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Abstract

In this thesis, we give new examples and constructions for infinite-dimensional
Lie groups. At the beginning, we construct a smooth Lie group structure on the
group of real analytic diffeomorphisms of a compact real analytic manifold with
corners. In the following part, we examine conditions for the integrability of a
given Banach subalgebra of the Lie algebra of a Lie group that is modelled on
a locally convex space. For that reason, we elaborate a corresponding Frobenius
theorem. In the third part of this thesis, we show that the canonical invariant
symmetric bilinear form on the Lie algebra of compactly supported sections of a
finite-dimensional perfect Lie algebra bundle is universal in a topological sense. At
the end of this thesis, we construct central extensions of Lie groups of compactly
supported sections of Lie group bundles over non-compact base manifolds. In
addition we show the universality of certain examples of these central extensions.

German translation: In dieser Arbeit stellen wir neue Beispiele und Konstruk-
tionen fiir unendlich-dimensionale Lie-Gruppen vor. Wir beginnen damit, dass
wir eine glatte Lie-Gruppenstruktur auf der Gruppe der reell-analytischen Diffeo-
morphismen einer kompakten reell-analytischen Mannigfaltigkeit mit Ecken kon-
struieren. Daran anschliefend untersuchen wir Bedingungen fiir die Integrabilitat
von Banach-Unteralgebren von Lie-Algebren von Lie-Gruppen, die auf lokal kon-
vexen Raumen modelliert sind. Hierfiir zeigen wir einen entsprechenden Frobe-
niussatz. Im dritten Teil der Arbeit beweisen wir, dass die kanonische invariante
symmetrische Bilinearform auf der Lie-Algebra der kompakt getragenen Schnitte
eines endlich-dimensionalen perfekten Lie-Algebren-Biindels in einem topologi-
schen Sinn universell ist. Den Schluss der Arbeit bildet ein Kapitel, in dem wir
zentrale Erweiterungen von Lie-Gruppen von kompakt getragenen Schnitten von
Lie-Gruppen-Biindeln mit nicht kompakter Basis konstruieren. Zusatzlich zeigen
wir die Universalitat von gewissen Beispielen dieser Erweiterungen.






Introduction and Notations

What is an infinite-dimensional Lie group?

At first we want to introduce our framework for infinite-dimensional Lie groups]]
Finite-dimensional manifolds “are spaces that locally look like some Euclidean
space R™ ([Leel3| p. 1]). Hence, an infinite-dimensional manifold should be a
topological space that looks locally like an open subset of an infinite-dimensional
vector space. Of course the infinite-dimensional vector space on which our mani-
fold is modelled has to be a topological space. With the option in mind to define
differentiable manifolds the space should even be a topological vector space. One
class of infinite-dimensional manifolds are the so-called “Banach manifolds” that
are manifolds modelled over Banach spaces. Using the concept of Fréchet differen-
tiability it is clear what a F'C*-Banach manifold should be. A standard reference
for Banach manifolds is [Lan01]. Moreover, the definition of a Banach-Lie group
is canonical.

Although there are interesting examples of Banach manifolds, there exists no
reasonable structure of a Banach-Lie group on the group of smooth diffeomor-
phisms Diff (M) for a compact finite-dimensional smooth manifold M ([KM97, p.
457], [Omo78]). Hence, one has to model Diff (M) over a more general topological
vector space. It turns out that locally convex spaces are the right choice.

There are several approaches to differential calculus on locally convex spaces
(for details, we recommend [Kel74]). Among the most popular approaches is the
convenient setting, invented by Frolicher, Kriegl and Michor (see [KM97]). A map
is called smooth in the convenient setting if it is smooth along smooth curves
(see [KM97, Definition 3.11]). Of course, this differential calculus is inspired by
Boman’s Theorem (see [KM97, Theorem 3.4] and [Bom67]). The second popular
approach is the differential calculus known as Keller’s C*-theory (obviously the
name is inspired by [Kel74]) going back to Bastiani (see [Bas64]). In this approach,
a continuous map is called continuously differentiable if all directional derivatives
df (x,v) exist and the map (x,v) — df(x,v) is continuous. For details on this
approach, we recommend [Mil84], [Ham82] and [GN]. In this thesis, we will always
use this differential calculus. Because Milnor used Keller’s C*-theory to turn the
diffeomorphism group into a Lie group (see [Mil84]), Lie groups constructed within
Keller’s C*-theory are sometimes called Milnor-Lie groups. One can show that the
convenient differential calculus and Keller’'s C*-theory are equivalent on Fréchet
spaces (see [BGNO4, p. 270] and [KM97, Theorem 4.11]) but beyond the Fréchet

IThis subchapter of the introduction contains material published before in the author’s preprint
|[Eyn15].
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case this is false. For example, a map that is smooth in the convenient sense need
not be continuous (see e.g. [Glo06¢, p. 1]).

Diff“(M) as a Milnor-Lie group for a real analytic
manifold M with corners

The prime example of an infinite-dimensional Lie group is the diffeomorphism
group Diff(M) of a finite-dimensional manifold M P| First, we categorise different
approaches how to construct a Lie group structure on Diff(M). Then we recall
the exact conditions for the existence of a Lie group structure on Diff(M).

Having chosen a differential calculus, one has to choose a strategy how to turn
Diff (M) into a Lie group. There are basically two different approaches. The first
one (and most common one), is to turn the space of (C" respectively smooth
respectively analytic) mappings from M to M (in our notation C"(M; M) with
r € N u {oo,w}) into an infinite-dimensional manifold. To this end, one chooses
a Riemannian metric on M and obtains a Riemannian exponential function exp.
For small n € I'(T M), one can define the map ¥, := exp on. Now it turns out that
in many cases it is possible to obtain a manifold structure on the mapping space
C"(M; M) by charts similar to W: 1 — W,. The second step in this strategy is to
show that Diff(M) is an open submanifold of C"(M; M) and that the group op-
erations have the required differential property (e.g. C”, smooth or real analytic).
In the following, we call this strategy the “global approach” (in the table further
down we cite articles that used this approach).

The second approach leads to the same Lie group structure on Diff (M) but
its construction is very different. Again one chooses a Riemannian metric on M.
With the help of the map ¥: n +— W, one obtains a manifold structure on a subset
of Diff (M) that contains the identity idy;. Now one uses the theorem of local
description of Lie groups to extend the manifold structure to Diff (M) and to turn
it into a Lie group. In the following, we call this strategy the “local approach”.
This approach was first used in [Glo06¢].

In the following table we cite different articles that constructed Lie group
structures on diffeomorphism groups.[ﬂ We emphasize that this list is not compre-
hensive. The list just contains the cases that are of interest for this thesis.

2This subchapter of the introduction consist of material published before in the author’s preprint
[Eyn15].

3We mention that in [Sch15, Remark 5.22] it was stated that the proof of [Sch15] circumvents
some problems which remained in [BB08]. Moreover, in [KM90, p.1] it was stated that the
proof of |Les85] has a gap.




Diff“(M) as a Milnor-Lie group for a real analytic manifold M with corners

Y Global, Global, Local,
Convenient | Keller-C* Keller-C'

C™, compact, no corners [Mil84]

C®, non compact, no corners [KMO7] [Glo06c] |

C®, non compact, with corners [Mic80| o

orbifold, compact [BBO§] [Sch15] |

orbifold, non compact [Sch15] |
¥, compact, no corners [KM90] [DS15], [Les82] | ]

Given a compact real analytic manifold without corners, Kriegl and Michor
constructed in [KM90| a real analytic Lie group structure on Diff* (M) in the con-
venient sense. This structure is modeled over the space of real analytic vector
fields T (T'M) of M. A map defined on an open subset of I'Y(T'M) is smooth in
the convenient setting if and only if it is smooth in the Keller’s C'°-theory (|DS15,
p.142]). But a map on I'“(T'M) that is real analytic in the convenient sense need
not be real analytic in the conventional sense as in |[Mil84, p. 1028] (see also
[DS15], p. 142]). We emphasise that the Lie group structure from [KM90] is only
real analytic in the convenient setting (cf. [DS15| Proposition 1.9]). Because a real
analytic structure induces a smooth structure, the Lie group structure of [KM90|
induces a structure of a smooth Milnor-Lie group on Diff”( M) as mentioned in
[DS15, Proposition 2.9]. One might expect that there also exists a real analytic Lie
group structure in the conventional sense on Diff*(A/). But Dahmen and Schmed-
ing showed in [DS15] that there exists no real analytic structure on Diff*(S') in
the conventional sense of Milnor. Therefore we cannot expect that there exists a
real analytic structure in the conventional sense on Diff* (M) for a compact real
analytic manifold M with corners. The aim of Chapter [1] of this thesis is to turn
the group Diff” (M) of real analytic diffeomorphisms of a finite-dimensional com-
pact real analytic manifold M with corners into a smooth Milnor-Lie group. This
generalises in some sense parts of [KM90] and |[DS15]. More precisely we show the
following theorem:

Theorem A. Let M be a finite-dimensional compact real analytic manifold with
corners such that there exists a boundary respecting real analytic Riemannian met-
ric on a real analytic enveloping manifold M. Then there exists a unique smooth
Lie group structure on the group of real analytic diffeomorphisms Dift* (M) mod-
elled over I'“,(TM) such that for one (and hence each) boundary respecting Rie-
mannian metric on M the map n — W, is a diffeomorphism from an open O-
neighbourhood in T'% (T M) onto an open identity neighbourhood in Dift*(M).

In this context, an enveloping manifold M of M is a real analytic manifold without
boundary that contains M as a submanifold with corners. Moreover, a Riemannian
metric on the enveloping manifold M is called boundary respecting, if the strata
&M of M are totally geodesic submanifolds of M. The symbol I'(T'M) stands
for the space of stratified vector fields. These are analytic vector fields on M that
restrict to vector fields on the strata ¢ M.
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Dahmen and Schmeding ([DS15, Proposition 2.9]) respectively Kriegl and Mi-
chor ([KM90]) used the global approach to turn Diff(M) (with M compact and
OM = () into a smooth respectively real analytic Lie group. We instead want
to use the local approach for our Theorem |A| (if M has corners). Hence, to a
certain point our Chapter (1] gives also an alternative construction for [KM90] and
[DS15]. The local approach was developed by Gléckner in |Glo06¢|, and we follow
the line of thought of [Glo06¢|. But Gléckner considered smooth diffeomorphisms
on a manifold without corners. Hence, one obvious obstacle is that we cannot use
bump functions because we work in the real analytic setting. Moreover, because
our manifold M has corners, we will have to model our structure on the space of
stratified vector fields as in [Mic80[]

We also mention [Les82|. In this paper Leslie used the global approach to turn
the group of real analytic diffeomorphisms of a compact real analytic manifold
without corners into a smooth Lie group. But as pointed out in [KM90, p.1], his
proof has a gap.

In the following, we describe our strategy in more detail. Given a manifold with
boundary, one can use the double of the manifold to embed it into a manifold
without boundary (see, for example, [Leel3, Example 9.32]). However this does
not work in the case of a manifold with corners because the boundary of a manifold
with corners is not a manifold. If one works with a smooth manifold with corners,
one can use a partition of unity to construct a “strictly inner vector field” ([Mic80,
p. 21]). With the help of this vector field, one obtains the analogous result (see
[Mic80, p. 21] and [DH73| Proposition 3.1]). Obviously this approach does not
work if one considers a real analytic manifold with corners. For technical reasons
we show the following theorem in Section [L.1}

Theorem B. Given a compact real analytic finite-dimensional manifold with cor-
ners M, there exists an enveloping manifold M of M. If My and My are enveloping
manifolds of M then there exists an open neighbourhood Uy of M in My, an open
neighbourhood Uy of M in My and a real analytic diffeomorphism p: Uy — Uy with

In [BW59, Proposition 1] Bruhat and Whitney show that given a real analytic
paracompact manifold M (without corners), there exists a complex analytic man-
ifold Mc¢ that contains M as a totally real submanifold. The manifold M¢ is
called complexification of M. We can transfer their proof without difficulties to
show our Theorem [B] In addition, we elaborate some technical properties of real
analytic mappings concerning extensions to enveloping manifolds in Section
The proofs are analogous to the case of extensions of real analytic mappings to
complexifications (see e.g. [DGS14, Chapter 2]).

That we use the local approach (|Glo06¢| and [Sch15]), is reflected in the struc-
ture of Chapter [1] of this thesis: In Section [I.2] we construct a manifold structure
on a subset U of Diff (M) that contains the identity idy,. The next step is to show

4In [Mic80] Michor turned the group of smooth diffeomorphisms of a non-compact manifold with
corners into a smooth Lie group. Michor worked with the global approach and as mentioned
above this leads to a very different construction.




Integrability of Banach subalgebras

the smoothness of the group operations. To this end, we elaborate some impor-
tant preparatory results in Section In Section [I.4] we show the smoothness of
the multiplication on U and in Section the smoothness of the inversion. The
smoothness of the conjugation is proved in Section Our proof of the smooth-
ness of the conjugation map follows closely the ideas of [Glo06¢, Section 5]: First
we show that the Lie group structure on Diff (M) is independent of the choice of
the Riemannian metric (see [Glo06¢c, Section 5]). With help of this result, we can
show the smoothness of the conjugation map as in |Glo06¢c, Section 5] (see Lemma
1.87)).

Integrability of Banach subalgebras

Given a finite-dimensional Lie group GG with Lie algebra g and a Lie subalgebra
h < g, the Integral Subgroup Theorem ([HN12, Theorem 9.4.8]) tells us that we
find a subgroup H of G that is a Lie group with Lie algebra § such that the
inclusion is smooth | The analogous result for closed Lie subalgebras b is true for
so-called Baker-Campbell-Hausdorff Lie groups (see |[GN]). These are real analytic
Lie groups modelled over locally convex spaces that possess an exponential function
that is locally C*-diffeomorphic around 0. However as mentioned above Diff*(S')
does not admit the structure of a real analytic Lie group. The same holds for the
group of smooth diffeomorphisms (see [Mil84, Corollary 9.2])f

Analogously to |[Lan01, Chapter VI], [Les68| or |Les92|, Frobenius theorems
for manifolds that are modelled over locally convex spaces can be used to show
generalisations of the Integral Subgroup Theorem (this was mentioned in [GloO8b]).

In 2001, Teichmann showed a Frobenius theorem for finite-dimensional distri-
butions on manifolds that are modelled on locally convex spaces in the convenient
sense. It was possible to obtain the analogous result in the author’s master’s thesis
[Eyn12] in the context of manifolds that are modelled over locally convex spaces in
the sense of Keller’s C*-theory. Moreover, in [Eyn12, Chapter 4] it was shown that
if the Lie group G in question has an exponential map then every finite-dimensional
Lie subalgebra h < L(G) is integrableﬂ

Now, it is a natural question to ask if every Lie subalgebra h < L(G) that is
complemented as a topological vector subspace and is a Banach space with the
induced topology is integrable as well. The answer is yes. In Chapter 2| we prove
the following theorem.

5This subchapter of the introduction consist of material published before in the author’s preprint
|[Eynl4a)

6In the case where G is the Lie group of smooth diffeomorphisms of a smooth compact manifold
without boundary, the Integral Subgroup Theorem has been proved in [Les92]. The special
case G = Diff (M) has been considered in [Les85|.

7 Frobenius theorems for co-Banach distributions for manifolds that are modelled over locally
convex spaces were obtained in [Hil00| respectively [Eynl2]. Other Frobenius theorems have
also been elaborated in |Les68| and [Les92] but the more complicated conditions of Leslie’s
results are of a quite different kind.
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Theorem C. Let G be a Lie group modelled over a locally convex space and
h < L(G) be a Lie subalgebra that is complemented as a topological vector subspace
and is a Banach space with the induced topology. If G admits an exponential
map then we can find a Lie group H that is a subgroup of G and an immersed

submanifold of G such that L(H) = b.

Although Theorem [C] can be obtained with the help of [Nee06, Theorem IV.4.9.]f]
we will give an alternative proof by using a Frobenius theorem. Hence the main
work to prove Theorem [C], will be to show a Frobenius theorem for Banach distri-
butions for manifolds that are modelled over locally convex spaces:

Theorem D. Let M be a C"-manifold modelled over a locally convex space E
with r € Nu {0}, r = 4 and F be a complemented subspace of E such that F' is a
Banach space with the induced topology from E and D is an involutive subbundle
of TM with typical fibre F'. Assume that for all pg € M there exists an open pg-
neighbourhood U < M and a C™'-vector field X: U x F — TU with parameters
i F' such that:

(a) The map FF — I'(TU), v— X(s,v) is linear;

(b) We have im(X) < D;

(¢) The map F — D,,, v — X(po,v) is an isomorphism of topological vector

spaces;

(d) The vector field X provides a local flow with parameters of class C".

(e) It exists a chart ¢: U — V of M, such that p(py) = 0 and dp(D,,) = F.
In this situation D s integrable.

Theorem [D] will be proved in Section [2.1] Besides new arguments, we use meth-
ods from the case where the distribution in question is finite-dimensional ([Tei01]
respectively [Eynl2]). Also, we use methods developed in |CS76], where Chill-
ingworth and Stefan work with singular distributions on Banach manifolds. The
preceding theorem (details of which will be explained later) will be obtained there.
In Theorem [D] we have to assume that the vector field admits a local flow because
this is not automatic for initial value problems in locally convex spaces. Indeed, it
is possible to find linear initial value problems in locally convex spaces that have
several solutions, or no solution at all.

Universal bilinear forms for Lie algebras of compactly
supported sections

In Chapter [3] we address a further new construction in infinite-dimensional Lie
theory’l An invariant symmetric bilinear form 3 on a Lie algebra g taking values
in a vector space is called algebraically universal if any invariant bilinear form on g
factorises over § by composition with a unique linear map. Here invariance means

8This was mentioned by K. H. Neeb in comments to this thesis.
9This subchapter of the introduction consist of material published before in the author’s preprint
[Eynl4c]
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that B([z,y],2) = B(x, |y, z]) for all z,y,z € g. Given any Lie algebra g, such
an algebraically universal bilinear form was constructed in [Gunll, Remark 4.1.5].
It is denoted by kg4: g x g — V. Analogously, a continuous invariant symmetric
bilinear form S on a locally convex Lie algebra g taking values in a locally convex
space is called topologically universal (we also use the term “universal continuous
invariant symmetric bilinear form”) if we get all other continuous invariant bilinear
forms on g by composing /5 with a unique continuous linear map. In [Gunll], such
a topologically universal invariant bilinear form was constructed in the case of
Fréchet-Lie algebras (see [Gunll, Proposition 4.5.3]). But the construction works
also in the more general case of locally convex Lie algebras (see Remark . We
denote the topologically universal invariant bilinear form on g by /{Sti gxg—
Vg'“’t. Although any two topologically universal invariant symmetric bilinear forms
differ only by composition with an isomorphism of topological vector spaces, it
is not enough to know the mere existence of universal bilinear forms in general.
Often, one would like to use more concrete realisations of universal symmetric
invariant bilinear forms. This is the reason why in |Gunll|, Giindogan constructed
a concrete universal continuous bilinear form for the Lie algebra I'(R) of sections
for a given Lie algebra bundle K with finite-dimensional o-compact base M. If g
is the finite-dimensional perfect typical fibre of & and V(R) is the vector bundle
with base M and fibres V(R,) for p € M, Giindogan showed in [Gunll, Theorem
4.6.2] that kg: I'(R) x I'(R) — T'(V(R)), (n,¢) — kgo (n,¢) is a topologically
universal invariant symmetric bilinear form (here kg is the fibrewise universal
invariant bilinear form).

Moreover, Gilindogan showed that the maps kg: I'(R) x I'(R) — T'(V(R))
and kg, : 1 CF(M,g) x CF(M,g) — CF(M,V,) are algebraically universal.
Summarising we obtain the following table:

algebraically universal | topologically universal

kg, : CP(M,g)> » C*(M,V,) | [Gunll, Prop. 4.3.3] [Gun11, Theo. 4.6.2]
kg, : CX(M,g)* > CP(M,V,) | [Gunll, Prop. 4.3.3]

ka: T(R)? - T(V(R)) [Gunll, Theo. 4.4.4] | |Gunll, Theo. 4.6.2]

ka: Te(R)? - T(V(R))

Hence, the first aim of Chapter |3|is to show that the map rg: T'.(R)* — T.(V(R))
is topologically universal, by proving:

Theorem E. For a perfect finite-dimensional Lie-algebra g, a o-compact man-
ifold M and a Lie algebra bundle K with base M and typical fibre g, the map

ka: Le(M, R)? — T(V(R)) with kg(n,¢)(p) = kg, (n(p),((p)) is topologically uni-

UB’I"S(ZF_-O].

190bviously this shows that kg, : CF (M, g)*> — CF (M, Vy) is topologically universal. Moreover
it shows that kg: [.(&)? — [.(V(R)) is algebraically universal. In fact given a vector space
W and an invariant symmetric bilinear form ~: T'.(£)? — W, we can equip W with a locally
convex topology such that v is continuous. Hence we obtain the existence of the required
linear map. Because of Remark [3.3|the image of kg generates T'c(V (R)). Therefore we obtain
the uniqueness statement.
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While the locally convex topology on I'(R) is a well accessible Fréchet-topology,
the locally convex topology on I'.(f) is an inductive limit topology. Hence, it is
more difficult to handle.

Universal bilinear forms like kg from Theorem [E] play an important role in
the extension theory of locally convex Lie algebras. Following [Woc06, Definition
A.2.1] respectively |[NeeO2b, Chapter 1], we define a central extension of a locally
convex Lie algebra g by a locally convex space V' (considered as an abelian Lie
algebra) to be a short exact sequence 0 — V < g 4, g — 0 of locally convex Lie
algebras such that the map V' < g is a topological embedding, V lies in the center

of g and ¢ has a continuous linear section. A further central extension V' < g’ <, g
of g by V is called equivalent to V < g - g, if there exists an isomorphism
¢: g — @ of topological Lie algebras such that |y =idy and ¢ = ¢’ op on ¢ (see
[Woc06|, Definition A.2.4]). The set of equivalence classes of central extensions of g
by V is denoted by Ext(g, V). As usual, we can describe central extensions by the
Lie algebra cohomology. Hence, we recall the concept of continuous Lie algebra
cohomology for example from [Nee02b, Chapter 1] respectively [Gunll, Appendix
Al in the followingE} A continuous anti-symmetric bilinear map w: g — V is
called 2-cochain (or simply cochain). It is called cocycle if 0 = w([zy, x2], x3) +
w([za, 3], 1) +w([zs, 1], 2) and cobounday if there exists a continous linear map
v: g — V such that w(xy, ) = Y([z1, x2]) for all z1, 29, x5 € g. We write Z2(g, V)

for the space of 2-cochains and B (g, V') for the space of 2-coboundaries. One easily

sees B2 (g, V) < Z2%(g,V) and we define H%(g, V) := Z2%(g,V)/B2(g,V) . Given
w € Z2%(g,V), we obtain the locally convex Lie algebra V' x,, g with the Lie bracket
[(v1,21), (v2, 22)] = (w(x1,22), [x1,22]) for v; € V and z; € g and the central
extension V <> V x,, g —2 g. This induces a bijection H2(g,V) — Ext(g, V).

In the following, we recall the concept of universality for example form [Nee02b,
Chapter 1] respectively [Gunll, Appendix A]: Given two central Lie algebra ex-
tensions Vi — g1 = g and Vi — g2 - g of the locally convex Lie algebra g,
we call a morphism ¢: g; — g of locally convex Lie algebras a morphism of Lie
algebra extensions if ¢ = g o . In this way, one obtains the category of Lie
algebra extensions of g and an object in this category is called universal if it is
initial. This definition yields a definition of universality of equivalence classes of
central extensions. For now, we say that a cocycle w: g2 — V is universal if the
corresponding central extension is universalm.

The second aim of Chapter [3] is to show the universality of an extension of
certain so-called topological current algebras. In general these are algebras of
the form A ® g, where A is a commutative locally convex algebra and g is a
locally convex Lie algebra. In [Mai02, Theorem 16], Maier constructed a universal
continuous central extension for current algebras of the form A ® g, where A is a
unital commutative complete locally convex algebra and g is a finite-dimensional
semisimple Lie algebra. The canonical example for such a current algebra is given

11 Of course the underlying concept of these definitions is the Chevalley-Eilenberg chain-complex
presented e.g. in [HN12, Chapter 7.5] in the case without topology and |Gunll] in the case
of topological Lie algebras.

12WWe recall the concept of universality in more detail in Chapter
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by the smooth functions from a manifold M to g. To show the universality of the
canonical cocycle w: ['.(8)? — ﬁi(M, V(R)) in [JW13, p. 129, (1.1)], Janssens and
Wockel used |Mai02, Theorem 16] to show the universality of the canonical cocycle
for the compactly supported smooth functions from a o-compact manifold to a
finite-dimensional semisimple Lie algebra g in [JW13, Theorem 2.7]. Giindogan
showed in [Gunll, Theorem 5.1.14] that the ideas from [JW13] can be used to show
the universality of the canonical cocycle on current algebras A ® g with pseudo-
unital commutative algebras A that are inductive limits of unital Fréchet algebras.
But this class of current algebras does not contain the compactly supported smooth
maps CP(M,g) on a o-compact finite-dimensional manifoldll—_gl. So in Section (3.3
we show that the cocycle constructed in |[JW13| respectively [Gunll, Theorem
5.1.14] is universal if the algebra A is a complete locally convex commutative
pseudo-unital algebra which is the inductive limit of subalgebras A,, < A such
that we can find an element 1, € A with 1, -a = a for all a € A,. Obviously,
this class of algebras contains the compactly supported smooth functions on a
o-compact manifold. More precisely we prove:

Theorem F. Let A be a complete locally convexr commutative pseudo-unital algebra
such that it is the inductive limit of subalgebras A,, < A with n € N such that we
find for every n € N an element 1,, € A with 1, -a = a for alla € A,. If g is a
finite-dimensional semisimple Lie algebra then wga: AQ g x A®g — Vya, with
(a®z,b®y) — Kg(z,y) ®[a-da, (b)] is a universal cocycle for A® g.

The proof of Theorem [F|is based on the ideas from [JW13, Theorem 2.7]. But the
discussion of the surjectivity of the map H2(i) in the proof of [JW13, Theorem
2.7] was not complete (see Remark [3.39). Therefore the main work will be to show
that this map is actually surjective.

Extensions of groups of compactly supported
sections

Having discussed central extensions of Lie algebras in Chapter [3, we will con-
tinue with new constructions of central extensions of Lie groups in Chapter
Like in [Nee02a], we use the following definition of a central extension of infinite-
dimensional Lie groups: Let Z, G and G be Lie groups modelled over locally
convex spaces. A short exact sequence 0 — Z — G % G — 0 of Lie groups
is called central extension of G by Z, if Z lies in the center of G, and G % G
is a smooth Z-principal bundle over the basis G. One easily sees that the con-
dition that G % G is a Z-principal bundle is equivalent to the existence of a
smooth local section of G % @ that is defined on an open 1-neighbourhood.

A further central extension Z < (' L G of G by Z is called equivalent to

13For a compact subset K of M, the algebras C32(M) are not unital. Hence, one cannot deduce
|Gunl1l), Corollary 5.2.14] from [Gunll, Theorem 5.2.13] as has been done in |[Gunll].

14This subchapter of the introduction consist of material published before in the author’s preprint
|[Eynl14b]
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Z G5 G, if there exists a Lie group isomorphism ¢: G — @' such that
¢olz = idz and ¢ = ¢ o ¢ on G’ (see [Woc06, Definition A.2.4]). This defines a
natural equivalence relation on the set of Lie group extensions of G by Z. We
write Ext(G, Z) for the set of equivalence classes. Now we consider an abelian
Lie group Z as a trivial G-module and recall the concept of Lie group coho-
mology and its relation to central extensions of Lie groups form [Nee02a]. We
call a map f: G x G — Z that is smooth on a (1,1)-neighbourhood a cocy-
cle if f(1,91) = f(g1,1) and f(g1,92) + f(9192,93) = f(91,9193)f (g2, g3) for all
g1, 92, 93 € G and write Z2 (G, Z) for the group of cocycles. Moreover, f is called
coboundary if there exists a map ¢: G — Z which is smooth on an identity neigh-
bourhood such that f(g1,92) = ©(9192)¢(g1) te(g2)~! and p(1) = 1. We write
B2 (G, Z) for the group of coboundaries. The second group cohomology is defined
as H2 (G,7) := 7% (G,Z)/B? (G, Z). Now let G be connected. There exists a
canonical bijection H? (G,Z) — Ext(G,Z): If f e Z% (G,Z) we obtain a group
G x ¢ Z with multiplication (g1, 21) - (92, 22) := (g192, 21 + 22 + f(g1, ¢92)) and using
the theorem of local description of Lie groups one obtains a Lie group structure on
G x ; Z such that Z < G x ; Z % G becomes a central extension of Lie groups (see
[Nee02a), Proposition 4.2]). Hence, we can describe the Lie group extensions of G
by Z with the Lie group cohomology H? (G,Z). A straightforward calculation
shows that a central extension of Lie groups Z — G > G induces a central ex-

tension of topological Lie algebras L(Z) < L(G) L), L(G). We say that a given
central extension of topological Lie algebras V < g — v integrates to a central
extension of Lie groups Z «— G — G, if the derived Lie algebra extension of this
Lie group extension is given by V < g — ~.

Central extensions play an important role in the theory of infinite-dimensional
Lie groups. For example, every Banach-Lie algebra g is a central extension 3(g) —
g — ad(g), where the centre 3(g) and ad(g) are integrable to a Banach-Lie group;
integrability of g corresponds to the existence of a corresponding central Lie group
extension (see [vK64]).

Inspired by the seminal work of van Est and Korthagen, Neeb elaborated the
general theory of central extensions of Lie groups that are modelled over locally
convex spaces in 2002 (see [Nee02a]). In particular, Neeb showed that certain
central extensions of Lie algebras can be integrated to central extensions of Lie
groups: If the central extension of a locally convex Lie algebra V < g — g (with
a sequentially complete locally convex space V') is represented by a continuous Lie
algebra cocycle w: g? — V and G is a Lie group with Lie algebra g, one considers
the so-called period homomorphism

per,: m(G) — V, o] — J w'

where w! € Q(G, V) is the canonical left invariant 2-form on G with w! (v, w) =
w(v,w) and o is a smooth representative of the homotopy class [o] (the map per,,
is well-defined and a group homomorphism see |[Nee02al, Definition 5.8]). One
writes I, for the image of the period homomorphism and calls it the period group

10



Extensions of groups of compactly supported sections

of w. The important result from |[Nee02a] is that if II, is a discrete subgroup
of V and the adjoint action of g on g integrates to a smooth action of G on g
then V' — g — g integrates to a central extension of Lie groups (see [Nee(2a,
Proposition 7.6 and Theorem 7.12]).

Given two central Lie group extensions Z; — @1 I G and Zy — é’z 2, G, we
call a Lie group homomorphism ¢: G —Gya morphism of Lie group extensions
if g1 = ¢2 o . In this way, one obtains a category of Lie group extensions and
an object in this category is called universal if it is initial (see [Nee02bl Definition
4.3]). In 2002 Neeb showed that under certain conditions a central extension of a
Lie group is universal in the category of Lie group extensions if its corresponding
Lie algebra extension is universal in the category of central locally convex Lie
algebra extensions (see [Nee02bl, Recognition Theorem (Theorem 4.13)]).

The natural next step was to apply the general theory to different types of
Lie groups that are modelled over locally convex spaces. Important infinite-
dimensional Lie groups are current groups. These are groups of the form C* (M, )
where M is a compact finite-dimensional manifold and G is a Lie group. In 2003
Maier and Neeb constructed universal central extensions for current groups (see
[MNO3]) by reducing the problem to the case of loop groups C*(S!, G).

The compactness of M is a strong condition but it is not possible to equip
C*(M, @) with a reasonable Lie group structure if M is non-compact, although
one has a natural Lie group structure on the group C(M,G) of compactly sup-
ported smooth functions from a o-compact manifold M to a Lie group G. In
this situation, CP(M, @) is the inductive limit of the Lie groups CE(M,G) :=
{feC®(M,G) :supp(f) € K} where K runs through a compact exhaustion of
M. The Lie algebra of C°(M, G) is given by C°(M, g). In this context, CF (M, g)
is equipped with the canonical direct limit topology in the category of locally con-
vex spaces. In 2004, Neeb constructed a universal central extension for C(M, G)
in important cases (see [Nee04]).

It is possible to turn the group I'(M, G) of sections of a Lie group bundle G over
a compact base manifold M into a Lie group by using the construction of the Lie
group structure of the gauge group from [Woc07| (see [NW09, Appendix A]). The
Lie algebra of I'(M, G) is the Lie algebra I'(M, &) of sections of the Lie algebra
bundle & that corresponds to G. Hence, the question arises if it is possible to
construct central extensions for these groups of sections. Under certain conditions
this is indeed the case and was done in 2009 by Neeb and Wockel in [NW09).

As mentioned above, one way to show the universality of a Lie group extension
is to show the universality of the corresponding locally convex Lie algebra exten-
sion and then use the Recognition Theorem from |[Nee02b]. Janssens and Wockel
constructed a universal central extension of the Lie algebra I'.(M, &) of compactly
supported smooth sections in a Lie algebra bundle over a o-compact manifold in
the recent paper [JW13| from 2013. They also applied this result to the central
extension constructed in [NW09]: By assuming the base manifold M to be com-
pact they obtained a universal Lie algebra extension that corresponds to the Lie
group extension described in [NWOQ]E they were able to show the universality of

15 Analogously to Theorem |G| a further technical condition about the cardinality of a certain

11
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this Lie group extension.

In 2013, Schiitt generalised the construction of the Lie group structure from
[Woc07] by endowing the gauge group Gau,(P) of compactly supported morphisms
of a principal bundle over a not necessary compact base manifold M with a Lie
group structure, under mild hypotheses (see [Sch13]). It is clear that we can use an
analogous construction to endow the group of compactly supported sections of a
Lie group bundle over a o-compact manifold with a Lie group structure. Similarly,
Neeb and Wockel already generalised the construction of the Lie group structure
on a gauge group with compact base manifold from [Woc07] to the case of section
groups over compact base manifolds.

The principal aim of Chapter[dis to construct a central extension of the Lie group
of compactly supported smooth sections on a non-compact o-compact manifold
such that its corresponding Lie algebra extension is represented by the Lie algebra
cocycle described in [JW13] respectively Remark . This is a complementary
result to the ones obtained in [NW09|] (compact base manifold). The proof, which
combines arguments from |[Nee04] and [NWO09] with new ideas, is discussed in
Section [4.1] and Section 1.2l The main result is Theorem [£.53] where we show:

Theorem G. Let & be a finite-dimensional Lie algebra bundle with non-compact
but o-compact base manifold that is associated to a principal bundle H < P — M.
If the group H from Deﬁm’tion@ 18 finite then the canonical cocycle

w: Te(M,®)* — QUM, V) /dTe(M, V), (y,n) = [r(y,dn)]
can be integrated to a cocycle of Lie groups.

In the case of a compact base manifold M, corresponding results were obtained in
INW09, Theorem 4.24 and Theorem 4.26]@. One step is to show that the period
group of w is a discrete subgroup of ﬁi(M, V) := QL(M,V)/dU.(M,V). This will
be discussed in Theorem and is a complementary result to [NW09, Theorem
4.14]. In Section m, we show that the adjoint action of I'.(®) on IT(E) =
ﬁi(M, V) x, I['.(8) can be integrated to a Lie group action of I'.(G) on If(@\)
This is a complementary result to [NW09, Theorem 4.25].

In the second part of Chapter [4| (Section , we turn to the question of uni-
versality. Once the central extension is constructed, its universality is not hard to
see, mainly because we can use the arguments from the compact case ([JW13]).

We prove:

Theorem H. Let G — G — M be a finite-dimensional Lie group bundle with a
semisimple connected typical fibre G such that it is associated to the frame principal
bundle Aut(G) — Fr(G) — M and the group Aut(QG) is finite. Moreover, let M

be non-compact and o-compact. Then we obtain a universal Lie group cocycle that

group is needed.

16Tn [NW09] Neeb and Wockel also considered the case where the typical fibre of the Lie group
bundle is infinite-dimensional where as we only consider the case of a finite-dimensional typical
fibre.

12
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corresponds to the continuous Lie algebra cocycle w described in Theorem @ (or
[IW15]).

Notations and conventions

In the following, we fix some general notations and conventions.m Notation per-
taining to the respective chapters will be introduced there.

We write N for the set of integers {1,2,3,...}.

All locally convex spaces considered are assumed Hausdorff.

If E is a locally convex vector space and M a manifold, we write C°(M, E)
for the space of compactly supported smooth functions from M to E.

For a fibre bundle q: FF — M with total space F', finite-dimensional base
manifold M, projection ¢ and typical fibre E we write E — F % M. For
the space of smooth sections of such a fibre bundle we write I'(M, F'). If it is
clear form the context what our base manifold M is, we simply write I'(F).
In the case that F' is a vector bundle we write I'.(M, F') respectively I'.(F)
for the space of compactly supported smooth sections.

Let V be a finite-dimensional vector bundle over a finite-dimensional o-
compact manifold M. As usual, we write QF(M, V) for the space of V-valued
k-forms on M and QF(M, V) for the space of compactly supported V-valued
k-forms on M.

If V and W are vector spaces, we write Lin(V, W) for the space of linear maps
from V to W and in the case of topological vector spaces we write L(V, W)
for the space of continuous linear maps. As usual, we write L(V') := L(V, V)
and L(V)* for the group of automorphisms of V.

If g and b are Lie algebras, we write Hom(g, h)for the space of Lie algebra
homomorphisms from g to h and in the case of topological Lie algebras we
write Hom (g, ) for the space of continuous Lie algebra homomorphisms.
Given a finite-dimensional vector bundle V < V % M over a o-compact
manifold M, a compact set K = M and k € Ny we write Q% (M, V) for the
space of k-forms on M with values in the vector bundle V and support in
K. Using the identification Q*(M,V) =~ I'(M,A*T*M ® V) we give these
spaces the locally convex vector topology described e.g. in [Glo13| and equip
QF(M,V) with the canonical locally convex direct limit topology. Especially
the spaces I'(V) and I'.(V) carry the natural locally convex topology de-
scribed e.g. in [Glo13|. (See also Definition [3.8| for further details).

o If Vand W are two vector bundles we write V@ W for their Whitney sum.
e Given a group G and an element g € G, we write \,: G — G, h — gh

for the left multiplication with ¢ and g,: G — G, h — hg for the right
multiplication on G.

Let f: X xY — Z be a map. For o € X and yg € Y, we define the maps
fxo,e): Y = Z, y— f(xo,y) and f(e,90): X — Z, x — f(x,y0). Moreover,

"This subchapter of the introduction consist of material published before in the author’s
preprints [Eynldc| and [Eynl4b]
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we define the map f: X — Z¥, & — f(z,.). If g: X — Z¥ is a map, we
define the map g: X x Y — Z, (z,y) — g(x)(y).

14



1. Diff“(M) as a Lie group for a
manifold M with corners

The first aim of this thesis is to turn the group of real analytic diffeomorphisms of
a compact real analytic manifold with corners into a smooth infinite-dimensional
manifold modelled on the locally convex space of real analytic stratified vector
fields[] As mentioned in the introduction this generalises results of [DS15] re-
spectively [KM90] to the case of a manifold with corners. Moreover, we follow
[Glo06¢| and use the local approach (see introduction). Hence, we also obtain a
new construction for the case of a manifold without boundary.

1.1. Enveloping manifold

Fist, we will prove basic facts about real analytic maps on manifolds with cor-
ners and enveloping manifolds. The primary aim of this section is to show that a
real analytic manifold with corners can be embedded into a real analytic manifold
without corners. As mentioned in the introduction we cannot use a construction
like the double of a manifold because the boundary of a manifold with corners is
not a manifold. Moreover, we cannot use the construction from the smooth case
([DHT73|, Proposition 3.1] or [Mic80, p. 21]) because of the lack of real analytic
bump functions. Instead we adapt the proof of the existence and uniqueness of
complexifications of real analytic manifolds (see [BW59, Proposition 1] or [DGS14,
Section 2 and Section 3]). With the help of Lemma [I.11] our proof of the exis-
tence of enveloping manifolds (Theorem is completely analogous to [BW59,
Proposition 1] (see Appendix . For technical reasons, in this section we work
with manifolds that are modelled on a quadrant [0, co[™. Of course this definition
of a manifold with corners is equivalent to the one where manifolds with corners
are modelled on sets of the form [0, o[fxR™ % with & < m. In Appendix [A| we
recall some basic definitions and facts concerning manifolds with corners that are
used in this chapter.

Convention 1.1. (a) If z € R™ and ¢ > 0 we write B.(z) (respectively B.(z))
for the open (respectively closed) ball in R™ with respect to the Euclidean
norm. Moreover, we write BX(z) for the ball in R™ with respect to the
maximum norm.

