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Chapter 1

Abstract

A combined theory of k.p-perturbation theory and the semiconductor Bloch
equations (SBE) is used to simulate photo currents in GaAs based systems. The
focus lies on the so-called shift current, a microscopic current caused by the spa-
tial motion of excited carriers inside the crystal structure. The validity of the
combined theory is tested for the example of bulk GaAs using known symmetry
properties of shift currents. Using the SBE, which allow for a non-perturbative
and k-resolved analysis of shift currents, various linear and non-linear properties
of shift currents are investigated, in particular, signatures of Rabi-oscillations

in bulk and the influence of band-mixing in quantum well systems.

Excitonic effects in shift currents are investigated for a full three-dimensional
band structure. The inclusion of Coulomb interaction is numerically demand-
ing and normally done using approximations, e.g., a parabolic band structure.
Such approximations cannot be applied for shift currents. To deal with this
numerical challenge, the development of a new non-uniform grid is necessary.
The convergence and accuracy of the new grid as well as the obtained results
for the exciton binding energy and the shift current are presented and discussed.

A novel method is developed which consists of combining k.p-perturbation
theory with real-space wave function obtained from density functional theory.
The method allows to simulate shift currents in real-space with atomic resolu-

tion.
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Kurzfassung

Eine vereinheitlichte Theorie von k.p Storungtheorie und den Halbleiter-
Bloch-Gleichung wird benutzt fiir die Simulation von Photostromen in GaAs-
Systemen. Der Fokus der Arbeit ist die theoretische Beschreibung und Analyse
des sogenannten Shiftstroms, ein mikroskopischer Strom erzeugt durch die rdum-
liche Bewegung von angeregten Ladungstrigern. Mit Hilfe bekannter Eigen-
schaften des Shiftstroms wird die Theorie am Beispiel eines GaAs Festkor-
perkristalls getestet. Der nicht storungstheoretische Ansatz der Halbleiter-
Bloch-Gleichungen erlaubt die Analysis von linearen und nichtlinearen Eigen-
schaften des Shiftstroms.

Der Einfluss von exzitionischen Effekten auf den Shiftstrom wird fiir einen
dreidimensionalen Kristall untersucht. Der numerische Aufwand fiir die Ein-
bindung der Coulombwechselwirkung wird haufig durch Ndherungen reduziert,
diese sind jedoch fiir den Shiftstrom nicht méglich. Die Einbindung der Coulomb-
wechselwirkung bedarf der Entwicklung eines neuen, nicht uniformen Gitters.
Sowohl die Konvergenzeigenschaften und die Genauigkeit des Gitters als auch
die simulierten Shiftstrom-Resultate werden vorgestellt und diskutiert.

Eine neue Methode wird vorgestellt, die k.p Storungstheorie mit Realraum-
Wellenfunktionen aus Dichtefunktionaltheorie kombiniert. Diese ermdglicht die

Simulation von Shiftstromen im Realraum mit atomarer Auflsung.



Chapter 2

Introduction

An electric current is a controlled energy transport without the involvement of
macroscopic moving components. This seems self-evident today, but it was a
major factor in the so-called second industrial revolution in the middle of the
19th century. It enabled to power devices without the use of mechanical belts,
was used for long range communication via the invention of the telegram and
the phone, and led to the invention of the electric lamp, a small and practical
artificial light source for its time. After decades of miniaturization and devel-
opment electric currents are an indispensable part of the modern world and
omni-present. With world wide increasing power consumption and environmen-
tal protection being a big challenge, research and development of alternative
energy sources and the development of more power efficient devices is a very

important research topic.

From early on it is known that optical light can be transformed into kinetic
energy in the form of electronic motion. The photoelectric effect is a prime
example of this, describing an electron absorbing a photon and escaping its en-
vironment.|1, 2] For gallium arsenide (GaAs) this process of photo-ionization,
which lifts the electron from its bound state to the vacuum level, corresponds
to a photon energy of at least F.,. = 3eV.[3] In comparison, the photovoltaic
effect describes an electron absorbing a photon but not leaving its environment.
Instead, the electron moves in it and thus creates a microscopic current. The
energy transformation of optical light into an electric current is a broad field
of research because of the large number of suitable materials and their poten-
tial applications. Materials ranging from classical bulk, to quantum wells and
quantum dots, and to organic molecules can be used for numerous photoelectric
applications, e.g. solar cells, photosynthesis, and optical control.[4-6] A clas-

sical and widespread material for photo current generation are semiconductors
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and semiconductor nanostructures which are used in the construction of solar

panels.|[7]

The non-linear optical properties of semiconductors allow for a large variety
of applications, like second harmonic generation or THz spectroscopy, to name
just a few.[8+12] Under usual circumstances, no external bias or magnetic field,
optical excitation does not generate electric currents in semiconductors. But us-
ing quantum interference as in two-color excitation, i.e., an excitation with two
different photon energies, it is possible to generate currents in the semiconductor
band structure.[13H16] Using certain material properties, e.g. inversion asym-
metry or reduced dimensionality in a quantum well, it is also possible to generate
currents by only one-color excitation.|17H22] One particular photocurrent is the
so-called injection current which is caused by an asymmetric distribution of car-
riers in k-space. In the past, several investigations were performed for injection

currents in GaAs quantum well systems.[|23H27]

In this work the focus lies on another kind of current, the so-called shift
current. The shift current is caused by the shift of carriers in real-space induced
by optical excitation. Experimental research on shift current was performed
for bulk materials[28-30] as well as quantum well system[31-34]. Shift currents
can appear in different material types such as semiconductors, ferroelectrical,
and antiferromagnetical materials.[35-38] Previous theoretical research on shift
current was performed using theories limited to frequency space.[39-41]

In contrast, a combined theory of k.p perturbation theory and semiconductor
Bloch equations is presented in this work which allows for the description of
shift currents in time domain. This approach has the advantage that it allows
for investigations beyond the perturbation limit and can be straight forwardly
expanded to include excitonic effects. The combined theory has been used to
describe the injection current in GaAs based systems in good agreement with

experiment.|24] [25]

The scope of this work lies on the question how well the combined theory
is capable of describing shift currents in various semiconductor systems. The
thesis begins with an introduction to the theoretical basics of k.p perturbation
theory and the semiconductor Bloch equations in Chapter[3] In addition, a brief
motivation and explanation about the so-called geodesic grid is given which will
be of major importance for simulations with Coulomb interaction.

In Chapter [] the validity of the combined theory is tested for the example of
bulk GaAs by reproducing known shift current properties. After confirming

the shift current properties, various non-linear properties of shift currents are



investigated. Further, the advantages and disadvantages of simulations with
a non-uniform geodesic grid and with a Cartesian grid are compared and dis-
cussed.

In Chapter [5] the combined theory is used for the simulation of quantum well
systems. In a quantum well the reduced dimensionality has a great impact on
the band structure which gives rise to new effects. How the reduced dimension-
ality affects the shift current is studied.

In Chapter [f] the excitonic effects on shift currents near the band gap are inves-
tigated for a full three-dimensional band structure. A detailed explanation for
the inclusion of the numerically challenging Coulomb interaction is given and
the exciton binding energy is calculated for a parabolic and a k.p band struc-
ture. Afterwards, the exciton contributions to the shift current are presented
and discussed.

In Chapter [7] a brief discussion about another type of photo current, the recti-
fication current, is held for bulk GaAs and GaAs quantum well systems.
Finally, in Chapter [§ a novel method is developed which enables the visualiza-

tion of shift currents with atomic resolution in real-space.
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Chapter 3

Theoretical Basics

In this thesis a unified approach of k.p perturbation theory and the semiconduc-
tor Bloch equations is employed to simulate different photo currents in GaAs-
based systems. The k.p perturbation theory is a well established method for
the calculation of semiconductor band structures in bulk and quantum well
systems.[42-48] Over the decades several different k.p models were developed,
ranging from 6 x 6 band models for calculations around the I'-point to 30 x 30
full Brillouin zone calculations, QW models incorporating strain effects, and
spin-orbit coupling.|[49H52] The time evolution of the photo-excited system is
described via the semiconductor Bloch equations, abbreviated as SBE, a set of
non-linear coupled differential equations used to simulate the optical excitations
inside a semiconductor.[53} 54] The SBE can be used to describe numerous ef-
fects inside semiconductors, i.e., Bloch oscillations or the electron g-factor in
a quantum well.[44] |55] The theoretical basics of k.p theory, in particular the
extended Kane model, and the SBE are presented in this Chapter.

For theoretical simulations Cartesian standard grids are often used due to
their uniformity and easy implementation, but they have the disadvantages
of including non-important areas and bad scaling behavior. In contrast, non-
standard grids, which are adapted for the specific problems and only include
the important areas of the simulation space, have a better scaling having be-
havior leading to improved calculation times, but are harder to implement as
a consequence. A non-standard geodesic grid is used for the photo current
simulations and the exciton calculations in Chapter [6] Its advantages over an
Cartesian grid are of great importance for the band edge calculations including
Coulomb interaction. The basics and construction of a geodesic grid are de-
scribed at the end of this Chapter.
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3.1 Extended Kane Model

3.1.1 Basics of k.p Perturbation Theory

The band structure of GaAs is obtained by solving the extended Kane model,
a 14-band Hamiltonian based on k.p perturbation theory[46, [52]. As the name
implies, the k.p perturbation theory is a perturbative approach for solving the
stationary Schrédinger equation I:I|g0> = E|p) of a particle in the periodic po-
tential of a crystal. The theory starts with the Hamiltonian for a particle in a
periodic potential Vj

=L+ (3.1)

2m0

The eigenfunctions |¢) of Eq. (3.1) have to satisfy the Bloch theorem |p) =
X T|v). After solving the eigenvalue equation for the plane wave term eX*, the

Hamiltonian for the unit cell periodic part |v) of the Bloch theorem is

N o S
Ho=H+ +—k-p, (3.2)
2mo mo
with E, (k) being its eigenvalues. Besides the quadratic term 2%~ T ® the Hamil-

tonian Hy contains the name giving k - p coupling term. In addition to k - p
coupling the extended Kane model also includes spin-orbit interaction. The
spin-orbit interaction is responsible for a spin-splitting of electron states in in-
version asymmetric systems even without an external magnetic field.[56H59] To
include spin-orbit interaction in k.p theory, the spin-orbit Hamiltonian Hgo is
added to the Hamiltonian as a small perturbation,

Htflgo=f— —" o.px (VW) (3.3)

4mic?

with & = (04, 04,0,) being the vector of the Pauli spin matrices.[60] Solving
the plane wave term e'¥* for Hgo leads to the full k.p Hamiltonian:

Hy, = Ho + {hk +p} - o x (VVp)

422

N 5
— 1 k.
+2m0+m0 p—|—4 2c?

—A+V h2k2+ik +L{hk+A} o x (V1)
2mg o+ 2mo Mg p 4mic? p 0

{hk+p} o x (V) (3.4)

The new eigenkets |Ak) of Eq. (3.4) are expanded in a tensor product consisting
of the old eigenkets |vk) of the unperturbed Hamiltonian (3.2) and the spinor
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basis |o),

M) = > o (k)lvk = 0) @ o). (3.5)
vio=T,{

Multiplying the bra vector (¢'k = 0] ® (¢’| from the left to Eq. (3.5) gives the

eigenvalue equation

S E (0)+@ S Br + ke P 4 AL L (k) = Ex(k)cave (K)
v 2m0 vv'Ugco’ mo oo’ oo’ Av' o’ — L) Avo )

v o’

(3.6)

with P%”, and A””, being material specific parameters obtained from experi-

ment.

With infinite bands involved, Eq. is an infinite eigenvalue problem
and numerically unsolvable. For numerical calculations a reduction to a finite
number of bands is required and done in three steps. First, the theory of in-
variants is applied to write the Hamiltonian in terms of its universal symmetry
invariant form H;(k). Second, Léwdin partitioning is used to derive a finite
Hamiltonian Hy (k). Third, the invariant Hamiltonian H;(k) and the finite
Hamiltonian Hy (k) are matched to each other. Using this method one arrives
at a finite eigenvalue problem usable for numerical simulations. A more detailed

description of the theory of invariants and Léwdin partitioning can be found in

Appendix and Appendix

3.1.2 Invariant Formulation of the Extended Kane Model

The extended Kane model is a 14 band k.p Hamiltonian for semiconductors with
zincblende structure.|52] |61] The Hamiltonian consists of 6 valence bands, the
split-off band |7v) and the heavy & light hole band |8v), and 8 conduction bands,
the lowest conduction band |6¢) with s-symmetry and the higher conduction
bands |7¢) & |8¢) with p-symmetry. At the gamma point k = 0 the bands |8v)
and |8¢) are fourfold degenerate. The Hamiltonian of the extended Kane model

is

I:IBCSC I:ISC7C I:ISCGC I:I&:Sv I:I807’U
I217(:80 I:I7c7c I:I7c6c I:I7c8v I217(:71)
Hisxis = | Hoese Heere Hocse Heeso Hrerw | - (3.7)
I:IS’USC ﬁ8U7C I:ISUGC I:IS’US’U I:ISU7U
I:I7U8c I:I7v7c I:I7’UGC I:I7v8v I:I7v7v
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The sub-Hamiltonians of the extended Kane model have the invariant form of:

I:ISCS(: :E(/) + A6
I:I7c7c :E(/)

hk?
2m/’

Heeoe =Fo +
2

A R 1
Hgos0 :% {’Yikz — 274 KJ% — 3J2) k2 + cp] — Ay [{ Ty Iy} {Eewy Ky} + cp]}

2
+ %ck [{Jas I} = J2} ko + cp)

Hypry = — Ag — 7 1k?

TvTy = 0 2 24!
ﬁ807c =0
1:18060 = - \/§PI (Uﬂckfﬂ + Cp)

.\ 2 . 1, _
H8CSU = - EQ ({Jy7jz}kac + Cp) + EA
I:ISC'?v = - 2Q (Uyzkm + Cp)

1
— P’ (04ky + cp)

I:I c6c —

I:I708v - — 2Q (Tyz + Cp)
N 2

H7c7v = - gA

I:IGCSU :\/§PT -k

.\ 1

H6c7'u :—§P0'k

F = — i —_6~ 2 _ /

H8v71) - 2m0 [ 672 (Uz'pkr + Cp) 1273 (Ury {k"m ky} + Cp)]

— V30 (Uyzks + cp) (3.8)

The abbreviation cp stands for cyclic permutation and {A, B} = 1 (AB + BA).[62]

The first five terms are the diagonal terms of the Hamiltonian containing
the fundamental band energies at k = 0, i.e., the I'-point. The remaining off-
diagonal terms represent the inter- and intraband interaction. The parameters
for the extended Kane model are material specific and are acquired from exper-
iment, see the Appendix[A.T.4]for the used values in this work. The GaAs band
structure is obtained by a diagonalization of the eigenvalue equation

Hisx14(K) A k) = ex(k)|A, k) (3.9)

for the desired number of k-points, with Higx1a being the full 14 band k.p
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Table 3.1: Tensor matrices used in the extended Kane model. The explicit form
of the sub matrices can found in Appendix

o = (0z|0ylo-)
J = (JmlJyUZ)
T = (FI2)
T= (TxlTleZ)
U= (Uz|Uy|UZ)

Hamiltonian. The extended Kane model includes k-terms up to the third order
and accurately describes the band structure near the I'-point, but for larger

k-vectors k.p-models with a higher number of bands are required.

1 remote C T T T T T ]

E bands 48
47 Fm e
A l—-\ 45 F ——— ]
E&Z-LO j C < 18 ]
] p|C Lo17 ;
E; J J g 16 f 1

4 .

ITEO j Q ‘JJZ' 0.0 7§
A% o1k ]

Vv

L 4 K
T < T P 0.2 f ]
8%\ Alo =)—u_/_/cl 03} 1
_____ 0.4 /\
N

-06 -04 -02 0 02 04 06
1

Ky [nm™]
Figure 3.1: Left: The schematic band structure of the extended Kane model,
taken from [46]. The parameters Ey, E}, Ag and A}, stand for the energy sepa-
ration of the bands at the I'-point. The parameter P, P’, Q and A~ represent
coupling between the bands of the extended Kane model. Contributions of
higher bands are factored in by the remaining parameters. Right: A calculated
band structure for GaAs using the extend Kane model along the k = k,e, di-
rection. The valence bands |7v) & |8v), blue, the lowest conduction band |6¢),
green, and the higher conduction bands |7¢) & |8¢), red, are displayed.
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3.2 Semiconductor Bloch Equations

The semiconductor Bloch equations (SBE) are a set of coupled first-order non-
linear differential equations and are used for the simulation of the time evolution
of optical excitations in the system. The Hamiltonian for a particle inside the

band structure of a semiconductor has the form

H=Hy+Hpy + He. (3.10)
The Hamiltonian
o= exalay (3.11)
Ak

represents the unperturbed system € is the energy of band \ at a point k in
reciprocal space and ak & ak the corresponding electron creation and annihi-

lation operators.

The Hamiltonian Hy 5, represents the light-matter interaction and its explicit
form depends on the used gauge. In this work the velocity gauge is used in which
the electric field is described via the electromagnetic vector potential A(t).|63]
In the velocity gauge the Hamiltonian for a particle in an external electric field

has the form

1

- L
2m

L€ 2
[p - EA(t)] V() (3.12)
with e being the electron charge and ¢ the speed of light. This is the so-called
minimal coupling Hamiltonian. Solving the brackets, the homogeneous term

A2

T, = ;’—m +V () (3.13)

represents an unperturbed particle in a potential V' (r). For a periodic crystal
potential, the Hamiltonian in Eq. (3.13) is equivalent to the band structure
Hamiltonian in Eq. (3.11). The remaining term

2

~ A e N e
Hiy =—5 —A(t) P+ 02A2(t) (3.14a)
2
e
- 7%1& SomNaPay + 2mchZ(t) (3.14b)
AN

represents the light-matter interaction, with T} being the so-called velocity

matrix element.
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Alternatively, the light-matter interaction can be expressed in the dipole

gauge, also called length gauge|64], where the light-matter Hamiltonian has the

form
A, = —ei - E (3.152)
=-E- > dValay, (3.15b)
%Y
with E = —4 being the external electric field and d* the so-called dipole

matrix element. Because physics has to be gauge independent, both gauges
should be equivalent. But due to approximations and numerical constraints,
e.g. an infinite number of bands cannot be evaluated in a numerical simulation,
the gauges may yield different results depending on the optical excitation, es-

pecially for below band gap excitation.[65]

The last Hamiltonian H¢ represents the Coulomb interaction in the system.
In the first half of this dissertation Coulomb interaction is omitted and therefore

the Hamiltonian is considered to be
He=0 (3.16)

at this point. From a numerical point of view the incorporation of Coulomb
interaction for an anisotropic multi-band system is very demanding and will be
discussed in detail in Chapter [6]

The two point operator :c’\’\ = dL’\aﬁ describes the state of the system at a

given time ¢, with A and A’ being band indices. For A = )’ the operator aﬁﬁx =
nk represents the population in band A. For A # X, & “\A = ﬁf\()‘, represents the
inter- or intraband polarization between band A and )\’ . The equation of motion

for an arbitrary operator A can be obtained from the Heisenberg equation|60]

= {5 =) o1

~ ’ ~ ~ ~ A
Evaluating Eq. (B.17) for A = i = le()\af: and H = Hy + H;;, leads to
the SBE. A full derivation of the Heisenberg equation can be found in the
Appendix [A7T.5] The SBE have the explicit form of:
d s _F(a w1t o AN Ny, A L
%ﬂ?k = ﬁ (Gk — €k ) .'Bk + ﬁmioA( ) ; <H“ b — ]'_‘[k “:Ck#) — mxk
(3.18)
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The homogeneous part of the SBE contains the band energies €] and ¢ and

represents the transition energies between band « and +' at reciprocal point k.
In this work the dephasing and relaxation processes in the material are described
by phenomenological dephasing and relaxation times 75 & T3. In this form the
SBE describe non-interacting particles since effects caused Coulomb interaction

are omitted here.

