Generating Processors from

Specifications of Instruction Sets
-

Dissertation

A thesis submitted to the
Faculty of Electrical Engineering, Computer Science, and Mathematics
of the
University of Paderborn

in partial fulfillment of the requirements for the degree of
Doctor rerum naturalium (Dr. rer. nat.)

by

Ralf Dreesen

Paderborn, September 2011

Supervisor:

Prof. Dr. Uwe Kastens (University of Paderborn)

Reviewer:
Prof. Dr. Uwe Kastens (University of Paderborn)
Prof. Dr. Marco Platzner (University of Paderborn)

Prof. Dr.-Ing. Ulrich Riickert (University of Bielefeld)

Additional members of committee:

Prof. Dr. Franz Rammig (University of Paderborn)
Dr. Matthias Fischer (University of Paderborn)

Submitted: 15.09.2011
Examination: 6.12.2011
Published: 9.12.2011

Acknowledgments

I would like to use this opportunity to show my gratitude to all people who
supported me during this thesis.

First of all, I would like to thank my adviser Professor Uwe Kastens, for
the support and guidance he gave me and which significantly contributed to the
quality of this thesis. Professor Kastens allowed me great latitude in the design
of the system and has shown me the right direction during numerous fruitful
discussions. I want to thank Professor Ulrich Riickert and Professor Marco
Platzner for their interest in my thesis and reviewing. In addition, I would like
to thank Professor Riickert for the constructive cooperation with his research
group.

I am obliged to many of my colleagues, who accompanied me in the past
years. In particular, I owe earnest thankfulness to Dr. Michael Thies for many
intensive discussions during coffee break. Special thanks go to Thorsten Junge-
blut for helping me in the area of hardware design and giving me access to the
respective infrastructure.

I would like to show my gratitude to Friederike Sudholt and Paul Jaessing
for proof reading, in particular as the subject is far away from their profession.
My personal thanks go to Johanna Sudholt, who has supported me throughout
this thesis, as she has done for the past 12 years. I am thankful to my parents
for giving me advice and virtues for my life.

Paderborn, 15.09.2011 Ralf Dreesen

Abstract

Most digital systems include microprocessors, as they are very flexible. Some
of these microprocessors are tailored to the respective area of application, to
optimize execution time and power consumption. An efficient development of
such processors necessitates convenient development tools.

This thesis contributes a specification language called ViDL and two gen-
erators for rapid development of application specific processors. A developer
specifies an instruction set in ViDL, then generates an instruction set simulator
as well as a microarchitectural processor implementation from that specifica-
tion. ViDL provides powerful concepts to specify a wide range of instruction
sets at a high level of abstraction. For instance, the pipeline and its control are
not defined by the developer, but contributed automatically by the processor
generator. To demonstrate the power of ViDL, real world instruction sets, such
as MIPS, ARM, Power and CoreVA have been specified. A ViDL specification
is very similar to instruction set manuals, which allows for rapid formalization
(e.g. one day for MIPS).

The generated high speed simulators execute 60 million instructions per sec-
ond (Mips) on average with a peak performance of 140 Mips. The generated
processor implementations yield a clock frequency of 600 MHz on a 65nm ST
Microelectronics low power technology. The processor generator produces a
pipelined n-stage microarchitecture, where n is automatically derived from a
user defined target clock frequency (e.g. 600 MHz) and instruction semantics.
As a result, different microarchitectural implementations (e.g. 2-stage and 6-
stage) can be generated at no extra effort. All processors and the simulator are
guaranteed to be consistent, as they are generated from the very same specifi-
cation. There is no way that a ViDL user can break this consistency, neither by
mistake nor by intention.

To prove the fitness of ViDL for design space exploration (DSE) and in-
struction set extension (ISE), a new application specific processor has been
developed as part of this thesis. The processor called DNACore is based on
MIPS and includes a sophisticated SIMD instruction set extension to acceler-
ate the Smith-Waterman algorithm. The algorithm is used in bioinformatics
to align DNA, RNA and protein sequences. The generated processor is freely
programmable and achieves a throughput of 2.6 billion cell updates per second
(GCUPS) at an estimated power consumption of only 0.05 W.

Zusammenfassung

Viele digitale Systeme beinhalten Mikroprozessoren, weil sie aufgrund ihrer Pro-
grammierbarkeit sehr flexibel einsetzbar sind. Einige dieser Mikroprozessoren
sind auf den jeweiligen Anwendungsbereich zugeschnitten, um die Ausfithrungs-
geschwindigkeit von Programmen zu steigern und Energie zu sparen. Eine effizi-
ente Entwicklung solcher anwendungsspezifischer Prozessoren bedarf geeigneter
Entwicklungswerkzeuge.

Dazu tragt diese Arbeit, sowohl durch die Spezifikationssprache ViDL, als
auch durch zwei Generatoren zur schnellen Entwicklung anwendungsspezifischer
Prozessoren bei. Ein Entwickler spezifiziert einen Instruktionssatz in ViDL und
generiert daraus einen Simulator, als auch eine mikroarchitektonische Implemen-
tierung eines Prozessors. ViDL verfiigt iiber méchtige Konzepte, um eine Viel-
zahl an Instruktionssitzen auf einem hohen Abstraktionsniveau zu spezifizieren.
So werden zum Beispiel die Pipeline und ihre Kontrolle nicht durch den Entwick-
ler definiert, sondern automatisch durch den Generator aus dem Instruktions-
satz hergeleitet. Um die praktische Anwendbarkeit von ViDL zu demonstrieren,
wurden reale Instruktionsséitze wie ARM, MIPS, Power und CoreVA spezifiziert
und entsprechende Simulatoren und Prozessoren generiert. Eine ViDL Spezifika-
tion ist der Notation in Instruktionssatz-Handbiichern sehr dhnlich und erlaubt
deshalb eine schnelle Formalisierung (z.B. einen Tag fiir MIPS).

Der generierte Simulator fithrt durchschnittlich 60 Millionen Instruktionen
pro Sekunde (Mips) aus, mit einer Spitzengeschwindigkeit von 140 Mips. Ge-
nerierte Prozessoren erreichen eine Geschwindigkeit von ca. 600 MHz fiir eine
65 nm STMicroelectronics low power Technologie. Der Prozessorgenerator er-
zeugt eine n-stufige Pipeline, wobei n automatisch anhand einer vom Benut-
zer gegebenen Zielfrequenz ermittelt wird (z.B. 600MHz). Folglich kénnen ohne
zusétzlichen Aufwand verschiedenste mikroarchitektonische Implementierungen
generiert werden. Alle Prozessoren und der Simulator sind garantiert konsistent,
weil sie vollautomatisch aus derselben Spezifikation erzeugt werden. Ein ViDL
Entwickler kann diese Konsistenz nicht verletzen, weder unbeabsichtigt noch
vorsatzlich.

Die Eignung ViDLs zur Exploration von Entwurfsraumen und Erweiterung
von Instruktionssétzen wurde durch die Entwicklung eines anwendungsspezifi-
schen Prozessors im Rahmen dieser Arbeit nachgewiesen. Der Prozessor namens
DNACore basiert auf MIPS und wurde durch einen Satz anspruchsvoller SIMD
Instruktionen erweitert, die die Ausfithrung des Smith-Waterman Algorithmus
erheblich beschleunigen. Der Algorithmus wird in der Bioinformatik eingesetzt,

um DNS-; RNS- und Proteinsequenzen zu analysieren. Der generierte Prozessor
ist frei programmierbar und erreicht einen Durchsatz von 2.6 giga cell updates
per second (GCUPS) bei einer Leistungsaufnahme von nur 0.05 W

Contents

1 Introduction 15
1.1 Motivation 15
1.2 Overview 17
1.3 Processor aspects L oo 18
1.4 Scientific contributionso 19

1.4.1 Language concepts 19
1.4.2 Generation methods 20
1.5 Processor implementations L0 21
1.6 System overview Lo 22
1.7 Evolution of ViDL and its generators 23
1.8 Areasofexpertise. 24

2 Fundamentals 27

2.1 Instruction set architectures L. 27
2.1.1 ARM 28
2.1.2 MIPS . . . 29
2.1.3 OISC — One instruction set computer 30

2.2 Design scenarios 30

2.3 Domain specific languages o000 32

2.4 Compilation methods 34
2.4.1 Front-end 35
242 Middle-endo 36
2.4.3 Back-end L 36
2.4.4 Compiler framework 37

2.5 Typesystems 37
2.5.1 Subtyping o 38
252 Tuples 38
2.5.3 Signatures 38
2.5.4 Polymorphic typeso 39
2.5.5 Polymorphic functions 39

2.6 Term rewriting systems oL 39
2.6.1 Term. 39
2.6.2 Rewriterules L L 40

2.6.3 Termination and confluence 40

10 CONTENTS
2.7 Microarchitectureo 40
2.7.1 Storages 41
2.7.2 Datapath 42
2.7.3 Pipeline 43
2.74 Executionorder. 44

2.7.5 Forwarding 44
2.7.6 Imterlockingo o 45
2.7.7 Branch prediction 46

3 Related approaches 49
3.1 Taxonomy of ISA specification languages. 49
3.2 Notation in ISA manuals. 51
32,1 ARMmanual 52
3.2.2 Review 52

3.3 ISP . . . 53
331 State. 53
332 Allases. 53
3.3.3 Imstruction encodingo 53
3.3.4 Activations 54
335 Actions 54
3.3.6 Data-types 55
3.3.7 Review 55

34 oML .. 56
3.4.1 State. 57
3.4.2 Instructionset L L. 57
3.4.3 Modeling of instruction sets 59
344 Review 59

3.5 ASIP Meister/PEAS-IIT 61
3.6 Lisa e 62
3.6.1 Storages 62
3.6.2 Instructionset 63
3.6.3 Hardware sharing 65
3.6.4 Pipeline o 66
3.6.5 Complexity of language 67
3.6.6 Practical application L. 67

3.7 ISDL e 69
3.8 Expression. 70
3.9 Tensilica instruction extension (TIE) 70
3.9.1 State. 71
3.9.2 Instruction semantics 0L 71
3.9.3 Hardware sharing 72
3.9.4 Datapath scheduling 73

3.10 DPG — Datapath generator 73

CONTENTS 11

4 ViDL — Versatile ISA description language 75
4.1 A ViDLexample, 76
4.2 Structure of a specification 78
4.3 Abstraction from microarchitecture 78
4.4 Instructions Lo 80

441 Encoding 80
4.4.2 Semantics 80
4.5 Functional concepts oo 81
4.5.1 Functions 82
4.5.2 Polymorphism 0. 82
4.5.3 Closures o 82
454 Recursion o 83
4.5.,5 Name bindingo 83
4.5.6 Tuples 84
4.5.7 Vectors 84
4.5.8 Reviewof concepts oL 85
4.6 Epsilonlogic 89
4.6.1 Operating on epsilon logic 90
4.6.2 Review e 90
4.7 Delays o 92
471 Causality o 93
472 Review 94
4.8 Architectural interfaces L. 95
4.8.1 Mapping.o 96
4.82 Review 97
4.9 Typesystem e 99
491 Typeso 101
4.9.2 Typeinference L. 107
4.9.3 Evaluation 111

