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Chapter 1

Abstract

A combined theory of k.p-perturbation theory and the semiconductor Bloch

equations (SBE) is used to simulate photo currents in GaAs based systems. The

focus lies on the so-called shift current, a microscopic current caused by the spa-

tial motion of excited carriers inside the crystal structure. The validity of the

combined theory is tested for the example of bulk GaAs using known symmetry

properties of shift currents. Using the SBE, which allow for a non-perturbative

and k-resolved analysis of shift currents, various linear and non-linear properties

of shift currents are investigated, in particular, signatures of Rabi-oscillations

in bulk and the in�uence of band-mixing in quantum well systems.

Excitonic e�ects in shift currents are investigated for a full three-dimensional

band structure. The inclusion of Coulomb interaction is numerically demand-

ing and normally done using approximations, e.g., a parabolic band structure.

Such approximations cannot be applied for shift currents. To deal with this

numerical challenge, the development of a new non-uniform grid is necessary.

The convergence and accuracy of the new grid as well as the obtained results

for the exciton binding energy and the shift current are presented and discussed.

A novel method is developed which consists of combining k.p-perturbation

theory with real-space wave function obtained from density functional theory.

The method allows to simulate shift currents in real-space with atomic resolu-

tion.
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4 CHAPTER 1. ABSTRACT

Kurzfassung

Eine vereinheitlichte Theorie von k.p Störungtheorie und den Halbleiter-

Bloch-Gleichung wird benutzt für die Simulation von Photoströmen in GaAs-

Systemen. Der Fokus der Arbeit ist die theoretische Beschreibung und Analyse

des sogenannten Shiftstroms, ein mikroskopischer Strom erzeugt durch die räum-

liche Bewegung von angeregten Ladungsträgern. Mit Hilfe bekannter Eigen-

schaften des Shiftstroms wird die Theorie am Beispiel eines GaAs Festkör-

perkristalls getestet. Der nicht störungstheoretische Ansatz der Halbleiter-

Bloch-Gleichungen erlaubt die Analysis von linearen und nichtlinearen Eigen-

schaften des Shiftstroms.

Der Ein�uss von exzitionischen E�ekten auf den Shiftstrom wird für einen

dreidimensionalen Kristall untersucht. Der numerische Aufwand für die Ein-

bindung der Coulombwechselwirkung wird häu�g durch Näherungen reduziert,

diese sind jedoch für den Shiftstrom nicht möglich. Die Einbindung der Coulomb-

wechselwirkung bedarf der Entwicklung eines neuen, nicht uniformen Gitters.

Sowohl die Konvergenzeigenschaften und die Genauigkeit des Gitters als auch

die simulierten Shiftstrom-Resultate werden vorgestellt und diskutiert.

Eine neue Methode wird vorgestellt, die k.p Störungstheorie mit Realraum-

Wellenfunktionen aus Dichtefunktionaltheorie kombiniert. Diese ermöglicht die

Simulation von Shiftströmen im Realraum mit atomarer Au�ösung.



Chapter 2

Introduction

An electric current is a controlled energy transport without the involvement of

macroscopic moving components. This seems self-evident today, but it was a

major factor in the so-called second industrial revolution in the middle of the

19th century. It enabled to power devices without the use of mechanical belts,

was used for long range communication via the invention of the telegram and

the phone, and led to the invention of the electric lamp, a small and practical

arti�cial light source for its time. After decades of miniaturization and devel-

opment electric currents are an indispensable part of the modern world and

omni-present. With world wide increasing power consumption and environmen-

tal protection being a big challenge, research and development of alternative

energy sources and the development of more power e�cient devices is a very

important research topic.

From early on it is known that optical light can be transformed into kinetic

energy in the form of electronic motion. The photoelectric e�ect is a prime

example of this, describing an electron absorbing a photon and escaping its en-

vironment.[1, 2] For gallium arsenide (GaAs) this process of photo-ionization,

which lifts the electron from its bound state to the vacuum level, corresponds

to a photon energy of at least Eesc = 3eV .[3] In comparison, the photovoltaic

e�ect describes an electron absorbing a photon but not leaving its environment.

Instead, the electron moves in it and thus creates a microscopic current. The

energy transformation of optical light into an electric current is a broad �eld

of research because of the large number of suitable materials and their poten-

tial applications. Materials ranging from classical bulk, to quantum wells and

quantum dots, and to organic molecules can be used for numerous photoelectric

applications, e.g. solar cells, photosynthesis, and optical control.[4�6] A clas-

sical and widespread material for photo current generation are semiconductors
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6 CHAPTER 2. INTRODUCTION

and semiconductor nanostructures which are used in the construction of solar

panels.[7]

The non-linear optical properties of semiconductors allow for a large variety

of applications, like second harmonic generation or THz spectroscopy, to name

just a few.[8�12] Under usual circumstances, no external bias or magnetic �eld,

optical excitation does not generate electric currents in semiconductors. But us-

ing quantum interference as in two-color excitation, i.e., an excitation with two

di�erent photon energies, it is possible to generate currents in the semiconductor

band structure.[13�16] Using certain material properties, e.g. inversion asym-

metry or reduced dimensionality in a quantum well, it is also possible to generate

currents by only one-color excitation.[17�22] One particular photocurrent is the

so-called injection current which is caused by an asymmetric distribution of car-

riers in k-space. In the past, several investigations were performed for injection

currents in GaAs quantum well systems.[23�27]

In this work the focus lies on another kind of current, the so-called shift

current. The shift current is caused by the shift of carriers in real-space induced

by optical excitation. Experimental research on shift current was performed

for bulk materials[28�30] as well as quantum well system[31�34]. Shift currents

can appear in di�erent material types such as semiconductors, ferroelectrical,

and antiferromagnetical materials.[35�38] Previous theoretical research on shift

current was performed using theories limited to frequency space.[39�41]

In contrast, a combined theory of k.p perturbation theory and semiconductor

Bloch equations is presented in this work which allows for the description of

shift currents in time domain. This approach has the advantage that it allows

for investigations beyond the perturbation limit and can be straight forwardly

expanded to include excitonic e�ects. The combined theory has been used to

describe the injection current in GaAs based systems in good agreement with

experiment.[24, 25]

The scope of this work lies on the question how well the combined theory

is capable of describing shift currents in various semiconductor systems. The

thesis begins with an introduction to the theoretical basics of k.p perturbation

theory and the semiconductor Bloch equations in Chapter 3. In addition, a brief

motivation and explanation about the so-called geodesic grid is given which will

be of major importance for simulations with Coulomb interaction.

In Chapter 4 the validity of the combined theory is tested for the example of

bulk GaAs by reproducing known shift current properties. After con�rming

the shift current properties, various non-linear properties of shift currents are
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investigated. Further, the advantages and disadvantages of simulations with

a non-uniform geodesic grid and with a Cartesian grid are compared and dis-

cussed.

In Chapter 5 the combined theory is used for the simulation of quantum well

systems. In a quantum well the reduced dimensionality has a great impact on

the band structure which gives rise to new e�ects. How the reduced dimension-

ality a�ects the shift current is studied.

In Chapter 6 the excitonic e�ects on shift currents near the band gap are inves-

tigated for a full three-dimensional band structure. A detailed explanation for

the inclusion of the numerically challenging Coulomb interaction is given and

the exciton binding energy is calculated for a parabolic and a k.p band struc-

ture. Afterwards, the exciton contributions to the shift current are presented

and discussed.

In Chapter 7 a brief discussion about another type of photo current, the recti-

�cation current, is held for bulk GaAs and GaAs quantum well systems.

Finally, in Chapter 8 a novel method is developed which enables the visualiza-

tion of shift currents with atomic resolution in real-space.
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Chapter 3

Theoretical Basics

In this thesis a uni�ed approach of k.p perturbation theory and the semiconduc-

tor Bloch equations is employed to simulate di�erent photo currents in GaAs-

based systems. The k.p perturbation theory is a well established method for

the calculation of semiconductor band structures in bulk and quantum well

systems.[42�48] Over the decades several di�erent k.p models were developed,

ranging from 6× 6 band models for calculations around the Γ-point to 30× 30

full Brillouin zone calculations, QW models incorporating strain e�ects, and

spin-orbit coupling.[49�52] The time evolution of the photo-excited system is

described via the semiconductor Bloch equations, abbreviated as SBE, a set of

non-linear coupled di�erential equations used to simulate the optical excitations

inside a semiconductor.[53, 54] The SBE can be used to describe numerous ef-

fects inside semiconductors, i.e., Bloch oscillations or the electron g-factor in

a quantum well.[44, 55] The theoretical basics of k.p theory, in particular the

extended Kane model, and the SBE are presented in this Chapter.

For theoretical simulations Cartesian standard grids are often used due to

their uniformity and easy implementation, but they have the disadvantages

of including non-important areas and bad scaling behavior. In contrast, non-

standard grids, which are adapted for the speci�c problems and only include

the important areas of the simulation space, have a better scaling having be-

havior leading to improved calculation times, but are harder to implement as

a consequence. A non-standard geodesic grid is used for the photo current

simulations and the exciton calculations in Chapter 6. Its advantages over an

Cartesian grid are of great importance for the band edge calculations including

Coulomb interaction. The basics and construction of a geodesic grid are de-

scribed at the end of this Chapter.
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10 CHAPTER 3. THEORETICAL BASICS

3.1 Extended Kane Model

3.1.1 Basics of k.p Perturbation Theory

The band structure of GaAs is obtained by solving the extended Kane model,

a 14-band Hamiltonian based on k.p perturbation theory[46, 52]. As the name

implies, the k.p perturbation theory is a perturbative approach for solving the

stationary Schrödinger equation Ĥ|ϕ〉 = E|ϕ〉 of a particle in the periodic po-

tential of a crystal. The theory starts with the Hamiltonian for a particle in a

periodic potential V0

Ĥ =
p̂

2m0
+ V0. (3.1)

The eigenfunctions |ϕ〉 of Eq. (3.1) have to satisfy the Bloch theorem |ϕ〉 =

eik·r|ν〉. After solving the eigenvalue equation for the plane wave term eik·r, the

Hamiltonian for the unit cell periodic part |ν〉 of the Bloch theorem is

Ĥ0 = Ĥ +
h̄2k2

2m0
+

h̄

m0
k · p, (3.2)

with Eν(k) being its eigenvalues. Besides the quadratic term h̄2k2

2m0
the Hamil-

tonian Ĥ0 contains the name giving k · p coupling term. In addition to k · p
coupling the extended Kane model also includes spin-orbit interaction. The

spin-orbit interaction is responsible for a spin-splitting of electron states in in-

version asymmetric systems even without an external magnetic �eld.[56�59] To

include spin-orbit interaction in k.p theory, the spin-orbit Hamiltonian ĤSO is

added to the Hamiltonian (3.1) as a small perturbation,

Ĥ + ĤSO = Ĥ− h̄

4m2
0c

2
σ · p̂× (∇V0) , (3.3)

with σ = (σx, σy, σz) being the vector of the Pauli spin matrices.[60] Solving

the plane wave term eik·r for ĤS0 leads to the full k.p Hamiltonian:

Ĥk.p = Ĥ0 +
h̄

4m2
0c

2
{h̄k + p̂} · σ × (∇V0)

= Ĥ +
h̄2k2

2m0
+

h̄

m0
k · p +

h̄

4m2
0c

2
{h̄k + p̂} · σ × (∇V0)

=
p̂

2m0
+ V0 +

h̄2k2

2m0
+

h̄

m0
k · p +

h̄

4m2
0c

2
{h̄k + p̂} · σ × (∇V0)

(3.4)

The new eigenkets |λk〉 of Eq. (3.4) are expanded in a tensor product consisting

of the old eigenkets |νk〉 of the unperturbed Hamiltonian (3.2) and the spinor
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basis |σ〉,

|λk〉 =
∑

ν;σ=↑,↓

cλνσ(k)|νk = 0〉 ⊗ |σ〉. (3.5)

Multiplying the bra vector 〈ν′k = 0| ⊗ 〈σ′| from the left to Eq. (3.5) gives the

eigenvalue equation

∑
ν′,σ′

{[
Eν(0) +

h̄2k2

2m0

]
δνν′δσσ′ +

h̄

m0
k ·Pνν′

σσ′ + ∆νν′

σσ′

}
cλν′σ′(k) = Eλ(k)cλνσ(k),

(3.6)

with Pνν′

σσ′ and ∆νν′

σσ′ being material speci�c parameters obtained from experi-

ment.

With in�nite bands involved, Eq. (3.6) is an in�nite eigenvalue problem

and numerically unsolvable. For numerical calculations a reduction to a �nite

number of bands is required and done in three steps. First, the theory of in-

variants is applied to write the Hamiltonian in terms of its universal symmetry

invariant form ĤI(k). Second, Löwdin partitioning is used to derive a �nite

Hamiltonian ĤL(k). Third, the invariant Hamiltonian ĤI(k) and the �nite

Hamiltonian ĤL(k) are matched to each other. Using this method one arrives

at a �nite eigenvalue problem usable for numerical simulations. A more detailed

description of the theory of invariants and Löwdin partitioning can be found in

Appendix A.1.1 and Appendix A.1.2.

3.1.2 Invariant Formulation of the Extended Kane Model

The extended Kane model is a 14 band k.p Hamiltonian for semiconductors with

zincblende structure.[52, 61] The Hamiltonian consists of 6 valence bands, the

split-o� band |7v〉 and the heavy & light hole band |8v〉, and 8 conduction bands,
the lowest conduction band |6c〉 with s-symmetry and the higher conduction

bands |7c〉 & |8c〉 with p-symmetry. At the gamma point k = 0 the bands |8v〉
and |8c〉 are fourfold degenerate. The Hamiltonian of the extended Kane model

is

Ĥ14×14 =


Ĥ8c8c Ĥ8c7c Ĥ8c6c Ĥ8c8v Ĥ8c7v

Ĥ7c8c Ĥ7c7c Ĥ7c6c Ĥ7c8v Ĥ7c7v

Ĥ6c8c Ĥ6c7c Ĥ6c6c Ĥ6c8v Ĥ7c7v

Ĥ8v8c Ĥ8v7c Ĥ8v6c Ĥ8v8v Ĥ8v7v

Ĥ7v8c Ĥ7v7c Ĥ7v6c Ĥ7v8v Ĥ7v7v

 . (3.7)
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The sub-Hamiltonians of the extended Kane model have the invariant form of:

Ĥ8c8c =E′0 + ∆′0

Ĥ7c7c =E′0

Ĥ6c6c =E0 +
h̄2k2

2m′

Ĥ8v8v =
−h̄2

2m0

{
γ′1k

2 − 2γ′2

[(
J2
x −

1

3
J2

)
k2
x + cp

]
− 4γ′3 [{Jx, Jy} {kx, ky}+ cp]

}
+

2√
3
Ck
[{
Jx, J

2
y − J2

z

}
kx + cp

]
Ĥ7v7v =−∆0 −

h̄2

2m0
γ′1k

2

Ĥ8c7c = 0

Ĥ8c6c =−
√

3P ′ (Uxkx + cp)

Ĥ8c8v =− 2

3
Q ({Jy, jz} kx + c.p) +

1

3
∆−

Ĥ8c7v =− 2Q (Uyzkx + cp)

Ĥ7c6c =
1√
3
P ′ (σxkx + cp)

Ĥ7c8v =− 2Q (Tyz + cp)

Ĥ7c7v =− 2

3
∆−

Ĥ6c8v =
√

3P T · k

Ĥ6c7v =− 1

3
P σ · k

Ĥ8v7v =− h̄2

2m0

[
−6γ′2

(
Uxxk

2
x + cp

)
− 12γ′3 (Uxy {kx, ky}+ cp)

]
− i
√

3Ck (Uyzkx + cp) (3.8)

The abbreviation cp stands for cyclic permutation and {A,B} = 1
2 (AB +BA).[62]

The �rst �ve terms are the diagonal terms of the Hamiltonian containing

the fundamental band energies at k = 0, i.e., the Γ-point. The remaining o�-

diagonal terms represent the inter- and intraband interaction. The parameters

for the extended Kane model are material speci�c and are acquired from exper-

iment, see the Appendix A.1.4 for the used values in this work. The GaAs band

structure is obtained by a diagonalization of the eigenvalue equation

Ĥ14×14(k)|λ,k〉 = ελ(k)|λ,k〉 (3.9)

for the desired number of k-points, with Ĥ14×14 being the full 14 band k.p
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Table 3.1: Tensor matrices used in the extended Kane model. The explicit form
of the sub matrices can found in Appendix A.1.3.

σ = (σx|σy|σz)
J = (Jx|Jy|Jz)
J = (J3

x |J3
y |J3

z )

T = (Tx|Ty|Tz)
U = (Ux|Uy|Uz)

Hamiltonian. The extended Kane model includes k-terms up to the third order

and accurately describes the band structure near the Γ-point, but for larger

k-vectors k.p-models with a higher number of bands are required.

4.5

4.6

4.7

4.8

1.5

1.6

1.7

1.8

en
er

gy
 [e

V
]

-0.4
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-0.2

-0.1

0.0

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

kx [nm-1]

Figure 3.1: Left: The schematic band structure of the extended Kane model,
taken from [46]. The parameters E0, E′0, ∆0 and ∆′0 stand for the energy sepa-
ration of the bands at the Γ-point. The parameter P , P ′, Q and ∆− represent
coupling between the bands of the extended Kane model. Contributions of
higher bands are factored in by the remaining parameters. Right: A calculated
band structure for GaAs using the extend Kane model along the k = kxex di-
rection. The valence bands |7v〉 & |8v〉, blue, the lowest conduction band |6c〉,
green, and the higher conduction bands |7c〉 & |8c〉, red, are displayed.
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3.2 Semiconductor Bloch Equations

The semiconductor Bloch equations (SBE) are a set of coupled �rst-order non-

linear di�erential equations and are used for the simulation of the time evolution

of optical excitations in the system. The Hamiltonian for a particle inside the

band structure of a semiconductor has the form

Ĥ = Ĥ0 + ĤLM + ĤC . (3.10)

The Hamiltonian

Ĥ0 =
∑
λk

ελkâ
†λ
k â

λ
k (3.11)

represents the unperturbed system. ελk is the energy of band λ at a point k in

reciprocal space and â†λk & âλk the corresponding electron creation and annihi-

lation operators.

The Hamiltonian ĤLM represents the light-matter interaction and its explicit

form depends on the used gauge. In this work the velocity gauge is used in which

the electric �eld is described via the electromagnetic vector potential A(t).[63]

In the velocity gauge the Hamiltonian for a particle in an external electric �eld

has the form

Ĥ =
1

2m

[
p̂− e

c
A(t)

]2
+ V (r), (3.12)

with e being the electron charge and c the speed of light. This is the so-called

minimal coupling Hamiltonian. Solving the brackets, the homogeneous term

Ĥ0 =
p̂2

2m
+ V (r) (3.13)

represents an unperturbed particle in a potential V (r). For a periodic crystal

potential, the Hamiltonian in Eq. (3.13) is equivalent to the band structure

Hamiltonian in Eq. (3.11). The remaining term

Ĥ
πA

LM = − e

2mc
A(t) · p̂ +

e2

2mc2
A2(t) (3.14a)

= − e

2mc
A(t) ·

∑
λλ′

Πλλ′

k â†λk â
λ′

k +
e2

2mc2
A2(t) (3.14b)

represents the light-matter interaction, with Πλλ′

k being the so-called velocity

matrix element.
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Alternatively, the light-matter interaction can be expressed in the dipole

gauge, also called length gauge[64], where the light-matter Hamiltonian has the

form

Ĥ
qE

LM = −er̂ ·E (3.15a)

= −E ·
∑
λλ′

dλλ
′

k â†λk â
λ′

k , (3.15b)

with E = − Ȧ
c being the external electric �eld and dλλ

′

k the so-called dipole

matrix element. Because physics has to be gauge independent, both gauges

should be equivalent. But due to approximations and numerical constraints,

e.g. an in�nite number of bands cannot be evaluated in a numerical simulation,

the gauges may yield di�erent results depending on the optical excitation, es-

pecially for below band gap excitation.[65]

The last Hamiltonian ĤC represents the Coulomb interaction in the system.

In the �rst half of this dissertation Coulomb interaction is omitted and therefore

the Hamiltonian is considered to be

ĤC = 0 (3.16)

at this point. From a numerical point of view the incorporation of Coulomb

interaction for an anisotropic multi-band system is very demanding and will be

discussed in detail in Chapter 6.

