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Abstract

Let p be a prime. We compute the Chow ring of the stack of truncated dis-
plays and investigate the pull-back morphism of the truncated display func-
tor. From this we can determine the Chow ring of the stack of truncated
Barsotti-Tate groups over a field of characteristic p up to p-torsion.
Moreover, we compute the Chow ring of the classifying space of some Cheval-
ley groupsG(Fq), q being a power of p, when considered as a finite algebraic
group over a field of characteristic p. Using specialization from characteris-
tic 0 to characteristic p we also obtain results over the complex numbers.

Sei p eine Primzahl. Wir bestimmen den Chowring des Stacks der abgeschnit-
tenen Displays. Weiter untersuchen wir die Pull-Back Abbildung des abgeschnit-
tenen Display Funktors. Dies liefert den Chow Ring des Stacks der abgeschnit-
tenen Barsotti-Tate Gruppen über einem Körper der Charakteristik p bis auf
p-Torsion.
Sei q eine Potenz von p. Dann berechnen wir außerdem den Chow Ring
des klassifizierenden Raumes einiger Chevalley Gruppen G(Fq) aufgefasst
als endliche algebraische Gruppe über einem Körper der Charactersitik p.
Durch Spezialisierung von Charakteristik 0 zu Charakteristik p erhalten wir
auch Resultate über den komplexen Zahlen.
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Introduction

In [EG] Edidin and Graham develop an equivariant intersection theory for actions
of linear algebraic groups G on algebraic spaces X . For such G-spaces they de-
fine G-equivariant Chow groups AG∗ (X) generalizing Totaros’ defintion of the G-
equivariant Chow ring of a point in [To]. These equivariant Chow groups have all
functorial properties of ordinary Chow groups. Moreover, they are an invariant of
the corresponding quotient stack [X/G], i.e. they are independent of the choice
of a presentation. Hence they can be used to define the integral Chow group of
the quotient stack [X/G]. Let us write CH∗G(X) for the equivariant Chow group
of X graded by codimension. If X is smooth CH∗G(X) carries a ring structure
which makes it into a commutative graded ring that is naturally isomorphic to the
operational Chow ring A∗([X/G]) of [X/G]. In the special case X = Spec k one
obtains for [X/G] the classifying space BG of G.
Therefore equivariant intersection theory is useful for computing Chow groups of
quotient stacks. In [EG] Edidin and Graham used their theory to compute the Chow
ring of the stacks M1,1 and M̄1,1 of elliptic curves. In an Appendix to the same pa-
per Angelo Vistoli computed the Chow ring of M2. In the later paper [EF] Edidin
and Fulghesu computed the integral Chow ring of the stack of hyperelliptic curves
of even genus. In [To] Totaro computed the Chow ring of the classifying space of
the classical groups and he treated the case of some finite abstract groups, includ-
ing the symmetric groups.
In this thesis we investigate the Chow ring of the stack of truncated Barsotti-Tate
groups and of the classifying space of some Chevalley groups. In both cases the
computation can be reduced to the situation of Proposition B below.

The Chow Ring of the Classifying Space of some Chevalley Groups. Let p
be a prime and q be a power of p. In [Gu] Guillot computes the mod l Chow ring
of the classifying space of GLn(Fq), when considered as a finite algebraic group
over the complex numbers, for odd primes l different from p. If Fq contains the
lb-th roots of unity for some integer b he also computes the mod lb Chow ring.
Using a different strategy we determine CH∗B(GLn(Fq)C) after inverting p or 2p
depending on whether q ≡ 1 mod 4 or not. We also obtain results for the groups
SLn(Fq) and Sp2n(Fq).
To explain our strategy let us consider more generally the case of Chevalley groups,
i.e. the finite groups G(Fq), where G is a connected split reductive group scheme
over Z. We then look at the specialization map

σ : CH∗BG(Fq)C → CH∗BG(Fq)F̄p .

Proposition A. (i) The specialization map for the classical groups GLn(Fq),
Sp2m(Fq), On(Fq) and SOn(Fq) becomes injective after inverting 2p.

(ii) If q ≡ 1 mod 4 the specialization map for GLn(Fq), Sp2m(Fq) and O2m+1(Fq)
becomes injective after inverting p.
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(iii) If S denotes the product of p and all prime divisor of q − 1 the specialization
map for SLn(Fq) becomes injective after inverting S.

In the proof it suffices to see that the specialization map is injective for the
respective l-Sylow subgroups of G(Fq) by the usual transfer argument. These l-
Sylow subgroups are known to be products of iterated wreath products (Z/l)oi o
(Z/lb) by work of Weir ([Wei]). The Chow ring of the classifying space of this
kind of iterated wreath products is computed over the complex numbers by Totaro
([To]), using the cycle map to Borel-Moore homology. In Section 2.3 we carry his
proof over to the case of positive characteristic by using etale homology instead
of Borel-Moore homology. It is an interesting question whether the specialization
map is always injective (an isomorphism) after inverting p for an arbitrary finite
abstract group; see Section 2.5.
As it turns out the computation of CH∗BG(Fq)F̄p is much simpler than the com-
putation of CH∗BG(Fq)C, because we have another presentation of the stack
BG(Fq)F̄p . Namely, it follows from a theorem of Lang-Steinberg that BG(Fq)F̄p
is canonical isomorphic to the quotient stack [GF̄p/GF̄p ], where the action is given
by conjugation with the q-th power Frobenius (Corollary 2.1.7). This case is dealt
with in Chapter 3 and our result is the following.

Proposition B. Let G be a connected split reductive group over Fq with split max-
imal torus T . We write S = Sym(T̂ ) = A∗T and S+ = A≥1

T . If σ denotes the q-th
power Frobenius, we have a natural action of σ on S, that we will also denote by
σ.
Let P ⊃ T be a parabolic subgroup with Levi component L and consider the ac-
tion of L on G by σ-conjugation. If WG = W (G,T ) and WL = W (L, T ) denote
the respective Weyl groups we have

A∗L(G)Q = SWL
Q /(SWG

+ ).

If G and L are both special we have

A∗L(G) = SWL/(f − σf | f ∈ SWG
+ ).

We recall that an algebraic groupG is called special, if everyG-torsor is locally
trivial for the Zariski toplogy. Since GLn, Sp2m and SLn are special we obtain a
complete description of CH∗BG(Fq)F̄p in these cases and in particular we see
that these Chow rings are generated by Chern classes of representations. Using
the theory of Brauer lifts we see that the specialization map for these groups is
surjective. We thus obtain the following result.

Theorem A. Let S be the product of p and the primes that divide q − 1. Then the
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following equations hold.

CH∗B(GLn(Fq)C)2p

= Z[(2p)−1][c1, . . . , cn]/((q − 1)c1, (q
2 − 1)c2, . . . , (q

n − 1)cn)

CH∗B(Sp2m(Fq)C)2p

= Z[(2p)−1][c2, c4, . . . , c2m]/((q2 − 1)c2, (q
4 − 1)c4, . . . , (q

2m − 1)c2m),

CH∗B(SLn(Fq)C)S

= Z[S−1][c2, c3, . . . , cn]/((q2 − 1)c2, (q
3 − 1)c3, . . . , (q

n − 1)cn),

where ci denotes the i-th Chern class of the Brauer lift of the canonical represen-
tation of the respective groups.
If q ≡ 1 mod 4 it suffices to invert p in the first and second equation.

The Chow Ring of the Stack of truncated Barsotti-Tate Groups. Let us
fix a field k of characteristic p > 0. Although the stack BT hn over k of truncated
Barsotti-Tate groups of constant height h has a natural presentation [Y h

n /GLh] as a
quotient stack with Y h

n being quasi-affine and smooth (cf. [We]), it seems unlikely
that this presentation can be used directly to compute the Chow ring due to the
complicated nature of Y h

n . Hence one either has to find a simpler presentation that
we do not know of, or relate the stack of truncated Barsotti-Tate groups to a stack
whose Chow ring is easier to compute, but still closely related to the Chow ring of
BTn.
Our choice for this stack is the stackDispn of truncated displays introduced in [La].
Displays were first introduced in [Zi] to provide a Dieudonne theory that is valid
not only over perfect fields but more generally over Fp-algebras or p-adic rings. In
Cartier theory a display over a p-adic ring R encodes the structure equations of a
Cartier module of a formal p-divisble group over R and is given by an invertible
matrix with entries in witt ring W (R), if a basis of the Cartier module is fixed.
Using crystalline Dieudonne theory one can associate to every p-divisible group
a display yielding a morphism φ : BT → Disp from the stack of Barsotti-Tate
groups to the stack of displays. While displays are given by invertible matrices
over W (R), a truncated display is given by an invertible matrix over the truncated
Witt ring Wn(R), and the morphism φ induces a morphism φn : BTn → Dispn.
This morphism is a smooth morphism of smooth algebraic stacks over k and an
equivalence on geometric points. This is the main result in [La].

Theorem B. The pull-back φ∗n : A∗(Dispn) → A∗(BTn) is injective and an iso-
morphism after inverting p.

Let us sketch the proof. Consider a field L and a morphism SpecL → BTn.
After base change to a finite field extension of p-power degree the fiber φ−1

n (SpecL)
is equal to the classifying space of an infinitesimal group scheme necessarily of p-
power degree. For an appropiate notion of higher Chow groups it follows that the
pull-back A∗(SpecL,m)→ A∗(φ

−1
n (SpecL),m) becomes an isomorphism after
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inverting p. Using the long localization exact sequence the theorem follows from
a limit argument and noetherian induction similar to that in [Qu2, Prop. 4.1]. The
injectivity assertion follows since A∗(Dispn) is p-torsion free.
Thus to compute the Chow ring of BTn at least up to p-torsion it suffices to
compute the Chow ring of Dispn, which is a much simpler task due to the sim-
pler presentation as a quotient stack. More precisely, if Disph,dn denotes the open
and closed substack in Dispn of truncated displays with constant dimension d and
height h we have

Disph,dn = [GLh(Wn(·))/Gh,dn ],

where Gh,dn is an extension of GLd×GLh−d by a unipotent group. Moreover, we
have the following theorem.

Theorem C. The pull-back τ∗n : A∗(Disp1) → A∗(Dispn) of the truncation map
τn : Dispn → Disp1 is an isomorphism.

This follows easily from the factorization

[GLh(Wn(·))/Gh,dn ]→ [GLh/G
h,d
n ]→ [GLh/G

h,d
1 ]

of τn and the fact that the first map is an affine bundle and that Gh,dn is an extension
of Gh,d1 by a unipotent group. Hence it suffices to compute A∗(Disp1). In this case
Gh,d1 is a split extension of GLd×GLh−d by a unipotent group and the induced
action of GLd×GLh−d on GLh is given by σ-conjugation, where σ denotes the
Frobenius. Using Proposition B we thus obtain the following result for the Chow
ring of Disp1.

Theorem D. The following equation holds

A∗(Disph,d1 ) = A∗GLh−d×GLd
(GLh)

= Z[t1, . . . , tn]Sh−d×Sd/((p− 1)c1, . . . , (p
h − 1)ch),

where c1, . . . , ch are the elementary symmetric polynomials in the variables t1, . . . , th.

Moreover, t1, . . . , td resp. td+1, . . . , th are the Chern roots of the vector bundle
Lie resp. tLie∨ over Disph,d1 of rank d resp. h− d. We refer to Definition 4.1.5 in
the main text for the precise definition of Lie and tLie∨.
It follows that the Q-vectorspace A∗(Disph,d1 )Q is finite dimensional of dimension(
h
d

)
, which also equals the number of isomorphism classes of truncated displays of

level 1 with height h and dimension d over an algebraically closed field. We show
that a basis is given by the cycles of the closures of the respective EO-Strata. We
prove this fact in greater generality for the stack of G-zips in Section 4.4. In this
section we will also compute the Chow ring of the stack of G-zips for a connected
Frobenius zip datum. As in the case of displays the computation can be reduced
to the situation of Proposition B. In fact, truncated displays of level 1 are a special
case of G-zips.
Now by the above results we gain the following information on the Chow ring of
the stack of truncated Barsotti-Tate groups.
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Theorem E. (i) We have

A∗(BT h,dn )p = Z[p−1][t1, . . . , th]Sd×Sh−d/((p− 1)c1, . . . , (p
h − 1)ch),

where ci denotes the i-th elementary symmetric polynomial in the variables
t1, . . . , th and t1, . . . , td resp. td+1, . . . , th are the Chern roots of Lie resp.
tLie∨.

(ii) dimQA
∗(BT h,dn )Q =

(
h
d

)
and a basis is given by the cyclces of the closures

of the EO-Strata.
(iii)

(PicBT h,dn )p =

{
Z[p−1]/(p− 1) if d = 0, h

Z[p−1]× Z[p−1]/(p− 1) else,

where the generator for the free resp. torsion part is det(Lie) resp. det(Lie⊗
tLie∨).

It would be interesting to know if the Chow ring of BTn has p-torsion, and
more specifically if the Picard group of BTn has p-torsion. However, since φ∗n is
injective and the Chow ring of Dispn is p-torsion free, p-torsion in the Chow ring
of BTn cannot be constructed using displays.

Acknowledgement. I wish to thank my advisor Eike Lau for suggesting such an
interesting and challenging topic and for his guidance and support, without which
this thesis could not have been written. I am also grateful to Jean-Stefan Koskivirta
for many valuable discussions on G-zips and mathematics in general.

Terminology and Notation. In the whole thesis p will be a fixed prime num-
ber. In Chapter 2 we denote by l a prime different from p. The letter k denotes an
arbitrary field. In Chapter 4 we assume k to be of characteristic p. Every scheme
over k is assumed to be of finite type. Algebraic groups are affine smooth group
schemes over k. The character group of an algebraic group G will be denoted by
Ĝ. A representation V of an algebraic groupG is supposed to be finite dimensional
and rational, i.e. G → GL(V ) is a homomorphism of algebraic groups. If X is a
scheme A∗(X) will always denote the operational Chow ring of X ([Fu, Chapter
17]). A∗(X) resp. CH∗(X) will be the Chow group of X graded by dimension
resp. codimension. IfX is of pure dimension nwe have CHn−i(X) = Ai(X) and
if X is smooth there exists a natural isomorphism A∗(X) ∼= CH∗(X) of graded
rings.
If X is an algebraic space over k with an action of an algebraic group G we will
refer toX as aG-space. We write [X/G] for the corresponding quotient stack. IfG
acts freely on X , i.e. the stabilizer of every point is trivial, then [X/G] is an alge-
braic space. In this case we will write X/G instead of [X/G] and call X → X/G
the principal bundle quotient of X with structure group G.
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1 Equivariant Intersection Theory

1.1 Unipotent Groups

Definition 1.1.1. We call an algebraic group G unipotent if G admits a filtration
G = G0 ⊃ G1 ⊃ . . . ⊃ Ge = {1} by subgroups such that Gi is normal in Gi−1

with quotient isomorphic to Ga.

Remark 1.1.2. We remark that this definition differs from that given in [SGA3,
Exposé XVII], where the quotients are assumed to be isomorphic to subgroups of
Ga. In characteristic zero Ga only has trivial subgroups but in positive character-
istic there are also the subgroups Z/pZ and αp. Moreover, in [SGA3] the filtration
accuring in the definition is defined only over k̄ and not necessarily over k. Hence
unipotent groups in our sense are smooth, connected and split unipotent groups in
the sense of [SGA3].

We remind the that an algebraic group G is called special, if every principal
G-bundle is locally trivial for the Zariski topology. Let us recall the following fact.

Lemma 1.1.3. Let

0 // G1
// G2

// G3
// 0

be an exact sequence of algebraic groups. IfG1 andG3 are unipotent resp. special
so is G2.

Proof. The assertion in the unipotent case is clear. So let us assume thatG1 andG3

are special and consider a principal G2-bundle X → S. We have that X/G1 → S
is a principal G3-bundle, thus locally trivial for the Zariski topology. We may
assume it is trivial. If we chose a section of X/G1 → S we can form X1 =
S ×X/G1

X → S. This is a G1-torsor with X = G2 ×G1 X1 → S, i.e. X has
a reduction of the structure group to G1. Since X1 → S is locally trivial for the
Zariski topology so is X → S.

Proposition 1.1.4. Unipotent groups are special.

Proof. In view of the previous lemma it suffices to show that Ga is special, but this
is well known ([Se2]).

Proposition 1.1.5. Let U be unipotent and P → X be a U -torsor. If X is affine,
then P is trivial.

Proof. Principal U -bundles over X are classified by Ȟ1(Xfl, U). Since U is
special we have Ȟ1(Xfl, U) = Ȟ1(Xzar, U). But since X is affine we have
Ȟ1(Xzar,Ga) = 0. Using the exact sequence of pointed sets in cohomology it
follows Ȟ1(Xfl, U) = 0.
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Corollary 1.1.6. Let U be unipotent of dimension n. The underlying scheme of
U is isomorphic to an affine space of dimension n. In particular, every principal
U -bundle is an affine bundle.

Proof. The assertion follows immediately from the preceding propositions and the
fact that for a subgroup U ′ of U the map U → U/U ′ is a U ′-torsor.

1.2 Equivariant Chow Groups

In this section we recall the definition of equivariant Chow groups and the results
of [EG] we shall need.
Consider an algebraic group G over k. By [EG, Lemma 9] we can find a repre-
sentation V of G, and an open subset U in V such that the complement of U has
arbitrary high codimension, and such that the principal bundle quotient U/G exists
in the category of schemes. If X is an algebraic space on which G acts then G acts
diagonally on X×U and we will denote the principal bundle quotient (X×U)/G
by XG.

Convention 1.2.1. We call a pair (V,U) consisting of a G-representation V and
an open subset U a good pair forG ifG acts freely on U , i.e. the stabilizer of every
point is trivial. Sometimes we will call the quotient XG = (X × U)/G a mixed
space for the G-space X . If (V,U) is a good pair for G with codim(U c, V ) > i
we will also call (X × U)/G an approximation of [X/G] up to codimension i.

Definition 1.2.2. If X has dimension n the i-th equivariant Chow group AGi (X)
is defined in the following way. Chose a good pair (V,U) for G such that the
complement of U has codimension greater than n− i. Then one defines

AGi (X) = Ai+l−g(XG),

where l denotes the dimension of V and g is the dimension of G. The definition
is independent of the choice of the pair (V,U) as long as codim(U c, V ) > n − i
holds ([EG, Definition-Proposition 1]).

Remark 1.2.3. We remark that in general XG is only an algebraic space even if X
is a scheme. However, the definition of Chow groups for schemes can be carried
over immediately to the case of algebraic spaces, so that one has Chow groups
for algebraic spaces with the same functorial properties as in the case of schemes.
In particular, we have an operational Chow ring A∗(X) for algebraic spaces X
defined in the same way as in [Fu, Chapter 17], i.e. an element c ∈ Ai(X) is
defined to be a collection of morphisms

c(Y → X) : A∗(Y )→ A∗−i(Y )

for each algebraic space Y over X that are compatible with flat pull-back, proper
push-forward and Gysin homomorphisms. For more details on this subject we refer
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to the discussion in [EG] at the end of Section 6.1.
However, there are conditions on X and G so that a mixed space XG exists in the
category of schemes. See [EG, Proposition 23] and Lemma 1.3.4 below. In all our
applications the conditions of Lemma 1.3.4 will be satisfied, so that in Chapter 2,3
and 4 algebraic spaces will not appear.

Let f : X → Y be a G-equivariant map of schemes or algebraic spaces. As-
sume that f has one of the properties proper, flat, smooth, regular embedding or
l.c.i. then the induced map fG : XG → YG on the mixed spaces has the same
property by [EG, Proposition 2]. It follows that equiviariant Chow groups have the
same functorial properties as ordinary Chow groups.
Again we then have an operational equivariant Chow ring A∗G(X) ([EG, Section
2.6]), i.e. an element c ∈ AiG(X) consists of operations c(Y → X) : AG∗ (Y ) →
AG∗−i(Y ) for each G-equivariant map Y → X that are compatible with flat pull-
back, proper push-forward and Gysin homomorphisms.
We will denote by CH∗G(X) the G-equivariant Chow group of X graded by codi-
mension. Note if X is a pure dimensional G-scheme and (V,U) a good pair for G
with codim(U c, V ) > i then

CHj
G(X) = CHj((X × U)/G)

for all j ≤ i. This motivates the term “approximation of [X/G] up to codimension
i” in Convention 1.2.1.
If X is smooth then CH∗G(X) carries a ring structure which makes it into a com-
mutative graded ring with unit element. Moreover, there is a natural isomorphism
A∗G(X) ∼= CH∗G(X) of graded rings ([EG, Proposition 4]). The next proposition
shows that the equivariant Chow groupAG∗ (X) is an invariant of the corresponding
quotient stack [X/G], which will enable us to define the Chow group of a quotient
stack.

Proposition 1.2.4. Let X be a G-space and Y be an H-space such that [X/G] ∼=
[Y/H]. Then AGi+g(X) = AHi+h(Y ), where g = dimG and h = dimH .

Proof. Let (V1, U1) resp. (V2, U2) be a good pair for G resp. H of dimension l1
resp. l2. The fiber product Z = XG×[X/G] YH is an algebraic space which is open
in a vector bundle over YH resp. XH of rank l1 resp. l2 and we may assume that its
complement is of arbitrary high codimension. We therefore obtain

AGi+g(X) = Ai+l1(XG) = Ai+l1+l2(Z) = Ai+l2(YH) = AHi+h(Y ).

Definition 1.2.5. For a G-space X the i-th equivariant Chow group of [X/G] is
defined to be

Ai([X/G]) = AGi+g(X),

where g = dimG.
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Proposition 1.2.6. Let [X/G] be a smooth quotienstack. Then there is an iso-
morphism A∗([X/G]) ∼= A∗G(X) of graded rings. Moreover, it holds A1

G(X) =
Pic([X/G]) = PicG(X).

Proof. We recall the easy proof of the first statement. For the second part we refer
to the proof of Proposition 18 in [EG].
There is always a natural map A∗G(X) → A∗([X/G]) defined in the follow-
ing way. Let c ∈ AiG(X) and T → [X/G] be a morphism from an algebraic
space T to [X/G]. This morphism corresponds to a principal G-bundle B → T
and a G-equivariant morphism B → X . By definition c gives a map c(B →
X) : AG∗ (B) → AG∗−i(B). Since AG∗+g(B) = A∗(T ) we obtain an operational
class in Ai([X/G]).
When X is smooth we have AGdimX−i(X) ∼= AiG(X) and one can easily give an
inverse to this map by sending c ∈ Ai([X/G]) to c(XG → [X/G]) ∩ [X]G ∈
AGdimX−i(X).

Before giving the important examples we state and prove some useful facts
about equivariant Chow rings.

We can consider any representation V of G as a G-equivariant vector bundle
Spec(SymV ∗) over k. Hence V has Chern classes cGi (V ), or sometimes just ci(V )
when the context is clear, which we consider as elements of A∗G = A∗G(Spec k).
Via the pull-backA∗G → A∗G(X) we can also consider them as elements ofA∗G(X)
for any G-space X . If T is a split torus in G the T -module V decomposes into a
sum V = Vχ1 ⊕ . . . ⊕ Vχr of 1-dimensional Eigenspaces Vχi corresponding to
characters χi of T . It follows from the Whitney Sum Formula that the Chern poly-
nomial of V in the indeterminant t can be written as

cT (V )(t) =
r∏
i=1

(1 + cT1 (χi)t)

when considered as an element of A∗T [t]. The cT1 (χi) are called the Chern roots of
V . Any symmetric polynomial in the Chern roots lies in the image of the restric-
tion map A∗G → A∗T . If G is special reductive with split maximal torus T we will
see in Section 1.9 that this map is injective with image being the invariants of A∗T
under the action of the Weyl group of (G,T ).

For every principal G-bundle X → Y , there is a natural action of the character
group of G on A∗(Y ) defined in the following way. If λ is a character of G we
consider the action ofG on A1 via λ and the given action onX . This makes A1×X
into a G-equivariant line bundle over X , thus inducing a line bundle over Y that
we will denote by Lλ. Its first Chern class c1(λ) := c1(Lλ) then acts on A∗(Y ).
Equivalently we may view λ as a 1-dimensional representation of G, thus inducing
an element c1(λ) in A1

G as explained above. Via the pull-back A∗G → A∗G(X) =
A∗(Y ) this element then acts on A∗(Y ).
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Lemma 1.2.7. Let T be a split torus and X → Y be a principal T -bundle. Then
pull-back induces an isomorphism

A∗(X) ∼= A∗(Y )/(T̂A∗(Y )),

where T̂ denotes the character group of T .

Proof. We first consider the case T = Gm. Let L = (X × A1)/Gm be the
corresponding line bundle over Y . Then X is the complement of the zero section
s : Y → L in L. The zero section embeds Y as a Cartier Divisor in L. In particular,
s is a regular embedding of codimension 1 and furthermore the normal bundle
NY L of this embedding is isomorphic to L. The self intersection formula then
states s∗s∗(α) = c1(L) ∩ α for all α ∈ A∗(Y ). Hence we have the following
commutative diagram, where the first row is the localization exact sequence.

A∗(Y )
s∗ //

c1(L) %%

A∗(L) // A∗(X) // 0

A∗−1(Y )

π∗∼=

OO

η∗

99

Here η denotes the restriction of the projection π : L → Y to X (See also [Fu,
Example 2.6.3]). From this the lemma follows in the case T = Gm.
For general T we write T = T ′×Gm where T ′ is a split torus of smaller dimension.
We can then write X → Y as the composition X → X/T ′ → Y , where the first
map is a T ′-bundle and the second map is a Gm-bundle. The general case thus
follows by induction on the dimension of T .

Proposition 1.2.8. Consider an exact sequence

0 // K // G // T // 0

of algebraic groups and assume T is a split torus. Let X be a G-space. Then T̂
acts via T̂ → Ĝ on A∗([X/G]) and pull-back induces an isomorphism

A∗([X/K]) ∼= A∗([X/G])/(T̂A∗([X/G])).

Proof. Choosing a good pair (V,U) for G the morphism (X × U)/K → (X ×
U)/G is a principal T -bundle and the proposition follows from the previous lemma.

Remark 1.2.9. Let T be a split torus and X be a T -space. The above proposition
then implies A∗(X) = AT∗ (X)/(T̂AT∗ (X)). This result can also be found in [Br,
Corollary 2.3] but with a different proof.