(b) Let M be an m-dimensional manifold with corners. We write ¢? M for the
set of points in M of index j (like, for instance, in [Mic80]). Therefore, ¢? M
is an (m — j)-dimensional manifold. We write M := | J;; ¢’ M and call 0M

!This chapter consist of material published before in the author’s preprint [Eyn15]
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1 Diff“(M) as a Lie group for a manifold M with corners

the boundary of M. The set "M is called the interior of M (see Appendix
for more details).

Remark 1.2. We recall some common definitions and well-known basic facts:

(a) Let U < R™ be open and f: U — R™ be a map. The map f is called real
analytic if we can find an open neighbourhood V< C™ of U and a complex
analytic function f*: V. — C" with f*|y = f (see e.g. [GN}). We write
C¥(U;R™) for the space of real analytic maps from U to R™. The space of
complez analytic maps from V to C™ is denoted Hol(V;C™); we endow it
with the compact-open topology (see (DS15, Lemma A.7]).

(b) Given a real analytic map f: R™ 2 U — R™ and x € U there exists a 0-
neighbourhood V- R™ such that x +V < U and for all v € V we get

flz+v)=3,7, % i,”) In this context, 6 f is the k-th Gateaux differential
of f in x. (See ZGN.EI)

(c) If U is an open connected subset of R™, f: U — R™ is a real analytic map
and v € U with 6¥f = 0 for all k € Ny, then f =0 (see e.g. [GNJ)).

(d) Let U be an open subset of [0,0[™. We call a map f: U — R"™ real analytic
if every x € U has a neighbourhood U < R™ such that there exists a real
analytic map f: U — R™ with f lv =

(e) A corner-atlas of a Hausdorff space M is a set of homeomorphisms p: U, —
Vi, between open subsets U of M and V' of [0,00[™ such that the transition
maps Y o ot Uy nU,) — Vi are real analytic. The space M together
with a maximal corner-atlas is called real analytic manifold with corners.

(f) Let M and N be real analytic manifolds (without corners) and g1, g2: M — N
be real analytic maps that coincide on a non-empty open subset V. M. If
M is connected then g1 = go. (See e.g. [DGS14, Lemma 1.7]).

Lemma 1.3. If C = R™ is convez, U € R™ is open, C# @ and C U # & then
CnU#Y.

Proof. Let ze CnU. If z € C we are done. Hence, we can assume that z € 0C'.
Because C is convex and C # & we have C =C (see, e.g., [Jar81, p. 104,

Theorem 5]) and 0C = 6\6’ - C\C = 60 Hence z € 0C. Therefore, every
z-neighbourhood intersects C'. Thus U n C' # (. O

Lemma 1.4. Let U be an open subset of [0,0[™ and f: U — R™ be a real analytic
map. There exists an open neighbourhood U = R™ of U and a real analytic map
f:U— R with fly = f

P7"00f Given x € U we find €, > 0 and a real analytic map fo: Uy — R™ defined
on U, := B®(z) such that U, n [0,0["< U and fI\UﬁU = f. Let x,y € U with

U mU #@andzeU mU Nowwedeﬁnezbyzz.—zzlfzz/()andzz. —z;

if z; < 0. Obviously Z € [0, oo[ We show that Z € U, n U,. If 2z, > 0 we have

2Probably this will be stated in Definition 2.2.2.
3Probably this will be stated in Lemma 2.2.6.
4Probably this will be stated in Theorem 2.2.8.
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1.1 Enveloping manifold

|2i — 15| < &;. On the other hand, if z; < 0, we have x; = 0, ; — z; = |7, — 2| < &,.
We calculate |z; — Z| = |z; + 2| < 2; — 2; < &,. Hence, Z € U,. Analogously one
can show that # € U,. We conclude that [0, 0["nU, nU, # &. Using Lemma
we deduce that C :=]0, oo[™ AU, nU, # &. We have f$|c = fle = file. Slnce
U, n U, is convex, we get f$|U AT, = fy|U 7, Now we define U := Ut U, and

f:U—->R" 2 fw( )if z € U,. The construction above ensures that the map f
is well-defined. Moreover, f is real analytic and f lv=f. O

Convention 1.5. Given a manifold M we write A for the set of charts around
a point x € M. If N is a further manifold, f: M — N a map and ¢ € A}V(z), we

write oY := 1 o f ot -11,) for the local representative of f in the charts
¢: Uy, — R™ of M and ¢: Uy — R™ of N.

Definition 1.6. (Cf. [DH73| Proposition 3.1] respectively [Mic80, p. 21]) Let M
be a real analytic manifold with corners. A real analytic manifold without corners
M is called an enveloping manifold for M it M < M and for every x € M there

exists a chart ¢: U — V of M around z such that 3(U n M) = V ~ [0, o0[™ and

]Um 00" i a chart of M. In other words: M is an equidimensional submanifold

of M with corners such that its submanifold structure coincides with its original
manifold structure. The chart ¢ is called an enveloping chart of M.

Lemma 1.7. Let M # & be a real analytic manifold with corners and M an
enveloping manifold of M. Moreover, let N be a real analytic manifold without
corners and ¢i,¢s: M — N be real analytic maps. If g1lar = g2|m, then there
exists an open neighbourhood V< M of M such that gi|y = go|v

Proof. Let x € M and ¢ € AY with o(MnU,) = V,n[0, ©o[™ such that <,0|AV‘4”:UO ol

is a chart of M. Let ¢ be a chart of N around ¢,(z) = g2(x). Without loss of
generality, we can assume that g¢(U,), g2(U,) < Uy and we assume that V,, is
connected. We get gf’¢|vw[07oo[m = g5 7w|V¢m[07oo[m. Because of Lemmathe maps

¥ and gy ¥ coincide on V,,. Hence, g; and g, coincide on an open neighbourhood
of x. O]

The following lemma comes from |[DGS14, Lemma 2.1 (a)].

Lemma 1.8. Let X be a reqular topological Hausdorff space, K < X be a compact
subset and (U;)ier be an open cover of K. Then there exists an open cover (V) ey
of K such that, given ji,jo € J with V;; n'V;, # &, there ewists 1 € I with
‘/}1 o ‘/}2 c U

In the following lemma, we prove an existence result for extensions of real an-
alytic maps on real analytic manifolds with corners. The proof follows the idea

of [DGS14, Lemma 2.2 (a)], where Dahmen, Glockner and Schmeding showed an
analogous result for extensions to complexifications.

Lemma 1.9. Let M and N be real analytic manifolds with corners, M be com-
pact and M (respectively N ) be an enveloping manifold of M (respectively N ). If
f: M — N is a real analytic map, then there exists an open neighbourhood U < M
of M and a real analytic map g: U — N with gl = f
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1 Diff“(M) as a Lie group for a manifold M with corners

Proof. Given x € M, let p,: Uy — V; be an enveloping chart of M around x and

@a: Uy — V4 be an enveloping chart of N around f(z) with f(U;3 n M) < Uy n N.
In particular, ¢, 5112[]8[’00[ and \‘U/ZQZ ](\),OO[ are charts of M and N respectively with
n : dim(NV). There exists a real analytic map ¥: Vi n [0, 00["— V5 n [0, o0[™ such

that the diagram

U~ M / Uyn N
l‘ﬂl LADQ
Vi A [0, 0] —2——Vj 1 [0, o[

commutes. Let ¢, : V, — R" be a real analytic map defined on an open neighbour-
hood V, of Vi n [0, c0[™ such that ¥g|v, o> = %. Without loss of generality,
we can assume that V, < Vj and ¢,(V,) < V5. Now we define the open set
U, := 7' (V,) and the real analytic map g,: U, — Us © N by g, := 5 0th, 0 1.
We have ¢.|v,~m = flu,~m. By applying [DGS14, Lemma 2.1 (a)] or Lemma
we can find an open cover (W;)je; of M such that given ji,j, € I with
W; nW;, # & there exists x € M with W;, v W, < U,. Every point x € M is
contained in a set W;. We can replace W; with the connected component of x in
W; and hence we can assume all W; to be connected and intersecting M. For i €
there exists x; € M with W; < U,,. Now let ¢g;: W; — N be given by g; := g..|w

If i,k e I with W; n W), # &, there exists x € M with W; u W, < U,. We have
implies that
Ji = Qx we get gr = gz|w, and hence, g; . Now,
we define the open set U := [ J,.; U; and the real analytic map g: U — N by
. := g;. By construction g is well-defined and real analytic. ]

In the following lemma, we show that a real analytic diffeomorphism of mani-
folds with corners has a diffeomorphic real analytic extension to open subsets of
enveloping manifolds. Our proof is analogous to [DGS14, Lemma 2.2 (e)] (the
analogous result for extensions to complexifications).

Lemma 1.10. Let f: M — N be a real analytic diffeomorphism between real
analytic manifolds with corners. Moreover, let M and N be enveloping manifolds
of M and N respectively and U = M be an open neighbourhood of M. Furthermore,
let V. N be an open neighbourhood of N, f: U — N be an extension of f and
G: V — M be an extension of g := f~1. We can find a neighbourhood X < U of M
such that f|X is a real analytic diffeomorphism onto its open image Y := f( Yo v
with inverse gl .

Proof. Let X be the union of all connected components of F7Y(V) that intersect
M. Thus g o f|X X — M is real analytic and ¢ o f|XmM = idx~n. Hence
go f|X = idy. Let Y be the union of all connected components of g~ H(X) that
intersect N. As above f\X ogly:Y — M is real analytic and f|x o gly = idy.
Now we show that ¥ = f(X). The inclusion “c” follows from f|x o g|y =idy. It
remains to show that f(X) € Y. With jo f|x = idx we get f(X) < g }(X). If C
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1.2 Local manifold structure

is a connected component of f~1(V) that intersects M then f(C) is a connected
subset of g7!(X) and intersects N. Hence, f(C) S Y. O

The following technical lemma is a crucial tool for proving Theorem [1.12]

Lemma 1.11. Let U < [0,0[™ be open. Given an open neighbourhood O of
U in R™ there exists _an open neighbourhood U of U in R™ such that U < O,
Un[0,00["=U and U ~ [0,0["=T.

Proof. Given z € R™, we define z, € [0,0[™ by (24); := |z]. Hence, the map
A: R™ — [0,0[™, 2 — 2, is continuous and A~}(U) is open in R™. Given x € U
there exists e, > 0 with B, (x) n [0,00["< U and B, (z) < A" (U). The set
Ui = U,ery Be. () is open in R™. We also have Uy n [0, 00[™= U because U < Uy
and Uy [0, 0["= |, (B..(x) n [0,00[™) € U. Hence U = U, n [0,00[™ <
U, N [0,0[™. Now let z € U, N [0,00[™. There exists a sequence (zy)nen in U,
with lim,, o 2, = 2. Hence, z = A(2) = limnﬁoo_)\(zn). But with U; € A™Y(U) we
get M(z,) € U. Thus z € U. We conclude that Uy [0, 0["= U. Now let W be a
neighbourhood of U in R™ with U € W € W < O. We define U := U;nTV and get
UcW < OandUn[0,0["=UnW = U. Hence U = U [0, 0[™ < Un[0, o0[™.
Moreover,

Un[0,0["=UnW n[0,0["c Uy n W n[0,00["=W U =T.

Hence, Un [0,00["=U. O

With Lemma it is possible to transfer the proof of [BW59, Proposition 1] or
[DGS14) Proposition 3.1] (existence of complexifications of real analytic manifolds)

to our situation. Making use of Lemma |[1.11} our proof is complete analogous to
the one of [BW59, Proposition 1] or [DGS14) Proposition 3.1].

Theorem 1.12. Given a compact real analytic finite-dimensional manifold with
corners M, there exists an enveloping manifold M of M. If My and M, are
enveloping manifolds of M, then we can find a neighbourhood Uy of M in M, a
neighbourhood Uy of M in My and a real analytic diffeomorphism p: Uy — Uy with

Proof. See Appendix [B] O

1.2. Local manifold structure

As mentioned in the introduction we use the “local approach” developed in [Glo06¢]
and transfer its line of thought to the case of a compact real analytic manifold M
with corners. In this section we construct an open subset V of I'4(T'M) that
is small enough such that U := {expon:n e V} is a subset of Diff(M). As in
|[Glo06¢| we control the uniform norm of the vector fields of V and the norms
of the first derivative simultaneously. For the rest of the chapter the manifolds
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1 Diff“(M) as a Lie group for a manifold M with corners

with corners are modelled on spaces of the form R} := [0, o[ xR™* instead of
quadrants [0, 0™ (see Section [L.1)). Of course, both definitions are equivalent.
As in [Mic80|, we model groups of diffeomorphisms on spaces of stratified vector
fields.

Conventions and notations

First, we fix conventions and our notation.

Definition 1.13. Let M be a Riemannian manifold without boundary and N < M
be a Riemannian submanifold without boundary. We call N totally geodesic if all
geodesics of N are also geodesics of M (cf. [ONe83, Chapter 4; Definition 12 and
Proposition 13]).

Convention 1.14. (a) Let M be an m-dimensional compact real analytic man-
ifold with corners and M be an enveloping manifold of M. Moreover, let Mc
be a complexification of M. We assume that there exists a real analytic Rie-
mannian metric g on M such that the submanifolds ¢/ M are totally geodesic
for all j € {1,...,m}. We call such a metric boundary respecting. In this
context 2 < T'M is the maximal domain of definition of the Riemannian ex-
ponential map exp: 2 — M. Analogously let €, be the maximal domain
of definition of the Riemannian exponential map that comes from induced
Riemannian metric on ¢’ M for j € {0,...,m}.

(b) We write B,(z) for balls with radius r in R™ and BE(z) for balls with radius r
in C™. Moreover, we define B¥(x) := B,(x) n RY* with R = [0, oo[FxR™*.

Example 1.15. An example of a real analytic manifold with corners is e.g. a
tetrahedron as a submanifold of R3.

Remark 1.16. There exist finitely many enveloping charts @;: Ui,6 — Bg(0)
with i = 1,...,n and induced M-charts @;: Ujg — BE(0) such that M <
P, 0 (B (0)) (Compare the smooth case in [Glo06¢, 4.1] or [Lan01, Theo-
rem 3.3]). We use the shorthand notation K; := ¢; ' (B5(0)). There exist an open

subset U* of M¢ := (M)c, an open subset V;* of C™ and a complex analytic dif-
feomorphism @f: UF — V* such that K; < U, B5(0) < V* and ¢

(see (DGS14, Lemma 2.2 (a) and (e)]).

K, = $¥i

K;

Convention 1.17. e On R™ and C™ we use the Fuclidean norm.

e If f is a differentiable map on an open subset U of R}" (respectively R™
respectively C™) then f” always means the first derivative as a map from U
to L(R™) (respectively L(C™)). We equip L(R™) (respectively £(C™)) with
the operator norm ||s| .

e let K e {RC}. If f: X - K" is a map and YV < X, we write
IF1Y :=sup{|f(z)] : z € Y} and | f|s := | f|Z for the uniform norm. More-
over we write |[f||% := ||f|» and define gl := sup{|g(z)|: x e X} for
g: X — LEK™). If X € K™ and f is differentiable, we write |f|., :=
max (|| f]ec, [f'lc) and |y == sup {[ f (@)], | f'(2)]op : w € Y}
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1.2 Local manifold structure

o We fix charts ¢;, ¢; and ¢} as in Remark |1.16| Moreover, we define

Usr :=¢; (B (0)) and Uy, := @7 (B,(0))

forie {1,...,n} and r €]0, 6].

e If U is a finite-dimensional real analytic manifold, we write ['Y(T'U) for the
space of real analytic vector fields of U.

e If U is a complex finite-dimensional manifold, we write I'%(7T'U) for the space
of complex analytic vector fields of U.

e Let g; be the Riemannian metric on Bg(0) that is induced by ¢ via ¢; and
let exp;: €; — Bg(0) be the exponential map on Bg(0) that is induced by g;.

o If ne I'(TM) we define ng; := dp; onop;': By(0) — R™. If U is an open
neighbourhood of M in M (respectively in M) and 5 € ['*(TU) (respectively
n € TE(TU)) we define ng) 1= d@; ono @, : ¢;(Uig N U) S Bs(0) — R™
(respectively 7y := dpf omo i~ pF(UF nU) S Vi* — C™).

o If n e I'Y(TM) we can use the Lemma and Lemma to obtain an
extension that is a real analytic vector field 7 of a neighbourhood of M in M.
Analogously, we write n* for a complex analytic extension to a vector field on
an open neighbourhood of M in the complex analytic manifold Mg = (M)c.

o If f e C“’(E;(O);Rm) we write f for an real analytic extension to an open
neighbourhood of E’;(O) in R™ and f* for an real analytic extension to an
open neighbourhood of E’;(O) in C™.

e Given a compact connected subset K of a topological space X, we call a
sequence of open connected relatively compact subsets (Uy,)neny of X a con-
nected fundamental sequence of K if U, 2 U,,; 2 K for all n € N and
(Un)nen is a neighbourhood basis of K in X (cf. [DS15, A.9]).

e If U is open in C™ and k € {0, 1} we define

Hol; (U; C™) := {f € Hol(U;C™) : | f||% < o0}.

With [.|%: Holi(U;C™) — [0,0[, f = max(|f]w, | f o) (respectively
|o[% := |+]) the space Holy(U;C™) becomes a Banach space L We also
define

Holt (U; C™) := { f € Holy (U; C™)||fII% < <}

for e > 0 and k € {0, 1}.

e If V is a vector bundle over a manifold M and K is a compact subset of M
then write I'(V|K') for the space of germs of vector fields along K. If K is a
compact subset of C” then we write G(C™; C™|K), for the space of germs of
complex analytic C™-valued functions along K. If f: U — C™ is a complex
analytic map we write | f]x for the germ of f along K.

5This follows easily from [DS15, A7 and AS].
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1 Diff“(M) as a Lie group for a manifold M with corners

o If U < C™ is open, then we define

Hol; (U; C™)® := {f e Hol;(U;C™) : f(U nR™) < R™}.

Analogously, we define G(C™; C™|K)E.

Definition 1.18. (a) We call a vector field n € T“(T'M) stratified if

pedM = n(p)eT,d’M

for all p e M and write I's,(T'M) for the subspace of stratified vector fields
of M. (Cf. [Mic80, p. 107]).
A map n: U — R™ defined on a subset U < R}" is called stratified if

zj =0=mn(x); =0

forall x € U and j = 1,..., k. With respect to the canonical identification
this definition coincides with the one of @ If U is open in R}, we write
C¥(U;R™)g for the subspace of stratified real analytic maps. (Cf. [Gorl3]
Definition 4.0.7])

Let K € {R,C}, U < K™ be open and B¥(0) < U. A K-analytic map
f: U — K™ is called stratified along B¥(0) if

r;j=0=n(x); =0

for all z € BE(0) and j = 1,..., k. We write C*(U; R™), (in the case K = R)
and Hol(U;C™) (in the case K = C) for the subspaces of stratified maps
along B¥(0) on U.

A germ [f] € Q((Cm;(Cm\Ef(O)) is called stratified if one and hence all

representatives are stratified along BF(0). We write Q(Cm;Cm|§f(O))st
for the subspaces of stratified germs along B¥(0). Analogously, we define

G(Cm; Cm|BL(0))E.

Remark 1.19. A section n € T'“(TM) is stratified if and only if for all i €

(1,..

.,n} there exists R € [1,5] such that 1 : B (0) — R™ is stratified.

Topological considerations

In this subsection, we elaborate on topological foundations for constructions in the
sequel. As we want to model Diff“(M) over the space of stratified real analytic
vector fields, the so called Silva spaces play an important role.

In the following definition we recall the definition of a Silva space for the con-
venience of the reader from [Glol1, p. 260] respectively [Les85|:

Definition 1.20. A locally convex space is called a Silva space if it is the direct
limit of Banach spaces in the category of locally convex spaces over the index set
N such that the transition maps are injective compact operators.
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1.2 Local manifold structure

The facts from the following lemma about Silva spaces are direct consequences
of [Glol11} p. 261, Proposition 4.5]. See also |Les85] and [Flo71].

Lemma 1.21. Let E be a Silva space over an inductive system (E;,T; ;) with the
canonical morphisms p;: E; — E. Then the following holds:

(a) The space E is Hausdorff.

(b) The topology on E coincides with the inductive limit topology in the category
of topological spaces.

(c) Let (Us)ien be a sequence of open sets U; < E; such that (¢;(U;)) is an
ascending sequence of subsets of E. Then U := |J,.zUi  E is open in E.
Moreover, a map f: U — F to a Hausdorff locally convex space F is smooth
if fopn: U, — F is smooth for all n € N.

Remark 1.22. Using Lemma (@, we can conclude that a closed subspace F
of E is a Silva space over the inductive system (F;,T; ;|r,) with F; := go[l(F)ﬂ

As in the proof of [DS15, Appendix A.7], we use the Cauchy integral formula,
in the following lemma, to obtain an upper bound of the derivative of a complex
analytic function.

Lemma 1.23. IfU and V' are open subsets of C™ such that V' is relatively compact
and V < V < U then the map res: Hol)(U;C™) — Hol (V;C™), f — flv is
continuous and linear.

Proof. Let p: C™ x C™ — C™, (x,y) — z + y be the addition on C™. Now

V x {0} < p~1(U). With Wallace’s Lemma we can find € > 0 with V+§(€C(O) c U.
Hence, for all p € V' we have B.(p) € U. If v e C™ with |v| = 1 we can use the
Cauchy integral formula and we obtain

N oo

oo

FE@I<2 sw 1f)l <

qeﬁf(p)
Hence, |f/]¥, < 2 - |]L. .

Definition 1.24. Let K be a connected compact subset of C™ and (U, )nen
a connected fundamental sequence of K. As in |DS15, Appendix A.10] we
give G(C™;C™|K) the direct limit topology induced by the inductive system
Holy (U,; C™) — Hol)(Uny1;C™), f +— flu,,, in the category of locally convex
spaces. The following commutative diagram

- Holy(U,,; C™) Hol} (Up41;C™) - - -

- Hol} (U,; C™) Hol} (Uy41;C™) - - -

6In fact let X = Uien Xi be an ascending sequence of topological spaces. We give X the
inductive limit topology in the category of topological spaces. If Y € X is closed we write
O; for the induced topology of X on Y and O; for the inductive limit topology of the system
Y = U;en(Xi nY). The map id: (Y, 0;) — (Y, O;) is obviously continuous and bijective. It
is also a closed map because Y is closed.
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1 Diff“(M) as a Lie group for a manifold M with corners

implies that G(C™;C™|K) is the direct limit of the inductive system
Holy (U,; C™) — Hol,(Uny1;C™), f +— flu,,, in the category of locally convex
spaces.

In [DS15] A.10] it was shown that G(C™; C™|K) is a Silva space realised as the
inductive limit lim Hol} (U,; C™). In the following we show that G(C™; C™|K) also
is a Silva space realised as the inductive limit h_r)nHolé(Un; c™).

Lemma 1.25. Let U and V' be open subsets of C™ such that'V' is relatively compact
and V <V < U. Then the restriction Ty: Hol,(U;C™) — Hol,(V;C™), n — nly
1s a compact operator. Hence, if K < C™ is connected and compact with a con-
nected fundamental sequence (Up)nen then the space G(C™; C™|K) is a Silva space
realised as the inductive limit li_r)nHolé(Un;(Cm). Moreover, Q((Cm;((jm|§f(0))§ is
a Silva space realised as the inductive limit lim Hol, (U,; C™)E (see Remark .

Proof. We choose an open relatively compact subset W of C™ such that V <
W < W < U. From [KM90, Theorem 3.4] and [DS15, A. 10] we deduce that the
map Tp: Hol)(U; C™) — Holy (W;C™),  — n|w is a compact operator. Now we
consider the following diagram:

T

Hol, (U; C™) Hol; (V;C™)

1 N

Hol?(U7; C™) —— 2~ Hold (W; C™)

where the second vertical arrow is the restriction to V. Because T} is compact and
both vertical arrows are continuous and linear, 7} is also compact. ]

Definition 1.26. (a) We put a topology on the germs of vector fields around
a compact set in the same way as Kriegl and Michor (see [KM90]) or Dah-
men and Schmeding (see [DS15]). Hence, we give T¥(TM|M) the subspace
topology with respect to I'*(TM|M)c = T'%(TMc|M). With help of the
bijection T¥(TM) — T“(TM|M), n — [#] we turn ['*(TM) into a locally
convex space. Therefore, the closed subspace I'4(T'M) becomes a locally
convex space. Given R € [1, 6] we use [DS15, Lemma A.16] and see that

w - m m| ok *
r(TM) — [ [9(C™ CBR(0)5, 1 [n))]
i=1
is a linear topological embedding with closed image.
(b) Given e > 0, r € [1,6[ and k € {0, 1} we write
Bt = {77 e T5(TM) : (Vi {1,...,n}) [l o, < 5} .
Lemma 1.27. Ifr €]0,6[, € > 0 and f: BE(0) — R™ is a real analytic map with
”leﬁ’“(o) < ¢ then there exists a complex analytic map f*: U — C™ with | f*|}, < e

on an open subset U < C™ with E’:(O) < U such that f*|§k(0) = f’Ek(O).
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1.2 Local manifold structure

Proof. We define the real analytic map
_k m m
p: B,(0) — BE"(0) x BEC(0), @~ (f(2), f'(2)),

where we consider Eﬁ(O) as a real analytic manifold with corners. We find a

connected open neighbourhood U < C™ of Ef (0) and an extension ¢*: U —
BE"(0) x BE")(0) of ¢. If 2 € BY(0) and v e R™, we get ¢¥ (2)(v) = f/(z)(v) =
©5(x)(v) (|GN]). Using the linearity over C we conclude that o3’ (x) = i(x) for
x € BFi(0). Hence @i’ = 3. Therefore, ¢ is an extension of f as needed. O

The sets B, in the following lemma will be the domains of definition of the
chart around the identity of Diff*(M) in the next section.

Lemma 1.28. Given ¢ > 0, r € [1,6[ and k € {0,1}, the set BF_ is an open
0-neighbourhood in I (T M).

Proof. Fori =1,...,n,let (U!)uen be a connected fundamental sequence of B "(0)
in C™. Then

i m m |k () m
U :=GHC™;C" B, (0)) = L%[Holfwn;c ] F

is open in G(C™; Cm|§fi(0)) because the right-hand side is an ascending union.
Hence, the set

(]

f) := {n e Ta(TM): (Vi) [n] e U'}
is open in 'Y, (T'M). Using Lemma [1.27 we find:
(1) = {n e Ta(TM) : (¥) (An e N) [(1%)@)] = [(n))*] € [HolZ (U,: C™)]}
={neT4(TM) : (Vi) (In € N) 5 has an extension nf;, € Holf(U;; C™)}

— {neTa(TM) : (%) Ing e, }:B:f,e.

A local chart around the identity

In order to apply the theorem about the local description of Lie groups in the
sequel, we now endow a special subset of Diff“ (M) that contains the identity with
a manifold structure.

The following remark transfers considerations from |Glo06c, p. 11] to the real
analytic case.

Remark 1.29. Obviously we have

exp; (Ti(v)) = @i(exp(v))
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1 Diff“(M) as a Lie group for a manifold M with corners

for allve TE7H(Qy) and
exp;(z,v) = Gi(exp(T¢; ' (x,v)))
for (z,v) € Q;. Moreover, we have
exp;(z,0) = z and dyexp,;(x,0;.) = idgm
for all x € Bg(0).

Weakening |Glo06al, Theorem 2.3] to our situation, the analogous statement to
[Glo06¢|, Proposition 3.1] in the analytic case is:

Lemma 1.30. Let K e {R,C}, P < K" and U < K™ be open and f: PxU — K™
be a K-analytic map. Moreover, let (xo,y0) € P x U and dsf(xq,yo; ) € GL(K™).
There exists an open yo-neighbourhood U’ < U and an open xo-neighbourhood
P’ < P such that:
e Forallx € P' the map f(x,.): U — K™ has open image and is a K-analytic
diffeomorphism onto its image;
o Theset W :=,cp {2} % f(x,U’) is open in K" x K™ and the map P'xU" —
W, (x,y) — (z, f(z,y)) is a K-analytic diffeomorphism with inverse function
W — P' x U, (z,2) — (z, f(z,)7'(2));
e There exists & > 0 such that for all x € P we have Bs(f(x,v)) < f(z,U")
and W' = ,cp {2} x Bs(f(z,y0)) € W is open.

The analogous statement to |[Glo06c, 3.2] in the real analytic case is:

Lemma 1.31. There exists an cexp > 0 such that:

(a) We have B5(0) x B, (0) € Q; € Bs(0) x R™ for alli € {1,...,n};

(b) For allx € Bs5(0) and i € {1, ...,n} the map exp, , := exp;(z,.): B, (0) > R™
has open image and is a real analytic diffeomorphism onto its image. Moreover,
the map Bs(0) x B, (0) — B5(0)xR™, (x,y) — (z,exp;(x,y)) has open image
and is a real analytic diffeomorphism onto its image.

Proof. Let i € {1,...,n}. Given = € Bg(0) we use Lemma to find r, > 0 and
e, > 0 such that B, (z) x B, (0) = Q; and exp,(y,+): B.,(0) — Bg(0) has open
image and is a real analytic diffcomorphism onto its image for all y € B, (z)
and B, (r) x B.,(0) — B, (z) x R, (y,v) — (y,exp;(y,v)) is a real ana-
lytic diffecomorphism onto its image. We find finitely many z1,...,x; € Bg(0)
such that Bs(0) < U§=1 By, (x;) and set Eixp 1= Minje,, > 0. Now we set
Eexp '= Min;_q éxp. Given i € {1,....n} and y € B5(0) we find j such that
y € By, (z;). Hence, {y} x B.,,(0) = © and exp;(y,+): B, (0) — Bs(0)
is a real analytic diffeomorphism onto its open image. Moreover, the map
Bs(0) x B, (0) — B5(0) x R™, (z,y) — (z,exp;(x,y)) is injective and a local
diffeomorphism. Hence, it has open image and is a real analytic diffeomorphism
onto its image. Therefore, we find €.y, as needed. O
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1.2 Local manifold structure

Remark 1.32. Using Remark [1.29, we make the following observation: For all
ie{l,...,n}, z € B;(0) and w € B, (0) we have exp(T@; ' (z,w)) € Ui and
exp(T@;  (z,w)) = 7 (exp;(, w)).

In the following definition, we construct a map M — M from a vector field with
the help of the Riemannian metric in the usual way (cf., e.g., [Glo06c, 4.8]).

Definition 1.33. (a) Let 7 € [1,5]. If n € B),  then im(y) < Q because

(z, 10y (x)) € Q for x € Efi(O). In this situation, we define the real analytic
map

Uy M — M, p— exp(n(p)).

(b) Forie {1,...,n}, U < BE(0) open and € C*(U;R™) with |n]¥ < exp
we define the real analytic map

U U — By(0), @ > expy(an(x).

Lemma 1.34. Forr e [1,5] andne B).  we get ¢, (U;,) < U and

Uy
Proof. Given p € U;, we use Remark and calculate

~—1 %
Uy — P © %(i) © ViU, -

Un(p) = Pyle; (@i(p))) = exp(Tg; o Tpsom ot o wi(p)))
=exp(Te;  (9i(p) 1) (0i())) = &7 (expyi(wilp), 1) (9i(p))) = @i o Wy, 0 wilD)

O

As is |Glo06¢| the next step is to choose the vector fields n € 'Y, (T'M) small
enough, so that ¢, (M) < M and 1, € Diff(M).

Remark 1.35. If A € L(R™) then (id,A): R™ — R™ x R™ s linear with
[Gd; A)llop < 1+ [[Allop-

The following lemma is a stronger version of |Glo06c, Lemma 3.7] in the case
of open sets with corners and with a variable radius and control of the norms.
In order to control the distance of 9, to the identity we have to choose n small
enough.

Lemma 1.36. Given R €]0,5], | €]0, R[ and r €]0,1[, we find € €]0,exp| Such
that for all n € C*(BY(0); R™)y with ”77”1191%(0) <eandie€{l,...,n} the following
assertions hold: l

(a) Hw;/(x) —idgm |op < 7 for all x € Blk"(O);

(b) |¥i(x) — x| < r for all x € B} (0).

Proof. Obviously it is enough to show the lemma for a fixed i € {1,...,n}. Hence,
let i € {1,...,n} be fixed for the rest of the proof. As in [Glo06c, Lemma 3.7]

27



1 Diff“(M) as a Lie group for a manifold M with corners

we define H: B5(0) x Be,,(0) = R™, (z,y) — exp;(z,y) — 2 —y and h: B5(0) x
B.,,,(0) = [0,0[, (x,y) — [|H'(z,y)|op- For all x € B5(0) we get dyH(x,0;.) =
0 and doH(z,0;.) = 0 and so H'(z,0) = dH(z,0;.) = 0 in L(R™ x R™; R™).
Hence, B;(0) x {0} < h=}([0, —%=[) and With Wallace’s Lemma we can find ¢ €

> r+10
10, min(eeyp, 5)[ such that |H'(z,y)|ep < 55 for all z € By(0) and y € B.(0). Now

let n e (B (0),R™)g with ||77||1 B (0) <&
(a) We have

vy (@) = H(z,n(z)) + = + (@) (1.1)

for all z € Bf*(0). Hence,
vy (2) = H'(z,n(x):+) o (idzm, ' (2)) + idgn +1/(2)
for all z € Bf*(0). Using Remark [1.35, we see that

[ (x) = idem lop < [H' (@, 0(2)) op - | (i, 1 (@) lop + [0 (2) ] op

r r r r
1 < ~ (1 —) LA 1.2
Sgao Uretesomltg) sy (1.2)
(b) Let x € B;(0) and y € B:(0). Then |(z,y)| < |z| + |yl <l+e <5+ 3.
Hence,
1
(e, = [ a) ~ 10.0)] = | [ dtt(eo,tysa, gy
0
1 r r
< | I|H (tz,ty)| - dt < —— |(z,9)] < =
[ el el < 1wl <
Thus, given x € B} (0), (1.1) implies
by () — | < [H (z,n(x))]| + |n(x)]| < r. (1.3)
]

As in |Glo06¢, Lemma 3.7] we will use the following well known fact:
Remark 1.37. Let K € {R,C}, U < K™ be open and conver and f: U — K™
be K-analytic with |df (x) — idgm |op < 1 for all x € U. In this situation, f is
imjective and hence, f has open image and is a diffeomorphism onto its image: Let
x#yeU. Since U is convexr we can define

7:10,1] > C™, t » df (1 —t)z + ty;y —x) — (y — x).

We get |r()] < |y — =] fort € [0,1] and so | §o ()t < [y — a|. With f(y) -
(@) =y —x+ Sy 7(t)dt we get f(y) # f(x).

Lemma 1.38. There exists an € €]0,eexq| such that for all n € B}, the map
y: M — M s injective.
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1.2 Local manifold structure

Proof. Because of Lemma [[.36], Remark [I.37] and Remark [1.32) - we can find €; €
10, exp[ such that ¢y, , : Ul,l — M is injective for all 7 € Bi 1o, and L e {1,. }I
Similar to |[Glo06¢c, 4.10] one can show that given i,5 € {1,...,n} we can ﬁnd
gij €]0,&1[ such that ¢, is injective on Us, v Uj, for all n € Bj,, : Suppose the
opposite. Then there exist sequences (n*) keN in IS (TM), (pr)ken in Uy 1 and (gx) ke
in U;; such that for all k € N we have n* € 81 15 Pk # @ and Y,r(pr) = Pyr(qr).

Because U;; and Uj; are compact, we can assume without loss of generality that
there exists p € U;; and q € U, such that p,, — p and ¢z — ¢. Hence, n*(p;.) — 0,
and n*(gr) — 0 in TM. Therefore, ¢, (pr) — p and ¢,k(gr) — ¢. Thus p = q.
There exists [ € {1,...,n} such that p = ¢ € U;;. Hence, there exists ko such
that pry,qr, € Up1. The map ¢x,: Uy — M is injective. But py, # qx, and
Vyk0 (Pro) = Wyho (qr,) Which is a contradiction. Now € := min{e;; : 4,5 € {1,...,n}}
is as required.

In order to show that the functions 1, map M to M we need the following
definition.

Definition 1.39. For j € {0,...,m} and each connected component C' of 7 M we
fix a point p € C. The submanifold ¢/ M is totally geodesic in M. Hence, for
fixed pl, € ¢/ M there exists an open neighbourhood U of Opjé in ijc ¢’ M such that

exp,; (U) < C and exp,,; : U — C'is continuous. Thus, we find £, €]0, £exp[ such
that for all n € B) , we have V() € C.
€0

Remark 1.40. Let j € {0,...,m} and v € T,0’M with [0,1]v < Q and
exp([0,1]v) € M. We consider the curve v: [0,1] — "M, t — exp(tv). Be-
cause ¢’ M s totally geodesic, we see that v is also a geodesic for ¢?M. Hence,
v lies in the domain of definition of the exponential map expy of &M and

expaip (V) = exp(v).
Now we can show that the images of the maps ¢, lie in M.

Lemma 1.41. There ezists € €]0, eexp| such that for all n € By, the map i, is
injective and 1, (07 M) = ¢? M. Moreover, if C' is a connected component of ¢’ M
then ¢, (C) = C.

Proof. In this proof we use the following special notation: We write expy;: {2y —
M for the exponential map on M and expains: Qasar — 0/ M for the exponentlal
map on M for j € {0,...,m}. We use Lemma and Definition to
choose € > 0 such that for all n € Bis the map ¢,: M — M is injective and
Yy(pl) € C for all j € {0,...,m} and all connected components C < ¢/M. Note
that the strata of M have only finitely many connected components because M
is compact. Now we show by induction over j from m to 0 that v,(¢? M) = ¢? M
for all n € Bj.. The case j = m is clear. For the inductive step, let C' be a

"We can find a real analytic extension f of ’t/)n () O an open convex neighbourhood U € R™ of

B;’fl( ) such that ||df (z) —id|,, <1 for all z € U.
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1 Diff“(M) as a Lie group for a manifold M with corners

connected component of ¢’ M, ne By, and Z := {x e C: (Vt € [0,1])iy(z) € C}.
Because pl, € Z we get Z # &. Now let p € Z. We have [0, 1]n]c(p) € Q5
and expy;(tn|c(p)) € C for all ¢t € [0,1]. Remark implies n|c(p) € Qainr
and expy;(n|C(p)) = expy(nlc(p)) € C. Hence, there exists a p-neighbourhood
V' < C such that expy;,, on|c(V) < C. Let g € V. Because the map [0,1] — /M,
t — expyiy ©(tnc(q)) makes sense, is continuous and [0, 1] is connected, we get
expaiv (tnc(q)) € C for all t € [0,1]. We conclude that Z is open in C. Now let
pe C\Z. We find t € [0,1] with v, (p) € M\C. First suppose 1, (p) € C\C <
U, @M. Because vy, is injective and ¢y, (0'M) = 0"M for all i > j, we obtain a
contradiction. Now suppose ,(p) € M\C. Then there exists a p-neighbourhood
V in M such that ¢,(V) € M\C. But C 0V is a p-neighbourhood in C. Hence,
Z is closed. Therefore Z = C. We conclude that ,(C) < C and obtain a
continuous injective map ¥ylG: C — C. From ¢,(C\C) n C = &, we conclude
that 1,(C) = ¥,(C) n C. Because C is compact, we see that 1, (C) is closed in
C. But v, is also an open map because it is injective and continuous (invariance

of domain). We conclude that 1, (C) = C. O

The following Lemma is a direct consequence of [MO92, Lemma 2.2.3] and
a tool in the sequel.

Lemma 1.42. Let f:U — V be a homeomorphism between open subsets of R™
and V' be convex such that

f(U AR <V A RP and f(U A °RT) A °RY # &:;
then
FO\RY) = V\RY.

In the following lemma we show a qualitative inverse function theorem for open
sets with corners in the real analytic case. The proof is analogous to the one of
the smooth case see e.g. [MO92, Theorem 2.2.4].

Lemma 1.43. Let U < R} be open, f: U — R}* be a real analytic map and
xo € U such that

F(U A OR?) € ORY and f'(z9) € GL(R™).

We can find an open xy-neighbourhood U' < U and an open f(xq)-neighbourhood
V < RY such that f|l,: U — V is a real analytic diffeomorphism.

Proof. Without loss of generality, we can assume that xg € oU := UnJR] because,
otherwise, we can use the standard inverse function theorem. Now let f U—R™
be a real analytic extension of f. Without loss of generality we can assume that
UnRP =U. We have flg = f and f/(x0) = f'(20) € GL(R™). Let U’ < U be a

zo-neighbourhood, V'€ R™ an f(x)-neighbourhood such that f|z: U' — V is a
real analytic diffeomorphism between open sets of R™. Without loss of generality
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1.2 Local manifold structure

we can assume that V is convex. We have
fU AR = (U~ ORT) < V n ORY.

