locally finite cover
of R. We use Lemma 4.22 and find a cover pWiqiPN of R such that Wi Ď Ui and
pW iqiPN is a compact locally finite cover of R by submanifolds with boundaries.
Moreover, we have W i Ď α´1pV iq for all i P N. Now pW i, id |

R
W i
qiPN is a compact

locally finite trivialising system of the trivial principal bundle t1u ãÑ R id
ÝÑ R with

the trivial action t1u ˆGÑ G. We get the following commutative diagram

C8c pP,GqρG_�

f ÞÑpf˝σiqi
��

α̂˚G // C8c pR, Gq_�

f ÞÑpf |Wi qi
��

ś˚

iPNC
8pV i, Gq

pψiqiPN //
ś˚

iPNC
8pW i, Gq,

(4.2)

where the group homomorphisms ψi are given by the diagram

C8pV i, Gq
ψi //

θi
��

C8pW i, Gq

C8pV i ˆH,Gq

f ÞÑf˝ϕi
��

C8pP |V i , Gq,

f ÞÑf˝α̂|Wi

99

with θi : C
8pV i, Gq Ñ C8pV i ˆ H,Gq, f ÞÑ ppx, hq ÞÑ ρGphq.fpxqq and ϕi the

inverse of V i ˆ H Ñ P |V i , px, hq ÞÑ σipxqh. Defining τ i : W i Ñ V i ˆ H, τ i :“

ϕi ˝ α̂|W i
and τ ij :“ prj ˝τ

i for j P t1, 2u, the map ψi : C
8pV i, Gq Ñ C8pW i, Gq is

given by

f ÞÑ ρGppr2 ˝ϕi ˝ α̂|W i
p‚qq.pf ˝ pr1 ˝ϕi ˝ α̂|W i

p‚qq “ ρGpτ
i
2p‚qq.pf ˝ τ

i
1p‚qq.

In order to show that (4.2) is commutative let f P C8c pP,GqρG . Then

ρGphq.f ˝ σipxq “ fpσipxq.hq “ fpϕ´1
i px, hqq

for all px, hq P V i ˆ H. Hence, ψipf ˝ σiq “ f ˝ α̂|W i
. To show that ψi is a Lie

group homomorphism it is enough to show that C8pV i, Gq ˆW i Ñ G, pf, xq ÞÑ
ρGpτ2pxq, fpτ1pxqqq is smooth ([Alz72] respectively [Sch13, Theorem 2.25]). The
map C8pV i, Gq ˆ V i, pf, yq ÞÑ fpyq is smooth (see [Alz72] respectively [Sch13,
Theorem 2.26]) and so C8pV i, Gq ˆW i Ñ H ˆ G, pf, xq ÞÑ pτ2pxq, fpτ1pxqqq is
smooth. It is left to show that Lpα̂˚Gq is given by C8c pP, gqρg Ñ C8c pR, gq, f ÞÑ f˝α̂.
To this end let f P C8c pP, gqρg . We calculate

Lpα̂˚Gqpfq “
B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

α̂˚Gpexpptfqq “
B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

pexpptfq ˝ α̂q
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4 Extensions of groups of compactly supported sections

“
B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

pexpG ˝pt ¨ fq ˝ α̂q“
˚

B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

ppt ¨ fq ˝ α̂q “ f ˝ α̂,

where ˚ follows from

evp

ˆ

B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

pexpG ˝pt ¨ fq ˝ α̂q

˙

“
B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

pexpGpt ¨ fpα̂ppqqq

“ evp

ˆ

B

Bt

ˇ

ˇ

ˇ

ˇ

t“0

ppt ¨ fq ˝ α̂q

˙

for p P P . Now the assertion follows from [Glo07, Proposition 4.5] respectively
[Sch13, Corollary 2.38].

Definition 4.24 (Cf. Proof of Lemma V.10 in [Nee04]). We define the cocycle

ωR : C8c pR, gq2 Ñ Ω
1

cpR, V q “ H1
dR,cpR, V q Ñ V,

pf, gq ÞÑ rκgpf, g
1
qs ÞÑ

ż

R
κgpfptq, g

1
ptqqdt.

The following Lemmas 4.25, 4.26 and 4.27 are used to prove Lemma 4.28, which
is a generalisation of [Nee04, Lemma V.16] from the case of a current group to the
case of a group of sections 9.

In the case of a compact base manifold, a statement corresponding to the fol-
lowing lemma is given by equation (9) in [NW09, Remark 4.3].

Lemma 4.25. Given x0 PM , p0 P Px0 and α P C8p pR,Mq with αp0q “ x0, we get

Iα ˝ ωM “ ωR ˝ pα̂
˚
g ˆ α̂

˚
g q. (4.3)

Hence, the following diagram commutes:

C8c pP, gq
2
ρg

ωM //

α̂˚gˆα̂
˚
g

��

Ω
1

cpP, V q
hor
ρV

Iα

��
C8c pR, gq2

ωR // V.

Proof. For g P C8c pP, gqρg , we have

pα̂˚Dρggqptq “ Dρggpα̂
1
ptqq “ pg ˝ α̂q1ptq

because α̂ is a horizontal map. For f, g P C8c pP, gqρg , we get

IαpωMpf, gqq “ Iαprκgpf,Dρggqsq “

ż

R
α̂˚κgpf,Dρggq “

ż

R
κgpf ˝ α̂, α̂

˚Dggq

“

ż

R
κgpf ˝ α̂ptq, pg ˝ α̂q

1
ptqqdt “ ωR ˝ pα̂

˚
g ˆ α̂

˚
g qpf, gq.

9In [Nee04, Lemma V.16] Neeb also considers the case of an infinite-dimensional codomain.
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4.1 Construction of the Lie group extension

The following lemma can be found in [NW09, Remark C.2 (a)].

Lemma 4.26. Let ϕ : G1 Ñ G2 be a Lie group homomorphism and gi the Lie
algebra of Gi for i P t1, 2u. Moreover, let V be a trivial gi-module and ω P

Z2
c pg2, V q. Then we get

perω ˝π2pϕq “ perLpϕq˚ω (4.4)

as an equation in the set of group homomorphism from π2pG1q to V .10

The following lemma corresponds to the first equation in [NW09, Remark 4.3
(10)].

Lemma 4.27. Let x0 PM and p0 P Px0 be base points and α P C8p pR,Mq. Then

Iα ˝ perωM “ perIα˝ωM : π2pC
8
c pP,GqρGq Ñ V. (4.5)

Proof. Let ωlM P Ω2pC8c pP,GqρG ,Ω
1

cpP, V q
hor
ρV
q be the corresponding left invariant

2-form of ωM P Z2
ctpC

8
c pP, gqρg ,Ω

1

cpP, V q
hor
ρV
q. Then Iα ˝ ω

l
M P Ω2

dRpC
8
c pP,KqρK , V q

is left invariant and

pIα ˝ ω
l
Mq1pf, gq “ Iαppω

l
Mq1pf, gqq “ Iα ˝ ωMpf, gq

for f, g P C8c pP, gqρg “ T1C
8
c pP,GqρG . Hence, pIa ˝ ωMq

l “ Iα ˝ ω
l
M . For rσs P

π2pC
8
c pP,GqρGq with a smooth representative σ, we get

perIα˝ωM prσsq “

ż

S2

σ˚pIα ˝ ω
l
Mq “

ż

S2

Iα ˝ σ
˚ωlM “ Iα ˝

ż

S2

σ˚ωlM

“Iα ˝ perωM prσsq.

The following lemma is a generalisation of [Nee04, Lemma V.16].11

Lemma 4.28. For a proper map α P C8p pR,Mq and the base points x0 P M and
p0 P Px0, the following diagram commutes:

π2pC
8
c pP,GqρGq

perωM //

π2pα̂
˚
Gq

��

Ω
1

cpP, V q
hor
ρV

Iα
��

π2pC
8
c pR, Gqq perωR

// V.

10The definition of the period map perω was recalled in the introduction.
11In [Nee04, Lemma V.16] Neeb also considered the case of an infinite-dimensional codomain.
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4 Extensions of groups of compactly supported sections

Proof. We calculate

Iα ˝ perωM “

p4.5q

perIα˝ωM “

p4.3q

perωR˝pα̂˚ˆα̂˚q
“

p4.4q

perωR
˝π2pα̂

˚
Gq. (4.6)

Lemma 4.29. Let x0 P M and p0 P Px0 be base points and α P C8p pR,Mq with
αp0q “ x0. Moreover, let α̂ P C8pR, P q be the unique horizontal lift of α to P with
α̂p0q “ p0.

(a) We have the commutative diagram

H1
dR,cpM,Vfixq

– q˚

��

Iα

rθsÞÑ
ş

R α
˚θ
// V

id

��
H1
dR,cpP, V qρV

Iα

rθsÞÑ
ş

R α̂
˚θ
// V.

(b) Given rθs P H1
dR,cpM,Vfixq, we have

ş

R â
˚q˚θ “

ş

R α
˚θ, respectively

ż

R
α̂˚θ “

ż

R
α˚q˚θ

for all rθs P H1
dR,cpP, V qρV .

Proof. (a) Given rθs P H1
dR,cpM,Vfixq, we calculate

ż

R
α̂˚pq˚θq “

ż

R
pq ˝ α̂q˚θq “

ż

R
α˚θ.

(b) This is obvious.

The following lemma comes from [Nee04, Corollary IV.21].

Lemma 4.30. If Γ Ď V is a discrete subgroup then

H1
dR,cpM,Γq :“

"

rθs P H1
dR,cpM,V q : p@α P C8p pR,Mqq

ż

R
α˚θ P Γ

*

is a discrete subgroup of Ω
1

cpM,V q.

The following statement can be found in the proof of [Nee04, Proposition V.19].

Lemma 4.31. The group ΠωR “ impperωR
q is a discrete subgroup of Ω

1

cpR, V q “
H1
dR,cpR, V q – V .

Proof. We argue exactly as in the proof of [Nee04, Proposition V.19] by combining
[MN03, Theorem II.9] and [Nee04, Lemma V.11].
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4.1 Construction of the Lie group extension

Remark 4.32. Because q : P ÑM is a finite covering, q is a proper map and so
a curve α : R Ñ P is proper if and only if q ˝ α : R Ñ M is proper. Hence, the
maps in C8p pR, P q are proper in the usual sense.

Lemma 4.33. Let α : RÑ P be a proper map. We define x0 :“ αp0q, x0 :“ qpx0q

and α :“ q ˝α. Moreover, let p0 P P with πpp0q “ x0 and α̂ : RÑ P be the unique
horizontal lift of α to P with α̂p0q “ p0. In this situation

Ω
1

cpP , V qρV

– π˚

��

rθsÞÑ
ş

R α
˚θ
// V

id

��
Ω

1

cpP, V q
hor
ρV

Iα

rθsÞÑ
ş

R α̂
˚θ
// V

commutes.

Proof. We have π ˝ α̂ “ α because α is the unique horizontal lift of α to P with
αp0q “ x0 and π ˝ α̂ is also a horizontal lift of α to P that maps 0 to x0. Hence,

ż

R
α̂˚pπ˚θq “

ż

R
pπ ˝ α̂q˚θ “

ż

R
α˚θ

for θ P Ω1
cpP , V qρV .

The proof of the following lemma is similar to the proof of [Nee04, Lemma A.1].

Lemma 4.34. Given a compact set L Ď C8c pP,GqρG, we find a compact set K Ď

M such that L Ď C8K pP,GqρG.

Proof. From [Sch13, Theorem 4.18] we know that the map exp˚ : C8c pP, gqρg Ñ
C8c pP,GqρG , f ÞÑ expG ˝f is a local diffeomorphism around 0. Given a compact
set K ĎM , we have

exp˚pC
8
K pP, gqρgq Ď C8K pP,GqρG . (4.7)

Let U Ď C8c pP,GqρG be a 1-neighbourhood and V Ď C8c pP, gqρg be a 0-

neighbourhood such that exp˚ |
U
V is a diffeomorphism. We write Φ :“

`

exp˚ |
U
V

˘´1
.

If L Ď U is a compact set then ΦpLq is a compact subset of C8c pP, gqρg . Be-
cause C8c pP, gqρg is a strict LF-space, we find a compact subset K Ď M such
that ΦpLq Ď C8K pP, gqρg X V (see [Wen03, Theorem 6.4], [Glo08a, Remark 6.2 (d)]
or [Bou87, Chapter II Section 4, Proposition 6 and Proposition 9]). Hence, with
(4.7) we get L Ď C8K pP,GqρG . Now, let L Ď C8c pP,GqρG be an arbitrary compact
subset. Let W Ď C8c pP,GqρG be a 1-neighbourhood such that W Ď U . Because
L is compact, we find n P N and gi P C

8
c pP,GqρG such that L Ď

Ťn
i“1 gi ¨ W .

Defining the compact set Li :“ LX gi ¨W , we get L Ď
Ťn
i“1 Li. Let i P t1, . . . , nu.

It follows that g´1
i ¨ Li Ď W Ď U . Hence, we find a compact set K1 Ď M with

g´1
i ¨ Li Ď C8K1

pP,GqρG . Let K2 Ď M be compact with supppgiq Ď q´1pK2q and
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Ki :“ K1 YK2 and K :“
Ťn
i“1Ki. We have

Li Ď gi ¨ C
8
K1
pP,GqρG Ď C8KipP,GqρG Ď C8K pP,GqρG .