Another useful lemma regards the special case when G is a split extension by
a unipotent group, i.e. there is a split exact sequence

0 // U // G // N // 0

of algebraic groups, where U is unipotent. It says that one can forget about the
unipotent part when computing the Chow groups.
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Lemma 1.2.10. Let G be special and a split extension of an algebraic group N
by a unipotent group. Chose a splitting N ↪→ G. Then for any G-scheme X the
restriction map yields an isomorphism AG∗ (X) ∼= AN∗ (X).

Proof. The natural map (X × U)/N → (X × U)/G is a G/N -bundle which is
locally trivial for the Zariski topology since G is special. Now G/N is isomorphic
to an affine space and it follows from [Gi, Theorem 8.3], that the flat pull-back of
this map induces an isomorphism of Chow groups.

Remark 1.2.11. Note that an exact sequence as above does not need to be split
even if N is reductive. An example is the exact sequence

0 // Lie(SL2) // SL2(W2) // SL2
// 0,

where we consider Lie(SL2) as a vector group over k. For details see Remark 5 in
[Mc].
A variant of the above lemma also holds without the split assumption by Corollary
1.5.2. The proof uses higher Chow groups which we will adress in the next section.

Example 1.2.12. (Equivariant Chow Ring of the Classical Groups)
• G = GLn: For GLn we can take the representation V = Mat(n × p, k) with
p > n and U = {M ∈ V | rkM = n}. Then U/G is the Grassmannian Gr(n, p).
Let E be the canonical representation of GLn. Then (E × U)/G → U/G is
the universal rank n quotient bundle over Gr(n, p) and for p sufficiently large
(p > i + n) we get that AiG is the group of homogeneous symmetric polynomials
of degree i in the Chern roots tk of E. (See [Fu, Chapter 14] for the Chow ring of
the Grassmannian.) Therefore

A∗GLn = Z[c1, . . . , cn]

where ci is of weighted degree i.

• T = Gn
m: Let us consider T as the torus of diagonal matrices in GLn. We

can take V =
⊕n

i=1(kl) with Gn
m-action given by

(λ1, . . . , λn)(x1, . . . .xn) = (λ1x1, . . . , λnxn)

and U =
∏n
i=1 k

l − {0}. Then U/T = (Pl−1)n. Let again E be the standard
representation as above and E = Eχ1 ⊕ . . . ⊕ Eχn the decomposition into 1-
dimensional T -Eigenspaces. Here χi : T → Gm is just the i-th projection. Then
(Eχi × U)/T = pr∗iO(1) and therefore AiT is the group of homogeneous polyno-
mials of degree i in the Chern roots t1, . . . , tn of E. Hence

A∗T = Z[t1, . . . , tn]

and especially
A∗GLn = (A∗T )Sn .

13



• SLn: We apply Proposition 1.2.8 to the exact sequence

0 // SLn // GLn
det // Gm

// 0.

Let again E denote the canonical representation of GLn. Then we have c1(det) =
c1(∧nE) = c1(E) ∈ A1

GLn
and therefore

A∗SLn = Z[c2, . . . , cn].

Here c1(∧nE) = c1(E) holds by Lemma 1.7.5 below.

• Sp2n,On, SOn: The calculations for the other classical groups are slightly more
involved and are carried out in [To] and [RV]. We have

A∗Sp2n
= Z[c2, c4, . . . , c2n], A∗On = Z[c1, . . . , cn]/(2codd)

and in case that n is odd

A∗SOn = Z[c2, . . . , cn]/(2codd).

There is also a result for even n ([Fi]).

• µn: We apply Proposition 1.2.8 to the Kummer sequence

0 // µn // Gm
( )n
// Gm

// 0,

thus obtaining
A∗µn = Z[t]/(nt).

Here t is the first Chern class of the character µn ↪→ Gm.

• Ga: We have A∗Ga = Z in degree 0. This follows immediately from Lemma
1.2.10. More generally, we obtain A∗U = Z in degree 0 for any unipotent group U .

• Z/nZ: If k is a field of characteristic not dividing n that contains the n-th roots
of unity, then (Z/nZ)k = µn. If k is a field of characteristic p > 0 we use the
Artin-Schreier exact sequence

0 // Z/pZ // Ga
// Ga

// 0

to deduce A∗(Z/pZ)k
= A∗Ga = Z in degree 0. Namely, if (V,U) is a good pair for

Ga then U/(Z/p)→ U/Ga is a principal Ga-bundle and hence its pull-back is an
isomorphism.
In particular, the equivariant Chow ring of Z/nZ considered as an algebraic group
over a field k depends on the characteristic of k.

14



1.3 Higher Equivariant Chow Groups

The reason why we shall need higher Chow groups is that they extend the local-
ization exact sequence to the left. Let us recall Bloch’s definition of higher Chow
groups in the case of schemes ([Bl]).
Bloch’s higher Chow groups. Let ∆m be the (algebraic) m-simplex

∆m = Spec k[t0, . . . , tm]/(t0 + . . .+ tm − 1) ∼= Am.

For an injective and increasing map ρ : {0, . . . ,m} → {0, . . . , n} we define the
corresponding face map ρ̃ : ∆m → ∆n via

ρ̃∗(ti) =

{
tj if ρ(j) = i,

0 if ρ−1({i}) = ∅.

Let zi(X,n) be the free abelian group generated by subvarieties V of X × ∆n

of dimension i + n meeting all m-faces F = X × ∆m ⊂ X × ∆n properly,
i.e. dim(V ∩ F ) ≤ i + m. For i = 0, . . . , n let δi : z∗(X,n) → z∗(X,n − 1)
be the pull-back along the face map given by the inclusion {1, . . . , n − 1} →
{0, . . . , n} that leaves out i. We then obtain a chain complex z∗(X, ·) with chain
maps

∑n
i=0(−1)iδi : z∗(X,n) → z∗(X,n − 1). Bloch’s higher Chow groups are

then defined to be the homology groups of this complex

A∗(X,m) = Hm(z∗(X, ·)).

We remark that for m = 0 one gets back the usual Chow group A∗(X) and that
Ai(X,m) maybe non-trivial for −m ≤ i ≤ dimX . The definition of these higher
Chow groups also works for algebraic spaces.
In order to define G-equivariant versions AG∗ (X,m) of higher Chow groups we
need the homotopy property for the mixed spaces XG, i.e. the pull-back map

A∗(XG,m)→ A∗(E ,m)

for a vector bundle E over XG is an isomorphism. This is true for any scheme if E
is trivial by [Bl. Theorem 2.1]. To prove the assertion for arbitrary vector bundles
one needs the localization exact sequence of higher Chow groups proved by Bloch
in the case of quasi-projective schemes.

Proposition 1.3.1. Let X be an equidimensional, quasi-projective scheme over k.
Let Y ⊂ X be a closed subscheme and U = X − Y . Then the natural map

z∗(X, ·)/z∗(Y, ·)→ z∗(U, ·)

is a quasi-isomorphism. Hence there is a long exact sequence of higher Chow
groups

. . .→ A∗(Y,m)→ A∗(X,m)→ A∗(U,m)→ A∗(Y,m− 1)

→ . . .→ A∗(Y )→ A∗(X)→ A∗(U)→ 0.

This long localization exact sequence is compatible with flat pull-back and proper
push-forward.
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Proof. See [EG, Lemma 4] and [Bl, Theorem 3.1].

Corollary 1.3.2. Let E → X be a vector bundle over an equidimensional quasi-
projective scheme X . Then the flat pull-back

A∗(X,m)→ A∗(E ,m)

is an isomorphism for all m.

Proof. Using noetherian induction and the long localization exact sequence one
reduces to the case of a trivial vector bundle and this case is [Bl, Theorem 2.1].

Remark 1.3.3. In Corollary 1.4.7 we will prove a stronger version of the above
corollary. Namely, the pull-back f∗ : A∗(X,m)→ A∗(T,m) of a flat map f : T →
X is an isomorphism if the fibers of f are affine spaces of some dimension.

In view of the above corollary we will need that we can chose the mixed spaces
to be quasi-projective schemes. This holds for example in the following situation.

Lemma 1.3.4. Let G be an algebraic group and X a normal, quasi-projective G-
scheme. Then for any i > 0 there is a representation V of G and an invariant open
subset U ⊂ V whose complement has codimension greater than i such that G acts
freely on U and the principal bundle quotient (X × U)/G is a quasi-projective
scheme. In other words, the quotient stack [X/G] can be approximated by quasi-
projective schemes.

Proof. Embed G into GLn for some n. Then there is a representation of GLn and
an open subset U , whose complement has codimension greater than i such that
U/GLn is a Grassmannian (See [EG, Lemma 9] or Example 1.2.12). Since GLn
is special the GLn /G-bundle π : U/G→ U/GLn is locally trivial for the Zariski
topology, and we will first show that π is quasi-projective.
Since GLn /G is quasi-projective and normal there is an ample GLn-linearizable
line bundle L→ GLn /G ([Th, Section 5.7]). Then

(U × L)/GLn → (U × (GLn /G))/GLn = U/G

is a line bundle relatively ample for π. This shows that π is quasi-projective.
The same holds then for U/G. Again by [Th, Section 5.7] there is an ample G-
linearizable line bundle on X . The pull-back to X × U is then relatively ample
for the projection X × U → U . Applying [GIT, Proposition 7.1] to this situation
yields the claim.

Definition 1.3.5. (i) A pair (V,U) will be called an admissible pair for a G-
scheme X if (V,U) is a good pair for G and if the mixed space XG is
quasi-projective and equidimensional over k. X will be called an admis-
sible G-scheme if for any i there is an admissible pair (V,U) for X with
codim(U c, V ) > i.
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(ii) We will say that a stack X admits an admissible presentation if there exists
an admissible G-scheme X such that X = [X/G].

(iii) IfX is an admissibleG-scheme we define its higher equivariant Chow groups
to be

AGi (X,m) = Ai+l−g(XG,m),

where g = dimG and XG is formed from an l-dimensional admissible pair
(V,U) such that codim(U c, V ) > dimX + m − i. The proof that this def-
inition is independent of the choice of the admissible pair (V,U) is the same
as for ordinary equivariant Chow groups ([EG, Definition-Proposition 1]) by
using Corollary 1.3.2.

Remark 1.3.6. We will frequently encounter the situation of a morphism T → X
of G-schemes such that T is open in a G-equivariant vector bundle over X . We
remark that, if X is an admissible G-scheme, so is T . This follows since a vector
bundle over a quasi-projective scheme is again quasi-projective.

Remark 1.3.7. We remark that Levine extended Blochs proof of the existence of
the long localization exact sequence to all separated schemes of finite type over
k ([Le, Theorem 1.7]). Hence for the equivariant higher Chow groups to be well
defined it suffices that we can chose the mixed spaces to be separated schemes over
k. However, in all applications we have in mind the conditions of Lemma 1.3.4 will
be satisfied.

Proposition 1.3.8. (Localization Sequence,[EG, Prop. 5]) LetX be an equidimen-
sional, quasi-projective and normal G-scheme. Let Y ⊂ X be a closed invariant
subscheme. Write U = X − Y . Then there is a long exact sequence of higher
equivariant Chow groups

. . .→ AG∗ (Y,m)→ AG∗ (X,m)→ AG∗ (U,m)→ AG∗ (Y,m− 1)

→ . . .→ AG∗ (Y )→ AG∗ (X)→ AG∗ (U)→ 0

This long exact sequence is compatible with flat pull-back and proper push-forward.

The following lemma will allow us to define higher Chow groups for quotient
stacks which admit presentations by admissible G-schemes.

Lemma 1.3.9. Assume that X is an admissible G-scheme and Y is an admissible
H-scheme such that [X/G] = [Y/H] as quotient stacks. Then AGi+g(X,m) ∼=
AHi+h(Y,m) where g = dimG and h = dimH .

Proof. This is the same proof as in Proposition 1.2.4.

Definition 1.3.10. Let X be a quotient stack that admits a presentation X =
[X/G] by an admissible G-scheme X . We define the higher equivariant Chow
groups of X as

A∗(X ,m) = AG∗+g(X,m)

where g = dimG.
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Lemma 1.3.11. Let f : X → Y be a flat map of quotient stacks of relative di-
mension r. Then there is a flat pull-back map f∗ : A∗(Y ) → A∗+r(X ) between
the Chow groups. If X and Y admit admissible presentations the same assertion
holds for the higher Chow groups.
Furthermore, if X and Y are smooth then under the identification A∗(X ) =
A∗(X ) the above morphism is just the natural pull-back map between the opera-
tional Chow rings.

Proof. Consider presentations X = [X/G] and Y = [Y/H]. By definition
Ai(X ) = AGi+g(X) with g = dimG and similar for Ai(Y ). Chose a good pair
(V1, U1) for G and a good pair (V2, U2) for H . Let li = dimVi. As usual we will
write XG resp. YH for the mixed space (X ×U1)/G resp. (Y ×U2)/H . Consider
the fibersquare

Z ′

��

// Z //

��

YH

��

XG
//X // Y

Then Z ′ is a bundle over XG resp. Z with fiber U2 resp. U1 and Z ′ → YH is a flat
map of algebraic spaces of relative dimension l1 + r. Hence

Ai+l1+l2+r(Z
′) = Ai+l1+r(XG) = Ai+r(X )

and we define f∗ to be the ordinary pull-back of the flat map Z ′ → YH . The
exact same construction works for the higher equivariant Chow groups if X and
Y admit admissible presentations.
For the last part we recall that the isomorphism Ai(X ) ∼= AGdimX−i(X) maps
c ∈ Ai(X ) to c(XG → X ) ∩ [XG] ∈ AGdimX−i(X). Thus we need to check the
equality

f∗(d(YH → Y ) ∩ [YH ]) = d(XG →X → Y ) ∩ [XG]

for d ∈ Ai(Y ). This follows from the compatibility of d with flat pull-backs.

1.4 Auxiliary Results

Lemma 1.4.1. Let f : X → Y be a surjective, finite and flat map of degree d. Then
the composition

Z∗(Y )
f∗
// Z∗(X)

f∗
// Z∗(Y )

is multiplication by d.

Proof. Let V ⊂ Y be a subvariety of Y . It suffices to see∑
Vi

`Of−1(V ),Vi
(Of−1(V ),Vi) deg(Vi/V ) = deg f,
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where the sum goes over the irreducible components of f−1(V ). Here deg(Vi/V )
resp. `Of−1(V ),Vi

(Of−1(V ),Vi) denotes the degree of the extension of function fields
resp. the length of Of−1(V ),Vi considered as a modul over itself. One easily shows

`Of−1(V ),Vi
(Of−1(V ),Vi) deg(Vi/V ) = `k(η)(Of−1(V ),Vi),

where η is the generic point of V . The elements of f−1(η) are the generic points
ηi of the components Vi of f−1(V ) and

deg f = dimk(η)H
0(f−1(η),Of−1(η)) = dimk(η)

⊕
i

Of−1(η),ηi .

Since Of−1(V ),Vi = Of−1(η),ηi the lemma follows.

Corollary 1.4.2. Let f : X → Y be a surjective, finite and flat map of degree d.
Then the composition

A∗(Y,m)
f∗
// A∗(X,m)

f∗
// A∗(Y,m)

is multiplication by d.

Proof. The same proof as in the previous lemma shows that the composition of
complexes

z∗(Y, ·)
f∗
// z∗(X, ·)

f∗
// z∗(Y.·)

is multiplication by d.

Corollary 1.4.3. Let X → Y be a flat morphism of schemes and Y ′ → Y be a
finite, flat and surjective map of degree d. Let X ′ → Y ′ be the base change of
X → Y along Y ′ → Y . Assume the pull-back A∗(Y ′,m)→ A∗(X

′,m) becomes
an isomorphism after inverting some integer d′. Then the pull-back A∗(Y,m) →
A∗(X,m) is an isomorphism after inverting dd′.

Proof. The injectivity of the pull-back A∗(Y,m)dd′ → A∗(X,m)dd′ follows from
the exact diagram

0 // A∗(Y,m)dd′ //

��

A∗(Y
′,m)dd′

∼=
��

0 // A∗(X,m)dd′ // A∗(X
′,m)dd′

and the surjectivity from the exact diagram

A∗(Y
′,m)dd′ //

∼=
��

A∗(Y,m)dd′

��

// 0

A∗(X
′,m)dd′ // A∗(X,m)dd′ // 0
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where the horizonatal maps in the first diagram are induced by pull-back and in
the second diagram by push-porward. The commutativity of the second diagram is
[Fu, Proposition 1.7].

The reason why we will frequently encounter finite, flat and surjective maps is
due to the following lemma.

Lemma 1.4.4. Let G be a finite group scheme of degree d over k. Let X be a
G-scheme such that the principal bundle quotient X/G exists in the category of
schemes, i.e. the quotient stack [X/G] is a scheme. Then the quotient map X →
X/G is finite, flat and surjective of degree d.

Proof. Since the principal G-bundle X → X/G is locally trivial for the flat topol-
ogy the assertion follows from descent theory [SGA1, Exposé VIII, Corollary
5.7].

Furthermore, we shall make frequent use of the following technical lemma.

Lemma 1.4.5. Let T → X be a morphism of quasi-projective schemes over k. We
assume that X is equidimensional and that T → X is flat of relative dimension
a. Let d, i ∈ Z and for x ∈ X let h(x) denote the dimension of the closure of
{x} in X . If the pull-back Ai−h(x)(Spec k(x),m)d → Ai−h(x)+a(Tx,m)d is an
isomorphism for every x ∈ X and for any m, then Ai(X,m)d → Ai+a(T,m)d is
an isomorphism.

Proof. We follow Quillen’s proof of the analogous result in higher K-theory ([Qu2,
Prop. 4.1]). First we may assume thatX is irreducible for ifX = W1∪. . .∪Wr is a
decomposition into irreducible components we may consider the long localization
exact sequence of the pair (W1, X −W1). By induction we are thus reduced to
the irreducible case. Since the Chow groups only depend on the reduced structure,
we may also assume that X is reduced. Let K denote the function field of X . By
Lemma 1.4.6 below we have

Ai−n(SpecK,m) = lim−→
U

Ai(U,m),

Ai−n+a(TK ,m) = lim−→
U

Ai+a(TU ,m),

where the limit goes over all non-empty open subsets of X and n denotes the
dimension of X . In fact, it suffices to go over all non-empty open subsets with
equidimensional complement, since for all non-empty open U in X there exists a
non-empty open subset U ′ contained in U with equidimensional complement. We
obtain a commutative diagram

Ai−n(SpecK,m+ 1) //

��

lim−→Y
Ai(Y,m) //

��

Ai(X,m)

��

Ai−n+a(TK ,m+ 1) // lim−→Y
Ai+a(TY ,m) // Ai+a(T,m)
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// Ai−n(SpecK,m) //

��

lim−→Y
Ai(Y,m− 1)

��
// Ai−n+a(TK ,m) // lim−→Y

Ai+a(TY ,m− 1)

with exact rows, where the limit goes over all proper closed equidimensional sub-
sets of X . After inverting d the first and fourth vertical map become isomorphisms
and we conclude by noetherian induction.

Lemma 1.4.6. (i) Let K/k be an algebraic field extension and X be a scheme
over k. Then there is a natural isomorphism

lim−→
L

Ai(XL,m) ∼= Ai(XK ,m),

where the limes goes over all finite subextensions L over k.
(ii) Let T → X be a flat morphism of some relative dimension, where X is an

integral scheme. Let n denote the dimension of X and K its function field.
Then there is a natural isomorphism

lim−→
U

Ai(TU ,m) ∼= Ai−n(TK).

Here the limes goes over all non-empty open subsets of X .

Proof. (i) If V is a scheme over some subextension L over k then the base change
VK to K does not change the dimension. Hence the assignment [V ] 7→ [VK ]
defines a map lim−→L

zi(XL, ·) → zi(XK , ·) of complexes. This map is in fact
an isomorphism since if V ⊂ ∆m

XK
is a closed subscheme, then there is a finite

extension L of k such that V has a model Ṽ over L. The assignment [V ] 7→ [Ṽ ]
then defines an inverse.
(ii) Consider a subvariety V ⊂ ∆m

TU
of dimension i+mmeeting all faces properly,

i.e. codim(V ∩ F ) ≥ codim(V ) + codim(F ) for every face F of ∆m
TU

. We
may assume that the composition V ↪→ ∆m

TU
→ U is dominant, since otherwise

[V ] is zero in lim−→U
zi(TU , ·). This means VK is again a subvariety of ∆m

TK
with

codim(VK) = codim(V ) and codim(VK ∩ F ) ≥ codim(V ∩ F ) for every face
F of ∆m

TK
. Hence [VK ] ∈ zi−n(TK , ·) and the assignment [V ] 7→ [VK ] defines a

natural map of complexes lim−→U
zi(TU , ·)→ zi−n(TK , ·). Again we claim that this

map is an isomorphism.
For this let [V = V (I)] be an element in zi−n(TK ,m). Let U ⊂ X be open and
affine. We may then consider Ṽ = V (O∆m

TU
∩ I) ⊂ ∆m

U and we need to check that

Ṽ has dimension i+m and intersects all faces properly. But V is the preimage of
Ṽ under ∆m

TK
→ ∆m

TU
and therefore codim(Ṽ ) = codim(V ). By shrienking U if

necessary we may also assume codim(VK ∩ FK) = codim(Ṽ ∩ F ) for all faces
F . Hence the assignment [V ] 7→ [Ṽ ] defines a map zi−n(TK , ·) → lim−→U

zi(TU , ·)
of complexes that is inverse to the natural map lim−→U

zi(TU , ·)→ zi−n(TK , ·).
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Corollary 1.4.7. Let T → X be a flat morphism of quasi-projective schemes
over k with fibers being affine spaces of some dimension n. Then the pull-back
A∗(X,m)→ A∗+n(T,m) is an isomorphism.

Proof. This is an immediate consequence of Lemma 1.4.5.

Remark 1.4.8. The assertion of the above corollary in the case m = 0 also holds
without the quasi-projective assumption. One can use the same proof but using
Gillet’s higher Chow groups. For his higher Chow groups a long localization exact
sequence exists for arbitrary schemes. For details see Chapter 8 in [Gi].

Lemma 1.4.9. Let K be a unipotent subgroup of an algebraic group G such that
the quotient G/K is finite of degree d. Then the pull-back A∗G(m) → A∗{0}(m) is
an isomorphism after inverting d.

Proof. Let (V,U) be an admissible pair for G. Then U/K → U/G is a G/K-
bundle locally trivial for the flat topology. By assumption on G/K the morphism
U/K → U/G is therefore finite, flat and surjective of degree d. It follows that the
pull-backA∗(U/G,m)→ A∗(U/K,m) ∼= A∗(U,m) is injective after inverting d.
Also for sufficiently high dimension we know that A∗(Spec k,m)→ A∗(U,m) is
surjective. Since we can assume the codimension of U c in V to be arbitrary high,
we obtain the surjectivity of A∗G(m)→ A∗{0}(m).

Lemma 1.4.10. Let K/k be a Galois extension with Galois group G and let X
be a scheme over k. Then pulling back along XK → X induces an isomorphism
A∗(X,m)Q ∼= A∗(XK ,m)GQ . If K/k is a finite Galois extension of degree d it
suffices to invert d.

Proof. We first assume that K/k is finite of degree d. Then on the level of cy-
cles we have an injection z∗(X, ·)d ↪→ z∗(XK , ·)Gd by Lemma 1.4.1. We claim
that this map is also surjective. Let W ⊂ XK ×K ∆r

K be a subvariety meet-
ing all faces properly. Let S ⊂ G be the isotropy group of W . It suffices to
see that

∑
g∈G/S [gW ] lies in z∗(X, ·)d. For this consider the closed subscheme

V = ∪g∈G/SgW (equipped with the reduced structure). Then V is a G-invariant
equidimensional subscheme of XK ×K ∆r

K that meets all faces properly. Thus it
has a model Ṽ over k also meeting all faces properly. Finally all components gW
have the same multiplicity 1 in the cycle [V ] and therefore

∑
g∈G/S [gW ] = [ṼK ].

To complete the proof in the finite case it suffices now to note that taking G-
invariants is an exact functor on the category of Z[1

d ]-modules withG-action, hence
Hi(z∗(XK , ·)Gd ) = Hi(z∗(XK , ·))Gd .
The general case follows from the finite case and the fact that A∗(XK ,m)G =
lim−→L/k

A∗(XL,m)G(L/k), where the limit goes over all finite Galois subextensions
L/k of K.
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1.5 A Pull-Back Lemma

Throughout we consider the situation of an exact sequence

0 // A // G // H // 0

of algebraic groups and an admissibleH-schemeX such that the inducedG-action
onX makesX also into an admissibleG-scheme. These conditions are always sat-
isfied if X is quasi-projective and normal by Lemma 1.3.4. We are then interested
in properties of the pull-back homomorphism (Lemma 1.3.11)

A∗([X/H],m)→ A∗([X/G],m).

Proposition 1.5.1. Let

0 // A // G // H // 0

be an exact sequence of algebraic groups and X an admissible H-scheme such
that the induced G-action makes X also into an admissible G-scheme. We also
assume H to be special.
Let d ∈ Z such that A∗AL(m)→ A∗{0}(m) becomes an isomorphism after inverting
d for every field extensionL of k and everym. Then the pull-backA∗([X/H],m)→
A∗([X/G],m) becomes an isomorphism after inverting d.

Proof. First note that the natural map [X/G] → [X/H] is flat of relative di-
mension −a with a = dimA. We can chose for any i ∈ Z an admissible pair
(V,U) for the H-action such that Aj+l([(X × U)/G],m) = Aj([X/G],m) and
Aj+l((X × U)/H,m) = Aj([X/H],m) for all j > i. Here l denotes the dimen-
sion of V . Note that X × U is again an admissible G-scheme (cf. Remark 1.3.6).
Replacing X by X × U we may thus assume that [X/H] is a quasi-projective
scheme.
Let now (X × U)/G be a quasi-projective mixed space for G. Let Ū be the quo-
tient U/A. Then we can identify (X × U)/G with the quotient (X × Ū)/H
and under this identification the map (X × U)/G → X/H corresponds to the
Ū -bundle (X × Ū)/H → X/H . It is Zariksi locally trivial since H is special.
We are left to show that the pull-back of this map is an isomorphism after invert-
ing d. This will follow from Lemma 1.4.5 once we have seen that the pull-back
Aj−h(x)(Spec k(x),m)d → Aj−h(x)+l−a(Ūk(x),m)d is an isomorphism for every
x ∈ X/H . Here h(x) is the dimension of the closure of {x} in X/H . Let us write
L = k(x). Assuming the codimension of U c in V to be sufficiently large we obtain
by assumption

Aj−h(x)(SpecL,m)d = Aj−h(x)+l(UL,m)d = Aj−h(x)+l−a(ŪL,m)d.

