
	

	

	

	

	

	

	

	

	

	

Just-in-Time Processor Customization –
on the Feasibility and Limitations

of FPGA-based Dynamically Reconfigurable
Instruction Set Architectures

	

	

	

	

Dissertation
von

Mariusz Grad

Schriftliche Arbeit zur Erlangung des Grades
eines Doktors der Naturwissenschaften

Fakultät für Elektrotechnik, Informatik und Mathematik
der Universität Paderborn

	

	

	

	

	

	

	

	

	

	

	

	

To Anna

	

	

	

	

	

	

Abstract

In the new millennium, the increase of processing performances in sequen-
tial processors had reached their limits due to power constrains in semiconductor
technology. In consequence, the field of reconfigurable computing where, power-
efficient and high-performance solutions are investigated, had attracted a lot of
attention in recent years. Reconfigurable application specific instruction set pro-
cessors provide the possibility of tailoring the instruction set architecture of a
processor to a particular application. Although researchers presented orders of
magnitude performance gains for various applications, when targeting these ar-
chitectures, this time consuming and error-prone customization process is rarely
utilized. While the automatic and online customization process is technically fea-
sible and provides a promising technology for adaptive computer systems opti-
mizing themselves according to the needs of the actually executed workload, the
idea of just-in-time processor customization has been hardly investigated. De-
spite promising research in this topic, a number of obstacles makes this exploita-
tion challenging. First, there are only very few commercially available silicon
implementations of reconfigurable ASIP architectures. Secondly, methods for an
automatic identification of custom instructions are algorithmically expensive and
require profiling data that may be unavailable until runtime. Finally of all, the
synthesis and place-and-route tool flows for reconfigurable logic are known to be
notoriously slow.

In this work, a unique system consisting of hardware architecture and a soft-
ware tool flow that addresses the two first obstacles mentioned above was de-
signed, and, in consequence, allows for a fully automatic and online customiza-
tion. The designed hardware architecture is a dynamically reconfigurable instruc-
tion set processor that allows for the just-in-time processor customization during
the runtime, whereas the software tool flow is based on a virtual machine and al-
lows to customize this architecture concurrently to the application execution and
without any manual efforts. This tool flow contains a set of heuristics that reduce
the runtime of methods for identifying and selecting custom instructions for the
just-in-time processor customization as well as a circuit library and a data path
generator of required bitstreams for the hardware customization.

This dynamic system, in contrast to the static one, has several advantages.
First of all, it is fully automated and no manual efforts are required. It can opti-
mize its operation by reconfiguring the instruction set architecture of the proces-

I

II

sor and by changing the code at runtime, which is fundamentally more powerful
than a static approach. This developed system can collect the execution time, pro-
filing, and machine level information in order to identify the code sections that are
actually performance limiting at runtime and therefore, constitute the ideal can-
didates for hardware acceleration. Moreover, the virtual machine has the capa-
bility of executing various dynamic optimizations such as hotspot detection, alias
analysis, or branch prediction to further optimize the performances. Finally, the
dependencies between variables and the corresponding memory layout are avail-
able, which simplifies the task of the hardware-software partitioning between the
processor and the hardware accelerator.

While the advantages of the developed dynamic system over a static one are
clear, it is still controversial whether the just-in-time processor customization is a
worthwhile idea under the assumption that the currently commercially available
FPGA devices and tools are used. The goal of this thesis is to thoroughly study
the posed question and, in particular, to investigate how the long runtimes of
FPGA implementation tools limit the applicability of the just-in-time approach.
While it is evident that even long runtimes of design tools will be amortized over
time provided that an application-level speedup is achieved, it is so far an open
question whether the total required execution time until a net speedup is achieved
stays within any practical bounds. In this work, this question is answered in detail
for a set of benchmark applications from both embedded and scientific computing
that target our real – and not emulated system.

The distinguish feature of this thesis is the fact that it not only provides with
answers to problems related to the above described obstacles from the static sys-
tems, but more importantly it presents a complete and holistic system that de-
livers a feature that is not found in any other work. This feature allows to dy-
namically customize the processor to the given currently executed workload. In
consequence, this work naturally spans over several different scientific fields such
as dynamically reconfigurable instruction set architectures, instruction set exten-
sion algorithms, or high level synthesis and merges them together into a single
coherent system. These fields were studied in other works only in separation,
in our work, they are not only coupled together into a holistic system but more
importantly they provide with a unique reconfigurable system capable of the just-
in-time processor customization.

Zusammenfassung

Im neuen Jahrtausend hat der Zuwachs an Rechenkapazität sequenzieller Pro-
zessoren auf Grund von Leistungsbeschränkungen in der Halbleitertechnologie
seine Grenzen erreicht. Daher hat das Feld des rekonfigurierbaren Rechnens,
in dem verbrauchseffiziente und Hochleistungslösungen erforscht werden, in den
letzten Jahren große Aufmerksamkeit erhalten. Rekonfigurierbare, anwedungsspez-
ifische Befehlssatzprozessoren bieten die Möglichkeit die Befehlssatzstruktur eines
Prozessors an eine bestimmte Aufgabe anzupassen. Obwohl Forscher die Leistug
für viele Anwendungen um Größenordnungen verbessern konnten, wird dieser
zeitaufwendige und fehleranfällige Anpassungsprozess selten für diese Architek-
turen benutzt. Während der automatische und online Anpassungsprozess tech-
nisch möglich ist und eine vielversprechende Technologie für adaptive Com-
putersysteme bietet, die sich abhängig von der tatsächlich nötigen Arbeitslast
selbst optimieren, wurde die Idee der ’just-in-time’ Prozessoranpassung kaum
untersucht. Trotz vielversprechender Untersuchungen auf diesem Gebiet, gibt es
einige Hürden, die die Nutzung erschweren. Zum Einen gibt es nur sehr wenige
kommerziell erhältliche Silikonimplementierungen von rekonfigurierbaren ASIP
Architekturen. Zum Anderen sind Methoden zur automatischen Identifikation
von zugeschnittenen Befehlen algorithmisch teuer und erfordern die Analyse von
Daten, die bis zur Laufzeit nicht vorhanden sind. Ausßerdem ist es bekannt,
dass die Synthese und ’place-and-route tool flows’ für rekonfigurierbare Logik
notorisch langsam sind.

In dieser Arbeit haben wir ein einzigartiges System, bestehend aus Hard-
warearchitektur und Software ’tool-flow’ entworfen, dass die ersten beiden oben
genannten Hindernisse adressiert und daher eine komplett automatische und on-
line Anpassung erlaubt. Die entworfene Hardwarearchitektur ist ein dynamisch
rekonfigurierbarer Befehlssatzprozessor, der ’just-in-time’ Prozessoranpassung
während der Laufzeit erlaubt, wohingegen der Software ’tool-flow’ auf einer
virtuellen Maschine beruht und gestattet die Architektur gleichzeitig mit der Pro-
grammausführung, und ohne jeglichen manuellen Aufwand, anzupassen. Dieser
’tool-flow’ enthält ein Set von Heuristiken, die die Laufzeit von Methoden zur
Identifizierung und Auswahl von eigenen Anweisungen für die ’just-in-time’ Prozes-
soranpassung reduzieren, sowie eine Schaltkreisbibliothek und einen Datenpfad-
generator für benötigte bitstreams für die Hardwareanpassung.

Dieses dynamische System, im Gegensatz zum statischen, hat mehrere Vorteile.

III

IV

Erstens, ist es völlig automatisiert und benötigt keinen manuellen Aufwand. Es
kann seinen Ablauf optimieren, indem die Befehlssatzarchitektur des Prozessors
rekonfiguriert und der Code während der Laufzeit verändert wird, was fundamen-
tal leistungsstärker ist als die statische Herangehensweise. Dieses entwickelte
System kann die Ausführungszeit, Profilierung und Maschinenlevelinformatio-
nen sammeln, um die Codeteile zu erkennen, die bei der Laufzeit tatsächlich leis-
tungslimitierend sind und daher ideale Kandidaten zur Hardwarebeschleunigung
sind. Darüberhinaus hat die virtuelle Maschine die Möglichkeit, verschiedene
dynamische Optimierungen auszuführen, wie Hotspoterkennung, Aliasanalyse
oder Branchvorhersage, um die Leistung weiter zu optimieren. Letztlich sind
die Abhängigkeiten zwischen Variablen und der dazugehörigen Speicherbelegung
zugänglich, was die Hardware-Software-Partitionierung zwischen dem Prozessor
und dem Hardwarebeschleuniger vereinfacht.

Während die Vorteile unseres dynamischen Systems gegenüber einem statis-
chen klar sind, ist es immernoch umstritten, ob ’just-in-time’ Prozessoranpassung
eine lohnenswerte Idee ist, unter der Annahme, dass die derzeit kommerziell er-
hältlichen FPGA Bauteile und Werkzeuge benutzt werden. Das Ziel dieser Dis-
sertation ist es dieser Frage gründlich nachzugehen und im Besonderen zu unter-
suchen wie die langen Laufzeiten von FPGA Entwicklungswerkzeugen die An-
wendbarkeit der ’just-in-time’ Herangehensweise einschränken. Während es of-
fensichtlich ist, dass sogar lange Laufzeiten der Entwicklungswerkzeuge über die
Zeit amortisiert werden, solange eine Anwedungsbeschleunigung erzielt wird, ist
es bisher eine offene Frage, ob die gesamt erzielte Ausführungszeit bis eine Net-
tobeschleunigung erzielt wurde, in praktikablen Grenzen bleibt. In dieser Arbeit
beantworten wir diese Frage im Detail für ein Set von Benchmarkanwendungen
aus eingebettetem und wissenschaftlichem Rechnen, die unser reales – und nicht
emuliertes – System betreffen.

Die Besonderheit dieser Dissertation ist, dass sie nicht nur Antworten auf die
oben genannten Hürden der statischen Systeme liefert, sondern dass sie auch ein
komplettes und holistisches System präsentiert, das in keiner anderen Arbeit ge-
funden werden kann. Diese Eigenschaft erlaubt es den Prozessor dynamisch an
den aktuell ausgeführten Arbeitsaufwand anzupassen. Diese Arbeit spannt da-
her selbstverständlich über mehrere wissenschaftliche Gebiete, so wie dynamisch
rekonfigurierbare Befehlssatzarchitekturen, Befehlssatzerweiterungsalgorithmen
und ’high-level’ Synthese und verbindet sie in ein einziges, kohärentes System.
Diese Felder wurden in anderen Arbeiten nur seperat bearbeitet. Hier werden sie
nicht nur in ein einziges holistisches System verknüpft, sondern vor allem bieten
sie ein einzigartiges rekonfigurierbares System, das die ’just-in-time’ Prozesso-
ranpassung beherrscht.

Contents

I Introduction and Motivation 1

1 Introduction 3
1.1 [1965 – 2004]: The Era of Frequency Scaling and Uniprocessors 3
1.2 [2004 – present]: The Era of Power Wall and Multiprocessors 4
1.3 Memory Wall . 4
1.4 Parallelism Wall . 5
1.5 Brick Wall . 5
1.6 The Design Solutions in Multiprocessor Era 6
1.7 Contributions . 7
1.8 Novelty of this Work . 8
1.9 Thesis Structure . 8

2 System Overview 9
2.1 Comparison and Differences Between Systems 9
2.2 Difference in Hardware Architecture . 11

2.2.1 Overview of Woolcano Hardware Architecture 11
2.2.2 Conventional vs. Woolcano Hardware Architecture 13
2.2.3 Technology Difference: ASIC vs. FPGA 13

2.3 Difference in Software Tool Flow . 15
2.3.1 ASIP Specialization Process . 15
2.3.2 Difference in Static and. Dynamic ASIP Specialization Process . . . 16

2.4 The Level of Supported Parallelism . 17
2.5 Feasibility vs. Limitations . 17
2.6 Related Work . 17

II Design and Implementation 19

3 Woolcano Hardware Architecture 21
3.1 Introduction . 21
3.2 APU Interface . 22
3.3 Dynamic Partial Reconfiguration . 24
3.4 Woolcano Processor Architecture . 25
3.5 Noteworthy Implementation Details . 27
3.6 Work Related to Woolcano Hardware Architecture 27

VI CONTENTS

4 Woolcano Compiler 31
4.1 Runtime Adaptation Layer . 32
4.2 ASIP Specialization Process . 32

4.2.1 Software and Hardware Runtime Adaptation 32
4.2.2 Overview of Implementation Details 33

4.3 PivPav Tool . 35
4.3.1 Overview . 35
4.3.2 Goals . 35
4.3.3 Use Case . 35
4.3.4 Stand-alone and Back End Tool . 36
4.3.5 Application Programming Interface 36
4.3.6 Open Sourced License Model . 37
4.3.7 Design Overview . 37
4.3.8 Contributions . 38
4.3.9 Work Related to PivPav . 38

5 Hardware Runtime Adaptation 39
5.1 Introduction . 39
5.2 Raytracing Example . 39
5.3 Basic Block Pruning . 39

5.3.1 Formal Definition . 40
5.3.2 Pruning Hypothesis . 42
5.3.3 Pruning Algorithms . 42
5.3.4 Raytracing Example . 44
5.3.5 Contributions . 45
5.3.6 Work Related to Pruning Algorithms 45

5.4 Candidate Identification . 45
5.4.1 Formal Definition . 45
5.4.2 Supported Instruction Set Identification Algorithms 46
5.4.3 Raytracing Example . 47
5.4.4 Contributions . 47
5.4.5 Work related to Candidate Identification 48

5.5 Candidate Estimation . 48
5.5.1 Software Estimation . 48
5.5.2 Hardware Estimation . 49
5.5.3 Hardware Operators . 51
5.5.4 Raytracing Example . 53
5.5.5 Contributions . 53
5.5.6 Work Related to Candidate Estimation 54

5.6 Candidate Selection . 54
5.6.1 Formal Definition . 54
5.6.2 Selection Algorithm . 56
5.6.3 Selection Metrics . 56
5.6.4 Raytracing Example . 56
5.6.5 Work Related to Candidate Selection 57

CONTENTS VII

5.7 Extraction Pass . 57
5.7.1 Goal . 57
5.7.2 Algorithm Overview . 57
5.7.3 Raytracing Example . 58

5.8 VHDL Generator . 58
5.8.1 Goal . 58
5.8.2 Algorithm Overview . 59
5.8.3 Hardware Operator Wiring . 59
5.8.4 Structural and Behavioral Code . 60
5.8.5 Raytracing Example . 60
5.8.6 Contributions . 61
5.8.7 Work Related to VHDL Generator 62

5.9 Netlist Extraction . 62
5.10 FPGA CAD Project . 62
5.11 Instruction Implementation . 62
5.12 Noteworthy Implementation Details . 63

5.12.1 Data Flow Graph Representation . 65
5.12.2 UDCI Candidate Representation . 66

6 Software Runtime Adaptation 67
6.1 Changes Overview . 67
6.2 Changes in Middle End . 69
6.3 Changes in Back End . 70
6.4 Communication Pass . 70
6.5 Raytracing Example . 72
6.6 Work Related to Woolcano Compiler . 72

III Evaluation and Conclusions 75

7 Woolcano Hardware Architecture 77
7.1 Configuration . 77
7.2 Benchmarking . 78
7.3 Results . 79

7.3.1 BRAM vs. SDRAM . 79
7.3.2 Reconfiguration Time . 79

7.4 Conclusions . 79

8 Experimental Setup 81

9 Applications for Experimental Evaluation 83
9.1 Source Size . 83
9.2 Compilation to IR . 83
9.3 IR in BBs . 85
9.4 Code Coverage . 85

VIII CONTENTS

9.5 Kernel Size . 86
9.6 Execution Runtimes . 86

10 Basic Block Pruning 87
10.1 Ratio Values . 87
10.2 Best ISE Algorithm for JIT System: MM 87
10.3 Best Pruning Algorithm for JIT System: @50pS3L 87
10.4 mFnS and mSnF algorithms . 89
10.5 Basic Blocks in Loops . 89
10.6 Loop Algorithm: L . 89
10.7 Remaining Algorithms . 90
10.8 Conclusions . 90

11 Candidate Identification 91
11.1 ISE Algorithm Runtimes and Comparison 91
11.2 Candidates Found by the ISE Algorithms 94
11.3 Theoretical Achievable Performance Gains 98

12 Feasibility and Limitations of Just-in-Time Processor Customization 101
12.1 Introduction . 101
12.2 Runtime of the ASIP-SP . 101

12.2.1 Candidate Search . 102
12.2.2 Netlist Generation . 104
12.2.3 Instruction Implementation . 104
12.2.4 Summary of Constant Runtimes . 105
12.2.5 Total Runtime of the ASIP-SP . 106

12.3 Maximum Performance Improvements of the ASIP-SP 106
12.4 Break-Even Times . 107

13 Reduction of ASIP-SP Runtime 109
13.1 Partial Reconfiguration Bitstream Caching 109
13.2 Acceleration of the CAD Tool Flow . 109
13.3 Extrapolation . 111

14 Conclusions and Outlook 113
14.1 Developed System . 114
14.2 System Feasibility . 114

14.2.1 Applicability and Technological Barrier 116
14.3 System Limitations . 116

14.3.1 Long Total Runtime . 116
14.3.2 Low Performance Gains . 117
14.3.3 Further Limitations . 117
14.3.4 Origins of Limitations . 118
14.3.5 Possible Improvements . 118

14.4 Final Remarks . 120

CONTENTS IX

IV Appendices 121

A Software Translation Process 123
A.1 Introduction . 123
A.2 Low Level Virtual Machine (LLVM) . 123
A.3 Intermediate Representation . 124

A.3.1 Type System . 125
A.3.2 Instruction Set Architecture . 125

A.4 Program Structure . 125
A.5 Modularity . 126
A.6 Separation from High Level Languages . 126
A.7 Design of the LLVM Compiler Framework 126

A.7.1 Compilation Process . 127
A.7.2 Front End . 128
A.7.3 Middle End . 128
A.7.4 Back End - I . 128
A.7.5 Back End - II . 129

A.8 Dynamic vs. Static Translation . 129
A.9 Interpretation vs. Dynamic Translation . 130

A.9.1 First Method: Caching . 130
A.9.2 Second Method: Just-in-Time Compilation 131

A.10 Related Work . 131

B Strange Loop Perpsective 133
B.1 Introduction . 133
B.2 Computer Design: Process of Abstraction and Strange Loop 135
B.3 Abstraction Characteristics . 137
B.4 Abstraction Stacks . 138
B.5 Abstraction Price . 139
B.6 Equilibrium: Performances and Labor Time 139

B.6.1 Perfect Equilibrium . 140
B.7 Abstracted Model of a Computer and Computation Process 141
B.8 Instability Problem in Computer System Equilibrium 141

B.8.1 Limitations of Sequential Computing 143
B.9 Solutions and Their Limitations . 143

B.9.1 Top Abstraction Stays in Place . 143
B.9.2 Adaptions to the Top Abstraction 144
B.9.3 Adaptation with Explicit Parallelism 144
B.9.4 Adaptation with Implicit Parallelism 144

B.10 Contributions . 145

C Other Approaches to the Pathway 147

D Pruning Design Space 151

X CONTENTS

List of Figures 153

List of Tables 154

List of Acronyms 155

List of Publications 159

Bibliography 160

Part I

Introduction and Motivation

Chapter 1

Introduction

Computers are software programmable machines designed to automatically carry a sequence
of logic operations in order to solve a given problem - an algorithm. The performances of
processing depend on the computer hardware architecture and used components, in particular,
on a switching element which is used in construction of most essential parts of the computer:
central processing units and memories. In order to obtain the best performance over the years
the switching element was always driven by the state-of-the-art available technology i.e. me-
chanical relays, electronic vacuum tubes, and finally transistors.

1.1 [1965 – 2004]: The Era of Frequency Scaling and Unipro-
cessors

In 1974, Robert H. Dennard published a paper [1] where he described a long-term pace in
which the transistor-switched element would scale and improve the performance. The paper
stated that within every new semiconductor technology, which approximately appears every
two years, a) circuits will be 40% faster, b) power consumption will stay the same, and c)
the transistor density will double, which is a fundamental reason behind the Moore’s law [2].
This phenomena is known under the term frequency scaling and it was valid for decades -
roughly until year 2004 [3]. The faster circuits were not solely responsible for performance
improvements. The smaller dimensions of transistors allowed to organize and develop better
architectures with multi-cycle execution, pipelining, and branch prediction as well as with
multiple layers of caching mechanisms which removed bottlenecks associated with fetching
data directly from the main memory. During the frequency scaling years, the processing
performance of uniprocessors grew on average by 52% a year and overall up-to more than
three-orders-of-magnitude [4]. For a single threaded software application this meant that
approximately every two years the application performance doubled, and every five years it
increased by more than a factor of eight, which confirmed the Pollack’s rule of thumb for the
microprocessor performance and area.

3

4 CHAPTER 1. INTRODUCTION

1.2 [2004 – present]: The Era of Power Wall and Multipro-
cessors

In May 2004, Intel corporation canceled Tejas and Jayhawk uniprocessor designs due to the
power consumption issues known under the term power wall. This date marks the end of
the frequency scaling period, further uniprocessors developments, and their incredible per-
formance improvements, and starts the era of multiprocessors with a power dissipation as a
limiting factor [5].

In the multiprocessor era, the Dennard’s law is not valid any more [6]. Due to thresh-
old voltage limitations and leakages in transistors the pace of increased transistor switching
and faster circuits is not achievable any longer. In addition, while Moore’s law [2] regarding
increased densities of transistors in the integrated circuits (IC) is still valid, the total energy
available to the IC practically limits the number of available logic transistors for computa-
tion [3]. This power wall constrain means that processor designers can not utilize all available
transistors to develop computational units (cores) and operate them at full speed since this
would excessively transcend the available energy budget to the chip. Thus, the power wall
demands performance-energy efficient computational solutions.

1.3 Memory Wall

The power wall is not a single factor constraining the current multiprocessors. In 1970, the
process of computation was much more expensive than the process of delivering the data from
the memory. This imbalance let designers into two directions. To improve the processor per-
formance and to improve the size-price ratio for memories - not throughput performances.
Unfortunately, over the years this imbalance had flipped and lead to the memory wall [7, 8],
which is a consequence of the von Neumann bottleneck where memory transfers are expensive
and computation cheap. For instance, it takes more than 200 cycles to access DRAM memory
from a processor whereas the most sophisticated computational operations performed on a
processor, including floating point types, consume just a few clock cycles. This big dispro-
portion had large impact on uniprocessors and for several reasons it has even larger influence
on multiprocessors. Since multiprocessors have more than one computational unit and each of
them requires data this significantly increases the requirements for the total memory through-
put, in contrast to only a single processor.

It could seem that having more memory controllers and wiring them to memories would
solve this processor-memory throughput problem. To perform this wiring task the IC would
require additional I/O pins. Unfortunately, due to manufacturing constrains in the IC foundries,
processor packages have limited number of them (up to 1200) and in the current state it is not
possible to increase their number, which discards the idea of additional memory controllers.
This creates a large memory bottleneck in the multiprocessors were computational resources
are often under-utilized.

Designers try to overcome this issue by bringing data closer to computational units with
larger multi-level hierarchies and sophisticated techniques for on-chip cache memories as well
as with techniques which allow to hide the memory latency, such as deep execution pipelines

1.4. PARALLELISM WALL 5

or out-of-order instruction processing. Unfortunately, these approaches consume a consider-
able amount of the IC die area and transistors that could be utilized for constructing additional
computational units. Moreover, the data movement between many levels of different mem-
ories consumes energy which in times of the power wall is the most expensive resource that
could be utilized to improve computational performances.

1.4 Parallelism Wall
Besides the power and memory walls in the era of multiprocessors, one of the most significant
challenges is the software parallelism. In order to utilize many core systems it is required that
the software application would consist of a significant portion of parallelism. According to
the Amdhal’s law [9], an application that has a 10/90 ratio of sequential to parallel code can
improve their performances only by 10×. As studied by Gustafson [10], since the execution
time of the sequential code to the size is, in most cases, not proportional the performance factor
is usually much higher. However, if the application is single threaded and does not contain
any parallelism, it will occupy only a single core and thus it will not bring any processing
performance improvements over the uniprocessor. This has tremendous meaning since in the
current multiprocessor era the space of computational performance improvements is limited
only to parallel applications and single-threaded applications are discarded.

The processing performances do not rely solely on a software parallelism but also on the
efficient mappings to the underlying hardware. Since every application has different computa-
tional and communicational patterns [6,11] it is hard to create a general hardware architecture
with exact number of cores and perfect interconnections which would fit all of these patterns.
In order to achieve low-energy low-latency high-performances computations, engineers often
enrich general architectures with dedicated hardware accelerators designed for a particular
application.

1.5 Brick Wall
The power, memory, and parallelism walls form a brick wall that is the main constraining
factor of the processing performance improvements in the multiprocessor era. In the past, the
newer computer architectures were always driven by the evolution process. In times of the
brick wall this process is radically changed. In order to overcome the brick wall requirements,
new hardware architectures have to be designed from scratch. These are times of hardware
revolutions - not evolutions [6].

In order to achieve better processing performances the hardware designers of future archi-
tectures have to solve many important problems. They have to find energy efficient compu-
tational solutions and advance interconnections which not only allow to effectively commu-
nicate between multiple cores located on-the-chip but more importantly allow to efficiently
access memories located on-the-chip as well as off-the-chip. In addition, hardware designers
have to consider how software can be effectively mapped to hardware in order to achieve best
performances. This is probably one of the biggest obstacles since the parallel applications
have different structure, computational and communicational patterns [6,11] that change with

6 CHAPTER 1. INTRODUCTION

different input data [12]. Every pattern found in these applications requires a customized
hardware in order to achieve peak performance. Thus, it is impossible to efficiently fulfill
all brick wall requirements for all these patterns with just a single fixed general hardware
architecture [13].

1.6 The Design Solutions in Multiprocessor Era
The processing performance improvements of a processor were always driven by two factors.
The major one, frequency scaling phenomena described in Dennard’s paper and the minor one
corresponding to improvements in a processor architecture. While in times of the power wall,
the frequency scaling is not anymore driving the performance improvements, the processor
customization allows to improve performances for certain applications.

The processor customization is a well known procedure to Intel, AMD, and other pro-
cessor manufactures. The customization is performed in order to move computation from
software to dedicated hardware and thus, to increase computational performances for cer-
tain applications. To achieve this goal manufacturers provide with supplementary instruc-
tions to processor’s instruction set architecture (ISA) that is an interface splitting software
and hardware domain. Recent Intel’s Sandy Bridge AVX [14], IBM’s Altivec [15], Amd’s
3d!Now [16], or SSE [17] are good examples of this approach. While these extensions do not
break any legacy codes they are fixed and allow to increase the computational performances
only to a limited subset of applications. In times of parallel application and their complex
computational and communication patterns that change with different input data, this solution
is not adequate. It requires to build processor extensions for every recognized pattern. This is
an impractical and inefficient approach since it would easily exhaust the budget of available
logic transistors. Definitively it would not be suited for all applications and their patterns. To
this end, other solution has to be applied.

Recent research at Intel Research Laboratories revealed that instead of traditional ap-
proaches with fixed resources the architectures of future will be dynamically customized sys-
tems [18]. Such architectures will allow to adapt reprogrammable hardware dynamically (on-
line) to currently executing application and thus to overcome the brick wall constrains and to
provide with optimized solutions. These heterogeneous architectures will combine simplistic
fixed hardwired computational units with dynamically customized hardware accelerators that
will be based on the field programmable gate array (FPGA) devices. The study of the Amdhal
law in the era of multiprocessors indicated that such connected dynamically customized het-
erogeneous architectures outperform other architectures organized in different structures [13].

In these systems, the sequential part of the application will be executed on a fixed com-
putational unit whereas the parallel part responsible for the performance improvements on
the hardware accelerator that will be created specifically for a given application. Since these
accelerators will be custom fitted for a given application they will achieve high performance-
power efficiency. Moreover, their custom designed interconnections will allow to reduce the
data movement. This will allow to significantly overcome the memory wall constrain.

The origin of this design is based on solutions from the mobile domain where power-
efficient systems-on-chip (SoC) with hardware accelerators are designed and work at low en-
ergy budgets for decades [19]. However, while in the mobile markets there is a limited number

1.7. CONTRIBUTIONS 7

of fixed hardware accelerators designed to improve performances of media and cryptography
applications, in the case of modern computers, the variety of applications and their computa-
tional and communicational patterns is endless. Therefore, it is not efficient to follow the same
path and design a fixed set of hardware accelerators for a fixed number of applications. In-
stead, as indicated by research, just-in-time (JIT) hardware customization is required [13,18].
These systems allow to create hardware accelerators on demand for the currently executing
application and with assistance of a special software shift computation from the processor
to the accelerator. Therefore, such systems allow to overcome the brick wall constrains by
dynamically adapting their hardware architectures to a given application and to provide with
optimized solution for a particular application.

1.7 Contributions

The main goal and contribution of this thesis is to study the tradeoff between the feasibility
and limitations of the just-in-time processor customization process. Specifically, we answer a
controversial question whether the just-in-time processor customization is a worthwhile idea
under the assumption that existing commercially available FPGA and CAD tool flows are
used. In particular, we investigate how the long runtimes of the FPGA implementation tools
limit the applicability of the approach in future hardware architectures. While it is evident that
even long runtimes of design tools will be amortized over time provided that an application-
level speedup is achieved, it is so far an open question whether total required execution time
until a net speedup is achieved stays within any practical bounds.

To study this question in detail and in order to deliver best quality results, instead of em-
ulation approach, we decided to design and develop an FPGA-based just-in-time hardware
architecture amenable of processor customization as well as all necessary software tools to
support this online process. Thus, all results presented in this work were obtained from this
developed system and were not estimated in the simulation environment. In addition, instead
of syntactic benchmarks or just parts of applications, the developed system was empirically
evaluated with a comprehensive set of applications obtained from the SPEC2006, SPEC2000,
SciMark2, and MiBench benchmarks. These applications represent both scientific and em-
bedded domains.

In addition to the main contribution presented above, this thesis provides with a list of
other contributions that were required by and studied during the development process of our
system. These contributions cover:

• an exhaustive evaluation and comparison of instruction set extension algorithms that
allow to select application’s code rich in instruction level parallelism,

• development and comparison of efficient pruning heuristics that allow to reduce the
size of the application’s code to the one which achieves highest performances when
implemented in hardware,

• design, development, and evaluation of Woolcano; a state-of-the art dynamically recon-
figurable application specific instruction-set processor (ASIP) architecture that is based

8 CHAPTER 1. INTRODUCTION

on a modern FPGA device; a tool flow capable of the just-in-time Woolcano’s processor
customization.

1.8 Novelty of this Work
The distinguish feature of this thesis that sets it apart from others comes from the fact that it not
only presents new methods not studied before but more importantly that it presents a complete
and holistic system that delivers a feature that is not found in other works. This feature allows
to dynamically customize the processor to the given currently executed workload. To this
end, this work spans over several different scientific fields and merges them together into a
single coherent system. While in other works, these fields were studied in separation, in our
work they are not only coupled together but more importantly they provide with a unique
reconfigurable system capable of the just-in-time processor customization.

1.9 Thesis Structure
This thesis consists of three main parts:
• Part I: contains this introduction and motivation and presents the overall view of the

developed system.
• Part II: covers with design and implementation details of hardware architecture and

software tool flow. This part has four Chapters 3 – 6.
• Part III: provides with an evaluation of the system together with thesis conclusions.

This thesis do not provide with separate related work chapter as well as with the fundamental
background regarding the construction of the FPGAs or CAD tool flow for them. Instead,
when adequate, the related work is presented at the end of each topic and the informations
regarding the FPGA and tool flow can be found in Sass et al. [20].

While it might seem that each system component focuses on different example, that is not
the case. We decided to use a single application to study the functionality of this complex
system. Thus, while the examples are scattered around thesis and sometimes they do not
appear in the order as used in the runtime system, the system functionality can be evaluated
by tracking and studying these example.

In addition, there are four appendices with supplementary informations. Since this study
provides with research on a software JIT ASIP tool flow, in Appendix A, we decided to ex-
plain basic terms and processes used in compilers and software translation to readers which
are unfamiliar with these topics. In Appendix B, we present a more philosophical introduc-
tion to this work, which is based on the strange loop paradox that is explained in the Pulitzer
Price winner book "Gödel, Escher, Bach" by Douglas Hofstadter [21]. Therefore, we recom-
mend this appendix only to readers that are familiar with this concept and are in general well
acquainted with the book. In the last Appendix C other experimentally verified approaches
that were used for generating the user-defined custom instructions (UDCIs) with Woolcano
compiler are presented.

Chapter 2

System Overview

The main goal of this work is to study the tradeoff between the feasibility and limitation of
the just-in-time processor customization system. To this end, we developed a system capable
to perform this task and to deliver all necessary results. In this chapter, we provide with a
general view of this system and with all necessary informations that allow to comprehend its
features.

The system is built from two main parts that are described in detail in the next chap-
ter. These are: a) the dynamically reconfigurable ASIP hardware architecture that we named
Woolcano and b) the just-in-time tool flow capable of Woolcano’s processor customization,
which we named ASIP specialization process (ASIP-SP).

In order to provide with better understanding of the features and role in the system, in
this chapter, we differentiate these two components with conventional computer architecture
and compiling techniques. These comparisons together with background information allow to
provide answers to the following questions:
• What are the major components of the Woolcano architecture and the Woolcano com-

piler?
• What are the most significant differences between the Woolcano architecture and a con-

ventional computer?
• What are the most significant differences between the Woolcano compiler and a con-

ventional compiler?
• What is the purpose of the developed ASIP-SP?
• What is the difference between dynamic and static software translations as well as be-

tween dynamic and static ASIP-SPs?
• What kind of parallelism is supported by our system?
• In what terms are the feasibility and limitations of the developed system expressed?

2.1 Comparison and Differences Between Systems
We start with an overview of the system which is presented in Figure 2.1. The top part of
the figure represents the software domain and the bottom part the hardware domain. On the
left side of the figure, the conventional computer that consists of the von Neumann (vN) ar-
chitecture and a static compiler is presented whereas on the right side we show our developed

9

10 CHAPTER 2. SYSTEM OVERVIEW

bitcode (IR)

front-end

assembly

machine code

von Neumann
computer arch.

CPU
execution

bitcode (IR)

front-end

assembly

machine code

Woolcano - dynamically
reconfigurable ASIP architecture

execution

Adaptable Hardware

St
at

ic
tr

an
sl

at
io

n
D

yn
am

ic
 tr

an
sl

at
io

n ASIP Specialization
Process (ASIP-SP)

Candidate Search

Netlist Generation

Instruction Implementation

JITSt
at

ic
 tr

an
sl

at
io

n

bitstream

ASIC in CMOS FPGA

(1)

(2)

(3)

So
ftw

ar
e

do
m

ai
n

H
ar

dw
ar

e
do

m
ai

n
Im

pl
em

en
ta

tio
n

Conventional System Our Developed System Capable of Just-in-Time Processor Customization

HLL

Figure 2.1: Comparison of a mainstream computer with the von Neumann (vN) computer
architecture and our Woolcano architecture capable of a just-in-time processor customization.

system which is based on the Woolcano architecture and the Woolcano compiler that includes
an ASIP specialization process.

One can observe a significant difference between these two systems in both software and
hardware domains. First, in the software domain, we can observe that our system compro-
mises not only static translation process as found in vN but also the dynamic translation
processes. Almost the whole software tool flow is based on this dynamic process. Secondly,
the ASIP-SP that is responsible for the hardware and software runtime adaptation is found
only in our system. Next, in the hardware domain we can observe that, in contrast to the
fixed-static vN computer architecture, our Woolcano architecture allows to adapt the hardware
accordingly to the ASIP-SP outcomes. Finally, while the vN architecture is implemented as
a hardwired application specific integrated circuit (ASIC), our architecture is supported by a
reconfigurable computing technology that is based on an FPGA device.

There are two main conceptual differences between these systems that are represented
with red and blue arrows. The red arrow indicates the process of computation; that is what
is executed on the processor. One can see that in the case of the vN architecture the proces-
sor executes the machine code that was generated beforehand with static translation. Thus,
two separated and disjointed steps are required in order to perform computation on the vN
architecture, the machine code generation and the execution, respectively. This is not the case
in our system that uses a dynamic translation where the machine code is generated alongside

2.2. DIFFERENCE IN HARDWARE ARCHITECTURE 11

with the execution. Therefore, for our architecture only a single step is required, in contrast
to the two steps required by the vN architecture.

In addition, the dynamic translation process drives also the ASIP-SP. The usage of the
dynamic translation process with ASIP-SP results in a unique feature that is represented with
the blue arrow. This arrow indicates that during the program execution the adaptation of
hardware occurs concurrently to the machine code execution. This is achieved with the help of
three sub-steps that are presented in the discussed figure. In sub-step (1), the ASIP-SP process
performs a software-to-hardware translation, that is used to adapt the Woolcano architecture
in sub-step (2). Once this task is performed the source code is modified in sub-step (3) and
with the help of JIT a new machine code that shifts computation from the processor to newly
generated hardware accelerator is generated.

A careful reader may observe that the feature illustrated by the blue arrow provides with
a paradox. In every computer, a relation between software and hardware exists where soft-
ware is executed upon hardware (software-hardware relation). In our system, there exists
also another relation represented with blue arrow, where hardware is modified by software
(hardware-software relation). These two relations together form the so called "strange-loop"
that has been studied in details in [21] and that inspired Appendix B.

2.2 Difference in Hardware Architecture

In this section, we introduce three topics: the Woolcano hardware architecture, the difference
between the conventional and Woolcano architectures, and the difference between implement-
ing the hardware accelerator with ASIC technology and on an FPGA device.

2.2.1 Overview of Woolcano Hardware Architecture

Woolcano is a state-of-the-art application specific instruction-set processor hardware archi-
tecture that is capable of the just-in-time processor customization. Woolcano augments the
instruction set architecture of ASIC processor with UDCIs. These UDCIs are implemented
in the reprogrammable hardware and are tightly integrated with a processor pipeline. Thus,
they act as low-latency application specific hardware accelerators and allow to improve the
processing performances and power consumption of a given application.

Number of Supported Applications

Woolcano is not constrained to any subset or number of applications. It is a dynamically
reconfigurable ASIP architecture that allows for an online processor customization to any
application that is currently executing. Thus, it is unlimited to any number of applications.
This achievement is possible due to two features. First, Woolcano is based on FPGA that
is a reconfigurable device and that allows to adapt the hardware with hardware accelerators
accordingly to demands. Secondly, Woolcano is supported by a specifically developed runtime
software environment that makes this task feasible.