On the other hand, f(U' n é°RY") < R™ is open in R™ and non-empty. As it
contains xo € R}, it contains a point in ¢°R}?. Lemma implies f(U\R}) <
VAR}". Hence,

fU' ARM) =V AR

Now we define U’ := U' AR € U’ and V := ‘:/m]Rm C V. Themap f|},: U' -V
is bijective real analytic and also (f|};,)™" = f~!|v is real analytic. O

Now we come to the first central result in this chapter. If n € T“(T'M) is chosen
to be small enough then 1, is a diffeomorphism of M.

Theorem 1.44. There exists cgiff €]0, Eexp| such that, ifn € Bigdiff then 1, : M —
M, p — ,(p) is a diffeomorphism.

Proof. We simply use the ¢ defined in Lemma [1.41] Then ¢, is a real analytic
diffeomorphism because it is bijective and a local real analytic diffeomorphism (see
Lemma |1.43)). [

The idea of Lemma below, is based mainly on [Glo06¢, 4.12]. However,
since our manifold is compact we can find a single € and shorten the proof.

Lemma 1.45. There exists €i,; €]0,€cxp| such that for all p € M the map
exp,: £, 1= Qn € T,M — M us injective on

WAl = T (1(p)} B, (0) € T

Proof. Let €;,j €]0, €exp| such that

T(pio ;") ({ei(p)} x B, (0)) < {@i(p)} x By, (0)

for all p e Uy; n Uy and 4,5 € {1,...,n} (Wallace’s Lemma). For i € {1,...,n}
and p € M let A; := T, ({¢i(p)} x B.,,,(0)) < T,M and A; := To; ' ({i(p)} x
B.,.,(0)) € T,M. Now let v,w € |J; A}, say v € A} and w € A}, with exp(v) =
exp(w). We know that exp is injective on A;. But obviously v,w € A; by the
choice of €;y,;. O

In the following we define the canonical local chart around the identity to obtain
a local manifold structure (cf. e.g. [Glo06¢c, 4.13]).

Definition 1.46. We define

Ey = min(&tdiff, 8inj)~
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1 Diff“(M) as a Lie group for a manifold M with corners

Moreover, we define V := By < I'4.(TM), U := {1, : n € V} < Diff(M) and
V.V —U, n— 1y,

Given a € U we find n € V with a = 1,. We get n;(v) € B,,;(0) forall z € Flfi(()).
Hence n(p) € W,M for all p € U;; and all ¢ = 1,...,n. Thus n(p) € W,M for
all p € M. Therefore, a(p) = ¥,(p) = explw,m(n(p)) € exp|w,nm(W,M) and
n(p) = exp |‘7V17M(oc(p)). Hence, the map

O:U -V, a— O()

with ®(«)(p) = exp \;leM(a(p)) makes sense and is inverse to W.

1.3. Preparation for results of smoothness

To show the smoothness of the group operations we need some further definitions
and results. In particular, we need results concerning extensions of real analytic
maps on B¥(0) to open sets of C™. In this section we elaborate these foundations.

The following lemma is the standard quantitative inverse function theorem for
Lipschitz continuous maps (see |Glo05, Theorem 5.3] and [Wel76]) applied to our
setting.

Lemma 1.47. Let A: R™ — R™ be a linear isomorphism, xq € R™, r > 0
and g: B.(xg) — R™ Lipschitz continuous with Lip(g) < m. If we define

a:= m — Lip(g), b := |A|op + Lip(g) and f: B,(x9) — R™, x — Ax + g(z)
we have

Bas(f(2)) = f(Bs(x)) = Bus(f(x))

for all x € B.(zg) and s €]0,r — |x — zo|]. Moreover, f has open image and is a
homeomorphism onto its image.

In [Gorl3] Gorny showed a qualitative inverse function theorem for Lipschitz
continuous maps on open sets of half-spaces in Banach spaces (“open sets with
boundary” that means the local “boundary”-case). In |Gorl3, Remark on p 47]
she asks whether there is also a qualitative inverse function theorem for Lipschitz
continuous functions on “open sets with corners” (that means the local ”corner”-
case).

Our Lemma is a not only a qualitative but also a quantitative inverse
function theorem for Lipschitz continuous maps on open sets with corners in R
(the proof can be transferred to the Banach case verbatim by substituting R™ with
a Banach space).

Lemma 1.48. Let k € {0,...,m}, xo € Ry and g: B¥(zy) — R™ be Lipschitz
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1.3 Preparation for results of smoothness

continuous with Lip(g) =: L. Let |o||x: B.(z0) = R,  — || with

(lali)s = {’”“”‘ sk

T : otherwise

and §: B.(vo) — R, 2 — g(|z|x). In this situation §|gr,) = g and Lip(g) =

Lip(g).

(zo)

oJlx: Br(xg) — R} is Lipschitz continuous with Lipschitz constant
1. The assertion now follows from Lip(g) = Lip(g o |+||x) < Lip(g). O

Lemma 1.49. Let A: R™ — R™ be a linear isomorphism, xo € R, r > 0
and g: B¥(zy) — R™ be Lipschitz continuous with Lip(g) < m We define

a:= s — Lip(g), b= Ao + Lip(g) and f: Bf(xg) — R™, z — Az + g(x).
If f(0B¥(x0)) < IR and f(B(xg)) < R then we have

By, (f(2)) € f(B:(x)) € By (f()) (1.4)

for all x € B¥(xq) and s €]0,7 — |z — o|]]. Moreover, f(B¥(xq)) is open in R
and f is a homeomorphism onto its image.

P'mof We define §: B,(z9) — R™ as in Lemma [1.48f Then Lip(g) = Lip(g) <
Let f: By(xo) — R™, & — Az + §(z) and a := W—Lip(g) =

1A~ 1Ho '
m — Lip(g). Using Lemma [1.47| we get:
(a) The map f: B,(z9) — R™ has open image and is a homeomorphism onto its
image;

(b) For all x € B, (o) and s €]0,r — ||z — x¢|/[ we have Bus(f(z)) € f(B(z)) <
Bys(f());
(C> f’Bﬁ(xo) = f
Let 2 € B¥(x¢) and s €]0,7— |z —=¢|[. The inclusion f(B¥(z)) = BE(f(x)) follows
directly from (]E[) and . We show that

By (f(2)) € f(Bi(x)).

From @ and . we get BY.(f(x)) S Bu(f(z)) < f(Bs(x)). Now let y €
B (f(x)). We find z € B,(x) such that y = f(z). It remains to show that z € R}".

T := ["Y(Bas(f(x))) and V := Bu,(f(x)). Then U is an open subset of B, (z)
and f: U — V = By (f(z)) is a homeomorphism. Because f(z) = y € Bas(f(z))
and f(z) = f(x) € Bas(f(2)), we get

zeUand zeU.

Hence, U n R # & and so U n °R # . We have & # U n "Ry < 0°BF ().
The map f|a0pk(m): °BF(z0) — R™ is open. Therefore, W := f(U n °Ry") is an
open subset of R™ and not empty. Because U n °Ry* < BF(x0) and f(B*(x)) <
R we get W < RI™. The set R is convex. We conclude that W n &°RY* # &
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1 Diff“(M) as a Lie group for a manifold M with corners

and hence
f(U A R A "R # 7. (1.5)

Moreover, we get
f(U AR = f(U n ORY) < ORY. (1.6)

Using 1’ 1) and the convexity of V, Lemma leads to
FIO\RY) = V\RY

Suppose z ¢ R}, then f(z)=y¢ R7*. But this would be a contradiction. Hence z €
R™. Next, we show that f: B¥(zy) — R has open image and is a homeomorphism
onto its image. Because of , f: B¥(zy) — R has open image. Let X =
B.(x0), X 1= B¥(x0), Y := f(X) € R™ and Y := f(X) < R}*. The assertion now
follows from the fact that f: X — Y is a homeomorphism and f ¥ = X -
Y. [

Definition 1.50. Given r €]0, 1[ we choose 7 €]0, 1] such that for all A € L(C™)*
we have

|A —id || < 7?7 = AT —id |,y < 7.
The observation in the following remark is, of course, well-known.

Remark 1.51. Let K e {R,C}, U < K" and f: U — K" be an injective map.
Then

[P = idg @y oo = [1f = idu e

In fact let g := f—idy: U — K™. Then f(x) = x + g(z) for all x € U. Hence,
Y y) =y —g(fXy)) forallye f(U). Thus f~! = id ¢y —g o f~t. Therefore

17" =iy oo = g o f oo = gleo = If = idu oo

In the following lemma the points (]ED and (/) are in some sense a stronger version
of [Sch15, Lemma D.4 (b), (c¢)] (smooth case without boundary).

Lemma 1.52. Let [ €]0,00[ and r €]0,1[ such that I' := (1 —r)l —r > 0. For
all f € C*(BF(0);R™) with |f —id |, < min(r,r°?), f(0(BF(0))) < IRy and
f(BF(0)) € Ry we get:
(a) f(B(0)) < By, (0);
(b) f: BF(0) — R has open image and is a real analytic diffeomorphism onto
1ts 1mage;
(¢c) BE(0) < f(BF(0)) and the map f~': By(0) — BF(0) has open image and is
a real analytic diffeomorphism onto its image;
(d) || f~Y(z) — x| <7 for all z € BE(0);
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1.3 Preparation for results of smoothness

(e) |(f~Y)(z) —idgm |lop < 7 for all x € BE(0).
Proof. (a) Given z € BF(0), we calculate
[f@)| = [f() —w+ | <r+1
Hence f(Bf(0)) < Bf.,.(0).
(b) We define g: BF(0) — R™, g := f — idgm. Given z,y € B}*(0), we have

o)~ o)l = | [ (01t w1y - i

1
<f LF((1 =)z + ty: 7 — ) — idam (z — 9)|dt < rlz —y]|.
0

Hence, g is Lipschitz continuous with Lip(g) < r < 1. Moreover, f(BF(0)) =
R and f(0BF(0)) < ORI, Therefore, we can apply Lemma m Hence,
f(BF(0)) is open in R and f: BF(0) — f(BF(0)) is a bijection. Because
r°? < 1, the map f is a local real analytic diffeomorphism and so f: BF(0) —
f(BF(0)) is a real analytic diffeomorphism.

(c) Using Lemma , we get Bf_,,(f(0)) = f(Bf(0)). It remains to prove
Bj(0) € Bf_,y,(f(0)). Given x € Bji(0), we calculate

[£0) =2l < £ (0) = Ol + [l <7+ (L =r)l —=r = (1 =)l

(d) This follows directly from Remark |1.51}
(e) We have [f'(z) — idgm [,, < r® for all x € BF(0). Hence, |(f'(z))~" —
idgm | ,p < 7 for all z € BF(0). Now, let y € BE(0). We deduce that
”(f_l)/(y) — idgm HUp = H(f/(f_l(y)))_l — idgm ||0p <T.
O]

Definition 1.53. Given [ €]0, 5[ and r €]0, 1| such that (1 —r)l —r > 0 we write
g1 for the € constructed in Lemma with R = 5 and min(r, 7°?) instead of r.

The analogous statement to |[Glo0O6¢, 3.3] in the real analytic case is:

Lemma 1.54. Given ¢ €]0, ey there exists §(¢) €]0, 1] such that:
(a) For x € BM%(O) and i€ {1,...,n}, we have By (x) < exp;(x, B-(0));
(b) The set D. :=U,cp o) {x} % Bse)(x) is open in Bs(0) x R™ and
4t

D — B.(0), (w,2) = expi(z,+) ()
is real analytic for all i€ {1,...,n}.

Proof.  (a) Letie {1,...,n} and consider the map exp;: B5(0) x B-(0) — Bs(0).
Now we use Lemma [1.30f Given z € B4+%(0), we can find r, €]0, 5[ and
d; > 0 such that for all y € B, (x) and i € {1,...,n}, we have By, (y) =
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1 Diff“(M) as a Lie group for a manifold M with corners

Bs, (exp,;(y,0)) < exp;(y, B:(0)). We find finitely many xq, ...,z € EH%(O)
with §4+%(0) c Ule B, (x;) and set 0(¢) := min; &,,. Given i € {1,...,n}
and x € §4+%(0), we can find j such that z € B;, (z;). Hence By()(z) <
exp;(x, B:(0)).

(b) For (zo,y0) € D, we get |yo — zo|] < d(e). Let 7 :=
min <4+ 2 — ||z, w> Then B,(x¢) x B:(yo) € D.. Hence D,
is open. Because D. is open and contained in the image of B5(0) x B.(0) —
Bs(0) x R™ (z,y) — (x,exp;(z,y)), we conclude that D. — B.(0),
(x,2) — exp,;(z,.) !(z) makes sense and is a real analytic diffeomorphism.

[

In the following, we define open subsets of C™ that form a connected fundamen-
tal sequence of the balls E’;(x) in C™ (see Remark [1.56)).

Definition 1.55. Let k€ {0,...,m}, R >0, r > 0 and x € R}". We define

BEC(x) := Bli(x) + BE(0) < C™ and By, (x) :i= Bp(z) + B, (0) = BES ().
Obviously Bg’f(x) is an open neighbourhood of E;(:p) in C™. We also write
Bf; () := Br(z) + BF(0) and Egm(x) := Bp(r) + Ef(()) for z € R™.

Remark 1.56. If U < C™ is open, k € {0,...,m}, x € R} and E;(x) c U then
E’;(JL‘) x {0} < u Y (U) for u: C™ x C™ — C™, (x,y) — = +y. Using Wallace’s
Lemma we can find r > 0 such that F’;(x) + ES(O) = F;’jﬁ(l‘) cU.

Definition 1.57. Forie {1,...,n}, let exp}: QFf — BE(0) be a complex analytic
extension of exp,: Q; — Bs(0) along the compact set Bs(0) x B.,,(0) Q; (see
[DGS14, Lemma 2.2 (a)]). Because Bs(0) x {0} < Q* we can use Remarkand
find regp+ > 0 and €7 > 0 such that F?TCXP* (0) x B&(O) c Qf forallie {1,...,n}.

Remark 1.58. (a) For alli€ {1,...,n}, the map expi(s,0): Bg,,e ,(0) = Cm,
x — expi(z,0) is an extension of exp,(s,0): B5(0) — R™, © — x. Hence,
we have

exp; (z,0) = z,

for all x € Bgrexp* (0), because Bgrexp* (0) is connected.  Therefore,
expy(z,0) =z for all v € E?T . (0).

(b) For all i € {1,...,n} the map dyexpi(-,0): BS, _(0) — L(C™), © —
dy expi(x,0) is a complezx analytic extension of dg exp,(s,0): Bs(0) — L(R™),
x +— dy exp;(z,0) = idgm. Hence, we have

d2 eszk (:L’, O) = id(Cm
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for all x € Bgc,rexp* (0), because Bgrexp* (0) s connected.  Therefore,

dy expf(z,0) = idem for all z € Egr L. (0).
The following lemma is similar to our Lemma as well as [Glo06¢, 3.2].

Lemma 1.59. There exists cexpx > 0 such that:
(i) We have

Bs, ,(0)x B._,(0) = Qf < BE(0) x C”

forallie{l,..,n}.

(i) For all x € F?rexp* (0) and i e {1,..,n}, the mapping exp;, :=
expy(z,.): BEXD* (0) — C™ has open image and is a complex analytic dif-
feomorphism onto its image. Moreover, the map Bgrexp* (0) x Bfexp* 0) —
Bgrexp* (0) x C™, (x,y) — (z,expi(z,y)) has open image and is a complex
analytic diffeomorphism onto its image.

Proof. Obviously it is enough to show the assertions for a fixed i € {1,...,n}. Let
i€{l,...,n}. Forevery x € E‘ET ,(0) we find r, > 0 and &, > 0 such that:
" exp

* B, (1) x B (0) < O
e For all y € BY (z), the map

exp] (y.+): BE(0) > C”

has open image and is a diffeomorphism onto its image;
e The map Bf (z) x BE (0) — BE (z) x C™, (z,y) — (,exp}(z,y)) has open
image and is a diffeomorphism onto its image.
We find finitely many x4, ..., x; such that E(;TEXP* (0) < Ué‘=1 B, (). Let cexpr 1=
min; ¢,,. Obviously we have
B;

Texp*

Moreover, the map Bgrexp* (0) x Bfexp* 0) — Bgrexp* 0) x C™, (z,y) —
(x,expf(x,y)) is injective and a local diffeomorphism. Hence, it has open im-

age and is a complex analytic diffeomorphism onto its image. Thus, we find eexp+
as needed. O

The following lemma is the analogous statement to our Lemma [1.54] as well as
[Glo06¢, 3.3] in the complex case.

Lemma 1.60. Let 1y« := Toxpr /2. For all € €]0, ], there exists 6€(¢) €]0,1]
such that:

(i) For all x € Eiw* (0) and i € {1,...,n}, we have Bgfc(e)(:c) < expf(z, BE(0));
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1 Diff“(M) as a Lie group for a manifold M with corners

(i) The set

Dt = U {z} x Bgc(g)(:c) cCm"xC™

eBf,,, (0)

is open and D& — BE(0), (z,2) — exp(x,.)"1(2) is complex analytic.
Proof. (i) We consider the map expy : Bgrexp* (0)x BE(0) » Cmfori=1,...,n.

Given z € Eire* (0), we use Lemma [1.30| and find 7, > 0 and ¢, > 0 such
that B () = B, . (0) and, for all y € BY (z) and i € {1,...,n}

Bs (y) = B§. (exp(y,0)) < exp} (y, BE(0)).

We choose finitely many xy,...,x, € Eiw* (0) such that

—C
B4,7'£* (O)

N

U Bm:]- (LE])
j=1

We set 6€(¢) := min; 0,,. If i€ {1,...,n} and x € F;C”* (0), then B}CC(E)(JC) c
exp} (z, B (0)).
(ii) Given (wg,y0) € DS, we find ¢ > 0 with BS(xg) < Bf, (0). Defining

4,7p%
T := min <J, w>, we get B, (1) x B;(yo) < DE. The rest of the
statement is clear.

[

Definition 1.61. (a) Let Ny € N with NLO < Tpr < Texpr. For R € [0,4], k €
{1,...,m} and n € N, we define

VE, = BZ’C . (0) = B&0)+ B¢, (0)

"n+Ng n+Ng

and get a connected fundamental sequence of E;(O) in C™ with V§, <
Bf, . (0). Moreover, we define

exp¥

Vin i= Bp(0) + B-1_(0) = V.

n+Ng

(b) Forie{l,...,n}, Re[L,4], neNand f e Hol. _(Vga;C™), we define the
map ¢+ Vigy, = C™, 2 — expf(w, f(x)).

The following lemma is the analogous statement to our Lemma [1.36| in the
complex case and is inspired by [Glo06¢, Lemma 3.7].

Lemma 1.62. For ry €]0,1] there exists € €]0, exp| such that for all n € N,
ie{l,....,n}, Re{3,4} and n e Holy(Vyi;C™) with |n|}, < e, we have [ —
- 1
ld(Cm Hvkz <Tg.

R,n
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1.3 Preparation for results of smoothness

Proof. Obviously it is enough to show that for all g €]0, 1] there exists € €]0, Eexp* ]
such that for all n € N, i € {1,...,n}, R € {3,4} and n € Holi(Vﬁfn;Cm) with
Inll}, < e, we have [t} — idem H;R,f < ro. In order to shorten the notation, we
define Uegps 1= Bg%x . (0). Obvioﬁgly it is enough to show the lemma for a fixed
ie{l,...,n}. Hence,plet i€ {l,...,n} be fixed for the rest of the proof. We define
H : Uggpr % Bfixp* (0) > C™, (z,y) — expi(z,y) —z—y and h: Ugps X Bfexp* (0) —
[0,00[, (z,y) — |H'(x,y)|op. For all z € Uepr, we get diH(x,0;.) = 0 and
doH(z,0;.) = 0 and so H'(z,0) = dH(x,0;.) = 0 in L(C™ x C™;C™). Hence,
V4 i x {0} < h7Y([0, 50) and with Wallace’s Lemma we find & €]0, min(eexp, )|
such that |H'(2,y)llop < ;-7 for all z € V41 and y € BE(0). Now let n €
Holi(Vﬁfn;Cm) with |||}, <. We have

by (x) = H(z,n(x)) +x +n(z) (1.7)
for all x € Vléffn. Hence,
vy () = H'(z,n(x); ) o (idem, 7' (2)) + idem +7(2)
for all z € V}§, . Remark [1.35implies

[ (2) = idem op < H'(2,0(2)) op - [(idem, 7' (2)) |op + 1 (@) ]op

To To To To
< (46 +e< '<1+—)+—= . 1.8
7“0—|—1O ( ) 7”[)—|—2 2 o ( )

Now, let x € V}];fn and y € BE(0). Then |(z,y)| < ||lz| + |ly| <5+ 2. Hence,

|H@wwﬂﬂmw—ﬂumhzﬁﬂmLmawﬂ

1
To
< [ 1 nwl - el < s ) < -
0
Thus, given x € Vﬁfn, we calculate with 1}
[y () — x| < [H(z,n(2))]| + ()] < ro. (1.9)

]

Definition 1.63. Given ry €]0,1[, we write €5, for the e constructed in Lemma
1.62| with min(rg, 7g") instead of .

The following lemma is the analogous statement to Lemma [1.52in the complex
case.

Lemma 1.64. Let R €]0, [, r €]0,0[ and rq €]0, 1[ such that R' := (1 —r9)R —
ro > 0. We write v’ :== (1 —ro)r, R" := R+ rg and r" := (1 + ro)r. For all
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1 Diff“(M) as a Lie group for a manifold M with corners

ke {0,...,m} and f € Hol} (B} (0);C™) such that | f —idem % < min(ro, "),
f((B%(0))) < JR™ and f(B%(0)) < Ry, we get the following assertions:
(a) f: BZ”(E(O) — C™ has open image and is a complex analytic diffeomorphism
onto its image;
(b) B%,S,(O) = f(BIk%’fE(O)) and the map f~: BZ’,%,(O) — BQE(O) has open image
and 1s a complex analytic diffeomorphism onto its image;

(c) f(BE;(0)) € BgY,,,(0) and f(Bf,(0)) < By (0);
(d) | fH(x) — x| <ro for all z € By.(0);
(e) |(f71)(x) —idem op < 7o for all z € By, (0).

Proof. (a) From Remark|1.37|and o < 1 we get that f: BZ”(E(O) — C™ has open
image and is a complex analytic diffeomorphism onto its image.

(b) Let g := f —idgm: BZ’S(O) — C™. Then, as in Lemma |1.52} we get |g(z) —

9| < rofz —y| for all z,y € B}%’E(O). Hence Lip(g) < 79 < 1. Now let

z € BE(0). Then BE(z) = z+BL(0) BZ”(E(O). We consider the map f|gc(,.
Thus, using the identification C™ =~ R?*™ in combination with Lemma
we get BS_ (f(x)) € f(BE(x))  F(BEE(0)). Hence, B, (0) + f(x) =

(1—ro (1—7ro
f(BZ’fE(O)) for all z € B%(0). Therefore, Bg_ro)r(0)+f(B§(0)) < f(Bg(E(O))

From Lemma we get BE,(0) < f(B%(0)) because f(0(B%(0))) < IRy
and f(B%(0))) € R, Therefore
Bp’.(0) = Bjy(0) + BE(0) < f(BR(0)).

Hence, the map f~1: B%,S,(O) — BZ;S(O) makes sense, has open image and
is a complex analytic diffeomorphism onto its image.

(c) Let x € BET(0). Then f(x) = z+(f(z)—x) € By (0)+ BS(0) = BiY,,.(0).
Now let xq € B%(0). Using Lemma we get f(zo) € B, (0). Again we
consider the map f|pc(y,). Lemma yields

F(BF (20)) S B sy (f(20)) = Bya(0) + f(0) € Bi(0) + Bf(0) = Bir (0).
(d) Because |f —id |9 < ry, we can use Remark and get | f~'(x) —z| < 7o

for all z € BZ’S,,(O).
e) Because |f'(z) —id |, < r? for all z € B%S(0), we get
P 0 R,r

H(f_l)/(x) — idgm ||0p = ”f/(f_l(x»_l — idgm ||0p <To

for all x € BZ’,S,(O).
UJ

We will use the following technical lemma later to secure that the composition
and inversion in the local chart stay in the subspace of stratified vector fields.

Lemma 1.65. There exists €5 > 0 such that for all i€ {1,...,n}, je{l,...,m},
all connected components C < &' By (0), v,y € C with |z —y| < £ and v € B.,(0)
with y = exp;(z,v), we get v € T,d BF (0).
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1.4 Smoothness of composition

Proof. There exists €5 €]0, exp| such that |[dexp,,(y) — idgm | < § for all i €
{1,...,n}, * € B4(0) and y € B.,(0). Given x € ¢?BE(0), we define the subset
J. € {1,...,m} such that z; = 0 if and only if [ € J,. Moreover, we write I, :=
{1,...,m}\J, and R}" := span{e; : i € I,}. Obviously, we have T,¢’ B¥(0) = R}".

Let v € B.,,(0) n T,0'BY = B.. (0) "Ry = Bifj;(()). Because ¢/ M is totally
geodesic there exists ty €]0, 1] such that d,o; *(tv) € Qg for all t € [0,t0]. Hence,
for all ¢ € [0,%] we have exp; ,(tv) € & BF(0). Therefore, pr; o exp; ,(tv) = 0 for all
t € [0,%0] and [ € J, (note that ¢ — exp, ,(tv) stays in the connected component

of z). Because expi,x is real analytic we can use the Identity Theorem and
R

Eexp

obtain pr;oexp, ,(v) = 0. Therefore exp, ,(B:.5(0)) < R}. In particular, we
Rm
can consider the real analytic map exp, ,: B:,"(0) — R}'. We write C for the

connected component of 2 in @/ BF(0). Because |dexp; ,(y) —id | < 3, we get

C I BY (1) B, () = B, (exp; ,(0)) < exp;,(B5" (0))

with the quantitative inverse function theorem. Now the assertion follows from
the injectivity of exp; ,: Be,,,(0) — R™. O

Definition 1.66. We use the notation of Lemma [1.54] and define &, :=
d(min(ey, €4)), Du = Dmin(ey,e0) and

li: Dy — Bmin(gwga)(()), (x,2z) — exp,;(z, .)_1(2)

for all i € {1,...,n}, where g is as in Definition and €, as in Lemma [1.65]

Remark 1.67. Forall j e {1,...,m},ie{1,...,n} and all connected components
C in & BY(0), we choose pil € C. After shrinking ey, we may assume without loss
of generality that 1[13'7(1,) (pe!) € C for all i, j,C as above and n € Bi_, (see Lemma
1.56]).

Definition 1.68. Let i € {1,...,n}. We define the real analytic map
Q- B4+%(0) X Béu(o) - Bau(0)7 (:v,y) = &(ZE,ZE + y)

and get a;(z,0) = 0 for all x € B, 1(0). Hence, di;(z,0) = doy(+,0)(x) = 0 in
L(R™) for all x € By, 1(0). Therefore B4(0) x {0} < (dya;)"1({0}). We find v, €
10, 0| such that | dyc;(z, y)|lop < % for all x € B4(0), y € B,,(0) and i € {1,...,n}.
Let K, = sup {|docv;(z,9)|op : © € B4(0),y € B,,(0)} for all i € {1,...,n}.

1.4. Smoothness of composition

In this section, we show the smoothness of the composition in the local chart ®.
At first we have to fix a “radius” e, to obtain a 0-neighbourhood on which the
composition is smooth.
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1 Diff“(M) as a Lie group for a manifold M with corners

Definition 1.69. Let r, = min(%“,su, Tod—, B, oL

), S := min( ,1) and

=

o C
o := min(ey, €4, c‘rg).

The result corresponding to the following lemma, in the case of a non compact
smooth manifold without corners, is [Glo06c, 4.17].

Lemma 1.70. Letn,{ € B} ..
(a) The maps w’fi(i) o wém: BY(0) — R} and

Mo & Gyt BY(O) > R, @ (e, o 0l (@)

make senseﬂ and are real analytic functions with |1 o (e (@) < min(ey, €5)
for all x € BY(0). Moreover, we have

wn(i)OC(i) = Yngy © w((i) (1.10)

on B (0) and ngy o (uy is stratified.
(b) For the map 1, o c: M — M, we have ¥, 0 (U 3) < U; 4 and

@i 0Py 0te o 901'_1’3’;1'(0) - ’iM) o ¢é(i) ‘Bg”(o)' (1.11)
(c) The vector field
noC: M —TM, pexply (1 0P (p))
makes sense and is real analytic and stratified. Moreover, we have
(n© Q) (@) = ne) © Gy ()
forallie{1,...,n} and x € BY(0) and
Vno¢ = Yy © .
(d) The vector field no ¢ is in V.

Proof.  (a) Using Lemma |1.36| and Lemma |1.52 we get wz(i)(Béfi (0)) < BF(0).
Hence, @Z)f?(i) o wé@): By (0) — R makes sense. We have r, < % and so
||¢7i7(i) —id|| < %‘ and Hwé(i) —id| < %“ on B (0), by Lemma [1.36l Hence,
Unes (wz(i)(x)) — € By, (0). Therefore, n) o (s : By (0) — R™ makes sense

and |7y © (i ()| < min(ey, £5) for all z € By (0) and so

= e}
LIONY0) UO) wC(z’)

on By (0) (note &y < Eexp). Now we show that 1 o () is stratified. With

8Tn this context ¢

N and 1/}2(” are defined on Biw 0).

42



1.4 Smoothness of composition

ro, < min(%, 2), we calculate for x € By (0):

i ol (@) — all < It (66, (2)) — wi, ()] + [, (@) — 2l
< min (Va, —) (1.12)

Now let = € ¢/B¥(0) and C' the connected component of z in &/ BF(0). We
define y := fm) o @Z)ém( x) and v := 14 © () (z) € B.,(0). From Remark [1.67]
we deduce that z,y € C and y = expm( ). From and Lemma [1.65]
we deduce that v € T,07 B¥(0). Hence, N6y © () s stratified.

The maps v, and 1) make sense because Te < Eexp- From Lemma we
obtain

Gt (Usa)) = (e (0 (B (0)))) = 7 (8, (B (0))))
g W, o vl (BY(0))).

With (1.12) and v, < &y < 1, the first assertion follows. An analogous

calculation shows (L.11).

Let pe M and i € {1,...,n} with p € U;;. Let z := o;(p) € By (0) and
v =Ty (z, N ©Cuy(x)) € T,M. Thus v e Q and because g < Einj, We get
ve W,M. Now we calculate

exp(v) = ;7 (expy(,mio © Gy (@) = 7 0, 08, 0 pilp) =y 0 ().

Hence, the vector field no¢ makes sense. Next let z € By(0) and p := o; (z).
We calculate

(10 Q)py(x) = deps 0 exp |37 5y © Py 0 Y (p)
=dypi 0 exp iy v 0 95 0ty 0 Ve, (wilp)
=(p 0 exp s 0 i) 0y, 0 (o)
=exp;(,+) 7 (Y, 0¥, (1)) = ney © (o (@).
Obviously, we have ), = ¥, 01¢. The vector field no ¢ is stratified because

its local representation is stratified. For the same reason no( is real analytic.
We show that

1 — . N

for all ¢ € {1,...,n}. From wg(i) o z/;é(i)(Bg,fi(O)) c By, (0), we get [nu o

¢t HBk ‘o) < cu Now, we show that | (10 (@) (2)]op < e for all x € B (0).

We define the auxiliary function h := wfm) o wém —id on BF(0). Let z €

BY(0). Using (1.12)), we see that |h(z)| < vo. With 7, < min ;4 1,1), we
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1 Diff“(M) as a Lie group for a manifold M with corners

calculate using Lemma [1.36

[0 (2)lop = [00h,) (8, (%)) 0 ¥, () = id [lop
<l (0, () o vt (2) — ot (@)l + 64, (@) — id p
<||¢fq( ) (¢é(i) (z)) —id|lop - deé(i)/(ﬁv)”oz? + ”7»/}2(1)/@) — id [op

g€ 1 15 1 g€
U u o Cu

< - + .
4K, 4 4K, 4 4K,

For all z € B¥(0), we have

Moy © Co ) = @ (w, (W4, 0wl —id)(@)) = il ().
Let x € By(0) and v € R™. We show that [d(nu o (i) (z;v)] < L]

ld(nGy o ) (s )| = |l dai(x, h(z); v, dh(z, v))]
<Hd1az($€ h( ); )| + lldaci(z, h(x); dh(x, v))|
< (ldrai(a, h(@); )llop + lld2ci(, h(2); ) |op - [dD(, +)) lop) - [V]

Euy u Eu
- 0 —— = = .
< (% Ko 20 ) 1ol = S0

Definition 1.71. Let R e [1,5], i € {1,...,n} and j € N. We use the shorthand
notation K; := E};{(O) and define the space

]

Hp,j = {(fz')z' e | [Holy (V' €™+ (3n € T (TM) (Vi) filie, = m Kz} :
i=1

Moreover, we define the open subset

WIS = {(F)i € Hay : (V1) £ < <}
for e > 0.

Remark 1.72. Let R € [1,5]. We use the shorthand notation K; := E’;"(o). Let
o Fth(TM) — H?Zl G(C™ C™K;)%, n— ([nw]) be the canonical embedding (see
Deﬁmtion We write F' := im(®) for the closed image of ® (see Defini-
tion and E =11, Holé(Vﬁfj; C™E. We identify Hol; (V}gfj; C™)% with the
correspondmg germs in G(C™;C™|K;). As finite products and inductive limits of
ascending sequences of locally conver spaces commute, we get

[ [o(Cm;CmKy)S = lim | [ Holy(Vi5; C™)% = lim E;
=1

JEN =1

as Silva spaces (see [Glo1l, p. 260, Proposition 4.4 (d)] and Lemma [1.25). As
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1.4 Smoothness of composition

Hr; = E; 0 F, we see that Hg; is a Banach space. From Remark we see
that F =lim E; n F =limHg;. Now F = J,oyHr; and ®(Bg.) S e W
fore > 0.

Lemma 1.73. For all | € N, we define l' :== 2l + Ny (with Ny like in Definition
cLetjeN,ige{l,...,n}, (fi)ie W27, le Nwithl > j and R €]1,4[. Then

jeN

io (TR ki i . 5 (Eexp)
b (Vi) € Vg and oz, — 112, <06 < Tom)
sJ
Proof. This follows from Lemma [1.62 and Lemma with rq < 1. O

The following lemma is a consequence of [AS15, Remark 4.10].

Lemma 1.74. Let U < C™ be open and f: R x U — C™ a map that is complex
analytic in the second argument. In this situation, the map f considered as a
map between finite dimensional R-vector spaces is smooth if and only if the map
f:R— Hol(U;C™) considered as a map between locally conver R-vector spaces is
smooth.

Lemma 1.75. For alll € N, we define I’ := 2l + Ny. Let j € N, ig € {1,...,n},
(fi)is (9:); € W2, Then the map

ki
fio <& gio: ‘/37](/) - Cm?
2 e expl () (0 040 (2)

makes sense and is complex analytic. Moreover, the map ®: Wé;j X Wf;j —

Hol(l/}ﬁ? ;C™), ((fi)is (90)i) = fisGio s smooth over R if we consider Hol(\/:rf;‘?; Cc™)

as a vector space over R.

Proof. Lemma |1.73| implies that f;, ¢ g;,: V})kj(? — C™ makes sense and is complex
analytic. Now we show the smoothness of ®. As mentioned above, we consider

HOI(V:,f;?;Cm) as a vector space over R. In our situation, a map is smooth in the
sense of Keller’s C'°-theory if and only if it is smooth in the sense of the convenient
setting (see [BGNO4, p. 270] and [KM97, Theorem 4.11]). Let £,v: R — W27 be
smooth curves. We write ¢(t) := (8(t),y(t)) and §; := pr; B respectively ; := pr; vy
for the i-th component. We have to show that ® o c: R — Hol(VSIT;‘?;Cm) is
smooth over R. Because of Lemma [1.74] it suffices to show that R x V})k;() — C™,
(t,x) — ®(c(t))(z) is smooth over R. Unwinding the definitions we get

B(c(t)) (@)
_ expl (2,0)" (exp:; <exp;z (i, B (1) (@), By (8) (e, (2,7 <t><x>>))). (1.13)

The inclusion Hol} (V,"; C™)® < Hol(V,;C™) is continuous linear. Therefore,

4,5 4,5
the maps R x ijo — C™ (t,x) — B, (t,x) and R x V4ki.° — C™ (t,x) — v, (t, )
are smooth over R. Now the assertion follows from ({1.13]). O
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1 Diff“(M) as a Lie group for a manifold M with corners

Now we come to the central lemma of this subsection.
Lemma 1.76. The map
o1 By, x Bi., = Big,, (0,¢) —neo(
defined in Lemma[1.70 is smooth.

Proof. In this proof, all vector spaces except for C™ are considered as R vector
spaces. If k € N we write &’ := 2k + Np. After identification we have Bj_ <

[T, g(Cm; Cm|§]fi(0))]§t (see Definition [1.26)) and it is left to show the smoothness
of

1
84750

x Bl — G(C™; C™B*(0))%,
(7]7 C) — [(7] < <>*(z‘o)] kj = [(n(io) © C(io))*]gilﬁ'o

B,"°(0) (0)

for all ig € {1,...,n}. Because of Remark and Remark it suffices to
show the smoothness of WX/ x W27/ — Q(Cm;Cm\Efio(O)), ((f2)is (g:)i) =
[fio © gio]gkio over R for all j € N. But this follows from Lemma [1.75] O

(0)

1.5. Smoothness of the inversion

In this section, we prove the smoothness of the inversion in the local chart ®.

Lemma 1.77. Let | € N. As before, we define I' := 2l + Ny. There exists o €
10, Eexpx| such that for allie {1,...,n}, x € V2kl, and y € BE(0) we have
(i) expi(w,y) € Vi

(ii) | dz expf(w,y;+) —id op < 3-
In particular, we have |dy exp}(z,y)|op < 3.

Proof. Let i € {1,...,n}. We have exp}(z,0) € Vrfl for all z € V’;l/ and so
V];fl, x {0} < (exp;")_l(%lf;). Moreover, dyexpf(z,0;.) —idem = 0 for all z €
Vi Let h: Vi x BS_ (0) = [0,0], (2,) = [dexp}(x,y) — iden |op. Then
Vl;il, x {0} < h=Y([0, 3[). The rest follows from Wallace’s Lemma. O

)
Definition 1.78. We use the constants of Lemma [[.6§ and Lemma .77 Let
Te := min i,éu, T, Vay Z), rC .= min(i,&c(a)) and ¢, := min(eu,sg,n,s%).

In the case of a smooth manifold without corners, one can use smooth bump
functions to show the smoothness of the inversion |[Glo06¢, Lemma 3.8]. Obviously
this is not possible in the real analytic case. As in [Sch15, Lemma D.4], we use
a quantitative inverse function theorem to show the smoothness of the inversion.
Therefore, it was necessary to show the quantitative inverse function theorem for

open sets with corners (Lemma [I.49) to apply it to show Lemma [1.52]
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1.5 Smoothness of the inversion

Lemma 1.79. Letne By, andie{1,...,n}
(a) The map ¢ ~": BX(0) — R} makes sense. Moreover, the map

T(3)
* i m i —1
(@) s By'(0) = R™, & — ; (:c,% (x))

makes sense and is a stratified real analytic function with |(ng))*(z)|| <

min(ey, €5) for all x € B (0) and wémi))* =( fm))_l on Bg(O)

(b) The map ;" M — M makes sense and 1, (Ui2) S U;s. Moreover,

i

Ui,2 = 80;1 o ( T](i)>_1 % gol

(T

U; 2

(c) The vector field

(d) We have n* € V = Bi

n M —TM, p—exply!y (0 (0)

makes sense, is real analytic and stratified. Moreover, we have 1, = @b;l
and

()| gi gy = (16)" (1.14)

ley-

Proof. (a) Because €, < e3,, and r, < min(dy, 1,%2), we can use Lemma

1472
and see that ( fm))*lz By (0) — R}? makes sense and that |( f](i))*l(x) -
x| < min(dy, Z) for all z € BYi(0). Hence, the map (n@))*: By (0) —» R™,

x> iz, ( ;(i))*l(:p)) makes sense and |(n¢))*(x)|| < min(ey, €5) < exp for

all z € BY(0). Thus

exp, (7, iy () = (! YY) for all z € B4 (0). (1.15)

()

Now let z € ¢/ B5i(0). Obviously y := ( o) (@) € &7 BY(0). Let C be the
connected component of x in ¢’ Bgi (0). Remark implies y € C. We have
v =1 () € B.,(0) and exp}(v) = y and |ly — x| < . From Lemma W,
we get v € T,/ B (0) and so (n4))* € C¥(B5(0); R™)g.

Because €, < gy, the map ¥,: M — M is a real analytic diffeomorphism.
Using Lemma , Lemma and 7, < i, we calculate

Uia = ¢ (BE(0)) € 7 (0, (BE(0))) = o7 0 0 0i(Uig) = ty(Usa).