5 Transfer primitives 117
5.1 Library 118
5.2 Primitive 118
5.3 Generic primitives Lo o 120
5.4 Review 122

6 Design patterns 123
6.1 Partial memory accesses 123
6.2 Statusregisters 125
6.3 Processor-mode sensitive registers. 126
6.4 Register windowing L oL 127
6.5 Dynamically reconfigurable register files 128
6.6 Register pairs Lo 129
6.7 Constant register 130
6.8 Embedded program counter L. 131

6.9 Branch. 133

12

CONTENTS

6.10 SIMD instructions 134
6.11 Conditional execution 135
6.12 Complex operand encodings 136
6.13 Addressing modes 136
Generators 139
7.1 Processingof ViDL 139
7.1.1 Name analysis 140
7.1.2 Optimizations 140

7.1.3 Translation of architectural interfaces 141
7.1.4 Analysis of instruction encoding 142

7.2 Intermediate representation 0L 142
7.2.1 Instruction DFGs. 144
7.2.2 DFG simplification 145
7.2.3 Origin information 145

7.3 Term rewriting systemo 147
7.3.1 Isomorphism 148
7.3.2 Applications o 149
7.3.3 Origin information 149
7.3.4 Integer arithmetic 150
73.5 Rulesets o 151
7.3.6 Bit-widths. 152

7.4 Transformations and optimizations 152
7.4.1 Partial evaluation 152
7.4.2 Epsilon transformationo 153

7.5 Methods for generating simulators 155
7.5.1 Structure of simulator, 156
7.5.2 Bit-strings. o 157
7.5.3 Decoding o 158
7.5.4 Implementing instruction semantics 159
7.5.5 Transactions oL 161

7.6 Methods for generating processors 162
7.6.1 Register port allocation 163
7.6.2 Operation pipelining L. 165
7.6.3 Timing 165
7.6.4 Portscheduling 000 166
7.6.5 Operation scheduling 168
7.6.6 Pipelineregisters oL 169
7.6.7 Forwarding circuit 169
7.6.8 Interlockingo 172

7.6.9 Branch prediction 0L 173

CONTENTS

8 Evaluation
8.1 Evaluation process oL
82 VIDL.
8.2.1 Real world instruction sets
8.2.2 Efficient specification
8.2.3 Usability
8.2.4 Rapid exploration of instruction sets
8.2.5 Restrictions oo o
8.3 Generator speed L
8.4 Simulator generator oL oL
8.4.1 Setup
8.4.2 Characteristic instructions
843 ISAwidth
8.4.4 Width of simulator code
8.4.5 Generator optimizations
8.5 Processor generatoro
85.1 Setup
8.5.2 Overview of generated processors
8.5.3 Exploration of microarchitecture
8.5.4 Comparison to handcrafted processors
8.5.5 OISC — A simple processor
8.5.6 Wide instruction sets. L.
8.5.7 Registerports. 0.
8.5.8 Structure of generated pipeline
8.5.9 Latencies and penalties
8.5.10 Resolution of hazards
8.5.11 Generating waveform definitions for ModelSim
8.6 DNACore — A casestudyon ISE
8.6.1 Development process
8.6.2 Algorithm
8.6.3 Imstruction set extension
8.6.4 Specification in ViDL
8.6.5 Dynamic behavior of processor
8.6.6 Results and remarks 0.
8.7 Summary

9 Conclusion

13

175
175
177
177
178
179
180
180
182
182
183
183
184
185
186
189
189
190
192
194
197
197
198
199
205
207
213
214
214
215
216
216
217
219
219

223

14

CONTENTS

Chapter 1

Introduction

1.1 Motivation

Digital systems are omnipresent in our today’s life. They are for instance em-
ployed in personal computers, cell phones, cars, video game consoles and chip
cards. Most of these digital systems include microprocessors, as they are flexible
due to their programmability. The variety of different application areas raises
the demand for customized processors. Processors in cell phones are supposed
to consume low power, whereas desktop processors are optimized for high per-
formance. A processor in a chip card includes special instructions to accelerate
cryptographic algorithms, whereas processors in video game consoles use multi-
media instructions for graphical operations. The application specific aspects of
a processor are mainly encapsulated in its instruction set.

A multitude of such application specific processors is developed and increas-
ingly employed in systems on a chip. Tools that support a rapid and reliable
development of processors for a given instruction set are therefore essential. This

ISmall cognitive distance

Specification

[Config A 1 Config B

(_Generator) (_Generator) (_Generator)

Simulator Processor A Processor B
60 MHz 3 Stages 6 Stages
350MHz 600MHz
Consistent

Figure 1.1: Overview of the proposed approach.

16 CHAPTER 1. INTRODUCTION

thesis proposes a system to generate a simulator and a processor implementa-
tion from a formal instruction set specification, as shown in Figure 1.1. The
specification language enables rapid formalization of instruction set manuals,
due to a small cognitive distance to descriptive manuals. The developer does
not require particular knowledge of microarchitectures, since the specification
language strictly abstracts from such aspects. The language excludes for in-
stance all aspects of a pipeline and its control. This also eliminates a common
source of faults. Thanks to this abstraction, processor implementations with
different microarchitectures can be generated from the very same specification,
as shown in Figure 1.1.

The generator automatically constructs an appropriate microarchitecture
that suites the instruction set. The developer can control this derivation by an
optional configuration. The configuration may for example constrain the clock
frequency of the final processor. Based on such information and the specified
instruction set, the generator determines for example the depth of the pipeline.
Figure 1.1 shows the actual clock frequency and pipeline depth for two generated
ARM processors.

As all generated implementations are based on the same instruction set spec-
ification, they are guaranteed to be compatible. Executing a program on each
implementation will yields the same result. There is no way, a ViDL devel-
oper can break consistency of the generated implementations. The processor
specification itself is always consistent and configurations have no effect on the
processors execution semantics. As the generated implementations are consis-
tent, extensive testing of processor implementations can be omitted.

Processor design flow In the first step of a classical design flow, the set of
instructions is defined and evaluated using a simulator. The simulator basically
emulates a real processor, but requires less development effort. It is typically
programmed in C and runs on normal desktop computers. After the instruction
set is fixed, a processor is defined in a hardware description language (HDL),
such as VHDL. The description obeys a specific microarchitecture, which con-
sists of structures and techniques to implement an instruction set. Note, that the
same instruction set can be implemented with different microarchitectures. The
resulting processors differ in power consumption, clock speed and chip costs,
but can execute the same binary programs. Typically, a microarchitecture is
selected that fits best the demands of the application area.

This design process has several disadvantages. The separate implementation
of an instruction set in terms of a simulator and a hardware processor increases
development costs and time to market. The instruction set or microarchitecture
of the hardware implementation can hardly be changed in a late design stage.
Decreasing for instance the length of the pipeline is laborious and error-prone.
Functional units must be reassigned to stages, which affects pipeline registers
and the pipeline bypass. As a result, the control unit must be adapted and even
changes to branch prediction may be necessary.

In general, the development of pipelined implementations is complex due

1.2. OVERVIEW 17

to pipeline hazards. For this reason, processors need to be tested extensively.
Development of test cases with a good coverage however is challenging. The mi-
croarchitecture must be considered to test instructions for all reachable pipeline
states. In practice, testing has a major impact on development time and costs.
Even the implementation of the simulator may be complex, due to the lack of
bit-precise types and missing operations (e.g. “count leading zeros”) in C.

Mixed level languages To overcome these difficulties, mixed-level processor
description languages are proposed. Such languages specify a processor on the
level of microarchitecture and the instruction set level. On the microarchitec-
tural level, a rough layout of the processor is specified. This typically includes
pipeline stages, functional units and register ports. The specification of an in-
struction then refers to these elements. The instruction set level therefore builds
on the microarchitectural level. As a result, the whole specification is bound
to one specific microarchitecture. Once the instruction set is specified, the mi-
croarchitecture can not be changed without major changes to the instruction
set. For instance, changing a 5-stage pipeline to a 3-stage pipeline is expected
to be very complex.

In mixed-level languages, pipeline control is typically specified explicitly.
This allows for the description of complex and exceptional pipeline behav-
ior. However, its specification is typically very complex and error-prone, as
all pipeline states must be considered. Some exceptional sequences of instruc-
tions are easily overlooked, which may result in unintended bypassing or branch
behavior. As the developer is responsible for the correctness of pipeline con-
trol, extensive testing is required. Some languages require in-depth knowledge
on microarchitectures, like VHDL and C++. A developer must therefore have
respective skills. Some languages impose an orthogonal structure on the instruc-
tion set. Instructions are then defined according to this structure. To formalize
an existing instruction set manual, the developer has to analyze the instruction
set to reconstruct regular structures. Some languages offer or even require a
separate specification of instruction semantics for the simulator and hardware
implementation. The developer is responsible to specify equivalent semantics
for both. This may introduce inconsistencies between simulator and hardware.
Hence, sufficient testing is required, to exclude such faults with a certain proba-
bility. Besides, the redundant specification reduces maintainability and increases
development effort.

The outlined problems of classical processor design flows and mixed level
languages are solved by ViDL and its generators. The language and the gen-
erators therefore implement a variety of new concepts and methods, which are
summarized in the next section.

1.2 Overview

This thesis is structured as follows: The remainder of this chapter gives a basic
introduction to the context and the contribution of this thesis. Its fundamentals

18 CHAPTER 1. INTRODUCTION

Storages

Encoding
Instructions Function
Semantics

Instruction set
architecture (ISA)

Timing
External interfaces

Functional units

Pipeline structure

Processor Microarchitecture
Prediction
Chip technology
Frequency
Hardware

Chip package

Figure 1.2: Structure of processor aspects.

by means of applied methods and concepts are briefly summarized, to intro-
duce a common terminology and common definitions (Chapter 2). To give an
overview of alternative approaches, related specification languages for instruc-
tion sets and processors are reviewed and classified (Chapter 3). Against this
background, the instruction set specification language ViDL is proposed (Chap-
ter 4). Explanations focus on ViDL’s concepts and their impact on the quality of
instruction set specifications. Practical applications of ViDL are demonstrated,
using design patterns for frequent concepts of instruction sets as example (Chap-
ter 6). Besides ViDL, the simulator generator and the processor generator ac-
count for a great part of this thesis. Major concepts and methods of both
generators are presented (Chapter 7), including the timing driven generation of
pipelined processors (Section 7.6). Both generators are evaluated, by examining
the generated products for multiple real world instruction sets (Chapter 8). The
speed of the simulator is measured and physical characteristics of the proces-
sors are estimated by synthesis tools. As an all embracing proof of concept, an
application specific processor is developed for the Smith-Waterman algorithm,
using ViDL and its generators (Section 8.6).

1.3 Processor aspects

This section describes the aspects of a hardware processor implementation. The
purpose of this section is to introduce a uniform terminology and classification of
processor aspects. A processor is defined by its instruction set, microarchitecture
and hardware properties, as shown in Figure 1.2.