For this recall Aj+l−a(ŪL,m) = AALj (m) and Aj+l(UL,m) = A
{0}
j (m). This

proves the claim.
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The above proposition applies to the following cases.

Corollary 1.5.2. In the situation of Proposition 1.5.1 the following assertions
hold.

(i) If A is unipotent then A∗([X/H],m)→ A∗([X/G],m) is an isomorphism.
(ii) If A is finite of degree d then A∗([X/H],m) → A∗([X/G],m) becomes an

isomorphism after inverting d.

Proof. The first part follows from Corollary 1.4.7 and the second part follows from
Lemma 1.4.9 applied to the case K = {0}.

The assumption on H to be special is crucial for the proof of Proposition 1.5.1,
since we need to know that the fibers of the Ū -bundle (X × Ū)/H → X/H
appearing in the proof are given by Ū in order to apply Lemma 1.4.5. However,
we have the following version when H is finite.

Proposition 1.5.3. Let

0 // A // G // H // 0

be an exact sequence of algebraic groups and X an admissible H-scheme such
that the induced G-action makes X also into an admissible G-scheme. We assume
that H is finite of degree d.
Let d′ ∈ Z such thatA∗AL(m)→ A∗{0}(m) becomes an isomorphism after inverting
d′ for every field extensionL of k and anym. Then the pull-backA∗([X/H],m)→
A∗([X/G],m) becomes an isomorphism after inverting dd′.

Proof. We argue the same way as in Proposition 1.5.1 and then have to see that the
pull-back of (X×Ū)/H → X/H becomes an isomorphism after inverting dd′. As
mentioned earlier we cannot apply Lemma 1.4.5 since the above Ū -bundle is not
locally trivial for the Zariski topology. Instead it becomes trivial after the finite,
flat and surjective base change X → X/H of degree d, i.e. there is a cartesian
diagram

X × Ū //

��

X

��

(X × Ū)/H // X/H.

The claim thus follows from Corollary 1.4.3.

Corollary 1.5.4. In the situation of Proposition 1.5.3 the following assertions
hold.

(i) IfA is unipotent thenA∗([X/H],m)d → A∗([X/G],m)d is an isomorphism.
(ii) If A is finite of degree d′ then A∗([X/H],m)dd′ → A∗([X/G],m)dd′ is an

isomorphism.

In the next proposition we proof that the assertion of Proposition 1.5.1 is valid
over Q for arbitrary H .
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Proposition 1.5.5. Let

0 // A // G // H // 0

be an exact sequence of algebraic groups and X an admissible H-scheme such
that the induced G-action makes X also into an admissible G-scheme.
Assume A∗AL(m)Q → A∗{0}(m)Q is an isomorphism for every field extension L
of k and any m. Then the pull-back A∗([X/H],m)Q → A∗([X/G],m)Q is an
isomorphism.

Proof. Using the notation of the proof of Proposition 1.5.1 we need to see that the
pull-back of the Ū -bundle T := (X × Ū)/H → X/H is an isomorphism over Q.
It suffices to see that A∗(Spec k(x),m)Q → A∗(Tx,m)Q is an isomorphism for
x ∈ X/H . The above Ū -bundle may not be trivial for the Zariski topology, but
we still have Tx̄ = Ūx̄ and therefore A∗(Spec k(x)sep,m)Q → A∗(Tx̄,m)Q is an
isomorphism by assumption. The claim then follows from Lemma 1.4.10 and the
fact that the Galois action is compatible with pull-back.

Corollary 1.5.6. In the situation of Proposition 1.5.5 the following assertions
hold.

(i) If A is unipotent then A∗([X/H],m)Q → A∗([X/G],m)Q is an isomor-
phism.

(ii) If A is finite then A∗([X/H],m)Q → A∗([X/G],m)Q is an isomorphism.

Lemma 1.5.7. Let G be a split extension of an algebraic group H by a unipotent
group. Chose a splitting H ↪→ G and let X be a normal, quasi-projective G-
scheme. Then the pull-back map

AG∗ (X,m)Q → AH∗ (X,m)Q

is an isomorphism. If G is special the above map is an isomorphism over Z.

Proof. Let (V,U) be an admissible pair for the G-action on X . It follows from the
proof of Lemma 1.3.4 that (V,U) is then also admissible for the inducedH-action.
The morphism (X × U)/H → (X × U)/G is a G/H-bundle. If G is special
this bundle is locally trivial for the Zariski topology. Hence the lemma follows
from Corollary 1.4.7 in the special case and Lemma 1.4.10 and 1.4.5 in the general
case.

1.6 Equivariant Chow Ring of Flag Varieties

We recall that G-space refers to an algebraic space over k that carries the action of
an algebraic group G. Let X be a smooth G-space and E be a vector bundle over
X of rank e. We denote by Fl(E)→ X the corresponding flag space of E, i.e. the
space parametrizing filtrations of E by subbundles with line bundle quotients. We
recall the following fact.
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Lemma 1.6.1.

A∗(Fl(E)) = A∗(X)[t1, . . . , te]/(ci(t)− ci(E), i = 1, . . . , e),

where t1, . . . , te denote the Chern roots of E and ci(t) is the i-th elementary sym-
metric polynomial in the variables t1, . . . , te.

Proof. Let Q denote the universal quotient bundle over P(E). Then Fl(Q) =
Fl(E) and we can write the structure mapFl(E)→ X as the compositionFl(Q)→
P(E)→ X . The lemma then follows easily by induction on the rank of E and the
projective bundle theorem ([Fu, Example 8.3.4]).

Let V be a G-representation. Then the action of G on V induces an action
on the projective space P(V ) = Proj(SymV ∗) such that the natural morphism
V − {0} → P(V ) is a G-equivariant principal Gm-bundle. If E is a G-equivariant
vector bundle on a G-space X we also have a natural action of G on P(E) such
that the projection P(E) → X is G-equivariant and the same holds for the flag
space Fl(E).

Lemma 1.6.2. Let X be a scheme (or algebraic space) with free G-action and E
be a G-equivariant vector bundle over X . Then there exist natural isomorphisms

P(E/G) ∼= P(E)/G, F l(E/G) ∼= Fl(E)/G.

Proof. Let π : X → X/G be the quotient map. We have the following isomor-
phisms of G-spaces

π∗P(E/G) = P(π∗E/G) = P(E) = π∗P(E)/G

and similary for the flag space. But since pulling back along π gives a fully faithfull
functor from algebraic spaces over X/G to G-spaces over X the lemma follows.

Lemma 1.6.3. (Lemma 2.3 in [EF]) Let E be a G-equivariant vector bundle of
rank e on a smooth G-space X . Then

A∗G(P(E)) = A∗G(X)[ζ]/(ζe + C1ζ
e−1 + . . .+ Ce)

where ζ = c1(OP(E)(1)) and C1, . . . , Ce are the Chern classes of E.

Proof. We have the cartesian square

P(E)× U //

��

X × U

��

P(E)G // XG

Here P(E)G is the projective bundle P(EG) of the vector bundle EG over XG by
the lemma above. The assertion thus follows from the projective bundle theorem
for ordinary Chow groups.
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Lemma 1.6.4. Let E be a G-equivariant vector bundle of rank e on a smooth
G-space X . Then

A∗G(Fl(E)) = A∗G(X)[t1, . . . , te]/(ci(t)− ci(E), i = 1, . . . , e),

where t1, . . . , te denote the G-equivariant Chern roots of E and ci(t) is the i-th
elementary symmetric polynomial in the variables t1, . . . , te.

Proof. This follows in the same way as above from the case of ordinary Chow
groups.

Remark 1.6.5. For a reminder on G-equivariant Chern roots see also the next
section.

We can also consider the equivariant Chow ring of generalized flag spaces: Let
G be a connected split reductive group over k. Chose a split maximal torus T of
G and a Borel subgroup B ⊃ T . The computation of A∗T (G/B) is carried out by
Brion in [Br]. His result is the following.

Proposition 1.6.6. Let S = Sym(T̂ ) = A∗T andW = W (G,T ) be the Weyl group
of G. The multiplication map

S ⊗SW S → A∗T (G/B)

is an isomorphism, if G is special. In general it is an isomorphism over Q.

Proof. See [Br, Proposition 6.6].

1.7 G-invariant Sections

We start with the following definition.

Definition 1.7.1. LetX be aG-scheme andE aG-equivariant vector bundle onX .
We call a global section s ∈ H0(X,E)G-invariant if the corresponding morphism
X

s−→ E is G-equivariant.

Remark 1.7.2. A global section s of aG-equivariant vector bundleE isG-invariant
if one of the following equivalent conditions hold.

(i) The morphism A1 × X → E induced by s is a morphism of G-equivariant
vector bundles, when A1 carries the trivial and X the given G-action.

(ii) p∗2s is mapped to m∗s under the isomorphism p∗2(E)
∼=−→ m∗E of locally free

sheaves corresponding to the G-action on E.
This can be easily seen as follows. The commutativity of the induced diagram

p∗2E
∼= // m∗E

p∗2OX

OO

m∗OX

OO
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of locally free sheaves on X translates into the commutativity of the diagram

G× E // E

G× A1
X

OO

// A1
X

OO

of vector bundles over G × X resp. X where the horizontal maps are the action
maps. This shows the equivalence of (i) and (ii). Since X s−→ E is the composite
of the unit section X → A1

X and the map A1
X → E induced by s we see that s is

G-invariant if and only if (i) holds.
The set of G-invariant sections of E is precisely the image of the pull-back map
H0([X/G], [E/G])→ H0(X,E).

For a G-invariant section s ∈ H0(X,E) we can form the cartesian square

Z(s)
i //

i
��

X

s

��

X sE
// E

Here the lower map is the zero section of E which is a G-equivariant regular em-
bedding of codimension e = rankE. Since s is also G-equivariant, we get that
Z(s) is G-invariant. We can therefore define a localized G-equivariant top Chern
class by

Z(s) = s!
E([X]G) ∈ AGdimX−e(Z(s))

which has the same properties as in [Fu, Proposition 14.1]. We recall that s ∈
H0(X,E) is called a regular section if i : Z(s) ↪→ X is a regular embedding of
codimension e. In particular, we have

Lemma 1.7.3. Let X be a G-scheme and E a G-equivariant vector bundle of rank
e. If s ∈ H0(X,E) is a G-invariant regular section, then the zero scheme Z(s) is
G-invariant and we have [Z(s)]G = cGe (E) ∩ [X]G in AG∗ (X).

We remark that s is regular if X is Cohen-Macaulay and codimZ(s) = e.
As a special case we obtain

Lemma 1.7.4. (Lemma 2.4 in [EF]) Let T be a torus and V be a T -representation.
Let H ⊂ P(V ) a T -invariant hypersurface defined by a homogeneous form f ∈
Symd(V ∗) that is a T -eigenfunction with eigenvalue χ ∈ T̂ . Then

[H]T = cT1 (OP(V )(d))− c1(χ)

in A∗T (P(V )).

Proof. Clearly f is a T -invariant regular section of OP(V )(d) ⊗ χ−1. Hence the
assertion follows from the lemma above.
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Equivariant Chern roots Since the flat pull-back p∗ : AG∗ (X) → AG∗ (Fl(E))
is injective, as follows from Lemma 1.6.4, we have a splitting construction for E,
i.e. we can find a G-equivariant flat morphism f : X ′ → X such that the flat pull-
back f∗ : AG∗ (X) → AG∗ (X ′) is injective and f∗E has a filtration by G-invariant
subbundles

0 = E0 ⊂ E1 ⊂ . . . ⊂ Ee−1 ⊂ Ee = f∗E

with line bundle quotients Li = Ei/Ei−1. We say that the αi = cG1 (Li) are the
G-equivariant Chern roots of E. As in the proof of Theorem 3.2 (a) in [Fu] one
can show

cGt (f∗E) =
∏
i

(1 + αit).

If F is another G-equivariant vector bundle on X with rank f and Chern roots βi
the Chern roots of E ⊗ F are given by

αi + βj , 1 ≤ i ≤ e, 1 ≤ j ≤ f.

Thus in the same way as for ordinary Chern classes ([Fu, Remark 3.2.3]) we obtain
the following equations for G-equivariant Chern classes.

Lemma 1.7.5. Let X be a G-space and E a G-equivariant vector bundle of rank
e with Chern roots α1, . . . , αe.

(i) ct(∧pE) =
∏
i1<...<ip

(1+(αi1+. . .+αip)t), in particular c1(∧eE) = c1(E).
(ii) If L is a G-equivariant line bundle ct(E ⊗ L) =

∑e
i=0 ct(L)e−ici(E)ti, in

particular ce(E ⊗ L) =
∑e

i=0 c1(L)ice−i(E).

1.8 Künneth Formula

In this section we investigate the exterior product map

A∗(X)⊗A∗(Y )→ A∗(X × Y ).

We list conditions on X , so that the exterior product map is surjective or even an
isomorphism for any scheme Y .

Definition 1.8.1. We say a scheme X has a cellular decomposition if X can be
stratified into a finite disjoint union of open subsets of affine spaces. If the cells are
in fact affine spaces and not only open subsets, we say that X has a decomposition
into affine cells. We say that a G-space X has a cellular decomposition if the cells
are G-invariant.

Examples for schemes with cellular decomposition are the projective space Pn,
the Grassmannian and flag varieties. The cells in these examples are in fact affine
spaces and not only open subsets.

29



Lemma 1.8.2. (cf. [Fu,Example 1.10.2]) If X is a scheme with a cellular decom-
position then for all schemes S the exterior product map⊕

k+l=m

Ak(X)⊗Al(S)
×−→ Am(X × S)

is surjective.

Proof. Let U be an open cell of X and let Y denote the complement of U . The
localization exact sequence then induces a commutative diagram

A∗(Y )⊗A∗(S)

��

// A∗(X)⊗A∗(S) //

��

A∗(U)⊗A∗(S)

��

// 0

A∗(Y × S) // A∗(X × S) // A∗(U × S) // 0

with exact rows. Since U is open in affine space we see that the right vertical arrow
is surjective and by noetherian induction we may assume that the left vertical arrow
is also surjective. An easy diagram chase then shows the assertion.

The exterior product map is an isomorphism if X belongs to the class of linear
schemes as is shown in [To3].

Definition 1.8.3. ([To3, Section 3]) The class of linear schemes is defined induc-
tively in the following way. The affine space of arbitrary dimension is a linear
scheme. The complement of an embedding of a linear scheme in affine space is
again linear and so is any scheme stratified by a finite disjoint union of linear
schemes

Lemma 1.8.4. The exterior product map⊕
k+l=m

Ak(X)⊗Al(Y )
×−→ Am(X × Y )

is an isomorphism for any scheme Y if X belongs to the class of linear schemes.

Proof. This is Proposition 1 in [To3]. The proof makes use of higher Chow groups.

The following lemma is an application of the Leray-Hirsch theorem (Lemma
1.9.9) below and gives a criterion in the G-equivariant case.

Lemma 1.8.5. Assume G is special and X and Y are smooth, proper G-schemes
with decomposition into affine cells. Then the exterior product map

A∗G(X)⊗A∗G A
∗
G(Y )→ A∗G(X × Y )

is an isomorphism of A∗G-algebras.
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Proof. If Xi resp. Yi denote the closure of the cells in X resp. Y the classes [Xi]
resp. [Yi] form a basis of A∗(X) resp. A∗(Y ). Consider a good pair (V,U) for
G. Applying the Leray-Hirsch theorem to the fibration (Y × U)/G → U/G with
fiber Y and the fibration (X × Y × U)/G → (Y × U)/G with fiber X we get
isomorphisms

A∗G(X × Y ) ∼= A∗G ⊗A∗(X)⊗A∗(Y ) ∼= A∗G(X)⊗A∗G A
∗
G(Y )

ofA∗G-modules, such that under the above isomorphisms 1⊗ [Xi]⊗ [Yj ] is mapped
to [Xi × Yj ]G resp. [Xi]G ⊗ [Yj ]G. The lemma follows.

Before stating the next lemma we briefly recall the notion of wreath products.
Let H be a subgroup of the symmetric group Sn and G be an arbitrary group. The
wreath product H oG is then defined to be the semi-direct product H nGn, where
H acts on Gn by permutation. We will view Z/p as the subgroup of Sp generated
by the cycle (1 2 · · · p).

Lemma 1.8.6. Let G be an algebraic group and X a scheme considered as a G-
scheme with trivial G-action. Then the exterior product map

A∗G ⊗Z CH
∗(X)→ CH∗G(X)

is an isomorphism in each of the following cases:
(i) G is the multiplicative group Gm.

(ii) G is a finite abelian group of exponent e, e is invertible in k and k contains
the e-th roots of unity.

(iii) G is an iterated wreath product Z/pZ o . . . oZ/pZ oGm over k, p is invertible
in k and k contains the p-th roots of unity.

(iv) G is an iterated wreath product Z/pZ o . . . o Z/pZ o A where A is a finite
abelian group of exponent e. Also, p and e are invertible in k and k contains
the p-th and e-th roots of unity.

In particular, for those G we have isomorphismns A∗G ⊗Z A
∗
H → A∗G×H for any

algebraic group H .

Proof. This is Lemma 2.12 in [To2]. The point is that under the above assumptions
the classifying space of G can be approximated by smooth linear schemes. The
exterior product map is an isomorphism in this case by Lemma 1.8.4.

1.9 The Restriction Map

Next we want to describe properties of the restriction map resGT : AG∗ (X) →
AT∗ (X), where T is a split torus in G. This map is defined via flat pull-back of
the natural map XT → XG between the mixed spaces. Note that more generally
one has a restriction map resGH : AG∗ (X)→ AH∗ (X) for every subgroup H of G.
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Definition 1.9.1. (i) In the followingA∗(X;Q) will denote the operational Chow
ring of X consisting of characteristic classes with values in rational Chow
groups, i.e. an element c ∈ A∗(X;Q) assigns to each T → X a morphism

c(T → X) : A∗(T )Q → A∗(T )Q

satisfying the usual compatibility conditions ([Fu, Section 17.1]). (Of course,
in the above definition one could replace Q by an arbitrary ring but we will
not need this.)

(ii) A proper map π : X̃ → X is called an envelope if for each irreducible sub-
space V ⊂ X there exists an irreducible subspace Ṽ ⊂ X̃ sucht π maps Ṽ
birationally onto V .

Remark 1.9.2. There is a natural map A∗(X)Q → A∗(X;Q) and this map is an
isomorphism if X is smooth. This follows from

A∗(X)Q ∼=
∩[X]

//

��

A∗(X)Q

A∗(X;Q) ∼=
∩[X]

// A∗(X)Q.

We recall the following easy lemma.

Lemma 1.9.3. (i) Let π : X̃ → X be a proper surjective map. Then π∗ : A∗(X̃)Q →
A∗(X)Q is surjective and π∗ : A∗(X;Q)→ A∗(X̃;Q) is injective.

(ii) Let π : X̃ → X be a birational envelope. Then π∗ : A∗(X̃) → A∗(X) is
surjective and π∗ : A∗(X)→ A∗(X̃) is injective.

Proof. The first part of (i) is [Ki, Proposition 1.3]. The first part of (ii) follows
immediately from the definition of an envelope. The second part of (i) and (ii) are
formal consequences of their first parts. We only do this for (ii). Let c ∈ A∗(X) be
in the kernel of π∗ and consider a morphism T → X . The base change πT : T̃ → T
of π along T → X is again an envelope by [Fu, Lemma 18.3]. Let a ∈ A∗(T ) and
chose ã ∈ A∗(T̃ ) with (πT )∗(ã) = a. Then

c(T → X) ∩ a = (πT )∗(c(T̃ → X) ∩ ã)

= (πT )∗((π
∗c)(T̃ → X̃) ∩ ã)

= 0.

This shows c(T → X) = 0 and hence c = 0.

Lemma 1.9.4. Let G be a connected reductive group with split maximal torus T
and Weyl group W = W (G,T ). Let M be smooth and E → M be a principal
G-bundle. Consider a Borel subgroup B ⊃ T . Then W acts on A∗(E/B) and
pull-back induces an isomorphism A∗(M)Q ∼= A∗(E/B)WQ .
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Remark 1.9.5. The above lemma is also mentioned (without proof) in [Vi, Section
2.5].

Proof. We identify W = NG(T )/T and chose w ∈ NG(T ). Then w induces an
automorphism w : E/T → E/T . This defines an action of W on A∗(E/T ) =
A∗(E/B). Since w lies in G the diagram

E/T //

w

��

E/G = M

E/T

99

commutes and this implies that the image of the pull-back A∗(M) → A∗(E/B)
lies in A∗(E/B)W . We are left to show that

A∗(M)Q → A∗(E/B)WQ

is an isomorphism. Let us first show that A∗(M)Q → A∗(E/B)WQ is surjective.
For this the smoothness assumption on M is not needed. We recall that every G-
torsor is locally isotrivial by [Ra, XIV Lemma 1.4]. This means that there exists a
covering ofM by open subsets U with the property that for each U there is a finite,
etale and surjective map U ′ → U such that EU ′ = E ×M U ′ → U ′ becomes a
trivial G-torsor. Let V denote the complement of such an U in M and consider the
commutative diagram

A∗(V )Q //

��

A∗(M)Q //

��

A∗(U)Q //

��

0

A∗(EV /B)WQ
// A∗(E/B)WQ

// A∗(EU/B)WQ
// 0

with exact rows. An easy diagram chase shows that if the first and last vertical map
are surjective so is A∗(M)Q → A∗(E/B)WQ . Using noetherian induction we are
thus reduced to the case that there exists a proper surjective map M ′ → M such
that EM ′ →M ′ is trivial. Since the diagramm

A∗(M
′)Q //

��

A∗(EM ′/B)WQ

��

A∗(M)Q // A∗(E/B)WQ

commutes ([Fu, Proposition 1.7]) and since A∗(EM ′/B)WQ → A∗(E/B)WQ is sur-
jective by part (i) of the previous lemma we are further reduced to the case of a
trivial G-torsor E = G ×M → M . Since G/B has a decomposition into affine
cells we obtain in this caseA∗(E/B)Q = A∗(G/B)Q⊗A∗(M)Q by Lemma 1.8.4.
From [De, Section 8] we get A∗(G/B)Q = SQ/(S

W
+ ), where S = Sym(T̂ ) and
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SW+ denotes the submodule generated by homogeneous W -invariant elements of
positive degree. Since (SQ/(S

W
+ ))W = Q we obtain A∗(E/B)WQ = A∗(M)Q as

wanted.
By the previous lemma we know that A∗(M ;Q) → A∗(E/B;Q) is injective but
since M (and therefore E) is smooth we obtain the injectivity of A∗(M)Q →
A∗(E/B)Q.

Theorem 1.9.6. Let G be a connected reductive group with split maximal torus T
and Weyl group W = W (G,T ). Let X be a G-scheme.

(i) W acts onAT∗ (X). Furthermore, the restriction morphismAG∗ (X)→ AT∗ (X)
induces a map r : AG∗ (X)→ AT∗ (X)W .

(ii) Assume X is smooth. Then r is an isomorphism after tensoring with Q.
(iii) Assume X is smooth and that G is special. Then r is injective. Morever, r is

an isomorphism if A∗T (X) is Z-torsion free (e.g. if X = Spec k).

Remark 1.9.7. It is claimed in [EG, Proposition 6] that r : AG∗ (X) → AT∗ (X)W

is an isomorphism for arbitrary X if G is special. But according to a footnote in
[EF] this is false. Unfortunately, we do not have an example for this.

The assertions (i) and (ii) are immediate consequences of Lemma 1.9.4. Under
the assumption that A∗T (X) is Z-torsion free we will deduce the surjectivity of r
from part (ii) by using the argumentation of the proof of Theorem 1 in [EG2]. In
this article Edidin and Graham prove the above theorem in the case X = Spec k.
Their key ingredient is the following proposition.

Proposition 1.9.8. ([EG2, Proposition 1]) Let Y → X be a smooth proper Zariski
locally-trivial fiber bundle, where X is smooth and whose fiber F has a decompo-
sition into affine cells. Then A∗Y is a free A∗X-module. More precisely, we have
a (non-canonical) isomorphism A∗Y ∼= A∗X ⊗A∗F of A∗X-modules.

This proposition is a corollary of an algebraic version of the Leray-Hirsch the-
orem.

Lemma 1.9.9. (Leray-Hirsch, [EG2, Lemma 6]) Let Y → X be a smooth proper
Zariski locally-trivial fiber bundle, where X is smooth and whose fiber F has a
decomposition into affine cells. Let {Bi} ∈ A∗(Y ) be a collection of classes that
restrict to a basis of the Chow groups of the fibers. Then A∗(Y ) is a free A∗(X)-
module with basis {Bi}.

Proof. (of Theorem 1.9.6) We are left to prove part (iii). To prove the injectivity of
r it suffices to show that the pull-back of the morphism p : XB → XG between the
mixed spaces is injective. But this morphism is a G/B-bundle locally trivial for
the Zariski topology since G is special. In particular, p is an envelope and hence
p∗ : A∗(XG)→ A∗(XB) is injective by Lemma 1.9.3.
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Assume now that A∗T (X) is Z-torsion free and let α ∈ A∗T (X)W . Consider the
fiber square

XB ×XG XB
p1
//

p2

��

XB

p

��

XB p
// XG.

Then α is lying in the image of p∗ if and only if p∗1α = p∗2α by [Ki, Theorem
2.3]. We know that p∗1α − p∗2α is torsion in A∗(XB ×XG XB) since we already
know that r is surjective after tensoring with Q. But by Proposition 1.9.8 we have
A∗(XB ×XG XB) ∼= A∗(XB) ⊗ A∗(G/B). Since A∗(XB) and A∗(G/B) are
torsion free so is A∗(XB ×XG XB) and the claim follows.

We state another result in this direction.