12 CHAPTER 2. SYSTEM OVERVIEW

Target Applications

It is very rare that applications are fully parallel or fully sequential and usually they are a mix
of both. Since a sequential code achieves best processing performances on the ASIC proces-
sors and a parallel code on dedicated hardware accelerators, the heterogenous architectures,
like our Woolcano that consists of both resources seem to be the best fit for these mixed ap-
plications. Thus, while Woolcano supports any kind of application, it targets the ones that
consist of a combination of sequential and parallel codes.

Support for Legacy Models

Woolcano is an ASIP architecture that includes both processor and hardware accelerator re-
configurable resources. Since the processor is used to execute the application no changes in
the source code of the application, programming language, or the software tool flow are neces-
sary from the accelerator point of view. The development of the application is performed with
familiar tool flows. The hardware accelerators are created transparently and then are automat-
ically utilized without any manual interferences or interactions. Therefore, Woolcano allows
to customize the processor for any legacy software models amenable for processor execution.

Level of Heterogeneity

Woolcano is a heterogenous system that uses two resources to perform computation: processor
and hardware accelerators. The heterogeneity in this system is performed on the ISA level
where the hardware accelerator supports UDCI, a subset of ISA. Thus, Woolcano does not
require any changes in other areas of heterogeneity such as application binary interfaces,
application programming interfaces, programming language, or memory interfaces.

Low Latency Interconnection

In Woolcano, the hardware accelerator has a direct connection to the processors pipeline.
This results in a single clock cycle communication latency between the processor and the
accelerator. Thus, in contrast to the bus attached hardware accelerators that consume several
hundreds cycles for communication purposes, this results in a low latency interconnection.

Fine Grained Architecture

The hardware accelerators can be constructed from pre-implemented coarse grained or fine
grained elements. The construction of the accelerator from coarse grained elements is faster
than from the fine grained ones. This is caused by the lower level of details that needs to be in-
vestigated during the construction process. On the other hand, the fine grained elements allow
for better expression to the computational and communication patterns. Thus, it is possible
to achieve higher performances than with the coarse grained architectures. The Woolcano’s
hardware accelerators are constructed from fine grained elements and thus naturally, it is a
fine grained architecture.

2.2. DIFFERENCE IN HARDWARE ARCHITECTURE 13

2.2.2 Conventional vs. Woolcano Hardware Architecture
In order to perform computations, conventional computers use commercially available pro-
cessors. However, as explained in the introduction, at the end of the frequency scaling era
their performance improvements are not increasing as they tend to in the past. Solutions that
address this problem augment these processor with reprogrammable resources.

The reprogrammable systems, such as our Woolcano, include not only ASIC processors
but also allow to adjust the surrounding hardware and create customized hardware acceler-
ators. These accelerators target the computational and communicational patterns found in a
given application. Thus, reprogrammable systems target both patterns and allow to express
them in both domains, the software and the hardware one. In contrast, the conventional sys-
tems allow to utilize only computational pattern and only in the software domain.

This software-to-hardware shift found in reprogrammable systems, allows to change the
control flow computing paradigm found in conventional systems to the data-flow [22, 23] or
even reduction [24] one. In consequence, this results in large processing performances and
power consumption improvements.

2.2.3 Technology Difference: ASIC vs. FPGA
Every UDCI is represented by a digital circuit that acts as an application specific hardware ac-
celerator. As illustrated in Figure 2.2, these digital circuits can be implemented either in ASIC
or in FPGA. Both technologies are based on the complementary metal-oxide-semiconductor
(CMOS) technology that is a major technology used for constructing processors or memories.
Bellow we provide with differences between these technologies.

FPGA

CMOS

ASIC

UDCI
(Digital Circuit -

Hardware Accel.)

Reprogrammable

Fixed

b)a)

Figure 2.2: Difference in UDCI when implemented in ASIC and FPGA.

14 CHAPTER 2. SYSTEM OVERVIEW

Difference in Hardware Reprogrammability (Reconfiguration)

The ASIC circuit once implemented in CMOS technology cannot be altered at a later stage –
it is fixed and it does not allow for reprogrammability. This is a case for a processor used in
vN architecture found in Figure 2.1 and case a) in Figure 2.2.

The reprogrammability of the hardware is possible in FPGA devices. From the abstract
point of view, FPGA is an ASIC that is implemented in CMOS and that on top of the device
adds a special reprogrammable layer. This layer is constructed from fine grained CMOS
elements and it provides with two coarse grained resources: a) reprogrammable logic and b)
reprogrammable switches. The logic allows to establish functionality of the digital circuit and
switches to wire the logic together. Both resources are flexible and allow for digital circuit to
be "loaded" into the hardware.

Support of JIT processor customization

Since ASIC is a fixed technology that does not allow for a hardware reconfiguration it cannot
be used for an online JIT processor customization. Moreover, due to manufacturing processes
the hardware accelerators implemented in ASIC are dedicated only to a single application.
These obstacles are not found in FPGAs that allow for hardware reconfiguration with many
different hardware accelerators. Thus, they support an unlimited number of applications and
are a perfect match for the online JIT processor customization.

Difference in Circuit Characteristics

While any digital circuit can be implemented in FPGA and in ASIC with equivalent function-
ality, the granularity of used components and elements to perform this task is different. The
circuit implemented as ASIC in CMOS will be constructed from fine grained elements. The
same circuit when mapped to FPGA will be implemented with coarse grained resources (a+b)
found in reprogrammable layer. In consequence, both circuits will have different characteris-
tics when implemented with either technology. The circuit when implemented in FPGA will
result in:
• lower maximum operating frequency (lower performances by 3.2×),
• higher resource area (40×),
• higher power consumption (12×)

comparing to the equivalent ASIC circuit [25]. While it might sound that the usage of FPGAs
is doomed in favor of ASICs – this is not the case. All these technological disadvantages
found in FPGA are occupied by the reprogrammability feature that is required in the future
computer hardware architectures.

Difference in Usage

The reprogrammability makes FPGA a more accessible device than the ASIC technology. In
consequence, due to practical reasons such as:
• high costs (reaching millions of dollars),
• long development and manufacturing process (often counted in years),
• requirements for large product volumes (counted in tens of thousands)

2.3. DIFFERENCE IN SOFTWARE TOOL FLOW 15

the development of ASIC circuits [26, 27] is rarely used in contrast to FPGA [28].

2.3 Difference in Software Tool Flow

The background informations regarding the compiler construction, the differences between
static and dynamic translation techniques, interpretation, the just-in-time compilation, and
used terminology are presented in Appendix A.

The process of translation in both systems is represented in Figure 2.1 with black arrows
and it is in charge of a movement between the software stack - abstraction layers. In both
systems, it starts from the high level language (HLL) and ends at the machine code that is
directly fed into the processor for the execution. The most significant differences between
a conventional compiler and the Woolcano compiler rely on two facts. First, our Woolcano
compiler is a dynamic, often known as runtime or online system whereas the conventional one
is a static system. The difference between them is explained in more detail in Appendix A.8.
Secondly, our tool flow was extended with an ASIP-SP process that was specifically developed
for the Woolcano architecture. This section briefly presents that process.

2.3.1 ASIP Specialization Process

The ASIP-SP tool flow is in charge of a) hardware and b) software runtime adaptation. The
outcome of this tool flow is represented with the blue arrow in Figure 2.1 where sub-steps
(1) and (2) are associated with task a) and sub-step (3) with task b). The ASIP-SP was de-
signed and developed specifically for our dynamically reconfigurable Woolcano architecture
and thus, it is not available for the vN system.

Hardware Runtime Adaptation (HRA)

The hardware runtime adaptation consists of a data path synthesis tool that is amenable for a
software-to-hardware translation. The distinctive feature of our HRA is that it was designed
in a way that not only allows to maximize a given circuit metric such as performance, area,
or power consumption but also to minimize the overall runtime. In other words, this tool flow
tries to achieve best results in the shortest runtime; the key feature for the just-in-time system.
The details of this behavior are presented in Chapter 5.

Software Runtime Adaptation (SRA)

Once the bitstreams are generated with the HRA process and the Woolcano’s hardware is
reconfigured, the SRA process comes into action. The main aim of this process is to shift
the control flow (computation) from the processor into a newly created and loaded hardware
accelerator. To this end, the interpreted byte code is modified. This task, known from static
systems as the binary translation, is performed with a developed communicational pass and
with the help of the virtual machine features. It is studied in detail in Chapter 6.

16 CHAPTER 2. SYSTEM OVERVIEW

2.3.2 Difference in Static and. Dynamic ASIP Specialization Process

reconfigurable ASIP hardware
architecture

Static system
based on traditional

compiler
(static compilation)

reconfigurable ASIP hardware
architecture

Dynamic system based
on virtual machine with

JIT capabilities
(runtime compilation)

bitstream &
machine code

ASIP
Specialization

Process

ASIP
Specialization

Process

hw & sw
runtime

adaptation

Adaptable
Hardware

CPU execution

Adaptable
Hardware

CPU execution

ST
EP

1:
 c

om
pi

la
tio

n
ST

EP
2:

 e
xe

cu
tio

n

ST
EP

1:
 in

te
rp

re
ta

tio
n

(s
ou

rc
e

co
de

 c
om

pi
la

tio
n

w
ith

 c
on

cu
rr

en
t e

xe
cu

tio
n)

&

ha

rd
w

ar
e

an
d

so
ftw

ar
e

ru
nt

im
e

ad
ap

ta
tio

n
(H

R
A

, S
R

A
)

Figure 2.3: Overview of the ASIP specialization process for the conventional static and dy-
namic systems.

In this section, we highlight the differences between the static and dynamic (runtime)
ASIP-SP tool flows. The difference between the static and dynamic translations is explained
in Appendix A.8.

Figure 2.3 illustrates the difference between a conventional static ASIP-SP and a runtime
system with a just-in-time ASIP-SP support. As previously described, ASIP-SP consists of
a) hardware and b) software runtime adaptation processes. So far ASIP-SP has been applied
almost exclusively to static systems, where steps a) and b) occur offline before the application
is executed.

The main advantages of executing ASIP-SP as a part of the runtime system are:
• the system can optimize its operation by reconfiguring the instruction set architecture

of the processor and by changing the code at runtime, which is fundamentally more
powerful than a static ASIP specialization.
• the system can collect execution time, profiling, and machine level information in order

to identify the code sections that are actually performance limiting at runtime; these
sections are ideal candidates to be accelerated with UDCIs.
• the virtual machine has the capability to execute various dynamic optimizations like

2.4. THE LEVEL OF SUPPORTED PARALLELISM 17

hotspot detection, alias analysis, or branch prediction to further optimize the perfor-
mance.
• the dependencies between variables and corresponding memory layout can be obtained,

which simplifies the task of the hardware-software partitioning between the processor
and the hardware accelerator.

2.4 The Level of Supported Parallelism
During the hardware runtime adaptation process, the Woolcano compiler translates the soft-
ware to the hardware domain that is an exhaustive parallel resource. Thus, the selected source
code indicated for a transformation into the hardware accelerator has to be rich in parallelism.
Only then the hardware will be fully utilized and will provide with significant application
performance and power improvements.

The Woolcano compiler aims at selecting a code that is rich in bit-level and instruction-
level parallelism. For these levels of parallelism special algorithms exist that allow to au-
tomatically find and extract parallelism from the application. Until now such algorithms do
not exist for the task-level parallelism and it is unsure if they will ever exist for imperative
programming languages. Thus, the task-level parallelism has to be explicitly encoded by the
programmer with the help of special frameworks.

The level of parallelism that is supported by our system is constrained by the availability
of these algorithms. Since Woolcano is a runtime system and is dependent on these algorithms
the bit-level and instruction-level parallelisms are currently supported.

2.5 Feasibility vs. Limitations
The system developed in this thesis allows to achieve high performances by moving parts of
the application into dedicated hardware accelerators. These accelerators are created during the
application runtime. Since the process of the hardware development is notoriously slow this
limits the feasibility and applicability of this approach. Therefore, while the feasibility of this
approach is expressed in terms of performance improvements, the limitations are expressed in
terms of time required to generate these improvements.

2.6 Related Work
This work is built on research in three areas: reconfigurable ASIP architectures, ISE algo-
rithms, and just-in-time compilation, which have mostly been studied in separation in related
works. This work integrates all of these approaches into a consistent methodology and a tool
flow.

ASIP Hardware Architectures

From the hardware perspective, this work does not target the static but reconfigurable ASIP
architectures such as our Woolcano architecture [29] or comparable architectures like CHI-

18 CHAPTER 2. SYSTEM OVERVIEW

MAERA [30], PRISC [31], or PRISM [32]. These architectures provide programmable func-
tional units that in order to implement arbitrary UDCIs can be dynamically reconfigured dur-
ing the runtime. The survey on reconfigurable instruction set processors published in year
2000 is available in Barat et al. [33].

ISE Algorithms

Research in the field of ISE algorithms for the ASIP architectures is extensive; a recent survey
can be found in Galuzzi et al. [34]. However, the leading state-of-the-art algorithms for this
purpose have an exponential algorithmic complexity which is prohibitive when targeting large
applications and when the runtime of the customization process is a concern as it is the case
for our just-in-time processor customization system. This work leverages our preliminary
work [35] in which new heuristics for effective ISEs search space pruning were studied. It
was shown that these methods can reduce the runtime of ISE algorithms by two orders of
magnitude.

Binary Translation

The goal of this work is to translate software binaries on-the-fly into optimized binaries that
use application-specific custom instructions. The binary translation is used, for example, to
translate between different instruction sets in an efficient way and has been used, for example,
in Digital’s FX!32 product for translating X86 code to the Alpha ISA [36]. The binary transla-
tion has also been used for cases where the source and target ISAs are identical with the objec-
tive to create a binary with a higher degree of optimization [37,38]. These are found especially
in the Java JIT compiler, Microsoft .NET MSIL Framework, or Virtual Machines [39].

Beck et al. [40] presented work on binary translation of Java programs for a custom recon-
figurable ASIP architecture with coarse–grained reconfigurable data-path units. They show
that for a set of small benchmarks an average speedup of 4.6× and power reduction of 10.9×
can be achieved. The identification and synthesis of new instructions occur at runtime; how-
ever, the paper does not specify what methods are used for the instruction identification and
what overheads arise from the instruction synthesis.

This work is conceptually similar to these approaches as it also does not translate between
different instruction sets, but optimizes binaries to use specific UDCIs in a reconfigurable
ASIP. This kind of binary translation has hardly been studied so far. One comparable research
effort is the WARP project [41]. The WARP processor is a custom system-on-chip comprising
a simple reconfigurable array, an ARM7 processor core, and additional cores for application
profiling and place-and-route. This work differs from WARP in several ways. The main
difference is that we target a reconfigurable ASIP with programmable processing units in the
CPU’s data-path whereas WARP uses a bus-attached FPGA co-processor that is more loosely
coupled to the processor. Hence, this work allows to offload operations at the instruction level
where WARP needs to offload whole loops to the accelerators in order to cope with longer
communication delays. Further, WARP operates on the machine-code level and reconstructs
the program’s higher-level structure with decompilation while this work relies on a higher-
level information that is present in the virtual machine. Finally, WARP assumes a custom
system-on-chip and this work targets commercially available standard FPGAs.

Part II

Design and Implementation

Chapter 3

Woolcano Hardware Architecture

This section presents the Woolcano dynamically reconfigurable ASIP processor hardware ar-
chitecture. This architecture is based on the Xilinx Virtex-4FX and leverages its Auxiliary
Processing Unit (APU) and partial reconfiguration capabilities to provide dynamically recon-
figurable functional units (RFUs) for implementing UDCIs. Woolcano is a state-of-the art
dynamically reconfigurable application-specific instruction set processor. It consists of a fine
grained RFUs which are tightly coupled to the data-path of the processor and which use the
same general purpose register file as the main processor. While previous research on proces-
sors with RFUs has been conducted predominantly with simulation, the Woolcano architecture
with its associated tool flow allows for exploring dynamic instruction set extension in practice.

3.1 Introduction
ASIPs [23] augment the instruction set of a general processor with additional UDCI for ac-
celerating specific application classes. These UDCI are tightly integrated into the processor
pipeline and typically perform purely combinational operations on values taken from the reg-
ister file. This instruction set extension approach is popular for performance critical embedded
systems. It allows to improve the performance and power consumption of the most important
application kernels while the architecture remains a flexible general-purpose processor as op-
posed to a fixed-function ASIC.

Dynamic Instruction Set Extension Architecture

While ASIPs are typically implemented in silicon, they just as well can be mapped to FPGAs.
Some ASIP design tools explicitly target FPGAs as emulation platforms [42, 43]. However,
instruction set extension approaches generally assume that the UDCI are selected and fixed
during the design phase and are not changed at runtime. When implemented in reconfigurable
logic the assumption of static UDCI is, however, overly restrictive and does prevent us to
capitalize on the benefit of dynamic reconfiguration.

The Woolcano extends the idea of static instruction extensions and present the processor
architecture for dynamic instruction set extension. This architecture is comprised of a static
part that implements the fixed instructions set and an interface for application-specific UDCI,

21

22 CHAPTER 3. WOOLCANO HARDWARE ARCHITECTURE

which can be replaced at runtime using partial reconfiguration.
This capability enables novel modes of operation, such as configuring UDCI when loading

a new application, replacing UDCI during the execution of the application, or even generating
new UDCI on-the-fly. In contrast to related work on new processors architectures with recon-
figurable functional units, which have been evaluated primarily with simulation, this approach
leverages the commercially available Xilinx Virtex-FX FPGA architecture.

Outline

In following sections, the Woolcano reconfigurable processor architecture is introduced. The
architecture bases on the PowerPC 405 processor core that is embedded as a hard-core in the
Xilinx Virtex-4 FX FPGA. For interfacing the UDCI the PowerPC’s APU interface is used,
which is discussed in section 3.2. For changing the implementation of a custom instruction
at runtime the partial reconfiguration methodology is used, which is briefly discussed in sec-
tion 3.3. Finally, the Woolcano architecture is presented in section 3.4.

3.2 APU Interface
Starting with the Virtex-4 FX family, Xilinx has introduced the Auxiliary Processor Unit
(APU) in their Virtex product line with embedded PowerPC cores. The APU provides a
direct low-latency high-bandwidth interface between the pipeline of the PowerPC 405 core
and the reconfigurable FPGA fabric. The APU interface allows for attaching user-created,
high-performance hardware accelerators, denoted as fabric co-processor modules (FCM). Fig-
ure 3.1 illustrates how the APU is integrated into the processor pipeline.

For accessing the FCM, the PowerPC instruction set is extended with three additional
instruction classes that are decoded by the APU but executed by the FCM:

a. User-Defined Custom Instructions: Provide a flexible way of adding hardware accel-
erator to the processor. To this end, the instruction set provides eight reserved opcodes
(udi0fcm-udi7fcm). The behavior of each UDCI can be controlled through a cor-
responding configuration register in the APU. The instructions can be configured to
read up to two integer operands from the register file. Optionally, each instruction can
write a result back to the register file and can set carry and overflow flags. Instruc-
tions that write a result are called non-autonomous and cause the processor to wait for
a programmable delay until the instruction has completed. Instructions without results
(autonomous) complete immediately without stalling the processor. Further, UDCIs
may disable interrupts during execution and restrict execution to the privileged mode of
the processor.

b. Floating-Point Instructions: In addition to UDCIs that can be used for arbitrary func-
tions, the APU provides specific support for decoding standard PowerPC floating-point
operations. Since the PowerPC core of the Virtex-4 FX does not provide an integrated
hardware floating-point unit, floating-point arithmetic must be emulated in software,
which causes a large performance penalty. For accelerating floating-point intensive ap-
plications, a floating-point unit implemented in the FPGA logic can be attached as a

3.2. APU INTERFACE 23

PLB interface

write back

cachesMMU

fetch

decode

execute

load WB

register
file

ALU /
MAC

FPU unit

decoder

configuration
operands

cpu pipeline
controller

buffers &
synchronization

instruction

control

results

operands & instruction

APU controllerCPU pipeline

results

Virtex4 FX PowerPC 405 Core

application-specific FCM units

application-
specific custom-

instructions
FPGA user

logic

Figure 3.1: APU architecture

24 CHAPTER 3. WOOLCANO HARDWARE ARCHITECTURE

FCM module. Xilinx provides suitable FPU cores as a part of the embedded develop-
ment kit (EDK) tool suite.

c. APU load/store instructions: Finally, APU load and store operations allow for trans-
ferring data blocks of up to four words between the memory and an FCM unit. This is
the fastest way to transfer large data blocks between memory and the FCM.

The Woolcano architecture is build on the APU’s UDCIs. This allows for a very tight
integration of hardware accelerators with the processor pipeline and provides a much lower
delay than memory mapped or bus-attached co-processors.

3.3 Dynamic Partial Reconfiguration
Dynamical partial reconfiguration [44] is an FPGA configuration method supported by the
Xilinx Virtex FPGA family. It allows to change specific regions of the fabric during runtime,
while the other parts of the hardware design continue to run unaffectedly.

Tool Flow

Partial reconfiguration is not supported by the standard Xilinx implementation tools but re-
quires a modified version of the tools. These tools are available from Xilinx through an early
access program (EAPR).

Preparation Steps

For supporting partial reconfiguration the hardware design has to be prepared beforehand.
First, the design has to be partitioned into a static part and parts that can be reconfigured during
runtime. These parts are denoted as partial reconfiguration regions (PRR). When synthesizing
the static part of the design, specific placement constraints [45] are applied. These prevent
static logic to be placed in the PRR.

Circuits that shall be loaded into the PRR are named partial reconfiguration modules
(PRM). They are created in separation from the static design. During this step the same
constrains are used in order to place them in PRRs. For ensuring proper communication and
synchronization of the static design and the dynamically reconfigurable module two mech-
anisms have to be used: First, all clocks by the PRM have to be accessed via global clock
buffers (BUFG). Second, data signals have to be passed via uni-directional communication
channels denoted as Bus Macros (BMs), see Figures 3.4 and 3.5.

Partial Reconfiguration Bitstream Files

The result from this tool flow is a number of configuration bitstreams: a bitstream for the
static part of the system and one bitstream for each PRM. The bitstream for the static part of
the system is used to initially configure the FPGA at startup. During runtime, the contents
of the PRR can be exchanged by loading the bitstream of a PRM either using the external
configuration port of the device, or via the internal configuration access port (ICAP) that can
be attached to the PowerPC core.

3.4. WOOLCANO PROCESSOR ARCHITECTURE 25

FCM controller

UDCI 1 UDCI 2 UDCI n

operand bus

result bus

FSM

operand regs

result reg.

bus macro
partially reconfigurable
region (PRR)
"instruction slot"

PPC 405
CPU

APU

ICAP
controller

control bus

Woolcano architecture

Figure 3.2: Schematic of the Woolcano reconfigurable processor architecture capable of just-
in-time processor customization with instruction set extensions methodology.

3.4 Woolcano Processor Architecture
Figure 3.2 shows a schematic of the Woolcano reconfigurable processor architecture for just-
in-time processor customization. The main components of the architecture are the PowerPC
core, the ICAP controller, the FCM controller, and the partial reconfiguration regions for im-
plementing UDCI which we denote also as instruction slots. The FCM controller implements
the interface between the processor core and the UDCI. It forwards the inputs to the instruction
slots via the operand bus and, after the custom instruction has finished computing, transfers
the output back to the processor via the result bus. The control bus is used for sending control
information to the UDCI, e. g., activation or abort signals.

UDCIs

The Woolcano processor architecture uses the UDCI of the PowerPC 405 architecture as fol-
lows: udi0fcm is used for transferring two 32bit data words to the operand registers in the
FCM controller. udi0fcm is implemented as an autonomous instruction which immediately
transfers control back to the processor after execution. udi1fcm-udi7fcm also transfers two
words to the operand register file, but additionally trigger the execution of the custom instruc-
tion. These instructions are non-autonomous, i. e., they stall the execution of the processor
until the result of the custom instruction is available and can be returned to the processor.

Bus Macros

Bus macros are placed at the interface between the instruction slot and the operand, control,
and result busses for enabling partial reconfiguration of the instruction slots. The instruction

26 CHAPTER 3. WOOLCANO HARDWARE ARCHITECTURE

DECODE

WAIT_FOR_
OPERANDS

EXECWRITE_TO_
REGFILE

SEND_
RESULTS

Figure 3.3: Finite State Machine of FCM Controller

slots can be reconfigured via ICAP or the external configuration port of the FPGA.

FCM Controller

As the FCM controller is a central component of the Woolcano architecture its implementation
is discussed in more details. The FCM controller connects UDCI slots to the APU interface
of the PowerPC 405 core. Its main function is to implement the APU protocol for transferring
data and for dispatching instructions. The architectural constraints of the APU allow only
for two input and one output operands to the UDCI. This restriction limits the amount of
data a UDCI can operate on, which in turn limits the achievable speedup. To circumvent this
limitation, the FCM core implements internal operand registers for supplying the UDCI with
additional operands.

Finite State Machine

The FCM controller is implemented as a finite state machine, see Figure 3.3. Starting from the
initial state DECODE, the controller waits for the notification from the APU that a predefined
UDCI has been decoded. If the decoded instruction is a data transfer instruction, the controller
receives the data in the WAIT_FOR_OPERANDS state, stores the received operands in the
input operand registers in state WRITE_TO_REGFILE, and finally returns to DECODE again.
If the decoded instruction is a custom instruction dispatch, operands are received, written to
the register file, and the EXEC state is entered. In this state, the input operand registers are
placed on the operand bus and the appropriate custom instruction is activated via the control
bus. Finally, the results are sent to the APU in the SEND_RESULTS state. In any state except
EXEC the controller can be interrupted by the APU, which resets the controller back to the
DECODE state.

UDCI Slots

The number of UDCI slots as well as the their input and output operands are compile-time
configurable architecture parameters denoted as Cmax, inmax, and outmax, respectively. Since
the all inputs and outputs to the instruction slots must be fed through Xilinx bus macros,

3.5. NOTEWORTHY IMPLEMENTATION DETAILS 27

the size and geometric placement options of the bus macros limits the number of the input
operands and results.

3.5 Noteworthy Implementation Details

In the following the most important implementation details concerning the dynamic partial
reconfiguration are presented. Figure 3.4 contains the excerpt from the user constrain file
(UCF) where locations for three different resources including the clock, bus macros, and the
PRM regions are manually setup on a physical chip. The first resource corresponds to the
global clock which is wired to the PRM with the help of a global clock buffer (BUFGCTRL).
The BUFGCTRL ensures that the clock will be available in the PRM region with the low-skew
dedicated routing facilities. This is probably the most important entry in the UCF file since
all synchronous circuits depend on it.

The second entry ensures proper communication with the PRM for the data and control
signals. To this end, the 8-bit BMs are placed on the edges of the PRM are used. Since the
PowerPC is a 32-bit architecture 4 BMs are used in order to send 32-bit data. The ra and
rb suffices represent the input data channels to the PRM which are used to transfer the input
data operands. The RES suffices indicate the computational result shifted back to the FCM.
In addition, there are two BMs placed for the control signals going in both ways between the
PRM and FCM.

The last entry in the UCF corresponds to the location of the PRM region. The PRM
region is built from the slices, RAM modules, DSP hardware macros, and FIFOs. The visual
representation of the PRM and the different resources can be found in Figure 3.5.

3.6 Work Related to Woolcano Hardware Architecture

Architectures supporting reconfigurable UDCI, e. g., PRISM [46], PRISC [31], DISC [47],
CHIMAERA [30], or OneChip [48] have been extensively studied in the 1990’s. The survey
published in year 2000 is available in Barat et al. [33]. The prime objective of these projects
was to evaluate the feasibility and potential of reconfigurable functional units connected to
data path of the processor.

Simulation Based Approach

Simulation-based design space exploration has been used to study speedups, the performance
of processor/RFU interfaces, the effect of instruction encoding, etc. None of these architec-
tures has been implemented in VLSI, also limitations in the logic capacity of early FPGA
architecture has prevented building single-chip FPGA prototypes. Only recently a processor
with reconfigurable functional units has been commercialized with the Stretch S5 architec-
ture [49].

28 CHAPTER 3. WOOLCANO HARDWARE ARCHITECTURE

tunnel global clock to UDCI slot via BUFG
INST "global_clock" LOC = BUFGCTRL_X0Y29;

place busmacros at the boundry between reconfigurable UDCI slot and static part
INST "bm_fcm2sl0" LOC = SLICE_X16Y46;
INST "bm_sl0fcm_RES3" LOC = SLICE_X16Y20;
INST "bm_sl0fcm_RES2" LOC = SLICE_X16Y22;
INST "bm_sl0fcm_RES1" LOC = SLICE_X16Y24;
INST "bm_global2sl0_ra_0" LOC = SLICE_X16Y44;
INST "bm_global2sl0_ra_1" LOC = SLICE_X16Y42;
INST "bm_global2sl0_ra_2" LOC = SLICE_X16Y40;
INST "bm_global2sl0_ra_3" LOC = SLICE_X16Y38;
INST "bm_global2sl0_rb_0" LOC = SLICE_X16Y36;
INST "bm_global2sl0_rb_1" LOC = SLICE_X16Y34;
INST "bm_global2sl0_rb_2" LOC = SLICE_X16Y32;
INST "bm_global2sl0_rb_3" LOC = SLICE_X16Y30;
INST "bm_sl0fcm" LOC = SLICE_X16Y28;
INST "bm_sl0fcm_RES0" LOC = SLICE_X16Y26;

define the placement of the UDCI slot region
AREA_GROUP "pblock_alu_fp_0" RANGE=SLICE_X18Y0:SLICE_X67Y47;
AREA_GROUP "pblock_alu_fp_0" RANGE=RAMB16_X1Y0:RAMB16_X4Y5;
AREA_GROUP "pblock_alu_fp_0" RANGE=DSP48_X0Y0:DSP48_X0Y11;
AREA_GROUP "pblock_alu_fp_0" RANGE=FIFO16_X1Y0:FIFO16_X4Y5;
AREA_GROUP "pblock_alu_fp_0" MODE=RECONFIG;
AREA_GROUP "pblock_alu_fp_0" PLACE=CLOSED;

Figure 3.4: Excerpt from User Constrains File (UCF) which defines the placement of hardware
components.

Bus Attached Co-processors

Later, research in reconfigurable processor architectures has focused primarily on hybrid
processors with reconfigurable co-processors, e. g., GARP [50], PipeRench [51], or Mor-
phoSys [52]. A number of these co-processor architectures have been also implemented in
VLSI. These approaches are orthogonal to processor customization with instruction set ex-
tensions. Instead of exploiting customized parallel operations on the instruction level, these
co-processor approaches map complete application kernels to the co-processor. Due to the
higher latency of the processor/co-processor communication, acceleration at the instruction
level is difficult to achieve with these architectures.

APU Interface

The Woolcano approach uses the APU interface of the PowerPC core in Xilinx Virtex-4FX
FPGAs. This interface allows for attaching a floating-point unit and for extending the instruc-
tion set with static UDCIs. Despite the availability of UDCIs since Virtex-4FX and extensive
research in processor customization with instruction set extensions for ASIPs, the UDCI have
been hardly used in scientific research. The most common use of the APU is to attach the Xil-

3.6. WORK RELATED TO WOOLCANO HARDWARE ARCHITECTURE 29

PPC 405 CPU
(hard macro)

single UDCI
instruction slot

Bus Macros
(interface)

Figure 3.5: Floor Plan excerpt generated for the UCF found in Figure 3.4, targeting Woolcano
prototype with single UDCI based on Xilinx ML403 starter kit featuring V4FX12 FPGA
Device.

inx FPU core, e. g., [53, 54]. To the best of our knowledge, only the work of [55, 56] and [57]
studied the use of the APU to attach a hardware accelerator that is not a general FPU.

30 CHAPTER 3. WOOLCANO HARDWARE ARCHITECTURE

Chapter 4

Woolcano Compiler

The Woolcano hardware architecture presented in the previous chapter is a dynamically recon-
figurable ASIP architecture. It allows to dynamically customize the processor with instruction
set extensions and to adapt the ISA to the given application during the runtime. In order to
perform this task the special compiler is required. We name it Woolcano compiler.

ASIP-SP

Machine
code

Bitstream
file

PPC405
CPU FCM

UDCI Slot
UDCI Slot
UDCI SlotW

oo
lc

an
o

ar
ch

ite
ct

ur
e

W
oo

lc
an

o
co

m
pi

le
r

Software
(SRA)

runtime
adaptation layer (RA)

Hardware
(HRA)

HLL

So
ur

ce
co

de

Figure 4.1: Woolcano Compiler

The concept of the Woolcano compiler is presented in Figure 4.1. It provides with a)

31

32 CHAPTER 4. WOOLCANO COMPILER

runtime adaptation layer and b) ASIP-SP process that is used to generate the machine code
and the bitstream file. The combination of both (a+b) results in a compiler capable of software
and hardware runtime adaptation.

4.1 Runtime Adaptation Layer

The runtime adaptation layer is a mechanism that allows to execute given compiler optimiza-
tion, analysis or transformation during the runtime of the application. Thus, this feature is
not available in ahead-of-time static compilers and is only found in interpreters and virtual
machines. These machines compile and execute the code in the same process and in conse-
quence have access to values of pointers and variables, statistics about executed code, and
machine informations. These informations enable a new set of adaptive optimizations that are
not found in static compilers. As the name suggests, these are adaptive optimizations which
allow to utilize these informations in order to adapt the code and to improve the processing
performances and the power consumption.

The Woolcano compiler itself does not implement the runtime adaptation layer. Since our
compiler is based on Low Level Virtual Machine (LLVM) compiler framework the runtime
adaptation layer was inherited. The details about the design and implementation of the LLVM
and its features can be found in Appendix A.

4.2 ASIP Specialization Process

The ASIP-SP process is compiler’s transformation pass. As previously stated and illustrated
in Figure 4.1 it was designed to perform two tasks that are studied in two following chapters.
• First task is to generate proper machine code that allows to shift the control flow from

the processor to the hardware accelerator and to provide with bidirectional commu-
nication channel. This channel is used for sending the data from processor to the
accelerator and for receiving results. To perform this work, the machine code uses
udi0fcm-udi7fcm instructions described in Section 3.4. The engineering challenge
involved in this design and implementation is to develop a compiler able to generate
correct and coherent code with these instructions.
• Second task is to generate partially reconfigurable bitstream files with hardware accel-

erators. These bitstream files are used to reconfigure the reprogrammable hardware and
change the functionality of the UDCI slots found in the Woolcano architecture.

4.2.1 Software and Hardware Runtime Adaptation

The ASIP-SP is a compiler transformation pass that was designed and implemented as adap-
tive one; that is to work under the runtime adaptation layer. Thus, it can be executed during
application’s runtime and utilize various available online informations. To this end, the first
task of ASIP-SP that adjust the machine code is referred to as software runtime adaptation.
Consequently, the second task is named hardware runtime adaptation.

4.2. ASIP SPECIALIZATION PROCESS 33

While the adaptive transformations found in state-of-the art runtime systems is always
constrained to the software domain, to best of our knowledge our hardware runtime adaptation
layer is the first and only transformation that opens doors towards adaptation in the hardware
domain.

4.2.2 Overview of Implementation Details

The ASIP-SP is a complex process that is constructed from several developed and commer-
cially available tools. While the full design and implementation details are covered in next
two chapters, in Figure 4.2 we briefly illustrate major components of ASIP-SP.

HRASRA

Candidate Search

Candidate
Identification

Candidate
Selection

Candidate
Estimation

Basic Block
Pruner

bi
tc

od
e(

IR
)

PivPav
Netlist Generation

Generate VHDL

Extract Netlists

Create Project
(xtclsh)

PivPav
Instruction Impl.

Check Syntax
Synthesis (xst)
Translate (ngd)

Map & PAR
(map, par, trce)

Partial
Reconfiguration
Bitstream (bitgen)

te
m

pl
at

e(
IR

)

St
ru

ct
. V

H
D

L

ASIP specialization process

PPC405
CPU FCM

UDCI Slot
UDCI Slot
UDCI Slot

Woolcano architecture

Machine
code

Bitstream
file

CP EP

ISE Xilinx tools: xtclsh, xst, ngdbuild, map, par, trce, bitgen

Figure 4.2: Implementation details of the ASIP specialization process.

The ASIP-SP process comprises three main phases: Candidate Search, Netlist Generation,
and Instruction Implementation that aim to achieve different goals.

34 CHAPTER 4. WOOLCANO COMPILER

Candidate Search

During the first goal, candidate search, the candidate identification process is executed that
aims at finding software regions in the application’s bitcode that are rich in instruction level
parallelism (ILP). To this end, the ASIP-SP compromises a set of instruction set extension al-
gorithms. These algorithms have exponential complexity that result in long runtimes; they last
from a few seconds up to days. Since these long runtimes limit the feasibility of any runtime
system they are preceded with basic block pruning heuristic algorithms. These algorithms
are able to reduce the ISE algorithm’s search space to only a few basic blocks that will bring
the best performance improvements. In consequence, the runtime of the whole tool flow is
significantly reduced. Once a set of candidates is found, only the best ones are selected within
the candidate selection processes. This process is depended on estimation metrics generated
by candidate estimation process. These metrics allow to compare the performances of the
candidate when executed on processor and as a hardware accelerator. Once these tasks are
performed the communication pass (CP) and extraction pass (EP) come into action. These
passes are responsible for the outcomes of the software runtime adaptation. The EP extracts
the selected candidates code into separate function whereas the CP adapts the machine code
and guarantees proper communication between processor and hardware accelerator. The EP
is studied in Section 5.7 whereas the CP in Section 6.4 where the case study is provided in
Figure 6.2.

Netlist Generation

The second goal, netlists generation, transforms spotted temporal software regions rich in in-
struction level parallelism into spacial hardware description circuit accelerators. This task is
performed with the help of the PivPav tool that we developed specifically for this purpose.
PivPav uses data path generator in order to generate VHDL structural code. This tool iterates
over template’s data path and translates every instruction to a matching hardware operator and
next it wires these operators together. To this end, it extracts netlists of instantiated hardware
operators from a pre-synthesized circuit library. This library is a part of the PivPav tool and is
used as netlist cache in order to speedup the hardware runtime adaptation process. Moreover,
the library consists of thousands of different arithmetical and logical operators. Since these op-
erators are functionally equivalent but different in the number of pipeline stages, area, power
consumption, and performances the right selection of them allows to optimize the hardware
accelerator under different criteria. In addition, this tool uses intermediate representation as a
source input and thus, it is agnostic to the HLL; see Appendix A for explanation of compiler
terminology.