Hence, L “
Ťn
i“1 Li Ď C8K pP,GqρG .

In [Nee04, Remark IV.17] (where M is non-compact) Neeb extends a smooth
loop α : r0, 1s Ñ M by a smooth proper map γ : r0,8rÑ M to a proper map
ã : R Ñ M such that for all 1-forms θ with compact support one gets

ş

α
θ “

ş

α̃
θ. This construction is also used in the proof of the following theorem. A

corresponding result has been proved in the compact case in [NW09, Proposition
4.11].

Theorem 4.35. If M is non-compact, we have

impperωM q “: ΠωM Ď H1
dR,cpM,Vq Ď Ω

1

cpM,Vq.

This means that all forms in ΠωM are closed.

Proof. Because π˚ : Ω‚

cpP , V qρV Ñ Ω‚

cpP, V q
hor
ρV

is an isomorphism of chain com-

plexes, it is enough to show that ΠωM Ď H1
dR,cpP , V q Ď Ω

1

cpP , V q. To this end

let rθs P ΠωM and α0, α1 : r0, 1s Ñ P be closed smooth curves in a point x0 P P
that are homotopic relative t0, 1u by a smooth homotopy F : r0, 1s2 Ñ P . From
Lemma D.4 we get that it is enough to show that

ş

α0
θ “

ş

α1
θ. By composing

αi respectively F ps, ‚q with a strictly increasing smooth map ϕ : r0, 1s Ñ r0, 1s
whose jet vanishes in 0 and 1, we can assume that in a local chart all derivatives of
αi and F ps, ‚q vanish in 0 and 1 because

ş

αi
θ “

ş

αi˝ϕ
θ (forward parametrization

does not change line integrals). Because M is non-compact, we find a proper map
γ : r0,8rÑ P such that γp0q “ x0 and in a local chart all derivatives vanish in
0 (see [Nee04, Lemma IV. 5] and composition with a smooth bijection of r0,8r
that’s jet vanishes in 0). For i P t0, 1u, we define the smooth map

αR
i : RÑ P , t ÞÑ

$

’

&

’

%

γp´tq : t ă 0

αiptq : t P r0, 1s

γpt´ 1q : t ą 1.

Moreover, we define the smooth homotopy

F
R

: r0, 1s ˆ RÑ P , ps, tq ÞÑ

$

’

&

’

%

γp´tq : t ă 0

F ps, tq : t P r0, 1s

γpt´ 1q : t ą 1.

Hence, we have αR
i , F

R
ps, ‚q P C8p pR, P q for i P t0, 1u and s P r0, 1s (see Remark

4.32). We define αi :“ q ˝αi, F :“ q ˝F , αR
i :“ q ˝αR

i , FR :“ q ˝F
R
, γ :“ q ˝γ and

x0 :“ x0. The curves α0 and α1 are closed curves in x0 and are homotopic relative
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4.1 Construction of the Lie group extension

t0, 1u by the homotopy F , because αipjq “ qpx0q “ x0 and F pi, ‚q “ q ˝ F pi, ‚q “
q ˝ αi “ αi for j, i P t0, 1u. Moreover,

αR
i ptq “

$

’

&

’

%

γp´tq : t ă 0

αiptq : t P r0, 1s

γpt´ 1q : t ą 1,

FR
ps, tq “

$

’

&

’

%

γp´tq : t ă 0

F ps, tq : t P r0, 1s

γpt´ 1q : t ą 1

and αR
i , F

Rps, ‚q P C8p pR,Mq. We choose p0 P π
´1ptx0uq. Now, let α̂R

i : R Ñ P

be the unique horizontal lift of αR
i to P with α̂R

i p0q “ p0 and F̂R : r0, 1s ˆ R Ñ P
be the unique horizontal lift of FR to P such that F̂Rps, 0q “ p0 for all s P r0, 1s.
The map F̂R is not a homotopy relative t0, 1u but we have F̂Rp0, sq “ α̂R

0 psq and
F̂Rp1, sq “ α̂R

1 psq for all s P r0, 1s. For i P t0, 1u, we have

ż

αi

θ “

ż

αR
i

θ “

ż

α̂R
i

π˚θ, (4.8)

where the last equation follows from Lemma 4.33. Because of (4.8) and Lemma
4.28 it is enough to show that π2ppα̂

R
0 q
˚q “ π2ppα̂

R
1 q
˚q holds as group homomor-

phisms from π2pC
8
c pP,GqρGq to π2pC

8
c pR, Gqq. From [Nee04, Theorem A.7], we

get π2pC
8
c pR, Gqq “ π2pCcpR, Gqq. We set I :“ r0, 1s. Let σ : I2 Ñ C8c pP,GqρG be

continuous with σ|BI2 “ c1G . Because π2ppα̂
R
i q
˚qprσsq “ rσp‚q ˝ α̂R

i s for i P t0, 1u, it
is enough to show that

rσp‚q ˝ α̂R
0 s “ rσp‚q ˝ α̂

R
1 s

in π2pCcpR, Gqq. Hence, we have to construct a continuous map H : r0, 1s ˆ I2 Ñ

CcpR, Gq with Hp0, ‚q “ σp‚q ˝ âR0 , Hp1, ‚q “ σp‚q ˝ α̂R
1 and Hps, xq “ c1G for all

s P r0, 1s and x P BI2. We define Hps, xq “ σpxq ˝ F̂Rps, ‚q for s P r0, 1s and x P I2.
Because σ|BI2 “ c1G , it is left to show thatH is continuous. Let K ĎM be compact
such that impσq “ σpI2q Ď C8K pP,GqρG (see Lemma 4.34). For f P C8K pP,GqρG
we have supppf ˝ α̂R

i q Ď αR
i
´1
pKq as well as supppf ˝ F̂Rps, ‚qq Ď FRps, ‚q´1pKq for

s P r0, 1s. Hence, supppσpxq ˝ F̂Rps, ‚qq Ď FRps, ‚q´1pKq for x P I2 and s P r0, 1s.
We have

FR´1
pKq “ FR

|
´1
r0,1sˆr0,1spKq Y F

R
|
´1
r0,1sˆs´8,0spKq Y F

R
|
´1
r0,1sˆr1,8rpKq

“FR
|
´1
r0,1sˆr0,1spKq Y pr0, 1s ˆ ´γ

´1
pKqq Y pr0, 1s ˆ γ´1

pKq ` 1q.

Thus FR´1
pKq Ď r0, 1s ˆ R is compact. Therefore,

L :“
ď

sPr0,1s

FR
ps, ‚q´1

pKq “ pr2pF
R´1
pKqq Ď R
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is compact. We have supppσpxq ˝ F̂Rps, ‚qq Ď L for all x P I2 and s P r0, 1s.
Thus impHq Ď CLpR, Gq. Therefore, it is enough to show that H : r0, 1s ˆ I2 Ñ

CLpR, Gq Ď CpR, Gq, ps, xq ÞÑ σpxq ˝ F̂Rps, ‚q is continuous. We know that
τ : r0, 1s Ñ CpR, P q, s ÞÑ F̂Rps, ‚q is continuous and so the assertion follows from
the following commutative diagram

r0, 1s ˆ I2 τˆσ //

H

&&

CpR, P q ˆ C8K pP,GqρG_�

��
CpR, P q ˆ CpP,Gq

pα,fqÞÑf˝α

��
CpR, Gq.

The following theorem corresponds to the Reduction Theorem [NW09, Theorem
4.14] (where the base manifold M is compact but the principal bundle P and the
Lie group G can be infinite-dimensional).

Theorem 4.36. The period group ΠωM “ im perωM is discrete in Ω
1

cpM,Vq.

Proof. Because q˚ : H1
dR,cpM,Vfixq Ñ H1

dR,cpP, V qρV is an isomorphism of topologi-
cal vector spaces and ΠωM Ď H1

dR,cpM,Vq “ H1
dR,cpP, V qρV , it is sufficient to show

that ΠωM is a discrete subgroup of H1
dR,cpM,V q (Lemma 4.29). With Lemma 4.30

and Lemma 4.31, it is enough to show that

ΠωM Ď H1
dR,cpM,ΠRq. (4.9)

Let β P ΠωM , α P C8p pR,Mq and rσs P π2pC
8
c pP,GqρGq with β “ perωM prσsq.

Using Lemma 4.29 and Lemma 4.28, we get

ż

R
α˚q˚β “

ż

R
α̂˚β “ Iα ˝ perωM prσsq “ perωR

˝π2pα̂
˚
qprσsq P ΠωR .

Hence (4.9) follows.

4.2. Integration of the Lie algebra action and the
main result

In the case of a compact base manifold ([NW09, Section 4.2 (part about general
Lie algebra bundles)]) Neeb and Wockel integrated the adjoint action of ΓpGq on
zΓpGq :“ Ω

1
pM,Vq ˆω ΓpGq given by

ΓpGq ˆ zΓpGq Ñ zΓpGq, pη, prαs, γqq ÞÑ rη, prαs, γqsω “ pωpη, γq, rη, γsq
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to a Lie group action of ΓpGq on zΓpGq.12 As a first step in their proof, Neeb
and Wockel integrated the covariant derivative dG : ΓpGq Ñ Ω1pM,Gq to a
smooth map from ΓpGq to Ω1pM,Gq. Since the absolute derivative is the sum
of d : C8pP, gqρg Ñ Ω1pP, gq and C8pP, gqρg Ñ Ω1pP, gq, f ÞÑ ρ˚pZq ^ f , where
Z : TP Ñ LpHq “: h is the connection form, ρ˚ “ Lpρgq : h Ñ derpgq and
pρ˚pZq ^ fqppvq “ ρ˚pZpvqq.fppq, they integrated these summands separately.
The image of the exterior derivative does not lie in Ω1pM, gqhor

g but in the space
Ω1pM, gqg and in some sense the summand f ÞÑ ρ˚pZq ^ f annihilates the ver-
tical parts of df . The exterior derivative d : C8pP, gqρg Ñ Ω1pM, gqg integrates
to the left logarithmic derivative δ : C8pP,GqρG Ñ Ω1pM, gqg, ϕ ÞÑ δpϕq with
δpϕqppvq “ Tλϕppq´1 ˝ Tϕpvq ([NW09]). The integration of the second summand
is more complicated, and Neeb and Wockel assumed the Lie group G to be 1-
connected (in the special case of the gauge group they did not need this assump-
tion (see [NW09, Theorem 4.21])). In the second step they used an exponential
law to obtain the integrated action. Because our base manifold is not compact,

the adjoint action of ΓcpGq on {ΓcpGq :“ Ω
1

cpM,Vq ˆωM ΓcpGq is given by

ΓcpGq ˆ{ΓcpGq Ñ {ΓcpGq, pη, prαs, γqq ÞÑ pωMpη, γq, rη, γsq.

With the canonical identifications (see Remark 4.17) the adjoint action has the
form

C8c pP, gqρg ˆ pΩ
1

cpP, V q
hor
ρV
ˆωM C8c pP, gqρgq Ñ Ω

1

cpP, V q
hor
ρV
ˆωM C8c pP, gqρg

pg, prαs, fqq ÞÑ prκgpg,Dρgpfqqs, adpg, fqq. (4.10)

We have to integrate this action to a Lie group action of pΓcpGqq0 on {ΓcpGq. Like
Neeb and Wockel, we have to integrate the covariant derivative dG : ΓcpGq Ñ
Ω1
cpM,Gq to a smooth map from ΓcpGq to Ω1

cpM,Gq. But we will not describe the
absolute derivative via the connection form Z as the sum of the exterior derivative
d and the map f ÞÑ ρ˚pZq ^ f . Instead, we use the principal connection HP
and write Dρg “ pr˚h ˝d, where prh is the projection onto the horizontal bundle
and ppr˚h ˝dqpfqpvq “ dfpprhpvqq. In Theorem 4.51, we show that the map ∆ :“
pr˚h ˝δ : C8c pP,Gq Ñ Ω1

cpP, gq
hor
ρg is smooth and its derivative in 1 is given by the

absolute derivative Dρg . One could show the smoothness of δ : C8c pP,GqρG Ñ

Ω1
cpP, gqg and pr˚h : Ω1

cpP, gqg Ñ Ω1
cpP, gq

hor
g separately but it is more convenient to

show the smoothness of ∆ directly because we work in the non-compact case and
Ω1
cpP, gq

hor
ρg is an inductive limit (compare Lemma 4.47).

Remark 4.37. In [NW09, Chapter 4.2 page 408] Neeb and Wockel define
χZpfqv :“ χpZpvq, pfppqq for f P ΓG “ C8pP,GqρG, v P TpP , Z the connection
form of P and a smooth map χ : h ˆ G Ñ g that is linear in the first argument.
If the connection on P is not trivial then TP Ñ g, v ÞÑ χpZpvq, pfppqqq is not in
Ω1pM,Gq “ Ω1pP, gqhor

ρg because it is not horizontal unless it is constantly 0. How-

12The Lie algebra structure on V ˆω g for a continuous cocycle ω : g2 Ñ V was recalled in the
introduction.
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ever, the image of the map δ∇pfq “ δpfq ` χZpf´1q lies in Ω1pP, gqhor
ρg because the

image of its derivative in 1 lies in Ω1pP, gqhor
ρg and δ∇ is a 1-cocycle with respect to

the adjoint action of C8pP,GqρG on Ω1pP, gqρg and Ω1pP, gqhor
ρg is invariant under

this action.