Theorem 1.9.10. Let G be a connected reductive group with split maximal torus
T and let X be a G-scheme. Then the map

(A∗T )Q ⊗(A∗G)Q A
G
∗ (X)Q → AT∗ (X)Q

induced by the restriction map is an isomorphism of (A∗T )Q-modules. If G is spe-
cial the same holds over Z.

Proof. This is [Br, Theorem 6.7].

Corollary 1.9.11. The restriction map r is an isomorphism if G is special and
AG∗ (X) is a flat A∗G-module.

Proof. This follows from the theorem above and the exact sequence

0 // A∗G
// A∗T

//
∏
w∈W A∗T

of A∗G-modules.

In the following special case r becomes an isomorphism after inverting the
order of the Weyl group.

Lemma 1.9.12. Let G be a connected reductive group with split maximal torus T
and V be a G-representation. Let U ⊂ V be open and G-invariant. If G is special
then r : A∗G(U)→ A∗T (U)W is an isomorphism after inverting ord(W )

Proof. We have the diagram

A∗G(V ) //

∼=
��

A∗G(U) //

r
��

0

A∗T (V )W // A∗T (U)W

The first vertical map is an isomorphism by Theorem 1.9.6. Note that A∗G(V ) =
A∗G and A∗T (V ) = A∗T holds. Hence r is surjective if and only if A∗T (V )W →
A∗T (U)W is surjective which is the case after inverting ord(W ).

35



We give another useful lemma which is an immediate consequence of the
Leray-Hirsch theorem. See [EF, Proposition 2.2].

Lemma 1.9.13. Let G be connected reductive. Assume G is special and let T
in G be a split maximal torus. If X is a smooth G-scheme then A∗G(X) is (non-
canonically) a direct summand in the A∗G(X)-module A∗T (X).

Corollary 1.9.14. Let G be connected reductive. Assume G is special and let T
in G be a split maximal torus. Let X be a smooth G-scheme and Y in X a closed
G-invariant subscheme. If the image of CH∗T (Y ) → CH∗T (X) is generated as a
CH∗T (X)-module by elements lying in CH∗G(X) then the same elements generate
the image of CH∗G(Y )→ CH∗G(X) as a CH∗G(X)-module.

Proof. Let U denote the complement of Y . Consider the commutative diagram

CH∗G(Y ) //

��

CH∗G(X) //
� _

�

CH∗G(U) //
� _

�

0

CH∗T (Y ) // CH∗T (X) // CH∗T (U) // 0

with exact rows. Note that, since the right vertical morphism is also injective, an
element of CH∗G(X) that lies in the image of the map CH∗T (Y ) → CH∗T (X)
also lies in the image of CH∗G(Y ) → CH∗G(X). After choosing a section of
CH∗G(X) ↪→ CH∗T (X) the proof is straight forward.

1.10 The Transfer Map

Consider a subgroup H in G of finite index [G : H]. By this we mean that G/H
is affine and the coordinate ring of G/H is a finite dimensional k-vectorspace of
dimension [G : H]. The natural map U/H → U/G between the mixed spaces is
then finite, flat and surjective of degree [G : H]. The proper push-forward of this
map induces an additive map

trGH : AiH → AiG

called transfer map.

Lemma 1.10.1. (i) The transfer map is a homomorphism of A∗G-modules.
(ii) The composition

A∗G
resGH // A∗H

trGH // A∗G

is multiplication with [G : H].

Proof. Going over to the mixed spaces this follows easily from properties of or-
dinary Chow groups. The first part follows from the projection formula and the
second follows since the composition of flat pull-back and proper push-forward of
a finite, flat and surjective map is multiplication by the degree of the map. In our
case the degree is [G : H].
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We will apply this lemma in the following way.

Corollary 1.10.2. Let G be a finite group and l a prime number. If P is an l-Sylow
subgroup of G then the localized restriction map

resGP : A∗G ⊗ Z(l) → A∗P ⊗ Z(l)

is injective.

Corollary 1.10.3. Let G be a finite group scheme over k of degree |G|. Then

|G|AiG = 0

for i > 0. In particular, (A∗G)Q = Q in degree 0.

Proof. By definition we have |G| = [G : 1]. Part (ii) of the above lemma applied
to the case H = {1} implies |G|AiG = 0 for i > 0 as wanted. Alternatively this
follows as a special case of Lemma 1.4.9.

2 Specialization

2.1 Specialization for Chow Rings

We note that almost all the functorial properties of Chow rings (meaning §1-§6 of
[Fu]) remain valid for schemes of finite type over a regular base scheme S. The
only exception is the existence of an exterior product mapA∗(X/S)⊗A∗(Y/S)→
A∗(X ×S Y/S). The reason is that varities over S are not automatically flat. This
changes when S is the spectrum of a discrete valuation ring (or more generally a
Dedekind domain). In this case every variety over S is either flat or is mapped to the
closed point of S. It is then possible to define a product on the level of cycles that
passes to rational equivalence ([Fu, Section 20.2]). Section 8 of [Fu] then carries
over to smooth schemes X over a discrete valuation ring. In particular, there is an
intersection product on A∗(X/S). For more information see [Fu, Section 20].
We now recall the concept of specialization for Chow rings as explained in [Fu,
Section 20.4]. Let X be a scheme of finite type over a regular base scheme S.
Assume i : Sc → S is a regular embedding of codimension d such that the normal
bundle N of Sc in S is trivial. Consider the fibresquare

Xc i′ //

g

��

X

��

Sc
i
// S.

By [Fu, Corollary 6.3] we have the equation i!(i′∗)(α) = cd(g
∗N) ∩ α = 0 for all

α ∈ A∗(X
c/Sc). Writing Xo = X − Xc it follows from the localization exact
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sequence that there is a unique map σ : A∗(X
o/So) → A∗(X

c/Sc) such that the
diagram

A∗(X/S)
j∗
//

i!

��

A∗(X
o/So)

σ
ww

A∗(X
c/Sc)

commutes. Assume S is the spectrum of a discrete valuation ring R with fraction
field K and residue field k . If X is smooth over SpecR then σR : A∗(XK) →
A∗(Xk) is a ring homomorphism by [Fu, Corollary 20.3].

Remark 2.1.1. (i) We recall the following fact about the refined Gysin homomor-
phisms i! : A∗(V ) → A∗−d(W ), where W → V is the base change of a regular
embedding i : Y → X of codimension d along a morphism V → X . Namely,
if W → V is again a regular embedding of codimension d then i![V ] = [W ] ∈
A∗(W ). This follows immediately from the definition of i! ([Fu, Section 6.2]) and
the fact that in this case the normal bundle NWV equals the pull-back of the nor-
mal bundle NYX to W .
(ii) Let R be a discrete valuation ring with fraction field K and residue field k
and denote i : Spec k ↪→ SpecR. Let X be of finite type over S. Consider the
morphism

Z∗(XK)→ Z∗(Xk), [V ] 7→ [V̄k],

where V̄ denotes the closure of V in X . Since V̄k ↪→ V̄ is again a regular embed-
ding of codimension 1 we have σR([V ]) = i!([V̄ ]) = [V̄k] ∈ A∗(XK) by part (i),
i.e. the specialization map is induced by the above map on the level of cycles. We
will therefore denote the map Z∗(XK)→ Z∗(Xk) also by σR.

Similary to ordinary Chow groups equivariant intersection theory remains valid
for schemes (or algebraic spaces) that are of finite type over S = SpecR with R
a Dedekind domain: By [EG, Lemma 7] we can find for any affine smooth group
scheme G defined over S a finitely generated projective S-module E such that
G acts freely on an open subset U of E whose complement has arbitrarily high
codimension. For such an U one defines

AGi (X) = Ai+l−g((X × U)/G)

where l = dim(U/S) and g = dim(G/S). All the functorial properties of equiv-
ariant intersection theory remain valid. In particular, if X is smooth over S there
is an intersection product on AG∗ (X).

Remark 2.1.2. Convention 1.2.1 carries over to the situation of an affine smooth
group scheme over the spectrum S of a Dedekind domain: A pair (U,E) is called
a good pair for G if E is a finitely generated projective S-module and U is an open
subset of E on whichG acts freely. IfX is aG-scheme over S we call the quotient
XG = (X × U)/G a mixed space for the G-scheme X . If codim(U c, E) > i we
also call XG an approximation of the quotient stack [X/G] up to codimension i.
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Let us consider now the spectrum S of a discrete valuation ringR with fraction
field K and residue field k and a smooth affine group scheme G over S. For every
good pair (E,U) of G the above construction gives a homomorphism of graded
rings

A∗(UK/GK)→ A∗(Uk/Gk).

Since dimU ck ≤ dimU c and dimU cK ≤ dimU c and since we can chose the
codimension of U c to be arbitrarily high these morphisms induce a map

σR : A∗GK → A∗Gk

of graded rings. In particular, there exist such a map for any finite abstract group
G viewed as a constant group scheme over S. We will call this map specialization
map. We have the following naive criterion for the specialization map to be an
isomorphism.

Proposition 2.1.3. Let G be a finite abstract group viewed as a constant group
scheme over a discret valuation ring with quotient field K and residue field k of
mixed characteristic. Then the following assertions hold:

(i) The specialization map is surjective if A∗Gk is generated as a Z-algebra by
Chern classes of representations of Gk.

(ii) The specialization map is injective if the same holds true for every Sylow
subgroup of G.

Proof. To prove (i) we use the theory of Brauer lifts ([Se, Chapter 18]). LetRK(G)
resp. Rk(G) denote the representation ring of GK resp. Gk. Consider the diagram

RK(G)
d //

ci
��

Rk(G)

ci
��

AiGK
σ // AiGk .

Here the maps ci are induced by the i-th Chern class (see Lemma 2.1.4 below) and
d is defined as follows. If V is a K-representation of G we chose a G-invariant
lattice Ṽ of V . The class [V ] is then mapped under d to the class [Ṽ ⊗ k] in
Rk(G). This class does not depend on the choice of a lattice ([Se, Section 15.2]).
By definition of the specialization map and [Fu, Proposition 6.3] we see that the
above diagram is commutative. The map d is surjective by [Se, Section 16.1]. In
other words we can lift Chern classes in A∗Gk to Chern classes in A∗GK . Hence the
specialization map is surjective if A∗Gk is generated by Chern classes of represen-
tations of Gk.
If P is an l-Sylow subgroup of G for some prime l we obtain a diagram

(A∗GK )(l)
� � //

σ

��

(A∗PK )(l)

σ

��

(A∗Gk)(l)
� � // (A∗Pk)(l)
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where the injectivity of the horizonatal maps follow from Corollary 1.10.2. More-
over, this diagram is commutative by [Fu, Proposition 6.2 (b)]. This proves (ii).

Lemma 2.1.4. If G is a finite abstract group and k an arbitrary field, then for any
i ∈ Z≥0 there are unique maps ci : Rk(G) → AiGk satisfying the following two
properties:

(i) For any Gk-representation V one has ci([V ]) = ci(V ) ∈ AiGk .
(ii) ci(E1 + E2) =

∑
k+l=i ck(E1)cl(E2) for E1, E2 ∈ Rk(G).

Proof. We note that any virtual representation E of G has a unique expression
E =

∑
L∈S(G) λi[L] with λi ∈ Z. Here S(G) denotes the set of isomorphism

classes of simple representations of G. The properties (i) and (ii) then determine
the image ci(E) of E uniquely.

Remark 2.1.5. Although condition (i) of the above proposition does hold for many
finite groups it does not hold in general. A counter example is given by the sym-
metric groups ([To, Section 4]).

Computing the equivariant Chow ring of a finite group in characteristic 0 is
difficult. Instead one can try to compute its equivariant Chow ring in positive
charactersitic and then apply Proposition 2.1.3.
The computation in characteristic p is easier at least for Chevalley groups. Recall
that Chevalley groups are the finite groups G(Fq), where G is a connected, split
reductive group scheme over Z. The reason is the following: Let k be a field
containing Fq. We will see in the following lemma that there is a canonical 1-
isomorphism

BG(Fq)k ∼= [Gk/Gk],

where the action ofGk on itself is given by conjugation with the q-th power Frobe-
nius. If G is special (e.g. G = GLn,SLn, Sp2n) we can determine A∗Gk(Gk) and
thus also A∗G(Fq)k completely. This will be done in Chapter 3.

Lemma 2.1.6. Let G be a connected algebraic group over an arbitrary field k and
ϕ : G → G be an isogeny with only a finite number of fixed points. Consider the
G-action on G defined by g · h = ghϕ(g)−1 and let S denote the stabilizer group
scheme of the neutral element. Then there is a canonical 1-isomorphism

[G/G] ∼= BS.

Proof. It suffices to show that the quotient stack [G/G] is a gerbe that has a section
over k whose automorphism group is equal to S ([LMB, Lemma 3.21]). Let T be a
scheme andB1, B2 be two principalG-bundles over T together withG-equivariant
maps Bi → G. After replacing T by a suitable covering we may assume that B1

and B2 are trivial. The G-equivariant maps Bi → G are then given by sections
gi : T → G×T and there exists an isomorphism of principalG-bundles respecting
the maps Bi → G if and only if g1 and g2 lie in the same G(T )-orbit. This holds

40



after passing to a suitable covering of T by [Ste, Theorem 10.1] which states that
the morphism G→ G, g 7→ gϕ(g)−1 is faithfully flat. In fact, Steinberg’s theorem
only states that this map is surjective, but since by assumption ϕ has only finitely
many fixed points all the fibers of the map g 7→ gϕ(g)−1 have dimension zero and
hence this map is flat by the mirracle flatness theorem ([Ma, (21.D) Theorem 51]).
This shows that [G/G] is a gerbe.
The section of [G/G] with automorphism group equal to S is given by the trivial
G-bundle over Spec k with G-equivariant map G→ G, g 7→ gϕ(g)−1.

Corollary 2.1.7. LetG be a split reductive group scheme over Z and let k be a field
containing Fq. Let Gk act on itself by conjugation with the q-th power Frobenius.
Then there is a canonical 1-isomorphism

BG(Fq)k ∼= [Gk/Gk].

Proof. This follows from the previous lemma applied to the case that ϕ is the q-th
power Frobenius.

From Qp to C. Let K be a finite field extension of Qp and R the integral
closure of Zp in K. Since Qp is complete for the p-adic valuation R is again a
discrete valuation ring. Also its residue field k is a finite field extension of Fp.

Lemma 2.1.8. Let K ′ be another finite extension of Qp that contains K. Let R
resp. R′ be the integral closure of Zp in K resp. K ′ and let k resp. k′ denote the
residue field. Then the following diagram commutes

A∗GK′
σR′ // A∗Gk′

A∗GK
σR //

OO

A∗Gk

OO

Here the vertical maps are induced by pull-back.

Proof. We note that R and R′ are both finite and free over Zp. Hence if X is an
approximation of BGZp (cf. Remark 2.1.2) then XR is an approximation of BGR
and similary for R′. Cleary the diagram

Z∗(Xk′) Z∗(XR′) //oo Z∗(XK′)

Z∗(Xk)

OO

Z∗(XR) //oo

OO

Z∗(XK)

OO

on the level of cycles commutes. Here all the maps are induced by base change.
Passing to cycle classes it thus follows from Remark 2.1.1 (ii) that

A∗(XK′)
σR′ // A∗(Xk′)

A∗(XK)

OO

σR // A∗(Xk)

OO
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commutes.

In view of the above lemma we can take the direct limit of the specialization
maps σR yielding a map

lim−→
K

A∗GK → lim−→
k

A∗Gk

for every finite group G. Here the limit goes over all finite field extensions K resp.
k of Qp resp. Fp. Fixing an isomorphism C ∼= Q̄p we obtain a homomorphism of
graded rings

σG : A∗GC → A∗GF̄p
.

2.2 Specialization for Etale Cohomology

Etale Homology. For any scheme S over a separably closed field k etale homology
is defined as

Hi(S,Zl) = H−iRΓ(S, TS)

for l 6= char k, where TS is the dualizing complex of S. If a denotes the structure
map of S then TS = Ra!Zl ∈ D(S,Zl). Let us recall the properties of etale
homology we shall need. For the proof we refer to [LaG].

Proposition 2.2.1. Let k be a separably closed field and l be a prime different from
the characteristic of k. Let X be a scheme over k of dimension d.

(i) Hi(X,Zl) = 0 for i < 0 and i > 2d and H2d(X,Zl) is freely generated by
the irreducible components of X of dimension d.

(ii) If X is smooth then Hi(X,Zl) = H2d−i(X,Zl), where the right hand side
denotes the usual l-adic cohomology groups.

(iii) (Functoriality) Let f : X → Y be proper resp. flat of relative dimension n.
Then f induces an additive push-forward map f∗ : H∗(X,Zl) → H∗(Y,Zl)
resp. pull-back map f∗ : H∗(Y,Zl)→ H∗+n(X,Zl) compatible with compo-
sition.

(iv) If f : X → Y is finite and locally free of degree n then the composition

H∗(Y,Zl)
f∗
// H∗(X,Zl)

f∗
// H∗(Y,Zl)

is multiplication by n.
(v) (Künneth Formula) If Y is another scheme over k there is an exact sequence

of the form

0 //
⊕

r+s=iHr(X)⊗Hs(Y ) // Hi(X × Y )

//
⊕

r+s=i−1 Tor1(Hr(X), Hs(Y )) // 0.

(vi) (Cycle Map) There is an additive cycle map clX : A∗(X) → H2∗(X,Zl)
compatible with proper push-forward, flat pull-back and Chern classes. If X
is smooth then clX defines a morphism of rings.
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Since we do not have a reference for the following lemma, we prove it here.

Lemma 2.2.2. Let Z ⊂ S be a closed subscheme and denote by U its complement
in S. Denote the inclusion Z ↪→ S resp. U ↪→ S by i resp. j. Then there is a long
exact sequence

. . . // Hi+1(U,Zl) // Hi(Z,Zl)
i∗ // Hi(S,Zl)

j∗
// Hi(U,Zl) //

Proof. If I is an injective object in Mod(S,Z/ln) there is a natural exact sequence

0 // i∗i
!I // I // j∗j

∗I // 0.

This implies that there is an exact triangle in D(S,Zl) of the form

(Rj∗)j
∗TS

xx

i∗Ri
!TS // TS

dd

Note that i∗Ri!TS = i∗TZ as well as (Rj∗)j
∗TS = Rj∗TU . Applying the functor

RΓ(S, ·) thus yields an exact triangle

RΓ(U, TU )

ww

RΓ(Z, TZ) // RΓ(S, TS)

gg

in D(Spec k,Zl). Taking homology then yields the desired long exact sequence.

Definition 2.2.3. Let G be an algebraic group over a separably closed field k
and l be a prime different from the characterstic of k. We define the i-th l-adic
cohomology group of BG in the following way. Let (V,U) be a good pair for G
with codim(U c) ≥ (i+ 1)/2 then

H i(BG,Zl) = H i(U/G,Zl).

By using Proposition 2.2.1 (ii) and Lemma 2.2.2 above one shows in the same way
as in the case of Chow groups ([EG, Definition-Proposition 1]), that the above
definition is independent of the choice of the pair (V,U) as long as codimU c ≥
(i+ 1)/2.

Remark 2.2.4. If G is a finite abstract group and l a prime that does not divide
the order of G then H∗(BGk,Zl) = Zl in degree 0. This follows from the usual
transfer argument (cf. Corollary 1.10.3).
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Lemma 2.2.5. Let k be a field of arbitrary characteristic and l a prime different
from char k. Assume (n, char k) = 1 then the cycle map

A∗µn,k ⊗ Zl → H∗(Bµn,ksep ,Zl)

is an isomorphism.

The above lemma together with Example 1.2.12 yields H∗(Bµn,ksep ,Zl) =
Zl[t]/(nt) where t is the first Chern class of the character µn ↪→ Gm.

Proof. Since A∗µn,k = A∗µn,ksep we may assume k = ksep. The natural map

X = (Ar+1
k − {0})/µn → (Ar+1

k − {0})/Gm = Prk

is a principal Gm-bundle and the corresponding line bundle is given byOPr(n). In
other words µn can be approximated by the complement X of the zero section in
OPr(n). We will show that the cycle map

Ai(X)⊗ Zl → H2i(X,Zl)

is an isomorphism and H i(X,Zl) = 0 for odd i. Consider the diagram

Ai(Prk)⊗ Zl //

��

Ai+1(OPr(n))⊗ Zl //

��

Ai+1(X)⊗ Zl

��

// 0

H2i(Prk,Zl) // H2i+2(OPr(n),Zl) // H2i+2(X,Zl) // H2i+1(Prk,Zl)

with exact rows. Here the lower row comes from Lemma 2.2.2. This diagram is
commutative since the cycle map is compatible with proper push-forward and flat
pull-back by Proposition 2.2.1 (vi). It is well known that the first vertical map is
an isomorphism. Hence the second vertical map is also an isomorphism. Since
H2i+1(Prk,Zl) = 0 the first claim follows. For the second claim it suffices to see
that the map H2i(Prk,Zl) → H2i+2(OPr(n),Zl) is injective. But we know that
Ai(Prk)⊗ Zl → Ai+1(OPr(n))⊗ Zl is injective since the composition Ai(Prk) →
Ai+1(OPr(n))

∼=−→ Ai+1(Prk) is capping with c1(OPr(n)) by the self intersection
formula (cf. the proof of Lemma 1.2.7) and under the identification Ai(Prk) = Z =
Ai+1(Prk) this corresponds to multiplication with n.

Specialization. Let R be a discrete valuation ring with fraction field K of
characteristic 0 and perfect residue field k of characteristic p and let X → SpecR
be smooth. We recall the construction of the etale specialization map

σR : H i(XK̄ ,Zl)→ H i(Xk̄,Zl)
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for l a prime different from p that is compatible with the specialization map for the
Chow ring under the cycle map, i.e. the diagram

H2i(XK̄ ,Zl)
σR // H2i(Xk̄,Zl)

Ai(XK)

OO

σR
// Ai(Xk)

OO

commutes (cf. [SGA6, Expose 10, 7.14]).

Lemma 2.2.6. Let A be a normal ring such that K = Frac(A) is separably
closed. LetX → SpecA be smooth. Then the pull-back morphismH i(X,Z/ln)→
H i(XK ,Z/ln) is an isomorphism.

Proof. This is more or less a direct consequence of the smooth base change theo-
rem. Consider the cartesian diagram

X

a

��

XK
g′

oo

aK
��

SpecA SpecK.g
oo

The smooth base change theorem then yields an isomorphism a∗(Rig∗Z/ln) ∼=
Rig′∗Z/ln. SinceA is normal we have g∗Z/ln = Z/ln by [SGA4 Exp. IX, Lemma
2.14.1]. Since K is separably closed g∗ is exact, hence Rig∗ = 0 for i > 0. It
follows g′∗Z/ln = Z/ln and Rig′∗Z/ln = 0 for i > 0. The Leray spectral sequence
Hp(X,Rqg′∗Z/ln)⇒ Hp+q(XK ,Z/ln) for g′∗ then yields the claim.

Let now R be a discrete valuation ring as above. We fix algebraic closures K̄
and k̄. Let R̃ be the integral closure in K̄ of the strict Henselization of R.

Lemma 2.2.7. R̃ is a normal Henselian local ring with fraction field K̄ and residue
field k̄.

Proof. Since R̃ is the integral closure of a Henselian local ring, it is also Henselian
local. Since k is perfect the residue field of the strict Henselization equals k̄. Hence
the residue field of R̃ equals k̄.

Definition 2.2.8. Let R be a discrete valuation ring with fraction field K of char-
acteristic 0 and perfect residue field k of characteristic p. Let X → SpecR be
smooth. For a prime l different from p we define the specialization map

σR : H i(XK̄ ,Z/l
n)→ H i(Xk̄,Z/l

n)

to be the composition

H i(XK̄ ,Z/ln) H i(X ⊗R R̃,Z/ln)
∼=oo // H i(Xk̄,Z/ln).

45



Remark 2.2.9. If X is also proper over SpecR then σR is an isomorphism: Let
a : X ⊗R R̃ → Spec R̃ denote the structure map, then the proper base change
theorem yields a canonical isomorphism (Ria∗Z/ln)x̄ = H i(Xk̄,Z/ln). Here
x ∈ Spec R̃ denotes the closed point. On the other hand we have (Ria∗Z/ln)x̄ =
H i(X ⊗R R̃,Z/ln) since R̃ is strictly local.

Lemma 2.2.10. The diagram

H2c(XK̄ ,Z/ln)
σR // H2c(Xk̄,Z/ln)

Zc(XK) σR
//

clXK

OO

Zc(Xk)

clXk

OO

commutes. Here σR : Zc(XK)→ Zc(Xk) is the map from Remark 2.1.1 (ii), which
induces the specialization map on the Chow groups.

Proof. We need to recall the definition of the cycle map clX : Zc(X)→ H2c(X,Z/ln)
([SGA4h, Cycle, 2.3]). If f : Y → S = SpecR is a flat map of finite type and of
relative dimension d there is a trace map Trf ∈ Hom(R2df!Z/ln(d),Z/ln) by
[SGA4, Expose XVIII, Theorem 2.9], which is compatible with base change in S.
Since Rkf!Z/ln(d) = 0 for k > 2d we have natural identifications

Hom(R2df!Z/ln(d),Z/ln) = Hom(Rf!Z/ln(d),Z/ln[−2d])

= Hom(Z/ln, Rf !Z/ln(−d)[−2d])

= H0(Y,R−2df !Z/n(−d)).

Consider now a cycle [Y ] ∈ Zc(X). Let

f : Y �
� i // X

π // S

denote the structure map. If f is not dominant one defines clX([Y ]) = 0. In
the other case f is flat of relative dimension d = N − c, where N denotes the
relative dimension of X → S. Since π is smooth of relative dimension N we have
Rπ!Z/ln = Z/lN (−N)[−2N ] and from Rf ! = Ri!Rπ! it follows

H0(Y,R−2df !Z/n(−d)) = H0(Y,R2ci!Z/ln(c))

By semi-purity [SGA4h, Cycle, 2.2.8] it holds Rki!Z/ln = 0 for k < 2c and from
the spectral sequence Hp(Y,Rqi!Z/ln)⇒ Hp+q

Y (X,Z/ln) we deduce

H0(Y,R2ci!Z/ln(c)) = H2c
Y (X,Z/ln(c)).