The two point operator x̂λλ
′

k = â†λk â
λ′

k describes the state of the system at a

given time t, with λ and λ′ being band indices. For λ = λ′ the operator x̂λλ
′

k =

n̂λk represents the population in band λ. For λ 6= λ′, x̂λλ
′

k = p̂λλ
′

k represents the

inter- or intraband polarization between band λ and λ′. The equation of motion

for an arbitrary operator Â can be obtained from the Heisenberg equation[60]

∂A

∂t
=

〈
∂Â

∂t

〉
= − i

h̄

〈[
Ĥ, Â

]〉
. (3.17)

Evaluating Eq. (3.17) for Â = x̂λλ
′

k = â†λk â
λ′

k and Ĥ = Ĥ0 + Ĥ
πA

LM leads to

the SBE. A full derivation of the Heisenberg equation can be found in the

Appendix A.1.5. The SBE have the explicit form of:

d

dt
xλλ

′

k =
i

h̄

(
ελk − ελ

′

k

)
xλλ

′

k +
i

h̄

e0

m0
A(t) ·

∑
µ

(
Πµλ

k xµλ
′

k −Πλ′µ
k xλµk

)
− 1

T1/2
xλλ

′

k

(3.18)
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The homogeneous part of the SBE contains the band energies εγk and εγ
′

k and

represents the transition energies between band γ and γ′ at reciprocal point k.

In this work the dephasing and relaxation processes in the material are described

by phenomenological dephasing and relaxation times T2 & T1. In this form the

SBE describe non-interacting particles since e�ects caused Coulomb interaction

are omitted here.

The inhomogeneous part of the SBE describes the light-matter interaction

which is here written in the velocity gauge Π ·A. The advantage of the velocity

gauge is that the k-points can be treated independently of each other. Using

the eigenvectors |λ,k〉 the momentum matrix elements are calculated via[50, 66]

Πλλ′

k =
m0

h̄
〈∇kH(k)〉λλ′ . (3.19)

In comparison the dipole gauge d ·E contains gradient terms in the SBE, con-

necting k and k′. The elements are connected by the simple relation Πλλ′
=

−iωλλ
′
dλλ

′
. Due to the inconvenience that the wave function can have a random

phase factor ϕk at each k-point, a phase correction has to be made. Otherwise

solving the SBE will lead to incorrect results.[65]

When solving the SBE as in Eq. (3.15a) all orders of the external electric

�eld E are included in the equation of motion. With e�ects proportional to

di�erent orders of E all summed up together, a distinction between them can

be di�cult, especially if the orders have di�erent magnitudes. To circumvent

this problem, the SBE can be expanded powers of the external �eld E. The

expansion scheme has the form:

∂x(1)

∂t
∝ Ωx(1) + x(0) · E(t)

∂x(2)

∂t
∝ Ωx(2) + x(1) · E(t)

∂x(3)

∂t
∝ Ωx(3) + x(2) · E(t)

...

∂x(n)

∂t
∝ Ωx(n) + x(n−1) · E(t)

(3.20)

The term Ωx(n) stands for the homogeneous and x(n−1) · E(t) for the inhomo-

geneous part of the SBE. For each order x(i), i > 0, the SBE have to be solved

which leads to an increased numerical e�ort. The zeroth-order x(0) represents

the starting condition of the system which normally refers to an unexcited semi-
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conductor, i.e., no excited excitations or polarizations are present in the system.

The advantage of this approach is that the di�erent orders of E and consequently

e�ects belonging to the corresponding orders are separated and can be analyzed

individually. Here the expansion scheme is explain at the more intuitive ex-

ample of an external electric �eld E, but it can also be applied for the vector

potential A.

3.3 χ(2) Photo Currents in Semiconductor Sys-

tems

The linear response of a semiconductor system to an external electric �eld is

given by its susceptibility tensor χ:

P(t) = χ ·E(t) (3.21)

The polarization P can be expanded in powers of the external electric �eld E.

Each polarization of the nth-order has its speci�c susceptibility tensor χ(n),

P(t) =

∞∑
i

P(i)(t) =

∞∑
i

χ(i) ·Ei(t). (3.22)

Due to frequency mixing occurring in non-linear orders, the second-order sus-

ceptibility and therefore the system response can be further broken down into

the di�erent mixing possibilities

P(2)
ωΣ

(t) = χ(2)(−ωΣ;ωβ , ωγ)Eωβ (t)Eωγ (t), (3.23)

with ωΣ = ωβ + ωγ . In non-centrosymmetric semiconductor systems the �nite

second-order optical susceptibility χ(2)(0, ωg, ωg) allows the generation of opti-

cally induced electric currents using optical excitation with single frequency ωg.

It is noteworthy that the susceptibility tensor χ(2)(0, ωg, ωg) can exist without

applying an external bias, thus the photo current is created purely by the sym-

metry properties of the crystal. Because of di�erent microscopic origins, one

can distinguish between three di�erent currents, the injection current Jinj , the

shift current Jshift, and the recti�cation current Jrec.[39]

The injection current Jinj , also known as circular photogalvanic e�ect, arises

from an asymmetric distribution of spin-polarized carriers in k-space. The asym-

metric distribution of spin-carriers is due to spin-splitted bands caused by the
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J

time

J

time

J

time

Figure 3.2: A schematic representation and comparison of the three photo
currents, from left to right: injection, shift, and recti�cation current.
In the upper row depicted, the optical polarizations required for the excitation
and the microscopic cause of each current. In the case of the injection current
the circular polarized excitation causes an asymmetric distribution of carriers in
k-space. For the shift current, the linear polarized excitation leads to a spatial
movement of carriers from one atom to another. A linear polarized excitation
also causes a static polarization in the material, the optical recti�cation. Known
from Maxwell's equations that J ∝ Ṗ, the time derivative of the optical recti�-
cation is the recti�cation current.
In the lower row an idealized form of the currents as function of time. In a sys-
tem without relaxation the injection current emerges with the optical excitation
and remains constant afterwards. In the analytical limit of pure o� resonant
excitation, the shift current follows the square of the pulse envelope E2(t). The
o� resonant limit predicts for the recti�cation current that it follows the time
derivative of envelope ∂tE2(t).
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Dresselhaus and/or Rashba e�ect in systems lacking spatial inversion symme-

try. In this model Jinj is obtained from the populations in both conduction and

valence band nλk = xλλk via

Jinj(t) =
∑
λ,k

Πλλ
k nλk. (3.24)

While bulk GaAs lacks inversion symmetry, the GaAs band structure is still

inversion symmetric in k-space due to the fact that the Schrödinger equation

of the system still has to ful�ll the time-reversal symmetry.[67] The inversion

asymmetry instead lifts the spin degeneracy of the band structure. Only along

the high symmetry lines (100) and (111) a spin degeneracy exists in bulk GaAs.

The inversion symmetric of the band structure in bulk GaAs forbids the gener-

ation of an injection current, but in systems of further reduced symmetry like

GaAs quantum wells a non-vanishing injection current may exist. Due to the

required spin-polarized carriers, circularly polarized light is needed for the gen-

eration of an injection current.

The shift and recti�cation currents will be discussed at the beginning of Chap-

ter 4 and Chapter 7, respectively.

3.4 Geodesic Grid

Looking at the symmetry, the point group Td, the point group of a tetrahedron

and the zincblende structure, is a subgroup of the point group Oh, the point

group of a cube and the diamond structure. In practical manner, the zincblende

structure is a derivation of the diamond structure. The diamond structure is

derived by overlaying a face centric cubic (fcc) lattice with a second fcc lattice of

the same atom basis, displaced by the vector a0

4 (1|1|1) with a0 being the lattice

constant. The zincblende structure is obtained the same way, except that the

second fcc lattice has a di�erent atom basis. As a result of the di�erent atom

basis the zincblende structure lacks inversion symmetry. In point group terms

this can be written as Oh = Td ⊗ Ci, with Ci being the group only including

the identity and the inversion. A generalization of this idea by Lipari and

Baldareschi [68] introduces that the cube symmetry is a sub group of the full

rotation group R,

R ⊃ Oh ⊃ Td. (3.25)

The symmetry reduction manifests itself as new terms in the band structure of

the respective subgroup. It is known that this new terms are small compared

with the shared terms between the subgroups.[69] Based on this a symmetry
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hierarchy can be build for the Hamiltonian:

Ĥ = Ĥsphere + Ĥcube + Ĥtetra (3.26)

For small k-vectors around the Γ-point the Hamiltonian Ĥsphere is the largest

term. As a consequence, the band structure around the Γ-point can be described

by a parabolic k2 dispersion in good approximation.

When solving the SBE numerically, the continuous k-space has to be dis-

cretized. A Cartesian grid is the easiest to implement, but based on the above

mentioned symmetry considerations, a spherical k-grid may be better suited for

the discretization of the band structure. While a discretization based on spher-

ical coordinates would be a candidate, spherical coordinates have the problem

that the k-points have a non-homogeneous distribution on the sphere surface.

This leads to the well know problem of the increasing point density towards

the poles resulting in a singularity at the poles themselves. Another type of

spherical grid is the so-called geodesic grid which has a highly homogeneous

point density on its surface. For this reason geodesic grids are often used when

modeling the surface of a sphere, e.g. the surface of planet earth in global cli-

mate simulations.[70, 71] The starting point of a geodesic grid is a polyhedron,

usually a convex regular icosahedron as seen in Fig. 3.3. The surface is further

discretized using equilateral triangles. The �nal step is to project the new grid

onto a sphere resulting in a very homogeneous distribution of points on the

sphere surface.

Figure 3.3: A convex regular icosahedron which is often used as a starting point
in the construction of a geodesic grid. The picture is taken from the website
https://en.wikipedia.org/wiki/Icosahedron.
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In this work the geodesic grid has two essential parameters, the total number

of used spheres NR and the number of points on a sphere surface NA. The total

grid consists of several spheres, starting from a sphere with radius kmin. The

spheres are placed with linear increasing radius until the last sphere with radius

kmax. Depending on the problem the parameters kmin and kmax are either set

by hand or determined by the program in such a manner that for a given cen-

tral photon energy h̄ωL the band structure is properly resolved in k-space. The

advantage of the later method is that for a �x number of k-points the grid can

adjust itself to varying photon energies h̄ωL without losing much convergence

for higher energies.

The product of NR × NA determines the total number of k-points in a

simulation. This seems trivial, but it has the e�ect that the number of total k-

points Nk is now linear in either NR or NA. In contrast, in a three-dimensional

Cartesian grid the number of grid points growths cubic N3, with N being the

number of grid points per axis. This alone is a huge improvement for optimizing

the resolution of a geodesic grid and will be of major importance for including

the Coulomb interaction into the SBE, see Chapter 6.4.
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Figure 3.4: (a) A geodesic grid sphere in k-space. The labels A0, A1 and A3
stand for NA = 12, NA = 48, and NA = 162 grid points per sphere surface,
respectively. (b) Two geodesic grids with NR = 60 spheres and NA = 48 points
per sphere. The grid parameters kmin and kmax are chosen in such a manner
that the grid resolves the area of the band structure in which the transition
from the valence band to the lowest conduction band is resonant to the optical
excitation energy h̄ωL. Displayed are two grids for an excitation energy of
h̄ωL = 1520 meV and h̄ωL = 1690 meV. As it can be seen, for h̄ωL = 1520 meV,
3 meV above the fundamental band gap of 1517 meV the grid fully encompasses
the Γ-point. For h̄ωL = 1690 meV the grid instead forms a sphere shell which
does not include the Γ-point.





Chapter 4

Shift Currents in Bulk GaAs

The shift current Jshift is created by the motion of excited carriers in real-space

during the moment of optical excitation. In inversion symmetric systems each

microscopic current j, which is caused by the movement of electrons from the

valence band to the conduction band, has an anti-parallel current −j result-

ing in a zero net current J = 0. In systems with spatial inversion asymmetry

such as GaAs a microscopic current j can be created for certain optical polar-

izations while the corresponding anti-current −j is symmetry forbidden. The

non-vanishing net current is the so-called shift current, one current responsible

for the bulk photovoltaic e�ect.[17, 38]

In the combined approach of k.p theory and SBE the shift current Jshift is the

ω = 0 frequency component of the polarization current

Jpol(t) =
∑

λ,λ′ 6=λ,k

Πλλ′

k xλλ
′

k . (4.1)

The polarization current Jpol is dominated by optically-induced �rst-order con-

tributions with ω > 0, whereas the shift current is a much smaller second-order

e�ect. To obtain the shift current a Fourier frequency �ltering method is ap-

plied, see Fig. 4.1.

This Chapter begins by con�rming that the combined approach is indeed

suitable to describe shift currents in bulk GaAs. After the con�rmation, a com-

parison between a standard Cartesian and a geodesic grid is made, focusing on

the convergence properties. Afterwards, the shift current is investigated regard-

ing non-linear e�ects like Rabi-�opping and coherent control properties.

23
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Figure 4.1: (a) To separate the shift current Jshift from other contributions
in Jpol a Fourier transformation F is performed on the full signal. (b) In fre-
quency domain a �lter is applied on Jpol(ω) around ω = 0 which removes higher
frequency components. (c) The so obtained signal in frequency space is back
transformed F−1 to the time domain. (d) The calculated current is the shift
current Jshift(t).
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4.1 General Shift Current Properties

For the simulations of the shift current �rst the band structure and momentum

matrix elements are obtained by matrix diagonalization of the extended Kane

Hamiltonian Ĥ(k). The eigenvalues ελk form the band structure while eigenvec-

tors |λ,k〉 are used in the calculation of the momentum matrix elements via

Eq. (3.11). With the band structure and the matrix elements the time evolu-

tion of the optically induced coherencies and polarizations in the system can

be simulated via the SBE. The shift current Jshift is obtained after applying a

frequency �lter on the calculated polarization current Jpol.

Fourier transformations at ω = 0 are prone to numerical unphysical arti-

facts due to numeric di�culties. To see if the calculated currents are indeed

shift currents, and consequently, to con�rm that the combined method of k.p

theory and SBE is viable to describe the shift current Jshift, the symmetry

properties of the calculated current are tested and compared with the known

properties for bulk GaAs. In addition, the scaling of shift current is analyzed

to see if it con�rms the second order nature of the shift current.

4.1.1 Symmetry Analysis

In zincblende type crystals like GaAs the lack of inversion symmetry allows for

the existence of a non-vanishing shift current. In order to generate a shift cur-

rent the optical linear polarization has to ful�ll the symmetry conditions of the

crystal structure. In GaAs four gallium atoms form a tetrahedron around one

arsenic atom in its center and vice versa, see Fig. 4.2. Setting the arsenic atom

is in the origin of the coordinate system, the coordinates of the four gallium

atoms are (1|1|1), (-1|-1|1), (1|-1|-1) and (-1|1|-1). Is the system excited with

a linear polarization parallel to one of the crystallographic axis, (100), (010)

or (001), the electron has an equal transition probability to all four neighbor

atoms and on average the individual micro-currents will cancel out each other

resulting in a zero-net shift current.

For (110)-polarization the transitions to (1|1|1) & (-1|-1|1) are viable while

(1|-1|-1) & (-1|1|-1) are orthogonal to the light �eld. While the x- and y-

components still cancel out each other, the z-component now has a preferred

propagation direction resulting in a non-vanishing net current in z-direction, see

Fig. 4.3. For the case of low excitation intensities the shift currents in GaAs

follow the envelope of the incident pulses due to o�-resonant excitation being
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Figure 4.2: Left: The zincblende crystal structure with its two di�erent sorts of
atoms. In GaAs the larger yellow atoms represent arsenic and the smaller gray
atoms represent gallium. As illustrated in the �gure each atom is surrounded
by 4 atoms of the other sort forming a tetrahedron. The picture is taken from
the website en.wikipedia.org/wiki/Zinc_blende.
Right: The electron density in GaAs in a [110] lattice plane. In a) the electron
density for the highest valence band is depicted in the ground state. The electron
density is localized around the arsenic atoms. In b) the electron density for the
lowest conduction band is depicted after the system was optically excited with
a photon energy larger than the band gap. The electron density is now localized
also around the gallium atoms, taken from [39].
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involved. The shift current is described by

Jz(t) = σxyzE
x(t)Ey(t), (4.2)

with σxyz being the response tensor of GaAs and Ex(t) and Ey(t) are the pulse

envelopes. For GaAs and other zinkblende structures the response tensor has

only non-vanishing elements for the xyz-combination and its permutations.[72]

Figure 4.3: Schematic illustration of the simulated setup. The bulk crystal is
excited with a linear polarized light, here in (110)-direction, which generates a
shift current in (001).

Based on the symmetry properties, Eq. (4.2), shift currents only exist for

xyz-combinations and its permutations. In Fig. 4.4 the respective Jx, Jy, and

Jz currents are calculated for an array of polarizations. For linear polarizations

parallel to the crystallographic axis the symmetry properties forbid a shift cur-

rent. But the corresponding currents, the diagonal in Fig. (4.2), show a non-zero

current �owing in the polarization direction. For the diagonal polarizations, o�-

diagonal currents in Fig. (4.2), the simulations show currents �owing in the

directions of the applied electric �elds. The predicted perpendicular shift cur-

rents are zero on this scale. The parallel �ow and small visible oscillations lead

to the assumptions that these are artifacts caused by the �rst-order polarization

which is magnitudes larger than the second-order polarization. Even with the

application of a frequency �lter, the Lorentzian decaying contributions of the

�rst-order are still larger at ω = 0 than the second-order contributions.
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Figure 4.4: Bulk GaAs is excited with a linearly polarized Gaussian pulses,
FWHM 2∆t = 200 fs, peak intensity I0 = 0.1 W/cm2 and central frequency
h̄ωL = 1.617 meV which lies 100 meV above the fundamental band gap Eg =
1.517 eV. Shown are the created currents in x, y, and z-directions for varying lin-
ear polarizations, color marked red, blue, and green, respectively. The columns
represent the polarizations of the �rst electric �eld component E1

i while the rows
represent the second �eld component E2

j . The shift currents are obtained by
solving the SBE. The simulations parameters are T = 0.1 K, T1 = T2 = 100 fs.
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To test the assumption that the visible currents in Fig. 4.4 are numerical

artifacts, the currents are simulated by the SBE in an order expansion up to

second-order in the optical �eld. In Fig. 4.5 only the second-order currents

are displayed. On the diagonal no currents are visible for linear polarizations

parallel to the crystallographic axis. This is in agreement with the GaAs sym-

metry and con�rms that the previous visible currents are caused by �rst-order

contributions. For the diagonal polarization on the o�-diagonals in Fig. 4.5

Gaussian-shaped currents perpendicular to the corresponding optical polariza-

tion are visible while the parallel currents vanish. In addition, the in-plane

orthogonal polarization, e.g., (110) to (1-10), creates a shift current in the re-

spective opposite direction which is expected by the tetrahedron symmetry.
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Figure 4.5: The simulation setup is identical to Fig. 4.4. Instead of solving the
SBE for the full electric �eld, a second-order expansion in the electric �eld is
done. Shown are the second-order currents in x, y, and z-directions in red, blue,
and green, respectively.
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4.1.2 Second-Order Analysis

From the expansion scheme it is known, that charge carrier populations in the

band structure are at minimum second-order e�ects. The shift current is cre-

ated by the spatial shift of real carriers, i.e., electrons have to be lifted from

the valence band to the conduction band. With the shift current being associ-

ated with the creation of charge carrier populations, it has to be at minimum

a second-order e�ect too. Consequently, for low intensities, Eq. (4.2), it is ex-

pected that the shift current scales linearly with E2, i.e., the intensity I0.

In Fig. 4.6 the shift current is simulated for increasing excitation intensities

I0. The shift current scales linearly and follows the Gaussian form of the ex-

citing pulses for low intensities in the mW
cm2 -range up to high intensities in the

MW
cm2 -range. Starting at I0 = 10 GW

cm2 the shift current deviates from the low

intensity behavior and shows saturation e�ects. The temporal shape of the cur-

rent also deviates from the Gaussian shape and has a more complex dynamic.

This will be analyzed more in detail in Chapter 4.5.
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Figure 4.6: Left: Logarithmic plotting of the shift current for di�erent excita-
tion intensities I0. Starting from the smallest peak intensity Imin = 10−4 W

cm2

the shift current is simulated for a Gaussian pulse with in powers of 10 increas-
ing peak intensities until Imax = 108 W

cm2 . Right: Peak shift current as function
of peak intensity I0, both axis are in logarithmic scale.

It is shown that the simulated shift currents do follow the symmetry rules

of GaAs and are of second-order nature in the low intensity range. Therefore

the combined approach of k.p-theory and SBE in the velocity gauge is indeed

suitable for the description of shift currents in bulk GaAs.
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4.2 Shift Current in a Geodesic Grid

A discretization of k-space, which takes into account that around the Γ-point

the band structure has a high spherical symmetry, could be advantageous for the

numerical evaluation of the SBE, mainly due to the reduced number of required

k-points for a converged result, see Chapter 3.4. In this section the convergence

behavior of the a geodesic grid is analyzed and compared to a standard Carte-

sian grid.

For the Cartesian case a cubic grid with 21 points per axis, i.e. Nk = 213 =

28781 points, is used. It has the Γ-point at its center and its width is 2kmax,

with the parameter kmax being largest k-value per axis. For better comparison

the convergence of a Cartesian grid is also a point of interest. Shift currents are

simulated for di�erent point densities, achieved by varying the parameter kmax.