An instruction set architecture defines the aspects of the processor that are
visible to an assembly programmer or compiler. Basically, it defines a set of

1.4. SCIENTIFIC CONTRIBUTIONS 19

storages and instructions that operate on these storages. The set of storages
typically includes a general purpose register file, a status register and a data
memory. An instruction is defined by its encoding and its semantics. The
semantics define the effect of executing the instruction on the processor state.
They are typically denoted on a register transfer level. The terms “instruction
set architecture”, “instruction set” and ISA are used synonymously. Examples
of popular instruction sets are Intel x86, Power, ARM and MIPS.

A microarchitecture comprises a set of techniques to implement an instruc-
tion set architecture. It has a major effect on the efficiency of a processor in
terms of clock frequency, chip area and power consumption. A microarchitec-
ture basically defines the structure of hardware units and their interaction. It
defines for instance the structure of the pipeline and how branches are predicted.
Hennessy and Patterson [24] use the term “Organization” as a synonym for “mi-
croarchitecture”. As the latter appears to be more common, it is used in this
thesis. An example of a microarchitecture is a 5-stage pipeline with a dynamic
branch prediction using a 4096-entry 2-bit prediction buffer.

The last term “hardware” covers physical aspects of a hardware processor.
This includes the used chip technology, clock frequency and chip package. The
three classes of ISA aspects (ISA, microarchitecture and hardware) are indepen-
dent. One instruction set can for instance be implemented using different mi-
croarchitectures. A low power microarchitecture may be used for mobile applica-
tions, whereas a deeply pipelined microarchitecture is used for high-performance
applications. On the other hand, the same microarchitecture may be used to
implement different ISAs. Processors that share the same ISA and microarchi-
tecture may differ in their actual hardware implementation. For instance may
the chip technology and the chip package be different.

1.4 Scientific contributions

This thesis contributes a series of concepts and methods, which are integrated
in the processor specification language ViDL, the simulator generator and the
processor generator. They are briefly introduced in the following, to give an
overview of this thesis.

1.4.1 Language concepts

In contrast to existing approaches, ViDL strictly abstracts from microarchitec-
ture (Section 4.3). Thanks to this abstraction, the microarchitectural design
space can automatically be explored, driven by the processor generator (Sec-
tion 8.1). Small processors, as well as deeply pipelined processors are generated
from the same specification. Besides, abstraction enables generation of a consis-
tent high-performance simulator (Section 8.4), since microarchitectural aspects
need not be simulated.

To specify timing behavior of instructions, while abstracting from their mi-
croarchitectural implementation, the concept of so called delays is proposed

20 CHAPTER 1. INTRODUCTION

(Section 4.7). As a result, the number of delay slots of a branch can directly
be denoted in ViDL, without considering the pipeline and its control. Views
on storages and I/O ports can be defined using the concept of architectural
interfaces (Section 4.8). It is a unified concept, which covers a variety of real-
istic register and storage structures, such as architectural registers and virtual
address spaces (Chapter 6). The resulting abstraction improves clearness and
maintainability of a specification. Architectural interfaces are based on equa-
tions and are translated into dataflow by the generator (Section 7.1.3). To
efficiently define conditional and partial write accesses to storages, the unified
concept of epsilon logic is proposed (Section 4.6). Epsilon logic is an instance of
multi value logic, using three states, namely “zero”, “one” and “epsilon”, which
means “don’t modify”. The concept integrates well in functional languages (such
as ViDL) and improves clearness and reliability of specifications. Besides, a
method is proposed, which translates epsilon logic into binary logic, as needed
for implementations (Section 7.4.2).

As bit-widths need not be defined in ViDL, a type system and a respective
type-analysis are proposed, to derive the widths of operations (Section 4.9). The
type system is based on polymorphism and subtyping. In contrast to Verilog,
bit-width rules on operations can concisely be specified in terms of signatures.
Type analysis is based on type inference techniques. It statically checks for
soundness and detects ambiguous semantics, as contained in the pseudo-code
of the ARM manual (Section 4.9.3). Due to implicit typing, instruction set
specifications are simplified and maintainability is increased. For instance, the
widths of an entire instruction set can be changed, by simply redefining the width
of registers (Section 8.2.4). ViDL integrates concepts of functional languages,
such as tuples and higher order functions (Section 4.5). The language is free of
side effects, which adds to reliability and clearness. Functionals can be defined,
to encapsulate concepts of instruction sets, such as SIMD (Section 6.10).

1.4.2 Generation methods

This thesis contributes methods to generate pipelines from specifications of in-
struction sets (Section 7.6). In contrast to related work, the approach is fully
automated, i.e. no microarchitectural aspect of the pipeline needs to be speci-
fied by developers. Instead, the entire microarchitecture is contributed by the
processor generator, based on a user-defined timing constraint (Section 7.6.3).
The methods construct the entire pipeline, including forwarding circuits, inter-
locking, as well as control for branch instructions. All hazards are properly
resolved in the resulting pipeline, while minimizing instruction latencies. The
methods are based on scheduling techniques, term rewriting, as well as partial
functions and their analysis. They are sensitive to instruction semantics and to
the propagation delay of the targeted chip technology.

As ViDL abstracts from register ports, a port allocation method (Section 7.6.1)
is proposed and integrated in the processor generator. The method assigns read
and write accesses of instruction semantics to read and write ports of register
files and memories. The number of ports is minimized, while excluding resource

1.5. PROCESSOR IMPLEMENTATIONS 21

Specification domain ISA specification (ViDL)

Target domains

Execution domains Simulator Processor Tools

Target languages
C Java Python VHDL Verilog

Figure 1.3: Domains and their relation.

conflicts. Besides, concurrent accesses are merged, if they refer to the same
address. The allocation problem is reduced to graph coloring.

The thesis shows, how instruction semantics are systematically transformed
and optimized using term rewriting on dataflow graphs (Section 7.3). A compre-
hensive set of rewrite rules has been defined, which encapsulates expert knowl-
edge on semantic equivalences. The set is extensible and clear, which greatly
adds to reliability of the generator. Partial evaluation of expressions is for in-
stance solved using term rewriting (Section 7.4.1).

Code of the simulator is generated such, that it utilizes the principle of
lazy evaluation (Section 7.5.4). Only those parts of instruction semantics are
simulated that contribute to the result of an instruction. For instance, the target
address of a branch is only computed, if the branch is actually taken.

The thesis presents methods to process arbitrary and ultra-wide instruction
semantics (e.g. 257 bit). All parts of the generation process are considered,
including static evaluation and code generation for C. Static evaluation is im-
plemented in the generator using an arbitrary precision library (Section 7.3.4).
The generation of C-code is based on operation specific generator algorithms.
The algorithms break ViDL operations of arbitrary width down to 32-bit or
64-bit integer arithmetic in C (Section 7.5.2).

1.5 Processor implementations

In my approach, an ISA is defined in the specification domain, using the lan-
guage ViDL. From this specification, products of different target domains are
generated, as illustrated in Figure 1.3. In particular, this is the simulator do-
main, the (hardware) processor domain and the tools domain.

The simulator and processor domain are called execution domains in the
following, as their products can actually execute ISA compliant programs. The
simulator and processor domain are separated, as they significantly differ in
structure. A simulator is described in terms of data structures and sequential
algorithms. A processor in contrast is defined by inherently parallel units and
their interconnection. The gap between both domains is further increased by
complex processor microarchitectures, which are omitted in the simulator for
the sake of efficiency.

22 CHAPTER 1. INTRODUCTION

ISA specification (ViDL

Primitive library (TPSL

Specifications

Generators [Simulator generator

Products

Waveform definition

Figure 1.4: System of specifications, generators and products.

The tools domain covers ISA specific tools, which are used for software devel-
opment. A classical toolchain for an ISA consists of a C-compiler, an assembler,
a linker and a disassembler. This domain significantly differs from the former
ones, as tools only consider certain properties of the ISA. An assembler for
instance considers the encoding of instructions, but not their behavior.

The products of the execution domains can be implemented in different
languages. A simulator is typically implemented in imperative programming
languages, such as C, Java or Python. The structure of a processor is defined
using hardware description languages, like VHDL or Verilog. For the tools
domain, a target language corresponds to a specific retargetable toolchain. The
generator may produce ISA descriptions that are specific for different toolchains.

Currently, generators are available for both execution domains and the most
typical target languages C and VHDL. As ViDL is not bound in any way to
these languages, generators for further target languages can be added. The
effort for retargeting can be considered low, as only the code generation needs
to be adapted. Domain specific concepts, such as pipelining or lazy evaluation,
remain unchanged. The development of a generator for the third domain “tools”
is not part of this thesis. It is discussed as future work in Chapter 9.

1.6 System overview

This section is intended to give a brief overview of the entire system of specifi-
cations, generators and their products on a high level. The in-depth discussion
of its components is postponed to subsequent sections. The basic idea of the
system is to generate different processor implementations from a central ISA
specification, as illustrated in Figure 1.4.

An ISA is specified using the Versatile ISA Description Language (ViDL).
The specification defines storages, instructions and external interfaces of the
ISA. An important feature of ViDL is that only aspects of the ISA are speci-
fied. Microarchitectural aspects, such as pipeline stages and register ports are
not defined. ViDL is described in detail in Chapter 4. For evaluation, the in-
struction sets of ARM, MIPS, Power, CoreVA, and SRC have been specified
(Section 8.2.1). In addition, a one instruction set computer (OISC) and an

1.7. EVOLUTION OF VIDL AND ITS GENERATORS 23

instruction set extension (ISE) for DNA sequence alignment have been defined.

ViDL uses primitives such as addition (add) or sign extension (extz), to
define the semantics of instructions. The signatures and semantics of primitives
are defined in the separate primitive library, which is specified using the transfer
primitive specification language (TPSL, Chapter 5). It should be noted, that
most ISA developers do not have to consider TPSL, as they can simply use the
existing primitive library, which includes about 50 primitives. In rare cases, the
developer may extend the library by additional special purpose primitives.

The ISA specification and primitive library are fed into generators. The
simulator generator (Section 7.5) produces an efficient instruction set simulators
(ISS) from this input. Simulation speeds of 60 Mips are likely on a Pentium
3 GHz workstation (Section 8.4).

The processor generator (Section 7.6) produces a processor, i.e. a microar-
chitectural implementation of the ISA. The microarchitecture of the processor
can be controlled using an optional configuration. The configuration typically
defines the targeted clock frequency of the processor. The generator then esti-
mates propagation delays and selects an appropriate pipeline depth to meet the
targeted timing. The configuration enables the developer to generate multiple
processors with different microarchitectures from the very same ISA specifica-
tion. All processors and the simulator are guaranteed to be consistent. They can
execute the same binary programs and yield the same results. The number of
required execution cycles however may differ due to different dynamic behavior.
The dynamic behavior is mainly affected by instruction latencies. Information
on latencies is emitted by the processor generator and may be utilized by the
scheduler of a generated processor to avoid interlocking. Another product of
the processor generator is a waveform definition file for ModelSim. It contains
the identifiers and structure of significant signals, which are then visualized in
ModelSim.