This shows that we may view the trace map Trf as an element of H2c
Y (X,Z/ln).

One then defines clX([Y ]) to be the image of Trf under the natural map

H2c
Y (X,Z/ln)→ H2c(X,Z/ln).
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Consider now a cycle [V ] ∈ Zi(XK) and let Y denote the closure of V in X .
Since the trace map is compatible with base change we have that the image of
clX([Y ]) under H2c(X,Z/ln) → H2c(XK ,Z/ln) equals clXK ([V ]) and similary
the image of clX([Y ]) under H2c(X,Z/ln) → H2c(Xk,Z/ln) equals clXk([Yk]).
Since [Yk] = σR([V ]) the Lemma follows from the definition of the specialization
map on etale cohomology.

Lemma 2.2.11. Let G be a finite abstract group and X → Y be a G-torsor over
R. If σR : H i(XK̄ ,Z/ln) ∼= H i(Xk̄,Z/ln) is an isomorphism for all i, the same is
true for σR : H i(YK̄ ,Z/ln)→ H i(Yk̄,Z/ln).

Proof. Consider the Hochschild-Serre spectral sequences

Hp(G,Hq(XK̄ ,Z/l
n))⇒ Hp+q(YK̄ ,Z/l

n)

Hp(G,Hq(Xk̄,Z/l
n))⇒ Hp+q(Yk̄,Z/l

n).

Since specialization is compatible with pull-back, the map σR : H i(XK̄ ,Z/ln)→
H i(Xk̄,Z/ln) is in fact an isomorphism of G-modules, thus yielding an isomor-
phism of spectral sequences compatible with the specialization map for Y . The
lemma follows.

Corollary 2.2.12. Let G be a finite abstract group. Then the specialization map
H∗(BGK̄ ,Zl)→ H∗(BGk̄,Zl) is an isomorphism

Proof. Choose a good pair (E,U) for GR. Then σR : H i(UK̄ ,Zl) → H i(Uk̄,Zl)
is an isomorphism for all i < 2 codim(E − U) by Lemma 2.2.2. Since we can
choose this codimension to be arbitrary high the assertion follows from the previ-
ous Lemma.

We shall also have need for the following comparison theorem, whose proof
can be found in [SGA 4, XI].

Theorem 2.2.13. Let X → SpecC be smooth. Then for any finite abelian group
M there is a canonical isomorphism

H i
sing(X(C),M) ∼= H i(X,M).

Lemma 2.2.14. Let X be a topological space and assume that Hsing
i (X,Z) and

Hsing
i−1 (X,Z) are finitely generated. Then lim←−nH

sing
i (X,Z/ln) ∼= Hsing

i (X,Zl).

Proof. By the universal coefficient theorem we have an exact sequence

0 // Hsing
i (X,Z)⊗ Z/ln // Hsing

i (X,Z/ln)

// Tor1(Hsing
i−1 (X,Z),Z/ln) // 0.
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Recall Tor1(Hsing
i−1 (X,Z),Z/ln) = Hsing

i−1 (X,Z)[ln]. Clearly the Mittag-Loeffler
condition is satisfied for the inverse system (Hsing

i (X,Z)⊗Z/ln)n. Taking inverse
limits thus yields an exact sequence

0 // lim←−nH
sing
i (X,Z)⊗ Z/ln // lim←−nH

sing
i (X,Z/ln)

// lim←−nH
sing
i−1 (X,Z)[ln] // 0.

By assumption we have

lim←−
n

Hsing
i (X,Z)⊗ Z/ln = Hsing

i (X,Z)⊗ Zl = Hsing
i (X,Zl),

lim←−
n

Hsing
i−1 (X,Z)[ln] = 0

and hence the lemma follows.

2.3 Specialization for Wreath Products

Our goal is to prove the following proposition which is inspired by [To, Lemma
8.1], a variant of which is stated in Lemma 2.3.4 below.

Proposition 2.3.1. Let p 6= l be prime numbers. Assume G is a finite abstract
group satisfying the following conditions:

(i) The specialization map A∗GQ̄p
⊗ Zl → A∗GF̄p

⊗ Zl is an isomorphism.
(ii) BGQ̄p and BGF̄p can be approximated by schemes admitting a cell decom-

position.
(iii) The cycle map A∗GQ̄p

⊗ Zl → H∗(BGQ̄p ,Zl) is split injective.

Then the same conditions hold for the wreath product Z/l oG.

In order to prove this proposition we need to say something about the cyclic
product of a quasi-projective scheme, since these are the spaces that approximate
B(Z/l oG).

Cyclic Products. Let S be a quasi-projective scheme over an arbitrary field
k. (We note that since we are interested in classifying spaces of finite groups, the
assumption on S to be quasi-projective is no loss of generality by Lemma 1.3.4.)
Let l be a prime. Consider the permutation action of Z/l on Sl. Since S is quasi-
projective the geometric quotient Sl/(Z/l) exists. If we take out the diagonal of
Sl, then the action of Z/l on Sl − S is free and

π : Sl − S → (Sl − S)/(Z/l)

is a principal bundle quotient with structure group Z/l. We will write X = Sl−S,
Y = (Sl − S)/(Z/l) and Z lS = Sl/(Z/l) and call Z lS the cyclic product of S.
Note that π is finite, etale of degree l.
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Assume (l, char k) = 1 and k contains the l-th roots of unity. Fix a character
µl ↪→ Gm and let c1 ∈ A1Y be its first Chern class. For i > 0 and j ≤ il − 1 we
consider the operations

γi : Ai(S)→ Ali(Y ), αji : Ai(S)→ Aj(Y )

constructed in [To, Section 7], where αji = cli−j1 γi. We note that

π∗γi(a) = a⊗l|X , hence lγi(a) = π∗(a
⊗l|X),

and that αji is a homomorphism of abelian groups.
For convenience we briefly recall the construction of γi. Let C ∈ Z∗(S) be a cycle
on S of dimension greater than 0. Then the support of C l is not contained in the
diagonal of Sl and we may consider the restriction C l − C of C l to a cycle on
X = Sl − S. The cycle C l − C is invariant under the action of Z/l and hence is
the pull-back of a unique cycle Z l(C)−C on Y under the etale mapX → Y . This
defines a map Z≥1(S) → Z≥l(Y ) which passes through rational equivalence (see
loc. cit.) and induces the maps γi. Note that γ is not additive. More precisely, let
C =

∑n
i=1mi[V ] be a cycle in S. Then

C l − C =
∑

i∈{1,...,n}l
mi1 . . .mil [Vi1 × . . .× Vil ],

where by abuse of notation we also write [Vi1 × . . . × Vil ] for its restricition to
X = Sl−S. The unique cycle on Y whose pull-back to X is C l−C is then given
by

γ(C) =
∑
i

ml
i[(V

l
i − Vi)/(Z/l)] +∑

i∈({1,...,n}l−{1,...,n})/(Z/l)

mi1 . . .milπ∗([Vi1 × . . .× Vil ]),

where {1, . . . , n}l − {1, . . . , n} denotes the complement of {1, . . . , n} when em-
bedded diagonally in {1, . . . , n}l. For this note that π∗π∗ =

∑
g∈Z/l g : Z∗(X)→

Z∗(X). This follows from [Fu, Proposition 1.7] applied to the fibersquare

Z/l ×X p
//

m

��

X

π

��

X
π // Y,

where m denotes the action map and p the projection to X , yielding π∗π∗ =
m∗p

∗ =
∑

g∈Z/l g.

Remark 2.3.2. In fact, Totaro’s operations map into the Chow group of Z lS, so
our operations are Totaro’s composed with the pull-back to the open subset Y in
Z lS. However, in the end we will only be interested in the Chow group resp.
homology of Y for dimension greater than dimS resp. 2 dimS and in this case the
Chow group resp. homology of Z lS and Y coincide.
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Totaro then defines a functor Fl from graded abelian groups to graded abelian
groups in the following way. Let A∗ be a graded abelian group. Then Fl(A∗) is
the graded abelian group generated by the graded abelian group A⊗l∗ together with
Ai ⊗ Z/l in degree j for i + 1 ≤ j ≤ li − 1 and elements γixi in degree li for
x ∈ Ai and i > 0 subject to the relations

x1 ⊗ . . .⊗ xl = x2 ⊗ . . .⊗ xl ⊗ x1

lγix = x⊗l

γi(x+ y) = γix+
∑
α

α1 ⊗ . . .⊗ αl + γi(y).

Here α runs through the Z/l-orbits in {x, y}l − {(x, . . . , x), (y, . . . , y)}. If A∗ is
isomorphic to a finite direct sum

⊕n
i=1 Z/ai · ei with ai being 0 or a prime power,

i.e. A∗ is finitely generated, we can give a more precise description of Fl(A∗) in
the following way. LetR be the set of i such that dim ei > 0 and ai = 0 or a power
of l, then

Fl(A∗) =
⊕

i∈({1,...,n}l−R)/(Z/l)

Z/(a1, . . . , al) · ei1 ⊗ . . .⊗ eil ⊕
⊕
i∈R

Z/(lai) · γ(ei)

⊕
⊕
i∈R

dim ei<j<l dim ei

Z/l · αj(ei) (2.3.1)

where again {1, . . . , n}l −R denotes the complement of R when embedded diag-
onally in {1, . . . , n}l.
Using the operations

⊗l : Ai(S)→ Ali(X)
π∗−→ Ali(Y )

γi : Ai(S)→ Ail(Y )

αji : Ai(S)→ Aj(Y )

we obtain a homomorphism of graded abelian groups

Ψk : Fl(A∗(S))→ A∗(Y ).

We shall need one last piece of notation. For a scheme S and r ∈ N we write
F<rl (S) for the subgroup of elements of Fl(A∗S) of degree> l dimS−r. Clearly
F<rl (S) = Fl(A

<rS).

Lemma 2.3.3. Let S be a smooth quasi-projective scheme over Zp. Then the dia-
gram

F<rl (SQ̄p)
ΨQ̄p

//

��

A<r(YQ̄p)

��

F<rl (SF̄p)
ΨF̄p

// A<r(YF̄p)
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commutes. Here the vertical maps are given by specialization.

Proof. First we note that the exterior product map is compatible with specialization
meaning that the diagram

A∗(SK ×K SK)
σR // A∗(Sk ⊗k Sk)

A∗(SK)⊗A∗(SK)

×

OO

σ⊗2
R

// A∗(Sk)⊗A∗(Sk)

×

OO

commutes. This follows in the same way as Lemma 2.1.8 by using Remark 2.1.1.
Moreover, push-forward and intersecting with Chern classes of line bundles are
compatible with pull-back and refined Gysin homomorphisms. Hence from the
definition of the maps ΨQ̄p and ΨF̄p we see that it suffices to show that the operation
γ is compatible with specialization.
For this let C =

∑
imi[Vi] be a cycle on SQ̄p and consider a finite extension K of

Qp such that each subvariety Vi is defined over K. Let A be the integral closure of
Zp in K and k the residue field of A. Denote i : Spec k ↪→ SpecA. Replace S by
SA and write as usual X = Sl − S, Y = (Sl − S)/(Z/l) and π : X → Y for the
quotient map. Consider the diagram

A∗(Sk)

γk
��

A∗(S)
i!oo //

γA
��

A∗(SK)

γK
��

A∗(Yk) A∗(Y ) //i!oo A∗(YK)

Let V̄i be the closure of Vi in S, then C̄ =
∑

imi[V̄i] is a cycle that restricts to C.
Now since the right side of the above diagram clearly commutes we see from the
definition of the spezialization map that it suffices to prove the following assertion:
LetC =

∑n
i=1mi[Vi] ∈ Z∗(S) such that each subvariety Vi ⊂ S maps dominantly

to SpecA and such that (Vi)K is geometrically integer. Then

γk(i
!C) = i!(γAC).

Since (Vi)k ↪→ Vi is again a regular embedding of codimension 1 we have i!(C) =∑
imi[(Vi)k] (cf. Remark 2.1.1 (i)) and therefore

γk(i
!C) =

∑
i

ml
i[((Vi)

l
k − (Vi)k)/(Z/l)] +∑

i∈({1,...,n}l−{1,...,n})/(Z/l)

mi1 . . .min(πk)∗([(Vi1)k × . . .× (Vil)k]).

On the other hand we have

γA(C) =
∑
i

ml
i[(V

l
i − Vi)/(Z/l)] +∑

i∈({1,...,n}l−{1,...,n})/(Z/l)

mi1 . . .minπ∗([Vi1 × . . .× Vil ]).
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Now by assumption on the Vi we have that (V l
i − Vi)/(Z/l) ⊂ Y is again a

subvariety mapping dominantly to SpecA and therefore i![(V l
i − Vi)/(Z/l)] =

[((Vi)
l
k − (Vi)k)/(Z/l)]. Finally since

(πk)∗([(Vi1)k × . . .× (Vil)k]) = (πk)∗(i
!([Vi1 × . . .× Vil ])

the lemma follows from the compatibility of refined Gysin homomorphisms with
proper push-forward ([Fu, Theorem 6.2 (a)]).

Lemma 2.3.4. Let S be a smooth quasi-projective scheme over Q̄p and r ≤ dimS.
Assume that A<r(S)⊗ Zl → H<2r(S,Zl) is split injective. Then the composition

F<rl (S)⊗ Zl → A<r(Y )⊗ Zl → H<2r(Y,Zl)

is split injective.

The above Lemma is a variant of [To, Lemma 8.1 (3)]:

Lemma 2.3.5. (Totaro) Let S be a quasi-projective scheme over C. If the cy-
cle map A∗(S) → HBM

∗ (S,Z) is split injective, then the composition Fl(S) →
A∗(Z

lS)→ HBM
∗ (Z lS,Z) is split injective.

Here HBM
∗ (S,Z) denotes Borel-Moore homology ([Fu, Section 19.1]). Let us

explain how the two Lemmata above are related. Chose an isomorphism Q̄p
∼= C.

By Theorem 2.2.13 and Lemma 2.2.14 we have identifications

H<2r(Y,Zl) = H<2r
sing(Y,Z)⊗ Zl

= HBM
>2l dimS−2r(Y,Z)⊗ Zl,

Note that 2l dimS − 2r ≥ 2 dimS and therefore

HBM
>2l dimS−2r(Y,Z) = HBM

>2l dimS−2r(Z
lS,Z).

Under this identifications Lemma 2.3.4 is the assertion of Totaro’s Lemma, which
is discussed in more detail below after we finished the proof of Proposition 2.3.1.

Proof. (of Proposition 2.3.1) Fix ro ∈ N. Let S → Zp be a smooth approximation
ofBGZp up to codimension ro (cf. Remark 2.1.2). We then haveAr(SQ̄p) = ArGQ̄p

as well as ArZ/loGQ̄p
= Ar((SlQ̄p − SQ̄p)/Z/l) for all r < ro and similary over F̄p.

Consider the diagram

F<rol (SQ̄p)
ΨQ̄p

// //

∼=
��

A<roZ/loGQ̄p

��

F<rol (SF̄p)
ΨF̄p

// // A<roZ/loGF̄p
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where the left vertical arrow is induced by the specialization map for G. It is an
isomorphism by condition (i). The surjectivity of the horizontal maps follow from
[To, Lemma 8.1 (2)], whose proof is valid not only over C but over an arbitrary
field. We can apply [To, Lemma 8.1 (2)] since condition (ii) holds for G. The
diagram commutes by Lemma 2.3.3. Adding the cycle maps to etale cohomology
we obtain a commutative diagram

F<rol (SQ̄p)⊗ Zl // //

∼=
��

A<roZ/loGQ̄p
⊗ Zl

��

// H<2ro(B(Z/l oGQ̄p),Zl)

∼=
��

F<rol (SF̄p)⊗ Zl // // A<roZ/loGF̄p
⊗ Zl // H<2ro(B(Z/l oGF̄p),Zl).

Here the right vertical map is an isomorphism by Corollary 2.2.12. Since condition
(iii) holds for G, it follows from Lemma 2.3.4 that the composition

F<rol (SQ̄p)⊗ Zl // // A<roZ/loGQ̄p
⊗ Zl // H<2ro(B(Z/l oGQ̄p),Zl)

is split injective, using that by definitionH<2ro(B(Z/loGQ̄p),Zl) = H<2ro((SlQ̄p−
SQ̄p)/Z/l,Zl). This shows that condition (i) and (iii) hold again for Z/l o G. The
fact that condition (ii) also holds for Z/l oG is proven in [To, Lemma 8.1 (2)].

Let us now discuss the proof of Lemma 2.3.5 in more detail. The proof of
loc. cit just remarks, that this follows from Nakaoka’s description of a basis for the
homology of Z lS in [Na] together with the equation (2.3.1) for Fl(S). However,
since Nakaoka only computes the cohomology of Z lS with Z/l-coefficents for S
a finite simplicial complex, the desired conclusion of Lemma 2.3.5 is not com-
pletely clear. It seems that [St] and [Yo] are more useful. In [St] Stein computes
the integral homology of the 2-fold cyclic product of a finite simplicial complex
and Yoshioka generalizes Steins method to the l-fold cyclic products of a finite
simplicial complex for l an odd prime. Now in order to apply Totaros argument we
still need to show the following.

(I) The results of Stein and Yoshioka also compute HBM
∗ (Z lS,Z) (at least in di-

mension ≥ 2(l − 1) dimS which is the case of interest for us).

(II) The basis elements of equation (2.3.1) for Fl(S) are mapped bijectively to
a subset of a basis for HBM

∗ (Z lS,Z) described in [St, Theorem 13.2 (f)] for l = 2
and in [Yo, Section 10 Proposition (j)] for l 6= 2.

We first explain (I). If X → SpecC is an arbitrary scheme such that the one-
point-compactification Xc = X(C)∪ {∗} of X(C) (with its complex topology) is
a CW-complex then

HBM
i (X,Z) = Hi(X

c, {∗})
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where the right hand side denotes relative homology ([Fu, Example 19.1.1]). In or-
der to apply the results of Stein and Yoshioka it thus suffices to prove the following
lemma.

Lemma 2.3.6. Let S → SpecC be a quasi-projective scheme. Then the one-point-
compactification Sc of S(C) (with its complex topology) has a finite triangulation.

This will be a consequence of Hironoka’s semi-algebraic triangulation theorem
([Hi]). We recall that a subset of Rn is called semi-algebraic if it belongs to the
Boolean class of subsets of Rn generated by {x ∈ Rn | f(x) ≥ 0} with f ∈
R[X1, . . . , Xn]. Moreover, a map f : Rn → Rm is called semi-algebraic when
its graph Γf is a semi-algebraic subset of Rn × Rm. In particular, the image of
a semi-algebraic set under a semi-algebraic map is again semi-algebraic. This
is Proposition II in [Hi]. Note that every polynomial map Rn → Rm or more
generally every regular rational map Rn → Rm is semi-algebraic.
We also note that in Hironaka’s article simplices are open, i.e. an r-simplex ∆ in
Rn is defined as

∆ = {
r∑
i=0

aivi | ai > 0,

r∑
i=0

ai = 1},

for affinely independent vectors v0, . . . , vr in Rn.

Theorem 2.3.7. ([Hi]) Let {Xα}α be a finite system of bounded semi-algebraic
sets in Rn. Then there exists a simplicial decomposition Rn = ∪a∆a and a semi-
algebraic automorphism κ of Rn such that each Xα is a finite union of κ(∆a).

Lemma 2.3.8. LetK be a simplicial complex in some euclidean space andA ⊂ K
be a subcomplex. Then the quotient space K/A has a triangulation.

Proof. Let S(K) resp. S(A) be the corresponding simplicial sets. That is, if ∆
denotes the category of non-empty finite totally ordered sets with non-decreasing
maps, then S(K) is the contravariant functor ∆ → (Sets) that maps the set n =
{1, . . . , n} to the set of non-decreasing maps f : n→ Vert(K) such that the convex
hull of the image of f is a simplex of K. Since A is a subcomplex of K we have
S(A)(n) ⊂ S(K)(n) for all n. Consider the quotient simplicial set S(K)/S(A),
i.e. the functor n 7→ S(K)(n)/S(A)(n). Forming the geometric realization of this
simplicial set we obtain |S(K)/S(A)| = |S(K)|/|S(A)| = K/A. This shows that
K/A is the geometric realization of a simplicial set. By [FP, Corollary 4.6.12] the
geometric realization of any simplicial set is triangulable.

Proof. (Lemma 2.3.6) We may assume that S is open in a closed subscheme X of
PnC. Let T denote the complement of S in X . Let S2n+1 denote the real 2n + 1-
sphere. We view S2n+1 as a subset of Cn+1. We can then write Pn(C) as the
quotient S2n+1/U(1) with the usual action of the unitary group U(1) on S2n+1.
The map

S2n+1 → CN , (z0, . . . , zn) 7→ ((ziz̄i)i, (z̄izj)i<j)
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thus induces a closed embedding Pn(C) ↪→ CN of topological spaces such that
each composition

R2n = Cn ↪→ Pn(C) ↪→ CN = R2N

is a regular rational embedding. Using this embedding we may embed T (C) and
X(C) as bounded semi-algebraic sets in R2N . Applying the semi-algebraic trian-
gulation theorem to the system {X(C), T (C)} realizes X(C) as a finite simplicial
complex with subcomplex T (C). Since Sc = X(C)/T (C) the previous lemma
yields the claim.

We now explain point (II). Write G = Z/l and let g0 denote a fixed generator
of G. We keep the notation X = Sl − S, Y = X/G and Z lS = Sl/G for S a
quasi-projective scheme over C. Recall that we denoted by c1 ∈ H2(Y,Z) the first
Chern class of the line bundle on Y corresponding to the character G ↪→ C∗ map-
ping g0 to exp(2πi/l). The assertion will be clear after showing that the elements
c1 ∩ α ∈ HBM

i−2(Y,Z) for α ∈ HBM
i (Y,Z) obtained by capping with c1 correspond

to the elements in [St] and [Yo] obtained by the operation of cascades ([St, Section
3]). Let us recall the operation of cascades.
Consider a chain complex K∗ of free Z[G]-modules. We have the following oper-
ations on K∗

σ =
∑
g∈G

g : K∗ → K∗, τ = id− g0 : K∗ → K∗.

In the following we will use the letter ρ to either mean τ or σ. If ρ = σ and
the context is fixed ρ̄ will denote τ and vice versa. Following the notation in [St]
and [Yo] we will denote by Kρ−1

∗ resp. Kρ
∗ the kernel resp. image of ρ. The i-th

homology group of Kρ−1

∗ resp. Kρ
∗ will be denoted by Hρ−1

i (K∗) resp. Hρ
i (K∗).

By assumption on the action of G on K∗ one easily verifies the following lemma.

Lemma 2.3.9. Kρ−1

∗ = K ρ̄
∗

From the short exact sequence

0 // Kρ−1

∗ // K∗ // Kρ
∗ // 0

we obtain a boundary operator Hρ
∗ (K∗) → Hρ−1

∗−1(K∗) on the level of homology.
In view of the above lemma we may compose the boundary operator of σ and τ to
obtain a map

Γρ : Hρ
∗ (K∗)→ Hρ

∗−2(K∗)

that decreases the degree by 2. We note that the image of Γρ is l-torsion ([Na, The-
orem 1.7]). Stein calls the elements that are derived from an element α ∈ Hρ

i (K∗)
by repeated application of Γρ the cascades of α.
In view of point (I) we may replace S by its one-point compactification and hence-
forth assume that S has the structure of a finite simplicial complex. Consider now
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the relative simplicial chain complex C∗ = C∆
∗ (Sl, S). We then have an action of

G on C∗ that makes C∗ into a complex of free Z[G]-modules. By [St, Section 4]
we have an isomorphism Hσ

∗ (C∗) ∼= H∆
∗ (Z lS, S) and hence an operation

Γσ : H∆
∗ (Z lS, S)→ H∆

∗−2(Z lS, S).

Since simplicial homology and singular homology coincide we may further iden-
tify H∆

∗ (Z lS, S) = H∗(Z
lS, S) = HBM

∗ (Y ). We then need to prove the following
lemma.

Lemma 2.3.10. Under the identification H∆
∗ (Z lS, S) = HBM

∗ (Y ) the operation
Γσ equals capping with c1 up to multiplication with an element of (Z/l)∗.

Proof. In the proof we will use the notation and results of Appendix A. We shall
need one more ingredient. Let

δ : Hom(G,C∗)→ H2(G,Z)

be the boundary operator derived from the short exact sequence

0 // Z // C exp
// C∗ // 0.

We will construct a natural map

H∗(G,Z)→ H∗(Y,Z)

such that for each character χ the element δ(χ) is mapped to c1(Lχ) ∈ H2(Y,Z),
where Lχ is the line bundle over Y induced by χ. For this let BG be a model of
the classifying space of G and EG its universal covering space. By the universal
property of BG there is a unique (up to homotopy) map Y → BG such that X →
Y is the pull-back ofEG→ BG along Y → BG. SinceH∗(BG,Z) = H∗(G,Z)
we obtain the desired map H∗(G,Z) → H∗(Y,Z). The fact that δ(χ) is mapped
to c1(Lχ) follows easily from the long exact sequence in cohomology derived from
the exact diagram

0 // Z // C

��

exp
// C∗

��

// 0

0 // Z // C0(Y )
exp
// C0(Y )∗ // 0

of sheaves on Y . Here C0(Y ) resp. C0(Y )∗ denotes the sheaf of C-valued contin-
uous resp. C-valued continuous and non-vanishing functions on Y .
Now, since C∗ = C∆

∗ (Sl, S) is a complex of free Z[G]-modules we have

H∗(G,C∗) = H∗(C∗/C
τ
∗ ) = H∗(C

σ
∗ ) = H∗(Z

lS, S) = HBM
∗ (Y,Z).
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Moreover, we see from the construction of cap products in group (co)homology
(see Appendix A) that the diagram

H i(G,Z)×Hj(G,C∗)

��

∩ // Hj−i(G,C∗)

H i(Y,Z)×HBM
j (Y,Z)

∩ // HBM
j−i(Y,Z)

commutes. We consider the element α ∈ H2(G,Z) ∼= Z/l corresponding to the
extension

α : 0 // Z
diag
// Z[G]

τ // Z[G] // Z // 0.