For the geodesic case a grid is used with the smallest radius kmin = 0 and

the largest radius kmax = 0.45 nm−1. Unlike the Cartesian grid, the geodesic

grid has two parameters, the amount of spheres NR and the points per sphere

NA. Thus a set of simulation with �x sphere number NR = 31 and varying

number of point per sphere NA is done and vice versa. The parameters of the

Cartesian simulations, labeled C, for the the geodesic simulations with constant

sphere number, labeled GA, and for constant points per sphere, labeled GR,

can be found in table 4.1. It should be noted that the largest geodesic grids,

GA4 & GR4, have with 7812 and 4692 points still less than half the points of

the Cartesian grid. The smallest grid, GA1 & GR1, have with 1302 and 1932

points even less than 10% of the Cartesian grid.

Table 4.1: Cartesian and Geodesic Grid Parameters
dk = 31 C1 C2 C3 C4
kmax[nm−1] 0.6 0.5 0.4 0.3

NR = 31 GA1 GA2 GA3 GA4
An 42 92 162 252

An = 92 GR1 GR2 GR3 GR4
NR 21 31 41 51

The simulation using a Cartesian grid, C1-C4, as well as the geodesic grids,

GA1-GA4 and GR1-GR4, in Fig. 4.7 show overall good convergence behaviors.

Close-ups of the currents reveal a small time delay of the peak current, showing

that the maximum lies at J(t ≈ 5 fs). Also a small oscillation is visible at the

end of the shift current J(t ≈ 260 fs), deviating slightly from the analytic E(t)2
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form. Both are explained by small resonant contributions to the shift current

and by the small asymmetry in the number of oscillators between ωg − ω∆ and

ωg + ω∆ which are excited by the �nite line width of the Gaussian pulse. The

asymmetry is due to the density of states D(ω) increasing with
√
ω for a bulk

band structure.
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Figure 4.7: Shift currents for a Cartesian grid, column (a), and two geodesic
grids, column (b) & (c). In row (1) the whole current is displayed, while row (2)
and row (3) are close-up of the maximum and the small oscillation at the end
of the shift currents, respectively. The system is excited by a Gaussian pulse,
FWHM 2∆t = 150 fs and central frequency of h̄ωL = 1.550 eV. The simulations
parameters are T = 0.1 K, T1 = T2 = 100 fs.

In the case of the Cartesian grid, the close-up of the peak current reveals

that a Cartesian grid overestimates the shift current for a low density of grid

points. The close-up of the small oscillation also shows an overestimation but to

a smaller degree. With increasing density the convergence improves, simulation

C3 having the best convergence. For higher densities, simulation C4, the shift

current is now slightly underestimated. A picture of the excited carrier popu-

lation in the conduction band, Fig. 4.8, shows that simulation C3 has a good

discretization of the excited region. Simulation C4 has an even better resolu-
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tion but cuts of parts of k-space which have still small contributions to the shift

current. Consequently, besides having the very disadvantageous cubic scaling

of grid points, a Cartesian grid also has the problem of properly choosing the

grid boarders to ensure a proper resolution of the relevant k-space as well as

not cutting of still contributing regions of k-space. The simulations were done

for a photon energy of h̄ωL = 1.550 eV, still in a region relatively close to the

Γ-point. For higher photon energies a higher number of grid-points would be

required to ensure good converged results. Due to the cubic scaling this results

in drastic increase of computational time.
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Figure 4.8: Cross-section of the lowest conduction band. Displayed is the
population n(k) > 0.1 · 10−9 at the time t = 0 for all k-points with |kz| <
0.1 nm−1. On the left the Cartesian grids C, in the middle and right the geodesic
grids GA & GR.
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For the geodesic grid the close-up of the peak current in Fig. 4.7 shows an

extremely high convergence. With the same resolution as for the Cartesian case,

the geodesic results are almost identical. For the small oscillation small di�er-

ences can be seen for the geodesic grids with varying points per sphere, but

overall a high convergence behavior is displayed. This means that even the two

smallest geodesic grids, GA1 & GR1, have a better resolution of the important

parts of k-space than a Cartesian grid with 10 times more points.

Given that the geodesic parameters kmin & kmax can be adjusted to only

resolve the important areas of k-space and that a geodesic grid scales linear in

sphere number NR or number of point per sphere NA, simulations for higher

photon energies can be done without or only a small increase of computational

time. The high convergence behavior and the advantageous numeric properties

makes a geodesic grid better suited than a Cartesian grid for most excitation

conditions. Thus the geodesic grid is used for the remaining shift current simu-

lations in bulk GaAs.

4.3 Photon Energy Dependence

The shift current represents the spatial movement of electrons caused by opti-

cal excitation. For below band gap excitation no electrons are lifted from the

valence band to the conduction band and consequently no shift current should

exist. For above band gap excitation the amount of excitable electrons increases

with the photon energy due to the growing density of states. This should re�ect

itself in a growing shift current strength as function of the excitation energy h̄ωL.

In Fig. 4.9 (a) the currents for a photon energy of h̄ωL = 1.48 eV, h̄ωL =

1.52 eV, and h̄ωL = 1.57 eV are shown. The red current, 27 meV below the

band gap, does not follow the Gaussian E2 envelope and is in comparison to

the two other currents very small. This current is not a shift current, but an

o�-resonant contribution to the ω = 0 signal created by the small o�-resonant

overlap of the Gaussian pulse with the �nite line width of the band structure.

The green current, 3 meV above the band gap, follows the E2 envelope, but

its peak is slightly before t = 0. The spectral width of the excitation pulse

contains above band gap contributions, responsible for the shift current, as well

as below band gap contributions, responsible for the slight shift of the current

maximum. The blue current, 43 meV above the band gap, follows the Gaussian

E2 envelope shape. The spectral width of the optical pulse is fully resolved in

the band structure and thus does not contain below band gap contributions.
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Figure 4.9: In (a) three currents are shown for three di�erent photo energies,
below, above and far above the band gap h̄ωgap = 1.517 eV; FWHM 2∆t =
150 fs. In (b) the peak shift current is shown as function of the central photon
energy h̄ωL of the Gaussian pulse. In addition, the individual contributions of
the valence & conduction band as well as the interband polarization are shown
which add up to the full shift current.

In Fig. 4.9(b) the peak current is plotted as function of the central photon

energy h̄ωL. For below band gap excitation only a very small current exists due

to the overlap of the pulse with the �nite line width of the band structure. For

above band gap excitation the shift current follows a

Jpeak(ω) ∝
√
h̄ω (4.3)

pattern, which shows that the shift current mirrors the density of states. This

is in agreement with the interpretation of the shift current as movement of ex-

cited electrons. At this point it has to be mentioned that the results here were

calculated without Coulomb e�ects and thus excitonic e�ects, which are present

at the band gap, are not included. The in�uence of excitonic e�ects on the shift

current will be discussed in-depth in Chapter 6.

Besides the full shift current Jshift(t) also the individual contributions of

the valence & conduction band as well as the interband polarization are shown.

The comparison shows that the conduction band has the largest contribution

to the shift current while the valence band has the smallest. The valence band

contribution remains relatively �at as function of the photon energy, displaying

only a slight increase in comparison with the other contributions. In the full

current a small dip of the peak shift current is visible at ≈ 1.65 eV which is

caused by a dip in the interband contribution at the same position. The en-

ergy distance to the band gap is comparable to the energy gap between the two

highest conduction bands ∆′0 = 0.171 eV.



36 CHAPTER 4. SHIFT CURRENTS IN BULK GAAS

4.4 Shift Current Band Analysis

As previously demonstrated in Chapter 4.1.1, the origin of the shift current can

be traced back to the inversion asymmetry of GaAs. In the extended Kane

model speci�cally three parameters are the result of the inversion asymmetry in

the zincblende structure and do not exist in the corresponding inversion sym-

metric diamond structure. They are the parameter ∆−, an interband coupling

in Ĥ7c7v, the parameter P ′, the inter-subband coupling strength of the con-

duction bands in Ĥ8c6c and Ĥ7c6c, and the parameter Ck, an intra-band and

intra-subband coupling factor in Ĥ8v8v and Ĥ8v7v. By switching of these pa-

rameters the band contributions of speci�c bands can be studied.

In Fig. 4.10(a) the shift current in normal GaAs, Td symmetry, is compared

with an arti�cial inversion symmetric GaAs, Oh symmetry. The direct compar-

ison shows that in the arti�cial Oh symmetry the shift current vanishes which

is in agreement with its microscopic symmetry explanation. The small non-zero

signal in the Oh symmetry is due to an inter-subband polarization between the

heavy and light hole band which has a spectral range of 20 meV and lies in the

energy range of the applied frequency �lter.
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Figure 4.10: Dynamics of the shift current Jz(t) excited by a laser pulse with
linear (110)-polarization and FWHM 2∆t = 100 fs. (a) Comparison between
the full extended Kane model with Td and Oh symmetry. In the Oh symmetry
calculations the parameters ∆−, P ′, and Ck have been set to zero. (b) Simu-
lations where only ∆−, P ′, or Ck is non-zero, respectively. (c) Simulation with
parameter P ′ set to twice of the normal value for GaAs.
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In Fig. 4.10(b) the individual contributions of the three parameters are stud-

ied. The parameters ∆− and Ck have small contributions to the shift current

which actually have the shift current �ow in the opposite direction. The pa-

rameter P ′ has by far the largest contribution to the shift current. An arti�cial

doubling of its value in Fig. 4.10(c) leads to an increased shift current slightly

larger than twice its original value. This shows that the non-resonant conduc-

tion bands |8c〉 and |7c〉, which are coupled by P ′ to the lowest conduction band,
are mainly responsible for the shift current in GaAs.

4.5 Rabi Flopping

In Sec. 4.1.2 it is shown that the low intensity E2 scaling remains valid even

for large intensities up to the GW
cm2 -range. For higher intensities the shift current

diverges from the E2 scaling and shows saturation. As known from a simple two

level system, high excitation intensities lead to a large transition of electrons

from the valence state to the conduction state, eventually causing population

inversion where more electrons are in the conduction state than in the valence

state. Once population inversion is reached optical excitation now leads to stim-

ulated emission, transferring an electron from the conduction state down to the

valence state. The intensity dependence of injection currents in quantum well

systems has been investigated previously and it was con�rmed that the direction

of the charge �ow change due to population inversion.[23, 27] Given that the

shift current is created by spatial motion of carriers, for the case of population

inversion the shift current should logically �ow in the reversed direction. To

achieve population inversion extremely high excitation intensities are used in

the simulations and dephasing and relaxation are neglected to maximize the

coherent e�ects.

In Fig. 4.11(a)-(c) and Fig. 4.12(a)-(c) the angle integrated population den-

sity of the conduction band n(|k|) is shown as a function of time. After the pulse

two population traces are visible in Fig. 4.11(a) which stems from the heavy and

light hole transitions, both within the spectral width of the excitation pulse, are

resonant at di�erent |k|. While corresponding shift current, Fig. 4.11(d), shows

now sign of current reversal, with the exception of a small oscillation caused

by the intra-band coherence between heavy and light hole, the small shift of

the peak current to negative times indicates saturation e�ects. With increasing

excitation intensity the shift current in Fig. 4.11(e) now undergoes a clear cur-

rent reversal. This coincides with heavy hole trace, |k| ≈ 23 nm−1, vanishing in

the integrated population density in Fig. 4.11(b). This means that during the

excitation the population of the heavy hole has undergone a Rabi-�op which
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is re�ected by the sign change of the shift current. The remaining light hole

trace at |k| ≈ 18 nm−1 shows that heavy and light hole have di�erent transi-

tions strength and thus contribute to the shift current reversal at di�erent times

which makes a one-to-one correlation between population and shift current dif-

�cult.
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Figure 4.11: The upper row (a)-(c) shows the dynamics of the angle-integrated
population n over the radius |k| in the conduction band for intensities (a) I =
0.06 GW/cm2, (b) I = 0.22 GW/cm2, and (c) I = 0.48 GW/cm2, respectively.
Because of summing over spin ↑ and ↓ the density reaches 2 as a maximal value.
In the lower row (d)-(f) the corresponding dynamics of the currents Jz(t) are
displayed. The results where published in [73].

This becomes more evident in Fig. 4.11(c) where the excitation pulse has

now such a high intensity that the heavy hole trace completes a full Rabi cycle

and starts a new cycle at the end of the excitation pulse. In comparison the

light hole trace almost completes its second Rabi cycle. The corresponding shift

current in Fig. 4.11(f) also displays two Rabi cycle with the �rst cycle being a

considerable amount larger than the second cycle.

In Fig. 4.12 displayed are the population dynamics and the shift currents

for even higher excitation intensities. With increasing excitation intensity the

amount of Rabi cycles and the Rabi frequency increases in the population,

(a)-(c), as well as corresponding shift currents, (d)-(f). In Fig. 4.12(c) and

Fig. 4.12(f) three full Rabi oscillations in the population as well as in the shift

current are visible.
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Figure 4.12: Analogous to Fig. 4.11, Rabi oscillations in the angle-integrated
population n, (a)-(c), and the corresponding shift currents, (d)-(f), for intensities
(a) I = 0.85 GW/cm2, (b) I = 1.33 GW/cm2, and (c) I = 1.61 GW/cm2,
respectively. The results where published in [73].

4.6 Coherent Control of Shift Currents

Using two or more light pulses, it is possible to control dynamic processes in a

variety of systems. Experimental and theoretical research on coherent control

was done on quantum dots, excitons in quantum wells, centro-symmetric bulk

semiconductors and even for currents at metal surfaces.[74�77] In this section

a brief investigation about the coherent control properties of shift currents is

done for chirped pulses and two pulse excitation with a delay time τ .

4.6.1 Chirped Pulse Excitation

As shown by A. M. Racu et al. the dynamics of the shift current can be con-

trolled by application of optical excitation with chirped pulses.[78] A chirped

pulse is a pulse with a time-dependent frequency ω(t). By introducing a tem-

poral delay δt between two incident chirped pulses the di�erent frequency com-

ponents of the electric �elds interfere and causes the shift current, normally a

direct current (DC), to acquire alternating current (AC) contributions.

Two chirped Gaussian pulses, one polarized in (100) and the other in (010)-

direction, are considered to qualitatively reproduce the chirp-induced ac contri-

butions. The pulses have a central frequency ωL = 1.55 eV
h̄ and a �xed linear

chirp ω(t) = ωL+δω · t, δω = ±0.5 meV
h̄fs . The shift current is simulated for vary-

ing time delay δt between the two incident pulses. For negative, Fig. 4.13(a),
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Figure 4.13: Dynamics of the shift current Jz(t) excited by chirped laser
pulses with (100) and (010)-polarization directions. Shown are shift currents
for di�erent pulse delays δt between the incident two laser pulses for negative
(a) and positive (b) chirp. The results where published in [73].

and positive chirp, Fig. 4.13(b), the shift current dynamics change signi�cantly

with the time delay δt. As in the experiment the AC contribution increase with

longer delay times δt, showing no AC contributions for δt = 0. For a negative

chirp the peak current positions remains around t = 0. In comparison, for a

positive chirp the peak current changes sign due to the growing AC-components

and shifts to later t-times. This is also in agreement with experimental ob-

servation. The qualitative agreement between experiment and theory rea�rms

the strength of the combined microscopic theory of k.p and SBE to accurately

describe shift currents in GaAs.

4.6.2 Two-Pulse Phase Control

With the exception of very high intensities seen at the example of Rabi �op-

ping, the shift current excitation is a second-order process. In the �rst-order

the generation of the shift current requires above band gap excitation. An iden-

tical pulse with a relative phase of π will cause an extinction of a �rst-order

polarization excited by a previous pulse, see Fig. 4.14. But in second-order the

o�-resonant higher conduction bands are involved in the creation of the shift

current. Therefore, the second-order shift current response may di�er due to the

required o�-resonant excitations. In this section the coherent control properties

of the shift current are analyzed. The system is excited directly at the band

gap by two Gaussian pulses at times t0 = 0 and τ , with (110)-polarization &

FWHM 2∆t = 50 fs. To ensure that the two pulses are not directly interfering,

the time delay τ is chosen to be large enough so that the electric �elds of the

two pulses do not have a temporal overlap, unless stated otherwise τ = 800 fs.

In addition dephasing and relaxation are turned o� to maximize the coherent
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control e�ects present in the shift current.
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Figure 4.14: The coherent control scheme: (a) An optical pulse creates an
polarization in the material at time t = 0. (b )A second optical pulse at t = τ
has a relative phase of 2π which creates a constructive interference with the
previously excited polarization. (c) The second optical pulse at t = τ has a
relative phase of π which results in a destructive interference.

A pulse with a relative phase of ϕ can either cause a strong enhancement or

an extinction of the �rst-order polarization. In Fig. 4.15(a) the corresponding

shift current response is displayed and shows only a small modi�cation of the

shift current by the second pulse. The shift current amplitudes at time τ varies

around the height of the �rst peak and remains in the same magnitude as the

�rst shift current at t = 0. With a phase of ϕ = 0 the second shift current

peak is smaller than the �rst peak while for a phase of ϕ = π the second peak is

larger. A phase resolved look at the second peak amplitude in Fig. 4.15(b) shows

that the shift current follows sine/cosine dependence. Unexpectedly, the shift

current displays an intrinsic phase factor of approximately 1
4π in its dependence.

In addition, the minimum of the amplitude is around ϕ = 0, which is in con-

trast to the known linear response which would display the minimum at ϕ = 1π.

Further analysis in Fig. 4.16 reveals that the e�ect also depends on the pho-

ton energy and that the intrinsic phase factor di�ers depending on the photon

excitation energy h̄ωL. In Fig. 4.16 (a) & (b) the peak current shows a sine de-

pendence with an intrinsic shift of 1
4π in (a) and − 1

4π in (b). This indicates that

unlike in a two level system, which only has one transition energy, the di�er-

ent transition energies present in a band structure are responsible for this e�ect.
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Figure 4.15: The shift current generated by two optical pulses at times t = 0 fs
and τ = 800 fs. (a) Displayed is the second shift current peak. The second pulse
has the phase ϕ = 0, ϕ = 1π, and ϕ = 1.25π in respect to the �rst pulse. (b)
The peak amplitude of the current generated by the second pulse as function of
phase ϕ. The black dashed line in (a) & (b) is the height of the �rst peak.
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Figure 4.16: As in Fig. 4.15(b), the peak amplitude of the shift current gen-
erated by the second pulse is displayed with a photon energy of (a) ∆h̄ωL =
30 meV and (b) ∆h̄ωL = 100 meV above the fundamental band gap.
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To �nd the reason for this behavior, especially the intrinsic phase, an order

expansion into �eld components is applied. Starting with the SBE

∂

∂t
xabk = iωabk x

ab
k −

i

h̄
A(t)

∑
µ

Πµa
k xµbk −Πbµ

k x
aµ
k (4.4)

and the approximation that pulse envelope E(t) is su�cient long enough, the

the A-�eld can be written as

A(t) ≈ 1

ωL
E(t) cos(ωLt). (4.5)

Normally the di�erential equation (4.4) is analytically not solvable, but here

t-times after the �rst pulse are considered where the envelope E is assumed to

be zero. With this the �rst-order polarization takes on the form

pabk (t) = eiωabk t

∫ t

−∞
dt′e−iωabk t′−i

h̄

1

ωL
E(t′) cos(ωLt

′)Πba
k x

(0)bb
k︸ ︷︷ ︸
=1

=
−i

h̄ωL

〈
Πba

k |E1

〉
eiωabk t

∫ t

−∞
dt′

1

2
E(t′)(ei(ωL−ωabk )t′ + ei(−ωL−ωabk )t′)

=
−i
〈
Πba

k |E1

〉
2h̄ωL

(E1(−ωL − ωabk ) + E1(ωL − ωabk ))eiωabk t,

(4.6)

with
〈
Πba
k |E1

〉
representing the scalar product between the momentum matrix

elements and the electric �eld vector. The functions E1(−ωL−ωabk ) and E1(ωL−
ωabk ) are the Fourier transform of the envelope E(t) and represent the spectral

overlap of E(t) with frequency ωabk . Trivially, the �rst-order can only contain

one �eld component and thus cannot show any coherent control e�ects visible in

a shift current due to its second-order nature. At least second-order is required

to describe the phase dependence. The general expression for the second-order

SBE is

∂

∂t
x

(2)dd′

k = iωdd
′

k x
(2)dd′

k − i

h̄
A(t)

∑
µ

Πµd
k x

(1)µd′

k −Πd′µ
k x

(1)dµ
k

= iωdd
′

k x
(2)dd′

k − i

h̄
A(t)(

∑
d̄′

Πd̄′d
k x

(1)d̄′d′

k︸ ︷︷ ︸
A

−
∑
d̄

Πd′d̄
k x

(1)dd̄
k︸ ︷︷ ︸

B

)
(4.7)

Similar as in four-wave-mixing experiments the excited coherences can be

ordered according to combinations of the four electric �eld components, E1
x &

E1
y from the �rst pulse and E2

x & E2
y from the second pulse. In second order,
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coherences belonging to E1
x · E1

y , E
2
x · E2

y , or (E1
x)2 and the three analogous

terms cannot show any coherent control e�ects in the shift current. The �rst

two terms are responsible for a shift current at t = 0 and at t = τ , respectively,

while (E1
x)2, (E2

x)2, (E1
y)2 & (E2

y)2 cannot contribute to a shift current since

they are not ful�lling the symmetry conditions. In a similar vein the terms

E1
x · E2

x and E1
y · E2

y cannot contribute to a shift current either since they are

also not ful�lling the symmetry conditions. Thus the only terms containing the

phase factor τ and contribution to the shift current are E1
x ·E2

y and E1
y ·E2

x. It

becomes clear that the second shift current is a superposition of a normal shift

current created by the τ -pulse and an additional current created by the overlap

of the �rst-order polarization created at t = 0 and pulse at t = τ

Based the previous evaluation of the electric �eld components, only the sec-

ond order terms are further evaluated which contain E1 · E2. Because of the

symmetry, the second order results are written with generalized E1 and E2

vector components, where it is assumed that E1 and E2 belong to di�erent po-

larization directions. The evaluation of the terms A and B can be found in the

Appendix A.2. The �nal result is:

x
(2)dd′

k = eiωdd
′

k t

∫ t

−∞
dt′

−1

(2h̄ωL)2
E(t′)(

+
∑
d̄′

〈
Πd̄′d

k |E2

〉〈
Πd′d̄′

k |E1

〉
(E1(−ωL − ωd̄

′d′

k ) + E1(ωL − ωd̄
′d′

k ))

× (ei(ω
¯
d′d′
k −ωL−ωdd

′
k )t′e−iϕ + ei(ω

¯
d′d′
k +ωL−ωdd

′
k )t′eiϕ)

−
∑
d̄

〈
Πd′d̄
k |E2

〉〈
Πd̄d

k |E1

〉
(E1(−ωL − ωdd̄k ) + E1(ωL − ωdd̄k ))

× (ei(ωdd̄k −ωL−ω
dd′
k )t′e−iϕ + ei(ωdd̄k +ωL−ωdd

′
k )t′eiϕ))

(4.8)

Further analytical evaluations are not possible at this point and numerical eval-

uation is necessary.