Once the VHDL code is generated the Xilinx FPGA CAD project is created with the help
of the xtclsh shell. Finally, PivPav creates FPGA CAD project for Xilinx ISE, sets up the
parameters of the FPGA, and adds the VHDL and the netlist files.

Instruction Implementation

The last goal corresponds to the instruction implementation. In this phase, the Xilinx FPGA
CAD tool flow is used in order to convert previously created project into the partial reconfig-

4.3. PIVPAV TOOL 35

uration bitstream format that is used to reconfigure the Woolcano architecture afterwards. For
this task, the Xilinx ISE tools are used. They are labeled with blue color and are executed
and controlled by the PivPav tool. The bitstream files are mandatory for the hardware runtime
adaptation layer.

4.3 PivPav Tool
As presented in previous section the PivPav tool is a key component of the ASIP-SP. It was
specifically designed and developed for this purpose. It is solely used to implement the netlist
generation and the instruction implementation phases of the ASIP-SP. In addition, it is used for
estimation purposes in the candidate search phase where it acts as the metric circuit database.
In this section, we briefly present major concepts of this tool whereas the details can be found
in [58].

4.3.1 Overview

Essentially, PivPav provides an application programming interface (API) to a library of cir-
cuits that are kept in a database. For each circuit, an extensive set of metadata is made available
through an API. While PivPav is agnostic to the kind of circuits that are stored in the library,
it provides an API to commonly used circuit generators such as Xilinx Coregen [59] and
FloPoCo [60]. These generators can be controlled from PivPav and allow to automatically
create required hardware operators in background . Besides circuit generators, customized
circuits that were manually created can be also added to the database.

In addition to the circuit library and circuit generators, PivPav contains a benchmarking
framework. This integrated framework allows for processing and measuring the circuits with
FPGA CAD tools under a variety of implementation constraints. This process characterizes
each circuit with more than 90 different metrics.

4.3.2 Goals

The main purpose of PivPav is to provide a software infrastructure for storing and retrieving
circuits and meta information about the circuits from the database. These informations rep-
resent circuit latency, maximum operating frequency, power consumption, input and output
interfaces, etc.

4.3.3 Use Case

A prime use case example is an ASIP-SP netlist generation phase, which was also the use
case that triggered the development of PivPav. In netlist generation, complex data paths are
assembled from circuits representing basic operators, where each operator can be available
in a large variety of implementations that are functionally equivalent, but differ in hardware
size, speed, latency, etc; see Table 4.1 as an example. For finding the optimal data path
implementation, a design space exploration of the basic operators is required, which is ideally

36 CHAPTER 4. WOOLCANO COMPILER

supported by PivPav. The use case examples based on ASIP-SP process are illustrated in
Figure 4.3.

Circuit Latency Initiation Pwr . Max FRQ FF LUT Slice BUF DSP
interval cons. after PAR

[cyc] [cyc.] [mW] [MHz] no. no. no. no. no.
Integer Operators

add_561 4 0 1244.7 169.3 66 70 53 98 0
add_558 1 0 1242.8 107.4 66 32 16 98 0
mul_376 5 0 1259.2 190.7 65 17 11 97 3
mul_403 1 0 1260.1 43.4 65 749 376 97 1
sub_19 18 0 1246.4 179.1 66 124 95 98 0
sub_1 0 0 1237.0 104.5 97 32 16 97 0

div_104 50 1 1344.6 98.8 65 - - 112 0
div_158 43 2 1321.6 41.0 65 - - 104 0

Floating Point Operators
fpadd_1183 7 0 1264.0 139.0 66 556 326 103 4
fpadd_1161 1 0 1296.3 31.1 66 377 250 103 5
fpmul_1115 10 0 1316.2 136.8 66 134 150 103 4
fpmul_1136 1 0 1289.8 40.3 66 76 46 103 0
fpsqrt_1011 26 1 1072.9 175.5 34 508 475 69 0
fpsqrt_691 3 1 1074.0 29.7 34 464 294 69 4
fpsub_661 16 0 1295.2 139.4 66 381 354 103 4
fpsub_675 1 0 1278.2 30.5 66 377 251 103 0
fpdiv_1595 28 19 1254.6 171.9 66 367 231 104 0
fpdiv_1209 4 4 1267.1 32.8 66 466 268 104 4

fp-float2int_630 4 0 1062.7 172 34 286 164 70 0
fp-float2int_627 1 0 1070.3 43 34 229 138 70 0

Table 4.1: Excerpt of hardware operator metrics when querying PivPav for the XC4VFX100-
FF1152-10 FPGA device.

4.3.4 Stand-alone and Back End Tool

While PivPav is useful as a stand-alone benchmarking tool, its main purpose is to act as a
building block in higher-level tool flows for reconfigurable computing. To this end, it was
designed as a backend tool that features rich application programming interface.

4.3.5 Application Programming Interface

The PivPav features application programming interface that allows to integrate it in custom
design tools. The developed API supports C and C++ programming languages. In addi-
tion, the access to the database is available for any programming language that supports open
database connectivity (ODBC).

4.3. PIVPAV TOOL 37

4.3.6 Open Sourced License Model
The tool is released under the GPL open source license model. This allows the community to
freely:
• benchmark and test their designs,
• benchmark FPGA CAD algorithms,
• build higher level design tools that leverage the functionality of PivPav.

PivPav is available for free download and it does not require any registration.

4.3.7 Design Overview
PivPav combines three components, which are illustrated in Figure 4.3.

[b]

Benchmarking
framework

[c] Circuit Library

(1) Circuit source code

(2) Circuits parsed top entity (ports, attributes)

(3) Result from FPGA CAD Alg. (bitstream, netlist)

(4) Characterization data of the circuit (MHz, mW)

(5) Characterization data of the FPGA CAD Alg.

API

[a]

Circuit
factory

Custom circuits
(opencores.org)

Circuit generators
(Coregen, FloPoCo)

FPGA CAD Toolflow

Metrics finder

ASIP-SP

Candidate
Estimation

 * get [c](4)

Netlist
Generator

 * get [c](2)
 * get [c](3) (netlist)
 * add circuit to [a]

Instruction
Implementation

* change settings of [b]
* run [b]
* get [c](4,5)

PivPav Tool

Figure 4.3: PivPav design and ASIP-SP use case.

a) The circuit factory is responsible for generating circuits. To this end, PivPav interfaces
to the widely used circuit generators Xilinx Coregen [59] and FloPoCo [60] and sup-
ports importing custom circuits that have been generated by synthesis from hardware
description languages.

38 CHAPTER 4. WOOLCANO COMPILER

b) The benchmarking framework is responsible for determining the performance and
metadata for the circuits obtained from the circuit factory by executing the FPGA CAD
tool flow and analysis tools for gathering characteristic metrics of each circuit. Overall,
more than 90 different metrics are determined for each circuit. Additionally, the infor-
mation about the optimization settings of the FPGA tool flow (e. g., optimization goals
and effort) and the runtime and memory usage of the design tools are determined.

c) The circuit library is the database component that stores the circuit and the results of
the benchmarking process, including the circuit’s source code, netlist, parsed VHDL
top entity, results files from the FPGA CAD tool flow, and the CAD tool flow charac-
terization data.

4.3.8 Contributions
PivPav is a unique tool that was developed and studied in details in Grad et al. [58]. During our
research we tried to re-use already existing tools for the development of our system. However,
in this case we could not find any tool with required functionality, especially the open sourced
one. This lead and triggered the development of the PivPav tool.

There are two main contribution of PivPav to the reconfigurable community. First con-
tribution corresponds to the unique functionality of the tool that allows for consistent access
to the circuit library, metric informations, netlists, circuit generators, benchmarking facilities,
etc. Second to the open sourced model. Both features allow to utilize this standalone and
backend tool by the reconfigurable community in various ways that we presented on our case.

4.3.9 Work Related to PivPav
Circuit libraries play an important role for increasing the design productivity by allowing de-
signers and design tools to reuse existing circuits as pre-generated components. Libraries
providing different implementation alternatives further allow for selecting the optimal circuit
from a choice of functionally equivalent circuits, which provide different performance vs.
area vs. latency trade-offs. While the circuit libraries used by HDL synthesis tools are typi-
cally not directly accessible by the designer, there FPGA tool vendors offer standalone circuit
generators, such as Xilinx Coregen [59] or Altera MegaWizard [61] which generate circuits
tailored for the respective FPGA architectures. Other circuit generators, such as FloPoCo [60]
or GRLIB [62], support multiple FPGA families or generate architecture independent circuits.

PivPav differs from these tools by integrating a programmable circuit library, benchmark-
ing infrastructure, and a circuit factory in a single tool. It allows to retrieve a large set of
meta data about each circuit, such as performance, area, power consumption, latency, etc.,
which provides the necessary input data to tools that estimated the performance of a larger
circuit that is composed of elements retrieve from PivPav. Additionally, PivPav allows for
programmatically connecting individual circuits to form larger data paths and to generate the
corresponding, structural HDL code. While all performance-driven high-level synthesis tools
are likely to use a similar library internally, PivPav is the only open-source tool that offers this
functionality.

Chapter 5

Hardware Runtime Adaptation

5.1 Introduction

In this chapter, we describe the parts of the ASIP-SP that allow to achieve the hardware run-
time adaptation. Thus, it includes all components and tools that were presented in Figure 4.2
with an exception to the Communication Pass. These pass is presented in the next chapter that
deals with software runtime adaptation. The order of presented components is chronological
to the appearance in Figure 4.2. The study of the functionality of all components is based on
the raytracing algorithm that is presented bellow.

5.2 Raytracing Example

Figure 5.1 presents a source code excerpt from the Codermind raytracing algorithm [63].
The top part (a) of the figure corresponds to the ANSI C code where a single function
hitSphere() is presented. This function computes the scalar product of two 3-dimensional
vectors that correspond to ray/object intersections. The bottom part (b) of the figure represents
the equivalent IR code that is obtained with LLVM frontend and is used to feed the ASIP-SP.
It corresponds to the most-left vertical box named bitcode in Figure 4.2.

5.3 Basic Block Pruning

Basic Block (BB) Pruning is the first process executed in the ASIP-SP outlined in Figure 4.2.
Pruning uses a set of algorithms which act as filters to shrink the search space for the subse-
quent processes by rejecting or by passing certain BBs; definition of BB is presented in Sec-
tion A.4. This decision is based on the data obtained from program analysis which provides
information about loops, the sizes of BBs, and the contained instruction types. In addition,
the ASIP-SP makes it possible to discard dead code by running the filters only for the code
which was executed at least once.

39

40 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

define float @hitSphere() nounwind readnone {
entry:

... ; line 3-4
%14 = mul float %rdx, %dx ; line 5

 %15 = mul float %rdy, %dy ; line 5
 %16 = add float %14, %15 ; line 5
 %17 = mul float %rdz, %dz ; line 5
 %18 = add float %16, %17 ; line 5

... ; lines 6-9
}

...
1) bool hitSphere(const ray &r, const sphere& s ..)
2) {
3) ...
4) vecteur dist = s.pos - r.start;
5) float B = rdx*dx+rdy*dy+ rdz*dz;
6) float D = B*B - dist*dist + s.size * s.size;
7) if (D < 0.0f) return false;
8) ...
9) }
...

app.c

(a)

Source Code Excerpt

IR code

LLVM Frontendapp.ll

(b)

ANSI C code

Figure 5.1: Excerpt from the raytracing algorithm and equivalent IR code.

5.3.1 Formal Definition

The objective of the pruning process is described by the following function:

max

(
metric function

runtime of candidate identification

)
. (5.1)

The pruning aims to maximize the ratio between a metric function to the time spent in the
candidate identification process. The metric function is defined in Condition (5.14) and is
equivalent to the application performance gain. The denominator of the equation takes into
the account only the runtime of the candidate identification since in comparison to this runtime
the runtime of the candidate estimation and selection processes are insignificant.

In order to maximize the objective function it is beneficial to reduce the value of the
denominator and increase the value of the nominator. To this end, pruning algorithms are
developed around a hypothesis which predicts the location of the most beneficial application
parts.

5.3. BASIC BLOCK PRUNING 41

best speedups

these BBs achieve
best speedups

Figure 5.2: Relative relationship between BB sizes to application performance gain and to BB
frequency for MaxMISO ISE algorithm (see Section 5.4). Absolute values are presented in
Table D.1. s = speedup, f = frequency.

42 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

5.3.2 Pruning Hypothesis

Figure 5.2 illustrates the mutual dependencies of BB size, execution frequency, and achievable
speedup for 9 different applications. For each application, all BBs that can be accelerated
with custom instructions are sorted into 10 bins depending on their absolute sizes (measured
in instructions) in a histogram-like manner. The first bin contains all BBs that have a size of
0–10% of maximal basic block size for this application, the second bin collects all BBs that
have a size of 10–20% of the maximum BB size, etc. For each application and bin, the total
execution frequencies for all BBs assigned to each bin are shown in the bottom figure. The
top figure shows the overall application-level speedup when implementing the UDCI.

Best Performance Improvements

As visualized in Figure 5.2, the best speedups (70–100%) are found in the top right corner
of the figure and are achieved for basic blocks in the 80–100% size bins, whereas the most
frequently used BBs (up to 90%) are located in 0–30% size bins. This observation suggests
that it is more significant to identify candidates in frequently used large BBs than in the most
frequently used but smaller BBs. The hypothesis of our proposed pruning methodologies is
to identify these highly profitable BBs and to ignore the insignificant rest of BBs.

Conclusions: Frequency vs. Size

In large BBs, ISE algorithms are able to find more and larger candidates which overall result in
better speedups than accelerating more frequently executed but smaller BBs. In other words,
execution frequency matters but among the most frequently executed BBs the largest BBs
are the most important for achieving high overall speedups. The aes application is an ideal
example of such a behavior. There are two red bars representing the frequencies of BBs for
aes, the first is located at 0%, the second at 80%, both with distinctively high frequencies.
However, the major speedup (91%) is achieved when accelerating the BBs represented by the
second bar which are larger but less frequently executed than the first one.

Another interesting application is sor. There are two black bars at 40% and 100%, respec-
tively, with almost the same frequency. The sum of these bars is equal to 100% frequency,
which means that we are investigating all executed BBs in the application. Once again the
second bar which represents bigger BBs has a major speedup of more than 80%.

5.3.3 Pruning Algorithms

In this subsection, a set of pruning algorithms, presented in Table 5.1, is described. Every
pruning algorithm works as a filter and reduces the amount of the IR code available for the
candidate identification and remaining processes. All algorithms except n(F/S) try to lever-
age the hypothesis stated above that the highest speedups are achieved for large and frequently
executed BBs.

5.3. BASIC BLOCK PRUNING 43

Name Algorithm Description
nS n-size select n largest BB
nF n-freq select n most frequently used ones
nL n-loop select n largest loop BBs

@nL n-loop(@) eliminate not used BBs and do nL
mLn* n-(m-loop(uniq F)) do nL for every function and then mL
mSnL n-loop(m-size) do mS and them nL

@mSnL n-loop(m-size(@)) eliminate not used BBs and do mSnL
mFnS n-size(m-freq) do mF and then nS
mSnF n-freq(m-size) do mS and then nF

tF threshold = max(F) select BBs with this threshold
tS threshold = max(S) select BBs with this threshold

n(F/S) n-(freq / size) select n BBs with largest ratio

Table 5.1: Description of the pruning algorithms. The n and m letters represent constrain-
ing numbers, the p suffix, if added to these, represents percentage of the range. The @ tells
that the algorithm used JIT to indicated BBs which were executed at least once (dead code
elimination), S = Size, F = Frequency and L indicates Loops.

Basic Block Constrains

The easiest way to restrict the set of BBs to the most beneficial subset is to constrain the sizes
and frequencies, which correspond on specifying the n and m parameters in the mFnS and
mSnF algorithms. The remaining algorithms with the exceptions described below try to mimic
the same goal but without using the frequency data. This is particularly important for a JIT
processor customization scenario in which the execution frequencies for BBs are unknown.
They can be collected during the execution but will remain incomplete or inaccurate until the
application terminates. Hence during the runtime only partial information is available, which
makes the goal of JIT processor specialization challenging.

Frequently Used Basic Blocks (L)

In order to find the frequently used BBs without profiling, a program analysis pass that ex-
amines the control flow structures in the application and indicates which BBs are contained
in loops was developed. This technique is used in the L algorithms. The chances of execut-
ing such BBs are higher than the others and therefore it is one indication that these BBs are
frequently executed. A loop can consist of many BBs and the nL algorithm selects only the
largest BBs. Whenever possible analysis pass tries to skip the pre-header and latch parts
of the loop and focuses only on the computational BBs in the loop bodies. This technique
can also leverage applications which use the common software design patterns to encapsulate
every significant part of the code in a separate function. For such applications, the nLm* al-
gorithm will try to find the m loop-BBs in every function and will finally select the n largest
ones from this set.

44 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

Dead Code Elimination (@)

The limitation of the nL algorithm is that it can consider loop-BBs which are not used at all
during execution. For instance, such loop-BBs exist in the decrypt and encrypt functions
of the aes application. During the execution of the application only one function is used,
which can easily mislead the nL algorithm. To avoid such a case, the @nL algorithm was
developed. It considers only BBs in functions that have been executed at least once which is
an information that can be made available to the JIT systems.

Identical Execution Times

The difference between the tF and nF algorithm where n = 1 is that several BBs may have
an identical execution frequency. In such cases, the first algorithm will consider all of them
whereas the second will only consider the first BB. The same applies to the tS and the nS

algorithms.

Hypothesis Opponent

Finally, the algorithm n(F/S) was implemented n(f/s) as a reference to test the hypothesis
that the design space should be constrained to the largest and most frequently executed BBs.
This algorithm favors the frequent but small BBs and hence should result in lower speedups
if the hypothesis is correct.

5.3.4 Raytracing Example

Figure 5.3 represents a single BB that was passed by the pruning mechanism when analyzing
the source code found in Figure 5.1(b). This passed BB corresponds to three (3–6) ANSI C
code lines found in Figure 5.1(a).

BasicBlock_Selected:
... ; line 4
%14 = mul float %rdx, %dx ; line 5

 %15 = mul float %rdy, %dy ; line 5
 %16 = add float %14, %15 ; line 5
 %17 = mul float %rdz, %dz ; line 5
 %18 = add float %16, %17 ; line 5

... ; line 6 IR code

Basic Block Pruningapp.ll

(c)

Figure 5.3: Basic Block that was selected by pruning mechanisms from the source code pre-
sented in Figure 5.1.

5.4. CANDIDATE IDENTIFICATION 45

5.3.5 Contributions
The Basic Block Pruning for the runtime systems is a novel idea. To best of our knowledge,
it has not been studied before. This is a first study in this field and is presented in Grad et.
al [35].

5.3.6 Work Related to Pruning Algorithms
The issue of reducing the design space for candidate identification has not received any at-
tention so far, with the exception of the guide functions [34]. Unfortunately, these are not
well suited for the online systems, since they are based on profiling data which are not avail-
able in any online system. The lack of pruning mechanisms for the candidate identification
algorithms may be caused by the fact that for a static non-reconfigurable ASIPs the runtime
reduction is of less importance than for JIT ASIP-SP process which is a novel research area
in itself.

While the ad-hoc heuristics have been proposed to select the basic blocks subject to custom
instruction identification, e. g., all hot loops with an execution time of more than 1% of the
total runtime [64] or just the most frequently executed basic block [65], no systematic study
of approaches for pruning the design space has been conducted so far.

5.4 Candidate Identification
The candidate identification process identifies subgraphs in the intermediate representation
(IR) code, which are suitable for fusing into a new UDCI that can be implemented for the
Woolcano architecture. Suitable candidates are rich in instruction level parallelism (ILP)
while satisfying the architectural constraints of the target architecture.

5.4.1 Formal Definition
Formally, we can define the candidate identification process as follows: Given a data flow
graph (DFG) G = (V,E), the architectural constraints inmax, outmax and a set of infeasible
instructions F , find all candidates (subgraphs) C = (V ′, E ′) ⊆ G which satisfy the following
conditions:

Cin ≤ inmax, (5.2)
Cout ≤ outmax, (5.3)
V ′ ∩ F = ∅, (5.4)
∀t ∈ C : convex(t). (5.5)

Here:

• the DFG is a direct acyclic graph (DAG) G(V,E), with a set of nodes or vertices V
that represent IR operations (instructions), constants and values, and an edge set E
represented as binary relation on V which represents the data dependencies. The edge
set E consists of ordered pairs of vertices where an edge eij = (vi, vj) exists in E if the
result of operation or the value defined by vi is read by vj .

46 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

• C = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E.

• Cin is the set of input nodes of C, where a node vi /∈ C with (vi, vj) ∈ E for some node
vj ∈ C is called an input node.

• Cout is the set of output nodes of C, where a node vo ∈ C with (vo, vk) ∈ E for some
node vk /∈ C is called an output node.

• inmax, outmax are constants that specify the input/output operand constraints for UDCIs
which apply to the instruction slot implementation of the Woolcano architecture.

• F ⊆ V is a subset of illegal graph nodes (IR instructions) which are not allowed to
be included in UDCI. This set includes for instance all memory access instructions like
loads and stores (since UDCI cannot access memory) and other instructions which are
not suitable for a hardware implementation; for example, for performance reasons.

• Convex means that there does not exist a path between two vertices in C which con-
tains a node that does not belong to C. In other words candidate C is convex if
vi ∈ C, i = 0, . . . , k for all paths 〈v0, . . . , vk〉 with v0 ∈ C and vk ∈ C where path
is defined as follows: A path from a vertex u to a vertex v in a graph C is a sequence
〈v0, v1, . . . , vk〉 of vertices such that v0 = u, vk = v and (vi−1, vi) ∈ E for i = 1, . . . , k.
Convexity ensures that C can be executed atomically in the hardware. This property is
required to make sure that an instruction can be executed as an atomic operation without
exchanging intermediate results with the CPU.

Basic Block as Elementary Unit

Translating these formal definitions into practice means that the identification of UDCI candi-
dates occurs at the level of basic blocks. BBs are suitable units for this purpose since they have
a DAG structure as required by the ISE algorithms. In addition, it is feasible to enforce the
convexity condition 5.5) on them. When selecting IR code for a UDCI implementation, illegal
instructions, such as control flow or memory operations, must be excluded; see condition 5.4.
Finally, the number of inputs and outputs of the candidate has to match the architectural con-
straints that are described in conditions 5.2 and 5.3. These architectural constraints are vari-
able and are defined by the FCM controller and by the interface to the partially reconfigurable
slots into which the UDCIs are loaded.

5.4.2 Supported Instruction Set Identification Algorithms

For the identification process, we implemented three state-of-the-art ISE algorithms that are
considered as the most suitable for runtime processor specialization: the SingleCut (SC) [66],
the Union (UN) [65], and the MaxMiso (MM) [67] algorithm. The most relevant properties of
these algorithms are presented in Table 5.2.

5.4. CANDIDATE IDENTIFICATION 47

Algorithm
of # of worst-case overlapping

inputs outputs complexity candidates
MaxMiso invariant (∞) invariant (1) O(n) no
SingleCut variant variant O(exp) yes

Union variant variant O(exp) no

Table 5.2: Comparison of Candidate Identification ISE algorithms.

Finding Candidates Only for Selected Basic Blocks

All identification algorithms do not try to find candidates in the entire application at once.
Instead, they focus on the individual basic blocks of the application. Hence, in order to prune
the search space, the ISE algorithm is executed selectively only for the most promising BBs.
Each ISE algorithm analyzes the basic block to identify all feasible candidates. Further, some
algorithms allow to constrain the number of inputs and outputs of candidates to match the
architectural constraints of the targeted ASIP architecture. Finally, all algorithms fulfill the
condition 5.4.

Algorithm Comparisons

The advantage of the MM algorithm is its linear complexity O(n). However, it finds only
candidates which have a single output and does not allow to constrain number of inputs.
Therefore, some of the generated candidates need to be discarded at additional costs later in
the selection phase because they validate conditions and thus they cannot be implemented.
In contrast, the SC and UN algorithms already allow for restricting the desired number of
inputs and outputs for candidates during the identification phase. Finally, the SC algorithm
may produce overlapping candidates. Hence, when using this algorithm an additional phase
is needed in the selection process to eliminate the overlapping candidates.

5.4.3 Raytracing Example

Figure 5.4 represents the source code of the candidate (blue color) that was found by the ISE
algorithm. The ISE algorithm searched for candidates in the BBs that were passed by the
pruning mechanisms. The source code of this BB is presented in Figure 5.3(b).

5.4.4 Contributions

The research in Candidate Identification is based on the well known state-of-the-art ISE al-
gorithms. In this work, we did not invent any new ISE algorithms. The contributions of
this thesis to this field corresponds to: a) implementation of all algorithms under consistent
framework, b) detailed algorithm comparison and analysis (algorithm runtime vs. BB-size;
number-of-found-candidates vs. BB-size; achievable performance gains), c) study of the best
ISE algorithms for the JIT purposes.

48 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

BasicBlock_Selected:
... ; line 4
%14 = mul float %rdx, %dx ; line 5

 %15 = mul float %rdy, %dy ; line 5
 %16 = add float %14, %15 ; line 5
 %17 = mul float %rdz, %dz ; line 5
 %18 = add float %16, %17 ; line 5

... ; line 6 IR with
candidate

Candidate Identificationapp.ll

(d)

Figure 5.4: Candidate found by the ISE algorithm (blue color) in a BB that was selected by
the pruning mechanism in Figure 5.3.

5.4.5 Work related to Candidate Identification

The instruction set extension algorithms have been extensively studied; see [34] for a recent
survey.

5.5 Candidate Estimation

Since the number of UDCIs that can be implemented concurrently in the Woolcano architec-
ture is limited, only the best candidates are selected for an implementation. The corresponding
selection process which is described in the following section is based on the estimated perfor-
mance of every candidate when executing in software on the CPU or in hardware as UDCI.
Based on these performance estimates the subsequent selection process can decide whether it
is affordable and beneficial to implement a candidate as a hardware UDCI.

5.5.1 Software Estimation

The Woolcano architecture consists of a PowerPC 405 CPU hard core which is used for soft-
ware execution. In contrast to modern general-purpose CPUs, the PowerPC CPU has a rel-
atively simple design. It is a in-order scalar processor with five-stage pipeline where most
instructions have a latency of a single cycle. This simple design makes the task of software
estimation relatively easy since the execution of the instructions in the candidate is sequential.
Hence, the estimation method presented bellow is not a novel idea and it is based on research
published in Gong et al. [68].

Formal Definition

We estimate the performance of the execution with the expression shown in Condition 5.6
which corresponds to the sum of latencies of all instructions found in the candidate multiplied
by the CPU clock period. This estimation technique has an algorithmic complexity of O(n)

5.5. CANDIDATE ESTIMATION 49

where n is the number of PowerPC instructions found in a candidate.

Tsw = Tcpu · Lsum [ns], (5.6)
Lsum =

∑n
i=0 Li [ns].

Here:

• Tcpu is the clock period of used PowerPC CPU.

• Lsum is the sum of latencies of all instructions found in a candidate, where n is the
number of instructions and Li is the latency of the i-th instruction found in a candidate
(the instruction latencies have been determined from the PowerPC manual [69]).

The use of the Tcpu in Condition 5.6 ensures that the differences in clock periods between
the PowerPC CPU and the UDCI hardware implementation are taken into account.

Estimation Difference between IR and Machine Code

The presented method yields correct results only when the candidate’s IR code is translated
one-to-one into the matching PowerPC machine instructions. In the case of a mismatch be-
tween these two, the estimation results are inaccurate. The mismatch can happen due to a
few reasons; i. e., folding a few IR instructions into a single target instruction, or because of
differences in the register sets. The PowerPC architecture has a fixed amount of registers (32
general-purpose registers) whereas the IR code uses an unlimited number of virtual registers.
For larger code, which requires more registers than available, the backend of the compiler
produces additional instructions which will move data from registers into temporary variables
kept on the stack. These additional instructions are not covered in the software estimation
process. For such cases it has been shown that the estimation inaccuracy can be as high as
29% [70].

5.5.2 Hardware Estimation

Since each instruction candidate can be translated to a wide variety of functionally equivalent
datapaths, the task of hardware estimation is much more complicated than the task of software
estimation. In the following, we choose to illustrate approach used in this work by means of
an actual example for the UDCI candidate that was selected by ISE algorithm from previous
section; see Figure 5.4.

Estimation for Data Path Synthesis vs. High Level Synthesis

When translated to hardware, the DFG structure of the candidate is preserved; that is, instead
of complex high-level synthesis [71], a more restricted and thus simpler data path synthesis
(DPS) process [22, 23] is required which does not generate complex finite state machines in
order to schedule and synchronize computational tasks.

50 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

Estimation Process

The first step in the hardware estimation for DPS involves translating each IR instruction
(node) into a corresponding hardware operator, where operators may exist as purely combi-
national operators or as sequential operators. Sequential operators produce a valid result after
one or – in the case of pipelined operators – several clock cycles. Also, functionally equiv-
alent operators can have a large variety of different properties such as hardware area, speed,
latency, power consumption, etc. Therefore, the hardware estimation tasks have to deal with
three different types of datapath structures: a) combinational, b) sequential and c), hybrid
datapaths, where a mix of sequential and combinational operators exists. Examples for such
datapaths for the discussed candidate are shown in Figure 5.5.

mult [1] mult [1]
add
[1]

add
[1]

rdx dx rdy dy rdz dz

mult [1]

res

mult
[10]

mult
[10]

add
[7]

add
[7]

rdx dx rdy dy rdz dz

mult
[10]

res

mult
[0]

mult
[0]

add
[0]

add
[0]

rdx dx rdy dy rdz dz

mult
[0]

res

(a) combinational datapath (b) sequential datapath (d) highly pipelined sequential datapath(c) hybrid datapath

clock
period

combinational
operator [0]

sequential
operator [<=5]

mult
[0]

mult
[0]

add
[0]

rdx dx rdy dy rdz dz

mult
[0]

res

add
[1]

highly pipelined
operator [>5]

input
output

Figure 5.5: Different types of a DFG presented for a UDCI candidate that was found by ISE
algorithm; see Figure 5.4.

Formal Definition

The hardware estimation process used in this work for estimating the delay of a UDCI supports
all of these scenarios and is formally defined as:

Chw = Tudci ·RD · Pmax [ns], (5.7)
Tudci = max{L} [ns], (5.8)
Pmax = max{P} [#]. (5.9)

Here:

• Tudci corresponds to the minimal allowable clock period, which is visualized as the
tallest green box in Figure 5.5. For combinational datapaths, scenario (a), it is equiva-
lent to the latency of critical path, whereas for the sequential data paths, scenario (b), to
the maximal latency of all operators (add[1] in this example). For hybrid data paths,
scenario (c), it corresponds to the highest latency of all sequential operators and com-
binational paths; in this case, to the sum of combinational mult[0] and sequential
add[1] operator latencies.

5.5. CANDIDATE ESTIMATION 51

• RD is an experimentally determined routing delay parameter which is used to decrease
the Tudci. The routing delays are equivalent to the communication latencies between
connected operators caused by the routing switch-boxes and wires. The precise value
of RD is unknown until the physical placement of the operators is performed in the
FPGA; however, experiments showed that RD often corresponds to about half of all
circuit latencies.

• Pmax is the maximum number of pipeline stages. It can be interpreted as the maximum
number of all green rectangles covering a given DFG. For scenarios a,b,c, and d, Pmax

equals to 1, 3, 2, and 24, respectively.

• L is a set of latencies generated in Algorithm 1 and its maximum for all operators defines
the minimal allowable clock period; see Condition 5.8. The graphical interpretation of
L, as presented in Figure 5.5, corresponds to a list of the height of all green boxes.
Thus, combinational datapaths, scenario (a), have the highest latencies, whereas the
smallest latency can be found in highly pipelined sequential datapaths, scenario (d). The
latency of each operator is obtained from the PivPav circuit library with the Latency()
function found in the algorithm in the 4th line.

• P is a set of all pipeline stages generated by Algorithm 1. P is used in Condition 5.9 to
select the maximum number of stages in a given datapth. The number of pipeline stages
for the operator is retrieved with Pipeline() function and it is presented in square
brackets in the operator name; thus, the mult[10]-reflects the 10 stages multiplier.

Algorithm Overview

Algorithm 1 is used to compute the values of the L and P sets, which are associated with
the height and the number of green boxes, respectively. In the first line of the algorithm,
initialization statements are found. In the second line, the algorithm iterates and generates
results for every critical path, which indicates that a path leads from the input to the output
node. In next three lines, for each node in a given path, the latency and the number of pipeline
stages are accumulated in Lp and Pp temporal variables, respectively. If the given node is
sequential, a new green box is created and the current latency value Lp is moved to the set
L (lines 6–8). Lines 10–15 are executed when the algorithm reaches the last node in the
given critical path. Thus, lines 10–12 add an additional pipeline stage if the last node is a
combinational one, whereas lines 13–14 move the values of temporal variables to the resulting
sets. Since the candidates do not overlap, each node of the candidate is visited only once and
therefore this estimation technique is of O(n) complexity.

5.5.3 Hardware Operators

The Tudci and Pmax factors in the equations depend on the characteristics of every used hard-
ware operator; see Latency() and Pipeline() functions in Algorithm 1; metrics found
in Table 5.3. Thus, the key to accurate hardware estimation is the quality of the characteri-
zation database that provides performance, latency, and area metrics for each operator. For

52 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

Algorithm 1 Hardware Estimation
1: L← P ← φ
2: for p in critical_paths do
3: for n ∈ nodes(p) do
4: Lp ← Lp+ Latency(n)
5: Pp ← Pp+ Pipeline(n)
6: if Pipeline(n) 6= 0 then
7: L← L ∪ Lp and Lp ← 0
8: end if
9: end for

10: if Pipeline(n) = 0 then
11: Pp ← Pp + 1
12: end if
13: L← L ∪ Lp and Lp ← 0
14: P ← P ∪ Pp and Pp ← 0
15: end for

some selected operators, for example, for floating point operators obtained from IP Core Li-
braries, data sheets that characterize each operator with the required performance metrics are
available; see e. g., [72]. For most other operators – in particular those created on-demand by
HDL synthesis tools, such as integer, logic, or bit manipulation operations – no data sheets
exist. Moreover, the characterization data in data sheets are not exhaustive and do not cover all
FPGA families, models, and speed grades, which is problematic, since even within one device
family the performance of operators can vary significantly. For example, the data sheet for
Xilinx Coregen quotes the maximum speed of a floating-point multiplier as 192 MHz, or 423
MHz respectively, for two FPGA models from the Xilinx Virtex-6 family [Table 23 vs Table
25] [72]. This huge range makes it impractical to estimate accurate performance metrics for
devices that are not even tabulated in the data sheets.

CMOS vs. FPGA Hardware Operators

The lack of accurate characterization data for arithmetic operators implemented on FPGAs
had an impact on related work [65, 66, 66], which has obtained these metrics for fixed CMOS
architectures instead of reconfigurable FPGA devices. The metrics in related work were ob-
tained by synthesizing given candidates using the Synopsys Design Compiler targeting 0.18 or
0.13µm standard-cells CMOS libraries. The performance difference between a fixed CMOS
implementation and an FPGA implementation of UDCI candidates is frequently in the order
of one magnitude or even more; see technology difference subsection 2.2.3. Since this work
targets the FPGA-based Woolcano reconfigurable ASIP architecture this frequency difference
has two implications. First, even for a static instruction set extension scenario, it is impossible
to truthfully compare results with related work. Secondly, it is impossible to use the same
estimation approach.

5.5. CANDIDATE ESTIMATION 53

5.5.4 Raytracing Example
In order to illustrate the estimation process in detail, we show how Chw is estimated for se-
quential (Fig. 5.5(b) and highly pipelined sequential (Fig. 5.5(d)) datapath representation of
the candidate. The candidate used by this experiment was found by the ISE algorithm in
Candidate Identification process and is presented in Figure 5.4.

Metrics

The metrics of used hardware operators were obtained from the PivPav circuit library; see
Table 4.1. The metrics required for the raytracing example are summarized in Table 5.3. The
top and bottom parts of the table show the metrics of the operators used in scenarios presented
in Fig. 5.5(b) and Fig. 5.5(d), respectively.

HW Pp Lp Max FRQ FF LUT Slice BUF DSP
Oper. after PAR

ns [MHz] # # # #
Sequential Operators (Fig. 5.5b)

fpmul_1136 1 24.81 40.3 66 76 46 103 0
fpadd_1161 1 32.15 31.1 66 377 250 103 5

Highly Pipelined Operators (Fig. 5.5d)
fpmul_1115 10 7.31 136.8 66 134 150 103 4
fpadd_1183 7 7.19 139.0 66 556 326 103 4

Table 5.3: Excerpt from metrics requested by the Candidate Estimation process from the
PivPav circuit library for the XC4VFX100-FF1152-10 FPGA device.

Results

The estimation results found in Table 5.4 indicate that the sequential datapath is able to pro-
duce the first result almost twice as fast as the highly pipelined datapath (1.82×). However, if
processing many data (d) is able to fill the pipeline and work with 24 data at once, generating
the results every 9.5 ns, accordingly to the formula Tudci ∗Rd, , whereas (b) generates a result
only every 41.78 ns.

5.5.5 Contributions
It is worth noticing, that both presented estimation methods are not in themselves a novel
ideas. In the software domain, the estimation techniques is relatively easy, especially that the
UDCI candidate representation does not include any conditional branches. Such and other
methods are studied in Gong et al. [68].

In the hardware domain, there are many timing analysis approaches which perform steps
equivalent to the one presented above and in Ref. [73]. Therefore, the hardware estimation
subsection does not contribute to the hardware timing analysis field. The novelty in this

54 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

Fig. 5.5(b) sequential Fig. 5.5(d) highly pipelined
datapath sequential datapath

L [ns] 24.81 and 32.15 7.31 and 7.19
Tudci [ns] 32.15 7.31
P # 3 and 2 24 and 17
Pmax # 3 24
RD # 1.30 1.30
Chw [ns] 125.39 228.07

Table 5.4: Results of hardware estimation process for UDCI candidate presented in Figures 5.5
(b) and (d) implemented with two different sets of operators found in Table 5.3.