Lemma 4.38. Let V be a locally convex space and G a locally convex Lie group.
Moreover, let µ : G ˆ V Ñ V be a map that is continuous linear in the second
argument. Let f : G Ñ V be a map that is smooth on a 1-neighbourhood. If
fphgq “ fpgq ` µpg´1, fphqq for g, h P G, then f is smooth.

Proof. Let U Ď G be a 1-neighbourhood such that f |U is smooth and g P G. Then
Ug is a g-neighbourhood and given z P Ug, we define h :“ zg´1 P U . Hence
z “ hg. Now, we calculate

fpzq “ fphgq “ fpgq ` µpg´1, fphqq “ fpgq ` µpg´1, fpzg´1
qq

“fpgq ` µpg´1, f |U ˝ %g´1pzqq.

Thus

f |Ug “ fpgq ` µpg´1, ‚q ˝ f |U ˝ %g´1 |Ug.

Lemma 4.39. We consider the map

µ : C8c pP,GqρG ˆ Ω1
cpP, gq Ñ Ω1

cpP, gq, pϕ, θq Ñ AdGϕ .θ

with AdGϕ .θ : TP Ñ g, v ÞÑ AdGϕpπpvqq .θpvq and the canonical projection π : TP Ñ

P . The subspace Ω1pP, gqhor
ρg is µ-invariant. Here AdG denotes the adjoint action

of G on g.

Proof. Given θ P Ω1
cpP, gqρg and ϕ P C8c pP,GqρG , we show that µpϕ, θq P

Ω1
cpP, gqρg . Let h P H, p P P and v P TpP . We calculate

pR˚hµpϕ, θqqppvq “ AdGpϕpphq, θphpTRhpvqqq “ AdGpρGph
´1
q.ϕppq, ρgph

´1
q.θppvqq

“TλρGph´1q.ϕppq ˝ T%ρGph´1q.ϕppq´1 ˝ T1ρGph
´1
qpθppvqq

“T1pρGph
´1
qpϕppqq ¨ ρGph

´1
qp‚q ¨ ρGph

´1
qpϕppq´1

qqpθppvqq

“T1pρGph
´1
q ˝ Iϕppqqpθppvqq “ ρgph

´1
q ˝ AdGϕppqpθppvqq,

where Iϕppqpgq “ ϕppqgϕppq´1 is the conjugation on G. Obviously µpϕ, θq is hori-
zontal if θ is so.

Definition 4.40. We define the map

AdG˚ : C8c pP,Gq
hor
ρG
ˆ Ω1

cpP, gq
hor
ρg Ñ Ω1

cpP, gq
hor
ρg , pϕ, θq Ñ AdGϕ .θ

with AdGϕ .θ : TP Ñ g, v ÞÑ AdGϕ˝πpvq .θpvq and the canonical projection π : TP Ñ
P .
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Lemma 4.41. The map AdG˚ : C8c pP,GqρG ˆ Ω1
cpP, gq

hor
ρg Ñ Ω1

cpP, gq
hor
ρg is contin-

uous linear in the second argument.

Proof. Let ϕ P C8c pP,GqρG and K Ď M be compact. It is enough to show
that

AdG˚ pϕ, ‚q : Ω1
KpP, gqρg Ñ Ω1

KpP, gqρg

is continuous, because AdG˚ pϕ, ‚q is linear and AdG˚ pϕ, ‚qpΩ
1
KpP, gqρgq Ď

Ω1
KpP, gqρg . The map f : TP ˆ gÑ g, pv, wq ÞÑ AdGpϕ ˝ πpvq, wq is smooth.

We know that

f˚ : C8pTP, gq Ñ C8pTP, gq, θ ÞÑ f ˝ pid, θq

is continuous (see e.g. [GN]). We can embed Ω1
KpP, gq into C8pTP, gq.

Hence we are done.

Definition 4.42. Let π : TP Ñ P be the canonical projection and prh : TP Ñ HP
the projection onto the horizontal bundle.

(a) We define

δ : C8c pP,GqρG Ñ Ω1
pP, gq, ϕ ÞÑ δpϕq

with δϕpvq “ Tλϕpπpvqq´1 ˝ Tϕpvq for v P TP (cf. [KM97, 38.1]).
(b) We define

pr˚h : Ω1
pP, gq Ñ Ω1

pP, gqhor, θ ÞÑ θ ˝ prh .

The statement (b) in the following lemma is well-known and can be found in
[KM97, p. 38.1].

Lemma 4.43. (a) We have

δpC8c pP,GqρGq Ď Ω1
cpP, gqρg .

(b) Given f, g P C8c pP,GqρG, we have

δpf ¨ gq “ δpgq ` AdG˚ pg
´1, δpfqq.

Proof. (a) Let ϕ P C8c pP,GqρG , h P H, p P P and w P TpP . We calculate

pR˚hδpϕqqppwq “ δpϕqphpTRhpwqq “ Tλϕpphq´1pTϕpTRhpwqqq

“T pλϕpphq´1 ˝ ϕ ˝Rhqpwq “: :.

For x P P , we have

λϕpphq´1 ˝ ϕ ˝Rhpxq “ pρGph
´1
q.ϕppqq´1

¨ pρGph
´1
q.ϕpxqq

“ρGph
´1
q.pϕppq´1

¨ ϕpxqq “ ρGph
´1
q ˝ λϕppq´1 ˝ ϕpxq.
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We conclude that

: “ ρgph
´1
q ˝ Tλϕppq´1 ˝ Tϕpwq “ ρgph

´1
q ˝ δpϕqppwq.

(b) The assertion follows directly from [KM97, p. 38.1].

Definition 4.44. Let prh : TP “ V P ‘ HP Ñ HP , be the projection onto the
horizontal bundle HP . We define

∆: C8c pP,GqρG Ñ Ω1
pP, gqhor

ρg , ϕ ÞÑ pr˚h ˝δpϕq “ δpϕq ˝ prh .

As in [Sch13], we use the concept of weak direct products of infinite-dimensional
Lie groups described in [Glo03, Section 7] respectively [Glo07, Section 4] in the
following considerations. The next lemma is basically [Sch13, Corollary 2.38] but
with modified assumptions.

Lemma 4.45. For i P N let Gi be a locally convex Lie group, Ei a locally convex
space and fi : Gi Ñ Ei be a smooth map such that fip1q “ 0. In this situation there
exists an open 1-neighbourhood U Ď

ś˚

iPNGi such that the map f :
ś˚

iPNGi Ñ
À

iPNEi, pgiqi ÞÑ pfipgiqqi is smooth on U .

Proof. Given i P N, let ϕi : Ui Ď Gi Ñ Vi Ď gi be a chart around 1 with ϕip1q “ 0.
We have the commutative diagram

ś˚

iPN Ui
f |ś˚

iPN Ui
“pfi|Ui qiPN

//

pϕiqiPN
��

À

iPNEi

À

iPN Vi.
pfi˝ϕ

´1
i qiPN

33

Now the assertion follows from [Glo03, Proposition 7.1].

Remark 4.46. Let pVi, σiqiPN be a compact locally finite trivializing system of the

principal bundle H ãÑ P
q
ÝÑ M in the sense of [Sch13, Definition 3.6] respectively

[Woc07]. We follow [Sch13, Remark 3.5] respectively [Woc07] and define as usual
the smooth map βσi : q

´1pV iq Ñ H by the equation σipqppqq ¨ βσippq “ p for all
p P q´1pV iq. Obviously, we have βσipphq “ βσippq ¨ h for all h P H. Moreover, we
define the smooth cocycle βi,j : V iXV j Ñ H by the equation σipxq ¨βi,jpxq “ σjpxq.
We have βi,jpxq

´1 “ βj,ipxq and βσippq
´1¨βi,jpqppqq “ βσjppq

´1 for p P q´1pV iXV jq.

The proof of the following lemma is similar to the proof of [Sch13, Proposition
4.6] where, beside other results, Schütt constructed a topological embedding from
the compactly supported gauge algebra gaucpP, gqg to a direct sum

À

iPNC
8pV i, gq

of locally convex spaces. However, the following lemma differs from [Sch13, Propo-
sition 4.6] because we deal with horizontal differential forms which need some
additional considerations.
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Lemma 4.47. Let pVi, σiqiPN be a compact locally finite trivializing system in the
sense of [Sch13, Definition 3.6]. The map

Ω1
cpP, gq

hor
ρg Ñ

à

iPN
Ω1
pV i, gq, θ ÞÑ pσ˚i θqiPN

is a topological embedding.

Proof. We define

Ω‘ :“

#

pηiqi P
à

iPN
Ω1
pV i, gq : pηiqx “ ρgpβi,jpxqq ˝ pηjqx for x P V i X V j

+

and the map

Φ: Ω1
cpP, gq

hor
ρg Ñ

à

iPN
Ω1
pV i, gq, θ ÞÑ pσ˚i θqiPN.

First we show that impΦq Ď Ω‘. For x P V i X V j, v P TxM , we have σjpxq “
σipxqβi,jpxq and

TqpTσjpvq ´ T pRβi,jpxq ˝ σiqpvqq “ T pq ˝ σjqpvq ´ T pq ˝Rβi,jpxq ˝ σiqpvq “ 0.
(4.11)

Because θ is ρg invariant and horizontal, we can calculate

pσ˚i θqxpvq “ θσipxqpTσipvqq “ ρgpβi,jpxqq ˝ θσipxqβi,jpxqpTRβi,jpxqpTσipvqqq

“

p4.11q

ρgpβi,jpxqq ˝ θσjpxqpTσjpvqq “ ρgpβi,jpxqq ˝ σ
˚
j θxpvq.

Analogously to [Sch13, Proposition 4.6], we can argue as follows: The map Φ is
linear, Ω1

cpP, gq
hor
ρg “ lim

ÝÑ
Ω1
KpP, gq

hor
ρg and pV iqi is locally finite, whence the map Φ

is continuous. Now, let pλiqiPN be a partition of unity of M subordinate to pViqi.

Given η P Ω1pV i, gq, we define Ăλiη P Ω1pP, gq by

Ăλiηppwq :“

#

λipqppqq ¨ ρgpβσippq
´1q.ηqppqpTqpwqq : p P q´1pViq

0 : else.

With Remark 4.46, we get Ăλiη P Ω1
supppλiq

pP, gqhor
ρg and

ř

iPN
Ąλiηi P Ω1

cpP, gq
hor
ρg

for pηiqi P
À

iPN Ω1pV i, gq. The map Ψ:
À

iPN Ω1pV i, gq Ñ Ω1
cpP, gq

hor
ρg , pηiqi ÞÑ

ř

iPN
˜λiηi is continuous because it is linear and the inclusions Ω1

supppλiq
pP, gqhor

ρg ãÑ

Ω1
cpP, gq

hor
ρg are continuous. Let pηiqi P Ω‘. As in [Sch13, Proposition 4.6], we get

Ψppηiqiqppwq “ ρgpβσi0 ppq
´1
q.pηi0qqppqpTqpwqq

if p P q´1pVi0q and w P TpP . By an abuse of notation, we write Φ :“ Φ|Ω‘ and
Ψ :“ Ψ|Ω‘ . One easily sees Φ˝Ψ “ idΩ‘ . It is left to show that Ψ˝Φ “ idΩ1

cpP,gq
hor
ρg

.
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Let θ P Ω1
cpP, gq

hor
ρg , p P P , w P TpP and i P N with p P q´1pViq. We calculate

Tqpw ´ TRβσi ppq
TσiTqpwqq “ Tqpwq ´ T pq ˝Rβσi ppq

˝ σiqpTqpwqq “ 0. (4.12)

Now, we get

Ψ ˝ Φpθqppwq “ ρgpβσippq
´1
q.pσ˚i θqqppqpTqpwqq

“ρgpβσippq
´1
q.θσipqppqqpTσiTqpwqq

“ρgpβσippq
´1
q.ρgpβσippqqθσipqppqqβσi ppqpTRβσi ppq

TσiTqpwqq

“

4.12

θσipqppqqβσi ppqpwq “ θppwq.

Remark 4.48. Let M be an m-dimensional manifold, D Ď TM a d-dimensional
subbundle, p0 P M and w0 P Dp0. Then there exists a smooth curve γ : r´1, 1s Ñ
M such that γp0q “ p0, γ1p0q “ w0 and γ1ptq P Dγptq for all t P r´1, 1s. In
fact let ψ : TU Ñ U ˆ Rm be a trivialisation with ψpDq “ U ˆ Rd ˆ t0u and
v0 :“ pr2 ˝ψpw0q P Rd ˆ t0u. Then X : U Ñ TU , x ÞÑ ψ´1px, v0q is a smooth
vector field on U and impXq Ď D. Let γ̃ : r´ε, εs Ñ U be the integral curve of X
with γ̃p0q “ p0. Then γ̃1p0q “ Xpp0q “ w0 and obviously γ1ptq P Dγptq for all t.
Now let ϕ : r´1, 1s Ñ r´ε, εs be a diffeomorphism with ϕp0q “ 0 and ϕ1p0q “ 1.
Then γ :“ γ̃ ˝ ϕ is as needed.

Lemma 4.49. The pullbacks γ˚ : Ω1pP, gqhor Ñ C8pr´1, 1s, gq, θ ÞÑ γ˚θ along
horizontal maps γ : r´1, 1s Ñ P (γ1ptq P HγptqP ) separate the points in Ω1pP, gqhor.