The inhomogeneous part of the SBE describes the light-matter interaction
which is here written in the velocity gauge IT- A. The advantage of the velocity
gauge is that the k-points can be treated independently of each other. Using
the eigenvectors |\, k) the momentum matrix elements are calculated via[50, [66]

mo

N =
k %

(ViH (k)) . - (3.19)
In comparison the dipole gauge d - E contains gradient terms in the SBE, con-
necting k and k’. The elements are connected by the simple relation I =
—iw™'d™’. Due to the inconvenience that the wave function can have a random
phase factor ¢y at each k-point, a phase correction has to be made. Otherwise

solving the SBE will lead to incorrect results.[65]

When solving the SBE as in Eq. all orders of the external electric
field E are included in the equation of motion. With effects proportional to
different orders of E all summed up together, a distinction between them can
be difficult, especially if the orders have different magnitudes. To circumvent
this problem, the SBE can be expanded powers of the external field E. The

expansion scheme has the form:

oz
ot

0xz(2)
ot

oz
ot

o QM + 2O B(t)

o Q@ + 2. B(t)

x Qz® + 2@ . E(t) (3.20)

dx(™)

el Qz™ 4 (=D L B(t)

The term Qz(™) stands for the homogeneous and z(*~1) . E(t) for the inhomo-
geneous part of the SBE. For each order (V)| i > 0, the SBE have to be solved
which leads to an increased numerical effort. The zeroth-order z(?) represents

the starting condition of the system which normally refers to an unexcited semi-



3.3. x» PHOTO CURRENTS IN SEMICONDUCTOR SYSTEMS 17

conductor, i.e., no excited excitations or polarizations are present in the system.
The advantage of this approach is that the different orders of E and consequently
effects belonging to the corresponding orders are separated and can be analyzed
individually. Here the expansion scheme is explain at the more intuitive ex-
ample of an external electric field E, but it can also be applied for the vector

potential A.

3.3 x® Photo Currents in Semiconductor Sys-

tems

The linear response of a semiconductor system to an external electric field is

given by its susceptibility tensor x:
P(t) = x-E() (3.21)

The polarization P can be expanded in powers of the external electric field E.

Each polarization of the nth-order has its specific susceptibility tensor y(™,
P(t) =Y POt)=> D E). (3.22)

Due to frequency mixing occurring in non-linear orders, the second-order sus-
ceptibility and therefore the system response can be further broken down into
the different mixing possibilities

PO)(t) = x®) (—ws; wg, ws) Bu, (O By, (1), (3.23)
with wy = wg + w,. In non-centrosymmetric semiconductor systems the finite
second-order optical susceptibility y (%) (0,wq,wy) allows the generation of opti-
cally induced electric currents using optical excitation with single frequency wy.
It is noteworthy that the susceptibility tensor X(2)(O,wg,wg) can exist without
applying an external bias, thus the photo current is created purely by the sym-
metry properties of the crystal. Because of different microscopic origins, one
can distinguish between three different currents, the injection current J,;, the

shift current Jgp; ¢, and the rectification current J,..[39]

The injection current J;,;, also known as circular photogalvanic effect, arises
from an asymmetric distribution of spin-polarized carriers in k-space. The asym-

metric distribution of spin-carriers is due to spin-splitted bands caused by the
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time time time

Figure 3.2: A schematic representation and comparison of the three photo
currents, from left to right: injection, shift, and rectification current.

In the upper row depicted, the optical polarizations required for the excitation
and the microscopic cause of each current. In the case of the injection current
the circular polarized excitation causes an asymmetric distribution of carriers in
k-space. For the shift current, the linear polarized excitation leads to a spatial
movement of carriers from one atom to another. A linear polarized excitation
also causes a static polarization in the material, the optical rectification. Known
from Maxwell’s equations that J o P, the time derivative of the optical rectifi-
cation is the rectification current.

In the lower row an idealized form of the currents as function of time. In a sys-
tem without relaxation the injection current emerges with the optical excitation
and remains constant afterwards. In the analytical limit of pure off resonant
excitation, the shift current follows the square of the pulse envelope E?(t). The
off resonant limit predicts for the rectification current that it follows the time
derivative of envelope 9; E%(t).
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Dresselhaus and/or Rashba effect in systems lacking spatial inversion symme-
try. In this model J;,; is obtained from the populations in both conduction and

valence band ny = zp* via

Tinj(t) = > Ty, (3.24)
Ak

While bulk GaAs lacks inversion symmetry, the GaAs band structure is still
inversion symmetric in k-space due to the fact that the Schrédinger equation
of the system still has to fulfill the time-reversal symmetry.[67] The inversion
asymmetry instead lifts the spin degeneracy of the band structure. Only along
the high symmetry lines (100) and (111) a spin degeneracy exists in bulk GaAs.
The inversion symmetric of the band structure in bulk GaAs forbids the gener-
ation of an injection current, but in systems of further reduced symmetry like
GaAs quantum wells a non-vanishing injection current may exist. Due to the
required spin-polarized carriers, circularly polarized light is needed for the gen-
eration of an injection current.

The shift and rectification currents will be discussed at the beginning of Chap-
ter @ and Chapter [7] respectively.

3.4 Geodesic Grid

Looking at the symmetry, the point group Ty, the point group of a tetrahedron
and the zincblende structure, is a subgroup of the point group Oy, the point
group of a cube and the diamond structure. In practical manner, the zincblende
structure is a derivation of the diamond structure. The diamond structure is
derived by overlaying a face centric cubic (fcc) lattice with a second fcc lattice of
the same atom basis, displaced by the vector %2 (1|1|1) with ag being the lattice
constant. The zincblende structure is obtained the same way, except that the
second fcc lattice has a different atom basis. As a result of the different atom
basis the zincblende structure lacks inversion symmetry. In point group terms
this can be written as Oy, = Ty ® C;, with C; being the group only including
the identity and the inversion. A generalization of this idea by Lipari and
Baldareschi [68] introduces that the cube symmetry is a sub group of the full

rotation group R,
R> 0O, DT, (3.25)

The symmetry reduction manifests itself as new terms in the band structure of
the respective subgroup. It is known that this new terms are small compared

with the shared terms between the subgroups.[69] Based on this a symmetry
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hierarchy can be build for the Hamiltonian:

H= I:Isphere + I:Icube + I:Itetra (326)

For small k-vectors around the I'-point the Hamiltonian IiIsphe,»e is the largest
term. As a consequence, the band structure around the I'-point can be described

by a parabolic k? dispersion in good approximation.

When solving the SBE numerically, the continuous k-space has to be dis-
cretized. A Cartesian grid is the easiest to implement, but based on the above
mentioned symmetry considerations, a spherical k-grid may be better suited for
the discretization of the band structure. While a discretization based on spher-
ical coordinates would be a candidate, spherical coordinates have the problem
that the k-points have a non-homogeneous distribution on the sphere surface.
This leads to the well know problem of the increasing point density towards
the poles resulting in a singularity at the poles themselves. Another type of
spherical grid is the so-called geodesic grid which has a highly homogeneous
point density on its surface. For this reason geodesic grids are often used when
modeling the surface of a sphere, e.g. the surface of planet earth in global cli-
mate simulations.[70} [71] The starting point of a geodesic grid is a polyhedron,
usually a convex regular icosahedron as seen in Fig. The surface is further
discretized using equilateral triangles. The final step is to project the new grid
onto a sphere resulting in a very homogeneous distribution of points on the

sphere surface.

Figure 3.3: A convex regular icosahedron which is often used as a starting point
in the construction of a geodesic grid. The picture is taken from the website
https://en.wikipedia.org/wiki/Icosahedron.
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In this work the geodesic grid has two essential parameters, the total number
of used spheres N and the number of points on a sphere surface V4. The total
grid consists of several spheres, starting from a sphere with radius k,,;,- The
spheres are placed with linear increasing radius until the last sphere with radius
kmaz- Depending on the problem the parameters k,,;, and k., are either set
by hand or determined by the program in such a manner that for a given cen-
tral photon energy hiwy, the band structure is properly resolved in k-space. The
advantage of the later method is that for a fix number of k-points the grid can
adjust itself to varying photon energies hw; without losing much convergence

for higher energies.

The product of N X N4 determines the total number of k-points in a
simulation. This seems trivial, but it has the effect that the number of total k-
points NN is now linear in either Ng or N4. In contrast, in a three-dimensional
Cartesian grid the number of grid points growths cubic N3, with N being the
number of grid points per axis. This alone is a huge improvement for optimizing
the resolution of a geodesic grid and will be of major importance for including
the Coulomb interaction into the SBE, see Chapter

A3 w 1520mev  ®m
(@ Al = (b) 1690meV
A H

kz [nm™]
kz [nm‘l]

0.02"
K oy 002005 005 (0

Figure 3.4: (a) A geodesic grid sphere in k-space. The labels A0, A1 and A3
stand for Ny = 12, N4 = 48, and Ny = 162 grid points per sphere surface,
respectively. (b) Two geodesic grids with N = 60 spheres and N4 = 48 points
per sphere. The grid parameters k,,;, and k,,q, are chosen in such a manner
that the grid resolves the area of the band structure in which the transition
from the valence band to the lowest conduction band is resonant to the optical
excitation energy hwpr. Displayed are two grids for an excitation energy of
hwr, = 1520 meV and hwy, = 1690 meV. As it can be seen, for fiwy, = 1520 meV,
3meV above the fundamental band gap of 1517 meV the grid fully encompasses
the I'-point. For fiwy, = 1690 meV the grid instead forms a sphere shell which
does not include the I'-point.






Chapter 4

Shift Currents in Bulk GaAs

The shift current Jp; ¢ is created by the motion of excited carriers in real-space
during the moment of optical excitation. In inversion symmetric systems each
microscopic current j, which is caused by the movement of electrons from the
valence band to the conduction band, has an anti-parallel current —j result-
ing in a zero net current J = 0. In systems with spatial inversion asymmetry
such as GaAs a microscopic current j can be created for certain optical polar-
izations while the corresponding anti-current —j is symmetry forbidden. The
non-vanishing net current is the so-called shift current, one current responsible
for the bulk photovoltaic effect.|17, [38]

In the combined approach of k.p theory and SBE the shift current Jgp; ¢ is the

w = 0 frequency component of the polarization current

Tat)= > ILNapY. (4.1)
AN #£N k

The polarization current J,,; is dominated by optically-induced first-order con-
tributions with w > 0, whereas the shift current is a much smaller second-order
effect. To obtain the shift current a Fourier frequency filtering method is ap-

plied, see Fig.

This Chapter begins by confirming that the combined approach is indeed
suitable to describe shift currents in bulk GaAs. After the confirmation, a com-
parison between a standard Cartesian and a geodesic grid is made, focusing on
the convergence properties. Afterwards, the shift current is investigated regard-
ing non-linear effects like Rabi-flopping and coherent control properties.

23
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Figure 4.1: (a) To separate the shift current Jgp;s; from other contributions
in J,o; a Fourier transformation F is performed on the full signal. (b) In fre-
quency domain a filter is applied on J,;(w) around w = 0 which removes higher
frequency components. (c¢) The so obtained signal in frequency space is back
transformed F~! to the time domain. (d) The calculated current is the shift
current Jgp; e (t).
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4.1 General Shift Current Properties

For the simulations of the shift current first the band structure and momentum
matrix elements are obtained by matrix diagonalization of the extended Kane
Hamiltonian H(k). The eigenvalues € form the band structure while eigenvec-
tors |\, k) are used in the calculation of the momentum matrix elements via
Eq. . With the band structure and the matrix elements the time evolu-
tion of the optically induced coherencies and polarizations in the system can
be simulated via the SBE. The shift current Jg;s; is obtained after applying a

frequency filter on the calculated polarization current J,;.

Fourier transformations at w = 0 are prone to numerical unphysical arti-
facts due to numeric difficulties. To see if the calculated currents are indeed
shift currents, and consequently, to confirm that the combined method of k.p
theory and SBE is viable to describe the shift current Jg;f;, the symmetry
properties of the calculated current are tested and compared with the known
properties for bulk GaAs. In addition, the scaling of shift current is analyzed
to see if it confirms the second order nature of the shift current.

4.1.1 Symmetry Analysis

In zincblende type crystals like GaAs the lack of inversion symmetry allows for
the existence of a non-vanishing shift current. In order to generate a shift cur-
rent the optical linear polarization has to fulfill the symmetry conditions of the
crystal structure. In GaAs four gallium atoms form a tetrahedron around one
arsenic atom in its center and vice versa, see Fig. Setting the arsenic atom
is in the origin of the coordinate system, the coordinates of the four gallium
atoms are (1|1/1), (-1]-1]1), (1]-1|-1) and (-1]|1}-1). Is the system excited with
a linear polarization parallel to one of the crystallographic axis, (100), (010)
or (001), the electron has an equal transition probability to all four neighbor
atoms and on average the individual micro-currents will cancel out each other

resulting in a zero-net shift current.

For (110)-polarization the transitions to (1|1|1) & (-1]-1|1) are viable while
(1]-1]-1) & (-1|1]-1) are orthogonal to the light field. While the x- and y-
components still cancel out each other, the z-component now has a preferred
propagation direction resulting in a non-vanishing net current in z-direction, see
Fig. For the case of low excitation intensities the shift currents in GaAs

follow the envelope of the incident pulses due to off-resonant excitation being
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Figure 4.2: Left: The zincblende crystal structure with its two different sorts of
atoms. In GaAs the larger yellow atoms represent arsenic and the smaller gray
atoms represent gallium. As illustrated in the figure each atom is surrounded
by 4 atoms of the other sort forming a tetrahedron. The picture is taken from
the website en.wikipedia.org/wiki/Zinc_ blende.

Right: The electron density in GaAs in a [110] lattice plane. In a) the electron
density for the highest valence band is depicted in the ground state. The electron
density is localized around the arsenic atoms. In b) the electron density for the
lowest conduction band is depicted after the system was optically excited with
a photon energy larger than the band gap. The electron density is now localized
also around the gallium atoms, taken from .
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involved. The shift current is described by
T (t) = 00y E* (O EV(1), (4.2)

with o, being the response tensor of GaAs and E®(t) and EY(t) are the pulse
envelopes. For GaAs and other zinkblende structures the response tensor has
only non-vanishing elements for the zyz-combination and its permutations.|72]

},,

E(t)

Figure 4.3: Schematic illustration of the simulated setup. The bulk crystal is
excited with a linear polarized light, here in (110)-direction, which generates a
shift current in (001).

Based on the symmetry properties, Eq. , shift currents only exist for
zyz-combinations and its permutations. In Fig. @ the respective J;, Jy, and
J, currents are calculated for an array of polarizations. For linear polarizations
parallel to the crystallographic axis the symmetry properties forbid a shift cur-
rent. But the corresponding currents, the diagonal in Fig. , show a non-zero
current flowing in the polarization direction. For the diagonal polarizations, off-
diagonal currents in Fig. , the simulations show currents flowing in the
directions of the applied electric fields. The predicted perpendicular shift cur-
rents are zero on this scale. The parallel flow and small visible oscillations lead
to the assumptions that these are artifacts caused by the first-order polarization
which is magnitudes larger than the second-order polarization. Even with the
application of a frequency filter, the Lorentzian decaying contributions of the

first-order are still larger at w = 0 than the second-order contributions.
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Figure 4.4: Bulk GaAs is excited with a linearly polarized Gaussian pulses,
FWHM 2At = 200fs, peak intensity Iy = 0.1 W/cm? and central frequency
hwy = 1.617meV which lies 100meV above the fundamental band gap F, =
1.517eV. Shown are the created currents in x, y, and z-directions for varying lin-
ear polarizations, color marked red, blue, and green, respectively. The columns
represent the polarizations of the first electric field component E} while the rows
represent the second field component E]2 The shift currents are obtained by
solving the SBE. The simulations parameters are T'=0.1K, T3 = T = 100 fs.
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To test the assumption that the visible currents in Fig. [£.4] are numerical
artifacts, the currents are simulated by the SBE in an order expansion up to
second-order in the optical field. In Fig. only the second-order currents
are displayed. On the diagonal no currents are visible for linear polarizations
parallel to the crystallographic axis. This is in agreement with the GaAs sym-
metry and confirms that the previous visible currents are caused by first-order
contributions. For the diagonal polarization on the off-diagonals in Fig.
Gaussian-shaped currents perpendicular to the corresponding optical polariza-
tion are visible while the parallel currents vanish. In addition, the in-plane
orthogonal polarization, e.g., (110) to (1-10), creates a shift current in the re-

spective opposite direction which is expected by the tetrahedron symmetry.
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Figure 4.5: The simulation setup is identical to Fig. [£4] Instead of solving the
SBE for the full electric field, a second-order expansion in the electric field is
done. Shown are the second-order currents in x, y, and z-directions in red, blue,
and green, respectively.
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4.1.2 Second-Order Analysis

From the expansion scheme it is known, that charge carrier populations in the
band structure are at minimum second-order effects. The shift current is cre-
ated by the spatial shift of real carriers, i.e., electrons have to be lifted from
the valence band to the conduction band. With the shift current being associ-
ated with the creation of charge carrier populations, it has to be at minimum
a second-order effect too. Consequently, for low intensities, Eq. , it is ex-
pected that the shift current scales linearly with E?2, i.e., the intensity Io.