.

estimation approach relies in the precise characterization data that were generated with the
PivPav tool. These data together with the presented methods allow to precisely estimate the
hardware performances for UDCI.

5.5.6 Work Related to Candidate Estimation

There are many software estimation techniques; see Ref. [73]. A similar estimation technique
based on the same methods and tools that we developed has been recently presented in Aung
et al. [74].

In the hardware domain, the timing analysis and the performance estimation of the circuit
is often performed with the high level synthesis [71]. This technique is considerably faster
than estimation at the full synthesis level, yet it relies on third-party tools and it is not as
accurate as the full synthesis. A simpler estimation method which operates directly on the
code’s DFG is proposed in [23]. Nontrivial hardware implementations often require additional
circuits, e.g. finite state machines. If the delays of the components are known then the timing
and performance analysis can be effectively calculated [75].

5.6 Candidate Selection

Once the set of candidates has been determined and estimation data are available, the selec-
tion process makes the final decision about which candidates should be implemented in the
hardware.

5.6.1 Formal Definition

The formal definition of the selection algorithm is constructed from two tasks: a) pruning the
search space for selection algorithm and b) problem definition.

5.6. CANDIDATE SELECTION 55

Search Space Pruning

First, all the candidates that violate at least one of the constraints presented below are rejected:

C|in| ≤ inmax, (5.10)

C|out| ≤ outmax, (5.11)

Csw

Chw

≤ threshold . (5.12)

Here:

• C|in| and C|out| are equivalent to the constraints described in conditions (5.2) and (5.3),
respectively. They correspond to architectural constraints for the number of input and
output operands to the UDCI. They are applied to the ISE algorithms that are not able
to perform this step themselves, such as the MM algorithm.

• Csw and Chw correspond to the software and hardware estimations, respectively. If
threshold = 1.0, then there are no performance gains; when threshold > 1.0 there
is a performance gain since it takes more cycles to execute the candidate in software
than in hardware. Finally, if threshold < 1.0, the hardware implementation has a lower
performance than the software.

After applying these conditions, the search space of the selection process is significantly re-
duced, since candidates that are either infeasible or would provide only low speedups are
discarded. As a result, the runtime of the subsequent steps in the tool flow is considerably
lower.

Problem Definition

The aim of the candidate selection process is to select up to Cmax candidates from the set of
Cinput candidates generated by the identification process that offers the greatest advantage in
terms of some metric M ; in this case the application performance:

Cres = max

(
∀Ci ∈ Cinput :

∑
i

M(Ci)

)
. (5.13)

Here:

• Cres is the resulting set of best candidates, C|res| is a size of this set, and Cmax is the
architectural constraint representing the number of supported UDCIs.

• M is a metric function defined as:

M(Ci) =
Csw(Ci)

Chw(Ci)
. (5.14)

56 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

5.6.2 Selection Algorithm
For the purpose of the ASIP specialization, we use the greedy candidate selection algorithm
that is presented in Algorithm 2 and which has a computational complexity of O(C|input|).
When using the ISE SC algorithm which may produce overlapping candidates for ISE iden-
tification our algorithm rejects any candidates that overlap with any candidate that has been
selected so far.

Algorithm 2 best candidate selection
while C|res| ≤ Cmax do
ci ← max{M(Ci) | Ci ∈ Cinput}
if ci does not overlap with Cres then
Cres ← Cres ∪ ci

end if
Cinput ← Cinput ∩ ci.

end while

5.6.3 Selection Metrics
The metric function is used as a policy in the greedy selection process and is responsible
for selecting only the best candidates. While in Condition (5.14), the application perfor-
mance policy is used, nothing prevents basing the decision preference on a different metric.
It is worth mentioning that the PivPav tool could be used to provide a wealth of other metrics
since the circuit library stores more than 90 different properties about every hardware operator.
These properties could be used for instance to develop resource usage or power consumption
policies. Consequently, they can be used to estimate the size of the final bitstream and par-
tial reconfiguration time, the runtimes of netlist generation and instruction implementation or
many other metrics. Finally, all these policies could be merged together into a sophisticated
ASIP specialization framework which would:
• maximize the performances,
• minimize the power consumption,
• constrain the resource area to the sizes of the UDCI slot.

Such a combined metric can be defined as an integer linear programming model. While this
method would allow a more precise selection of candidates based on more parameters, its
algorithmic complexity is higher than O(C|input|), resulting in runtimes that are much longer,
often by orders of magnitude. Since it is important to keep the runtimes of the ASIP-SP as low
as possible, the tradeoff between the gains and the costs of the metric function is an interesting
research topic in itself.

5.6.4 Raytracing Example
For our raytracing example, we assume that the spotted candidate presented in Figure 5.4 and
estimated in previous section (Table 5.4) has been selected for UDCI hardware implementa-
tion.

5.7. EXTRACTION PASS 57

5.6.5 Work Related to Candidate Selection

In general, selecting the optimal set of UDCI under different architectural constraints is a
demanding task. Related work has studied different selection approaches, such as greedy
heuristics, simulated annealing, ILP, or evolutionary algorithms; see, for example, Pozzi et
al. [76] or Meeuws et al. [66].

5.7 Extraction Pass

The EP together with the CP which is described in the next chapter, constitute the last com-
ponent in the Candidate Search phase of the ASIP-SP tool flow; see Figure 4.2.

5.7.1 Goal

The goal of the EP is to fold the IR code that corresponds to the UDCI candidate into a separate
IR function. This behavior is achieved by creating a new function and by moving candidate’s
instructions into it. This allows for other ASIP-SP components to operate on a candidate more
easily since, instead of a set of IR instructions they, treat the candidate as an IR function.

5.7.2 Algorithm Overview

The functionality of the extraction pass is presented in Algorithm 3.

Algorithm 3 candidate extraction

f ← CreateFunction()
f ← SetFunctionType(Cout)
for arg ∈ Cin do
f ← AddFunctionArgument(arg)

end for
BB ← CreateBasicBlock(Entry)
f ← f ∪BB
for ins ∈ C do
BB ← MoveInstruction(ins)

end for
BB ← AddTerminator()

Here:

• C corresponds to the selected candidate; for instance see Figure 5.4.

• Cout represents output arguments and is equivalent to the condition (5.3).

• Cin represents input arguments; see condition (5.2).

58 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

This algorithm consists of several steps. First, an IR function with Cout data type and
arguments defined in set Cin is created. Next, a basic block is added to the function. Finally,
all instructions that are used by the selected candidate are moved to this basic block together
with terminating instruction that returns control flow from the function. While not specified
in the listing the algorithm performs one more step. It replaces every C code user with the
call to a newly created function.

Once the candidate’s IR instructions are extracted to the separate function with the EP
pass two tasks occur. First, the extracted function is passed to the Netlist Generation phase.
Secondly, after the hardware accelerator is generated the extracted function is passed to the
software runtime adaptation and to the CP that are described in Section 6.4.

5.7.3 Raytracing Example
Figure 5.6 presents the outcome of the EP when executed for selected C candidate from
Figure 5.4.

define float @scalar_prod(float %rdx, float %dx, float %rdy, float %dy, float %rdz, float %dz)
nounwind readnone {
entry:

%0 = mul float %rdx, %dx
 %1 = mul float %rdy, %dy
 %2 = add float %0, %1
 %3 = mul float %rdz, %dz
 %4 = add float %2, %3
 ret float %4
} IR code

Extraction Passapp.ll

(e)

Figure 5.6: Outcome of the EP for raytracing case study.

5.8 VHDL Generator
The VHDL generator is a first process involved in the Netlist Generation (NG) phase. The
aim of NG is to generate the hardware description equivalent to the specified IR function. In
our system, this function is delivered by the extraction pass but in general this can be any IR
function. In addition, NG is responsible for creating the FPGA CAD project.

5.8.1 Goal
As the name suggests the goal of this task is to generate the structural VHDL code from the
given function. The need for the structural and not behavioral VHDL comes from the fact
that it allows for design space exploration with different hardware operators. In addition, it
supports all circuits that are found in the PivPav library.

5.8. VHDL GENERATOR 59

5.8.2 Algorithm Overview

Algorithm 4 VHDL generator

DFG← CreateDFG(f)
for node ∈ DFG do
node← GetHWOperator()

end for
V HDL←WireOperators(TopologicalTravers(DFG))

First, the VHDL generator constructs the DFG representation of the specified IR func-
tion. To this end, it uses the def-use and use-def chains and data type informations which
are conveniently available in the SSA IR. Therefore, every node of the DFG represents an IR
instruction. Next, the generator maps nodes to the equivalent hardware operators. These are
found in the PivPav’s circuit library. Figure 5.7 shows an example of the DFG after performed
mappings that was created for the raytracing code specified in Figure 5.6.

mult mult

rdx dx rdy dy rdz dz

mult

res

add

add

Figure 5.7: DFG generated with CreateDFG() for function f presented in Figure 5.6.

Finally, once the mappings are performed, the structural VHDL code is generated. To
this end, the nodes of DFG are traversed in topological order and the PivPav’s circuit library
is used in order to obtain the informations about top entities of the used operators. These
informations allow to instantiate and to wire operators accordingly.

5.8.3 Hardware Operator Wiring
Each operator has different entity that differ in data types and widths, naming of IO ports,
polarity of reset signals for sequential operators, etc. Thus, while the operators wiring in
VHDL may look like a straightforward task on the surface, connecting a wide variety of
hardware operators from different sources bears a number of practical difficulties. In order to
overcome these obstacles, the WireOperators() uses a consistent and convenient API that
is available in PivPav. Otherwise the wiring task would be much more challenging.

60 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

5.8.4 Structural and Behavioral Code

The structural style of describing the hardware has a few advantages over the behavioral style.

• The structural code is straightforward for processing, which results in faster synthesis
times. What is more important the structural code empowers users and gives them more
control over the hardware description. This is presented in Figure 5.8 where carry in

or clock enable signals can be specified, which is not the case for the behavioral
code. Thus, the user is able to describe the functionality of the circuit more precisely.
Moreover, since the constructs of the behavioral code are similar to the software HLL
this leads to a habit of placing them in the hardware description, which results in errors.

• The structural code open doors towards the hierarchical design, which is well known
method used to improve the performances of to the FPGA CAD tool. The generator
uses top entities of operators to wire them together, however, nothing stands on the way
to replace operators with more complex subsystems and, in consequence, start creating
hierarchical designs.

• The structural style of programming allows for the design space explorations, which is
shown in Section 5.11. The operators of the behavioral code are built into the synthesis
tool flow and, for instance, there is no possibility to change the + adder for a different
one. This is not the case for the structural style of programming where operators are not
locked and can be freely replaced.

This difference between behavioral (h1) and structural (h2) code is presented in Figure 5.8.
Both codes are equivalent to the DFG presented in Figure 5.7 with casted data types from
floating point to unsigned integer. This data type casting operation was performed
due to unavailability of the floating point operators in the behavioral description. In addi-
tion, while the behavioral code was implemented manually the structural code was generated
automatically.

5.8.5 Raytracing Example

As already explained, Figure 5.8(h2) presents the structural VHDL code that was obtained
from the VHDL generator. This code is generated for extracted function presented in Fig-
ure 5.6 with the difference of data types.

The code makes use of two PivPav’s hardware operators: mul_376 and add_561. Metrics
of these operators are presented in Table 4.1. Please note that in the code these components are
black-boxed and only declarations of these operators are shown. The implementation details
are delivered by the netlists that are externally obtained from PivPav with Netlist Extraction
process.

The presented code does not show the necessary wiring with partial reconfiguration bus
macros. This step is performed in order to implement the fixed interface to the FCM controller
for the partially reconfigurable slots.

5.8. VHDL GENERATOR 61

1) entity scalar_prod is
2) port (clk : in std_logic;
3) rdx, dx, .. : in std_logic_vector(31 downto 0);
4) result : out std_logic_vector(31 downto 0));
5) end entity;
6) architecture arch of scalar_prod is
7) component mul_376 is port(clk, ce : in std_logic;
8) a, b : in std_logic_vector(31 downto 0);;
9) p : out std_logic_vector(31 downto 0));
10) end component;
11) component add_561 is port(clk, ce, c_in : in std_logic;
12) c, d : in std_logic_vector(31 downto 0);;
13) y : out std_logic_vector(31 downto 0));
14) end component;
15) signal umul1_s,umul2_s,umul3_s,uadd1_s :std_logic_vector(31 downto 0);
16) signal ce_s : std_logic := '1' ; signal cin_s : std_logic := '0';

17) begin
18) u_mul1 : mul_376 port map (clk => clk, a=> rdx, b=>dx,

p=>umul1_s, ce=>ce_s);
19) u_mul2 : mul_376 port map (clk => clk, a=> rdy, b=>dy,

p=>umul2_s, ce=>ce_s);
20) u_mul3 : mul_376 port map (clk => clk, a=> rdz, b=>dz,

p=>umul3_s, ce=>ce_s);
21) u_add1 : add_561 port map (clk => clk, c=> umul1_s, d=>umul2_s,
22) y=>uadd1_s, ce=>ce_s, c_in=>cin_s);
23) u_add2 : add_561 port map (clk => clk, c=> uadd1_s, d=>umul3_s,
24) y=>result, ce=>ce_s, c_in=>cin_s);
25) end architecture; VHDL Structural Code

VHDL Generatorapp.vhd

(h2)

1) entity scalar_prod is
2) port (clk : in std_logic;
3) rdx, dx, .. : in std_logic_vector(31 downto 0);
4) result : out std_logic_vector(31 downto 0));
5) end entity;
6) architecture arch of scalar_prod is
7) begin
8) result <= rdx * dx + rdy * dy + rdz * dz when rising_edge(clk);
9) end architecture;

Code Developed Manuallyapp.vhd

VHDL Behavioral Code

(h1)

Figure 5.8: Comparison of behavioral vs structural VHDL code produced for DFG presented
in Figure 5.7 with data types casted from floating point to unsigned int.

5.8.6 Contributions

The data path synthesis is not a novel idea and has been previously presented in De Micheli [77].
The developed VHDL generator does not purpose with a new synthesis algorithm to this field.
The contributions correspond to designing and developing an open source tool that is capable
of generating a structural code from IR.

62 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

5.8.7 Work Related to VHDL Generator

High level synthesis is a broad field that has been studied for decades [77]. Creating an op-
timal schedule with minimal delay becomes a hard problem once resource limitations are in-
troduced. Several approximate (typically using heuristics) and exact (e.g. using ILP) methods
have been proposed [78].

5.9 Netlist Extraction

After the VHDL generation the netlists are obtained from the PivPav’s circuit library for every
used hardware operator. For this purpose the PivPav’s circuit library is used as a netlist cache.
This has two advantages:

• It significantly reduces the runtime of the synthesis process since only the top entity of
the generated circuit needs to be synthesized. The netlists for all the other components
that are black-boxed are delivered externally and therefore there is no need to synthesize
them.

• The second advantage results from the fact that the netlists can be swapped if only the
operator’s entity between them is the same. This allows to obtain the same functionality
of the circuit but with different performances and resources and it opens doors towards
the design space exploration.

5.10 FPGA CAD Project

In this step, the FPGA CAD project is prepared. It includes the VHDL source code of gen-
erated circuit, the netlist files of used hardware operators, and the user constrain file (UCF)
which describes the precise locations of bus macros and resource areas used by partial recon-
figuration slot; see Figures 3.4 and 3.5. If the UDCI shall be loadable at runtime to different
slot, this process is repeated with different placement constraints for every UDCI slot. The
project is prepared with the help of the PivPav tool and with the TCL scripting language which
has API access able to control the Xilinx’s ISE design suite.

5.11 Instruction Implementation

Once the FPGA CAD project is prepared the instruction implementation phase comes into ac-
tion and generates the partial reconfiguration bitstream file that can be loaded into the UDCI
slot. This task is performed automatically with the benchmarking facilities of PivPav. In addi-
tion, the PivPav tool is able to explore the impact of the FPGA CAD tool flow configurations
(design goals) on the circuit. The results from this step for the code presented in Figure 5.8
are provided in Table 5.5 for six different design goals (a-f).

5.12. NOTEWORTHY IMPLEMENTATION DETAILS 63

Implementations

The first implementation variant, denoted as Behavioral, is generated by running the FPGA
CAD for the behavioral description from Figure 5.8(h1) with the Xilinx ISE design suite.
This implementation is purely combinational [see Figure 5.5(a)] and uses the operators in-
ferred by the synthesis tool instead of custom operators from the PivPav library. Addition-
ally, two pipelined implementations, denoted as Pipelined(1) and Pipelined(2), are generated
from the structural VHDL description located in Figure 5.8(h2). These implementations use
circuits add_558 and mul_403 for Pipelined(1), and circuits add_561 and mul_376 for
Pipelined(2). The characteristics of these basic hardware operators are shown in Table 4.1. It
should be emphasized here, that the generator does not need to re-generate or re-synthesize
the basic operators but the netlists for these operators are retrieved from the PivPav’s circuit
repository.

Comparison

Comparing the single-cycle behavioral implementation with the Pipelined(2) implementation
reveals a speedup by a factor of 4.07 but comes at the price of increasing the latency to 13
cycles. The table row Pipelined(1) presents data for the same circuit built up from combina-
tional components with pipeline registers inserted after each operator (latency = 1). While
the latency increases from 1 to 3 cycles, the maximum operating frequency of Pipelined(1)
is lower than for the Behavioral variant. The substantial differences in hardware resources
are attributed to the fact that Pipelined(1) implements the functionality with LUTs rather than
DSP blocks.

Runtime and Memory Usage

Results show that PivPav collects the runtime and memory usage for each execution of the
FPGA tool flow. Further, it collects the circuit characterization data for each FPGA CAD
algorithm setting. The b setting (minimum runtime) has almost the same runtime as the a
(balanced) settings, also the circuit characterization data for both of these settings are exactly
the same. Settings d, e, and f have the highest runtimes. This kind of explorations can lead
to a better understanding of the FPGA CAD tool flows and can point out their strengths and
weaknesses. What is more important, the knowledge gained from these observations can be
applied to improve the quality of loop iteration. The availability of numerous metrics (in
particular area, speed, latency, and power consumption), reveals the full potential of ASIP-SP
for generating VHDL code for different scenarios, such as maximum performance, minimum
power consumption, or minimum use of resources.

5.12 Noteworthy Implementation Details

The ASIP-SP process as well as the rest of the Woolcano compiler were developed in C++
language, the same language which is used in the development of the LLVM compiler infras-
tructure.

64
C

H
A

PT
E

R
5.

H
A

R
D

W
A

R
E

R
U

N
T

IM
E

A
D

A
PTA

T
IO

N

Goal computation time [secs] memory usage [MB] circuit metrics
FPGA Alg. xst ngd map par xst ngd map par

Total Lat. Freq. Power FF LUTs Slices DSP
[cyc] [MHz] [mW]

Behavioral

a 8 4 10 38 60 412 321 696 724 67.94 875.35 47 79 62 9
b 8 3 8 35 54 411 321 698 725 67.94 875.35 47 79 62 9
c 7 3 37 55 102 411 322 915 733 1 66.92 864.87 32 94 62 9
d 8 3 37 54 102 411 322 913 735 77.69 876.00 32 62 43 9
e 7 3 46 93 149 411 322 936 699 154.66 862.55 47 79 66 9
f 8 3 45 56 112 411 322 941 726 167.06 876.00 32 62 39 9

Pipelined(1)

a 14 5 13 53 85 443 340 722 804 53.41 889.61 372 2311 1314 3
b 15 6 12 54 87 443 345 722 804 53.41 889.61 372 2311 1314 3
c 15 6 74 110 205 443 345 956 782 3 60.90 897.54 372 2311 1329 3
d 15 6 70 192 283 443 345 955 780 53.83 2039.16 148 2311 1233 3
e 15 6 59 147 227 443 345 952 734 63.73 896.23 372 2311 1389 3
f 15 6 88 249 358 443 345 949 791 55.17 2044.65 184 2311 1249 3

Pipelined(2)

a 9 4 8 37 58 413 326 701 769 227.38 880.37 474 237 266 9
b 9 4 8 36 57 413 327 701 770 227.38 880.37 474 237 266 9
c 9 4 46 66 125 413 327 919 737 13 276.40 889.32 474 237 356 9
d 9 4 39 75 127 413 328 918 738 194.33 2031.40 250 237 169 9
e 10 4 55 64 133 413 328 943 732 263.37 890.63 472 239 372 9
f 9 4 50 79 142 413 328 943 731 179.05 2034.84 248 239 187 9

Table 5.5: Measured characterization data for three implementation variants of the example shown in Figure 5.8. Design Goal legend:
a = balanced, b = minimum runtime, c = power optimization, d = timing performance optimization with IOB, e = timing performance
optimization with physical synthesis, and f = timing performance optimization without IOB. Pipeline(1) makes use from add_558 and
mul_403 hardware operators whereas Pipeline(2) from add_561 and mul_376; see Table 4.1 for characterization data.

5.12. NOTEWORTHY IMPLEMENTATION DETAILS 65

Libraries and APIs

The developed ASIP-SP code makes extensive usage of the C++ Standard Template Library
(STL)1 as it is also the case in the LLVM. The access to the PivPav tool is performed with
two different APIs. To access the PivPav’s Circuit Library presented in Figure 4.3 the C/C++
Sqlite interface2 is used. The C++/TCL interface3 provides access to the remaining parts of
the PivPav’s functionality. The implementation details can be found in [58].

The candidate identification process was implemented with the help of Boost C++ library4.
Boost libraries are also developed in C++, peer-reviewed, open sourced, and standardized
libraries. They were used to represent the data flow graphs and templates for the candidate
search phase.

5.12.1 Data Flow Graph Representation
As described in Section A.3 the LLVM IR already contains representation of the program’s
DFG that was used to prototype the ASIP-SP process in Appendix C. Due to difficulties
explained in the mentioned appendix, the DFG needed different representation, a simpler and
more abstract one. To this end, Boost Graph Library (BGL) offering generic interface to the
DFG properties and structure was used. It also provides with a number of graph algorithms
such as topological sort algorithm that are used in the VHDL generation.

Implementation Details

The DFG implementation is based on the adjacency list graph structure representing a directed
graph with bidirectional edge access. Each node of the graph has a pointer to the LLVM
value which he represents. Moreover, it has a type which represents whether the value is
an operand or an operator. The features of the LLVM are directly accessible in the the DFG
implementation and were usually implemented by wrapping corresponding LLVM methods or
by allowing direct access to them. These methods allow to query about the type of the LLVM
Value or move around the def-use chains. In addition, the representation of the DFG can be
translated to the DOT language and can be generated with Graphviz visualization software5.

Construction

The construction of the DFG works as follows. First, the instructions of the BB are iterated
with the exception to the final terminator instruction. Next, every instruction is added to the
graph as a node and its type is determined. The node is configured as an output if the instruc-
tion it represents is a memory write or it used outside its basic block or in the block’s termi-
nator instruction. Once the node is added to the graph, the algorithm iterates over operands
of the corresponding instruction. Operands are also added to the graph as input nodes if they
are instructions contained in a different basic block, function parameters, or global values.

1http://www.cplusplus.com/reference/stl/
2http://www.sqlite.org/capi3.html
3http://cpptcl.sourceforge.net
4http://www.boost.org
5http://www.graphviz.org/

66 CHAPTER 5. HARDWARE RUNTIME ADAPTATION

Finally, in any other case there already exists a node for the operand, edges are added from
each operand to the current node.

5.12.2 UDCI Candidate Representation
The UDCI candidates are not represented as a DFG subgraphs but instead implemented with
Boost dynamic_bistset class as bitvectors. For most operations the bitvector imple-
mentation outperformed the std::vector<bool> solution about twice. The size of the
bitvector is equal to the number of the nodes in the template, and thus every bit in bitvec-
tor represents a DFG node. Setting the i-th bitvector bit includes the i-th DFG node in the
template.

Characteristics

There are several advantages of this approach since operations on the template are reduced to
the simple bitwise operations. This includes the joining templates together, checking whether
they overlap, or adding and removing nodes to the template. This results in lower memory
usage and better performances. While the bitvectors do not contain any informations about
the structure of the graph, edges, or node types, these informations can be retrieved from the
associated DFG.

Construction

Creating a DFG from a bitvector is straightforward operations. A node to the new DFG is
added for each bitvector’s bit and the type as well as the pointer to the LLVM value are copied
from the parent DFG graph. Afterwards incoming and outgoing edges are added to each node,
setting output nodes and adding input nodes as required.

Chapter 6

Software Runtime Adaptation

The ASIP-SP process performs two tasks: the hardware runtime adaptation and the software
runtime adaptation. The hardware adaptation corresponds to generating the application spe-
cific hardware accelerators whereas the software runtime adaptation allows to utilize these
accelerators. To perform the second task, the source code of the application has to be modi-
fied during the application runtime. These source code modifications will be reflected in the
machine code that is interpreted by the processor. Thus, from the processor point view the
aim of the software runtime adaptation is to generate a machine code with special extensions.

Goals

The generated machine code with extensions has to achieve two goals: a) change the com-
putational control flow between the processor and hardware accelerator and b) ensure proper
communication between these two devices. In order to perform these tasks, necessary changes
in several modules of the Woolcano compiler were performed.

Outline

In the following sections, a draft of major changes to the Woolcano compiler is described.
These changes provide with new compiler’s feature that we name pathway. Afterwards, we
describe Communication Pass that is in charge of the pathway and we use a raytracing example
as a case study.

6.1 Changes Overview

The Woolcano compiler is based on the LLVM framework infrastructure that is described in
Appendix A. In Figure 6.1, the green color indicates the extensions that were performed to the
compiler. The large green arrow represents the pathway that is built from these extensions. In
addition, the red box is used to indicate the Communication Pass which controls the pathway
in order to fulfill the goals described above.

67

68 CHAPTER 6. SOFTWARE RUNTIME ADAPTATION

Pathway

From an abstract point of view, the compiler extensions can be seen as a compiler pathway.
The start of this path is at Communication Pass located in the middle-end whereas the end is
at the machine code level. The modifications to the IR provided by Communication Pass are
reflected in the generated machine code that is interpreted by the processor. In consequence,
all compiler modules through the pathway leads have to support it.

Methods Similar to the Pathway

Other methods that try to achieve the pathway functionality are described in Appendix C. In
contrast to the pathway, they try to achieve the same functionality from lower than the IR
level. For instance, they provide changes only into back end. Fulfilling the goals with these
methods rather than with the pathway is a much more challenging task.

Communication Pass

bitcode (IR)

high level lang. (HLL)

M
id

dl
e

En
d

Fr
on

t
En

d
Ba

ck
En

d
- I

Ba
ck

En
d

- I
I

machine code with udifcm

W
oo

lc
an

o
C

om
pi

le
r

ud
ifc
m

 in
st

ru
ct

io
ns

in
tr

in
si

cs

bitcode (IR) with intrinsics

target instr.(TI)

assembly with udifcm

intrinsics-to-udifcm translation

Figure 6.1: Changes to the Woolcano compiler that allow to generate a proper machine code
with UDCIs.

6.2. CHANGES IN MIDDLE END 69

6.2 Changes in Middle End
In the middlend of the compiler two changes were performed: an intrinsic support was added
and the Communication Pass was designed and developed. The Communication Pass is an
adaptive transformation that is in control of generating a machine code that fulfills the two
described SRA goals. It uses intrinsically functions, which extend middle end’s IR output
interface. Instead of the intrinsic functions, this task can be also accomplished by adding new
instructions to the IR ISA. Bellow we provide a short comparison between these two methods.
The Communication Pass is described in a separate Section 6.4.

New IR Instruction vs. New Intrinsic Function

Adding a new intrinsic function is an easier, safer, and non pervasive way comparing to ex-
tending the IR ISA with new instructions, which result in a large negative impact on the
middlend optimizations, transformation, and analysis passes. Either this would cause errors
during passes runtimes or would outcome in an invalid IR code being generated. In order to
fix these issues, each optimization and pass would have to be upgraded to support these new
instructions. Since there are almost one hundred of them this task would require a huge effort
and significant labor time.

Instead of this approach, we decided to use the intrinsically methodology that allows to
achieve the same goals without these troublemaking issues. The middlend sees the intrinsic
as a special kind of an IR function call. Thus, the functionality of all middlend optimizations
is preserved.

Intrinsic Function

Intrinsic is a special function that appears in the IR code and that is treated in a different way
than the normal function. All intrinsics have to be registered in the compilers backends and
appropriate lowering mappings have to be provided. Once intrinsic is picked-up by the back
end, these mappings are utilized and proper lower level code is generated. Intrinsic as well
as the normal function are invoked with the call method and they can be parametrized with
arguments.

For the convenience matters, we provide with two separate intrinsic functions that are
named llvm.fpga.exec() and llvm.fpga.write(). Each intrinsic fulfills one of the
SRA goals. The first allows to transfer the control flow from the processor to the hardware
accelerator and is associated with the first SRA goal whereas the second one ensures proper
communication and corresponds to the second SRA goal.

Implementation Details: Intrinsic Function

The following excerpt from the target machine description shows how the llvm.fpga.exec2
intrinsic was added to the compiler. After declaring the intrinsic name llvm.fpga.exec2

in lines 1+2, line 3 declares that it has one output and two inputs, all of type 32bit integer.
Finally, the intrinsic is marked to have a side effect by setting the IntrWriteMem attribute.
For the other intrinsics, similar declarations were used.

70 CHAPTER 6. SOFTWARE RUNTIME ADAPTATION

1. let TargetPrefix = "fpga" in {
2. def int_fpga_exec2 : Intrinsic<
3. [llvm_i32_ty], [llvm_i32_ty, llvm_i32_ty],
4. [IntrWriteMem]>;}

6.3 Changes in Back End
During the target dependent code generation in the second back end, intrinsics are mapped
onto corresponding assembly instructions. To this end, we extended the PowerPC backend
with UDCIs. Bellow we present details that allow to achieve this task.

Implementation Details: UDCIs at Assembly Level

The following code snippet from the machine description shows how the machine instruction
udi2fcm was added to the backend. Lines 1 and 2 declare the name, format of the machine
instruction (XForm_APU_RC), and the opcode of the instruction. The opcode of the instruction
is used during the JIT compilation to generate the proper machine code whereas in other
situations only the mnemonic udi2fcm of the instruction is used to generate the assembly
code. Line 3 declares that the instruction writes one and reads two general purpose registers
(GPRs) . Line 4 defines how the instruction is printed in the assembly language. Finally, lines
5 and 6 specify a DAG pattern which is used during the instruction selection. The reference
to the name of the llvm.fpga.exec2 intrinsic instructs the compiler to issue udi2fcm

instructions whenever this intrinsic is found during the code generation.

1. def UDI2FCM : XForm_APU_RC
2. <4, 611,
3. (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
4. "udi2fcm $rT, $rA, $rB", IntGeneral,
5. [(set GPRC:$rT,
6. (int_fpga_exec2 GPRC:$rA, GPRC:$rB))]>;

6.4 Communication Pass
The Communication Pass (CP) is represented with red box in Figure 6.1. The CP is plugged
into the compiler at the middlend and is responsible for utilizing the developed pathway in
order to fulfill the SRA goals.

Algorithm Overview

The communication pass is implemented as a compiler adaptive transformation. It locates the
given function in the IR and rewrites this function in a way that fulfills the SRA goals. This
behavior is illustrated in the raytracing example in Figure 6.2.

First, a list of all function parameters and their data types is constructed. PowerPC pro-
cessor requires that all data sent from the APU to the FCM are integer values taken from the
general-purpose register file. Data that are not passed via the general purpose register file, e. g.,

6.4. COMMUNICATION PASS 71

define float @scalar_prod(float %rdx, float %dx, float %rdy, float %dy, float %rdz, float %dz)
nounwind readnone {
entry:
 %0 = bitcast float %rdx to i32
 %1 = bitcast float %dx to i32
 %2 = call i32 @llvm.fpga.write(i32 %0, i32 %1)
 %3 = bitcast float %rdy to i32
 %4 = bitcast float %dy to i32
 %5 = call i32 @llvm.fpga.write(i32 %3, i32 %4)
 %6 = bitcast float %rdz to i32
 %7 = bitcast float %dz to i32
 %res = call i32 @llvm.fpga.exec2(i32 %6, i32 %7)
 %res_float = bitcast i32 %res to float
 ret float %res_float
}
declare i32 @llvm.fpga.write(i32, i32) nounwind
declare i32 @llvm.fpga.exec2(i32, i32) nounwind

.text
 .global scalar_prod
 .type scalar_prod, @function
 .align 2
scalar_prod:
 stfs 2, -8(1) ; spill floating-point regs to stack memory
 ...
 lwz 3, -8(1) ; load spilled FPR2 from stack to GPR3
 ...
 udi0fcm 3, 4, 3 ; send operands to operand register
 lwz 3, -24(1)
 lwz 4, -20(1)
 udi0fcm 5, 6, 5 ; send more operands to op register
 udi2fcm 3, 4, 3 ; send last op & trigger custom inst
 stw 3, -28(1) ; store results (GPR3) to stack
 lfs 1, -28(1) ; copying results from stack to FPR1
 blr
 .size scalar_prod,.-scalar_prod

IR with intrinsics

Final assembly code with UDCI

app.ll

app.S

(f)

(g)

Communication Pass

LLVM extended PowerPC code generator (backend)

Figure 6.2: The outcome of the Communication Pass (f) and the corresponding machine code
(g) when used for function presented in Figure 5.6.

72 CHAPTER 6. SOFTWARE RUNTIME ADAPTATION

floating-point data which are passed in floating-point registers, are casted to integers. This im-
plicitly transfers them to the GPRs during the code generation. After this optional casting, the
data are sent to the FCM controller (in slices of two operands) using previously described
llvm.fpga.write intrinsic. Now the UDCIs can be issued with the llvm.fpga.exec in-
trinsic and finally, the result of the UDCIs are returned after another optional casting operation
to the floating-point data type.

6.5 Raytracing Example
A demonstration of the feasibility of the CP is presented in Figure 6.2(f) for the floating-point
scalar product operation shown in Figure 5.6.

Since the input function uses the floating point data types, necessary casting is performed
with bitcast instruction for all six input arguments. These casted arguments are transferred
to the hardware accelerator with the help of two llvm.fpga.write and one llvm.fpga.exec
intrinsics. These intrinsics besides transferring the last two arguments trigger the hardware
accelerator execution. The outcome is then casted back to the floating point data type and is
returned by the scalar_prod function.

The assembly code that is generated by the extended LLVM PowerPC backend is shown
in Figure 6.2(g). To make the code easier to understand, it has been generated without op-
timizations. The casting of floats to integers results in spilling the floating-point registers to
the stack and loading these values back to GPRs. The data transfer and instruction execution
intrinsics are translated to udi0fcm and udi2fcm assembly instructions, respectively.

6.6 Work Related to Woolcano Compiler
The RC hardware architectures have different designs, features, and limitations. Therefore,
typically a single compiler is developed for the particular hardware architecture, which is also
the case for the Woolcano compiler. The exception to this rule is LISA [79] which is re-
targetable compiler able to map C constructs for arbitrary hardware architecture. This task is
performed with the usage of the architecture description language.

Overview

In this subsection, the latest compilers targeting architectures similar to the Woolcano are
presented. This includes the Chimaera [30] and the commercial Stretch S5 compilers [49].
Complete survey of compilers targeting reconfigurable architectures is presented in Cardoso
et al. [80]. Both compilers are built upon the gcc compiler suite framework which is rather
rare approach because gcc is generally well known for being difficult to efficiently adapt to
the embedded processor designs.

Stretch S5

The commercial Stretch S5 is the ongoing product started around year 2005 by a company
named StretchInc whereas the Chimaera has roots in the late 90th and was mostly studied at

6.6. WORK RELATED TO WOOLCANO COMPILER 73

the beginning of the new millennium. Both compilers target the C language and while the
S5 compiler is a proprietary system the design details of the compiler are unrevealed to the
publicity. The difference between S5 and Chimaera compilers rely in the way the software is
exposed and mapped to the RFUs. In the case of S5, this is performed manually within the
help of C dialect whereas, in the case of Chimaera, this is performed automatically.

The S5 C dialect allows for the notion of bit width types and operations. These extensions
are used by a programmer to mark and then rewrite the fragment of the source code amenable
for the RFU. The generation of the RFU as well as the corresponding UDCI invoking the RFU
is handled automatically by the compiler.

Chimaera

In the case of Chimaera, the gcc compiler suite was adapted with the control localization
method which combines several basic blocks into a single larger one and with the SIMD
within single register - SWAR methodology. This allows to increase the chances of finding
better UDCI candidates by increasing the ILP in the basic block as well as use MMX alike
extensions if the data can be compressed into the single register. The control localization
method is similar to the super block formation [81, 82] approach. From this perspective the
predicate execution [83] and the hyperblock formation [84] approaches have the same aims
but they differ in the used methodology.

The Chimaera compiler has a fixed UDCI identification algorithm which is able to auto-
matically spot the multiple input single output (MIMO) regions suitable for the RFU imple-
mentation. These correspond to the architectural constrains which in that case allow to read
nine operands from shadow register file and to generate a single output. Thus, the control
data flow graph (CDFG) of the UDCI only can take the form of direct acyclic graph (DAG).
The Chimaera tool flow does not implement the RFU automatically and the feasibility of this
approach was tested only in the simulation environment.

Runtime Support

In contrast to the Woolcano compiler, both compilers are working offline and they do not
allow to use online methods in particular the JIT functionality to guide the process of ISA
extensions.

74 CHAPTER 6. SOFTWARE RUNTIME ADAPTATION

Part III

Evaluation and Conclusions

Chapter 7

Woolcano Hardware Architecture

In this chapter, we evaluate the Woolcano hardware architecture described in Chapter 3. As a
case study, we use raytracing application that was presented in Section 5.2 and was evaluated
in the previous chapters. We provide with a comparison of the performances of the floating-
point scalar_prod operation shown in Figure 5.6 for three implementation variants:

1. using software floating-point emulation,
2. with a general APU-attached floating point FPU,
3. with a dedicated UDCI; see Figures 5.81 and 6.2.

7.1 Configuration
The case study was implemented on a AVNET PCI Express development board that features
a Virtex-4 FX100 FPGA. The Xilinx FPU core v3.0 (full variant) was attached to the APU
interface, which allowed to compare the performances and area usage with the UDCIs.

Frequency, Resources, and Tools

The Woolcano architecture (including the PowerPC core) executed at a frequency of 100MHz
and the caches of the PowerPC were enabled. The Xilinx FPU executed at half the system
clock, as required by the FPU IP core whereas the DDR-333 SDRAM at a frequency of
200MHz. The FCM controller used 77 slices and the system used 9201 slices in total (21%).
The hardware was generated using Xilinx ISE/EDK version 9.2i with SP4, IP update 2, EAPR,
and Bus Macros (24.08.2008) version 8 on Fedora Linux.