1.7 Evolution of ViDL and its generators

The system described in the last section is the result of an extensive development
process, which is illustrated in Figure 1.5. In particular ViDL is the outcome of
a long process of ISA exploration and evaluation. It is based on the specification
language UPSLA, from which it borrows the concept of encoding patterns and
distinct specification of instructions.

To derive the underlying instruction set model of ViDL, a large set of rep-
resentative instruction sets has been studied. Common concepts have been
identified and generalized. High level concepts in instruction sets have been
broken down to a combination of basic concepts. Conditional execution is for
instance modeled as a combination of conditional expressions and epsilon logic.
The development of the ISA model was probably one of the most complex tasks.

With the language in mind, representative sets of ISAs have been specified.
This way, missing features and inadequate concepts have been identified in an
early stage of development. For instance, the need to make the set of primitives

24 CHAPTER 1. INTRODUCTION

Language

Study of ISAs ﬂ/\bstmct common concepts Simulator generator

ISA model Add functional concepts

ViDL layout Processor generator
Y Specify
Parts of ISA Formalize in Eli

ViDL/frontend

Trproue " Secify
Full ISA
Simulator back-end Generate
Simulator
Development process . — Processor backeend ——Generue
>

Processor

Test

Figure 1.5: Development process of ViDL and its generators.

Language design Instruction set architectures

Languages &

Compiler techniques compilers Microarchitectures

Term rewriting

Algorithms

Simulation techniques Smith-Waterman ISE

Applications
Compiler-friendly code

Figure 1.6: Involved problem areas.

extensible has been detected during this process.

After the model and the respective language had annealed to a sufficient de-
gree, the generator has been developed. At first, the front-end and the simulator
back-end have been developed, for three reasons.

e The simulator offers a convenient way to test the front-end and common
optimizations of the generator.

e Existing experience in the area of simulator generation from UPSLA and
the CoreVA architecture.

e The structure of the simulator is much simpler, as it does not involve the
generation of a pipelined microarchitecture.

After a correct baseline simulator had been generated from an ARM spec-
ification, the processor back-end has been developed. Finally, the generated
products were repeatedly evaluated and optimized.

1.8 Areas of expertise

The development of the generator system is an inter-disciplinary task. It requires
expertise in very different problem areas, as illustrated in Figure 1.6.

1.8. AREAS OF EXPERTISE 25

The first major problem area covers processors and microarchitectures. A
representative set of ISAs and their common structures and concepts has to be
understood, to derive a simple, yet powerful ISA model. This domain specific
knowledge is crucial for the design of ViDL. For code generation, expertise on
state-of-the-art microarchitectures is required. Concepts such as pipelining, for-
warding, interlocking and branch prediction must be implemented as generalized
algorithms in the generator. This requires an in-depth understanding of these
concepts, as correctness must be considered for any instruction set and not only
for a specific one.

Language design mainly requires knowledge on language concepts and their
benefits. A good selection of language concepts is a non-trivial task, as lan-
guage qualities such as simplicity, reuse, maintainability and readability must
be considered. In particular, concepts of functional languages and their imple-
mentation have to be understood, as ViDL inherits a large subset of SML. The
language has to be formal and unambiguous, to be suited for generation. This
implies a basic understanding of compilers and the target domains. To imple-
ment the generators, compiler development skills are required. This includes
context free grammars, name analysis, type analysis and code generation. The
grammar needs to obey the parser generator’s grammar class, which is LALR(1)
for ViDL. Name analysis in ViDL is a non-trivial task, as highly recursive scoping
rules are inherited from SML. Type analysis requires expertise on type inference,
polymorphism and subtyping. The type system also involves formal proofs, to
ensure soundness. In general, the demand for correctness and generality makes
compiler development hard.

To yield efficient products, the ViDL generators include sophisticated opti-
mizations. The implementation of these optimizations involves the development
of non-trivial algorithms and data structures. The pipeline scheduler 7.6.4 and
the port allocator 7.6.1 are examples of such algorithms. The integrated term
rewriting system requires knowledge on equivalent register transfer, and conflu-
ence.

To produce an efficient simulator, appropriate simulation techniques have to
be applied. For example, the simulation speed is significantly increased by a
decoder cache and a lazy evaluation strategy of instruction semantics. Besides,
technical aspects of the generated C-code play an important role for efficiency.
A basic understanding of C-compilers and their optimizations is required, to
produce compiler-friendly C-code. For instance, the use of separate compilation
units typically result in conservative estimates on data-dependencies, which fi-
nally limit the scheduler.

To evaluate ViDL’s fitness for instruction set extension, the MIPS instruction
set was extended by application specific instructions for the Smith-Waterman
algorithm. To develop this extension, the structure of that algorithm had to
be understood in depth. Besides, a basic idea of its application for sequence
alignment of DNA, RNA and proteins is required.

In addition to expertise on concepts, methods and algorithms, an exten-
sive technical knowledge is required to implement the generator system. For
instance, 13 different languages were involved in the development of the whole

26 CHAPTER 1. INTRODUCTION

system. This includes declarative languages (ELI, Make and flex/bison), im-
perative languages (C and C++), scripting languages (Perl, Python and Bash),
assembly languages (ARM, MIPS and Power), the functional language SML and
the hardware description language VHDL.

Chapter 2

Fundamentals

This section outlines the fundamentals of this thesis and introduces a com-
mon terminology. The development of the language ViDL and its generators
is founded on knowledge and techniques of several scientific disciplines. For in-
stance, features of characteristic instruction sets (Section 2.1) and typical pro-
cessor design scenarios (Section 2.2) have significantly guided the development of
ViDL. Besides, ViDL obeys design guidelines of domain specific language (Sec-
tion 2.3). The ViDL compilers implement classical compiler techniques (Sec-
tion 2.4), sophisticated analyses (Section 2.5) and transformations (Section 2.6)
to optimize the generated product. To derive a pipelined processor implemen-
tation, structures and principles of modern microarchitectures (Section 2.7) are
utilized.

2.1 Instruction set architectures

To understand the design of ViDL, it is important to have a basic understand-
ing of realistic instruction sets and their characteristics. This section therefore
introduces two major instruction sets, namely ARM and MIPS, which have
(among others) significantly influenced the development of ViDL. The instruc-
tion sets have inspired several concepts of ViDL. The goal has been to design the
language such, that both real world instruction sets can precisely be specified,
including irregularities and uncommon aspects. The evaluation in Chapter 8
presents the results for the formalization of both instruction sets.

In general, an instruction set architecture defines a set of instructions and
storages. It thereby determines the execution semantics of binary programs.
The description of an instruction set is for instance used by assembler program-
mers to write assembly programs. An instruction set can be regarded as an
interface for the execution of binary programs. Processors that implement the
same instruction are compatible. Executing a program on these processors will
therefore yield the same results. However, the execution speed and the microar-
chitectural implementation of the processors may differ.

28 CHAPTER 2. FUNDAMENTALS

The purpose of this section is to give an impression of exceptional instruction
set characteristics. In particular, the ARM, MIPS and an OISC instruction set
is regarded. This section is not intended to discuss these instruction sets in
detail, but only their interesting aspects. The presented aspects are considered
to be complex in terms of instruction set specification. A specification language
should be powerful enough to define these characteristics precisely and concisely.

2.1.1 ARM

The ARM instruction set [2] belongs to the class of RISC instruction sets. It
has been chosen for evaluation, as it is a popular and state-of-the-art instruction
set for mobile applications, which became more important in recent years. The
instruction set is basically quite regular, but also includes some uncommon
characteristics, which challenge ViDL and its generators. In the following, some
of these irregularities of ARM are briefly described.

2.1.1.1 Conditional execution

All instructions can be executed conditionally. Along with each instruction, a
condition mode can be specified. The condition mode corresponds to a predi-
cate on the status flags (Z,N,C,V) of the processor. If the predicate holds, the
instruction is executed. Conditional execution is used to eliminate control flow
in a program. The basic idea is that conditional execution of few instructions
is more efficient than a branch, due to control-hazards. This is especially true
for deeply pipelined microarchitectures and simple branch prediction.

2.1.1.2 Shifter operand

Most ARM instructions have two operands. The second operand is the so
called shifter operand. Each arm instruction can apply a shift operation on
this operand. For instance, an add instruction on two operands x, y actually
performs the computation x+shiftOperation(y). The operand y is either an
immediate or a register value. The definition of the shift operation is surprisingly
complex. It uses one of 5 shift modes, such as “logical shift left” or “arithmetic
shift right”. The set of modes even includes an extended 33-bit rotate operation,
which involves the carry flag. The shift distance is given by an even immediate
value.

2.1.1.3 Registers

The ARM instruction set defines a set of 16 general purpose registers, which
are accessed by most instructions. The last register (r15) is defined to be the
program counter. Write accesses to this register therefore result in branches. As
a result, any instruction that writes to r15 is actually a branch instruction. Some
of the other general purpose registers are dynamically reconfigurable. Depending
on the processor mode (e.g. user-mode, supervisor-mode, interrupt-mode), these
general purpose registers are associated with different physical storage.

2.1. INSTRUCTION SET ARCHITECTURES 29

2.1.1.4 Exceptional instructions

The ARM instruction set defines usual 32-bit arithmetic and logical instructions.
Besides, it defines some exceptional instructions, such as 64-bit multiplications,
multi-cycle load/store-multiple instructions and atomic swap instructions.

2.1.2 MIPS

The MIPS instruction set [28] is a rather simple and regular RISC instruction
set. It uses only few exceptional concepts, which are outlined in the follow-
ing. The specification of MIPS has primarily served as a proof of concept, to
show that regular instruction sets can efficiently be specified in ViDL. Actually,
the MIPS instruction set has been specified in only one day, as described in
Section 8.2.2.

2.1.2.1 Multiplications

Most instructions read parameters from general purpose registers and write their
result to general purpose registers. However, 64-bit multiplications use a ded-
icated 64-bit wide special purpose register. This register can not be accesses
by “normal” instructions. The instruction set therefore includes dedicated in-
structions to transfer values between the 64-bit register and the general purpose
registers.

2.1.2.2 Branches

All branch instructions have one delay slot, i.e. the instruction following a
branch is always executed. This behavior must precisely be modeled by an
instruction set specification, as it affects program semantics. The set of branch
instructions includes less common section-relative branches. The target of these
branches is the sum of the branch’s section address and an offset.

2.1.2.3 Zero register

The first general purpose register (r[0]) is always read as zero. The register
can be used as any other register, but must not be written. As the state of
the register is never changed, it does not have to be implemented by a hard-
ware register. An instruction set specification language should provide concepts
to define constant registers. Otherwise, the generated hardware may include
unnecessary registers.

Besides, typical RISC instructions, the MIPS instruction set defines instruc-
tions to operate on bit-slices. These instructions are used to access an arbitrary
sequence of bits in a register. The range of the sequence is given by immediates
and is therefore not known statically.

30 CHAPTER 2. FUNDAMENTALS

2.1.3 OISC — One instruction set computer

The instruction set of a “one instruction set computer” consists of exactly one
instruction. An OISC has been specified in ViDL to demonstrate, that small
instruction set specifications lead to small generated processors. This section
briefly outlines the idea of OISCs and discusses some of their characteristics.