In Fig. [4.6] the shift current is simulated for increasing excitation intensities

Iy. The shift current scales linearly and follows the Gaussian form of the ex-
mW
cm?

1;/[”\fg—range. Starting at Iy = 10 CGHYZ the shift current deviates from the low

citing pulses for low intensities in the

-range up to high intensities in the

intensity behavior and shows saturation effects. The temporal shape of the cur-
rent also deviates from the Gaussian shape and has a more complex dynamic.
This will be analyzed more in detail in Chapter [4.5]
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Figure 4.6: Left: Logarithmic plotting of the shift current for different excita-
tion intensities Iy. Starting from the smallest peak intensity I, = 10~* cYnVZ
the shift current is simulated for a Gaussian pulse with in powers of 10 increas-
ing peak intensities until I, = 10® % Right: Peak shift current as function
of peak intensity I, both axis are in logarithmic scale.

It is shown that the simulated shift currents do follow the symmetry rules
of GaAs and are of second-order nature in the low intensity range. Therefore
the combined approach of k.p-theory and SBE in the velocity gauge is indeed

suitable for the description of shift currents in bulk GaAs.



4.2. SHIFT CURRENT IN A GEODESIC GRID 31

4.2 Shift Current in a Geodesic Grid

A discretization of k-space, which takes into account that around the I'-point
the band structure has a high spherical symmetry, could be advantageous for the
numerical evaluation of the SBE, mainly due to the reduced number of required
k-points for a converged result, see Chapter 3.4} In this section the convergence
behavior of the a geodesic grid is analyzed and compared to a standard Carte-

sian grid.

For the Cartesian case a cubic grid with 21 points per axis, i.e. Nj = 213 =
28781 points, is used. It has the I'-point at its center and its width is 2k,,qz,
with the parameter k,,,, being largest k-value per axis. For better comparison
the convergence of a Cartesian grid is also a point of interest. Shift currents are

simulated for different point densities, achieved by varying the parameter k-

For the geodesic case a grid is used with the smallest radius k,,;, = 0 and

the largest radius k,qe = 0.45nm~".

Unlike the Cartesian grid, the geodesic
grid has two parameters, the amount of spheres N and the points per sphere
Ny. Thus a set of simulation with fix sphere number Np = 31 and varying
number of point per sphere N4 is done and vice versa. The parameters of the
Cartesian simulations, labeled C, for the the geodesic simulations with constant
sphere number, labeled GA, and for constant points per sphere, labeled GR,
can be found in table Il It should be noted that the largest geodesic grids,
GA4 & GRA4, have with 7812 and 4692 points still less than half the points of
the Cartesian grid. The smallest grid, GA1 & GR1, have with 1302 and 1932

points even less than 10% of the Cartesian grid.

Table 4.1: Cartesian and Geodesic Grid Parameters

d, = 31 cT C2 C3 (4
Emazlnm™1 06 05 04 03

Np =31 GA1l GA2 GA3 GA4
A 42 92 162 252

A, =92 GR1 GR2 GR3 GR4
Ng 21 31 41 51

The simulation using a Cartesian grid, C1-C4, as well as the geodesic grids,
GA1-GA4 and GR1-GR4, in Fig. 7] show overall good convergence behaviors.
Close-ups of the currents reveal a small time delay of the peak current, showing
that the maximum lies at J(¢ ~ 5fs). Also a small oscillation is visible at the
end of the shift current J(¢ ~ 260 fs), deviating slightly from the analytic E(t)?
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form. Both are explained by small resonant contributions to the shift current
and by the small asymmetry in the number of oscillators between wy — wa and
wg + wa which are excited by the finite line width of the Gaussian pulse. The

asymmetry is due to the density of states D(w) increasing with y/w for a bulk
band structure.
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Figure 4.7:  Shift currents for a Cartesian grid, column (a), and two geodesic
grids, column (b) & (c¢). In row (1) the whole current is displayed, while row (2)
and row (3) are close-up of the maximum and the small oscillation at the end
of the shift currents, respectively. The system is excited by a Gaussian pulse,
FWHM 2At = 150fs and central frequency of hwy = 1.550eV. The simulations
parameters are 7' = 0.1K, T} = T, = 100fs.

In the case of the Cartesian grid, the close-up of the peak current reveals
that a Cartesian grid overestimates the shift current for a low density of grid
points. The close-up of the small oscillation also shows an overestimation but to
a smaller degree. With increasing density the convergence improves, simulation
C3 having the best convergence. For higher densities, simulation C4, the shift
current is now slightly underestimated. A picture of the excited carrier popu-
lation in the conduction band, Fig. shows that simulation C3 has a good

discretization of the excited region. Simulation C4 has an even better resolu-
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tion but cuts of parts of k-space which have still small contributions to the shift
current. Consequently, besides having the very disadvantageous cubic scaling
of grid points, a Cartesian grid also has the problem of properly choosing the
grid boarders to ensure a proper resolution of the relevant k-space as well as
not cutting of still contributing regions of k-space. The simulations were done
for a photon energy of hwy = 1.550eV, still in a region relatively close to the
I'-point. For higher photon energies a higher number of grid-points would be
required to ensure good converged results. Due to the cubic scaling this results

in drastic increase of computational time.
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Figure 4.8:  Cross-section of the lowest conduction band. Displayed is the
population n(k) > 0.1-107° at the time ¢ = 0 for all k-points with |k.| <
0.1nm~!. On the left the Cartesian grids C, in the middle and right the geodesic
grids GA & GR.
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For the geodesic grid the close-up of the peak current in Fig. .7 shows an
extremely high convergence. With the same resolution as for the Cartesian case,
the geodesic results are almost identical. For the small oscillation small differ-
ences can be seen for the geodesic grids with varying points per sphere, but
overall a high convergence behavior is displayed. This means that even the two
smallest geodesic grids, GA1 & GRI1, have a better resolution of the important
parts of k-space than a Cartesian grid with 10 times more points.

Given that the geodesic parameters ki, & kmaee can be adjusted to only
resolve the important areas of k-space and that a geodesic grid scales linear in
sphere number Ny or number of point per sphere N4, simulations for higher
photon energies can be done without or only a small increase of computational
time. The high convergence behavior and the advantageous numeric properties
makes a geodesic grid better suited than a Cartesian grid for most excitation
conditions. Thus the geodesic grid is used for the remaining shift current simu-
lations in bulk GaAs.

4.3 Photon Energy Dependence

The shift current represents the spatial movement of electrons caused by opti-
cal excitation. For below band gap excitation no electrons are lifted from the
valence band to the conduction band and consequently no shift current should
exist. For above band gap excitation the amount of excitable electrons increases
with the photon energy due to the growing density of states. This should reflect
itself in a growing shift current strength as function of the excitation energy hwy, .

In Fig. (a) the currents for a photon energy of hw; = 1.48eV, hwy =
1.52eV, and hwy = 1.57eV are shown. The red current, 27meV below the
band gap, does not follow the Gaussian E? envelope and is in comparison to
the two other currents very small. This current is not a shift current, but an
off-resonant contribution to the w = 0 signal created by the small off-resonant
overlap of the Gaussian pulse with the finite line width of the band structure.
The green current, 3meV above the band gap, follows the E? envelope, but
its peak is slightly before ¢ = 0. The spectral width of the excitation pulse
contains above band gap contributions, responsible for the shift current, as well
as below band gap contributions, responsible for the slight shift of the current
maximum. The blue current, 43 meV above the band gap, follows the Gaussian
E? envelope shape. The spectral width of the optical pulse is fully resolved in
the band structure and thus does not contain below band gap contributions.
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Figure 4.9: In (a) three currents are shown for three different photo energies,
below, above and far above the band gap hwge, = 1.517eV; FWHM 2At =
150fs. In (b) the peak shift current is shown as function of the central photon
energy hwy, of the Gaussian pulse. In addition, the individual contributions of
the valence & conduction band as well as the interband polarization are shown
which add up to the full shift current.

In Fig. b) the peak current is plotted as function of the central photon
energy hwy. For below band gap excitation only a very small current exists due
to the overlap of the pulse with the finite line width of the band structure. For

above band gap excitation the shift current follows a
Ipeak (W) o< Vhw (4.3)

pattern, which shows that the shift current mirrors the density of states. This
is in agreement with the interpretation of the shift current as movement of ex-
cited electrons. At this point it has to be mentioned that the results here were
calculated without Coulomb effects and thus excitonic effects, which are present
at the band gap, are not included. The influence of excitonic effects on the shift
current will be discussed in-depth in Chapter [6]

Besides the full shift current Jgp;r(¢) also the individual contributions of
the valence & conduction band as well as the interband polarization are shown.
The comparison shows that the conduction band has the largest contribution
to the shift current while the valence band has the smallest. The valence band
contribution remains relatively flat as function of the photon energy, displaying
only a slight increase in comparison with the other contributions. In the full
current a small dip of the peak shift current is visible at &~ 1.65eV which is
caused by a dip in the interband contribution at the same position. The en-
ergy distance to the band gap is comparable to the energy gap between the two
highest conduction bands Afj = 0.171eV.
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4.4 Shift Current Band Analysis

As previously demonstrated in Chapter the origin of the shift current can
be traced back to the inversion asymmetry of GaAs. In the extended Kane
model specifically three parameters are the result of the inversion asymmetry in
the zincblende structure and do not exist in the corresponding inversion sym-
metric diamond structure. They are the parameter A~ an interband coupling
in Hro7p, the parameter P/, the inter-subband coupling strength of the con-
duction bands in I:Igd;c and I:I7C(;C, and the parameter Cj, an intra-band and
intra-subband coupling factor in I:ISU&, and 1318,,77,. By switching of these pa-

rameters the band contributions of specific bands can be studied.

In Fig. a) the shift current in normal GaAs, Ty symmetry, is compared
with an artificial inversion symmetric GaAs, Oy, symmetry. The direct compar-
ison shows that in the artificial O symmetry the shift current vanishes which
is in agreement with its microscopic symmetry explanation. The small non-zero
signal in the Oj, symmetry is due to an inter-subband polarization between the
heavy and light hole band which has a spectral range of 20meV and lies in the
energy range of the applied frequency filter.
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Figure 4.10: Dynamics of the shift current J*(¢) excited by a laser pulse with
linear (110)-polarization and FWHM 2A¢ = 100fs. (a) Comparison between
the full extended Kane model with Ty and O}, symmetry. In the O symmetry
calculations the parameters A~, P’ and Cy have been set to zero. (b) Simu-
lations where only A~, P’, or C} is non-zero, respectively. (c)Simulation with
parameter P’ set to twice of the normal value for GaAs.
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In Fig. b) the individual contributions of the three parameters are stud-
ied. The parameters A~ and C} have small contributions to the shift current
which actually have the shift current flow in the opposite direction. The pa-
rameter P’ has by far the largest contribution to the shift current. An artificial
doubling of its value in Fig. c) leads to an increased shift current slightly
larger than twice its original value. This shows that the non-resonant conduc-
tion bands |8¢) and |7¢), which are coupled by P’ to the lowest conduction band,

are mainly responsible for the shift current in GaAs.

4.5 Rabi Flopping

In Sec. it is shown that the low intensity E? scaling remains valid even
ay
cm

for large intensities up to the -range. For higher intensities the shift current
diverges from the E? scaling and shows saturation. As known from a simple two
level system, high excitation intensities lead to a large transition of electrons
from the valence state to the conduction state, eventually causing population
inversion where more electrons are in the conduction state than in the valence
state. Once population inversion is reached optical excitation now leads to stim-
ulated emission, transferring an electron from the conduction state down to the
valence state. The intensity dependence of injection currents in quantum well
systems has been investigated previously and it was confirmed that the direction
of the charge flow change due to population inversion.|23} 27| Given that the
shift current is created by spatial motion of carriers, for the case of population
inversion the shift current should logically flow in the reversed direction. To
achieve population inversion extremely high excitation intensities are used in
the simulations and dephasing and relaxation are neglected to maximize the

coherent effects.

In Fig. [4.11)(a)-(c) and Fig. [£.12|(a)-(c) the angle integrated population den-
sity of the conduction band n(|k|) is shown as a function of time. After the pulse
two population traces are visible in Fig.[4.11)(a) which stems from the heavy and
light hole transitions, both within the spectral width of the excitation pulse, are
resonant at different |[k|. While corresponding shift current, Fig. [1.11|(d), shows
now sign of current reversal, with the exception of a small oscillation caused
by the intra-band coherence between heavy and light hole, the small shift of
the peak current to negative times indicates saturation effects. With increasing
excitation intensity the shift current in Fig. M(e) now undergoes a clear cur-
rent reversal. This coincides with heavy hole trace, |k| ~ 23 nm~!, vanishing in
the integrated population density in Fig. b). This means that during the

excitation the population of the heavy hole has undergone a Rabi-flop which
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is reflected by the sign change of the shift current. The remaining light hole
trace at |k| ~ 18 nm~! shows that heavy and light hole have different transi-
tions strength and thus contribute to the shift current reversal at different times

which makes a one-to-one correlation between population and shift current dif-
ficult.
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Figure 4.11: The upper row (a)-(c) shows the dynamics of the angle-integrated
population n over the radius |k| in the conduction band for intensities (a) I =
0.06 GW /cm?, (b) I = 0.22GW /cm?, and (c) I = 0.48 GW /cm?, respectively.
Because of summing over spin 1 and | the density reaches 2 as a maximal value.

In the lower row (d)-(f) the corresponding dynamics of the currents J#(¢) are
displayed. The results where published in [73].

This becomes more evident in Fig. c) where the excitation pulse has
now such a high intensity that the heavy hole trace completes a full Rabi cycle
and starts a new cycle at the end of the excitation pulse. In comparison the
light hole trace almost completes its second Rabi cycle. The corresponding shift

current in Fig. [4.11[f) also displays two Rabi cycle with the first cycle being a
considerable amount larger than the second cycle.

In Fig. displayed are the population dynamics and the shift currents
for even higher excitation intensities. With increasing excitation intensity the
amount of Rabi cycles and the Rabi frequency increases in the population,
(a)-(c), as well as corresponding shift currents, (d)-(f). In Fig. [£.12|c) and

Fig. f) three full Rabi oscillations in the population as well as in the shift
current are visible.
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Figure 4.12: Analogous to Fig. Rabi oscillations in the angle-integrated
population n, (a)-(c), and the corresponding shift currents, (d)-(f), for intensities
(a) I = 0.85GW/cm?, (b) I = 1.33GW/cm?, and (¢) I = 1.61 GW/cm?,
respectively. The results where published in |73].

4.6 Coherent Control of Shift Currents

Using two or more light pulses, it is possible to control dynamic processes in a
variety of systems. Experimental and theoretical research on coherent control
was done on quantum dots, excitons in quantum wells, centro-symmetric bulk
semiconductors and even for currents at metal surfaces.[74H77] In this section
a brief investigation about the coherent control properties of shift currents is

done for chirped pulses and two pulse excitation with a delay time 7.

4.6.1 Chirped Pulse Excitation

As shown by A. M. Racu et al. the dynamics of the shift current can be con-
trolled by application of optical excitation with chirped pulses. A chirped
pulse is a pulse with a time-dependent frequency w(t). By introducing a tem-
poral delay 6; between two incident chirped pulses the different frequency com-
ponents of the electric fields interfere and causes the shift current, normally a

direct current (DC), to acquire alternating current (AC) contributions.

Two chirped Gaussian pulses, one polarized in (100) and the other in (010)-
direction, are considered to qualitatively reproduce the chirp-induced ac contri-
butions. The pulses have a central frequency wy = 1.55 % and a fixed linear
chirp w(t) = wy +6w-t, Sw = +0.5 22 The shift current is simulated for vary-
ing time delay §; between the two incident pulses. For negative, Fig. a),
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Figure 4.13:  Dynamics of the shift current J*(¢) excited by chirped laser
pulses with (100) and (010)-polarization directions. Shown are shift currents
for different pulse delays J; between the incident two laser pulses for negative
(a) and positive (b) chirp. The results where published in [73].

and positive chirp, Fig. b), the shift current dynamics change significantly
with the time delay d;. As in the experiment the AC contribution increase with
longer delay times ¢;, showing no AC contributions for §; = 0. For a negative
chirp the peak current positions remains around ¢ = 0. In comparison, for a
positive chirp the peak current changes sign due to the growing AC-components
and shifts to later t-times. This is also in agreement with experimental ob-
servation. The qualitative agreement between experiment and theory reaffirms
the strength of the combined microscopic theory of k.p and SBE to accurately
describe shift currents in GaAs.

4.6.2 Two-Pulse Phase Control

With the exception of very high intensities seen at the example of Rabi flop-
ping, the shift current excitation is a second-order process. In the first-order
the generation of the shift current requires above band gap excitation. An iden-
tical pulse with a relative phase of m will cause an extinction of a first-order
polarization excited by a previous pulse, see Fig. But in second-order the
off-resonant higher conduction bands are involved in the creation of the shift
current. Therefore, the second-order shift current response may differ due to the
required off-resonant excitations. In this section the coherent control properties
of the shift current are analyzed. The system is excited directly at the band
gap by two Gaussian pulses at times tp = 0 and 7, with (110)-polarization &
FWHM 2At = 50fs. To ensure that the two pulses are not directly interfering,
the time delay 7 is chosen to be large enough so that the electric fields of the
two pulses do not have a temporal overlap, unless stated otherwise 7 = 800 fs.

In addition dephasing and relaxation are turned off to maximize the coherent
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control effects present in the shift current.
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Figure 4.14: The coherent control scheme: (a) An optical pulse creates an
polarization in the material at time ¢ = 0. (b )A second optical pulse at t = 7
has a relative phase of 27w which creates a constructive interference with the
previously excited polarization. (c) The second optical pulse at ¢ = 7 has a
relative phase of © which results in a destructive interference.

A pulse with a relative phase of ¢ can either cause a strong enhancement or
an extinction of the first-order polarization. In Fig. M(a) the corresponding
shift current response is displayed and shows only a small modification of the
shift current by the second pulse. The shift current amplitudes at time 7 varies
around the height of the first peak and remains in the same magnitude as the
first shift current at ¢ = 0. With a phase of ¢ = 0 the second shift current
peak is smaller than the first peak while for a phase of ¢ = 7 the second peak is
larger. A phase resolved look at the second peak amplitude in Fig,. b) shows
that the shift current follows sine/cosine dependence. Unexpectedly, the shift
current displays an intrinsic phase factor of approximately %71’ in its dependence.
In addition, the minimum of the amplitude is around ¢ = 0, which is in con-
trast to the known linear response which would display the minimum at ¢ = 1.

