On the Chow Ring of the Stack of
truncated Barsotti-Tate Groups and of the
Classifying Space of some Chevalley
Groups

Dissertation
zur
Erlangung des Doktorgrades
der

Fakultit fiir Elektrotechnik, Informatik und Mathematik an der Universitit
Paderborn

vorgelegt von
Dennis Brokemper
Paderborn

2016



Abstract

Let p be a prime. We compute the Chow ring of the stack of truncated dis-
plays and investigate the pull-back morphism of the truncated display func-
tor. From this we can determine the Chow ring of the stack of truncated
Barsotti-Tate groups over a field of characteristic p up to p-torsion.
Moreover, we compute the Chow ring of the classifying space of some Cheval
ley groups G(IF,;), ¢ being a power of p, when considered as a finite algebraic
group over a field of characteristic p. Using specialization from characteris-
tic 0 to characteristic p we also obtain results over the complex numbers.

Sei p eine Primzahl. Wir bestimmen den Chowring des Stacks der abgeschnit-
tenen Displays. Weiter untersuchen wir die Pull-Back Abbildung des abgeschnit-
tenen Display Funktors. Dies liefert den Chow Ring des Stacks der abgeschnit-
tenen Barsotti-Tate Gruppen tiber einem Korper der Charakteristik p bis auf
p-Torsion.

Sei ¢ eine Potenz von p. Dann berechnen wir aulerdem den Chow Ring
des klassifizierenden Raumes einiger Chevalley Gruppen G(F,) aufgefasst
als endliche algebraische Gruppe iiber einem Korper der Charactersitik p.
Durch Spezialisierung von Charakteristik 0 zu Charakteristik p erhalten wir
auch Resultate iiber den komplexen Zahlen.
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Introduction

In [EG] Edidin and Graham develop an equivariant intersection theory for actions
of linear algebraic groups GG on algebraic spaces X. For such G-spaces they de-
fine G-equivariant Chow groups A (X) generalizing Totaros’ defintion of the G-
equivariant Chow ring of a point in [To]. These equivariant Chow groups have all
functorial properties of ordinary Chow groups. Moreover, they are an invariant of
the corresponding quotient stack [X/G], i.e. they are independent of the choice
of a presentation. Hence they can be used to define the integral Chow group of
the quotient stack [X/G]. Let us write C' H/(X) for the equivariant Chow group
of X graded by codimension. If X is smooth C'H}(X) carries a ring structure
which makes it into a commutative graded ring that is naturally isomorphic to the
operational Chow ring A*([X/G]) of [X/G]. In the special case X = Spec k one
obtains for [X/G] the classifying space BG of G.

Therefore equivariant intersection theory is useful for computing Chow groups of
quotient stacks. In [EG] Edidin and Graham used their theory to compute the Chow
ring of the stacks .#; 1 and M 1,1 of elliptic curves. In an Appendix to the same pa-
per Angelo Vistoli computed the Chow ring of .#5. In the later paper [EF] Edidin
and Fulghesu computed the integral Chow ring of the stack of hyperelliptic curves
of even genus. In [To] Totaro computed the Chow ring of the classifying space of
the classical groups and he treated the case of some finite abstract groups, includ-
ing the symmetric groups.

In this thesis we investigate the Chow ring of the stack of truncated Barsotti-Tate
groups and of the classifying space of some Chevalley groups. In both cases the
computation can be reduced to the situation of Proposition B below.

The Chow Ring of the Classifying Space of some Chevalley Groups. Let p
be a prime and ¢ be a power of p. In [Gu] Guillot computes the mod ! Chow ring
of the classifying space of GL,(IF,), when considered as a finite algebraic group
over the complex numbers, for odd primes [ different from p. If I, contains the
[°-th roots of unity for some integer b he also computes the mod [* Chow ring.
Using a different strategy we determine C' H* B(GL,,(F,)c) after inverting p or 2p
depending on whether ¢ = 1 mod 4 or not. We also obtain results for the groups
SLy,(Fy) and Spy,, (Fy).

To explain our strategy let us consider more generally the case of Chevalley groups,
i.e. the finite groups G(F,), where G is a connected split reductive group scheme
over Z. We then look at the specialization map

o: CH*BG(Fq)c = CH"BG(Fg)g, -

Proposition A. (i) The specialization map for the classical groups GLy(Fy),
SPom (Fq), On(Fy) and SO, (Fy) becomes injective after inverting 2p.
(i) If ¢ = 1 mod 4 the specialization map for GLy,(F), Spa,, (Fq) and Ozp,11(Fy)
becomes injective after inverting p.



(iii) If S denotes the product of p and all prime divisor of ¢ — 1 the specialization
map for SLy,(Fy) becomes injective after inverting S.

In the proof it suffices to see that the specialization map is injective for the

respective [-Sylow subgroups of G(IF;) by the usual transfer argument. These [-
Sylow subgroups are known to be products of iterated wreath products (Z/1)¥
(Z./1°) by work of Weir ([Wei]). The Chow ring of the classifying space of this
kind of iterated wreath products is computed over the complex numbers by Totaro
([To]), using the cycle map to Borel-Moore homology. In Section 2.3 we carry his
proof over to the case of positive characteristic by using etale homology instead
of Borel-Moore homology. It is an interesting question whether the specialization
map is always injective (an isomorphism) after inverting p for an arbitrary finite
abstract group; see Section 2.5.
As it turns out the computation of CH*BG (Fq)IF‘p is much simpler than the com-
putation of CH*BG(F,)c, because we have another presentation of the stack
BG(Fq)g,. Namely, it follows from a theorem of Lang-Steinberg that BG (Fq)g,
is canonical isomorphic to the quotient stack [G /G, ], where the action is given
by conjugation with the g-th power Frobenius (Corollary [2.1.7). This case is dealt
with in Chapter 3 and our result is the following.

Proposition B. Let G be a connected split reductive group over F, with split max-
imal torus T. We write S = Sym(f’) =A% and S = A%l. If o denotes the q-th
power Frobenius, we have a natural action of o on S, that we will also denote by
o.

Let P D T be a parabolic subgroup with Levi component L and consider the ac-
tion of L on G by o-conjugation. If Wg = W(G,T) and Wi, = W (L, T) denote
the respective Weyl groups we have

A}(G)g = Sy /(879).
If G and L are both special we have
AL(G) = ST /(f —af | | € STC).

We recall that an algebraic group G is called special, if every G-torsor is locally
trivial for the Zariski toplogy. Since GL,,, Sp,,,, and SL,, are special we obtain a
complete description of CH*BG (IF‘q)pr in these cases and in particular we see
that these Chow rings are generated by Chern classes of representations. Using
the theory of Brauer lifts we see that the specialization map for these groups is
surjective. We thus obtain the following result.

Theorem A. Let S be the product of p and the primes that divide ¢ — 1. Then the



following equations hold.

CH*B(GL,,(Fy)c)2p

= Z[(2p) Mler, -+ enl /(g = Den, (6 = Dea, o, (¢ = 1)en)
CH*B(szm(Fq)C)2p

= Z[(2p)71][02, Cay. .-, CQm]/((QZ —1)cg, (q4 —1)eay ...y (q2m — 1)cam),
CH*B(SLn(Fqg)c)s

= Z[S Y [c2, 3, ..., en]/((¢% — D)ea, (¢ — D)es,y ..., (¢ — Dep),

where c; denotes the i-th Chern class of the Brauer lift of the canonical represen-
tation of the respective groups.
If ¢ = 1 mod 4 it suffices to invert p in the first and second equation.

The Chow Ring of the Stack of truncated Barsotti-Tate Groups. Let us
fix a field k of characteristic p > 0. Although the stack BT” over k of truncated
Barsotti-Tate groups of constant height 4 has a natural presentation [Y;"/ GLj] as a
quotient stack with ;" being quasi-affine and smooth (cf. [We]), it seems unlikely
that this presentation can be used directly to compute the Chow ring due to the
complicated nature of Y,". Hence one either has to find a simpler presentation that
we do not know of, or relate the stack of truncated Barsotti-Tate groups to a stack
whose Chow ring is easier to compute, but still closely related to the Chow ring of
BT,.

Our choice for this stack is the stack Disp,, of truncated displays introduced in [La].
Displays were first introduced in [Zi] to provide a Dieudonne theory that is valid
not only over perfect fields but more generally over [F),-algebras or p-adic rings. In
Cartier theory a display over a p-adic ring R encodes the structure equations of a
Cartier module of a formal p-divisble group over R and is given by an invertible
matrix with entries in witt ring W (R), if a basis of the Cartier module is fixed.
Using crystalline Dieudonne theory one can associate to every p-divisible group
a display yielding a morphism ¢: BT — Disp from the stack of Barsotti-Tate
groups to the stack of displays. While displays are given by invertible matrices
over W (R), a truncated display is given by an invertible matrix over the truncated
Witt ring W,,(R), and the morphism ¢ induces a morphism ¢,,: BT, — Disp,,.
This morphism is a smooth morphism of smooth algebraic stacks over k£ and an
equivalence on geometric points. This is the main result in [La].

Theorem B. The pull-back ¢},: A*(Disp,,) — A*(BT,) is injective and an iso-
morphism after inverting p.

Let us sketch the proof. Consider a field L and a morphism Spec L — BT,,.
After base change to a finite field extension of p-power degree the fiber ¢, ! (Spec L)
is equal to the classifying space of an infinitesimal group scheme necessarily of p-
power degree. For an appropiate notion of higher Chow groups it follows that the
pull-back A, (Spec L,m) — A.(¢,,*(Spec L), m) becomes an isomorphism after



inverting p. Using the long localization exact sequence the theorem follows from
a limit argument and noetherian induction similar to that in [Qu2, Prop. 4.1]. The
injectivity assertion follows since A*(Disp,,) is p-torsion free.

Thus to compute the Chow ring of BT, at least up to p-torsion it suffices to
compute the Chow ring of Disp,,, which is a much simpler task due to the sim-
pler presentation as a quotient stack. More precisely, if Dispﬁ’d denotes the open
and closed substack in Disp,, of truncated displays with constant dimension d and
height i we have

Displ? = [GLy(Wa(+) /G4,

where G is an extension of GLg4 x GLj,_g by a unipotent group. Moreover, we
have the following theorem.

Theorem C. The pull-back 1;t: A*(Disp,) — A*(Disp,,) of the truncation map
Tn: Disp,, — Dispy is an isomorphism.

This follows easily from the factorization
(GLA(Wa()/Gi) = [GL /Gy = [GLa/ Gy

of 7,, and the fact that the first map is an affine bundle and that G is an extension
of G]f’d by a unipotent group. Hence it suffices to compute A*(Disp, ). In this case
G?’d is a split extension of GLy x GLj,_4 by a unipotent group and the induced
action of GLg x GLj,_4 on GLy is given by o-conjugation, where o denotes the
Frobenius. Using Proposition B we thus obtain the following result for the Chow
ring of Disp;.

Theorem D. The following equation holds
* . h,d *
A (Dispy™”) = AGLh,d X GLd(GLh)
= Z[t1, ... tp) =% ((p— Ve, ..., (p" — Dep),
where c1, . . ., ¢y, are the elementary symmetric polynomials in the variables t,, . . . | tp.

Moreover, t1, ... ,tq resp. tg+1, - - - , t, are the Chern roots of the vector bundle
Lie resp. ! LieV over Disp?’d of rank d resp. h — d. We refer to Deﬁnition in
the main text for the precise definition of Lie and ¢ Lie".

It follows that the Q-vectorspace A* (Disp?’d)(@ is finite dimensional of dimension
(Z) , which also equals the number of isomorphism classes of truncated displays of
level 1 with height ~ and dimension d over an algebraically closed field. We show
that a basis is given by the cycles of the closures of the respective EO-Strata. We
prove this fact in greater generality for the stack of GG-zips in Section 4.4. In this
section we will also compute the Chow ring of the stack of G-zips for a connected
Frobenius zip datum. As in the case of displays the computation can be reduced
to the situation of Proposition B. In fact, truncated displays of level 1 are a special
case of G-zips.

Now by the above results we gain the following information on the Chow ring of
the stack of truncated Barsotti-Tate groups.



Theorem E. (i) We have
A*(BTg’d)p = Z[p_l][tla cee 7th]SdXSh_d/((p - 1)617 SRR (ph - 1)Ch)7

where c; denotes the i-th elementary symmetric polynomial in the variables
t1,...,thand t1,... tq resp. tyi1,...,ty are the Chern roots of Lie resp.
tLieV.

(i) dimg A*(BT,’Z’d)Q = (Z) and a basis is given by the cyclces of the closures
of the EO-Strata.

(iii)

Zlp=/(p 1) ifd=0,h

Zip~ ) x Zlp )/ (p— 1) else,

where the generator for the free resp. torsion part is det(Lie) resp. det(Lie®
tLieY).

(Pic BT"), = {

It would be interesting to know if the Chow ring of BT}, has p-torsion, and
more specifically if the Picard group of B7T;, has p-torsion. However, since ¢}, is
injective and the Chow ring of Disp,, is p-torsion free, p-torsion in the Chow ring
of BT,, cannot be constructed using displays.

Acknowledgement. I wish to thank my advisor Eike Lau for suggesting such an
interesting and challenging topic and for his guidance and support, without which
this thesis could not have been written. I am also grateful to Jean-Stefan Koskivirta
for many valuable discussions on G-zips and mathematics in general.

Terminology and Notation. In the whole thesis p will be a fixed prime num-
ber. In Chapter 2 we denote by [ a prime different from p. The letter £ denotes an
arbitrary field. In Chapter 4 we assume k to be of characteristic p. Every scheme
over k is assumed to be of finite type. Algebraic groups are affine smooth group
schemes over k. The character group of an algebraic group G will be denoted by
G. A representation V' of an algebraic group G is supposed to be finite dimensional
and rational, i.e. G — GL(V') is a homomorphism of algebraic groups. If X is a
scheme A*(X) will always denote the operational Chow ring of X ([Fu, Chapter
17]). A.(X) resp. CH*(X) will be the Chow group of X graded by dimension
resp. codimension. If X is of pure dimension n we have CH"~*(X) = A;(X) and
if X is smooth there exists a natural isomorphism A*(X) = CH*(X) of graded
rings.

If X is an algebraic space over k£ with an action of an algebraic group G we will
refer to X as a G-space. We write [X/G]| for the corresponding quotient stack. If G
acts freely on X, i.e. the stabilizer of every point is trivial, then [X/G] is an alge-
braic space. In this case we will write X/G instead of [X/G] and call X — X/G
the principal bundle quotient of X with structure group G.



1 Equivariant Intersection Theory

1.1 Unipotent Groups

Definition 1.1.1. We call an algebraic group G unipotent if G admits a filtration
G =Gy D Gy D ... DG = {1} by subgroups such that G; is normal in G;_,
with quotient isomorphic to Gy,

Remark 1.1.2. We remark that this definition differs from that given in [SGA3,
Exposé XVII], where the quotients are assumed to be isomorphic to subgroups of
Gyg. In characteristic zero G, only has trivial subgroups but in positive character-
istic there are also the subgroups Z /pZ and «,. Moreover, in [SGA3] the filtration
accuring in the definition is defined only over & and not necessarily over k. Hence
unipotent groups in our sense are smooth, connected and split unipotent groups in
the sense of [SGA3].

We remind the that an algebraic group G is called special, if every principal
G-bundle is locally trivial for the Zariski topology. Let us recall the following fact.

Lemma 1.1.3. Let

0 Gl G2 GS 0

be an exact sequence of algebraic groups. If G1 and G5 are unipotent resp. special
so is Go.

Proof. The assertion in the unipotent case is clear. So let us assume that G; and G5
are special and consider a principal Go-bundle X — S. We have that X/G; — S
is a principal G3-bundle, thus locally trivial for the Zariski topology. We may
assume it is trivial. If we chose a section of X/G; — S we can form X; =
S Xx/a X — S. This is a Gy-torsor with X = G5 x©* X; — S, i.e. X has
a reduction of the structure group to GG;. Since X1 — S is locally trivial for the
Zariski topology sois X — S. O

Proposition 1.1.4. Unipotent groups are special.

Proof. In view of the previous lemma it suffices to show that G, is special, but this
is well known ([Se2]). ]

Proposition 1.1.5. Let U be unipotent and P — X be a U-torsor. If X is affine,
then P is trivial.

Proof. Principal U-bundles over X are classified by H'(X,U). Since U is
special we have H(X,U) = H'(X.q,U). But since X is affine we have
H'(X.4r,G,) = 0. Using the exact sequence of pointed sets in cohomology it
follows H' (X, U) = 0. O



Corollary 1.1.6. Let U be unipotent of dimension n. The underlying scheme of
U is isomorphic to an affine space of dimension n. In particular, every principal
U-bundle is an affine bundle.

Proof. The assertion follows immediately from the preceding propositions and the
fact that for a subgroup U’ of U the map U — U/U" is a U’-torsor. O

1.2 Equivariant Chow Groups

In this section we recall the definition of equivariant Chow groups and the results
of [EG] we shall need.

Consider an algebraic group G over k. By [EG, Lemma 9] we can find a repre-
sentation V' of GG, and an open subset U in V' such that the complement of U has
arbitrary high codimension, and such that the principal bundle quotient U /G exists
in the category of schemes. If X is an algebraic space on which G acts then G acts
diagonally on X x U and we will denote the principal bundle quotient (X x U)/G
by Xg.

Convention 1.2.1. We call a pair (V,U) consisting of a G-representation V and
an open subset U a good pair for G if G acts freely on U, i.e. the stabilizer of every
point is trivial. Sometimes we will call the quotient X = (X x U)/G a mixed
space for the G-space X. If (V,U) is a good pair for G with codim(U¢, V') > i
we will also call (X x U)/G an approximation of [ X /G| up to codimension i.

Definition 1.2.2. If X has dimension n the i-th equivariant Chow group AY (X)
is defined in the following way. Chose a good pair (V,U) for G such that the
complement of U has codimension greater than n — i. Then one defines

AY(X) = A1y (Xa),

where | denotes the dimension of V' and g is the dimension of G. The definition
is independent of the choice of the pair (V,U) as long as codim(U¢, V) > n — i
holds ([EG, Definition-Proposition 1]).

Remark 1.2.3. We remark that in general X is only an algebraic space even if X
is a scheme. However, the definition of Chow groups for schemes can be carried
over immediately to the case of algebraic spaces, so that one has Chow groups
for algebraic spaces with the same functorial properties as in the case of schemes.
In particular, we have an operational Chow ring A*(X) for algebraic spaces X
defined in the same way as in [Fu, Chapter 17], i.e. an element ¢ € A*(X) is
defined to be a collection of morphisms

(Y = X): AY) = A,_i(Y)

for each algebraic space Y over X that are compatible with flat pull-back, proper
push-forward and Gysin homomorphisms. For more details on this subject we refer



to the discussion in [EG] at the end of Section 6.1.

However, there are conditions on X and G so that a mixed space X exists in the
category of schemes. See [EG, Proposition 23] and Lemma [I.3.4] below. In all our
applications the conditions of Lemma|I.3.4] will be satisfied, so that in Chapter 2,3
and 4 algebraic spaces will not appear.

Let f: X — Y be a G-equivariant map of schemes or algebraic spaces. As-
sume that f has one of the properties proper, flat, smooth, regular embedding or
l.c.i. then the induced map fg: X¢ — Y on the mixed spaces has the same
property by [EG, Proposition 2]. It follows that equiviariant Chow groups have the
same functorial properties as ordinary Chow groups.

Again we then have an operational equivariant Chow ring A% (X) ([EG, Section
2.6]), i.e. an element ¢ € AL (X) consists of operations c¢(Y — X): AY(Y) —
A*G_i(Y) for each G-equivariant map ¥ — X that are compatible with flat pull-
back, proper push-forward and Gysin homomorphisms.

We will denote by C' H,(X') the G-equivariant Chow group of X graded by codi-
mension. Note if X is a pure dimensional G-scheme and (V, U) a good pair for G
with codim(U*€, V') > i then

CHL(X) = CHI((X x U)/G)

for all j < . This motivates the term “approximation of [X/G] up to codimension
i” in Convention

If X is smooth then C'H},(X) carries a ring structure which makes it into a com-
mutative graded ring with unit element. Moreover, there is a natural isomorphism
AL(X) =2 CHE(X) of graded rings ([EG, Proposition 4]). The next proposition
shows that the equivariant Chow group A% (X) is an invariant of the corresponding
quotient stack [X/G], which will enable us to define the Chow group of a quotient
stack.

Proposition 1.2.4. Let X be a G-space and 'Y be an H-space such that [ X/G] =
[Y/H]. Then Ag_g(X) = AR, (Y), where g = dim G and h = dim H.

Proof. Let (V1,Uy) resp. (V2,Us) be a good pair for G resp. H of dimension [y
resp. 2. The fiber product Z = X X [x/q) Yu is an algebraic space which is open
in a vector bundle over Y resp. Xy of rank [; resp. ls and we may assume that its
complement is of arbitrary high codimension. We therefore obtain

AG (X)) = Aip, (Xa) = Airiy41,(Z2) = A, (Vi) = AL (Y).
O

Definition 1.2.5. For a G-space X the i-th equivariant Chow group of [ X/G] is
defined to be
Ai([X/G)) = A, (X),

where g = dim G.
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Proposition 1.2.6. Let [X/G] be a smooth quotienstack. Then there is an iso-
morphism A*([X/G]) = A(X) of graded rings. Moreover; it holds AL (X) =
Pic([X/G]) = Pic%(X).

Proof. We recall the easy proof of the first statement. For the second part we refer
to the proof of Proposition 18 in [EG].

There is always a natural map A5 (X) — A*([X/G]) defined in the follow-
ing way. Let ¢ € AL(X) and T — [X/G] be a morphism from an algebraic
space T" to [X/G]. This morphism corresponds to a principal G-bundle B — T
and a G-equivariant morphism B — X. By definition ¢ gives a map ¢(B —
X): A%(B) — AY (B). Since A*G+9(B) = A,(T) we obtain an operational
class in A*([X/G]).

When X is smooth we have A, .(X) = AL(X) and one can easily give an
inverse to this map by sending ¢ € A*([X/G]) to ¢(Xg — [X/G]) N [X]g €
A i (X). O

Before giving the important examples we state and prove some useful facts
about equivariant Chow rings.

We can consider any representation V' of G as a (G-equivariant vector bundle
Spec(Sym V*) over k. Hence V has Chern classes ¢’ ('), or sometimes just ¢; (V)
when the context is clear, which we consider as elements of A7, = A7 (Speck).
Via the pull-back Af, — Af (X)) we can also consider them as elements of A7(X)
for any G-space X. If T is a split torus in G the T-module V' decomposes into a
sum V = V,, & ... ®V,, of 1-dimensional Eigenspaces V,, corresponding to
characters x; of T'. It follows from the Whitney Sum Formula that the Chern poly-

nomial of V in the indeterminant ¢ can be written as

T

(V)(6) = [T +ef )

i=1

when considered as an element of A%.[t]. The cI (y;) are called the Chern roots of
V. Any symmetric polynomial in the Chern roots lies in the image of the restric-
tion map Ay, — A%. If G is special reductive with split maximal torus 7" we will
see in Section 1.9 that this map is injective with image being the invariants of A7},
under the action of the Weyl group of (G, T)).

For every principal G-bundle X — Y, there is a natural action of the character
group of G on A,(Y') defined in the following way. If X is a character of G we
consider the action of G on A! via \ and the given action on X. This makes A x X
into a G-equivariant line bundle over X, thus inducing a line bundle over Y that
we will denote by L. Its first Chern class ¢1(\) := ¢1(£)) then acts on A.(Y).
Equivalently we may view )\ as a 1-dimensional representation of G, thus inducing
an element ¢1 () in A}, as explained above. Via the pull-back A}, — A% (X) =
A*(Y) this element then acts on A.(Y").