Proof. Let θ P Ω1pP, gqhor and γ˚θ “ 0 for all horizontal curves γ : r´1, 1s Ñ P .
Let p P P and w P TpP . We show that θppwq “ 0. Because θ is horizontal,
we can assume that w P HpP . We use Remark 4.48 and find a horizontal curve
γ : r´1, 1s Ñ P with γ1p0q “ w. Hence θppwq “ θppγ

1p0qq “ γ˚θp0q “ 0.

One can easily deduce the following observation from [Woc07, Theorem 1.11] but
in the special case of a current group on a compact interval, an easier argument
becomes possible.

Remark 4.50. Let G be a finite-dimensional Lie group and pUiqi“1,...,n be an open
cover of the space r´1, 1s such that the sets U i are submanifolds with boundary.
Then the map Φ: C8pr´1, 1s, Gq Ñ

śn
i“1C

8pU i, Gq, φ ÞÑ pφ|U iqi is an injective

Lie group morphism whose image is a Lie subgroup of
śn

i“1C
8pU i, Gq and Φ|impΦq

is an isomorphism of Lie groups. We define Ψ: C8pr´1, 1s, gq Ñ
śn

i“1C
8pU i, gq,

f ÞÑ pf |U iqi. Let exp: Vg Ď g Ñ UG Ď G be the exponential function of G
restricted to a 0-neighbourhood such that it is a diffeomorphism. We define the
open sets U :“ C8pr´1, 1s, UGq Ď C8pr´1, 1s, Gq and V :“ C8pr´1, 1s, Vgq Ď
C8pr´1, 1s, gq. Let τ1 : C8pr´1, 1s, UGq Ñ C8pr´1, 1s, Vgq, ϕ ÞÑ pexp |UGVg q

´1 ˝ ϕ

and τ2 :
śn

i“1C
8pU i, UGq Ñ

śn
i“1C

8pU i, Vgq, pϕiqi ÞÑ ppexp |UGVg q
´1 ˝ ϕiqi be the
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canonical charts. We obtain the commutative diagram

C8pr´1, 1s, UGq
Φ|U //

τ1

��

śn
i“1C

8pU i, UGq

τ2
��

C8pr´1, 1s, Vgq
Ψ|V //

śn
i“1C

8pU i, Vgq

and calculate

τ2

˜

impΦq X
n
ź

i“1

C8pU i, UGq

¸

“ τ2 pΦpC
8
pr´1, 1s, UGqqq

“ΨpC8pr´1, 1s, Vgqq “ impΨq X
n
ź

i“1

C8pU i, Vgq.

The space

impΨq “
 

pfiqi : fipxq “ fjpxq for x P U i X U j

(

is closed in
śn

i“1C
8pU i, gq. Hence, impΦq is a Lie subgroup of

śn
i“1C

8pU i, Gq.
In the commutative diagram

C8pr´1, 1s, UGq
Φ|U //

τ1

��

impΦq X
śn

i“1C
8pU i, UGq

τ2
��

C8pr´1, 1s, Vgq
Ψ|V // impΨq X

śn
i“1C

8pU i, Vgq

the lower vertical arrow is a diffeomorphism because Ψ: C8pr´1, 1s, gq Ñ impΨq
is a continuous bijective linear map between Fréchet spaces. Now, the assertion
follows.

The following theorem is in some sense a generalisation of [Nee04, Proposition
V.7].13

Theorem 4.51. The following holds:

(a) The map ∆: C8c pP,GqρG Ñ Ω1
cpP, gq

hor
ρg is smooth.

(b) We have d1∆pfq “ Dρgf for f P C8c pP, gqρg.

Proof. (a) Because of Lemma 4.38, Lemma 4.41 and Lemma 4.43, it is enough
to show the smoothness of ∆ on a 1-neighbourhood. Let pσi, V iqiPN be a
locally finite compact trivialising system in the sense of [Sch13, Definition
3.6.] (the existence follows from [Sch13, Corollary 3.10]). With the help
of Lemma 4.45 and Lemma 4.47 it is enough to construct smooth maps

13We consider the case of a finite-dimensional codomain while Neeb additionally considered
special infinite-dimensional codomains.
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4 Extensions of groups of compactly supported sections

ψi : C
8pV i, Gq Ñ Ω1pV i, gq such that the diagram

C8c pP,GqρG

ϕÞÑpϕ˝σiqi
��

∆ // Ω1
cpP, gq

hor
ρg

θ ÞÑpσ˚i θqi
��

ś˚

iPNC
8pV i, Gq

ψi //
À

iPN Ω1pV i, gq

commutes. Let τi : q
´1pViq Ñ Vi ˆ H, p ÞÑ pqppq, ϕippqq be the inverse to

px, hq ÞÑ σipxqh. Then σipxq “ τipx, 1q. For f P C8pV i, Gq we define

f̃ : q´1
pViq Ñ G, p ÞÑ ρGpϕippq, fpqppqqq.

If f P C8c pP,GqρG then Čf ˝ σi “ f |q´1pViq. We define ψi : C
8pV i, Gq Ñ

Ω1pV i, gq by

ψipfqxpvq “ Tλfpxq´1T f̃pprhpTxσipvqqq.

First we show that the above diagram commutes. We calculate

ψipf ˝ σiqxpvq “ Tλpfi˝σpxqq´1Tfpprh ˝Txσipvqq “ σ˚i pδpfq ˝ prhqxpvq.

It is left to show the smoothness of ψi. Because we can embed Ω1pV i, gq into
C8pTV i, gq, we show that

C8pV i, Gq ˆ pTViq Ñ g, pf, vq ÞÑ Tλfpxq´1T f̃pprhpTxσipvqqq

is smooth. Let m : G ˆ G Ñ G be the multiplication on G and n : G Ñ

TG, g ÞÑ 0g the zero section. Given f P C8pV i, Gq and v P TxV i, we
calculate

ψipfqpvq “ Tmpnpfpπpvqq´1
qq, T f̃pprh Tσipvqqq.

The map ev : C8pV i, Gq ˆ V i Ñ G, f, x ÞÑ fpxq is smooth (see [Alz72,
Lemma 121]). Therefore it is left to show the smoothness of C8pV i, Gq ˆ
Tq´1pTViq Ñ TG, pf, vq ÞÑ T f̃pvq. The map evq : C8pV i, Gq ˆ q´1pViq Ñ
G, pf, pq ÞÑ f ˝ qppq is smooth because ev is smooth. We have T pf ˝ qqpvqq “
T evqpf, ‚qpvq “ T evqpnpfq, vq, where n is the zero section of C8pV i, Gq.
Hence,

T evq ˝pn, idq : C8pV ,Gq ˆ Tq´1
pTV q Ñ TG, pf, vq ÞÑ Tf ˝ Tqpvq

is smooth. With T f̃ “ TρG ˝ pTϕi, T f ˝ Tqq the assertion follows from the
smoothness of T evq ˝pn, idq.

(b) We write δl : C8pr´1, 1s, Gq Ñ C8pr´1, 1s, gq for the classical left logarith-
mic derivative. It is known that dc1δ

lpfq “ f 1 for f P Cpr´1, 1s, gq (see e.g.
[NS13, Proposition 8.4]). Given a horizontal curve γ : r´1, 1s Ñ P , we define
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4.2 Integration of the Lie algebra action and the main result

the maps

γ˚G : C8c pP,GqρG Ñ C8pr´1, 1s, Gq, ϕ ÞÑ ϕ ˝ γ,

γ˚g : C8c pP, gqρg Ñ C8pr´1, 1s, gq, f ÞÑ f ˝ γ and

γ˚Ω : Ω1
cpP, gq

hor
ρg Ñ C8pr´1, 1s, gq, θ ÞÑ γ˚θ.

As in Lemma 4.23 one shows that γ˚G is a smooth Lie group homomorphism
with Lpγ˚Gq “ γ˚g (see Remark 4.50). The diagram

C8c pP,GqρG
∆ //

γ˚G
��

Ω1
cpP, gq

hor
ρg

γ˚Ω
��

C8pr´1, 1s, Gq δl // C8pr´1, 1s, gq

(4.13)

commutes, because

pγ˚Ω∆pfqqptq “ δpfqpprhpγ
1
ptqqq “ δpfqpγ1ptqq “ Tλf˝γptq´1 ˝ Tfpγ1ptqq

“δlpf ˝ γq.

Let f P C8c pP, gqρg . We want to show that d1∆pfq “ Dρgf . Since Lemma
4.49 it is enough to show that γ˚Ωpd1∆pfqq “ γ˚ΩpDρgfq for an arbitrary
horizontal curve γ : r´1, 1s Ñ P . Because γ˚Ω is continuous linear and the
diagram (4.13) commutes, we can calculate

γ˚Ωpd1∆pfqq “ d1pγ
˚
Ω ˝∆qpfq “ d1pδ

l
˝ γ˚Gqpfq “ d1pδ

l
qpLpγ˚Gqpfqq “ pf ˝ γq

1.

Now, we use that γ is horizontal and obtain

γ˚ΩpDρgfqt “ Dρgfpγ
1
ptqq “ dfpγ1ptqq “ γ˚Ωpd1∆pfqqt

for t P r´1, 1s.

The proof of the following Lemma 4.52 is analogous to the first part of [MN03,
Proposition III.3].

Lemma 4.52. In the following we write Ad for the adjoint action of C8c pP,GqρG
on C8c pP, gqρg. The map

A : C8c pP,GqρG ˆ pΩ
1

cpP, V q
hor
ρV
ˆωM C8c pP, gqρgq Ñ Ω

1

cpP, V q
hor
ρV
ˆωM C8c pP, gqρg

pϕ, prαs, fqq ÞÑ prαs ´ rκgp∆pϕq, fqs,Adpϕ, fqq

is a smooth group action and its associated Lie algebra action is given by the adjoint
action described in (4.2). Hence, the adjoint action of ΓcpM,Gq on the extension
{ΓcpM,Gq :“ Ω

1

cpM,Vq ˆωM ΓcpM,Gq represented by ωM integrates to a Lie group

action of ΓcpM,Gq on {ΓcpM,Gq.
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4 Extensions of groups of compactly supported sections

Proof. The smoothness of A follows from the smoothness of ∆. We show that A
is a group action. For ϕ, ψ P C8c pP,GqρG , we have

∆pϕψq “ ∆pψq ` AdG˚ pψ
´1,∆pϕqq

and for v, w P g and g P G, we have

κgpv,AdGg wq “ κgpAdGg´1 v, wq. (4.14)

In this context AdG is the adjoint action of G on g. Now, we calculate for α P
Ω1
cpP, V q

hor
ρV

Apϕ ¨ ψ, prαs, fqq “ prαs ´ rκgp∆pϕψq, fqs,Adϕψ fq

“prαs ´ rκgp∆ψ, fqs ´ rκgpAdG˚ pψ
´1,∆pϕqq, fqs,Adϕ .Adψ .fq

“

p4.14q

prαs ´ rκgp∆ψ, fqs ´ rκgp∆pϕq,AdG˚ pψfqqs,Adϕ .Adψ .fq

“Apϕ, prαs ´ rκgp∆ψ, fqs,Adψ fqq

“Apϕ, pApψ, prαs, fqqq.

The associated action to A on C8c pP, gqρg is given by the adjoint action described
in (4.2) because p´rκgpDρgpgq, fqs, adpg, fqq “ prκgpg,Dρgpfqs, adpg, fqq for f, g P
C8c pP, gqρg .

Theorem 4.53. Let H be finite and write Γ :“ perωM pπ2pΓcpM ;Gq0qq. Then we
find a Lie group extension

Ω
1

cpM,Vq{Γ ãÑ {ΓcpM,Gq0 Ñ ΓcpM,Gq0

that corresponds to the central Lie algebra extension that is represented by ωM .

Proof. We simply need to put Theorem 4.36, Theorem 4.52 and Theorem 4.15
(respectively [Nee02a, Proposition 7.6] and [Nee02a, Theorem 7.12]) together.

4.3. Universality of the Lie group extension

In this section, we prove [JW13, Theorem 1.2] in the case where M is not compact
but σ-compact (as in [JW13, Theorem 1.2] M still has to be connected). In the first
part of [JW13] Janssens and Wockel showed that the cocycle ωM : ΓcpM,Gq2 Ñ

Ω
1

cpM,Vq is universal if g is semisimple and M is a σ-compact manifold (see [JW13,
p. 129 (1.1)], Remark 4.19 and Remark 3.24). In the second part of the paper
they assumed the base manifold M to be compact and got a universal cocycle

ΓpM,Gq2 Ñ Ω
1
pM,Vq. Then they showed that under certain conditions a given

Lie group bundle G ãÑ G Ñ M with finite-dimensional Lie group G is associated
to the principal frame bundle AutpGq ãÑ FrpGq ÑM . Hence, they were able to use
[NW09, Theorem 4.24] to integrate the universal Lie algebra cocycle ΓpM,Gq2 Ñ
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4.3 Universality of the Lie group extension

Ω
1
pM,Vq to a Lie group cocycle Z ãÑ {ΓpM,Gq0 Ñ ΓpM,Gq0. At this point it is

crucial that M is compact and connected in order to apply [NW09, Theorem 4.24].
Once the Lie group extension was constructed, Janssens and Wockel proved its
universality by using the Recognition Theorem from [Nee02b] (see [JW13, Theorem
1.2]). To generalise [JW13, Theorem 1.2] to the case where M is connected and
not compact, many arguments of [JW13] can be transfered to the case of a non-
compact base manifold by using Theorem 4.53 instead of [NW09, Theorem 4.24].
However our proof is shorter because Theorem 4.53 holds for section groups and
not just for gauge groups, while [NW09, Theorem 4.24] holds only for gauge groups.
Hence, unlike the approach in [JW13], we do not have to reduce the statement to
the case of gauge groups. We mention that in this section we assume the typical
fibre G of the Lie group bundle to be connected, while in [JW13] Janssens and
Wockel assume π0pGq to be finitely generated

Convention 4.54. In this section G is a connected semisimple finite-dimensional
Lie group. As in the rest of Chapter 4, M still is a connected, non-compact,
σ-compact finite-dimensional manifold.