Here Z[G] → Z is the map
∑
λgg 7→

∑
λg. Again since C∗ is a complex of

free Z[G]-modules we see that the morphisms α ∩′ · : HBM
j (Y,Z) → HBM

j−2(Y,Z)

and Γσ : HBM
j (Y,Z) → HBM

j−2(Y,Z) coincide. Finally, since α is mapped to some
multiple of c1 under the map H2(G,Z) → H2(Y,Z) depending on the choice of
the generator g0 ∈ G, the claim follows from Lemma A.4.

2.4 Specialization for the Classical Groups over finite Fields

In this section we investigate the specialization map CH∗BGC → CH∗BGF̄p ,
where G belongs to the class of classical groups GLn(Fq), Sp2m(Fq), On(Fq) and
SOn(Fq) over some finite field Fq of characteristic p. For this we need to know the
structure of their l-Sylow subgroups. Of course, this is well-known so let us gather
the results we shall need.

Lemma 2.4.1. Let r be the order of q in (Z/l)∗ and b = vl(q
r − 1).

(i) If l 6= 2, p the l-Sylow subgroups of the above list of classical groups are
isomorphic to a product of groups of the form Z/loi o Z/lb.

(ii) If q ≡ 1 mod 4 the same assertion holds for the 2-Sylow subgroups of the
groups GLn(Fq), Sp2m(Fq) and O2m+1(Fq).

Proof. The first part is proven in [Wei] by A.J. Weir. We will give a slightly dif-
ferent version of Weir’s proof using an argument of Quillen used in the proof of
Lemma 13 in [Qu]. This way we will also obtain part (ii).
Let us write n = dr + e for 0 ≤ e < r. If we denote C = Fq(µl)∗ then the natural
action of C on Fq(µl) gives a faithfull r-dimensional representation over Fq. Now
let Sd act on Cd by permuting the factors then Sd n Cd has an dr-dimensional
faithfull representation and after adding a trivial e-dimensional representation we
may view Sd o C = Sd n Cd as a subgroup of GLn(Fq).
We claim that the index of Sd o C in GLn(Fq) is prime to l if l 6= 2 or l = 2 and
q ≡ 1 mod 4. Note that this index is given as

[GLn(Fq) : Sd o C] = qn(n−1)/2
n∏
i=1
i 6≡0(r)

(qi − 1)

d∏
j=1

qjr − 1

j(qr − 1)
,
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so one only needs to check that the last factor is an l-adic unit. For this one can use
the l-adic logarithm

log : 1 + luZl → luZl,

which is an isomorphism preserving the valuation for all u ≥ 1 if l 6= 2 and all
u ≥ 2 if l = 2. So if l 6= 2 or vl(qr − 1) ≥ 2 we obtain

vl(q
jr − 1) = vl(log(qjr))

= vl(jlog(qr))

= vl(j) + vl(log(qr))

= vl(j) + vl(q
r − 1)

Let us now assume l = 2 and q ≡ 1 mod 4. Then r = 1 and d = n. Moreover,
qj−1
q−1 ≡ j mod 4 and therefore vl(

qj−1
q−1 ) = 1 if and only if vl(j) = 1. The claim

follows.
If we write d = b0 + b1l + . . .+ bsl

s with 0 ≤ bi < l we therefore obtain

vl(#GLn(Fq)) = vl(#(Sd o C)) = bd+

s∑
i=1

biµi(l)

with µi(l) =
∑i−1

k=0 l
k. Setting N0 = b and Ni = bli + µi(l) for i > 0 we can

rewrite this as

vl(#GLn(Fq)) =

s∑
i=0

biNi.

From this point we can use the argumentation of [Wei]: Let Gi be an l-Sylow
subgroup of GLrli(Fq). Then Gi has order Ni. Hence

∏s
i=0G

bi
i is an l-Sylow

subgroup of GLn(Fq). Since C ⊂ GLr(Fq) we see G0 = Z/lb. Inductively we
obtain Gi = Z/loi o Z/lb for then Gi has the right order.
For Sp2m(Fq) we recall Sp2m(Fq) = qm

2
(q2 − 1)(q4 − 1) · . . . · (q2m − 1). If

r is even an l-Sylow subgroup of Sp2m(Fq) is already an l-Sylow subgroup of
GL2m(Fq). We may thus assume that r is odd. In this case the factors that are
divisible by l are q2r − 1, . . . , q2rk − 1, where 2m = 2rk + a for 0 ≤ a < 2r.
Writing k = b0 + b1l + . . .+ btl

t with 0 ≤ bi < l we thus obtain

vl(Sp2m(Fq)) = vl(#GLrk(Fq2)) = bk +

s∑
i=1

biµi(l)

In the case of O2m+1(Fq) we note that # O2m+1(Fq) = # Sp2m(Fq). One can
then deduce the assertion for Sp2m(Fq) and O2m+1(Fq) in the same way as for
GLn(Fq). For the details we refer to [Wei].

Remark 2.4.2. If l is a prime that does not divide q − 1 then every l-Sylow sub-
group of SLn(Fq) is also an l-Sylow subgroup of GLn(Fq). This follows from
|GLn(Fq)|/| SLn(Fq)| = q − 1.
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Consider now an odd prime divisor l of q − 1 and an l-Sylow subgroup P of the
symmetric group Sn. Since l is odd we may view P as a subgroup of SLn(Fq). It
follows from the proof of the above lemma that an l-Sylow subgroup of SLn(Fq)
is then of the form

P n {diag(a1, . . . , an) |
∏
i

ai = 1},

where P acts via permutations and the ai belong to a fixed l-Sylow subgroup of
C = Fq(µl)∗. This group is not a product of groups of the form Z/loi o Z/lb.

Proposition 2.4.3. (i) The specialization map CH∗BGC → CH∗BGF̄p for the
classical groups G = GLn(Fq), Sp2m(Fq), On(Fq) and SOn(Fq) over some
finite field Fq of characteristic p become injective after inverting 2p.

(ii) If q ≡ 1 mod 4 the specialization map for GLn(Fq), Sp2m(Fq) and O2m+1(Fq)
become injective after inverting p.

(iii) If S denotes the product of p and all prime divisor of q − 1 the specialization
map for SLn(Fq) becomes injective after inverting S.

Proof. We need to check that the specialization map of the respective l-Sylow
subgroups are injective, where in (i) we consider a prime l not dividing 2p, in (ii)
we consider a prime l different from p and in (iii) we consider a prime l not dividing
S.
In any case we know that these l-Sylow subgroups are products of groups of the
form Z/loi o Z/lb. Let us check that conditions (i)-(iii) of Proposition 2.3.1 hold
for G = Z/lb. Choosing an lb-th root of unity we may identify Z/lb = µlb .
Note that reduction induces an isomorphism µlb(Q̄p) = µlb(F̄p). Thus (i) follows
from Example 1.2.12 and (iii) is an immediate consequence of Lemma 2.2.5. We
know that the complement of the zero section inOPm(lb) approximatesB(µlb) (cf.
the proof of Lemma 2.2.5). This space can be cut open into spaces of the form
A1 − {0} × Ak. Hence condition (ii) holds. Then using Proposition 2.3.1 we see
that the specialization map for the group Z/lZoi o Z/lbZ is an isomorphism. The
general case follows from the Künneth formula (Lemma 1.8.6).

Remark 2.4.4. A p-Sylow subgroup of GLn(Fq) is given by the upper triangu-
lar matrices with 1’s on the diagonal. The specialization morphism is not in-
jective in this case. For n = 2 this Sylow subgroup is just (Z/pZ)a with a =
vp(q) and its Chow ring in characteristic p is trivial while in characteristic 0 it is
Z[t1, . . . , ta]/(pt1, . . . , pta).

2.5 Specialization for arbitrary finite Groups

We have seen that the specialization map

σG : CH∗BGQ̄p → CH∗BGF̄p
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is an isomorphism after inverting p for the finite cyclic groups and wreath products.
In the next Chapter we will see that it is also an isomorphism for some classical
groups over finite fields. Morever, the Chow ring CH∗BGF̄p is p-torsion free in
these cases. One can ask whether this is true for every finite abstract group G.

Question 2.5.1. Let G be a finite abstract group. Is the specialization map

σG : CH∗BGQ̄p → CH∗BGF̄p

injective (an isomorphism) after inverting p?

If CH∗BGF̄p is generated by Chern classes of representations of GF̄p , we
know that σG is surjective by the theory of Brauer lifts. In this section we conduct
a brief discussion of the above Question. By the usual transfer argument it suffices
to prove injectivity of σG : CH∗BGQ̄p → CH∗BGF̄p in the case of G being an
l-group, where l is a prime not equal to p. The assertion for etale cohomology is
true by Corollary 2.2.12. Hence by looking at the commutative square

CH∗BGQ̄p ⊗ Zl

��

// H∗(BGQ̄p ,Zl)

∼=
��

CH∗BGF̄p ⊗ Zl // H∗(BGF̄p ,Zl)

we see that it would be sufficient to prove that for each l-group G the cycle map

CH∗BGQ̄p ⊗ Zl → H∗(BGQ̄p ,Zl)

is injective. If G is an l-group with exponent > 1 we can chose a normal subgroup
H in G such that G/H = Z/l. Using induction on the exponent of G we see that
injectivity would follow from an affirmative answer to the following question.

Question 2.5.2. Let X be a smooth scheme over some field k. Assume that for
a prime l 6= char k we have a free action of G = Z/l on X . If the cycle map
CH∗X ⊗Zl → H∗(X,Zl) is injective does the same hold true for CH∗(X/G)⊗
Zl → H∗(X/G,Zl)?

We have seen that a similar assertion holds in the case of cyclic products Z lS
for S quasi-projective and smooth over C admitting a cell decomposition by us-
ing the results of Stein and Yoshioka (cf. Lemma 2.3.4). We highly expect that
the same is true for any field of characteristic different from l that contains the l-
th roots of unity. For this one could try to compute the etale cohomology groups
H∗(Z lS,Zl) in terms of a basis for H∗(S,Zl) similar to what Stein and Yoshioka
did.
At last we want to mention another example in which the specialization map be-
comes an isomorphism after inverting p.

Proposition 2.5.3. Let S be a scheme over Zp which has a decomposition into
affine cells. Then σ : A∗(SQ̄p)→ A∗(SF̄p) is an isomorphism after inverting p.
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Proof. Let AnZp an affine open cell in SZp and W its complement in S. Consider
the commutative diagram

0 // A∗(WQ̄p)
//

��

A∗(SQ̄p)
//

��

A∗(AnQ̄p)
//

∼=
��

0

0 // A∗(WF̄p)
// A∗(SF̄p)

// A∗(AnF̄p)
// 0

We claim the upper row is exact and the lower row becomes exact after inverting p.
This holds since the cycle map A∗(X) ⊗ Zl → H∗(Xksep ,Zl) is an isomorphism
for schemes X with a decomposition into affine cells. Here X is defined over an
arbitrary field k and l is a prime different from the characteristic of k. In particular,
Hi(X,Zl) = 0 for odd i. The proposition thus follows from noetherian induction.

3 The Chow Ring of the Classifying Space of some Cheval-
ley Groups

We recall that Chevalley groups are the finite groups of the form G(Fq), where G
is a connected split reductive group scheme over SpecZ. The goal of this chapter
is to compute CH∗BG(Fq)C in some special cases.
In [Gu] Guillot computes the mod l Chow ring of GLn(Fq) considered as an al-
gebraic group over C for prime numbers l 6= 2, p by using a similar approach as
Quillen in [Qu], where he computes the cohomology ring of GLn(Fq) with mod-l
coefficients. Guillot’s result is

A∗GLn(Fq)/l = Z/l[cr, c2r, . . . , cmr],

where r is the order of q in (Z/l)∗ and n = mr + e for 0 ≤ e < r. He also shows
if Fq contains the lb-th roots of unity for some integer b, then

A∗GLn(Fq)/l
b = Z/lb[c1, . . . , cn].

Our approach will be the following. In view of Proposition 2.1.3 and Proposi-
tion 2.4.3 we will first consider G(Fq) as an algebraic group over F̄p, where p =
char Fq, and then compute CH∗BG(Fq)F̄p . This turns out to be a much sim-
pler task. The reason is that by Corollary 2.1.7 we have a canonical isomorphism
BG(Fq)F̄p ∼= [GF̄p/GF̄p ] of stacks, where the action of GF̄p on GF̄p is given by
conjugation with the q-th power Frobenius. It is this presentation of BG(Fq)F̄p
that enables us to compute its Chow ring.
Let us first take a look at the case G = GLn for n = 1, 2. In the following exam-
ples σ will denote the q-th power Frobenius on Gm resp. GL2 and T will denote
the maximal torus of diagonal matrices.
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Example 3.0.4. (Gm y An − {0} via weights a1, . . . , an.) This is an applica-
tion of Lemma 1.6.3 and Proposition 1.2.8. Let us write V = An for the Gm-
representation with weights a1, . . . , an. If we let Gm act on P(V ) with the same
weights then V − {0} → P(V ) is a Gm-equivariant principal Gm-bundle and the
corresponding line bundle is given by O(1). Hence by Proposition 1.2.8 we have
A∗Gm(V − {0}) = A∗Gm(P(V ))/c1(O(1)). Then using Lemma 1.6.3 we get

A∗Gm(V − {0}) = Z[t]/cn(V ) = Z[t]/(
∏
i

ai)t
n.

As a special case we may consider Gm acting on Gm via conjugation or σ-conjugation
with σ the q-th power Frobenius. This means weight 0 resp. weight q−1 and there-
fore A∗Gm(Gm) = Z[t] in the conjugation case and A∗Gm(Gm) = Z[t]/(q − 1)t in
the σ-conjugation case.

Example 3.0.5. (GLn x GLn ⊃ T via conjugation, i.e. X · G = G−1XG.)
The unit section of GLn → Spec k is GLn-equivariant. Therefore the pull-back
A∗GLn

→ A∗GLn
(GLn) is injective. Since GLn is open in An2

this pull-back fac-
tors as A∗GLn

→ A∗GLn
(An2

) → A∗GLn
(GLn). Here the first map is an isomor-

phism and the second is surjective. It follows that A∗GLn
→ A∗GLn

(GLn) is an
isomorphism. Thus we obtain A∗GLn

(GLn) = Z[c1, . . . , cn] and A∗T (GLn) =
Z[t1, . . . , tn].
Note that we cannot apply this argument in the σ-conjugation case since there is
no fixpoint for this action on GLn.

Example 3.0.6. GL2 x GL2 ⊃ T via σ-conjugation, i.e. X ·G = G−1Xσ(G).)
This case can be easily dealt with using a similar approach as in [EF]. We first
compute A∗T (GL2). T operates on V = Mat(2× 2, k) via(

x1 x2

x3 x4

)(
λ1 0
0 λ2

)
=

(
λq1λ

−1
1 x1 λq2λ

−1
1 x2

λq1λ
−1
2 x3 λq2λ

−1
2 x4

)
Thus the Chern roots of V in A∗T are given by

α1 = (q − 1)t1, α2 = qt2 − t1, α3 = qt1 − t2, α4 = (q − 1)t2.

Note that the underlying scheme of GL2 is isomorphic to A4 − V (x1x4 − x2x3).
Applying Proposition 1.2.8 to the T -equivariant Gm-bundle A4−V (x1x4−x2x3)→
P3 − V (x1x4 − x2x3) shows

A∗T (GL2) = A∗T (P3 −∆)/c1(O(1))

with ∆ = V (x1x4 − x2x3). Hence we have to compute

A∗T (P3 −∆) = A∗T (P3)/I,
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where I is the ideal in A∗T (P3) given by the image of the push-forward AT∗ (∆)→
AT∗ (P3). Note that we computed A∗T (P3) in Lemma 1.6.3. To compute I we note
that the image of the Segre embedding

π : P1 × P1 → P3, ([x0 : x1], [y0 : y1]) 7→ [x0y0 : x0y1 : x1y0 : x1y1]

is equal to ∆. If we let T act on P1 × P1 via D · (x, y) = (D−1x, σ(D)y) then π
becomes a T -equivariant map. Let ζi denote the pull-back of cT1 (OP1(1)) via the
projection pi : P1 × P1 → P1 for i = 1, 2. Using Lemma 1.7.4 on P1 we compute

(1) ζ1 = [0× P1]T − t1 and ζ2 = [P1 × 0]T + qt1.

Let as usual ζ = cT1 (OP3(1)). From π∗OP3(1) = p∗1OP1(1)⊗ p∗2OP3(1) we obtain
π∗(ζ) = ζ1 + ζ2. Hence by the projection formula

(2) ζπ∗(1) = π∗(ζ1) + π∗(ζ2).

Now by Lemma 1.8.5 we have that A∗T (P1 × P1) = A∗T (P1) ⊗A∗T A
∗
T (P1) is

generated as a A∗T -module by 1, ζ1, ζ2 and ζ1ζ2. From equation (2) we see that the
image of π∗ is generated as a A∗T (P3)-module by π∗(1),π∗(ζ1) and π∗(ζ1ζ2). To
compute π∗(1) we can use Lemma 1.7.4 since π∗(1) = [V (x1x4 − x2x3)]T . We
obtain

π∗(1) = 2ζ − (q − 1)(t1 + t2).

From equation (1) we deduce

π∗(ζ1) = [V (x1, x2)]T − t1π∗(1) = [V (x1)]T [V (x2)]T − t1π∗(1)

= (ζ − α1)(ζ − α2)− t1π∗(1)

= ζ2 − qc1ζ + (q2 − 1)c2,

where c1 = t1 + t2 and c2 = t1t2. Here [V (xi)] = ζ − αi holds by Lemma 1.7.4.
We are left to compute π∗(ζ1ζ2). For this we deduce from equation (1)

ζ1ζ2 = [0× 0]T − t1(ζ2 − qζ1)− qt21

and thus

π∗(ζ1ζ2) = [V (x1, x2, x3)]T − t1(π∗(ζ2)− qπ∗(ζ1))− qt21π∗(1)

= (ζ + α1)(ζ + α2)(ζ + α3)− t1(π∗(ζ2)− qπ∗(ζ1))− qt21π∗(1).

Here we have used the equality [V (x1, x2, x3)]T = [V (x1)]T [V (x2)]T [V (x3)]T .
We see that π∗(ζ1ζ2) already lies in the A∗T (P3)-module generated by π∗(1) and
π∗(ζ1). Putting all this together we thus obtain

A∗T (GL2) = Z[t1, t2]/((q − 1)c1, (q
2 − 1)c2, c4(V )).
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Recall V = Mat(2× 2, k). Writing c4(V ) = α1 . . . α4 as a polynomial in c1 and
c2 we get c4(V ) = (q − 1)2(q + 1)2c2

2 − q(q − 1)2c2c
2
1. Hence we obtain

A∗T (GL2) = Z[t1, t2]/((q − 1)c1, (q
2 − 1)c2)

A∗GL2
(GL2) = Z[c1, c2]/((q − 1)c1, (q

2 − 1)c2),

where the result for A∗GL2
(GL2) follows from Corollary 1.9.14 since the image

Im(AT∗ (V (x1x4 − x2x3)) → AT∗ (V )) = ((q − 1)c1, (q
2 − 1)c2) is generated by

elements lying in A∗GL2
(V ) = A∗GL2

.

Let us now treat the general case.

Proposition 3.0.7. Let G be a connected split reductive group over Fq with split
maximal torus T . We write S = Sym(T̂ ) = A∗T and S+ = A≥1

T . If σ denotes the
q-th power Frobenius, we have a natural action of σ on S, that we will also denote
by σ.
Let P ⊃ T be a parabolic subgroup with Levi componentL and consider the action
of L on G by σ-conjugation. If WG = W (G,T ) and WL = W (L, T ) denote the
respective Weyl groups we have

A∗L(G)Q = SWL
Q /(SWG

+ ).

If G and L are both special we have

A∗L(G) = SWL/(f − σf | f ∈ SWG
+ ).

Before we proof this proposition we state two lemmata.

Lemma 3.0.8. Let A → B be a faithfully flat ring homomorphism and I an ideal
of A. Then IB ∩A = I .

Proof. We have to see that A/I → B/IB is injective. But this map is the base
change of A→ B by A→ A/I , thus again faithfully flat and hence injective.

Lemma 3.0.9. (i) Let R ⊂ S be an extension of rings. Assume there exists an
R-linear surjective map f : Rn → Sn for some n. Then R = S.

(ii) If R ⊂ S ⊂ T is an extension of rings such that T is a free module over S
and R of the same finite rank, then R = S.

Proof. (i) Taking the highest exterior power ∧nR(Rn) of Rn as an R-modul and
the highest exterior power ∧nS(Sn) of Sn as an S-modul, the map f induces a
surjective R-linear map ∧nR(Rn) → ∧nS(Sn). In other words S = Rx for x ∈ S∗.
In particular, we find r ∈ R such that x2 = rx. It follows x = r ∈ R and hence
R = S. Part (ii) follows from (i).

64



Proof. (of Proposition 3.0.7.) Let us first consider the case thatG andL are special.
To compute A∗T (G) we consider the action of T × T on G given by (g1, g2) · g =
g1gg

−1
2 . Using the embedding T ↪→ T × T, g 7→ (g, σ(g)) we get a morphism

[G/T ]→ [G/(T × T )]

which is a principal (T × T )/T -bundle. But (T × T )/T ∼= T via the map induced
by (g1, g2) 7→ σ(g1)g−1

2 . Hence by Proposition 1.2.8 we have

A∗([G/T ]) ∼= A∗([G/(T × T )])/T̂A∗([G/(T × T )]).

Thus we need to compute A∗([G/(T × T )]). For this let B be a Borel subgroup of
G such that T ⊂ B ⊂ P . By Lemma 1.5.7 we can then identify

A∗([G/(T × T )]) = A∗([G/(B × T )]) = A∗T (G/B)

and since G is special we obtain from Proposition 1.6.6

A∗([G/(T × T )]) = S ⊗SWG S = (S ⊗Z S)/(1⊗ f − f ⊗ 1 | f ∈ SWG
+ )

Let χ ∈ T̂ be a character of T . Then χ acts on A∗([G/(T × T )] by multiplying
with the element σχ⊗1−1⊗χ as follows from the definition of the isomorphism
(T × T )/T ∼= T . Therefore

A∗T (G) = S/(f − σf | f ∈ SWG
+ ).

From this we deduce the result for A∗L(G) in the following way. Let us write I for
the ideal (f − σf | f ∈ SWG

+ ) in SWG . We remark that L∩B is a Borel subgroup
of L containing T by [Bo, Proposition 14.12]. Consider the L/(L ∩ B)-bundles
[Spec k/(L ∩ B)] → [Spec k/L] and [G/(L ∩ B)] → [G/L]. Since L is special
we obtain from Proposition 1.9.8

A∗L ⊗A∗(L/(L ∩B)) ∼= A∗L∩B = A∗T

A∗L(G)⊗A∗(L/(L ∩B)) ∼= A∗L∩B(G) = A∗T (G).

Since A∗L = SWL by Theorem 1.9.6 and since A∗(L/(L ∩ B)) is a free abelian
group of rank |WL|, we deduce from the first equation that S is a free SWL-module
of rank |WL|. In particular, SWL ↪→ S is faithfully flat. It follows IS ∩ SWL =
ISWL and that S/IS is a free SWL/ISWL-module of the same rank |WL|. The
second equation tells us that A∗T (G) is a free A∗L(G)-module of rank |WL|.
Therefore

SWL/ISWL ⊂ A∗L(G) ⊂ A∗T (G) = S/IS

and A∗T (G) is free over SWL/ISWL and over A∗L(G) of the same finite rank |WL|.
Hence A∗L(G) = SWL/ISWL by Lemma 3.0.9.
It remains to show A∗L(G)Q = SWL

Q /(SWG
+ ) in the non-special case. Using the

same argumentation as in the special case we arrive at

A∗T (G)Q = SQ/(f − σf | f ∈ SWG
+ ).
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It follows from [De, Theorem 3] that SWG
Q is generated as a Q-algebra by dimT

homogeneous algebraically independent elements. Hence A∗T (G)Q = SQ/(S
WG
+ ).

Now by Theorem 1.9.6 we know A∗L(G)Q = A∗T (G)WL
Q . Since SWL

Q ↪→ SQ is
finite free ([De, Theorem 2 (d)]) it is also faithfully flat. Hence by Lemma 3.0.8
we obtain SWL

Q ∩ SWG
+ SQ = SWG

+ SWL
Q and the assertion follows.

Theorem 3.0.10. Let k be a field containing Fq. Then the following equations
hold.

CH∗BGLn(Fq)k = Z[c1, . . . , cn]/((q − 1)c1, . . . , (q
n − 1)cn)

CH∗B Sp2m(Fq)k = Z[c2, c4, . . . , c2m]/((q2 − 1)c2, (q
4 − 1)c4, . . . , (q

2m − 1)c2m),

CH∗B SLn(Fq)k = Z[c2, c3, . . . , cn]/((q2 − 1)c2, (q
3 − 1)c3, . . . , (q

n − 1)cn),

where the ci are the i-th Chern classes of the canonical representation of the re-
spective groups.

Proof. Let G be one of the groups GLn, Sp2m or SLn. By Corollary 2.1.7 we
have BG(Fq)k = [Gk/(Gk], where the action is given by conjugation with the q-
th power Frobenius. Moreover, G is special ([Se2, Section 4.4]) and therefore the
theorem follows from the above proposition. (Recall that SWG = A∗G by Theorem
1.9.6 and A∗G was computed in Example 1.2.12.)

Theorem 3.0.11. Let S be the product of p and the primes that divide q − 1. Then
the following equations hold.

CH∗B(GLn(Fq)C)2p

= Z[(2p)−1][c1, . . . , cn]/((q − 1)c1, (q
2 − 1)c2, . . . , (q

n − 1)cn)

CH∗B(Sp2m(Fq)C)2p

= Z[(2p)−1][c2, c4, . . . , c2m]/((q2 − 1)c2, (q
4 − 1)c4, . . . , (q

2m − 1)c2m),

CH∗B(SLn(Fq)C)S

= Z[S−1][c2, c3, . . . , cn]/((q2 − 1)c2, (q
3 − 1)c3, . . . , (q

n − 1)cn),

where ci denotes the i-th Chern class of the Brauer lift of the canonical represen-
tation of the respective groups.
If q ≡ 1 mod 4 it suffices to invert p in the first and second equation.