The numerical evaluation of the current belonging to Eq. (4.8) is shown in

Fig. 4.17 for a simple three band system with parabolic band structure which

consist of one valence, one conduction and one additional higher conduction

band. The parameters of the three band model, e�ective mass and band dis-

tance, are based on known parameters from bulk GaAs. The numerical evalu-

ation shows that the overlap current is maximal at the band gap and becomes

smaller with larger detuning. The detuning also determines the intrinsic phase

of the current and shows a periodicity of approximately 6 meV in the detuning.

For an one-dimensional band structure, Fig. 4.17 column (a), the intrinsic phase
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is zero for band gap excitation and the current shows the π and 2π phase re-

lation as known from linear excitation. For a two- and three-dimensional band

structure, Fig. 4.17 column (b) & (c), the intrinsic phases are ϕ ≈ 1.5π and

ϕ ≈ 1.25π, respectively. The analytic result in Fig. 4.17(1c) matches the ob-

served detuning dependence of the intrinsic phase seen in Fig. 4.16, with (2c)

showing the same intrinsic phase ϕ ≈ 1.25π seen in the shift current in Fig. 4.15.
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Figure 4.17: Numerical analysis of Eq. (4.8) for a three band system with
parabolic band structure in (a) 1D, (b) 2D & (c) 3D. In the upper row, a
two-dimensional scan of the peak current at J(t = τ), with τ = 800 fs being the
delay of the second optical pulse, is shown as function of the relative phase ϕ
and the photon energy h̄∆ωL, here given as detuning to the band gap. In the
lower row the current for an optical excitation at the band gap, h̄∆ωL = 0, is
plotted.

The explanation for the unusual phase dependence can be explained by the

term

ei(ωdd̄k −ωL−ω
dd′
k )t′eiϕ = ei(∆ωdd̄k −ω

dd′
k )t′eiϕ, (4.9)

with ∆ωdd̄k = ωdd̄k − ωL. At k-points resonant to ωL it is ∆ωdd̄k = 0 and the

phase of the current is determined solely by the pulse phase ϕ. But besides

the resonant k-points, the �nite spectral width of the optical pulse also excites

the neighboring k-points in the band structure with ∆ωdd̄k 6= 0. In addition to

the pulse phase ϕ, the current phase is now also determined by ∆ωdd̄k t′. This is
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related to the phenomena of fringes in the spectrum of two pulses separated by

a time delay τ .

In Fig. 4.18(a) and Fig. 4.19(a) the total current J as well as the total excited

population n are shown as function of time. For band gap excitation the total

current J as well as total excited population n are maximal for a relative pulse

phase of ϕ = 1.25π which is in agreement with Fig. 4.15 and Fig. 4.17(2c). The

total current displays an oscillation after the optical pulses. This oscillation

is caused by the intraband coherence between heavy and light hole band, its

energy range of a few meV lies within the spectral range of the shift current.

Due to the lack of dephasing and relaxation, the oscillation of the intraband

coherence is visible while under normal conditions it would have declined on the

used time scale. The corresponding radial population pictures show the forma-

tion of population fringes after the second pulse. For the resonant k-points at

krad ≈ 0 the population follows the expected coherent control phase relation,

being maximal for a phase of ϕ = 0π (1b) and minimal for a phase of ϕ = 1π

(2b). The radial population demonstrates why the current follows a sine de-

pendence and not the expected cosine dependence. For a phase of ϕ = 0π the

population at the Γ-point is maximal, but the Γ-point has a minimal density

of states. Thus by introducing a phase di�erence, the fringes of the population

move to higher k-points which have an increased density of states allowing for

more excited carriers and consequently a larger current.

In Fig. 4.19 the situation for an excitation for 100 meV above the band gap

is shown. In comparison with Fig. 4.18, two population traces are now visible in

the radial population. The two traces correspond to the heavy hole transition

for the larger k-values and to the light hole transition for the smaller k-values.

Both traces show the formation of phase dependent fringes in the radial popu-

lation, but since heavy hole and light hole have di�erent dispersion as well as

di�erent density of states, a simple correlation between the shift of fringes in

k-space and maximal population becomes di�cult. In comparison with band

gap excitation in Fig. 4.18 the total population n displays only small changes

due to the varying phase. Unlike the Γ-point, the curvature of the density of

states becomes �atter for larger k-values. In addition, the whole spectral width

of the optical pulse contributes to the excitation while for band gap excitation

only half of the spectral width contributes. This causes the movement of the

fringes to become less noticeable. The total current J shows larger deviations

for di�erent phases which is caused by the already mentioned intraband coher-

ence between light and heavy hole.
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Figure 4.18: Excitation of the system with two pulses at t = 0 fs and τ = 800 fs
for a photon energy h̄ωL = Egap. This setup corresponds to Fig. 4.15. (a)
The total current J and the total population n are shown for a relative phase
of (1a) ϕ = 0π, (2a) ϕ = 1π, and (3a) ϕ = 1.25π which corresponds to the
largest current increase in Fig. 4.15. The population only increases during the
moment of excitation while the total current �uctuates. The dotted black line
is a visual aid for better comparison between the di�erent excitation. (b) The
radial-resolved population in k-space, color-coded in arbitrary units, is shown
as a function of time and |krad|. Phase dependent fringes are seen in the radial
population after the second pulse.
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Figure 4.19: Excitation of the system with two pulses at t = 0 fs and τ =
800 fs for a photon energy h̄ωL = Egap + 100 meV. This setup corresponds to
Fig. 4.16(b). (a) The total current J and the total population n are shown
for a relative phase of (1a) ϕ = 0π, (2a) ϕ = 1π, and (3a) ϕ = 1.75π which
corresponds to the the biggest current increase in Fig. 4.16(b). As in Fig. 4.18
the population only increases during the moment of excitation. (b) Shown is
the radial-resolved population in k-space with two population traces. After the
second pulse phase dependent fringes are seen in the radial population.
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The investigation shows that the phase-dependent fringes in the population

do modify the shift current. The e�ect is maximal at the band gap due to

the strong slope of the density of stats D(ω) and the only partially resolution

of the spectral width of the optical pulse. Both amplify the e�ects caused by

the shifting fringes in the population. However, in a real semiconductor the

Coulomb interaction modi�es the band structure, causing the density of state

to become constant at the bad gap. In addition, the exciton will further modify

the absorption. Both e�ects are not present in these simulations, but are for

experimental comparison critical.





Chapter 5

Shift Currents in GaAs

Quantum Wells

While the zincblende structure is inversion asymmetric, it is still a crystal struc-

ture with a high symmetry which leads to an inversion symmetry of the band

structure in k-space. But in systems of reduced dimensionality like a quantum

well (QW) the symmetry of the crystal structure can be further reduced which

re�ects itself in the band structure. The injection current, a current caused by

an asymmetric distribution of carriers in k-space, is normally symmetry for-

bidden in the inversion symmetric band structure of bulk GaAs. But in QW

systems grown in (100)-direction the reduced symmetry leads to a spin-splitting

of the band structure which breaks the inversion symmetry. Consequently, it

is possible to generate injection currents in (110)-grown QW systems. Several

aspects of injection currents in GaAs QW systems have been investigated before

and therefore will not be discussed in this work.[23�27]

As it was discussed in the previous chapter, the shift current is an e�ect

caused by the lack of inversion symmetry of the GaAs crystal structure. In this

chapter, the in�uence of the reduced symmetry of a QW system on the shift

current will be investigated.

5.1 Quantum Well Band Structure

The band structure of the QW system is obtained by solving the extended Kane

model. But the 14 band model was developed for bulk systems and thus has to

be modi�ed to account for the reduced dimensionality of a QW. The envelop

function approach is used to describe the electronic wave function Ψλ
k‖

(r) in

51
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the QW, k‖ being a two-dimensional in-plane wave vector.[61, 79] The electron

wave function has the form

Ψλ
k‖

(r) = eik‖r‖
∑
n

fλnk‖
(z)un(r), (5.1)

with the z-axis chosen to be the growth direction and λ the band index of the

14-band model. The electron wave function consists of two terms, the unit

cell periodic part un(r) of the Bloch wave function, which accounts for the in-

plane periodicity, and a slowly varying envelop function fλnk‖
(z) which is used to

describe the wave function in z-direction. The envelop function fλnk‖
(z) satis�es

the e�ective mass equation

14∑
m=1

[
Ĥnm(k‖,−i∂z) + Vn(z)δnm

]
fλmk‖

(z) = Eλk‖
fλnk‖

(z), (5.2)

with Ĥnm being the bulk Hamiltonian and Vn(z) being the well potential. Be-

cause of the con�nement in z-direction, the operator k̂z is replaced by −i∂/∂z.

The envelop function is expanded into a set of con�nement functions ϕl(z) via

fλnk‖
(z) =

N∑
l=1

aλlnk‖
ϕl(z). (5.3)

This leads to a 14N × 14N eigenvalue problem

14∑
m=1

N∑
l′=1

〈ϕl|Hnm + Vnδnm|ϕl′〉aλl
′

mk‖
= Eλk‖a

λl
nk‖

. (5.4)

The con�nement functions have the explicit form

ϕl(z) = sin

[
πl

L

(
z +

L

2

)]
(5.5)

for |z| ≤ L/2 and zero otherwise. The width L is chosen in such a way that

numerically convergent results are ensured.

To obtain the band structure of a Z-grown QW, with Z being the z-direction

in an arbitrary coordinate system, the envelop function approach has to be ap-

plied to the corresponding Hamiltonian Ĥ
Z

(k). This of course requires to know

the explicit form of Ĥ
Z

(k) which has to be derived for each growth direction

Z. Using the concept of Euler rotation matrices a more elegant approach is

possible.[60] Euler rotation matrices are a method to describe the rotation in

three-dimensions. The transformation from the the old coordinates kx,ky, and
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kz to the rotated coordinates k̃x,k̃y, and k̃z is given by

k̃ = R(α, β, γ)k

k = RT (α, β, γ)k̃,
(5.6)

with R(α, β, γ) being the Euler rotation matrix; R−1(α, β, γ) = RT (α, β, γ) due

to orthogonality and α, β, and γ the Euler angles describing the rotation. The

invariant description of the extended Kane model Ĥ14×14(k) given in Chap-

ter 3.1.2 is for a standard coordinate system with x = ex, y = ey, and z = ez.

Using Euler rotations the Hamiltonian can be evaluated for an arbitrary coor-

dinate systems via

Ĥ14×14(k) = Ĥ14×14(RT (α, β, γ)k̃) = Ĥ
R(α,β,γ)

14×14 (k̃), (5.7)

with the Hamiltonian Ĥ
R(α,β,γ)

14×14 being the rotated extended Kane Hamiltonian.

Instead of rotating the coordinate system, the Hamiltonian is rotated. While for

the three-dimensional case the rotation of either the coordinate system or the

Hamiltonian are equivalent, for a two-dimensional system this gives the advan-

tage of having the direction Z̃ as an universal growth direction for an arbitrary

oriented crystal system. By applying the envelop function approach on k̃z an

two-dimensional Hamiltonian Ĥ
R(α,β,γ)

QW (k̃x, k̃y) can be constructed without the

need to derive the explicit form of the Hamiltonian for a growth direction Z.

The semiconductor Bloch equations (SBE) are again used to determine the

time evolution of the optical excitations in the system. The SBE for a QW are

structurally identical to the bulk equations (3.10), only the three-dimensional

k-vector has to be replaced by the two-dimensional in-plane k‖-vector:

d

dt
xλλ

′

k‖
=
i

h̄

(
ελk‖
− ελ

′

k‖

)
xλλ

′

k‖
+
i

h̄

e0

m0
A(t) ·

∑
µ

(
Πµλ

k‖
xµλ

′

k‖
−Πλ′µ

k‖
xλµk‖

)
− 1

T1/2
xλλ

′

k‖
.

(5.8)

The momentum matrix elements are calculated in the same manner as in the

bulk case, Eq. (3.11), again replacing k by k‖:

Πλλ′

k‖
=
m0

h̄

〈
∇k‖H(k‖)

〉
λλ′ (5.9)
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5.2 Shift Currents in (110)-grown QuantumWells

5.2.1 Polarization Direction Dependence

While it is not explicitly shown in this work, the shift current angle dependence

can be simply conducted from a basic vector analysis. Any vector in the xy-

plane can be composed into (110) and (1-10) components, which respectively

create a shift current in (00-1) or the reverse (001)-direction. Thus the shift

current for any given polarization angle θ, the angle between the x-direction

and the pulse polarization in the xy-plane, is:

Jz ∝ −


1

1

0

 · E
sin θ

cos θ

0




2

+


 1

−1

0

 · E
sin θ

cos θ

0




2

∝ − sin θ cos θ − sin θ cos θ

(5.10)

Applying the trigonometric addition formulas gives

Jz ∝ − sin 2θ (5.11)

In a (110)-grown QW the further reduced symmetry may lead to changes in

the angle dependence of the shift current. In the QW the new coordinate axes

X = (001) and Y = (1 − 10) are used. Like for the bulk case the electric �eld

of the incident pulse can be decomposed into X and Y components:

E = E

 0

0

cos θ

+ E

 sin θ

− sin θ

0

 (5.12)

In the same vein, the currents in x, y, and z-direction can be determined as

function of θ. Doing an analogous vector analysis results in:

Jx ∝ − sin 2θ

Jy ∝ + sin 2θ

Jz ∝ 1 + 1− 2(cos θ)2 = − cos 2θ + 1

(5.13)

Based on this, it can be expected that the shift current has a

JX ∝ − cos 2θ + 1

JY ∝ sin 2θ
(5.14)



5.2. SHIFT CURRENTS IN (110)-GROWN QUANTUM WELLS 55

angle dependence.

Figure 5.1: Schematic illustration of the simulated setup. The system is excited
with a linearly polarized optical pulse by polarization direction in the XY-plane
which generates a shift current in the QW. The X, Y, and Z-axis of the QW are
not the crystallographic axes but depend on the QW growth direction, here X =
(001), Y = (1-10) and Z = (001). For the simulations a QW with a thickness of
8 nm and a growth direction Z = (110) is considered. The angle θ lies between
polarization direction of the incident excitation pulse in the xy-plane and the
new X-direction. For su�cient convergence of the shift current 12 valence bands
and 28 conduction bands are included when solving the SBE. Phenomenological
dephasing and relaxation times are T1 = T2 = 200 fs.

In Fig. 5.2 the shift currents in X and Y-direction are shown. In Y-direction

the shift current has the E2
env(t) shape apart of a small time delay due to the

�nite line width of the Gaussian pulse which is already known from the bulk

simulations. For X-parallel as well as Y-parallel polarization the shift current

vanishes. The X-polarization direction corresponds to a (001)-polarization in

bulk which forbids a shift current. The Y-polarization direction corresponds to

a (1-10)-polarization which creates a shift current only in (001)-direction, i.e.,

the X-direction of the QW. The polarization dependence of the shift current

amplitude in Y-direction is described by

JY
shift(θ) = C sin(2θ), (5.15)

which is in agreement with the previous symmetry consideration.

In X-direction, see Fig. 5.2(a), the shift current has a negative o�set. For

Y-parallel polarized excitation the creation of a shift current in X-direction is

in agreement with the bulk symmetry rules. However, for X-parallel excitation

the bulk symmetry rules forbid a shift current in X-direction. The visible o�set

for X-parallel excitation is due to the shift current tensor element σxxx which

exists in (110)-grown QWs due to the reduced symmetry[33, 34] and allows for
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a �nite shift current to exist. The polarization dependence of the shift current

amplitude in X-direction is described by

JX
shift(θ) = A cos(2θ) +B. (5.16)

In Fig. 5.3 the X- and Y-shift currents are simulated for excitation at the band

edge of the QW. Clearly visible are the sine and cosine dependence of the cur-

rents, the o�set in X-shift current manifests itself as a shift of the white zero-line

in the two-dimensional plot. The position change of the zero-line indicates that

the o�set depends on the excitation energy h̄ωL.
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Figure 5.2: The shift current in (a) X-direction and in (b) Y-direction. The
currents are calculated for a linearly polarized Gaussian pulses with central
frequency h̄ωL = 1.6 eV, a FWHM of 200 fs. The angle θ lies between the
X-axis and the linear polarization of the pulse. The results were puplished in
[80].
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Figure 5.3: Two-dimensional scan of the shift current for a QW at a temper-
ature T = 0.1 K. Visible are the sin(2θ) and cos(2θ) dependencies of the shift
current components JX and JY.
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5.2.2 Photon Energy Dependence

As it was shown, the reduced symmetry in the QW results in a new shift current

tensor element which slightly modi�es the angle dependence of the shift current

in comparison to the bulk case. In bulk the photon energy dependence of the

shift current mirrors the density of states. In a QW the density of states has

the form of step function at the transition energies of the band structure. In

addition, the symmetry reduction breaks the inversion symmetry of the band

structure. Therefore the photon energy dependence of the shift current in a

QW can be expected to drastically di�er from the bulk dependence beyond the

change in the density of states.

In Fig. 5.4(a), the shift current intensity grows with increasing photon en-

ergy as in bulk. But with further increasing photon energy the shift current

undergoes a current reversal. Analysis of the valence, conduction and interband

sub-currents reveals that the shift current is generated in the valence band with

the remaining bands having almost vanishing contribution. Both e�ects are in

stark contrast to the bulk case where the shift current follows the density of

states and is mainly generated in the conduction band and the interband polar-

ization, see chapter 4.3.

In analogy to chapter 4.4, in Fig. 5.4(b) the parameters re�ecting the inversion

asymmetry ∆−, P ′, and Ck are set to zero and the shift current is calculated for

inversion symmetric GaAs. The simulations show that the reduced symmetry

itself does not cause a shift current. Even in a QW system the base crystal

structure has to be inversion asymmetric to allow for a shift current to exist.

The small current visible at 1.5 eV is caused by the GaAlAs environment the

GaAs QW is embedded in.

To �nd the reason for the current reversal, the behavior of the valence band

shift current is compared with the corresponding population in the two highest

valence bands, Fig. 5.5. The comparison reveals that the energy range of the

current reversal overlaps with band crossing in k-space. Especially Fig. 5.6(2a)

shows a strong deviation from the Gaussian shape which corresponds to an ex-

citation at the band crossing.