Although an OISC consists of only one instruction, it is Turing complete
which means that any program can be expressed in terms of an OISC instruction
set. An OISC is exceptional in two ways: First, its definition is very short and
second, the defined instruction combines behavior of different instruction classes,
such as load, arithmetic and branch.

Several flavors of OISCs have been proposed [18], which differ in the se-
mantics of their instruction. The most common OISC defines a “subtract and
branch if negative” (SBN) instruction. It was first proposed by van der Poel [52].
The SBN instruction has three parameters A, B and C and is defined by the
following imperative code.

SBN(A,B,C)
{
MEM[A] := MEM[A] - MEM[B]
if MEM[A] < O then PC := C
+

The instruction subtracts two values from memory and writes the difference
back to the minuend. If the difference is negative, the instruction branches
to an absolute target address. In terms of classical RISC instruction sets, the
instruction combines a load instruction, a store instruction, a subtraction and
an absolute conditional branch. It can directly be defined in ViDL to generate
a respective simulator.

However, it can not efficiently be implemented as processor for two reasons.
First, it does not utilize registers, which allow for fast accesses. Second, the
instruction includes data dependent read and write accesses to the main memory.
It can therefore not be implemented using synchronous memory.

To circumvent these restrictions, this thesis uses a modified OISC instruc-
tion set. It defines one instruction memory and one register file with two read
ports and one write port. The SBN instruction only operates on the register file.
Data and instructions are thereby separated, similar to a Harvard-architecture.
To initialize the register file, a “load immediate” instruction is added. Alterna-
tively, one may define the registers to contain the constant ¢ =1 or ¢ = —1 on
initialization.

2.2 Design scenarios
During this thesis, several different processor and ISA design scenarios have

been identified. These use cases have been considered during the development
of ViDL. A design goal of ViDL is to support the developer in these scenarios.

2.2. DESIGN SCENARIOS 31

This section is therefore essential to understand the design of ViDL. It is also a
foundation for the review of related specification languages in Chapter 3.

Instruction set extensions (ISE)

Some classes of algorithms include specific computations, which can not effi-
ciently be mapped to the usual set of general purpose instructions. To accelerate
these algorithms, an existing instruction set is enriched by application specific
instructions. The instructions should be generic to some extend, to accelerate
not only one specific algorithm, but a class of applications. At its best, this also
includes future algorithms of the specific area of application.

In the ISE scenario, an existing ISA is extended by instructions and may
also be extended by special purpose registers. The resulting ISA has to be
backward compatible, such that legacy software can be executed and existing
compiler tool-chains can be used. To enable backward compatibility, additional
instructions are embedded into unused regions of the instruction space. The be-
havior of existing instructions remains unchanged. To demonstrate, that ViDL
is suited for this scenario, an existing MIPS specification has been extended by
instructions and special purpose registers, yielding the DNACore instruction set
(Section 8.6).

Design space exploration (DSE)

A DSE is performed to tailor a processor to a specific area of application. There-
fore, certain dimensions of the ISA as well as the microarchitecture are explored.
Typical dimensions of the ISA include the number of registers, the size of stor-
ages, the width of the datapath, the set of instructions and the delay of in-
structions. Interesting dimensions of the microarchitecture include the pipeline
depth, forwarding, branch prediction and the implementation of functional units
(e.g. multi-cycle multiplier vs. pipelined multiplier). As part of evaluation, the
ISA design space (Section 8.2.4) and the microarchitectural design space (Sec-
tion 8.5.3) have been explored.

Implementation of legacy ISAs

There are legacy processors, which are still in use, but no longer supported
and commercially available (e.g. Zilog Z8000 [57]). The implementation is
defined in an out-of-date language and its microarchitecture is superseded by
modern approaches. In this design scenario, a compatible processor is developed
using a state-of-the-art microarchitecture. The foundation of development is the
existing ISA manual.

ISA design from scratch

The ISA is developed from scratch, based on the intended area of application.
The designer has a rough idea of the new ISA and the applied concepts. All
design decisions are freely made without considering existing designs.

32 CHAPTER 2. FUNDAMENTALS

Improvement of microarchitecture

To improve the efficiency of a processor implementation, it is desirable to in-
corporate novel approaches in microarchitecture design into existing processors.
This scenario may range from a minor local modification, which can easily be in-
tegrated into an existing implementation, to a major change, which necessitates
a complete reimplementation of the processor. The resulting implementation
must be compatible with respect to the ISA.

2.3 Domain specific languages

This section gives a brief introduction to language design guidelines for domain
specific languages. They are used in Chapter 3 to review related specification
languages. Besides, they have significantly influenced the design of ViDL. The
guidelines are based on the books by Watt [54] and Sebesta [45]. Watt and
Sebesta mainly focus on programming languages, but their language design
guidelines can also be applied to ISA specification languages to some extend.
In the following, language aspects that are essential for ISA specification are
briefly summarized.

Simplicity

A language should be simple from the user’s point of view. This should also
hold for new users. A steep learning curve may discourage developers that
are new to the language. The language should be readable, i.e. the meaning
of a specification should immediately be clear. The language should also be
writable, which means that it should be easy to express a thought in terms of
the language. The semantic gap between the developer’s imagination and the
language should be small. A language should provide a small set of generic
and orthogonal constructs, instead of an extensive set of specialized and similar
constructs. The constructs should be regular, which means that they can be
combined arbitrarily to specify complex aspects of an instruction set. Chapter 4
discusses the concepts of ViDL with respect to simplicity.

Reusability

Reuse is a major objective of engineering. The reuse of existing and tested
components saves time, avoids flaws, and increases maintainability. Typically,
reuse involves some kind of abstraction.

In software engineering for instance, functions are used to abstract from
expressions. A function can then be called in different contexts with different
arguments. Further concepts for reuse in software engineering are procedures,
ADTs, classes, libraries and frameworks. In hardware engineering, similar con-
cepts have emerged, such as entities, libraries (e.g. Design Ware Components)
and IP cores (e.g. complete processor cores). The concepts for reuse in ViDL
are primarily discussed in Section 4.5.

2.3. DOMAIN SPECIFIC LANGUAGES 33

Portability

To enable portability, a language should abstract from the target domain. For
instance, the programming language C abstracts from the instruction set of
a processor. A standard C program can therefore be compiled for different
targets, such as x86 or PowerPC. The abstraction is provided by the compiler,
which translates a C program into processor dependent machine code. The C
program is therefore portable. However, the C language also demonstrates how
easily portability can be broken. Most C Compilers feature a way to bypass
abstraction by means of inline assembly, which belongs to the target domain.
Abstraction and portability are thereby broken, which means that the code is
not platform independent.

To guarantee portability, an ISA specification language should strictly ab-
stract from target specific aspects. For instance, a processor specification should
not define microarchitectural aspects, to allow for generation of different mi-
croarchitectural implementations. Besides, the specification should not contain
fragments of C or VHDL code that are literally copied into the generated code.
This would prevent generation of implementations in different target languages,
such as VHDL or Verilog. Section 4.3 describes how ViDL realizes a thorough-
going abstraction, which guarantees portability.

Completeness

Typical general purpose programming languages are Turing complete, which
means that any program that can be expressed in programming language X can
also be defined in programming language Y. Completeness needs typically not
be considered for general purpose programming languages and is not covered by
Watt and Sebesta.

Domain specific languages however use a higher level of abstraction and
thereby typically restrict the area of application. An aspect that can be ex-
pressed in a DSL X may not be expressible in a DSL Y and vice versa. Of
course, bypassing techniques may be used as a back door to widen the appli-
cability of the DSL. However, bypassing breaks abstraction and portability, as
described earlier.

For an ISA specification language, the completeness is determined by the
underlying ISA model. A very general model covers a large set of ISAs, but
may restrict portability and efficiency. The ISA model of ViDL is discussed in
Section 4.2.

Reliability

Reliability means, that errors and flaws are avoided by the design of the language
or detected by analyses of a compiler (respectively generator). The generator
should check the input for errors, including static semantics. An undefined
aspect should be detected and reported along with a meaningful error message
to allow for rapid debugging.

34 CHAPTER 2. FUNDAMENTALS

Embedded Specification Incorrect code

language \ Generator X Compiler Error
X messages

Error =1 _/

Backtracking of error

Figure 2.1: Tedious backtracking of errors as a result of embedded languages.

The ViDL generator for instance uses a powerful type-system to check the
soundness of bit-widths (Section 4.9) as part of static semantics. In contrast,
the embedding of target language code fragments makes such analyses virtu-
ally impossible. Figure 2.1 shows an example, where the code of an embedded
language contains an error X. The embedded language is not under the gener-
ator’s control and therefore not checked. The generated code includes a copy
of the embedded code, which is incorrect. Hence, the generated code is refused
by subsequent tools and tedious backtracking is required to relate the reported
error to its source.

Consistency

In general, a source language may be translated into different implementations
and different target languages. A C program may for instance be compiled
for ARM and for Intel processors. To increase performance, the program may
contain target specific blocks of inline assembly, one for ARM and one for Intel.
These blocks are independent but are supposed to implement the same behavior.
This bypassing of target specific code has two major disadvantages. First, the
development effort is increased, as the same behavior is specified multiple times
in different languages. Second, the developer is responsible to write semantically
equivalent code.

In the context of an ISA specification, redundant C and VHDL code may
lead to different behavior of the simulator and the microarchitectural processor
implementations. Hence, excessive testing of the implementations is required,
as described in [13]. Since ViDL does not require alternative specifications for
different implementation domains, consistency is guaranteed.

2.4 Compilation methods

As part of this thesis, two generators have been developed — a simulator gen-
erator and a processor generator. The simulator generator translates a ViDL
specification into a processor simulator, which is implemented in the imperative
programming language C. The processor generator translates a ViDL specifica-
tion into a hardware description of a pipelined processor. The structures of the
target codes are very different from the source language. The generator there-
fore requires sophisticated compiler techniques for translation and optimization.

2.4. COMPILATION METHODS 35

Sentence of source language
....................... Sequence of characters

................... .- Sequence of tokens

................... --- Abstract program tree

Semantic analysis
I / ... Attributed tree

v

~N
Optimizations
Transformations

e O i

~N representation

Code generation

Target specific
transformations

/" Back-end \ /Middle-end\ / Front-end

....................... Target code

Sentence of target language

Figure 2.2: Generic structure of a compiler.

This section is intended to give a basic overview of these techniques. In-depth
information can be found in literature [30, 32]

In general, a compiler translates a sentence of a source language into a se-
mantically equivalent sentence of a target language. A C-compiler for instance
may translate a sentence of the source language “C” into an equivalent sentence
of the target language “Intel x86 Assembler”, where the sentence is a program.
In the following it is assumed, that the source language is a programming lan-
guage. However, the same applies to other formal languages.