11



Lemma 1.2.7. Let T be a split torus and X — Y be a principal T-bundle. Then
pull-back induces an isomorphism

Au(X) = AY) /(TALY)),
where T' denotes the character group of T.

Proof. We first consider the case T = G,,. Let £L = (X x A!)/G,, be the
corresponding line bundle over Y. Then X is the complement of the zero section
s:'Y — Lin L. The zero section embeds Y as a Cartier Divisor in £. In particular,
s is a regular embedding of codimension 1 and furthermore the normal bundle
Ny L of this embedding is isomorphic to £. The self intersection formula then
states s*s.(a) = c1(L) N« for all &« € A,(Y). Hence we have the following
commutative diagram, where the first row is the localization exact sequence.

A (V) 2 A, (L) —— A (X) ——0

1 (L) NT”* /

A1 (Y)

Here 7 denotes the restriction of the projection 7: £L — Y to X (See also [Fu,
Example 2.6.3]). From this the lemma follows in the case T' = G,,.

For general T we write T’ = T" X G,,, where T" is a split torus of smaller dimension.
We can then write X — Y as the composition X — X/T”" — Y, where the first
map is a 7’-bundle and the second map is a G,,-bundle. The general case thus
follows by induction on the dimension of 7'. O

Proposition 1.2.8. Consider an exact sequence

0 K G T 0

of algebrgic groups and assume T is a split torus. Let X be a G-space. Then T
acts via T — G on A, ([X/G)) and pull-back induces an isomorphism
A([X/K]) = A([X/G) /(T A([X/G))).

Proof. Choosing a good pair (V,U) for G the morphism (X x U)/K — (X x
U) /G is a principal T-bundle and the proposition follows from the previous lemma.
O

Remark 1.2.9. Let T be a split torus and X be a T-space. The above proposition
then implies A,(X) = AT (X)/(T AT (X)). This result can also be found in [Br,
Corollary 2.3] but with a different proof.

Another useful lemma regards the special case when G is a split extension by
a unipotent group, i.e. there is a split exact sequence

0 U G N 0

of algebraic groups, where U is unipotent. It says that one can forget about the
unipotent part when computing the Chow groups.
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Lemma 1.2.10. Let G be special and a split extension of an algebraic group N
by a unipotent group. Chose a splitting N — G. Then for any G-scheme X the
restriction map yields an isomorphism AS (X) = AN (X).

Proof. The natural map (X x U)/N — (X x U)/G is a G/N-bundle which is
locally trivial for the Zariski topology since G is special. Now G//N is isomorphic
to an affine space and it follows from [Gi, Theorem 8.3], that the flat pull-back of
this map induces an isomorphism of Chow groups. O

Remark 1.2.11. Note that an exact sequence as above does not need to be split
even if IV is reductive. An example is the exact sequence

0—— Lle(SLg) — SL2(W2) — SL2 — 0,

where we consider Lie(SL2) as a vector group over k. For details see Remark 5 in
[Mc].

A variant of the above lemma also holds without the split assumption by Corollary
The proof uses higher Chow groups which we will adress in the next section.

Example 1.2.12. (Equivariant Chow Ring of the Classical Groups)

e G = GL,: For GL,, we can take the representation V' = Mat(n x p, k) with
p>nandU ={M €V | rkM = n}. Then U/G is the Grassmannian Gr(n, p).
Let E be the canonical representation of GL,,. Then (E x U)/G — U/G is
the universal rank n quotient bundle over Gr(n,p) and for p sufficiently large
(p > ¢+ n) we get that AiG is the group of homogeneous symmetric polynomials
of degree ¢ in the Chern roots ¢; of E. (See [Fu, Chapter 14] for the Chow ring of
the Grassmannian.) Therefore

*GLn =Zci, ..., cn)

where ¢; is of weighted degree .

o T = G,: Let us consider 7" as the torus of diagonal matrices in GL,,. We
can take V = @], (k') with G -action given by

()\1, - .,)\n)(wl, N a;n) = ()\11'1, o .,)\nxn)

and U = [, k' — {0}. Then U/T = (P"!)". Let again E be the standard
representation as above and £ = E,, & ... ® FE,, the decomposition into 1-
dimensional T-Eigenspaces. Here x;: T" — G,, is just the i-th projection. Then
(Ey, x U)/T = prrO(1) and therefore A% is the group of homogeneous polyno-
mials of degree ¢ in the Chern roots ¢1, . .., %, of E. Hence

Ab =Ty, ... ]

and especially
AG, = (A7)

13



e SL,,: We apply Proposition to the exact sequence

det

0 SL,, GL, Gm 0.

Let again £ denote the canonical representation of GL,,. Then we have ¢; (det) =
c1(\"E) = ¢1(E) € Ag,,. and therefore

ASL, = Zca, ..., cql.

Here ¢ (A"E) = ¢;(E) holds by Lemma below.

® Spy,,, Op, SOt The calculations for the other classical groups are slightly more
involved and are carried out in [To] and [RV]. We have

A§p2n = Z{CQa C4y. - 70271]; A*On = Z[Cl, Ceey Cn]/(2codd)
and in case that n is odd
Aéon = Z[CQ, e ,Cn]/(QCOdd).

There is also a result for even n ([Fi]).

e /1,2 We apply Proposition [I.2.8]to the Kummer sequence

0 Hn Gm

Gm 0,

thus obtaining
Ay, = Z[t]/(nt).

Here t is the first Chern class of the character p,, — Gy,.

e G,: We have A = Z in degree 0. This follows immediately from Lemma
1.2.10, More generally, we obtain Aj; = Z in degree 0 for any unipotent group U.

e Z/nZ: If k is a field of characteristic not dividing n that contains the n-th roots
of unity, then (Z/nZ)y = py. If k is a field of characteristic p > 0 we use the
Artin-Schreier exact sequence

0——Z/pZ Gaq Ga 0

to deduce A7y, 7 = Ag, = Z in degree 0. Namely, if (V,U) is a good pair for
Gq then U/(Z/p) — U/G, is a principal G,-bundle and hence its pull-back is an
isomorphism.

In particular, the equivariant Chow ring of Z/nZ considered as an algebraic group

over a field k& depends on the characteristic of k.
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1.3 Higher Equivariant Chow Groups

The reason why we shall need higher Chow groups is that they extend the local-
ization exact sequence to the left. Let us recall Bloch’s definition of higher Chow
groups in the case of schemes ([Bl]).

Bloch’s higher Chow groups. Let A™ be the (algebraic) m-simplex

A™ = Speckl[ty, ..., tm]/(to+ ... +tym — 1) = A™.

For an injective and increasing map p: {0,...,m} — {0,...,n} we define the
corresponding face map p: A" — A" via

7 (1) = {tf A,
0 ifp~t({i}) =0.
Let z;(X,n) be the free abelian group generated by subvarieties V' of X x A"
of dimension i + n meeting all m-faces FF = X x A™ C X x A" properly,
ie. dim(VNF) <i+4+m. Fori =0,...,nletd;: z.(X,n) = z.(X,n —1)
be the pull-back along the face map given by the inclusion {1,...,n — 1} —
{0,...,n} that leaves out 7. We then obtain a chain complex z, (X, -) with chain
maps > 1 o(—1)"6;: z.(X,n) — z«(X,n — 1). Bloch’s higher Chow groups are
then defined to be the homology groups of this complex

Ai(X,m) = Hp(24(X, ).

We remark that for m = 0 one gets back the usual Chow group A, (X) and that
A;(X, m) maybe non-trivial for —m < i < dim X. The definition of these higher
Chow groups also works for algebraic spaces.

In order to define GG-equivariant versions Af(X ,m) of higher Chow groups we
need the homotopy property for the mixed spaces X, i.e. the pull-back map

A (Xg,m) — A (E,m)

for a vector bundle £ over X is an isomorphism. This is true for any scheme if £
is trivial by [Bl. Theorem 2.1]. To prove the assertion for arbitrary vector bundles
one needs the localization exact sequence of higher Chow groups proved by Bloch
in the case of quasi-projective schemes.

Proposition 1.3.1. Let X be an equidimensional, quasi-projective scheme over k.
LetY C X be a closed subscheme and U = X — Y. Then the natural map

2(X, )/ 2:(Y, ) = 2.(U, )

is a quasi-isomorphism. Hence there is a long exact sequence of higher Chow
groups

o= AdY,m) —» A X,m) — A(U,m) — A(Y,m — 1)
— ... .= AY) = A(X) = A(U) — 0.

This long localization exact sequence is compatible with flat pull-back and proper
push-forward.
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Proof. See [EG, Lemma 4] and [BI, Theorem 3.1]. OJ

Corollary 1.3.2. Let £ — X be a vector bundle over an equidimensional quasi-
projective scheme X. Then the flat pull-back

A (X,m) — A(E,m)
is an isomorphism for all m.

Proof. Using noetherian induction and the long localization exact sequence one
reduces to the case of a trivial vector bundle and this case is [Bl, Theorem 2.1]. [

Remark 1.3.3. In Corollary we will prove a stronger version of the above
corollary. Namely, the pull-back f*: A.(X, m) — A.(T,m)ofaflatmap f: T —
X is an isomorphism if the fibers of f are affine spaces of some dimension.

In view of the above corollary we will need that we can chose the mixed spaces
to be quasi-projective schemes. This holds for example in the following situation.

Lemma 1.3.4. Let G be an algebraic group and X a normal, quasi-projective G-
scheme. Then for any i > 0 there is a representation V' of G and an invariant open
subset U C V whose complement has codimension greater than i such that G acts
freely on U and the principal bundle quotient (X x U)/G is a quasi-projective
scheme. In other words, the quotient stack [X /G| can be approximated by quasi-
projective schemes.

Proof. Embed G into GL,, for some n. Then there is a representation of GL,, and
an open subset U, whose complement has codimension greater than ¢ such that
U/ GL,, is a Grassmannian (See [EG, Lemma 9] or Example . Since GL,,
is special the GL,, /G-bundle 7: U/G — U/ GLy, is locally trivial for the Zariski
topology, and we will first show that 7 is quasi-projective.

Since GL,, /G is quasi-projective and normal there is an ample GL,,-linearizable
line bundle L — GL,, /G ([Th, Section 5.7]). Then

(U x L)/ GLy, — (U x (GLy, /G))/ GL, = U/G

is a line bundle relatively ample for w. This shows that 7 is quasi-projective.
The same holds then for U/G. Again by [Th, Section 5.7] there is an ample G-
linearizable line bundle on X. The pull-back to X x U is then relatively ample
for the projection X x U — U. Applying [GIT, Proposition 7.1] to this situation
yields the claim. 0

Definition 1.3.5. (i) A pair (V,U) will be called an admissible pair for a G-
scheme X if (V,U) is a good pair for G and if the mixed space Xq is
quasi-projective and equidimensional over k. X will be called an admis-
sible G-scheme if for any i there is an admissible pair (V,U) for X with
codim(U¢, V) > i.
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(ii) We will say that a stack 2 admits an admissible presentation if there exists
an admissible G-scheme X such that 2" = [ X/G].
(iii) If X is an admissible G-scheme we define its higher equivariant Chow groups
to be
AS(X,m) = Aiyi_y(Xa,m),

where g = dim G and X is formed from an l-dimensional admissible pair
(V,U) such that codim(U¢, V') > dim X + m — i. The proof that this def-
inition is independent of the choice of the admissible pair (V,U) is the same
as for ordinary equivariant Chow groups ([EG, Definition-Proposition 1]) by
using Corollary[1.3.2]

Remark 1.3.6. We will frequently encounter the situation of a morphism 7" — X
of GG-schemes such that T is open in a G-equivariant vector bundle over X. We
remark that, if X is an admissible GG-scheme, so is 1T'. This follows since a vector
bundle over a quasi-projective scheme is again quasi-projective.

Remark 1.3.7. We remark that Levine extended Blochs proof of the existence of
the long localization exact sequence to all separated schemes of finite type over
k ([Le, Theorem 1.7]). Hence for the equivariant higher Chow groups to be well
defined it suffices that we can chose the mixed spaces to be separated schemes over
k. However, in all applications we have in mind the conditions of Lemma|[I.3.4]will
be satisfied.

Proposition 1.3.8. (Localization Sequence,[EG, Prop. 5]) Let X be an equidimen-
sional, quasi-projective and normal G-scheme. Let Y C X be a closed invariant
subscheme. Write U = X — Y. Then there is a long exact sequence of higher
equivariant Chow groups

.= AY(Y,m) — AY(X,m) = AS(U,m) — AY(Y,m — 1)
— ... = AYY) = AY(X) = A% U) =0
This long exact sequence is compatible with flat pull-back and proper push-forward.

The following lemma will allow us to define higher Chow groups for quotient
stacks which admit presentations by admissible GG-schemes.

Lemma 1.3.9. Assume that X is an admissible G-scheme and 'Y is an admissible

H-scheme such that [X/G) = [Y/H] as quotient stacks. Then Ag_g(X ,m) =
AL, (Y, m) where g = dim G and h = dim H.
Proof. This is the same proof as in Proposition [I.2.4] O

Definition 1.3.10. Let 2" be a quotient stack that admits a presentation 2~ =
[X/G] by an admissible G-scheme X. We define the higher equivariant Chow
groups of " as

A (2, m) = AS, (X, m)

where g = dim G.
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Lemma 1.3.11. Let f: 2 — % be a flat map of quotient stacks of relative di-
mension r. Then there is a flat pull-back map [*: A(%) — Awir(Z) between
the Chow groups. If " and % admit admissible presentations the same assertion
holds for the higher Chow groups.

Furthermore, if & and % are smooth then under the identification A.(Z") =
A*(Z") the above morphism is just the natural pull-back map between the opera-
tional Chow rings.

Proof. Consider presentations 2~ = [X/G| and ¢ = [Y/H]|. By definition
A(Z) = Agg(X) with ¢ = dim G and similar for 4;(%). Chose a good pair
(V1,Uy) for G and a good pair (Va, Us) for H. Let [; = dim V;. As usual we will
write X resp. Yy for the mixed space (X x Uy)/G resp. (Y x Usz)/H. Consider
the fibersquare

7 — 77— Yy

| ]

Xea—s X —— X

Then Z’ is a bundle over X resp. Z with fiber Us resp. Uy and Z’ — Yp is a flat
map of algebraic spaces of relative dimension /; 4 . Hence

Aivti+14r(Z') = Aipiy11(Xa) = Air (2)

and we define f* to be the ordinary pull-back of the flat map Z' — Y. The
exact same construction works for the higher equivariant Chow groups if .2~ and
% admit admissible presentations.
For the last part we recall that the isomorphism A'(27) = A§ . .(X) maps
ce A(Z)toc(Xg — 2)N[Xg| € AS, x_;(X). Thus we need to check the
equality

[ dYag —=2)N[Yu)|) =dXeg - 2 — %)N[X¢]

for d € AY(%). This follows from the compatibility of d with flat pull-backs. ]

1.4 Auxiliary Results

Lemma 1.4.1. Let f: X — Y be a surjective, finite and flat map of degree d. Then
the composition

Z.(v) L z.x) L 2. (v
is multiplication by d.

Proof. Let V C Y be a subvariety of Y. It suffices to see

D 10,1y (Op-1v),1,) deg(Vi/V) = deg f,
Vi
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where the sum goes over the irreducible components of f~*(V). Here deg(V;/V)
resp. Lo,y )\ (Op-1(v),v;) denotes the degree of the extension of function fields
resp. the length of Of-1(y/ v, considered as a modul over itself. One easily shows

o, 1,4, (Or-1v)v;) deg(Vi/ V) = li) (Op-1v),7);

where 7 is the generic point of V. The elements of f~!(n) are the generic points
n; of the components V; of f~1(V) and

deg f = dimy(y) H*(f7 (1), Op-1(s)) = dimng(y) €D Op-13 .,

Since Of-1(v)v; = Op-1(y),n, the lemma follows. O

Corollary 1.4.2. Let f: X — Y be a surjective, finite and flat map of degree d.
Then the composition

AY,m) —L s AL (X, m) L Ay, m)

is multiplication by d.

Proof. The same proof as in the previous lemma shows that the composition of
complexes
W) L (X, ) L (v

is multiplication by d. O
Corollary 1.4.3. Let X — Y be a flat morphism of schemes and Y' — Y be a
finite, flat and surjective map of degree d. Let X' — Y' be the base change of
X = YalongY' — Y. Assume the pull-back A.(Y',m) — A.(X',m) becomes
an isomorphism after inverting some integer d'. Then the pull-back A,(Y, m) —
A (X, m) is an isomorphism after inverting dd'.

Proof. The injectivity of the pull-back A, (Y, m)qy — A«(X, m)qq follows from
the exact diagram

0—— A*(K m)dd/ E— A*<Y/, m)dd/

]

0—— A*(X, m)dd/ E— A*(X/, m)dd’
and the surjectivity from the exact diagram

A Y, m) g —— A(Y,m)ger —— 0

{7

A*(X/, m)dd’ —_— A*(X, m)dd/ —0
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where the horizonatal maps in the first diagram are induced by pull-back and in
the second diagram by push-porward. The commutativity of the second diagram is
[Fu, Proposition 1.7]. OJ

The reason why we will frequently encounter finite, flat and surjective maps is
due to the following lemma.

Lemma 1.4.4. Let G be a finite group scheme of degree d over k. Let X be a
G-scheme such that the principal bundle quotient X /G exists in the category of
schemes, i.e. the quotient stack [X /G| is a scheme. Then the quotient map X —
X/G is finite, flat and surjective of degree d.

Proof. Since the principal G-bundle X — X /G is locally trivial for the flat topol-
ogy the assertion follows from descent theory [SGA1, Exposé VIII, Corollary
5.7]. O

Furthermore, we shall make frequent use of the following technical lemma.

Lemma 1.4.5. Let T' — X be a morphism of quasi-projective schemes over k. We
assume that X is equidimensional and that T — X is flat of relative dimension
a. Let d,i € Z and for x € X let h(x) denote the dimension of the closure of
{x} in X. If the pull-back A;_p () (Speck(z),m)q — A;_p()+a(Te;m)q is an
isomorphism for every x € X and for any m, then A;(X, m)q — Aita(T,m)q is
an isomorphism.

Proof. We follow Quillen’s proof of the analogous result in higher K-theory ([Qu2,
Prop. 4.1]). First we may assume that X is irreducible forif X = WiU...UW, isa
decomposition into irreducible components we may consider the long localization
exact sequence of the pair (W7, X — W7p). By induction we are thus reduced to
the irreducible case. Since the Chow groups only depend on the reduced structure,
we may also assume that X is reduced. Let K denote the function field of X. By
Lemma below we have

Ai—n(SpeC K, m) - hgl AZ(U7 m)7
U

Ai—n+a (TKa m) = hﬂ Ai—i—a (TU’ m),
U

where the limit goes over all non-empty open subsets of X and n denotes the
dimension of X. In fact, it suffices to go over all non-empty open subsets with
equidimensional complement, since for all non-empty open U in X there exists a
non-empty open subset U’ contained in U with equidimensional complement. We
obtain a commutative diagram

Ai_,(SpecK,m+1) —— lim, . Ai(Y,m) —— Aj(X,m)

J J |

Ai,n+a(TK, m + 1) E— hgly A’i+a (Ty, m) Em—d Ai+a (T, m)
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—— A;_n(Spec K,m) —— lin,, Ai(Y,m —1)

| |

— Ainta(Tx,m) —— limy Ajo(Ty,m —1)

with exact rows, where the limit goes over all proper closed equidimensional sub-
sets of X. After inverting d the first and fourth vertical map become isomorphisms
and we conclude by noetherian induction. 0

Lemma 1.4.6. (i) Let K/k be an algebraic field extension and X be a scheme
over k. Then there is a natural isomorphism

hEAl(XLvm) = Al(XKvm)v
L

where the limes goes over all finite subextensions L over k.

(i) Let T — X be a flat morphism of some relative dimension, where X is an
integral scheme. Let n denote the dimension of X and K its function field.
Then there is a natural isomorphism

U

Here the limes goes over all non-empty open subsets of X.

Proof. (i) If V is a scheme over some subextension L over k then the base change
Vi to K does not change the dimension. Hence the assignment [V] — [Vik]
defines a map lim zi(Xr,:) — zi(Xk,-) of complexes. This map is in fact
an isomorphism since if V' C A'f is a closed subscheme, then there is a finite
extension L of k such that V has a model V over L. The assignment [V] — [V]
then defines an inverse.

(ii) Consider a subvariety V' C A?U of dimension 7 +m meeting all faces properly,
ie. codim(V N F) > codim(V) + codim(F) for every face F' of AT: . We
may assume that the composition V' —> A?U — U is dominant, since otherwise
[V] is zero in limy, zi(Ty,-). This means Vi is again a subvariety of A7~ with
codim(Vk) = codim(V') and codim(Vx N F) > codim(V N F') for every face
Fof AT . Hence [Vk| € 2i—n(Tk,-) and the assignment [V] — [Vi] defines a
natural map of complexes ligU zi(Ty, ) = zi—n(Tk, ). Again we claim that this
map is an isomorphism.

For this let [V' = V()] be an element in 2;_, (T, m). Let U C X be open and

affine. We may then consider V' = V(ONT”U N1) C Af} and we need to check that
V has dimension ¢ + m and intersects all faces properly. But V' is the preimage of
V under AT — Arp and therefore codim(V') = codim(V). By shrienking U if
necessary we may also assume codim(Vx N Fg) = codim(V N F') for all faces
F'. Hence the assignment [V] — [V] defines a map z;_,(Tk, ) — li pZiTu,)
of complexes that is inverse to the natural map hﬂ(] ziTu,-) = zien(Tk,-). O
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Corollary 1.4.7. Let T — X be a flat morphism of quasi-projective schemes
over k with fibers being affine spaces of some dimension n. Then the pull-back
A (X, m) = Awin(T,m) is an isomorphism.

Proof. This is an immediate consequence of Lemma|l.4. 0

Remark 1.4.8. The assertion of the above corollary in the case m = 0 also holds
without the quasi-projective assumption. One can use the same proof but using
Gillet’s higher Chow groups. For his higher Chow groups a long localization exact
sequence exists for arbitrary schemes. For details see Chapter 8 in [Gi].

Lemma 1.4.9. Let K be a unipotent subgroup of an algebraic group G such that
the quotient G/ K is finite of degree d. Then the pull-back A}, (m) — Affo}(m) is
an isomorphism after inverting d.

Proof. Let (V,U) be an admissible pair for G. Then U/K — U/G is a G/K-
bundle locally trivial for the flat topology. By assumption on G/ K the morphism
U/K — U/G is therefore finite, flat and surjective of degree d. It follows that the
pull-back A, (U/G, m) — A.(U/K, m) = A.(U, m) is injective after inverting d.
Also for sufficiently high dimension we know that A, (Speck,m) — A, (U, m) is
surjective. Since we can assume the codimension of U¢ in V' to be arbitrary high,
we obtain the surjectivity of A% (m) — A?O}(m). O

Lemma 1.4.10. Let K/k be a Galois extension with Galois group G and let X
be a scheme over k. Then pulling back along X — X induces an isomorphism
A (X, m)g = A*(XK,m)g. If K/k is a finite Galois extension of degree d it
suffices to invert d.