Analogously to [JW13, p. 130] we consider the following setting14:

Definition 4.55 (Cf. p. 130 in [JW13]). Let G be a connected finite-dimensional

semisimple Lie group with Lie algebra g and G ãÑ G q
ÝÑM be a Lie group bundle.

As in [HN12, 11.3.1, p. 452], we turn AutpGq into a finite-dimensional Lie group.
In particular AutpGq becomes a Lie group such that L : AutpGq Ñ Autpgq is an
isomorphism onto a closed subgroup ([HN12, Lemma 11.3.3]) and AutpGq acts
smoothly on G.

Lemma 4.56. The Lie group bundle G ãÑ G q
ÝÑM is isomorphic to the associated

Lie group bundle of the frame principal bundle AutpGq ãÑ FrpGq ÑM (cf. [JW13,
p. 130]). Obviously all manifolds are σ-compact, because M is σ-compact and
AutpGq is homeomorphic to a closed subgroup of Autpgq.

Definition 4.57. We define V “ V pgq. In the situation considered in this subsec-
tion the map ρV : AutpGq ˆ V Ñ V, pϕ, κgpv, wqq ÞÑ κgpLpϕqpvq, Lpϕqpwqq is the
smooth automorphic action ρV described in Convention 4.1.

Lemma 4.58 (Cf. p. 130 in [JW13]). The identity component of AutpGq acts
trivially on V by the representation ρV : AutpGq ˆ V Ñ V, pϕ, κgpv, wqq ÞÑ
κgpLpϕqpvq, Lpϕqpwqq.

Proof. Obviously it is enough to show that pAutpgqq0 acts trivially by ρ : Autpgqˆ
V Ñ V, pϕ, κgpx, yqq ÞÑ κgpϕpxq, ϕpyqq. For ρ̌ : Autpgq Ñ GLpV q, ϕ ÞÑ ρpϕ, ‚q,
x, y P g and f P derpgq we have Lpρ̌qpfqpκgpx, yqq “ didρp‚, κgpx, yqqpfq. Defining
evx : Autpgq Ñ g, ϕÑ ϕpxq for x P g we get

ρp‚, κgpx, yqq “ κg ˝ pevx, evyq.

14In [JW13] the Lie group G is not assumed to be connected. Instead Janssens and Wockel
assume π0pGq to be finitely generated.
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4 Extensions of groups of compactly supported sections

We have did evxpfq “
B

Bt
|t“0 expptfqpxq “ fpxq. Hence

didρp‚, κgpx, yqqpfq “ κgpevxpidq, did evypfqq ` κgpdid evxpfq, evypidqq

“κgpx, fpyqq ` κgpfpxq, yq.

Because g is semisimple, we have derpgq “ innpgq. For z P g, we calculate

Lpρ̌qpadzqpκgpx, yqq “ κgpx, ry, zsq ` κgprx, zs, yq “ κgpx, ry, zsq ` κgpx, rz, ysq “ 0.

Hence, ρ̌|Autpgq0 “ idV .

Analogously to [JW13, p. 130], we need the following condition:

Convention 4.59. In the following, we assume AutpGq :“ AutpGq{ kerpρV q to be
finite.

Definition 4.60. Combining Convention 4.59, Lemma 4.58 and Theorem 4.53,
we find a Lie group extension

Ω
1

cpM,Vq{Γ ãÑ {ΓcpM,Gq0 Ñ ΓcpM,Gq0

that corresponds to the central Lie algebra extension that is represented by ωM
(with Γ :“ perωM pπ2pΓcpM ;Gq0qq). We write Z :“ Ω

1

cpM,Vq{Γ. If π : ČΓcpM,Gq0 Ñ
ΓcpM,Gq0 is the universal covering homomorphism and Z ãÑ H Ñ ČΓcpM,Gq0 the
pullback extension then [Nee02a, Remark 7.14.] shows that we have a central
extension of Lie groups

E :“ Z ˆ π1pΓcpM,Gq0q ãÑ H Ñ ΓcpM,Gq0.

Its corresponding Lie algebra extension is represented by ωM .

The following theorem (case of a non-compact base-manifold and connected typ-
ical fibre) corresponds to [JW13, Theorem 1.2.] (case of a compact base-manifold
and π0pGq is finitely generated). The proof is analogous as well.

Theorem 4.61. (a) If W is a locally convex space such that ωM is universal for
W then central Lie group extension Z ˆπ1pΓcpM,Gq0q ãÑ H Ñ ΓcpM,Gq0 is
universal for all abelian Lie groups modelled over W .

(b) The central Lie group extension Z ˆ π1pΓcpM,Gq0q ãÑ H Ñ ΓcpM,Gq0 is
universal for all abelian Lie groups modelled over complete locally convex
spaces.

Proof. (a) The statement [Nee02b, Theorem 4.13] and the analogous statement
[JW13, Theorem 3.1] are formulated for sequentially complete, respectively
Mackey complete, spaces W . However, the completeness is only assumed to
guarantee the existence of the period map perω and the existence of period
maps of the form perγ˝ω for continuous linear maps γ : zÑ a. Obviously, the
period maps perγ˝ω exist if the period map perω exists. Hence, with Remark
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4.3 Universality of the Lie group extension

4.14 we do not need to assume the completeness of the spaces. Therefore, it
is left to show that H is simply connected. Using [Nee02a, Remark 5.12], we
have the long exact homotopy sequence

π2pΓcpM,Gq0q
δ2
ÝÑ π1pZ ˆ π1pΓcpM,Gq0qq

i
ÝÑ π1pHq

p
ÝÑ π1pΓcpM,Gq0q

δ1
ÝÑ π0pZ ˆ π1pΓcpM,Gq0qq.

We show that i “ 0. Calculating

π1pZ ˆ π1pΓcpM,Gq0qq “ π1pΩ
1

cpM,Vq{ΠωM q “ ΠωM

and using [Nee02a, Proposition 5.11], we conclude that δ2 is surjective. Hence
i “ 0. From

π0pZ ˆ π1pΓcpM,Gq0qq “ π1pΓcpM,Gq0q,

we see that δ1 is injective. Therefore p “ 0. Thus π1pHq “ 0.
(b) This is clear, because ωM is universal for all complete locally convex spaces.
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A. Basic definitions and results for
manifolds with corners

In this section we fix some notation and recall well known basic definitions and
results about manifolds with corners for the convenience of the reader.1 All of the
concepts and results in this section are already well known see e.g. [MO92].

Definition A.1. We define Rm
l :“ r0,8rlˆRm´l. Given J Ď t1, ..., lu we define

prJ : Rm Ñ R#J , v ÞÑ pvjqjPJ . Moreover we write XJ :“ prJpXq for X Ď Rm and
vJ :“ prJpvq for v P Rm.

Definition A.2. We say a point x P Rm
l has index k ď l, if exactly k of the first

l components of x equal 0. This means that the maximal index-set J Ď t1, ..., lu
such that prJpxq “ 0 has the cardinality #J “ k.

Lemma A.3. Let M be a manifold with corners, p P M and ϕ : Uϕ Ñ Vϕ Ď Rm
i1

and ψ : Uψ Ñ Vψ Ď Rm
i2

charts around p. Suppose ϕppq has index k, then ψppq has
index k.

Proof. Without loss of generality we assume Uψ Ď Uϕ. Let l be the index of ψppq.
First we show k ď l. Suppose l ă k. Let J Ď t1, . . . , i1u be the maximal index-set
with pϕppqqJ “ 0 and analogously I Ď t1, . . . , i2u be the set of components of
ψppq that equal 0. We define the m ´ l-dimensional subspace E :“ pr´1

I pt0uq “
Ş

iPI tx P Rm : xi “ 0u of Rm. We find an open ψppq-neighbourhood V Ď E with
V Ď Vψ. The map η :“ ϕ ˝ψ´1|V : V Ñ Vϕ is an immersion, because ψ ˝ϕ´1 ˝ η “
idV . Therefore F :“ dηpψppq, ‚qpEq is an m ´ l-dimensional subspace of Rm. The
subspace F must contain a vector such that one of its J components is not equal
to 0, because otherwise F would be contained in the m´ k-dimensional subspace
pr´1
J pt0uq and this would contradict m ´ l ą m ´ k. Let j P J such that vj ‰ 0.

Without loss of generality we can assume vj ă 0. We choose a smooth curve
γ : s ´ ε, εrÑ E with γp0q “ ψppq, impγq Ď V and dηpψppq, γ1p0qq “ v. Let
f :“ η ˝ γ : s ´ ε, εrÑ Vϕ. Then impfq Ď Vϕ Ď Rm

i1
and so impprj ˝fq Ď r0,8r,

because j ď i1. But prj ˝fp0q “ prjpϕppqq “ 0 and pprj ˝fq
1p0q “ vj ă 0. Hence

we find t Ps0, εr with prj ˝fptq ă 0. Hence k ď l. In the analogous way one shows
l ď k. Hence k “ l.

Definition A.4. Let M be a manifold with corners. We say a point p P M has
index j P t0, ...,mu if we find a chart ϕ : Uϕ Ñ Vϕ Ď Rm

i around p such that
ϕppq has index j. Because of Lemma A.3 this definition is independent of the
choice of the chart ϕ. We write indppq :“ j and define the j-stratum BjM :“
tx PM : indpxq “ ju. We call the 0-stratum B0M the interior of M .

1This chapter consist of material published before in the author’s preprint [Eyn15].
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Lemma A.5. Given an m-dimensional manifold with corners M and j P t0, ...,mu
the j-stratum Bj is a m´ j-dimensional submanifold without boundary of M . Ob-
viously we have M “

Ť

jPt0,...,mu B
jM .

Proof. To be a submanifold, is a local property and locally BjM looks like BjRm
k

for a k ě j.
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B. Proof of Theorem 1.12

As mentioned in Section 1.1 we can use our Lemma 1.11 to prove Theorem 1.12.1

The proof is completely analogous to [BW59, Proposition 1].

Proof. First we show the uniqueness result. Using Lemma 1.9 we find a neigh-
bourhood U of M in M̃1 and a real analytic map f̃ : U Ñ M̃2 with f̃ |M “ idM .
For the same reason we find a neighbourhood V of M in M̃2 and a real analytic
map g̃ : V Ñ M̃1 with g̃|M “ idM . With Lemma 1.10 we find a neighbourhood U1

of M in M̃1, and a neighbourhood U2 of M in M̃2 such that f̃pU1q “ U2 and f̃ |U2
U1

is a real analytic diffeomorphism.
Now we construct the enveloping manifold. For x P M let ϕx : U1

x Ñ V 1
x Ď

r0,8rm be a chart of M around x. Because M is normal we find relatively compact
x-neighbourhoods U3

x and U2
x in M such that

M Ě U1
x Ě U2

x Ě U2
x Ě U3

x Ě U3
x .

Here, the closures are taken in the space M and hence coincide with the closures
in the topological subspaces. The family pU3

xqxPM is an open cover of the compact
manifold M , whence we find a finite subcover pU3

xi
qiPI . We define U1

i :“ U1
xi

,
V 1
i :“ V 1

xi
, ϕi :“ ϕxi , U

2
i :“ U2

xi
, V 2

i :“ ϕipU
2
i q, U

3
i :“ U3

xi
and V 3

i :“ ϕipU
3
i q.

Hence we get

V 1
i Ě V 2

i Ě V 2
i Ě V 3

i Ě V 3
i .

Here, the sets V 2
i and V 3

i are compact and hence the closure in the topological
subspace coincides with the closure in r0,8rm respectively Rm. Moreover we de-
fine the sets V 1

i,j :“ ϕipU
1
i X U1

j q, V
2
i,j :“ ϕipU

2
i X U2

j q and V 3
i,j :“ ϕipU

3
i X U3

j q.

Given i, j P I we use Lemma 1.10 to find an open neighbourhood Ṽ 1
i,j of V 1

i,j in

Rm with Ṽ 1
i,j X r0,8r

m“ V 1
i,j and a real analytic diffeomorphism ψi,j : Ṽ 1

i,j Ñ Ṽ 1
j,i

with ψi,j|Ṽ 1
i,jXr0,8r

m “ ϕj ˝ ϕ
´1
i |V 1

i,j
with inverse ψj,i. Because V 2

i,j Ď V 2
i and V 2

i is

relatively compact, V 2
i,j is compact and hence the closure in V 2

i coincides with the
closure in r0,8rm respectively Rm. Using Lemma 1.11 we find an open neighbour-

hood Ṽ 2
i,j of V 2

i,j in Rm with V
2

i,j Ď Ṽ 1
i,j, Ṽ

2
i,jXr0,8r

m“ V 2
i,j and Ṽ 2

i,jXr0,8r
m“ V 2

i,j.