Let p € U z. To see ¢, (p) = ¢; " o ( o) o wi(p), we use Lemma [1.34) and

obtain 1, (902 to (U)o soi(p)> = p.
We show that the map n*: M — TM, p — exp |;I%,M(¢n_1(p)) makes sense.
Let pe M and i € {1,...,n} such that p € U;;. We define z := ¢;(p) and

v i=To; (x,(ne)*(x)). As ey < €inj, we get v e W, M. Next we calculate

exp(v) = ¢; ' o expy (@, (x)) = ¢; ' oy, o wilp) =Yy (p).
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1 Diff“(M) as a Lie group for a manifold M with corners

Hence, n* makes sense. Obviously ¢, = o L Now let z € Bgi(O) and
p = ;' (z). We calculate

()@ (@) = dppi 0 exp |y} yr 0 0 ()
=dppi 0 exp [y 10 © 07 0 () (i)
—1\—1 i _
= (907/ o exp |WpM © dpspz 1) © ( 7’](1)) 1(1‘)
—expy(,) o (U, )1 (@) = ()" (@)
This shows (L.14). We conclude with this local representation and (@) that

n* is real analytic and stratified.
(d) It is enough to show that ||dnf, (2, v)| < % -|v] for all z € B (0) and v € R™,

Since r. < dy, we have (¢, )7!(z) — € By, (0) (Lemma|1.36) and so
iy (@) = i (@, (05,) (@) — @)
for all # € B5(0). Now let x € B5(0) and v € R™. We get

dn(*z-)(%v) = dioy (%( ;<i))_1(73) - x;v)
+ dya; (x (h ) 7M@) — s d(eh, ) s v) - v> . (1.16)

Using r, < Va and Lemma , we see that (w;(i))_l(ac) —x € B,,(0) and so
|diai(z, (4,,)) 7 (z) — 230)] < o] Analogously we get

Idsars(a, (0%, )7 () — ()~ (w50) = )]
<Ko (0], (w5 = i Loy o] < 2],

M(3)

Now the assertion follows from (|1.16]).
O

Lemma 1.80. Let j e N, ige {1,...,n}, j/ := 2j + Ny (with Ny from Definition
and (1), € W
(a) We have V’T;? c 1/1}30(‘/;;0), the map (1/1}‘2_0)_1: VQk;? — V;;O is complex an-
. N . . k;
alytic and |‘(¢f30) U —idem ||1/_kl0 < 6%(0). Moreover, the map fi:V, 9 —

Yoy
BE(0), x — exp (x,+) 7 (( }?O)_l(:c)) makes sense and is complex analytic.

(b) For all ig € {1,...,n}, the map ®: W37 — Hol(V;;?;Cm), (fi)i — fr s

K
smooth over R.

Proof.  (a) This follows from Lemma [1.64]
(b) We follow the ideas of [Glo06¢, Lemma 3.8]. It suffices to show the assertion
in the convenient setting. Let ¢: R — W39, ¢ — ¢; be smooth. We write (¢;)y,

for the ig-th component of ¢;. We have to show that doc: R x ngj? — C™,
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1.6 Existence and uniqueness of the Lie group structure

(t,z) — c;(z) is smooth over R. From @), we get ¢; € Holg(V;;?;(Cm).
Hénce, 1[)22(‘/';39) c ngjz Therefore, @bégt)io o 1/;2 makes sense and ¢égt)io o
V2 (z) = x for all w € V,, 7. Therefore

exp?, (expl (2. 1 (2), (e (exp? (2, 5 (2)))) — @ = 0 for all 2 € V7 (1.17)

for all z € VQk;? We define the smooth function

ki m
A:Rx V, 9 x BS(0) —» C
(t, 7, y) = expj, (expj, (2, 1), (cr)io (expyy (2, y))) — 2w = ¥, (expj(z,y)) — @

For (t,z,y) e R x V;ﬁ x BE(0), we use Lemma [1.77| and calculate

|dsA(t, z,y;0) —id [op = [[d¥c,),, (exp7, (2, y); do expy (2, y;+)) — id |op
=[dv e, (exp} (z, y); ) 0 do expy (z, ;) — id [op
<[|dv(cy),, (expiy (2, y); +) © da expf; (z,y;+) — id ody exp}; (7, y; )
+ | id ody expj, (w, y;+) — id ||4p

<ldtie,),, (expi (,y); ) —id op - |d2 expi (2, 43 ) |op + lld2 expyy (z, 5 +) —id [op
13 1 7

127w

op

Hence, dsA(t,z,y;.) € GL(C™). Obviously, A(t,z,.): BS(0) — C™ is in-
jective. From the implicit function theorem and , we see that ® is
smooth.

m

Lemma 1.81. The map
iM: Bé,a - Bisu, n— 7]*
defined in Lemma[1.79 is smooth.

Proof. Analogous to the proof of Lemma [1.76] this follows from Lemma ().
[l

1.6. Existence and uniqueness of the Lie group
structure

In this section, we follow the strategy of |Glo06d, Section 5]: First, we use the
theorem about the local description of Lie groups to obtain a Lie group structure
on a subgroup Diff(M ), of Diff“(M). Then we show that this structure does not
depend on the choice of the Riemannian metric (Lemma [1.85). With the help of
this result, we show the smoothness of the conjugation map (Lemma .
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1 Diff“(M) as a Lie group for a manifold M with corners

The following lemma comes from |[Glo06¢, Proposition 1.20]:

Lemma 1.82 (Theorem about the local description of Lie groups). Let G be a
group and U < G a subset that is a smooth manifold such that there exists a
symmetric subset V< U that contains the identity and fulfils V -V < U. If the
restriction of the inversion and the multiplication on V' are smooth maps then there
exists a unique manifold structure on (V') such that:

(i) (V') is a Lie group;

(11) V is open in (V');

(i1i) U and (V') induce the same manifold structure on V.
Moreover, if (V') is a normal subgroup of G and for all g € G the conjugation
inty: (V) — (V), h — ghg™' is smooth, then there exists a unique manifold
structure on G such that

(1) G becomes a Lie group;

(i1) V is an open submanifold of G.

In the following we introduce a notational convention (cf. [GN] and [Str06,
Definition 9.1]).

Convention 1.83. Let X and Y be sets. If X’ € X and Y/ € Y, we write
| X" Y| ={f: X ->Y:f(X)<cY'}

Adapting [Glo04, Proposition 4.23] to our situation, we obtain the following
lemma.

Lemma 1.84. Let U, Z, Uy, V, < C™ be open subsets such that Y < U < Uy and
Y is compact (here the closure of Y is taken in C™). If g: U, x V, — C™ is a
complex analytic map then

Hol(U;C™) n |Y, V] — Hol(Y:C™), v g(«,7(:))ly
18 a complex analytic map.

We follow the line of thought of [Glo06¢c, 4.28, 5.1 and 5.3] in the following
lemma.

Lemma 1.85. (a) Letiy: By, — B, n— 1" be the map defined in Lemma
@. There emists eg €]0, e[ such that By, < iy (Bj.,).
(b) Let U, := V(B;.,) and v: U, — U be the inversion of Diff(M). The set
Uy = \I!(Biso) is an open connected 1-neighbourhood. Moreover, the set
Uy := Uy v L(Uy) S U, is an open connected symmetric 1-neighbourhood. We
define Vo := @~ (Uy) and Vj := By, .
(¢) Analogous to [Glo06d, 6.2], we can use Lemma to find a unique Lie
group structure on Diff*(M)g := Up).
(d) The Lie group structure in (d) is independent of the choice of the atlas
@i Ui s — BE(0) (see Lemm.
(e) The Lie group structure in @ 1s independent of the choice of the Riemannian
metric g.
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1.6 Existence and uniqueness of the Lie group structure

Proof.  (a) This follows from the same argument as in Lemma [1.81]

(b)

(c)
(d)

Obviously, U := ¥(Bj,,) is an open connected 1-neighbourhood. As in
[Glo06c, p. 4.28], the rest of the assertion follows from ' (U])) = (). In
fact Uy := UJ U L(U3) is open because of t™H(Uy) = t(U]) and obviously it is
connected. Moreover U is obviously symmetric.

Clear.

Let ¢j: U5 — ng(O) with 7 € {1,...,n/} be another atlas with the same
properties. We find an analogous open 0-neighbourhood Vj < I'(T'M) such
that U := ®(V) generates a Lie group Diff* (M), < Diff*(M). We define
the open 0O-neighbourhood W := Vy n V. Then X := &(W) < Diff*(M).
Obviously, we get X < Diff*(M), n Diff(M);. Moreover, X is open in
Diff (M), and in Diff”(M){. Because both Lie groups are connected, we get
Diff*(M)y = (X) = Diff”(M);, in the sense of sets and in the sense of Lie
groups.

Let ¢’ be another Riemannian metric with the same properties as g. In the
following, all objects induced by ¢’ are written with an extra “/”. Considering
Definition , we find v €]0,v,[ such that ||dio;i(x,y;4)|op < 2 for all
x € B4(0) and y € B,(0). Moreover, we can choose Ny in Definition SO

large that NLO < min(re#, 7). We choose € > 0 with

. ’ / / / ' /C
e< m1n(8475w 647%3,5475(570)75471,75[/(75474? , € 5C(exP*)>
«

Let n € Bj.. For i e {1,...,n}, the map 7721‘): BY(0) — R™ z —
(' (z,expl(z,n(r))) makes sense and is real analytic. Moreover, the map is
stratified: Let z € ¢ Bf(0) and C' the connected component of z in &7 BE(0).
We define y := (¢);, . (z) and v := ngi)(x) € B.,(0). We have |y — z| < 2.
From Remark we deduce that x,y € C' and y = exp’(v). From ((1.12)
and Lemma we deduce that v € T,0/ B (0). Hence, 1 is stratified.
Moreover, the map nf: M — TM, p — exp @M(exp’ (n(p))) makes sense
and is a stratified, real analytic vector field of M. To see this, we choose a
chart ¢; around p and define = := ¢;(p) and v := {;(x, exp;(z, 1 (x))). Since
U € Buin(ey.e0)(0), we get T; ' (z,v) € W,M. The map n' makes sense be-
cause exp(Tp; ' (z,v)) = exp/(n(p)). Obviously we have (n7)u = (nu)'
Thus 7' is stratified and real analytic. We claim that nf e Bi,so- Let

i€{l,...,n}. We have ngi)(a:) = oz, exp(x, n (@) — ) for all x € B (0).
Hence,

dT/Zz) (l‘7 U) = dlai (fL‘, ¢/;(i) (ZE) - T 'U) + d2ai (xv Tb,;(i) (I’) - T dﬁblfm) (l’, U) - U)

7

and so
il @) op < Ievcrs(ar, 0 (2) = 252 lop + |dpcrs(ar 0 () — 52)
o o

r . €0 .
’ |‘d¢n(i>(m)_1d||op < Z_’_KOC Ka4 - 2

op

o1



1 Diff“(M) as a Lie group for a manifold M with corners

/
Because ¢ < €460

that n' € B} _ . Hence, the map

5y We have [|ne)(z)| < 5 for all z € BY(0). We conclude

A Bia — Bi,ao? n— nT

makes sense. This also shows that W'(B;.) < W(Bj_) S Uy and that

A is nothing else than the inclusion in the charts ® and ®. In the
following, we use notation of the proof of Lemma We want to
show that A: By, — I'4(TM) is smooth. For this we have to show

the smoothness of the corresponding map between G!(C™; Cm|§ii(0)) and
G(C™;,C™BY(0)). Ifne Nand f e Holl(V%;C™) then fT: V% — C™,
xr — exp; (x,.)_l(w’;(a:)) makes sense and is complex analytic (because of
Lemmal(1.62{we have |1y (2) — x| < 6%(gexpx)). We want to show the smooth-
ness of Holi(\/f;; cm) — HOl(VZZ_i_z), f — fT. We can write this map as the
following composition

Hol! (V5 €") 2 Hol(VE5 15 C") 0 (IVinses Biiqe, . (0)] + id)
7 Hol(V,5: C™)
with 71 (n) = ¢/ and 7a(f)(x) = exp}(z,) ' (f(x)).

Now the smoothness of 71 and 7, follows from Lemma [I.84 From Lemma

we deduce that A is smooth. The set W/(B} ) is an open identity

neighbourhood on Diff(M)g and with W/(B;.) < ¥(Bj_) S Uy we get
Dift“(M);, < Diff*(M)y. The inclusion Diff* (M) — Diff w(M ), is smooth
because A is smooth. Analogously we see that Diff* (M), < Diff*(M); and
that Diff* (M), — Diff*(M); is smooth.

]

Lemma 1.86. Given f € Dift“(M) the map

Py [s(TM) - T8(TM), n— P = Tfono]“1

18 continuous linear.

Proof. Because we can embed T4 (TM) into [}, Q(Cm;Cm|§ii(0)), it suffices
—ki . “
to show that I'G(TM) — G(C™;,C™[B,(0)), n — [(Prn)*)m] = [(Prm)@)*] is
continuous. The map ¢}: f~1(Uis) — B (0), ¢, = ¢; o f is a chart of M. Given
(e T4 (T M) we write (1= dp;o(o cpg_l for the local representative. We get

(an)(z) = dgol ° Pf77 Uis © ()0;1 = Nyt

Hence,

[((Prm)@)*] = [(ne)*] = 1(07) ]
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1.6 Existence and uniqueness of the Lie group structure

The map ', (TM) — G(C™; Cm\EZi), n — (n*)+ is continuous because of [DS15,

¥i

Lemma A.15]. O

The following lemma and its proof are completely analogous to [GloO6c,
5.5,5.6,5.8]. For the convenience of the reader, we recall Glockners arguments:

Lemma 1.87. The subgroup Diff” (M) of Diff*(M) is normal and for f €
Diff*(M) the conjugation inty: Diff*(M)q — Diff*(M)o, h — fohof~ is smooth.

Proof. Let f e Diff“(M). Then the pullback metric ¢’ from g over f induces a
Riemannian exponential function exp’: Q' — M, with Q' = T f(2) and exp’ =
foexpoT f~ . Hence, for n € Vi, we get fo WU, o f~! = exp/ oPn = Up.-
Now we can use Lemma and find a 0-neighbourhood V| < T',(T'M) such
that ®': V| — Diff*(M), is a diffeomorphism onto an identity neighbourhood.
Because the map Py: I',(T'M) — T'%(T'M) is continuous linear, we can find a
0-neighbourhood W <V < I'(T'M) such that P;(W) < V. Hence, int; oV, =
U, € Diff*(M)o for all n € W. Therefore, inty(¥(W)) < Diff*(M)o. Thus
int (Diff*(M)o) = inty(< (W) >) < Diff“(M)o. Moreover, we have int¢ |guw) =
U’ o Py o ®|ywy. Hence, inty is smooth. O]

Now we get the main result of this chapter. As in the case of [Glo06c| we just
have to use Lemma [[.82 and the results above.

Theorem 1.88. There exists a unique smooth Lie group structure on Diff* (M)
modelled over T%(TM) such that for one (and hence for all) boundary respect-
ing Riemannian metrics on M the map n — W, is a smooth diffeomorphism
from an open 0-neighbourhood of I's,(T'M) onto an open identity neighbourhood
of Dift”(M).
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2. Integrability of Banach
subalgebras

As mentioned in the introduction, Teichmann showed a Frobenius theorem for
finite-dimensional vector distributions on convenient manifolds that are modelled
over locally convex spaces (see [Tei01, Theorem 2])E] A similar result for manifolds
that are modelled over locally convex spaces in the sense of Keller's C¥-theory
was obtained in [Eynl12, Chapter 2; Theorem 2.6}@ The primary aim of this
chapter is to obtain a Frobenius theorem for Banach distributions on manifolds
that are modelled over locally convex spaces (see Theorem . Hence, we obtain
a generalisation of [Eyn12, Theorem 2.6] respectively [Tei01, Theorem 2]. In [CS76]
Chillingworth and Stefan considered distributions on Banach manifolds that are
not necessarily subbundles of the tangent bundle but such that each fibre D, of
the distribution is a Banach space which is complemented in 7,M. Our proof of
Theorem is inspired by the proofs of [CS76, Section 4] and [Tei01, Theorem
2] respectively [Eynl12, Theorem 2.6]. Whereas Chillingworth and Stefan consider
Banach manifolds, we are interested in manifolds that are modelled over locally
convex spaces. So one of the main problems will be that we have no solution
theory for initial value problems in locally convex spaces. The idea to generalise
the methods used in |[CS76] was suggested to the author by Glockner.

In Section we apply our Frobenius theorem to obtain Theorem con-
cerning the integration of Lie subalgebras of Lie algebras of Lie groups that are
modelled over locally convex spaces. It is a standard strategy to show the integra-
bility of Lie subalgebras with the help of a Frobenius theorem (see e.g. |Lan01,
Chapter VI, Theorem 5.4], [Les68], [Les92], or [Eyn12, Theorem 4.1]).

2.1. The Frobenius theorem for Banach distributions

Convention 2.1. Throughout this section, E will be a locally convex space, r €
N u {0} and M a C"-manifold modelled over E.

Remark 2.2. Because ordinary differential equations in locally convex spaces do
not have a unique solution in general we sometimes assume that certain vector
fields admit a local flow.

At first we recall some standard definitions concerning distributions of manifolds,
see e.g. [Leel3|, [Eyn12], [Lan01], [Hil00] or [Tei01]:

!This chapter consists of material published before in the author’s preprint [Eynl4a).
2 As mentioned in the introduction the Frobenius theorems in [Les68] respectively [Les92] are of
a different kind because they require other conditions and their proofs use different methods
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2 Integrability of Banach subalgebras

Definition 2.3. (a) A subset D < T'M is called vector distribution or just dis-

tribution of M, if for every point p € M the set D, := D nT,M is a vector
subspace of T,M. Important examples for vector distributions are subbun-
dles of TM. (See e.g. [Eynl2, Definition 1.7], cf. [Leel3, p. 491])

A subset N © M is called an immersed submanifold of M, if it is a C"-
manifold modelled over a closed complemented vector subspace F' of E such
that the inclusion (4 : N — M, p — p is continuous and given p € N we find
a chart ¢: U, — V,, of N around p and a chart ¢: Uy — V;, of M around p
such that U, = Uy and ¢ o i) o o' = £y, . (See e.g. |[Eynl2, Definition
1.9], cf. [Leel3, p. 108])

Let F' < E be a closed vector subspace of £ and D < TM be a subbundle
of T'M with typical fibre F'. A connected immersed submanifold N < M is
called integral manifold for D, it T,N = D,, for every p e N. Given p, € M,
we call an integral manifold N containing py mazimal if every other integral
manifold L for D that contains pg is a subset of N and the inclusion map
t: L — N, pw— pisofclass C". (Cf. e.g. [Eynl2, Definition 1.10] or [Leel3,
p. 491])

Let FF < FE be a closed vector subspace and D < T'M be a subbundle of T'M
with typical fibre F'. Assume that F is complemented in E, say £ = F® H
topologically with a vector subspace H of E. A chart ¢: U, — V,, of M is
called a Frobenius chart for D, if there are open sets V} € F and Vo, € H
such that V,, = Vi x V, and for § € V5 the submanifold

SE = {o Ha,7) : x e Vi} (2.1)

is an integral manifold for D|y, . If M admits an atlas of Frobenius charts
for D, we call D a Frobenius distribution.

If I is a closed vector subspace of F, we call a subbundle D <€ T'M of TM
with typical fibre F' involutive, if for all C"-vector fields X, Y : U — T'M on
an open set U € M with im(X) € D and im(Y') € D, also im([X,Y]) < D.
(See [Eynl2, Definition 2.5], cf. [Leel3, p. 492])

The following theorem is a straightforward generalisation of the finite-
dimensional case (|[War83]), and was proved in [Eynl2, Satz 1.13.].

Theorem 2.4. Let E be a locally convex space, M be a C"-manifold with r = 2,
F be a complemented vector subspace of E and D < T'M be a subbundle of T M
with typical fibre F'. If D is a Frobenius distribution then given py € M there exists
a unique maximal integral manifold that contains py.

Remark 2.5. Let F' be a complemented vector subspace of E with vector comple-
ment H and D < TM be a subbundle of TM with typical fibre F. For a chart
o: U—->VixVo € F@H = E of M and the inclusion i: Vi — Vi xV,, . — (2,7),
we get the following equivalences:

@ 1s a Frobenius chart
<(Vge Vo) 82 = ¢ (-, 7)(V1) is an integral manifold for D
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2.1 The Frobenius theorem for Banach distributions

(Vg e Vo) (Ve e Vi) Tp1wp Sy = To(p™' o ig) ({2} X F) = Dy1(ap)
<(VpeU,) dp(D,) = F.
Definition 2.6. Let N be a C"-manifold, X: N — TN be a C" !-vector field

on N and f: M — N be a C"-diffeomorphism. In this situation we define the
O™ Lvector field f*X :=Tf 1o X o fon M.

The following lemma is a straightforward generalisation of the finite-dimensional
case (cf. [GN] or |[Lan01, Chaper V, Section 2]).

Lemma 2.7. Letr > 2. If X,Y: M — TM are C"-vector fields and X provides
a local flow then we have %L:o (25)*Y (p)) = [X,Y](p) for allpe M.

Proof. 1t is enough to prove the assertion locally. Let U < FE be an open subset and
f,9: U — E be C"-maps such that f provides a local flow. We write ®: Q — U
for the global flow of f. For p € U, we calculate

@) =

d®(—s,®(s,p); 0, 9(P(s,p)))

s=0

—dy (d®) (o, ®(0,p),0,9(2(0,p)); —1, <

d®_, (D,(p), g(Ps(p)))

s=0

ds

s=0

q’(s,p))

< a0 (0,000 4] o(@(s.))

=d, (d®)(0,p,0,9(p); —1,0) + d1(d®)(0,p, 0, 9(p); 0, f(p))
+d®(0,p;0,dg(p, f(p)))

— % tzod@(t,p; 0,9(p)) + %L_OdCD(O,p +tf(p);0,9(p))
+ dy®(0, p; dg(p, f(p)))

d d d
~ 2l gsl 2E P+ sg(p)) + | dPo(p+tf(p)ig(p)) + dg(p, f(p)

. %L:Of(p +59(p)) + % ) +dg(p, f(p))

= —df (p,9(p)) + dg(p, f(p))

The following result comes from |Glo06b, Theorem 2.3].

Theorem 2.8. Let r € N U {0}, E be a locally convex space, F be a Banach
space, P < FE and U < F be open sets and f: P x U — F be a C"-map with
r e N. We write f, := f(p,s): U - F forpe P. Let po € P and xo € U with
o(x0) € GL(F). Ifr =2 orr =1 and

sup £ (20) — £()ap < s (2.2)

(p,x)ePxU Hféo (xO)ilHop’
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2 Integrability of Banach subalgebras

then we find an open po-neighbourhood Py < P and an open xg-neighbourhood

Uy <€ U such that

(a) f,(Uy) is open in F for all p € P and fylu,: Uy — fp(Up) is a C"-
diffeomorphism.

(b) W= U,ep, ({p} x [o(Un)) is open in E x F and g: W — Uy, (p,y) — f, ' (y)
s a C"-map.

(c) ®: Py x Uy — W, (p,z) — (p, fp(x)) is a C"-diffeomorphism with inverse
U: W — Py x U, (p,z) = (p,g(p,2)).

Definition 2.9. Let £ and F' be locally convex spaces. We write L(E, F),, for the
space of continuous linear maps equipped with the topology of uniform convergence
on bounded sets and L(E, F).,. if we equip the space with the topology of uniform
convergence on compact sets (see [Glo| p. 5]).

The following lemma is taken from |Glo, Proposition 2.1] (also cf. [GN]).

Lemma 2.10. If E, F and H are locally convex spaces, r € N, U € E is an open
set and f: U x ' — H is a C"-map that is linear in the second argument then

[V:U— L(F,H)., is of class C" and f¥: U — L(F,H), is of class C"1.

Lemma 2.11. Let E be a locally convex space, F' be a Banach space, Pg be the
set of all continuous seminorms on E and By be the closed unit ball in F. If we
write |«| g4 for a typical seminorm on L(F,E),, where B is a bounded set in F
and q € Pg then the family of seminorms ( defines the locally convex

topology of L(F, E)y.

By ,q) q€PE

Proof. Obviously the topology that comes from ( th)quE is coarser than the
one of L(F, E),. To show that it is also finer let B € F' be bounded and ¢ € Pg.
We find » > 0 with r - B; 2 B and calculate

1f1B.q < [flrpiq = supla(f(2)) - @ € rBi} = sup{r - q(f(2)) : w € By}

=[f1B1.rq-
]

Lemma 2.12. Let E be a locally convexr space, F' be a Banach space and q be a
continuous seminorm on E. For E, := E/q '(0) and 7,: E — E,, v +— x+q*(0),
the map v: L(F, E)y/(||8,q) " (0) — L(F,Ey), f+ (|5 ,0) — mgo fis a
well-defined topological embedding. Moreover, for f € L(F,E), g € L(F) and
Mty t LUELE) — LB, )/ (o5, (0)). £ F + [+]5L,(0). we get

Lo 7T||.||Bl7q(f og)= (o W\\.\\Bl,q(f)) ©g. (2.3)

Proof. Let f e L(F,E) with ||f| g, , = 0. For x € F\{0}, we get

mﬂ@=thf(£):o

]
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2.1 The Frobenius theorem for Banach distributions

Hence ¢ is well-defined. To show that ¢ is an isometry we choose f € L(F, E) and
calculate

Img 0 fllop = supigo f(x) - w € Bi} = | flB.4
=[f + (|-]5,.0) " (O)].

To show ([2.3)) we calculate

LO T, (fOg) =m0 fog=(tomuy (f)og.
0

If £ is a locally convex space one considers the induced Banach space E, :=
E/q~*({0}) for continuous seminorms ¢, to obtain information about the existence
and uniqueness of initial value problems in E. This is a standard strategy in
infinite-dimensional analysis and was shown to the author by Glockner in a related
context (cf. |[Omo78| and [DGV16]). We use this method in the following lemma.

Lemma 2.13. If E is a locally convex space, F is a Banach space, \: I — L(F)
is a C'-curve and jg € L(F, E) then the initial value problem

{s@'(t) = p(t) o A(t) 2.4)
e(0) = o

in L(F, E)p has at most one solution.

Proof. Let @1, 2 | —¢,e[— L(F, E) be solutions of the initial value problem
and ¢ a continuous seminorm of E. Moreover, let m,, . and ¢ be as in Lemma
2.12| For i = 1,2, we define the map ¢;,: | —¢,e[— L(F, E,), t — 10 Tell5,.0 © Pi
and get

iq(t) = tompy,  (0i(t) = Lomps, , (wi(t) o A(t))
=10 Ty, . (#i(1)) 0 A(t) = pig(t) 0 A(t)

and ;,(0) = m, o po. Let E, be a completion of E, such that E, < E,. The
composition £(F)x L(F, E,) — L(F, E,), (1,%) — topu is continuous and bilinear.
Hence, f: I x L(F,E,) — L(F,E,), (t,1)) — 9 o A(t) is Fréchet-differentiable of
class C'. Thus, f is continuous and locally Lipschitz-continuous in the second

argument. Because L(F,E,) is a Banach space, we have p;, = ¢s,. Hence
Mol .4 ©P1 = a5, © P2. Because ¢ was an arbitrary continuous seminorm of £,
we get 1 = a. O

In [Eynl2] the author worked with flows (without parameters) of vector fields
(without parameters) on infinite-dimensional manifolds (see [Eynl2, Definition
1.19]). For the more general result in this thesis we have to consider flows with
parameters of vector fields with parameters. We recall the basic well-known defi-
nitions in the following (cf. e.g. [Lan01, Chapter IV, Section 2]).
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2 Integrability of Banach subalgebras

Definition 2.14. Let P be a locally convex space, r € N and M be a C"-manifold
that is modeled over a locally convex space. Moreover let {0 € R x M x F be open
and ®: Q — M a C"-map such that:

(i) {0} x M x P < Q.

(ii) ®(0,z,p) =z for all z € M and p e P.

(iii) For all zg € M, py € P we find a symmetric interval I, a xy-neighbourhood
U in M and a pg-neighbourhood V in P such that I x U xV < Q, [ x
Uper @ x U x {p}) x {p} = Q and ®(¢,®(s,z,p),p) = ®(t + 5,2, p) for all
reU,peV andt,sel withs+tel.

Then we call ® a C"-R-action on M with parameters. A C"™1-map X: M x P —

TM is called vector field with parameters, if X (., p) is a C"1-vector field of M for

all p e P. We say that X provides a local flow with parameters of class C”, if we

find a local C"-R-action on M with parameters such that %‘t:(](b(t, z,p) = X(z,p)

for all x € M and p € P.

As mentioned above, the following Frobenius theorem is inspired by [CS76,
Section 4] and [Tei01, Theorem 2] respectively the author’s result [Eyn12, Theorem
2.6]. Also in [Les68| and |Les92|, Frobenius theorems have been proved. But
Leslie’s results require different conditions and he used very different methods to
prove his statements.

Theorem 2.15. Let E be a locally convexr space, F' be a complemented vector
subspace of E such that F is a Banach space with the induced topology from E.
Moreover, let r € Nu {00} with r = 4, M be a C"-manifold modeled over E and D
be an involutive subbundle of T'M with typical fibre F'. Assume that po € M, there
exists an open po-neighbourhood U < M and a C™-vector field X : U x F — TU
with parameters in F' such that:

(a) The map FF — I'(TU), v— X(s,v) is linear;

(b) im(X) < Dy

(¢) The map F — D,,, v — X(po,v) is an isomorphism of topological vector

spaces;

(d) The C™-vector field X provides a local flow with parameters of class C".

(e) It exists a chart ¢: U — V of M, such that ¢(py) = 0 and dp(D,,) = F.
In this situation D is a Frobenius distribution.

Proof. Let py € M and ¢ be a chart around py with ¢(pg) = Og, dp(D,,) = F
and dp, o X (po,+)|Pr0 = idr. To be a Frobenius distribution is a local property,
hence it is enough to show the statement in the local chart ¢. This means we
have the following situation. The set U is an open 0-neighbourhood in E. The
vector distribution D € U x E is a subbundle of U x F with typical fibre F.
Hence, given x € U we find a C"-diffeomorphism ¢: U x E — U x E such that
Y({y} x E) = {y} x E, pryot)(y,.): E — E is an isomorphism of topological vector
spaces and (D) = U x F. Given x € U, we write D, for the vector subspace
pry(D N ({z} x E)) of E. By our choice of ¢ we have Dy, = F. We write again
X for the local representative of X in the chart ¢. Hence, X: U x F — E is a
C"-map such that:
(a) The map X: F — C"(U, E), v — X(+,v) is linear;
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2.1 The Frobenius theorem for Banach distributions

(b) X(p,v) e D, for all pe U and v € F;
(¢) The map X(0,.): FF— Dy = F, v+ X(0,v) is an isomorphism of topologi-
cal vector spaces (we have X(0,.) = idp);

(d) X provides a local flow with parameters.
We write ®: (2 — U for the global flow with parameters of X. For convenience we
write X, := X (o, v), DV := O(s,0,v) and Q¥ := {(t,z) e Rx U : (t,x,v) € Q} forv e
F. Since X: U x F — Eis a C'-map, also X: U x F — F, (z,v) — (x, X (z,v))
is of class C''. This provides the continuity of X: U — L(F), 2 — 9 (z, X (z,))
because of Lemma . Since X (0g,.) is an isomorphism of topological vector
spaces, we can assume that X (z,.)|P=: F — D, is an isomorphism of topological
vector spaces for all z € U. We divide the proof in three steps.

Step 1: Given a vector field Y: U — E with Y (z) € D, for all x € U, we show
that ((®})*Y)(x) € D, for all (t,z,v) € Q. Moreover, we prove

day®(t,y,v;+)(Dy) = Dar ) (2.5)

for (t,y,v) € Q. This generalises parts of the proof of [CS76, Lemma 4.3].
For (t,z,v) € €, we have to show that (®})*Y (z) € D,. There exists w € F
with X(®(t, z,v),w) = Y (P(t,z,v)). Thus

(94)"Y (z) = (d®}(x,.)) " 0 Y 0 ¥} (w) = (d0f(w,.) " 0 Xy 0 P} ()
=(0)" X ().

So we only have to show that (®})*X,,(x) € D, for all w e F and (¢,z,v) € 2. Let
ve F and x € U. On the interval I,, :== {t e R: (t,z,v) € Q}, for all w e F we
have

S(@n ) = 2| (@) xuw) = &

((@5)(P})* Xu(2))

s=0

= [Xo, (BF)" Xu] (2) = [(B7)" KXo, (B7)* Xo] (2) = (2)" [ Xy, Xu] (2)

using Lemma 2.7, [Eyn12, Lemma 2.3] and [Eyn12, Lemma 2.4]f] Now we define
the curve g,: I, . — E, gu(t) := (®V)*X,,(x) for w € F and write \, := X (y,.)|"v
for y € U. Moreover, we define z; := ®}(x) for t € I,,. From [X,, X,](z:) =
X (24, \ ([ Xy, Xow](24))) we conclude that

Tt

gL (1) = ()Xo Xul(2) = (807X xago (@) = 9ot (0 0oy (1)

For t € I,,, we define the maps A(t): FF — E, u — g,(t) and B(t): F — F,
w — A N[X,, Xo](zi)). We also define A: I,, — L(F,E), t — A(t) and
B:I,, — L(F), t — B(t). The curve A is of class C' because I,, x F —
E, (t,w) — g,(t) is of class C? (see Lemma. Forpe U, let¢,: E — E be the
canonical isomorphism that is induced by 1. We define the map f: I, , x F' — F,
(t,w) = g, (X (4, w)). Let (to,wo) € Loy x F, wy 1= g, ([ Xy, Xup(24,)) and

3From [Eynl2, Lemma 2.3] we deduce X, = (®¥)*X, and from |Eynl2, Lemma 2.4] we get
[(PY)* Xy, (P)* Xy] (2) = (PY)* [ Xy, Xw] (z) (cf. [Lan01, Chapter V Section 1]).
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2 Integrability of Banach subalgebras

2 1= f(to, o) Hwy). We have dy f (g, z) € GL(F ) and with Theorem [2.§] we see
that fo: I, x F — F, (t,y) — f(t,«)(y) = ( ;tl(y)) is C% on a (tg, w)-
neighbourhood. Hence, I,, x F — F, (t,w) — A\ '([Xy, Xu](z)) is C* on a
(to, wp)-neighbourhood. Because (tg, wp) € I, , x F Was arbitrary we see that this
map is C? and so the curve B is of class C! (see Lemma [2.10)). For w € F' we write

w: L(F,E) — E, B— B(w) and get

A()w = eg(A'(1)) = d(ew 0 A)(t, 1) = %(gw(t)) = 0o (o ()
— AWD)A (X0 X (@) = (A1) o B(1)) (w).

Hence, A solves the initial value problem

p(t) o B(1)

X(..) (2.6)

—
5 5
==
[

in L(F, E),. There exists a solution of the initial value problem in L(F,D,).
From Lemma , we conclude that the image of A lies in L(F,D,). It re-
mains to show . To this end let (t,y,v) € Q and f: U — E be a C"-map
with f(p) € D, for all p € U. We define = := ®(¢,y,v) and get (—t,z,v) € €.
Hence, d®}(®Y,(z), f(®Y,(x))) € D,. We conclude that d®;(y, f(y)) € Dgy(y).
Because ®(t,.,u) is a diffeomorphism, we get do®(t,y,u;.) € GL(E). This shows
do®(t,y,v;)(Dy) S Doty for all (t,y,v) € Q. Again let (t,y,v) € Q. With
O(t, d(—t,y,v),v) =y, we get

(da®(t, y,v;4)) " = do®(—t, D(t,y,0),v;.). (2.7)

We conclude do®(t,y,v;+)(Dy) = Doty for all (t,y,v) € Q. Our second aim is
to show the following statement.

Step 2. Given (t,y,u) € Q, we have
d3q)<t7 Y, u, ‘) (F) - D‘:P(t,y,u) (28)

for the map ds®(t,y,u;.): F' — E. This generalises |[CS76, Lemma 4.3].

Indeed, we have

diP(t,y,u; 1) = X(P(t,y,u),u), (2.9)
(0, y,u) =y. (2.10)

By differentiating the right-hand side of (2.9)) in y in the direction h € E, we get
d, (X(@(t,y, u),u))(y, h) = le(CD(t, y,u), w; do®(t, y, u; h))

Differentiation of the left-hand side of (2.9)) in y in the direction h € E leads to
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2.1 The Frobenius theorem for Banach distributions

L2(D(t,y + sh,u)) = 2dr®(t,y,u; h). We conclude that

(,%dz@(t, y,u; h) = le(Q(t, y,u), w; do®(t, y, u; h)) (2.11)

dy®(0,y,u; h) = h. (2.12)

Now we differentiate the right-hand side of (2.9)) in u in the direction h € F' and
get

du (X (P(t, y,u),u)) (u, h) = dX ((D(t,y, u), u); (dz (¢, y,u; h), h))
=dy X (<I>(t, Y, u), u; h) + le(CID(t, y,u), w; ds®(t,y, u; h))
=X (CD(t, Y, u), h) + le(fl)(t, y,u), u; ds®(t,y, u; h))

Differentiation of the left-hand side of (2.9)) leads to

0 0 0
& at( (t Yy, u + Sh)) = adg@(t, Y, u; h)
Hence,
%dg@(t, y,u; h) = X(@(t, Y, u), h) + le(CI)(t, y,u), w; ds®(t, y, u; h)),

dz®(0,y,u; h) = 0.

Thus, ¢t — d3®(t,y,u;.) solves the initial value problem

{0’(15) = X(®(t,y,u),+) + dy X (B(t,y, u), u; ) 0 o(t),
(2.13)
o(0) =0
in L(F,FE). We use the shorthand notation [ := I,,. The map f: I x F —
D, < E, (t,v) — dQ(ID( £, 0t y,u),u; X (D(t,y,u),v)) (see (2.7)) is of class C?
and So s,v)ds =t- So f(ts,v)ds (the weak integral exists because D, is a Banach
space). Thus, fi: I x F' — E, (t,v) — So s,v)ds is of class C%. We conclude
that fo: [ x F — E, (t,v) — do®(t,y,u; So s,v)ds) is of class C?. Hence,
n = fg: I — L(F,E), is a C'-map. We want to show that 7 is a solution of the
initial value problem (2.13). Given v € F, the evaluation map ¢: L(F, E) — E,
A — A(v) is continuous and linear. Therefore We only need to show that for all
v e F thecurve 7: [ — E,| t — dy®(t,y,u; So s,v)ds) is a solution of the initial
value problem

(2.14)

Fo(t) =dX(D(t,y,u),u;0(t) + X(D(t,y,u),v)
s(0) =0,

where ¢ is a curve in E. We define the map H: I x E — E, (t,w) — do®(t, y, u; w)
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and get

7'(t) = %(Ho (id; (1), f1(t,v))) = d(Ho (idl,fl(.,v)))(t, 1)
=dH((t, f1(t,v)); (1, f(t,v)))
=d1H(t, fi(t,v); 1) + dgH(t, fi(t,v); f(t, v))

On the one hand we have
H(t, fi(t,0); f(t,0) = H(t, f(E,0))
=do®(t,y, u; do®(—t, ®(t, y,u), u; X (P(s,y,u),v)) ) = X(P(s,y,u),v) (2.15)

= (dQCD(tvy:u;‘))_l (X((I)(Svyvu) 7U))

and on the other

(. (40 ) = (b (2,0))|

oh h=t
LS o), )
:%(X(q)(ta y+ 0 filt,v), ), u)) h'=0
X (01,4, 0), w3 do(t, . fi(1,0)) = b X (D(t,y,w), (D). (216)

Thus, 7 is a solution of (2.14]) and so 7 solves the initial value problem (2.13). Now
we show that the solution of (2.13)) is unique. It is enough to show that for every
h € F' the initial value problem

{g'@ = X(D(t,y,u), h) + dy X (®(t,y, u), u; g(1))
g(0) =0,

where g is a curve in E, has a unique solution. Obviously it is sufficient to show
that the initial value problem

g/(t) = le(@(tayau)au;g(t)) (217)
9(0) =0

has at most one solution. We define Q := {(t,y) e R x U : (t,y,u) € Q} x E and

consider the map ®: Q — U x E, (t,y,w) — T®%(y,w) which is a local C"-R-

action on U x E because of the chain rule of tangential-maps. The vector field

X:UxE— ExE, (y,w) — (X(y,u),d, X (y,u;w)) has the local flow ® because

with (2.11]) we get

jt(@(t Y, w ))L:O = i(é (v), &2®(t,y, s w))|
=(X(y,u), di X (y, u;w)).
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Now let g; and g, be solutions of (2.17)), defined on the interval I. For i = 1,2,
the curve G;: I — U x E, t — (®(t,y,u),g;(t)) is a solution of the initial value
problem

Gi(t) = X(Gi(t)
Gz(o) = y70>7

because

G;(t) = (X((I)(tay>u)7u)ale(q)(t>yau)>u;gi(t))) = X(Gz(t))

Hence, G (t) = G5(t) and so g;(t) = g2(t). This implies the uniqueness-statement.
Now we conclude that

Ay (t,y,us2) — n(t) — (v sy (t,y,u; Lt f(s,v)ds)) RENCRTS

Since im(f) < D,, with and Step 1, we get ds®(t,y,u;.)(F) <
dg@(f, Y, u; -).Dy = D<I>(t,y,u)-

Step 3: Now we construct a Frobenius chart around Og (this construction gen-
eralises parts of the proof of [Eynl2, Theorem 2.6] or [Tei0l, Theorem 2]). To
this end let F be a topological vector complement of F' in E. We choose open
0-neighbourhoods V) < F, V® < F and a symmetric interval I < R such
that V := VD x V@ < U and I x V x V@ < Q. We have £(s,0,0) =
X(®(t,0,0),0) = 0 and ®(0,0,0) = 0. Hence, ®(¢,0,0) = 0 for all t € I. We have
seen im(f) < D, in the calculation above. Taking y = Op and u = Op, we get
dy®(—s,0p,0r;v) € F for s € I and v € F. We define the map A\: I x F — F,
(s,v) — dy®(—5,0p5,0p;v). Because \: I — L(F), s — dy®(—s,0,0,.) is continu-
ous and A(0) = idp we find 0 < ¢ < 1 such that [—¢,#] = I and |A(s) —id [, < &
for all s € [—t,t]. We have

1 t
[ACs, tv) = vl < [A(s,t0) = tv] + o = to] < 5 - tof] + (1 =)o) = (1 - 5) o]

for all s € [—t,t]. We show that

ds®(t, 05, 03 2) € L(F)* and dy®(—t, 05, 0p;.) € L(F)*. (2.19)

With , we get d3®(¢,0,0;.) = (v — dg(I)(t,OE,OF;SS A(s,v)ds)). The map
dy®(t,0,0;.): E — E is an isomorphism of topological vector spaces. With
and Step 1 we see that dy®(t,0,0;.)|% € L(F)*. Hence, we have to show that the
map p: F— F,u— Sé A(s,v)ds is an isomorphism. To see || — idp [lop < 1 we

choose v € F' and calculate
! t
< J (s, tv) — o[ ds < (1 - —) Jv].
0 2

(2.20)

¢ 1
f A(s,v)ds — v f A(ts,v) -t — vds
0

0
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2 Integrability of Banach subalgebras

Analogously, we get dy®(—t,0,0;.)|5 € L(F)*. To show that d3®(—t,0g,0p;.) €
L(F)* it is enough to show that u_;: F' — F, v So_t A(s,v)ds is an isomorphism.
A calculation analogous to shows that —pu_; is an isomorphism. Hence we
obtain ([2.19). Now we show that ¢: VW x V@ — B (z,w) — ®(—t,z,w) has
open image and is a diffeomorphism onto its image. To this end we consider the
Cr-map b: VO x V@ x V@ o F x F, (z,w,v) — ®(t,(z,v),w). We write
by := pryoB. We have ®(¢,0,0) = 0. With the information from Step 2, we get
ds®(t,0,0;.).F < Dgg0,0) = F and with (2.19) we conclude that

d2b2(0,0,0;.) = pry(ds®(t,0p,0p;.)) = ds®(t,0p, 0p; ) |f € L(F)*.