Proof. We first assume that K /k is finite of degree d. Then on the level of cy-
cles we have an injection z,(X,-)q < 2.(Xk, )§ by Lemma We claim
that this map is also surjective. Let W C X xx A} be a subvariety meet-
ing all faces properly. Let S C G be the isotropy group of W. It suffices to
see that 3/ s[gW] lies in 2,(X,-)q. For this consider the closed subscheme
V' = Ugcq/sgW (equipped with the reduced structure). Then V' is a G-invariant
equidimensional subscheme of X x x A% that meets all faces properly. Thus it
has a model V over k also meeting all faces properly. Finally all components g\W
have the same multiplicity 1 in the cycle [V] and therefore ./ g[gW] = [Vk].
To complete the proof in the finite case it suffices now to note that taking G-
invariants is an exact functor on the category of Z[é]—modules with G-action, hence
Hi(2(Xk,)§) = Hi(2:(Xk,))§ -

The general case follows from the finite case and the fact that A, (Xx,m
liﬂ Lk A (X1, m)CE/R) where the limit goes over all finite Galois subextensions

L/kof K. 0

) =
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1.5 A Pull-Back Lemma

Throughout we consider the situation of an exact sequence

0 A G H 0

of algebraic groups and an admissible H-scheme X such that the induced G-action
on X makes X also into an admissible G-scheme. These conditions are always sat-
isfied if X is quasi-projective and normal by Lemma[[.3.4] We are then interested
in properties of the pull-back homomorphism (Lemma I.3.1T)

A([X/H],m) — A([X/G],m).
Proposition 1.5.1. Let

0 A G H 0

be an exact sequence of algebraic groups and X an admissible H-scheme such
that the induced G-action makes X also into an admissible G-scheme. We also
assume H to be special.

Let d € Z such that A%y, (m) — A?o} (m) becomes an isomorphism after inverting
d for every field extension L of k and every m. Then the pull-back A.([X/H],m) —
A ([X/G], m) becomes an isomorphism after inverting d.

Proof. First note that the natural map [X/G] — [X/H] is flat of relative di-
mension —a with ¢ = dim A. We can chose for any ¢ € Z an admissible pair
(V,U) for the H-action such that A; ;([(X x U)/G]|,m) = A;([X/G],m) and
Aiq((X xU)/H,m) = A;([X/H], m) for all j > i. Here [ denotes the dimen-
sion of V. Note that X x U is again an admissible G-scheme (cf. Remark[1.3.6).
Replacing X by X x U we may thus assume that [X/H| is a quasi-projective
scheme.

Let now (X x U)/G be a quasi-projective mixed space for G. Let U be the quo-
tient U/A. Then we can identify (X x U)/G with the quotient (X x U)/H
and under this identification the map (X x U)/G — X/H corresponds to the
U-bundle (X x U)/H — X/H. It is Zariksi locally trivial since H is special.
We are left to show that the pull-back of this map is an isomorphism after invert-
ing d. This will follow from Lemma |1.4.5{ once we have seen that the pull-back
Aj_pz)(Speck(x),m)q — Aj_h(r)H_a((jk(x), m)q is an isomorphism for every
x € X/H. Here h(x) is the dimension of the closure of {x} in X/H. Let us write
L = k(x). Assuming the codimension of U¢ in V' to be sufficiently large we obtain
by assumption

Aj_py(Spec L,m)g = Aj_poy11(Un, m)a = Aj_p@)41-a(UL, m)a.

For this recall Aj4;_o(U,m) = A;‘L (m)and A (Up,m) = A;{O}(m). This
proves the claim. O
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The above proposition applies to the following cases.

Corollary 1.5.2. In the situation of Proposition the following assertions
hold.
(i) If A is unipotent then A, ([ X/H],m) — A.(|[X/G], m) is an isomorphism.
(i) If A is finite of degree d then A.([X/H],m) — A.([X/G],m) becomes an

isomorphism after inverting d.

Proof. The first part follows from Corollary and the second part follows from
Lemma applied to the case K = {0}. O

The assumption on H to be special is crucial for the proof of Proposition[I.5.1]
since we need to know that the fibers of the U-bundle (X x U)/H — X/H
appearing in the proof are given by U in order to apply Lemma However,
we have the following version when H is finite.

Proposition 1.5.3. Let
0 A G H 0

be an exact sequence of algebraic groups and X an admissible H-scheme such
that the induced G-action makes X also into an admissible G-scheme. We assume
that H is finite of degree d.

Letd' € Z suchthat A% (m) — Al (m) becomes an isomorphism after inverting
d' for every field extension L of k and any m. Then the pull-back A.([X/H],m) —
A, ([X/G], m) becomes an isomorphism after inverting dd'.

Proof. We argue the same way as in Proposition[I.5.T]and then have to see that the
pull-back of (X xU)/H — X/H becomes an isomorphism after inverting dd’. As
mentioned earlier we cannot apply Lemma since the above U-bundle is not
locally trivial for the Zariski topology. Instead it becomes trivial after the finite,
flat and surjective base change X — X/H of degree d, i.e. there is a cartesian
diagram

XxU—X

L

(X xU)/H — X/H.
The claim thus follows from Corollary O
Corollary 1.5.4. In the situation of Proposition the following assertions
hold.
(i) If A is unipotent then A, ([X/H],m)q — A«([X/G], m)q is an isomorphism.
(ii) If A is finite of degree d' then A.([X/H],m)az — A«([X/G],m)qq is an
isomorphism.

In the next proposition we proof that the assertion of Proposition [I.5.T]is valid
over QQ for arbitrary H.
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Proposition 1.5.5. Let

0 A G H 0

be an exact sequence of algebraic groups and X an admissible H-scheme such
that the induced G-action makes X also into an admissible G-scheme.

Assume A% (m)g — Al (m)q is an isomorphism for every field extension L
of k and any m. Then the pull-back A.([X/H],m)g — A«([X/G],m)q is an
isomorphism.

Proof. Using the notation of the proof of Proposition [I.5.1] we need to see that the
pull-back of the U-bundle T" := (X x U)/H — X/H is an isomorphism over Q.
It suffices to see that A, (Speck(x), m)g — A«(Ty,m)g is an isomorphism for
x € X/H. The above U-bundle may not be trivial for the Zariski topology, but
we still have T; = Uy and therefore A, (Spec k(z)*®,m)g — A«(Ts, m)g is an
isomorphism by assumption. The claim then follows from Lemma (1.4.10| and the
fact that the Galois action is compatible with pull-back. O

Corollary 1.5.6. In the situation of Proposition the following assertions
hold.
(i) If A is unipotent then A,([X/H]|,m)qg — A«([X/G],m)q is an isomor-
phism.
(ii) If A is finite then A.([X/H],m)q — A«([X/G], m)q is an isomorphism.

Lemma 1.5.7. Let G be a split extension of an algebraic group H by a unipotent
group. Chose a splitting H — G and let X be a normal, quasi-projective G-
scheme. Then the pull-back map

AZ (X, m)g — AT (X, m)q
is an isomorphism. If G is special the above map is an isomorphism over Z.

Proof. Let (V,U) be an admissible pair for the G-action on X. It follows from the
proof of Lemmal(l.3.4]that (V, U) is then also admissible for the induced H-action.
The morphism (X x U)/H — (X x U)/G is a G/H-bundle. If G is special
this bundle is locally trivial for the Zariski topology. Hence the lemma follows
from Corollary in the special case and Lemma|[I.4.10]and[I.4.5]in the general
case. O

1.6 Equivariant Chow Ring of Flag Varieties

We recall that G-space refers to an algebraic space over k that carries the action of
an algebraic group G. Let X be a smooth GG-space and E be a vector bundle over
X of rank e. We denote by FI(E) — X the corresponding flag space of E, i.e. the
space parametrizing filtrations of £ by subbundles with line bundle quotients. We
recall the following fact.
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Lemma 1.6.1.
AY(FIUE)) = A"(X)[t1, ..., te]/(ci(t) — ci(E), i =1,... ¢€),

where t1, . .., te denote the Chern roots of E and c;(t) is the i-th elementary sym-
metric polynomial in the variables ty, ... t..

Proof. Let Q denote the universal quotient bundle over P(E). Then FI(Q) =
FI(F) and we can write the structure map F'I[(E) — X as the composition FI(Q) —
P(E) — X. The lemma then follows easily by induction on the rank of E and the
projective bundle theorem ([Fu, Example 8.3.4]). ]

Let V be a G-representation. Then the action of G on V induces an action
on the projective space P(V)) = Proj(Sym V*) such that the natural morphism
V — {0} — P(V) is a G-equivariant principal G,,-bundle. If F is a G-equivariant
vector bundle on a G-space X we also have a natural action of G on P(E) such
that the projection P(E) — X is G-equivariant and the same holds for the flag
space FI(E).

Lemma 1.6.2. Let X be a scheme (or algebraic space) with free G-action and E
be a G-equivariant vector bundle over X. Then there exist natural isomorphisms

P(E/G) = P(E)/G, FI(E/G)= FI(E)/G.

Proof. Let m: X — X/G be the quotient map. We have the following isomor-
phisms of G-spaces

TP(E/G) = P(r*E/G) = P(E) = m'P(E) /G

and similary for the flag space. But since pulling back along 7 gives a fully faithfull
functor from algebraic spaces over X /G to G-spaces over X the lemma follows.
O

Lemma 1.6.3. (Lemma 2.3 in [EF]) Let EE be a G-equivariant vector bundle of
rank e on a smooth G-space X. Then

AGP(E)) = AG(X)[C/ (¢ + ¢ 4.+ Ce)
where ( = c1(Opg)(1)) and C1, . .., C, are the Chern classes of E.
Proof. We have the cartesian square

P(E)xU——X xU

|

P(E)G E— XG

Here P(E)¢ is the projective bundle P(E¢) of the vector bundle E¢ over X by
the lemma above. The assertion thus follows from the projective bundle theorem
for ordinary Chow groups. O
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Lemma 1.6.4. Let E be a G-equivariant vector bundle of rank e on a smooth
G-space X. Then

AL(FUE)) = A5(X)[t, . L)/ (e(t) — ci(B)i = 1, e),

where t1, ..., te denote the G-equivariant Chern roots of E and c¢;(t) is the i-th
elementary symmetric polynomial in the variables t1, . .., te.

Proof. This follows in the same way as above from the case of ordinary Chow
groups. O

Remark 1.6.5. For a reminder on GG-equivariant Chern roots see also the next
section.

We can also consider the equivariant Chow ring of generalized flag spaces: Let
G be a connected split reductive group over k. Chose a split maximal torus 7" of
G and a Borel subgroup B O T'. The computation of A%.(G/B) is carried out by
Brion in [Br]. His result is the following.

Proposition 1.6.6. Let S = Sym(T") = A} and W = W (G, T) be the Weyl group
of G. The multiplication map

S®ew S — A7 (G/B)
is an isomorphism, if G is special. In general it is an isomorphism over Q.

Proof. See [Br, Proposition 6.6]. ]

1.7 G-invariant Sections
We start with the following definition.

Definition 1.7.1. Let X be a G-scheme and E a G-equivariant vector bundle on X.
We call a global section s € H°(X, E) G-invariant if the corresponding morphism
X 5 Eis G-equivariant.

Remark 1.7.2. A global section s of a G-equivariant vector bundle F is G-invariant
if one of the following equivalent conditions hold.
(i) The morphism A' x X — F induced by s is a morphism of G-equivariant
vector bundles, when A! carries the trivial and X the given G-action.
(ii) p4sis mapped to m*s under the isomorphism p(E) = m*E of locally free
sheaves corresponding to the G-action on E.
This can be easily seen as follows. The commutativity of the induced diagram

j299) — = m'E

]

p3O0x ——=m"Ox
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of locally free sheaves on X translates into the commutativity of the diagram

GxFEF—F

I

Gx AL, —— AL

of vector bundles over G x X resp. X where the horizontal maps are the action
maps. This shows the equivalence of (i) and (ii). Since X 2 F is the composite
of the unit section X — A}( and the map Aﬁ( — E induced by s we see that s is
G-invariant if and only if (7) holds.
The set of G-invariant sections of E is precisely the image of the pull-back map
HO(|X/G], [B/G]) - H(X, E).

For a G-invariant section s € H°(X, E') we can form the cartesian square

Here the lower map is the zero section of E/ which is a G-equivariant regular em-
bedding of codimension e = rank E. Since s is also G-equivariant, we get that
Z(s) is G-invariant. We can therefore define a localized G-equivariant top Chern
class by
Z(s) = sp([X]a) € Afmx—e(Z(5))

which has the same properties as in [Fu, Proposition 14.1]. We recall that s €
HO(X, E) is called a regular section if i: Z(s) < X is a regular embedding of
codimension e. In particular, we have

Lemma 1.7.3. Let X be a G-scheme and E a G-equivariant vector bundle of rank

e. If s € HY(X, E) is a G-invariant regular section, then the zero scheme Z(s) is
G-invariant and we have [Z(s)]g = ¢S (E) N [X]q in AZ(X).

We remark that s is regular if X is Cohen-Macaulay and codim Z(s) = e.
As a special case we obtain

Lemma 1.7.4. (Lemma 2.4 in [EF]) Let T be a torus and V' be a T'-representation.
Let H C P(V') a T-invariant hypersurface defined by a fiomogeneous form f €
Symd(V*) that is a T-eigenfunction with eigenvalue x € I'. Then

H]r = C{(OIP’(V)(d)) —c1(x)
in As(P(V)).

Proof. Clearly f is a T-invariant regular section of Op(y)(d) ® x~!. Hence the
assertion follows from the lemma above. O
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Equivariant Chern roots Since the flat pull-back p*: AY(X) — A% (FI(E))
is injective, as follows from Lemma [I.6.4] we have a splitting construction for E,
i.e. we can find a G-equivariant flat morphism f: X’ — X such that the flat pull-
back f*: AS(X) — A%(X') is injective and f*F has a filtration by G-invariant
subbundles
0O=FEyCFEiC...CE.1CE.=f'FE

with line bundle quotients L; = FE;/FE;_;. We say that the o; = c?(LZ-) are the
G-equivariant Chern roots of F. As in the proof of Theorem 3.2 (a) in [Fu] one
can show

(B =[]t + ).

(2

If F' is another G-equivariant vector bundle on X with rank f and Chern roots [3;
the Chern roots of £’ ® F' are given by

a;+ B, 1<i<e 1<j<f

Thus in the same way as for ordinary Chern classes ([Fu, Remark 3.2.3]) we obtain
the following equations for (G-equivariant Chern classes.

Lemma 1.7.5. Let X be a G-space and E a G-equivariant vector bundle of rank
e with Chern roots o, . . . , Q.
(i) a(NE) =TI, <. «;, I+ (i +. . .-+, )t), in particular cl(/\eE) = (E)
(i) If L is a G-equivariant line bundle c,(E ® L) = Y i (L) '¢;(E)t", in
particular c.(E ® L) = >"¢_ c1(L) ce—i(E).

1.8 Kiinneth Formula

In this section we investigate the exterior product map
A X) @ Au(Y) = A (X xY).

We list conditions on X, so that the exterior product map is surjective or even an
isomorphism for any scheme Y.

Definition 1.8.1. We say a scheme X has a cellular decomposition if X can be
stratified into a finite disjoint union of open subsets of affine spaces. If the cells are
in fact affine spaces and not only open subsets, we say that X has a decomposition
into affine cells. We say that a G-space X has a cellular decomposition if the cells
are G-invariant.

Examples for schemes with cellular decomposition are the projective space P,
the Grassmannian and flag varieties. The cells in these examples are in fact affine
spaces and not only open subsets.
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Lemma 1.8.2. (¢f. [Fu,Example 1.10.2]) If X is a scheme with a cellular decom-
position then for all schemes S the exterior product map

P AnX) @ A(S) = Apn(X x 8)
k+l=m

is surjective.

Proof. Let U be an open cell of X and let Y denote the complement of U. The
localization exact sequence then induces a commutative diagram

AY)® Au(S) — A(X) @ A(S) — A (U) ® Au(S) —— 0

| | |

A (Y x ) —— A (X xS) —— A, (U x S) ——0

with exact rows. Since U is open in affine space we see that the right vertical arrow
is surjective and by noetherian induction we may assume that the left vertical arrow
is also surjective. An easy diagram chase then shows the assertion. O

The exterior product map is an isomorphism if X belongs to the class of linear
schemes as is shown in [To3].

Definition 1.8.3. (/T03, Section 3]) The class of linear schemes is defined induc-
tively in the following way. The affine space of arbitrary dimension is a linear
scheme. The complement of an embedding of a linear scheme in affine space is
again linear and so is any scheme stratified by a finite disjoint union of linear
schemes

Lemma 1.8.4. The exterior product map

P AnX) @ 4(Y) D Apn(X x Y)
k+l=m

is an isomorphism for any scheme Y if X belongs to the class of linear schemes.

Proof. This is Proposition 1 in [To3]. The proof makes use of higher Chow groups.
O

The following lemma is an application of the Leray-Hirsch theorem (Lemma
[1.9.9) below and gives a criterion in the G-equivariant case.

Lemma 1.8.5. Assume G is special and X and Y are smooth, proper G-schemes
with decomposition into affine cells. Then the exterior product map

AG(X) @4, Ag(Y) = Ag(X xY)

is an isomorphism of A¢,-algebras.

30



Proof. If X; resp. Y; denote the closure of the cells in X resp. Y the classes [X;]
resp. [Y;] form a basis of A*(X) resp. A*(Y). Consider a good pair (V,U) for
G. Applying the Leray-Hirsch theorem to the fibration (Y x U)/G — U/G with
fiber Y and the fibration (X x Y x U)/G — (Y x U)/G with fiber X we get
isomorphisms

AG(X X Y) =A@ AY(X) @ A(Y) 2 Ag(X) ®az, Ag(Y)

of A¢-modules, such that under the above isomorphisms 1 ® [X;] ® [Y;] is mapped
to [X; x Y]] resp. [Xi]¢ ® [Yj]e. The lemma follows. O

Before stating the next lemma we briefly recall the notion of wreath products.
Let H be a subgroup of the symmetric group S, and G be an arbitrary group. The
wreath product H ! G is then defined to be the semi-direct product H x G™, where
H acts on G™ by permutation. We will view Z/p as the subgroup of S,, generated
by the cycle (1 2 --- p).

Lemma 1.8.6. Let G be an algebraic group and X a scheme considered as a G-
scheme with trivial G-action. Then the exterior product map

Al @7 CH*(X) — CHE(X)

is an isomorphism in each of the following cases:
(i) G is the multiplicative group G,,.

(ii) G is a finite abelian group of exponent e, e is invertible in k and k contains
the e-th roots of unity.

(i) G is an iterated wreath product Z./pZ{ . . AL/ pZ Gy, over k, p is invertible
in k and k contains the p-th roots of unity.

(iv) G is an iterated wreath product Z/pZ ... Z/pZ Y A where A is a finite
abelian group of exponent e. Also, p and e are invertible in k and k contains
the p-th and e-th roots of unity.

In particular, for those G we have isomorphismns Ay, ®z Ay — Al g for any

algebraic group H.

Proof. This is Lemma 2.12 in [To2]. The point is that under the above assumptions
the classifying space of GG can be approximated by smooth linear schemes. The
exterior product map is an isomorphism in this case by Lemma|l.8.4 O

1.9 The Restriction Map

Next we want to describe properties of the restriction map resg DAG(X) —
AT(X), where T is a split torus in G. This map is defined via flat pull-back of
the natural map X7 — X between the mixed spaces. Note that more generally
one has a restriction map res%: AY(X) — AH(X) for every subgroup H of G.
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Definition 1.9.1. (i) In the following A*(X; Q) will denote the operational Chow
ring of X consisting of characteristic classes with values in rational Chow
groups, i.e. an element ¢ € A*(X; Q) assigns to each T — X a morphism

o(T = X): Au(T)g — Au(T)g

satisfying the usual compatibility conditions ([Fu, Section 17.1]). (Of course,
in the above definition one could replace Q by an arbitrary ring but we will
not need this.)

(i) A proper map m: X — X is called an envelope if for each irreducible sub-
space V. C X there exists an irreducible subspace V C X sucht maps 1%
birationally onto V.

Remark 1.9.2. There is a natural map A*(X)g — A*(X; Q) and this map is an
isomorphism if X is smooth. This follows from

AL (X)g

A*(X)o ——

o

AN(X;Q) — A(X)o-

We recall the following easy lemma.

Lemma 1.9.3. (i) Let7: X — X be a proper surjective map. Thenm,: A, (X)Q —
A (X)q is surjective and 7 : A*(X;Q) — A*(X; Q) is injective.
(ii) Let m: X — X be a birational envelope. Then m,: A,(X) — A.(X) is
surjective and 7 : A*(X) — A*(X) is injective.

Proof. The first part of (i) is [Ki, Proposition 1.3]. The first part of (ii) follows
immediately from the definition of an envelope. The second part of (i) and (ii) are
formal consequences of their first parts. We only do this for (ii). Let ¢ € A*(X) be
in the kernel of 7* and consider a morphism 7" — X. The base change 77 : T—T
of malong ' — X is again an envelope by [Fu, Lemma 18.3]. Leta € A,(7T") and

chose a € A.(T) with (77)«(a) = a. Then

This shows ¢(T' — X) = 0 and hence ¢ = 0. O

Lemma 1.9.4. Let G be a connected reductive group with split maximal torus T’
and Weyl group W = W (G, T). Let M be smooth and E — M be a principal
G-bundle. Consider a Borel subgroup B D T. Then W acts on A*(E/B) and
pull-back induces an isomorphism A*(M)g = *(E/B)(g/
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Remark 1.9.5. The above lemma is also mentioned (without proof) in [Vi, Section
2.5].

Proof. We identify W = Ng(T')/T and chose w € Ng(T'). Then w induces an
automorphism w: E/T — FE/T. This defines an action of W on A*(E/T) =
A*(E/B). Since w lies in G the diagram

E/T——E/G=M

||

E/T

commutes and this implies that the image of the pull-back A*(M) — A*(E/B)
lies in A*(E/B)"W. We are left to show that

A*(M)g — A*(E/B)y

is an isomorphism. Let us first show that A, (M)g — A*(E/B)(g/ is surjective.
For this the smoothness assumption on M is not needed. We recall that every G-
torsor is locally isotrivial by [Ra, XIV Lemma 1.4]. This means that there exists a
covering of M by open subsets U with the property that for each U there is a finite,
etale and surjective map U’ — U such that Eyr = E xy U' — U’ becomes a
trivial G-torsor. Let V' denote the complement of such an U in M and consider the
commutative diagram

A*(V)Q 4)A*(M)Q 4)14*([])@ ——0

| | J

A.(BEv/B)y — AL(E/B)y —— A«(Ey/B)y ——0

with exact rows. An easy diagram chase shows that if the first and last vertical map
are surjective so is A*(M)g — A*(E/ B)(g/ . Using noetherian induction we are
thus reduced to the case that there exists a proper surjective map M’ — M such
that Fy;s — M’ is trivial. Since the diagramm

A(M')g —— Au(Bap | B)Y

| |

A(M)g —— A(E/B)Y

commutes ([Fu, Proposition 1.7]) and since A*(EM//B)(S/ — A*(E/B)(g/ is sur-
jective by part (i) of the previous lemma we are further reduced to the case of a
trivial G-torsor E = G x M — M. Since G/ B has a decomposition into affine
cells we obtain in this case A.(E/B)g = A«(G/B)g® A«(M)g by Lemmall.8.4]
From [De, Section 8] we get A.(G/B)g = Sg/(SY), where S = Sym(T') and
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SKV denotes the submodule generated by homogeneous W -invariant elements of
positive degree. Since (Sg/(SY))" = Q we obtain A*(E/B)(g/ = A,(M)q as
wanted.

By the previous lemma we know that A*(M; Q) — A*(E/B;Q) is injective but
since M (and therefore F) is smooth we obtain the injectivity of A*(M)gp —
A*(E/B)q. O

Theorem 1.9.6. Let G be a connected reductive group with split maximal torus T
and Weyl group W = W (G, T). Let X be a G-scheme.
() W acts on AT (X). Furthermore, the restriction morphism AS(X) — AT(X)
induces amap r: AY(X) — AT(X)W.
(ii) Assume X is smooth. Then r is an isomorphism after tensoring with Q.
(iii) Assume X is smooth and that G is special. Then r is injective. Morever, r is
an isomorphism if A%.(X) is Z-torsion free (e.g. if X = Speck).