Proof. If G is one of the groups GLn, Sp2m or SLn the previous theorem shows
that the Chow ring of BG(Fq)k is generated by Chern classes of the canonical
representations of G(Fq)k, where k is any field containing Fq. The theorem thus
follows from Proposition 2.4.3 and Proposition 2.1.3 (i).
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4 The Chow Ring of the Stack of level-n Barsotti-Tate
Groups

4.1 The Stack of truncated Displays

Let R be an Fp-algebra. We denote by Wn(R) the ring of truncated Witt vectors
of length n. Let In,R ⊂ Wn(R) be the image of the Verschiebung Wn−1(R) →
Wn(R) and Jn,R ⊂ Wn(R) be the kernel of the projection Wn(R) → Wn−1(R).
The Frobenius on R induces a ring homomorphism σ : Wn(R) → Wn(R) and
the inverse of the Verschiebung induces a bijective σ-linear map σ1 : In+1,R →
Wn(R). Note that pR = 0 implies In,RJn,R = 0, hence we may view In+1,R as a
Wn(R)-module.
Truncated displays were introduced in [La]. Let us recall the necessary notations.
For now we are only going to need the following description of truncated displays.

Definition 4.1.1. A truncated display of level n over an Fp-algebra R is a triple
(L, T,Ψ) consisting of projective Wn(R)-modules L and T of finite rank and a
σ-linear automorphism Ψ: L⊕ T → L⊕ T .

A morphism between truncated displays is defined as follows. First we can use
Ψ to define σ-linear maps

F : L⊕ T → L⊕ T, l + t 7→ pΨ(l) + Ψ(t),

F1 : L⊕ (T ⊗Wn(R) In+1,R)→ L⊕ T, l + (t⊗ ω) 7→ Ψ(l) + σ1(ω)Ψ(t).

Then a morphism between two truncated displays (L, T,Ψ) and (L′, T ′,Ψ′) of

level n is given by a matrix
(
A B
C D

)
,whereA ∈ Hom(L,L′),B ∈ Hom(T, L′),

C ∈ Hom(L, T ′ ⊗Wn(R) In+1,R) and D ∈ Hom(T, T ′) such that

L⊕ T F //

��

L⊕ T

��

L′ ⊕ T ′ F ′ // L′ ⊕ T ′

L⊕ (T ⊗Wn(R) In+1,R)
F1 //

��

L⊕ T

��

L′ ⊕ (T ′ ⊗Wn(R) In+1,R)
F ′1 // L′ ⊕ T ′

commute.
The height of a truncated display is defined as the rank of L⊕T and the dimension
as the rank of the projective R-module T/In,RT . Both are locally constant func-
tions on SpecR.
Let Dispn → SpecFp denote the stack of truncated displays of level n. That is for
R an Fp-algebra Dispn(SpecR) is the groupoid of truncated displays of level n. It
is proved in [La, Proposition 3.15] that Dispn is a smooth Artin algebraic stack of
dimension zero over Fp with affine diagonal.
For h ∈ N and 0 ≤ d ≤ h we denote by Disph,dn the open and closed substack
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of truncated displays of level n with constant height h and constant dimension d.
Then

Dispn =
∐
h,d

Disph,dn .

By the lemma below it suffices to compute the Chow ring of Disph,dn .

Lemma 4.1.2. Let Xi, i ∈ I be a family of stacks. ThenA∗(
∐
i Xi) =

∏
iA
∗(Xi).

Proof. We write X =
∐
i Xi. Let T be a scheme and T →X a morphism. This

morphism defines a decomposition
∐
i Ti of T into open and closed subschemes.

Note that only finitely many Ti are non-empty since T is of finite type. We know
A∗(T ) =

⊕
iA∗(Ti). Thus we get a natural map∏

i

A∗(Xi)→ A∗(X ).

To see that this defines an isomorphism, it suffices to note that for c ∈ A∗(X ) the
map c(T → X ) sends A∗(Ti) to A∗(Ti). This follows since by definition of the
operational Chow ring the maps c(T → X ) and c(Ti → X ) are compatible with
the push-forward of Ti ↪→ T .

A Presentation of Disph,dn . We will adopt the notation of the proof of Proposi-
tion 3.15 in [La]. Let Xh,d

n be the functor on affine Fp-schemes with Xh,d
n (R) =

GLh(Wn(R)). This is an affine open subscheme of Anh2
. Furthermore, letGh,dn be

the functor such that Gh,dn (R) is the group of invertible matrices
(
A B
C D

)
with

A ∈ GLh−d(Wn(R)),B ∈ Hom(Wn(R)d,Wn(R)h−d),C ∈ Hom(Wn(R)h−d, Idn+1,R)

and T ∈ GLd(Wn(R)). Then Gh,dn is a connected algebraic group of dimension
nh2.

Remark 4.1.3. Since I2,R is in bijection to R via σ1 we may view Gh,d1 (R) as
the group of invertible matrices with entries in R with respect to the multiplication
given by(

A B
C D

)(
A′ B′

C ′ D′

)
=

(
AA′ AB′ +BD′

Cσ(A′) + σ(D)C ′ DD′

)
,

where in the four blocks we have the usual matrix multiplication.

Let πh,dn : Xh,d
n → Dispn,d be the functor that assigns to an invertible ma-

trix Ψ ∈ GLh(Wn(R)) the truncated display (Wn(R)h−d,Wn(R)d,Ψ), where we
view Ψ as a σ-linear map Wn(R)h → Wn(R)h via x 7→ Ψ · σx. Now if we let
Gh,dn act on Xh,d

n via
Ψ ·G = G−1Ψσ1(G)

where σ1(G) =

(
σ(A) pσ(B)
σ1(C) σ(D)

)
, then every G ∈ Gh,dn defines an isomor-

phism πh,dn (Ψ)→ πh,dn (G ·Ψ) of truncated displays. On the contrary if G defines
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an isomorphism πh,dn (Ψ) → πh,dn (Ψ′) then necessarily Ψ′ = G−1Ψσ1(G). We
thus obtain

Theorem 4.1.4. The functor πh,dn induces an isomorphism of stacks

[Xh,d
n /Gh,dn ] ∼= Disph,dn .

There are the following two obvious vector bundles on Disph,dn .

Definition 4.1.5. Let SpecR → Disph,dn be a map corresponding to a truncated
display P = (L, T,Ψ).

(i) We denote by Lie the vector bundle of rank d over Disph,dn that assigns to
SpecR→ Disph,dn the vector bundle Lie(P) = T/In,RT of rank d over R.

(ii) By tLie∨ we denote the vector bundle of rank h−d that assigns to SpecR→
Disph,dn the vector bundle L/In,RL of rank h− d over R.

Remark 4.1.6. The notation tLie∨ in the above definition stems from the fact that
the dual of L/In,RL gives the Lie algebra of the dual display Pt. For the definition
of the dual display see [Zi, Definition 19].

The Truncated Display Functor. As already mentioned in the introduction the
strategy for computing the Chow ring of the stack of truncated Barsotti-Tate groups
is to relate it to the stack of truncated displays. This happens via the truncated
display functor

φn : BTn → Dispn
constructed in [La]. Let us briefly sketch the construction.
Let G be a p-divisible group over an Fp-algebra R. The Witt ring W (R) is p-
adically complete and the ideal IR in W (R) carries natural divided powers com-
patible with the canonical divided powers of p. Let D(G) denote the covari-
ant Dieudonne crystal of G. We can evaluate D(G) at W (R) → R and set
P = D(G)W (R)→R and Q = Ker(P → Lie(G)). Furthermore, let F ] : P σ → P

and V ] : P → P σ be the maps induced by Frobenius and Verschiebung of G. One
can now show that there are σ-linear maps F : P → P resp. Ḟ : Q → P com-
patible with base change in R such that (P,Q, F, Ḟ ) is a display which induces
the maps F ] and V ]. See [La, Proposition 2.4] for the precise statement. This
construction yields a 1-morphism

φ : BT → Disp

from the stack of Barsotti-Tate groups to the stack of displays. It is clear from the
construction that the Lie algebra of G is equal to the Lie algebra of φ(G) defined
by P/Q.
Moreover, one can prove that for all n there are maps φn : BTn → Dispn compat-
ible with the truncation maps on both sides such that φ is the projective limit of the
system (φn)n≥1. The following theorem is the central result in [La].

Theorem 4.1.7. φn is a smooth morphisms of smooth algebraic stacks over Fp
which is an equivalence on geometric points.
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4.2 Grouptheoretic Properties of Gh,d
n

We denote by Kh,d
(n,m) the kernel of the projection Gh,dn → Gh,dm for m < n

and by K̃h,d
n the kernel of the projection Gh,dn → GLh−d×GLd. Note Gh,0n =

GLh(Wn(·)). We recall the following well known facts about the Witt ring. For
an Fp-algebra R we denote by [·] : R → Wn(R) the map r 7→ (r, 0, . . . , 0) and
V (·) : W (R)→W (R) is the Verschiebung.

Lemma 4.2.1. Let R be an Fp-algebra and x, y ∈ R. Then [x+ y]− [x]− [y] lies
in VW (R). Furthermore, V

r
W (R) · V sW (R) ⊂ V r+sW (R) holds.

Proof. The first part follows immediately from the fact that VW (R) is the kernel
of the ring homomorphism W0 : W (R)→ R and the fact that W0([x]) = x holds
for all x ∈ R.
For the second part we may assume r ≥ s. We then write V

r
xV

s
y = V r(xF

rV sy) =
ps·V r(xF r−sy). Since pR = 0 we have the equality p(x0, x1, . . .) = (0, xp0, x

p
1, . . .)

in W (R) and the lemma follows.

Lemma 4.2.2. (i) Kh,d
(n,m) is unipotent.

(ii) K̃h,d
n is unipotent.

Proof. (i) First note that Kh,0
(n,n−1) = ker(GLh(Wn(·)) → GLh(Wn−1(·))) is

unipotent. To see this we consider the Verschiebung V (·) as a map Wn(R) →
Wn(R). Then by the above lemma the map

Gh2

a → Kh,0
(n,n−1), A 7→ Ih + V n−1

[A]

is an isomorphism of algebraic groups.

Next we show thatK(n,n−1)
h,d is unipotent. This is the group of matrices

(
A B
C D

)
with A ∈ Kh−d,0

(n,n−1), B ∈ J
(h−d)×d
n , C ∈ J

d×(h−d)
n+1 and D ∈ Kd,0

(n,n−1). The
multiplication in this group is given by(

A B
C D

)(
A′ B′

C ′ D′

)
=

(
AA′ AB′ +BD′

CA′ +DC ′ DD′

)

Starting with the normal subgroup

(
Ih−d J

(h−d)×d
n

J
d×(h−d)
n+1 Id

)
, which is isomor-

phic to G2d(h−d)
a , and then using the fact that Kh−d,0

(n,n−1) resp. Kd,0
(n,n−1) are isomor-

phic to G(h−d)2

a resp. Gd2

a one obtains a filtration ofKh,d
(n,n−1) by normal subgroups,

whose successive quotients are isomorphic to a product of copies of Ga. Now we
have an exact sequence

0 // Kh,d
(n,n−1)

// Kh,d
(n,m)

// Kh,d
(n−1,m)

// 0
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and by induction we may assume thatKh,d
(n−1,m) is unipotent. It follows thatKh,d

(n,m)
is unipotent.
(ii) For n = 1 the assertion is obvious in view of Remark 4.1.3. For n > 1 we use
the exact sequence

0 // Kh,d
(n,n−1)

// K̃h,d
n

// K̃h,d
n−1

// 0.

By induction and part (i) it follows that K̃h,d
n is unipotent.

Corollary 4.2.3. (i) Gh,dn is special.
(ii) K̃h,d

n is the unipotent radical of Gh,dn .
(iii) The projection Xh,d

n → Xh,d
1 is a trivial Kh,0

(n,1)-torsor.

Proof. We have the exact sequence

0 // K̃h,d
n

// Gh,dn // GLh−d×GLd // 0.

Now K̃h,d
n is unipotent, thus special. Since GLh−d×GLd is also special part (i)

follows.
Clearly the projection Xh,d

n → Xh,d
1 is a Kh,0

(n,1)-torsor by definition of Kh,0
(n,1). It is

trivial since Kh,0
(n,1) is unipotent and Xh,d

1 is affine.

4.3 The Chow Ring of Dispn
We start with the following theorem which reduces the calculation of A∗(Dispn)
to the case n = 1.

Theorem 4.3.1. The pull-back

τ∗n : A∗(Disph,d1 )→ A∗(Disph,dn )

of the truncation τn : Disph,dn → Disph,d1 is an isomorphism.

Proof. Under the presentationDisph,dn = [Xh,d
n /Gh,dn ] the truncation τn is induced

by the natural projections Xh,d
n → Xh,d

1 and Gh,dn → Gh,d1 . Thus τn factors as

[Xh,d
n /Gh,dn ]→ [Xh,d

1 /Gh,dn ]→ [Xh,d
1 /Gh,d1 ].

The pull-back of the second map is an isomorphism by Lemma 4.2.2 and Corollary
1.5.2. To show that the pull-back of the first map is also an isomorphism let us
abbreviate X = Xh,d

1 and G = Gh,dn . By part (iii) of Corollary 4.2.3 we know
Xh,d
n = X×K withK = Kh,0

(n,1) and the projectionX×K → X isG-equivariant.
Moreover, K is an affine space by Lemma 4.2.2. After replacing [X/G] by an
appropiate mixed space (cf. Convention 1.2.1) we may assume that [X/G] is a
scheme. We claim that (X × K)/G → X/G is a Zariksi locally-trivial affine
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bundle. Since G is special by part (i) of Corollary 4.2.3 the principal G-bundle
X → X/G is locally trivial for the Zariski topology and after replacing X/G
by an appropiate open subset we may assume X = G × (X/G). We then have
an isomorphism (G × (X/G) × K)/G ∼= (X/G) × K given by the assignment
(g, x, k) 7→ (x, k′), where k′ is defined by g−1(g, x, k) = (1, x, k′). This proves
the claim and hence the pull-back of the first map is also an isomorphism.

When d = h or d = 0 the group Gh,d1 is just GLh and the action on Xh,d
1 is

the usual σ-conjugation. If 0 < d < h we have that Gh,d1 is a split extension of the

group GLh−d×GLd by the unipotent group {
(
Eh−d ∗
∗ Ed

)
}, where ∗ denotes

an arbitrary matrix with entries in R (cf. Remark 4.1.3). The splitting is given by
the canonical inclusion GLh−d×GLd ↪→ Gh,d1 .
The case h = 2. Here the basic calculation of Example 3.0.6 already yields the
following result.

Theorem 4.3.2.

A∗(Disp2,1
1 ) = Z[t1, t2]/((p− 1)c1, (p

2 − 1)c2)

A∗(Disp2,0
1 ) = A∗(Disp2,2

1 ) = Z[c1, c2]/((p− 1)c1, (p
2 − 1)c2),

where c1 = t1 + t2 and c2 = t1t2.

Proof. By Lemma 1.2.10 and Proposition 1.2.6 we have

A∗(Disp2,1
1 ) = A∗

G2,1
1

(X2,1
1 ) = A∗T (X2,1

1 ),

where T is the torus of diagonal matrices in GL2. Now the last ring is just the
equivariant Chow ring of T acting on GL2 via σ-conjugation and this case was
done in Example 3.0.6.

Corollary 4.3.3.
Pic(Disp2,1

1 ) = Z× Z/(p− 1)Z

Pic(Disp2,0
1 ) = Pic(Disp2,2

1 ) = Z/(p− 1)Z

Proof. Recall PicDisph,dn = A1Disph,dn by Proposition 1.2.6.

Remark 4.3.4. There is also a more direct approach to compute the above Picard
groups. By using a theorem of Rosenlicht, namely that for irreducible varieties X
and Y the natural map O(X)∗ × O(Y )∗ → O(X × Y )∗ is surjective, it is not
difficult to establish the following exact sequence

O(X)∗/k∗ // Ĝ // PicG(X) // Pic(X)

for G connected and X an irreducible G-scheme. The first map assigns to a non-
vanishing regular function on X its eigenvalue. In our case we have G = T = G2

m

and X = GL2. Then O(GL2)∗/k∗ = Z with generator given by the determinant
and eigenvalue given by the character (p− 1)(t1 + t2) ∈ T̂ . Since Pic(GL2) = 0
we again obtain PicT (GL2) = Z× Z/(p− 1)Z.
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Let us look for generators of the free resp. torsion part of the Picard group. Us-
ing the representation ofDisp2,1

1 as a quotient stack it is easy to see that c1(tLie∨) =

t1 and c1(Lie) = t2 hold in A∗(Disp2,1
1 ), where Lie and tLie∨ are the vector bun-

dles of Definition 4.1.5. See also Theorem 4.3.5 below. Thus we see that Lie is
a generator for the free part and Lie ⊗ tLie∨ for the torsion part. In particular,
we obtain that (Lie ⊗ tLie∨)p−1 is trivial. This can also be seen directly as fol-
lows: (Lie ⊗ tLie∨)p−1 being trivial means that Lie ⊗ tLie∨ is fixed under the
pull-back of the Frobenius map Frob : Disp2,1

1 → Disp2,1
1 assigning to a display

P over an Fp-algebra R the display Pσ obtained by base change via the Frobe-
nius σ : R→ R. But by definition of a truncated display we have an isomorphism

Ψ: L⊕T ∼= Lσ⊕T σ of R-modules. Let us write Ψ as a matrix
(
A B
C D

)
. The

mapping l⊗ t 7→ A(l)⊗D(t)−C(l)⊗B(t) then yields the desired isomorphism
L⊗ T ∼= Lσ ⊗ T σ.

Let us put this result into context by relating it to the corresponding result for
elliptic curves. Let M1,1 → Spec k denote the moduli stack of elliptic curves.
A morphism SpecR → M1,1 corresponds to a pair (C → SpecR, σ) where
C → SpecR is a smooth projective curve of genus 1 and σ : SpecR → C is a
smooth section. We now have the following diagram

M1,1
// BT h=2,d=1

��

φ
// Disph=2,d=1

��

BT h=2,d=1
n=1 φ1

// Disph=2,d=1
n=1

Let us consider the pull-back map A∗(Disp2,1
1 ) → A∗(M1,1). In characteristic

p different from 2 and 3 Edidin and Graham computed A∗(M1,1) = Z[t]/(12t),
where t is given by the first Chern class of the Hodge bundle onM1,1 ([EG, Propo-
sition 21]).
By construction of the truncated display functor the pull-back of Lie to M1,1 is
the dual of the Hodge bundle on M1,1. Since the dual of an elliptic curve is the
elliptic curve it follows from Remark 4.1.6 that the pull-back of tLie∨ is given by
the Hodge bundle. Hence A∗(Disp2,1

1 )→ A∗(M1,1) is the map

Z[t1, t2]/((p− 1)c1, (p
2 − 1)c2)→ Z[t]/(12t)

that sends t1 to −t and t2 to t. Note that p2 − 1 is divisible by 12 (in fact even
by 24) since we assume that p is different from 2 and 3. In particular, there can be
no such map for p = 2, 3 so that the description A∗(M1,1) = Z[t]/(12t) does not
hold in characteristic 2 and 3.

The general case. As in the case h = 2 we are reduced to consider the action
of GLh−d×GLd on GLh by σ-conjugation. In the following we will write ci for

73



the i-th elementary symmetric polynomial in the variables t1, . . . , th and c(j,k)
i will

denote the i-th elementary symmetric polynomial in the variables tj , . . . , tk, where
1 ≤ j < k ≤ h and 1 ≤ i ≤ k − j + 1. We recall that Z[t1, . . . , tn]Sh−d×Sd =

Z[c
(1,h−d)
1 , . . . , c

(1,h−d)
h−d , c

(h−d+1,h)
1 , . . . , c

(h−d+1,h)
d ].

Theorem 4.3.5.

A∗(Disph,d1 ) = A∗GLh−d×GLd
(GLh)

= Z[t1, . . . , tn]Sh−d×Sd/((p− 1)c1, . . . , (p
h − 1)ch),

where the c(1,h−d)
i resp. c(h−d+1,h)

i are the Chern classes of tLie∨ resp. Lie.

Proof. By Lemma 1.2.10 we know A∗(Disph,d1 ) = A∗GLh−d×GLd
(GLh), where

the action of GLh−d×GLd on GLh is given by σ-conjugation. Since GLh−d×GLd
is special with Weyl group Sh−d × Sd we obtain from Proposition 3.0.7

A∗GLh−d×GLd
(GLh) = Z[t1, . . . , tn]Sh−d×Sd/((p− 1)c1, . . . , (p

h − 1)ch).

The assertion that the c(1,h−d)
i resp. c(h−d+1,h)

i are the Chern classes of Lie resp.
tLie∨ follows from the following simple fact. Let us write Ed resp. Eh−d for the
vector bundle over [∗/GLd] resp. [∗/GLh−d] that corresponds to the canonical
representation of GLd resp. GLh−d. Then Lie is the pull-back of Ed under the
natural map

Disph,d1 = [GLh/G
h,d
1 ] // [∗/(GLd×GLh−d)] // [∗/GLd]

and similary for tLie∨.

Corollary 4.3.6.

Pic(Disph,d1 ) =

{
Z/(p− 1)Z if d = 0, h

Z× Z/(p− 1)Z else.

A generator for the free resp. torsion part is det(Lie) resp. det(Lie⊗ tLie∨).

4.4 The Chow Ring of the Stack of G-Zips

Let us first consider the case of F-zips introduced in [MW]. We denote by F-zip
the stack of F-zips over a field k of characteristic p > 0 that is for S a k-scheme
F-zip(S) is the groupoid of F-zips over S. If τ : Z→ Z≥0 is a function with finite
support we denote by F-zipτ the open and closed substack of F-zips of type τ .
Note that

F-zip =
∐
τ

F-zipτ .
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The stacks F-zipτ are smooth Artin algebraic stacks over k which follows for ex-
ample from the following representation as a quotient stack. Let Xτ denote the
k-scheme whose S-valued points are given by

Xτ (S) = {M = (M,C•, D•, ϕ•) |M F-zip of type τ,M = OhS}.

This is a smooth scheme of dimension h2. Here h =
∑

i∈Z τ(i) is also called the
height of M . The group GLh acts on Xτ by

G ·M = (OhS , G(C•), G(D•), Gϕ•(G
−1)σ).

It is easy to see that two F-zips over S of the above form are isomorphic if and only
if they lie in the same GLh(S)-orbit. Thus

F-zipτ = [Xτ/GLh].

An F-zip M over an Fp-algebra R of type τ with support lying in {0, 1} is just a
tuple

M = (M,C,D,ϕ0, ϕ1),

where M is a projective R-module with submodules C and D, which are direct
summands of M and isomorphisms

ϕ0 : Cσ →M/D, ϕ1 : (M/C)σ → D.

Lemma 4.4.1. LetR be an Fp-algebra. Then we have an equivalence of categories

Disp1(R)→
∐

τ,Supp(τ)∈{0,1}

F-zipτ (R)

given in the following way

(L, T,Ψ) 7→ (L⊕ T, T,Ψσ(Lσ),Ψσ |Tσ ,Ψσ |Lσ).

The above assignment commutes with pulling back. In particular, we get an iso-
morphism of stacks

F-zipτ ∼= Dispτ(0)+τ(1),τ(1)
1

for every type τ with support lying in {0, 1}.

Proof. An inverse functor is given by the assignment

(M,C,D,ϕ0, ϕ1) 7→ (C,M/C,ϕ0 ⊕ ϕ1).
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There is more generally the stack of G-zips introduced in [PWZ]. Here G refers
to an arbitrary reductive group. It is defined as follows. Let Z be an algebraic zip
datum that is a 4-tupel (G,P,Q, ϕ) consisting of a reductive group G, parabolic
subgroups P and Q and an isogeny ϕ : P/Ru(P ) → Q/Ru(Q). To Z one asso-
ciates the group

EZ = {(p, q) ∈ P ×Q | ϕ(πP (p)) = πQ(q)}.

Now EZ acts on G by the rule

((p, q), g) 7→ pgq−1

and the quotient stack [G/EZ ] is called the stack of G-zips. If G is connected Z is
called a connected zip datum ([PWZ, Definition 3.1]).
Let us recall how the stack of F-zips is just a special case of this construction. For
this let τ : Z → Z≥0 be a function with finite support, say i1 ≤ . . . ≤ ir. If we
denote nk = τ(ik), then (n1, . . . , nr) defines a partition of h =

∑
k nk. We denote

the standard parabolic of type (n1, . . . , nr) in GLh by Pτ .

Lemma 4.4.2. Let τ : Z → Z≥0 be a function with finite support and Z =
(GLh, Pτ , P

−
τ , φ) be the algebraic zip datum with P−τ the opposite parabolic of

Pτ and φ the Frobenius isogeny. Then there is an isomorphism of stacks

[GLh /EZ ]
∼→ F-zipτ .

Proof. Let S be an k-scheme. We denote by C•τ the descending filtration

C•τ = OhS ⊃ O
n1+...+nr−1

S ⊃ . . . ⊃ On1
S ⊃ 0

in OhS given by the standard flag of type (n1, . . . , nr) and by Dτ−
• the ascending

filtration
Dτ−
• = 0 ⊂ OnrS ⊂ . . . ⊂ O

nr+...+n2
S ⊂ OhS .

given by the flag of type opposite to (n1, . . . , nr). To g ∈ GLh(S) we assign the
F-zip

Mg = (OhS , C•τ , g(Dτ−
• ), ϕ•),

where ϕ is given by the restriction of g to the succesive quotients of C•τ . Note that
we can consider g as a σ-linear map.
If (p, q) is an element of EZ we get an isomorphim Mg → Mpgq−1 of F-zips
induced by p. The fact that p commutes with the ϕi is exactly the condition
φ(π(p)) = π(q).
On the other hand if an isomorphism p : Mg →Mg′ of F-zips is given, we see that
g′−1pg preserves the flag of type opposite to (n1, . . . , nr). Thus q = g′−1pg ∈ P−τ
and again the compatibility of p with the ϕi implies the condition φ(π(p)) =
π(q).
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Theorem 4.4.3. Let τ : Z → Z≥0 be a function with finite support i1 ≤ . . . ≤ ir
and nk = τ(ik). Let h =

∑
i ni be its height. Then

A∗ F-zipτ ∼= A∗GLn1 ×...×GLnr
(GLh),

where GLn1 × . . .×GLnr acts on GLh by σ-conjugation. Therefore

A∗ F-zipτ = Z[t1, . . . , th]Sn1×...×Snr /((p− 1)c1, . . . , (p
h − 1)ch)

with ci the i-th elementary symmetric polynomial in the variables t1, . . . , th.