Software Binaries

The software binaries were compiled with optimization level setup to O3 and produced a code
of size 55587 bytes for the floating-point software emulation and 54879 bytes for the Xilinx
FPU IP core. This allowed to place binaries into the BRAM memory which had 64kB size
with the heap and stack size setup to 4kB each.

1With the difference to the data types. The code presented in this figure uses unsigned int data types
whereas for this evaluation we used floating points.

77

78 CHAPTER 7. WOOLCANO HARDWARE ARCHITECTURE

Architecture Memory cycles speedup vs. speedup vs.
sw. emulation APU FPU

SW floating-point emulation
BRAM

542’562 1.0 0.04
Xilinx APU FPU v3.0 19’660 27.60 1.00
UDCI 15’166 35.77 1.30
SW floating-point emulation

SDRAM
1’051’629’842 1.0 0.03

Xilinx APU FPU v3.0 31’752’386 33.12 1.00
UDCI 26’307’650 39.97 1.21
ICAP initialization – 18’128 – –
Reconfiguration – 17’604’700 – –

Table 7.1: Performance of the scalar product benchmark for computing 80000 scalar products
and reconfiguration time for an instruction slot of size 213096 bytes.

UDCI Slot and Bitstream

The Woolcano architecture was configured to a single UDCI instruction slot featuring six 32-
bit inputs and a single 32-bit output. The instruction slot had a capacity of 2400 slices and
comprised 12 DSP48, 24 FIFO16, and 24 RAMB16 blocks.

The UDCI bitstream was generated with the ASIP-SP. The scalar-prod UDCI had used
4 registers (1 cycle latency), 3 FP multipliers (4 cycles latency), and 2 FP adders (5 cycles
latency). This resulted in 17 cycles latency in total and a total area of 1879 slices (4%) and
maximum frequency of 260MHz. The hardware operators correspond to the ones found in the
Xilinx Coregen (float-point operator library v.4.0) and were delivered from the PivPav circuit
library.

Xilinx FPU IP core

The Xilinx FPU IP core consumed 1624 slices (3%) and 4 DSP48s (2%). The latency of the
FPU operations was not customizable thus it was impossible to pipeline them manually. This
resulted in a fixed total latency of 25 cycles (5 cycles for multiplication and 10 cycles for
accumulate).

7.2 Benchmarking

For benchmarking purposes, the time was measured for the case when the scalar_prod

function was executing 80000 times. The measurement excluded the time needed for the
system and input data initialization and was performed for two different variants. When the
software including the data and the instruction code was placed in either (a) the 64kB on-the-
chip BRAM or in (b) the external off-the-chip SDRAM memory.

7.3. RESULTS 79

7.3 Results

Table 7.1 summarizes the results of the benchmark. Compared to the software floating point
emulation, the use of the FPU provides a speedup of 27.6× (33.12×) for BRAM (SDRAM)
implementation and the UDCI instruction provides a speedup of 35.77× (39.97×). The last
column shows that the UDCI instruction outperforms the general FPU core by 1.3× for
BRAM and 1.21× for SDRAM implementations.

7.3.1 BRAM vs. SDRAM

The software floating point emulation executes almost 2000× slower when the software is
placed in the SDRAM versus BRAM even with enabled caches. Similar ratios between
SDRAM and BRAM memories are achieved for the UDCI and APU FPU case studies.

7.3.2 Reconfiguration Time

The time needed for reconfiguring the instruction slot comprises the initialization of the ICAP
interface, which takes 18128 cycles, and the reconfiguration process itself dependent on the
size of the bitstream. For the setup of the case study, the reconfiguration time for the UDCI
slot with a bitstream size of 213’096 bytes is 17’604’700 clock cycles, which corresponds to
176ms at 100MHz and 12.09 bytes per clock cycle on a 32-bit interface. This time can be
reduced by more than an order of magnitude by improving the ICAP port interface [85].

7.4 Conclusions

The Woolcano hardware architecture allows to effectively adapt the ISA of the CPU with
UDCIs. The results show that this approach is feasible and that the communication latencies
are sufficiently low to obtain speedups even for instructions with a moderate complexity.

Communication Bottleneck

One can also notice that the bandwidth of the communication interfaces, including the APU,
limits the performances. The UDCI instruction can compute a scalar product in only 13 cycles,
while the FPU requires 25 cycles running at half the clock frequency (50 cycles in contrast
to UDCI), i. e., potentially a higher speedup could be achieved (up to 4×). Increasing the
frequency of the FPU will not provide any changes in this ratio, while the Woolcano archi-
tecture can run at the frequency of system, constant ratio of 2:1 between the FPU and the rest
of the system will be always achieved. Thus, it is expected that the UDCI implementation
will outperform the APU FPU by a higher rate when removing the memory interface bottle-
neck. Unfortunately, the Virtex4FX architecture does not support pipelining for the udifcm
and the floating-point instructions, hence it is not possible to provide better communication
mechanisms.

80 CHAPTER 7. WOOLCANO HARDWARE ARCHITECTURE

Memory Access Latency

While the BRAM is an on-chip memory with access latency of a single clock cycle the access
to the off-chip SDRAM varies between 22 and 33 cycles. This points out that in order to effec-
tively perform computations it is necessary to decrease the latency of the memory interface as
much as possible. The other solution is to decrease the amount of data and memory transfers.
This arguments is often used agains the instruction-stream based von Neumann architectures.

Chapter 8

Experimental Setup

While this work targets the reconfigurable ASIPs, for example as our Woolcano architecture
presented in Figure 8.1, it is currently not feasible to execute the complete ASIP-SP on an em-
bedded reconfigurable ASIP architecture due to practical limitations. The ASIP specialization
process heavily uses the LLVM compiler framework and the Xilinx ISE tools which require
high-performance CPUs and desktop operating systems. These resources are not available in
the currently existing ASIP architectures. Hence, we used Linux and Dell T3500 workstation
(dual core Intel Xeon W3503 2.40GHz, 4M L3, 4.8GT/s, 12GB DDR3 / 1333MHz RAM) as
a host computer in place of the PowerPC 405 CPU of the Woolcano architecture to execute
the ASIP-SP; see Figure 8.1. This shift improves the processor performances roughly 40×
from 0.6− 0.7k to 27k Dhrystone Million Instruction Per Second (DMIPS) .

The lack of the possibility to run the complete tool flow on the ASIP has a number of
consequences for the experimental evaluation. Instead of running the ASIP-SP as a single
process, we are forced to spilt this process into two steps. In the first step, the host computer
is used to generate the partial bitstreams by executing the tasks corresponding to the upper
half of Figure 8.1. In the second step, we switch to the Woolcano architecture where we
use the generated bitstreams to reconfigure the UDCI slots and to measure the performance
improvements.

It is also worth noticing that this two-step process has an impact on several reported mea-
surements. First, all performance measurements reported in Tables 11.1 and 12.1, in columns
Max ASIP-SP speedups and ASIP ratio, are performed for Woolcano’s PowerPC405 CPU and
not for the host CPU. Further, in order to compute the break-even time reported in Table 12.1
we used the runtime overheads values from the same table which were measured on the host
computer. Therefore, this value is computed as if Woolcano’s PowerPC CPU had the process-
ing power of the host machine. Finally, while the ASIP specialization tool flow is capable of
performing UDCI reconfiguration during runtime, in practice, we had to switch from the first
to the second step manually.

The hardware limitations of Woolcano, in particular the number of the UDCI slots, in
practice do not allow us to measure the performance improvements on a real system for all
benchmarking applications presented in Chapter 9. Therefore, for these applications we esti-
mate the speedups with the help of the techniques presented in Section 5.5.

81

82 CHAPTER 8. EXPERIMENTAL SETUP

FCM controller

UDCI 1 UDCI 2 UDCI n

operand bus

result bus

FSM

operand regs

result reg.

bus macro

partially reconfigurable
region (PRR)
"instruction slot"

ICAP
controller

control bus

Woolcano architecture

Xilinx ISE tools: xtclsh, xst, ngdbuild, map, par, trce, bitgen

Dell T3500 workstation

Woolcano
reconfigurable
ASIP architecture

ASIP specialization
process

Dell T3500
Workstation

So
ftw

ar
e

(s
ou

rc
e

co
de

)
ru

nt
im

e
ad

ap
ta

tio
n

H
ar

dw
ar

e
R

un
tim

e
A

da
pt

at
io

n
(R

ec
on

fig
ur

at
io

n)

PPC 405
CPU

APU

Candidate Search

Candidate
Identification

Candidate
Selection

Candidate
Estimation

Basic Block
Pruner

bi
tc

od
e(

IR
)

PivPav
Netlist Generation

Generate VHDL

Extract Netlists

Create Project
(xtclsh)

PivPav
Instruction Impl.

Check Syntax
Synthesis (xst)
Translate (ngd)

Map & PAR
(map, par, trce)

Partial
Reconfiguration
Bitstream (bitgen)

te
m

pl
at

e(
IR

)

St
ru

ct
. V

H
D

L
ASIP specialization process (ASIP-

SP) executed on

CP EP

Figure 8.1: Overview of the developed tool flow and the targeted Woolcano hardware architec-
ture. During the experimental evaluation, instead of a PPC405 CPU, the ASIP specialization
process was executed on a Dell T3500 workstation.

Chapter 9

Applications for Experimental Evaluation

Table 9.1 presents the characteristics of used applications divided into two groups. The upper
part of the table shows data for applications obtained from the SPEC2006 and SPEC2000
benchmark suites which represent the scientific computing domain whereas the lower part
represents applications from the embedded computing domain obtained from the SciMark2
and MiBench. While the used benchmark suites count 98 different applications altogether, we
could not run our evaluation on all of them due to cross-compilation errors. Hence, from the
set of available applications, we selected the ones which are the most representative and allow
us to get comprehensive insights into the JIT ASIP specialization methodology.

Outline

There are six sections in this chapter. Each section corresponds to a column in Table 9.1 and
provides with results description.

9.1 Source Size
The second and third columns of Table 9.1 contain the number of source files and lines of code
and tell that the scientific applications have on average 23.89× more code than the embedded
applications. This difference influences the compilation time shown in the fourth column
which for scientific applications is 28.22× longer on average, but still the average compilation
time is only 6.5s.

9.2 Compilation to IR
The next three columns express the characteristics of the bitcode reflecting the total number
of functions, basic blocks, and intermediate instructions, respectively. For the scientific appli-
cations, the ratio between ins (13065) and the LOC (6874) is 1.9,which means that an average
single high-level code line is expressed with almost two IR instructions whereas less than
one (0.8) for the embedded applications. Since the scientific applications have 24 times more
LOCs than the embedded applications, this results in a 57× difference in the IR instructions.

83

App Sources Compilation to IR IR in BBs Code Coverage Kernel Size Execution runtimes
files loc real fun blk ins max avg udci live dead const size ins freq VM Native Ratio

[s] # # # # # [%] [%] [%] [%] [%] # [%] # # x
164.gzip 20 8605 3.89 33 1006 6925 59 6.88 29.68 38.86 44.66 16.48 5.78 400 90.34 23.71 18.47 1.28
179.art 1 1270 1.06 21 376 2164 43 5.76 21.53 42.05 28.47 29.48 9.84 213 92.45 69.92 74.70 0.94

183.equake 1 1513 1.71 15 257 2670 132 10.39 23.0 75.39 8.91 15.69 15.32 409 92.9 7.97 6.79 1.17
188.ammp 31 13483 10.10 98 4244 26647 382 6.28 25.74 19.22 70.89 9.89 3.38 901 95.81 23.18 17.24 1.34
429.mcf 25 2685 0.97 18 284 1917 77 6.75 13.09 75.9 13.09 11.01 25.77 494 98.46 23.94 24.06 1.00
433.milc 89 15042 10.88 87 1538 14260 363 9.27 32.59 61.67 34.72 3.61 10.83 1545 93.99 20.95 16.43 1.28
444.namd 32 5315 22.77 84 5147 47534 291 9.24 37.82 31.71 62.81 5.48 7.33 3486 93.64 39.94 34.31 1.16
458.sjeng 23 13847 8.49 86 3373 20531 69 6.09 21.1 48.49 49.44 2.07 44.6 9157 100.0 180.41 155.66 1.16
470.lbm 6 1155 1.36 16 104 1988 405 19.12 57.55 55.23 24.9 19.87 32.75 651 97.57 5.68 5.36 1.06
473.astar 19 5829 3.68 45 757 6010 70 7.94 27.45 78.79 5.31 15.91 6.39 384 91.3 66.00 67.68 0.98
AVG_S 24.70 6874 6.49 50 1709 13065 189.1 8.77 28.95 52.73 34.32 12.95 16.20 1764 94.65 46.17 42.07 1.14
adpcm 6 448 0.29 6 43 233 39 7.21 33.48 60.66 29.18 10.16 41.97 128 91.79 29.22 28.35 1.03

fft 3 187 0.26 10 47 297 41 6.53 42.09 58.88 30.26 10.86 44.08 134 95.98 18.47 18.49 1.00
sor 3 74 0.13 4 19 99 22 7.06 34.34 46.51 50.39 3.1 24.81 32 97.52 15.83 15.85 1.00

whetstone 1 442 0.25 12 44 285 32 6.58 34.04 32.75 36.27 30.99 10.21 29 93.27 28.66 28.50 1.01
AVG_E 3.25 288 0.23 8 38.3 228.5 33.5 6.85 35.99 49.70 36.52 13.78 30.27 80.75 94.64 23.04 22.80 1.01
RATIO 7.60 23.89 28.22 6.29 44.67 57.18 5.64 1.28 0.80 1.06 0.94 0.94 0.54 21.85 1.00 2 1.85 1.13

Table 9.1: Characteristics of the scientific and embedded applications used in experiments. AVG-S represents the averages for scientific
applications and AVG-E for the embedded applications. Ratio = AVG-S / AVG-E.

84

9.3. IR IN BBS 85

9.3 IR in BBs

The ISE algorithms operate on the BBs and thus the IR in BBs column indicates the character-
istics of these BBs in more detail. The max column indicates the BB with the highest number
of the IR instructions and avg is the average number of the IR instructions in all BBs. These
values in combination with the data presented in Figs. 11.2, 11.1, and 11.3 allow to understand
the runtime of the ISE and the number of candidates.

For the embedded applications, the largest BBs cover on average more than 14.7% of the
application whereas the largest basic block for the scientific applications covers only 1.4% of
the total application. The difference between average-size BBs for the embedded and scientific
applications is 1.28× and results in a small average number of the IR instructions of less than
10 for both cases. The small size of BBs in our applications needs to be attributed to the actual
benchmark code, the compiler, and the properties of the intermediate representation. Our
experiments have shown that the size of the BBs does not change significantly for different
compiler optimizations, transformations, or with the size of the application (LOC).

Feasible UDCI Instructions

The udci column lists the percentage of all the IR instructions which are feasible for a hard-
ware implementation. Feasible instructions include the arithmetic, logic, and cast instructions
for all data types and make up to 1/3 of all instructions of the application. Considering the
small average size of BBs this means that the size of an average found candidate is only
between 2 and 3 IR instructions. This emphasizes the need for a proper BB and candidate
selection and stresses even more the importance of the proper pruning algorithms in oder to
avoid spending time with analyzing candidates that will most likely not result in any speedup.

9.4 Code Coverage

The Code Coverage columns show the percentages of the size of live, dead, and constant
code. These values were determined by executing each application for different input data
sets and by recording the execution frequency of each BB. For the SPEC benchmark suite
applications, the standard test, train, and ref data sets were used, whereas for the embedded
ones, due to the unavailability of standard data sets, each application was tested with at least
three different custom prepared input data sets. After execution, the change in execution
frequency per block between the different runs was compared. If the frequency was equal to
0, the code was marked as dead. If the frequency was different from 0 but did not change
for different inputs, the code was marked as constant; and if the frequency has changed, the
block was marked as live. These frequency information were used to compute the break-
even points in the following section. In addition, the live frequency information indicates that
roughly only 50% of the application has a dynamic behavior in which the ISE algorithms are
interested in searching for candidates.

86 CHAPTER 9. APPLICATIONS FOR EXPERIMENTAL EVALUATION

9.5 Kernel Size
The next three columns contain data on the size of the kernel of the application and are derived
from the frequency data. The kernel of an application is defined as the code that is responsible
for more than 90% of the execution time. The size of the kernel is measured as the total
number of IR instructions contained in the basic blocks which represent the kernel. For the
scientific applications, 16.20% of the code affects 94.65% of the total application execution
time and it corresponds to more than 1.7k IR instructions. For the embedded applications, the
average relative kernel size is 30.27% and is expressed only with 80 IR instructions. These
numbers indicate that it is relatively easier to increase the performances of the embedded
applications than the scientific ones, since they require 22× smaller UDCI instructions.

9.6 Execution Runtimes
The VM column in Table 9.1 represents the application runtime when executed on the LLVM
virtual machine. The runtime of the application depends heavily on the input data which,
in the case of the scientific applications, were obtained from the train datasets of the SPEC
benchmark suite. Due to the unavailability of standard data sets for the embedded applications,
custom-made data sets were used. For both application classes, the input data allowed to
exercise the most computationally intensive parts of the application for a few or several tens of
seconds. The Nat column shows the real runtime of the application when statically compiled;
that is, without the overhead caused by the runtime translation. The Ratio column shows the
proportion of Nat and VM and represents the overhead involved with the interpretation during
the runtime. For the small embedded applications, the overhead of the VM is insignificant
(1%). For the large scientific applications, the average overhead caused by the VM equals
on average 14%. However, it is important to note that for some applications like 179.art or
473.astar, the VM was significantly faster than the statically compiled code by 6% and 2%,
respectively. This means that the VM optimized the code in a way which allowed to overcome
the overhead involved in the optimization as well as the dynamic just-in-time compilation.

Chapter 10

Basic Block Pruning

In this chapter, we evaluate the Basic Block Pruning algorithms described in Section 5.3. The
results of the pruning algorithms are summarized in Table 10.1. They are provided for ap-
plications found in Table D.1. These applications are almost identical to the benchmarking
applications presented in Chapter 9. Since the sizes of applications differ significantly, the
chances for finding more pronounced computation kernels are higher for the smaller applica-
tions than for the larger ones. Therefore, they were grouped in two columns with embedded
and SPEC2006 applications.

10.1 Ratio Values
The values found in the Table D.1 represent the ratio of the average speedup to the required
identification times. This ratio is presented in Section 5.3 and is computed for two whole
sets of applications, both embedded and scientific. Higher ratio values mean that a given
algorithm achieves better results to identification time which is preferable for systems with
the just-in-time CPU specialization that requires a balance between both figure of merits.

10.2 Best ISE Algorithm for JIT System: MM
The advantage of MM (36.69, 7.50) over SC (20.76, 1.48) and UN (6.95, 2.20) is clear, espe-
cially for the smaller embedded applications, where an average speedup of 3.71× is achieved
in 1.82ms in total. This is a 8.86× improvement over the case where no-pruning is used
and 4.16× better as the 3(F/S) algorithm. For the latter case the average speedup is 5.05×
and 2.06×, respectively, with an identification time of 175.75ms and 19.74ms. Thus, for the
online system where reduction of the identification runtime is as important as the speedup, the
MM linear complexity ISE algorithm delivers the best performances.

10.3 Best Pruning Algorithm for JIT System: @50pS3L
The identification runtime of MM was shortened for @50pS3L over no-pruning almost
by two orders of magnitude (96.73×) which caused the relative speedup to decrease only

87

88 CHAPTER 10. BASIC BLOCK PRUNING

Algorithm
Embedded applications SPEC2006 applications
MM SC UN MM SC UN

1L 7.61 2.84 0.41 0.22 0.21 0.16
2L 9.59 1.81 0.66 0.18 0.29 0.10
3L 15.68 1.17 1.03 0.08 0.28 0.05
4L 12.70 1.00 1.01 0.07 0.27 0.05

@1L 9.06 4.31 0.53 0.82 0.25 0.53
@2L 14.99 4.17 1.07 0.82 0.45 0.53
@3L 22.90 2.11 1.51 0.32 0.41 0.20
@4L 19.95 2.11 1.51 0.25 0.37 0.14

50pS1L 9.45 1.75 0.65 0.03 0.30 0.08
50pS2L 13.87 1.81 1.00 0.08 - -
50pS3L 28.58 1.74 1.87 0.08 - -

@50pS1L 8.92 0.67 0.61 0.00 0.24 0.45
@50pS2L 17.70 0.39 1.24 0.00 0.54 0.49
@50pS3L 36.69 0.72 2.34 0.01 0.62 0.19

1L2* 7.13 2.55 0.37 0.09 0.19 0.11
3L2* 10.09 1.00 0.66 0.03 0.18 0.03
1L3* 7.13 2.55 0.37 0.09 0.19 0.11
2F1S 14.99 19.80 2.04 6.89 0.68 1.86
3F1S 13.86 17.58 1.65 5.16 0.57 1.47
6F1S 20.28 12.86 1.21 3.08 0.33 0.79
6F2S 22.43 7.11 1.92 1.58 0.65 0.41
8F1S 19.39 10.84 1.18 2.40 0.30 1.18
2S1F 22.44 20.76 6.95 7.50 1.48 2.20
4S2F 18.86 11.62 2.27 4.22 0.87 1.25
5S3F 13.98 8.02 1.79 2.34 0.68 0.75
6S4F 11.41 5.84 1.53 1.50 0.56 0.47

tF 12.12 17.52 2.80 6.15 0.69 2.11
tS 6.02 1.67 0.38 0.05 0.19 0.08

1(F/S) 7.30 6.09 0.88 2.01 0.29 0.48
2(F/S) 9.88 3.47 0.82 0.89 0.30 0.29
3(F/S) 8.82 2.74 0.73 0.51 0.27 0.19

1S 13.01 11.63 1.21 3.07 0.40 0.92
2S 15.62 8.63 2.09 2.53 0.67 0.75
3S 13.74 7.25 2.04 2.13 0.63 0.65
1F results equal to 2S1F
2F 18.47 12.43 2.24 4.49 0.85 1.31
3F 14.34 9.20 1.80 2.67 0.68 0.84

no-pruning 4.14 0.76 0.19 0.05 0.00 0.00

Table 10.1: Ratio of the speedup to identification time for the pruning algorithms (Table 5.1).

10.4. MFNS AND MSNF ALGORITHMS 89

to 73.47%. This result clearly indicates the importance of the pruning algorithms in any
specialization process. The correctness of our assumptions about the location of the best
speedups in applications (@50pS3L vs 3(F/S)) is supported by the fact that the identification
time is shortened by 10.86× while the average speedup is 1.8× higher.

10.4 mFnS and mSnF algorithms

The mFnS and mSnF algorithms, as assumed in Section 5.3, can easily locate the most prof-
itable BBs in the applications. The results for SC and UN are better when constraining the
sizes first and the frequencies afterwards, that is 2S1F instead of 2F1S. In addition, the ra-
tio of speedup to identification for these algorithms is maximal when targeting only a single
BB with parameters m = 2 and n = 1 due to their exponential complexity. This is not the
case for the linear complexity (MM) algorithm, which achieves the best results for cases with
more than one BB, that is n > 1. The capability to process BBs faster is the reason why MM
outperforms SC and UN when using the speedup over the identification time figure of merit.

10.5 Basic Blocks in Loops

Generally, the best ratios are obtained when applying the ISE algorithms only to a small
number of BBs. This is problematic for the loop (L) algorithm which focuses on the loop-BBs
because the amount of loop-BBs in an application is usually very high. Without an execution
trace it is difficult to accurately identify the most frequently executed loop-BBs. In particular,
for the exponential SC and UN algorithms it would be important to focus on a few or even a
single BB to maintain a high speedup to identification time ratio.

10.6 Loop Algorithm: L

The L results for the SC and UN are not as good as for the other algorithms that make use
of the frequency data (nSmF, nFmS), but they are still satisfactory. In particular for the MM
algorithm which allows for targeting more than one loop-BB while keeping a good speedup to
identification time ration the results are in the top range for the smaller embedded benchmarks
where fewer loop-BBs exist.

Hence, the L algorithms work best with the linear complexity algorithms, where the in-
accuracy of identifying loop-BBs is overcompensated by the fast runtimes. In particular this
is the case for the @ loop algorithms which show higher speedup to identification time ratios
than the L algorithms that do not exclude BBs which are never executed.

The results for the nLm* algorithm are mediocre. Perhaps the applications do not have the
necessary modular design or it was destroyed during the compiler optimizations.

90 CHAPTER 10. BASIC BLOCK PRUNING

10.7 Remaining Algorithms
It is interesting to see how well the nF and the nS algorithms work. The nF algorithm elim-
inates not executed BBs, which is a clear advantage over the nS algorithm, especially for
n = 1. For n > 1, the difference is disappearing, since nS has a higher chance to identify
used BBs. However, for such cases the @npSmL algorithm should be used as it performs even
better.

The mSnF algorithm on average provides better results than the S and F separately and
should be used therefore. Otherwise, nF should be chosen over the nS algorithm.

10.8 Conclusions
This chapter evaluated algorithms for pruning the design space for the just-in-time ASIP spe-
cialization process, a problem that has so far not been address in related work. The study
showed that for JIT systems where reducing the runtime for identification is as important as
speedup, linear complexity ISE algorithms deliver the best performance. The proposed algo-
rithms are able to shorten the runtime for ISE identification by up to two orders of magnitudes
at the cost of reducing the speedup by 1/4.

Chapter 11

Candidate Identification

In this chapter, we evaluate and compare the ISE algorithms that were described in Section 5.4.
These algorithms have been used for the UDCI candidate identification as presented in Fig-
ure 4.2. Our evaluation covers the runtime characteristics of the algorithms, the number of
identified candidates for different architectural constraints, and the maximum gain in the ap-
plication performance. The discussion is based on data presented in Table 11.1 that were
obtained for the benchmarking applications introduced in Chapter 9.

Outline

This chapter consists of three sections which correspond to columns found in Table 11.1.
These are: the ISE algorithm runtime, the candidates found, and Max ASIP-SP Speedup.

11.1 ISE Algorithm Runtimes and Comparison
The average ISE algorithm runtimes are presented in the 2nd to 4th columns of Table 11.1.
As stated previously, the MM algorithm has a linear complexity and therefore is the fastest,
resulting in a 0.22 s runtime for 444.namd, which is the largest application. Due to its larger
algorithmic complexity, the runtime of the UN algorithm should generally exceed the run-
time of SC but this is not the case for applications which include specific types of BBs. For
example, it took 3837 ms to process such a specific BB consisting of 55 nodes in the adpcm
application, which is 99.15% of the overall runtime of the UN algorithm. In contrast, the same
BB was analyzed by the SC algorithm in mere 4.7 ms.

Since both SC and UN have an exponential complexity, their runtimes are a few orders of
magnitude higher than for MM. In average, MM is 96.94× faster than the SC algorithm.

The identification times for BBs of similar sizes also vary significantly for the same algo-
rithm since the number of candidates that need to be actually considered in a BB depends not
only on the total size of the BB but also on the structure of the represented DFG, the num-
ber and location of infeasible instructions in the DFG, the architectural constraints, and other
factors. For example, it took the SC algorithm 1707 ms to analyze a BB of 433.milc with
102 instructions, while the analysis of a slightly larger BB in 470.lbm with 120 instructions
took only 76 ms, which is a 22.5× difference in runtime. This example illustrates that it is

91

92 CHAPTER 11. CANDIDATE IDENTIFICATION

App ISE algorithm runtime Candidates found Max ASIP-SP Speedup
MM SC UN MM SC UN MM SC UN
[ms] [ms] [ms] # # # × × ×

164.gzip 40.6 549.0 11170.0 1621 44177 43682 1.172 1.213 1.213
179.art 12.3 55.1 3350.0 371 3534 3513 1.526 21.414 21.414

183.equake 13.5 457.9 4351.0 672 9690 9690 2.147 25.972 25.972
188.ammp 145.7 15840 - 7547 122441 - 3.449 20.826 -
429.mcf 11.1 68.7 200.5 571 3571 3562 1.112 1.112 1.112
433.milc 78.1 5065 - 3573 59450 - 1.301 21.546 -
444.namd 227.5 35854 - 11490 125970 - 1.609 24.846 -
458.sjeng 123.7 6244.1 235195.7 5540 83173 83035 1.118 1.137 1.137
470.lbm 8.6 2777.1 - 490 18216 - 2.554 44.622 -
473.astar 33.4 914.8 303796653 1408 37025 32368 1.159 1.19 1.19
AVG_S 69.45 6783 30405092 3328 50724 17585 1.71 16.39 5.20
adpcm 1.7 15.0 3869.4 83 819 819 1.243 1.309 1.293

fft 1.6 9.7 33.1 87 553 552 3.1 14.413 14.413
sor 0.7 4.3 14.6 35 384 375 14.418 14.422 14.418

whetstone 1.6 9.5 64.0 69 435 435 18.012 18.012 18.012
AVG_E 1.40 9.62 995.27 68.50 547.75 545.25 9.19 12.04 12.03
RATIO 49.61 705.05 30549.59 48.59 92.61 32.25 0.19 1.36 0.43

Table 11.1: Specialization process executed for whole applications when targeting the Wool-
cano architecture without capacity constraints. The performance of the custom instructions
has been determined with the PivPav tool. ISE algorithms: MM=MaxMiso, SC=SingleCut,
UN=Union. SC and UN search spaces are both constrained to 4 inputs and 1 input.

impossible to accurately estimate the runtime of the exponential ISE algorithms SC and UN
in advance when basing the estimation solely on the size of the BB.

It is worth pointing out that for keeping the search space and thus the algorithm runtimes
manageable, we had to apply rather tight architectural constraints for the custom instructions
(4 inputs, 1 output). When loosening these constraints, the execution times for the SC and UN
algorithms rapidly grow from seconds to many hours.

Summary

The overall runtime characterization of the instruction identification algorithms is summarized
in Figure 11.2 which plots the runtime of the different algorithms for varying BB sizes. Each
data point represents an average which was computed by running the ISE algorithm 1000
times on each BB. The multitude of data points for a fixed BB size illustrates that the runtime
of the same algorithm can vary over several orders of magnitude for BBs which have an equal
size but differ in their structure as pointed out above. This effect is particularly strong for
larger BBs where many variants of DAG structures exist.

For visualizing the overall behavior of the algorithms, we have also added the average run-
time for the SC and the UN algorithms for each BB size. It can be observed that the variability
for the UN algorithm is larger than for the SC algorithm. Another interesting observation is
that although the SC and UN algorithms have a worst-case algorithmic complexity ofO(exp),
their runtime is only polynomial O(n2) on average, which can be seen by comparing the blue

11.1. ISE ALGORITHM RUNTIMES AND COMPARISON 93

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

Nodes

F
o

u
n

d
 c

an
d

id
at

es

MM
SC−41
UN−41
MM−fitted
SC&UN−fitted

n6

n2

medium largesmall

Figure 11.1: Number of found candidates by ISE algorithms for a large spectrum of BB nodes,
where SC and UN are both constrained to 4 inputs and 1 output.

94 CHAPTER 11. CANDIDATE IDENTIFICATION

dotted lines with the red and green lines, respectively.
We are able to fit the runtime of the MM algorithm with a linear polynomial model which

is represented with a black line which has an almost ideal characteristic (goodness of the fit:
R2 = 0.9995). This means that the runtime of the MM algorithm always depends linearly
on the BB size O(n). Unfortunately, the behavior of the other algorithms is not sufficiently
regular to perform a meaningful curve fitting with similar quality.

Algorithms Runtime

In general, we can say that the MM is the fastest algorithm and outperforms the SC and
UN algorithms easily in terms of runtime for small, medium, and large basic blocks. For
small BBs of up to 10 instructions, the runtime difference is in the range of up to an order of
magnitude; for medium inputs (102 instructions), up to two orders of magnitude; and for the
largest BBs (103 and more instructions) a difference of more than three orders of magnitude
can be observed. While the runtime of the MM stays on the millisecond time scale even for
the largest inputs, the SC and UN algorithms work on a scale of seconds or minutes.

It is important to note that runtime of the exponential algorithms tend to literally explode
when these algorithms are constrained less tightly than 4-inputs 1-outputs (41), in particular
when allowing a larger number of outputs. For instance, when applying an 8-inputs 2-outputs
(82) constraint, common runtimes are in the order of 108 ms, which is three orders of magni-
tude longer than for the slower 41 constraint.

In terms of runtime, SC is approximately one order of magnitude faster than UN. However,
the runtime for both algorithms grows similarly for increasing BB sizes with the exception of
significant outliers for the UN algorithm, for peaks with a runtime difference of three orders of
magnitude can be observed for large BBs. A similar behavior was also found for architectural
constraints other than 41.

Benchmarking Mode

The results presented here have been obtained using a special benchmarking mode of our tool
flow where the instruction candidates are identified but not copied to a separate data struc-
ture for further processing. Additionally, the time needed to reject overlapping candidates for
SC algorithm as well as the time needed for the MM algorithm to validate condition (5.2)
presented in Section 5.4 were not included. As a result, the runtimes of the candidate iden-
tification algorithms will be in practice slightly longer when they are applied as a part of the
complete tool flow.

11.2 Candidates Found by the ISE Algorithms
The number of candidates found by the ISE identification algorithms is presented in columns
5, 6, and 7 of Table 11.1. In addition, an overview of all identified candidates as a function
of the BB size is shown in Figure 11.1, while Figure 11.3 presents a close up of the same
data for medium-sized BBs. As illustrated by the red line in Figure 11.1, the SC and the
UN algorithms generate an equal number of candidates, given that the same architectural

11.2. CANDIDATES FOUND BY THE ISE ALGORITHMS 95

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Nodes

A
lg

or
ith

m
 r

un
tim

e
[m

s]

SC−41
UN−41
SC−41−avg
UN−41−avg
MM−fitted
O(exp)

O(n2)

sec

min

small medium large

msec

Figure 11.2: Runtimes of the ISE identification algorithm for different basic block sizes
(nodes). SC=SingleCut, UN=Union, MM=MaxMiso algorithms. The label ‘41’ means that
the SC and UN search spaces have been constrained to 4 inputs and 1 output.

96 CHAPTER 11. CANDIDATE IDENTIFICATION

constraints are used and that any overlapping UDCI candidates generated by the SC algorithm
are removed.

Theoretical Maximal Number of Candidates

In general, the total number of subgraphs that can be created from an arbitrary graph G is
exponential exp(n) in the number of nodes of G. For ASIP specialization scenarios, i. e.,
when architectural constraints are applied, cf.conditions (5.2), (5.3), and (5.5), [86] has shown
that the number of subgraphs is bounded by n(Cin+Cout+1). Thus, for the 4-inputs/1-output
constraints applied in this study, the search space is equal to n6, which is represented by the
gray dotted line found in the top-left corner of Figure 11.1. When applying the final constraint
condition (5.4), the search space is significantly reduced from n6 by at least a power of 4 to
n2, which is presented with the blue dotted line above all results.

Algorithm Characteristics Fitting

The black line represents a linear fitting for the MM algorithm, whereas the red line shows a
second-order polynomial curve fitting for the SC and UN algorithms. The goodness of these
fits represented with R2 parameter is equal to 0.9663 for MM and to 0.9564 for the SC and
UN algorithms. Therefore, it is safe to assume that the number of candidates for the 4-input/1-
output constraint is limited by a second-order polynomial.

Runtime vs. Number of Candidates

Figure 11.3 shows that the longer runtimes of the SC and the UN algorithm also result in the
identification of more candidates. The difference for small and medium BBs is up to one order
of magnitude and increases for even larger BBs.

The data points (number of candidates) were obtained by running the ISE algorithms on
the applications presented in Chapter 9. Thus, each data point is associated with a single BB
and closely located data points tell that there are many BBs of similar sizes.

It can be observed in Figure 11.3 that there are less data points with large BBs than medium
or small BBs. This is a consequence of the distribution of basic block sizes; i. e., most BBs
found in these applications have sizes of up to 100 instructions. For such BBs, the number of
feasible candidates reaches more than 10 when using the MM algorithm and more than 100
when using the SC and UN algorithms. Given that the average application has at least a few
dozens (38 for embedded) or hundreds (1709 for scientific) of BBs this results in thousands
of feasible candidates that are suitable for hardware implementation. In our experiments,
we considered 3328 MM (50724 SC) candidates for the scientific and 68.5 MM (547.75 SC)
candidates for the embedded applications. These high numbers are more than enough since
an average ISA consists of around 80 core instructions for x86 platform and around 100 for
PowerPC. If one assumes 10% modification to the ISA, it results in a task of selecting less
than 10 UDCI instructions from a set of thousands of feasible candidates.

11.2. CANDIDATES FOUND BY THE ISE ALGORITHMS 97

10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

Nodes

F
o

u
n

d
 C

an
d

id
at

es

sc&un−i2−o1−avg
sc&un−i2−o2−avg
sc&un−i4−o1−avg
sc&un−i4−o2−avg
MaxMiso−avg

n2

n

small medium

Figure 11.3: Number of found candidates by ISE algorithms for a medium spectrum of BB
nodes, where SC and UN have variable constraints.

98 CHAPTER 11. CANDIDATE IDENTIFICATION

Constrains and Variant Number of Candidates

The number of found candidates depends strongly on the architectural constraints that are
applied. Tighter constraints, i. e., allowing a smaller number of inputs and outputs, lead to a
smaller number of candidates for the SC and UN algorithms. This behavior can be seen in
Figure 11.3 where the average number of candidates is plotted as a function of the BB size for
various constraints. There are two groups of constraints: the 21, 41 and 22, 42, between which
a rising gap of one order of magnitude is established. Applying the MM algorithm to BBs
with a size of 100 instructions leads to more than 10 feasible candidates whereas applying
SC or UN leads to more than 100 candidates for the first set of constraints and even two-
orders-of-magnitude more candidates (104) for the second set of constraints. This validates
the second-order polynomial characteristic n2 of the number of candidates for the SC or UN
algorithms.

A similar behavior of the lines representing the average number of identified candidates
is caused by the less or equal (≤) relationships found in conditions (5.2) and (5.3). That is,
the less-constrained algorithms (like 41) include all candidates of more constrained ones like
21. The area between the red and gray lines corresponds exactly to the number of additional
candidates found in the less-constrained algorithms. Also, the graphs illustrate that the number
of candidates depends much stronger on the number of allowable outputs than on the number
of allowable inputs.