Remark 1.9.7. It is claimed in [EG, Proposition 6] that r: A%(X) — AT (X)W
is an isomorphism for arbitrary X if G is special. But according to a footnote in
[EF] this is false. Unfortunately, we do not have an example for this.

The assertions (i) and (ii) are immediate consequences of Lemma|[1.9.4] Under
the assumption that A%.(X) is Z-torsion free we will deduce the surjectivity of r
from part (ii) by using the argumentation of the proof of Theorem 1 in [EG2]. In
this article Edidin and Graham prove the above theorem in the case X = Speck.
Their key ingredient is the following proposition.

Proposition 1.9.8. ([EG2, Proposition 1]) LetY — X be a smooth proper Zariski
locally-trivial fiber bundle, where X is smooth and whose fiber F' has a decompo-

sition into affine cells. Then A*Y is a free A* X -module. More precisely, we have
a (non-canonical) isomorphism A*Y = A* X ® A*F of A* X -modules.

This proposition is a corollary of an algebraic version of the Leray-Hirsch the-
orem.

Lemma 1.9.9. (Leray-Hirsch, [EG2, Lemma 6]) Let Y — X be a smooth proper
Zariski locally-trivial fiber bundle, where X is smooth and whose fiber F' has a
decomposition into affine cells. Let {B;} € A.(Y') be a collection of classes that
restrict to a basis of the Chow groups of the fibers. Then A*(Y') is a free A*(X)-
module with basis { B; }.

Proof. (of Theorem|[I.9.6) We are left to prove part (iii). To prove the injectivity of
r it suffices to show that the pull-back of the morphism p: X5 — X between the
mixed spaces is injective. But this morphism is a G/B-bundle locally trivial for
the Zariski topology since G is special. In particular, p is an envelope and hence

p*: A*(X¢g) — A*(Xp) is injective by Lemma
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Assume now that A% (X) is Z-torsion free and let v € A% (X)W. Consider the
fiber square

XB XXq XBL>XB
| Jp

Then « is lying in the image of p* if and only if pjo = p5a by [Ki, Theorem

2.3]. We know that pja — p3a is torsion in A*(Xp x x, Xp) since we already

know that r is surjective after tensoring with Q. But by Proposition [I.9.8 we have

A" (Xp xx, XB) = A*(Xp) ® A*(G/B). Since A*(Xp) and A*(G/B) are

torsion free so is A*(Xp x x, Xp) and the claim follows. O
We state another result in this direction.

Theorem 1.9.10. Let G be a connected reductive group with split maximal torus
T and let X be a G-scheme. Then the map

(A7)0 ®(az), AT (X)o = AT (X)o

induced by the restriction map is an isomorphism of (A%)q-modules. If G is spe-
cial the same holds over Z.

Proof. This is [Br, Theorem 6.7]. ]

Corollary 1.9.11. The restriction map v is an isomorphism if G is special and
AY(X) is a flat A%-module.

Proof. This follows from the theorem above and the exact sequence
0 Ag Ar lwew A7

of A7,-modules. O

In the following special case r becomes an isomorphism after inverting the
order of the Weyl group.

Lemma 1.9.12. Let GG be a connected reductive group with split maximal torus T
and V be a G-representation. Let U C 'V be open and G-invariant. If G is special
thenr: AL(U) — AW(U)W is an isomorphism after inverting ord(W)

Proof. We have the diagram
AL(V) —— AL(U) —— 0
A (V)W s A (U)W

The first vertical map is an isomorphism by Theorem Note that A% (V) =
A% and A%(V) = AX holds. Hence r is surjective if and only if A%(V)W —
A% (U)W is surjective which is the case after inverting ord(W). O
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We give another useful lemma which is an immediate consequence of the
Leray-Hirsch theorem. See [EF, Proposition 2.2].

Lemma 1.9.13. Let G be connected reductive. Assume G is special and let T
in G be a split maximal torus. If X is a smooth G-scheme then Af(X) is (non-
canonically) a direct summand in the Af,(X )-module A%(X).

Corollary 1.9.14. Let G be connected reductive. Assume G is special and let T
in G be a split maximal torus. Let X be a smooth G-scheme and Y in X a closed
G-invariant subscheme. If the image of CH}.(Y) — CH}(X) is generated as a
CH}.(X)-module by elements lying in CH.(X) then the same elements generate
the image of CH}(Y') — CHE(X) as a CHE(X)-module.

Proof. Let U denote the complement of Y. Consider the commutative diagram

CHEL(Y) —— CHE(X) — CHE(U) —— 0

.

CHHY) —— CHH(X) —— CH:H(U) —— 0

with exact rows. Note that, since the right vertical morphism is also injective, an
element of C'H/(X) that lies in the image of the map CH}(Y) — CH}(X)
also lies in the image of CHA(Y) — CHF(X). After choosing a section of
CH{(X) — CHZF(X) the proof is straight forward. O

1.10 The Transfer Map

Consider a subgroup H in G of finite index [G : H]. By this we mean that G/H
is affine and the coordinate ring of G/ H is a finite dimensional k-vectorspace of
dimension [G : H]. The natural map U/H — U/G between the mixed spaces is
then finite, flat and surjective of degree [G : H]. The proper push-forward of this
map induces an additive map

trgz L AiG
called transfer map.

Lemma 1.10.1. (i) The transfer map is a homomorphism of A¢,-modules.
(i) The composition
« TesH " trg "
AG AH AG
is multiplication with |G : H|.
Proof. Going over to the mixed spaces this follows easily from properties of or-
dinary Chow groups. The first part follows from the projection formula and the
second follows since the composition of flat pull-back and proper push-forward of

a finite, flat and surjective map is multiplication by the degree of the map. In our
case the degree is [G : H]. O
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We will apply this lemma in the following way.

Corollary 1.10.2. Let G be a finite group and | a prime number. If P is an l-Sylow
subgroup of G then the localized restriction map

res$: Al ® Zgy — Ap ® L,
is injective.
Corollary 1.10.3. Let G be a finite group scheme over k of degree |G|. Then
IG|AL =0
fori > 0. In particular, (A})g = Q in degree 0.

Proof. By definition we have |G| = [G : 1]. Part (ii) of the above lemma applied
to the case H = {1} implies |G|AL, = 0 for i > 0 as wanted. Alternatively this
follows as a special case of Lemma[I.4.9] O

2 Specialization

2.1 Specialization for Chow Rings

We note that almost all the functorial properties of Chow rings (meaning §1-86 of
[Fu]) remain valid for schemes of finite type over a regular base scheme .S. The
only exception is the existence of an exterior product map A, (X/S)®A.(Y/S) —
A (X xgY/S). The reason is that varities over S are not automatically flat. This
changes when S is the spectrum of a discrete valuation ring (or more generally a
Dedekind domain). In this case every variety over S is either flat or is mapped to the
closed point of S. It is then possible to define a product on the level of cycles that
passes to rational equivalence ([Fu, Section 20.2]). Section 8 of [Fu] then carries
over to smooth schemes X over a discrete valuation ring. In particular, there is an
intersection product on A, (X/S). For more information see [Fu, Section 20].

We now recall the concept of specialization for Chow rings as explained in [Fu,
Section 20.4]. Let X be a scheme of finite type over a regular base scheme S.
Assume i: S¢ — S is a regular embedding of codimension d such that the normal
bundle N of S€in S is trivial. Consider the fibresquare

xe—Y . x

|

SCTS

By [Fu, Corollary 6.3] we have the equation 4'(i’,)(a) = cq(g*N) N = 0 for all
a € A (X¢/S¢). Writing X° = X — X°€ it follows from the localization exact
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sequence that there is a unique map o: A.(X°/S°) — A, (X¢/S°) such that the
diagram

AX/)S) —L s A,(x°/5°)

|

A, (X¢/S9)

commutes. Assume S is the spectrum of a discrete valuation ring R with fraction
field K and residue field £ . If X is smooth over Spec R then op: A (Xk) —
A, (X}) is a ring homomorphism by [Fu, Corollary 20.3].

Remark 2.1.1. (i) We recall the following fact about the refined Gysin homomor-
phisms i': A, (V) — A._4(W), where W — V is the base change of a regular
embedding i: Y — X of codimension d along a morphism V' — X. Namely,
if W — V is again a regular embedding of codimension d then '[V] = [W] €
A, (W). This follows immediately from the definition of i' ([Fu, Section 6.2]) and
the fact that in this case the normal bundle Ny, V' equals the pull-back of the nor-
mal bundle Ny X to W.

(ii) Let R be a discrete valuation ring with fraction field K and residue field k
and denote ¢: Speck — Spec R. Let X be of finite type over S. Consider the
morphism

Z(Xk) = Zu(Xk), [V [Vi],

where V' denotes the closure of V in X. Since V}, < V is again a regular embed-
ding of codimension 1 we have or([V]) = '([V]) = [Vi] € A.(XK) by part (i),
i.e. the specialization map is induced by the above map on the level of cycles. We
will therefore denote the map Z,(X ) — Z.(X}) also by og.

Similary to ordinary Chow groups equivariant intersection theory remains valid
for schemes (or algebraic spaces) that are of finite type over S = Spec R with R
a Dedekind domain: By [EG, Lemma 7] we can find for any affine smooth group
scheme G defined over S a finitely generated projective .S-module E such that
G acts freely on an open subset U of E whose complement has arbitrarily high
codimension. For such an U one defines

AY(X) = Ai—4((X x U)/G)

where [ = dim(U/S) and g = dim(G/S). All the functorial properties of equiv-
ariant intersection theory remain valid. In particular, if X is smooth over S there
is an intersection product on A% (X).

Remark 2.1.2. Convention [[.2.1] carries over to the situation of an affine smooth
group scheme over the spectrum S of a Dedekind domain: A pair (U, F) is called
a good pair for G if F is a finitely generated projective S-module and U is an open
subset of £ on which G acts freely. If X is a G-scheme over .S we call the quotient
Xg = (X x U)/G a mixed space for the G-scheme X. If codim(U¢, E) > i we
also call X an approximation of the quotient stack [X/G] up to codimension i.
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Let us consider now the spectrum S of a discrete valuation ring R with fraction
field K and residue field k and a smooth affine group scheme G over S. For every
good pair (F,U) of G the above construction gives a homomorphism of graded
rings

A" (Uk /Gr) = A*(Uk/Gh).

Since dimU;; < dimU* and dim Uy < dim U* and since we can chose the
codimension of U* to be arbitrarily high these morphisms induce a map

LOA% *
OR: AGK _>AG]€

of graded rings. In particular, there exist such a map for any finite abstract group
G viewed as a constant group scheme over S. We will call this map specialization
map. We have the following naive criterion for the specialization map to be an
isomorphism.

Proposition 2.1.3. Let G be a finite abstract group viewed as a constant group
scheme over a discret valuation ring with quotient field K and residue field k of
mixed characteristic. Then the following assertions hold:
(1) The specialization map is surjective if A*Gk is generated as a Z-algebra by
Chern classes of representations of Gy,.
(i) The specialization map is injective if the same holds true for every Sylow
subgroup of G.

Proof. To prove (i) we use the theory of Brauer lifts ([Se, Chapter 18]). Let Rk (G)
resp. Ri(G) denote the representation ring of G i resp. G. Consider the diagram

Ri(G) —L— Ry,(G)

S

7 g )

Here the maps c; are induced by the i-th Chern class (see Lemma@below) and
d is defined as follows. If V is a K-representation of G we chose a G-invariant
lattice V of V. The class [V] is then mapped under d to the class [V ® k] in
Ry (G). This class does not depend on the choice of a lattice ([Se, Section 15.2]).
By definition of the specialization map and [Fu, Proposition 6.3] we see that the
above diagram is commutative. The map d is surjective by [Se, Section 16.1]. In
other words we can lift Chern classes in A, to Chern classes in Ag, . Hence the
specialization map is surjective if A*Gk is generated by Chern classes of represen-
tations of G,.

If P is an [-Sylow subgroup of GG for some prime ! we obtain a diagram

Az o= (Ap )



where the injectivity of the horizonatal maps follow from Corollary|1.10.2} More-
over, this diagram is commutative by [Fu, Proposition 6.2 (b)]. This proves (ii). []

Lemma 2.1.4. If G is a finite abstract group and k an arbitrary field, then for any
i € Z>q there are unique maps c;: Ri(G) — Ain satisfying the following two
properties:

(i) For any Gy-representation V one has ¢;([V]) = ¢;(V) € Agk.

(i1) CZ'(El + Eg) = Zk:-i—l:i Ck(El)Cl(Eg)for FE,Ey € Rk(G)

Proof. We note that any virtual representation £ of GG has a unique expression
E = % 1ese) NilL] with A; € Z. Here S(G) denotes the set of isomorphism
classes of simple representations of G. The properties (i) and (i7) then determine
the image ¢;(F) of E uniquely. O

Remark 2.1.5. Although condition (i) of the above proposition does hold for many
finite groups it does not hold in general. A counter example is given by the sym-
metric groups ([To, Section 4]).

Computing the equivariant Chow ring of a finite group in characteristic 0 is
difficult. Instead one can try to compute its equivariant Chow ring in positive
charactersitic and then apply Proposition|2.1.3
The computation in characteristic p is easier at least for Chevalley groups. Recall
that Chevalley groups are the finite groups G(IF;), where G is a connected, split
reductive group scheme over Z. The reason is the following: Let k be a field
containing F,. We will see in the following lemma that there is a canonical 1-
isomorphism

BG(Fy)r = [Gr/Ghl,

where the action of G, on itself is given by conjugation with the g-th power Frobe-
nius. If G is special (e.g. G = GL,,, SL;,, Spy,,) we can determine A*Gk (G) and
thus also A7, (Fo)w completely. This will be done in Chapter 3.

Lemma 2.1.6. Let G be a connected algebraic group over an arbitrary field k and
p: G — G be an isogeny with only a finite number of fixed points. Consider the
G-action on G defined by g - h = gho(g)~" and let S denote the stabilizer group
scheme of the neutral element. Then there is a canonical 1-isomorphism

[G/G] = BS.

Proof. Tt suffices to show that the quotient stack [G/G] is a gerbe that has a section
over k whose automorphism group is equal to S ((LMB, Lemma 3.21]). Let 7 be a
scheme and Bj, B be two principal G-bundles over 7" together with G-equivariant
maps B; — G. After replacing T by a suitable covering we may assume that B,
and By are trivial. The G-equivariant maps B; — G are then given by sections
gi: T — G x T and there exists an isomorphism of principal G-bundles respecting
the maps B; — G if and only if g; and g5 lie in the same G(T)-orbit. This holds
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after passing to a suitable covering of 7" by [Ste, Theorem 10.1] which states that
the morphism G — G, g — go(g) ! is faithfully flat. In fact, Steinberg’s theorem
only states that this map is surjective, but since by assumption ¢ has only finitely
many fixed points all the fibers of the map g — gy(g)~! have dimension zero and
hence this map is flat by the mirracle flatness theorem ([Ma, (21.D) Theorem 51]).
This shows that [G/G] is a gerbe.

The section of [G /G| with automorphism group equal to S is given by the trivial
G-bundle over Spec k with G-equivariant map G — G, g — gp(g) 1. O

Corollary 2.1.7. Let G be a split reductive group scheme over 7, and let k be a field
containing . Let G, act on itself by conjugation with the q-th power Frobenius.
Then there is a canonical 1-isomorphism

BG(Fq)r = [Gr/Grl.
Proof. This follows from the previous lemma applied to the case that ¢ is the g-th

power Frobenius. O

From Q, to C. Let K be a finite field extension of @, and R the integral
closure of Z, in K. Since Q, is complete for the p-adic valuation R is again a
discrete valuation ring. Also its residue field & is a finite field extension of [,

Lemma 2.1.8. Let K’ be another finite extension of Q,, that contains K. Let R
resp. R’ be the integral closure of Zy, in K resp. K' and let k resp. k' denote the
residue field. Then the following diagram commutes

* R’ *
AG,. — A,
]: 9R [
Here the vertical maps are induced by pull-back.

Proof. We note that R and R’ are both finite and free over Z,. Hence if X is an
approximation of BGz, (cf. Remark[2.1.2) then Xp is an approximation of BGr
and similary for R’. Cleary the diagram

Zy (X)) ¢—— Zu(Xp) — Zu(Xg0r)

L1 ]

Z*(Xk) — Z*(XR) E— Z*(XK)

on the level of cycles commutes. Here all the maps are induced by base change.
Passing to cycle classes it thus follows from Remark (ii) that

Au(X ) 2 Au(Xp)

L]

A (XK) =22 A (Xy)
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commutes. OJ

In view of the above lemma we can take the direct limit of the specialization
maps o yielding a map

liqu*GK — hﬂA*Gk
K k

for every finite group G. Here the limit goes over all finite field extensions K resp.
k of Q, resp. FF,,. Fixing an isomorphism C = @p we obtain a homomorphism of
graded rings

oGg: AEC — A*GFP'

2.2 Specialization for Etale Cohomology

Etale Homology. For any scheme .S over a separably closed field & etale homology
is defined as ‘
Hz(Sa Zl) = H_’LRF(Sv TS)

for [ # char k, where T is the dualizing complex of S. If a denotes the structure
map of S then Ty = Ra'Z; € D(S,7Z;). Let us recall the properties of etale
homology we shall need. For the proof we refer to [LaG].

Proposition 2.2.1. Let k be a separably closed field and | be a prime different from

the characteristic of k. Let X be a scheme over k of dimension d.

(i) Hi(X,Z;) =0fori < 0andi > 2d and Ho4(X,Z;) is freely generated by
the irreducible components of X of dimension d.

(i) If X is smooth then H;(X,7;) = H?*~(X,Z,;), where the right hand side
denotes the usual l-adic cohomology groups.

(iii) (Functoriality) Let f: X — Y be proper resp. flat of relative dimension n.
Then f induces an additive push-forward map f.: H.(X,Z;) — H.(Y,Z;)
resp. pull-back map f*: H,(Y,Z;) — H.n(X,Z;) compatible with compo-
sition.

(v) If f: X — Y is finite and locally free of degree n then the composition

H(Y, 7)) L v.(X,70) L BV, 7))

is multiplication by n.
(v) (Kiinneth Formula) If Y is another scheme over k there is an exact sequence
of the form

0—— @, oy Ho(X) @ Hy(Y) — Hi(X x Y)

E— @r+s:i—1 Tory (HT‘(X)a HS(Y)) —0.

(vi) (Cycle Map) There is an additive cycle map clx: A.(X) — Ha(X,7Z)
compatible with proper push-forward, flat pull-back and Chern classes. If X
is smooth then clx defines a morphism of rings.
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Since we do not have a reference for the following lemma, we prove it here.

Lemma 2.2.2. Let Z C S be a closed subscheme and denote by U its complement
in S. Denote the inclusion Z — S resp. U — S by i resp. j. Then there is a long
exact sequence

s Hi (U, Z) —— Hi(Z, )~ Hi(S,Z) —— Hy(U, 7)) ——

Proof. If I is an injective object in Mod(,S, Z /™) there is a natural exact sequence

0 iy il I Gug*I 0.
This implies that there is an exact triangle in D(S,Z;) of the form

(Rjx)j*Ts

N,

i Ri' Ts

Note that i, Ri'Ts = i, Tz as well as (Rj,)j*Ts = Rj.Ty. Applying the functor
RI'(S, -) thus yields an exact triangle

N

RI(Z,Ty) I'(S,Ts)

in D(Speck, Z;). Taking homology then yields the desired long exact sequence.
O

Definition 2.2.3. Let G be an algebraic group over a separably closed field k
and | be a prime different from the characterstic of k. We define the i-th l-adic
cohomology group of BG in the following way. Let (V,U) be a good pair for G
with codim(U¢) > (i + 1)/2 then

HYBG,7Z;) = H(U/G, 7).

By using Proposition (ii) and Lemma 2.2.2]above one shows in the same way
as in the case of Chow groups ([EG, Definition-Proposition 1]), that the above
definition is independent of the choice of the pair (V,U) as long as codimU¢ >
(i+1)/2.

Remark 2.2.4. If G is a finite abstract group and / a prime that does not divide
the order of G then H*(BGY,Z;) = Z; in degree 0. This follows from the usual
transfer argument (cf. Corollary|(1.10.3).
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Lemma 2.2.5. Let k be a field of arbitrary characteristic and | a prime different
from char k. Assume (n, char k) = 1 then the cycle map

A;n,k ® Zl — H*(B/,Ln7ksep,Zl)

is an isomorphism.

The above lemma together with Example [1.2.12| yields H* (B, gser, Z;) =
Z,[t]/ (nt) where t is the first Chern class of the character p,, — G,.

: * _ A* __ l.sep
Proof. Since Aun,k = Aun,ksep we may assume k = k*P. The natural map

X = (A —{0})/pn — (AT = {0}) /G = P,

is a principal G,,,-bundle and the corresponding line bundle is given by Opr(n). In
other words u,, can be approximated by the complement X of the zero section in
Opr(n). We will show that the cycle map

ANX)® 7 — H*(X,Z)
is an isomorphism and H*(X,Z;) = 0 for odd 4. Consider the diagram

Az(PZ) ® 2Ly — AiJrl(O]pr (n)) ®Q L; — AZ+1(X) ® 72— 0

| | |

H? (P}, Zy) — H**2(Opr(n), Zy) — H* (X, Z;) — H* (P, Zy)

with exact rows. Here the lower row comes from Lemma[2.2.2] This diagram is
commutative since the cycle map is compatible with proper push-forward and flat
pull-back by Proposition 2.2.1] (vi). It is well known that the first vertical map is
an isomorphism. Hence the second vertical map is also an isomorphism. Since
H?+(Pr 7,) = 0 the first claim follows. For the second claim it suffices to see
that the map H*(P%,Z;) — H**2(Opr(n),Z;) is injective. But we know that
AN PY) @ Zy — AT (Opr(n)) ® Z; is injective since the composition A% (P}) —
AL Ope(n)) S AL(Pr) is capping with ¢1(Opr(n)) by the self intersection
formula (cf. the proof of Lemma and under the identification A (P7) = Z =
A"1(P}) this corresponds to multiplication with n. O

Specialization. Let R be a discrete valuation ring with fraction field K of
characteristic 0 and perfect residue field & of characteristic p and let X — Spec R
be smooth. We recall the construction of the etale specialization map

op: H'( Xz, Zy) — H (X5, 7))
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for [ a prime different from p that is compatible with the specialization map for the
Chow ring under the cycle map, i.e. the diagram

H¥(X g, Z)) " H¥ (X, Zy)

T T

A’L(XK) T) Al(Xk)

commutes (cf. [SGA6, Expose 10, 7.14]).

Lemma 2.2.6. Let A be a normal ring such that K = Frac(A) is separably
closed. Let X — Spec A be smooth. Then the pull-back morphism H' (X, Z/1") —
HY (X, Z/I") is an isomorphism.

Proof. This is more or less a direct consequence of the smooth base change theo-
rem. Consider the cartesian diagram

/

X+  Xp

J [

Spec A — Spec K.

The smooth base change theorem then yields an isomorphism a*(R'g,Z/I") =
R'g'7.,/I". Since A is normal we have g, Z/I" = Z/I" by [SGA4 Exp. IX, Lemma
2.14.1]. Since K is separably closed g, is exact, hence R'g, = 0 fori > 0. It
follows ¢.7Z /1™ = 7Z/1" and R'g.7 /1™ = 0 fori > 0. The Leray spectral sequence

HP(X, Rig\Z/1") = HPTY(Xf,Z/I") for g, then yields the claim. O

Let now R be a discrete valuation ring as above. We fix algebraic closures K
and k. Let R be the integral closure in K of the strict Henselization of R.

Lemma 2.2.7. R is a normal Henselian local ring with fraction field K and residue
field k.