We can assume ψi,jpṼ
2
i,jq “ Ṽ 2

j,i, because ψi,jpV
2
i,jq “ V 2

j,i. The set V 3
i Xψ

´1
j,i pV

3
j XV

2
j,iq

is compact and contained in Ṽ 2
i,j. Hence we find an open neighbourhood Z̃i,j

of V 3
i X ψ´1

j,i pV
3
j X V 2

j,iq in Rm with Z̃i,j Ď Ṽ 2
i,j and ψi,jpZ̃i,jq “ Z̃j,i. Because

ψj,ipV
3

j X V 2
j,iq X V 3

i Ď Z̃i,j we get pψj,ipV 3
j X V 2

j,iqzZ̃i,jq X pV
3
i zZ̃i,jq “ H. The

1This chapter consist of material published before in the author’s preprint [Eyn15].
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sets ψj,ipV 3
j X V 2

j,iqzZ̃i,j and V 3
i zZ̃i,j are closed, whence we find open disjoint

sets X̃i,j and Ỹi,j with ψj,ipV 3
j X V 2

j,iqzZ̃i,j Ď X̃i,j and V 3
i zZ̃i,j Ď Ỹi,j. Thus

ψj,ipV 3
j X V 2

j,iq Ď Z̃i,j Y X̃i,j and V 3
i Ď Z̃i,j Y Ỹi,j. Because I is finite the set

Ş

jPI,V 1
i,j‰H

Ỹi,jY Z̃i,j is open. Obviously it contains V 3
i . Using Lemma 1.11 we find

an open set V̂ 3
i in Rm with V̂ 3

i Xr0,8r
m“ V 3

i , V̂ 3
i Xr0,8r

m“ V 3
i and V̂ 3

i Ď Ỹi,jYZ̃i,j
for all j P I with Ṽ 1

i,j ‰ H. Now we calculate

ψi,jpV̂ 3
i X Ṽ

2
i,jq X r0,8r

m
“ ψi,jpV̂ 3

i X Ṽ
2
i,jq X r0,8r

m
“ ψi,jpV̂ 3

i X Ṽ
2
i,j X r0,8r

m
q

Ďψi,jpV̂ 3
i X Ṽ

2
i,j X r0,8r

m
q “ ψi,jpV 3

i X V
2
i,jq.

Given x P V 2
i we find an open x-neighbourhood Ṽ 2

i,x with x P V 2
i,j implies Ṽ 2

i,x Ď Ṽ 2
i,j.

This is possible because I is finite and so
Ş

jPI,xPṼ 2
i,j
Ṽ 2
i,j is open. Now we shrink

Ṽ 2
i,x such that x P ψj,ipV 3

j X V 2
j,iq Ď Z̃i,j Y X̃i,j implies Ṽ 2

i,x Ď Z̃i,j Y X̃i,j; again this

is possible because I is finite. Suppose ϕ´1
i pxq R U

3
j , then

x R ϕipU3
j X U

2
i q “ ϕipU3

j X U
2
i q Ě ϕipϕ

´1
j pV

3
j X V

2
j,iqq “ ψj,ipV 3

j X V
2
j,iq Ě ψj,ipV̂ 3

j X Ṽ
2
j,iq.

Hence we can shrink Ṽ 2
i,x such that ϕ´1

i pxq R U
3
j implies Ṽ 2

i,x X ψj,ipV̂
3
j X Ṽ

2
j,iq “ H.

We calculate

V 2
i,j X V

2
i,k “ ϕipU

2
i X U

2
j X U

2
k q “ ϕipϕ

´1
j pϕjpU

2
i X U

2
j q X ϕjpU

2
j X U

2
k qqq.

Let S Ď Rm be open with V 2
i,j X V 2

i,k “ S X r0,8rm. Given x P V 2
i,j X V 2

i,k we get

x P ψj,ipṼ
2
j,i X Ṽ 2

j,kq. Analogously we get x P ψj,ipṼ
2
j,i X Ṽ 2

j,kq. Therefore we can

shrink Ṽ 2
i,x such that x P V 2

i,j X V
2
i,k implies Ṽ 2

i,x Ď ψj,ipṼ
2
j,i X Ṽ

2
j,kq Xψk,ipṼ

2
k,i X Ṽ

2
k,jq.

Moreover by replacing Ṽ 2
i,x with Ṽ 2

i,x X S we can assume Ṽ 2
i,x X r0,8rĎ V 2

i,j X V 2
i,k.

Because x P S we get x P Ṽ 2
i,x. Now we shrink Ṽ 2

i,x further by replacing Ṽ 2
i,x with

the connected component of x in Ṽ 2
i,x. The maps ψi,j|Ṽ 2

i,x
and ψk,j ˝ ψi,k|Ṽ 2

i,x
are

real analytic and coincide on Ṽ 2
i,x X r0,8r

mĎ V 2
i,j X V 2

i,k hence they coincide on

the connected set Ṽ 2
i,x. Now we define the open set Ṽ 2

i :“
Ť

xPV 2
i
V 2
i,x that is a

neighbourhood of V 2
i in Rm and so Ṽ 2

i is also a neighbourhood of V 3
i . Hence we

find an open neighbourhood Ṽ 3
i of V 3

i with Ṽ 3
i Ď Ṽ 2

i X V̂ 3
i and Ṽ 3

i Ď Ṽ 2
i . We get

Ṽ 3
i X r0,8r

m“ Ṽ 2
i X V̂ 3

i X r0,8r
m“ Ṽ 2

i X V 3
i “ V 3

i and so V 3
i Ď Ṽ 3

i X r0,8r
m.

We also get Ṽ 3
i X r0,8r

mĎ Ṽ 2
i X V̂ 3

i X r0,8r
m“ Ṽ 2

i X V 3
i “ V 3

i . Defining Ṽ 3
i,j :“

Ṽ 3
i X ψj,ipṼ

3
j X Ṽ

2
j,iq for i, j P I we get ψi,jpṼ

3
i,jq “ Ṽ 3

j,i.

Now we define the sets Ṽ 3
i,j,k :“ Ṽ 3

i,j X Ṽ 3
i,k and want to show ψi,jpṼ

3
i,j,kq “ Ṽ 3

j,i,k

and ψi,j|Ṽ 3
i,j,k

“ ψk,j ˝ ψi,k|Ṽ 3
i,j,k

. If y P Ṽ 3
i,j,k we find x P V 2

i with y P Ṽ 2
i,x. Hence

y P Ṽ 2
i,xXψj,ipṼ

3
j XṼ

2
j,iqXψk,ipṼ

3
k XṼ

2
k,iq Ď Ṽ 2

i,xXψj,ipV̂
3
j XṼ

2
j,iqXψk,ipV̂

3
k XṼ

2
k,iq. Since

ϕ´1
i pxq R U

3
j ñ Ṽ 2

i,xXψj,ipV̂
3
j XṼ

2
j,iq “ H and ϕ´1

i pxq R U
3
k ñ Ṽ 2

i,xXψk,ipV̂
3
k XṼ

2
k,iq “
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H we get ϕ´1
i pxq P U3

j . Hence x P ϕipU
2
i X U2

j q X ϕipU
2
i X U2

k q “ V 2
i,j X V 2

i,k.

Therefore ψi,j|Ṽ 2
i,x
“ ψk,j ˝ ψi,k|Ṽ 2

i,x
and Ṽ 2

i,x Ď ψj,ipṼ
2
j,i X Ṽ 2

j,kq X ψk,ipṼ
2
k,i X Ṽ 2

k,jq.

Especially y P ψj,ipṼ
2
j,i X Ṽ

2
j,kq X ψk,ipṼ

2
k,i X Ṽ

2
k,jq and ψi,jpyq “ ψk,j ˝ ψi,kpyq. Hence

ψi,kpyq P Ṽ
2
k,j. Because y P Ṽ 3

i,j,k “ Ṽ 3
i,j X Ṽ 3

i,k we get ψi,kpyq P Ṽ
3
k X Ṽ 2

k,j. Thus

ψk,jpψi,kpyqq P ψk,jpṼ
3
k X Ṽ 2

k,jq. On the other hand ψi,jpyq P Ṽ
3
j , because y P Ṽ 3

i,j.

Hence ψi,jpyq “ ψk,jpψi,kpyqq P Ṽ
3
j X ψk,jpṼ

3
k X Ṽ 2

k,jq “ Ṽ 3
j,k. Moreover we have

ψi,jpyq P Ṽ
3
j,i, because y P Ṽ 3

i,j. Therefore ψi,jpyq P Ṽ
3
j,i,k. We get ψi,jpṼ

3
i,j,kq Ď Ṽ 3

j,i,k

and because ψ´1
i,j “ ψj,i we see that ψi,jpṼ

3
i,j,kq “ Ṽ 3

j,i,k.

Now we define the topological space M̃1 :“
š

iPI Ṽ
3
i as the disjoint topological

union and on M̃1 we define a relation „: Let x, y P M̃1, say x P Ṽ 3
i and y P Ṽ 3

j .

We call x equivalent to y if x P Ṽ 3
i,j, y P Ṽ

3
j,i and y “ ψi,jpxq. To show that „

is an equivalence relation on M̃1 we have to show its transitivity. Let x P Ṽ 3
i ,

y P Ṽ 3
j and z P Ṽ 3

k . Moreover let z P Ṽ 3
k,j, y P Ṽ

3
j,k, y P Ṽ

3
j,i, x P Ṽ

3
i,j, z “ ψj,kpyq

and y “ ψi,jpxq. Directly we get y P Ṽ 3
j,i X Ṽ 3

j,k “ Ṽ 3
j,i,k. Hence x “ ψj,ipyq P

ψj,ipṼ
3
j,i,kq P Ṽ

3
i,j,k and z “ ψj,kpyq P Ṽ

3
k,j,i, because y P Ṽ 3

j,i,k “ Ṽ 3
j,k,i. Moreover

we have ψi,kpxq “ ψj,kpψi,jpxqq “ z and so x and z are equivalent. Now we
define M̃ :“ M̃1{ „ as the topological quotient. Let π : M̃1 Ñ M̃, x ÞÑ rxs be the
canonical quotient map. Given j P I let ιj : Ṽ 3

j ãÑ M̃1, x ÞÑ px, jq be the canonical

inclusion. The topology on M̃ is final with respect to the maps π ˝ ιi : Ṽ
3
i Ñ M̃

with i P I. We show that the maps π ˝ ιi : Ṽ
3
i Ñ M̃ are open. To this end let

U Ď Ṽ 3
i be open and j P I. We calculate

ι´1
j pπ

´1
pπpUqqq “ ι´1

j

´!

py, kq P M̃1 : pDx P U Ď Ṽ 3
i q y „ x

)¯

(B.1)

“

!

y P Ṽ 3
j : pDx P U Ď Ṽ 3

i q y „ x
)

“ ψ´1
j,i pUq Ď Ṽ 3

j,i. (B.2)

Hence π ˝ ιi : Ṽ
3
i Ñ M̃ is continuous and open. Now we define the maps

ψi : πpṼ
3
i q Ñ Ṽ 3

i , p ÞÑ x if πpxq “ p and x P Ṽ 3
i . The map ψi is well-defined

because ψi,i “ idṼ 3
i

. Moreover ψi is bijective because its inverse is given by

ψ´1
i “ π ˝ ιi : Ṽ

3
i Ñ πpṼ 3

i q, x ÞÑ πpxq. Hence ψi is a homeomorphism. To
show that the maps ψi form a real analytic atlas for M̃ we mention ψ´1

i pṼ
3
j q “ Ṽ 3

i,j

and calculate for x P Ṽ 3
i,j

ψj ˝ ψ
´1
i pxq “ ψjpπpxqq “ ψj,ipxq.

Now we show that M̃ is a Hausdorff space. To this end, we show Ṽ 3
i,j Ď Ṽ 2

i,j.

Given y P Ṽ 3
i,j Ď Ṽ 2

i we find x P V 2
i with y P Ṽ 2

i,x. We want to show x P ψj,ipV 3
j X

V 2
j,iq. If this was not true, then ϕ´1

i pxq R U
3
j . With ϕ´1pxq R U3

j ñ Ṽ 2
i,xXψj,ipV̂

3
j X

Ṽ 2
j,iq “ H we get y R ψj,ipV̂

3
j X Ṽ 2

j,iq Ě ψj,ipṼ
3
j X Ṽ 2

j,iq Ě ψj,ipṼ
3
j,iq “ Ṽ 3

i,j. But since

this is a contradiction we get x P ψj,ipV 3
j X V

2
j,iq. With x P ψj,ipV 3

j X V
2
j,iq ñ Ṽ 2

i,x Ď

Z̃i,jYX̃i,j we get y P Z̃i,jYX̃i,j. Moreover we have y P Ṽ 3
i Ď V̂ 3

i Ď Ỹi,jYZ̃i,j and with

Ỹi,j X X̃i,j “ H we get y P Z̃i,j. Hence Ṽ 3
i,j Ď Z̃i,j and therefore Ṽ 3

i,j Ď Z̃i,j Ď Ṽ 2
i,j.
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B Proof of Theorem 1.12

Now let p ‰ q P M̃ . We choose x, y P M̃1 with πpxq “ p and πpyq “ q. Let
x P Ṽ 3

i and y P Ṽ 3
j . If there are an open x-neighbourhood Wx Ď Ṽ 3

i and an

open y-neighbourhood Wy Ď Ṽ 3
j with πpWxq X πpWyq “ H then M̃ has to be

Hausdorff, because of (B.1). Suppose there do not exist such neighbourhoods Wx

and Wy. Then we find a sequence pxnqnPN in Ṽ 3
i and a sequence pynqnPN in Ṽ 3

j with

xn „ yn for all n P N. Hence xn P Ṽ
3
i,j and yn P Ṽ

3
j,i and so x P Ṽ 3

i,j Ď V 2
i,j and

y P Ṽ 3
j,i Ď V 2

j,i. Since yn “ ψi,jpxnq for all n P N we get y “ ψi,jpxq. Therefore

y P Ṽ 3
j X ψi,jpṼ

3
i X Ṽ 2

i,jq “ Ṽ 3
j,i. With x “ ψj,ipyq we get x P Ṽ 3

i,j. We conclude
x „ y. But this contradicts p ‰ q.