Decay

For BBs with sizes of approximately 75 instructions, we see an interesting decay from which
all ISE algorithms suffer. This decay is found only in a concrete benchmark and is a result of
a high concentration of illegal instructions in basic blocks of those sizes, for which only a few
feasible candidates were found.

Algorithm Characteristics

Finally, it can be seen that the MM algorithm has a linear characteristic a ·n where a ≤ 1. The
SC and UN algorithms also show a linear characteristic with a ≥ 1 for the case of the 21 and
41 constraints, whereas for the 22 and 42 constraints, the characteristic changes to a quadratic
one (n2).

11.3 Theoretical Achievable Performance Gains
The Max ASIP-SP Speedup columns presented in Table 11.1 describe the upper limit of perfor-
mance improvement that can be achieved with the Woolcano reconfigurable ASIP architecture
and the presented ASIP-SP. These values show the hypothetical best-case potential in which
all candidates found by three different ISE algorithms are implemented as UDCI custom in-
structions. In reality, the overheads caused by implementing all possible instructions and the
limited hardware resources of the reconfigurable ASIP require pruning of the set of candi-
dates that are evaluated and implemented to a tractable subset. Therefore, the speedup quoted
in these columns should be treated only as an upper boundary on the achievable performance.

11.3. THEORETICAL ACHIEVABLE PERFORMANCE GAINS 99

Theoretical Best Performance Improvement For Static System

The ISE algorithms have a lot to offer, reaching a speedup of up to 44.62x for SC algorithm
and 18.01x for MM and UN algorithms. The average speedups achieved with MM, SC, and
UN are 1.71, 16.39, and 5.20, respectively for the scientific applications and 9.19, 12.04, and
12.03 for the embedded applications. For all applications, the average speedups achieved with
MM, SC, and UN are 3.85, 15.15, and 10.02, with the value of median 1.57, 16.22, and 7.85,
respectively. These results clearly indicate that the SC algorithm is superior for static systems
where identification runtimes are not a major concern.

Theoretical Best Performance Improvement For Runtime System

For a JIT specialization process, one needs to balance the achievable speedup with the iden-
tification time. Comparing the ratios of average speedup to identification runtime for the
embedded applications results in the following ratios: 6.56 (MM), 1.25 (SC), and 0.01 (UN).
These figures suggest that the MM algorithm is the most suitable for such systems. In addi-
tion, the considerable difference of 0.19 between average speedups for different application
sets suggests that the MM algorithm could find better candidates in the smaller applications
with more pronounced kernels and that these applications will benefit most from the JIT-based
systems.

Performance Improvements and Used Technology

It is important to remember that these results were obtained for the first time for the FPGA-
based Woolcano architecture and not as presented in related work for a fixed CMOS ASIP
architecture. This distinction is significant since the same hardware custom instructions will
achieve significantly higher speedups when implemented in CMOS technology, often by more
than one order of magnitude. But at the same time, a fixed architecture will sacrifice the
flexibility and runtime customization capabilities of the Woolcano architecture.

100 CHAPTER 11. CANDIDATE IDENTIFICATION

Chapter 12

Feasibility and Limitations of
Just-in-Time Processor Customization

In this chapter, we study the feasibility and limitations of the just-in-time processor customiza-
tion. While in previous chapters we evaluated only single components of the system, in this
chapter we use all developed components in order to evaluate the whole system.

12.1 Introduction
As elaborated in previous chapters, the reconfigurable ASIP architecture is considerably faster
than the underlying processor alone for both benchmark domains. Thus, the overheads of
hardware and software runtime adaptation can be amortized provided that the application will
be executed long enough. In this chapter, we analyze the achievable performance gains by
the ASIP specialization and the runtime costs of three different phases of that process. These
figures are used to compute the break-even which indicates for how long the application needs
to be executed until the hardware generation overheads are amortized; that is, when a net
speedup is achieved. These data are presented in Table 12.1 and are used to investigate the
feasibility and limitations of the just-in-time processor customization. They were obtained for
applications that were presented in Chapter 9.

Outline

The remaining parts of this chapter are structured as follows. First, we analyze the runtime of
the ASIP-SP on the characteristic that limits our just-in-time processor customization study.
Next, we investigate the maximum performance gains that characterize / reflect the feasibility
of our approach. Finally, we study the introduced break-even figure of merit that demonstrates
the balance between the feasibility and limitations.

12.2 Runtime of the ASIP-SP
Bellow we analyze the runtime of the ASIP-SP. Since the ASIP-SP consists of three phases:
the candidate search, the netlist generation, and the instruction implementation, we subse-

101

102
CHAPTER 12. FEASIBILITY AND LIMITATIONS OF JUST-IN-TIME PROCESSOR

CUSTOMIZATION

quently study them in the following sections.

12.2.1 Candidate Search

We start the study from the Candidate Search phase that was presented in Section 4.2.2. This
phase is responsible for finding and selecting only the best UDCI candidates from the soft-
ware. The outcome of this phase is presented between 2nd and 7th columns in Table 12.1.
These data were generated for the MM ISE algorithm, which was proven to be the best one
for the runtime system; see Section 10.2.

Basic Block Pruning

As the candidate identification task is frequently very time-consuming, we are using our basic
block pruning mechanisms introduced in Section 5.3 to reduce the search space. To this end,
as presented in Section 10.3 we use the @50pS3L algorithm.

The third column in Table 12.1 represents the pruning efficiency ratio which is defined as
the quotient of two terms. The first term is the ratio of the average maximum ASIP speedup
to the runtime of the identification algorithm when no pruning is used. The second term is the
same ratio when using the @50pS3L pruning mechanism. The pruning efficiency can be used
as a figure of merit to describe the relative gain in the speedup-to-identification-time ratio with
and without pruning.

Passed Code

The blk and ins columns represent the number of basic blocks and instructions which have
been passed to the identification process. These numbers are significantly lower than the
total number of blocks and instructions presented in the 6th and 7th columns of Table 9.1.
That is, the pruning mechanism reduced the size of the bitcode that needs to be analyzed
in the identification task by a factor of 36.49× and 4.4× for the scientific and embedded
applications, respectively.

Number of UDCI Candidates

In the following column can the number of selected UDCI candidates is presented. As one
can observe, this corresponds on average to 49 for the scientific and to 8 for the embedded
applications.

Total Runtime of Candidate Search

The overall runtime of the basic block pruning, identification, estimation, selection, and ex-
traction is aggregated in the real column. The total candidate search time is the order of
milliseconds and thus insignificant in comparison to the overheads involved in the hardware
generation.

12.2.
R

U
N

T
IM

E
O

F
T

H
E

A
SIP-SP

103

App Candidate Search: @50pS3L ASIP Runtime Overheads Break-even
real pruner blk ins can ratio const map par sum factor time
[ms] effic # # # x [m:s] [m:s] [m:s] [m:s] x [d:h:m:s]

164.gzip 1.44 71.79 2 100 19 1.00 56:22 13:02 18:28 87:52 754051 206:22:15:50
179.art 1.05 23.37 3 79 9 1.01 26:42 8:58 13:20 49:00 1869 1:12:18:13

183.equake 2.25 8.33 2 244 11 1.00 32:38 7:56 16:12 56:46 2808847 259:02:28:33
188.ammp 3.27 52.29 1 382 92 1.41 272:58 102:12 142:49 517:59 2321 0:14:56:39
429.mcf 1.05 28.2 1 77 5 1.00 14:50 4:06 7:48 26:44 771744 213:20:05:55
433.milc 6.6 26.71 2 673 9 1.00 26:42 6:44 15:08 48:34 2343546 568:06:08:05
444.namd 7.68 57.43 3 776 129 1.03 382:45 117:24 178:04 678:13 14423 6:16:00:48
458.sjeng 1.8 184.11 3 121 8 1.00 23:44 6:56 12:58 43:38 1150851 2403:01:35:57
470.lbm 10.62 2.43 3 961 179 2.53 531:07 181:51 308:24 1021:22 17427 1:03:29:48
473.astar 2.25 38.2 3 184 33 1.00 97:54 29:46 46:59 174:39 6740636 5149:02:19:14
AVG_S 3.80 49.29 2.30 358 49 1.20 146:34 47:53 76:01 270:28 1460572 881:00:33:54
adpcm 0.84 5.59 2 61 8 1.08 23:44 6:00 10:34 40:18 563 0:04:34:10

fft 0.78 3.78 2 75 14 2.40 41:32 11:44 20:56 74:12 367 0:01:53:07
sor 0.24 2.21 1 22 2 1.00 5:56 4:48 10:12 20:56 92 0:00:24:19

whetstone 0.54 7.7 2 49 9 15.43 26:42 11:34 25:52 64:08 142 0:01:08:04
AVG_E 0.60 4.82 1.75 52 8 4.98 24:28 8:31 16:53 49:53 291 0:01:59:55
RATIO 6.33 10.23 1.31 6.95 5.99 0.24 5.99 5.62 4.50 5.42 5019 10580

Table 12.1: The runtime overheads for the ASIP-SP process.

104
CHAPTER 12. FEASIBILITY AND LIMITATIONS OF JUST-IN-TIME PROCESSOR

CUSTOMIZATION

12.2.2 Netlist Generation

The tasks discussed in this section are represented in Figure 4.2 by the second phase of the
ASIP-SP.

Generate VHDL

The Generate VHDL task is performed with the PivPav data path generator which produces the
structural VHDL code. The data path generator traverses the data flow graph of the candidate
and matches every node with a VHDL component. This is an O(n) complexity algorithm that
results in constant time operation and requires 0.2 s per candidate.

Netlist Extraction

The extract netlist task retrieves the netlist files for each hardware component used in the
candidate’s VHDL description from the PivPav database. This step allows a reduction of the
FPGA CAD tool flow runtimes, since the synthesis process needs to build only a final netlist
for the top module.

Create FPGA CAD project

The next step is to create the FPGA CAD project which is performed by PivPav with the help
of the TCL scripting language. After the project is created, it is configured with the FPGA
parameters and the generated VHDL code as well as the extracted netlist files are added.

Total Runtime of Netlist Generator

On average this process took 2.5 s per candidate, making this the most time-consuming task
of the netlist generation phase. The average total NG runtime is presented in the C2V column
of Table 12.2 and amounts to 3.22 s. As the standard deviation is only 0.10, this time can be
considered as a constant.

12.2.3 Instruction Implementation

Once the project is created it can be used to generate the partial reconfiguration bitstreams.
These files contain the FPGA implementation of the UDCI and hardware accelerator.

Check Syntax

This step is performed with the FPGA CAD tool flow which includes several steps. First, the
VHDL source code is checked for any syntax errors and the runtime of this task is presented
in the second column of Table 12.2. On average it takes 4.22 s for candidate to perform this
task. Since the stdev is very low (0.10) we can assume that this is a constant time too.

12.2. RUNTIME OF THE ASIP-SP 105

Synthesis and Translate

Once the source code is checked successfully the synthesis process is launched. Since all
the netlists for all hardware components are retrieved from a database there is no need to
re-synthesize them. The synthesis process thus has to generate a netlist just for the top-level
module which on average took 10.60 s. The runtime of this task does not vary a lot since
the VHDL source code has a very similar structure for all candidates and changes only with
the number of the hardware components. After this step all netlists and constraint files are
consolidated into a single database with the translate task, which runs for 8.99 s on average.

Mapping and Place-and-Route

In the next step, the most computationally intensive parts of the tool flow are executed. These
are the mapping and the place and route tasks which are not constant time processes as the
previous tasks, but their duration depends on the number of hardware components and the type
of operation they perform. For instance, the implementation of the shift operator is trivial in
contrast to a division. The spectrum of runtimes for the mapping process ranges from 40 s
for small candidates to up to 456 s for large and complex ones, whereas the place and route
task takes 56–728 s. There is no strict correlation between the duration of these processes; the
ratio of place and route and mapping runtimes vary from 1.4× for small candidates to 2.5×
for large candidates.

Partial Reconfiguration Bitstream Generation

The last step corresponds to the partial reconfiguration bitstream generation. Our measure-
ments show that this is again a constant time process depending only on the characteristics of
the chosen FPGA. Surprisingly, the runtime of this task is substantial. On average, 151 s per
candidate are spent to generate the partial reconfiguration bitstream. This runtime is constant
and does not depend on the characteristics of a candidate. In many cases, the bitstream cre-
ation consumed more time than all other tasks of the instruction synthesis process combined
(including synthesis and place-and-route). The runtime is mainly caused by using the Early
Access Partial Reconfiguration Xilinx 12.2 FPGA CAD tools (EAPR). In comparison, creat-
ing a full-system bitstream that includes not only the custom instruction candidate but also the
whole rest of the FPGA design takes on average just 41 s when using the regular (non-EAPR)
Xilinx FPGA CAD tools.

12.2.4 Summary of Constant Runtimes

In Table 12.2, we summarize the runtime of the processes which cause constant overheads that
are independent of the candidate characteristics. These are Candidate to VHDL translation
(C2V), Syntax Check (Syn), Synthesis (Xst), Translation (Tra), and Partial Reconfiguration
Bitstream Generation (Bitgen). The total runtime for these processes is 178.03 s and is in-
evitable when implementing even the most simple custom instruction. The Bitgen process
accounts for 85% of the total runtime.

106
CHAPTER 12. FEASIBILITY AND LIMITATIONS OF JUST-IN-TIME PROCESSOR

CUSTOMIZATION

C2V Syn Xst Tra Bitgen Sum
[s] [s] [s] [s] [s] [s]

Average 3.22 4.22 10.60 8.99 151.00 178.03
Stdev 0.10 0.10 0.23 1.22 2.43

Table 12.2: Constant overheads involved in the ASIP-SP. C2V corresponds to the Netlist Gen-
eration phase in Figure 4.2. Syn, Xst, Tra, and Bitgen are the FPGA CAD tool flow processes
and correspond to the syntax check, synthesis, translate, and partial reconfiguration bitstream
generation processes, respectively, which can be found in the third phase in Figure 4.2.

12.2.5 Total Runtime of the ASIP-SP
The overall runtime involved in the FPGA CAD tool flow execution is presented in the col-
umn Runtime Overheads in Table 12.1. The column const represents the runtime of constant
processes shown in Table 12.2. The column map stands for the mapping process, the column
par for the place-and-route, and the values in the column sum add all these three columns that
aggregate the total runtime involved in the generation of all candidates for a given application.
The candidate’s partial reconfiguration times were not included in these runtimes since they
consume just a fraction of a second [29].

Average Runtime of the ASIP-SP

On average it takes less than 50 minutes (49:53 min) to generate all candidates for the embed-
ded applications but more than 4:30 hours (270:28 min) for the scientific applications. One
can see that this large difference is closely related to the number of candidates and that sum
column grows proportionally with the number of candidates. This behavior can be observed
for example for the 444.namd and the 470.lbm applications, which consist of 179 and 129 can-
didates, respectively. The total runtime overhead for them is more than 11 hours (678:13 min)
and 17 hours (1021:22 min), respectively and is caused primarily by the high constant time
overheads (const).

This observation emphasizes the importance of the pruning algorithms, particularly for
the large scientific applications. We can observe the difference for the embedded applications
where a smaller number of candidates exists. On average, the const time drops for the scien-
tific applications from 146:34 min to 24:28 min; that is, by a factor of 5.99×, which is exactly
the difference in the number of candidates (can) between the scientific and the embedded
applications.

12.3 Maximum Performance Improvements of the ASIP-SP
The column ASIP ratio represents the speedup of the augmented hardware architecture when
all candidates selected by Candidate Search are offloaded from the software to hardware UD-
CIs. In contrast to the maximum performance shown in the 8th column in Table 11.1, which
assumes that no pruning methodology is used and all candidates are moved to hardware, the
average speedup drops by 30% from 1.71×–1.20× for scientific applications and by 46%

12.4. BREAK-EVEN TIMES 107

from 9.19×–4.98× for the embedded ones. Comparing the fft with the 470.lbm applications
illustrates the main difference between the embedded and scientific applications. Both appli-
cations have a similar speedup of 2.40× vs. 2.53×, respectively, but differ significantly in the
number of candidates that need to be translated to hardware to achieve these speedups (14
vs. 179 candidates). This correlates with the previously described observation that scientific
applications have a significantly larger kernel size.

12.4 Break-Even Times
In this section, we analyze the break-even time for each application; that is, the minimal time
each application needs to execute before the overheads caused by the ASIP-SP are compen-
sated. Therefore, the break-even figure of merit reflects the balance between the feasibility
and limitations of our system. If the break-even time is short this means that the reconfigured
processor provided with significant performance improvements over the static processor and
the runtime of the ASIP-SP was short. Otherwise, if the break-even times are long it means
that the ASIP-SP required long time to generate the hardware accelerators and these did not
provide with good processing performance improvements.

Algorithm Overview

A simplistic way of computing the break-even time would be to divide the total runtime over-
head (sum in Table 12.1) by the time saved during one execution of the application, which can
be computed using the Execution runtimes - VM from Table 9.1 and the ASIP Ratio (speedup)
from Table 12.1. This computation assumes a scenario, where the size of the input data is
fixed and the application is executed several times.

Scaling Input Data with Code Coverage Informations

We have followed a more sophisticated approach of computing the break-even time, which
assumes that more input data is processed instead of multiple execution of the same appli-
cation. Hence, the additional runtime is spent only in the parts of the code which are live
while code parts that are const or dead are not affected. To this end, we use the information
about the execution frequency of basic blocks and the variability of this execution frequency
for different benchmark sizes which we have collected during code coverage profiling; see
Section 9.4. The resulting break-even times are presented in the last column of Table 12.1.

Embedded vs. Scientific Break-Even Times

It is evident that there exists a major difference in the break-even times for the embedded and
the scientific applications. While the break-even time of the embedded applications is in the
order of minutes to a few hours, the scientific applications need to be executed for days to
amortize the overhead caused by UDCI implementation (always under the assumption that
can candidates are implemented in hardware). The reason for these excessive times is the
combination of rather long ASIP-SP runtimes (>4:30h) and modest performance gains of
1.2×. As described above, the long runtimes are caused by implementing many candidates.

108
CHAPTER 12. FEASIBILITY AND LIMITATIONS OF JUST-IN-TIME PROCESSOR

CUSTOMIZATION

One might expect that this large number of UDCIs should cover a sizable amount of the code
and that significant speedups should be obtained, but evidently this is not the case.

Covering the Application Kernel with UDCIs

The reason for this is that the custom instructions are rather small, covering only 6.9 IR in-
structions on average. Although there are many custom instructions generated, they cover
only a small part of the whole computationally intensive kernels of the scientific application,
which has a size of 1764 IR instructions on average. Adding more instructions will not solve
this issue since every candidate adds an additional FPGA CAD tool flow overhead.

In contrast, the break-even point for the embedded applications is reached more easily.
On average, the break-even time is five orders of magnitude lower for these applications. In
contrast to the scientific applications, the custom instructions for embedded application can
cover a significant part of the computationally intensive kernel. This results in reasonable
performance gains with modest runtime overheads. For an average embedded application, a
5× speedup can be achieved, resulting in a runtime overhead of less than 50 minutes and a
break-even time of less than 2 hours.

Average Size of UDCIs

The difference between the scientific and embedded applications is not caused by a significant
difference in the number of IR instructions in the selected candidates. The scientific applica-
tions have on average 7.31 instructions per candidate, while the embedded applications have
on average 6.5 instructions per candidate.

Average Size of Basic Block

Since we cannot decrease the size of the computational kernel, we should strive for finding
larger candidates in order to cover a larger fraction of the kernel. Unfortunately, this turns out
to be difficult because the reason that the candidates are small is that the BBs (blk) in which
they are identified are also small. The average basic block has only 7.64 (5.94) IR instructions
for a scientific (embedded) application (see Table 9.1).

Selecting Large Basic Blocks with Pruning Algorithms

The pruning mechanism we are using is directing the search for UDCIs to the largest basic
blocks; hence, the average basic block that passes the pruning stage has 155.65 instructions
for a the scientific and 29.71 for embedded application (see Table 12.1). However, even these
larger blocks include a sizable number of the hardware-infeasible instructions, such as ac-
cesses to global variables or memory, which cannot be included in the hardware UDCIs. As a
result, there are only 7.31 instructions per candidate in the scientific application which causes
high break-even times for them.

This observation illustrates that there are practical limitations for the ASIP-SP when using
code that has been compiled from imperative languages.

Chapter 13

Reduction of ASIP-SP Runtime

In this section, we propose two approaches for reducing the total runtime overheads and in
turn also the break-even times: partial reconfiguration bitstream caching and acceleration of
the CAD tool flow.

13.1 Partial Reconfiguration Bitstream Caching

As in many areas of computer science, caching can be applied also in the context of our work.
Much like virtual machine cache for the binary code that was generated on-the-fly for further
use, we can cache the generated partial bitstreams for each UDCI. To this end, each UDCI
needs to have a unique identifier that is used as a key for reading and writing the cache. We
can, for example, compute a signature of the LLVM bitcode that describes the candidate for
this purpose. The cached bitstreams can be stored for example in an on-disk database.

13.2 Acceleration of the CAD Tool Flow

A complementary method for reducing the runtime overheads is to accelerate the FPGA CAD
tool flow. There are several options to achieve this goal. One possibility is to use a faster
computer that provides faster CPUs and faster and larger memory or to run the FPGA tool
concurrently. Alternatively, it may be possible to use a smaller FPGA device, since the con-
stant processes of the tool flow depend strongly on the capacity of the FPGA device. We
have used a rather large Virtex-4 FX100 device, therefore switching to a smaller device would
definitely reduce the runtime of the tool flow. Another option would be to use a memory file
system for storing the files created by the tool flow. As the FPGA CAD tool flow is known to
be I/O intensive, this should speed up the tool flow. Finally, we could change our architecture
to a more coarse-grained architecture with simplified computing elements and limited or fixed
routing. It has been shown that it is possible to develop customized tools for such architectures
which work significantly faster [87].

109

Faster FPGA CAD tool flow[%]
Cache 0 10 20 30 40 50 60 70 80 90
hit [%] [h:m:s] [h:m:s] [h:m:s] [h:m:s] [h:m:s] [h:m:s] [h:m:s] [h:m:s] [h:m:s] [h:m:s]

0 01:59:55 01:49:02 01:36:55 01:24:48 01:12:41 01:00:34 00:48:27 00:36:20 00:24:14 00:12:07
10 01:47:44 01:36:58 01:26:11 01:15:25 01:04:38 00:53:52 00:43:06 00:32:19 00:21:33 00:10:46
20 01:32:59 01:23:41 01:14:23 01:05:05 00:55:47 00:46:29 00:37:11 00:27:53 00:18:36 00:09:18
30 01:28:09 01:19:20 01:10:31 01:01:42 00:52:53 00:44:04 00:35:15 00:26:27 00:17:37 00:08:49
40 01:13:08 01:05:49 00:58:30 00:51:11 00:43:53 00:36:34 00:29:15 00:21:56 00:14:37 00:07:19
50 01:01:00 00:54:54 00:48:48 00:42:42 00:36:36 00:30:30 00:24:24 00:18:18 00:12:12 00:06:06
60 00:48:50 00:43:57 00:39:04 00:34:10 00:29:18 00:24:25 00:19:32 00:14:39 00:09:45 00:04:53
70 00:35:12 00:31:41 00:28:10 00:24:38 00:21:08 00:17:36 00:14:05 00:10:33 00:07:02 00:03:31
80 00:29:19 00:26:23 00:23:27 00:20:31 00:17:35 00:14:39 00:11:43 00:08:47 00:05:51 00:02:56
90 00:14:07 00:12:42 00:11:17 00:09:53 00:08:28 00:07:03 00:05:39 00:04:14 00:02:49 00:01:24

Table 13.1: The average Breaking Events for the embedded applications with enabled cache and faster FPGA CAD tool flow

110

13.3. EXTRAPOLATION 111

13.3 Extrapolation
In Table 13.1 we calculate the average breaking-even time for the embedded applications
when applying these two reducing ideas. When the cache is disabled and we do not assume
any performance gain from the tool flow, the first value is equal to the AVG_E row and the last
column in Table 12.1. One can note also that these values do not scale linearly because we
consider the frequency information for basic blocks; see Section 9.4.

Cache Hit Ratio

For this evaluation, we varied the assumed cache hit rate to be between 0%–90%. That is, for
simulating a cache with a 20% hit rate, we have populated the cache with 20% of the required
bitstreams for a particular application, whereas the selection whose bitstreams are stored in
the cache is random. Whenever there is a hit in the cache for a given candidate, the whole
runtime associated with the generation of the candidate is subtracted from the total runtime;
see sum column in Table 12.1. The values in the Faster FPGA CAD tool flow columns are
decreasing linearly with the assumed speedup.

Faster FPGA CAD Tool Flow

If we assume that the FPGA CAD tool flow can be accelerated by 30% and that we have
30% cache hits, the average break-even time drops almost by half (1.94×), from 1:59:55 h
to 1:01:42 h. This means that the whole runtime of the ASIP-SP could be compensated in a
bit more than one hour and for the rest of the time the adapted architecture would provide a
performance gain by an average factor of 5×. These assumptions are modest values since the
cache hit rate depends only on the size of the cache and our Dell T3500 workstation could be
easily replaced by a faster one.

Improving Processor Performances

The Woolcano hardware architecture contains an embedded PowerPC 405 that allows to
achieve approximately 0.6 − 0.7k DMIPS (1.52/MHz). Since this processing power was
not adequate to the requirements of the ASIP-SP, experiments were performed on Dell T3500
Workstation; see Chapter 8. The processor found in this machine (Intel W3503 Xeon) allows
to achieve up to 27k DMIPS. While this results in 40× difference in processing power, the
state-of-the-art from-the-shelf processors like Intel Core i7 990x allow to achieve up to 159k
DMIPS. Under the condition that this processor would be fully utilized this would lead to
further 5.8× break-even times improvements.

112 CHAPTER 13. REDUCTION OF ASIP-SP RUNTIME

Chapter 14

Conclusions and Outlook

This thesis study the feasibility and limitations of a process capable of the just-in-time pro-
cessor customization that targets dynamically reconfigurable instruction set architectures. In
particular, this thesis provides an answer to the controversial question whether the just-in-time
processor customization is a worthwhile idea under the assumption that the currently commer-
cially available FPGA devices and tools are used. To this end, we have developed a holistic
and unique system capable of the just-in-time processor customization and in order to provide
a trustfully answer to the posed question, we utilized it to customize a whole sets of bench-
marks from the embedded and scientific domains. The measured results included runtime of
the tool flow as well as the application-level performance gains, which allowed to compute
the break-even time and to study the feasibility, limitations, and economics of the developed
system. These characteristics are presented in Figure 14.1 and were investigated for three
different computing domains represented by the embedded, personal, and high performances
systems. While there are many differences between these systems for the conclusion purpose
we consider only the properties of the utilized applications and the performances of a single
processor found in these systems.

Application Properties

The properties of the applications that are taken under consideration are specified in the top
part of the table shown in Figure 14.1. They consist of the usual kernel runtime, size, com-
plexity, and available instruction level parallelism where complexity is a metric that relates
to the software to hardware translation process. Thus, it corresponds to the number and the
position of the control flow statements found in the source code, operations and usage of dif-
ferent memory structures, and the source code modularization. These informations have a
direct impact on the basic block size, and in consequence, on the available instruction level
parallelism, sizes of UDCIs, and kernel coverage.

The embedded applications have to fit into the constrained environment thus, they have
small and not complex kernels defined usually in the same function and, in consequence, it
is possible to cover this kernel with a small number of rather large UDCIs. For scientific
applications, we assume that the kernels were optimized by the developer and therefore, their
sizes and complexity is moderate. The average application and kernel runtime for both em-
bedded and scientific domains is long and counted in hours, which helps to compensate the

113

114 CHAPTER 14. CONCLUSIONS AND OUTLOOK

break-even.
The kernels of the mainstream applications that are utilized by a personal computer are

swapped frequently and thus, have short runtimes. Moreover, we assume the that emphasis
was not put on the optimizations but on functionality, which results in large and complex
kernels.

14.1 Developed System
Our developed system consists of the hardware architecture and the software tool flow that
allow for hardware and software runtime adaptation and, in consequence, for a fully automatic
and online just-in-time processor customization process. The designed hardware architecture
is a dynamically reconfigurable instruction set processor that allows for the online during
runtime customization, whereas the software tool flow is based on a virtual machine and
allows to customize this architecture concurrently to the application execution and without any
manual efforts. This tool flow contains a set of heuristics that reduce the runtime of methods
for identifying and selecting custom instructions for the just-in-time processor customization
as well as a circuit library and a data path generator of required bitstreams for the hardware
customization.

The most significant parts of the software toolflow, including the candidate identifica-
tion, estimation, selection, and pruning mechanisms were not only described with precise
formalisms but were also experimentally evaluated. In particular, we discussed and com-
pared characteristics of three state-of-the-art instruction set extension algorithms in order to
study the candidate identification mechanism in detail. This study included not only algo-
rithm runtimes, number of found UDCI candidates, their properties, and impact of algorithm
constraints on the search space, but more importantly the achievable maximum performance
gains for various embedded computing and scientific benchmark applications.

Simultaneously, this work has explored the potential of our Woolcano reconfigurable ar-
chitecture, the ISE algorithms, and basic block pruning mechanism for them as well as the
PivPav estimation and data path synthesis tools.

14.2 System Feasibility
The study has shown, that for the embedded applications, an average speedup of 5× can be
achieved with a runtime overhead of less than 50 minutes. This overhead can be compensated
if the application executes for two hours or for one hour when assuming a 30% cache hit rate
and a faster FPGA CAD tool flow. If we take under the consideration that the usual embedded
application has a long runtime and executes at least for a few hours than we can definitively
state that the just-in-time processor customization is a very promising and applicable approach
for these applications. This behavior is illustrated with the green color in Figure 14.1.

Extrapolating these results to a broader general use case, we claim that we see potential of
the just-in-time processor customization process for applications that contain relatively small
and simple kernels and that utilize them for longer periods of time. This claim is valid for the
most demanding case where applications are developed with the mainstream imperative pro-

14.2. SYSTEM FEASIBILITY 115

Feasible Unfeasible Out-of-range

Processor
Performances

[DMIPS]

~5k

~27k

Break-even
(economics)

~159k

Long
Small

Simple
Medium

High

Long
Medium
Medium
Medium
Medium

Short
Large

Complex
Small
Low

ARM Cortex-A9 MPCore
1GHz (dual core)

Intel Xeon W3503
2.4GHz (dual core)

Intel i7 990x 3.46GHz
(quad core)

Processor
Model

Personal

Embedded

HPC

App. Properties

Kernel Runtime
Kernel Size
Kernel Complexity
Basic Block size
Available ILP

Low
High
High
Short

High
Low
Low
Long

Huge
Tiny
~0
--

No. of UDCIs
Kernel Coverage
Speedup
Runtime

System Behavior

~5
.5

~6
x

~13.5k

~2.5k

Performances of a Single Core found in Embedded Processor (ARM Cortex-A9)

Performances of a Single Core found in Personal or HPC Processor (Intel Xeon or Intel i7)

Experimental data indicates feasibility of the studied system for the applications utilized by
embbeded devices.

Experimental data indicates unfeasibility of the studied system for the applications utilized by
HPC devices.

This research does not provide with experimental data for these applications. However, based on
the gain knowledge (see Figure 14.2), it indicates that until the sequential nature of the
applications remains intact, it is out-of-range to provide any with any benefits for them.

Figure 14.1: Economics of the just-in-time processor customization when extrapolated for the
embedded, personal, and HPC computing domains.

gramming languages, they do not explicitly expose any kind of parallelism, and their source
code is not tailored in any way to utilize features of our system.

116 CHAPTER 14. CONCLUSIONS AND OUTLOOK

14.2.1 Applicability and Technological Barrier

The developed system is practically applicable without any further major changes under the
condition that the embedded processor will increase its performances by a factor of 5.5×.
This number is calculated as a difference between the embedded processor that is built-in
into the state-of-the-art Virtex-7 FPGA and the general purpose processor that we used for
experiments. The difference between them is presented in Figure 14.1 where the ARM Cortex-
A9 embedded processor is capable of 2.5k DMIPS for a single core (5.0k DMIPS for two
cores) whereas Intel Xeon W3503 used in experiments is capable of 13.5k DMIPS (27.0k).

The applicability of our system increases further if we assume that the system can utilize
many computational units simultaneously. In our experiments, all computations including the
virtual machine interpretation with ASIP-SP were performed on a single computational unit.
For that case, the usage of HPC processors such as Intel i7 would bring further improvements
by additional factor of 6× and, in consequence, would further increase the applicability of our
system.

14.3 System Limitations

The just-in-time processor customization is a methodology from which a wide range of com-
puting systems would benefit. Unfortunately, while our research indicated benefits for the
embedded systems at the same time it demonstrated that the customization process is unfeasi-
ble for the other ones, which have far more demanding application properties. This is caused
rather by the sequential nature of applications than by gaps or shortcomings in our method-
ology. In particular, our study showed that larger and more complex software kernels of the
scientific applications, represented by the SPEC benchmarks, do not map well to hardware
UDCIs targeting our hardware architecture and lead to excessive times until the break-even
point is reached. This behavior is presented in Figure 14.1 with the orange color and it ad-
dresses the HPC systems. There are two factors that cause this behavior which are presented
in Figure 14.2: relatively long total runtime and low applications-level performance gains.

14.3.1 Long Total Runtime

The total runtime required for the UDCI candidates implementation is indicated with the
green color in Figure 14.2 and is very long (> 4:30 h) for the investigated applications. The
reason for this is that in order to cover a significant portion of the kernel, the number of
UDCI candidates indicated for hardware implementation is very high and the runtime of the
implementation process for each of them is very long. Only the implementation processes that
have constant runtimes (see Table 12.2) account for almost 3 minutes. This is an inevitable
runtime for every UDCI candidate and it does not depend on their sizes, which on average
contain 6.9 IR instructions.

14.3. SYSTEM LIMITATIONS 117

Complexity

Size

Runtime

BB Size Available ILP in
Kernel

UDCI Size

No. of UDCIs to
Cover Kernel Total Runtime Performance

Gains

Break-even

Properties of Application's Kernel

Compiler

Our System

Figure 14.2: Dependencies between the application properties, compiler, and just-in-time
processor customization process.

14.3.2 Low Performance Gains

The performance gains, represented with the orange color in Figure 14.2, are strongly de-
pendent on the available instruction level parallelism in the kernel and the kernel coverage
by UDCIs. Since the kernel for these applications is relatively larger than for the embedded
applications (80 vs. 1960 IR instructions) and number of UDCIs is insufficient to cover it
significantly in the end, only 1.20× application-level performance gain was achieved.

14.3.3 Further Limitations

Figure 14.1 presents three different computer systems and applications that target them. While
it is feasible to provide with benefits for the embedded applications (green color) and unfea-
sible for the scientific applications (orange color), the figure points also a third category of
applications that are the most demanding and target personal computers (red color). These
applications are used to provide an outlook and to extrapolate the gain knowledge presented
in Figure 14.2 to a broader spectrum of applications.

For these demanding applications, we indicate that, unless the nature of the sequential
applications will change, the just-in-time processor customization is out-of-reach. It is due

118 CHAPTER 14. CONCLUSIONS AND OUTLOOK

the fact that the runtime of our system can be amortized under the condition that the signif-
icant application-level performance gain is achieved and for these applications we indicate a
speedup close to zero. Therefore, whatever the runtime is, short or long, this does not make
any difference since it will be never amortized if the system does not provide with any perfor-
mance gains.

14.3.4 Origins of Limitations
The root of the problem is caused by the many times criticized [88–91] obsolete sequential
computing paradigm based on the von Neumann computer architecture and, in consequence,
the nature of applications even when utilized on the state-of-the-art devices and developed un-
der recent programming frameworks; see Figure B.6. These coherent sequential applications
put many obstacles for the parallel computing paradigm infiltration.

In our system, this is reflected with very small basic block sizes. In consequence, this
affects the sizes of the UDCIs as well as the available instruction level parallelism [92] and in
the end, it provides with out-of-reach break-even values.

The reason behind the small basic blocks can be found in the properties of the intermediate
code generated by LLVM when compiling imperative C or C++ code. This constrain does not
apply only to LLVM, but in general, it corresponds to a wide group of compilers. It relates to
dominate frontier algorithms that translate the control flow operations found in HLL source
code to the equivalent Φ instruction in the SSA IR code. The number of Φ instructions as well
as their position determine the sizes of the basic blocks. Thus, the sizes of the basic blocks
are directly influenced by the number and the location of the control flow statements in the
source code, which we represent under the kernel complexity in Figures 14.1 and 14.2. To this
end, we expect that this behavior applies to other imperative languages regardless of the used
compiler.

14.3.5 Possible Improvements
The basic block size is the major property of the source code that has impact on the system’s
total runtime and the achievable performance gains. Thus, it is natural to use methods that
stimulate the grow of the basic blocks. This is achieved in two ways, either by changing
location, reducing, or avoiding the control flow statements in the source code.

Control Flow Statement Location Shift

It has been reported that for some applications this task can be achieved with the superblock
formation [81, 82], predicate execution [83], or hyperblock formation [84]. However, we
want to point out that these sophisticated methods try to cure the disease rather than solve
the problem at the origin. In consequence, when properly used, these optimizations can only
help to increase basic block sizes and, as a result, they do not allow to overcome limitations
for the scientific applications. Moreover, there exists a major problem with the applicability
of these methods. The compiler when translating HLL into the IR code uses more than 30
different passes, which influence each other and change their order with different applications.
Therefore, the functionality of the listed passes when targeting whole applications is limited

14.3. SYSTEM LIMITATIONS 119

and is strongly dependent on the correct order they are executed. In our experiments, we
tested the benefits of this method for selected applications and since the order had to be set up
manually it was a very tedious and, in the end, not rewarding task.

Avoiding Control Flow Statements

Since the number and location of control flow statements in a source code determine the
sizes of the basic blocks, the easiest way to achieve highest sizes is to reduce or completely
avoid the usage of control flow statements. This behavior is used in the digital signal pro-
cessing (DSP) domain [93] together with the streaming capabilities that allow to reduce the
communication latencies between a memory and a computing unit. While these architectures
outperform both graphic processor units and general purpose processors for more than an or-
der of magnitude [94, 95], they target only specific algorithms developed in domain specific
languages. Therefore, this approach does not apply for general purpose applications written in
imperative programming languages and, in consequence, building general high performance
HLS tool proves to be very challenging for them.