The generic structure of a compiler is shown in Figure 2.2. It consists of a
front-end, a middle-end and a back-end. The front-end analyzes the sentence
of the source language and yields an intermediate representation (IR) of the
sentence. The middle-end optimizes the representations using sophisticated
analyses and transformations. The back-end finally produces the target code.
This step is also known as code generation. Before generating code, the back-end
may also apply target specific optimizations on the intermediate representation.

2.4.1 Front-end

The front-end of a compiler can be further subdivided into the lexical, syntactic
and semantic analysis. During lezical analysis, a scanner transforms the sen-
tence of the source language (sequence of characters) into a sequence of tokens.
A token represents an atomic element of the source language, such as a key-
word, identifier or literal. The C-code “return a+1” is for instance divided into
a sequence of 4 tokens. The tokens return and + are keywords, a is an identifier
and 1 is a literal.

During syntactic analysis, a parser structures the sequence of tokens. The

36 CHAPTER 2. FUNDAMENTALS

(8‘) . /Exlpr\l (b) */+\1
e ’i“\5' /N

Figure 2.3: Example of (a) an abstract syntax tree and (b) a corresponding
Kantorovich tree (b).

result is an abstract syntaz tree (AST), which reflects the structure of the sen-
tence. For example, the abstract syntax tree of the C-expression a*5+1 is shown
in Figure 2.3a and is similar to its Kantorovich tree in 2.3b.

During semantic analysis, static properties of the abstract syntax tree are
analyzed. The analysis uses a tree walking algorithm to annotate nodes of the
AST with attributes. Semantic analysis typically includes name analysis and
type analysis. Name analysis binds identifiers to so called entities. The uses of
an identifier “a” are for instance bound to the respective variable. Note, that in
most languages, different entities may share the same identifier. Name analysis
therefore needs to consider the language’s scope rules.

The second major semantic analysis is that of types. For a statically typed
language, type analysis determines the types of program entities, such as vari-
ables and functions. For simple explicitly typed languages, types may be de-
termined by a tree walking algorithm. For implicitly typed languages like SML,
types are determined by type inference. Basically, type inference solves a system
of equations, where a variable represents the type of a program entity. Equa-
tions express type constraints between these entities. A solution of the system
of equations is thereby a valid assignment of types to entities. Type analysis is
explained in Section 2.5.

2.4.2 Middle-end

The middle-end implements optimizations on the intermediate representation.
At its best, these optimizations are independent from source and target lan-
guages. An optimization transforms the intermediate representation such, that
certain characteristics of the resulting target sentence are improved. For in-
stance, a C-compiler includes optimizations to increase the execution speed of
the resulting program. A valid optimization must preserve the semantics of the
intermediate representation. Its interpretation before and after optimization
must be the same. Examples of optimizations include dead code elimination,
evaluation of constant expressions and function inlining.

2.4.3 Back-end

Code generation in the back-end translates the intermediate representation into
code of the target language. In case of source to source translation, a pattern
based code generator may be used. Such a generator uses text patterns of the

2.5. TYPE SYSTEMS 37
(Regular) (Context free) (Attributed)
expressions grammar grammar
(Scanncr gcncrator) (Parser generator) (gﬁrgr)mr)
[[[

v v)
Scanner Parser Tree 'Walkmg
algorithm

Comliler front-end

Figure 2.4: Generation of compiler components.

target language, which include insertion points for other fragments of target
code.

2.4.4 Compiler framework

Compiler frameworks enable the efficient implementation of compilers [32]. Sig-
nificant parts of the front-end can be generated, including the scanner, parser
and tree walking algorithm. Figure 2.4 shows an overview of the front-end, its
components, their specification and the involved generators. The FEli compiler
framework [31] supports all three components shown in the figure. The gen-
erators are well integrated, i.e. a developer does not have to care about the
interface between compiler stages. In contrast, the combination of Flex and
Bison]9, 42] covers only the lexical and syntactic analysis. An advantage of
Flex is, that different scanner modes can be defined, where each mode activates
a certain set of tokens. During analysis, the mode can be changed to activate
different subsets of tokens. This feature is required for embedding of languages,
such as embedding C in a domain specific language.

2.5 Type systems

In ViDL, each value is a bit-string. The widths of such bit-strings needs to be
known for code generation. However, it is not specified explicitly by the devel-
oper in ViDL. Instead, bit-widths are determined by the generator. Therefore,
they are modeled by a type system and inferred by type-inference.

This section gives the foundation for ViDL’s type system, which is discussed
in Section 4.9. In computer science, a type is defined by a set of values and
operations on these values [45]. A 32-bit unsigned integer type represents for
instance the set of integral numbers from 0 through 232 — 1

setOf (uint32) = {z|r € ZA 0 < x < 23%}

Operations on this type include 32-bit addition, and multiplication.

38 CHAPTER 2. FUNDAMENTALS

2.5.1 Subtyping

If any value of a type S is also a value of a type T, the type S is said to be a
subtype of T', denoted S <: T. The subtype relation on types is equivalent to
the subset relation on the respective set of values.

S <: T < setOf(S) C setOf(T)

As a result of this relation, a value of type S may be given, where a value of
type T is expected. The 16-bit unsigned integer type is for instance a subtype
of the 32-bit unsigned integer type.

uintl6 <:uint32

2.5.2 Tuples

A sequence of n values! is called a tuple of arity n, or just n-tuple. The 3-tuple
(1,2,3) consists for example of the components 1, 2 and 3. Note, that the order
of components is significant, i.e. (1,2) is different from (2,1). The type of an
n-tuple is given by the cross product of the component’s types. A pair of a
16-bit integer and a 32-bit integer has for example the type uint16 x uint32.
Two tuple types are in subtype relation, if both types have the same arity and
if the respective component types are in subtype relation.

Si1x.. xS, <Thx..xT,en=mAVi:S; <:T;

Tuples are used to model functions with multiple parameters and results. A
function with three parameters and two results is regarded as a function that
expects a 3-tuple and yields a 2-tuple. According to this model, a function
always has exactly one parameter and one result, where the parameter or result
is a tuple. This model is used in the following and for the discussion of ViDL’s
type system.

2.5.3 Signatures

The type of a function is called signature. The signature defines the function’s
parameter type and result type. A 32-bit add-operation has for instance the
following signature.

add32 : uint32 X uint32 — uint32

The function expects a pair (2-tuple) of 32-bit integer values and yields a 32-bit
integer value (1-tuple).

In is static

2.6. TERM REWRITING SYSTEMS 39

2.5.4 Polymorphic types

A polymorphic type includes one or more type variables. Binding values to these
variables yields a concrete type. An n-bit unsigned integer type is an example
of a polymorphic type, where n is the type variable. The set of values of this
type depends on the actual value of n

setOf (uint<n>) = {zlr € ZAN0 <z < 2"}

A polymorphic type represents a set of types, one type for each instantiation of
type variables.

2.5.5 Polymorphic functions

If a signature contains type variables, the respective function is said to be poly-
morphic. An n-bit add operation for instance is polymorphic, as its signature
uses the type variable n.

add<n> : uint<n> X uint<n> — uint<n>

2.6 Term rewriting systems

A term rewriting system (TRS) transforms terms based on a set of so called
rewrite rules. Transformations typically simplify a term according to some cost
estimate. The ViDL generators use a TRS for this purpose, i.e. to simplify and
transform the intermediate representation of an instruction set (see Section 7.3).
The intermediate representation of the instruction set is therefore regarded as a
term. A set of rewrite rules is defined to simplify and normalize this representa-
tion. The rules express equivalences on bit-string operations, i.e. the semantics
of the intermediate representation are not affected by transformations. In the
following, a brief overview of term rewriting is given. This section is only meant
to give an overview and introduce a common terminology. Literature on term
rewriting systems [3, 33] covers this subject in-depth.

2.6.1 Term

A term is either a wvariable or a function application. A function application
consists of the function’s name and n operands, where n matches the arity of
the function. An operand itself is a term, which is also called subterm. In the
following, terms are denoted in function notation rather than infix notation.
In function notation, the function’s name is denoted, followed by a tuple of
operands. Constants are modeled as constant functions, i.e. functions of arity
zero. For example, the term add(a,5) is an application of the function add on
the operands “a” and 5. In this example, “a” is considered a variable and 5 is
considered a constant function. Empty parentheses after the function name 5
are omitted for the sake of readability.

40 CHAPTER 2. FUNDAMENTALS

Instruction
HlCHlOI’y

A
—| Branch unit

—

Pipeline

«—
Forwarding
Data | «— &

memory |—3 interlocking

Registers

_—

Figure 2.5: Basic structure of a pipeline processor.

2.6.2 Rewrite rules

Rewrite rules define transformations on terms. A rule is denoted [— r, where [
is called redex and r is called contractum. If the redex matches a term, the term
can be rewritten, i.e. replaced by the contractum. In detail, a redex [matches
a term t, if there exists a substitution o that unifies [and t. The term is then
replaced by ro. For instance, the rewrite rule add(x,0) — x can be applied on
the term add(sub(3,2),0). The substitution o = [x/sub(3,2)] unifies the redex
and the term. The term can be replaced by the contractum x[z/sub(3, 2)], which
is sub(3,2).

Practical rewrite systems are demanded to be sound, which means that
rewrite rules preserve the meaning of terms. A redex must be semantically
equivalent to the contractum. As a result, a sound rewrite system only changes
the structure of a term, but not its semantics, i.e. the interpretation of the term
remains unaffected.

2.6.3 Termination and confluence

A term rewriting system defines a set of rewrite rules. These rules can be used
to successively transform a term. If any sequence of applicable rewrite rules is
finite for any term, the term rewriting system is said to terminate. Termination
is an essential property of term rewriting systems. The question if a given term
rewriting system terminates is undecidable. A term that can not be rewritten
is in normal form. If a term rewriting system terminates and each term is
rewritten into a unique normal form, the term rewriting system is said to be
confluent.

2.7 Microarchitecture

The processor generator transforms a ViDL specification into a microarchitec-
tural processor implementation. This section outlines the fundamentals of mod-
ern microarchitectures, which are used by the processor generator as described

2.7. MICROARCHITECTURE 41

in Section 7.6. A microarchitecture is a set of concepts and principles used to
implement an instruction set. For instance, a microarchitecture may define the
structure of a 5-stage pipeline and the concepts of forwarding and interlocking.
The ViDL compiler utilizes such principles to produce a processor implementa-
tion of a given instruction set specification. This section is intended to give a
rough overview and to introduce a common terminology. In-depth information
on microarchitectures is given in [24, 4, 41].

A basic microarchitecture of a pipelined processor is shown in Figure 2.5. It
consists of a pipeline, which executes instructions in a stepwise manner. The
pipeline contains the datapath, which implements the behavior of instructions.
Instructions are issued at the top of the pipeline and committed at the bot-
tom. Instruction words are loaded from the instruction memory, which holds
the program to be executed. The branch unit computes the address of the in-
struction to be loaded. This is either the successor of the last instruction or the
(predicted) target of a branch instruction.

Most instructions read and write registers, while they traverse the pipeline.
In long pipelines, this may introduce data hazards due to delayed write accesses.
Such hazards are resolved by a forwarding circuit and by interlocking. Interlock-
ing and branches affect the flow of instructions through the pipeline, by means
of canceling and stalling.