Proof. Since R is the integral closure of a Henselian local ring, it is also Henselian
local. Since £ is perfect the residue field of the strict Henselization equals k. Hence
the residue field of R equals k. U

Definition 2.2.8. Let R be a discrete valuation ring with fraction field K of char-
acteristic 0 and perfect residue field k of characteristic p. Let X — Spec R be
smooth. For a prime [ different from p we define the specialization map

orp: H (X, Z)1") — H'(X, Z/1")
to be the composition

H{(X g, Z)I") +— HY(X ®p R,7/1") — H\(X, Z/I").
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Remark 2.2.9. If X is also proper over Spec R then o is an isomorphism: Let
a: X ®r R — Spec R denote the structure map, then the proper base change
theorem yields a canonical isomorphism (R'a,Z/I"); = H(Xy,Z/I"). Here
= € Spec R denotes the closed point. On the other hand we have (R'a,Z/I"); =
H' (X ®p R,Z/1") since R is strictly local.

Lemma 2.2.10. The diagram

H2(X o, Z)1") 22 H2 (X, Z)1)

ClXKT Tclxk

24X k) ———— Z9(Xy)
commutes. Here op: Z(Xg) — Z¢(Xy) is the map from Remark(ii), which
induces the specialization map on the Chow groups.

Proof. We need to recall the definition of the cycle map clx : Z¢(X) — H**(X,Z/I™)
([SGA4h, Cycle, 2.3]). If f: Y — S = Spec R is a flat map of finite type and of
relative dimension d there is a trace map Try € Hom(R?*f,Z/I"(d),Z/I") by
[SGA4, Expose X VIII, Theorem 2.9], which is compatible with base change in S.
Since RF f,Z,/1"(d) = 0 for k > 2d we have natural identifications

Hom(R* fi7./1"(d), Z,/1") = Hom(RAHZ/I™(d), Z./1"|—2d))
= Hom(Z/I", Rf'Z/1"(—d)[—2d])
= HO(Y, R=%f'7/n(—d)).

Consider now a cycle [Y] € Z¢(X). Let
frYyCl x589

denote the structure map. If f is not dominant one defines clx([Y]) = 0. In
the other case f is flat of relative dimension d = N — ¢, where N denotes the
relative dimension of X — S. Since 7 is smooth of relative dimension N we have
Rr'Z/1" = ZJIN (—N)[—~2N] and from Rf' = Ri' R7' it follows

HO(Y, R~2f'Z/n(—d)) = H(Y, R*i'Z/1"(c))

By semi-purity [SGA4h, Cycle, 2.2.8] it holds R’%”Z/Z” = 0 for k£ < 2c¢ and from
the spectral sequence H? (Y, R%'Z/1") = HY (X, Z/1") we deduce

HO(Y, R*i'7)1"(¢)) = H¥(X,Z/1"(c)).

This shows that we may view the trace map 7'r as an element of HZ%(X, Z/I™).
One then defines clx ([Y]) to be the image of T'r ¢ under the natural map

H¥(X,Z)1") — H**(X,Z/1").
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Consider now a cycle [V] € Z/(Xk) and let Y denote the closure of V in X.
Since the trace map is compatible with base change we have that the image of
clx([Y]) under H?(X,Z/I") — H?**(Xg,Z/1") equals clx, ([V]) and similary
the image of clx ([Y]) under H%¢(X,Z/I") — H?*¢(Xy, Z/I") equals clx, ([Yx]).
Since [Yy] = or([V]) the Lemma follows from the definition of the specialization
map on etale cohomology. O

Lemma 2.2.11. Let G be a finite abstract group and X — Y be a G-torsor over
R. Ifor: H(Xg,Z/I") = H (X}, Z/1"™) is an isomorphism for all i, the same is
true for or: H' (Y, Z/1") — H' (Y3, Z/1™).

Proof. Consider the Hochschild-Serre spectral sequences

HP (G, HY( X, Z)1")) = HP (Y, Z/1")
HY (G, HY( X}, Z)1")) = HPT (Y}, Z)1™).

Since specialization is compatible with pull-back, the map or: H (X, Z/I") —
H'(Xp,Z/1™) is in fact an isomorphism of G-modules, thus yielding an isomor-
phism of spectral sequences compatible with the specialization map for Y. The
lemma follows. O

Corollary 2.2.12. Let G be a finite abstract group. Then the specialization map
H*(BGg,Z;) — H*(BGg, Zy) is an isomorphism

Proof. Choose a good pair (E,U) for Gg. Then og: H(Ug,Z;) — H(Ug,Z))
is an isomorphism for all i < 2codim(E — U) by Lemma Since we can

choose this codimension to be arbitrary high the assertion follows from the previ-
ous Lemma. [

We shall also have need for the following comparison theorem, whose proof
can be found in [SGA 4, XI].

Theorem 2.2.13. Let X — Spec C be smooth. Then for any finite abelian group
M there is a canonical isomorphism

Hi

sing

(X(C), M) = H (X, M).

Lemma 2.2.14. Let X be a topological space and assume that Hf ng (X,Z) and
H?"9(X,Z) are finitely generated. Then Hm H'™(X,Z/1™) = H"™ (X, Zy).

]

Proof. By the universal coefficient theorem we have an exact sequence
0—— H™(X,Z) ® Z/I" — H™ (X, Z/1")

—— Tory (H™9(X, Z), /") — 0.
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Recall Tory (H"Y(X,Z),Z/1") = H;"9(X,Z)[I"]. Clearly the Mittag-Loeffler

condition is satlsﬁed for the inverse system (H:""9(X, Z)®Z/I™),,. Taking inverse
limits thus yields an exact sequence

0——1lim H™(X,Z)®Z/I" —lim H"(X,Z/I")

—— lim HY(X,Z)[1"] —— 0.
By assumption we have

L H"9 (X, 2)[1") =
and hence the lemma follows. O

2.3 Specialization for Wreath Products

Our goal is to prove the following proposition which is inspired by [To, Lemma
8.1], a variant of which is stated in Lemma below.

Proposition 2.3.1. Let p # [ be prime numbers. Assume G is a finite abstract
group satisfying the following conditions:
(1) The specialization map AG Q7L — AG ® Z; is an isomorphism.
(ii) BG@ and BG]F can be approxzmated by schemes admitting a cell decom-
position.
(iii) The cycle map Af, Ga, ® Zy — H*(BGg,, Z) is split injective.
Then the same conditions hold for the wreath product 7.1 G.

In order to prove this proposition we need to say something about the cyclic
product of a quasi-projective scheme, since these are the spaces that approximate

B(Z)11G).

Cyclic Products. Let S be a quasi-projective scheme over an arbitrary field
k. (We note that since we are interested in classifying spaces of finite groups, the
assumption on S to be quasi-projective is no loss of generality by Lemma[1.3.4])
Let [ be a prime. Consider the permutation action of Z/I on S’. Since S is quasi-
projective the geometric quotient S/(Z/1) exists. If we take out the diagonal of
S!, then the action of Z /I on S! — S is free and

m: 8t -8 = (8- 8)/(Z/1)

is a principal bundle quotient with structure group Z /1. We will write X = S' — S,
Y = (8" - 8)/(Z/1) and Z'S = S'/(Z/1) and call Z'S the cyclic product of S.
Note that 7 is finite, etale of degree [.
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Assume ([,char k) = 1 and k contains the [-th roots of unity. Fix a character
w — G, and let ¢; € A'Y be its first Chern class. Fori > 0 and j < il — 1 we
consider the operations

vt Ai(S) = Au(Y), al: Ai(S) = A;(Y)

j li

constructed in [To, Section 7], where o; = ¢; = ~i- We note that

™ vi(a) = a®l\X, hence lv;(a) = 7r*(a®l\X),

and that ozg is a homomorphism of abelian groups.

For convenience we briefly recall the construction of 7;. Let C' € Z,(S) be a cycle
on S of dimension greater than 0. Then the support of C! is not contained in the
diagonal of S! and we may consider the restriction C* — C' of C! to a cycle on
X = 8! — S. The cycle C! — C is invariant under the action of Z/I and hence is
the pull-back of a unique cycle Z!(C) — C on Y under the etale map X — Y. This
defines a map Z>1(S) — Z>;(Y") which passes through rational equivalence (see
loc. cit.) and induces the maps ~;. Note that ~y is not additive. More precisely, let
C =>"" mi[V]beacyclein S. Then

CZ—C: Z mil...mil[Vilx...xVil],
i€{l,..,n}

where by abuse of notation we also write [V;, x ... x V;,] for its restricition to
X = 8’ — S. The unique cycle on Y whose pull-back to X is C! — C'is then given

by
Y(C) = Z mi (V] = Vi)/(Z/1)]  +

> My -y ([Viy X x Vi),
ie({17"'7n}l_{17"'7"})/(2/1)
where {1,...,n}l —{1,...,n} denotes the complement of {1,...,n} when em-

bedded diagonally in {1, ...,n}'. For this note that 7*r, = dgezn 9 Zu(X) =
Z(X). This follows from [Fu, Proposition 1.7] applied to the fibersquare

Z)lx X 25 X

ml lﬂ'
X —" Y,

where m denotes the action map and p the projection to X, yielding 7*m, =
m.p* = deZ/l g.

Remark 2.3.2. In fact, Totaro’s operations map into the Chow group of Z'S, so
our operations are Totaro’s composed with the pull-back to the open subset Y in
Z'S. However, in the end we will only be interested in the Chow group resp.
homology of Y for dimension greater than dim S resp. 2 dim S and in this case the
Chow group resp. homology of Z!S and Y coincide.

49



Totaro then defines a functor F; from graded abelian groups to graded abelian
groups in the following way. Let A, be a graded abelian group. Then Fj(A,) is
the graded abelian group generated by the graded abelian group A% together with
A; ® Z/1 in degree j fori + 1 < j < li — 1 and elements ~;x; in degree [i for
x € A; and i > 0 subject to the relations

T1R...0 =29 ...0x; X1

lyix = 2%

(@ + y) :%‘UCJFZOH ® ... ®a+7(y)
e
Here o runs through the Z/l-orbits in {z,y} — {(z,...,2),(y,...,y)}. If A, is
isomorphic to a finite direct sum ", Z/a; - e; with a; being 0 or a prime power,
i.e. A, is finitely generated, we can give a more precise description of Fj(A,) in
the following way. Let R be the set of ¢ such that dim e; > 0 and a; = 0 or a power
of [, then

F(A,) = &y Z/(ay,..., ) €, ® ... Qe &AL/ (las) - y(es)
i€({1,..n}!~R)/(Z/1) i€R
® &y Z)1- ol (e;) (2.3.1)
1€ER

dime;<j<ldime;
where again {1,...,n}! — R denotes the complement of R when embedded diag-
onally in {1,...,n}.
Using the operations
®1: Ai(S) — Ap(X) 5 Ap(Y)
al: Ai(S) — A;(Y)
we obtain a homomorphism of graded abelian groups

Uy Fi(A(S)) — A (Y).

We shall need one last piece of notation. For a scheme S and » € N we write
F="(S) for the subgroup of elements of £7(A,S) of degree > [ dim S —r. Clearly
F7(S) = F(AS).

Lemma 2.3.3. Let S be a smooth quasi-projective scheme over Zj. Then the dia-
gram

Tq
F~"(Sg,) —— A<"(Yg,)

J, Vs,

F7(S5,) —— A~ (Yg,)

p
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commutes. Here the vertical maps are given by specialization.

Proof. First we note that the exterior product map is compatible with specialization
meaning that the diagram

A*(SK XK SK) L A*(Sk Rk Sk)

A(SK) ® Au(SK) —5 Aw(Sk) © Au(Sk)

commutes. This follows in the same way as Lemma [2.1.8| by using Remark 2.1.1]
Moreover, push-forward and intersecting with Chern classes of line bundles are
compatible with pull-back and refined Gysin homomorphisms. Hence from the
definition of the maps \If@p and \IJFP we see that it suffices to show that the operation
~ is compatible with specialization.

For this let ' =}, m;[V;] be a cycle on Sg and consider a finite extension K of
Q) such that each subvariety V; is defined over K. Let A be the integral closure of
Zy, in K and k the residue field of A. Denote i: Spec k — Spec A. Replace S by
S and write as usual X = S' — S, Y = (S — 8)/(Z/l) and 7: X — Y for the
quotient map. Consider the diagram

Ay (Sk) +— Au(S) —— A.(Sk)

al g |

A (V) e ALY) —— A (Vi)

Let V; be the closure of V; in S, then C' = . m;[V;] is a cycle that restricts to C.
Now since the right side of the above diagram clearly commutes we see from the
definition of the spezialization map that it suffices to prove the following assertion:
LetC =" , m;[Vi] € Z.(S) such that each subvariety V; C S maps dominantly
to Spec A and such that (V;) i is geometrically integer. Then

W (i'C) =i (7a0).
Since (V;) < V; is again a regular embedding of codimension 1 we have i'(C) =

> mil(Vi)k] (cf. Remark 2.1.1)(i)) and therefore
W(i'C) =D mil((Vi)k = (Vw)/(Z/D] +
3 My o (2 (Vi i % (Vi)il):

ie({1,...n}'—{1,...n})/(Z/1)
On the other hand we have

14(C) = Z mi[(V) = Vi) /(Z/D)]  +

> My -, T([Viy X .. x Vi),
ie({1,...n}—{1,....n})/(Z/1)
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Now by assumption on the V; we have that (V! — V;)/(Z/l) C Y is again a
subvariety mapping dominantly to Spec A and therefore '[(V]! — V;)/(Z/1)] =
(Vi) = (Vi)k)/(Z/1)). Finally since

(M) ([(Vi o X oo x (Vi) = () (@ (Vi % x Vi])

the lemma follows from the compatibility of refined Gysin homomorphisms with
proper push-forward ([Fu, Theorem 6.2 (a)]). ]

Lemma 2.3.4. Let S be a smooth quasi-projective scheme over @p andr < dim S.
Assume that A<"(S) ® Z; — H<*"(S,Z,) is split injective. Then the composition

F(S)®Z — AN (Y)®Z — H*'(Y,Z))
is split injective.
The above Lemma is a variant of [To, Lemma 8.1 (3)]:
Lemma 2.3.5. (Totaro) Let S be a quasi-projective scheme over C. If the cy-

cle map A,(S) — HBM(S,7Z) is split injective, then the composition F}(S) —
A (Z1S) — HBM(Z'S,Z) is split injective.

Here HPM (S, 7) denotes Borel-Moore homology ([Fu, Section 19.1]). Let us
explain how the two Lemmata above are related. Chose an isomorphism Q, = C.
By Theorem [2.2.13]and Lemma [2.2.14] we have identifications

H<?"(Y, 7)) = HS*" (Y, Z) ® 7y

sing

= HE% dim s5—2r (Y5 Z) ® 7y,
Note that 2/ dim S — 2r > 2dim S and therefore
l
Hggdimsfw(}/a Z) = Hgg/gdimsf%(z S: Z)-

Under this identifications Lemma[2.3.4]is the assertion of Totaro’s Lemma, which
is discussed in more detail below after we finished the proof of Proposition|2.3.1

Proof. (of Proposition[2.3.1) Fix r, € N. Let S — Z, be a smooth approximation
of BGz, up to codimension 7, (cf. Remark . We then have A"(Sg ) = ATGQP

as well as A%/lzG@p = AT((S(l@p — Sg,)/Z/1) for all 7 < r, and similary over Fp.

Consider the diagram

\I],
<Tro(Q_ Cp <ro
F} (SQP> AZ/Z?G@p

|, ]

<To _ Fp <To
F (Sle) " AZ/zzGI—Fp

R
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where the left vertical arrow is induced by the specialization map for GG. It is an
isomorphism by condition (i). The surjectivity of the horizontal maps follow from
[To, Lemma 8.1 (2)], whose proof is valid not only over C but over an arbitrary
field. We can apply [To, Lemma 8.1 (2)] since condition (ii) holds for G. The
diagram commutes by Lemma [2.3.3] Adding the cycle maps to etale cohomology
we obtain a commutative diagram

F=(Sg,) © Zi —» AZ;z?G@P ® Z —— H<**(B(Z/11 Gg,), L)

| J |

F7(Sg,) ® Z — AZ/"Z‘;GFP ® 2y —— H<>*(B(Z/11Gy,), ).

IR

Here the right vertical map is an isomorphism by Corollary[2.2.12] Since condition
(iii) holds for G, it follows from Lemma [2.3.4] that the composition

F(Sg,) @ Zi —» AZZ‘?GQP ® Z —— H<**(B(Z/11 Gg,), L)

is split injective, using that by definition H <27 (B(Z/0Gy,), ) = H<?ro ((S(l@ -
P

S@,)/Z/1,Zy). This shows that condition (i) and (iii) hold again for Z/I ¢ G. The

fact that condition (ii) also holds for Z /1 G is proven in [To, Lemma 8.1 (2)]. O

Let us now discuss the proof of Lemma in more detail. The proof of
loc. cit just remarks, that this follows from Nakaoka’s description of a basis for the
homology of Z'S in [Na] together with the equation for F;(S). However,
since Nakaoka only computes the cohomology of Z'S with Z/I-coefficents for S
a finite simplicial complex, the desired conclusion of Lemma [2.3.5] is not com-
pletely clear. It seems that [St] and [Yo] are more useful. In [St] Stein computes
the integral homology of the 2-fold cyclic product of a finite simplicial complex
and Yoshioka generalizes Steins method to the [-fold cyclic products of a finite
simplicial complex for [ an odd prime. Now in order to apply Totaros argument we
still need to show the following.

(I) The results of Stein and Yoshioka also compute HEM(Z!S,7) (at least in di-
mension > 2(I — 1) dim S which is the case of interest for us).

(I) The basis elements of equation (2.3.1) for F;(S) are mapped bijectively to
a subset of a basis for HEM(Z!S, Z) described in [St, Theorem 13.2 (f)] for [ = 2
and in [Yo, Section 10 Proposition (j)] for [ # 2.

We first explain (I). If X — SpecC is an arbitrary scheme such that the one-
point-compactification X¢ = X (C) U {x} of X (C) (with its complex topology) is
a CW-complex then

HzBM(X7 Z) = Hi(XC? {*})

53



where the right hand side denotes relative homology ([Fu, Example 19.1.1]). In or-
der to apply the results of Stein and Yoshioka it thus suffices to prove the following
lemma.

Lemma 2.3.6. Let S — Spec C be a quasi-projective scheme. Then the one-point-
compactification S¢ of S(C) (with its complex topology) has a finite triangulation.

This will be a consequence of Hironoka’s semi-algebraic triangulation theorem
([Hi]). We recall that a subset of R™ is called semi-algebraic if it belongs to the
Boolean class of subsets of R™ generated by {x € R" | f(x) > 0} with f €
R[X1,...,X,]). Moreover, a map f: R" — R™ is called semi-algebraic when
its graph I'y is a semi-algebraic subset of R™ x R™. In particular, the image of
a semi-algebraic set under a semi-algebraic map is again semi-algebraic. This
is Proposition II in [Hi]. Note that every polynomial map R” — R™ or more
generally every regular rational map R™ — R™ is semi-algebraic.

We also note that in Hironaka’s article simplices are open, i.e. an r-simplex A in
R™ is defined as

T T
A = {Zaﬂ)i ’ a; > O,Zai = 1},
i=0 i=0
for affinely independent vectors vg, . . . , v, in R™.

Theorem 2.3.7. ([Hi]) Let { X, }q be a finite system of bounded semi-algebraic
sets in R™. Then there exists a simplicial decomposition R™ = U, A, and a semi-
algebraic automorphism k of R™ such that each X, is a finite union of k(A,).

Lemma 2.3.8. Let K be a simplicial complex in some euclidean space and A C K
be a subcomplex. Then the quotient space K /A has a triangulation.

Proof. Let S(K) resp. S(A) be the corresponding simplicial sets. That is, if A
denotes the category of non-empty finite totally ordered sets with non-decreasing
maps, then S(K) is the contravariant functor A — (Sets) that maps the set n =
{1,...,n} tothe set of non-decreasing maps f: n — Vert(K) such that the convex
hull of the image of f is a simplex of K. Since A is a subcomplex of K we have
S(A)(n) € S(K)(n) for all n. Consider the quotient simplicial set S(K)/S(A),
i.e. the functor n — S(K)(n)/S(A)(n). Forming the geometric realization of this
simplicial set we obtain |S(K)/S(A)| = |S(K)|/|S(A)| = K/A. This shows that
K /A is the geometric realization of a simplicial set. By [FP, Corollary 4.6.12] the
geometric realization of any simplicial set is triangulable. 0

Proof. (Lemmal[2.3.6) We may assume that .S is open in a closed subscheme X of
P2. Let T denote the complement of S in X. Let S?*! denote the real 2n + 1-
sphere. We view S?"*1 as a subset of C"*!. We can then write P"(C) as the
quotient S?"*+1/U(1) with the usual action of the unitary group U(1) on S?+1,
The map

st (CN, (Z[), ce ,Zn) — ((Zizi)i, (Zizj)Kj)
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thus induces a closed embedding P"(C) < C of topological spaces such that
each composition
R?" = C" < P*(C) — CN =R?N

is a regular rational embedding. Using this embedding we may embed T'(C) and
X (C) as bounded semi-algebraic sets in R?Y. Applying the semi-algebraic trian-
gulation theorem to the system { X (C), T'(C)} realizes X (C) as a finite simplicial
complex with subcomplex 7'(C). Since S¢ = X (C)/T'(C) the previous lemma
yields the claim. 0

We now explain point (IT). Write G = Z/[ and let gy denote a fixed generator
of G. We keep the notation X = S' — S, Y = X/G and Z!'S = S!'/G for S a
quasi-projective scheme over C. Recall that we denoted by ¢; € H?(Y,Z) the first
Chern class of the line bundle on Y corresponding to the character G — C* map-
ping go to exp(2mi/l). The assertion will be clear after showing that the elements
c1Na € HPM(Y,Z) for a € HEM(Y,Z) obtained by capping with ¢; correspond
to the elements in [St] and [ Yo] obtained by the operation of cascades ([St, Section
3]). Let us recall the operation of cascades.
Consider a chain complex K, of free Z[G]-modules. We have the following oper-
ations on K,

U:ZQZK**)K*, T=1d— go: Ki > K.
geG

In the following we will use the letter p to either mean 7 or 0. If p = o and
the context is fixed p will denote 7 and vice versa. Following the notation in [St]

and [Yo] we will denote by K - resp. K7 the kernel resp. image of p. The i-th
—1 —1

homology group of K? = resp. K{ will be denoted by H (K,) resp. H (K).

By assumption on the action of G on K, one easily verifies the following lemma.

Lemma 23.9. K = K?

From the short exact sequence

0— s KPP K, KP 0

we obtain a boundary operator HY (K,) — H, f:(K «) on the level of homology.
In view of the above lemma we may compose the boundary operator of ¢ and 7 to
obtain a map

Dyt HE(K.) — HYy(K.)

that decreases the degree by 2. We note that the image of I',, is [-torsion ([Na, The-
orem 1.7]). Stein calls the elements that are derived from an element o € H? (K,)
by repeated application of I, the cascades of a.

In view of point (I) we may replace S by its one-point compactification and hence-
forth assume that S has the structure of a finite simplicial complex. Consider now
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the relative simplicial chain complex C, = C2(S', S). We then have an action of
G on C, that makes C, into a complex of free Z[G]-modules. By [St, Section 4]
we have an isomorphism H? (C,) = H2(Z'S, S) and hence an operation

T,: HX(Z!S,8) — H2 ,(Z'S, S).

Since simplicial homology and singular homology coincide we may further iden-
tify H2(Z!S, S) = H.(Z'S,S) = HEM(Y'). We then need to prove the following
lemma.

Lemma 2.3.10. Under the identification H>(Z'S,S) = HEM(Y') the operation
I, equals capping with ¢y up to multiplication with an element of (7,/1)*.