With Theorem we get that after shrinking V) and V® the map
by(z,+,v): VB — [ has open image and is a diffeomorphism onto its im-
age. Moreover, we get that W: V) x V@ x V@ o B x F (z,w,v) —
((z,v),ba(2z,w,v)) has open image and is a diffeomorphism onto its image. We
have ®(#,0,0) = 0 and so ¥(0,0,0) = (0,0). We choose 0-neighbourhoods
W < Vv < Fand W® < V® < F such that WO x W& x W@ o
im(V). Hence, V"'(2,v,0) = (z,ba(2,.,0v)71(0),v) for (z,v) € W x W,
We define W := WM x W&, We write (!7!)y := pryo¥~!. For the map
w: W x W - VO (z,0) — (I1)y(z,0,0), we get ba(z,u(z,v),v) = 0 be-
cause of (U71)y(z,v,0) = by(z,+,v)71(0). We define the map &: W x W —
E, (z,v) = (bi(z,u(z,v),v),u(z,v)). In the following we show that |¢-1(y) is
inverse to (|c-1(wy. To this end we calculate

Co&(z,v) = ((b1(z,u(z,v),v),u(z,v)) = CID(—t,Ibl(z,u(z,v),v),u(z,v))

=b(z,u(z,v),v)

=P(—t,P(t, (2,v),u(z,v)),u(z,v)) = (2,0v).
Given (x,w) € ("Y(W), we have
b(¢i(z,w), w, G(z,w)) = DL, ((x,w),w) = . (2.21)

Thus, by (i (x, w), w, (o(z, w)) = 0 respectively u(¢(x,w)) = w. Hence

§o C(iL‘,U)) = (bl(Cl(x,w),u(C(a:,w)),CQ(x,w)),u((’(x,w)))
:(bl(cl(x>w)7w7CQ(x’w))’w) = (x,w).

We define U, := £1(V), V, := ("Y(W) and ¢ := §|ZZ In particular, we get
¢! = (]v,. After shrinking V,, we assume that V,, = V@(l) X Vy) with Vél) c v
and Vf) < V. We show that ¢ is a Frobenius chart around 0. It is sufficient to

show that dp({p} x D,) = F respectively ((dp)(p,.)) " (F) = D, for all p € U, be-
cause of Remark . This is equivalent to show that dyo™!(z,w;+)(F) = Dy (40

respectively daC(x, w;e)(F) = D¢z for all (z,w) € V,, = Vgo(l) X V@(Q). Because
of (2.8), the map A: VI x VI — L(F) (z,w) — ¢(®(—t, 2, w), ds®(—t, 7, w;.))
is well-defined and continuous. Because of A(0z,0p) € L(F)* we assume
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2.2 Application of our Frobenius theorem to Lie theory

that A(z,w) € L(F)* for all (z,w) € VIV x V@(Q). Hence, ds®(—t,z,w;.) =
Yo(P(—t, z,w),) "t o Nz, w) € L(F, Do(—tzu)) is an isomorphism of topological
vector spaces for x € Vél). ]

2.2. Application of our Frobenius theorem to Lie
theory

Remark 2.16. From [Lan01, Chapter VI.] respectively (Eynl2, Chapter 4], we
get the following facts:

(a) Given a Lie group G and a closed Lie subalgebra b < L(G), the vector
distribution D := .o TAy(h) is an involutive subbundle of TG with typical
fibre b, if we identify the modelling space of G with L(G) (see e.g. [Eynl?Z,
Lemma 4.6]; cf. [Lan01, Chapter VI]).

(b) If the vector bundle D in (@) 18 a Frobenius distribution then we can find a
Lie group H that is an integral manifold for D and a subgroup of G (see e.g.
(Eyn12, Lemma 4.7]; cf. [Lan01, Chapter VI]).

As in [Lan01, Chapter VI, Theorem 5.4], [Les68|, [Les92|, or [Eynl2, Theorem
4.1] we use a Frobenius theorem to show a result of integrability of Lie subalgebras
in the context of infinite-dimensional Lie groups. The following theorem gener-
alises [Eyn12, Theorem 4.1] respectively [Lan01, Chapter VI, Theorem 5.4]. Note
also that it is complementary to [Les92, Theorem 4.1] because of the different con-
ditions on the considered Lie groups. However an alternative proof of the following
statement can be obtained with the help of [Nee06, Theorem IV.4.9.]]

Theorem 2.17. Let GG be a Lie group modelled over a locally convex space and
h < L(G) be a Lie subalgebra that is complemented as a topological vector subspace
and is a Banach space. If G provides an exponential map then we can find a Lie
group H that is a subgroup of G and an immersed submanifold of G such that
L(H)=W.

Proof. Again we define D := [, TAy(h). The vector field with parameters
X:Gxh — TG, (g9,v) — TAy(v) obviously satisfies the conditions (a)—(d) of
Theorem . Also condition @ is satisfied because &: RxGxh — G, (t,g,v) —
Ag(expg(tv)) is a local flow with parameters of X which follows from

O(t,g,v) = TAy(v) = X(g,v).

t=0

dt

4This was mentioned by K. H. Neeb in comments to this thesis.

67






3. Constructions for Lie algebras of
compactly supported sections

Now we turn our attention to topologically universal bilinear forms for Lie algebras
of compactly supported sections in Section [3.2] As mentioned in the introduction
this a natural continuation of the considerations in [Gunll, Chapter 4]. In Section
[3.3] we consider a certain class of pseudo-unital locally convex algebras A that
contains the so called CPUSLF-algebras from |Gunll| as well as the algebra of
compactly supported smooth functions on a o-compact manifold. Given such an
algebra A, we show the universality of the canonical cocycle on A® g (for g finite-
dimensional and semisimple).
We fix the following specific notation for this chaptei'}
e Let M be a finite-dimensional o-compact manifold, U < M be an open
subset, V' be a finite-dimensional vector space and V a vector bundle with
base M. For f e C*(U,V), X e T.(U,V) and § € Q8(U, V), we write f., X.
and 6., respectively, for the extension of f, X and 6 to M by 0 outside of
U.
o We write A; for the unitalisation of a commutative algebra A.

3.1. Some basic concepts and results

First, we recall the basic concepts of universal continuous invariant symmetric
bilinear forms in the following definition. See e.g. |[Gunll, Chapter 4].

Definition 3.1. Let g be a Lie algebra. A pair (V, ) with a vector space V' and
a symmetric bilinear map f: g x g — V is called an invariant symmetric bilinear
form on g if B([z,y], z) = B(x, |y, z]) for all z,y,z € g. The invariant symmetric
bilinear form (V, ) is called algebraically universal if for every invariant symmetric
bilinear form (W,~) on g, there exists a unique linear map ¢ : V' — W such that
v = o . It is clear that if g is algebraically universal then another invariant
symmetric bilinear form (W, ) on g is algebraically universal if and only if there
exists an isomorphism of vector spaces p: V — W with v = po . In the case that
g is a locally convex Lie algebra and V' is a locally convex space, the pair (V, 3) is
called a continuous invariant symmetric bilinear form on g if § is continuous and
it is called topologically universal or a universal continuous invariant symmetric
bilinear form if for every continuous invariant symmetric bilinear form (W,~) on
g, there exists a unique continuous linear map ¥ : V' — W such that v = ¢ o .
It is clear that if § is topologically universal then another invariant symmetric

!This chapter consist of material published before in the author’s preprint [Eynl4c].
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3 Constructions for Lie algebras of compactly supported sections

bilinear form (W,~v) on g is topologically universal if and only if we can find an
isomorphism ¢: V — W of topological vector spaces with v = p o .

Definition 3.2. If g is a Lie algebra then we call

Cent(g) := {f € Lin(g) : (Va,yeg) f([z,y]) = [f(2),y]}

the Centroid of g. (Cf. [Gunll, Definition 2.1.15]).

Remark 3.3. [Gunll, Remark 4.1.5 and Proposition 4.1.7] tell us that there al-
ways exists an algebraically universal invariant symmetric bilinear form (Vy, Kg)
for a given Lie algebra g. The same arqumentation as in [Gunll, Remark 4.5.6]
and (Mai02, Lemma 15] shows the existence of a universal continuous invariant
symmetric bilinear form (VgCt,/a'gt) for a given locally convex Lie algebra g. The
argument goes as follows: If g is a locally convex Lie algebra and H < g® g is the
subspace that is generated from elements of the form x @y —y®x, we write S*(g)
for the locally convexr space g @, g/H (one can show that the space H is a closed
subspace of g ® ¢) see [Mai02, p. 63]). We write n7: § @, g — 9@y g/H for the
canonical quotient map and define v : gxg — S*(g), (z,y) — vy = m7(z®y). It
1s well known that for every continuous symmetric bilinear map B: gxg — V into a
locally convex space V., there exists a unique continuous linear map p: S*(g) — V
such that B = ¢ o v (see [Mai02, Theorem 3]). Let D < S?(g) be the subspace
generated by elements of the form [x,y| v z — x v [y,z]. We define the locally
convex space V;ft := (g v 9)/D and the continuous invariant symmetric bilinear
map K gxg— Ve (v,y) = [zvyl=2vy+ D. It is clear that the image of
wg generates VI and that (K, Vi) is a universal topological invariant symmetric
bilinear form. For this result, it is crucial not to take the completion of g ®r @
because otherwise /ﬂ;t would be universal just for complete locally convex spaces.
Sometimes we use the notation Vy(g) = V;t. If g is finite-dimensional then the
universal continuous invariant symmetric bilinear form and the algebraically uni-
versal invariant symmetric bilinear form coincide. Therefore, we write (Vy, kq) for

(Vi kg in this case.

With [Gunl11, Proposition 4.3.3] we get directly the following Lemma

Lemma 3.4. For a o-compact finite-dimensional manifold M and a finite-
dimensional perfect Lie algebra g, the map

Fg, o CF(M,g) x CZ(M,g) — CZ(M,Vq), (f,9) = kg0 (f,9)

15 an algebraically universal invariant symmetric bilinear form. Notably the image
of kg, spans CL(M,Vy).

In the case that M is connected, the preceding Lemma (3.4 can be found in
[Gun11) Corollary 4.3.4].
The following Lemma, can be found in [Gunll, Lemma 4.1.6].

Lemma 3.5. Let g be a Lie algebra, W a vector space and 5: g x g — W an
invariant symmetric bilinear map. Then B(f(x),y) = B(x, f(y)) for all x € [g, g],
y € g and f € Cent(g).
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3.2 Topological universal bilinear forms

The next Lemma [3.6] comes from [Gunll, Remark 4.2.7].

Lemma 3.6. The Lie algebra CF(M,g) is perfect for every finite-dimensional
o-compact manifold M and perfect finite-dimensional Lie algebra g.

3.2. Topological universal bilinear forms

The aim of this section is to construct a universal invariant continuous bilinear
form on the space of compactly supported sections of a Lie algebra bundle. To
this end, we first show the “local statement”. We construct a universal continuous
invariant symmetric bilinear form on the compactly supported smooth functions on
a o-compact manifold with values in a Lie algebra g (Theorem . Afterwards
we glue the local constructions together to a global one (Theorem . This
strategy is inspired by |[Gunll, Theorem 4.4.4].

In the following definition we recall the well-known concept of a Lie algebra
bundle.

Definition 3.7. Let M be a manifold, g a finite-dimensional Lie algebra and
m: 8 — M a vector bundle with typical fibre g. If for every x € M the space
71({x}) is endowed with a Lie algebra structure and there exists an atlas of
local trivialisations p: 7= 1(U,) — U, x g of & such that for every p € U, the
map ¢(p,.): K, — g is a Lie algebra homomorphism then we call & a Lie algebra
bundle.

In Definition we endow both the vector space of sections and the space
of compactly supported sections of a given vector bundle with a locally convex
topology. We follow the definitions from [Glo13, Chapter 3].

Definition 3.8. Let M be a finite-dimensional manifold, V' a finite-dimensional
vector space and m: V — M a vector bundle with typical fibre V. If n € I'(V) and
: 7 (U) — U, x V is a local trivialisation of V we write 7, := pryopon|y, €
C*(U,, V) for the local representation of 1. Let A be an atlas of V. As mentioned
in the introduction of this thesis, we equip I'(V) with the initial topology with
respect to the maps o,: I'(V) — C®(U,, V), n — n, as described in |Glo13|
Chapter 3]. [Glo13, Lemma 3.9] tells us that this topology does not depend on
the choice of the atlas. Moreover, [Glo13| Lemma 3.7] tells us that the topological
embedding I'(V) — [ 4, C*(U,, V), 1+ (n,)pea has closed image and so I'(V)
becomes a locally convex space. In particular we see that I'(V) is a Fréchet space if
there exists a countable atlas of local trivialisations of V. If K € M is compact we
write ['x (V) for the closed subspace of sections of V with support in K. If there
exists a countable atlas of local trivialisations of V then it is clear that 'k (V)
is a Fréchet space. We give T'.(V) the topology making it the inductive limit of
the spaces ['k (V) in the category of locally convex spaces, where K runs through
all compact sets. If g is a finite-dimensional Lie algebra and K a Lie algebra
bundle with typical fibre g, we define the Lie bracket [.,.]: I'(R) x ['(R) — I'(R)
by [n,Cl(p) = [n(p),((p)] for n, € T'(R), where the latter Lie bracket is taken in
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3 Constructions for Lie algebras of compactly supported sections

R,. Together with this Lie bracket I'(R) becomes a topological Lie algebra. (The
concepts in this Definition (3.8 come from [Glo13, Chapter 3]).

Lemma 3.9. Let M be a finite-dimensional o-compact manifold, g a finite-
dimensional Lie algebra and K a Lie algebra bundle with typical fibre g. Then
['.(R) is a topological Lie algebra.

Proof. The map R®RK — K that maps (v, w) to [v,w]g, for v,w e K, and pe M is
continuous. With the Q-Lemma (see, e.g. [Mic80, Theorem 8.7] or [Glo04, F.24])
we see that ['.(R) is a topological Lie algebra. O

Lemma 3.10. Let M be a o-compact finite-dimensional manifold, E «a finite-
dimensional vector space and (pm)men @ partition of unity that is subordinate to
a locally finite cover (Vy)nen of open relatively compact subsets V,, < M. Then

C: Dpen C7(M, E) = CE (M, E), (fm)mer = 2en Pm * fm is a quotient map.

Proof. First we show the continuity of ®. Because ® is linear, it suffices to show
that C*(M,E) — C*(M,E), f — pm - [ is continuous for every m € N. The
locally convex space C(M, E) is the inductive limit of spaces Cg (M, E) with
n € N, where (K, )nen i a compact exhaustion of M. Because the support of
pm is compact we can find n € N with supp(p,,) € K,,. We see that the map
C*(M,E) — C*(M,E), f — py, - f takes its image in the subspace Cg (M, E).
Now we conclude that ® is continuous since C*(M, E) — Cg (M, E), f — py, - f
is continuous. For n € N, we choose a smooth function o,: M — [0, 1] such
that o, |supp(p,) = 1 and supp(o,) S V,,. Because a compact subset of M is only
intersected by a finite number of sets of the cover (V},),en, we can define the map
U: C*(M,E) > @,_,C*(M,E), ¥ — (04 * ¥)nen, which is obviously a right-
inverse for ®. If K < M is compact, we find N € N such that K n'V,, = &J for
n = N. We conclude that W(CZ(M, E)) < [[\_, C*(M, E). Obviously the map
U is a continuous linear right-inverse for ® and so we see that ® is a continuous,
open surjective map. O]

Lemma 3.11. If M s a finite-dimensional o-compact manifold and g a finite-
dimensional Lie algebra then kg, : CX(M,g)* — CP(M,Vy), (f,9) — kgo (f.g) is
continuous.

Proof. This follows directly from [Glo02, Lemma 4.12 and Corollary 4.17]. O

As mentioned in the introduction Giindogan showed that the map g, is univer-
sal in the algebraic sense (see Lemma [3.4). We now show that it is also universal
in the topological sense.

Theorem 3.12. Let g be a perfect finite-dimensional Lie algebra and M a finite-
dimensional o-compact manifold. Then kg, : CP(M,g)? — CL(M,V,) is topologi-
cally universal.
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3.2 Topological universal bilinear forms

Proof. We know that g, : CP(M,g)* — CP(M,V,) is an algebraically universal
%nvariant symmetric .bilinealj forrp. Moreover,. /iggo.(M’ ot O (M, g)? — Vcczw( M)
is a topologically universal invariant symmetric bilinear form. Because kg, is a
continuous invariant symmetric bilinear map, we find a continuous linear map
[ Va(CE (M, g)) — CF(M, Vy) such that kg, = fo ks s, and because k¢ 5 o
is an invariant symmetric bilinear map, we find a linear map ¢g: CP(M,V,) —
% Ceo(ar,g) With /izfgo(M’g) = g oKy, (asin the proof of [Gunll, Theorem 4.6.2] we use
the interplay of algebraic and topologically universality). We get the commutative
diagram

C2(M, V)

roun | /

VCCZO (M,g)
With f o go kg, = kg, and the fact that kg, is algebraically universal, we get
fog=idezuuy,)- (3.1)

Let (V,,)nen be a locally finite cover of M that consists of relatively compact open
subsets V,, € M and (p,,)men be a partition of unity of M that is subordinate to
the cover (V,,)nen. From Lemma we know the quotient map ® and get the
commutative diagram

@meN COO(M’ V;z) : VCEE‘O(M@)

@j/

CE (M, Vy)

with h: @mEN COO(Mv V;&) - VCC’EO(M,QV (‘pm)meN - ZmeN g(@m ’ pm)' If we can
show that h is continuous, we get that also g is continuous. Because h is linear
it suffices to show that C*°(M, V) — Ve (are @ = 9(¢ - pm) is continuous for
all m € N. The space V;ft is finite-dimensional because g is finite-dimensional.
Let (v;)iz1,..n be a basis of V;. We write ¢; for the i-th component of a map
© € C*(M,V,). Since Ky, : CP(M,g)* — CL(M, V) is algebraically universal, the
image im(k,,) generates C°(M, Vy). Therefore, we find &;;, (;; € CF(M, g) such
that p,, - vi = 211, kg, (Gijs Gij). For p € CF(M, V), we calculate

n n n;

g(g@ . pm) - Zg( Pm UZ ZZ “hgy Sljﬂglj))
1=1 i=1j=1
:Zzzgoig*(wl 'gi]"gl] ZZ/{COO (M,g) SOZ §ZJ7CZ])
i=1j=1 i=1j=1

Because C*(M,R) — VCC’;O(M&), ) “Cctoo(M,g) (- &, Gi;) is continuous, we see that
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3 Constructions for Lie algebras of compactly supported sections

also ¢ is continuous. We have go fo /ﬂgm( Mg) = /ﬂgoo( M) Since g is continuous we
get go f = 1dvé§3 . With 1) we see that f is an isomorphism of topological
vector spaces. O]

Remark 3.13. If g and b are Lie algebras and f: b — g is a Lie algebra homo-
morphism then there exists a unique linear map f.: Vi — Vg with f.(ky(x,y)) =

ro(f (), f(y))-

The following definition of the vector bundle V(R) is equivalent to [Gunll]
Definition 4.1.10] and coincides with the definition of V(R) described in [JW13| p.
1].

Definition 3.14. Let M be a manifold, g a finite-dimensional Lie algebra and
m: R — M a Lie algebra bundle with base M and typical fibre g. If A is an atlas
of local trivialisations of R, we define V(R) := (J, .,y V(R:) and the surjection
p: V(R) = M, v+ z for v e &,. For a local trivialisation ¢: 7~ 1(U,) — U, x g
of &, we define the map @: p~'(U,) — U, x Vg, v — (p(v), (pr, o<p|ﬁ|p(v))ﬁ(v)).
Together with the atlas of local trivialisations {¢ : ¢ € A} we get a vector bundleﬂ
p: V(R) — M. In this chapter we will always write ¢ for the trivialisation of V'(R)
that comes from a trivialisation ¢ of R.

Definition 3.15. (Cf. [Gunll, Definition 4.1.13]) For a finite-dimensional man-
ifold M, a finite-dimensional Lie algebra g and a Lie algebra bundle & with
base M and typical fibre g, we define the map rg: I'.(R)*> — T.(V(8)) by
ra(X,Y) () = ke, (X (2),Y(z)) for x € M and X,Y € ['.(R).

Lemma 3.16. If M 1is a o-compact, finite-dimensional manifold, g a finite-
dimensional Lie algebra and K a Lie algebra bundle with base M and typical fibre
g then kg: To(R)? — T(V(R)) is continuous.

Proof. The map R @ & — V(RK) that maps (v,w) to kg, (v,w) for v,w € K, and
p € M is continuous. The assertion now follows from the Q2-Lemma (see, e.g.
[Mic80, Theorem 8.7] or [Glo04, F.24]). O

Lemma 3.17. The image of kg spans I'.(V(R)), if g is a perfect finite-dimensional
Lie algebra, M a o-compact finite-dimensional manifold and wg: 8 — M a Lie
algebra bundle with base M and typical fibre g.

Proof. To show the assertion of the lemma, we only need to show that the global
statement can be reduced to the local one because the local statement follows from
Lemma [3.4 Let n € I',(V(R)) and K := supp(n). We find local trivialisations
i m N U;) > Uy xgof Rfori=1,...,k with K < (J;, U;. Let (\;)izo,.,
partition of unity of M that is subordinate to the open cover that consists of the
sets M\K and U; fori = 1,..., k. Weget p = 3% \;-n and \;-n € To(V(R)) with
supp(A; - ) € U;. The assertion now follows from the fact that @;: p;%ﬁ)(Ui) -
U; x Vj is a local trivialisation of V/(RK). O

2In fact given v, ¢ € A we write @, := pryop(x,.) and 1, := pryot)(z,.) for z € M. We obtain
@ oYz, v) = (z,(ps 0 ;) w(v)). By choosing a basis v1,...,v, of g one can construct
a basis of V(g) that consists of vectors of equivalence classes of vectors of the form v; v v;.
Now a standard argument shows that the map (z,v) — (¢, 0¥, 1).(v) is smooth.
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3.2 Topological universal bilinear forms

With [JW13| Proposition 2.4.] we get the following lemma:

Lemma 3.18. Let M be a finite-dimensional o-compact manifold, g a finite-
dimensional Lie algebra and K a Lie algebra bundle with typical fibre g. If g
is perfect then also I'.(R) is perfect.

In [Gunll, Theorem 4.4.4] a local statement for algebraically universal invariant
symmetric bilinear forms is used to get an analogous global statement for spaces
of sections of a Lie algebra bundle. We now transfer this approach to a topological
statement for compactly supported sections of a Lie algebra bundle in Theorem

5. 19

Theorem 3.19. For a perfect finite-dimensional Lie algebra g, a o-compact, finite-
dimensional manifold M and a Lie algebra bundle K with base M and typical fibre
g, the map rg: To.(M,R)? — T(V(R)) is topologically universal.

Proof. Let (¢;: 71 (Uy,) — Uy, x g)icr be a bundle atlas of & with relatively
compact subsets Uy, < M such that (Uy,)ier is locally finite and (p;)ier be a
partition of unity of M with supp(p;) € Uy,. Let v: T.(R)? — W be a continuous
invariant symmetric bilinear form. For i € I, we define

Yi: CL(Uy,,9) > W
(f,9) =~ (7" o (id, ), (¥ 0 (id, ))-) -

The bilinear map +; is an invariant symmetric bilinear form. We want to show that
it is also continuous. Obviously it suffices to show that 7: C(Uy,,g9) — T'(R),
f— (¥~ to(id, f))~ is continuous. Given a compact subset K < Uy,, we have
T(C}?(Uwivg)) < FK(R) The map C}?(Uwivg) - F(®)> [ (%Vl © (idv f))~ is
continuous because I'(R) is initial with respect to I'(R) — C*(Uy,,9), X — Xy,
(see [Glo13, p. 10]). So we can find a continuous linear map §;: C(Uy,, Vy) = W
such that the diagram

CE Uy, 0)° = w

CZ Uy, V(9))

commutes. For i € I let 1; be the corresponding bundle-chart of V(&) that comes
from ¢;. We define 5: T(V(R)) — W, X — 3., Bi((pi - X)) with (piX); =
pry 015 © (piX)|v,,- Let K = M be compact. Then K n Uy, # & only for a
finite number of ¢ € I. To show that [ is continuous it suffices to show the
continuity of I'x (V(R)) — W, X — Si((pi - X)) Since the map I'x (V(R)) —
cr (Ui, V(9)), X — (pi - X)y, is continuous, we see that 3 is continuous. It

supp(pi)
remains to show that

Bokg=1.
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3 Constructions for Lie algebras of compactly supported sections

This can be seen analogously to the second part of the proof of [Gunll, Theorem
4.4.4]: Let ¢;: M — [0, 1] be a smooth map with supp(¢;) < Uy, and Glsupp(p) = 1
for i € I. With Lemma in mind we calculate for X,Y e I'.(R)

Blra(X,Y)) = > B ((piGira(X,Y))y,) = D, Bi (ralpiX, GY)g,)

i€l el
= Zﬁz/‘ﬁg* Pi )wz’ (Cz wz Z% piX ww (Cz 1/)1 27 piX, GY )
el i€l el
=Y (G X, V) = 4(X,Y).
L

el =p;

Here we used that I'.(R) — I'.(R), X — (;- X is in Cent(I'.(R)) and that I'.(R) is
a perfect Lie algebra (see Lemma . The uniqueness of 3 follows from Lemma

B.17 O

An application of universal continuous invariant symmetric
bilinear forms

In Definition we fix our notation concerning k-forms and connections and
recall some basic facts. All this is well known, for instance see [Dar94| and [Gunll,
Chapter 2.2. and 2.3.].

Definition 3.20. Let M be a finite-dimensional o-compact manifold, V be a

vector bundle with base M, K be a Lie algebra bundle with base M and k € N.

(a) The space QF(M,V) becomes a C®(M,R)-module by the multiplication
C* (M, R) x (M, V) — QE(M, V), (1,0~ f -0 with (f -0), = [(p) - 0,

(b) We get a bilinear map QF¥(M,R) x I'(V) — QF¥(M,V) (0,n) — 6 - n with
(0-n)p(v1,.., v6) = Op(v1, .., vg) - n(p) for v; € T, M.

(c) We call a R-linear map d: T'.(V) — QL(M, V) a covariant derivation, if d(fn) =
fdn + ndf for all ne I'(V) and f e C*(M,R).

(d) We define the continuous C*(M,R)-bilinear map T.(R) x QLM,R) —
QLM R), (n,0) — [n,0] with ([n,6]),(v) = [n(p),0,(v)]. Moreover, we set
[0777] = —[T],Q].

(e) We call a covariant derivation D: T'.(R) — QL(M,R) a Lie connection, if
Din, ] = [Dn, 7] + [n, D7] for n,7 € ['.(R).

In [Gunll, Remark 2.3.14], Giindogan showed the existence of a Lie connection
for a given Lie algebra bundle K. In the following lemma we use a different argu-
mentation to show the existence of a Lie connection from T'.(R&) to QL(M, ) that
is also continuous.

Lemma 3.21. For every finite-dimensional o-compact manifold M and Lie algebra
bundle 7: & — M, there exists a continuous Lie connection D: T.(R) — QL(M, R).

Proof. Let (V;);eny be a locally finite open cover of M and (\;);en a partition of
unity that is subordinate to V;. For ¢ € I, we can choose V; such that we get
a continuous Lie connection d;: T'(R]y;) — Q1(Vi, R|v;). Tt is easily checked that
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3.2 Topological universal bilinear forms

d: T.(8) — QUM,R), n — X2, (N - di(n]y;))~ is a Lie connection. Because
d is local we have d(T'x(R)) < QL (M, R) and because d is linear it suffices to
show that d: Tk (8) — Qi (M, K) is continuous. But the compact set K is only
intersected by finitely many V;, say Vi,...,V,. The map I'x(R) — QL (M, R),
n— > (N - di(n]y;))~ is obviously continuous because the corresponding map
from I'(R) to Q'(M, R) is continuous. O

Lemma 3.22. If M is a finite-dimensional o-compact manifold and m: K — M a
Lie algebra bundle with finite-dimensional typical fibre g then we define the map

Fa: QLM R) x T(R) — QLM V(8))

by (Re(0,m))p(v) = kg, (0p(v),n(p)). The map kg is C*(M,R)-bilinear and con-
tinuous. If moreover D: T.(R) — QL(M, &) is a continuous Lie connection then

s a continuous, invariant, symmetric bilinear form.

Proof. To show the continuity of S we only have to prove that kg is continuous.
The map

(T"M@R)DR->T"MRV(R), A®v,w) — kg, (A(:) - v,w)

is continuous. ~ With the identifications Q}(M,8) =~ T.(T*M ® K) and
QUM,V(R)) = T(T*M ® V(R)) the continuity follows from the 2-Lemma (see,
e.g. [Mic80, Theorem 8.7] or [Glo04, F.24]). In the following we use the shorthand
notation k := kg,. We show that 3 is invariant:

B, 12l 3)p(0) = £((Dm; n2])p(0), 113(p) + K[ (p): m2(p)], (D )p(v))

The rest of the statement is clear. O

In the following remark we use our Theorem to argue that the covariant
derivative dy constructed in [JW13, p. 129] is actually a continuous map (the
continuity of dy was not discussed in [JW13]) ]

Remark 3.23. Let M be a finite-dimensional o-compact manifold, m: K — M
a Lie algebra bundle with perfect, finite-dimensional typical fibre g, D: T'.(R) —
QL(M, R) a continuous Lie connection and 3 as in Lemma . Then there exists

3Note that the continuity of dy is not necessary for the considerations in [JW13].
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3 Constructions for Lie algebras of compactly supported sections

a unique continuous covariant derivation d: To(V(R)) — QL(M, &) such that the
diagram

T (8)2 —=QL(M, V(8))

commutes.

Proof. With Theorem we find a unique continuous R-linear map
d: T.(V(8])) — QL(M, R) such that the above diagram commutes. We show that
d(f-n) =df -n+ f-dyfor f e C°(M,R) and n € T'.(V(8)) in the followingfl]
Because the image of kg spans I'.(V(R)), it is sufficient to show the assertion for
n = kg(&, () with &, € T'.(R). We use the shorthand x := kg, .

~—

)+/f(f() §(p), (D) (v)
F)(DE),(v),¢(p)) + w(f(P)E(p), DG (v))
D&y (v), C(p)) + f(p)r(E(p), DGp(v))
(B(€,€))p(v)
(dra(€,¢))p(v).

Remark 3.24. In this remark we recall the construction of the cocycle w from
[JW15, p. 129]. Janssens and Wockel used the covariant derivation d described in
Remark @ to define ﬁi(]\/[, V(R)) := QL (M, V(R))/(dT.(V(R))) (as mentioned
above the continuity of d is not important for this construction). The cocycle is
defined as

w: Te(R)? — QL(M,V(R), (1,€) = [Ra(Dn,C)]

with kg as in Lemma[3.23. The continuity of w was not discussed in [JW15] but
this follows immediately from Lemma[3.23,

3.3. Universal continuous extensions of certain
current algebras

Maier constructed in [Mai02] a universal cocycle for current algebras with a unital
complete locally convex algebra. In |[JW13, Theorem II.7] Janssens and Wockel
showed that an analogous cocycle is also universal for the algebra of compactly sup-
ported functions on a o-compact finite-dimensional manifold. Giindogan showed

4This easy calculation was not discussed in [JW13|. We give it here for the convenience of the
reader.
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3.3 Universal continuous extensions of certain current algebras

in [Gunll|] that this approach also works for a certain class of locally convex
pseudo-unital algebras, the so called CPUSLF-algebrag’l However this class of
locally convex algebras does not contain the compactly supported functions on a
o-compact finite-dimensional manifold. Our aim in this section is to use concepts
from |Gunll] to show that the cocycle constructed in [JW13, Theorem 2.7] re-
spectively [Mai02] is universal for a class of locally convex algebras without unity
that contains the compactly supported smooth functions on a o-compact alge-
bra. Hence, taking C°(M) as the considered algebra, we obtain a more detailed
argumentation for [JW13, Theorem 2.7] (see Remark [3.39).

In the following Definitions [3.25] and we recall the concept of universality
from |Gunll, Chapter A.2] and [Nee02bl Definition 1.9 and Remark 1.10].

Definition 3.25. Let g be a locally convex Lie algebra and V' a locally convex
space considered as a trivial g-module. Moreover, let £ := V < g % g be a
central extension of locally convex Lie algebras and W be a locally convex space
considered as a trivial g-module.

(i) We call the extension E weakly universal for W, if for every central extension

E=W<¢g 7, g of locally convex Lie algebras there exists a homomor-
phism of extensions of topological Lie algebras ¢: g — g’ from E to FE'.

(ii) We call E weakly universal if it is weakly universal for every locally convex
space.

(iii) We call E universal for W, if for every central extension £’ := W «— g’ LR g
of locally convex Lie algebras we can find a unique extension homomorphism
p:g— ¢ from E to E'.

(iv) We call E universal if it is universal for every locally convex space.

Definition 3.26. Let g be a locally convex Lie algebra and V' be a locally convex
space considered as a trivial g-module. Moreover, let w € Z%(g, V) be a continuous
cocycle and W be a locally convex space considered as a trivial g-module.
(i) We call w weakly universal for W if the map dy: L(V,W) — HZ%(g, W),
0 — [0 o w] is bijective.
(ii) We call w weakly universal if it is weakly universal for every locally convex
space.
(iii) We call w universal for W if it is weakly universal for W and Hom. (g, W) =
{0} (compare [Nee02b, Remark 1.10]).
(iv) We call w universal if it is universal for every locally convex space.

The following theorem is well known.

Theorem 3.27. Let g be a locally convexr Lie algebra and V a locally convex

space considered as a trivial g-module, E =V — g % g a central extension of

locally convex Lie algebras, w € Z%(g, V') the corresponding cocycle and W a locally

®Although CPUSLF stands for “commutative pseudo-unital strict LF-algebra” (see [Gunl1}
Definition 5.1.12]) the actual definition is less general. In fact a commutative locally convex
algebra is called CPUSLF-algebra if it is the strict inductive limit (in the category of locally
convex spaces) of unital Fréchet algebras (see [Gunll Definition 5.1.12]).
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3 Constructions for Lie algebras of compactly supported sections

convex space considered as a trivial g-module. Then E is weakly universal for W
respectively universal for W, if and only if w is so.

Proof. This follows from [Nee02b, Remark 1.10 (a)] and |[Gunll, Remark A.2.11].
[

The following Lemma comes from |[Nee02b, Lemma 1.12 (iii)].

Lemma 3.28. Let g be a locally convex Lie algebra, W and V be a locally convex
spaces considered as trivial g-modules and w € Z%(g, V') a weakly universal cocycle
for W. If g is topologically perfect then w is universal for W.

Remark 3.29. Actually the Lemma 1.12 in [Nee02b] requires the condition that
the considered extension is weakly universal for the underlying field K of the vector
spaces. But this condition is only used in the proof of statement 1.12 (ii). The
proof of statement (ii1) neither requires statement 1.12 (ii) nor this condition.

In Definition we recall the basic concept of current algebras for the conve-
nience of the reader (see e.g. [Gunll, Chapter 4]).

Definition 3.30. (a) A commutative algebra A is called pseudo-unital if for
z,y € A there exists z € A with xz = z and yz = y (see e.g. [Gunll,
Definition 4.2.3]). If xy,...,2, € A and A is commutative then |[Gunll]
Remark 4.2.4] tells us that we find z € A such that ;2 = x; for all i =
1,...,n.

(b) If Ais a commutative pseudo-unital algebra and g is a finite-dimensional Lie
algebra, we endow the tensor product A® g with the unique Lie bracket that
satisfies [a ® 2,0 ® y] = ab® [x,y] for a,be A and z,y € g.

(c) If Ais a locally convex R-algebra then we endow A ® g with the topology
of the projective tensor product of locally convex spaces. This Lie algebra
is even a locally convex algebra as one can see in [Gunll, Remark 2.1.9.].
Moreover, [Gunll, Remark 4.2.7] tells us that A ® g is perfect if g is so.

In the following definition we remind the reader of the concept of topologically
universal differential modules. This concept is for example presented in [Gunll,
Chapter 5.2] and [Mai02].

Definition 3.31. Let A be a unital commutative complete locally convex
R-algebra.

(a) A continuous R-linear map D: A — E to a complete locally convex A-module
E is called a derivation, if D(zy) = xD(y) + yD(z) for z,y € A.

(b) For a complete locally convex commutative unital algebra A, a pair (E, D)
with a complete locally convex A-module E and a continuous derivation
D: A — FE of E is called universal topological differential module of A if
there exists a unique continuous linear map ¢: £ — F' such that

AL R

)| A

E
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3.3 Universal continuous extensions of certain current algebras

commutes for every complete locally convex A-module F' and continuous
F-derivation T: A — F.

(c) [Gunll] Chapter 5.2] or [Mai02] tell us that there always exists a universal
topological differential module (2(A), d ) for a given complete locally convex
commutative unital algebra A.

The following definition can be found in [Gunll] Definition 5.29] and [Mai02,
p. 73] in the case where the algebra A is unital instead of pseudo-unital. It is also
the canonical generalisation of the cocycle wys g in [JW13, Theorem 2.7].

Definition 3.32. If g is a finite-dimensional semisimple Lie algebra and A is a
commutative pseudo-unital complete locally convex algebra, then we define the
cocycle

wpat ARG X A® G — Vg ® (Q(A1)/da, (A1)
(@®z,0®y) — kyg(z,y) ®[a-da, (0)].

For convenience we write V4 1= V; ® (2(A1)/da, (A1)). As mentioned in [Gunll,
Definition 5.2.9] the map wj 4 satisfies the cocycle condition because kg is invariant.