2.7.1 Storages

A processor includes a set of different storages. The storages carry the state
of the processor. The processor generator has to generate instances of such
storages. This section therefore takes a closer look at different kinds of hardware
implementations of storages and discusses their properties.

A register is a very simple hardware storage, which holds a sequence of bits.
It can be read and written in each clock cycle. A one-bit wide register is also
called flag. The data in port of a register receives the next value of the register.
The data out port yields the current value of the register. A register may provide
a one-bit wide write-enable port to enable or disable write accesses. If a write
access is disabled, the register state remains unchanged. As an alternative to
a write-enable bit, a write-enable mask may be provided, which allows bitwise
enabling and disabling of write accesses. Examples of registers include the status
register, the processor mode register and special purpose registers, which are used
by exceptional instructions. For instance, a register may be used to store the
processor mode or the result of some special instructions. The MIPS instruction
set includes a pair of special purpose registers to store the 64-bit wide result of
a multiplication.

A register file is an array of registers, which can be accessed randomly. To
enable multiple concurrent accesses, a register file provides a set of read-ports
and a set of write-ports. The register file can be accesses concurrently through
these ports. One read (respectively write) access can be performed through each
port at a time. A typical processor may include one register-file of 16 registers,
which are 32-bit wide and can be accessed via two read ports and one write

42 CHAPTER 2. FUNDAMENTALS

(a) ()

Datapath —|

| Pipeline

—

Functional block — T Stage

|_}— Pipeline register

]

Figure 2.6: Example of a datapath and a pipeline.

port.

Besides registers, a processor typically includes random access memories
(simply called memories in the following). A memory is an array of words. A
32-bit memory for instance consists of a sequence of 32-bit words. The interface
of a memory is similar to a register file. However, a memory is larger by some
orders of magnitude and slower. The write port of a memory typically includes
a (limited) write-enable mask, to allow byte-wise stores.

2.7.2 Datapath

A processor includes a datapath, which basically implements the semantics of
all instructions. The processor generator includes sophisticated algorithms to
generate such a datapath, as described in Section 7.6. This section therefore
gives a short overview of datapaths and their properties.

The datapath of a processor consists of functional blocks, which are inter-
connected. The datapath is a directed acyclic graph (DAG), as shown in Fig-
ure 2.6a. Each functional block of a datapath has a specific propagation delay.
For instance, a 32-bit adder may have a propagation delay of 800 ps (picosec-
onds). This means, that if a value at an input changes, the result is available
at the output after 800 ps. The delay of a path is therefore the sum of the
propagation delays of all functional blocks on that path. The path with the
longest delay is called critical path, as it determines the maximal frequency of
the processor. A critical path leads from the output of a register to an input of
a register. Its delay is also called register-to-register delay. It includes the setup
time and delay of the registers.

Figure 2.7 outlines an idealized structure of a typical datapath. The figure

2.7. MICROARCHITECTURE 43

Program counter

Load instruction
Instruction word

Decode instruction
Immediate operand Source indices
Control signals Read register file
Register operand

Ne

ArithmctiL logic unit Stored value
Address
Result
Read/write data memory

Destination index Loaded value

e

A
Write register file

Figure 2.7: Structure of an idealized data path.

is just meant to give an idea of a datapath. Practical data paths are more
complex and do not fit into this structure. The processor generator uses a similar
structure to generate a microarchitectural processor implementation. At the
beginning of the data path, an instruction word is loaded from the instruction
memory. The address of the instruction word is given by the program counter.
The instruction word is then decoded, yielding control signals, and operands.
Control signals are derived from the instruction’s opcode and used to control the
arithmetic logic unit (ALU). Operands are either immediate values or indices
of source and destination registers. The latter are used to index the register
file for read and write accesses. Immediates and values from the register file
are led to the ALU, which computes the result of the instruction. For load and
store instructions, the ALU computes the address of the memory access. The
computed result (respectively loaded value) is finally stored in the register file.

2.7.3 Pipeline

A direct hardware implementation of a datapath would lead to a slow proces-
sor. The processor generator therefore generates a pipelined implementation,
to cut down the critical path and thereby the overall register-to-register de-
lay. This section gives a brief overview of pipelines and introduces a respective
terminology.

A pipeline consists of a set of pipeline stages. The number of pipeline stages is
also called pipeline depth. The pipeline depth of modern processors ranges from
3 stages to more than 20 stages. The example in Figure 2.6b shows a pipeline
of depth 3. The datapath of a processor is distributed among the stages of a
pipeline. It is intercepted by pipeline registers, which are placed between stages.
The critical path of the dataflow graph is thereby split into smaller paths. As a
result, the maximal register-to-register delay is reduced. The processor can be
clocked with a higher frequency, which increases pipeline throughput. To yield
a high clock frequency, propagation delays must be balanced among stages, as

44 CHAPTER 2. FUNDAMENTALS

indicated in Figure 2.6b.

Stages of a pipeline are typically named by their primary function. A 5-stage
pipeline typically consists of the following stages, which implement the functions
from Figure 2.7.

IF The instruction fetch stage loads an instruction word from instruction mem-
ory.

DC/RD The decode and read stage decodes the instruction word and loads
values from the register file.

EX The ezecute stage computes the result of the instruction.
MA The memory access stage loads or stores a value from or to data memory.

WB The write-back stage stores the result of the instruction in the register file.

2.7.4 Execution order

For the sake of completeness, the execution order of instructions is briefly de-
scribed in the following. A simple processor executes instructions in-order, i.e.
as they appear in instruction memory. The current processor generator pro-
duces such an in-order microarchitecture. However, a processor may also use
a dynamic scheduler to reorder instructions. They are then executed out-of-
order. The purpose of a dynamic scheduler is to resolve hazards by reordering
instructions. For an in-order microarchitecture, this task can be solved by the
compiler to some extend. The compiler yields a static schedule of instructions,
which aims to avoid hazards at execution time. Compared to a dynamic sched-
uler, a static scheduler does not require any hardware resources, but may yield
a worse schedule, as only static program information is available. This thesis
regards an in-order microarchitecture, as it requires less resources and power.

2.7.5 Forwarding

To increase instruction throughput, pipelines typically include so called forward-
ing circuits. To generate forwarding circuits, the processor generator includes
sophisticated algorithms, as described in Section 7.6.7. This section therefore
gives a brief overview of forwarding and its implementation.

Assume, that a register or register file is read in a stage i and written in
a stage j > i. Accordingly, these stages are called read stage (RD) and write-
back stages (WB) for this register. Depending on the depth of the pipeline
and the datapath, the distance 7 — ¢ between the read and write-back stage
may be large. The result of an instruction may therefore appear delayed by
multiple clock cycles. A subsequent instruction does not see the result, as it is
not written back yet. This conflict is called a data hazard caused by a read after
write (RAW) dependence. If the result of the instruction is already computed
in stage i+ 1, the hazard can be eliminated using a forwarding circuit, as shown
in Figure 2.8. A forwarding circuit consists of one or multiple bypasses from

2.7. MICROARCHITECTURE 45

Stage i+0
(read stage)

Stage i+1 Multiplexer

Register

A

Stage i+2 Datapath

Stage i+3

Stage i+4
(write-back stage)

Figure 2.8: Example of a forwarding circuit for one register.

subsequent stages to a multiplezer. Each bypass may transport a new state of
the register. The multiplexer then selects the most recent state. In the example,
the bypass from stage i+ 3 overrides the bypass from stage ¢+ 1, which overrides
the value read from the register.

In a real processor, each register or register file has a separate read stage,
write-back stage and forwarding circuit. Hence, speaking about “the” read stage
and “the” write-back stage of a pipeline is misleading.

2.7.6 Interlocking

A second technique to eliminate data hazards is interlocking. It is typically
applied, if a value can not be forwarded. To generate an interlocked pipeline
(Section 7.6.8), the processor generator obeys the principles that are described
in this section.

Assume a simple 5-stage pipeline, which consists of the stages IF, RD, EX,
MA and WB, as described in Section 2.7.3. Likely, the result of some instruc-
tions is not available at the end of EX, but in later stages (MA). Examples
include multiplication instructions and load instructions. For such instructions,
the result can not be forwarded to a subsequently executed instruction. Instead,
the data hazard needs to be resolved by interlocking, as shown in Figure 2.9.
Basically, interlocking stops the execution of the instruction that accesses the
result. In cycle k 4 0 of the example, instruction D accesses a result of instruc-
tion C, which is not yet computed and can therefore not be forwarded. As a
result, instruction D is stalled in stage 1 by interlocking. As a consequence, the
instructions in previous stages (i.e. E in stage 0) are stalled too. The instruc-
tions in subsequent stages advance as normal. In the resulting gap at stage 2, a
so called bubble is inserted, which is basically a no-operation (NOP) instruction.
In the example, instruction D is stalled for two cycles, resulting in two bubbles
NOP; and NOPs. In cycle k + 2, the result of instruction C is finally forwarded

46 CHAPTER 2. FUNDAMENTALS

Stalled Stalled

Stage 0 E D) E F
<« : <« <
Stage1 | D : D : D E
I
Stage2 | C NOP, | i NOP, D
v

Stage3 | B C NOP, NOP,
Stage 4 A B C NOP,

Cycle k+0 Cycle k+1 Cycle k+2 Cycle k+3

Figure 2.9: Example of two-cycle interlocking in a 5-stage pipeline.

Branch target

Branch condition

Last PC
Branch

prediction Instruction fetch stage

PC

Multiplexer

_— Branch information
Instruction word

Decode stage

Figure 2.10: Computation of program counter.

to D and execution continues as normal.

2.7.7 Branch prediction

A realistic instruction set includes one or multiple branch instructions. Branch
instruction must therefore be implemented by the processor generator. However,
branches require a special implementation in a pipelined processor, as they alter
control flow. The processor generator therefore includes dedicated methods to
generate the implementation of branches. This section presents the foundation
for these algorithms, which are discussed in section 7.6.9.

In a processor implementation, a branch instruction changes the control
flow by explicitly setting the program counter (PC). The program counter of a
processor points to the next instruction to be executed. It is used in the first
stage of a pipeline to load an instruction word from the instruction memory
(IMEM), as shown in Figure 2.10. If the program counter is not set by a

2.7. MICROARCHITECTURE 47

branch instruction, it is implicitly incremented by the size of the last executed
instruction. The program counter is therefore either set to the successor of the
last program counter or to the target address of a branch. A branch instruction
defines two values, the branch target and the branch condition. The branch
condition corresponds to the condition of a conditional branch. If the condition
is true, the branch is said to be taken and not taken otherwise. An unconditional
branch (jump) is always taken.

A non-delayed branch instructions must virtually set the target value and the
condition value, when it enters the decode stage. However, for typical pipelines
an instruction is not even decoded in this stage. For a conditional register branch,
the target and the condition are typically not computed until the memory access
stage. To solve this control hazard, a pipelined processor includes a branch
prediction. A branch prediction uses information about a branch instruction
to predict the target and the condition. A static branch prediction typically
regards the direction of a branch to predict the condition. A dynamic branch
prediction typically considers the address of the branch instruction to predict
the target and condition. The probability of a correct prediction depends on
the predictor and the executed program. It typically lies in the range of 50% to
98%. In case of a mispredicted branch, speculatively executed instructions need
to be canceled. The number of canceled instructions corresponds to the branch
penalty.