Further analysis in Fig. [{.16] reveals that the effect also depends on the pho-
ton energy and that the intrinsic phase factor differs depending on the photon
excitation energy fiwy. In Fig. 4.16[(a) & (b) the peak current shows a sine de-
pendence with an intrinsic shift of 27 in (a) and — %7 in (b). This indicates that
unlike in a two level system, which only has one transition energy, the differ-
ent transition energies present in a band structure are responsible for this effect.
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Figure 4.15: The shift current generated by two optical pulses at times ¢t = 0 fs
and 7 = 800fs. (a) Displayed is the second shift current peak. The second pulse
has the phase ¢ = 0, ¢ = 1x, and ¢ = 1.257 in respect to the first pulse. (b)
The peak amplitude of the current generated by the second pulse as function of
phase ¢. The black dashed line in (a) & (b) is the height of the first peak.
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Figure 4.16: As in Fig. b), the peak amplitude of the shift current gen-
erated by the second pulse is displayed with a photon energy of (a) Ahwy =
30meV and (b) Ahwr = 100meV above the fundamental band gap.
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To find the reason for this behavior, especially the intrinsic phase, an order
expansion into field components is applied. Starting with the SBE
O ab_ . abab 1 a b b
vk = Wil — S A(L) %:Hi(axi( N | (4.4)
and the approximation that pulse envelope E(¢) is sufficient long enough, the

the A-field can be written as

A(t) ~ iE(t) cos(wrt). (4.5)

Normally the differential equation (4.4) is analytically not solvable, but here

t-times after the first pulse are considered where the envelope E is assumed to

be zero. With this the first-order polarization takes on the form

t .
a coaby —1 1
piz(b(t) _ elwkht/ dt/eflwklt fle(t/) COS(th/)Hia l,g(o)bb
— 00 h wr, ——
=1
_ —i <Hba‘E >eiwﬂbt ! dtllE(t/)(ei(“}L—w‘ib)t, + ei(—wL—wﬁb)t/) (46)
th k ! oo 2

—i (T Bn)

a a iwe®
= W(El(—ﬁ% — W) + Er(wp — wil?))ei

with (II?"|E;) representing the scalar product between the momentum matrix
elements and the electric field vector. The functions F1 (—wy, —wﬁb) and Fy (wr, —

wi?) are the Fourier transform of the envelope E(t) and represent the spectral

overlap of E(t) with frequency wi’. Trivially, the first-order can only contain
one field component and thus cannot show any coherent control effects visible in
a shift current due to its second-order nature. At least second-order is required
to describe the phase dependence. The general expression for the second-order
SBE is

0 (2dd . g (2ydd’ 1 d_(Dpd d'p (1)d
e = ity _ﬁA(t)ZHﬁ DA | Bar A
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d’ d
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Similar as in four-wave-mixing experiments the excited coherences can be
ordered according to combinations of the four electric field components, E! &

E; from the first pulse and E? & Eg from the second pulse. In second order,
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coherences belonging to E. - E;, E2. Ei, or (E!)? and the three analogous
terms cannot show any coherent control effects in the shift current. The first
two terms are responsible for a shift current at ¢ = 0 and at ¢ = 7, respectively,
while (E})?, (E2)?, (E})? & (E?)? cannot contribute to a shift current since
they are not fulfilling the symmetry conditions. In a similar vein the terms
E} - E} and E, - E2 cannot contribute to a shift current either since they are
also not fulfilling the symmetry conditions. Thus the only terms containing the
phase factor 7 and contribution to the shift current are E} - E§ and E; CE2 Tt
becomes clear that the second shift current is a superposition of a normal shift
current created by the 7-pulse and an additional current created by the overlap
of the first-order polarization created at ¢ = 0 and pulse at ¢t = 7

Based the previous evaluation of the electric field components, only the sec-
ond order terms are further evaluated which contain F; - Fs. Because of the
symmetry, the second order results are written with generalized F; and Fs
vector components, where it is assumed that F; and E5 belong to different po-
larization directions. The evaluation of the terms A and B can be found in the
Appendix The final result is:

t
(Z)dd’ _ iwﬁd,t dtl -1 El tl
Ty € /—oo (2th)2 ( )(

+ > (B ) (T 1By ) (Br(—wp — i) + Ba(wr — wif )
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> (ei(wﬁ/d,—wL —wﬁd/)t’e—iga + ei(wﬁ’dl-‘er —wﬁd/)t’eiap)

= () (T By ) (B (~wor, — o) + Ba(wr, — i)
d

% (ei(wﬁ'ifwllfwfid/)t/efigo + ei(wingwawid,)t/eitp))

Further analytical evaluations are not possible at this point and numerical eval-

uation is necessary.

The numerical evaluation of the current belonging to Eq. is shown in
Fig. .17 for a simple three band system with parabolic band structure which
consist of one valence, one conduction and one additional higher conduction
band. The parameters of the three band model, effective mass and band dis-
tance, are based on known parameters from bulk GaAs. The numerical evalu-
ation shows that the overlap current is maximal at the band gap and becomes
smaller with larger detuning. The detuning also determines the intrinsic phase
of the current and shows a periodicity of approximately 6 meV in the detuning.
For an one-dimensional band structure, Fig. column (a), the intrinsic phase
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is zero for band gap excitation and the current shows the 7 and 27 phase re-
lation as known from linear excitation. For a two- and three-dimensional band
structure, Fig. column (b) & (c), the intrinsic phases are ¢ ~ 1.57 and
@ =~ 1.25m, respectively. The analytic result in Fig. 1c) matches the ob-
served detuning dependence of the intrinsic phase seen in Fig. with (2c)
showing the same intrinsic phase ¢ ~ 1.257 seen in the shift current in Fig.
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Figure 4.17: Numerical analysis of Eq. (4.8) for a three band system with
parabolic band structure in (a) 1D, (b) 2D & (c) 3D. In the upper row, a
two-dimensional scan of the peak current at J(¢ = 7), with 7 = 800 fs being the
delay of the second optical pulse, is shown as function of the relative phase ¢
and the photon energy hAwy, here given as detuning to the band gap. In the
lower row the current for an optical excitation at the band gap, AAwy = 0, is
plotted.

The explanation for the unusual phase dependence can be explained by the
term
il —wr—wf )W e _ i(Awt—wlt )Y ig (4.9)
with Aw® = wdd — ;. At k-points resonant to wy, it is Awf® = 0 and the
phase of the current is determined solely by the pulse phase ¢. But besides
the resonant k-points, the finite spectral width of the optical pulse also excites
the neighboring k-points in the band structure with Awd? # 0. In addition to
the pulse phase ¢, the current phase is now also determined by Awﬁdt' . This is
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related to the phenomena of fringes in the spectrum of two pulses separated by

a time delay 7.

In Fig.[£.1§|a) and Fig.[£.19((a) the total current .J as well as the total excited
population n are shown as function of time. For band gap excitation the total
current J as well as total excited population n are maximal for a relative pulse
phase of ¢ = 1.257 which is in agreement with Fig. and Fig. [1.17|2c). The
total current displays an oscillation after the optical pulses. This oscillation
is caused by the intraband coherence between heavy and light hole band, its
energy range of a few meV lies within the spectral range of the shift current.
Due to the lack of dephasing and relaxation, the oscillation of the intraband
coherence is visible while under normal conditions it would have declined on the
used time scale. The corresponding radial population pictures show the forma-
tion of population fringes after the second pulse. For the resonant k-points at
krad =~ 0 the population follows the expected coherent control phase relation,
being maximal for a phase of ¢ = Om (1b) and minimal for a phase of ¢ = 17
(2b). The radial population demonstrates why the current follows a sine de-
pendence and not the expected cosine dependence. For a phase of ¢ = Or the
population at the I'-point is maximal, but the I'-point has a minimal density
of states. Thus by introducing a phase difference, the fringes of the population
move to higher k-points which have an increased density of states allowing for

more excited carriers and consequently a larger current.

In Fig. the situation for an excitation for 100 meV above the band gap
is shown. In comparison with Fig. two population traces are now visible in
the radial population. The two traces correspond to the heavy hole transition
for the larger k-values and to the light hole transition for the smaller k-values.
Both traces show the formation of phase dependent fringes in the radial popu-
lation, but since heavy hole and light hole have different dispersion as well as
different density of states, a simple correlation between the shift of fringes in
k-space and maximal population becomes difficult. In comparison with band
gap excitation in Fig. the total population n displays only small changes
due to the varying phase. Unlike the I'-point, the curvature of the density of
states becomes flatter for larger k-values. In addition, the whole spectral width
of the optical pulse contributes to the excitation while for band gap excitation
only half of the spectral width contributes. This causes the movement of the
fringes to become less noticeable. The total current J shows larger deviations
for different phases which is caused by the already mentioned intraband coher-
ence between light and heavy hole.
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Figure 4.18: Excitation of the system with two pulses at ¢ = 0fs and 7 = 800 fs
for a photon energy hw; = Eyqp. This setup corresponds to Fig. (a)
The total current J and the total population n are shown for a relative phase
of (la) ¢ = 0w, (2a) ¢ = 1m, and (3a) ¢ = 1.257 which corresponds to the
largest current increase in Fig. The population only increases during the
moment of excitation while the total current fluctuates. The dotted black line
is a visual aid for better comparison between the different excitation. (b) The
radial-resolved population in k-space, color-coded in arbitrary units, is shown
as a function of time and |k,..4|. Phase dependent fringes are seen in the radial
population after the second pulse.
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Figure 4.19: Excitation of the system with two pulses at ¢ = Ofs and 7 =
800fs for a photon energy hwy = Egqp + 100meV. This setup corresponds to
Fig. [{16[b). (a) The total current J and the total population n are shown
for a relative phase of (1la) ¢ = Om, (2a) ¢ = 1w, and (3a) ¢ = 1.757 which
corresponds to the the biggest current increase in Fig. [f.16{b). As in Fig. .18
the population only increases during the moment of excitation. (b) Shown is
the radial-resolved population in k-space with two population traces. After the
second pulse phase dependent fringes are seen in the radial population.
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The investigation shows that the phase-dependent fringes in the population
do modify the shift current. The effect is maximal at the band gap due to
the strong slope of the density of stats D(w) and the only partially resolution
of the spectral width of the optical pulse. Both amplify the effects caused by
the shifting fringes in the population. However, in a real semiconductor the
Coulomb interaction modifies the band structure, causing the density of state
to become constant at the bad gap. In addition, the exciton will further modify
the absorption. Both effects are not present in these simulations, but are for

experimental comparison critical.






Chapter 5

Shift Currents in GaAs
Quantum Wells

While the zincblende structure is inversion asymmetric, it is still a crystal struc-
ture with a high symmetry which leads to an inversion symmetry of the band
structure in k-space. But in systems of reduced dimensionality like a quantum
well (QW) the symmetry of the crystal structure can be further reduced which
reflects itself in the band structure. The injection current, a current caused by
an asymmetric distribution of carriers in k-space, is normally symmetry for-
bidden in the inversion symmetric band structure of bulk GaAs. But in QW
systems grown in (100)-direction the reduced symmetry leads to a spin-splitting
of the band structure which breaks the inversion symmetry. Consequently, it
is possible to generate injection currents in (110)-grown QW systems. Several
aspects of injection currents in GaAs QW systems have been investigated before

and therefore will not be discussed in this work.[23127]

As it was discussed in the previous chapter, the shift current is an effect
caused by the lack of inversion symmetry of the GaAs crystal structure. In this
chapter, the influence of the reduced symmetry of a QW system on the shift
current will be investigated.

5.1 Quantum Well Band Structure

The band structure of the QW system is obtained by solving the extended Kane
model. But the 14 band model was developed for bulk systems and thus has to
be modified to account for the reduced dimensionality of a QW. The envelop

function approach is used to describe the electronic wave function \IlﬁH (r) in

o1
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the QW, k| being a two-dimensional in-plane wave vector.[61, 79| The electron

wave function has the form
_ 1k r
\Ilkn =e Il Zf ku (5.1)

with the z-axis chosen to be the growth direction and A the band index of the
14-band model. The electron wave function consists of two terms, the unit
cell periodic part u,(r) of the Bloch wave function, which accounts for the in-
plane periodicity, and a slowly varying envelop function ;Z\kH (z) which is used to
describe the wave function in z-direction. The envelop function ffl‘k” (z) satisfies

the effective mass equation

14
S [Han O, —10) + Va()oum | g (2) = B ey (), (52
m=1

with H,,,,, being the bulk Hamiltonian and Vi (2) being the well potential. Be-

cause of the confinement in z-direction, the operator k, is replaced by —id/d,.

The envelop function is expanded into a set of confinement functions ¢;(z) via

fnkH Zank” @l (53)

This leads to a 14N x 14N eigenvalue problem

14 N
Z Z @l‘Hnm +Vy 5nm|§01/> mk” E)\k” ai\zicu' (54)
m=10'=1

The confinement functions have the explicit form

@1(z) = sin [7: <z + sﬂ (5.5)

for |z| < L/2 and zero otherwise. The width L is chosen in such a way that

numerically convergent results are ensured.

To obtain the band structure of a Z-grown QW, with Z being the z-direction
in an arbitrary coordinate system, the envelop function approach has to be ap-
plied to the corresponding Hamiltonian ﬂz(k). This of course requires to know
the explicit form of I:Iz(k) which has to be derived for each growth direction
Z. Using the concept of Euler rotation matrices a more elegant approach is
possible.[60] Euler rotation matrices are a method to describe the rotation in

three-dimensions. The transformation from the the old coordinates k,,k,, and
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k. to the rotated coordinates I;m,fcy, and k, is given by

k = R(a, B, 7)k

) 5.6

with R(a, 3,7) being the Euler rotation matrix; R~ (a, 3,v) = RT (a, 8,7) due
to orthogonality and «, 3, and v the Euler angles describing the rotation. The
invariant description of the extended Kane model ﬁ14xl4(k) given in Chap-
ter is for a standard coordinate system with x =e,, y =e,, and z = e,.
Using Euler rotations the Hamiltonian can be evaluated for an arbitrary coor-

dinate systems via

. N ~ ~ R(a,B,7) =
Hisx1a(k) = Hias1a(RT (o, B,7)k) = H14x14AY (k), (5.7)

A (a8,
with the Hamiltonian lefjli "

being the rotated extended Kane Hamiltonian.
Instead of rotating the coordinate system, the Hamiltonian is rotated. While for
the three-dimensional case the rotation of either the coordinate system or the
Hamiltonian are equivalent, for a two-dimensional system this gives the advan-
tage of having the direction Z as an universal growth direction for an arbitrary
oriented crystal system. By applying the envelop function approach on k, an
two-dimensional Hamiltonian ﬁg(v‘;’ﬁ”)(l}m k,) can be constructed without the

need to derive the explicit form of the Hamiltonian for a growth direction Z.

The semiconductor Bloch equations (SBE) are again used to determine the
time evolution of the optical excitations in the system. The SBE for a QW are
structurally identical to the bulk equations (3.10), only the three-dimensional

k-vector has to be replaced by the two-dimensional in-plane kj-vector:

axk” B ﬁ hmo B T1/2 I
(5.8)

d AN Z A A\ AN Z €0 A 2\ 2\ A 1 A
- (ekn - ekn> Tigy + F——A(l)- Z (Hﬁu xﬁ” B HkqukD R
o

The momentum matrix elements are calculated in the same manner as in the
bulk case, Eq. (3.11), again replacing k by k| :

Hﬁﬁ - % <kaIH(k”)>)\)\’ (5.9)
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5.2 Shift Currents in (110)-grown Quantum Wells

5.2.1 Polarization Direction Dependence

While it is not explicitly shown in this work, the shift current angle dependence
can be simply conducted from a basic vector analysis. Any vector in the xy-
plane can be composed into (110) and (1-10) components, which respectively
create a shift current in (00-1) or the reverse (001)-direction. Thus the shift
current for any given polarization angle 6, the angle between the x-direction

and the pulse polarization in the xy-plane, is:

2
1 sin 6 1 sin 6
J? ox — 1| -E | cost + —1|-FE | cosé 510
0 0 0 0 (5.10)
ox —sinf cos 6 — sinf cos 0
Applying the trigonometric addition formulas gives
J* o —sin 26 (5.11)

In a (110)-grown QW the further reduced symmetry may lead to changes in
the angle dependence of the shift current. In the QW the new coordinate axes
X = (001) and Y = (1 — 10) are used. Like for the bulk case the electric field
of the incident pulse can be decomposed into X and Y components:

0 sin 0
E=E| 0 | +FE|—sin6 (5.12)
cos 0 0

In the same vein, the currents in x, y, and z-direction can be determined as

function of #. Doing an analogous vector analysis results in:

J¥ x —sin 26
JY o +sin 20 (5.13)
J* 141 —2(cosf)? = —cos20 + 1

Based on this, it can be expected that the shift current has a

JX oc —cos20+ 1

(5.14)
JY  sin 20
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angle dependence.

Figure 5.1: Schematic illustration of the simulated setup. The system is excited
with a linearly polarized optical pulse by polarization direction in the XY-plane
which generates a shift current in the QW. The X, Y, and Z-axis of the QW are
not the crystallographic axes but depend on the QW growth direction, here X =
(001), Y = (1-10) and Z = (001). For the simulations a QW with a thickness of
8nm and a growth direction Z = (110) is considered. The angle 0 lies between
polarization direction of the incident excitation pulse in the xy-plane and the
new X-direction. For sufficient convergence of the shift current 12 valence bands
and 28 conduction bands are included when solving the SBE. Phenomenological
dephasing and relaxation times are Ty = To = 200 fs.

In Fig.[5.2] the shift currents in X and Y-direction are shown. In Y-direction
the shift current has the E?

env

(t) shape apart of a small time delay due to the
finite line width of the Gaussian pulse which is already known from the bulk
simulations. For X-parallel as well as Y-parallel polarization the shift current
vanishes. The X-polarization direction corresponds to a (001)-polarization in
bulk which forbids a shift current. The Y-polarization direction corresponds to
a (1-10)-polarization which creates a shift current only in (001)-direction, i.e.,
the X-direction of the QW. The polarization dependence of the shift current
amplitude in Y-direction is described by

Joipe(8) = C'sin(20), (5.15)

which is in agreement with the previous symmetry consideration.