Proof. By the previous lemma we have

A∗ F-zipτ = A∗EZ (GLh),

where Z is the algebraic zip datum (GLh, Pτ , P
−
τ , φ). By definition Pτ and P−τ

have the same Levi component L = GLn1 × . . .×GLnr . Therefore we have a split
exact sequence

0 // Ru(P )×Ru(P−) // EZ // L // 0,

where the splitting is given by L ↪→ EZ , l 7→ (l, φ(l)). Since the restriction of
the action of EZ to L is the usual Frobenius conjugation the theorem again follows
from Lemma 1.2.10 and Proposition 3.0.7.

Corollary 4.4.4.
Pic(F-zipτ ) = Zr−1 × Z/(p− 1)Z

We can also use Proposition 3.0.7 to say something about the Chow ring of the
stack of G-zips for an arbitrary connceted Frobenius zip datum.

Definition 4.4.5. We call a connected algebraic zip datum Z = (G,P,Q, ϕ) a
Frobenius zip datum if it is defined over Fq with q = pa,Q is the opposite parabolic
of P and ϕ is the q-th power Frobenius σa.
We call a Frobenius zip datum Z = (G,P, P−, σa) special, if G is special and if
P admits a special Levi component.

Theorem 4.4.6. Let G be a connected split reductive group over Fq and Z =
(G,P, P−, σa) be a Frobenius zip datum. Let WG = W (G,T ) be the Weyl group
of G and WL = W (L, T ) be the Weyl group of a Levi component L of P with
respect to a split maximal torus T ⊂ L of G. Writing S = Sym(T̂ ) one has

A∗([G/EZ ])Q = SWL
Q /(SWG

+ ).

If Z is special we have

A∗([G/EZ ]) = SWL/(f − σaf | f ∈ SWG
+ ).

77



Proof. Arguing as in the proof of Theorem 4.4.3 but using Lemma 1.5.7 we obtain

A∗([G/EZ ])Q = A∗L(G)Q,

where the action of L on G is given by σa-conjugation. If G is special the above
equality holds over Z. We conclude by Proposition 3.0.7.

Example 4.4.7. We consider the case Z = (Sp(2n), P, P−, σa). Recall that
Sp(2n) is special and the Weyl group of Sp(2n) is the wreath product Sno(Z/2Z) =
Snn(Z/2Z)n. It acts on Sym(T̂ ) = Z[t1, . . . , tn] in the following way. Sn acts by
permuting the variables t1, . . . , tn and after identifying Z/2Z = {±1} an element
(ε1, . . . , εn) ∈ Z/2Zn acts by (ε1, . . . , εn) · ti = εiti.
If P is the Borel we obtain from the above theorem

A∗([Sp(2n)/EZ ])) = Z[t1, . . . , tn]/((q2 − 1)c1(t2), . . . , (q2n − 1)cn(t2)).

If P is the maximal parabolic subgroup fixing a maximal isotropic subspace then
L = GLn and WL = Sn and therefore

A∗([Sp(2n)/EZ ]) = Z[c1, . . . , cn]/((q2 − 1)c1(t2), . . . , (q2n − 1)cn(t2)).

From the above description we can easily deduce the dimension ofA∗([G/EZ ])Q
as a Q-vectorspace for a connected Frobenius zip datum Z .

Corollary 4.4.8. Let Z = (G,P, P−, σa) be a connected Frobenius zip datum.
Then dimQA

∗([G/EZ ])Q = |WG/WL|, where as usual WG = W (G,T ) is the
Weyl group of G and WL = W (L, T ) is the Weyl group of a Levi component L of
P .

Proof. SQ is free over SWG
Q resp. SWL

Q of rank |WG| resp. |WL| by [De, Theorem
2 (d)]. Since SWG

Q ↪→ SWL
Q is a finite map of polynomial rings it is also flat, hence

SWL
Q is locally free over SWG

Q necessarily of rank |WG/WL|. In fact it follows
from the famous theorem of Quillen-Suslin ([Qu3]) that SWL

Q is free over SWG
Q of

rank |WG/WL|, but we will not need this. Since A∗([G/EZ ])Q = SWL
Q ⊗

S
WG
Q

(SWG
Q /SWG

+ ) the corollary follows.

In the case of F-zips the above corollary reads as follows.

Corollary 4.4.9. Let τ : Z → Z≥0 be a function with support i1 < . . . < ir and
set nk = τ(ik). Let h = n1 + . . .+ nr. Then

dimQA
∗(F-zipτ )Q =

h!

n1! · . . . · nr!
.

It turns out that a Q-basis of the Chow ring of the stack of G-zips is given by
the closures of the orbits of the action of EZ on G. To prove this let us introduce
the naive Chow group of a quotient stack.
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Definition 4.4.10. LetG be an algebraic group andX be aG-scheme. LetZ∗([X/G])
be the free abelian group generated by the set of G-invariant subvarieties of X
graded by dimension. Let Wi([X/G]) be the group

⊕
Y k(Y )G, where the sum

goes over all G-invariant subvarieties of X of dimension i+ 1. There is the usual
divisor map div : Wi([X/G]) → Zi([X/G]) and we define the i-th naive Chow
group of [X/G] to be

Aoi [X/G] = Zi([X/G])/div(Wi([X/G])).

Remark 4.4.11. There is more generally a definition of naive Chow groups for
arbitrary algebraic stacks ([Kr, Definition 2.1.4]) which in the case of a quotient
stack agrees with the one given above. Thus the above definition is independent of
the presentation as a quotient stack.

Remark 4.4.12. There is a natural map Ao∗[X/G] → A∗[X/G]. When X is
Deligne-Mumford, i.e. the stabilizer of every point is finite and geometrically re-
duced, the induced map Ao∗[X/G]Q → A∗[X/G]Q is an isomorphism of groups
and an isomorphism of rings if [X/G] is smooth ([Kr, Theorem 2.1.12 (ii)]).

The stack of G-zips is not Deligne-Mumford. However, we still have the fol-
lowing proposition.

Proposition 4.4.13. Let G be a connected algebraic group and X be an admis-
sible G-scheme (cf. Definition 1.3.5) with finitely many orbits such that the stabi-
lizer of every point is an extension of a finite group by a unipotent group. Then
Ao∗[X/G]Q → A∗[X/G]Q is an isomorphism.

Proof. We prove this by induction on the number of orbits. Let U denote the open
G-orbit and W its complement. We have a commutative diagram

0 // Ao∗[W/G]Q //

��

Ao∗[X/G]Q

��

// Ao∗[U/G]Q //

��

0

0 // A∗[W/G]Q // A∗[X/G]Q // A∗[U/G]Q // 0

and we claim that the rows of this diagram are exact. Since there are only finitely
many orbits every G-invariant subvariety Y of X is the closure of a G-orbit. Since
Y admits a dense G-invariant subset every G-invariant rational function on Y is
constant. It follows Ao∗[X/G] =

⊕
Z Z[Z̄] where the sum goes over all G-orbits

Z of X . From this we obtain the exactness of the top row. For the exactness of the
lower row we need to see that the pull-back mapA∗([X/G], 1)Q → A∗([U/G], 1)Q
is surjective. But [U/G] is isomorphic to the classifying space of the stablizer group
scheme of U . By assumption and Corollary 1.5.4 we get that A∗([U/G],m)Q →
A∗(B{0},m)Q is an isomorphism. Equivalently the pull-back of the structure mor-
phism [U/G]→ Spec k is an isomorphism for the higher Chow groups with ratio-
nal coefficents and hence the claim follows.
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Now the right vertical arrow is an isomorphism since both groups are isomorphic
to Q. By induction we may assume that the first vertical arrow is also an isomor-
phism.

Recall that an algebraic zip datum Z is called orbitally finite if G has finitely
many EZ -orbits ([PWZ, Definition 7.2]). By [PWZ, Remark 7.4] every Frobenius
zip datum is orbitally finite.

Theorem 4.4.14. Let Z be an orbitally finite connected algebraic zip datum and
[G/EZ ] be the corresponding stack of G-Zips. Then the following assertions
hold.

(i) Ao∗[G/EZ ]Q → A∗[G/EZ ]Q is an isomorphism.
(ii) Ao∗[G/EZ ] =

⊕
Z Z[Z̄] where the sum goes over all orbits Z.

In particular, the dimension of A∗[G/EZ ]Q as a Q-vector space is equal to the
number of orbits.

Proof. The assumption of the previous proposition on the stabilizer group schemes
hold by [PWZ, Theorem 8.1].

Remark 4.4.15. If Z = (G,P, P−, σa) is a connected Frobenius zip datum, then
it follows from the above theorem and Corollary 4.4.8 that the number of EZ -
orbits in G is given by the order of the coset space WG/WL. The same holds more
generally for an arbitrary connected orbitally finite algebraic zip datum by [PWZ,
Theorem 7.5]. Moreover, a description of the closure relations between the orbits
is given in [PWZ, Theorem 6.2].

4.5 The Chow Ring of BTn

The goal of this section is to prove the following theorem.

Theorem 4.5.1. The pull-back φ∗n : A∗(Dispn) → A∗(BTn) is injective and an
isomorphism after inverting p.

We know that Dispn =
∐
d≤hDisph,dn is a decomposition into open and closed

substacks. The same holds for BTn and the morphism φn maps BT h,dn to Disph,dn .
By Lemma 4.1.2 it suffices to prove the theorem for the restriction of φn to BT h,dn .
The following proposition is the crucial point in the proof of Theorem 4.5.1.

Proposition 4.5.2. Let L be a field extension of k and SpecL → Dispn be a
morphism. Then there is a finite field extension L′ of L of p power degree and an
infinitesimal commutative group schemeA overL′ such that the fiber φ−1

n (SpecL′)
is the classifying space of A.

Proof. The diagonal ∆: BTn → BTn ×Dispn BTn is flat and surjective by [La,
Theorem 4.7]. This means that two Barsotti-Tate groups of level n having the
same associated display become isomorphic when pulled back to a suitable fppf-
covering. It follows that the fiber (BTn)L of a display P over some field L is
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a gerbe over L. If L is perfect there is a truncated Barsotti-Tate group G over
L with φn(G) = P , i.e. (BTn)L is a neutral gerbe. In this case (BTn)L =
BAuto(G) where Auto(G) = Ker(AutG→ AutP ) is commutative and infinites-
imal again by [La, Theorem 4.7]. If L is not perfect we may consider the perfect
hull Lp

−∞
in an algebraic closure of L. Then L ⊂ Lp−∞ is purely inseparable and

(BTn)L(Lp
−∞

) is non-empty. Since (BTn)L(Lp
−∞

) = lim−→L′
(BTn)L(L′), where

the limit goes over all finite subextensions L ⊂ L′ ⊂ Lp−∞ , we find some L′ such
that (BTn)L′ has a section corresponding to a truncated Barsotti-Tate groupG over
L′. Thus A = Auto(G) and L′ have the desired properties.

Remark 4.5.3. Over the open and closed substack of BTn consisting of level-n
BT-groups of constant dimension d and codimension c the degree of Auto(Guniv)
is pncd. See Remark 4.8 in [La].

Note that Disph,dn and BT h,dn both admit admissible presentations in the sense
of Definition 1.3.5. In the case of Disph,dn this follows from Theorem 4.1.4 and
Lemma 1.3.4. To obtain the assertion for BT h,dn we use [We, Proposition 1.8]
which yields a presentation BT hn = [Y h

n /GLpnh ] with Y h
n quasi-affine and of

finite type over k. Now BT hn is smooth over Spec k ([La]). Hence Y h
n is also

smooth and in particular normal and equidimensional.
We now consider the flat pull-back map φ∗n : A∗(Disph,dn ,m) → A∗(BT

h,d
n ,m)

from Lemma 1.3.11.

Proposition 4.5.4. φ∗n : A∗(Disph,dn ,m) → A∗(BT
h,d
n ,m) is an isomorphism af-

ter inverting p.

Proof. Let us write X = BT h,dn and Y = Disph,dn . We fix some io ∈ Z and show
that φn : Aio(Disph,dn ,m)p → Aio(BT

h,d
n ,m)p is an isomorphism.

Consider an approximation of Y (cf. Convention 1.2.1) by a quasi-projective
scheme Y → Y so that Aio(Y ,m) = Aio(Y,m) and similary an approxima-
tion X → X of X . Let r denote the relative dimension of X → X . Let Z
be the fibre product X ×Y Y . The morphism Z → Y is then smooth of relative
dimension r and we need to see that the pull-back Aio(Y,m)p → Aio+r(Z,m)p
is an isomorphism. Note that Z is again quasi-projective since it is open in a vec-
tor bundle over the quasi-projective scheme X (cf. Remark 1.3.6). We have the
following cartesian diagram

Zy

��

//Xk(y)

��

// Spec k(y)

��

Z //

��

XY

��

// Y

��

X //X // Y

By Lemma 1.4.5 it suffices to see that Ai(Spec k(y),m)p → Ai+r(Zy,m)p with
i = io − dim ¯{y} is an isomorphism. According to the previous proposition there

81



is a finite field extension K of k(y) of p-power degree such that XK = BA holds
for an infinitesimal group scheme A over K.
Since ZK is open in a vector bundle over XK of rank r we have ZK = U/A,
where U is open in a representation V of A. Note that V is of dimension r.
Hence by chosing codimXc to be big enough, we may assume Ai(SpecK,m)→
Ai+r(U,m) is an isomorphism. Since A is of p-power degree it follows that the
map Ai(SpecK,m)p → Ai+r(ZK ,m)p is an isomorphism . Now since the field
extension K ⊃ k(y) is of p-power degree it follows from Corollary 1.4.3 that
Ai(Spec k(y),m)p → Ai+r(Zy,m)p is also an isomorphism. We are done.

Proof. (of Theorem 4.5.1) SinceBTn andDispn are smooth (φn)∗p : A∗(Dispn)p →
A∗(BTn)p is an isomorphism by Lemma 1.3.11 and the proposition above. We al-
ready know A∗(Dispn) is p-torsion free by Theorem 4.3.5 and Theorem 4.3.1.
Thus φ∗n is injective.

Gathering the results of Chapter 4 we obtain

Theorem 4.5.5. (i) We have

A∗(BT h,dn )p = Z[p−1][t1, . . . , th]Sd×Sh−d/((p− 1)c1, . . . , (p
h − 1)ch),

where ci denotes the i-th elementary symmetric polynomial in the variables
t1, . . . , th and t1, . . . , td resp. td+1, . . . , th are the Chern roots of Lie resp.
tLie∨.

(ii) dimQA
∗(BT h,dn )Q =

(
h
d

)
and a basis is given by the cyclces of the closures

of the EO-Strata.
(iii)

(PicBT h,dn )p =

{
Z[p−1]/(p− 1) if d = 0, h

Z[p−1]× Z[p−1]/(p− 1) else,

where the generator for the free resp. torsion part is det(Lie) resp. det(Lie⊗
tLie∨).

Proof. By Theorem 4.5.1 we know A∗(Disph,dn )p ∼= A∗(BT h,dn )p. Morever, we
have A∗(Disph,dn ) ∼= A∗(Disph,d1 ) by Theorem 4.3.1 and A∗(Disph,d1 ) was com-
puted in Theorem 4.3.5. This proves part (i). By Lemma 4.4.1 and Lemma 4.4.2
we know that Disph,d1 is isomorphic to the stack [GLh /EZ ] corresponding to the
Frobenius zip datum Z = (GLh, P, P

−, σ), where P is the standard parabolic of
type (d, h), P− is the opposite parabolic and σ is the Frobenius isogeny. Now the
dimension of A∗(Disph,d1 )Q as a Q-vectorspace follows from Corollary 4.4.9 and
a basis is given by Theorem 4.4.14. This proves (ii). Finally (iii) follows from (i)
together with the fact that PicBT h,dn = A1(BT h,dn ).
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A Group (Co)homology

Let (L∗, d
L
∗ ) and (K∗, d

∗
K) be complexes of modules over some ringA. We assume

that Ki = 0 = Li for i < 0.
The tensor chain complex (K∗ ⊗A L∗, d) is defined by

(K∗ ⊗A L∗)i =
⊗
p+q=i

Kp ⊗A Lq

and
d(x⊗ y) = dK(x)⊗ y + (−1)px⊗ dL(y).

For any group G the term G-module will refer to a left Z[G]-module. If M and N
are two G-modules the tensor product M ⊗Z[G] N is formed by considering M as
a right G-module via m · g = g−1 ·m. Thus the equation gm⊗ gn = m⊗n holds
in M ⊗Z[G] N .

Definition A.1. Let G be an abelian group.
(i) Let K∗ be a cochain complex of G-modules. We define Hi(G,K∗) to be the

i-th hyperext group ExtiZ[G](Z,K
∗).

(ii) Let L∗ be a chain complex of G-modules. We define Hi(G,L∗) to be the i-th
hypertor group Tor

Z[G]
i (Z, L∗).

When K∗ resp. L∗ is concentrated in degree 0 we obtain the usual group co-
homology resp. homology.

Cap products in group (co)homology. Next we want to define a cap product map

∩ : H i(G,K)×Hj(G,L∗)→ Hj−i(G,K ⊗Z L∗).

We use the standard resolution

P∗ = [. . .→ Z[Gi+1]
di−→ Z[Gi]→ . . .→ Z[G]→ Z]

of Z ([Se3, Chapter 7 §3]). Here G acts on Z[Gi+1] via

g · (g0, . . . , gi) = (gg0, . . . , ggi)

and di is defined by

di(g0, . . . , gi) =
i∑

k=1

(−1)k(g0, . . . , ĝk, . . . , gi).

Note that the Z[Gi] are free Z[G]-modules and that P∗ is exact. Hence we have
H i(G,K) = H i(HomZ[G](P∗,K)) and Hj(G,L∗) = Hj(P∗ ⊗Z[G] L∗). There is
a G-map

Z[Gi+1] = Pi → Pj ⊗Z Pi−j , (g0, . . . , gi) 7→ (g0, . . . , gj)⊗ (gj , . . . , gi)
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and for each G-module K and L and every φ ∈ HomZ[G](Pi,K) a morphism

(Pi⊗Z Pj−i)⊗Z[G]L→ Pj−i⊗Z[G] (K⊗ZL), (p⊗p′)⊗x 7→ p′⊗ (φ(p)⊗x).

We thus obtain morphims

HomZ[G](Pk,K)× (Pk′ ⊗Z[G] Ll)→ HomZ[G](Pk,K)× ((Pk ⊗Z Pk′−k)⊗Z[G] Ll)

→ Pk′−k ⊗Z[G] (K ⊗Z Ll)

which in turn induce a map

∩ : HomZ[G](P∗,K)i × (P∗ ⊗Z[G] L∗)j → (P∗ ⊗Z[G] (K ⊗Z L∗))j−i. (A.1)

Lemma A.2. The above map passes to (co)homology yielding a cap product map

∩ : H i(G,K)×Hj(G,L∗)→ Hj−i(G,K ⊗Z L∗).

Proof. Let us denote the differential operators of HomZ[G](P∗,K), P∗ ⊗Z[G] L∗
and P∗ ⊗Z[G] (K ⊗Z L∗) by ∂, δ and d. It then suffices to prove the following
equation

(−1)id(φ ∩ b) = φ ∩ δb− ∂φ ∩ b (A.2)

for all φ ∈ HomZ[G](P∗,K)i and b ∈ P∗ ⊗Z[G] L∗.
Let us first assume L∗ = L in degree 0. Consider b = (g0, . . . , gj)⊗x ∈ (Pj⊗Z[G]

L). We compute

d(φ ∩ ((g0, . . . , gj)⊗ x) = d((gi, . . . , gj)⊗ φ(g0, . . . , gi)⊗ x)

=

j−i∑
k=0

(−1)k(gi, . . . , ĝi+k, . . . , gj)⊗ φ(g0, . . . , gi)⊗ x,

∂φ ∩ ((g0, . . . , gj)⊗ b) =
i+1∑
k=0

(−1)k(gi+1, . . . , gj)⊗ φ(g0, . . . , ĝk, . . . , gi+1)⊗ x

and

φ ∩ δ(b) =φ ∩ (

j∑
k=0

(g0, . . . , ĝk, . . . , gj)⊗ x)

=

i∑
k=0

(−1)k(gi+1, . . . , gj)⊗ φ(g0, . . . , ĝk, . . . , gi+1)⊗ x

+

j∑
k=i+1

(−1)k(gi, . . . , ĝk, . . . , gj)⊗ φ(g0, . . . , gi)⊗ x

=

i∑
k=0

(−1)k(gi+1, . . . , gj)⊗ φ(g0, . . . , ĝk, . . . , gi+1)⊗ x

+

j−i∑
k=1

(−1)k+i(gi, . . . , ĝi+k, . . . , gj)⊗ φ(g0, . . . , gi)⊗ x.

84



It follows

φ ∩ δb− ∂φ ∩ b =(−1)i+2(gi+1, . . . , gj)⊗ φ(g0, . . . , gi)⊗ x

+

j−i∑
k=1

(−1)k+i(gi, . . . , ĝi+k, . . . , gj)⊗ φ(g0, . . . , gi)⊗ x

=

j−i∑
k=0

(−1)k+i(gi, . . . , ĝi+k, . . . , gj)⊗ φ(g0, . . . , gi)⊗ x

=(−1)id(φ ∩ b)

This proves the assertion in the first case.
For general L∗ we write again b = (g0, . . . , gj)⊗ x ∈ Pj ⊗Z[G] Ll. We then have

d(φ ∩ b) = (d(gi, . . . , gj)⊗ (φ(g0, . . . , gi)⊗ x), (−1)j−i(gi, . . . , gj)⊗ (φ(g0, . . . , gi)⊗ dx))

= (d(gi, . . . , gj)⊗ (φ(g0, . . . , gi)⊗ x), (−1)j−iφ ∩ ((g0, . . . , gj)⊗ dx))

and

φ∩ δ((g0, . . . , gj)⊗x) = (φ∩ (d(g0, . . . , gj)⊗x), (−1)jφ∩ ((g0, . . . , gj)⊗dx))

Hence the general case follows from the computation in the case L∗ = L in degree
0.

Remark A.3. (i) Certainly one can get a more general cap product map

∩ : Hi(G,K∗)×Hj(G,L∗)→ Hj−i(G,K
∗ ⊗Z L∗)

using the construction above. For this one has to find an appropiate sign conven-
tion for the differential operator of the Hom cochain complex HomZ[G](P∗,K

∗).
However, we will not need this.
(ii) We note that this definition of cap products in group (co)homology is analo-
gous to the definition of cap products in simplicial (co)homology, where one uses
the map

C∆
i (X)→ C∆

j (X)⊗Z C
∆
j−i(X), 〈e0, . . . ei〉 7→ 〈e0, . . . ei〉 ⊗ 〈ei, . . . ej〉.

Here X is a simplicial complex and C∆
k (X) denotes the free abelian group gener-

ated by all k-simplices of X .

If K = Z there is another cap product

∩′ : H i(G,Z)×Hj(G,L∗)→ Hj−i(G,L∗).

We will see below that ∩ and ∩′ only differ by (−1)
i(i+1)

2 . Let us first explain ∩′
in the case i = 1. Let α ∈ H1(G,Z) = Ext1

Z[G](Z,Z). We may view α as an
equivalence class of extensions

α : 0 // Z // P // Z // 0
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of Z[G]-modules. Applying the hypertor functor Tor
Z[G]
∗ (·, L∗) to this sequence

we obtain a boundary operator

α ∩′ · : Hj(G,L∗)→ Hj−1(G,L∗)

More generally, if α ∈ H i(G,Z) is an extension

α : 0 // Z // P1
// . . . // Pi // Z // 0

of length i we can split up this extension into i short exact sequences. Each short
exact sequence yields a boundary operator on the hypertor groups as above and by
composing these boundary operators we obtain a cap product map

H i(G,Z)×Hj(G,L∗)→ Hj−i(G,L∗)

which we will denote by ∩′.

Lemma A.4. Let α ∈ H i(G,Z). Then α ∩ · = (−1)
i(i+1)

2 α ∩′ ·.

Proof. Assume i = 1 and let α be an extension

0 // Z // P // Z // 0

of Z[G]-modules. Let P∗ be the standard resolution of Z as above and consider
β ∈ Hj(G,L∗) with representative b ∈ (P∗ ⊗Z[G] L∗)j . We have a commutative
diagram of complexes

0 // HomZ[G](P∗,Z) //

��

HomZ[G](P∗, P ) //

��

HomZ[G](P∗,Z) //

��

0

0 // P∗ ⊗Z[G] L∗ // P∗ ⊗Z[G] (L∗ ⊗Z P ) // P∗ ⊗Z[G] L∗ // 0

with exact rows. Here the vertical maps are the maps from (A.1) (that induce the
cap product map ∩) applied to b. We note that the morphism

· ∩ b : HomZ[G](P∗, P )→ P∗ ⊗Z[G] (L∗ ⊗Z P )

is only a morphism of complexes up to a factor ±1. More precisely, the diagram

HomZ[G](Pi, P ) //

��

HomZ[G](Pi+1, P )

��

P∗ ⊗Z[G] (L∗ ⊗Z P )j−i // P∗ ⊗Z[G] (L∗ ⊗Z P )j−i−1

commutes up to the factor (−1)i+1 as follows from equation (A.2) since δ(b) = 0.
This holds for every G-module P . Thus taking (co)homology we obtain a diagram

H0(G,Z) //

·∩β
��

H1(G,Z)

·∩β
��

Hj(G,L∗)
α∩′·

// Hj−1(G,L∗).
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that commutes up to (−1)0+1. Since the unit element in H0(G,Z) is mapped to
α under the boundary operator H0(G,Z) → H1(G,Z) we obtain the assertion in
the case α ∈ H1(G,Z). The assertion for α ∈ H i(G,Z) with arbitrary i is proven
by splitting up the extension α of length i into i short exact sequences. Repeating
the above argument for each exact sequence we see that α∩ β and α∩′ β differ by
the factor (−1)

∑i
k=1 k = (−1)

i(i+1)
2 .
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