With [Mai02, Theorem 16] we get the following Lemma [3.33]

Lemma 3.33. Let g be a finite-dimensional semisimple Lie algebra and A a com-
mutative unital complete algebra. If W is a complete locally convex space considered
as a trivial g-module then the map Sy : L(Vya, W) — HE(AQg, W), 6 — [fowg 4]
15 bijective.

The following definition is based on |[Gunll), Definition 5.1.5 and Lemma 5.1.6].

Definition 3.34. For a locally convex algebra A and a finite-dimensional Lie
algebra g the Lie algebra A® g is locally convex. Let A be a commutative pseudo-
unital locally convex R-algebra and g be a finite-dimensional Lie algebra. For y € g,
we get a continuous bilinear map A x g > A® g (¢,z) — ¢® [y, 2] which induces
a continuous linear map J,: A® g — A® g with J,(c®z) = c® [y, z]. We get a
linear map 0: g — L(A®g), y — I, such that gx (AR g) > A®g, (y,v) — 0,(v)
is continuous. Moreover, § is a Lie algebra homomorphism because 6, ,,1(c®x) =
c® [[y1,v2] 2] = c® [y, [y2, 2]] = ¢ @ [y, [y1, #]] = 6,0, (c ® T) = 6,0y, (c ® ).
Also we have 6, € der(A ® g) because 0,([c® z,d ® 2']) = cd ® [y, [z, 2']] =
cd @ [[y,z], 2" + ¢ ® [z, [y, 2]] = [0,(c®z),d ®2'] + [¢® z,0,(d ®2')]]. We
define [y,.] := 9, for y € g. With the Lie algebra homomorphism § we can
define the semidirect product (A® g) x g with the Lie-bracket [(z1,y1), (22, ¥y2)] =
([21; 22] 40y, (22) =0y, (21), [y1, 12]) = ([21, 22]+ w1, 22]—[w2, 21], [91, 2]) for 2z € A®g
and y; € g, where we wrote [y,.| := ¢, for y € g. The Lie algebra A® g x g
is a locally convex Lie algebra. We identify A ® g with the ideal im(i), where
it A®Rg—> A®g x g, z+— (2,0) is a topological embedding that is a Lie algebra
homomorphism. Obviously the image of i is a closed subspace. Moreover, we
identify g with the subalgebra im(iy), where iy: g — (A®g) x g, z — (0,2) is a
topological embedding with closed image that is a Lie algebra homomorphism. As
usual we write (z,2) = (2,0) + (0,2) = z + 2 for (z,2) e A®gx g.
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3 Constructions for Lie algebras of compactly supported sections

|[Gun11, Remark 5.1.7 and Lemma 5.1.8] lead to the following Lemma [3.35]

Lemma 3.35. For a pseudo-unital commutative locally convex algebra A, its uni-
talisation Ay and a finite-dimensional Lie algebra g we have an isomorphism of
locally convex Lie algebras ¢: A1 ®g — (A®g) x g with (A, a) @w — (a®w, \w)
forall N e K, ae A and w € g.

Lemma 3.36. If g and b are locally convex Lie algebras, V is a locally convex
space considered as a trivial g-module and H-module respectively and ¢: g — b
is a continuous Lie algebra homomorphism then Hq(p): H2(H,V) — H2(g, V),
[w] — [wo (v, )] is a well-defined and linear map.

Proof. For ne L(h,V) and w e Z%(h,V) with w = no [.,.] we have (¢, p)*(w) =
N0 @Yo e ]

We will use the concept of neutral triple from |Gunll, Definition 5.1.3] and
recall it in the next Definition [3.37]

Definition 3.37. Let A be a pseudo-unital commutative locally convex algebra

A and g be a finite-dimensional perfect Lie algebra.

(a) There is an A-module structure -: Ax (A®Rg) —> A®g with a-(b®y) = (a-b)®y
for a,be Aand y € g. Actually A®g is an A-module in the category of locally
convex spaces because g is finite-dimensional. In this situation we call v € A
neutral for fe AQg,ifv-f=f.

(b) For fe A®g (resp. p € A) we call (\, v, ) € A> a neutral triple for f (resp.
o), ifp-f=f(resp. p-o=p),v-p=pand A -v=v.

(c) Let (v;)i=1,..n be a basis of g. For f = X" 0, ®v; € A® g with ¢; € A,
we choose iy € A such that py is neutral for all ;. Moreover, we choose v
such that it is neutral for puy and Ay such that it is neutral for vy. Clearly
(A, v, pp) is a neutral triple for f and for all ¢;. We fix this notation for
the rest of this section. For ¢ € A, we choose a neutral triple (A, vy, f1,)-
Obviously (A, vy, ) is a neutral triple for p ® v for all v € g.

From the proof of |[Gunll, Theorem 5.1.10] we can extract the following lemma.

Lemma 3.38. Let A be a pseudo-unital commutative locally convex algebra, g a
finite-dimensional perfect Lie algebra and V a locally convex space considered as
a trivial A® g-module. Moreover let w e Z4(A®g,V), fe AQg andy e g. If
(A1, 1, 1) and (Ag, Vo, o) are neutral triples for f then w(f, \®y) = w(f, \a®y).

Remark 3.39. In the following theorem (Theorem we prove that [Gunll,
Theorem 5.1.14] also holds for a class of locally convex algebras that contains the
compactly supported smooth functions on a o-compact finite-dimensional mani-
folaﬂ. In [JW15, Theorem 2.7] Janssens and Wockel considered the unitalisation
CP(M,g) x g of CP(M,g) to use [Mai02, Theorem 16] (we follow this strategy).

6|Gun11, Corollary 5.2.14] does not follow from |Gun11, Theorem 5.2.13] as claimed in [Gun11]:
Given a compact subset K < M, the algebras C(M) are not unital and hence C (M) is
not a CPUSLF-algebra in the sense of |[Gunll] Defintion 5.1.12].
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In this context they showed that the canonical map H%(i): H%(C®(M,g)xg,V) —
H2(C*(M,g),V) is bijective. But the proof of the surjectivity was not complete.
It was not discussed whether the constructed cocycle w that is mapped to wy by
H2(i) is actually continuous. Therefore, taking A = C*(M) in Theorem we
obtain a more detailed argument for [JW15, Theorem 2.7.].

Theorem 3.40. Let A be a locally convexr commutative pseudo-unital algebra that
1s the inductive limit of locally convexr subalgebras A,, < A for which there exists
an element 1,, € A with 1,,-a = a for all a € A,,. Moreover, let g be a semisimple
finite-dimensional Lie algebra, V a locally convex space andi: AQg—> ARQgxg
the natural inclusion. Then H%(i): H3(A®gxg,V) — HZ(A®g,V) is bijectivd

Proof. Surjectivity: Let (v;);=1,.., be a basis of g. We use the notation of Definition
.37 Let wye ZZ(A®g,V). We follow the idea of [Gunll, Theorem 5.1.14] or
[JW13, Theorem 2.7] and define w: (A®g)*xg — V (f1,y1), (f2,y2) — wol(f1, fo)+
wo(f1, Af, ®ya2) —wo(f2, Af,®y1). The argument that w is a cocycle works exactly as
in the proof [Gunll, Theorem 5.1.14] or [JW13, Theorem 2.7]. For the convenience
of the reader we will recall this argument in Appendix [C] We show that w is also
continuous. For this, we just have to show that the bilinear map ¢: AQgxg — V,
(f,y) — wo(f, A\ ® y) is continuous. Because we can identify (A ® g) ® g with
(A® g)", it is sufficient to prove the continuity of (A® g)" — V, (fi)iz1,..n. —
D wolfis Af, ®v;). To show the continuity of AQg — V, f — wo(f,A\f @), we
again identify A ® g with A™ and prove the continuity of A® — V, (¢;)iz1,..,
D wolei @uiy A ®y) with f=3" | », ®v; and an arbitrary y € g. Because of
the construction of the neutral triple (Af, vy, py) (see Definition [3.37] (c)) we get
wolpi @ Ui, A\f ®y) = woles @i, Ay, ®y) for i € {1,...,n}. It remains to show
that the linear map A — V, ¢ — wo(¢ ® z, A, ® y) is continuous for z,y € g. For
m € N, we find an element 1,, € A with 1,, -a = a for all a € A,,. We choose

n

an element 1,, € A that is unital for 1,, and an element 1,, that is unital for 1,,

and see that (1,,,1,,,1,,) is a unital triple for all ¢ € A,,. We see that A,, — V,

= w(p®z, A ®Y) = wo(p Dz, 1, ® y) is continuous and conclude that also
the map A - V, o — wo(p ® A, ®y) is continuous because A is the inductive
limit of the subalgebras A,, = A. The equation H2(7)([w]) = [wo] is easily checked
because for f,g € A®g we have wo (i,1)(f,g9) = w(f,g) = wo(f,g). The argument
that H2(i) is injective works exactly as in the proof of [Gun11, Theorem 5.1.14] or
[JW13, Theorem 2.7]. For the convenience of the reader, we recall this argument
in Appendix [C] O

The application of Theorem [3.40| in the following theorem is completely analo-
gous to [JW13 Theorem 2.7].

Theorem 3.41. Let A be a complete locally convexr commutative pseudo-unital
algebra such that it is the inductive limit of subalgebras A, < A with n € N such

"The class of algebras A we consider in this theorem obviously contains the so called CPUSLF-
algebras considered in [Gunll, Theorem 5.1.14] as well as the compactly supported smooth
functions on M.
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3 Constructions for Lie algebras of compactly supported sections

that we find forn € N an element 1,, € A with 1,,-a = a for alla € A,,. Moreover, let
g be a finite-dimensional semisimple Lie algebra. Then wga: AQgx AQg — Vy 4,
with (a @ z,0Qy) — ke(x,y) @ [a - da, (b)] is a universal cocycle for A® g.

Proof. The assertion follows directly from Lemma Lemma [3.33|and Theorem
3.40) O]

The transition of the fact stated in Theorem for current algebras of the
form A ® g to the special case of Lie algebras of the form C*(M,g) can be done
as in [Gunll, Chapter 5.2] or [JW13| Theorem 2.7]. We recall this approach in
Remark [3.42/f]

Remark 3.42. [Mai02, Theorem 11] tells us that if M is a o-compact manifold
and QUCP(M);) the universal CL(M)i-module in the category of complete locally
convez spaces, then dopr,: C* (M), — QL(M) induces an isomorphism of topolog-
ical CP(M)1-modules Q(CP(M);) — QL(M). Let g be a semisimple Lie algebra.
For f € C*(M,g) and n € QL(M,g) we define the 1-form ry(f,dg) € QL(M, V) by
ko(f,m)p(v) = Kg(f(p),mp(v)). Because d(CF(M,Vy)) is closed in QL(M,Vy) (see
[NeeO, Lemma 4.11]) the map

CI(M, g) x C2 (M, g) — Qo(M, Vy) /d(C (M, V)
(f> g) = [Kg(uﬂ dg)]

18 a universal cocycle for all complete locally convex spaces.

8As mentioned in [JW13, Theorem 2.7], |[Mai02, Corollary 18] does not follow from [Mai02,
Theorem 16].
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4.

Extensions of groups of
compactly supported sections

In the previous chapter, we considered extensions of infinite-dimensional Lie alge-

bras.

Now, we turn our attention to extensions of infinite-dimensional Lie groupd}

More precisely, we consider central extensions of groups of compactly supported
sections as mentioned in the introduction.

4.1. Construction of the Lie group extension

For this chapter, we fix the following notation:

(a)

If H— P % M is a principal bundle with right action R: P x H — P, we
write V P := ker(Tq) for the vertical bundle of TP and V,P := T,P n VP
for the vertical space in p € P. Analogously, if HP < TP is a principal
connection (HP ® VP = TP and TRyH,P = H,,P), we write H,P :=
T,P n HP for the horizontal space in p € P.

Let H < P 5 M be a finite-dimensional principal bundle over a connected
o-compact manifold M with right action R: P x H — P and a princi-
pal connection HP < TP. Given a finite-dimensional linear representation
p: H— GL(V) and k € Ny, we write

Q" (P, V), ={0eQ*(P,V): (Vge H) p(g) o R:0 = 6}

for the space of H-invariant V-valued k-forms on P and QF(P, V)" for
the space of H-invariant V-valued k-forms that are horizontal with re-
spect to HP (3i : v; € V,P = 0(v1,...,v,) = 0) (see [Bauld, Definition
3.3]). Moreover, given a compact set K < M we define Q% (P, V), :=
{0 Q. (P,V), :supp(d) = ¢ *(K)} and write Qf (P, V)her for the analo-
gous subspace in the horizontal case. We emphasise that these forms are
in general not compactly supported on P itself. As mentioned in the intro-
duction, we equip these spaces with the natural Fréchet-topology and write
QF(P,V),, respectively QF(P, V)her, for the locally convex inductive limit of
the spaces Q. (P, V),, respectively QF (P, V);““". This convention also clari-
fies what we mean by C*(P,V),, respectively C*(P,V),.

In Lemma , we recall that if V is the vector bundle associated to a prin-
cipal bundle as in @ then the canonical isomorphism of chain complexes
Qu(P,V)hr = Q:(M,V) (see e.g. [Baul4, Theorem 3.5]) induces isomor-
phisms of locally convex spaces Qi (P, V)b = QF (M, V).

!This chapter consist of material published before in the author’s preprint [Eynl4b].
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(d)

Given a manifold M, we write C°(R, M) for the set of proper smooth maps

from R to M. However, if F is the total space of a fibre bundle E < F % M,
we define CX(R, F) := {f e C*(R, F) : qo f € CX(R,M)}.

Now that we have fixed the basic notation, we introduce the following conven-

tions:

Convention 4.1. (a) All finite-dimensional manifolds are assumed to be o-

(b)

compact.

Analogously to [NW09, p. 385 and p.388], we consider the following settingﬂ
If not defined otherwise, H < P % M denotes a finite-dimensional principal
bundle over a connected non-compact o-compact manifold M and § the Lie
algebra of HJ| Moreover, let G be a finite-dimensional Lie group with Lie
algebra g and ky: g x g — V(g) =: V be the universal invariant symmetric
bilinear map on g (see Definition respectively [Gunll, Chapter 4]). Let
pc: H x G — G be a smooth action of H on G by Lie group automorphisms
and py: H x g — g be the derived action on g by Lie algebra automorphisms
(pa(h,s) = L(pc(h,+)) € Aut(g)). In view of Remark [3.13] we find a unique
map py: H x V. — V that is linear in the second argument and fulfils
pv(h, kg(z,y)) = Kg(pg(h, x), pg(h,y)) for z,y € g and h € H. The vector
space V is generated by elements of the form ky(x,y) with z,y € g. To
see that py is also a representation, we show that py (g, pv(h, ke(z,7y))) =
pv(gh, kg(z,y)) for z,y € g and g, h € H:

pv (g, pv(h, kg(2,9))) = pv (g, kg(pg(h, ), pg(h,y)))
=rig(pa(9, Pg(h: ), pg(9, po(h,y))) = pv(gh, ke(,y)).

Because we can find a basis of V' consisting of vectors of the form r4(z,y),
the smoothness of py follows. We write G := P x,, G for the associated
Lie group bundleﬁ, & := P x,, g for the associated Lie algebra bundle and
V := P x,, V for the associated vector bundle to H — P — M. Let VP
be the vertical bundle of T'P. We fix a principal connection HP < TP on
the principal bundle P and write pr,: T'P — H P for the projection onto the
horizontal bundle. As pointed out in [NW09, p. 385] no generality is lost
if we assume that the total space P is connected. Hence, we do so in this
chapter.

Let D, : CX(P,g),, — QP g)ggr, f—df opr, and D,,: C*(P,V),, —
Qlp, V)}pl‘of, f — df opr;, be the absolute derivatives corresponding to H P
(see [Baul4, Definition 3.8]). Moreover, let dg: ['.(M,®) — QL(M, &) and
dy: To(M,V) — QL(M,V) be the induced covariant derivations on the Lie
algebra bundle & and the vector bundle V respectively (see [Bauld, p. 100

2In [NW09] Neeb and Wockel also consider situations where the Lie groups H and G can be
infinite-dimensional locally exponential Lie groups.

3Like in [Nee04| it is crucial for our proof that the manifold M is not compact. Hence, our
argumentation is not an alternative for the proof of [NW09)

4The definition of a Lie group bundle, respectively associated Lie group bundle, is completely
analogous to the definition of a vector bundle, respectively associated vector bundle.
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ff] and Lemma [D.1)).

In [NW09, Appendix A], where M is compact, Neeb and Wockel endowed the
group of sections I'(M, G) of a Lie group bundle G that is associated to a principal
bundle P with a Lie group structure. They used the identification I'(M,G) =~
C*(P, (), and endowed the group C*(P, G),,, of G-invariant smooth maps from
P to G with a Lie group structure by using the construction of a Lie group structure
on the gauge group Gau(P) described in [Woc07]. To this end, they replaced
the conjugation of the structure group on itself by the Lie group action pg. In
the following Definition we proceed analogously in the case where M is non-
compact but o-compact. As the construction from [NW09] is based on [Woc07], our
analogous definition is based on |Sch13, Chapter 4], the generalisation of [Woc07]
to the non-compact case.

Definition 4.2. (a) For a set X, a group G with unity 1 and a map ¢: X — G
we define

supp(p) := {z € X : p(z) # 1}.
(b) We equip the group

CP(P,G), = {pe CP(P,G) : (3K = M compact) supp(p) < ¢ ' (K)
and (Vh e H,p e P) pa(h) o p(ph) = ¢(p)}

with the infinite-dimensional Lie group structure described in [Sch13, Chap-
ter 4]. We just replace the conjugation of H on itself by the action pg of H
on G. We emphasise that the functions f € C°(P,G),, are not compactly
supported on P itself. The Lie algebra of C°(P, G),,, is given by the locally
convex Lie algebra

CE(P,9)p, = {f € C*(P,g),, : GK < M compact) supp(f) < ¢~ (K)}
:h_I)nC;?<P7 9)[’97

where K runs through the compact subsets of M.
(c) If ne I'(M,G) we define

supp(n) := {z € M : n(z) # 1}

and write I'.(M, G) for the subgroup of sections with compact support in M.

(d) From [Sch13| Chapter 4] (see also [Baul4, Theorem 3.5] and Lemma|D.1)) we
know that I'.(M,®) = C(P,g),, in the sense of topological vector spaces.
Now, we endow I'.(M, G) with the Lie group structure that turns the group
isomorphism I'.(M,G) = CX(P,G),, into an isomorphism of Lie groups.
Hence, I'.(M, G) becomes an infinite-dimensional Lie group modelled on the
locally convex space I'.(M, &).

In the following definition, we fix our notation for the quotient principal bun-
dle. For details on the well-known concept of quotient principal bundles see e.g.
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4 Extensions of groups of compactly supported sections

|[Gunll, Proposition 2.2.20].

Definition 4.3. Let N := ker(py) € H and H/N < P/N % M be the quotient
bundle with projection g: P/N — M, pN — q(p) and right action R: H/N x
P/N — P/N, ([g],pN) — (pg)N. We write H := H/N and P := P/N. Let
Py H/N — GL(V) be the factorisation of py over N and 7: P — P/N the orbit
projection. If ¢: ¢71(U) — U x H is a trivialisation of P then ¢': g1 (U) —
U x H, pN — (q(p), [pro0¢(p)]) is a typical trivialisation of P. It is well-known
that V is isomorphic to the associated bundle to H < P % M via p, (see e.g.
|Gun11, Remark 2.2.21]). Moreover, we write HP := T'w(HP) for the canonical
principal connection on P that comes from P (see (a)). We mention that
m*: QF(P,V)bher — QF(P, V)" is an isomorphism of topological vector spaces and

induces an isomorphism of chain complexes (see (c)).

Convention 4.4. Analogously to [NW09], we introduce the following convention.
We assume that the identity-neighbourhood of H acts trivially on V' by py (cf.
[INW09, p. 385] ) Hence, H is a discrete Lie group. Moreover, we even assume H
to be finite (cf. [NWO09, p. 386, p.398 f and Theorem 4.14]

Definition 4.5. Let H — P — M be a principal bundle with connected total
space P and py: HxV — V be a linear representation. Moreover, fix a connection
HP on TP and let D, be the induced absolute derivative of the associated vector
bundle V.

(a) We define

ZéR,c(P7 V)pv = {6 € Qi(P, V);l‘o/r : Dpve = 0} and
BéR,c(P’ V)pv = DPV<CCOO(P7 V)Pv)v

and equip these spaces with the induced topology of QL(P, V)ll;gr.
(b) We define

Zle,c(P7 v)ﬁx = ZéR,c(Pv V) M Q(I:<P7 V)Pv and

BéR,c(P> V)ﬁX = BéR,c(Pv V) N chz(Pv V)pv

and equip these spaces with the induced topology of QL(P,V),,. In this
context Zgp (P, V) (respectively Bjg .(P,V)) stands for the closed (respec-
tively exact) compactly supported V-valued 1-forms on P with respect to
the compactly supported de Rham cohomology.

Lemma 4.6. Let H — P — M be a principal bundle and py: H xV — V be a
linear representation. Moreover, fix a connection HP on T'P and let D,, be the
induced absolute derivative of the associated vector bundle V.

5Tn Section we will see that this is a quite natural assumption.

6Even the case H = {1} is a generalisation of [Nee04] if the typical fibre is finite-dimensional.
If H is trivial then so is the vector bundle V. However, the Lie algebra bundle ¢ and the Lie
group bundle G do not have to be trivial.
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4.1 Construction of the Lie group extension

(a) If H is discrete, we have
Zine(P,V)py = Zig (P, V)ix and Big (P, V)p, < Big o(P,V s

Because in this situation all forms on P are horizontal the topologies on
Zir(P,V)y, and Zjg (P,V)ax coincide.

(b) If H is finite we get Byp (P,V )y, = Bip (P, V)sx. Again the topologies on
these subspaces coincide, because QL(P, V)ll}gr and QL(P,V),, are exactly the
same topological vector spaces.

Proof.  (a) If H is discrete there is only one connection on P, namely HP = T'P.
Hence, in this case, D,,, is the ordinary exterior derivative.

(b) Let n := #H and § € Bjp (P,V)ax with § = df for f € CX(P,V).
For ¢ € CX(P,V) and g € H we write g.p := py(g) o Rip and get
%-deHg.f e CX(P,V),,. Moreover, d(% . deHg.f) = 6. Hence,

BcllR,c(P7 V)Pv = BéR,c(P7 V)ﬁx -

Lemma 4.7. Let H — P % M be a principal bundle with finite structure group H
and connected total space P. Moreover, let py: HxV — V be a finite-dimensional
linear representation, HP a connection on T'P and D,,, be the induced absolute
deriwative of the associated vector bundle V. Then the following holds:
(a) The map q is proper. Hence, in this case the forms in QF(P, V) are exactly
the compactly supported forms on P.
(b) The space Byg (P,V) = dCF(P,V) is a closed subspace of QL(P,V).

Proof. (a) We see from [NR11, Lemma 10.2.11] that if ' < F % M is a contin-
uous fibre bundle of finite-dimensional topological manifolds and F' is finite
then ¢ is a proper mapﬂ

(b) From [Nee04, Lemma IV.11] we see that, if M is a connected finite-
dimensional manifold and V a finite-dimensional vector space then
Blr (M, V) = dCP(M,V) is a closed subspace of QL(M,V).

O

For a corresponding statement of the following lemma in the case of a compact
base manifold M, compare [NW09, p. 385 f].

Lemma 4.8. The subspace D, CF(P,V),, < QLP, V)b is closed.

PV ~c

Proof. The lemma simply says that dl'.(M,V) is closed in Q}(M,V). Hence, it
is enough to show that the subspace dC®(P,V); is closed in Ql(P, V)%gr =

Pv

QL(P,V)z,. We know that Bl (P,V) is closed in Q}(P,V). We calculate

ACE(P,V)p, = BinoP. V)i = [ {0€ BineP.V) : 5y (9) 0 'y = 0}

geH

"A more general statement in the setting of topological spaces is stated in |Leel3, Exercise
A.75.).
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4 Extensions of groups of compactly supported sections

= @vlg —id)~ {0}

geH

and see that dCY” (P,V)5, is closed in QL(P, V). Because the topology of
QL(P,V),, is finer than the induced topology of QL(P,V), the space dCX (P, V),
is also closed in QL(P,V),,. O

Definition 4.9. Let H — P — M be a principal bundle with connected total
space P and py: HxV — V be a linear representation. Moreover, fix a connection
HP on TP and let D,,, be the induced absolute derivative of the associated vector
bundle V.

(a) If the quotient group H/ker(py) is finite (this of course includes the case
where the group H is finite), we define

H;R,C(P7 V)PV = chlR,c(P7 V)PV/BCIIR,C(PJ V)PV = HallR,c(Ma V)

Because of Lemma [4.8| this is a Hausdorff locally convex space.

(b) We have a canonical H-module structure on Hgp (P, V) given by H x
Hip (P,V) — Hip (P,V), (h,[0]) — [pv(h) o R;#]. As usual, we call
the fixed points of this action py-invariant. If the group H is finite we define

Hp (P, V)i :={[0] € Hip (P, V) : [0] is py-invariant}

and because of Lemma the space H éR7C(P, V)ax becomes a Hausdorff
locally convex space as a closed subspace of the Hausdorff locally convex
space Hyp (P, V).

It is possible to show the following lemma by a more abstract argument using
that under certain conditions the fixed point functor is exact like it was done in
the compact case in [NW09, Remark 4.12]. Here, we give a more elementary proof.

Lemma 4.10. Let H — P — M be a principal bundle and py: H x V — 'V be a
linear representation. If H s finite we get

Hypo(P,V)ix = Zap (P, V )i/ Bag o(P.V )fix,
as topological vector spaces.

Proof. Let n := #H. We consider the linear map v¢: Zjp (P, V)s —
Hin (P, V)sx, 6 — [0]. The map ¢ is continuous because the inclusion
Zare(P,V)ax — QL(P, V) is continuous and so the canonical map Zp (P, V)sx —
Hjp (P, V) is continuous. If [0] € Hyp (P, V)s with 8 = df for f e C*(P,V)
then [0] = [d( Yep 9.0 and d(E Yy g.0) € Blau(P,V)ex 50 ker(w) <
Blgro(P,V)gx. Obviously, Bip (P, V)sx S ker(¢). Now, we show that ¢ is
surjective. If [0] € Hjg (P, V) then [0] = [L - Yger 9-0] and L. Yger 9-0 €
Z;R7C(P, V)ix. Hence, 1 factors through a continuous bijective linear map
U2 Zip [PV )ix/Bigo(P.V)ix = Hip (P, V)sx. It is left to show that ¢ is also
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open. We define

T HdRc(P V) — ZdRc(P V)ﬁx/BdRc(P V)six: [0 [ Z 99]

geH

Obviously 7| Hi, (PV)g, 1S inverse to 1. The map

QP V) - QP V),,, GH— >igb

geH
is continuous, because the action g.6 = p(g) o R0 does not enlarge the support of
a given form. O

Corollary 4.11. Considering the principal bundle H < P — M with the action
Py, we have

HéR,c(ﬁv V)ﬁX = ZC%R,C(ﬁ7 V)ﬁX/BcllR,c(?7 V)ﬁX = H;R,c(ﬁ7 V)ﬁv
The following lemma is a generalisation of considerations in [NW09, p. 399 and

Remark 4.12] from the compact case to the non-compact caseﬁ

Lemma 4.12. (a) If we endow Hyp (M, V) with the canonical H-module struc-
ture H x Hyp (M, V) — Hyp (M,V), (h,[0]) = [py(h) 0 0], then the map
7*: Hip (M, V) — Hjp (P,V) becomes an isomorphism of H-modules such
that Hjp (M, V)ax =g+ Hig (P, V ).
(b) We have

HéR,c(Mv ‘/ﬁx) = HéR,c(M’ V>ﬁX> (41)

where Vg is the subspace of fized points of the action py, in V.
(c¢) The map

Hap (M, Vi) = Hap (P, V), [0] — [q"0]

s an isomorphism of topological vector spaces.

Proof. (a) For he H we calculate
7[p(h) 0 6] = [p(h) 0 7*0] = [p(h) o (7 o Ry)*6] = [p(h) o Ryg*6] = h.q"[4].

Hence, * is an isomorphism of H-modules. Now the second assertion follows
from Lemma [D.3

(b) We exchange P with M and the action g.0 = ¢(g) o R}y with g.0 = py,(g) o0
in the proof of Lemma and get

HC%R,C<M7 V>ﬁX = ZéR,c(M’ V)ﬁX/B;R,c(M7 v)ﬁx

8 As mentioned above, in [NW09] Neeb and Wockel also consider situations where the Lie groups
H and G can be infinite-dimensional locally exponential Lie groups.
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4 Extensions of groups of compactly supported sections

Now we show that the isomorphism ¢: QL (M, Vg,) — QL(M, V)gy, 0 — O is a
homeomorphism, where Q!(M,V )z, is equipped with the induced topology
from Q!(M,V). Given a compact set K = M the map Q) (M, Vg,) —
Q) (M, V) is continuous. Hence, QL(M, V4,) — QL(M,V) is continuous and
therefore ¢ is continuous. Considering the continuous map QL (M, V) —
QL(M, Viy), 0 — Y7z h.0, we see that ¢ is an isomorphism of topological
vector spaces. Now the assertion follows from Zj, (M, V)ax = Zjg (M, Vix)
and Bjp (M, V)ax = Bip (M, Vix).

(c) We have the commutative diagram

Hip (M, Vix) : Hip (P, V)py

l “|

HC%R,C(M? V)ﬁx H5R7C(ﬁ7 V)ﬁX HéR,c(ﬁ7 V)ﬁv'

The assertion now follows from (a), (b) and Corollary 4.11}
[

Convention 4.13. From now on we write ¢.: Hjp (P, V),, — Hip (M, Vi) for
the inverse of ¢*: Hyp (M, Vix) = Hjg (P, V),,, [0] — [¢*6].

Remark 4.14. Given an infinite-dimensional Lie group G with Lie algebra g, a
trivial locally convex g-module 3 and a Lie algebra cocycle w: g x g — 3, [Nee02d,
Theorem 7.12] gives us conditions under which we can integrate w to a Lie group
cocycle of the Lie group G. These conditions were recalled in the introduction to
this thesis. Theorem 7.12 in [Nee02a] is formulated in the case where 3 is sequen-
tially complete. However, it also holds in a special case when 3 is not sequentially
complete: Let E be a Mackey complete space, F' < E be a closed vector subspace,
3= E/F. If w lifts to a continuous bilinear map a: g x g — E then the results
of [NeeO2a] remain valid. To see this, consider the following: Let w' be the left
mwvariant 2 form on G corresponding to w. The completeness of 3 is only used to
guarantee the existence of weak integrals in the following settings:

(a) § ' =T, 0% where M is a 2-dimensional manifold (namely M = S') or

simplex and o: M — G is a smooth map (see [NeeO2a, Section 5 and 6]),
(b) Sé WH(f(t))dt where f:[0,1] - TG® TG is a smooth map into the Whitney
sum (see [NeeO2a, Section 7]).

The integrals § w' and Sé WU f(t))dt are weak integrals but such integrals do not
have to exist in arbitrary locally convex spaces. However, they exist in sequentially
complete (respectively Mackey complete) locally convex spaces. This is the reason
why Neeb assumes 3 to be sequentially complete. Now we consider the situation
where 3 is not itself sequentially complete but 3 = E/F with a Mackey complete
locally convexr space E and a closed subspace F' and w = mo « is a Lie algebra
cocycle with the canonical projection n: E — E/F and a continuous bilinear map

a: g — E. We show the existence of the weak integral §_w'. We define &: g*> —

E, (v,w) = sa(v,w)—sa(w,v) (see [NW0Y, Remark 2.2]). It follows that wod =

w with a continuous Lie algebra 2-cochain &. Let &' € Q*(G, E) be the left invariant
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differential form on G that comes from &. We get w' = mod! and the weak integral

§, w is given by
J o*wl = (f J*&l> .
M M

The ezistence of the weak integral Sé WHf())dt follows analogously.

Theorem 4.15. Let g be a locally convex Lie algebra, V' be a locally convex space,
considered as a trivial g-module and w: g x g — V' be a continuous Lie algebra
cocycle, such that there exists a Mackey complete locally convex space E, a closed
vector subspace F' < E and a continuous bilinear map o: gxg — E, withV = E/F
and w = 7o« (where m is the canonical projection E — V). Moreover, let
G be a connected Lie group with Lie algebra g. If the image of the period map
per,: m(G) — V (denoted by 11,) is discrete and the adjoint action of g on'V x, g
given by g x (V x,9) >V x, 8, (z,w) — [z, w], integrates to a smooth action of
G on'V X g, then the central extension of g by V' represented by w integrates to
a central extension of Lie groups V /11, — G — G of the Lie group G by V /I,,.

Proof. This is just [Nee02a, Proposition 7.6] and [Nee02a), Theorem 7.12] combined
with Remark [4.141 O

Definition 4.16. We define the locally convex spaces ﬁi(P, Vbor =
QLUP,V)pr/D,, CE(P,V),, and ﬁi(M,V) = QUM V) /dyT (M, V) (see [JW13|

v PV ~c

p. 129]). With Lemma and Lemma [D.1] we get
(M, V) = Q (P, V)l = O, (P, V)ker,

Remark 4.17. (a) Considering the vector bundles V(&) from [JW15] respec-
tively Definition we have a vector bundle isomorphism V — V(&)
given by

p:i P xp, V=V —=>V(6) =V(P x, ),
[p7 "ig(x7y)] — Hﬁﬁq(m([p’ I‘], [p7 y]) fOT z,Y€g.

In fact, ¢ is well-defined, because for p € P there exists a unique linear
map 2 V = V(g) = V(Byp)) given by o,(ky(z,y)) = ke, ([P, 2], [p,y])-
Furthermore, for x € M the map (P X,, V), — V(&,), [p,v] — ¢,(v) is
well-defined. The bundle morphism ¢ is smooth, because locally it has the
form U xV — U xV, (xg, kg(x,y)) — (z0, kg(z,y) for a domain U = M of
a trivialisation of P, xqg € U and x,y € g in the canonical charts. Hence, @
18 locally given by the identity U x V. — U x V.

(b) Given 6 € QU(P, g)p" and f € CX(P,g),,, we have kg0 (0, f) € Q(P,V)por.
In fact kgo (0, f) is obviously horizontal and compactly supported with respect
to the principal bundle P 2 M. Moreover, given he H, pe P and v € T,P,

we calculate

Ry (kg 0 (0, ))p(v) = kg(Opn(TRa(v)), f(ph))
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4 Extensions of groups of compactly supported sections

=rig(pg(h™1).0,(v), pg(h1).f (P)) = pv(h™1).kg(0,(v), f(p)).

Therefore, the map Ry: QL(P,g)p>" x CL(P,g),, — Q(P, V), (0, f) —

pv >’
kg o (0, f) makes sense and we obtain the commutative diagram

QL(P, g)hr x C2(P,g),, = QL(P,V)hor

|

Q.(M,V)

|

OL(M, 8) x To(®) QL(M,V(8)),

where the lower horizontal arrow is given by the map ke described in Lemma
and the vertical arrows are the canonical isomorphisms of topological
vector spaces. In particular, Ry is continuous. We write Rq(n,8) := Eq(60,n)
for 6 € QL(P, g)};sr and n e '.(8B).

(c) The map CZ(P.g),, x QPN — QLP.g)kr, (n,6) — [1,6] with
[1,0],(w) = [n(p), 0,(w)] forp e P and w € T, P makes sense. In fact [n,0] is
horizontal, [n,0] € QL(P, g) and the form [n, 0] is py-invariant because p, acts
by Lie algebra automorphisms on g. Under the canonical isomorphisms of
topological vector spaces QL(P, g)gsr >~ (M, 8) and CL(P,g),, = Tc(M,®)
this map corresponds to the map QL(M,8)x (M, 8) — Q. (M, &), (6,1) —
[0, 0] with [0,n].(v) = [0.(v),n(z)]e, forx e M andv € T, M (see Definition
. As in Definition we define [n,0] := —[0,n] for 6 € QL(P, g)ggr
and n e ().

(d) We write pry,: TP — HP for the projection onto the horizontal bundle. In
view of the definition of a Lie connection in Definition[3.20, we see directly
that Dy, : CFL(P,§)p, — QU(P,9)p", f = df opry, is a Lie connection.

(e) We define the map B: CP(P,g),, x CX(P,g),, — QLP, Vbor = B3(f,g) =

pv 7

Fg(Dpy fr9) + Rg(D,,g, f). Because D,, and D, are induced by the same
principal connection on P, we obtain a commutative diagram

ﬁ or
CE(P,g)p, x CL(P,9)p, QL(P,V)per,
j(“g)* D,
%
CE(P,V),,

where (Kg)«(f, 9) = kg0 (f,9).
Definition 4.18. We define the map
L or
WM3 CSO(P, g)pg X C‘?O(P’ g)pg - QC<P7 V),};V7 (f?g) = [Hg(fa ngg)]a

which is analogous to the cocycle w defined in the compact case in [NWQ9,
Proposition 2.1]. Because D, is linear, D, (CZ(P,g),,) < Qk(P, g)};gr and
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D, (f) = df o pr;, we see that D, : CF(P,g),, — QL(P,g);° is continuous. Con-
sidering Remark (]E[), we see that wy; is continuous. Repeating the argumen-
tation of the proof of Remark with the help of Remark @ and @, we
see that w); is anti-symmetric and a cocycle. This is the same argumentation as
in [NW09, Proposition 2.1].

Remark 4.19. Let g be perfect in this remark. Because (kg)s: CF(P,g),, X
CF(P,g)y, — CL(P,V),, corresponds to the universal continuous invariant bi-
linear form keg: Lo(®) x T'o(B) — T (V(&)) from Theorem the absolute
derivative D, corresponds to the covariant derivative d constructed in Remark
[3.23. In particular, we have d = dy. Hence, our Lie algebra cocycle wy from
Definition corresponds to the cocycle wy from [JW15, Chapter 1, (1.1)] re-
spectively Remark [3.24).

In [NW09] Neeb and Wockel used Lie group homomorphisms that are pull-
backs by horizontal lifts of smooth loops a: S — M to reduce the proof of the
discreteness of the period group to the case of M = S! (see [NW09, Definition 4.2
and Remark 4.3]). However this approach does not work in the non-compact case.
Instead we want to use the results from [Nee04] on current groups on non-compact
manifolds. Hence, we use pull-backs by horizontal lifts of proper maps ao: R — M
(see the next definition). A corresponding definition in the case of a compact base
manifold was given in [NW09, Definition 4.2].

Definition 4.20. We fix 29 € M, py € P,, and o € CX(R, M) with a(0) = .
Let & € C*(R, P) be the unique horizontal lift of o with &(0) = py. We define the
group homomorphism

at: O (PG — CF(R,G), o pod
and the Lie algebra homomorphism
dy: CP(P,g)p, > CL(R,g), [ foa.

In this context, the maps in CP(R, G) respectively C*(R, g) are compactly sup-
ported in R itself. These maps make sense because given ¢ € C°(P,G) we have
supp(¢) < ¢ (L) for a compact set L € M. We have supp(¢p o &) < a (L)
because if p(a(t)) # 1, we get a(t) € ¢7'(L) and so a(t) = go &(t) € L. Hence,
t e a7'(L). Now, we take the closure. Moreover, we define the integration map

L: Qu(P, VI v, [6] — f a*o.
R
This map is well-defined: Let 6 € Ql(P V) o With supp(6) < ¢ (L) for a compact

set L € M. We have supp(a*f) < o !(L) because if (& 9) # 0, we get a(t) €
¢ (L) and so a(t) = go &a(t) € L. Moreover,

(6" Dy, £)(t) = (Dpy fae) (& (1) = (df Jaw (&/(1)) = (f 0 &)'(1).
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4 Extensions of groups of compactly supported sections

Hence, §,(6*D,, f) = §z(foa)(t) = 0 for f € CX(P,V),, because f o & has
compact support in R.

The following remark is obvious.

Remark 4.21. Let W = | ;" I; be a union of finitely many closed intervals in R.
Then W is a submanifold with boundary. In fact, let W = Ujej C; be the disjoint
union of the connected components of W. For j e J and x € Cj}, we find ; with
r € l;;. Hence, I;; = Cj. If j1 # jo then Iih N ]Z-j2 = J and so ij, # ij,. Therefore
#J < n. Obviously, the sets C; are intervals.

The proof of the following lemma is a modification of the proofs of [Sch13|
Lemma 3.7 and Corollary 3.10].

Lemma 4.22. Let (U;)ien be a relatively compact open cover of R with U; # Q
Then there exists an open cover (W;)ien of R such that W; < U;, W; # & and W,
18 a submanifold with boundary.