In X-direction, see Fig. a), the shift current has a negative offset. For
Y -parallel polarized excitation the creation of a shift current in X-direction is
in agreement with the bulk symmetry rules. However, for X-parallel excitation
the bulk symmetry rules forbid a shift current in X-direction. The visible offset
for X-parallel excitation is due to the shift current tensor element o, which
exists in (110)-grown QWs due to the reduced symmetry[33} 34] and allows for
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a finite shift current to exist. The polarization dependence of the shift current

amplitude in X-direction is described by
Jﬁiﬁ(e) = Acos(20) + B. (5.16)

In Fig. [5.3] the X- and Y-shift currents are simulated for excitation at the band
edge of the QW. Clearly visible are the sine and cosine dependence of the cur-
rents, the offset in X-shift current manifests itself as a shift of the white zero-line
in the two-dimensional plot. The position change of the zero-line indicates that
the offset depends on the excitation energy hwy,.

shift current density in X [10‘4A/cm]

shift current density in Y [10‘4Alcm]

=L QB mmnn
gebe o 0BT

-200 -100 O 100 200 300 -200 -100 O 100 200 300
time [fs] time [fs]

Figure 5.2: The shift current in (a) X-direction and in (b) Y-direction. The
currents are calculated for a linearly polarized Gaussian pulses with central
frequency hwy = 1.6eV, a FWHM of 200fs. The angle 6 lies between the
X-axis and the linear polarization of the pulse. The results were puplished in

[80].
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Figure 5.3: Two-dimensional scan of the shift current for a QW at a temper-
ature T = 0.1K. Visible are the sin(26) and cos(26) dependencies of the shift
current components JX and JY.
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5.2.2 Photon Energy Dependence

As it was shown, the reduced symmetry in the QW results in a new shift current
tensor element which slightly modifies the angle dependence of the shift current
in comparison to the bulk case. In bulk the photon energy dependence of the
shift current mirrors the density of states. In a QW the density of states has
the form of step function at the transition energies of the band structure. In
addition, the symmetry reduction breaks the inversion symmetry of the band
structure. Therefore the photon energy dependence of the shift current in a
QW can be expected to drastically differ from the bulk dependence beyond the
change in the density of states.

In Fig. a), the shift current intensity grows with increasing photon en-

ergy as in bulk. But with further increasing photon energy the shift current
undergoes a current reversal. Analysis of the valence, conduction and interband
sub-currents reveals that the shift current is generated in the valence band with
the remaining bands having almost vanishing contribution. Both effects are in
stark contrast to the bulk case where the shift current follows the density of
states and is mainly generated in the conduction band and the interband polar-
ization, see chapter |4.3]
In analogy to chapter in Fig.|5.4(b) the parameters reflecting the inversion
asymmetry A~, P’  and C} are set to zero and the shift current is calculated for
inversion symmetric GaAs. The simulations show that the reduced symmetry
itself does not cause a shift current. Even in a QW system the base crystal
structure has to be inversion asymmetric to allow for a shift current to exist.
The small current visible at 1.5eV is caused by the GaAlAs environment the
GaAs QW is embedded in.

To find the reason for the current reversal, the behavior of the valence band
shift current is compared with the corresponding population in the two highest
valence bands, Fig. The comparison reveals that the energy range of the
current reversal overlaps with band crossing in k-space. Especially Fig. M(Qa)
shows a strong deviation from the Gaussian shape which corresponds to an ex-

citation at the band crossing.

A k-resolved map of the shift current J, is done in Fig. [5.6]for the photon en-
ergies hwy = 1.500eV, hwy = 1.525eV, and hwy, = 1.550 €V, respectively. For
a photon energy of hwy, = 1.500eV the shift current has its negative minimum.
In the corresponding 2D picture, Fig. lb), most areas of k-space have for

each current jx at k, a corresponding anti-current at —k, which leads to zero
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Figure 5.4: Calculated peak amplitude of the shift current J* as function of
the photon energy Awy, for X-parallel polarized light at room temperature. (a)
Displayed is the total shift current and its three subcurrents stemming from
the valence band, the conduction band, and the interband current. (b) The
shift current is compared with GaAs QW with an artificial Oh symmetry, see
Chapter for the equivalent bulk calculation.

net contribution. In addition, the microscopic currents display a sign change at
the resonant k-points which have the highest carrier population in Fig. lb).
Noticeable the area around the gamma point shows a symmetry break and has
predominantly negative current contribution. It is therefore the area in k space
in which the shift current is generated.

For a photon energy hw; = 1.525¢eV, Fig. (2), the shift current transitions
from a negative to a positive current direction and divergences strongly from the
Gaussian shape. The excited k-area around the I'-point still has mostly nega-
tive current contribution, but the total non-canceling contributions are less. The
areas beyond the band mixing at k, ~ +0.2nm~! have more positive current
contributions which causes a decease of the total shift current. In addition, res-
onant contributions exist, mainly the valence band intraband coherence which
energy range overlaps with the shift current in frequency space and therefore is
included in the frequency filtering process. They are responsible for the devia-
tion from the Gaussian shape. This makes a distinction between shift current
and intraband current difficult.

For the photo energy hwy = 1.550¢eV, Fig. 3), the shift current has a positive
current direction and follows a Gaussian shape. The 2D surface plots reveal that
the area around the I'-point is too off-resonant and has no current contributions.
Except of the areas beyond the bandmixing at k, ~ +0.2nm~! most areas of
k-space are canceling each other. The areas beyond the bandmixing display
both positive and negative current contributions, but with a predominance of
positive contribution this region of k-space is responsible for the positive shift

current.
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Figure 5.5: The shift current for a photon energy of (la) hwy = 1.500eV,
(2a) hwr = 1.525eV, and (3a) hwy = 1.550eV. In (1b) - (3b) the energy
difference Ae(k,, ky) between the two highest valence bands is displayed, color-
scaled in meV. To the different photon energies the corresponding populations
n(kg, ky,t = 0) of the two highest valence bands are overlaid, color-scale in
arbitrary units.
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Figure 5.6: The shift current for a photon energy of (1) Aiw;, = 1.500eV,
(2) hwr = 1.515eV & (3) hwr = 1.550eV. In (1b) to (3b) the k resolved
shift current J, generated in the QW is shown at the time ¢t = 0fs, scale in
arbitrary units, overlayed over the energy difference between the two highest
valence bands, scale in meV.
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In conclusion, shift currents created in the area of k-space before and after the
band crossing have different signs and increasing the photon energy leads to a
shift in k-space from one region to the other. These results were published in
[81].






Chapter 6

Shift Currents near the Band
Gap

The interaction of charged particles due to the Coulomb force is a fundamen-
tal interaction which can be found in all kinds of systems, ranging from bulk
materials to quantum wires(QW) and quantum dots(QD), and many different
materials, e.g., metals, semiconductors, and organic materials. Consequently,
Coulomb effects are a topic in a huge variety of research fields. [82-87] For the
simulation of shift currents near the band gap the inclusion of the many-body
Coulomb interaction is necessary since excitonic effects are relevant.[11] But

from a numerical point of view the simulations of excitons has two challenges.

First, the exciton binding energy in GaAs is very small in comparison to

the band gap, literature values being F.,. = —4.2meV close to 0K and F, . =
—3.27meV at T = 17K.[88] 89] Consequently, long integration times are re-
quired for a good separation of the exciton from the continuum.
The second challenge is the many-body nature of the Coulomb interaction which
couples the whole simulation space. Many body correlation effects, e.g., biex-
citons and triexcitons, lead to a drastic increase of computational effort.[90,
91] Limiting the Coulomb interaction to only describe exciton correlations still
leads to a quadratic increase of the numerical effort. Due to these numerical
requirements, theoretical investigation of excitonic effects often uses approxima-
tions such as parabolic bands and/or a small number of bands to decrease the
numerical effort.[92H96] Only recently more complex simulations of excitons via
(time-dependent) density-functional theory were reported.[97-99]

63
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In this chapter the necessary steps to include Coulomb interaction into the
combined theory of k.p and SBE will be laid down and an analysis of the nu-
merical obstacle will be given. Thereafter, the results for the shift currents with

exciton enhancement near the band gap will be presented and discussed.

6.1 Coulomb Matrix Elements

The Coulomb Hamiltonian has the general form

//dVdv/\Iﬁ ()W (e )V (e — )W ()¥(r), (6.1)

where ¥ are Fermionic field operators. The field operators are expanded in a
basis of creation and annihilation operators aL)‘ & af; and in yet undetermined

basis functions ¢:

U(r) =Y oy, (r) (6.2)
k,\

Inserting Eq. (6.2) in Eq. (6.1) the Coulomb Hamiltonian takes the form:
- 1
_ ATAL ATA2 2 Az 2 A
He =3 Z lge,” g, iy O,

A1,A2,A3, 4
k1,ko k3 ks

<[ aVaves, 068, s 6V =)o o @) (63)

The double integral is now called the Coulomb matrix element Vk)‘1 113‘2 213\3 313; ‘.

To evaluate the double integral the previously undetermined basis ¢ is now
expanded in a Bloch function basis

“rA( Z Ck, sul(r)elkr, (6.4)

with V' being the unit cell volume. Inserted into Vlf‘llii?i:‘;_ii“ the Coulomb

matrix elements read

Mde s _ 1 ,—ikir —ikar iksr ks /
thkz,k3,k4 T2 dvdV'e € € e Vir—r')

X Ckl P chm)\z ch&)\s Z Ck47>\4

1
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If a periodic function ¢(r) consists of a slow varying part f(r) and a fast varying

part u(r) the volume integral can be approximated as

y f@u(r)dv =>" ; fr+Ry)u(r +Ry)dV
N (6.6)
~ ;f(RN)/lS u(r)dV,

with [, going over one unit cell. Defining u. = [}, u(r)dV, the final expression

is

f@uE)dV =Y f(Ra)ue
L3 N

A U - /L3 f(r)dVv.

The individual integrals in Eq. can be rewritten as
/de/(r)ﬂ’(r)V(r —R)f(r)u(r) = /de(r)fL(r)V(r —R), (6.8)

with f(r) = f (r)f(r) and @(r) = @ (r)u(r). If V(r — R) varies slowly on the
scale of @(r), the integral can be split into two parts

dV f(r)a(r)V(r —R) ~ . f)V(E—-R) [ dV'a(x")

L3 3

(6.9)
~u.- | f(r)V(r—R)
I3
using the approximation described in Eq. . This approximation is valid for
effects which are characterized by length scales much larger than the unit cell.
In the case of GaAs the lattice constant is agaas = 0.5nm. In comparison the
Bohr radius of the exciton a%d ~ 12nm is more than twenty times larger, thus

fulfilling the approximation condition.

Table 6.1: A comparison of exciton binding energies and Bohr radii in direct
band gap semiconductors.[100]
‘ GaAs ‘ GaN ‘ ZnSe

e?}’%d 4meV | 23meV | 19meV
a%d 12 nm 3nm 5nm
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6.1.1 Calculating the Coulomb Matrix Elements with k.p

By averaging the Coulomb potential inside the unit cell, the Coulomb matrix

element can be rewritten as
VA1,>\27>\37/\4 ~ 1 —iky-r ,—ike-r’ jiks-r’ ik4'rV( — /)dVdV/
ki, ko ks ks 7 V2 € € € € r—r

. 1 de gl
x / / chlhAl 1 Ck22,)\2 2
By
XY e ul ch AU (r)dvdy’.  (6.10)
Because the two integrals over the unit cell are not connected anymore, they

can be evaluated independently. The integral over the whole space r’ is replaced

by r —r”,

A1,A2,A3, 0 1 i(kg—ki+ks—ka)r i(ka—k3)-r” " 1"
Vkl’kZ’ks,k4 ~ e e V(")av"dv

x Za{;l N k4 y /l al (r)ul (r)dV

l1,la
l: _
DI 133,A3/l ' (x'yu'® (x")dv’. (6.11)
l2,l3 3

The integral over r”’ is the Fourier transform of the Coulomb potential for a
fixed ko — k3. For a % potential the Fourier transform is (1(24777{(3)2. For the unit
cell periodic functions wu(r) the basis functions of the k.p Hamiltonian can be
used. While the connection between the k.p basis functions and the real-space
electronic wave functions is incomplete, here they are evaluated over the unit
cell where only the properties of an orthonormal basis are important. With this

two considerations the Coulomb matrix element becomes

V)\1,/\2,>\37)\4 ~ L ei(k4—k1+k3—k2)'1!‘dv 4mVo
ki ko kg,ka 7 772 (ke — k3)2

_1;
X § :Ckl Alck4,/\4611,l4

l1,la

)
x Z Ck22 Azckg,A35127137 (6.12)

la,l3

with Vp = 4;;0 and € = 12.9 being the dielectric constant of GaAs.[101] Us-

ing the fact that the remaining integral can be written as a Kronecker-delta,

Eq. (6.12) turns into:

A1,A2,A3,0 (5 4mVo
ki ko ks kg 7 ki, ka+ka—ks (k _kg)
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X E ‘3k1 ,\1‘3k4 ,\4511714

l1,lg

XD 8, 2y 2O 1 (6.13)

l2,l3

Evaluation of the Kronecker-deltas and substituting q = ks — k3 the final form

of the Coulomb matrix element is

V>\17>\2-,)\3,)\4 ~ 1 47TV0 E —14 E Ela (6 14)
k3.ka,q Ckata, M k4,>\4 k3 —q,\2 k3 Az* '
la

Inserting this matrix element into the Hamiltonian He gives:

1 .
~ ~TA1 ~fA2 ~A3 . A1,A2,A3,Aq
He =~ 5 g Ay, s iy qak3ak4 Vi kra (6.15)
A1,A2,A3, 4
k3.ka,q

The number of Coulomb matrix elements grows proportional to the fourth power
of the number of involved bands \;. Because of the fourfold degeneracy of the
valence band at the I'-point, the Coulomb matrix elements must be calculated
for 6% = 1296 different band combinations. In addition, the matrix elements
grow cubic in the number of included k-points. As seen later, this can be
reduced to a quadratic increase. While better, this still leads to a large number
of matrix elements. Unlike the number of involved bands, the number of k-
points is not predetermined. It is therefore highly advantageous to minimize
the number of grid-points to such a degree that the computational time remains

within reasonable limits, but that the exciton is also reasonably well resolved.

6.2 Semiconductor Bloch Equations with Coulomb

Interaction

To include the Coulomb interaction into the SBE, the Hamilton operator He
has to be included when evaluating the Heisenberg equation. A detailed eval-
uation can be found in Appendix Using the time-dependent Hartree-Fock

approximation, the Heisenberg equations for He is
i oS ’ i "
A _ - TR NATID IS D\
<h [Hc’xk }> Y Z Victak,a%ktaTk
o’
)\//

DTN /L/L AN
Z Vk+q k,q Pktq¥k -

(6.16)

)\“7(:1
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Adding the Coulomb inhomogeneity to the previously derived SBE, Eq. (3.18)
in Sec. the SBE take the form[25)

d v 1 vy o, b AN Ny A L
%.’Ek = ﬁ (€k — Gk ) ZCk + g lzt (Qﬁ .Tﬁ — Qk kau> — mxk 5 (617)

with

AN 60 Ap
o mo + )V W ﬁiq(t) (6.18)

pp'q

The Zq Vq term in Coulomb inhomogeneity couples all previous indepen-
dent k-points. This causes at least a quadratic increase in the computational
time proportional to the square of the number of k-points. In an unexcited semi-
conductor the valence band population nl‘c/ = 1 leads to a renormalization of the
band energies. For a numerical evaluation the renormalization is problematic
and leads to instabilities. In this Chapter only very low intensity excitations
are considered which excite a negligible population in the conduction band. To

avoid the numerical instabilities, the populations are omitted in Eq. (6.18).

6.3 Cartesian Grid Consideration

To obtain a first estimation of the needed k-space size and resolution, a quadratic

energy matrix

Vij =€ibij = Vij (6.19)

is constructed and diagonalized. The diagonal elements ¢; are the band gap
energies obtained from the extended Kane model and

— 4y

V Vi
ki — k2

(6.20)
the off-diagonal Coulomb matrix elements. For this method the three-dimensional
k-space is projected onto an one-dimensional array, assigning a k-vector to a
number i. A Cartesian grid is used for this method, thus the number of total

k-points grows with N7 and the quadratic matrix V;; with N.

For the calculation of the true Coulomb matrix elements the sums of the
coefficients c{g  have to be evaluated. As in the case of the momentum matrix

elements, the coefficients are obtained from the eigenvectors of the k.p-theory.
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The sum

> drchon = (K AK, V). (6.21)
1
represents the overlap integral between two eigenvectors. Due to the normal-

ization of the eigenvectors, the relation
(k, \[K',\) <1 (6.22)

holds. This means that the real Coulomb matrix elements are smaller than the
ones used in the energy matrix V;;, thus the obtained exciton energies represent

an upper limit for the true ones.

The matrix V;; is diagonalized and the lowest energy eigenvalue is taken as
the exciton energy while the next eigenvalue is assumed to be the band gap.
In Fig. the obtained exciton binding energies are plotted. From Fig. a)
it becomes clear that at least 192 k-points are required for a sufficient con-
verged exciton. In Fig. [6.1(b) the exciton energy reaches its minimum for

kmaz =~ 0.25nm™1!.

For smaller values the resolved region of k-space is too
small and parts of the exciton wave function are prematurely cut off. For higher
values the k-space resolution becomes too bad to properly resolve the exciton
wave function. The values in Fig. b) are obtained for Ny = 21, thus for

larger Ny the necessary k;,q,; may be even larger.
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Figure 6.1: In (a) the exciton binding energy is plotted as function of Ng,, the
number of k-points per axis, for k4, = 0.2nm~!. In (b) the binding energy
is plotted as function of k.., calculated with Ny, = 21, which corresponds to

213 = 9261 k-points.
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While Fig. [6.1] only shows a lower estimation for the necessary Cartesian grid
size, this alone is already enough. For a N} = 132 grid the necessary Coulomb
matrix would have the size of 64 - 133 - 132 = 6, 255, 544, 462 entries. Using dou-
ble precision and complex values(16 byte per entry) this matrix would occupy a
memory of approximately 100 GB. For a N = 212 the Coulomb matrix would
have 6 - 213 - 213 = 111, 152, 892, 816 entries and occupy a memory of approx-
imately 1.8 TB. For a numerical evaluation the Coulomb matrix is too large
without ensuring good resolution of the exciton wave function and consequently
convergence. Thus in conclusion, exciton calculations for bulk with a Cartesian

grid are not feasible.

6.4 Modified Geodesic Grid

Based on the considerations in the previous section, another type of k-grid is
required for the exciton calculations. For a parabolic band dispersion the exci-
ton wave functions assume the form of the hydrogen wave functions, with the
lowest exciton taking the shape of the |1s) wave function. In the k.p band struc-
ture spherical symmetry dominates, thus it can be assumed that the exciton is
also dominated by spherical symmetry. As it was the case for the shift current,
a spherical grid may be advantageous in resolving the exciton wave function.
Therefore a geodesic grid is again applied for the calculations. A second advan-
tage of the geodesic grid is the fact that its number of k-points scales linearly in
either N or N 4. While this seemed trivial previously, at this point it becomes
crucial because the Coulomb matrix scales quadratically with the number of
used points. In comparison to the power of six scaling in a Cartesian grid, the

quadratic scaling in a geodesic grid is numerically very advantageous.