We define the map ϕ : M Ñ M̃ by ϕ|U3
i

:“ π˝ιi˝ϕi. To see that ϕ is well-defined

choose p P U3
i X U3

j . We get ϕippq P Ṽ
3
i and ϕjppq P Ṽ

3
j moreover we have ϕippq P

ϕipU
3
i XU

3
j q “ V 3

i,j Ď Ṽ 3
i,j, ϕjppq P ϕjpU

3
i XU

3
j q “ V 3

j,i Ď Ṽ 3
j,i and ψi,jpϕippqq “ ϕjppq.

Hence ϕippq „ ϕjppq, and so ϕ is well-defined. Now we show that ϕ is injective.
Let p1, p2 P M with ϕpp1q “ ϕpp2q and p1 P U3

i and p2 P U3
j . We conclude

ϕipp1q „ ϕjpp2q and so ϕipp1q P Ṽ
3
i,j X r0,8r

m, ϕjpp2q P Ṽ
3
j,i and ψi,jpϕipp1qq “

ϕjpp2q. Hence ϕjpp1q “ ϕjpp2q and so p1 “ p2. We give ϕpMq the real analytic
structure such that ϕ becomes an real analytic diffeomorphism. If we can show
that M̃ is an enveloping manifold of ϕpMq we are done, because we can identify M
and ϕpMq. We have ϕpMq “ πp

š

iPI V
3
i q with

š

iPI V
3
i Ď

š

iPI Ṽ
3
i . If x P V 3

i then
ψi : πpṼ

3
i q Ñ Ṽ 3

i is a chart of M̃ around πpxq. We show ψipπpṼ
3
i q XϕpMqqq “ V 3

i .
Let p “ πpxq with x P Ṽ 3

i and p “ πpyq with y P V 3
j . Then x „ y and so x P V 3

i

because x “ ψj,ipyq P ψj,ipV
3
j,iq “ ϕi ˝ ϕjpV

3
j,iq Ď V 3

i . Now let x P V 3
i . Obviously

x “ ψipπpxqq and πpxq P πpṼ 3
i q X ϕpMq. It is left to show that ψi|

V 3
i

πpṼ 3
i qXϕpMqq

is a

chart of ϕpMq. To this end we show that ψi˝ϕ|ϕ´1pπpṼ 3
i qXϕpMqq

is a chart ofM . First,

we show that ϕ´1pπpṼ 3
i qXϕpMqq “ U3

i . Let p PM with ϕppq P πpṼ 3
i qXϕpMq. We

find j P I with p P U3
j . Moreover we find i P I and x P Ṽ 3

i with ϕppq „ x. Hence
ϕjppq „ x. Therefore ψj,ipϕjppqq “ x and so ϕippq “ x. We conclude p P U3

i .
Now let p P U3

i . Then ϕppq “ πpϕ´1
i ppqq P πpṼ

3
i q, because ϕ´1

i ppq P V
3
i . Now

we show ψi ˝ ϕ|ϕ´1pπpṼ 3
i qXϕpMqq

“ ϕi. Let p P ϕ´1pπpṼ 3
i q X ϕpMqq “ U3

i . Then

ψi ˝ ϕppq “ ψipπpϕippqqq “ ϕippq.
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C. Details for the proof of Theorem
3.40

In this chapter we state the rest of the proof of Theorem 3.401. This part of the
proof is stated in the appendix and not in Chapter 3, because its arguments are
completely analogous to the proof of [Gun11, Theorem 5.1.10] and we just recall
them for the convenience of the reader.

Proof. We use the notation from the proof of Theorem 3.40. First, we show that
ω is bilinear. For f, g P A b g, r P R and y P g we can choose a neutral triple
pλ, ν, µq that is neutral for f and for g. Especially this triple is also neutral
for rf ` g. Because we now get ω0prf ` g, λrf`g b yq “ ω0prf ` g, λ b yq “
rω0pf, λb yq ` ω0pg, λb yq “ rω0pf, λf b yq ` ω0pg, λg b yq, one can easily prove
that ω is bilinear (see also Lemma 3.38). Obviously ω is anti-symmetric. To show
that ω P Z2pAbg¸g, V q we choose f, g, h P Abg and x, y, z P g. First we mention
the trivialities dωpf, g, hq “ dω0pf, g, hq “ 0 and dωpx, y, zq “ 0. We can choose
a triple pλ, ν, µq that is neutral for f and g, and we can write f “

řn
i“1 fi b vi as

well as g “
řn
j“1 gj b vj. We calculate

λ ¨ rf, gs “
ÿ

i,j

λfigj b rvi, vjs “ rλf, gs “ rf, gs

and see that pλ, ν, µq is a neutral triple for rf, gs. Now we calculate

dωpf, g, yq “ ωprf, gs, yq ` ωprg, ys, fq ` ωpry, f s, gq

“ω0prf, gs, λb yq ` ω0prg, ys, fq ` ω0pry, f s, gq

“ω0prf, gs, λb yq ` ω0prg, λb ys, fq ` ω0prλb y, f s, gq “ dω0pf, g, λb yq “ 0.

To check that ω is a cocycle we calculate

dωppf, xq, pg, yqph, zqq “ dωpf, g, hq ` dωpf, g, zq ` dωpf, y, hq ` dωpf, y, zq

`dωpx, g, hq ` dωpx, g, zq ` dωpx, y, hq ` dωpx, y, zq “ 0.

It remains to show the injectivity of the map H2
ctpiq. Let ω P Z2

ctpA b g ¸ g, V q
with ω ˝ pi, iq “ η ˝ r‚, ‚s for η P LpAb g, V q. We define the continuous linear map
η1 : A b g ¸ g Ñ V , pf, vq ÞÑ ηpfq. We define the cocycle ω1 :“ ω ´ η1 ˝ r‚, ‚s on
Abg¸g. If we can show rω1s “ 0 in H2

ctpAbg, V q we are done. First of all we have
ω1pf, gq “ ωpf, gq ´ η1 ˝ rf, gs “ ω ˝ pi, iqpf, gq ´ ηprf, gsq “ 0 for all f, g P A b g.

1This chapter consist of material published before in the author’s preprint [Eyn14c].
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C Details for the proof of Theorem 3.40

For f, g P Ab g and y P g we calculate

0 “ ´dω1pf, g, yq “ ω1prf, gs, yq ` ω1prg, ys, fq

“0

`ω1pry, f s, gq

“0

“ ω1prf, gs, yq.

Because A b g is perfect, we get that ω1 equals 0 on A b g ˆ g in terms of the
natural identifications. For f1, f2 P Ab g and y1, y2 P g we have

ω1ppf1, y1q, pf2, y2qq “ ω1pf1, f2q

“0

`ω1py1, f2q

“0

`ω1pf1, y2q

“0

`ω1py1, y2q.

Because g is a subalgebra of A b g ¸ g we get ω|gˆg P Z
2
ctpg, V q and because g is

semisimple, we get with the Whitehead theorem for locally convex spaces, stated
in [Gun11, Corollary A.2.9], that H2

ctpg, V q “ t0u. Therefore, we find η2 P Lpg, V q
with ω|gˆg “ η2 ˝ r‚, ‚s. Finally we see ω1 “ η3 ˝ r‚, ‚s with η3 : A b g ¸ g Ñ V ,
pf, vq ÞÑ η2pvq.
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D. Some differential topology

In this chapter we present some topological considerations.1

Lemma D.1. We use the notation introduced at the beginning of Chapter 4.1.
Let H ãÑ P

q
ÝÑM be a finite-dimensional smooth principal bundle (with σ-compact

total space P ), ρ : HˆV Ñ V be a finite-dimensional smooth linear representation
and V :“ P ˆρ V be the associated vector bundle.

(a) The canonical isomorphism of vector spaces (see e.g. [Bau14, Satz
3.5]) Φ: ΩkpP, V qhor

ρ Ñ ΩkpM,Vq, ω ÞÑ ω̃ (with ω̃xpv1, . . . , vkq “

ωσpxqpTσpv1q, . . . , Tσpvkqq for a local section pσ : U Ñ P of P
q
ÝÑ M and

x P U) is in fact an isomorphism of topological vector spaces.
(b) The isomorphism of vector spaces Φ: Ωk

c pP, V q
hor
ρ Ñ Ωk

c pM,Vq, ω ÞÑ ω̃ is an
isomorphism of topological vector spaces.

Proof. (a) We choose an atlas ψi : q
´1pUiq Ñ U ˆ H of trivialisations of

P with i P I. Let σi :“ ψ´1
i p‚, 1Hq be the canonical section corre-

sponding to ψi. As ΩkpP, V qhor
ρ and ΩkpM,Vq are Fréchet spaces it is

enough to show the continuity of Φ (Open mapping theorem). The topol-
ogy on ΩkpM,Vq “ ΓpAltkpTM,Vqq is initial with respect to the maps
ΓpAltkpTM,Vqq Ñ ΓpAltkpTUi,V|Uiqq, η ÞÑ η|Ui . Given ω P ΩkpP, V qhor

ρ ,
x P Ui and v P TxUi, we have pω̃|Uiqxpvq “ rσipxq, σ

˚
i ωxpvqs. Because

ΓpAltkpTUi,V|Uiqq – ΓpAltkpTUi, V qq – ΩkpUi, V q it is enough to show the
continuity of ΩkpP, V qhor

ρV
Ñ ΩkpUi, V q, ω ÞÑ σ˚i ω. The map C8ppTP qk, V q Ñ

C8ppTUiq
k, V q, f ÞÑ f ˝ Tσi ˆ . . .ˆ Tσi is continuous (see [GN]). Now, the

assertion follows because we can embed ΩkpP, V qhor
ρV

into C8ppTP qk, V q.
(b) The analogous map from ΩkpP, V qhor

ρ to ΩkpM,Vq is continuous. Hence,
given a compact set K Ď M , we get that the corresponding map from
Ωk
KpP, V q

hor
ρ to Ωk

KpM,Vq is continuous. Therefore Φ is continuous. The
same argument shows that the inverse of Φ is continuous.

The basic considerations in the following lemma seem to be part of the folklore.

Lemma D.2. Given the situation of Definition 4.3 the following holds:

(a) The vertical bundle of H ãÑ P
q
ÝÑ M is given by V P “ TπpV P qq and

HP :“ TπpHP q is a principal connection on P .
(b) Given k P N0 the pullback π˚ : ΩkpP , V qhor

ρV
Ñ ΩkpP, V qhor

ρV
, θ ÞÑ π˚θ is an

isomorphism of topological vector spaces and an isomorphism of chain com-
plexes.

1This chapter consist of material published before in the author’s preprint [Eyn14b].
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D Some differential topology

(c) Given k P N0 the pullback π˚ : Ωk
c pP , V q

hor
ρV
Ñ Ωk

c pP, V q
hor
ρV
, θ ÞÑ π˚θ is an

isomorphism of topological vector spaces and an isomorphism of chain com-
plexes.

Proof. (a) First we show TπpV P q Ď kerpTqq. For v P V P we get TqpTπpvqq “
Tq ˝ πpvq “ Tqpvq “ 0. To see kerpTqq Ď TπpV P q let Tqpwq “ 0. We find
v P TP with Tπpvq “ w. Hence TqpTπpvqq “ Tq ˝ πpvq “ Tqpvq “ 0. Thus
v P V P and so w P TπpV P q. Now, we show that TπpHP q is a smooth sub
vector bundle of TP . Let x P P . Obviously pTπpHP qqx :“ TxPXTπpHP q is
closed under scalar multiplication. Let v, w P pTπpHP qqx “ TxP XTπpHP q.
We find p1, p2 P P , v1 P Hp1P and w2 P Hp2P with Tp1πpv1q “ v and
Tp2πpw2q “ w. Hence πpp1q “ x “ πpp2q. Therefore we find n P N with
p1 “ p2 ¨ n and w̃ P Tp1P with TRnpw̃q “ w2. Now, we calculate

v ` w “ Tp1πpv1q ` Tp2πpw2q “ Tp1πpv1q ` Tp2π ˝ Tp1Rnpw̃q

“Tp1πpv1q ` Tp1π ˝ TRnpw̃q “ Tp1πpv1q ` Tp1πpw̃q “ Tp1πpv1 ` w̃q.