Proof. In the proof we will use the notation and results of Appendix [A] We shall
need one more ingredient. Let

§: Hom(G,C*) — H*(G,7)

be the boundary operator derived from the short exact sequence

exp

0 Z C C* 0.

We will construct a natural map
H*(G,Z) — H*(Y,Z)

such that for each character x the element §() is mapped to c1 (L) € H?*(Y,Z),
where L, is the line bundle over Y induced by x. For this let BG be a model of
the classifying space of G and E'G its universal covering space. By the universal
property of BG there is a unique (up to homotopy) map Y — BG such that X —
Y is the pull-back of EG — BG along Y — BG. Since H*(BG,Z) = H*(G,Z)
we obtain the desired map H*(G,Z) — H*(Y,Z). The fact that §(x) is mapped
to c1 (L, ) follows easily from the long exact sequence in cohomology derived from
the exact diagram

exp

C* 0

exp J’

0—Z—C(Y)— C'(Y)* —0

0 Z C

of sheaves on Y. Here C°(Y") resp. C°(Y)* denotes the sheaf of C-valued contin-
uous resp. C-valued continuous and non-vanishing functions on Y.
Now, since C,, = C2(S!, S) is a complex of free Z[G]-modules we have

H.(G,Cy) = H(C./C]) = Hy(CY) = Hu(Z'S,8) = HM(Y, Z).
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Moreover, we see from the construction of cap products in group (co)homology
(see Appendix [A)) that the diagram

Hi(G,Z) x H;(G,C,) —" H; (G, C,)

J

H(Y,Z) x H?M(Y,Z) —"— HPM(Y, 2)

commutes. We consider the element o € H?(G,Z) = 7Z/I corresponding to the
extension

a: 0 Z diag

Z|G] - 7[G] Z 0.

Here Z[|G] — Z is the map > Agg +— > A,. Again since C, is a complex of
free Z[G]-modules we see that the morphisms a (V' -: HPM(Y,Z) — HPYy (Y, Z)
and T : HPM(Y,Z) — H}™,(Y,Z) coincide. Finally, since « is mapped to some
multiple of c; under the map H?(G,Z) — H?(Y,Z) depending on the choice of
the generator g € G, the claim follows from Lemma[A.4] 0

2.4 Specialization for the Classical Groups over finite Fields

In this section we investigate the specialization map CH*BG¢ — CH *BGFP,
where G belongs to the class of classical groups GLy,(F,), Spa,, (Fy). On(F,) and
SOy, (Fy) over some finite field F, of characteristic p. For this we need to know the
structure of their /-Sylow subgroups. Of course, this is well-known so let us gather
the results we shall need.

Lemma 2.4.1. Let 1 be the order of q in (Z/1)* and b = vi(q" — 1).
(1) If I # 2,p the I-Sylow subgroups of the above list of classical groups are
isomorphic to a product of groups of the form Z.]1% 1 7./ 1°.
(1) If ¢ = 1 mod 4 the same assertion holds for the 2-Sylow subgroups of the
groups GL,,(Fy), Spy,,(Fq) and Ogp,i1(Fy).

Proof. The first part is proven in [Wei] by A.J. Weir. We will give a slightly dif-
ferent version of Weir’s proof using an argument of Quillen used in the proof of
Lemma 13 in [Qu]. This way we will also obtain part (ii).

Let us write n = dr + e for 0 < e < r. If we denote C' = IF;(y4;)* then the natural
action of C' on [F (1) gives a faithfull r-dimensional representation over IF,. Now
let S; act on C? by permuting the factors then Sy x C? has an dr-dimensional
faithfull representation and after adding a trivial e-dimensional representation we
may view Sy C = Sy x C? as a subgroup of G Ly, (F,).

We claim that the index of S; ¢ C in GL,,(F,) is prime to [ if  # 2 or I = 2 and
¢ = 1 mod 4. Note that this index is given as

. L |
[GLo(F,) : S00C) = " V2 [ (@ - ) [[ -+
i;j(lr) =1
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so one only needs to check that the last factor is an [-adic unit. For this one can use
the /-adic logarithm
log: 1 +1%Z; — "7y,

which is an isomorphism preserving the valuation for all v > 1 if [ # 2 and all
u>2ifl =2.Soif | # 2 orv;(¢" — 1) > 2 we obtain

u(q’" — 1) = v(log(¢’"))
= ui(jlog(q"))
=v(j) +vi(log(q"))
=v(j) +u(¢" —1)

Let us now assume [ = 2 and ¢ = 1 mod 4. Then r = 1 and d = n. Moreover,

-1 _
T =
follows.

If we write d = bg + b1l + ... + bsl® with 0 < b; < [ we therefore obtain

= j mod 4 and therefore Ul( ) = 1 if and only if v;(j) = 1. The claim

O(#GL,(F,)) = v (#(S41C)) = bd + Z bipi(l)

with (1) = Y44 15, Setting Ng = band N; = bl’ + (1) for i > 0 we can
rewrite this as

v(#GLy(F Zb Ni.

From this point we can use the argumentation of [Wei]: Let G; be an [-Sylow
subgroup of GL,;i(Fq). Then G; has order N;. Hence [[;_, Gf" is an [-Sylow
subgroup of GLy,(F,). Since C C GL,(F,) we see Gy = Z/I°. Inductively we
obtain G; = Z/1% 1 7,/1° for then G; has the right order.

For Sp,,, (F,) we recall Spy,,(Fy) = ¢™ (¢ — 1)(¢* — 1) - ... - (¢*™ —1). If
r is even an [-Sylow subgroup of Sp,,,(F,) is already an I-Sylow subgroup of
GLom(Fy). We may thus assume that 7 is odd. In this case the factors that are
divisible by [ are ¢*>" — 1,...,¢*>"* — 1, where 2m = 2rk + a for 0 < a < 2r.
Writing k = by + byl + ... + byl with 0 < b; < [ we thus obtain

vi(SPa (Fy)) = vi(#G Lok (Fg2)) = bk + Z bipi(1)

In the case of Ogp41(F,) we note that # Ogp41(Fy) = # Spy,,(Fy). One can
then deduce the assertion for Sps,, (F,) and Ogy,41(F,) in the same way as for
GL,,(F,). For the details we refer to [Wei]. O

Remark 2.4.2. If [ is a prime that does not divide ¢ — 1 then every [-Sylow sub-
group of SL,,(F,) is also an [-Sylow subgroup of GL,,(F,). This follows from
‘ GLn(Fq)m SLn(Fg)| = ¢ — 1.
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Consider now an odd prime divisor ! of ¢ — 1 and an [-Sylow subgroup P of the
symmetric group .S,,. Since [ is odd we may view P as a subgroup of SL,,(F,). It
follows from the proof of the above lemma that an [-Sylow subgroup of SL,,(IF,)
is then of the form

P x {diag(ar, .., an) | [J as = 1},

where P acts via permutations and the a; belong to a fixed [-Sylow subgroup of
C = F,(w)*. This group is not a product of groups of the form Z/1% 1 Z/1°.

Proposition 2.4.3. (i) The specialization map CH* BG¢c — CH *BGFP for the
classical groups G = GL,,(IF;), Spa,,,(Fq), On(Fq) and SO, (F,) over some
finite field ¥, of characteristic p become injective after inverting 2p.

(i) If ¢ = 1 mod 4 the specialization map for GLy,(Fy), Spa,,,(Fq) and Ozp11(Fy)
become injective after inverting p.

(iii) If S denotes the product of p and all prime divisor of ¢ — 1 the specialization

map for SLy, (Fy) becomes injective after inverting S.

Proof. We need to check that the specialization map of the respective [-Sylow
subgroups are injective, where in (i) we consider a prime [ not dividing 2p, in (ii)
we consider a prime [ different from p and in (iii) we consider a prime ! not dividing
S.

In any case we know that these [-Sylow subgroups are products of groups of the
form Z/1% { Z/I1°. Let us check that conditions (i)-(iii) of Proposition hold
for G = Z/I’. Choosing an [’-th root of unity we may identify Z/I° = ups.
Note that reduction induces an isomorphism 15 (Q,) = 15 (Fp). Thus (i) follows
from Example [I.2.12] and (iii) is an immediate consequence of Lemma[2.2.5] We
know that the complement of the zero section in Op (I°) approximates B () (cf.
the proof of Lemma [2.2.5)). This space can be cut open into spaces of the form
A' — {0} x A*. Hence condition (ii) holds. Then using Propositionwe see
that the specialization map for the group Z/IZ¥ 1 Z,/I’Z is an isomorphism. The
general case follows from the Kiinneth formula (Lemma|I.8.6). O

Remark 2.4.4. A p-Sylow subgroup of GL,(F,) is given by the upper triangu-
lar matrices with 1’s on the diagonal. The specialization morphism is not in-
jective in this case. For n = 2 this Sylow subgroup is just (Z/pZ)® with a =
vp(q) and its Chow ring in characteristic p is trivial while in characteristic 0 it is
Z[tl, e ,ta]/(ptl, e ,pta).

2.5 Specialization for arbitrary finite Groups

We have seen that the specialization map

oG- CH*BGQP — CH*BG]FP
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is an isomorphism after inverting p for the finite cyclic groups and wreath products.
In the next Chapter we will see that it is also an isomorphism for some classical
groups over finite fields. Morever, the Chow ring CH* B GIP‘p is p-torsion free in
these cases. One can ask whether this is true for every finite abstract group G.

Question 2.5.1. Let G be a finite abstract group. Is the specialization map
. * — * —
injective (an isomorphism) after inverting p?

It CH *BGFP is generated by Chern classes of representations of GFP, we
know that o is surjective by the theory of Brauer lifts. In this section we conduct
a brief discussion of the above Question. By the usual transfer argument it suffices
to prove injectivity of og: CH *BG@p — CH *BGFP in the case of GG being an
l-group, where [ is a prime not equal to p. The assertion for etale cohomology is
true by Corollary 2.2.12] Hence by looking at the commutative square

CH*BGQP ® Ly —— H*(BGQpaZl)

N

C’H*BGFP QL — H*(BGI‘va Zy)
we see that it would be sufficient to prove that for each I-group G the cycle map
CH*BGQP ® Z; — H*(BGQP7 Zl)

is injective. If GG is an [-group with exponent > 1 we can chose a normal subgroup
H in G such that G/H = Z/I. Using induction on the exponent of G we see that
injectivity would follow from an affirmative answer to the following question.

Question 2.5.2. Let X be a smooth scheme over some field k. Assume that for
a prime | # char k we have a free action of G = 7/l on X. If the cycle map
CH*X ® Z; — H*(X,Z;) is injective does the same hold true for CH*(X/G) ®
7y — H*(X/G,Z)?

We have seen that a similar assertion holds in the case of cyclic products Z!.S
for S quasi-projective and smooth over C admitting a cell decomposition by us-
ing the results of Stein and Yoshioka (cf. Lemma [2.3.4). We highly expect that
the same is true for any field of characteristic different from [ that contains the -
th roots of unity. For this one could try to compute the etale cohomology groups
H*(Z'S,7;) in terms of a basis for H*(S, Z;) similar to what Stein and Yoshioka
did.

At last we want to mention another example in which the specialization map be-
comes an isomorphism after inverting p.

Proposition 2.5.3. Let S be a scheme over Z, which has a decomposition into
affine cells. Then o: A.(Sg,) — A«(Sg,) is an isomorphism after inverting p.
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Proof. Let Agp an affine open cell in Sz, and W' its complement in S. Consider
the commutative diagram

0—— AL (Wg,) — Au(Sg,) — Au(AL ) —0

R Y s

0—— A,(Wg,) —— Au(S5,) — A*(Agp) —0

We claim the upper row is exact and the lower row becomes exact after inverting p.
This holds since the cycle map A, (X) ® Z; — H,.(Xgser,Z;) is an isomorphism
for schemes X with a decomposition into affine cells. Here X is defined over an
arbitrary field k£ and [ is a prime different from the characteristic of k. In particular,
H,;(X,7Z;) = 0 for odd i. The proposition thus follows from noetherian induction.

O

3 The Chow Ring of the Classifying Space of some Cheval-
ley Groups

We recall that Chevalley groups are the finite groups of the form G(FF,;), where G
is a connected split reductive group scheme over Spec Z. The goal of this chapter
is to compute C H* BG(F,)c in some special cases.

In [Gu] Guillot computes the mod I Chow ring of GL,,(F;) considered as an al-
gebraic group over C for prime numbers [ # 2, p by using a similar approach as
Quillen in [Qu], where he computes the cohomology ring of GL,,(F,) with mod-
coefficients. Guillot’s result is

ELn(Fq)/l = Z/Z[CT, Cory v ,Cmr];

where r is the order of ¢ in (Z/1)* and n = mr + e for 0 < e < r. He also shows
if IF, contains the [°-th roots of unity for some integer b, then

A, )/l =2/ P, e

Our approach will be the following. In view of Proposition |2.1.3| and Proposi-
tion we will first consider G(F,) as an algebraic group over IF‘p, where p =
char IF,, and then compute CH*BG (Fq)f?p- This turns out to be a much sim-
pler task. The reason is that by Corollary we have a canonical isomorphism
BG(Fq)g, = [Gf,/Gg,] of stacks, where the action of G on Gg, is given by
conjugation with the g-th power Frobenius. It is this presentation of BG(Fq)H:-p
that enables us to compute its Chow ring.

Let us first take a look at the case G = GL,, for n = 1, 2. In the following exam-
ples o will denote the g-th power Frobenius on G, resp. GLo and T" will denote

the maximal torus of diagonal matrices.
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Example 3.0.4. (G,,, ~ A" — {0} via weights ay,...,a,.) This is an applica-
tion of Lemma [I.6.3] and Proposition [I.2.8] Let us write V' = A" for the G,,-
representation with weights ay, ..., a,. If we let G,, act on P(V') with the same
weights then V' — {0} — P(V) is a G,,-equivariant principal G,,-bundle and the
corresponding line bundle is given by O(1). Hence by Proposition @ we have
A, (V —{0}) = A% (P(V))/c1(O(1)). Then using Lemma|T.6.3|we get

A5, (V = {0)) = Zi) fen(V) = 211 ([ ai)e"

As a special case we may consider G, acting on G, via conjugation or o-conjugation
with o the ¢-th power Frobenius. This means weight 0 resp. weight ¢ — 1 and there-
fore Ag, (Gy,) = Z[t] in the conjugation case and Az, (G,) = Z[t]/(¢ — 1)t in
the o-conjugation case.

Example 3.0.5. (GL,, ~ GL,, D T via conjugation, i.e. X -G = G71XG.)
The unit section of GL,, — Spec k is GL,-equivariant. Therefore the pull-back
Aqr, — A&, (GLy) is injective. Since GLy, is open in A" this pull-back fac-
tors as Agp  — AGp. (A™) — Ay, (GLy). Here the first map is an isomor-
phism and the second is surjective. It follows that A% — Afp (GL,) is an
isomorphism. Thus we obtain Ag; (GLn) = Zlci,...,c] and AL(GL,) =
Zlty, ..., tn).

Note that we cannot apply this argument in the o-conjugation case since there is
no fixpoint for this action on GL,,.

Example 3.0.6. GLy .~ GLy D T via o-conjugation, ie. X - G = G~ X0o(G).)
This case can be easily dealt with using a similar approach as in [EF]. We first
compute A% (GL2). T operates on V' = Mat(2 x 2, k) via

T To M0\ A M

r3 T4 0 )\2 o )\?)\2_11'3 )\%/\2_1.%4
Thus the Chern roots of V' in A’ are given by

o] = (q — 1)t1, g =qlog —t1, a3 =qt1 —t2, ag= (q — 1)t2.
Note that the underlying scheme of GLs is isomorphic to A* — V(2124 — 2923).
Applying Proposition to the T-equivariant G,,,-bundle A*—V (2124 —x023) —
P3 — V(124 — 2223) shows
A7(GLy) = A3 (P? — A)/e1 (O(1))

with A = V(2124 — x2x3). Hence we have to compute

Ap(P? = A) = AT (P?)/1,
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where [ is the ideal in A% (P3) given by the image of the push-forward AT (A) —
AT (P?). Note that we computed A% (P?) in Lemma To compute I we note
that the image of the Segre embedding

T PUx P PP ([0 @], [yo s 1)) — [Zovo : Ty 210 ¢ T1y1]

is equal to A. If we let T act on P! x P! via D - (z,y) = (D2, 0(D)y) then 7
becomes a T-equivariant map. Let ¢; denote the pull-back of ¢ (Op1(1)) via the
projection p; : P* x P! — P! fori = 1,2. Using Lemma on P! we compute

(1) ¢1=[0xPY7 —t;and & = [P* x O] + gt

Letas usual ¢ = ¢ (Ops(1)). From 7*Ops (1) = p;Op1 (1) @ p3Ops (1) we obtain
7*(¢) = (1 + (2. Hence by the projection formula

(2)  (m(1) = mu(Cr) + ma(C2)-

Now by Lemma I@ we have that A%(P! x PY) = A%L(P') ®az. Ax(PL) is
generated as a A’.-module by 1, (1, (2 and (1 (2. From equation (2) we see that the
image of m, is generated as a A% (IP?)-module by 7.(1),7.(¢1) and 7.(¢1¢2). To
compute 7, (1) we can use Lemma [1.7.4] since m, (1) = [V (2124 — zox3)]7. We
obtain

m(1) = 2¢ — (g — 1)(t1 + t2).

From equation (1) we deduce

m(C1) = [V(z1, 22)]r — timi(1) = [V (z1)]r[V (22)]7 — tami(1)
= (¢ —a1)(¢ — az) —t1m(1)
= (% —qaC+ (¢ — 1)es,

where ¢; = t1 + t2 and ¢ = t1t9. Here [V/(2;)] = ( — «; holds by Lemma
We are left to compute 7, ((1(2). For this we deduce from equation (1)

GG = [0 x 07 — t1(C2 — qC1) — gt}

and thus

me(C1G2) = [V (w1, 22, 23) )1 — t1(ma(C2) — qma(C1)) — qtima(1)
= (C+a)(C+ @) (¢ + a3) — t1(m(Ga) — gme(G1)) — gtime(1).

Here we have used the equality [V (z1, 22, 23)]r = [V (z1)]7[V (22)]7[V (23)]7.
We see that 7.((1{2) already lies in the A% (P3)-module generated by m.(1) and
74 ((1). Putting all this together we thus obtain

A7 (GLa) = Zlt1,t2]/((a — Der, (¢ — Dez, ea(V)).
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Recall V' = Mat(2 x 2, k). Writing c¢4(V) = a1 ... a4 as a polynomial in ¢; and
co we getcs(V) = (¢ — 1)%(q + 1)%c3 — q(g — 1)cac?. Hence we obtain

A3 (GLg) = Zlt1, t2]/((q — V)er, (¢° — 1)ca)

Abyr, (GLy) = Zler, 2] /(g — Vex, (¢ = D)ea),

where the result for Ag; (GLz) follows from Corollary (1.9.14] since the image
Im (AL (V (2124 — 223)) = AL(V)) = ((¢ — 1)1, (¢* — 1)cz) is generated by
elements lying in Agy; (V) = A,

Let us now treat the general case.

Proposition 3.0.7. Let G' be a connected split reductive group over Iy with split
maximal torus T. We write S = Sym(T )= A} and S4 = A%l. If o denotes the
q-th power Frobenius, we have a natural action of o on S, that we will also denote
by o.

Let P O T be a parabolic subgroup with Levi component L and consider the action
of L on G by o-conjugation. If Wg = W(G,T) and Wi, = W(L,T) denote the

respective Weyl groups we have
A} (G)g = 55/ (ST).
If G and L are both special we have
ALG) = S"/(f —af | | € STC).
Before we proof this proposition we state two lemmata.

Lemma 3.0.8. Let A — B be a faithfully flat ring homomorphism and I an ideal
of A. Then IBNA=1.

Proof. We have to see that A/I — B/IB is injective. But this map is the base
change of A — B by A — A/I, thus again faithfully flat and hence injective. [

Lemma 3.0.9. (i) Let R C S be an extension of rings. Assume there exists an
R-linear surjective map f: R — S™ for some n. Then R = S.
(i) If R C S C T is an extension of rings such that T is a free module over S
and R of the same finite rank, then R = S.

Proof. (i) Taking the highest exterior power A% (R") of R"™ as an R-modul and
the highest exterior power A%(S™) of S™ as an S-modul, the map f induces a
surjective R-linear map A%, (R™) — A%(S™). In other words S = Rz for x € S*.
In particular, we find 7 € R such that 22 = rz. It follows z = r € R and hence
R = S. Part (ii) follows from (i). ]
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Proof. (of Proposition ) Let us first consider the case that G and L are special.
To compute A%.(G) we consider the action of 7' x T on G given by (g1,62) - g =
glgggl. Using the embedding 7' — T x T, g — (g,0(g)) we get a morphism

[G/T] = [G/(T x T)]

which is a principal (7' x T') /T-bundle. But (T' x T") /T = T via the map induced
by (g1, 92) — o(g1)gs - Hence by Proposition we have

AY((G/T)) = A*([G/(T x T))/TA*(IG/(T x T))).

Thus we need to compute A*([G/(T x T')]). For this let B be a Borel subgroup of
G such that T C B C P. By Lemma[l.5.7|we can then identify

A([G/(T x T)]) = A([G/(B x T)]) = A7(G/B)
and since G is special we obtain from Proposition
A(GHT xT))) = S@gwg S=(S@zS)/1®f—f®1]|fe Sy

Let x € T be a character of T'. Then y acts on A*([G/(T x T')] by multiplying
with the element oy ® 1 — 1 ® x as follows from the definition of the isomorphism
(T x T)/T = T. Therefore

AN(G) = S/(f —af | f € SY9).

From this we deduce the result for A7 (G) in the following way. Let us write I for
theideal (f —of | f € SKVG) in $"&. We remark that L N B is a Borel subgroup
of L containing 7' by [Bo, Proposition 14.12]. Consider the L/(L N B)-bundles
[Speck/(L N B)] — [Speck/L] and [G/(L N B)] — [G/L]. Since L is special
we obtain from Proposition [I.9.8]

1 ©ANL/(LNB)) = Apnp = At
Ap(G) @ A*(L/(L N B)) = Apnp(G) = A7(G).

Since A% = SWr by Theorem and since A*(L/(L N B)) is a free abelian
group of rank | W |, we deduce from the first equation that S is a free 5"V~ -module
of rank |[Wy|. In particular, SV — S is faithfully flat. It follows 1.5 N SWr =
ISYL and that S/IS is a free SVt /IS"L-module of the same rank |W,|. The
second equation tells us that A%.(G) is a free A7 (G)-module of rank [W7|.
Therefore

SWL/1SWE ¢ A% (G) C A%(G) = S/IS

and A% (G) is free over S /ISW and over A% (G) of the same finite rank |W7|.
Hence A% (G) = SVt /1St by Lemma

It remains to show A} (G)g = Sg/ L/ (SG) in the non-special case. Using the
same argumentation as in the special case we arrive at

Ap(G)g = So/(f —of | feste).
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It follows from [De, Theorem 3] that Sg ¢ is generated as a (Q-algebra by dim T’

homogeneous algebraically independent elements. Hence A7.(G)q = Sg/ (SJVFVG).
Now by Theorem we know. A*L(G)Q = A*T(G)(S/L. Since S(S/L — Sg is
finite free ([De, Theorem 2 (d)]) it is also faithfully flat. Hence by Lemma [3.0.8
we obtain S(g/ LN SKVG So = SKVG S(S/ © and the assertion follows. O

Theorem 3.0.10. Let k be a field containing F,. Then the following equations
hold.