A problem which remains is the singularity at k — k’ = 0 of the Coulomb
potential. From an analytic perspective normally this is not a problem because

in spherical coordinates

/ / V(k,k')k* dk dA (6.23)

the k2 from the radial element cancels the ﬁ term in the potential for k = 0
and removes the singularity. For &’ # 0 the integration space can simply be
redefined to a new coordinate system q’ = k’ which always ensures the removal
of the singularity. For obvious reasons this cannot be done with a discrete k-grid

used in numerics. To ensure correct results, a detailed understanding how the
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singularity affects the numerical stability is necessary. For this, the integral

1
L= [—— " v
/(ki “K)2+ 2

1
"2 E ey et ®)

(6.24)

is evaluated for various grid combinations, with k; denoting k(k;). The constant

¢ represents screening and is defined as

1
- 6.25
C n . aB’ ( )

with ap = 12nm being the exciton Bohr radius in GaAs and n being a scaling

factor.
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Figure 6.2: Evaluation of the Coulomb singularity according to Eq. for
a geodesic grid with Nz = 90 and varying N4. The labels A0, A2, A6, and
A10 correspond to grids with Ny = 12, Ny = 92, Ny = 362, and N4 = 1212,
respectively. The integrals are evaluated for screening constants ¢ = ﬁ, c=
m, and ¢ = m, respectively. For better comparison the k-point index
k; is normalized over the total number of grid points Ny.
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In Fig. [6.2] the numerical values of various geodesic grids are displayed and

compared. The comparison shows that for a screening constant ¢ = 1‘(113 the
grids yield the same numerical value with only slight discrepancy. Due to how
the grid points are ordered in the program, the distance from the I'-point for a
point k; grows with its integer value. This is reflected by the integral I; becom-
ing smaller for larger k; caused by the shift of the singularity at k; to the border
of the numerical space and therefore less of it contributing to the integral. For
a smaller screening constant ¢ = m the integrals I; show high divergence
for different N4. The less grid points are on a sphere, the more the grid over-
estimates the integral value for higher k;, resulting in the continuous growth
of the integral value I; till slightly before the end of the numerical space. The
explanation for this lies in the volume element dV (k;) = k?dA(k;). For larger k;
the volume element dV (k;) grows quadratically which is expected for a spherical
grid. For a low number of points per sphere V4 the resolution on a grid sphere
is too low to properly resolve the singularity at ¢ = 0 and consequently the

value for q = 0 is estimated to high.

k, [nm™]

Figure 6.3: A geodesic sphere with two different angular resolutions. The green
grid is the actual grid used for the matrix elements Vi q and during the time
integration of the SBE. The red grid is an auxiliary grid used during the calcu-
lations of the matrix elements Vi ¢ to deal with the singularity é.

Consequently, a high number of points on the sphere surface is needed to
properly resolve the é potential which would lead to high computational times.

The problem of the singularity arises during the calculations of the Coulomb
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matrix elements. Thus it is advantageous to use a high resolution grid in the
calculations of the matrix elements and a grid with far lower resolution in the
SBE which would accomplish a great reduction of the needed computational
time. In Fig.[6.3]the two grids are displayed. The green colored squares represent
the main grid which is used during the SBE. The Coulomb matrix elements
Vk’\i’ié’;\f”\“ from Eq. are calculated between the points k and k + q with

the coefficients ¢ being the k.p-eigenvector coefficients obtained from matrix

diagonalization. To deal with the singularity % a local integral

1
Tioc :/ 7,2qu (626)
Qioc
is solved at k+q. The sub-integral goes over the auxiliary points nearest to the
main point. In this work the auxiliary grid has a N4 = 10 which correspond to

1212 points on a sphere.
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Figure 6.4: Similar to Fig. the Coulomb singularity is evaluated according
to Eq. (6.24)) for a geodesic grid with N4 = 12 which uses a sub-grid for the
evaluation of the singularity ql—z. The evaluation is done for grids with 40, 80,
; _ 1 _ 1 _ 1
and 120 spheres and screening constants ¢ = Tag’ C= To0a5" and ¢ = To00a5
respectively. For better comparison the k-point index k; is normalized over the

total number of grid points Ny.
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In Fig. [6.4] the results for a geodesic grid using a sub grid are displayed and

1
lap

the grids are identical to the corresponding results in Fig. [6.2l This is due

compared for different radial resolutions. For a screening constant of ¢ =

the screening being too large and causing the singularity Vq—o to disappear,

but also due to the Coulomb matrix elements becoming too small overall. For a

1
1000-ap

and still show a large divergence. But in direct comparison to the corresponding

screening constant ¢ = the values heavily depend on the radial resolution

values in Fig. [6.2] the use of a sub-grid results in an improved evaluation. For a

_1
100-ap

in comparison to a screening of ¢ = ——. Consequently a screening equivalent
lap

screening constant ¢ = the grids are converged and have improved values
to 100 Bohr radii ap is the optimum for numerical evaluations and used in the

simulations.

6.5 Absorption Spectrum of Bulk GaAs

Based on the known effects of the Coulomb interaction at the band gap, a
very well defined exciton peak and the Coulomb enhancement of the continuum
absorption are expected. The literature value of the exciton binding energy
Ep;y = 4.2meV|88| is quite small and as such the position of the exciton peak can
be obscured by line broadening of the spectrum. Therefore the simulations are
done with a long dephasing time 75 = 800 fs to minimize said line broadening.
To obtain an absorption spectrum the system is excited with a quasi J-pulse
E(t) = Eod(t)e,, where §(t) represents a function which is only unequal zero
for a single time step. For d-pulse excitation conditions the velocity gauge is

unsuitable due to
A(t) = / st = 0(t) (6.27)

which is numerical unstable. Therefore for the calculation of the linear absorp-
tion the length gauge is used. Normally the length gauge would require the
inclusion of gradient terms in the SBE which is challenging due to the random
phase in k-space. But the gradient terms are higher order terms which do not
contribute to the first-order polarization and thus can be omitted from first-
order calculations. For testing and verification simulations are also performed
with a parabolic band structure. Its known analytic solutions can be used to
estimate the influence of numerical limitations such as finite k4, or the influ-
ence of screening. For k.p band structure simulations the wave functions are
used in the Coulomb and dipole matrix elements while for the parabolic band
structure the wave functions are assumed to be plane waves and the dipole ma-

trix elements are considered to be k-independent.
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In Fig. [6.5] the absorption spectra for a parabolic band structure and the
GaAs band structure obtained from the extended Kane model are shown. The
simulations are done with different k,,., values to check if the used k-space
grids are large enough to achieve converged results. For the parabolic as well as

for the k.p band structure a grid size with k4, = 0.5nm™!

is sufficient large
to ensure quantitatively converged results. Both spectra display the Coulomb
enhancement and very well defined exciton peaks. For the parabolic band struc-
ture, Fig. 23), the exciton has a binding energy of E,qrq &~ —3.9meV which
is approx. 85% of the analytic value. Besides the main peak a smaller peak is
visible at Epqrq2 &~ —2meV which corresponds to approx. 80% of the analytic
value of the light hole exciton. For the k.p band structure, Fig. M(Qb), only
one peak at Ej, ~ —3.2meV is visible which is approx. 60% of the analytic
value. Part of the deviation from the analytics results in the parabolic case can
be explained by the finite line broadening caused by the spectrum and the light

hole peak even with a very weak dephasing of 75 = 800 fs.
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Figure 6.5: Absorption spectra for (1a) a parabolic and (1b) k.p band structure.
Plotted are four different lines for different k... (2a) and (2b) are zoomed
spectra around the exciton peaks of spectra (1a) and (2a), respectively.



76 CHAPTER 6. SHIFT CURRENTS NEAR THE BAND GAP

Besides the binding energy, the wave function form can be used to judge
the accuracy of the results. To obtain the exciton wave function the system is
excited with a slowly switched-on cosine excitation

Epe exp {— (ﬁ)z} cos(wrt) t<0
Epe, cos (wrt) t>0,

E(t) = (6.28)

with At = 500fs. Such an excitation has a very small line width which ensures
that mainly the exciton will be excited by the excitation energy hwy ~ E....
For numerical stability the excitation amplitude Fjy is very small and the system
has the dephasing To = 800 fs. After a sufficient long time, here ¢t = 3000 fs, the
system is in a stationary state and the k-resolved interband polarization Py (t)

should reflect the exciton wave function.
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Figure 6.6: Shown is the absolute value of the interband polarization at
t = 3000fs for a band structure with (a) parabolic and (b) k.p dispersion.
For visualization the three-dimensional |Py(t)| are plotted as function of the
radius |k|. The interband polarization corresponds to the probability density
| U (k)|2dV.
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In Fig.[6.6]the interband polarization | P (t = 3000fs)| is plotted as a function
of the radius k. Due to the mentioned line broadening the exciton energy
position could be larger than Fig. suggests. Therefore simulations are done
with an array of small varying photon energies iiwy,. The results for the parabolic
band structure in Fig. (a) show that the polarization has a extremely high
match with the analytic solution for the density probability in k-space

2
W (K)[2dV = (M) dv (6.29)
at a binding energy of Ep.rq = —4.4meV which is 0.5meV lower than the ab-
sorption spectrum suggests. This shows that the position of the exciton peak
is still influence by the line broadening of the continuum states. Unlike in the
parabolic band structure, the polarization in the k.p band structure is highly
anisotropic. In Fig. b) the three-dimensional polarization is plotted as func-
tion of the radius |k|. For a high isotropic polarization, see Fig. a), the
polarization appears as one thick line. In the k.p case, Fig. b), for one
excitation energy different lines are visible reflecting the anisotropy caused by
the band structure and its optical matrix elements. This makes a comparison
with the analytic solution more difficult. The approximately best match is at
a binding energy of Ej ), ~ —3.8meV, 0.6 meV lower than the spectrum value.
Even with the expected deviations from the analytical solution, the comparison
of the wave functions suggests that also for a k.p band structure the exciton

position is significantly shifted by line broadening.

For better comparison, in Fig. [6.7(a) only the results for parabolic and k.p
band structure are plotted which have the highest match with the analytical re-
sult. As previously mentioned, the results for the parabolic band structure have
a very good agreement with the analytical results with only minor differences
due to numerics. The anisotropy of the k.p wave function leads to a decrease of
the wave function to 80% at k = é for certain directions, visible through the
three distinct lines. If the maximum of the wave function at k = é is matched
to the analytic result, the k.p wave function displays slightly larger values for
larger k vectors. This can be explained by the step size hAwy, = 0.2meV being
not small enough to hit the exciton fully resonant and thus slightly exciting
higher states of the continuum. But the match is sufficient enough to say that
the exciton binding energy is Ej, ~ —3.8 meV. For completion, in Fig. b)
a comparison of the radial part of the wave functions is made. Both, parabolic
and k.p results, have good agreement with the analytic form, the differences are
very small on the used scale.
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Figure 6.7: In (a) the numerically obtained parabolic and k.p exciton density
probabilities are compared with the analytical result for a parabolic dispersion.
As in Fig.[6.6] the three-dimensional density probabilities are plotted as function
of the radius |k|. In (b) the calculated radial wave function for the parabolic and
k.p exciton is compared with the analytical formula [¥(k)[2dV of Eq. (6.27).
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6.6 Shift Current with Excitonic Enhancement

After verifying the exciton binding energies, the influence of the Coulomb inter-
action on the shift current is now analyzed. For the simulations a temperature
of T'= 0.1K is assumed which corresponds to a band gap of Ey,, = 1.517eV.
To reduce the simulation times, a geodesic grid with N4 = 12 is used. This
causes a low angular resolution of the grid but a comparison between N4 = 12
and N4 = 48 without Coulomb interaction shows a difference of less than 5%
between the two grids. Therefore the calculated results are expected to be rep-

resentative.

In Fig. the simulated shift current with and without Coulomb interac-
tion is shown. For below band gap excitation without Coulomb interaction,
Fig. [6.8)a), the shift current is small and deviates from the analytic E2,,(t)
shape as seen previously. With Coulomb interaction the shift current is several
times larger and follows the E?  (t) shape, its maximal amplitude depends on
the dephasing and relaxation times 75 and 7. Fig. b) shows that the exci-
ton and the Coulomb enhancement of the continuum increases the shift current
at the band edge several times. In comparison to the continuum the shift cur-
rent caused by the exciton heavily depends on the dephasing in the system, for
T, = 100fs the line broadening is so large that the exciton peak in the shift

current becomes indistinguishable from the continuum.

The analysis of individual band contributions, Fig. reveals an interest-
ing observation. For above band gap excitation all current contributions flow in
the same direction, a behavior seen for the bulk calculations without Coulomb
interaction presented in Chapter For excitation below and at the band gap
the valence current changes its sign and starts to flow in the opposite direction.
The behavior of the valence band current can be explained by the motion of
holes. For above band excitation the created electrons and holes flow uncor-
related from each other, with the hole direction being on average opposite to
that of the electron. Due to the different signs of their charge the hole current
has the same sign as the electron current. For excitations near and below the
band gap the electrons and holes are not uncorrelated and flow on average in
the same direction, resulting in a negative current for the positively charged
holes. The larger effective mass of the holes lead to a smaller displacement of
the holes and consequently to a smaller shift current in the valence band than
the conduction band. The line broadening of the exciton decreases the exciton
shift current for all contributions for below band gap excitation, in particular,

the sign changes of the valence band moves to higher energies. This indicates
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Figure 6.8: The shift current is calculated for dephasing and relaxation times
T, = T7 = 800fs, 400fs, 200fs and 100 fs, respectively. The system is excited
by a Gaussian pulse, FWHM = 500fs, linearly polarized in (110)-direction,
generating a shift current in (001)-direction. For comparison the system is
simulated with, full lines, and without, dotted lines, Coulomb interaction. (a)
Time evolution of the shift current for a photon energy fiwy = 1.515eV. (b)
Peak shift current for different photon energies hw; which are given in units
of the analytical result for the exciton binding energy Fqpnqiy, = 4.58 meV. (c)

The linear absorption of the system for the respective dephasing and relaxation
times.
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Figure 6.9: The total shift current from Fig.[6.8 and its subcurrents are displayed
for dephasing and relaxation times (a) 7o = T7 = 800fs, (b) 400fs, and (c)
200 fs, respectively. The maximum values of the total .J, the valence J,q;, the
conduction Jc,p, and the interband current .J,,; are shown as a function of the
central excitation frequency hwy, here directly compared to the k.p exciton
binding energy Fj, = 3.8eV. For comparison the total shift current without
Coulomb interaction, dotted black line, is included.
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that with increasing line broadening the bound motion of electrons and holes is
obscured by the free motion in the continuum. For above band gap excitation
the continuum contributions of the conduction band and the interband polar-
ization are constant and about J.., ~ 0.2 mA/cm2 and J;,; =~ 0.1 mA/cmz. In
comparison the valence band contributions depend on the dephasing and relax-
ation times T» and 77 due to the intraband coherence between different valence
bands which also contributes to the signal.

Another way to quantify a shift current is by the shift distance dgpife, the
average displacement of the electron in the crystal structure. From Maxwell

equations the relation

t
dnife(t)eon(t) Z/ dt' T snipe(t) (6.30)

holds, n(t) being the total conduction band population and eg the elementary

charge. Therefore the shift distance can be calculated by

It At Tnige(t)
eon(t)

dsnife(t) = (6.31)
While the shift current Jp; ¢ (t) is an off-resonant process following the envelope
of the excitation, the population n(t) has resonant contributions and relaxes on
its own. Therefore, Eq. (6.31) only describes the shift distance until the relax-
ation of the population n(t) causes an artificial increase.

The bond length in GaAs, the closest distance between a gallium and an
arsenic atom, is %ao. With the lattice constant ag = 0.565 nm, the bond length
in (111)-direction is approximately 0.25nm. In (001)-direction the bond length
is approximately 0.14nm. The simulated shift current Jgz;¢: and population
density n(t) are calculated for a unit volume. A GaAs unit cell is composed of
two ffc-lattices, one for gallium and one for arsenic, respectively. A ffc-lattice
contains four atoms, thus a GaAs unit cell contains four gallium and four arsenic
atoms and consequently four transitions. In (001)-direction two transitions are
each parallel which means that from the four transitions half of them do not
contribute to a shift in (001)-direction. To compare the calculated shift distance
with the atomic bond length a factor ny = 2 is introduced in Eq. to
account for the multiple transitions:

fioo dt/Jshift(t/)
nreon(t)

dspife(t) = (6.32)
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Figure 6.10: Shift current distance dgpif(t) in (001)-direction calculated for
different excitation energies hwy. The dotted B-lines represent simulations
without Coulomb interaction. In addition, the bond lengths of GaAs in (001)-
direction, dotted line, is included for comparison. To minimize relaxation effects
of the population, the simulations are performed for a very long relaxation time
T, = 1600 fs.

In Fig. the shift distance dsp;f:(t) is calculated for simulations with
and without Coulomb interaction. The calculated shift distances dgp; s (t) settle
themselves after a short time period of ~ 150 fs and remain constant for a long
time. Due to the mention resonant contributions and the relaxation of the pop-
ulation n(t), the shift distances start to increase for ¢ > 0fs. Without Coulomb
interaction, dotted lines in Fig. the shift distances in (001)-direction are
dshife = 0.09nm for band gap excitation and dguif¢ ~ 0.1nm for higher ex-
citations, approximately 63% and 70% of the bond length in (001)-direction,
respectively. For band gap excitation the shift distance is slightly smaller than
for higher band excitation, with the two excitation hw; = 58 meV + E,,;, and
hwr, = 108meV + Eg,, having about the same shift distance.

The shift distance with Coulomb interaction, solid lines in Fig. [6.10} show a
shift distance of dspipe ~ 0.082nm in (001)-direction, approximately 58% of
the bond length. The shift distance varies with the central excitation energy
hw, but remains slightly smaller than the corresponding shift distance without
Coulomb interaction. Despite causing a larger shift current on a whole due to
increased absorption, the shift distance is slightly smaller due to the attractive

interaction between holes and electrons.
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It should however be mentioned that due to numerical restrains only the
Coulomb interaction between the valence and conduction bands near the band
gap has been considered here. While this is sufficient to describe the excitonic
absorption near the band gap, the shift current is an off-resonant effect which
includes higher conduction bands. It therefore may be possible that the missing
Coulomb interaction between the lowest and the higher conduction bands may
modify the shift current and therefore the shift distance. In the limits of this

work this question cannot be answered and will require further investigation.