Other Methods

In order to achieve higher performance gains and to surpass system limitations, one could
suggest to focus on a higher level of parallelism than the instruction one. To this end, we
briefly investigate the loop-level and thread-level parallelisms.

The loop level parallelism can be used for transforming nested loops in benchmarks, which
are used in this work to UDCIs. To this end, loop-unrolling techniques [96] that transform the
computation from the temporal to the spatial domain would be used. This level of parallelism
has much to offer in terms of performance gains since it allows to exploit the flexibility of
reconfigurable hardware with a deep pipelining, parallel operations, and custom arithmetic
methods. Unfortunately, in order to utilize it application must show streaming behavior to
compensate communication latencies and delays. To this end, a memory partitioning task has
to be performed, which is very challenging [91] for sequential imperative languages that are
based on mutable states, mutual data, and allow for side effects. While the virtual machine
and runtime capabilities allow to investigate the memory dependencies and help to perform
this partitioning task, it still stays very difficult. This is mostly due to a detailed analysis of
deadlocks and race conditions that have to be performed and, in consequence, no tools or
algorithms capable to perform this task automatically exist. Therefore, while switching to the
loop-level parallelism is a promising idea it is not applicable for the just-in-time processor
customization systems.

The next raised level of parallelism corresponds to threads and tasks, which have familiar
programming and execution models and do not depend on streaming methods. Unfortunately,
they do not expose with a real software concurrency and contain many control flow statements
that are best utilized on sequential processors. Due to significant differences between FPGA
and ASIC technologes described in Section 2.2.3 the processors implemented in FPGA are
easily outperformed by the ASIC ones and, in consequence, no performance gains are pro-
vided. Moreover, in practice, there exist no automated tools that would generate required
hardware applicable for adaptive systems.

120 CHAPTER 14. CONCLUSIONS AND OUTLOOK

Summary

The best improvements are achieved when the parts intended for the hardware implementation
are large and there are no control flow statements in them. These avoid sequential computing
and allow for a truly parallel execution in reconfigurable architectures. While this scenario is
achieved for imperative programming languages with the instruction level parallelism, better
results are achieved with domain specific languages that are capable of streaming and that
target specific algorithms from the digital signal processing.

14.4 Final Remarks
This thesis provides with study of an adaptive system capable of the just-in-time processor
customization. The research showed that while our system is feasible and applicable in the
near future for the embedded applications, it is unfeasible for the scientific applications and
out-of-reach for ones utilized by personal computers.

The journey towards our adaptive system started in the end of year 2007 where Virtex-4
was state-of-the-art FPGA that contained the PowerPC 405 processor able to deliver up to 700
DMIPS. These performances were not enough to support the system back then and even the
performance of the state-of-the-art embedded processors, which over these years increased
performances by a few factors are still not sufficient.

What had changed in these almost four years is not only the advancement in technology
but more importantly the fact that the world and companies like Intel see the demand for the
just-in-time processor customization in their products [18], which outcomes in a joint coop-
eration with FPGA vendors like Altera or Achronix. Moreover, during these years companies
like Convey Computers started to provide with products that allow to customize the HPC
processors with instruction set extensions. While these systems are customized manually,
they allow for certain algorithms to outperform general purpose computers by three orders of
magnitude or more. These are exciting times for the reconfigurable computing and processor
customization processes.

It is hard to indicate whether our research and our adaptive systems sees the daylight of
a product in the near future. There are many obstacles that were precisely described in this
work that limit the applicability of this task. While the technological limitations can be quite
fast surpassed the major ones deal with origins of the computer architecture and as we know
are extremely challenging to overcome.

Part IV

Appendices

Appendix A

Software Translation Process

The purpose of this appendix is to provide basic information about the process of software
translation that has the core responsibility in our developed system. Thus, in this section,
general concepts of translators are explained together with comparison of suitable frameworks
for our system.

A.1 Introduction

The translation refers to the process which converts the source code written in one program-
ming language into another programming language. In that case, the term source-to-source
translator is used. The term compiler is used in relation when the translation occurs from the
high level language (HLL) into the lower level language like assembly or the machine code.
Therefore, each compiler is a special case of the translator tool. The compiler refers to the
process which occurs ahead-of time from the code execution and thus, it is offline or static
process where the code compilation is separated from the code execution. The compilation
process is orthogonal to the interpretation which occurs during the runtime of the application.
This process also is referred to as runtime or dynamic translation. In this process, the task of
code generation and execution occur simultaneously.

A.2 Low Level Virtual Machine (LLVM)

This work is developed around open-sourced Low Level Virtual Machine (LLVM) compiler
infrastructure [97–99]. This framework allows to build from reusable components a static
compiler or a dynamic translator that include the just-in-time as well as the trace-based op-
timizations and transformations. This significantly reduces both development time and the
cost.

LLVM consists of virtual machine and static code generator and thus, is able to translate
the code either dynamically or statically. The virtual machine is able to execute the code
dynamically whereas the static code generator provides backends that allow to generate an
assembly code for a variety of hardware architectures, e. g., x86, IA64, PowerPC, MIPS,
SPARC, etc.

123

124 APPENDIX A. SOFTWARE TRANSLATION PROCESS

The key idea behind LLVM is to use the intermediate representation (IR) during all phases
of the compiler. This includes static or dynamic translation as well as the linking process and
various optimization phases.

A.3 Intermediate Representation
LLVM is not targeted at a specific programming language but it is based on the concept of
intermediate representation. The IR is independent language and consists of virtual instruc-
tion set architecture resembling to the RISC CPU with three-address code which is very well
suited for execution by abstract machines.

The IR can exist in three forms: textual, binary, and in-memory. It is possible to con-
vert between these formats without any information losses, which makes it a self contained
language. The textual representation has a human assembly readable form, it can be edited
by hand, and compiled into the binary form. The binary representation is kept on a disk and
is meant to serve as a placeholder for bitcode representation that can be quickly loaded for
execution by the virtual machine. The in-memory representation is an internal representation
of a bitcode used by the compiler to perform optimizations and transformations.

In contrast to the traditional IRs like ANDF and UNCOL the LLVM IR encodes high level
informations which include:

• explicit data flows through single static assignment (SSA),

• explicit control flow through simple constructs,

• explicit language independent type informations,

• explicit typed pointer arithmetics, able to preserve array indexing.

These informations are able to support aggressive inter-procedural optimizations, loop
optimization, and scalar optimizations as well as other high and low level optimizations and
analysis algorithms. The functionality of these algorithms is invariant in regard to the used
HLL language which means that a single instance of the algorithm is functional for all HLLs
that are supported by LLVM. This often caused a problem for other IRs like ANDF and
UNCOL. These IRs had separated control and data flow informations that were tied to a
specific HLL.

Single Static Assignment

Since LLVM has SSA IR the program data flow graphs (DFGs) are easily accessible. In
SSA form, every result of instruction or operand is assigned to a virtual register exactly once,
which leads to an unlimited number of virtual registers. SSA uses use-def and def-use chains
with every object including instructions, operands, and functions. Therefore, SSA avoids
data anti-dependencies and output-dependencies issues and allows for easy DFG construction
and manipulation. Altogether, this makes from SSA a well suited form to represent data
dependencies and the program structure. The use of SSA enables elegant and fast optimization
algorithms such as sparse data flow analysis, constant propagation, or dead code elimination.

A.4. PROGRAM STRUCTURE 125

A.3.1 Type System

The type system of LLVM is presented in Table A.1. Instruction results or function arguments
are able to use only the first class types. Derived types are intended for use of data types
implemented in a high-level language such as arrays, functions, or classes.

Classification Types
integer i1, i2, . . . , i16, . . . , i64, . . .

floating point float, double, x86_fp80, fp128, ppc_fp128
first class integer, floating point, pointer, vector, structure, array, label, metadata
primitive label, void, floating point, metadata
derived integer, array, function, pointer, structure, packed structure, vector, opaque

Table A.1: LLVM type system

A.3.2 Instruction Set Architecture

In contrast to other CISC architectures instead of hundreds of instructions, IR contains only a
few dozens of them. The small number of instructions is caused by the extensive type system.
A single IR instruction can be used with different data type operands and therefore there is no
need to provide separate instructions for every first class type.

IR instruction can be grouped into the following categories:

• Binary instructions. Both operands as well as the result of the instruction are of the same
type and separate instructions exist for integers, floating point, and bitwise operations.

• Memory access instructions. LLVM is a load/store system where all accesses to the
memory are performed with the load and store IR instructions. Accesses are performed
on pointers to the first class values. Moreover, separate instructions exist for allocating
and freeing the memory.

• Terminator instructions that perform the control flow operations and represent edges in
control flow graphs (CFGs). These are the last instructions found in the basic blocks
and determine the next basic block for execution.

• Other instructions, which responsible for the type casting, conversion, comparisons, for
aggregate values and vectors.

A.4 Program Structure
The structure of the whole program in LLVM is represented with a module which consists of
functions, global variables, and symbol tables where the function is implemented with a set
of basic blocks and arguments.

126 APPENDIX A. SOFTWARE TRANSLATION PROCESS

Basic Blocks

Basic Block (BB) is a sequence of IR instructions that is ended with a terminator instruction.
Instructions in the BB are executed sequentially and thus, the structure of the BB can be
modeled as a direct acyclic graphs (DAGs). Moreover, from the control flow view the BB
is an atomic unit ended with the terminator instruction, which is responsible for the control
flow and forwards the execution from the current BB to another BB. Therefore, the terminator
instruction is responsible for the edges in the control flow graph (CFG) and the basic blocks
represent vertices in that graph.

A.5 Modularity

LLVM has a modular design which is provided with a set of well integrated and designed
libraries. These libraries were developed with runtime compilation feature in the mind and
provide a framework for analyses, optimizations, code generations, dynamic compilation,
support for garbage collection, or profiling. Around these libraries a collection of tools is
built, such as assemblers, automatic debuggers, linkers, modular optimizers, etc.

A.6 Separation from High Level Languages

Since the control data flow graphs (CDFGs) are encoded directly into the IR and BB, the
abstract syntax tree (AST) can be reconstructed from the IR and BB without the knowledge
about any specific HLL constructs. This means that the IR is not tied to any specific HLL
and can be used to represent an arbitrary number of them. From the LLVM point of view,
IR provides a separation layer between the HLL and the middlend IR optimizations. This
also means that a single IR optimization is capable to perform its task for any given HLL that
is supported by the LLVM front-end. This significantly simplifies the task of designing and
implementing IR optimizations.

A.7 Design of the LLVM Compiler Framework

In this section, the design of LLVM is presented with more details. The provided informations
lay down fundaments for the Woolcano compiler presented in Chapter 4. The simplified
construction of LLVM is demonstrated in Figure A.1 whereas the details can be found in
Muchnick [101].

In LLVM there are four main abstraction layers: the front end, the middle end, and two
succeeding back ends. These layers are connected with abstraction interfaces: previously
described intermediate representation, the target instructions, and the assembly language. The
purpose of every interface is to reduce the granularity of the HLL to the level which can be
understood and executed by the hardware architecture.

A.7. DESIGN OF THE LLVM COMPILER FRAMEWORK 127

Build DAG

Optimize - combine1

Legalize

Optimize - combine2

Instruction Selection

Scheduling

Register

Branch Selection

Assembly printer

Code emitter

Analysis

Optimizations

Transformations

Optimizations

Assembler

Fr
on

t
En

d
M

id
dl

e
En

d
bitcode (IR)

bitcode (IR)

B
ac

k
En

d
- I

target instr.(TI)

B
ac

k
En

d
- I

I

assemby

high level lang. (HLL)

machine code

Figure A.1: Abstracted design of the LLVM

A.7.1 Compilation Process

LLVM’s compilation process starts in frontend with translating the source language to the
IR. This task is performed either with llvm-gcc or clang that among most widely used pro-
gramming HLLs support C and C++. Once IR is generated in the middle end, the language
and target independent analysis and transformations are repeatedly applied to optimize the fi-
nal IR. After these optimizations, in the first backend, IR is translated to a target independent
CDFGs where various graph optimizations are applied.

Only in the final part of the compiler the target independent code is translated to a tar-
get specific assembly. This transformation is provided by a code generator with the help of
instruction pattern matching algorithms found in the second back end. To this end, this algo-
rithm uses target specific informations such as opcodes, register layout, calling convention,
and instruction patterns. These informations are specified in a separate target description file
with declarative domain specific language (DSL).

128 APPENDIX A. SOFTWARE TRANSLATION PROCESS

A.7.2 Front End
The main task of the frontend is to translate the HLL source code into the low level code where
for LLVM this translation corresponds to IR. To this end, frontends are equipped with several
phases that include the preprocessing, lexical and syntax analysis as well as the semantical
analysis. These define not only the meaning of various language elements like the identifiers,
keywords, and symbol names found in the source code but also the structure of the HLL code,
the type system, or the object bindings.

The purpose of the frontend is to generate the best quality low level code that is the most
accurate and efficient one. This task is influenced by the type and by the number of used
optimizations. Moreover, this task is strongly correlated with HLL expressiveness that allows
to achieve high productivity. Expressive HLL have syntax and semantics that allow to describe
given algorithm with ease. Unfortunately, these constructs are often cumbersome for the
low level translation. Thus, the expressiveness is orthogonal to the code quality and in the
frontends the balance between them is required.

In order to increase the programmers productivity, the frontend of the compiler is often
equipped with debugging features which allow to accurately locate the error in the source
code. This includes not only the lines of the source code where the error appeared but also
the cause of the error. In addition, the static analysis of the source code is able to spot the re-
gions which violate the common accepted programming patterns or which expose the security
thread.

A.7.3 Middle End
The middlend of the compiler is responsible for the IR manipulation. To this end, it uses the
analysis passes, the optimization passes as well as the transformation passes. The number of
available passes is high and in the LLVM version 2.5 reached almost one hundred.

The middlend of LLVM has a modular design which helps to reduce the labor time when
developing new passes. The newly developed pass can be included in the chain of passes and
can reuse the results from other passes, where this task is performed automatically under the
available framework. In addition, the development of new passes is simplified by the fact that
LLVM has a language independent type system and uses the SSA form.

As previously stated, the IR is invariant to HLL and since the middlend passes work with
the IR, in the end, a single pass is functional for many HLLs. Moreover, passes can be used
many times for the same code, which provides a loop where the IR is constantly analyzed and
transformed between the loop iterations.

A.7.4 Back End - I
This part of the compiler is also known under the code generator term. In this back end,
the generated code is target independent, which means that it is not bound to any specific
hardware architecture. The target independent code generator transform the IR into the target
instructions (TI). While IRs instructions target the abstract machine the TIs target universal
processor with universal ISA. The code generated with TIs does not contain any specific
machine encodings.

A.8. DYNAMIC VS. STATIC TRANSLATION 129

The code generation task is performed with the usage of DAGs that are built from the
IR in the first phase and are followed by the optimization phase. In the legalization phase,
the parts of the DAG which cannot be expressed with the TIs are converted into other code.
Therefore, the legalization phase ensures that the DAG leaving this phase can be covered with
the TI. Otherwise, the legalization will inform about inconsistence problems and will precisely
inform where the error occurred and which part of the DAG cannot be covered with TIs. After
the legalization and the optimization phase the final instruction selection process happens,
which is a pattern matching algorithm which disassembles the DAG into the TI instructions.
Thus, it changes the representation form from the graph based to the textual one. The pattern
matching algorithm consists of prioritizer and thus, it is important to adapt it and find relevant
priority when supplementing the backend with additional nodes; see Appendix C.

A.7.5 Back End - II
The second backend is a target dependent process which aims at translating the independent
code into a dependent one. The depended code known as assembly is suited for a given
hardware architecture. To this end, the assembly code uses target specific informations that
mostly correspond to the application binary interface (ABI). This not only includes the data
types supported by the architecture but also the alignment and the calling convention. Most
of all the target specific informations describe the ISA of the given architecture.

In this backend, several transformations are performed which for instance change the vir-
tual registers into the physical ones (register allocation), schedule the code, and map inde-
pendent instructions into the dependent ones. The target specific informations are specified
in a target description file that uses declarative DSL, which simplifies the task of describing
hardware architectures.

A.8 Dynamic vs. Static Translation
The difference between the dynamic and static translation relies on the following fact. The
dynamic system and also interpreter, transform the application’s high level source code con-
currently to the code execution whereas the static system is executed ahead-of-time. Thus,
in the case of the dynamic translator, the processor is not only used to execute the code but
also to produce it. While this results in overheads that are not found in the static translation,
often it outcomes in a much better processing performances. This is due to availability of
informations such as application data types, values of the variables or the pointers that are
not accessible by the static translation. These informations enable the set of new online adap-
tive optimizations that allow to translate and then execute the code more effectively than in
the case of the static translation. Moreover, in contrast to the eager evaluation computation
paradigm found in the static translation and imperative languages, this allows also for lazy
evaluation modes and for accurate dead code elimination.

These informations also play a significant role in the hardware-software partitioning pro-
cess where the execution of the application is split between the processor and dedicated hard-
ware accelerators. This behavior is achieved due to availability since the dependencies be-
tween the variables and their layouts in the memory are known. These informations allow the

130 APPENDIX A. SOFTWARE TRANSLATION PROCESS

hardware accelerator to fetch the data directly from the memory without disturbing the pro-
cessor and start the computation in parallel to the processor without the trouble interlocking
and data sharing mechanisms.

A.9 Interpretation vs. Dynamic Translation

The difference between the interpreter and the dynamic translator relies on the fact that the
interpreter produces the bytecode whereas the dynamic translator the machine code. The ma-
chine code is fed directly into the processor for the execution while the bytecode is executed
by the virtual machine or by the interpreter. Another differences results from the runtimes.
The bytecode generation is a simpler process than the machine code and thus, the interpreta-
tion is a faster process than the dynamic translation.

The similarity between them rely on two facts. First, both have the same input; that is a
high level language source code. Second, they perform their job (interpretation and translation
or compilation) concurrently into the executed code.

For both systems, the interpretation or translation of the source code and execution of that
code are performed under a single step whereas for the static translation under two separated
steps. This separation closes access to many important informations that are available in
these online systems. On the other hand, the runtime of these online systems is accumulated
together with the code execution and can outcome in significantly longer overall execution
runtime. To this end, two methods were developed that try to prevent and minimize these long
runtimes.

A.9.1 First Method: Caching

In general case, the online systems interpret or translate the source code every time it is in-
voked. Thus, this operation is very ineffective if the source code is invoked many times. In
such cases, the overheads involved in these processes are accumulated and significantly in-
creased the overall runtime of the application. In order to avoid this to happen, the caching
mechanisms are used as tabulation mechanisms.

The caching mechanism is used when the code is invoked for the first time. Thus, the
overheads involved in further invocations of the code are avoided. Instead of the interpretation
or translation the cache reference is used to the final code; bytecode or to the machine code.

While this scenario has the advantage that every invoked code will be found in the cache,
the caching itself is often not as efficient as it sounds. The problem occurs in the beginnings
of the application execution where most of the application’s code is needed and the caches are
still empty. In this case, the overheads burden take most of the computation time and result in
inefficient application’s performances. In addition, the caching practice does not pay off for
the code that is invoked sporadically. In particular, this is a case for the dynamic translator
that requires much longer runtimes than the interpreter. For such a code, the process of inter-
pretation brings better performances then the caching mechanisms and dynamic translation.

A.10. RELATED WORK 131

A.9.2 Second Method: Just-in-Time Compilation

The second method is a heterogenous one where the compilation and interpretation techniques
are asymmetrically merged together. This method is known under the term just-in-time com-
pilation and it was developed in order to solve the drawbacks of the first method. The JIT
directs the compilation process only to the parts of the source code which are most frequently
invoked whereas the remaining code is interpreted. This sacrifices the additional time needed
for the dynamic compilation process only to the parts of the application which are most fre-
quently executed. This leads to overall higher performances and shorter runtimes. From this
perspective, the JIT compilation approach can be seen as the enhanced profile-driven exten-
sion to the dynamic compilation process.

The JIT approach has been strongly used in very effective second generation Transmeta’s
Efficieon processor [102]. In this design, the JIT consists of four different gears that are shifted
when the code reaches certain invocation threshold (frequency). Each gear increases the time
for online optimizations and results in a more effective machine code being generated.

A.10 Related Work

In general, the research compilers are usually used for prototyping new language features or
language optimizations and are not robust enough or complete to handle real, large appli-
cations. The development of industrial strength compiler requires many years effort which
usually is beyond the available resources of the researchers and thus, not many open sourced
mature compilers are available for them. LLVM can be seen as the exception in this field
since it is actively developed by the Apple team, it is used in their products, and has a li-
censing model similar to the BSD which is open for the researchers as well as for proprietary
projects. In addition, LLVM is a very lively project with a strong technical support, broad
documentation, and active developer community. This environment significantly increases
the researcher’s productivity.

There are many research compilers around targeting at different tasks and it is not the aim
and possibility to evaluate all of them in this work. LLVM puts emphasis at the middlend
inter-procedural optimizations and therefore compilers which excel in the same field will be
evaluated. This includes the SUIF compiler infrastructure and the SGI’s Open64 compiler.

SUIF Compiler

The SUIF compiler infrastructure [103] is probably one of the most used compilers in the
research community. SUIF is a source-to-source translator and it consists of a high level
abstract syntax tree (AST) representation. It has powerful inter-procedural transformations
which can be profile driven. Besides that it is inactive since 2001 and it had many drawbacks.
First, it was very slow because of very large and general AST representation. Next, it had
limited capabilities to attach new frontends since they required adding new node types to the
AST. Finally, any AST extensions broke down the compatibility of the existing optimizations
and therefore required constant updates, process which was very cumbersome.

132 APPENDIX A. SOFTWARE TRANSLATION PROCESS

Open64 Compiler

The Open64 compiler is descendant of the SGI’s commercial MIPSPro compiler developed
between 2001-2003 and it has been opened to the community under the GPL license model.
In proceeding years it was up-taken by various commercial and academical institutions. Thus,
many forks of the original Open64 exists i.e. Path64 each resulting in different features and
limitations. While every fork has it’s own goals to fulfill and directions in which it advances,
this outcomes in the lack of consistent documentation and consistent developer community.
Besides these environmental drawbacks, Open64 is a high quality industrial strength compiler
focusing on the ahead-of time compilation and generating a robust code. While it has been
developed for more than a decade, it consists of many optimizations built around the inter-
procedural and profile driven transformations. Open64 uses WHIRL IR which has five differ-
ent levels starting from the language specific representation, ending at the machine specific
representation, and it uses lowering system to transform between these levels. The develop-
ment of optimizations is more difficult than in LLVM since WHIRL is not the SSA IR.

Runtime Support

Both mentioned compilers and LLVM excel at the middle level optimizations. The SUIF and
Open64 do not natively support the dynamic translation in contrast to LLVM. Therefore, they
were discarded as the fundamental compiler infrastructural for our system.

While in SUIF this functionality could be enabled by external extensions it is not supported
in Open64 at all. Both compilers are focused on the static compilation techniques. Thus,
development of our tool flow with these compilers would be significantly harder than with
LLVM.

Appendix B

Strange Loop Perpsective

B.1 Introduction
Computer systems are constructed from a pile of abstractions. The two main characteristics
that describe the process of computation on a computer system are: the performances and
the labor time. The labor time corresponds to the amount of time the developer spends in
order to design and develop algorithm that describes the process of computation. These two
characteristics strongly depend between on other.

• The high labor time usually results in high performances. For instance, this is a case
when a developer uses a lower computer abstraction that is not as expressive as the
higher one in order to develop an application specific hardware accelerator. While this
results in additional time being spent for this purpose - the developed accelerator allows
to increase the processing performances.

• The lower labor time usually results in lower performances. This is a case when a
programmer saves labor time by using higher abstraction that is more expressive than
the ones bellow. For instance, this happens when the developer decides to use a higher
level interpreted programming languages like Ruby in contrast to the compiled lower
level programming languages like assemblers. While this saves the labor time, the
generated code often does not achieve as high performances as the one generated with
lower level language.1

In real world, there exists an equilibrium between these two characteristics that is regulated
and driven by the economic trends; see Figure B.1. Depending on the given task to solve, this
equilibrium is adjusted by moving and selecting proper level of abstraction.

End of Processing Performance Increase Era

Unfortunately, the sequential computer system as we used to know and utilize had reached
his processing performance limits. This situation occurred due to limitations that appeared
in semiconductor field. These limitations have strong influence on the hardware abstraction

1Please note that these languages are Turing complete (computationally universal).

133

134 APPENDIX B. STRANGE LOOP PERPSECTIVE

Equilibrium

Perfor-
mances

Labor
time

Computer System

Theory

Hardware

Software

Figure B.1: Equilibrium between performances and labor time in a computer system.

presented in Figure B.1 . Therefore, the equilibrium is imbalanced and leads to an instability
problem.

Contributions

In this work, we study the economics of new equilibrium (that is the performances and labor
time) for a computer system that contains a strange loop, which is a paradox studied by
Hofstadter [21]. In a convenient computer system a relation between software and hardware
exists where software is executed on the hardware. In our developed system, we added another
relation where the hardware is adapted by the outcomes of the software process. Both relations
together lead to a paradox – to the strange loop. The very unique feature of our developed
strange loop system is that it is autonomous and fully dynamic, and in consequence, the loop
iteration occurs without any manual efforts.

Outline

In the first section, we describe the process of abstraction and strange loop construction from
a computer design perspective. Next, we show how the process of creating abstractions re-
duces the labor time. To this end, we describe in details the characteristics of the abstraction
process and how they interfere with each other. Afterwards, we study the characteristics of
systems that are built from the abstraction structures like stacks. Since the prime example of
such structures are computer systems we present it in the next section. Finally, we describe
the instability problem that is caused by the equilibrium imbalance in computer systems and
possible solutions.

B.2. COMPUTER DESIGN: PROCESS OF ABSTRACTION AND STRANGE LOOP 135

B.2 Computer Design: Process of Abstraction and Strange
Loop

The design of the modern computer is a tremendous task and many have tried before but
without a success [104]. There is a golden rule which needs to be known to perform this
task and the ones which did not recognized it failed early [105]. This rule is the process of
abstraction.

Process of Abstraction

The idea behind the abstraction is very easy. It is to encapsulate a part of the complex system
into the component. The communication with the component is performed by a strict and
predefined interface which reduces the complexity and hides the unimportant details from the
rest of the world. While, on one hand, the interface allows to merge the component with
other components and build systems with ease, at the same time, it isolates and provides the
freedom to expand independently of the others.

Advancing from Abstractions

The usage of the abstraction, components, and their interfaces can be seen as a methodology
to develop better systems and tools. Every component hides the complexity and the stack of
them are hidden even more. This allows to model the complex systems painlessly. Since the
interface of the top component has syntax and semantics which is rich, expressive, adjusted
to the modeled system, and allows to describe it in an effortless manner. The design of the
compiler or the operating system are good examples of this idea.

Paradox and Strange Loop

The idea of building the complex systems from the stack of components is the first and simple
method of advancing from the abstractions. There is also the other more powerful method
or rather paradox known under the name strange loop which is presented in Figure B.2. The
strange loop occurs in the heap of the components when the upper component adjusts and
modifies the one bellow it. This again has the influence on the upper component and brings
the performance gains which are not possible to achieve only by it. In the philosophy, this
behavior is known as the consciousness.

Strange Loop in Computer Design

In computer science in order to perform the strange loop the upper component emulates the
behavior of component bellow him. The results of the emulation are then used to refine the
bottom components. In the design of the computer systems, this is a case between the hard-
ware and computational theory where dedicated hardware allows to reason about the theory.
Also this is a case between software and hardware were the software allows to design better
hardware. The transition between abstractions has to occur neither immediately nor automat-
ically as it is the case in the examples presented above.

136 APPENDIX B. STRANGE LOOP PERPSECTIVE

Figure B.2: Drawing Hands by M.C. Escher.

The runtime of the loop is a parameter of the system which corresponds to the time of a
full iteration of the loop. This parameter strongly depends on the design of the loop and how
the transition is performed i.e. automatically, manually, or hybrid. While the runtime can be
seen as the price of the loop iteration, the adaptation and the performance impact can be seen
as the rewards of the loop iteration, and the ratio between these two as the effectiveness of
strange loop. It is not always the case that the effectiveness will increase with every or any
loop iteration. Therefore, there exists an economical balance between factor, which is strongly
influenced by the design of the loop.

Strange Loop in Arts

In computer science, the strange loop often connects two separate and unrelated science dis-
ciplines like theory and electronics or hardware and software. The phenomena of this process
relies in taking parts and assembling them with the help of the isomorphism in a way which
leads to the creation of the loop. The right patterns of this process are hard to find but they
appear not only in the computer designs but also in the most profound musical and art com-
positions [21].

B.3. ABSTRACTION CHARACTERISTICS 137

B.3 Abstraction Characteristics
The design of the computer as well as the strange loop studied in this work rely on the pro-
cess of abstraction. Therefore, it is valuable to understand the properties of this process, its
benefits, drawbacks, and implications. These are presented in Figure B.3.

Properties

interface

Encapsulation
(isolation)

Component

Complexity
decrease

Modularity

Compatibility Reuse

Simplified
reasoning

Expressivness Flexibility

Decreased labor time

Properties of the abstraction

Figure B.3: Abstraction characteristics and their implications.

Properties

The abstraction is in charge of the encapsulation of the part of the system into a separate
component. The details of the component are hidden underneath the interface (marked with
the red color), which acts as a communication filter. It not only exposes the core functionality
of the component and hides all unimportant details from the user but it also provides a boarder
between the implementation and the definition. Therefore, from the user point of view the
component appears as a black box, since all the irrelevant details are hidden. This has two
fundamental consequences. First, it decreases the complexity of the component which leads
to simplified reasoning. The second consequence is that while the component is black boxed
it can be replaced by the others if the interface stays in touch and functionality intact. This,
on one hand, brings the modularity to the design and, on the other hand, the compatibility and
the reuse methodology.

Decreased Labor Time

The abstraction saves the labor time by letting in the expressiveness and the flexibility. The
fact that the component is easy to understand allows to utilize it in an eloquent and efficient

138 APPENDIX B. STRANGE LOOP PERPSECTIVE

manner. The flexibility, on the other hand, allows to easily modify or replace the compo-
nent without breaking any system dependencies. The decreased labor time stands as a major
property which justifies and authorizes the usage of the abstraction.

B.4 Abstraction Stacks

A single component encapsulates a part of the system and decreases the complexity of that
part. However, it is hard to sufficiently decrease the complexity of the full system only within
a single component. It is because the modeled systems are too large, have too many parts, and
are too complex. Therefore, in order to decrease both the complexity of the system and the
labor time at the same time the abstraction stack is used.

Case Study

In the left part of Figure B.4, a complex system is presented and next to it the same system
is expressed with the help of abstractions. Every abstraction is laid down on the other, which
forms an abstraction stack structure growing upwards. This has two major consequences for
complex systems like compilers or operating systems.

• The first consequence is the automation which significantly decreases the labor time
and allows to develop tools that automatically transform a given description expressed
in the higher level abstraction to the lower level ones. In other words, the description
found at the (i+6)th interface can be translated automatically to the (i+5)th and so on
until the bottom line. The stack of the abstraction has the complexity denoted with the
CA and since the automation allows to carry it automatically it significantly reduces the
complexity of the full system (CFS) and the necessary labor time.

• The second outcome deals with the granularity of the top interface found in the stack.
This granularity describes the level of the syntax and the semantics of the interfaces
found in the abstractions. The larger the granularity (the higher stack), the more elo-
quent, expressive, and meaningful syntax of the interface. The interface which has these
properties is more adapted to the modeled system and it allows to model large parts of
that system with ease. It reduces the complexity of the system (CS) and with the help
of the automation it shrinks the labor time.

Large Abstraction Stacks and Reduced Labor Time

The height of the stack is proportional to the number of abstractions. The large stack will
significantly decrease the labor time, which is due to the automation and the large granularity
of the interface. The automation releases a large portion of the system complexity from the
manual efforts, whereas the large granularity allows to describe the system effectively with an
expressive syntax.

B.5. ABSTRACTION PRICE 139

complex
system

system

A
bs

tr
ac

tio
n

st
ac

k

Labor
Time

medium

high

low

System with
abstraction

Non-abstracted
system

C
FS

C
S

i

i+1
i+2
i+3
i+4
i+5

i+6

bottom

top

Transfor
mation

C
A

manual

auto-
matic

powder

Granularity

fine

medium

coarsed

Figure B.4: The structure of the abstractions and the implications of the interface and the
labor time on the granularity. Here, i enumerates the interface, CFS means the complexity
of the full modeled system, CA complexity of the abstractions, and CS complexity of the
system. Therefore, CFS = CA + CS, whereas CA depends on the number of i, and labor time
is proportional to the CA.

B.5 Abstraction Price
At first sight, it might seem that it is always profitable to build higher stacks. Unfortunately,
this it is not the case. Every abstraction comes at a certain price and decreases the complex-
ity, which leads to the reduced labor time, but at the same time decreased complexity has a
negative impact on the performances. It is due to the fact, that the abstraction gains the re-
duced complexity by hiding details and reflecting only the general use case of the component.
Therefore, a given description can be implemented with the lower abstraction more precisely,
reaching higher performances, but at the higher costs of the labor time. In other words the de-
scription implemented with the i+6th interface can be implemented with the i+5th interface
or even with the ith interface, which will result in increased performances but at the same time
it will significantly increase the labor time.

B.6 Equilibrium: Performances and Labor Time
The performances and the labor time are characteristics of the same abstraction stack. They
are in inverse proportions to each other which leads to a trade-off situation. In order to achieve
the modest system, these two factors are driven by economic trends and result in an equilib-
rium.

This situation is presented in Figure B.5. On the vertical left axis, the height of the stack
is represented, which is proportional to the stack presented in Figure B.4. The horizontal

140 APPENDIX B. STRANGE LOOP PERPSECTIVE

high low

coarse

powder

Performance

Stack

medium

Labor Time

low

high

coarsecoarse

fine

lower

higher

i

i+1

i+2

i+3

i+4

i+5

i+6

Granularity

Figure B.5: Balance between the advantages and the penalties of the abstraction. The red color
represents the perfect balance situation where the increase of the performances is achieved
without any losses in the labor time.

axis corresponds to the performance and the right vertical axis to the labor time. The highest
performance max(performance) is achieved when the minimal number of abstractions is used
min(i) and when the size of the stack is minimal. Unfortunately, for this scenario the labor
time reaches the maximum. It is due to the fact that CFS = CA + CS and in the case when i
has a minimal value so does the CA. In that case, the equation takes the form CFS = min(CA)
+ CS => CFS = CS and this is the reason why the labor time has to deal with the CS which
is equivalent to the CFS. This is also why no automatic transformation is achieved and the
whole implementation of the CFS is shifted to manual efforts, which provides the maximum
labor time.

B.6.1 Perfect Equilibrium

A perfect balance appears when the low labor time and the high performances are both sus-
tained. This behavior is represented with the red color in Figure B.5, where the coarse gran-
ularity is moved to the left. This means that the same description expressed with the top
interface is able to achieve higher performances. This scenario is possible to reach only when
the lower abstractions are replaced with the ones of higher performances. This is not a hy-
pothetical concept, such scenario has been indeed achieved for many years in the computer
industry and will be explained bellow.

B.7. ABSTRACTED MODEL OF A COMPUTER AND COMPUTATION PROCESS 141

B.7 Abstracted Model of a Computer and Computation Pro-
cess

In Figure B.6, the abstraction model of the simplified computer and computations is presented.
The computer is based on several fields abstracted from each other. We can bucket them
into three domains: theory, implementation, and model. The theory tells how to build an
universal machine which allows to emulate other machines. In addition, it specifies what are
the limitations of this approach i.e. what it can actually emulate. In the theoretical world, the
machine is called a formal system and the emulation means that the universal machine is able
to read the description of other machines, simulate their behavior, and provide with results.
The implementation moves the theory from the paper descriptions to the real world hardware
devices. These devices alone do not perform any tasks and, as in the case of the universal
machine, they need the description of the other machine (formal system) to be emulated. The
process of describing a machine which behavior will be emulated in the modern world is called
a software programming. The software delivers a program which describes the behavior of the
machine as well as the input data. The program consists of an algorithm that models the real
world behavior. The knowledge, experience, and smartness of the programmer will influence
the efficiency and the accuracy of the algorithm.

The computer architecture is a prime, impressive, and unique example of the stack abstrac-
tions. It is impressive that it spans over several different fields like mathematics, hardware,
and software. Each of these is enlarging the granularity at a tremendous level. It is unique
since it always had a perfect balance between the performances and the programmer produc-
tivity (labor time), which is represented with the red color in Figure B.5. It allows to sustain
the low labor time and to increase the performances at the same time. This lets to shift the
balance only on the horizontal axis without any losses in the abstraction stack, increases in
the system complexity CS found in Figure B.4, or any refinements in the interfaces.

B.8 Instability Problem in Computer System Equilibrium

The perfect balance in years from 1978 to 1986 noticed increase of the performances by a
rate of 25% per year and until 2002 by the 52% rate [4]. This means that every 5 years
the performance increased more than 8 times. This raised performance was an outcome of
a constant advancements in the field of the semiconductor technology [1], which constantly
increased the operating frequency. On one hand, for more than three decades, the progress
in this field allowed to produce faster digital switching circuits whereas the properties of the
abstraction allowed to replace them without any implications in the stack. During these years
the technology and frequency scaling was almost solely a factor of the performances increase
and allowed to obtain the perfect balance situation between the performances and the labor
time, see red color in Figure B.5.

Unfortunately, after year 2002 the grow of the technology stopped due to several tech-
nology limitations including the brick wall presented in Section 1.5. The increase of the
performances as we know, was no longer possible only within the semiconductor technology
- a single abstraction. That was the case almost a decade ago and it is the case even now. This

142 APPENDIX B. STRANGE LOOP PERPSECTIVE

Data

Th
eo

ry

Data

Boolean
Algebra &

Logic

M
at

he
m

at
ic

s
C

om
pu

ta
tio

n

Turing
Machine

Turing Thesis

Operators

NAND NOR

H
ar

dw
ar

e Computer
Architecture

Technology
Shannon Msc.

Thesis

ISA

Compiler

So
ftw

ar
e Operating

System

API+SysCall+HLL

Pr
og

ra
m

m
er

Algorithm

Symbols

Machine code

Assembly code

High level lang.