A k-resolved map of the shift current Jx is done in Fig. 5.6 for the photon en-

ergies h̄ωL = 1.500 eV, h̄ωL = 1.525 eV, and h̄ωL = 1.550 eV, respectively. For

a photon energy of h̄ωL = 1.500 eV the shift current has its negative minimum.

In the corresponding 2D picture, Fig. 5.6(1b), most areas of k-space have for

each current jk at kx a corresponding anti-current at −kx which leads to zero
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Figure 5.4: Calculated peak amplitude of the shift current JX as function of
the photon energy h̄ωL for X-parallel polarized light at room temperature. (a)
Displayed is the total shift current and its three subcurrents stemming from
the valence band, the conduction band, and the interband current. (b) The
shift current is compared with GaAs QW with an arti�cial Oh symmetry, see
Chapter 4.4 for the equivalent bulk calculation.

net contribution. In addition, the microscopic currents display a sign change at

the resonant k-points which have the highest carrier population in Fig. 5.5(1b).

Noticeable the area around the gamma point shows a symmetry break and has

predominantly negative current contribution. It is therefore the area in k space

in which the shift current is generated.

For a photon energy h̄ωL = 1.525 eV, Fig. 5.6(2), the shift current transitions

from a negative to a positive current direction and divergences strongly from the

Gaussian shape. The excited k-area around the Γ-point still has mostly nega-

tive current contribution, but the total non-canceling contributions are less. The

areas beyond the band mixing at ky ≈ ±0.2nm−1 have more positive current

contributions which causes a decease of the total shift current. In addition, res-

onant contributions exist, mainly the valence band intraband coherence which

energy range overlaps with the shift current in frequency space and therefore is

included in the frequency �ltering process. They are responsible for the devia-

tion from the Gaussian shape. This makes a distinction between shift current

and intraband current di�cult.

For the photo energy h̄ωL = 1.550 eV, Fig. 5.6(3), the shift current has a positive

current direction and follows a Gaussian shape. The 2D surface plots reveal that

the area around the Γ-point is too o�-resonant and has no current contributions.

Except of the areas beyond the bandmixing at ky ≈ ±0.2nm−1 most areas of

k-space are canceling each other. The areas beyond the bandmixing display

both positive and negative current contributions, but with a predominance of

positive contribution this region of k-space is responsible for the positive shift

current.
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Figure 5.5: The shift current for a photon energy of (1a) h̄ωL = 1.500 eV,
(2a) h̄ωL = 1.525 eV, and (3a) h̄ωL = 1.550 eV. In (1b) - (3b) the energy
di�erence ∆ε(kx, ky) between the two highest valence bands is displayed, color-
scaled in meV. To the di�erent photon energies the corresponding populations
n(kx, ky, t = 0) of the two highest valence bands are overlaid, color-scale in
arbitrary units.
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Figure 5.6: The shift current for a photon energy of (1) h̄ωL = 1.500 eV,
(2) h̄ωL = 1.515 eV & (3) h̄ωL = 1.550 eV. In (1b) to (3b) the k resolved
shift current Jx generated in the QW is shown at the time t = 0 fs, scale in
arbitrary units, overlayed over the energy di�erence between the two highest
valence bands, scale in meV.
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In conclusion, shift currents created in the area of k-space before and after the

band crossing have di�erent signs and increasing the photon energy leads to a

shift in k-space from one region to the other. These results were published in

[81].





Chapter 6

Shift Currents near the Band

Gap

The interaction of charged particles due to the Coulomb force is a fundamen-

tal interaction which can be found in all kinds of systems, ranging from bulk

materials to quantum wires(QW) and quantum dots(QD), and many di�erent

materials, e.g., metals, semiconductors, and organic materials. Consequently,

Coulomb e�ects are a topic in a huge variety of research �elds. [82�87] For the

simulation of shift currents near the band gap the inclusion of the many-body

Coulomb interaction is necessary since excitonic e�ects are relevant.[11] But

from a numerical point of view the simulations of excitons has two challenges.

First, the exciton binding energy in GaAs is very small in comparison to

the band gap, literature values being Eexc = −4.2 meV close to 0 K and Eexc =

−3.27 meV at T = 17 K.[88, 89] Consequently, long integration times are re-

quired for a good separation of the exciton from the continuum.

The second challenge is the many-body nature of the Coulomb interaction which

couples the whole simulation space. Many body correlation e�ects, e.g., biex-

citons and triexcitons, lead to a drastic increase of computational e�ort.[90,

91] Limiting the Coulomb interaction to only describe exciton correlations still

leads to a quadratic increase of the numerical e�ort. Due to these numerical

requirements, theoretical investigation of excitonic e�ects often uses approxima-

tions such as parabolic bands and/or a small number of bands to decrease the

numerical e�ort.[92�96] Only recently more complex simulations of excitons via

(time-dependent) density-functional theory were reported.[97�99]

63



64 CHAPTER 6. SHIFT CURRENTS NEAR THE BAND GAP

In this chapter the necessary steps to include Coulomb interaction into the

combined theory of k.p and SBE will be laid down and an analysis of the nu-

merical obstacle will be given. Thereafter, the results for the shift currents with

exciton enhancement near the band gap will be presented and discussed.

6.1 Coulomb Matrix Elements

The Coulomb Hamiltonian has the general form

ĤC =
1

2

∫ ∫
dV dV ′Ψ†(r)Ψ†(r′)V (r− r′)Ψ(r′)Ψ(r), (6.1)

where Ψ are Fermionic �eld operators. The �eld operators are expanded in a

basis of creation and annihilation operators a†λk & aλk and in yet undetermined

basis functions ϕ:

Ψ(r) =
∑
k,λ

âλkϕk,λ(r) (6.2)

Inserting Eq. (6.2) in Eq. (6.1) the Coulomb Hamiltonian takes the form:

ĤC =
1

2

∑
λ1,λ2,λ3,λ4
k1,k2,k3,k4

â†λ1

k1
â†λ2

k2
âλ3

k3
âλ4

k4

×
∫ ∫

dV dV ′ϕ∗λ1,k1
(r)ϕ∗λ2,k2

(r′)V (r− r′)ϕλ3,k3
(r′)ϕλ4,k4

(r) (6.3)

The double integral is now called the Coulomb matrix element V λ1,λ2,λ3,λ4

k1,k2,k3,k4
.

To evaluate the double integral the previously undetermined basis ϕ is now

expanded in a Bloch function basis

ϕk,λ(r) =
1√
V

∑
l

clk,λu
l(r)eik·r, (6.4)

with V being the unit cell volume. Inserted into V λ1,λ2,λ3,λ4

k1,k2,k3,k4
the Coulomb

matrix elements read

V λ1,λ2,λ3,λ4

k1,k2,k3,k4
=

1

V 2

∫ ∫
dV dV ′e−ik1·re−ik2·r′eik3·r′eik4·rV (r− r′)

×
∑
l1

c̄l1k1,λ1
ūl1(r)

∑
l2

c̄l2k2,λ2
ūl2(r′)

∑
l3

cl3k3,λ3
ul3(r′)

∑
l4

cl4k4,λ4
ul4(r).

(6.5)
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If a periodic function ϕ(r) consists of a slow varying part f(r) and a fast varying

part u(r) the volume integral can be approximated as∫
L3

f(r)u(r)dV =
∑
N

∫
l3
f(r + RN )u(r + RN )dV

≈
∑
N

f(RN )

∫
l3
u(r)dV ,

(6.6)

with
∫
l3
going over one unit cell. De�ning uc =

∫
l3
u(r)dV , the �nal expression

is ∫
L3

f(r)u(r)dV ≈
∑
N

f(Rn)uc

≈ uc ·
∫
L3

f(r)dV .

(6.7)

The individual integrals in Eq. (6.5) can be rewritten as∫
dV f̄

′
(r)ū′(r)V (r−R)f(r)u(r) =

∫
dV f̃(r)ũ(r)V (r−R), (6.8)

with f̃(r) = f̄
′
(r)f(r) and ũ(r) = ū′(r)u(r). If V (r −R) varies slowly on the

scale of ũ(r), the integral can be split into two parts∫
L3

dV f̃(r)ũ(r)V (r−R) ≈
∫
L3

f̃(r)V (r−R)

∫
l3
dV ′ũ(r′)

≈ uc ·
∫
L3

f̃(r)V (r−R)

(6.9)

using the approximation described in Eq. (6.7). This approximation is valid for

e�ects which are characterized by length scales much larger than the unit cell.

In the case of GaAs the lattice constant is aGaAs ≈ 0.5 nm. In comparison the

Bohr radius of the exciton a3d
B ≈ 12 nm is more than twenty times larger, thus

ful�lling the approximation condition.

Table 6.1: A comparison of exciton binding energies and Bohr radii in direct
band gap semiconductors.[100]

GaAs GaN ZnSe
ε3dR 4 meV 23 meV 19 meV
a3d
B 12 nm 3 nm 5 nm
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6.1.1 Calculating the Coulomb Matrix Elements with k.p

By averaging the Coulomb potential inside the unit cell, the Coulomb matrix

element can be rewritten as

V λ1,λ2,λ3,λ4

k1,k2,k3,k4
≈ 1

V 2

∫ ∫
e−ik1·re−ik2·r′eik3·r′eik4·rV (r− r′)dV dV ′

×
∫
l3

∫
l′3

∑
l1

c̄l1k1,λ1
ūl1(r)

∑
l2

c̄l2k2,λ2
ūl2(r′)

×
∑
l3

cl3k3,λ3
ul3(r′)

∑
l4

cl4k4,λ4
ul4(r)dV dV ′. (6.10)

Because the two integrals over the unit cell are not connected anymore, they

can be evaluated independently. The integral over the whole space r′ is replaced

by r− r′′,

V λ1,λ2,λ3,λ4

k1,k2,k3,k4
≈ 1

V 2

∫
ei(k4−k1+k3−k2)·r

∫
ei(k2−k3)·r′′V (r′′)dV ′′dV

×
∑
l1,l4

c̄l1k1,λ1
cl4k4,λ4

∫
l3
ūl1(r)ul4(r)dV

×
∑
l2,l3

c̄l2k2,λ2
cl3k3,λ3

∫
l′3

ūl2(r′)ul3(r′)dV ′. (6.11)

The integral over r′′ is the Fourier transform of the Coulomb potential for a

�xed k2 − k3. For a 1
r potential the Fourier transform is 4π

(k2−k3)2 . For the unit

cell periodic functions u(r) the basis functions of the k.p Hamiltonian can be

used. While the connection between the k.p basis functions and the real-space

electronic wave functions is incomplete, here they are evaluated over the unit

cell where only the properties of an orthonormal basis are important. With this

two considerations the Coulomb matrix element becomes

V λ1,λ2,λ3,λ4

k1,k2,k3,k4
≈ 1

V 2

∫
ei(k4−k1+k3−k2)·rdV

4πV0

(k2 − k3)2

×
∑
l1,l4

c̄l1k1,λ1
cl4k4,λ4

δl1,l4

×
∑
l2,l3

c̄l2k2,λ2
cl3k3,λ3

δl2,l3 , (6.12)

with V0 = e2

4πεε0
and ε = 12.9 being the dielectric constant of GaAs.[101] Us-

ing the fact that the remaining integral can be written as a Kronecker-delta,

Eq. (6.12) turns into:

V λ1,λ2,λ3,λ4

k1,k2,k3,k4
≈ 1

V
δk1,k4+k2−k3

4πV0

(k2 − k3)2
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×
∑
l1,l4

c̄l1k1,λ1
cl4k4,λ4

δl1,l4

×
∑
l2,l3

c̄l2k2,λ2
cl3k3,λ3

δl2,l3 (6.13)

Evaluation of the Kronecker-deltas and substituting q = k2 − k3 the �nal form

of the Coulomb matrix element is

V λ1,λ2,λ3,λ4

k3,k4,q
≈ 1

V

4πV0

q2

∑
l4

c̄l4k4+q,λ1
cl4k4,λ4

∑
l3

c̄l3k3−q,λ2
cl3k3,λ3

. (6.14)

Inserting this matrix element into the Hamiltonian ĤC gives:

ĤC ≈
1

2

∑
λ1,λ2,λ3,λ4

k3,k4,q

â†λ1

k4+qâ
†λ2

k3−qâ
λ3

k3
âλ4

k4
× V λ1,λ2,λ3,λ4

k3,k4,q
(6.15)

The number of Coulomb matrix elements grows proportional to the fourth power

of the number of involved bands λi. Because of the fourfold degeneracy of the

valence band at the Γ-point, the Coulomb matrix elements must be calculated

for 64 = 1296 di�erent band combinations. In addition, the matrix elements

grow cubic in the number of included k-points. As seen later, this can be

reduced to a quadratic increase. While better, this still leads to a large number

of matrix elements. Unlike the number of involved bands, the number of k-

points is not predetermined. It is therefore highly advantageous to minimize

the number of grid-points to such a degree that the computational time remains

within reasonable limits, but that the exciton is also reasonably well resolved.

6.2 Semiconductor Bloch Equations with Coulomb

Interaction

To include the Coulomb interaction into the SBE, the Hamilton operator ĤC

has to be included when evaluating the Heisenberg equation. A detailed eval-

uation can be found in Appendix A.3. Using the time-dependent Hartree-Fock

approximation, the Heisenberg equations for ĤC is〈
i

h̄

[
ĤC , x

λλ′

k

]〉
=− i

h̄

∑
µ,µ′

λ′′,q

V µλ
′′µ′λ

k+q,k,qx
µµ′

k+qx
λ′′λ
k

+
i

h̄

∑
µ,µ′

λ′′,q

V µλ
′µ′λ′′

k+q,k,q x
µµ′

k+qx
λλ′′

k .
(6.16)
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Adding the Coulomb inhomogeneity to the previously derived SBE, Eq. (3.18)

in Sec. 3.2, the SBE take the form[25]

d

dt
xλλ

′

k =
i

h̄

(
ελk − ελ

′

k

)
xλλ

′

k +
i

h̄

∑
µ

(
Ωµλk xµλ

′

k − Ωλ
′µ

k xλµk

)
− 1

T1/2
xλλ

′

k , (6.17)

with

Ωλλ
′

k =
e0

m0
A(t) ·Πλλ′

k +
∑
µµ′q

V λµλ
′µ′

k,q xµµ
′

k+q(t). (6.18)

The
∑

q Vq term in Coulomb inhomogeneity couples all previous indepen-

dent k-points. This causes at least a quadratic increase in the computational

time proportional to the square of the number of k-points. In an unexcited semi-

conductor the valence band population nVk = 1 leads to a renormalization of the

band energies. For a numerical evaluation the renormalization is problematic

and leads to instabilities. In this Chapter only very low intensity excitations

are considered which excite a negligible population in the conduction band. To

avoid the numerical instabilities, the populations are omitted in Eq. (6.18).

6.3 Cartesian Grid Consideration

To obtain a �rst estimation of the needed k-space size and resolution, a quadratic

energy matrix

Ṽ ij = εiδij − Vij (6.19)

is constructed and diagonalized. The diagonal elements εi are the band gap

energies obtained from the extended Kane model and

Vij = V0
1− δij
|ki − kj |2

(6.20)

the o�-diagonal Coulomb matrix elements. For this method the three-dimensional

k-space is projected onto an one-dimensional array, assigning a k-vector to a

number i. A Cartesian grid is used for this method, thus the number of total

k-points grows with N3
k and the quadratic matrix Vij with N6

k .

For the calculation of the true Coulomb matrix elements the sums of the

coe�cients clk,λ have to be evaluated. As in the case of the momentum matrix

elements, the coe�cients are obtained from the eigenvectors of the k.p-theory.
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The sum ∑
l

c̄lk,λc
l
k′,λ′ = 〈k, λ|k′, λ′〉 . (6.21)

represents the overlap integral between two eigenvectors. Due to the normal-

ization of the eigenvectors, the relation

〈k, λ|k′, λ′〉 ≤ 1 (6.22)

holds. This means that the real Coulomb matrix elements are smaller than the

ones used in the energy matrix Vij , thus the obtained exciton energies represent

an upper limit for the true ones.

The matrix Vij is diagonalized and the lowest energy eigenvalue is taken as

the exciton energy while the next eigenvalue is assumed to be the band gap.

In Fig. 6.1 the obtained exciton binding energies are plotted. From Fig. 6.1(a)

it becomes clear that at least 193 k-points are required for a su�cient con-

verged exciton. In Fig. 6.1(b) the exciton energy reaches its minimum for

kmax ≈ 0.25 nm−1. For smaller values the resolved region of k-space is too

small and parts of the exciton wave function are prematurely cut o�. For higher

values the k-space resolution becomes too bad to properly resolve the exciton

wave function. The values in Fig. 6.1(b) are obtained for Nk = 21, thus for

larger Nk the necessary kmax may be even larger.
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Figure 6.1: In (a) the exciton binding energy is plotted as function of Nkx, the
number of k-points per axis, for kmax = 0.2 nm−1. In (b) the binding energy
is plotted as function of kmax, calculated with Nkx = 21, which corresponds to
213 = 9261 k-points.
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While Fig. 6.1 only shows a lower estimation for the necessary Cartesian grid

size, this alone is already enough. For a Nk = 133 grid the necessary Coulomb

matrix would have the size of 64 · 133 · 133 = 6, 255, 544, 462 entries. Using dou-

ble precision and complex values(16 byte per entry) this matrix would occupy a

memory of approximately 100 GB. For a Nk = 213 the Coulomb matrix would

have 64 · 213 · 213 = 111, 152, 892, 816 entries and occupy a memory of approx-

imately 1.8 TB. For a numerical evaluation the Coulomb matrix is too large

without ensuring good resolution of the exciton wave function and consequently

convergence. Thus in conclusion, exciton calculations for bulk with a Cartesian

grid are not feasible.

6.4 Modi�ed Geodesic Grid

Based on the considerations in the previous section, another type of k-grid is

required for the exciton calculations. For a parabolic band dispersion the exci-

ton wave functions assume the form of the hydrogen wave functions, with the

lowest exciton taking the shape of the |1s〉 wave function. In the k.p band struc-

ture spherical symmetry dominates, thus it can be assumed that the exciton is

also dominated by spherical symmetry. As it was the case for the shift current,

a spherical grid may be advantageous in resolving the exciton wave function.

Therefore a geodesic grid is again applied for the calculations. A second advan-

tage of the geodesic grid is the fact that its number of k-points scales linearly in

either NR or NA. While this seemed trivial previously, at this point it becomes

crucial because the Coulomb matrix scales quadratically with the number of

used points. In comparison to the power of six scaling in a Cartesian grid, the

quadratic scaling in a geodesic grid is numerically very advantageous.

A problem which remains is the singularity at k − k′ = 0 of the Coulomb

potential. From an analytic perspective normally this is not a problem because

in spherical coordinates ∫ ∫
V (k,k′)k2 dk dA (6.23)

the k2 from the radial element cancels the 1
(k−k′)2 term in the potential for k′ = 0

and removes the singularity. For k′ 6= 0 the integration space can simply be

rede�ned to a new coordinate system q′ = k′ which always ensures the removal

of the singularity. For obvious reasons this cannot be done with a discrete k-grid

used in numerics. To ensure correct results, a detailed understanding how the
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singularity a�ects the numerical stability is necessary. For this, the integral

Ii =

∫
1

(ki − k′)2 + c2
dV

=
∑
j

1

(ki − kj)2 + c2
dV (kj)

(6.24)

is evaluated for various grid combinations, with ki denoting k(ki). The constant

c represents screening and is de�ned as

c =
1

n · aB
, (6.25)

with aB = 12 nm being the exciton Bohr radius in GaAs and n being a scaling

factor.
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Figure 6.2: Evaluation of the Coulomb singularity according to Eq. (6.24) for
a geodesic grid with NR = 90 and varying NA. The labels A0, A2, A6, and
A10 correspond to grids with NA = 12, NA = 92, NA = 362, and NA = 1212,
respectively. The integrals are evaluated for screening constants c = 1

1·aB , c =
1

100·aB , and c = 1
1000·aB , respectively. For better comparison the k-point index

ki is normalized over the total number of grid points Nk.
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In Fig. 6.2 the numerical values of various geodesic grids are displayed and

compared. The comparison shows that for a screening constant c = 1
1·aB the

grids yield the same numerical value with only slight discrepancy. Due to how

the grid points are ordered in the program, the distance from the Γ-point for a

point ki grows with its integer value. This is re�ected by the integral Ii becom-

ing smaller for larger ki caused by the shift of the singularity at ki to the border

of the numerical space and therefore less of it contributing to the integral. For

a smaller screening constant c = 1
100·aB the integrals Ii show high divergence

for di�erent NA. The less grid points are on a sphere, the more the grid over-

estimates the integral value for higher ki, resulting in the continuous growth

of the integral value Ii till slightly before the end of the numerical space. The

explanation for this lies in the volume element dV (ki) = k2
i dA(ki). For larger ki

the volume element dV (ki) grows quadratically which is expected for a spherical

grid. For a low number of points per sphere NA the resolution on a grid sphere

is too low to properly resolve the singularity at q = 0 and consequently the

value for q = 0 is estimated to high.
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Figure 6.3: A geodesic sphere with two di�erent angular resolutions. The green
grid is the actual grid used for the matrix elements Vk,q and during the time
integration of the SBE. The red grid is an auxiliary grid used during the calcu-
lations of the matrix elements Vk,q to deal with the singularity 1

q2 .