CH*BGLy,(Fy)r = Zlc1, ..., cn)/((g = Der, ..o, (¢ = 1)ep)
CH*B Spoy,,(Fg)r = Zca, ca, . . . ,CQm]/((q2 — 1)eo, (q4 — ey, ..., (qzm — 1)com),
CH*BSL,(Fy)r = Z[ca, c3, . .. cenl/ (@ = Dea, (¢ = Des, ..., (¢ = 1)en),

where the c; are the i-th Chern classes of the canonical representation of the re-
spective groups.

Proof. Let G be one of the groups GL,,, Sp,,, or SL,. By Corollary we
have BG(F,), = [Gk/(Gy], where the action is given by conjugation with the g-
th power Frobenius. Moreover, G is special ([Se2, Section 4.4]) and therefore the
theorem follows from the above proposition. (Recall that ¢ = A, by Theorem

and Af, was computed in Example|1.2.12]) O

Theorem 3.0.11. Let S be the product of p and the primes that divide q — 1. Then
the following equations hold.

CH*B(GL,,(Fg)c)2p

= Z[(2p) " Yler, ... enl /(g = Ve, (@2 = Ve, ..o, (@ = 1)en)
CH" B(Spy,, (Fg)c)2p

= Z[(2p) M[ea, ca - coml /(¢ = Dea, (¢F = Vews o, (7™ = Veam),
CH*B(SL,(Fy)c)s

= Z[S Yca, 3,y el /(% — D)o, (¢2 — ez, ..oy (¢ — 1)en),

where c; denotes the i-th Chern class of the Brauer lift of the canonical represen-
tation of the respective groups.
If ¢ = 1 mod 4 it suffices to invert p in the first and second equation.

Proof. If G is one of the groups GL,,, Spy,,, or SL,, the previous theorem shows
that the Chow ring of BG(F,);, is generated by Chern classes of the canonical
representations of G(IF,)x, where k is any field containing [F,. The theorem thus
follows from Proposition and Proposition (). O
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4 The Chow Ring of the Stack of level-n Barsotti-Tate
Groups

4.1 The Stack of truncated Displays

Let R be an Fp-algebra. We denote by W,,(R) the ring of truncated Witt vectors
of length n. Let I, p C W, (R) be the image of the Verschiebung W,,_(R) —
W, (R) and J,, r C W, (R) be the kernel of the projection W,,(R) — W,_1(R).
The Frobenius on R induces a ring homomorphism o: W, (R) — W, (R) and
the inverse of the Verschiebung induces a bijective o-linear map o1: I,41.r —
W, (R). Note that pR = 0 implies I,, gJ,,. g = 0, hence we may view I,, ;1 r as a
Wy (R)-module.

Truncated displays were introduced in [La]. Let us recall the necessary notations.
For now we are only going to need the following description of truncated displays.

Definition 4.1.1. A truncated display of level n over an F,-algebra R is a triple
(L, T, V) consisting of projective W,,(R)-modules L and T of finite rank and a
o-linear automorphism V: LT — L & T.

A morphism between truncated displays is defined as follows. First we can use
U to define o-linear maps

F:LeT—LaeT, [+t~ p¥()+ Y1),

Fi: Lo (T @w,(ry Int1,r) > LT, 1+ (t®w)— V() + o1(w)¥(1).
Then a morphism between two truncated displays (L,7T,V) and (L', 7', 9’) of
c g ,where A € Hom(L, L"), B € Hom(T, L'),
C € Hom(L,T' ®y, (ry Int+1,r) and D € Hom(T,T") such that

level n is given by a matrix (

F
LeT—LtsLeT L& (T @w,(g) Ins1r) —— L&T

| L

/ y F / /
rer—lL'eT L'® (T ®w,(r) Int1,r) — L' @ T’

commute.

The height of a truncated display is defined as the rank of L & 7" and the dimension
as the rank of the projective R-module 7'/, gT'. Both are locally constant func-
tions on Spec R.

Let Disp,, — SpeclF,, denote the stack of truncated displays of level n. That is for
R an [Fp-algebra Disp,,(Spec R) is the groupoid of truncated displays of level n. It
is proved in [La, Proposition 3.15] that Disp,, is a smooth Artin algebraic stack of
dimension zero over [F,, with affine diagonal.

For h € Nand 0 < d < h we denote by Dispf;d the open and closed substack
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of truncated displays of level n with constant height h and constant dimension d.
Then

Disp,, = H Dispﬁ’d.
h,d

By the lemma below it suffices to compute the Chow ring of Dispz’d.
Lemmad4.1.2. Let Z;,i € I be a family of stacks. Then A*(][; Z3) = [ [, A*(%5).

Proof. We write 2" = [[; Zi. Let T be a scheme and T — 2" a morphism. This
morphism defines a decomposition [ [, 7; of 7" into open and closed subschemes.

Note that only finitely many 7; are non-empty since 7" is of finite type. We know
A (T) = @, A«(T;). Thus we get a natural map

[[47(2) — a=(2).

To see that this defines an isomorphism, it suffices to note that for c € A*(Z") the
map ¢(T — Z) sends A, (T;) to A.(T;). This follows since by definition of the
operational Chow ring the maps ¢(T" — 27) and ¢(T; — Z") are compatible with
the push-forward of T; — T'. O

A Presentation of Disp"?. We will adopt the notation of the proof of Proposi-
tion 3.15 in [La]. Let X/ be the functor on affine [Fp-schemes with X,}f’d(R) =
GLy, (W, (R)). This is an affine open subscheme of A™”. Furthermore, let G be

the functor such that Gﬁ’d(R) is the group of invertible matrices ( é g > with

A € GLy_¢(Wu(R)), B € Hom(Wy,(R)?, Wn(R)"~%), C € Hom(W,(R)"~%, 1%, | &)
and T € GLy(W,,(R)). Then G is a connected algebraic group of dimension
nh?.

Remark 4.1.3. Since I3 p is in bijection to R via o1 we may view G?’d(R) as
the group of invertible matrices with entries in R with respect to the multiplication
given by

A B\[(A B\ AN AB' + BD/
C D ' D) \ Co(A)+ao(D) DD’ ’

where in the four blocks we have the usual matrix multiplication.

Let ﬂﬁ’d: Xff’d — Disp,, 4 be the functor that assigns to an invertible ma-
trix U € GLy,(W,,(R)) the truncated display (W,,(R)"~¢, W, (R)¢, ¥), where we
view U as a o-linear map W,,(R)" — W, (R)" via z + ¥ - oz. Now if we let
GZ’d act on Xff’d via

UG =G"100(G)
o(A) po(B)
o1(C)  a(D)
phism ﬂﬁ’d(\ll) — ﬂﬁ’d(G - U) of truncated displays. On the contrary if G defines

where 01(G) = < > , then every G € G? defines an isomor-
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an isomorphism (W) — 7/v%(W') then necessarily ¥ = G100 (G). We

thus obtain
Theorem 4.1.4. The functor WZ’d induces an isomorphism of stacks
[ 4/ ) = Dispp?.
There are the following two obvious vector bundles on DispZ’d.

Definition 4.1.5. Let Spec R — Disp,’fb’d be a map corresponding to a truncated
display P = (L, T, V).
(1) We denote by Lie the vector bundle of rank d over Dispz’d that assigns to
Spec R — Displ-? the vector bundle Lie(P) = T/1,, rT of rank d over R.
(i) By 'LieV we denote the vector bundle of rank h — d that assigns to Spec R —
Displ? the vector bundle L/ I, rL of rank h — d over R.

Remark 4.1.6. The notation ‘Lie" in the above definition stems from the fact that
the dual of L/I,, gL gives the Lie algebra of the dual display P*. For the definition
of the dual display see [Zi, Definition 19].

The Truncated Display Functor. As already mentioned in the introduction the
strategy for computing the Chow ring of the stack of truncated Barsotti-Tate groups
is to relate it to the stack of truncated displays. This happens via the truncated
display functor

¢n: BT,, — Disp,,

constructed in [La]. Let us briefly sketch the construction.

Let G be a p-divisible group over an Fp,-algebra R. The Witt ring W (R) is p-
adically complete and the ideal I in W (R) carries natural divided powers com-
patible with the canonical divided powers of p. Let D(G) denote the covari-
ant Dieudonne crystal of G. We can evaluate D(G) at W(R) — R and set
P =D(G)wr)—r and Q = Ker(P — Lie(G)). Furthermore, let F*: P7 — P
and V!: P — P? be the maps induced by Frobenius and Verschiebung of G. One
can now show that there are o-linear maps F': P — P resp. F:Q — P com-
patible with base change in R such that (P,Q, F, F') is a display which induces
the maps F'* and V*. See [La, Proposition 2.4] for the precise statement. This
construction yields a 1-morphism

¢: BT — Disp

from the stack of Barsotti-Tate groups to the stack of displays. It is clear from the
construction that the Lie algebra of G is equal to the Lie algebra of ¢(G) defined
by P/Q.

Moreover, one can prove that for all n there are maps ¢,,: BT,, — Disp,, compat-
ible with the truncation maps on both sides such that ¢ is the projective limit of the
system (¢, )n>1. The following theorem is the central result in [La].

Theorem 4.1.7. ¢,, is a smooth morphisms of smooth algebraic stacks over T,
which is an equivalence on geometric points.
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4.2 Grouptheoretic Properties of G"?

We denote by K? . m) the kernel of the prOJectlon G Gl form < n

and by K™ the kernel of the projection Gt GLj_g x GLg. Note GO =
GLp(Wy(+)). We recall the following well known facts about the Witt ring. For
an [F,-algebra R we denote by []: R — W, (R) the map r — (r,0,...,0) and
V(-): W(R) — W(R) is the Verschiebung.

Lemma 4.2.1. Let R be an Fp-algebra and x,y € R. Then [z + y] — [x] — [y] lies
in VW (R). Furthermore, V"W (R) - VW (R) ¢ V"W (R) holds.

Proof. The first part follows immediately from the fact that V1V (R) is the kernel
of the ring homomorphism Wy : W(R) — R and the fact that Wy([z]) = « holds
forall z € R.

For the second part we may assume r > s. We then write V' 2"y = V" (2"V"y)

p

[ NP

p*V" (™" y). Since pR = 0 we have the equality p(xo, z1, ...) = (0,25, 27, ..
in W (R) and the lemma follows.
Lemma 4.2.2. (i) K d )zs unipotent.
(i1) f(q}f’d is umpotent.
Proof. (i) First note that K(h’o Ly = ker(GLy,(Wy(-)) — GLp,(Wp—1(+))) is

)
unipotent. To see this we consider the Verschiebung V' (-) as a map W, (R) —
W, (R). Then by the above lemma the map

G — KM A I+ V" A]

(nvn_l) ’
is an isomorphism of algebraic groups.

Next we show that K }(an,ln—l) is unipotent. This is the group of matrices ( A B >

C D

with A € K?nsol), B e Jih=9xd o ¢ de(h Dand D € K(dnon 1)

multiplication in this group is given by

A B\ (A B\ _ AA" AB' +BD'
c p)\c o)~ \ca+pC DD

I Jth—d)xd
Starting with the normal subgroup J dxh(;‘i d) " , which is isomor-

n+1
, and then using the fact that K hr—d,0 resp. K> are isomor-
(n, 1) (n,n—1)

The

phic to G2 d(h—d)

phic to G( a? resp. Gd one obtains a filtration of K ( 1) by normal subgroups,
whose successive quotients are isomorphic to a product of copies of G,. Now we
have an exact sequence

0 K(nn 1) K(h;Ldm) K(n 1,m) 0
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h,d

and by induction we may assume that K
(n_lvm)

is unipotent.
(i) For n = 1 the assertion is obvious in view of Remark For n > 1 we use
the exact sequence

is unipotent. It follows that K (hn )

d
,m

h,d

0—— K(n,nfl) — s Kpt f(gﬁil —0.

By induction and part (i) it follows that K is unipotent. O

Corollary 4.2.3. (i) G is special.
(ii) Kff 4 is the unipotent radical of GZ’d.
(iii) The projection X,If’d — X{L’d is a trivial K(};Ol)—torson

Proof. We have the exact sequence

0 K’ff’d GZ’d GLj_4 x GL; ——0.

Now Kﬁ’d is unipotent, thus special. Since GLj;,_4 x GLg is also special part (i)
follows.

R0 h,0

Clearly the projection Xff’d — X{L’d isa K(n 1)-torsor by definition of K(n 1" Itis
trivial since K 8;01) is unipotent and X {1 4 is affine. O

4.3 The Chow Ring of Disp,,

We start with the following theorem which reduces the calculation of A*(Disp,,)
to the case n = 1.

Theorem 4.3.1. The pull-back
75 AN(Disp") — A*(Displ?)
of the truncation T, Disp,hl’d — Displf’d is an isomorphism.

Proof. Under the presentation Disp,}fb’d = [Xﬁ . / Gﬁ’d] the truncation 7, is induced

by the natural projections Xkt X {l @ and GI? — Glf’d. Thus 7, factors as

[XPd/Ghd) — (XG0 — (X G

The pull-back of the second map is an isomorphism by Lemma[4.2.2]and Corollary
To show that the pull-back of the first map is also an isomorphism let us
abbreviate X = X {L 4 and G = G By part (iii) of Corollary we know
anf’d =XxKwithK =K (hﬁ(,)l) and the projection X x K — X is GG-equivariant.
Moreover, K is an affine space by Lemma After replacing [X/G] by an
appropiate mixed space (cf. Convention we may assume that [X/G] is a
scheme. We claim that (X x K)/G — X/G is a Zariksi locally-trivial affine
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bundle. Since G is special by part (i) of Corollary the principal G-bundle
X — X/G is locally trivial for the Zariski topology and after replacing X/G
by an appropiate open subset we may assume X = G x (X/G). We then have
an isomorphism (G x (X/G) x K)/G = (X/G) x K given by the assignment
(g,7,k) — (x,k'), where k’ is defined by g~ *(g,z,k) = (1,2, k"). This proves
the claim and hence the pull-back of the first map is also an isomorphism. O

When d = h or d = 0 the group G?’d is just GLy, and the action on X{L’d is
the usual o-conjugation. If 0 < d < h we have that G’f’d is a split extension of the
h—d %
* Ed
an arbitrary matrix with entries in R (cf. Remark [4.1.3). The splitting is given by
the canonical inclusion GL;,_4 X GLg — G;L’d.

The case h = 2. Here the basic calculation of Example already yields the
following result.

Theorem 4.3.2.
A*(Dispy') = Z[t1, ta] /((p — Ve, (07 — 1)c2)
A*(Dispt?) = A*(Disp??) = Zley, 2] /((p — Ver, (p* — 1)ca),

where c1 = t1 + to and co = t1ts.

group GLj,_4 x GLg4 by the unipotent group { < E > }, where * denotes

Proof. By Lemmal|l.2.10|and Proposition |1.2.6|we have
*(Tyian2s] % 2,1 « (2,1
A*(Dispy) = AG%l(Xl ) = Ar(X77),

where T is the torus of diagonal matrices in GLo. Now the last ring is just the
equivariant Chow ring of T acting on GLy via o-conjugation and this case was
done in Example [3.0.6] O

Corollary 4.3.3.
Pic(Disp?') = Z x Z/(p — 1)Z
Pic(Disp?’O) = Pic(Disp%’z) =Z/(p—1)Z
Proof. Recall Pic Disp/»¢ = ADisp/-¢ by Proposition O
Remark 4.3.4. There is also a more direct approach to compute the above Picard
groups. By using a theorem of Rosenlicht, namely that for irreducible varieties X

and Y the natural map O(X)* x O(Y)* — O(X x Y)* is surjective, it is not
difficult to establish the following exact sequence

O(X)* /k* —— G —— Pic%(X) —— Pic(X)

for G connected and X an irreducible G-scheme. The first map assigns to a non-
vanishing regular function on X its eigenvalue. In our case we have G = T = G2,
and X = GLy. Then O(GL2)*/k* = Z with generator given by the determinant
and eigenvalue given by the character (p — 1)(t1 + t5) € T Since Pic(GLy) = 0
we again obtain Pic? (GLy) = Z x Z/(p — 1)Z.
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Let us look for generators of the free resp. torsion part of the Picard group. Us-
ing the representation of Disp?’1 as a quotient stack it is easy to see that ¢1 (! Lie") =
t1 and ¢q(Lie) = t9 hold in A*(Disp?’l), where Lie and ! Lie" are the vector bun-
dles of Definition See also Theorem below. Thus we see that Lie is
a generator for the free part and Lie ® !Lie" for the torsion part. In particular,
we obtain that (Lie ® tLie" )P~ is trivial. This can also be seen directly as fol-
lows: (Lie ® tLie")P~! being trivial means that Lie @ ‘Lie" is fixed under the
pull-back of the Frobenius map F'rob: ’Dispf’1 — Dispf’1 assigning to a display
P over an [F),-algebra R the display P° obtained by base change via the Frobe-
nius o: R — R. But by definition of a truncated display we have an isomorphism
U: LT = L? ®T7 of R-modules. Let us write ¥ as a matrix < é ZB; ) . The
mapping [ ® t — A(l) ® D(t) — C(I) ® B(t) then yields the desired isomorphism
LeT=L"T1°.

Let us put this result into context by relating it to the corresponding result for
elliptic curves. Let M1 — Speck denote the moduli stack of elliptic curves.
A morphism Spec R — M ; corresponds to a pair (C' — Spec R, o) where
C — Spec R is a smooth projective curve of genus 1 and o: Spec R — C'is a
smooth section. We now have the following diagram

Mg BTh=2d=1 ¢ Disp/=24=1

| |

h=2,d=1 . h=2d=1
BTHZI T Dlspn:1

Let us consider the pull-back map A*(Disp>') — A*(M;1). In characteristic
p different from 2 and 3 Edidin and Graham computed A*(M; 1) = Z[t]/(12t),
where t is given by the first Chern class of the Hodge bundle on M ; ([EG, Propo-
sition 21]).

By construction of the truncated display functor the pull-back of Lie to My is
the dual of the Hodge bundle on M ;. Since the dual of an elliptic curve is the
elliptic curve it follows from Remark that the pull-back of !Lie" is given by
the Hodge bundle. Hence A* (Disp%’l) — A*(Mai,1) is the map

Zltr, ta] /(0 — Der, (07 = V)ea) — Z[t]/(12t)

that sends t; to —¢ and ¢ to t. Note that p2 — 1 is divisible by 12 (in fact even
by 24) since we assume that p is different from 2 and 3. In particular, there can be
no such map for p = 2, 3 so that the description A*(M 1) = Z[t]/(12t) does not
hold in characteristic 2 and 3.

The general case. As in the case h = 2 we are reduced to consider the action
of GLj,_4 x GL4 on GLj, by o-conjugation. In the following we will write ¢; for
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(k)

the ¢-th elementary symmetric polynomial in the variables ¢1, ..., ¢, and ¢;”™ will
denote the i-th elementary symmetric polynomial in the variables ¢;, . . . , t;, where
1<j<k<handl<i<k—j+1. Werecall that Z[ty, ..., t,]5a*5% =
Z{Cgm—d)’ o 70}(11_,2—d)’ Cgh—d-i-l,h)’ - ,C((ih—d-&-l,h)]'

Theorem 4.3.5.

*(y: . hd *
A (Dlspl ) - AGLh,d X GLd(GLh>
= Zlt1, ... tn] =% (p— Ve, ..., (0" = Dey),

where the cl(l’h_d) resp. cgh_dﬂ’h) are the Chern classes of t Lie" resp. Lie.

Proof. By Lemma [1.2.10| we know A*(Disp™?) = Ay, x an,(GLy), where
the action of GL,_4 X GL4 on GLj, is given by o-conjugation. Since GL;_4 X GL4
is special with Weyl group S},_q x Sq we obtain from Proposition[3.0.7]

A6,y x oLy (GLp) = Z[ty, . .. ]S54 ) (p = 1)eq, ..., (p" = D)ep).

The assertion that the cl(.l’h_d) resp. cz(»h_dﬂ’h) are the Chern classes of Lie resp.

tLie" follows from the following simple fact. Let us write &y resp. &,_q for the
vector bundle over [x/ GLg4] resp. [/ GLyp_4] that corresponds to the canonical
representation of GLg4 resp. GLj_g4. Then Lie is the pull-back of £; under the
natural map

Disp? = [GL, /G —— [%/(GLg XGLjp_q)] — [*/GLy]

and similary for ! Lie". O
Corollary 4.3.6.

Z/(p—1)Z ifd=0,h
Pic(pispilz,d) _ /(p—1) if ,
ZxZ/(p—1)Z else.
A generator for the free resp. torsion part is det(Lie) resp. det(Lie @ ' Lie").

4.4 The Chow Ring of the Stack of G-Zips

Let us first consider the case of F-zips introduced in [MW]. We denote by F-zip
the stack of F-zips over a field &k of characteristic p > 0 that is for S a k-scheme
F-zip(S) is the groupoid of F-zips over S. If 7: Z — Z> is a function with finite
support we denote by F-zip” the open and closed substack of F-zips of type 7.
Note that

F-zip = H F-zip” .
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The stacks F-zip” are smooth Artin algebraic stacks over k which follows for ex-
ample from the following representation as a quotient stack. Let X, denote the
k-scheme whose S-valued points are given by

X (S)={M = (M,C*, D,, ) | M F-zip of type 7, M = O%}.

This is a smooth scheme of dimension h?. Here h = .., (i) is also called the
height of M. The group GLj, acts on X by

G- M = (0§,G(C*),G(Ds), Gpa(GT)7).

It is easy to see that two F-zips over S of the above form are isomorphic if and only
if they lie in the same GLy,(.S)-orbit. Thus

Fozip” = [ X,/ GLa].

An F-zip M over an F-algebra R of type 7 with support lying in {0, 1} is just a
tuple
M = (M7 C')D79007 ()01)7

where M is a projective R-module with submodules C' and D, which are direct
summands of M and isomorphisms

wo: C7 — M/D, ¢1: (M/C)? — D.
Lemma 4.4.1. Let R be an IF),-algebra. Then we have an equivalence of categories
Disp,(R) — H F-zip" (R)
7,5upp(7)€{0,1}
given in the following way
(L, T,0) = (LT, T,V (L°), ¥ |po, V7 |1o).
The above assignment commutes with pulling back. In particular, we get an iso-

morphism of stacks
7(0)4+7(1),7(1)

F-zip” = Disp,
for every type T with support lying in {0, 1}.

Proof. An inverse functor is given by the assignment

(Mv OvDﬂOOv(Pl) = (Cv M/Ca wo D 801)
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There is more generally the stack of G-zips introduced in [PWZ]. Here G refers
to an arbitrary reductive group. It is defined as follows. Let Z be an algebraic zip
datum that is a 4-tupel (G, P, Q, ) consisting of a reductive group G, parabolic
subgroups P and @ and an isogeny ¢: P/R,(P) — Q/R,(Q). To Z one asso-
ciates the group

Ez ={(p,q) € P x Q| p(mp(p)) = mq(a)}-

Now Ez acts on G by the rule

((p.a):9) = pga™"

and the quotient stack [G/Ez] is called the stack of G-zips. If G is connected Z is
called a connected zip datum ([PWZ, Definition 3.1]).

Let us recall how the stack of F-zips is just a special case of this construction. For
this let 7: Z — Z>( be a function with finite support, say i1 < ... < 4,. If we
denote ny, = 7(iy), then (n1,. .., n,) defines a partition of h = ) _, nj. We denote
the standard parabolic of type (n1,...,n,) in GLj, by P;.

Lemma 4.4.2. Let 7: Z — 7> be a function with finite support and Z =
(GLp, Pr, P, @) be the algebraic zip datum with PJ the opposite parabolic of
P and ¢ the Frobenius isogeny. Then there is an isomorphism of stacks

[GLh /EZ] :> F—ZipT .
Proof. Let S be an k-scheme. We denote by C'? the descending filtration
Cr=0L>08 15 . 50850

in Og given by the standard flag of type (nq,...,n,) and by D] the ascending
filtration
D} =0CO¥ C...cOxrt—Tmc Ok

given by the flag of type opposite to (n1,...,n,). To g € GLj(S) we assign the
F-zip
Mg = (Oga C;v g(D: )a 900)>

where ¢ is given by the restriction of g to the succesive quotients of C’?. Note that
we can consider g as a o-linear map.