Chapter 7

Rectification Currents in
GaAs

Besides the injection and the shift current a third current exists in non-centro
symmetry semiconductor systems, the rectification current. If an electric field is
applied to an insulator or semiconductor, the electric field causes a shift of the
electron density along the field direction and creates a microscopic polarization
inside the material. For optical frequencies the sign of the electric field changes
so rapidly, that one may assume that the microscopic polarizations oscillate as
fast and for larger time scales averages itself out. But in solids the electron

potential V(r) can be anharmonic, i.e.,
V(rg — Ar) # V(rg + Ar) (7.1)

with ro being the electron position of the undisturbed system. In an anhar-
monic potential the deflection of an electron in an oscillating electric field is
different for +E and —E, thus even for optical frequencies the average position
T can change without causing an excitation of the electron from the valence to
the conduction band. The spatial displacement of the average electron position
leads to a static polarization in the material, i.e., the optical rectification P,
and depends on the electric field strength. The optical rectification was first
observed by Bass et al. in 1962 in zincblende type crystals.[102] Optical rectifi-

cation can be used to generate infrared radiation in bulk GaAs.[103]

In the case of a time-varying envelope of the optical pulse, the optical rec-
tification is time-varying too which consequently generates a microscopic recti-
fication current j,.... As it was the case for the shift current, for linear optical
tO jrec 1S symmetry

excitations in certain direction the counter current —j,...
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forbidden and thus allowing a non-vanishing rectification current J,.. to exist
in the system. The rectification current was measured via THz spectroscopy in
zincblende crystals and metal nano films|104} [105] and was theoretically inves-
tigated for bulk and surface currents.[35, 106, [107] In this chapter it is briefly
investigated if the combined theory of k.p and SBE can be used to describe
rectification currents in bulk GaAs and GaAs QW systems.

7.1 Rectification Current in Bulk GaAs

By exciting the system with linearly polarized light parallel to the (110)-direction,
a rectification current is generated in (001)-direction. Like the shift current, the
optical rectification P,.. follows the envelope of the optical pulse. It is the

frequency w = 0 component of the total polarization

P)=c > VoV, (7.2)

M #EN K

with TI)Y = imowp? 1)) being the transition dipole moments. As it was the

case for the shift current, the frequency filtering method around w = 0 is applied
to so separate the optical rectification P,... from the fast oscillating terms in P.
The rectification current is then given by the time derivative of P,

0

Jrec(t) = &Prec(t)- (73)

In Fig. [7.1(a) the time evolution of the rectification current is shown for the
case of below, at, and above bandgap excitation. For an instantaneous response
in the off-resonant limit the rectification polarization is given by|39]

P;lec(t) = FabcEgnv (t)Eénv (t)ﬂ (74)

with gy being the rectification current tensor. For below band gap exci-
tation the rectification current has good agreement with the expected form
Jrec(t) = 2 P%.(t) < £ E2,,(t). For band gap excitation the rectification cur-

(t) due to

resonant contributions of the band structure. For above band gap excitation

rent becomes larger, but diverges from the form Jy..(t) o« &E2,,
the rectification is smaller in comparison with band gap excitation. This is in
contrast to the shift current which for bulk systems reflects the density of states
and monotonously grows in the considered energy range.

In Fig. [7.1|(b) the rectification current is plotted as function of the photon
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Figure 7.1:  (a) Rectification current in Z-direction calculated for Gaussian
pulses with FWHM of 300 fs and linear polarization in (110)-direction for three
different photon energies fiwy. (b) Rectification current as function of the pho-
ton energy. Since the rectification current transient has more than one peak, the
value of the first and the largest peak of the rectification current are displayed.
For the simulations the band structure is obtained for a temperature of 0.1 K
which corresponds to a band gap of 1.517eV. The dephasing and relaxation
times are set to 77 = T5 = 200 fs to reduce dephasing and relaxation effects in
the rectification current. The results were published [80].

energy hwy. For below band gap excitation no carriers are excited from the
valence to the conduction band. The rectification current is predominantly cre-
ated by the deflection of the electrons in the valence band which is a purely
off-resonant effect, thus the agreement with Eq. . At the band gap the
rectification current amplitude grows rapidly due to the resonant excitation of
carriers. The electron density moves from As-atoms to the Ga-atoms resulting
in a greater static polarization which contributes to the rectification current, see
Fig. [£:3]in Chapter f.1.1] Unexpectedly, the rectification current is not increas-
ing monotonically with the photon energy but at a certain energy decreases and
undergoes a current reversal. Since the rectification current transient has not
one central peak, the current reversal happens at different energies depending
if the first or the largest peak is used as measurement. Using the largest peak,
the rectification current undergoes a current reversal slightly after the band
gap, jumping at ~ 1.53 eV from positive to negative. Using the first peak, the
rectification current decreases and has a zero crossing at ~ 1.61eV. After the
zero crossing the rectification current rapidly grows in amplitude with growing
photon energy. This sign change of the rectification current was also predicted
in other theoretical studies by Nastos and Sipe[39] and was experimentally ob-
served by Zhang|28].
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7.2 Rectification Currents in (110)-grown GaAs
Quantum Well Systems

Similar how the shift current was analyzed in Ch. the rectification current is
investigated in a (110)-grown QW, specifically in terms of angular dependence.
As it was the case for the shift current simulations, a QW with 8 nm thickness
is considered, using 12 valence bands and 28 conduction bands during the time
evolution of the SBE. The used coordinates axes are X = (001), Y = (1-10),
and Z = (110) again.

In Fig. [7.2) the system is excited with a linearly polarized pulse in the xy-
plane, the angle 6 lies between polarization direction and the X-direction. The
rectification current follows the same symmetry rules as the shift current does,
thus the polarization dependence in X-direction is described by

JX, = Acos(20) + B (7.5)

rec

and in Y-direction described by

JY, = Csin(26). (7.6)

rec

The X-current has a offset as the shift current does, but is in comparison sig-
nificantly smaller, see Chapter [5.2.1]
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Figure 7.2:  (a) Rectification currents in X-direction calculated for a linear
polarized Gaussian pulses with central frequency corresponding to 1.6 €V, a
FWHM of 200 fs, and different 6 which is the angle between the X-axis and
the linear polarization direction of the pulse. (b) Corresponding rectification
currents in Y-direction. As in the case of the shift current calculations, dephas-
ing and relaxation times of T3 = T» = 200fs are considered. The results were
published [80].



Chapter 8

Real-Space Mapping of Shift

Currents

In the combined theory of k.p and SBE the shift current is calculated in k-space

Tonige(t) = /Q RUCKS (8.1)

This method allows for the calculation of the shift current in a unit volume,
but does not contain any real-space information. Given that the shift current is
created by the spatial shift of the electrons in the inversion asymmetric crystal
structure of GaAs, it would be interesting if the method could be extended to
provide a real-space visualization of the shift current and if the real-space shift
current would display the properties expected by the symmetry considerations.
In previous research k.p theory was incorporated in real-space simulations, but
the application was restricted to the calculation of spatially resolved band en-
ergies.[108, [109]

8.1 Theory
In general an operator G and an eigenvector |i) have the relation

ali) = aili), (8.2)
with a; being the eigenvalue. Consequently, the operator @ can be written as

a= Zai|i><i|. (8.3)
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Applying Eq. (8.3) on the shift current, the shift current operator in the ex-

tended Kane model has the explicit form

i (k) =3 (&KL K) (1 K|

8.4
=11 2 () |1, k) (I, K. 54

The shift current operator consists of the momentum matrix elements IT{" and
the time evolution matrix of the system xﬁ/ (t) which is calculated via the SBE.
The Ket-vectors |I, k) are the band structure eigenvectors obtained from matrix

diagonalization and can be written as
Lk) =Y (k)n), (8.5)

with |n) being the 14 x 14 eigenbasis of the extended Kane Hamiltonian. Using

Eq. (8.5)) the general shift current operator is
N / A !
i) =T 2l () Y e (k)e (k) m) (m|. (8.6)

mm/’

If an operator @ is applied on a Ket |j), which is not an eigenvector of the

operator, the result will be
alj)=a Z cjili) = Z €jia;li). (8.7)

The c¢;; are the expansion coefficients of writing the Ket |j) in the eigenbasis |7)
of the operator a, see Eq. (8.3). Using the definition of the expectation value

(a;) = (jlalj) (8.8)

it is clear that c ; are the probabilities to measure a;. Using Eq. (| . & Eq. (8.8 .
it must be p0s51ble to write the space expectation value as

(rj) = (IEl) = lerz (ill7)- (8.9)

From this it becomes obvious that (i|j) = ¥;(r;), or in other words (r|j) is the
real-space representation of the wave function |¥;). Using Eq. (8.8)) again, the

expectation value

(ar) = (rlalr) (8.10)
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is consequently the real-space representation of the observable a, or in other
words a(r). Using the shift current operator Eq. and Eq. (8.10) the real-
space representation of the shift current is

N
i (k)

ﬁﬂﬂd@i@@ﬂ@M@@M,@m
W o (r) ¥,/ (r)

ﬁww=<r

mm/

with W, (r) being the real-space representations of the Bloch wave function at
the T-point k = 0. By integrating over k-space, the real-space shift current
JW (t,r) is obtained.

Table 8.1: Angular momentum eigenfunctions of the extended Kane model.
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In general the k.p Bloch functions lack a complete real-space description.
The angular part of the wave function is developed in the basis of the angular
momentum eigenfunctions |m,r), also known as the spherical harmonics, see
Table [B1] the radial part is missing in the theory. To complete the real-space
representation of the Bloch wave functions, the radial part is required and has
to be obtained from somewhere else. Here the radial part is calculated from
the real-space wave functions ’\I/{?LF T(r) ‘2 obtained from density functional the-
ory calculations, at this point the author wants to thank Andreas Liicke for
providing the necessary density functional theory (DFT) calculations.

The radial part is calculated by

gpseudo=rad(y) — /| gDFT ()2, (8.12)
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The DFT wave functions contain both the radial and the angular part of the
wave function. To not include the angular part of the wave function twice, the
wave functions obtained from Eq. are divided by the absolute value of
the angular momentum eigenfunctions,

\ijseudofrad
grod(py — YD) (8.13)

VI{m.x[m,x)[
The Bloch wave functions are then obtained by combining the radial part

with the angular momentum eigenfunctions,
W, (r) = Urd(r) - |m, r). (8.14)

The so-obtained ¥, are used for the real-space calculations. Besides the ¥,
Eq. contains the expansion coefficients ¢/ (k) from the k.p vectors. Be-
cause the matrix diagonalization process allows for a random phase factor ¢; for
each k.p vector |I) at each k-point, the expansions coeflicients would have to be
phase corrected before an integration over k-space can be performed. Instead
of doing a phase correction, Eq. is modified into

i) S R)E (K),, ()T (7)], (8.15)

mm/

_]{(l (t,r) = <r

)= (0

where the problem of the random phase is treated by just considering the ab-
solute value of the coefficients. This approximation leads to the problem of
ignoring the natural change of the phase in k-space, but is sufficient for a first
trial.

8.2 Results

Using Eq. the real-space representation of the shift current is calculated.
The used DFT-wave functions have a spatial resolution of 31% grid points. For
each real-space point Eq. has to be evaluated and summed up over the
whole k-space. In Fig. the shift current created by the interband polar-
ization is shown inside the GaAs primitive cell. The real-space picture shows
shift current contributions around the As- and Ga-atoms. For an excitation in
(010)-direction the GaAs symmetry does not allow a shift current to remain.
In the corresponding picture above and below the As atom positive and nega-
tive current contributions are visible, with the negative blue contributions being
slightly larger. For (110)-polarization, the upper picture, two current density

clouds are visible, reaching from below the As-atom to the two Ga-atoms above.
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Figure 8.1: The shift current J,(r) in the primitive cell of GaAs. The vectors
a, b, and c are the unit vectors of the primitive cell and point in (-101), (011),
(-110). The shift current is calculated for ¢ = 0. In the upper, middle, and lower
picture the shift current, created by the interband polarization, is depicted for
a linear polarized excitation in (110), (010), and (-110) which generates a shift
current in +z, no shift current, and -z-direction, respectively. Yellow marks
positive and blue negative current contributions. The pictures were made using
the atomic density visualization program VESTA.
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Figure 8.2: The shift current J,(r) in the primitive cell of GaAs. The vectors
a, b, and ¢ are the unit vectors of the primitive cell and point in (-101), (011),
(-110). The shift current is calculated for ¢ = 0. In the upper, middle and lower
picture the shift current, created by the whole band structure, is depicted for
a linear polarized excitation in (110), (010), and (-110) which generates a shift
current in +z, no shift current, and -z direction, respectively. Yellow marks
positive and blue negative current contributions. The pictures were made using
the atomic density visualization program VESTA.
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The real-space picture shows that the shift current has a positive contribution,
i.e, it flows in +z-direction and that it travels to the two As-atoms parallel to
the optical (110)-excitation, respectively. Both of this are in agreement with
the previous established shift current symmetries. For (1-10)-polarization, the
lower picture, the shift current manifests as two large current density clouds
reaching from above the As-atom to the two lower Ga-atoms. It visualizes how

the current flows in -z-direction.

The GaAs-structure has to be invariant under its symmetry operation. Con-
sequently, the spatial shift current has to be invariant under certain GaAs-
symmetry operation. For a shift current in z-direction the spatial shift current
has to be invariant regarding mirroring at the As-atom in (110) and (1-10)-
direction. Another symmetry is the 90°-rotation around and additional mirror-
ing in (001)-direction at the As-atom. This symmetry describes how the shift
current flows in 4z and -z-direction for optical (110) and (1-10)-polarization.
The spatial shift currents in Fig. [8.I] partially break both of this symmetries. For
the simple mirror symmetry the spatial pictures show only minuscule asymme-
tries. For second symmetry the +z and -z shift current pictures show large dif-
ferences. This differences are explained by the approximation made in Eq.
where the random phase problem was treated by just considering the absolute
values. This approximation does not account for the intrinsic phase change in

k-space.

In Fig. 8.2 the full shift current, i.e. valence, conduction and interband con-
tributions, is depicted. For (100)-polarization the partial shift current show posi-
tive and negative contributions, canceling each other out. For (110)-polarization,
the upper picture, a positive current density cloud surrounds the Ga-atoms.
Around the As-atom four density clouds are visible, with the cloud above the
As-atom being slightly closer to each other. For (1-10)-polarization, the lower
picture, the current density cloud below the As-atom are slightly closer to each
other. The spatial picture of the whole current is not as intuitive as the inter-
band current in Fig. but with the clouds in the shift current direction being
slightly closer to each other it still partially agrees with the conception of the

shift current moving from the As-atom to the two Ga-atoms above.

In Fig. [8.3(a) the spatial shift current is integrated over the primitive cell
for varying polarizations angle 6 which is the angle between the x-axis and the
linear polarization. As expected, the real-space shift current follows approxi-
mately a sin(260) dependence. In theory the x- and y-currents should vanish for

the used excitation conditions, but in Fig. |8.3|a) non-vanishing contributions
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Figure 8.3: The x-, y-, and z-currents are integrated over the GaAs primitive
cell. Displayed are the integrated current for varying linear polarizations in (a)
the xy-plane and (b) the xz-plane. The currents are shown as a function of the
polarization angle between the x-axis and the linear polarization.
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are visible. However, these contributions are much smaller as the shift current
in z-direction. In addition to the full current, also the current only created by
the interband polarization is shown. It too follows the sin(26) dependence, but

only makes up for ~ 30% of the total current.

Despite only considering the absolute value of the complex k.p eigenvectors,
the novel method allows for a visualization of a real-space shift current which
is in agreement with the established symmetry rules for the shift current. In
addition, the shift current created by interband polarization current shows in

real-space how the current flows between the As-atom and the Ga-atom.






Chapter 9

Conclusion

In this work it was shown that the combined theory of k.p perturbation theory
and the semiconductor Bloch equations is suitable to describe the shift and the
rectification current in GaAs based systems. The theory reproduces the known
symmetry properties of the shift current and its linear dependence regarding
the intensity of the optical excitation in the low intensity limit. The theory
also qualitatively reproduces the emergence of alternating shift currents for op-
tical excitation using chirped pulses, which has been observed in experiments.
A band analysis of the shift current reveals that the shift current is created
by the off-resonant interaction of the lowest conduction band with higher con-
duction bands. The theory predicts that high excitation intensities will lead
to time-dependent current reversals of the shift current, concurrent with Rabi-
oscillation in the population. It also predicts for coherent two pulse excitation
a small intrinsic phase in the shift current because of the formation of fringes
in the population.

The extended Kane model reproduces the band structure of GaAs around the
I'-point, but becomes incorrect for larger k-values. Consequently, in this work
the shift current simulations have been limited to excitations around the I'-
point. For full Brillouin zone calculation an expansion of the theory is possible
by combining the SBE with full band structure k.p models or density functional
theory. Due to the symmetry of the zinceblende band structure in k-space, ex-
citation at the Brillouin zone borders could lead to new unexpected effects in
the shift current. A full band structure theory could also be used to investigate
other effects, e.g., Bloch oscillations.[55] Thus it represents a promising research

topic for future investigation.
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By using a non-standard geodesic grid, it is possible to include Coulomb
interaction for a three-dimensional band structure. The calculations have the
advantage of high convergence and comparably small numerical effort. A con-
verged exciton has been observed in simulations with a parabolic and a k.p
band structure. The anisotropy of the k.p band structure reflects itself in a
anisotropy of the exciton wave function, deviating from the radial-symmetric
|1s) wave function known from hydrogen model. The Coulomb interaction leads
to a strong enhancement of the absorption and consequently the shift current.
However, the binding electron-hole interaction for below band gap excitation
leads to a negative hole current which results in a reduction of the shift dis-
tances in comparison with simulations without Coulomb interaction.

Due to numerical demands the Coulomb interaction with the higher conduction
bands is not included in this work. Since the higher conduction bands are re-
sponsible for the creation of the shift current, the inclusion of the higher bands
via Coulomb interaction may cause additional effects in the shift current and
has to be further investigated. Besides shift current, the inclusion of Coulomb
interaction allows for the investigation of other excitonic effects at the band gap,

e.g., two-color excitation experiments.[94]

By using the envelope function approach the extended Kane model can be

modified to describe the band structure in a quantum well system. For (110)-
grown quantum well(QW) systems the shift current was analyzed and a new
shift current tensor element was observed which does not exist in bulk GaAs.
In addition, a sign change of the shift current was observed for higher excita-
tion energies and a k-space resolved analysis revealed the importance of band
crossing in the shift current. Both of these effects were observed in experiment,
validating the applicability of the combined theory for QW systems.
How the Coulomb interaction affects the shift current in QW systems has not
been investigated in this work, but the surprising results for bulk as well as the
higher exciton binding energies make this an interesting research topic. The
band crossing in (110)-grown QW systems is responsible for a non-vanishing
Berry-phase in the band structure which also represents a further topic for fu-
ture research.|110, [111]

Using a novel approach which combines k.p theory with DFT wave functions,
the shift current is visualized in real-space on an atomic scale. The calculated
shift currents in real-space obey the shift current symmetries and show the elec-
tron transfer from arsenic to gallium in the primitive cell. However, the random
phase of the wave function in k-space was treated by only considering the ab-

solute value. This leads to an approximation error which appears as a small
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symmetry break between the + and - current in real-space. Consequently, a
better treatment of the random phase is expected to lead to further improve-
ment of the method. While the method was developed for shift currents, it can
be adapted for the real-space visualization of all effects described by the com-
bined theory of k.p method and SBE, e.g., excitonic resonances and rectification

currents.