Consequently, a high number of points on the sphere surface is needed to

properly resolve the 1
q2 potential which would lead to high computational times.

The problem of the singularity arises during the calculations of the Coulomb
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matrix elements. Thus it is advantageous to use a high resolution grid in the

calculations of the matrix elements and a grid with far lower resolution in the

SBE which would accomplish a great reduction of the needed computational

time. In Fig. 6.3 the two grids are displayed. The green colored squares represent

the main grid which is used during the SBE. The Coulomb matrix elements

V λ1,λ2,λ3,λ4

k,k+q,q from Eq. (6.14) are calculated between the points k and k + q with

the coe�cients cλk being the k.p-eigenvector coe�cients obtained from matrix

diagonalization. To deal with the singularity 1
q2 a local integral

Iloc =

∫
qloc

1

q′2
dq′ (6.26)

is solved at k+q. The sub-integral goes over the auxiliary points nearest to the

main point. In this work the auxiliary grid has a NA = 10 which correspond to

1212 points on a sphere.
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Figure 6.4: Similar to Fig. 6.2, the Coulomb singularity is evaluated according
to Eq. (6.24) for a geodesic grid with NA = 12 which uses a sub-grid for the
evaluation of the singularity 1

q2 . The evaluation is done for grids with 40, 80,

and 120 spheres and screening constants c = 1
1·aB , c = 1

100·aB , and c = 1
1000·aB ,

respectively. For better comparison the k-point index ki is normalized over the
total number of grid points Nk.
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In Fig. 6.4 the results for a geodesic grid using a sub grid are displayed and

compared for di�erent radial resolutions. For a screening constant of c = 1
1·aB

the grids are identical to the corresponding results in Fig. 6.2. This is due

the screening being too large and causing the singularity Vq=0 to disappear,

but also due to the Coulomb matrix elements becoming too small overall. For a

screening constant c = 1
1000·aB the values heavily depend on the radial resolution

and still show a large divergence. But in direct comparison to the corresponding

values in Fig. 6.2 the use of a sub-grid results in an improved evaluation. For a

screening constant c = 1
100·aB the grids are converged and have improved values

in comparison to a screening of c = 1
1·aB . Consequently a screening equivalent

to 100 Bohr radii aB is the optimum for numerical evaluations and used in the

simulations.

6.5 Absorption Spectrum of Bulk GaAs

Based on the known e�ects of the Coulomb interaction at the band gap, a

very well de�ned exciton peak and the Coulomb enhancement of the continuum

absorption are expected. The literature value of the exciton binding energy

Elit = 4.2 meV[88] is quite small and as such the position of the exciton peak can

be obscured by line broadening of the spectrum. Therefore the simulations are

done with a long dephasing time T2 = 800 fs to minimize said line broadening.

To obtain an absorption spectrum the system is excited with a quasi δ-pulse

E(t) = E0δ(t)ex, where δ(t) represents a function which is only unequal zero

for a single time step. For δ-pulse excitation conditions the velocity gauge is

unsuitable due to

A(t) =

∫
dt′δ(t′) = Θ(t) (6.27)

which is numerical unstable. Therefore for the calculation of the linear absorp-

tion the length gauge is used. Normally the length gauge would require the

inclusion of gradient terms in the SBE which is challenging due to the random

phase in k-space. But the gradient terms are higher order terms which do not

contribute to the �rst-order polarization and thus can be omitted from �rst-

order calculations. For testing and veri�cation simulations are also performed

with a parabolic band structure. Its known analytic solutions can be used to

estimate the in�uence of numerical limitations such as �nite kmax or the in�u-

ence of screening. For k.p band structure simulations the wave functions are

used in the Coulomb and dipole matrix elements while for the parabolic band

structure the wave functions are assumed to be plane waves and the dipole ma-

trix elements are considered to be k-independent.
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In Fig. 6.5 the absorption spectra for a parabolic band structure and the

GaAs band structure obtained from the extended Kane model are shown. The

simulations are done with di�erent kmax values to check if the used k-space

grids are large enough to achieve converged results. For the parabolic as well as

for the k.p band structure a grid size with kmax = 0.5 nm−1 is su�cient large

to ensure quantitatively converged results. Both spectra display the Coulomb

enhancement and very well de�ned exciton peaks. For the parabolic band struc-

ture, Fig. 6.5(2a), the exciton has a binding energy of Epara ≈ −3.9 meV which

is approx. 85% of the analytic value. Besides the main peak a smaller peak is

visible at Epara2 ≈ −2 meV which corresponds to approx. 80% of the analytic

value of the light hole exciton. For the k.p band structure, Fig. 6.5(2b), only

one peak at Ek.p ≈ −3.2 meV is visible which is approx. 60% of the analytic

value. Part of the deviation from the analytics results in the parabolic case can

be explained by the �nite line broadening caused by the spectrum and the light

hole peak even with a very weak dephasing of T2 = 800 fs.
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Figure 6.5: Absorption spectra for (1a) a parabolic and (1b) k.p band structure.
Plotted are four di�erent lines for di�erent kmax. (2a) and (2b) are zoomed
spectra around the exciton peaks of spectra (1a) and (2a), respectively.
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Besides the binding energy, the wave function form can be used to judge

the accuracy of the results. To obtain the exciton wave function the system is

excited with a slowly switched-on cosine excitation

E(t) =

E0exexp
{
−
(
t

∆t

)2}
cos (ωLt) t < 0

E0ex cos (ωLt) t ≥ 0,
(6.28)

with ∆t = 500 fs. Such an excitation has a very small line width which ensures

that mainly the exciton will be excited by the excitation energy h̄ωL ≈ Eexc.

For numerical stability the excitation amplitude E0 is very small and the system

has the dephasing T2 = 800 fs. After a su�cient long time, here t = 3000 fs, the

system is in a stationary state and the k-resolved interband polarization P|k|(t)

should re�ect the exciton wave function.
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t = 3000 fs for a band structure with (a) parabolic and (b) k.p dispersion.
For visualization the three-dimensional |Pk(t)| are plotted as function of the
radius |k|. The interband polarization corresponds to the probability density
|Ψ(k)|2dV .
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In Fig. 6.6 the interband polarization |Pk(t = 3000 fs)| is plotted as a function
of the radius k. Due to the mentioned line broadening the exciton energy

position could be larger than Fig. 6.5 suggests. Therefore simulations are done

with an array of small varying photon energies h̄ωL. The results for the parabolic

band structure in Fig. 6.6(a) show that the polarization has a extremely high

match with the analytic solution for the density probability in k-space

|Ψ(k)|2dV =

(
c

k2 + a−2
B

)2

dV (6.29)

at a binding energy of Epara = −4.4 meV which is 0.5 meV lower than the ab-

sorption spectrum suggests. This shows that the position of the exciton peak

is still in�uence by the line broadening of the continuum states. Unlike in the

parabolic band structure, the polarization in the k.p band structure is highly

anisotropic. In Fig. 6.6(b) the three-dimensional polarization is plotted as func-

tion of the radius |k|. For a high isotropic polarization, see Fig. 6.6(a), the

polarization appears as one thick line. In the k.p case, Fig. 6.6(b), for one

excitation energy di�erent lines are visible re�ecting the anisotropy caused by

the band structure and its optical matrix elements. This makes a comparison

with the analytic solution more di�cult. The approximately best match is at

a binding energy of Ek.p ≈ −3.8 meV, 0.6 meV lower than the spectrum value.

Even with the expected deviations from the analytical solution, the comparison

of the wave functions suggests that also for a k.p band structure the exciton

position is signi�cantly shifted by line broadening.

For better comparison, in Fig. 6.7(a) only the results for parabolic and k.p

band structure are plotted which have the highest match with the analytical re-

sult. As previously mentioned, the results for the parabolic band structure have

a very good agreement with the analytical results with only minor di�erences

due to numerics. The anisotropy of the k.p wave function leads to a decrease of

the wave function to 80% at k = 1
aB

for certain directions, visible through the

three distinct lines. If the maximum of the wave function at k = 1
aB

is matched

to the analytic result, the k.p wave function displays slightly larger values for

larger k vectors. This can be explained by the step size h̄∆ωL = 0.2 meV being

not small enough to hit the exciton fully resonant and thus slightly exciting

higher states of the continuum. But the match is su�cient enough to say that

the exciton binding energy is Ek.p ≈ −3.8 meV. For completion, in Fig. 6.7(b)

a comparison of the radial part of the wave functions is made. Both, parabolic

and k.p results, have good agreement with the analytic form, the di�erences are

very small on the used scale.
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Figure 6.7: In (a) the numerically obtained parabolic and k.p exciton density
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6.6 Shift Current with Excitonic Enhancement

After verifying the exciton binding energies, the in�uence of the Coulomb inter-

action on the shift current is now analyzed. For the simulations a temperature

of T = 0.1 K is assumed which corresponds to a band gap of Egap = 1.517 eV.

To reduce the simulation times, a geodesic grid with NA = 12 is used. This

causes a low angular resolution of the grid but a comparison between NA = 12

and NA = 48 without Coulomb interaction shows a di�erence of less than 5%

between the two grids. Therefore the calculated results are expected to be rep-

resentative.

In Fig. 6.8 the simulated shift current with and without Coulomb interac-

tion is shown. For below band gap excitation without Coulomb interaction,

Fig. 6.8(a), the shift current is small and deviates from the analytic E2
env(t)

shape as seen previously. With Coulomb interaction the shift current is several

times larger and follows the E2
env(t) shape, its maximal amplitude depends on

the dephasing and relaxation times T2 and T1. Fig. 6.8(b) shows that the exci-

ton and the Coulomb enhancement of the continuum increases the shift current

at the band edge several times. In comparison to the continuum the shift cur-

rent caused by the exciton heavily depends on the dephasing in the system, for

T2 = 100 fs the line broadening is so large that the exciton peak in the shift

current becomes indistinguishable from the continuum.

The analysis of individual band contributions, Fig. 6.9, reveals an interest-

ing observation. For above band gap excitation all current contributions �ow in

the same direction, a behavior seen for the bulk calculations without Coulomb

interaction presented in Chapter 4.3. For excitation below and at the band gap

the valence current changes its sign and starts to �ow in the opposite direction.

The behavior of the valence band current can be explained by the motion of

holes. For above band excitation the created electrons and holes �ow uncor-

related from each other, with the hole direction being on average opposite to

that of the electron. Due to the di�erent signs of their charge the hole current

has the same sign as the electron current. For excitations near and below the

band gap the electrons and holes are not uncorrelated and �ow on average in

the same direction, resulting in a negative current for the positively charged

holes. The larger e�ective mass of the holes lead to a smaller displacement of

the holes and consequently to a smaller shift current in the valence band than

the conduction band. The line broadening of the exciton decreases the exciton

shift current for all contributions for below band gap excitation, in particular,

the sign changes of the valence band moves to higher energies. This indicates
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Figure 6.8: The shift current is calculated for dephasing and relaxation times
T2 = T1 = 800 fs, 400 fs, 200 fs and 100 fs, respectively. The system is excited
by a Gaussian pulse, FWHM = 500 fs, linearly polarized in (110)-direction,
generating a shift current in (001)-direction. For comparison the system is
simulated with, full lines, and without, dotted lines, Coulomb interaction. (a)
Time evolution of the shift current for a photon energy h̄ωL = 1.515 eV. (b)
Peak shift current for di�erent photon energies h̄ωL which are given in units
of the analytical result for the exciton binding energy Eanaly = 4.58 meV. (c)
The linear absorption of the system for the respective dephasing and relaxation
times.
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Figure 6.9: The total shift current from Fig. 6.8 and its subcurrents are displayed
for dephasing and relaxation times (a) T2 = T1 = 800 fs, (b) 400 fs, and (c)
200 fs, respectively. The maximum values of the total J , the valence Jval, the
conduction Jcon, and the interband current Jpol are shown as a function of the
central excitation frequency h̄ωL, here directly compared to the k.p exciton
binding energy Ek.p = 3.8 eV. For comparison the total shift current without
Coulomb interaction, dotted black line, is included.
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that with increasing line broadening the bound motion of electrons and holes is

obscured by the free motion in the continuum. For above band gap excitation

the continuum contributions of the conduction band and the interband polar-

ization are constant and about Jcon ≈ 0.2 mA/cm2 and Jint ≈ 0.1 mA/cm2. In

comparison the valence band contributions depend on the dephasing and relax-

ation times T2 and T1 due to the intraband coherence between di�erent valence

bands which also contributes to the signal.

Another way to quantify a shift current is by the shift distance dshift, the

average displacement of the electron in the crystal structure. From Maxwell

equations the relation

dshift(t)e0n(t) =

∫ t

−∞
dt′Jshift(t

′) (6.30)

holds, n(t) being the total conduction band population and e0 the elementary

charge. Therefore the shift distance can be calculated by

dshift(t) =

∫ t
−∞ dt′Jshift(t

′)

e0n(t)
. (6.31)

While the shift current Jshift(t) is an o�-resonant process following the envelope

of the excitation, the population n(t) has resonant contributions and relaxes on

its own. Therefore, Eq. (6.31) only describes the shift distance until the relax-

ation of the population n(t) causes an arti�cial increase.

The bond length in GaAs, the closest distance between a gallium and an

arsenic atom, is
√

3
4 a0. With the lattice constant a0 = 0.565 nm, the bond length

in (111)-direction is approximately 0.25 nm. In (001)-direction the bond length

is approximately 0.14 nm. The simulated shift current Jshift and population

density n(t) are calculated for a unit volume. A GaAs unit cell is composed of

two �c-lattices, one for gallium and one for arsenic, respectively. A �c-lattice

contains four atoms, thus a GaAs unit cell contains four gallium and four arsenic

atoms and consequently four transitions. In (001)-direction two transitions are

each parallel which means that from the four transitions half of them do not

contribute to a shift in (001)-direction. To compare the calculated shift distance

with the atomic bond length a factor nT = 2 is introduced in Eq. (6.31) to

account for the multiple transitions:

dshift(t) =

∫ t
−∞ dt′Jshift(t

′)

nT e0n(t)
(6.32)
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Figure 6.10: Shift current distance dshift(t) in (001)-direction calculated for
di�erent excitation energies h̄ωL. The dotted B-lines represent simulations
without Coulomb interaction. In addition, the bond lengths of GaAs in (001)-
direction, dotted line, is included for comparison. To minimize relaxation e�ects
of the population, the simulations are performed for a very long relaxation time
T1 = 1600 fs.

In Fig. 6.10 the shift distance dshift(t) is calculated for simulations with

and without Coulomb interaction. The calculated shift distances dshift(t) settle

themselves after a short time period of ≈ 150 fs and remain constant for a long

time. Due to the mention resonant contributions and the relaxation of the pop-

ulation n(t), the shift distances start to increase for t > 0 fs. Without Coulomb

interaction, dotted lines in Fig. 6.10, the shift distances in (001)-direction are

dshift ≈ 0.09 nm for band gap excitation and dshift ≈ 0.1 nm for higher ex-

citations, approximately 63% and 70% of the bond length in (001)-direction,

respectively. For band gap excitation the shift distance is slightly smaller than

for higher band excitation, with the two excitation h̄ωL = 58 meV + Egap and

h̄ωL = 108 meV + Egap having about the same shift distance.

The shift distance with Coulomb interaction, solid lines in Fig. 6.10, show a

shift distance of dshift ≈ 0.082 nm in (001)-direction, approximately 58% of

the bond length. The shift distance varies with the central excitation energy

h̄ω, but remains slightly smaller than the corresponding shift distance without

Coulomb interaction. Despite causing a larger shift current on a whole due to

increased absorption, the shift distance is slightly smaller due to the attractive

interaction between holes and electrons.
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It should however be mentioned that due to numerical restrains only the

Coulomb interaction between the valence and conduction bands near the band

gap has been considered here. While this is su�cient to describe the excitonic

absorption near the band gap, the shift current is an o�-resonant e�ect which

includes higher conduction bands. It therefore may be possible that the missing

Coulomb interaction between the lowest and the higher conduction bands may

modify the shift current and therefore the shift distance. In the limits of this

work this question cannot be answered and will require further investigation.



Chapter 7

Recti�cation Currents in

GaAs

Besides the injection and the shift current a third current exists in non-centro

symmetry semiconductor systems, the recti�cation current. If an electric �eld is

applied to an insulator or semiconductor, the electric �eld causes a shift of the

electron density along the �eld direction and creates a microscopic polarization

inside the material. For optical frequencies the sign of the electric �eld changes

so rapidly, that one may assume that the microscopic polarizations oscillate as

fast and for larger time scales averages itself out. But in solids the electron

potential V (r) can be anharmonic, i.e.,

V (r0 −∆r) 6= V (r0 + ∆r) (7.1)

with r0 being the electron position of the undisturbed system. In an anhar-

monic potential the de�ection of an electron in an oscillating electric �eld is

di�erent for +E and −E, thus even for optical frequencies the average position

r̃ can change without causing an excitation of the electron from the valence to

the conduction band. The spatial displacement of the average electron position

leads to a static polarization in the material, i.e., the optical recti�cation Prec

and depends on the electric �eld strength. The optical recti�cation was �rst

observed by Bass et al. in 1962 in zincblende type crystals.[102] Optical recti�-

cation can be used to generate infrared radiation in bulk GaAs.[103]

In the case of a time-varying envelope of the optical pulse, the optical rec-

ti�cation is time-varying too which consequently generates a microscopic recti-

�cation current jrec. As it was the case for the shift current, for linear optical

excitations in certain direction the counter current −jrec to jrec is symmetry
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forbidden and thus allowing a non-vanishing recti�cation current Jrec to exist

in the system. The recti�cation current was measured via THz spectroscopy in

zincblende crystals and metal nano �lms[104, 105] and was theoretically inves-

tigated for bulk and surface currents.[35, 106, 107] In this chapter it is brie�y

investigated if the combined theory of k.p and SBE can be used to describe

recti�cation currents in bulk GaAs and GaAs QW systems.

7.1 Recti�cation Current in Bulk GaAs

By exciting the system with linearly polarized light parallel to the (110)-direction,

a recti�cation current is generated in (001)-direction. Like the shift current, the

optical recti�cation Prec follows the envelope of the optical pulse. It is the

frequency ω = 0 component of the total polarization

P(t) = e
∑

λ,λ′ 6=λ,k

rλλ
′

k xλλ
′

k , (7.2)

with Πλλ′

k = im0ω
λλ′

k rλλ
′

k being the transition dipole moments. As it was the

case for the shift current, the frequency �ltering method around ω = 0 is applied

to so separate the optical recti�cation Prec from the fast oscillating terms in P.

The recti�cation current is then given by the time derivative of Prec,

Jrec(t) =
∂

∂t
Prec(t). (7.3)

In Fig. 7.1(a) the time evolution of the recti�cation current is shown for the

case of below, at, and above bandgap excitation. For an instantaneous response

in the o�-resonant limit the recti�cation polarization is given by[39]

P arec(t) = ΓabcE
b
env(t)E

c
env(t), (7.4)

with Γabc being the recti�cation current tensor. For below band gap exci-

tation the recti�cation current has good agreement with the expected form

Jrec(t) = ∂
∂tP

a
rec(t) ∝ ∂

∂tE
2
env(t). For band gap excitation the recti�cation cur-

rent becomes larger, but diverges from the form Jrec(t) ∝ ∂
∂tE

2
env(t) due to

resonant contributions of the band structure. For above band gap excitation

the recti�cation is smaller in comparison with band gap excitation. This is in

contrast to the shift current which for bulk systems re�ects the density of states

and monotonously grows in the considered energy range.