If (p,q) is an element of £z we get an isomorphim M, — M, 1 of F-zips
induced by p. The fact that p commutes with the ¢; is exactly the condition
o(m(p)) = m(q).

On the other hand if an isomorphism p: M, — Mg of F-zips is given, we see that
g ~1pg preserves the flag of type opposite to (n1,...,n,). Thus g = ¢'"pg € P~
and again the compatibility of p with the ¢; implies the condition ¢(7(p))

m(q).

on
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Theorem 4.4.3. Let 7: 7 — Z>q be a function with finite support iy < ... < i,
and ny, = 7(i). Let h =), n; be its height. Then

A*F-zip” = Aqy, «..xqL,, (GLa),
where GLy, X ... x GLy,. acts on GLy, by o-conjugation. Therefore
A*Fogip” = Z[ty, ... tp) 05 [(p = Dey, ..., (p" — Dep)
with c; the i-th elementary symmetric polynomial in the variables t, . . . , ty.
Proof. By the previous lemma we have
A*F-zip" = Af_(GLp),

where Z is the algebraic zip datum (GLy, Pr, P, ¢). By definition P and P~
have the same Levi component L = GL,,, x ... x GL,, . Therefore we have a split
exact sequence

0—— Ry(P) X Ry(P™) Ez L 0,

where the splitting is given by L < Ez, | — (I, ¢(l)). Since the restriction of
the action of E'z to L is the usual Frobenius conjugation the theorem again follows

from Lemma([I.2.10] and Proposition O

Corollary 4.4.4.
Pic(F-zip") = Z" ' x Z/(p — 1)Z

We can also use Proposition[3.0.7]to say something about the Chow ring of the
stack of G-zips for an arbitrary connceted Frobenius zip datum.

Definition 4.4.5. We call a connected algebraic zip datum Z = (G, P,Q, ¢) a
Frobenius zip datum if it is defined over F, with ¢ = p“, () is the opposite parabolic
of P and y is the q-th power Frobenius c“.

We call a Frobenius zip datum Z = (G, P, P~,0%) special, if G is special and if
P admits a special Levi component.

Theorem 4.4.6. Let G' be a connected split reductive group over Fy, and Z =
(G, P,P~,0%) be a Frobenius zip datum. Let W = W (G, T') be the Weyl group
of G and Wy, = W (L, T) be the Weyl group of a Levi component L of P with
respect to a split maximal torus T C L of G. Writing S = Sym(T) one has

A*([G/Ez])q = 55"/ (51°).
If Z is special we have

A*([G/Ez]) = S"r/(f —o°f | f € SIYe).
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Proof. Arguing as in the proof of Theorem but using Lemmal|l.5.7| we obtain
A ([G/Ez])g = AL(G)a;

where the action of L on ( is given by o%-conjugation. If G is special the above
equality holds over Z. We conclude by Proposition O

Example 4.4.7. We consider the case Z = (Sp(2n), P,P~,0%). Recall that
Sp(2n) is special and the Weyl group of Sp(2n) is the wreath product S,(Z/27Z) =
S, % (Z/27)". Tt acts on Sym(T') = Z[t1, . .., t,] in the following way. S,, acts by
permuting the variables ¢1, ..., ¢, and after identifying Z/27Z = {£1} an element
(€1y...,6n) € ZJ2L" acts by (e1,...,ep) - ti = &it;.

If P is the Borel we obtain from the above theorem

A*([Sp(2n)/Ez])) = Zltr, ... tal /(@* = Der(t?), .., (¢ = Dea(t?)).

If P is the maximal parabolic subgroup fixing a maximal isotropic subspace then
L = GL,, and W, = S,, and therefore

A*([Sp(2n)/Ez)) = Zley, ..., cal /(¢ = Der(t), ..., (6" = Den(t?)).

From the above description we can easily deduce the dimension of A*([G/Ez])g
as a Q-vectorspace for a connected Frobenius zip datum Z.

Corollary 4.4.8. Let Z = (G, P, P~,0%) be a connected Frobenius zip datum.
Then dimg A*([G/Ez])qg = |Wa/WL|, where as usual W = W(G,T) is the
Weyl group of G and Wi, = W (L, T) is the Weyl group of a Levi component L of
P.

Proof. Sy is free over S(S/ < resp. Sg L of rank |W¢| resp. [Wp| by [De, Theorem
2 (d)]. Since S(S/ G Sg  is a finite map of polynomial rings it is also flat, hence
S(S/ L is locally free over 5’8] ¢ necessarily of rank |W¢g/Wr|. In fact it follows
from the famous theorem of Quillen-Suslin ([Qu3]) that S(S/ L is free over Sg/ @ of
rank |[Wq /W, but we will not need this. Since A*([G/Ez]|)g = S(SVL ®SS/G

(5’8/ ¢/ SKVG) the corollary follows. O

In the case of F-zips the above corollary reads as follows.

Corollary 4.4.9. Let 7: 7 — Z>¢ be a function with support i; < ... < i, and
set ny, = 7(ig). Let h =n1 + ...+ n,. Then

dimg A*(F-zip”)g = _n

imq A™(F-zip”)q = nil-...ongl

It turns out that a Q-basis of the Chow ring of the stack of G-zips is given by
the closures of the orbits of the action of EFz on G. To prove this let us introduce
the naive Chow group of a quotient stack.
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Definition 4.4.10. Let G be an algebraic group and X be a G-scheme. Let Z,.([X/G])
be the free abelian group generated by the set of G-invariant subvarieties of X
graded by dimension. Let W;([X/G]) be the group @y k(Y)%, where the sum
goes over all G-invariant subvarieties of X of dimension i + 1. There is the usual
divisor map div: Wi([X/G]) — Z;([X/G]) and we define the i-th naive Chow
group of [ X/G] to be

A7[X/G] = Zi([X/GY) [ div(Wi([X/G)))-

Remark 4.4.11. There is more generally a definition of naive Chow groups for
arbitrary algebraic stacks ([Kr, Definition 2.1.4]) which in the case of a quotient
stack agrees with the one given above. Thus the above definition is independent of
the presentation as a quotient stack.

Remark 4.4.12. There is a natural map AJ[X/G] — A.[X/G]. When X is
Deligne-Mumford, i.e. the stabilizer of every point is finite and geometrically re-
duced, the induced map A2[X/G|g — A«[X/G]g is an isomorphism of groups
and an isomorphism of rings if [X/G] is smooth ([Kr, Theorem 2.1.12 (ii)]).

The stack of G-zips is not Deligne-Mumford. However, we still have the fol-
lowing proposition.

Proposition 4.4.13. Let G be a connected algebraic group and X be an admis-
sible G-scheme (cf. Definition[I.3.5) with finitely many orbits such that the stabi-
lizer of every point is an extension of a finite group by a unipotent group. Then
A[X/Glg — A« X/G]q is an isomorphism.

Proof. We prove this by induction on the number of orbits. Let U denote the open
G-orbit and W its complement. We have a commutative diagram

0—— AW/Glo — AJ[X/Glog —— AU/Glg —— 0

J | J

0—— A, [W/Glg — A[X/Glg — A[U/Glg — 0

and we claim that the rows of this diagram are exact. Since there are only finitely
many orbits every G-invariant subvariety ¥ of X is the closure of a G-orbit. Since
Y admits a dense G-invariant subset every G-invariant rational function on Y is
constant. It follows A2[X/G] = @, Z[Z] where the sum goes over all G-orbits
Z of X. From this we obtain the exactness of the top row. For the exactness of the
lower row we need to see that the pull-back map A, ([X/G],1)g = A«([U/G],1)g
is surjective. But [U/G] is isomorphic to the classifying space of the stablizer group
scheme of U. By assumption and Corollary we get that A, ([U/G],m)qp —
A, (B{0},m)q is an isomorphism. Equivalently the pull-back of the structure mor-
phism [U/G] — Spec k is an isomorphism for the higher Chow groups with ratio-
nal coefficents and hence the claim follows.

79



Now the right vertical arrow is an isomorphism since both groups are isomorphic
to Q. By induction we may assume that the first vertical arrow is also an isomor-
phism. O

Recall that an algebraic zip datum Z is called orbitally finite if G has finitely
many Fz-orbits ((PWZ, Definition 7.2]). By [PWZ, Remark 7.4] every Frobenius
zip datum is orbitally finite.

Theorem 4.4.14. Let Z be an orbitally finite connected algebraic zip datum and
[G/Ez] be the corresponding stack of G-Zips. Then the following assertions
hold.

(i) A%[G/Ez]g — A«[G/Ez|q is an isomorphism.

(i) A2[G/Ez] = @, Z[Z] where the sum goes over all orbits Z.
In particular, the dimension of A.[G/Ez|g as a Q-vector space is equal to the

number of orbits.

Proof. The assumption of the previous proposition on the stabilizer group schemes
hold by [PWZ, Theorem 8.1]. ]

Remark 4.4.15. If Z = (G, P, P~,0%) is a connected Frobenius zip datum, then
it follows from the above theorem and Corollary that the number of Ez-
orbits in G is given by the order of the coset space W /W . The same holds more
generally for an arbitrary connected orbitally finite algebraic zip datum by [PWZ,
Theorem 7.5]. Moreover, a description of the closure relations between the orbits
is given in [PWZ, Theorem 6.2].

4.5 The Chow Ring of BT,

The goal of this section is to prove the following theorem.

Theorem 4.5.1. The pull-back ¢),: A*(Disp,) — A*(BT,) is injective and an
isomorphism after inverting p.

We know that Disp,, = [ | d<h Dispﬁ’d is a decomposition into open and closed
substacks. The same holds for BT,, and the morphism ¢,, maps BT,]Z 4 to Dispz’d.

By Lemma it suffices to prove the theorem for the restriction of ¢,, to BT,
The following proposition is the crucial point in the proof of Theorem4.5.1

Proposition 4.5.2. Let L be a field extension of k and Spec L — Disp,, be a
morphism. Then there is a finite field extension L' of L of p power degree and an
infinitesimal commutative group scheme A over L' such that the fiber ¢, ' (Spec L")
is the classifying space of A.

Proof. The diagonal A: BT,, — BT, X Disp,, BT, is flat and surjective by [La,
Theorem 4.7]. This means that two Barsotti-Tate groups of level n having the
same associated display become isomorphic when pulled back to a suitable fppf-
covering. It follows that the fiber (BT,,);, of a display P over some field L is
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a gerbe over L. If L is perfect there is a truncated Barsotti-Tate group G over
L with ¢,(G) = P, ie. (BT,)r is a neutral gerbe. In this case (BT,); =
BAut’(G) where Aut®(G) = Ker(AutG — AutP) is commutative and infinites-
imal again by [La, Theorem 4.7]. If L is not perfect we may consider the perfect
hull LP~™ in an algebraic closure of L. Then L. C LP" " is purely inseparable and
(BT,)r (L") is non-empty. Since (BTy,)1 (L ™) = lim (BT,)(L'), where
the limit goes over all finite subextensions L C L' € LP ", we find some L’ such
that (BT,,) 1 has a section corresponding to a truncated Barsotti-Tate group G over
L'. Thus A = Aut®(G) and L' have the desired properties. O

Remark 4.5.3. Over the open and closed substack of BT, consisting of level-n
BT-groups of constant dimension d and codimension ¢ the degree of Aut®(G"¥)
18 p”Cd. See Remark 4.8 in [La].

Note that Disp”? and BT" both admit admissible presentations in the sense
of Definition [1.3.5} In the case of Disp™ this follows from Theorem and
Lemma w To obtain the assertion for BT# 4 we use [We, Proposition 1.8]
which yields a presentation BT" = [V;"/ GL,ux] with Y, quasi-affine and of
finite type over k. Now BTT’} is smooth over Speck ([La]). Hence Y,fl is also
smooth and in particular normal and equidimensional.

We now consider the flat pull-back map ¢ : A, (Disp/>?, m) — A*(BT,]Z 4 m)
from Lemma [[.3.111

Proposition 4.5.4. ¢ : A, (Disp? m) — A*(BT#d,m) is an isomorphism af-
ter inverting p.

Proof. Letus write 2 = BTy and % = Disp/?. We fix some i, € Z and show
that ¢, : A;, (Disp?,m), — A;, (BT, m)p is an isomorphism.

Consider an approximation of # (cf. Convention by a quasi-projective
scheme Y — % so that 4; (% ,m) = A; (Y, m) and similary an approxima-
tion X — 2" of 2. Let r denote the relative dimension of X — 2. Let Z
be the fibre product X x4 Y. The morphism Z — Y is then smooth of relative
dimension 7 and we need to see that the pull-back A; (Y, m), — Ai +-(Z,m),
is an isomorphism. Note that Z is again quasi-projective since it is open in a vec-
tor bundle over the quasi-projective scheme X (cf. Remark [I.3.6). We have the
following cartesian diagram

Zy —— Zi(yy — Speck(y)

N

By Lemma it suffices to see that A;(Speck(y), m), — Airr(Zy, m), with
i =i, —dim {y} is an isomorphism. According to the previous proposition there
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is a finite field extension K of k(y) of p-power degree such that Zx = BA holds
for an infinitesimal group scheme A over K.

Since Zx is open in a vector bundle over 2k of rank r we have Zx = U/A,
where U is open in a representation V of A. Note that V' is of dimension 7.
Hence by chosing codim X € to be big enough, we may assume A;(Spec K, m) —
Ai+r(U,m) is an isomorphism. Since A is of p-power degree it follows that the
map A;(Spec K,m), = A;1.(Zx,m), is an isomorphism . Now since the field
extension K O k(y) is of p-power degree it follows from Corollary that
A;(Speck(y),m)p, = Aitr(Zy, m)p is also an isomorphism. We are done. O

Proof. (of Theorem“ 4.5.1) Since BT;, and Disp,, are smooth (¢y,): A*(Disp,,), —
A*(BT,), is an isomorphism by Lemma and the proposition above. We al-
ready know A*(Disp,,) is p-torsion free by Theorem [4.3.5] and Theorem [.3.1] -
Thus ¢} is injective.

Gathering the results of Chapter 4 we obtain

Theorem 4.5.5. (i) We have
A (BT}, = Zlp b1, ., )54 /(p = Ve, ..., (0" = L)en),

where c; denotes the i-th elementary symmetric polynomial in the variables
t1,...,th and ty,... tq resp. tgs1, ..., ty are the Chern roots of Lie resp.
tLieV.

(i1) dimg A*(BTh d)Q = ( ) and a basis is given by the cyclces of the closures
of the EO-Strata.

(iii)

Zlp~'/(p—1) ifd=0,h

Zip ' < Z[p~Y/(p—1) else,

where the generator for the free resp. torsion part is det(Lie) resp. det(Lie®

tLieV).

(Pic BT, = {

Proof. By Theorem we know A*(Disp/?), = A*(BT}" ) . Morever, we
have A*(Disp/?) = A* (Dlsp1 ) by Theorem and A* (Dlsp}f’d) was com-
puted in Theorem This proves part (i). By Lemma 4.4.T) and Lemma #.4.2]
we know that Disp;’® is isomorphic to the stack [GL, /Ez] corresponding to the
Frobenius zip datum Z = (GLy, P, P~, o), where P is the standard parabolic of
type (d, h), P~ is the opposite parabolic and o is the Frobenius isogeny. Now the
dimension of A* (Disp’f’d)@ as a Q-vectorspace follows from Corollary and
a basis is given by Theorem This proves (ii). Finally (iii) follows from (i)
together with the fact that Pic BT;"% = AY(BTp?). O
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A Group (Co)homology

Let (L., d%) and (K., d% ) be complexes of modules over some ring A. We assume
that K; = 0= L, fori < 0.
The tensor chain complex (K, ® 4 L., d) is defined by

(K* XA L*)z = ® Kp XA Lq
p+g=1i

and
dz®y) =dg(z) @y + (-1)Pz @ d-(y).

For any group G the term G-module will refer to a left Z[G]-module. If M and N
are two GG-modules the tensor product M ®zq) N is formed by considering M as
aright G-module viam - g = g—' - m. Thus the equation gm ® gn = m ® n holds
in M ®Z[G} N.

Definition A.1. Let G be an abelian group.
(i) Let K* be a cochain complex of G-modules. We define H'(G, K*) to be the
i-th hyperext group EX‘C%[G} (Z, K*).
(ii) Let L, be a chain complex of G-modules. We define H;(G, L) to be the i-th
hypertor group ToriZ[G} (Z, Ly).

When K* resp. L, is concentrated in degree O we obtain the usual group co-
homology resp. homology.

Cap products in group (co)homology. Next we want to define a cap product map
N: H(G,K) x H;(G, L) — H;_;(G, K ®z Ly).
We use the standard resolution
Po=[...—2Z[G" % Z[G] — ... - Z[G] — 7]
of Z ([Se3, Chapter 7 §3]). Here G acts on Z[G'T!] via

9-(90s---,9i) = (990, - - -, 99:)
and d; is defined by

di(907 o 792) == Z(_l)k(g()) CIEaE 7.@/% CIEaE 792)

k=1

Note that the Z[G"] are free Z[G]-modules and that P, is exact. Hence we have
H'(G,K) = H'(Homy ) (Ps, K)) and H;(G, L.) = H;(P. ®z) L+). There is
a G-map

ZIGH ) =P = Pj@z Pijy (90,--+9i) = (90,--++95) ® (gj,-- -+ 9i)
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and for each G-module K and L and every ¢ € Homgyg (P;, K) a morphism
(P, ®z Pj—i) @zic) L = Pj-i Qgiq) (K @z L), (pop )@z p @ (6(p) ).

We thus obtain morphims

Homg g (P, K) x (P ®z(q) Li) — Homgg)(Pr, K) % ((Py ®z Pi—1) @zi¢) L)

= Por_1 ®z1q) (K @z Ly)
which in turn induce a map
N: Homgg) (Ps, K)' x (P ®zi¢) L ); = (Pe ®ziq) (K ®7 Ly))j—i- (A1)
Lemma A.2. The above map passes to (co)homology yielding a cap product map
N: HY(G,K) x H;(G, L.) — H;_;(G, K ®z L.).

Proof. Let us denote the differential operators of Homyq)(Px, K), Px ®7(q) L«
and P ®z(q) (K ®z Li) by 0, 6 and d. It then suffices to prove the following
equation

(—1)'d(¢Nb)=¢Nb—0pNb (A2)

for all ¢ € Homyg(Py, K)? and b € P, @y¢) L.
Letus first assume L. = L in degree 0. Consider b = (go, .. ., ;) ®x € (P} ®gz(q)
L). We compute

d(¢ N ((g0,---,95) ®x) = (gu..-,gj)®<b(go,.--,gi)®:v)

gla"'vgi-‘rk‘)"'agj)®¢(g(]7"'7gi)®xv

a¢m((907"'7gj gl+17'"7gj)®¢(g()7“'7gk7“'7gi+1)®x

-5
gj:)

and

J
¢ 6®) =N (O (90> Gks---95) @)
= (_1)k(gl+1aug]) ®¢(907"')gk7"')gi+1) QT
J
=+ Z (_1)k(gla7gk7agj)®¢(goa7gz)®x

= (=D*(git1,---,95) @ D(Gos- s G-+ Git1) DT
k=0
] Z

+ k-H 927"'7gi+k7"'7gj)®¢(907"';gi>®x
k:l
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It follows

¢Nb—0pNb=(—1)"2(gis1,...,95) @ d(g0,...,9:) @

Jj—1i
+ (_1)k+z(gi7 s 7§i+k7 cee 7gj) ® ¢(907 v 792) KT
k=1
Jj—i A
= Z(_l)k+l(gi7 s 7gi+k’7 cee ag]) ® ¢(907 cee agz) ®x
k=0
=(—1)"d(¢ N b)

This proves the assertion in the first case.
For general L, we write again b = (go, . .., ;) ® © € Pj ®z|g) L. We then have

d(é Nb) = (dlgi, - -, 95) @ ($go, .-, 91) ® @), (=11 (gi, .., 9) @ (6(g0, - ., 9:) ® d))
= (dgi, -, 95) @ (890, -, 91) @), (=1 "6 N ((g0, - .. 9;) ® da))

and

pN((g0,---,9)®x) = (N (d(go,---,95)®x),(=1) 6N ((g0, .- -, ;) ®dx))

Hence the general case follows from the computation in the case L, = L in degree
0. O

Remark A.3. (i) Certainly one can get a more general cap product map
N: HY(G, K*) x H;(G, L) — H;_;(G, K* @z L)

using the construction above. For this one has to find an appropiate sign conven-
tion for the differential operator of the Hom cochain complex Homg g (P, K*).
However, we will not need this.

(i) We note that this definition of cap products in group (co)homology is analo-
gous to the definition of cap products in simplicial (co)homology, where one uses
the map

CA(X) = CHX) @z CR(X), (e, ...€) > (eo,...e) @ (es, ... €;).
Here X is a simplicial complex and C’kA (X)) denotes the free abelian group gener-
ated by all k-simplices of X.

If K = Z there is another cap product
N': HY(G,Z) x H;(G, L,) — H;_;(G, L.).
We will see below that N and N’ only differ by (—1) 57 Let us first explain N/

in the case i = 1. Leta € HY(G,Z) = Ext%[G} (Z,7Z). We may view « as an
equivalence class of extensions

a: 0 Z P Z 0
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of Z|G]-modules. Applying the hypertor functor TorZC) (-, L) to this sequence
we obtain a boundary operator

an - Hj(G, L*) — Hj_l(G, L*)
More generally, if « € H*(G,Z) is an extension

a: 0 Z P P Y/ 0

of length 7 we can split up this extension into ¢ short exact sequences. Each short
exact sequence yields a boundary operator on the hypertor groups as above and by
composing these boundary operators we obtain a cap product map

H'(G,Z) x H;(G, L) — H;_;(G, L)
which we will denote by .
Lemma A4. Let o € H(G,7Z). ThenanN - = (—1)i(i2+l)a N -

Proof. Assume ¢ = 1 and let o be an extension

0 Z P Z 0

of Z[G]-modules. Let P, be the standard resolution of Z as above and consider
B € Hj;(G, L«) with representative b € (P ®z(q) Lx«);. We have a commutative
diagram of complexes

0—— HOmz[G] (P*, Z) E— HOInz[G} (P*, P) EEm— HOInz[G} (P*, Z) —0
0—— P, ®Z[G} L,— P, ®Z[G] (L* X7, P) — P, ®Z[G} L,——0

with exact rows. Here the vertical maps are the maps from (A.T) (that induce the
cap product map M) applied to b. We note that the morphism

‘Nb: HOIHZ[G] (P*,P) — P, ®Z[G] (L* K7z P)
is only a morphism of complexes up to a factor £1. More precisely, the diagram
Homgq)(F;, P) —————— Homyg)(Fi+1, P)
P, ®z16) (Ls ®z P)j—i — Ps ®z(q) (Ls ®z P)j—i—1

commutes up to the factor (—1)**! as follows from equation (A-2) since §(b) = 0.
This holds for every G-module P. Thus taking (co)homology we obtain a diagram

HY(G,Z) — HY(G,7)

.m,ﬂ J.mﬁ

Hj(G, L*) W Hj_l(G, L*)
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that commutes up to (—1)°*1. Since the unit element in H%(G,Z) is mapped to
« under the boundary operator H(G,7Z) — H'(G,Z) we obtain the assertion in
the case o € H'(G,Z). The assertion for a € H*(G, Z) with arbitrary i is proven
by splitting up the extension « of length ¢ into ¢ short exact sequences. Repeating
the above argument for each exact sequence we see that « N 3 and o V' f3 differ by

the factor (—1)22:1 k= (—1)1“2“) O
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