Proof. Let K,, := [—n,n] for n € N. For all z € K there exists i, € N such that
x € U,. Let B.,(x) € U,. We find z1,..., 2y, such that K; < |J*, B., ().
We define V1, := B, (zx) and Us,, = Ui, for k = 1,...,N;. Thus we have
K, c Ufcv 1 Vi and v, & S Ui .. We can argue analogously for the compact set

n\Kn 1 with n > 2 and find open intervals V, 1,...,V, n, and indices ink such
that Kn\Kn_l c Uk:l wrand Vi, € U; . We obtain R < (J7_, k ", V. For
i € N, we define I; := {(n,k) : ins = i}. Then #I; < o because U; is relatively
compact. Now, we define

W, — {U(n,k)eli Vinw Li#J
T - J’

where J is an arbitrary non-degenerated interval that is contained in U;. We obtain
Uien Wi = R and W; < U for all i € N. Moreover, W; is a finite union of open
intervals. Let W; = U ' | J; with intervals J;. We have W; = U J;. Hence, W,
is a manifold with boundary (see Remark - O

In the proof of following lemma, we use the concept of weak direct products of
infinite-dimensional Lie groups (cf. [Glo03, Section 7] respectively |Glo07, Section

4]).
Lemma 4.23. In the situation of Definition [{.20, the group homomorphism
ag: CF(P,G)p, = CF(R,G), p—poa

1s in fact a Lie group homomorphism such that the corresponding Lie algebra ho-
momorphism is given by &5: CX(P,g),, — CX(R,g), f— foa.

Proof. Using the construction of the Lie group structure described in [Sch13, Chap-
ter 4], we can argue in the following way. Let (V;, 0;)ien be a locally finite compact
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trivialising system of H < P % M (see [Sch13, Definition 3.6 and Corollary 3.10]).
We define U; := a~1(V;) for i € N. The map « is proper. Because (a~*(V;))en is
a compact locally finite cover of R, also (U;)ey is a compact locally finite cover
of R. We use Lemma and find a cover (W;)en of R such that W; < U; and
(Wi)ieN is a compact locally finite cover of R by submanifolds with boundaries.
Moreover, we have W; € a~*(V;) for all i € N. Now (W;,id \%)EN is a compact

locally finite trivialising system of the trivial principal bundle {1} — R 9, R with
the trivial action {1} x G — G. We get the following commutative diagram

A%k

C2(P, ), = CE(R,G) (4.2)
f(fooi) fo(flw,)i

® 0 (Y7 (¥i)ien # o (TTF
HiEN C (VZ’ G) - HieN C (W’Lv G);

where the group homomorphisms ; are given by the diagram

c*(V;,G) i e (W, G)

|

C*(V, x H,G)

fk*fowil
(7w(}ﬂVQv(;%

with 0;: C°(V;,G) — C*(V; x H,G), f — ((x,h) — pg(h).f(x)) and ¢; the
inverse of V; x H — Ply,, (z,h) — o;(x)h. Defining 7': W; — V; x H, 7% :=
@i 0 dlyy, and 7! := pr;or’ for j € {1,2}, the map ¢;: C*(V;,G) — C*(W;,G) is
given by

f = pa(pryop; o dlgp, (+)).(f o pry op; 0 dlgp, () = pa(a(+)).(f o 7i(4)).

In order to show that (4.2)) is commutative let f € C(P, G),,. Then
pa(h).f o ai(x) = floi(z).h) = (¢ (z,h))

for all (z,h) € V; x H. Hence, ¢;(f o 0;) = f o dljp,. To show that t; is a Lie
group homomorphism it is enough to show that C*(V;,G) x W; — G, (f,z) —
pc(me(z), f(11(x))) is smooth (|Alz72] respectively [Sch13, Theorem 2.25]). The
map C*(V;,G) x Vi, (f,y) — f(y) is smooth (see |Alz72] respectively [Sch13,
Theorem 2.26]) and so C*(V;,G) x W; — H x G, (f,z) — (r(z), f(r(z))) is
smooth. It is left to show that L(4¢,) is given by CX (P, g),, — C (R, g), f — fod.
To this end let f e CX(P,g),,. We calculate

0

L) = 5| ablen(tN) = 5| (el o)
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4 Extensions of groups of compactly supported sections

(- floa)=fodq,

ot

. 0
el Nodg

where * follows from

0 . 0 .
v (5] (@acttenon) = L (ewet 16
t=0 t=0
0 .
—en, (5] (@-n0a)
for p € P. Now the assertion follows from |Glo07, Proposition 4.5] respectively
[Sch13, Corollary 2.38]. O

Definition 4.24 (Cf. Proof of Lemma V.10 in [Nee04]). We define the cocycle
wr: CZ (R, 0)° = QR V) = Hip (R, V) =V,
(F9) = Il £. )] = | (7 (0). 5O
R

The following Lemmas |4.25] [4.26| and [4.27| are used to prove Lemma |4.28] which
is a generalisation of [Nee04, Lemma V.16] from the case of a current group to the
case of a group of sections ﬂ

In the case of a compact base manifold, a statement corresponding to the fol-
lowing lemma is given by equation (9) in [NW09, Remark 4.3].

Lemma 4.25. Given xg€ M, po € Py, and o € CP(R, M) with (0) = xo, we get

T 0wy = we o (a7 x &7). (4.3)

Hence, the following diagram commutes:

WM ol hor
COO(Pa 9)2 Qc (Pu V)pv
54: X&Ekl Ia

C*(R, g)? = V.

Proof. For g e CX(P,g),,, we have
(& Dp,g)(t) = Dy, g(d'(t)) = (g &)'(t)
because & is a horizontal map. For f,ge C(P,g),,, we get
Tolenr(1.9)) = L[l £: D 9)]) = [ 6*ra(£.Dy) = | ol 28,6 Dyo)
~ | nalf ottty o @yt = wx o 5 x )(F.9).
R

9In [Nee04, Lemma V.16] Neeb also considers the case of an infinite-dimensional codomain.
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]

The following lemma can be found in [NW09, Remark C.2 (a)].

Lemma 4.26. Let ¢: G; — G9 be a Lie group homomorphism and g; the Lie
algebra of G; for i € {1,2}. Moreover, let V be a trivial g;-module and w €
Z%(g2,V). Then we get

per,, omy () = Pery )« (4.4)

as an equation in the set of group homomorphism from ma(Gy) to V@

The following lemma corresponds to the first equation in [NW09, Remark 4.3

(10)].
Lemma 4.27. Let o € M and po € Py, be base points and o € CF(R, M). Then

Iooper, = per; .. : T(CL(P,G)y) = V. (4.5)

Proof. Let ', € Q*(C*(P, G)pa,ﬁi(P, V)hor) be the corresponding left invariant
2-form of war € Z2(C(P,8)py, Qu(P,V)Ir). Then I, 0 wh; € Q3p(C2 (P, K),pe, V)

is left invariant and

(IOé Owé%)l(fv g) = Ia(("dé\d)l(fu g)) = Ia OwM(f7 g)

for f,g € CX(P,g),, = TiCX(P,G),,. Hence, (I, 0owy)" = I, owh;. For [o] €
mo(CP (P, G),,) with a smooth representative o, we get

PK>

pery, o, ([0]) = L2 0" (Lo o wiy) = J

*, 0 *, 0
I,o0 wM:]aof o Wy
S2

SQ
=[,0 peer([a]).

The following lemma is a generalisation of [Nee04, Lemma V.16] B

Lemma 4.28. For a proper map « € C’;O(]R, M) and the base points xo € M and
po € Py, the following diagram commutes:

73(CP(P.@) ) — 2 QL(P, V)
mo(a) LIQ
7[-2(0((:‘)0 (R7 G)) perw]R V

10The definition of the period map per,, was recalled in the introduction.
1Tn [Nee04, Lemma V.16] Neeb also considered the case of an infinite-dimensional codomain.

99



4 Extensions of groups of compactly supported sections

Proof. We calculate

_ _ _ Ak
[oc 0 peer ' perlaowM ' perwRo(d*xd*) ' perwm O7r2(OéG’)' (46)
.5) #.3) (.4)
0

Lemma 4.29. Let g € M and py € Py, be base points and o € CF(R, M) with
a(0) = zg. Moreover, let & € C*(R, P) be the unique horizontal lift of o to P with
6‘(0> = Po-

(a) We have the commutative diagram

(b) Given [0] € HéRC(M, Vi), we have (3 a*q*0 = (; o*0, respectively

f atl = f a*q.0
R R

Proof.  (a) Given [0] € Hjp (M, Vi), we calculate

Ld*(q*@) :L(qo@*e) :La*e.

for all [0] € HC}R’C(P, V) -

(b) This is obvious.

The following lemma comes from [Nee04, Corollary IV.21].

Lemma 4.30. IfI' € V is a discrete subgroup then
Hip (M,T) := {[e] € Hyp (M,V): (Vae CL(R, M))J a*f e r}
R

18 a discrete subgroup ofﬁi(M, V).
The following statement can be found in the proof of [Nee04, Proposition V.19].

Lemma 4.31. The group Il,,, = im(per, ) is a discrete subgroup of ﬁi(R, V) =
HcllR,c(Ra V) =V.

Proof. We argue exactly as in the proof of [Nee04, Proposition V.19] by combining
[IMNO3, Theorem I1.9] and |[Nee04, Lemma V.11]. O
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4.1 Construction of the Lie group extension

Remark 4.32. B_ecause G: P — M is a finite covering, G is a proper map and so
a curve a: R — P is proper if and only if qoa: R — M is proper. Hence, the
maps in CX (R, P) are proper in the usual sense.

Lemma 4.33. Leta: R — P be a proper map. We define Ty := a(0), zo := q(To)
and o :=gGoa. Moreover, let py € P with m(py) = To and &: R — P be the unique
horizontal lift of a to P with &(0) = po. In this situation

_1 —
(P Vo —giaa ¥
o

Io
—_—
PV (0]l a*o

commutes.

Proof. We have m o & = @& because @ is the unique horizontal lift of & to P with
@(0) =Ty and 7 o & is also a horizontal lift of o to P that maps 0 to To. Hence,

Jd*(m) :J(m@)*ezja*e
R R R
for 0 ¢ QL(P, V), =

The proof of the following lemma is similar to the proof of [Nee04, Lemma A.1].

Lemma 4.34. Given a compact set L < C¥(P,G)
M such that L = CE(P,G),,.

pes we find a compact set K <

Proof. From [Sch13| Theorem 4.18] we know that the map exp,: CX(P,g),, —
CP(P,G)py, [ — expgof is a local diffeomorphism around 0. Given a compact
set K € M, we have

exp, (Cx (P,8)p,) S Cr (P, Gy (4.7)

Let U < CX(P,G),, be a l-neighbourhood and V < CF(P,g), be a 0-

neighbourhood such that exp, |V is a diffecomorphism. We write ® := (exp, |g)_1.
If L < U is a compact set then ®(L) is a compact subset of C*(P,g),,. Be-
cause CX(P,g),, is a strict LF-space, we find a compact subset K < M such
that ®(L) = CE(P,g),, 0V (see [Wen03, Theorem 6.4], [Glo08a, Remark 6.2 (d)]
or [Bou87, Chapter II Section 4, Proposition 6 and Proposition 9]). Hence, with
(4.7) we get L < CE(P,G),,. Now, let L < CP(P,G),, be an arbitrary compact
subset. Let W < C*(P,G),. be a l-neighbourhood such that W < U. Because
L is compact, we find n € N and g; € CX(P,G),, such that L < |J"_, g - W.
Defining the compact set L; :== L ng;- W, we get L < | J, L;. Let i€ {1,...,n}.
It follows that g; ' - L; € W < U. Hence, we find a compact set K; € M with
97" Ly = C¥(P,G)y,. Let Ky = M be compact with supp(g;) < ¢ '(K>) and
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4 Extensions of groups of compactly supported sections

K;:= K, u Ky and K :=J;_, K;. We have
Li € gi- Cg,(P,G)p,  CK.(P,G)ye € CR(P,G)pg
Hence, L = |J, Li < CE(P,G),,- O

In [Nee04, Remark IV.17] (where M is non-compact) Neeb extends a smooth
loop «a: [0,1] — M by a smooth proper map 7: [0,00[— M to a proper map
a: R — M such that for all 1-forms # with compact support one gets §a9 =
S& 6. This construction is also used in the proof of the following theorem. A

corresponding result has been proved in the compact case in [NW09, Proposition
4.11].

Theorem 4.35. If M is non-compact, we have

im(per, ) =: I, € Hip (M, V) < Q,(M,V).

WM
This means that all forms in 11,,, are closed.

Proof. Because m*: Q3(P, V)5, — Qi(P, V)b is an isomorphism of chain com-

plexes, it is enough to show that II,,, = Hi, (P,V) < ﬁi(ﬁ, V). To this end
let [0] € IL,,, and @, @;: [0,1] — P be closed smooth curves in a point Ty € P
that are homotopic relative {0,1} by a smooth homotopy F': [0,1]> — P. From
Lemma we get that it is enough to show that §_ 6 = §_ 6. By composing
@; respectively F'(s,.) with a strictly increasing smooth map ¢: [0,1] — [0,1]
whose jet vanishes in 0 and 1, we can assume that in a local chart all derivatives of
@; and F(s,.) vanish in 0 and 1 because Sai 0 = 0 (forward parametrization

does not change line integrals). Because M is HOH—CZO;lpaCt, we find a proper map
7: [0,00[— P such that v(0) = %, and in a local chart all derivatives vanish in
0 (see [NeeO4, Lemma IV. 5] and composition with a smooth bijection of [0, oo[
that’s jet vanishes in 0). For i € {0, 1}, we define the smooth map

F(—t) 1t <0
a i R— Pt @) 1t e0,1]
Ft—-1) :t>1.

Moreover, we define the smooth homotopy
F(—t) (1t <0

FU[01] xR P, (s,t) > { F(s,t) :te0,1]
Ft—-1) :t>1

Hence, we have EEQ,FR(S”) e C(R, P) for i € {0,1} and s € [0,1] (see Remark
4.32). We define o; := goa;, F :=qoF, of := goak, F® := GOFR, v :=go7 and
xo := To. The curves ag and «; are closed curves in xy and are homotopic relative
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{0,1} by the homotopy F', because a;(j) = G(Ty) = xo and F(i,.) = go F(i,.) =
goa; = «; for j,i € {0,1}. Moreover,

v(—t) t<0
() = < ai(t) :te[0,1]
(Yt —1) :t>1,
(~(—t) t<0
FR(s,t) =3 F(s,t)  :tel0,1]
(y(t—=1) t>1

and o), F¥(s,.) € CP(R,M). We choose py € 7' ({To}). Now, let 4;: R — P
be the unique horizontal lift of af to P with a®(0) = py and F®: [0,1] x R — P
be the unique horizontal lift of F]R to P such that FR(S 0) = po for all s € [0,1].
The map F¥ is not a homotopy relative {0,1} but we have F%(0,s) = aF(s) and
FR(1,5) = &&(s) for all s € [0,1]. Fori € {0,1}, we have

f e:f ezf 0, (4.8)

where the last equation follows from Lemma m Because of . and Lemma
4.28) it is enough to show that m((af)*) = m2((a5)*) holds as group homomor-
phisms from my(CP (P, G),,) to m(CL(R,G)). From [Nee04, Theorem A.7], we
get m(CP(R,G)) = m(C.(R, G)). Wo st [ [0,1]. Let o 12 — C*(P,G), be
continuous with o2 = ¢1,. Because mo((aF)*)([o]) = [0(.) 0 &F] for i € {0, 1} it
is enough to show that

[o(-) 0 5] = [o(:) 0 a7]

in m(C.(R, @)). Hence, we have to construct a continuous map H: [0,1] x I* —
C.(R,G) with H(0,.) = o(.) o ay, H(1,.) = o(s) 0 &} and H(s,z) = ¢, for all
s€[0,1] and z € 012, We define H(s,z) = o(z) o F®(s,.) for s € [0,1] and z € I2.
Because o|sp2 = ¢, it is left to show that H is continuous. Let K < M be compact
such that im(o) = o(I?) < CE(P,G),, (see Lemma [4.34). For f € CE(P,G),,
we have supp(f o aF) < aF ' (K) as well as supp(f o FE(s,.)) < F&(s,.)" (K) for

e [0,1]. Hence, supp(o(z) o F¥(s,.)) < F¥(s,.)"}(K) for € I? and s € [0,1].
We have

RrR—1 R|— R|— R|—
F(K)=F |[0,11]x[0,1](K) v F ‘[0,11]><]—oo,0](K) v F ’[0,11]><[1,oo

=80 (B) © ([0, 1] x —y7H(K) w ([0,1] x y7H(K) + 1)

()

Thus F®'(K) < [0,1] x R is compact. Therefore,

L= | F*s,) 7 (K) = pr,(F* ' (K)) = R

s€[0,1]
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4 Extensions of groups of compactly supported sections

is compact. We have supp(o(z) o FR(S,.)) c L for all z € I* and s € [0,1].
Thus im(H) € CL(R,G). Therefore, it is enough to show that H: [0,1] x I? —
CL(R,G) = C(R,G), (s,x) — o(x) o F®(s,.) is continuous. We know that
7:[0,1] = C(R, P), s — F%(s,.) is continuous and so the assertion follows from
the following commutative diagram

[0,1] x I? —— % C(R, P) x C£(P,G)
T C(R,P)x C(P,G)
l(o«f)Hfoa

C(R,G).

pPG

]

The following theorem corresponds to the Reduction Theorem [NW09, Theorem
4.14] (where the base manifold M is compact but the principal bundle P and the
Lie group G can be infinite-dimensional).

Theorem 4.36. The period group 11, = imper, is discrete in ﬁi(M, V).

WM

Proof. Because ¢*: Hyp (M, Vi) — Hgp (P, V),, is an isomorphism of topologi-
cal vector spaces and Il,,, © Hyp (M,V) = Hyp (P,V),,, it is sufficient to show
that II,,, is a discrete subgroup of Hjg (M, V) (Lemma. With Lemmam
and Lemma {4.31] it is enough to show that

., € Hip (M,1g). (4.9)

WMz

Let 8 € I, a € C*(R,M) and [o] € m(CP(P,G),;) with 8 = per,, ([o]).
Using Lemma [4.29| and Lemma [4.28] we get

j 0% = j &8 = I, o per, ([o]) = per,,, omy(@*)([o]) € .
R R

Hence (4.9) follows. O

4.2. Integration of the Lie algebra action and the
main result

In the case of a compact base manifold ([NW09, Section 4.2 (part about general
Lie algebra bundles)]) Neeb and Wockel integrated the adjoint action of I'(&) on

[(®) := Q (M, V) x,, (&) given by

—

['(8) x I'(&) - I'(8), (n,([a],7) — [0, ([a], V] = (wn,7), [7,7])
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to a Lie group action of I'(G) on @ As a first step in their proof, Neeb
and Wockel integrated the covariant derivative dg: ['(&) — QY(M,8) to a
smooth map from T'(G) to Q'(M,®). Since the absolute derivative is the sum
of d: C*(P,g),, — Q'(P,g) and C*(P,g),, = Q(P,g), f — p«(Z) n f, where
Z:TP — L(H) =: b is the connection form, p. = L(py): h — der(g) and
(p«(Z) A [)p(v) = pu(Z(v)).f(p), they integrated these summands separately.
The image of the exterior derivative does not lie in Q'(M,g)i°" but in the space
Q' (M, g); and in some sense the summand f — p.(Z) A f annihilates the ver-
tical parts of df. The exterior derivative d: C*(P,g),, — Q'(M, g), integrates
to the left logarithmic derivative d: C*(P,G),, — Q' (M,g),, ¢ — 0(p) with
5(@)p(v) = TAppy-1 © Tp(v) (INWO09]). The integration of the second summand
is more complicated, and Neeb and Wockel assumed the Lie group G to be 1-
connected (in the special case of the gauge group they did not need this assump-
tion (see [NW09, Theorem 4.21])). In the second step they used an exponential
law to obtain the integrated action. Because our base manifold is not compact,

the adjoint action of I'.(®) on F/c(g) = ﬁi(M, V) Xy, Le(®) is given by

—_—

[o(&) x [o(&) = Te(8), (0, ([a],7)) = (wrn(n,7), [1,7])-

With the canonical identifications (see Remark [4.17) the adjoint action has the
form

1 or ol or
C?(P’Q)Pg x (Qc(Pa V)I;V XwM C?(P7g)pg) - QC(P7 V)ISV x COO(Py g)pg

wpm [

(9, ([al, 1)) = ([5g(g, Dpy ()], ad(g, f))- (4.10)

We have to integrate this action to a Lie group action of (I'.(G))o on I::(—g) Like
Neeb and Wockel, we have to integrate the covariant derivative dg: I'.(®) —
QL(M, ®) to a smooth map from I'.(G) to QL(M,®). But we will not describe the
absolute derivative via the connection form Z as the sum of the exterior derivative
d and the map f — p.(Z) A f. Instead, we use the principal connection HP
and write D, = pry od, where pr;, is the projection onto the horizontal bundle
and (pr; od)(f)(v) = df (pry(v)). In Theorem we show that the map A :=
priod: CP(P,G) — QL(P, g);’;’r is smooth and its derivative in 1 is given by the
absolute derivative D, . One could show the smoothness of §: CF(P,G),, —
QL(P,g)g and prj: QU(P, g)g — QL(P, g)p°" separately but it is more convenient to
show the smoothness of A directly because we work in the non-compact case and
QL(P, g)po" is an inductive limit (compare Lemma [4.47)).

Remark 4.37. In [NW0Y, Chapter 4.2 page 408/ Neeb and Wockel define
XZ(f)v == x(Z(v), (f(p)) for f € TG = C*(P,Q),s, v € T,P, Z the connection
form of P and a smooth map x: b x G — g that is linear in the first argument.
If the connection on P is not trivial then TP — g, v — x(Z(v), (f(p))) is not in
QY(M, ) = QY(P, g)}[};’r because it is not horizontal unless it is constantly 0. How-

12The Lie algebra structure on V x, g for a continuous cocycle w: g> — V was recalled in the
introduction.
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ever, the image of the map 6 (f) = 5(f) + xZ(f1) lies in QL(P, g);“;r because the
image of its derivative in 1 lies in Q*(P, g)};jr and 8V is a 1-cocycle with respect to
the adjoint action of C*(P,G),, on Q (P, g),, and Q'(P,9)}" is invariant under
this action.

Lemma 4.38. Let V be a locally convexr space and G a locally convex Lie group.
Moreover, let u: G x V.— V be a map that is continuous linear in the second
argument. Let f: G — V be a map that is smooth on a 1-neighbourhood. If

f(hg) = f(g) + u(g™, f(h)) for g,h € G, then f is smooth.

Proof. Let U < G be a 1-neighbourhood such that f|y is smooth and g € G. Then
Ug is a g-neighbourhood and given z € Ug, we define h := zg~! € U. Hence
z = hg. Now, we calculate

f(z) = f(hg) = f(g) + n(g™", f(R) = f(g) + u(g™", f(zg™h))
=f(g) + ulg™", flu o 04-1(2))-

Thus

flug = Flg) +ulg™,) o flu o 0g-1]ug-

Lemma 4.39. We consider the map

p: CL(P,G)ye x QLP,g) — QP g), (¢,0) — AdS 6

PG

with AdS .0: TP — g, v — Ad{

P. The subspace QP g)i}‘;r is p-invariant. Here Ad® denotes the adjoint action
of G on g.

Proof. Given 0 € Ql(P,g),, and ¢ € CX(P,G),,
QL(P,g)p,- Let he H, pe P and v e T,P. We calculate

(Ryp(p,0))p(v) = Ad%(o(ph), Opn(T Ry (v))) = Ad® (pa(h™").0(p), pa(h™1).0,(v))
=T (h1).00) © T (h1).0m1 © Tipa(h1)(6,(v))
:Tl(ﬂa(h (@) - pa(h™) () - pa(h™ ) (@) ™)) (0,(v))

=T1(pa(h™) 0 Lo ) (05(v)) = pg(h™") 0 Adg,) (6,(v)),

-1

o(r(w)) -0(v) and the canonical projection w: TP —

we show that pu(p,0) €

where I,;)(9) = ¢(p)ge(p)~" is the conjugation on G. Obviously u(yp, ) is hori-
zontal if 6 is so. O

Definition 4.40. We define the map

PG

AdY: CP (PG x QUP, g)p>" — QL(P,g)h", (,0) — AdS .6

with Adg 0: TP —>g, v— AdgO7r () -0(v) and the canonical projection w: TP —
P.
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Lemma 4.41. The map AdY: CP(P,G),, x QL(P, g)p — QU(P, g)pe" is contin-
wous linear in the second argument.

Proof. Let ¢ € C¥(P,G),, and K < M be compact. It is enough to show
that

Adf(@, ’): Q}((Pv g)Pg - Q}((P7 g)ﬂg

is continuous, because AdS(p,.) is linear and AdS(e,.)(%(P,g),,) <
QL (P,g)y,- Themap f: TP xg—g, (v,w) — Ad%(pon(v), w) is smooth.
We know that

fu: C*(TP,g) > C*(TP,g), 0 — fo(id,0)

is continuous (see e.g. |GN]). We can embed Q. (P,g) into C*(TP,g).
Hence we are done.

[]

Definition 4.42. Let m: T'P — P be the canonical projection and pr),: TP — HP
the projection onto the horizontal bundle.
(a) We define

§: CP(P,G),y — (P g), ¢ d(p)

with dp(v) = TAy(r(w))-1 © Tp(v) for v e TP (cf. [KMIT7, 38.1]).
(b) We define

pr;: QY(P,g) — Q'(P,g)"",0 — fopr, .

The statement (b) in the following lemma is well-known and can be found in

[KMO97, p. 38.1].
Lemma 4.43. (a) We have

0(CE(P, G)ps) = QP g)g,-
(b) Given f,ge€ CX(P,G),,, we have
O(f - g) = d(g) + (97", 8(f)).
Proof. (a) Let p € C¥(P,G),,, he H,pe P and w € T,P. We calculate

(R0 (0))p(w) = 0()pn(T'Rn(w)) = TAppny-+ (Tp(T Ba(w)))
=T (Apphy-1 0 o Rp)(w) =: §.

For x € P, we have

Apphy-1 © 0 0 Ry(z) = (pa(h™1).0(p) "+ (pa(h™1).o(x))
=pa(h™).(p(p) ™" - () = pa(h™h) 0 Aypy—1 0 p(x).
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4 Extensions of groups of compactly supported sections

We conclude that

t = pg(h™) 0 TAyp-1 0 To(w) = pg(h™") 0 6(p)p(w).

(b) The assertion follows directly from [KM97, p. 38.1].
O]

Definition 4.44. Let pr;,: TP = VP ® HP — HP, be the projection onto the
horizontal bundle HP. We define
A: CP(P,G)py — QN (P,g)p", ¢ — pry 08(p) = 6(p) o pry, -
As in [Sch13|, we use the concept of weak direct products of infinite-dimensional
Lie groups described in [Glo03], Section 7] respectively [Glo07, Section 4] in the

following considerations. The next lemma is basically [Sch13, Corollary 2.38] but
with modified assumptions.

Lemma 4.45. For i e N let G; be a locally convex Lie group, E; a locally convex
space and f;: Gy — E; be a smooth map such that f;(1) = 0. In this situation there
exists an open 1-neighbourhood U < [|i_y Gi such that the map f: ||y Gi —

Dieny Ei» (9i)i = (fi(g:))i is smooth on U.

Proof. Given i€ N, let p;: U; € G; — V; < g; be a chart around 1 with ¢;(1) = 0.
We have the commutative diagram

. f|n;!<€N v, =filv; Jien
HieN Ui @ieN L

(%)iewl %

@z‘eN VZ

Now the assertion follows from [Glo03, Proposition 7.1]. O

Remark 4.46. Let (V;,04)ien be a compact locally finite trivializing system of the
principal bundle H — P 5 M in the sense of [Schl13, Definition 3.6] respectively
[Woc07]. We follow [Sch15, Remark 3.5] respectively [(Woc07] and define as usual
the smooth map Bs,: ¢ *(V;) — H by the equation o;(q(p)) - Bs,(p) = p for all
peq Y (V;). Obviously, we have B,,(ph) = B4, (p) - h for all h € H. Moreover, we
define the smooth cocycle 3;;: Vi,V ; — H by the equation o;(z)- B; ;(z) = oj(z).

We have B j(x) ™" = B;i(x) and By, (p) " -Bij(a(p)) = 8o, (p) " forpe ¢ (VinV;).

The proof of the following lemma is similar to the proof of [Sch13|, Proposition
4.6] where, beside other results, Schiitt constructed a topological embedding from
the compactly supported gauge algebra gau, (P, g), to a direct sum @, C*(V;, g)
of locally convex spaces. However, the following lemma differs from [Sch13, Propo-
sition 4.6] because we deal with horizontal differential forms which need some
additional considerations.
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Lemma 4.47. Let (V;, 0;)ien be a compact locally finite trivializing system in the
sense of [Schl15, Definition 3.6]. The map

Qu(P,g),> — D (Vi0), 00— (070)ien

€N

s a topological embedding.

Proof. We define
Qg = {(772')1' e D (Viig) : (0)s = po(Bi(x)) 0 (ny)s for z€Vin V]}
1eN
and the map

P: Qflz(Pv g)}l;;)r - @Ql(vug)a 0 — (U:Q)iEN-
€N
First we show that im(®) € Qg. For x € V; n V;,v € T,M, we have o;(z) =
oi(x)f; j(x) and

Tq(Toj(v) = T(Rg, ;) 0:)(v)) = T(go0;)(v) = T(qo Rg, ;@z) 0 0:)(v) = 0.
(4.11)

Because 0 is p, invariant and horizontal, we can calculate

(070)2(v) = b,2)(T0i(v)) = pg(Bii (%)) © b5, ;) (TR, ;) (T0i(0)))
5 Pa(B15(2)) 005, (To(v) = pg(Pi(2)) 0 070 (v).

Analogously to [Sch13, Proposition 4.6], we can argue as follows: The map ® is
linear, Q}(P, g)bo = lim Qf (P, g)po* and (V;); is locally finite, whence the map ®
is continuous. Now, let (\;);en be a partition of unity of M subordinate to (V;);.
Given n e Q'(V;, ), we define A\ € QY(P g) by

Sy () = {gf@(p» G0 Y (T 2p€0 0

With Remark [4.46, we get Ay € QL H(Pog)pe and X,y A€ QL(P, g)p

supp(A
for ()i € @y 21(Vi,9). The map W: @zeN Ql(VZ,g) — QL(P, g)hor, (m:); —
D ieN Ai7; is continuous because it is linear and the inclusions qupp N )(P, g)gsr —

QL(P, g)po" are continuous. Let (1;); € Qg. As in [Sch13, Proposition 4.6], we get

W((1:)i)p(w) = pg(Boy () )-(lig gty (T (w))

if p e ¢71(V;,) and w € T,P. By an abuse of notation, we write ® := ®|?® and
U := Wlg,. One easily sees PoV = idg,. It is left to show that Vo = idQé(P’g)lpqgr.
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4 Extensions of groups of compactly supported sections

Let 6 € QL(P, g)ggr, pe P, weT,P and i € N with p € ¢~ '(V;). We calculate

Tq(w — TRy, ) To:Tq(w)) = Ta(w) — Tqo R, ) 0 o) (Ta(w)) = 0. (4.12)

Now, we get

U0 ®(6),(w) = pg(Bo;(p) ) -(070) gp)(Tq(w))
=pg(Bo, (p)_l)-eai(q(p))(TUiTQ(w))
=05(B0:(0) ™) -P4(Bo: (P)) 0o (a))50, (o) (T R, T i T (w))

= 004080, () (W) = Op(w).
4. 12

]

Remark 4.48. Let M be an m-dimensional manifold, D < T'M a d-dimensional
subbundle, py € M and wy € D,,. Then there exists a smooth curve v: [—1,1] —
M such that ¥(0) = po, 7¥'(0) = wo and ¥'(t) € Dy for all t € [-1,1]. In
fact let : TU — U x R™ be a trivialisation with (D) = U x R? x {0} and
vy 1= pryoth(wy) € RY x {0}. Then X: U — TU, x — =Y x,v0) is a smooth
vector field on U and im(X) < D. Let ¥: [—¢,e] — U be the integral curve of X
with ¥(0) = po. Then ¥'(0) = X(po) = wo and obviously ¥'(t) € Dy for all t.
Now let p: [—1,1] — [—¢,¢] be a diffeomorphism with ¢(0) = 0 and ¢'(0) = 1.
Then v := o ¢ is as needed.

Lemma 4.49. The pullbacks v*: QY(P, g)"r — C*([-1,1],g), 0 — ~*0 along
horizontal maps v: [—1,1] — P (v/(t) € H,)P) separate the points in Q' (P, g)™".

Proof. Let 0 € QY(P, g)™ and *0 = 0 for all horizontal curves v: [~1,1] — P.
Let p € P and w € T,P. We show that 6,(w) = 0. Because 0 is horizontal,
we can assume that w € H,P. We use Remark and find a horizontal curve
v:[-1,1] = P with 7/(0) = w. Hence 6,(w) = 6,(7'(0)) = v*6(0) = 0. O

One can easily deduce the following observation from [Woc07, Theorem 1.11] but
in the special case of a current group on a compact interval, an easier argument
becomes possible.

Remark 4.50. Let G be a finite-dimensional Lie group and (U;);=1,..n be an open
cover of the space [—1,1] such that the sets U; are submanifolds with boundary.
Then the map ®: C*([-1,1],G) — [/, C*(U;,G), ¢ — (dlg,)i is an injective
Lie group morphism whose image is a Lie subgroup of [ [}, C*(U;, G) and ®|™®
is an isomorphism of Lie groups. We define ¥: C*([-1,1],¢) — [ =, C* (Ui, g),
f = (flg,)i- Let exp: Vg € g — Ug S G be the exponential function of G
restricted to a 0-neighbourhood such that it is a diffeomorphism. We define the
open sets U := C*([-1,1],Uqs) < C®([-1,1],G) and V := C*([-1,1],V;) <
C*([-1,1),9). Let 7i: C*([=1,1],Ug) — C*([=1,1],Vy), = (exp[yf) o
and 75: [T, C*(Us,Ug) — TTin, C7(Us V), (i) = ((exp [v9) ™" 0 @i)i be the
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4.2 Integration of the Lie algebra action and the main result

canonical charts. We obtain the commutative diagram

C*([~1,1], Ug) — 411, C=(U;, Uey)
C([~1,1], V) —— > [T, C2(T, V)

and calculate

The space
im(W) = {(fi)i : fi(z) = fi(z) for x € U; n U;}

is closed in [[1_, C*(U;,g). Hence, im(®) is a Lie subgroup of [\, C*(U;, G).
In the commutative diagram

Py

C*([-1,1],Ug) im(®) N [T, C*(U;, Ug)

- -

C([~1,1], V) ———im (W) A [, C2(T,, V)

the lower vertical arrow is a diffeomorphism because V: C*([—1,1],g) — im(V)
1s a continuous bijective linear map between Fréchet spaces. Now, the assertion
follows.

The following theorem is in some sense a generalisation of [Nee04, Proposition

V.71 [

Theorem 4.51. The following holds:
(a) The map A: C*(P,G),, — QL(P, g)ggr is smooth.
(b) We have diA(f) = D,, f for f e CL(P,g),-

Proof.  (a) Because of Lemma [4.38 Lemma and Lemma [1.43] it is enough
to show the smoothness of A on a l-neighbourhood. Let (0;,V;)ien be a
locally finite compact trivialising system in the sense of [Sch13| Definition
3.6.] (the existence follows from [Sch13, Corollary 3.10]). With the help

of Lemma and Lemma [£.47] it is enough to construct smooth maps

13We consider the case of a finite-dimensional codomain while Neeb additionally considered
special infinite-dimensional codomains.
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4 Extensions of groups of compactly supported sections

Vi C*(V,;,G) — QY(V;, g) such that the diagram

A or
CE(P, G pg QP 9)ys
WH(WOUi)ij lH*—%Gfm)i

H:EN c* (V“ G) v C—Bz‘eN Q! (V“ g)

commutes. Let 7;: ¢ 2(V;) — V; x H, p — (¢(p), pi(p)) be the inverse to
(x,h) — o;(z)h. Then o;(x) = 7;(z,1). For f e C*(V;,G) we define

fra7 (Vi) = G, p— pcleip), fla(p))).

If f e CP(P,G),, then foo; = flyiw). We define ¢: C*(V;, G) —

i £)2(v) = TApy-1 T f(pry,(Teoi(v))).

First we show that the above diagram commutes. We calculate

Ui(f 0 0i)e(v) = TA(f00()) T f (pry, oTpo4(v)) = 07 (6(f) © pry,)e(v).

It is left to show the smoothness of ;. Because we can embed QY(V;, g) into
C*(TV;,g), we show that

C*(Vi,G) x (TV;) = g. (f,0) = TAs) T f (pry(To0i(v)))

is smooth. Let m: G x G — G be the multiplication on G and n: G —
TG, g — 0, the zero section. Given f € C*(V;,G) and v € T,V,;, we
calculate

Ui f)(w) = Tm(n(f(x(v) ™)), Tf(pr;, Toy(v))).

The map ev: C*(V;,G) x V; — G, f,x — f(x) is smooth (see [Alz72,
Lemma 121]). Therefore it is left to show the smoothness of C*(V;, G) x
Tq N TV;) — TG, (f,v) — Tf(v). The map ev?: C*(V;,G) x ¢ (Vi) —
G, (f,p) — foq(p) is smooth because ev is smooth. We have T'(f oq)(v)) =
Tevi(f,.)(v) = Tevi(n(f),v), where n is the zero section of C°(V;, G).
Hence,

Tevio(n,id): C*(V,G) x Tq ' (TV) — TG, (f,v) — TfoTq(v)

is smooth. With T'f = Tp¢ o (T'w;, Tf o Tq) the assertion follows from the
smoothness of T ev?o(n,id).

We write §': C°([-1,1],G) — C*([—1,1],g) for the classical left logarith-
mic derivative. It is known that d.,8'(f) = f’ for f e C([-1,1],9) (see e.g.
[INS13, Proposition 8.4]). Given a horizontal curve v: [—1,1] — P, we define
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4.2 Integration of the Lie algebra action and the main result

the maps

Pyg: Cso(Pv G)pc - COO([_1> 1]>G)790 = Yo,
7:: CSO(P7 g)pg - Coo([_la 1]79)7f = f oy and
To: (P9 — C*([-1,1],9),0 — 7*0.

As in Lemma one shows that ¢ is a smooth Lie group homomorphism
with L(7¢) = 74 (see Remark 4.50). The diagram

C2(P,G)pe £ QL(P, g)her (4.13)

*

C*([~1,1],G) ———~C*([-1,1],9)

commutes, because
(BAUNE) = () ra(V () = 6(F)(Y () = TArorwy-2 o Tf(' (1))
=0'(f o).

Let f e CX(P,g),,- We want to show that diA(f) = D, f. Since Lemma
4.49| it is enough to show that & (diA(f)) = 74(D,, f) for an arbitrary
horizontal curve v: [—1,1] — P. Because 7 is continuous linear and the
diagram commutes, we can calculate

1 (A(f)) = di(r5 0 A)(f) = (8" 0E) (f) = di(6)NLOE)(F) = (F o).

Now, we use that v is horizontal and obtain

V(Do) = Doy f(7 (1)) = df (' () = 35 (dr A(S))e

for t e [-1,1].
[

The proof of the following Lemma is analogous to the first part of [MNO3,
Proposition I11.3].

Lemma 4.52. In the following we write Ad for the adjoint action of CF(P,G),,,
on CP(P,g),,- The map

A: CP(P,G) e x (Q(P V) x,, CZ(Prg),,) — Qu(PV)ET %, C2(P,g),,
(¢, ([a], 1)) = ([a] = [Kg(A(2), /)], Ad(g, )

15 a smooth group action and its associated Lie algebra action is given by the adjoint
action descm’bed mn . Hence, the adjoint action of T'.(M,®) on the extension

FCU\—L\QS) = Q. (M, V) wy Le(M, B) represented by wyy integrates to a Lie group
action of I'o(M,G) on I'.(M, ®).
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4 Extensions of groups of compactly supported sections

Proof. The smoothness of A follows from the smoothness of A. We show that A
is a group action. For ¢, € C*(P,G),., we have

App) = A() + AdS (™, A(p))

and for v,w € g and g € GG, we have
Kg(v, AdgG w) = rig(Adf_l v, w). (4.14)

In this context Ad“ is the adjoint action of G on g. Now, we calculate for a €
QP V)

Al -4, ([o], f)) = ([a] = [~ (A(W)>f)]>Ad<pw f)
o] = [kg(A%, f)] = [rg(AdT (¥, A(9)), £)], Ady . Ady . f)
o] = [rg(Av, )] = [ra(Alp), AdS (L )], Ady . Ady . f)

The associated action to A on CF(P, g),, is given by the adjoint action described

in because (—[rg(Dy,(9), )] ad(g, f)) = ([re(g, Dy, (f)],2d(g, f)) for f,g €
Cr(P, g)pg- O

Theorem 4.53. Let H be finite and write ' := per,, (ma2(To(M;G)o)). Then we
find a Lie group extension

QM V)1 T(M,G)o — Te(M.G)o
that corresponds to the central Lie algebra extension that is represented by wyy.