In Fig. 7.1(b) the recti�cation current is plotted as function of the photon
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Figure 7.1: (a) Recti�cation current in Z-direction calculated for Gaussian
pulses with FWHM of 300 fs and linear polarization in (110)-direction for three
di�erent photon energies h̄ωL. (b) Recti�cation current as function of the pho-
ton energy. Since the recti�cation current transient has more than one peak, the
value of the �rst and the largest peak of the recti�cation current are displayed.
For the simulations the band structure is obtained for a temperature of 0.1 K
which corresponds to a band gap of 1.517 eV. The dephasing and relaxation
times are set to T1 = T2 = 200 fs to reduce dephasing and relaxation e�ects in
the recti�cation current. The results were published [80].

energy h̄ωL. For below band gap excitation no carriers are excited from the

valence to the conduction band. The recti�cation current is predominantly cre-

ated by the de�ection of the electrons in the valence band which is a purely

o�-resonant e�ect, thus the agreement with Eq. (7.4). At the band gap the

recti�cation current amplitude grows rapidly due to the resonant excitation of

carriers. The electron density moves from As-atoms to the Ga-atoms resulting

in a greater static polarization which contributes to the recti�cation current, see

Fig. 4.3 in Chapter 4.1.1. Unexpectedly, the recti�cation current is not increas-

ing monotonically with the photon energy but at a certain energy decreases and

undergoes a current reversal. Since the recti�cation current transient has not

one central peak, the current reversal happens at di�erent energies depending

if the �rst or the largest peak is used as measurement. Using the largest peak,

the recti�cation current undergoes a current reversal slightly after the band

gap, jumping at ≈ 1.53 eV from positive to negative. Using the �rst peak, the

recti�cation current decreases and has a zero crossing at ≈ 1.61 eV. After the

zero crossing the recti�cation current rapidly grows in amplitude with growing

photon energy. This sign change of the recti�cation current was also predicted

in other theoretical studies by Nastos and Sipe[39] and was experimentally ob-

served by Zhang[28].
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7.2 Recti�cation Currents in (110)-grown GaAs

Quantum Well Systems

Similar how the shift current was analyzed in Ch. 5.2, the recti�cation current is

investigated in a (110)-grown QW, speci�cally in terms of angular dependence.

As it was the case for the shift current simulations, a QW with 8 nm thickness

is considered, using 12 valence bands and 28 conduction bands during the time

evolution of the SBE. The used coordinates axes are X = (001), Y = (1-10),

and Z = (110) again.

In Fig. 7.2 the system is excited with a linearly polarized pulse in the xy-

plane, the angle θ lies between polarization direction and the X-direction. The

recti�cation current follows the same symmetry rules as the shift current does,

thus the polarization dependence in X-direction is described by

JX
rec = A cos(2θ) +B (7.5)

and in Y-direction described by

JY
rec = C sin(2θ). (7.6)

The X-current has a o�set as the shift current does, but is in comparison sig-

ni�cantly smaller, see Chapter 5.2.1.
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Figure 7.2: (a) Recti�cation currents in X-direction calculated for a linear
polarized Gaussian pulses with central frequency corresponding to 1.6 eV, a
FWHM of 200 fs, and di�erent θ which is the angle between the X-axis and
the linear polarization direction of the pulse. (b) Corresponding recti�cation
currents in Y-direction. As in the case of the shift current calculations, dephas-
ing and relaxation times of T1 = T2 = 200 fs are considered. The results were
published [80].



Chapter 8

Real-Space Mapping of Shift

Currents

In the combined theory of k.p and SBE the shift current is calculated in k-space

via

Jshift(t) =

∫
Ωk

jk(t) dk. (8.1)

This method allows for the calculation of the shift current in a unit volume,

but does not contain any real-space information. Given that the shift current is

created by the spatial shift of the electrons in the inversion asymmetric crystal

structure of GaAs, it would be interesting if the method could be extended to

provide a real-space visualization of the shift current and if the real-space shift

current would display the properties expected by the symmetry considerations.

In previous research k.p theory was incorporated in real-space simulations, but

the application was restricted to the calculation of spatially resolved band en-

ergies.[108, 109]

8.1 Theory

In general an operator â and an eigenvector |i〉 have the relation

â|i〉 = ai|i〉, (8.2)

with ai being the eigenvalue. Consequently, the operator â can be written as

â =
∑
i

ai|i〉〈i|. (8.3)
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Applying Eq. (8.3) on the shift current, the shift current operator in the ex-

tended Kane model has the explicit form

ĵ
ll′

(t,k) =jll
′
(t,k)|l,k〉〈l′,k|

=Πll′

k x
ll′

k (t)|l,k〉〈l′,k|.
(8.4)

The shift current operator consists of the momentum matrix elements Πll′

k and

the time evolution matrix of the system xll
′

k (t) which is calculated via the SBE.

The Ket-vectors |l,k〉 are the band structure eigenvectors obtained from matrix

diagonalization and can be written as

|l,k〉 =
∑
n

cnl (k)|n〉, (8.5)

with |n〉 being the 14× 14 eigenbasis of the extended Kane Hamiltonian. Using

Eq. (8.5) the general shift current operator is

ĵ
ll′

(t,k) =Πll′

k x
ll′

k (t)
∑
mm′

cml (k)c̄m
′

l′ (k)|m〉〈m′|. (8.6)

If an operator â is applied on a Ket |j〉, which is not an eigenvector of the

operator, the result will be

â|j〉 = â
∑
i

cji|i〉 =
∑
i

cjiai|i〉. (8.7)

The cji are the expansion coe�cients of writing the Ket |j〉 in the eigenbasis |i〉
of the operator â, see Eq. (8.3). Using the de�nition of the expectation value

〈aj〉 = 〈j|â|j〉 (8.8)

it is clear that c2ji are the probabilities to measure ai. Using Eq. (8.7) & Eq. (8.8)

it must be possible to write the space expectation value as

〈rj〉 = 〈j|r̂|j〉 = 〈j|
∑
i

ri|i〉〈i||j〉. (8.9)

From this it becomes obvious that 〈i|j〉 = Ψj(ri), or in other words 〈r|j〉 is the
real-space representation of the wave function |Ψj〉. Using Eq. (8.8) again, the

expectation value

〈ar〉 = 〈r|â|r〉 (8.10)
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is consequently the real-space representation of the observable a, or in other

words a(r). Using the shift current operator Eq. (8.6) and Eq. (8.10) the real-

space representation of the shift current is

jll
′

k (t, r) =

〈
r

∣∣∣∣ĵll′(t,k)

∣∣∣∣r〉 =Πll′

k x
ll′

k (t)
∑
mm′

cml (k)c̄m
′

l′ (k) 〈r|m〉︸ ︷︷ ︸
Ψm(r)

〈m′|r〉︸ ︷︷ ︸
Ψ̄m′ (r)

, (8.11)

with Ψm′(r) being the real-space representations of the Bloch wave function at

the Γ-point k = 0. By integrating over k-space, the real-space shift current

Jll
′
(t, r) is obtained.

Table 8.1: Angular momentum eigenfunctions of the extended Kane model.

Γc8
∣∣ 3

2
3
2

〉
c′

= − 1√
2

∣∣∣∣(X ′ + iY ′

0

)〉 ∣∣ 3
2

1
2

〉
c′

= 1√
6

∣∣∣∣( 2Z ′

−X ′ − iY ′

)〉
∣∣ 3

2 −
1
2

〉
c′

= 1√
6

∣∣∣∣(X ′ − iY ′

2Z ′

)〉 ∣∣ 3
2 −

3
2

〉
c′

= 1√
2

∣∣∣∣( 0
X ′ − iY ′

)〉

Γc7
∣∣ 1

2
1
2

〉
c′

= − 1√
3

∣∣∣∣( Z ′

X ′ + iY ′

)〉 ∣∣ 1
2 −

1
2

〉
c′

= − 1√
3

∣∣∣∣(X ′ − iY ′

−Z ′
)〉

Γc6
∣∣ 1

2
1
2

〉
c

=

∣∣∣∣(S0
)〉 ∣∣ 1

2 −
1
2

〉
c

=

∣∣∣∣(0
S

)〉

Γv8
∣∣ 3

2
3
2

〉
v

= − 1√
2

∣∣∣∣(X + iY
0

)〉 ∣∣ 3
2

1
2

〉
v

= 1√
6

∣∣∣∣( 2Z
−X − iY

)〉
∣∣ 3

2 −
1
2

〉
v

= 1√
6

∣∣∣∣(X − iY
2Z

)〉 ∣∣ 3
2 −

3
2

〉
v

= 1√
2

∣∣∣∣( 0
X − iY
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Γv7
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2

〉
v

= − 1√
3
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2 −

1
2
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v
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3
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−Z

)〉

In general the k.p Bloch functions lack a complete real-space description.

The angular part of the wave function is developed in the basis of the angular

momentum eigenfunctions |m, r〉, also known as the spherical harmonics, see

Table 8.1, the radial part is missing in the theory. To complete the real-space

representation of the Bloch wave functions, the radial part is required and has

to be obtained from somewhere else. Here the radial part is calculated from

the real-space wave functions
∣∣ΨDFT

m (r)
∣∣2 obtained from density functional the-

ory calculations, at this point the author wants to thank Andreas Lücke for

providing the necessary density functional theory (DFT) calculations.

The radial part is calculated by

Ψpseudo−rad
m (r) =

√
|ΨDFT
m (r)|2. (8.12)
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The DFT wave functions contain both the radial and the angular part of the

wave function. To not include the angular part of the wave function twice, the

wave functions obtained from Eq. (8.12) are divided by the absolute value of

the angular momentum eigenfunctions,

Ψrad
m (r) =

Ψpseudo−rad
m (r)√
| 〈m, r|m, r〉 |

. (8.13)

The Bloch wave functions are then obtained by combining the radial part

with the angular momentum eigenfunctions,

Ψm(r) = Ψrad
m (r) · |m, r〉. (8.14)

The so-obtained Ψm are used for the real-space calculations. Besides the Ψm

Eq. (8.11) contains the expansion coe�cients cml (k) from the k.p vectors. Be-

cause the matrix diagonalization process allows for a random phase factor ϕl for

each k.p vector |l〉 at each k-point, the expansions coe�cients would have to be

phase corrected before an integration over k-space can be performed. Instead

of doing a phase correction, Eq. (8.11) is modi�ed into

jll
′

k (t, r) =

〈
r

∣∣∣∣ĵll′(t,k)

∣∣∣∣r〉 =Πll′

k x
ll′

k (t)

∣∣∣∣∣∑
mm′

cml (k)c̄m
′

l (k)Ψm(r)Ψ̄m′(r)

∣∣∣∣∣ , (8.15)

where the problem of the random phase is treated by just considering the ab-

solute value of the coe�cients. This approximation leads to the problem of

ignoring the natural change of the phase in k-space, but is su�cient for a �rst

trial.

8.2 Results

Using Eq. (8.15) the real-space representation of the shift current is calculated.

The used DFT-wave functions have a spatial resolution of 313 grid points. For

each real-space point Eq. (8.15) has to be evaluated and summed up over the

whole k-space. In Fig. 8.1 the shift current created by the interband polar-

ization is shown inside the GaAs primitive cell. The real-space picture shows

shift current contributions around the As- and Ga-atoms. For an excitation in

(010)-direction the GaAs symmetry does not allow a shift current to remain.

In the corresponding picture above and below the As atom positive and nega-

tive current contributions are visible, with the negative blue contributions being

slightly larger. For (110)-polarization, the upper picture, two current density

clouds are visible, reaching from below the As-atom to the two Ga-atoms above.
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Figure 8.1: The shift current Jz(r) in the primitive cell of GaAs. The vectors
a, b, and c are the unit vectors of the primitive cell and point in (-101), (011),
(-110). The shift current is calculated for t = 0. In the upper, middle, and lower
picture the shift current, created by the interband polarization, is depicted for
a linear polarized excitation in (110), (010), and (-110) which generates a shift
current in +z, no shift current, and -z-direction, respectively. Yellow marks
positive and blue negative current contributions. The pictures were made using
the atomic density visualization program VESTA.
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Figure 8.2: The shift current Jz(r) in the primitive cell of GaAs. The vectors
a, b, and c are the unit vectors of the primitive cell and point in (-101), (011),
(-110). The shift current is calculated for t = 0. In the upper, middle and lower
picture the shift current, created by the whole band structure, is depicted for
a linear polarized excitation in (110), (010), and (-110) which generates a shift
current in +z, no shift current, and -z direction, respectively. Yellow marks
positive and blue negative current contributions. The pictures were made using
the atomic density visualization program VESTA.
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The real-space picture shows that the shift current has a positive contribution,

i.e, it �ows in +z-direction and that it travels to the two As-atoms parallel to

the optical (110)-excitation, respectively. Both of this are in agreement with

the previous established shift current symmetries. For (1-10)-polarization, the

lower picture, the shift current manifests as two large current density clouds

reaching from above the As-atom to the two lower Ga-atoms. It visualizes how

the current �ows in -z-direction.

The GaAs-structure has to be invariant under its symmetry operation. Con-

sequently, the spatial shift current has to be invariant under certain GaAs-

symmetry operation. For a shift current in z-direction the spatial shift current

has to be invariant regarding mirroring at the As-atom in (110) and (1-10)-

direction. Another symmetry is the 90◦-rotation around and additional mirror-

ing in (001)-direction at the As-atom. This symmetry describes how the shift

current �ows in +z and -z-direction for optical (110) and (1-10)-polarization.

The spatial shift currents in Fig. 8.1 partially break both of this symmetries. For

the simple mirror symmetry the spatial pictures show only minuscule asymme-

tries. For second symmetry the +z and -z shift current pictures show large dif-

ferences. This di�erences are explained by the approximation made in Eq. (8.15)

where the random phase problem was treated by just considering the absolute

values. This approximation does not account for the intrinsic phase change in

k-space.

In Fig. 8.2 the full shift current, i.e. valence, conduction and interband con-

tributions, is depicted. For (100)-polarization the partial shift current show posi-

tive and negative contributions, canceling each other out. For (110)-polarization,

the upper picture, a positive current density cloud surrounds the Ga-atoms.

Around the As-atom four density clouds are visible, with the cloud above the

As-atom being slightly closer to each other. For (1-10)-polarization, the lower

picture, the current density cloud below the As-atom are slightly closer to each

other. The spatial picture of the whole current is not as intuitive as the inter-

band current in Fig. 8.1, but with the clouds in the shift current direction being

slightly closer to each other it still partially agrees with the conception of the

shift current moving from the As-atom to the two Ga-atoms above.

In Fig. 8.3(a) the spatial shift current is integrated over the primitive cell

for varying polarizations angle θ which is the angle between the x-axis and the

linear polarization. As expected, the real-space shift current follows approxi-

mately a sin(2θ) dependence. In theory the x- and y-currents should vanish for

the used excitation conditions, but in Fig. 8.3(a) non-vanishing contributions
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Figure 8.3: The x-, y-, and z-currents are integrated over the GaAs primitive
cell. Displayed are the integrated current for varying linear polarizations in (a)
the xy-plane and (b) the xz-plane. The currents are shown as a function of the
polarization angle between the x-axis and the linear polarization.
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are visible. However, these contributions are much smaller as the shift current

in z-direction. In addition to the full current, also the current only created by

the interband polarization is shown. It too follows the sin(2θ) dependence, but

only makes up for ≈ 30% of the total current.

Despite only considering the absolute value of the complex k.p eigenvectors,

the novel method allows for a visualization of a real-space shift current which

is in agreement with the established symmetry rules for the shift current. In

addition, the shift current created by interband polarization current shows in

real-space how the current �ows between the As-atom and the Ga-atom.





Chapter 9

Conclusion

In this work it was shown that the combined theory of k.p perturbation theory

and the semiconductor Bloch equations is suitable to describe the shift and the

recti�cation current in GaAs based systems. The theory reproduces the known

symmetry properties of the shift current and its linear dependence regarding

the intensity of the optical excitation in the low intensity limit. The theory

also qualitatively reproduces the emergence of alternating shift currents for op-

tical excitation using chirped pulses, which has been observed in experiments.

A band analysis of the shift current reveals that the shift current is created

by the o�-resonant interaction of the lowest conduction band with higher con-

duction bands. The theory predicts that high excitation intensities will lead

to time-dependent current reversals of the shift current, concurrent with Rabi-

oscillation in the population. It also predicts for coherent two pulse excitation

a small intrinsic phase in the shift current because of the formation of fringes

in the population.

The extended Kane model reproduces the band structure of GaAs around the

Γ-point, but becomes incorrect for larger k-values. Consequently, in this work

the shift current simulations have been limited to excitations around the Γ-

point. For full Brillouin zone calculation an expansion of the theory is possible

by combining the SBE with full band structure k.p models or density functional

theory. Due to the symmetry of the zinceblende band structure in k-space, ex-

citation at the Brillouin zone borders could lead to new unexpected e�ects in

the shift current. A full band structure theory could also be used to investigate

other e�ects, e.g., Bloch oscillations.[55] Thus it represents a promising research

topic for future investigation.
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By using a non-standard geodesic grid, it is possible to include Coulomb

interaction for a three-dimensional band structure. The calculations have the

advantage of high convergence and comparably small numerical e�ort. A con-

verged exciton has been observed in simulations with a parabolic and a k.p

band structure. The anisotropy of the k.p band structure re�ects itself in a

anisotropy of the exciton wave function, deviating from the radial-symmetric

|1s〉 wave function known from hydrogen model. The Coulomb interaction leads

to a strong enhancement of the absorption and consequently the shift current.

However, the binding electron-hole interaction for below band gap excitation

leads to a negative hole current which results in a reduction of the shift dis-

tances in comparison with simulations without Coulomb interaction.

Due to numerical demands the Coulomb interaction with the higher conduction

bands is not included in this work. Since the higher conduction bands are re-

sponsible for the creation of the shift current, the inclusion of the higher bands

via Coulomb interaction may cause additional e�ects in the shift current and

has to be further investigated. Besides shift current, the inclusion of Coulomb

interaction allows for the investigation of other excitonic e�ects at the band gap,

e.g., two-color excitation experiments.[94]

By using the envelope function approach the extended Kane model can be

modi�ed to describe the band structure in a quantum well system. For (110)-

grown quantum well(QW) systems the shift current was analyzed and a new

shift current tensor element was observed which does not exist in bulk GaAs.

In addition, a sign change of the shift current was observed for higher excita-

tion energies and a k-space resolved analysis revealed the importance of band

crossing in the shift current. Both of these e�ects were observed in experiment,

validating the applicability of the combined theory for QW systems.

How the Coulomb interaction a�ects the shift current in QW systems has not

been investigated in this work, but the surprising results for bulk as well as the

higher exciton binding energies make this an interesting research topic. The

band crossing in (110)-grown QW systems is responsible for a non-vanishing

Berry-phase in the band structure which also represents a further topic for fu-

ture research.[110, 111]

Using a novel approach which combines k.p theory with DFT wave functions,

the shift current is visualized in real-space on an atomic scale. The calculated

shift currents in real-space obey the shift current symmetries and show the elec-

tron transfer from arsenic to gallium in the primitive cell. However, the random

phase of the wave function in k-space was treated by only considering the ab-

solute value. This leads to an approximation error which appears as a small
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symmetry break between the + and - current in real-space. Consequently, a

better treatment of the random phase is expected to lead to further improve-

ment of the method. While the method was developed for shift currents, it can

be adapted for the real-space visualization of all e�ects described by the com-

bined theory of k.p method and SBE, e.g., excitonic resonances and recti�cation

currents.





Appendix A

Additional Theory

Considerations

A.1 Theoretical Basics

A.1.1 Theory of Invariants

Applying a symmetry operation ŜG of system G on its Hamiltonian gives back

the Hamiltonian itself. Thus it must be possible to construct the Hamiltonian

in terms of symmetry invariant components.[47, 48] In point group theory a

symmetry class is expressed by a number of irreducible representations Γi. A

matrix, which expresses a symmetry operation of the system, can be decom-

posed into a set of smaller matrices which transform according to an irreducible

representation of the symmetry class. The irreducible representation represent

a basis in which all symmetry matrices and invariant expressions can be devel-

oped. Given the bands α and β, which transform according to the irreducible

representations Γα and Γβ , the Hamiltonian Ĥαβ has to transform according

to the irreducible representation Γκ contained in the product representation

Γα ⊗ Γ†β . Therefore Ĥαβ can be expanded as a superposition of its invariant

expressions Iκλµ
Ĥαβ =

∑
κ,λ,µ

aαβκλµIκλµ, (A.1)

where the index κ sums up over all invariant expressions transforming according

to the irreducible representation Γκ. The indices λ and µ sum over degeneracies

either in Γκ or in the point group itself. Combining this approach with pertur-

bation theory allows for a straightforward formulation of a �nite dimensional

Hamiltonian.
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A.1.2 Löwdin Partitioning

Normally it is not possible to distinguish between degenerate states in pertur-

bation theory. Löwdin partitioning is a quasi-degenerate perturbation theory

which starts by a separation of the eigenstates |φn〉 of a Hamiltonian Ĥ0 into

two weakly interacting subsets A and B.[112, 113] The full Hamiltonian Ĥ is

given by

Ĥ = Ĥ0 + Ĥ
′
, (A.2)

with Ĥ
′
being the perturbation. In quasi-degenerate perturbation theory it is

assumed that an unitary operator eŜ can be found with the property that the

matrix elements between the sets A and B

〈ϕA|e−ŜĤeŜ |ϕB〉 = 〈ϕA|Ĥd + Ĥn|ϕB〉 (A.3)

vanish up to the desired order in Ĥ
′
. A block-diagonal Hamiltonian Ĥd and

a non-block-diagonal Hamiltonian Ĥn is introduced. The full Hamiltonian is

divided up into

Ĥ = Ĥ0 + Ĥ1 + Ĥ2. (A.4)

The Hamiltonian Ĥ1 has non-zero elements only within the sets A and B while

Ĥ2 only between A and B, respectevely. The unitary operator e−Ŝ has to ful�ll

the conditions

Ĥd = e−Ŝ
(

Ĥ0 + Ĥ1 + Ĥ2

)
eŜ , (A.5)

Ĥn = 0. (A.6)

Using eŜ = 1 + Ŝ + 1
2! Ŝ

2 + ... and the ansatz Ŝ = Ŝ(1) + Ŝ(2) + ... Ŝ can be

develop up to the jth order. The perturbed Hamiltonian is then

Ĥd = Ĥ
(0)

d + Ĥ
(1)

d + Ĥ
(2)

d + .... (A.7)
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A.1.3 Matrix Expressions

Here the matrices of the extended Kane model are listed.