Appendix A

Additional Theory

Considerations

A.1 Theoretical Basics

A.1.1 Theory of Invariants

Applying a symmetry operation S¢ of system G on its Hamiltonian gives back
the Hamiltonian itself. Thus it must be possible to construct the Hamiltonian
in terms of symmetry invariant components.[47, 48] In point group theory a
symmetry class is expressed by a number of irreducible representations I';. A
matrix, which expresses a symmetry operation of the system, can be decom-
posed into a set of smaller matrices which transform according to an irreducible
representation of the symmetry class. The irreducible representation represent
a basis in which all symmetry matrices and invariant expressions can be devel-
oped. Given the bands a and 3, which transform according to the irreducible
representations I', and I'g, the Hamiltonian I:Iag has to transform according
to the irreducible representation I'; contained in the product representation
', ® FL. Therefore ﬁaﬁ can be expanded as a superposition of its invariant

expressions Iz,
Hup = Z ai‘fﬂ]mu, (A.1)
oA
where the index k sums up over all invariant expressions transforming according
to the irreducible representation I';. The indices A and p sum over degeneracies
either in 'y, or in the point group itself. Combining this approach with pertur-
bation theory allows for a straightforward formulation of a finite dimensional

Hamiltonian.
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A.1.2 Lowdin Partitioning

Normally it is not possible to distinguish between degenerate states in pertur-
bation theory. Lowdin partitioning is a quasi-degenerate perturbation theory
which starts by a separation of the eigenstates |¢,,) of a Hamiltonian Hy into
two weakly interacting subsets A and B.[112] |113] The full Hamiltonian H is

given by
M=0,+1, (A.2)
with 1 being the perturbation. In quasi-degenerate perturbation theory it is

S

assumed that an unitary operator e can be found with the property that the

matrix elements between the sets A and B
(pale™"He”|pp) = (palHy + | o) (A.3)

vanish up to the desired order in 0. A block-diagonal Hamiltonian H, and
a non-block-diagonal Hamiltonian H, is introduced. The full Hamiltonian is
divided up into

H=Hy + H; + Ha. (A4)

The Hamiltonian H; has non-zero elements only within the sets A and B while
H, only between A and B, respectevely. The unitary operator e~ has to fulfill
the conditions
ﬁd = e_S (ﬁo + I:Il + ﬁg) ES, (A5)
H, = 0. (A.6)
Using e¥ = 1+ 8 + 492 + ... and the ansatz § = S + 5@ 4 .. S can be
develop up to the jth order. The perturbed Hamiltonian is then

~ ~ (0 ~ (1 ~ (2
=0 a1+ a? ¢ (A7)
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A.1.3 DMatrix Expressions

Here the matrices of the extended Kane model are listed.

Table A.1: Explicit form of matrices used in the invariant form of the extended
Kane Hamiltonian.[52} |62]
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A.1.4 Extended Kane Parameters

Here the parameters used for the extended Kane model are listed. For the

GaAs — Al,Gaj_,As QW the offset of the valence bands is considered to be
35%.[114]

Table A.2: Band structure parameters of GaAs.[46}, 115} 116|

Ey E6 Ay A6 A~
1.517eV 4.488 eV 0.341eV 0.171eV —0.050ieV
P P Q Ck
10.493eVA  4.780ieVA 8.165eVA —0.0034eVA
m* g*
0.0665 mg —0.44
ga! 72 V3 K q
6.85 2.10 2.90 1.20 0.01

Table A.3: Band structure parameters of Alg 35Gag.g5As.[42, 61]

Ey E(/) Ag A6 A~
1.972eV  4.527eV  0.317eV 0.171eV —0.085ieV
P P} Q Ck
9.44eVA 1.17eVA 6.26eVA —0.0017eVA
m* g*

0.095mg 0.61

Al V2 73 K q
5.59 1.59 2.31 0.54 0.01

A.1.5 Semiconductor Bloch Equations

The semiconductor Bloch equations are derived by solving the Heisenberg Eq. (3.17)
for the single-particle Hamiltonian Eq. in Sec.

YOS B PSS
&ak ay = 7 [H,ak ak}
i ATAAN

[ﬁo,afjaﬁ/} +% [ﬁLM,ak ak} L [ﬁc, AT/\AX} (A.8)

h Ay Ay

A B c

St
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The three commutators A,B & C are solved separately using the Fermion anti-

commutator relations:

[alTj7 &]’L} L= Ix Ok k! (A.9a)
[l al’ L —0 (A.9b)
[aﬁ,aﬁﬁh =0 (A.9¢)

The commutator A is the homogeneous part and has the final form
AAANT apr AtA AN
7 [Ho,ak ak} = [Zwkak ai,ay ak]
———

1 /
:ﬁZw { ol a aja T)‘ )‘ dlt)‘al’l aL“aﬁ}

PAtAAN  tuapatA AN | ot s A
=5 E wh! {ak ajay ay —alayay a4 aglay ox, — ay oy,

i A ATAAN

=3 (Wk Wk ) Qe -
(A.10)

The light-matter interaction is represented by commutator B and has the final

form

ira LA i AN
ﬁ[HLM,aL ak}: E A - H“”ak ak,al ag
| S
B
i / ’ ’ ’ ’
_ - it ) At ATA AN ATAAN AT
_hg A1 {akakakak—akakakak}
/

_ ! afra N ofp ATASN | afp s ST
fA E jhin {ak ak ay —al ak Gy g+ Gyl Ay O — Gy Gy Oxry

_ i Y eV N A A
= ﬁA E IL. G a, — E, IL. " ay ak
ju 2
i / ;
_ = HAATHAN A patAap
= hA EH IL a6 a, — 11, "ay ay..

(A.11)
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In this section of the thesis the Coulomb interaction is omitted, He = 0. Con-

sequently, the commutator C is

i

h

[fic.aPa] = o.

—_———
c

The time evolution of the operator &L/\&il has the final form

k

a “ “ ’ i ! ~ N ’ i “ ~ ’ 7 N N
e = = (w)‘ — Wi ) alt)‘al)‘{ + ﬁAZHﬁ)‘aL’Laf‘( — 11 “a;r()‘a
m

ot Yk T g

(A.12)

ko (A.13)
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A.2 Shift Currents in Bulk

For an excitation with two optical pulses, separated by a long delay time 7, the
analytic solution of the second-order SBE is

%xf)dd/ = jwfd £{ (2)dd’ _ %A( )Znud (Vpd Hz/umg)du

—iw kd’ (2)dd" 1 ZHdd (1)d ZHd/d 1)dd (A.14)

A B

Further evaluation of the terms A & B gives the results

/ . / t 31 7' dq’
x](f)dd _ elwﬁd t / dt/ 71wdd hw E( ) COS(UJgt/) Z Hz dxg)d d
o g =

=€

, g d E2> , —'<Hd/’i/ E1>
w;jdtz < | / At oWt T

2hwy

—00
x E(t) cos(wgt’ + @) (E1(—wg — wk ay 4 E1(wy — wg ) « elw;f “t
—i(nf4E2) i (g | B

_iwddy dd dd
= i, (Br(wy — )+ Brfeg —

d’

t 7 al
% / dt/E(t/)(ei(wz d 7wgfw,‘§’ )t 71(,0 4 el i(wd +wg7wzd )t'eitp)

(A.15)
and
i Hd’J|E2> fi<HJd|E1>
(2)dd’ _ jwd't < k k B (—w. — i)+ B o dd
o ety L (B )+ Br(y — o)

t . -
soodd o dd Ny soodd _odd Ny
></v dt’ E(t’)(e’(“”“ wg—wp " )t e~ le el(wk Fwg—wp® )t eltp)'
—oo

(A.16)

)
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Combining the solutions for the terms A and B gives the final expression for
the second-order

t
et [ @i DN

30 (B (17 B ) (B (s, — o) + Ea(ey — )
a

% (ei(wg’dl—wg—wgd/)t’e—icp + ei(wg’d/—i-wg—wgd/)t/eiga)

= > (W E2) (T B (By (—wy — i) + Br(w, - wi?))
d

. d ! . . 1 / .
% (el(w,‘:dfwgfwgd )t'eflga + el(wszrwgfw,‘:d )t'elgo))‘

(A.17)
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A.3 Coulomb Hamiltonian

The Hamilton operator of the Coulomb interaction has the form

1 i
- ATAL AfA2 AA3aAg >\1,>\2,)\3,>\4
He 5 Z A, g s Oy < Vis s (A.18)
A1,A2,A3,Aq
ks.ka,q

derived in Sec. As in Sec. the equation of motion is derived by evalu-
ating the Heisenberg equation.

Lre  wiag] 11 Lilalsly il afle ala ala ating
= Ho ol = 55 > Vidild |+ e afles e, 0K, 01 0
h h2

AT'LA Tll ~Tla ~lg Al4
e ey +q s —q%s kg

i1 llslsl Hio oAl ly ~j A.19
- _ 1t2030ta _ ATt ~Tt2 P Z RN .
- h 2 ng,k4,q { ak3+qak3 qak4ak6l7l36k7k3 ( )
~ 1l ATl2 Al
+ Agstqks— q Ay a’k5Z 145k ky

AT Tlo
ak ak3 qak3 ak5l4 ka (51( ka+q

~Atiatly Alz Aj
+ay Oxy4+q%; ak(sj 126k7k3*q }’

The time-evolution of the four-point operators at the end of Eq. is
obtained by solving the Heisenberg equation for each one. However, this leads to
a hierarchy problem where a < n >-point operator couples to a < n+1 >-point
operator. To resolve the hierarchy problem, approximations have to be made
at a certain level. In this work the Coulomb interaction is treated on the level
of the Hartree-Fock approximation where the four-point operator is factorized

intro products of two-point operators,

(1234) = (14) (23) — (13) (24) . (A.20)

In the Hartree-Fock approximation the Coulomb interaction is cut of at the
level of two particle correlations, higher correlations e.g. biexcitons are not
included. Applying the Hartree-Fock approximation on Eq. (A.19) and using

the symmetry of the Coulomb matrix element V', the equation of motion has
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the form

s NEFY] _ il l1lail tl A] o Al
<h [Hc’ak ak}> ﬁiz —Vikaa (%, 1qfic ) (@1 g,
fl Al 1l
<ak41+qa1?4> < k2 {<>)
Lilalsi () atly A Hlo Al
v ((afhgad ) (afl_gai,)
ot 4ls PALIPY)
kebafe /| P —ak (A.21a)
Vel () ok i)
il tla Al
_<kzak3><k q£q>>
1113l tinl t o Al
Vkirquki q (<akzalf4> <ak41+qal?+q>
Tinl Ty Al
- <(Z Zak:*‘l> <ak41+q k44>) }
_ i 11la1 Atly Al o A j
== > { vt o ((algaq) (all2al)
< ~ 1l a>< a2 508 >>
e tq%k Okytq
11jlsl At Al tial
karjq?:kt,q (< k41+qak3+q> <akla1f4>

~ (altqals ) (s, D) ).

(A.21b)

The equation can be simplified further with the random phase approximation

which states that the sum

Z <d£,&k> o eller =) (A.22)

Kk’

only has non neglectable contributions for k’ = k due to the anti-symmetry
of the complex exponential function. In addition, the q = 0 is omitted in the
Jellium model. With both considerations, the equation of motion for the He

takes the final form
Iy atisg lilalsi Lo Al !
(5 [fe.alal] ) = ; LS g (ol ot o) (o)

1151314 Aty Als tialg
kam, k.q < k+qak+q> <ak ak>

(A.23)



Appendix B

Magnetic Currents

The high symmetry of a zincblende structure normally causes microscopic w ~ 0
currents to vanish. Due to the inversion asymmetry the shift current can exist
for specific optical excitation. In a QW the reduced symmetry allows for new
currents like the injection current. Similarly, an applied magnetic B-field re-
duces the symmetry in the bulk and the QW band structure which causes new

effects to exist, e.g. previously forbidden photo currents. [117H123]|

In this Chapter a brief discussion about the magnetic effects on the optically
induced second-order w ~ 0 currents inside the theoretical frame of the combined
theory of k.p and SBE is presented. The magnetic B-field is included in the band
structure by the addition of Zeeman terms to the k.p Hamiltonian:

560 = %QIMB o-B (B.1)
A0 = —205 5 J B +q J - B (B.2)
H:yry = —2upkK o - B (B.3)
Hgyry = —3ppk' U - B (B.4)

The simulations are made for a magnetic field in (1-10)-direction and the system
is excited by a Gaussian pulse with circular polarization. In Fig. [BI] the cur-
rent parallel to the magnetic B-field is presented for varying B-field strengths.
It shows that the symmetry break inside the band structure does cause the gen-
eration of a current which is linear in the external B-field as seen in Fig. (2a).
A Fourier analysis, Fig. (3a), shows that the current contains a small frequency
component ~ 6 meV which is largely independent on the external B-field and
therefore an intrinsic part of the band structure. An analysis of the band struc-

ture, in particular the region which lies in the range of the optical excitation,

113
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Figure B.1: A magnetic B-field in (1-10)-direction is applied to the system which
is excited by a circular polarized pulse propagating in (001)-direction. (1a) The
photo current generated in the system parallel to the applied B-field. (1b) is
the photo current normalized to the B-field strength. The black line represents
the zero current and is included as reference. (1b) and (2b) are the absolute
and normalized THz-field created by the current. (3a) is the Fourier transform
of (1a). (3b) is the Fourier transform of the valence band current.
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reveals that the small frequency in the magnetic current corresponds to the spin
splitting in the light-hole valence band, Fig. (3b). Normally due to the inversion
asymmetry of the band structure, the intraband coherences cancel each other
for —k and +k, but due to the magnetic introduced symmetry break a small

net contribution remains.

In Fig. the current in (110)-direction, perpendicular to the magnetic
B-field and the optical propagation direction, is shown. In comparison to the
parallel current, the perpendicular current is larger by a magnitude. This means
that symmetry break in the band structure causes currents to flow mainly per-
pendicular to the applied magnetic field. The light-hole coherence is still con-

tributing to the current, but its relative contribution is smaller.

In Fig. a) the current is plotted as function of the ellipticity of the optical

excitation. The parallel current displays a

J) () o< cos(¢p) (B.5)

dependence and has a maximum and minimum for a fully ¢~ and o polarized
excitation, respectively. For a linear polarization at a phase of 0.57, which is
lying parallel to the magnetic B-field, the parallel current vanishes. Seeing how
o~ and o7 excitation generate a current in the respective opposite direction,
the linear polarization can be understood as a super position of ¢~ and ot
light. Consequently, for a fully linear polarization the parallel current vanishes.

In comparison the anti-parallel current follows
J1 () x sin(p) + C, (B.6)

resulting in the current being the largest for pure linear polarization and being
the smallest for pure circular polarization.

In Fig. b) the angular dependence of the linearly excited photo current
is plotted. The angle 0.257 is equivalent to the phase of 0.57 in Fig. [B.3(a).
For an angle of 0.257 and 0.757, parallel and anti-parallel to the magnetic B-
field respectively, the parallel current vanishes while the anti-parallel current is
minimal and maximal. As in the case of circular polarization the parallel and

anti-parallel currents display

J)(0) o cos(20)

(B.7)
J1 (0) o sin(26) + C,
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Figure B.2: As in Fig. a magnetic B-field in (1-10)-direction is applied to
the system which is excited by a circular polarized pulse propagating in (001)-
direction. (1la) The photo current generated in the system perpendicular to the
applied B-field, flowing in (110)-direction. (1b) is the photo current normalized
to the B-field strength. The zero current is again included as reference. (1b)
and (2b) are the absolute and normalized THz-field created by the current. (3a)
is the Fourier transform of (1a). (3b) is the Fourier transform of the valence
band current.
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Figure B.3: The maximum value of the photo currents J; and J, parallel and
perpendicular to the external magnetic B-field, generated in the system with
an applied B-field, 1.2T, in (110)-direction. (a) The current dependence on
the phase of the E, component. A phase of O and 17 represents o~ and o™
circular polarization while 0.57 is purely linear polarization in (110)-direction.
(b) The peak current shwon as function of the polarization angle 6 between the
x-axis and the linear polarized optical excitation.

dependence. Using Jones notation the basic vectors for circular polarization are
defined as

1
2

|—0>:‘§EQLH>_”LL»7

[+0) = —= ([Ly) +i[L1))

N

(B.8)

with |LH> and |L ) standing for linear polarizations parallel and perpendicular
to the magnetic field, in this case (110) and (1-10), respectively. The linear
polarizations can be rewritten in the circular basis as
1
Ly} = 5 (I+o') +|=0"))
- (B.9)
L))y=—(+o") —|-0")).
L) ¢§O )= l=c")
An arbitrary linear polarization vector |L) = |L;)cos(6’) + |L L) sin(¢’) can be
written as
|L) = (|+0) (cos(8') —isin(0")) + |—0o) (cos(#’) + isin(6')))

(B.10)

Sl- sl

5 (H—o)e‘i‘g/ + |—a>ei9,) .
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Because second-order photo currents are being investigated, the square of

the optical field has to be considered. It has the simple form

J o |L)? =|+0)%e " 4 2|4+0)|—0) + |—0) et
= (1+0)" + 1-0)") cos(20") + 24}l o). (B.11)

+i (|+a>2 - |—a>2) sin(26')

In Fig. the angle 6 is the angle between the linear polarization an the
x-axis, thus 6 = 6" + 7. Entering this in Eq. (B.11) and considering that

sin(f 4- §) = cos 6, the final expression is

J o |L)? = (|+a>2 n |—0>2) sin(260) + 2|+0)|—o)

(B.12)
—1i (|+0’>2 — \—a)z) cos(26).
A simple comparison between Eq. and Eq. reveals, that the parallel
current J| is given by the imaginary part of Eq. while the anti-parallel
current J, is given by the real part.
Similar magnetically induced photo current dependencies have been observed
in GaAs QW.[121]
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