SysCalls

M
od

el

N
at

ur
e

Laws

Computational
Process

InterfacesDomain

Reasoning
&

formal
systems

Automatas

Mechanical
Procedure

Fields Terminology

Observation
Im

pl
em

en
ta

tio
n

APIsLibraries

Firmware

1938

1950

1960

1970

1937

Time Abstraction stack

Manual
transformation

Automated
transformation

i+6

i+5

i+4

i+3

i+2

i+1

Figure B.6: Model of computation with defined abstractions.

B.9. SOLUTIONS AND THEIR LIMITATIONS 143

results in the balance instability problem for which new equilibrium needs to be established
and the increase rate of the performances restored.

B.8.1 Limitations of Sequential Computing

The instability problem has many more drawbacks than it might seem at first sight because it
shows the boundaries of the sequential computing. The origins of the sequential computing
are derived from the Turing Machine which is a theoretical model of the computations. The
computer architecture is based on that model and the advancements of the technology allowed
for frequency scaling and processing performance increase. In other words, the instability
problem tells that the limits of the sequential computing have been reached and since the roots
of the sequential computing are derived from the bottom abstraction, the instability problem
cannot be fixed only with small refinements but rather by significant changes in the stack.
These observations make the solution to the instability problem even more challenging.

B.9 Solutions and Their Limitations

The practical limits of the Turing Machine and the sequential computing have been reached.
Therefore, the only solution to the instability problem and computing performances increase
leads towards exploiting the parallel computing paradigm. This paradigm shift started to occur
in year 2005 when the first multi-core2 architecture has been released and in academia in year
1997 [106].

B.9.1 Top Abstraction Stays in Place

From the abstraction point of view, there are only two approaches to this scenario. The one
which modifies the top abstraction and the interface, and the second one without modifica-
tions. They both have to focus on the top abstraction since skipping it in current times would
require different software programming concepts and, in consequence, would damage all the
software legacy models.

The top abstraction and the interface (i+6) provides a crossing between the manual and the
automatic transformations. Models which would have to fit into lower interface would have
to be develop from scratch or significantly adjusted. In both cases, that would cause a notable
shift between the manual versus automatic transformations and between the complexity of the
abstraction (CA) versus the complexity of the system (CS), see Figure B.4. This shift would
sacrifice too much labor time. Therefore, the top abstraction and the interface have to stay at
the same place, they cannot be removed, in contrast to the ones bellow them, since this would
definitively increase the labor time to the point where the instability problem could not be
solved.

2Intel Pentium Processor Extreme Edition 840

144 APPENDIX B. STRANGE LOOP PERPSECTIVE

B.9.2 Adaptions to the Top Abstraction
The top abstraction and the interface can be adapted to the parallel paradigm conditions, which
differentiates the two mentioned solutions. The first one adapts the top interface and allows the
programmer to control and manage the high level parallelism explicitly. The second one does
not adapt the interface and expresses the lower level parallelism implicitly. The difference
between these levels corresponds to the type of the parallelism that they support. The explicit
parallelism targets the task and thread level parallelism, whereas the implicit parallelism at the
instruction and bit level parallelism. The explicit parallelism has to be clearly and precisely
specified during the code whereas the implicit one is unstated and inherent.

B.9.3 Adaptation with Explicit Parallelism
While the first solution can lead to better performance gains it brings the benefits only for
models whose origins are truly parallel. In order to express that parallelism, the programmer
needs to manually perform the division and synchronization as well as agglomeration and
mapping of the concurrent parts of the model. These are very difficult tasks that cannot be
automated and therefore, they are occupied by a significant labor time and correspond to the
notable vertical downward shift in Figure B.5. In addition, the computing performances are
burden with significant synchronization costs involved with managing of the concurrent tasks.
Moreover, it is worth to notice that the current von Neumann computer architecture which
is based on the concept of the Turing Machine and the sequential computing paradigm has
many drawbacks when used to express the explicit parallelism, and has been criticized many
times [88–90]. This can be clearly seen within the memory subsystem which is designed
to support the sequential computing paradigm and not the concurrent one [91]. While it
brings benefits for the sequential computing with the streaming mode, where large sequential
chunks of data are accessed with only a few instructions, it is not the case for the concurrent
and random accesses. This behavior leads to the memory partitioning problem but more
importantly to the memory bottleneck known as the von Neumann bottleneck and to decreased
computing performances, in particular for the parallel paradigm. The other major problems
involved in the concurrent computing on the sequential computer involve a proper partitioning
of the memory and ensuring the data coherence between the concurrent tasks.

B.9.4 Adaptation with Implicit Parallelism
While it may seem that the high level explicit parallelism model described above has been cho-
sen by the manufactures to deal with the instability problem, it is not necessary the best one. It
is because it is based on an old sequential computing paradigm which uses instruction-streams
and faces many drawbacks when used as a concurrent paradigm that is based on data-streams.
Probably the most challenging and demanding economically solution to the instability prob-
lem would be to redesign the abstraction stack from scratch and to begin with replacing the
von Neumann model with the concurrent theoretical computing model. The lambda calculus
with Church-Rosser property is a good example, since it has no side effects and avoids muta-
ble states and mutable data [24]. While this would eliminate all the architectural constraints it
would completely discard the von Neumann architecture at the same time. It would break all

B.10. CONTRIBUTIONS 145

the software legacy models, and be occupied by incredibly high labor time. This is the reason
why the bridge solution between the old von Neumann and the new concurrent computing
paradigm needs to be accomplished. It is also the reason why this work proposes a different
approach to the instability problem. This thesis focuses on the low level implicit parallelism
with the intact top abstraction and interface stack. This allows to use all programming legacy
models but at the same time it provides the dynamic strange loop that modifies the hardware
accordingly to the software needs and, in consequence, significantly increases the processing
performances.

B.10 Contributions
This work provides a solution to the instability problem by supplying a new and unique dy-
namic strange loop. The developed loop is universal since it supports current legacy models,
does not break them, nor puts any emphasis on the labor time since it keeps the top abstraction
and the interface intact. It is based on a new field named Reconfigurable Computing (RC),
which in contrast to the traditional hardwired fixed solutions, allows to change the hardware.
In this solution, the loop adapts the hardware to the low level implicit parallelism found in
the computing model. Put simply, it shifts the computation from higher level abstraction to
the lower one, which is responsible for the rewards of the loop iteration and the performance
gains, which are accounted from two factors. First, the shift eliminates the price of the ab-
stractions between high and low levels, which was described in Section B.5. Secondly, it
exploits the benefits of the parallelism found in the computing model. The exploited paral-
lelism changes the computation from the temporal software to the hardware spacial domain,
which increases the instruction per cycle rate and brings the performance gains.

The strange loop was designed as autonomous and automatic one, which means that the
iteration happens without any manual efforts. The transition between the abstraction levels
is automated and transparent to the user, and occurs during the execution of the computation
model. The time needed for this transition includes the process of the hardware generation
and the adaptation, which is known to be very time consuming. Therefore, in order to increase
the effectiveness of the loop, special optimization mechanisms were designed and developed
for this system and the loop.

This work provides with following contributions:

1. First, it presents a solution to the instability problem by designing and developing a
novel dynamic strange loop. The presented loop finds and extracts the implicit par-
allelism in the computational model, generates corresponding hardware circuits, and
adapts the software to it. It is easy to use, since it works transparently and automatically
and it does not require any manual efforts. It supports all legacy models and most of all
it does not increase the labor time for the new ones.

2. Next, it empirically evaluates the feasibility and applicability of the developed loop
and, thus, it studies the equilibrium of a new system. For a large set of applications,
it investigates the economical balance points between the rewards and the prices of
the loop iteration. In addition, it studies unique optimization mechanisms that were
developed in order to reduce the runtime and to provide better effectiveness ratios.

146 APPENDIX B. STRANGE LOOP PERPSECTIVE

3. Finally, this work performs a detailed analysis of the proposed approach. It reveals in
details where does the performance gains come from in a mixed sequential and a con-
current computing paradigm environment. To this end, detailed explanations allowing
for a better understanding of the instability problem and its implications in the abstrac-
tion stack are presented. A broad range of topics is studied starting from the software
and ending at the hardware architecture, i.e. automatic methods for parallelism extrac-
tion, efficient methods to prune the design and search spaces, or data path synthesis
(generating hardware circuits from a software description).

Appendix C

Other Approaches to the Pathway

During the initial work on the Woolcano compiler the generation of the UDCIs in the software
runtime adaptation were handled without the intrinsic support. The UDCI generation task
requires DAGs representation of the code. Since DAGs are already available in both backends
it seemed natural to generate the UDCI code from there and not from the middlend where
external libraries are required to construct DAGs. This approach has the advantage of resulting
the code being kept under a single LLVM framework without any requirements to the other
libraries that duplicate the already existed functionality.

Backends Extensions

To test the feasibility of this approach the first backend of the Woolcano compiler was ex-
tended with user predefined patterns and with additional artificial DAG nodes. In the later
phase, the user predefined patterns were replaced by the patterns generated by the UDCI can-
didate identification algorithms; see Section 5.4. The user predefined patterns were equivalent
to the functionality of the UDCIs and were applied to the DAGs; see Figure C.1. If found, the
DAG nodes were folded into an artificial node which later in the second backend was mapped
to the UDCI; see Figure C.2.

Prioritizer and Integrity Checker

In order to perform this operations successfully, the compiler extensions had to ensure that the
user predefined patterns were applied to the DAG before the other patterns. Otherwise, the
DAG was split on parts and the user defined pattern was not matched in a graph. To this end,
the prioritizing mechanisms were developed where the user defined patterns had the highest
priorities.

After folding the DAG to the artificial node, the compiler had to ensure that the DAG could
be still covered by processor instructions. If that was not possible it meant that the proper
code could not be generated and, in consequence, not all user defined patterns were accepted.
Therefore, a special integrity checker had to be developed that would test and validate if the
DAG can be covered by all patterns.

147

148 APPENDIX C. OTHER APPROACHES TO THE PATHWAY

Cumbersome Approach

While this approach is fully functional in practice and it allows to keep the development of
the Woolcano compiler under a single framework, however, it occurred to be very tedious.
The definitions of the user defined patterns were cumbersome to specify and additional costs
involved with the integrity checker made this approach not attractive. These are the main
reasons why this approach was later changed to the intrinsic one even though it required
external libraries for DAG construction.

User defined
pattern

Figure C.1: Initial DAG presented from the first backend, see Figure A.1.

149

Artificial node

Figure C.2: DAG with an artificial node leaving the instruction selection process and entering
the scheduling process in the second backend.

150 APPENDIX C. OTHER APPROACHES TO THE PATHWAY

Appendix D

Pruning Design Space

151

152
A

PPE
N

D
IX

D
.

PR
U

N
IN

G
D

E
SIG

N
SPA

C
E

App # Instr # BB ISE algorithm runtime [ms] Saved Clock Cycles [106] Speedup
ISE alg. MM SC UN MM SC UN MM SC UN
adpcm 305 43 1.7 15.0 3869.4 20945.6 26718.0 25753.3 1.24 1.31 1.29

aes 8972 200 40.6 31624.9 62776.6 0.2 0.1 0.1 1.64 1.32 1.32
blowfish 1746 59 8.0 2495.7 1147.3 0.7 0.7 0.7 1.43 1.43 1.43

cjpeg 19468 2483 115.3 1522.8 6191.6 9.7 16.1 16.1 2.09 7.51 7.51
fft 304 47 1.6 9.7 33.1 6.1 8.4 8.4 3.10 14.41 14.41

md5 918 29 3.8 4400.8 20353.4 0.3 0.3 0.3 2.09 1.76 1.76
sha 471 40 2.6 37.8 1314.3 4.4 4.0 3.8 1.41 1.36 1.33
sor 129 19 0.7 4.3 14.6 5.3 5.3 5.3 14.42 14.42 14.42

whetstone 284 44 1.6 9.5 64.0 231.9 231.9 231.9 18.01 18.01 18.01
401.bzip2 14102 1604 72.3 3839.3 1979.3 0.4 28912.9 28912.9 1.18 1.13 1.13
429.mcf 1917 284 11.1 68.7 200.5 826.5 826.8 826.8 1.11 1.11 1.11
433.milc 14260 1538 78.1 5065.6 - 232062.4 957390.9 - 1.30 21.55 -
444.namd 47534 5147 227.5 35853.6 - 13426391.2 34036379.8 - 1.61 24.85 -

445.gobmk 135500 27469 906.3 5797.5 93029.4 2.1 2.1 2.1 1.11 1.11 1.11
456.hmmer 29337 5518 178.3 76436.2 105699875.0 54745.8 64889.6 64889.5 2.46 3.38 3.38
458.sjeng 20531 3373 123.7 6244.1 235195.7 2651.0 3023.4 3023.4 1.12 1.14 1.14

462.libquantum 5327 1047 32.5 140.2 1167.1 5619.8 5864.6 5864.6 1.27 1.28 1.28
470.lbm 1988 104 8.6 2777.1 0.0 214657.9 344885.1 0.0 2.55 44.62 1.00
473.astar 6010 757 33.4 914.8 303796653.0 5792.6 6767.1 6767.0 1.16 1.19 1.19

Table D.1: Specialization process executed for whole applications when targeting the Woolcano architecture without capacity con-
straints. The performance of the custom instructions has been determined with the PivPav tool. ISE algorithms: MM=MaxMiso,
SC=SingleCut, UN=Union. SC & UN search is constrained to 4 inputs and 1 input.

List of Figures

2.1 Woolcano vs. convenient computer . 10
2.2 Difference in UDCI when implemented in ASIC and FPGA. 13
2.3 Dynamic vs. Static ASIP specialization process 16

3.1 APU architecture . 23
3.2 Woolcano reconfigurable hardware architecture 25
3.3 FCM Controller . 26
3.4 User Constrain File for Partial Reconfiguration 28
3.5 Woolcano Floor Plan . 29

4.1 Woolcano Compiler . 31
4.2 Implementation details of the ASIP specialization process. 33
4.3 PivPav design and ASIP-SP use case. 37

5.1 Raytracing: source code . 40
5.2 Pruning Hypothesis . 41
5.3 Raytracing: after basic block pruning . 44
5.4 Raytracing: UDCI candidate found . 48
5.5 Raytracing: candidate estimation . 50
5.6 Raytracing: after extraction pass . 58
5.7 Raytracing: DFG in VHDL generator . 59
5.8 Raytracing: after VHDL generation, behavioral and structural code 61

6.1 Woolcano compiler: pathway changes . 68
6.2 Raytracing: after communication pass . 71

8.1 Experimental setup . 82

11.1 ISE algorithms: number of candidates vs. basic block size 93
11.2 ISE algorithms: runtime vs. basic block size 95
11.3 ISE algorithms: number of candidates vs. medium basic block size 97

14.1 System economics for embedded, personal, and HPC domains 115
14.2 System dependencies . 117

A.1 Abstracted design of the LLVM . 127

153

154 LIST OF FIGURES

B.1 Equilibrium: performances vs. labor time 134
B.2 Strange Loop . 136
B.3 Abstraction process characteristics . 137
B.4 Characteristics of abstraction structures . 139
B.5 Balance point in abstraction structures . 140
B.6 Abstracted model of computer and computation 142

C.1 Code generator: user defined patterns . 148
C.2 Code generator: artificial DAG node . 149

List of Tables

4.1 Excerpt from PivPav hardware operator metrics 36

5.1 Basic block pruning algorithms. 43
5.2 Comparison of Candidate Identification ISE algorithms. 47
5.3 Metrics from PivPav requested by Candidate Estimation process. 53
5.4 Hardware estimation results. 54
5.5 Design space exploration results. 64

7.1 Performances of Woolcano hardware architecture. 78

9.1 Properties of applications used in experiments. 84

10.1 Basic block pruning results. 88

11.1 Candidate Identification results. 92

12.1 The runtime overheads for the ASIP-SP process. 103
12.2 Constant runtimes of ASIP-SP processes. 106

13.1 Accelerated break-even results. 110

A.1 LLVM type system . 125

D.1 Applications for basic block pruning. 152

155

156 LIST OF TABLES

List of Acronyms

ABI Application Binary Interface
API Application Programming INterface
APU Auxiliary Processing Unit
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instrction-Set Processor
ASIP-SP ASIP Specialization Process
AST Abstract Syntax Tree
BB Basic Block
BGL Boost Graph Library
CDFG Control Data Flow Graph
CFG Control Flow Graph
CMOS Complementary Metal Oxide Semiconductor
DAG Direct Acyclic Graph
DFG Data Flow Graph
DMIPS Dhrystone Milion Instruction Per Second
DPS Data Path Synthesis
DSL Domain Specific Language
DSP Digital Signal Processing
EAPR Early Access PRogramm
EDK Embedded Design Kit
FPGA Field Programmable Gate Array
GPR General Purpose Register
HLL High Level Language
HRA Hardware Runtime Adaptaion
IC Integrated Circuit
ICAP Internal Configuration Access Point
ILP Instrction Level Parallelism
IR Intermediate Representation
ISA Instruction Set Architecture
JIT Just-In-Time
LLVM Low Level Virtual Machine
LOC Lines Of Code
MIMO Maximum Input Maximum Output
MM MaxMiso (name of instruction set extension algorithm)
NG Netlist Generator

157

158 LIST OF TABLES

ODBC Open Database Connectivity
PRM Partial Reconfiguration Module
PRR Partal Reconfiguration Region
RC Reconfigurable Computing
SC SingleCut (name of instruction set extension algorithm)
SRA Software Runtime Adaptation
SSA Single Static Assigment
STL Standard Library
SoC System on Chip
TI Target Instruction
UCF User Constrain File
UDCI User Defined Custom Instruction
VM Virtual Machine
vN von Neumann

List of Publications

[1] Mariusz Grad and Christian Plessl. On the Feasibility and Limitations of Just-in-
Time Instruction Set Extension for FPGA-based Reconfigurable Processors. Int.
Journal of Reconfigurable Computing (IJRC), September 2011. Accepted for publi-
cation.

[2] Mariusz Grad and Christian Plessl. Just-in-Time Instruction Set Extension - Feasi-
bility and Limitations for an FPGA-based Reconfigurable ASIP Architecture. In
Proc. 18th Reconfigurable Architectures Workshop (RAW), pages 278–285. IEEE
Computer Society, May 2011.

[3] Mariusz Grad and Christian Plessl. Pruning the Design Space for Just-in-Time
Processor Customization. In Proc. Int. Conf. on ReConFigurable Computing and
FPGAs (ReConFig), pages 67–72. IEEE Computer Society, December 2010.

[4] Mariusz Grad and Christian Plessl. An Open Source Circuit Library with Bench-
marking Facilities. In Proc. 10th Int. Conf. on Engineering of Reconfigurable Systems
and Algorithms (ERSA), pages 144–150. CSREA Press, July 2010.

[5] Mariusz Grad and Christian Plessl. Woolcano: An Architecture and Tool Flow for
Dynamic Instruction Set Extension on Xilinx Virtex-4 FX. In Proc. 9th Int. Conf.
on Engineering of Reconfigurable Systems and Algorithms (ERSA), pages 319–322.
CSREA Press, July 2009.

[6] Mariusz Grad and Christian Plessl. Poster Abstract: Woolcano – An Architecture
and Tool Flow for Dynamic Instruction Set Extension on Xilinx Virtex-4 FX. In
Proc. IEEE Symp. on Field-Programmable Custom Computing Machines (FCCM).
IEEE Computer Society, April 2009.

159

160 LIST OF TABLES

Bibliography

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design
of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of
Solid-State Circuits, 9(5), October 1974.

[2] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):144, April 1965.

[3] Shekhar Borkar. Design challenges of technology scaling. IEEE Micro, 19:23–29, July
1999.

[4] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2006.

[5] Herb Sutter and James Larus. Software and the concurrency revolution. Queue, 3:54–
62, September 2005.

[6] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and et al. The landscape of parallel computing research: A
view from Berkeley. Technical Report 2006-183, EECS Department University of Cal-
ifornia Berkeley, 2006.

[7] Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall: implications of the
obvious. ACM SIGARCH Computer Architecture News, 23:20–24, March 1995.

[8] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock rate
versus IPC: the end of the road for conventional microarchitectures. In Proc. Int. Symp.
on Computer Architecture (ISCA), ISCA ’00, pages 248–259, New York, NY, USA,
2000. ACM.

[9] Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proc. of the Spring Joint Computer Conference (SJCC),
AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.

[10] John L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31:532–
533, May 1988.

161

162 BIBLIOGRAPHY

[11] Andrew A. Chien, Allan Snavely, and Mark Gahagan. 10x10: A general-purpose archi-
tectural approach to heterogeneity and energy efficiency. Procedia Computer Science,
4:1987–1996, January 2011.

[12] Samuel Webb Williams. Auto-tuning performance on multicore computers. PhD thesis,
University of California, Berkeley, Berkeley, CA, USA, 2008. AAI3353349.

[13] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. IEEE Com-
puter, 41:33–38, July 2008.

[14] Intel Advanced Vector Extensions Programming Reference, June 2011.

[15] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scale. AltiVec extension to Pow-
erPC accelerates media processing. IEEE Micro, 20(2):85–95, March 2000.

[16] S. Oberman, G. Favor, and F. Weber. AMD 3DNow! technology: architecture and
implementations. IEEE Micro, 19(2):37–48, March 1999.

[17] S. K. Raman, V. Pentkovski, and J. Keshava. Implementing streaming SIMD extensions
on the Pentium III processor. IEEE Micro, 20(4):47–57, July 2000.

[18] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Communica-
tions of the ACM, 54:67–77, May 2011.

[19] G. Martin and H. Chang. Winning the SoC revolution: Experiences in real design.
Springer/Kluwer Academic Publishers, 2003.

[20] Ronald Sass and Andrew G. Schmidt. Embedded Systems Design with Platform FP-
GAs: Principles and Practices. Morgan Kaufmann, 1st edition, August 2010.

[21] Douglas Hofstadter. Gödel, Escher, Bach. Basic Books, 1979.

[22] K. Arvind and Rishiyur S. Nikhil. Executing a program on the MIT tagged-token
dataflow architecture. IEEE Trans. on Computers, 39:300–318, March 1990.

[23] Paolo Ienne and Rainer Leupers. Customizable Embedded Processors: Design Tech-
nologies and Applications, chapter 16, pages 381–423. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2006.

[24] Matthew Naylor and Colin Runciman. The reduceron reconfigured. In Paul Hudak
and Stephanie Weirich, editors, Int. Conf. on Functional Programming (ICFP), pages
75–86. ACM, 2010.

[25] Ian Kuon and Jonathan Rose. Quantifying and Exploring the Gap Between FPGAs and
ASICs. Springer/Kluwer Academic Publishers, 2011.

[26] Elaine Rhodes. ASIC Basics: Black and White Edition. Lulu.com, 2008.

[27] Hubert Kaeslin. Digital Integrated Circuit Design: From VLSI Architectures to CMOS
Fabrication. Cambridge University Press, 2008.

BIBLIOGRAPHY 163

[28] Clive Maxfield. FPGAs: Instant Access. Newnes, 2008.

[29] Mariusz Grad and Christian Plessl. Woolcano: An Architecture and Tool Flow for
Dynamic Instruction Set Extension on Xilinx Virtex-4 FX. In Proc. 9th Int. Conf.
on Engineering of Reconfigurable Systems and Algorithms (ERSA), pages 319–322.
CSREA Press, July 2009.

[30] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA: A high-performance
architecture with a tightly-coupled reconfigurable functional unit. In Proc. Int. Symp.
on Computer Architecture (ISCA), pages 225–235. ACM, 2000.

[31] Rahul Razdan and Michael D. Smith. A high-performance microarchitecture with
hardware-programmable functional units. In Proc. 27th Int. Symp. on Microarchitec-
ture (MICRO-27), pages 172–180, New York, NY, USA, 1994. ACM.

[32] M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, Peter M. Athanas, Harvey F. Sil-
verman, and S. Ghosh. PRISM-II compiler and architecture. In Proc. IEEE Symp. on
Field-Programmable Custom Computing Machines (FCCM), pages 9–16. IEEE Com-
puter Society, April 1993.

[33] Francisco Barat, Murali Jayapala, Pieter Op De Beeck, and Geert Deconinck. Recon-
figurable instruction set processors: A survey. In IEEE Trans. on Software Engineering,
pages 168–173. IEEE, 2000.

[34] Carlo Galuzzi and Koen Bertels. The instruction-set extension problem: A survey. In
Proc. Int. Conf. on Architecture of Computing Systems (ARCS), number 4943 in LNCS,
pages 209–220. Springer/Kluwer Academic Publishers, 2008.

[35] Mariusz Grad and Christian Plessl. Pruning the Design Space for Just-in-Time Pro-
cessor Customization. In Proc. Int. Conf. on ReConFigurable Computing and FPGAs
(ReConFig), pages 67–72. IEEE Computer Society, December 2010.

[36] Raymond J. Hookway and Mark A. Herdeg. DIGITAL FX!32: combining emulation
and binary translation. Digital Technical Journal, 9(1):3–12, 1997.

[37] Vasanath Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Transparent dynamic opti-
mization. Technical Report HPL-1999-78, HP Laboratories Cambridge, June 1999.

[38] K. Ebcioǧlu and E. Altman. DAISY: Dynamic compilation for 100 percent architec-
tural compatibility. In Proc. Int. Symp. on Computer Architecture (ISCA), pages 26–37,
New York, 1997. ACM.

[39] Jim Smith and Ravi Nair, editors. Virtual Machines: Versatile Platforms for Systems
and Processes. Computer Architecture and Design. Morgan Kaufmann Publishers Inc.,
June 2005.

[40] Antonio Carlos S. Beck and Luigi Carro. Dynamic reconfiguration with binary transla-
tion: breaking the ILP barrier with software compatibility. In Proc. Design Automation
Conference (DAC), pages 732–737, New York, NY, USA, 2005. ACM.

164 BIBLIOGRAPHY

[41] Frank Vahid, Greg Stitt, and Roman Lysecky. Warp processing: Dynamic translation
of binaries to FPGA circuits. IEEE Computer, 41:40–46, July 2008.

[42] R. E. Gonzalez. Xtensa: A configurable and extensible processor. IEEE Micro,
20(2):60–70, März/April 2000.

[43] Mimosys, Lugano, Switzerland. Mimosys Clarity product datasheet, July 2006.

[44] Xilinx. Early Access Partial Reconfiguration User Guide, March 2006.

[45] Xilinx, Inc. Constraints Guide, 9.1i edition, 2007.

[46] Peter M. Athanas and Harvey F. Silverman. Processor reconfiguration through
instruction-set metamorphosis. IEEE Computer, 26(3):11–18, March 1993.

[47] M. J. Wirthlin and B. L. Hutchings. A dynamic instruction set computer. In Proc. 3rd
IEEE Workshop on FPGAs for Custom Computing Machines (FCCM), pages 99–107.
IEEE Computer Society, April 1995.

[48] J. E. Carrillo Esparza and P. Chow. The effect of reconfigurable units in superscalar
processors. In Proc. 9th ACM Int. Symp. on Field-Programmable Gate Arrays (FPGA),
pages 141–150. ACM, 2001.

[49] Jeffrey M. Arnold. S5: the architecture and development flow of a software config-
urable processor. In Int. Conf. on Field Programmable Technology (ICFPT), pages
121–128. IEEE Computer Society, December 2005.

[50] T.J. Callahan, J.R. Hauser, and J. Wawrzynek. The Garp architecture and C compiler.
IEEE Computer, 33(4):62–69, Apr 2000.

[51] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matt Moe,
and R. Reed Taylor. PipeRench: A reconfigurable architecture and compiler. IEEE
Computer, 33(4):70–77, April 2000.

[52] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. Chaves Filho.
MorphoSys: An integrated reconfigurable system for data-parallel and computation-
intensive applications. IEEE Trans. on Computers, 49(5):465–481, May 2000.

[53] Paula J. Pingree, Jean-Francois L. Blavier, Geoffrey C. Toon, and Dmitriy Bekker.
An FPGA/SoC approach to on-board data processing enabling new mars science with
smart payloads. In Proc. IEEE Aerospace Conference (IEEEAC), pages 1–12. IEEE
Computer Society, March 2007.

[54] Wade S. Fife and James K. Archibald. Reconfigurable on-board vision processing for
small autonomous vehicles. EURASIP Journal on Embedded Systems, pages 33–46,
2007.

BIBLIOGRAPHY 165

[55] Muhammad Omer Cheema and Omar Hammami. Customized SIMD unit synthesis
for system on programmable chip: a foundation for HW/SW partitioning with vector-
ization. In Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), pages
54–60, Piscataway, NJ, USA, 2006. IEEE Computer Society.

[56] Juergen Wassner, Klaus Zahn, and Dersch Ulrich. Hardware-software codesign of a
tightly-coupled coprocessor for video content analysis. In Proc. IEEE Workshop on
Signal Processing Systems (SiPS), pages 87–92. IEEE, 2010.

[57] Glenn Steiner. Code acceleration with an APU coprocessor: a case study of an LPM
algorithm. Technical report, Xilinx, 2008.

[58] Mariusz Grad and Christian Plessl. An Open Source Circuit Library with Benchmark-
ing Facilities. In Proc. 10th Int. Conf. on Engineering of Reconfigurable Systems and
Algorithms (ERSA), pages 144–150. CSREA Press, July 2010.

[59] Xilinx. CORE Generator Guide.

[60] Cristian Klein Florent de Dinechin and Bogdan Pasca. Generating high-performance
custom floating-point pipelines. In Proc. Int. Conf. on Field Programmable Logic and
Applications (FPL), August 2009.

[61] Altera. Megafunction Overview User Guide.

[62] Aeroflex Gaisler. GRLIB User’s Manual.

[63] Grégory Massal. A raytracer in C++.

[64] Huynh Phung Huynh, Joon Edward Sim, and Tulika Mitra. An efficient framework
for dynamic reconfiguration of instruction-set customization. In Proc. Int. Conf. on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES), pages 135–
144, 2007.

[65] P Yu and Tulika Mitra. Scalable custom instructions identification for instruction-set
extensible processors. In Proc. Int. Conf. on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), pages 69–78. ACM, 2004.

[66] Laura Pozzi, Kubilay Atasu, and Paolo Ienne. Exact and approximate algorithms for
the extension of embedded processor instruction sets. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 25(7):1209–1029, July 2006.

[67] Cesare Alippi William, William Fornaciari, Laura Pozzi, and Mariagiovanna Sami. A
DAG-based design approach for reconfigurable VLIW processors. In Proc. Design,
Automation and Test in Europe Conf. (DATE), pages 778–779. ACM, January 1999.

[68] Jie Gong, Daniel D. Gajski, and Sanjiv Narayan. Software estimation from executable
specifications. Journal of Computer Software Engineering, 2:239–258, March 1994.

[69] IBM. The PowerPC 405TM Core, Nov 1998.

166 BIBLIOGRAPHY

[70] Abhijit Ray, Thambipillai Srikanthan, and Wu Jigang. Practical techniques for per-
formance estimation of processors. In Proc. Int. Workshop on System-on-Chip for
Real-Time Applications (IWSOC), pages 308–311, Washington, DC, USA, 2005. IEEE
Computer Society.

[71] Byoungro So, Pedro C. Diniz, and Mary W. Hall. Using estimates from behavioral
synthesis tools in compiler-directed design space exploration. In Proc. 40th Design
Automation Conf. (DAC), pages 514–519, New York, NY, USA, 2003. ACM.

[72] Floating-Point Operator v5.0.

[73] Naresh Maheshwari and Sachin S. Sapatnekar. Timing analysis and optimization of
sequential circuits. Springer/Kluwer Academic Publishers, Norwell, MA, USA, 1999.

[74] Yan Lin Aung, Siew Kei Lam, and Thambipillai Srikanthan. Performance estimation
framework for FPGA-based processors. In Jinian Bian, Qiang Zhou, Peter Athanas,
Yajun Ha, and Kang Zhao, editors, Int. Conf. on Field Programmable Technology
(ICFPT), pages 413–416. IEEE Computer Society, 2010.

[75] Pong P. Chu. RTL Hardware Design Using VHDL: Coding for Efficiency, Portability,
and Scalability. Wiley-IEEE Press, 2006.

[76] RJ Meeuws, Yana Yankova, Koen Bertels, Georgi Gaydadjiev, and Stamatis Vassiliadis.
A quantitative prediction model for hardware/software partitioning. In Proc. Int. Conf.
on Field Programmable Logic and Applications (FPL), pages 735–739, 2007.

[77] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,
1994.

[78] Jürgen Teich and Christian Haubelt. Digitale Hardware/Software-Systeme. Synthese
und Optimierung, chapter 4. Springer/Kluwer Academic Publishers, Berlin Heidelberg
New York, 2nd edition, 2007.

[79] Hohenauer Manuel and Leupers Rainer. C Compilers for ASIPs: Automatic Compiler
Generation with LISA. Springer/Kluwer Academic Publishers, October 2009.

[80] João M.P. Cardoso and Pedro C. Diniz. Compilation Techniques for Reconfigurable
Architectures. Springer/Kluwer Academic Publishers, 2008.

[81] Richard E. Hank, Scott A. Mahlke, Roger A. Bringmann, John C. Gyllenhaal, and Wen
mei W. Hwu. Superblock formation using static program analysis. In Proc. Int. Symp.
on Microarchitecture (MICRO), pages 247–255. IEEE Computer Society, 1993.

[82] Sweta Verma, Ranjit Biswas, and J. B. Singh. Extension of superblock technique
to hyperblock using predicate hierarchy graph. In Sanjay Ranka, Arunava Banerjee,
Kanad Kishore Biswas, Sumeet Dua, Prabhat Mishra, Rajat Moona, Sheung-Hung
Poon, and Cho-Li Wang, editors, Contemporary Computing - Third International Con-
ference, IC3 2010, Noida, India, August 9-11, 2010, Proceedings, Part II, volume 95

BIBLIOGRAPHY 167

of Communications in Computer and Information Science, pages 217–229. Springer,
2010.

[83] Weihaw Chuang, Brad Calder, and Jeanne Ferrante. Phi-Predication for light-weight
if-conversion. In Proc. 2003 Int. Symp. on Code Generation and Optimization (CGO),
CGO ’03, pages 179–190, Washington, DC, USA, 2003. IEEE Computer Society.

[84] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A.
Bringmann. Effective compiler support for predicated execution using the hyperblock.
In Proc. Int. Symp. on Microarchitecture (MICRO), pages 45–54. ACM, 1992.

[85] C. Claus, F.H. Muller, J. Zeppenfeld, and W. Stechele. A new framework to accelerate
Virtex-II Pro dynamic partial self-reconfiguration. In Proc. Int. Symp. on Parallel and
Distributed Processing (IPDPS), pages 1–7. IEEE, 2007.

[86] Paolo Bonzini and Laura Pozzi. Polynomial-time subgraph enumeration for auto-
mated instruction set extension. In Proc. Design, Automation and Test in Europe Conf.
(DATE), pages 1331–1336, San Jose, CA, USA, 2007. EDA Consortium.

[87] Etienne Bergeron, Marc Feeley, and Jean Pierre David. Hardware JIT compilation
for off-the-shelf dynamically reconfigurable FPGAs. In Proceedings of the Joint Euro-
pean Conferences on Theory and Practice of Software 17th international conference on
Compiler construction, CC’08/ETAPS’08, pages 178–192, Berlin, Heidelberg, 2008.
Springer-Verlag.

[88] Arvind and Robert A. Iannucci. A critique of multiprocessing von Neumann style.
ACM SIGARCH Computer Architecture News, 11:426–436, June 1983.

[89] John Backus. Can programming be liberated from the von neumann style?: a functional
style and its algebra of programs. Communications of the ACM, 21:613–641, August
1978.

[90] Reiner Hartenstein. The Neumann Syndrome calls for a revolution. In Proc. Int. Work-
shop on High-Performance Reconfigurable Computing Technology and Applications
(HPRCTA), HPRCTA ’07, New York, NY, USA, 2007. ACM.

[91] Sarita V. Adve and Hans-J. Boehm. Memory models: a case for rethinking parallel
languages and hardware. Communications of the ACM, 53:90–101, August 2010.

[92] David W. Wall. Limits of instruction-level parallelism. ACM SIGARCH Computer
Architecture News, 19:176–188, April 1991.

[93] Uwe Meyer-Baese. Digital Signal Processing with Field Programmable Gate Arrays.
Springer, 3rd edition, December 2007.

[94] Jason Cong and Yi Zou. Fpga-based hardware acceleration of lithographic aerial image
simulation. ACM Trans. on Reconfigurable Technology and Systems, 2:17:1–17:29,
September 2009.

168 BIBLIOGRAPHY

[95] Jian Li, Marinko V. Sarunic, and Lesley Shannon. Scalable, high performance fourier
domain optical coherence tomography: Why fpgas and not gpgpus. Proc. IEEE Symp.
on Field-Programmable Custom Computing Machines (FCCM), 0:49–56, 2011.

[96] Jack W. Davidson and Sanjay Jinturkar. Improving instruction-level parallelism by
loop unrolling and dynamic memory disambiguation. In Proceedings of the 28th an-
nual international symposium on Microarchitecture, MICRO 28, pages 125–132, Los
Alamitos, CA, USA, 1995. IEEE Computer Society Press.

[97] Chris Lattner. Macroscopic Data Structure Analysis and Optimization. PhD thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, May
2005.

[98] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In Proc. 2004 Int. Symp. on Code Generation and
Optimization (CGO), pages 75–86. IEEE Computer Society, 2004.

[99] Chris Lattner. LLVM: An infrastructure for multi-stage optimization. Master’s thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, Dec
2002.

[100] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers Inc., 1997.

[101] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas Kistler,
Alexander Klaiber, and Jim Mattson. The transmeta code morphing software: us-
ing speculation, recovery, and adaptive retranslation to address real-life challenges.
In Proceedings of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, CGO ’03, pages 15–24, Washington, DC,
USA, 2003. IEEE Computer Society.

[102] Robert Wilson, Robert French, Christopher Wilson, Saman Amarasinghe, Jennifer An-
derson, Steve Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary Hall, Monica Lam, and
John Hennessy. SUIF: an infrastructure for research on parallelizing and optimizing
compilers. SIGPLAN Notices, 29(12), Dec 1994.

[103] Anthony Hyman. Charles Babbage: Pioneer of the Computer. Princeton University
Press, 1985.

[104] Bernard Cohen. Howard Aiken: Portrait of a Computer Pioneer. MIT Press, 2000.

[105] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee,
Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb,
Saman Amarasinghe, and Anant Agarwal. Baring it all to software: Raw machines.
IEEE Computer, 30:86–93, September 1997.