Table A.1: Explicit form of matrices used in the invariant form of the extended
Kane Hamiltonian.[52, 62]

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
12×2 =

(
1 0
0 1

)

Jx =


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

 Jy =


0 −

√
3 0 0√

3 0 −2 0

0 2 0 −
√

3

0 0
√

3 0



Jz =


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 14×4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Tx = 1

3
√

2

(
−
√

3 0 1 0

0 −1 0
√

3

)
Ty = −i

3
√

2

(√
3 0 1 0

0 1 0
√

3

)
Tz =

√
3

3
√

2

(
0 1 0 0
0 0 1 0

)

Txx = 1
3
√

2

(
0 −1 0

√
3

−
√

3 0 1 0

)
Tyy = 1

3
√

2

(
0 −1 0 −

√
3√

3 0 1 0

)
Tzz =

√
3

3
√

2

(
0 1 0 0
0 0 −1 0

)
Tyz = i

2
√

6

(
−1 0 −

√
3 0

0
√

3 0 1

)
Tzx = 1

2
√

6

(
−1 0

√
3 0

0
√

3 0 −1

)
Txy = i√

6

(
0 0 0 −1
−1 0 0 0

)
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A.1.4 Extended Kane Parameters

Here the parameters used for the extended Kane model are listed. For the

GaAs − AlxGa1−xAs QW the o�set of the valence bands is considered to be

35%.[114]

Table A.2: Band structure parameters of GaAs.[46, 115, 116]

E0 E′0 ∆0 ∆′0 ∆−

1.517 eV 4.488 eV 0.341 eV 0.171 eV −0.050i eV

P P ′0 Q Ck
10.493 eVÅ 4.780i eVÅ 8.165 eVÅ −0.0034 eVÅ

m∗ g∗

0.0665 m0 −0.44

γ1 γ2 γ3 κ q
6.85 2.10 2.90 1.20 0.01

Table A.3: Band structure parameters of Al0.35Ga0.65As.[42, 61]

E0 E′0 ∆0 ∆′0 ∆−

1.972 eV 4.527 eV 0.317 eV 0.171 eV −0.085i eV

P P ′0 Q Ck
9.44 eVÅ 1.17i eVÅ 6.26 eVÅ −0.0017 eVÅ

m∗ g∗

0.095 m0 0.61

γ1 γ2 γ3 κ q
5.59 1.59 2.31 0.54 0.01

A.1.5 Semiconductor Bloch Equations

The semiconductor Bloch equations are derived by solving the Heisenberg Eq. (3.17)

for the single-particle Hamiltonian Eq. 3.10 in Sec. 3.2.

∂

∂t
â†λk â

λ′

k =
i

h̄

[
Ĥ, â†λk â

λ′

k

]
=

i

h̄

[
Ĥ0, â

†λ
k â

λ′

k

]
︸ ︷︷ ︸

A

+
i

h̄

[
ĤLM , â

†λ
k â

λ′

k

]
︸ ︷︷ ︸

B

+
i

h̄

[
ĤC , â

†λ
k â

λ′

k

]
︸ ︷︷ ︸

C

(A.8)
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The three commutators A,B & C are solved separately using the Fermion anti-

commutator relations: [
â†λk , â

λ′

k′

]
+

= δλ,λ′δk,k′ (A.9a)[
â†λk , â

†λ′

k′

]
+

= 0 (A.9b)[
âλk, â

λ′

k′

]
+

= 0 (A.9c)

The commutator A is the homogeneous part and has the �nal form

i

h̄

[
Ĥ0, â

†λ
k â

λ′

k

]
︸ ︷︷ ︸

A

=
i

h̄

[∑
µ

ωµk â
†µ
k âµk, â

†λ
k â

λ′

k

]

=
i

h̄

∑
µ

ωµk

{
â†µk âµkâ

†λ
k â

λ′

k − â
†λ
k â

λ′

k â
†µ
k âµk

}
=

i

h̄

∑
µ

ωµk

{
â†µk âµkâ

†λ
k â

λ′

k − â
†µ
k âµkâ

†λ
k â

λ′

k + â†µk âλ
′

k δλµ − â
†λ
k â

µ
kδλ′µ

}
=

i

h̄

(
ωλk − ωλ

′

k

)
â†λk â

λ′

k .

(A.10)

The light-matter interaction is represented by commutator B and has the �nal

form

i

h̄

[
ĤLM , â

†λ
k â

λ′

k

]
︸ ︷︷ ︸

B

=
i

h̄

∑
µµ′

A ·Πµµ′

k â†µk âµ
′

k , â
†λ
k â

λ′

k


=

i

h̄

∑
µµ′

A ·Πµµ′

k

{
â†µk âµ

′

k â
†λ
k â

λ′

k − â
†λ
k â

λ′

k â
†µ
k âµ

′

k

}
=

i

h̄
A
∑
µµ′

Πµµ′

k

{
â†µk âµ

′

k â
†λ
k â

λ′

k − â
†µ
k âµ

′

k â
†λ
k â

λ′

k + â†µk âλ
′

k δλµ′ − â†λk â
µ′

k δλ′µ

}

=
i

h̄
A

∑
µ

Πµλ
k â†µk âλ

′

k −
∑
µ′

Πλ′µ′

k â†λk â
µ′

k


=

i

h̄
A
∑
µ

Πµλ
k â†µk âλ

′

k −Πλ′µ
k â†λk â

µ
k.

(A.11)
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In this section of the thesis the Coulomb interaction is omitted, ĤC = 0. Con-

sequently, the commutator C is

i

h̄

[
ĤC , â

†λ
k â

λ′

k

]
︸ ︷︷ ︸

C

= 0. (A.12)

The time evolution of the operator â†λk â
λ′

k has the �nal form

∂

∂t
â†λk â

λ′

k =
i

h̄

(
ωλk − ωλ

′

k

)
â†λk â

λ′

k +
i

h̄
A
∑
µ

Πµλ
k â†µk âλ

′

k −Πλ′µ
k â†λk â

µ
k. (A.13)
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A.2 Shift Currents in Bulk

For an excitation with two optical pulses, separated by a long delay time τ , the

analytic solution of the second-order SBE is

∂

∂t
x

(2)dd′

k = iωdd
′

k x
(2)dd′

k − i

h̄
A(t)

∑
µ

Πµd
k x

(1)µd′

k −Πd′µ
k x

(1)dµ
k

= iωdd
′

k x
(2)dd′

k − i

h̄
A(t)(

∑
d̄′

Πd̄′d
k x

(1)d̄′d′

k︸ ︷︷ ︸
A

−
∑
d̄

Πd′d̄
k x

(1)dd̄
k︸ ︷︷ ︸

B

).
(A.14)

Further evaluation of the terms A & B gives the results

x
(2)dd′

k = eiωdd
′

k t

∫ t

−∞
dt′e−iωdd

′
g t′ −i

h̄ωg
E(t′) cos(ωgt

′)
∑
d̄′

Πd̄′d
k x

(1)d̄′d′

k

= eiωdd
′

k t
∑
d̄′

−i
〈

Πd̄′d
k |E2

〉
h̄ωg

∫ t

−∞
dt′e−iωdd

′
k t′
−i
〈

Πd′d̄′

k |E1
〉

2h̄ωg

× E(t′) cos(ωgt
′ + ϕ)(E1(−ωg − ωd̄

′d′

k ) + E1(ωg − ωd̄
′d′

k )) ∗ eiω
¯
d′d′
k t′

= eiωdd
′

k t
∑
d̄′

−i
〈

Πd̄′d
k |E2

〉
2h̄ωg

−i
〈

Πd′d̄′

k |E1
〉

2h̄ωg
(E1(−ωg − ωd̄

′d′

k ) + E1(ωg − ωd̄
′d′

k ))

×
∫ t

−∞
dt′E(t′)(ei(ω

¯
d′d′
k −ωg−ωdd

′
k )t′e−iϕ + ei(ω

¯
d′d′
k +ωg−ωdd

′
k )t′eiϕ)

(A.15)

and

x
(2)dd′

k = eiωdd
′

k t
∑
d̄

−i
〈

Πd′d̄
k |E2

〉
2h̄ωg

−i
〈

Πd̄d
k |E1

〉
2h̄ωg

(E1(−ωg − ωdd̄k ) + E1(ωg − ωdd̄k ))

×
∫ t

−∞
dt′E(t′)(ei(ωdd̄k −ωg−ω

dd′
k )t′e−iϕ + ei(ωdd̄k +ωg−ωdd

′
k )t′eiϕ).

(A.16)
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Combining the solutions for the terms A and B gives the �nal expression for

the second-order

x
(2)dd′

k = eiωdd
′

k t

∫ t

−∞
dt′

−1

(2h̄ωg)2
E(t′)(

+
∑
d̄′

〈
Πd̄′d
k |E2

〉〈
Πd′d̄′

k |E1
〉

(E1(−ωg − ωd̄
′d′

k ) + E1(ωg − ωd̄
′d′

k ))

× (ei(ω
¯
d′d′
k −ωg−ωdd

′
k )t′e−iϕ + ei(ω

¯
d′d′
k +ωg−ωdd

′
k )t′eiϕ)

−
∑
d̄

〈
Πd′d̄
k |E2

〉〈
Πd̄d
k |E1

〉
(E1(−ωg − ωdd̄k ) + E1(ωg − ωdd̄k ))

× (ei(ωdd̄k −ωg−ω
dd′
k )t′e−iϕ + ei(ωdd̄k +ωg−ωdd

′
k )t′eiϕ)).

(A.17)
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A.3 Coulomb Hamiltonian

The Hamilton operator of the Coulomb interaction has the form

ĤC ≈
1

2

∑
λ1,λ2,λ3,λ4

k3,k4,q

â†λ1

k4+qâ
†λ2

k3−qâ
λ3

k3
âλ4

k4
× V λ1,λ2,λ3,λ4

k3,k4,q
, (A.18)

derived in Sec. 6.1.1. As in Sec. 3.2 the equation of motion is derived by evalu-

ating the Heisenberg equation.

i

h̄

[
ĤC , â

†i
k â

j
k

]
=

i

h̄

1

2

∑
V l1l2l3l4k3,k4,q

{
+ â†l1k4+qâ

†l2
k3−qâ

l3
k3
âl4k4

â†ik â
j
k

− â†ik â
j
kâ
†l1
k4+qâ

†l2
k3−qâ

l3
k3
âl4k4

}

=
i

h̄

1

2

∑
V l1l2l3l4k3,k4,q

{
− â†l1k3+qâ

†l2
k3−qâ

l4
k4
âjkδi,l3δk,k3

+ â†l1k3+qâ
†l2
k3−qâ

l3
k3
âjkδi,l4δk,k4

− â†ik â
†l2
k3−qâ

l3
k3
âjkδl4,k4δk,k4+q

+ â†ik â
†l1
k4+qâ

l3
k3
âjkδj,l2δk,k3−q }

(A.19)

The time-evolution of the four-point operators at the end of Eq. (A.19) is

obtained by solving the Heisenberg equation for each one. However, this leads to

a hierarchy problem where a < n >-point operator couples to a < n+1 >-point

operator. To resolve the hierarchy problem, approximations have to be made

at a certain level. In this work the Coulomb interaction is treated on the level

of the Hartree-Fock approximation where the four-point operator is factorized

intro products of two-point operators,

〈1234〉 = 〈14〉 〈23〉 − 〈13〉 〈24〉 . (A.20)

In the Hartree-Fock approximation the Coulomb interaction is cut of at the

level of two particle correlations, higher correlations e.g. biexcitons are not

included. Applying the Hartree-Fock approximation on Eq. (A.19) and using

the symmetry of the Coulomb matrix element V , the equation of motion has
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the form〈
i

h̄

[
ĤC , â

†i
k â

j
k

]〉
=

i

h̄

1

2

∑{
− V l1l2il4k,k4,q

(〈
â†l1k4+qâ

j
k

〉 〈
â†l2k−qâ

l4
k4

〉
−
〈
â†l1k4+qâ

l4
k4

〉 〈
â†l2k−qâ

j
k

〉)
+V l1l2l3ik4,k,q

(〈
â†l1k+qâ
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â†ik â

l4
k4

〉 〈
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The equation can be simpli�ed further with the random phase approximation

which states that the sum ∑
k′

〈
â†k′ âk

〉
∝ ei(ϕk′−ϕk) (A.22)

only has non neglectable contributions for k′ = k due to the anti-symmetry

of the complex exponential function. In addition, the q = 0 is omitted in the

Jellium model. With both considerations, the equation of motion for the ĤC

takes the �nal form〈
i

h̄

[
ĤC , â

†i
k â

j
k

]〉
=− i
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l3
k+q

〉〈
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(A.23)



Appendix B

Magnetic Currents

The high symmetry of a zincblende structure normally causes microscopic ω ' 0

currents to vanish. Due to the inversion asymmetry the shift current can exist

for speci�c optical excitation. In a QW the reduced symmetry allows for new

currents like the injection current. Similarly, an applied magnetic B-�eld re-

duces the symmetry in the bulk and the QW band structure which causes new

e�ects to exist, e.g. previously forbidden photo currents. [117�123]

In this Chapter a brief discussion about the magnetic e�ects on the optically

induced second-order ω ' 0 currents inside the theoretical frame of the combined

theory of k.p and SBE is presented. The magnetic B-�eld is included in the band

structure by the addition of Zeeman terms to the k.p Hamiltonian:

Ĥ
z

6c6c =
1

2
g′µB σ ·B (B.1)

Ĥ
z

8v8v = −2µB [κ′ J ·B + q′J ·B] (B.2)

Ĥ
z

7v7v = −2µBκ
′ σ ·B (B.3)

Ĥ
z

8v7v = −3µBκ
′U ·B (B.4)

The simulations are made for a magnetic �eld in (1-10)-direction and the system

is excited by a Gaussian pulse with circular polarization. In Fig. B.1 the cur-

rent parallel to the magnetic B-�eld is presented for varying B-�eld strengths.

It shows that the symmetry break inside the band structure does cause the gen-

eration of a current which is linear in the external B-�eld as seen in Fig. (2a).

A Fourier analysis, Fig. (3a), shows that the current contains a small frequency

component ≈ 6 meV which is largely independent on the external B-�eld and

therefore an intrinsic part of the band structure. An analysis of the band struc-

ture, in particular the region which lies in the range of the optical excitation,
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Figure B.1: A magnetic B-�eld in (1-10)-direction is applied to the system which
is excited by a circular polarized pulse propagating in (001)-direction. (1a) The
photo current generated in the system parallel to the applied B-�eld. (1b) is
the photo current normalized to the B-�eld strength. The black line represents
the zero current and is included as reference. (1b) and (2b) are the absolute
and normalized THz-�eld created by the current. (3a) is the Fourier transform
of (1a). (3b) is the Fourier transform of the valence band current.
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reveals that the small frequency in the magnetic current corresponds to the spin

splitting in the light-hole valence band, Fig. (3b). Normally due to the inversion

asymmetry of the band structure, the intraband coherences cancel each other

for −k and +k, but due to the magnetic introduced symmetry break a small

net contribution remains.

In Fig. B.2 the current in (110)-direction, perpendicular to the magnetic

B-�eld and the optical propagation direction, is shown. In comparison to the

parallel current, the perpendicular current is larger by a magnitude. This means

that symmetry break in the band structure causes currents to �ow mainly per-

pendicular to the applied magnetic �eld. The light-hole coherence is still con-

tributing to the current, but its relative contribution is smaller.

In Fig. B.3(a) the current is plotted as function of the ellipticity of the optical

excitation. The parallel current displays a

J‖(ϕ) ∝ cos(ϕ) (B.5)

dependence and has a maximum and minimum for a fully σ− and σ+ polarized

excitation, respectively. For a linear polarization at a phase of 0.5π, which is

lying parallel to the magnetic B-�eld, the parallel current vanishes. Seeing how

σ− and σ+ excitation generate a current in the respective opposite direction,

the linear polarization can be understood as a super position of σ− and σ+

light. Consequently, for a fully linear polarization the parallel current vanishes.

In comparison the anti-parallel current follows

J⊥(ϕ) ∝ sin(ϕ) + C, (B.6)

resulting in the current being the largest for pure linear polarization and being

the smallest for pure circular polarization.

In Fig. B.3(b) the angular dependence of the linearly excited photo current

is plotted. The angle 0.25π is equivalent to the phase of 0.5π in Fig. B.3(a).

For an angle of 0.25π and 0.75π, parallel and anti-parallel to the magnetic B-

�eld respectively, the parallel current vanishes while the anti-parallel current is

minimal and maximal. As in the case of circular polarization the parallel and

anti-parallel currents display

J‖(θ) ∝ cos(2θ)

J⊥(θ) ∝ sin(2θ) + C,
(B.7)
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Figure B.2: As in Fig. B.1, a magnetic B-�eld in (1-10)-direction is applied to
the system which is excited by a circular polarized pulse propagating in (001)-
direction. (1a) The photo current generated in the system perpendicular to the
applied B-�eld, �owing in (110)-direction. (1b) is the photo current normalized
to the B-�eld strength. The zero current is again included as reference. (1b)
and (2b) are the absolute and normalized THz-�eld created by the current. (3a)
is the Fourier transform of (1a). (3b) is the Fourier transform of the valence
band current.
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Figure B.3: The maximum value of the photo currents J‖ and J⊥, parallel and
perpendicular to the external magnetic B-�eld, generated in the system with
an applied B-�eld, 1.2 T, in (110)-direction. (a) The current dependence on
the phase of the Ey component. A phase of 0π and 1π represents σ− and σ+

circular polarization while 0.5π is purely linear polarization in (110)-direction.
(b) The peak current shwon as function of the polarization angle θ between the
x-axis and the linear polarized optical excitation.

dependence. Using Jones notation the basic vectors for circular polarization are

de�ned as

|+σ〉 =
1√
2

(∣∣L‖〉+ i|L⊥〉
)

|−σ〉 =
1√
2

(∣∣L‖〉− i|L⊥〉
)
,

(B.8)

with
∣∣L‖〉 and |L⊥〉 standing for linear polarizations parallel and perpendicular

to the magnetic �eld, in this case (110) and (1-10), respectively. The linear

polarizations can be rewritten in the circular basis as

∣∣L‖〉 =
1√
2

(|+σ′〉+ |−σ′〉)

|L⊥〉 =
−i√

2
(|+σ′〉 − |−σ′〉) .

(B.9)

An arbitrary linear polarization vector |L〉 =
∣∣L‖〉 cos(θ′) + |L⊥〉 sin(θ′) can be

written as

|L〉 =
1√
2

(|+σ〉 (cos(θ′)− i sin(θ′)) + |−σ〉 (cos(θ′) + i sin(θ′)))

=
1√
2

(
|+σ〉e−iθ′ + |−σ〉eiθ′

)
.

(B.10)
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Because second-order photo currents are being investigated, the square of

the optical �eld has to be considered. It has the simple form

J ∝ |L〉2 =|+σ〉2e−i2θ′ + 2|+σ〉|−σ〉+ |−σ〉2e+i2θ′

=
(
|+σ〉2 + |−σ〉2

)
cos(2θ′) + 2|+σ〉|−σ〉

+ i
(
|+σ〉2 − |−σ〉2

)
sin(2θ′)

. (B.11)

In Fig. B.3 the angle θ is the angle between the linear polarization an the

x-axis, thus θ = θ′ + π
4 . Entering this in Eq. (B.11) and considering that

sin(θ + π
2 ) = cos θ, the �nal expression is

J ∝ |L〉2 =
(
|+σ〉2 + |−σ〉2

)
sin(2θ) + 2|+σ〉|−σ〉

− i
(
|+σ〉2 − |−σ〉2

)
cos(2θ).

(B.12)

A simple comparison between Eq. (B.7) and Eq. (B.12) reveals, that the parallel

current J‖ is given by the imaginary part of Eq. (B.12) while the anti-parallel

current J⊥ is given by the real part.

Similar magnetically induced photo current dependencies have been observed

in GaAs QW.[121]
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