Proof. We simply need to put Theorem [4.36] Theorem and Theorem [4.15)]
(respectively [Nee02a), Proposition 7.6] and [Nee02a, Theorem 7.12]) together. [

4.3. Universality of the Lie group extension

In this section, we prove [JW13, Theorem 1.2] in the case where M is not compact
but o-compact (as in [JW13, Theorem 1.2] M still has to be connected). In the first
part of [JW13] Janssens and Wockel showed that the cocycle wys: T'o(M, &)?

ﬁi(]\/[ , V) is universal if g is semisimple and M is a o-compact manifold (see [JW13|
p. 129 (1.1)], Remark and Remark [3.24). In the second part of the paper
they assumed the base manifold M to be compact and got a universal cocycle
(M, &)* — ﬁl(M , V). Then they showed that under certain conditions a given
Lie group bundle G < G — M with finite-dimensional Lie group G is associated
to the principal frame bundle Aut(G) < Fr(G) — M. Hence, they were able to use
INW09, Theorem 4.24] to integrate the universal Lie algebra cocycle I'(M, )? —
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ﬁl(M, V) to a Lie group cocycle Z — FW)O — T'(M,G)o. At this point it is
crucial that M is compact and connected in order to apply [NW09, Theorem 4.24].
Once the Lie group extension was constructed, Janssens and Wockel proved its
universality by using the Recognition Theorem from [Nee02b| (see [JW 13| Theorem
1.2]). To generalise [JW13, Theorem 1.2] to the case where M is connected and
not compact, many arguments of [JW13| can be transfered to the case of a non-
compact base manifold by using Theorem instead of [NW09, Theorem 4.24].
However our proof is shorter because Theorem holds for section groups and
not just for gauge groups, while [NW09|, Theorem 4.24] holds only for gauge groups.
Hence, unlike the approach in [JW13], we do not have to reduce the statement to
the case of gauge groups. We mention that in this section we assume the typical
fibre G of the Lie group bundle to be connected, while in [JW13] Janssens and
Wockel assume (@) to be finitely generated

Convention 4.54. In this section G is a connected semisimple finite-dimensional
Lie group. As in the rest of Chapter M still is a connected, non-compact,
o-compact finite-dimensional manifold.

Analogously to [JW13| p. 130] we consider the following setting}

Definition 4.55 (Cf. p. 130 in [JW13]). Let G be a connected finite-dimensional
semisimple Lie group with Lie algebra g and G < G % M be a Lie group bundle.
Asin [HN12, 11.3.1, p. 452], we turn Aut(G) into a finite-dimensional Lie group.
In particular Aut(G) becomes a Lie group such that L: Aut(G) — Aut(g) is an
isomorphism onto a closed subgroup ([HN12, Lemma 11.3.3]) and Aut(G) acts
smoothly on G.

Lemma 4.56. The Lie group bundle G < G 5 M is isomorphic to the associated
Lie group bundle of the frame principal bundle Aut(G) — Fr(G) — M (cf. [JW135,
p. 130]). Obviously all manifolds are o-compact, because M is o-compact and
Aut(QG) is homeomorphic to a closed subgroup of Aut(g).

Definition 4.57. We define V' = V(g). In the situation considered in this subsec-
tion the map py: Aut(G) x V — V| (@, kg(v,w)) — kg(L(p)(v), L(p)(w)) is the
smooth automorphic action py described in Convention [4.1]

Lemma 4.58 (Cf. p. 130 in [JW13]). The identity component of Aut(G) acts
trivially on V' by the representation py: Aut(G) x V. — V, (¢, kg(v,w)) —

rg(L(9)(v), L(#)(w)).

Proof. Obviously it is enough to show that (Aut(g))o acts trivially by p: Aut(g) x

Vo=V, (¢, k(. y)) = klp(x),0(y)). For p: Aut(g) — GL(V), ¢ — p(e,.),
z,y € g and f € der(g) we have L(p)(f)(rg(z,y)) = diap(s, kg(x,y))(f). Defining
ev,: Aut(g) — g, ¢ — p(z) for x € g we get

ple, "ig(xvy)) = Kg© (eva, evy).

14Tn [JW13] the Lie group G is not assumed to be connected. Instead Janssens and Wockel
assume mo(G) to be finitely generated.
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We have dig ev,(f) = Z|i—oexp(tf)(z) = f(z). Hence

iap(e, g, ) (f) = Figleve(id), diaevy (1)) + rgdha eva(£). v, (id))
=rg(, f(y)) + ke(f(2), ).

Because g is semisimple, we have der(g) = inn(g). For z € g, we calculate

L(,b)(adz)(/ig(x,y)) - lig(l‘, [yv Z]) + Iig([ZL‘, Z],y) = Iig(fb, [y’ Z]) + Rg($, [27 y]) = 0.
Hence, p|aut(g), = idv. O
Analogously to [JW13, p. 130], we need the following condition:

Convention 4.59. In the following, we assume Aut(G) := Aut(G)/ker(py) to be
finite.

Definition 4.60. Combining Convention 4.59] Lemma and Theorem [£.53]
we find a Lie group extension

QL(M,V)/T T (M, G)y — T'o(M,G),

that corresponds to the central Lie algebra extension that is represented by wy,
(with I := per,, (m2(I'(M;G)o))). We write Z := ﬁi(M, V)/T. Ifm: To(M,G)o —

—_——

['.(M,G)y is the universal covering homomorphism and Z < H — I'.(M,G), the
pullback extension then [Nee02a, Remark 7.14.] shows that we have a central
extension of Lie groups

E =7 x 7T1<FC(M,Q>0> — H — FC(M, g)o
Its corresponding Lie algebra extension is represented by wy,.

The following theorem (case of a non-compact base-manifold and connected typ-
ical fibre) corresponds to [JW13| Theorem 1.2.] (case of a compact base-manifold
and mo(Q) is finitely generated). The proof is analogous as well.

Theorem 4.61. (a) If W is a locally convex space such that wyy is universal for
W then central Lie group extension Z x m('e(M,G)o) — H — T'o(M,G)g is
universal for all abelian Lie groups modelled over W .

(b) The central Lie group extension Z x m(L'e(M,G)o) — H — To(M,G)g is
universal for all abelian Lie groups modelled over complete locally convex
spaces.

Proof. (a) The statement [Nee02b, Theorem 4.13] and the analogous statement
[JW13| Theorem 3.1] are formulated for sequentially complete, respectively
Mackey complete, spaces W. However, the completeness is only assumed to
guarantee the existence of the period map per, and the existence of period
maps of the form per, ., for continuous linear maps v: 3 — a. Obviously, the

period maps per.,, exist if the period map per,, exists. Hence, with Remark
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4.14] we do not need to assume the completeness of the spaces. Therefore, it
is left to show that H is simply connected. Using [Nee02a, Remark 5.12], we
have the long exact homotopy sequence

mo(Le(M, G)o) 2 mi(Z x m(Le(M,G)o)) > mi(H) L mi(To(M, G)o)
2 10(Z x 1 (Te(M, G)o)).-
We show that ¢ = 0. Calculating
T1(Z x m(De(M, G))) = m(Q(M, V)/IL,,,) = IL,,

and using [Nee02al, Proposition 5.11], we conclude that s is surjective. Hence
1 = 0. From

mo(Z x m(Le(M,G)o)) = m(Te(M, G)o),

we see that 0, is injective. Therefore p = 0. Thus m(H) = 0.
(b) This is clear, because wy, is universal for all complete locally convex spaces.
O
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A. Basic definitions and results for
manifolds with corners

In this section we fix some notation and recall well known basic definitions and
results about manifolds with corners for the convenience of the reader[l] All of the
concepts and results in this section are already well known see e.g. [MO92].

Definition A.1. We define R := [0, 00['xR™!. Given J < {1,...,1} we define
pr;: R™ — R#/ v — (v;);e7. Moreover we write X := pr;(X) for X € R™ and
vy = pry(v) for v e R™.

Definition A.2. We say a point x € R}" has index k < [, if exactly k of the first
[ components of z equal 0. This means that the maximal index-set J < {1,...,1}
such that pr;(x) = 0 has the cardinality #.J = k.

Lemma A.3. Let M be a manifold with corners, p € M and ¢: U, — V, = R}
and 1p: Uy — Vi € RY charts around p. Suppose ¢(p) has index k, then ¥(p) has
index k.

Proof. Without loss of generality we assume Uy, < U,,. Let [ be the index of ¥ (p).
First we show k < [. Suppose | < k. Let J < {1,...,4;} be the maximal index-set
with (¢(p)); = 0 and analogously I < {1,...,iy} be the set of components of
¥(p) that equal 0. We define the m — [-dimensional subspace E := pr;*({0}) =
Nic; {z € R™ : z; = 0} of R™. We find an open t(p)-neighbourhood V' < E with
V € V. The map n := oty t|y: V — V, is an immersion, because o~ ton =
idy. Therefore F' := dn(y(p),.)(F) is an m — [-dimensional subspace of R™. The
subspace F' must contain a vector such that one of its J components is not equal
to 0, because otherwise F' would be contained in the m — k-dimensional subspace
pr;*({0}) and this would contradict m — [ > m — k. Let j € J such that v; # 0.
Without loss of generality we can assume v; < 0. We choose a smooth curve
7] = e e[= E with 4(0) = ¢(p), im(y) = V and dn(¢(p),7'(0)) = v. Let
f=noy:]—¢€e[— V, Thenim(f) €V, € R and so im(pr;of) < [0, 0],
because j < 4;. But pr;of(0) = pr;(¢(p)) = 0 and (pr;of)(0) = v; < 0. Hence
we find ¢ €]0, e[ with pr;of(t) < 0. Hence k <. In the analogous way one shows
[ < k. Hence k = [. O

Definition A.4. Let M be a manifold with corners. We say a point p € M has
index j € {0,...,m} if we find a chart ¢: U, — V,, < R around p such that
©(p) has index j. Because of Lemma this definition is independent of the
choice of the chart . We write ind(p) := j and define the j-stratum 0'M :=
{r e M :ind(x) = j}. We call the 0-stratum 0°M the interior of M.

!This chapter consist of material published before in the author’s preprint [Eyn15].
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A Basic definitions and results for manifolds with corners

Lemma A.5. Given an m-dimensional manifold with corners M and j € {0, ..., m}
the j-stratum 07 is a m — j-dimensional submanifold without boundary of M. Ob-

.....

Proof. To be a submanifold, is a local property and locally ¢? M looks like ¢/R}"
for a k > j. ]
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B. Proof of Theorem [1.12

As mentioned in Section [1.1] we can use our Lemma to prove Theorem [1.12|[[]
The proof is completely analogous to [BW59, Proposition 1].

Proof. First we show the uniqueness result. Using Lemma we find a neigh-
bourhood U of M in M1 and a real analytic map f U — M2 with f|M = idy,.
For the same reason we find a neighbourhood V' of M in M, and a real analytic
map §: V — M; with Gly = idy. With Lemma we find a neighbourhood Uy
of M in M;, and a neighbourhood U, of M in M, such that f(Ul) U, and f|U
is a real analytic diffeomorphism.

Now we construct the enveloping manifold. For z € M let o,: Ul — V! <
[0, 0[™ be a chart of M around z. Because M is normal we find relatively compact

z-neighbourhoods U2 and U? in M such that
MU' 2U22U?2U3 22U

Here, the closures are taken in the space M and hence coincide with the closures
in the topological subspaces. The family (U32),cys is an open cover of the compact
manifold M, whence we find a finite subcover (U2 )ie;. We define U} := U],
V= Vo, e =, U = U2, VP o= @ui(UF), U = U3 and VP = ¢i(U}).
Hence we get
VIoVEZo V2o V3o Vo
Here, the sets V_f and W are compact and hence the closure in the topological
subspace coincides with the closure in [0, 0[™ respectively R™. Moreover we de-
Lo o (TTY A TTYY U2 o oh (172 A TT2 3 e A (]T3 ~ TT3

fine the sets Vi, := (U} nU;), Vi = @i(U7 0 U7) and V3 = ceZ(UZ» n U?).
Given i,j € I we use Lemma to find an open neighbourhood V;; of V;!; in
R™ with f/zlj N [0, 0["= V5 and a real analytic diffeomorphism ) ;: V1 V1

2,7 J5?

' . .y V2 -2 2
with ¢i,j|‘/ﬁj“[0:°0[m = 9jo¥; ‘Vﬁj with inverse 1;;. Because V7, € V;? and V? is

relatively compact, WQJ is compact and hence the closure in V;? coincides with the

closure in [0, co[™ respectively R™. Using Lemma we find an open neighbour-
hood V2 of V% in R™ with V” c VL, V3 n[0,00[m= V2 and V2 N [0, o[ "= W

We can assume 1; ;(V;%) = V2, because ¢; ; (V%) = V. The set V3m (V?’rﬂ/2 )

/A
is compact and Contamed in V2 Hence we find an open nelghbourhood Zm

of V3 N Yy, (V3 A V2) in R™ with ZZ] - ‘72] and wlj(Z,j) = Zj,i- Because

2

bia(V5 A Vj?l.) VP < Ziy we get (V;,(VP 0 VENZi;) 0 (VA\Zi;) = &. The

!This chapter consist of material published before in the author’s preprint [Eyn15].
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B Proof of Theorem (1.12

sets wjyi(V_j?’ N Vfl)\Z” and V3\Z;,; are closed, whence we find open disjoint
sets XZ-J and Y/,J with ijﬂ-(V_j?’ N @)\ZH c Xi,j and V_f’\zj c 17” Thus
@/JH(V_J?’ M ﬁ) - Z” U X” and V_f c Z” U }7” Because I is finite the set

}N/i,j v Z” is open. Obviously it contains V_l3 Using Lemma |1.11{ we find

ﬂje],@;é@
an open set V3 in R™ with V3 [0, 00["= V3, V3A[0,00["=VZand V? S Y; ;U Z;
for all j € I with Vi, # &. Now we calculate

Ui (V2 A V2) o [0,00[™= (VP n V2) A [0, 00[= i (VA VE [0, 0[™)

St (V0 VE 0 [0,00[™) = 3, (VF 0 V).

Given z € V? we find an open z-neighbourhood V2, with € V2 implies V2 < V2.

1,2

P . . . ~ YR .
This is possible because I is finite and so mjel,xevfj V7 is open. Now we shrink

V2, such that = € v;,(V? n VZ) < Z;; U X;; implies V2, < Z;; U X, ;; again this

4,7

is possible because [ is finite. Suppose ¢; ' () U_f, then
2 ¢ (U3 nUP) = @i(U3 nUZ) 2 il (VP A VE)) = (VP 0 VE) 205V A V2.
Hence we can shrink V2 such that ¢; ' (z) ¢ U_J3 implies V2, n1;,(V? n V2) = &.
We calculate
V4 0 Vi =l U 0 U 0 U;) = wily; (05(UF 0 UF) 0 (U7 2 UR))).-

Let S < R™ be open with Vi n V3 = S 1 [0,00[™. Given z € V7 n V73 we get
x € P;(VE 0 V7). Analogously we get x € (V7 n V%), Therefore we can
shrink V;2, such that z € V% n Vi3 implies V2, < ¢:(V7 0 V) 0 (Vi3 0 V).
Moreover by replacing V2, with V2, n S we can assume V2, n [0, 00[= V% n V7.
Because = € S we get z € V%, Now we shrink V;°, further by replacing V;, with
the connected component of z in fo The maps wmh@% and vy ; o wi,k‘f/fz are

real analytic and coincide on V2, n [0,00[™S V% n V4 hence they coincide on

the connected set V2. Now we define the open set V2 := Usev2 V%, that is a
neighbourhood of V2 in R™ and so V2 is also a neighbourhood of V3. Hence we
find an open neighbourhood V2 of V3 with V3 < V2 A V3 and ‘7_13 < V2. We get
V3 A [0,00["= V2R VEA[0,0["= V2 V32 = V?and so V3 < f/_f’ N [0, oo[™.

We also get ‘7_13 N [0, 0["< ‘7_22 N f/_j” A [0, 00[m= V2 A V3 = V3. Defining 1713] 1=
V3 wﬂ(f/f N f/fl) for i, € I we get ww(f/fj) = ‘7]31
Now we define the sets V%, =V, N V3, and want to show qﬁw(f/f’lk) = V3,
and ¢i’j|‘~/’3'k = 1y © @Z)Zk|‘~/3k If y e V72, we find x € V7 with y € V.. Hence
€ ‘229;“7/1_91(‘7]3[“ ‘%?i)ﬁwlf,i(vk?i“ Vk?z) = ‘;;,Qxﬁi/fj,z’(ng m_‘;;‘?i)m~wk,i(‘7k3m}~/k2,i>'~81nce
i (@) ¢ UP = V3,0 (VPn V) = @ and o7 (2) ¢ Uf = V2 (VPN V) =
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& we get ¢; '(z) € UP. Hence z € o;(U? nU?) n@i(UF nUZ) = V4 n V3.
Therefore w"’j|‘7{f’z = . O wi,k\f/fz and V2, < 1 (VE 0 V3 0 ea(ViZ 0 Vi),
Especially y € ¥ia(VE A ‘7]-?,6)9 wkz(f/,jzl N ‘7,3%) and i (y) = ¥k 0 Pik(y). Hence
Vir(y) € Vi2;. Because y € V7% = V7% n V3, we get vin(y) € VP n V2, Thus
Vi (Vin(y)) € Yas(VE 0 Vi2)). O~n the othe~r hanii ¢i,j(y)~e V7, because y € V2.
Hence 95;(y) = ¥r;(ir(y)) € VP o (VP V,f]) V.. Moreover we have
Vi.;(y) € V3, because y € V3. Therefore v; j(y) € Vﬂk We get ;4 ( ”k) c V3 .

7,0 Js

and because ¢; | = 1;; we see that ¢;;(V3 ) =V 3
Now we define the topological space M! : = [],.; Vi as the disjoint topological

union and on M we define a relation ~: Let z,y € M?, say z € V® and y € V}.
We call x equivalent to y if = € V], y € V]3Z and y = ¢;;(z). To show that~~
is an_equivalence relation on M we have to show its transitivity. Let z € V3,
y € V> and z € V;>. Moreover let z € V2, y € V e U € sz, T € VZ?’J, = Vix(y)
and y = 1, ;(x). Directly we get y € sz N VJ = V Hence z = 1;,(y) €
$ia(V3 ) € Vi3 and 2 = 1u(y) € V2., because y € V;Zk = V3., Moreover

J
we have ;. (v ) = Yjr(¥ij(z)) = 2 and so x and z are equivalent. Now we

define M := M'/ ~ as the topological quotient. Let 7: M' — M, &+ [z] be the
canonical quotient map. Given j € I let ¢;: V3 — M, z— (z, j) be the canonical
inclusion. The topology on M is final with respect to the maps mo¢;: V3 — M
with ¢ € I. We show that the maps 7 o ¢;: V-3 — M are open. To this end let
Uc st be open and j € I. We calculate

G (w (U))) = 0 ({(y ke M': QeeUc V) y~ x}) (B.1)
= {y € f/j?’ (BzeUc Vi) y~ CL‘} = (U) = f/f’z (B.2)

Hence 7 o ¢;: f/f’ — M is continuous and open. Now we define the maps
vi: m(V3) - V3 pw— zif m(x) = p and x € V2. The map 1); is well-defined
because 9;; = idps. Moreover 1; is bijective because its inverse is given by

o' = mou: VB > w(VP), o — w(z). Hence ¢y is a homeomorphlsm To

show that the maps 1; form a real analytic atlas for M we mention ;" (V3) = f/J

and calculate for z € ‘7;)]
by o (@) = ¥y(m(2)) = ¥(x).

Now we show that M is a Hausdorff space. To this end, we show Vf’j c ‘72

ij
Given y € V3 < V2 we find x € V? with y € fo We want to show = € 9;,;(V*
Yfz) If this was not true, then ¢; Y(z) ¢ Uf’; With ¢~ Y(z) ¢ [~]3 = V2 N wﬂ(V3
2) = ¢ we get y ¢ @Dji(V?) ) V2) @D“(VS ) V2) @Z)ﬂ( ) ‘/;3] But since
this is a contradiction we get x € ¢, l(V3 N V2) With z € ¢; z(V?’ NVZ%) = V2 <

zx—

7 uX” we get y € Z uX” Moreover we have y € V3 c V3 c Y uZ and with

Y., mX” —@WegetyeZ Hence V3, CZjandtherefore V3 CZ] < V2.

Zj - 7] - Z
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B Proof of Theorem (1.12

Now let p # ¢ € M. We choose z,y € M' with 7(z) = p and 7r(y)~= q. Let
x € V3 and y € V3 If there are an open z-neighbourhood W, < V3 and an

open y- nelghbourhood W, V3 with 7(W,) n 7(W,) = & then M has to be
Hausdorff, because of . Suppose there do not exist such neighbourhoods W,
and W,. Then we find a sequence (x,),en in V3 and a sequence (yn)neN in V3 with

Tn ~ yp for all n € N. Hence z,, € V3» and y, € V3 and so x € ‘/;3] c V2 and

Vf’l < V7. Since yn, = ¢ (x,) for all n € N we get y = ¢;;(x). Therefore
Y € V3 N @Z)”(Vg N V2) = Vf’l With « = v,,(y) we get = € V;?’] We conclude
x ~ y. But this contradlcts p#q.

We define the map p: M — M by ¢| s = mo;0¢;. To see that ¢ is well-defined
choose p € U n UE. We get ¢;(p) € V¥ and ¢;(p) € V moreover we have ¢;(p) €
pi(UPnUY) = Vi € Vi ¢i(p) € (U nUY) = Vi, = V3 and 95 ;(@i(p)) = #;(p).
Hence ¢;(p) ~ ¢;(p), and so ¢ is well-defined. Now we ‘show that © is injective.
Let p1,pp € M with ¢(p1) = ¢(p2) and p; € U? and p, € U;’. We conclude
@i(p1) ~ @j(p2) and so i(p1) € V% 0 [0,0[™, @;(p2) € V' and i ;(pi(p1)) =
©;(p2). Hence ¢;(p1) = ¢;(p2) and so p; = pa. We give p(M) the real analytic
structure such that ¢ becomes an real analytic diffeomorphism. If we can show
that M is an enveloping manifold of go(M ) we are done because we can identify M
and gp(:/\/[) We have o(M) = ([ [,c; Vi) with [T, Vi < [1,; Vi, If 2 € V}? then
Y;: (V) — V3 is a chart of M around 7(x). We ShOW wz(w(l/g?’) Nnp(M))) = V3.
Let p = 7w(x )Wlthxe\/f’ and p = w(y) with y € V. Then  ~ y and so z € V}?
because & = 1;;(y) € V;:(V2) = @i 0 p;(V2) = Vi°. Now let z € V3 Obviously
z = ;(r(x)) and 7(z) € (V) n @(M). It is left to show that @DZ (M) is a
chart of p(M). To thi~s end we show that ¥;op| (x (V) (a1 15 @ Ch~art of M. First,
we show that ¢ (m(V3) np(M)) = UE. Let pe M with ¢(p) € m(V3)np(M). We
find j e I with p e U?. Moreover we find i € I and x € V;? with ¢(p) ~ z. Hence
¢j(p) ~ . Therefore ¥;;(p;(p)) = = and so p;(p) = x. We conclude p € U}.
Now let p € U?. Then o(p) = 7(p;(p)) € n(V?), because o '(p) € V3. Now
we Show 95 0 Q| -1(n(vs)npary) = $i- Let p € o (m(V) n (M) = UP. Then

Yiop(p) = Yi(m(wi(p))) = wi(p)- O
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C. Details for the proof of Theorem
.40

In this chapter we state the rest of the proof of Theorem . This part of the
proof is stated in the appendix and not in Chapter 3| because its arguments are
completely analogous to the proof of |Gunll, Theorem 5.1.10] and we just recall
them for the convenience of the reader.

Proof. We use the notation from the proof of Theorem [3.40, First, we show that
w is bilinear. For f,g e A® g, r € R and y € g we can choose a neutral triple
(A, v, u) that is neutral for f and for g. Especially this triple is also neutral
for rf + ¢g. Because we now get wo(rf + ¢, A\rfig ®Y) = wo(rf + g, A ®y) =
Two(f, A ®Y) + wo(g, A®y) = Two(f, A\f ®y) + wo(g, \y ® y), one can easily prove
that w is bilinear (see also Lemma . Obviously w is anti-symmetric. To show
that w e Z2(A®gx g, V) we choose f,g,h € A®g and x,vy, z € g. First we mention
the trivialities dw(f, g, h) = dwo(f,g,h) = 0 and dw(z,y,z) = 0. We can choose
a triple (A, v, i) that is neutral for f and g, and we can write f =" | f; ® v; as
well as g = 3.7 | g ® v;. We calculate

)\[fag] :Z)‘figj@)[vi?vj] = [)\fvg] = [f7g]

and see that (A, v, 1) is a neutral triple for [f, g]. Now we calculate

dw(f,g,y) = w([f,9l,y) +w(lg,yl, f) +w(ly, fl.9)
=wo(Lf; 9], A®y) + wo(lg, y], ) +wolly, f1, 9)
=wo([f, 9], A®y) + wol[g, A® Y], f) + wo([A®y, fl,9) = dwo(f,9,A®y) = 0.

To check that w is a cocycle we calculate

dw((f, ), (9,y)(h,2)) = dw(f,g,h) + dw(f,g,2) + dw(f,y,h) + dw(f,y,z)
+dw(x,g,h) + dw(zx,g,2) + dw(z,y, h) + dw(z,y, z) = 0.

It remains to show the injectivity of the map HZ2(7). Let w € Z3(A® g x g, V)
with wo (i,4) =nol..| forne LIA®g, V). We define the continuous linear map
n:ARgxg—V, (f,v) —» n(f). We define the cocycle w' := w —1n'o[.,+] on
A®gxg. If we can show [w'] = 0in H3(A®g, V) we are done. First of all we have
W'(f,9) =w(f.g) —n olf.gl =wo (i,9)(f.g) —n([f,g]) =0forall flge A®g.

!This chapter consist of material published before in the author’s preprint [Eynl4c].
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C Details for the proof of Theorem |3.40

For f,ge A® g and y € g we calculate
0=—du'(f,9:9) = ([f 9] 9) + '[9, 9], ) + ([, [, 9) = ([ 9. 9)-

1
=0 =0

Because A ® g is perfect, we get that w’ equals 0 on A ® g x g in terms of the
natural identifications. For f1, fo € A® g and vy, 2 € g we have

' ((fr,0); (F2:92)) = &' (1, f2) + &' (0, f2) + W (1, 42) +6' (1, 92).
-0 =0 -0

Because g is a subalgebra of A® g x g we get w|yxy € Z24(g, V) and because g is
semisimple, we get with the Whitehead theorem for locally convex spaces, stated
in [Gunl11, Corollary A.2.9], that H%(g,V) = {0}. Therefore, we find " € L(g, V)
with w|gxg = 7" © [+, +]. Finally we see w’ = 7" o[.,s] with n”: A®gxg -V,
(f,0) > 1(0) .
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D. Some differential topology

In this chapter we present some topological considerations.E]

Lemma D.1. We use the notation introduced at the beginning of Chapter |/. 1.
Let H — P % M be a finite-dimensional smooth principal bundle (with o-compact
total space P), p: H xV — V be a finite-dimensional smooth linear representation
and V := P x,V be the associated vector bundle.

(a) The canonical isomorphism of wvector spaces (see e.g.  [Baulj, Satz
3.5)) @: Q*(P,V)r — QFMYV), w — O (with Oy(v1,...,0) =
Woz)(To(v1),...,To(vy)) for a local section (o: U — P of P % M and
x € U) is in fact an isomorphism of topological vector spaces.

(b) The isomorphism of vector spaces ®: QF(P, V)" — QF (M, V), w — & is an
isomorphism of topological vector spaces.

Proof. (a) We choose an atlas ¢;: ¢ '(U;) — U x H of trivialisations of

P with ¢ € I. Let o; := ;'(.,15) be the canonical section corre-

sponding to 9. As QF(P, V)b and QF(M,V) are Fréchet spaces it is
enough to show the continuity of ® (Open mapping theorem). The topol-
ogy on QF(M,V) = T(AILF(TM,V)) is initial with respect to the maps
T(AIt*(TM,V)) — T(A*(TU;, Vi), n — nly,. Given w € QF(P,V)ker,
z € U; and v € T,U;, we have (©|y,).(v) = [oi(x),0fw.(v)]. Because
T(AF(TU;, V|y,)) = T(AIY(TU;, V) = Q¥(U;, V) it is enough to show the
continuity of Q*(P, V)h" — Q¥(U;, V), w — ofw. Themap C*((TP)*, V) —
CP(TU)*, V), f > foTo; x ... x To; is continuous (see |[GN|). Now, the
assertion follows because we can embed QF(P,V)h" into C*((T'P)*, V).

(b) The analogous map from QF(P, V)i to QF(M,V) is continuous. Hence,
given a compact set K < M, we get that the corresponding map from
Qi (P, V)b to Qf(M,V) is continuous. Therefore ® is continuous. The
same argument shows that the inverse of ® is continuous.

]

The basic considerations in the following lemma seem to be part of the folklore.

Lemma D.2. Given the situation of Definition [].3 the following holds:
(a) The vertical bundle of H < P % M is given by VP = Tr(VP)) and
HP := Tr(HP) is a principal connection on P.
(b) Given k € Ny the pullback ©*: Q*(P, V)%gr — QNP V) § — w0 s an
isomorphism of topological vector spaces and an isomorphism of chain com-

plezes.

!This chapter consist of material published before in the author’s preprint [Eynl4b).

127



D Some differential topology

(¢c) Given k € Ny the pullback *: QF(P, V)%Or — QF(P,V)bor 0 s %0 s an

PV
isomorphism of topological vector spaces and an isomorphism of chain com-

plexes.

Proof. (a) First we show Tnw(V P) < ker(7q). For v e VP we get Tq(Tn(v)) =

Tgon(v) = Tq(v) = 0. To see ker(Tq) < Tn(VP) let Tg(w) = 0. We find
v e TP with T'n(v) = w. Hence Tq(Tn(v)) = Tqom(v) = Tq(v) = 0. Thus
ve VP and so w € Tn(VP). Now, we show that Tm(H P) is a smooth sub
vector bundle of TP. Let T € P. Obviously (T'n(HP))z := TeP nTr(HP) is
closed under scalar multiplication. Let v, w € (T'n(HP))z = T,P nTn(HP).
We find py,p, € P, v; € H, P and wy, € Hp,P with T, m(v;) = v and
Tp,m(wy) = w. Hence m(p1) = T = m(p2). Therefore we find n € N with
p1 = po-n and w e T, P with TR, (1) = we. Now, we calculate

v+ w =Ty m(v) + sz”(w2) =Ty, m(v1) + Tp,m 0 Tpy R (0)
:TZHW(UI) + Tp17r © TRn(w> ( ) + Tpl ( ) - Tplﬂ-(vl + IZJ)

Next we show that HP is a smooth sub vector bundle. Let p € P. Because
7 is a submersion, we find a smooth local section 7V — P of 7 on an open
p-neighbourhood V- < P. We define p := 7(p) and find a smooth local
frame o1, ...,0m: U — TP of the smooth sub vector bundle HP on a p-
neighbourhood U < P. Without loss of generality we can assume 7(V) < U.
Given i € {1,...,m} we define the smooth map

7;: V- TP, T Tn(o; o 7(T)).

The map o; is a section for the tangential bundle TP because for T € V we
have o; o 7(%) € Ty P and thus 7,(T) € Tr(r@) P = TxP. Let T € V. Now,
we show that ( z($))z_1 ,,,,, m 1s a basis of (T'n(HP))z = TP nTw(HP). Let
i € Rwith 3%, A\ - 7(Z) = 0. We conclude Tr@m (X2, A - 05(7(Z))) = 0.

Hence
Tq (2)\ oi(r ) Tq (T?T (ZA oi(T (x)))) — 0.

Therefore >}* | \; - 04(7(T)) € Vo P and thus A; = 0 for i = 1,...,m. Let
p € P with m(p) = Z. One easily sees that the linear map (7, W)]pr. H,P —
(T'm(HP)), is a surjection (see above). Because m = dim(H,P) the linearly
independent system ;(7);=1, . is a basis of (I'r(H P))z. Now, we show that
HP := Tr(HP) is a principal connection on P. Because 7 is a submersion
and T,P = H,P ® V,,P we get VzP + HyP = TP for T € P. If Tm(v) =
Tplw(w) with v e V,P, we HyP and w(p) = w(p') =: p we get
Tggom(v) = Tpg o m(w).

Hence 0

= Tq(w l Thus w € V,P. Therefore w = 0 and so
Tym(v) = Ty

Tq(v)
(w) = 0 in T,P. We conclude VP @® HP = TP. It is left to

)

oll
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show that HP is invariant under the action of H. Obviously it is enough
to show TR, (HzP) S Hzp P for T € P and [g] € H. Let v e HzP. We
find p e P and w € H,P with v = T,m(w). With Rjgjom = 7o R, and
7(pg) = T.[g] we calculate

T}_%[g](v) = Tp(}_%[g] om)(w) = Tpym o T, Ry(w) € Tpgm(Hpy P)
gTj[g]p N TW(HP) = Hf[g]ﬁ.

First we show that 7* makes sense. Without loss of generality we assume
k=1. Let 0 € Q'(P, V)hor We have 7 o Ry = Ry, o 7. Hence

pv(g) o Rym*0 = By ([g]) o (m 0 Ry)*0 =y ([g]) o (Ryg) o )"0

Moreover if v € V,P we get T, (v) € Vi) P and so 7%0,(v) = O, (Tpm(v)) =
0. We show that 7* is bijective It 1s clear that 7* is injective because m
is a submersion. To see that 7* is surjective let n € Q(P, V)hor We define
0 e Q'(P, V)Rt by Oy (Tpm(v)) = ny(v) for p € P and v € T,P. To
see that this is well-defined, we choose p,r € P, v € T,P and w € T, P
with 7(p) = n(r) and Tyn(v) = T,m(w). We find n € N with p =
Because 1,.,(T, R, (w)) = n,(w) (N = ker(py)), it is enough to show n,(v) =
np(TrRyp(w)). We have mo R, = Rppjom = 7. Hence Tm o TR,, = T'w. Thus
Tyn(T. R, (w)) = T,m(w) = T,m(v). Therefore we find = € ker(7,m) with
TR, (w) + z = v in T,P. Hence Tyq(x) = 0 because T'¢ = T'qo T'n. So
x € V,P and hence n,(z) = 0. The form 6 is py-invariant because for g € H,
pe P and veT,P we get

(pv(lg]) o R[g]e)ﬂ' ) (Lpm(v)) = Dy ([9]) © Oz p).[g] (Tﬁ[g] (Tpm(v)))
pv(9) © Or(p.g)(1p.gm (T Ry(v)))
pv(g) 0 mpg(TRy(v)) = 97T(Z')<T7T(U))-

Moreover, 6 is horizontal because given u € V;;F with p € P, we find p € P
with 7(p) = p and v € V,P with v = T,w(v). Hence 05(u) = O (T7(v)) =
n,(v) = 0. Obviously we have 7*¢ = n. In order to show that 7* is an iso-
morphism of chain complexes we choose p € P and v,w € T, P and calculate

(7% D, 0)p (v, w) = (D, 0)x(p) (T (v), T (w))
=(d0) () (pry, oT'7(v), pry, O T (w)) = (dO) () (T © pry,(v), T © pry,(w))
(7*df)p(pry,(v), pry(w)) = (Dpy, " 9)p(v,w)-

It is left to show that 7* is a homeomorphism. Because the corresponding
spaces are Fréchet-spaces it is enough to show the continuity of 7*. We can

embed QF(P, V)%gr into C* (Tﬁk, V) and Q*(P, V)hor into C*(TP*,V). The
map COO(TFk,V) — C®°(TP:V), f+ fo(Tr x --- x Tr) is continuous
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(see |GN]). Now the assertion follows. B
(c) This follows from (b) and the fact that 7*(Q%. (P, V)%gr) = Q (P, V)her for
a compact set K < M.
[

The statement in the following lemma seems to be also well-known, but since we
do not have a reference for this exact result, we give a proof in the following. For
this we use techniques from the proof of [Ros97, Theorem 1.5]. See also [BT82,
Chapter 6].

Lemma D.3. If q: M — M is a smooth finite manifold covering then
¢ QUM V) — QNUM,V), 0 — ¢*0 induces a well-defined isomorphism of
topological vector spaces Hjp (M,V) — H;Rﬁ(M, V), [0] — [q*0]. Therefore
q*: H(%R’C(M, V) — H;R#(F, V), 0 — @*0 is an isomorphism of topological vector
spaces.

Proof. As in Chapter we use the mnotation Q’;((M, V)y = {0 €
QF(M,V)|supp(f) < ¢ '(K)} for a compact subset K < M. Let n be the
order of the covering. The first step is to define a continuous linear map
Ge: QF(M,V) — QF(M, V) for k € Ny. Without loss of generality let k —
Let 6 € QL(M,V). Given y € M we find a y-neighbourhood V, < M that is
evenly covered by open sets U, ; M with i = 1,...,n. We have diffeomorphisms
q = q]&’“ Then

gY .=

3I>—‘

Z 9|Uy,i

is a form on V, with (¢).0|v, H(qu/_l(v)) for x € V, and v € T,V,. We
define .0 := 6 € QL(M,V) by 6, := 0Y for = € V,. Now we show that this is a
well-defined map. Let z € V, nV}, for y' € M with a y'-neighbourhood V,, that is
evenly covered by (Uygi)i:l,,_jn. After renumbering the sets Uy ; we get

-1
=4q Uy

(3

—1
CI‘UW-
on Vy nVy fori=1,...,n. Hence

~y:
x

1 / ~
2@)sbl, )e = = > (@ )ublu,, ) = O for m €V, 0 V.

% %

SEES

We note that ¢ is a proper map because it is a finite covering. Let supp(f) <
q Y(K) for a compact set K = M. If y ¢ K then ¢~ '({y}) n ¢ *(K) = &J. Hence
7 '({y}) nsupp() = &, from which

2 ((@lo)+Blu,. )y Z%U;(y) =0

7

S|

4.0, = 0 =
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follows. Hence M\K < M\ {x € M : q.0, # 0}. Therefore {r € M : q.0, # 0} € K
and so supp(g«#) < K. Obviously ¢, is linear. Moreover, ¢, is continuous because
the analogous map from Q' (M, V) to Q' (M, V) is continuous and ¢, (QL (M, V)) <
QL(M,V). Moreover g, is a homomorphism of chain complexes: Given y € M,
v, w e T, M we calculate

(400), (0, ) = = S((a)odBl, )y (0 ) = = F(a)ebl, (0 )
=(dg0), (v, w).

Now we show

qs © q* = ldgé(MJ/) . (Dl)
Given 0 € QL(M,V), y € M and v € T,M we calculate

(40a°0)y(0) = = (a0l Do) = = 200l )1y (T (0)

7 (2

1 p—
n Z Oov—wn(Ta0 4 Hv)) = 0,(v).

Hence ¢ o ¢* = idg1(ar,vy. We know that ¢* factorises through a continuous linear
map ¢*: Hyp (M,V) — HL%R,C(M, V') and because g, is a homomorphism of chain
complexes we get a map ¢ : H(}R’C(M, V) — Hjp (M,V). With equation (D.1
we see

gs0q" = idHéR’C(M,V) :

Hence ¢, is surjective. It remains to show that q.: Hjg (M,V) — Hc}R,c(M7 V)
is also injective. To this end we show g,(BL(M,V)) = BYM,V). Given f €
C*(M,V) we calculate

4(dq* ) = q.q*df = df.

The proof of Lemma is similar to the proof of [Nee04, Lemma II1.10 (1)].

Lemma D.4. Let M be a connected finite-dimensional manifold, E be a finite-
dimensional vector space and 0 € QY(M, E). If

Jo= 1.7
ap aq

for all closed smooth curves ag, ay: [0,1] — M such that ag is homotopyic to oy
relative {0,1}, then 6 € Zn(M, E).
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Proof. Let q: M — M be the universal smooth covering of M. First we show that
q*0 is exact. To this end we show that ¢*@ is conservative. Let v: [0,1] — M
be a smooth closed curve in a point py € M and q(py) =: xo € M. Because M is
simply connected, we find a homotopy H from 7 to ¢,, relative {0,1}. Hence go~y

is homotopy to ¢, = q o ¢, relative {0, 1}. Therefore we get

J q*0 = J V¢ = f (QOV)*QZJ ol = 0.
y [0.1] [0.1] [0,1]

(%)

Equation () follows from the assumptions of the lemma. Because ¢*0 is exact we
find f e C*(M, E) with ¢*0 = df. Hence we get

q*df = dq*6 = ddf = 0.

Therefore df = 0 because ¢ is a submersion. ]
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