Next we show that HP is a smooth sub vector bundle. Let p P P . Because
π is a submersion, we find a smooth local section τ Ṽ Ñ P of π on an open
p-neighbourhood Ṽ Ď P . We define p :“ τppq and find a smooth local
frame σ1, . . . , σm : Ũ Ñ TP of the smooth sub vector bundle HP on a p-
neighbourhood Ũ Ď P . Without loss of generality we can assume τpṼ q Ď Ũ .
Given i P t1, . . . ,mu we define the smooth map

σi : Ṽ Ñ TP , x ÞÑ Tπpσi ˝ τpxqq.

The map σi is a section for the tangential bundle TP because for x P Ṽ we
have σi ˝ τpxq P TτpxqP and thus σipxq P TπpτpxqqP “ TxP . Let x P Ṽ . Now,
we show that pσipxqqi“1,...,m is a basis of pTπpHP qqx “ TxP X TπpHP q. Let
λi P R with

řm
i“1 λi ¨ σpxq “ 0. We conclude Tτpxqπp

řm
i“1 λi ¨ σipτpxqqq “ 0.

Hence

Tq

˜

m
ÿ

i“1

λi ¨ σipτpxqq

¸

“ Tq

˜

Tπ

˜

m
ÿ

i“1

λi ¨ σipτpxqq

¸¸

“ 0.

Therefore
řm
i“1 λi ¨ σipτpxqq P VτpxqP and thus λi “ 0 for i “ 1, . . . ,m. Let

p P P with πppq “ x. One easily sees that the linear map pTpπq|HpP : HpP Ñ
pTπpHP qqx is a surjection (see above). Because m “ dimpHpP q the linearly
independent system σipxqi“1,...,m is a basis of pTπpHP qqx. Now, we show that
HP :“ TπpHP q is a principal connection on P . Because π is a submersion
and TpP “ HpP ‘ VpP we get VxP ` HxP “ TxP for x P P . If Tpπpvq “
Tp1πpwq with v P VpP , w P Hp1P and πppq “ πpp1q “: p we get

Tpq ˝ πpvq “ Tpq ˝ πpwq.

Hence 0 “ Tqpvq “ Tqpwq. Thus w P Vp1P . Therefore w “ 0 and so
Tpπpvq “ Tp1pwq “ 0 in TpP . We conclude V P ‘ HP “ TP . It is left to
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show that HP is invariant under the action of H. Obviously it is enough
to show TxRrgspHxP q Ď HxrgsP for x P P and rgs P H. Let v P HxP . We
find p P P and w P HpP with v “ Tpπpwq. With Rrgs ˝ π “ π ˝ Rg and
πppgq “ x.rgs we calculate

TRrgspvq “ TppRrgs ˝ πqpwq “ Tpgπ ˝ TpRgpwq P TpgπpHpgP q

ĎTxrgsP X TπpHP q “ HxrgsP .

(b) First we show that π˚ makes sense. Without loss of generality we assume
k “ 1. Let θ P Ω1pP , V qhor

ρV
. We have π ˝Rg “ Rrgs ˝ π. Hence

ρV pgq ˝R
˚
gπ
˚θ “ ρV prgsq ˝ pπ ˝Rgq

˚θ “ ρV prgsq ˝ pRrgs ˝ πq
˚θ

“π˚pρV prgsq ˝R
˚

rgsθq “ π˚θ.

Moreover if v P VpP we get Tpπpvq P VπppqP and so π˚θppvq “ θπppqpTpπpvqq “
0. We show that π˚ is bijective. It is clear that π˚ is injective because π
is a submersion. To see that π˚ is surjective let η P Ω1pP, V qhor

ρV
. We define

θ P Ω1pP , V qhor
ρV

by θπppqpTpπpvqq :“ ηppvq for p P P and v P TpP . To
see that this is well-defined, we choose p, r P P , v P TpP and w P TrP
with πppq “ πprq and Tpπpvq “ Trπpwq. We find n P N with p “ r.n.
Because ηr.npTrRnpwqq “ ηrpwq (N “ kerpρV q), it is enough to show ηppvq “
ηppTrRnpwqq. We have π ˝Rn “ Rrns ˝ π “ π. Hence Tπ ˝ TRn “ Tπ. Thus
TpπpTrRnpwqq “ Trπpwq “ Tpπpvq. Therefore we find x P kerpTpπq with
TrRnpwq ` x “ v in TpP . Hence Tpqpxq “ 0 because Tq “ Tq ˝ Tπ. So
x P VpP and hence ηppxq “ 0. The form θ is ρV -invariant because for g P H,
p P P and v P TpP we get

pρV prgsq ˝R
˚

rgsθqπppqpTpπpvqq “ ρV prgsq ˝ θπppq.rgspTRrgspTpπpvqqq

“ρV pgq ˝ θπpp.gqpTp.gπpTRgpvqqq

“ρV pgq ˝ ηp.gpTRgpvqq “ θπppqpTπpvqq.

Moreover, θ is horizontal because given u P VpP with p P P , we find p P P
with πppq “ p and v P VpP with u “ Tpπpvq. Hence θppuq “ θπppqpTπpvqq “
ηppvq “ 0. Obviously we have π˚θ “ η. In order to show that π˚ is an iso-
morphism of chain complexes we choose p P P and v, w P TpP and calculate

pπ˚DρV θqppv, wq “ pDρV θqπppqpTπpvq, Tπpwqq

“pdθqπppqpprh ˝Tπpvq, prh ˝Tπpwqq “ pdθqπppqpTπ ˝ prhpvq, Tπ ˝ prhpwqq

“pπ˚dθqppprhpvq, prhpwqq “ pDρV π
˚θqppv, wq.

It is left to show that π˚ is a homeomorphism. Because the corresponding
spaces are Fréchet-spaces it is enough to show the continuity of π˚. We can

embed ΩkpP , V qhor
ρV

into C8pTP
k
, V q and ΩkpP, V qhor

ρV
into C8pTP k, V q. The

map C8pTP
k
, V q Ñ C8pTP k, V q, f ÞÑ f ˝ pTπ ˆ ¨ ¨ ¨ ˆ Tπq is continuous
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(see [GN]). Now the assertion follows.
(c) This follows from (b) and the fact that π˚pΩk

KpP , V q
hor
ρV
q “ Ωk

KpP, V q
hor
ρV

for
a compact set K ĎM .

The statement in the following lemma seems to be also well-known, but since we
do not have a reference for this exact result, we give a proof in the following. For
this we use techniques from the proof of [Ros97, Theorem 1.5]. See also [BT82,
Chapter 6].

Lemma D.3. If q : M̂ Ñ M is a smooth finite manifold covering then
q˚ : Ω1

cpM,V q Ñ Ω1
cpM̂, V q, θ ÞÑ q˚θ induces a well-defined isomorphism of

topological vector spaces H1
dR,cpM,V q Ñ H1

dR,cpM̂, V q, rθs ÞÑ rq˚θs. Therefore

q˚ : H1
dR,cpM,V q Ñ H1

dR,cpP , V q, θ ÞÑ q˚θ is an isomorphism of topological vector
spaces.

Proof. As in Chapter 4 we use the notation Ωk
KpM̂, V q :“ tθ P

ΩkpM̂, V q| supppθq Ď q´1pKqu for a compact subset K Ď M . Let n be the
order of the covering. The first step is to define a continuous linear map
q˚ : Ωk

c pM̂, V q Ñ Ωk
c pM,V q for k P N0. Without loss of generality let k “ 1.

Let θ P Ω1
cpM̂, V q. Given y P M we find a y-neighbourhood Vy Ď M that is

evenly covered by open sets Uy,i Ď M̂ with i “ 1, . . . , n. We have diffeomorphisms

qyi :“ q|
Vy
Uy,i

. Then

θ̃y :“
1

n

n
ÿ

i“1

pqyi q˚θ|Uy,i

is a form on Vy with pqyi q˚θ|Uy,i “ θpTqyi
´1
pvqq for x P Vy and v P TxVy. We

define q˚θ :“ θ̃ P Ω1
cpM̂, V q by θ̃x :“ θ̃yx for x P Vy. Now we show that this is a

well-defined map. Let x P Vy X Vy1 for y1 PM with a y1-neighbourhood Vy1 that is
evenly covered by pUy1,iqi“1,..,n. After renumbering the sets Uy1,i we get

q|´1
Uy,i

“ q|´1
Uy1,i

on Vy X Vy1 for i “ 1, . . . , n. Hence

θ̃yx “
1

n

ÿ

i

ppqyi q˚θ|Uy,iqx “
1

n

ÿ

i

ppqy
1

i q˚θ|Uy1,iqx “ θ̃y
1

x for x P Vy X Vy1 .

We note that q is a proper map because it is a finite covering. Let supppθq Ď
q´1pKq for a compact set K Ď M . If y R K then q´1ptyuq X q´1pKq “ H. Hence
q´1ptyuq X supppθq “ H, from which

q˚θy “ θ̃yy “
1

n

ÿ

i

ppq|Uyi q˚θ|Uy,iqy “
1

n

ÿ

i

θq|´1
Ui
pyq “ 0
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follows. HenceMzK ĎMz tx PM : q˚θx ‰ 0u. Therefore tx PM : q˚θx ‰ 0u Ď K
and so supppq˚θq Ď K. Obviously q˚ is linear. Moreover, q˚ is continuous because
the analogous map from Ω1pM̂, V q to Ω1pM,V q is continuous and q˚pΩ

1
KpM̂, V qq Ď

Ω1
KpM,V q. Moreover q˚ is a homomorphism of chain complexes: Given y P M ,

v, w P TyM we calculate

pq˚dθqypv, wq “
1

n

ÿ

i

ppqyi q˚dθ|Uy,iqypv, wq “
1

n

ÿ

i

pdpqyi q˚θ|Uy,iqypv, wq

“pdq˚θqypv, wq.

Now we show

q˚ ˝ q
˚
“ idΩ1

cpM,V q . (D.1)

Given θ P Ω1
cpM,V q, y PM and v P TyM we calculate

pq˚q
˚θqypvq “

1

n

ÿ

i

pqyi ˚q
˚θ|Uy,iqypvq “

1

n

ÿ

i

pq˚θ|Uy,iqqyi
´1
pyqpTq

y
i
´1
pvqq

“
1

n

ÿ

i

θqpqyi
´1
pyqqpTq ˝ q

y
i
´1
pvqq “ θypvq.

Hence q˚ ˝ q
˚ “ idΩ1

cpM,V q. We know that q˚ factorises through a continuous linear

map q˚ : H1
dR,cpM,V q Ñ H1

dR,cpM̂, V q and because q˚ is a homomorphism of chain

complexes we get a map q˚ : H1
dR,cpM̂, V q Ñ H1

dR,cpM,V q. With equation (D.1)
we see

q˚ ˝ q
˚
“ idH1

dR,cpM,V q .

Hence q˚ is surjective. It remains to show that q˚ : H1
dR,cpM,V q Ñ H1

dR,cpM̂, V q

is also injective. To this end we show q˚pB
1
c pM̂, V qq “ B1

c pM,V q. Given f P
C8c pM,V q we calculate

q˚pdq
˚fq “ q˚q

˚df “ df.

The proof of Lemma D.4 is similar to the proof of [Nee04, Lemma II.10 (1)].

Lemma D.4. Let M be a connected finite-dimensional manifold, E be a finite-
dimensional vector space and θ P Ω1pM,Eq. If

ż

α0

θ “

ż

α1

θ

for all closed smooth curves α0, α1 : r0, 1s Ñ M such that α0 is homotopyic to α1

relative t0, 1u, then θ P Z1
dRpM,Eq.
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Proof. Let q : M̃ ÑM be the universal smooth covering of M . First we show that
q˚θ is exact. To this end we show that q˚θ is conservative. Let γ : r0, 1s Ñ M̃
be a smooth closed curve in a point p0 P M̃ and qpp0q “: x0 P M . Because M̃ is
simply connected, we find a homotopy H from γ to cp0 relative t0, 1u. Hence q ˝ γ
is homotopy to cx0 “ q ˝ cp0 relative t0, 1u. Therefore we get

ż

γ

q˚θ “

ż

r0,1s

γ˚q˚θ “

ż

r0,1s

pq ˝ γq˚θ “
p˚q

ż

r0,1s

c˚x0
θ “ 0.

Equation p˚q follows from the assumptions of the lemma. Because q˚θ is exact we
find f P C8pM̃, Eq with q˚θ “ df . Hence we get

q˚dθ “ dq˚θ “ ddf “ 0.

Therefore dθ “ 0 because q is a submersion.
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lished). 2013.
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resentations of Fréchet-Lie supergroups.” In: Math. Z. 275.1-2 (2013),
pp. 419–451.

[NW09] Neeb, K.-H. and Wockel, C. “Central extensions of groups of sections”.
In: Ann. Global Anal. Geom. 36.4 (2009), pp. 381–418.

[Omo78] Omori, H. “On Banach-Lie groups acting on finite dimensional mani-
folds”. In: Tohoku Math. J. (2) 30 (1978), pp. 223–250.

[ONe83] O’Neill, B. Semi-Riemannian geometry. With applications to relativity.
Pure and Applied Mathematics, 103. New York-London etc.: Academic
Press, 1983.

[Ros97] Rosenberg, S. The Laplacian on a Riemannian manifold. An introduc-
tion to analysis on manifolds. Cambridge: Cambridge University Press,
1997.

[Sch15] Schmeding, A. “The diffeomorphism group of a non-compact orbifold”.
In: Diss. Math. 507 (2015).
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