48

CHAPTER 2. FUNDAMENTALS

Chapter 3

Related approaches

The development of processor specification languages started with the developed
of modern computers. The “instruction set specification language (ISP)” for
instance reaches back to 1970, when it was proposed by Bell and Newell [5]. Since
then, a dozen languages for instruction set specification, processor specification
and architecture specification have been proposed. Most of these languages use
a mixed description of microarchitectural aspects and instruction set aspects,
which are strongly coupled. Such specifications are therefore bound to one
specific microarchitecture.

ViDL in contrast strictly abstracts from microarchitectural aspects (Sec-
tion 4.3). As a result, different processor implementations can be generated
from the very same specification (Section 1.6). In addition, maintainability and
reliability are improved, as microarchitectural aspects need not be considered.

3.1 Taxonomy of ISA specification languages

This section attempts to give a rough overview of processor related specification
languages and their characteristics. The languages are discussed comprehen-
sively in the following sections. To give a better overview of existing languages,
they are divided into four classes, according to their characteristics. These
classes and their relation are illustrated in Figure 3.1 and described in the fol-
lowing. The Figure also shows the degree of abstraction and the expressiveness
of each class, as these are significant properties in practice.

HDL The class of hardware description languages (HDL) includes languages
like VHDL or Verilog. In such languages, a processor is defined on a mi-
croarchitectural level (Section 1.3). Any detail of the hardware processor
is defined, including the structure of pipelines, functional units and their
control. Distinct instructions are not apparent. Instead the semantics
of all instructions are merged and distributed over a variety of resources.
For instance, an add-instruction contributes to the decoder, the ALU, for-

o0

Strict

decoupling from
implementation

CHAPTER 3. RELATED APPROACHES

Externally visible behaviour
\ InforméD
IDL /
PDL Abstraction
HDL
Concrete implementation
Orthogonal Irregular

Complexity of ISA

Figure 3.1: Abstraction and expressiveness of processor related specification
languages.

warding, interlocking and register write-back. The ALU on the other hand
implements the functionality of all arithmetic and logical instructions.

Compared to processor and instruction set specification languages, the
level of abstraction is low. The specification is typically complex and
requires extensive testing. On the other hand, hardware description lan-
guages are very powerful. They can be used to define any kind of processor
in terms of instruction set and microarchitecture. The space of processors
that can be specified is not limited by an underlying processor model.

PDL Most processor related specification languages belong to the class of pro-

cessor description languages (PDL). This includes nML (3.4), Lisa (3.6)
and Expression (3.8). Processor description languages define aspects of
the instruction set, as well as aspects of the microarchitecture. The def-
inition of microarchitectural aspects is essential for PDLs, i.e. they can
not be omitted. As a result, a PDL does not only define an instruction
set, but actually a specific hardware implementation of a processor. This
thesis therefore uses the term “processor description language” for such
languages rather than “instruction set description language”.

In a PDL, the microarchitecture is specified according to a language spe-
cific model. The model greatly affects the expressiveness of the language.
For instance, a model may not be able to represent conditional execution
or delayed instructions. Compared to an HDL, a PDL imposes certain
restrictions, i.e. it may not be possible to specify some processors in a
natural way.

PDLs define an instruction set on the foundation of the specified microar-

3.2. NOTATION IN ISA MANUALS 51

chitecture. The instruction set description is thereby bound to that specific
microarchitecture. The microarchitecture can hardly be changed, once the
instruction set is defined.

Using a PDL, a developer likely has to specify pipeline control manually.
For instance, stages must be stalled and flushed, such that all data hazards
and control hazards are correctly resolved. This task is quite complex and
extensive testing of the resulting processor implementation is therefore
advisable.

A PDL specification is translated into HDL code using a generator. Some
generators are not fully automated and require manual intervention or the
specification of additional HDL code. The implementation effort of most
generators may be considered low, since the structure of most PDL speci-
fications is quite close to that of HDL specifications. In-depth information
on the implementation of generators is not available in literature.

IDL The class of instruction set description languages (IDL) includes the spec-
ification languages ViDL (4) and TIE (3.9). An IDL specification focuses
on the aspects of instruction sets, such as programmer accessible storages
and semantics of instructions. An IDL abstracts from microarchitectural
aspects, similar to most instruction set manual. For instance, the pipeline
structure, branch prediction and forwarding are not defined. The ab-
straction from microarchitecture enables the generation of very different
processor implementations, using the same instruction set specification.
Compared to a PDL generator, an IDL generator is much more com-
plex. It has to derive many aspects of the microarchitecture by analyzing
instruction semantics. The analysis methods of ViDL’s generators are
discussed in Chapter 7.

Informal Informal texts or semi-formal texts are for instance used in manu-
als 3.2 to describe instruction sets. Any concept of an instruction set can
be described in an informal natural language. However, informal texts can
not be processed by generators. An instruction set manual is for instance
not suited as input to generate a processor implementation. Nevertheless,
it is worth taking a look at manuals, as they describe instruction sets in
an intuitive and simple manner. The structure of ViDL is actually very
similar to manuals for this reason.

3.2 Notation in ISA manuals

Most instruction set manuals define the semantics of instructions and the struc-
ture of storages in a semi-formal way. Instruction semantics are likely denoted
using some sort of pseudo-code. Basic operations in the pseudo code like “+”
and “<” (also known as pragmatics [20]) are assumed to be self-explanatory or
are described informally by a text. Such descriptions are necessary to interpret
the pseudo-code.

52 CHAPTER 3. RELATED APPROACHES

The purpose of a manual is to describe instruction semantics for humans. It
is not intended as formal input to generators. In the following, the ARM manual
is regarded. Other manuals, such as the Power manual, the MIPS manual and
the CoreVA manual have a similar structure.

3.2.1 ARM manual

In the ARM architecture manual [2], instruction semantics are described semi-
formal in terms of pseudo code. The pseudo code is defined in an imperative
language. Registers and memories are modeled as scalar variables and arrays.
Instruction semantics are defined using a set of primitive operations, such as
SignExtend and Logical_Shift_Right. The semantics of primitives are de-
scribed informally in a glossary. Common semantics of instructions are factored
out. The addressing modes of load and store instructions are for instance defined
once and then referred in the descriptive text of each instruction.

The state of the processor, which consists of registers and the main memory,
is informally defined in the ISA manual. The ARM architecture uses banked
registers, which means that different sets of physical registers are associated
with register names, depending on the current processor mode. For example, the
register name R14 is associated with the physical register R14_svc in supervisor
mode and with R14_fiq in fast interrupt mode. This association is visualized
and explained by informal text.

The encoding of each instruction is defined by diagram, which divides the
instruction word into named fields and opcode bits. The field names are then
used in the specification of instruction semantics, to refer to the respective bit-
slices.

The memory is modeled as an array. An access to the memory is denoted
Memory [<address>,<size>], where <size> is the size of the memory access,
which is 1, 2 and 4 bytes for ARM.

3.2.2 Review

The description of instruction semantics in manuals is clear. Each instruction
can be regarded separately by the reader. Common aspects are factored out,
to simplify the specification due to reuse. In the same way, instructions are
specified in ViDL, i.e. each instruction is defined on its own. Common aspects
are factored out using functions and functional. The encoding is defined in
ViDL using a pattern, similar to manuals.

The notation of memory accesses in manuals is intuitive and simple. It
encapsulates masking, write-enabling and endianness. A similar notation can
be used in ViDL, by defining so called views for byte-, half-word- and word-
accesses. Manuals describe semantics of instructions on a high level, using high
level primitives, such as “rotate” or “sign extend”. The same holds for ViDL,
which defines such primitives in an extensible library. Both, manuals and ViDL
focus on the instruction set. They strictly abstract from microarchitectural

3.3. ISP 53

aspects, such as the pipeline structure or register ports. The description is
thereby simplified and it is not bound to one specific processor implementation.

3.3 ISP

The specification language ISP [5] (Instruction Set Processor) was first used in
the Book “Computer structures: readings and examples” [6] of Bell and Newell
in 1971. This language was intended to formally describe the behavior of pro-
cessor architectures. The notation was adopted by the SPARC manual [48] to
formally describe instruction semantics. Basically, the language targets at the
interpretation of binary programs and the generation of hardware.

3.3.1 State

The processor state is described as a set of storages. A storage models for
example a register, a register file or a memory. Conceptually, each storage
represents a bit-string of a specific width or an array of a specific size. The
elements of the array are either bit-strings of a specific width or are itself arrays.
The latter can be used to model multi-dimensional storages.

3.3.2 Aliases

ISP provides aliases to define alternative names for bit-slices of storages. The
names can be used to refer to these bit-slices. Assume for instance a 32-bit
accumulator register. Two 16-bit aliases may be defined in ISP to refer to the
high and low part of the accumulator. An alias in ISP is a special case of an
architectural interface in ViDL, but is more restricted. An alias always refers
to one specific storage element. For instance, a 16-bit view on a 32-bit register
file can not be defined. Aliases are static, i.e. they can not be changed or
reconfigured dynamically. As a result, reconfigurable register structures, such
as mode-dependent registers, can not be defined.

3.3.3 Instruction encoding

The encoding of instructions in ISP is defined globally for all instructions.
Aliases are used to refer to bit-slices of the instruction word, as shown in the
following example.

x<0:1> := instruction<0:1>
y<0:1> := instruction<2:3>
opcode<0:4> := instruction<4:7>

The identifier opcode refers to bits 7 to 4 of the instruction word. It is used later
in the definition of instruction semantics, to identify instructions. The encoding
of a specific instruction is therefore not obvious, as it is defined by semantics.

54 CHAPTER 3. RELATED APPROACHES

3.3.4 Activations

In ISP, the association between instructions and opcodes is expressed by so called
activations. An activation is an expression, which triggers the “execution” of an
instruction. Activations typically compare the opcode bits of an instruction
word to constants. If the comparison matches, the activation holds and the
corresponding action is triggered.

The concept of activations is very close to a straight forward implementation
of a hardware decoder. The decoder concurrently evaluates all activations and
yields one signal for each activation. This results in n signals for n instructions,
where the i-th signal is active, if the i-th instruction is executed.

The concept of activations is therefore quite hardware centric and implies a
certain implementation of the decoder. It is suited for describing the semantics
of a processor and for generating hardware, but generating efficient software
decoders (as found in simulators) may be considered hard. In software, the
activations are evaluated sequentially and not in parallel as in hardware. The
execution time of the software decoder is therefore expected to be linear in
the number of instructions. The use of patterns in ViDL allows generating a
concurrent hardware decoder and a decision tree based software decoder. The
execution time of the decoder is typically logarithmic in the number of instruc-
tions.

Besides, the concept of activations is not well suited for generating compiler
tools. An assembler for instance needs to construct an instruction word for a
given instruction with its operands. This task is basically the inverse of decoding
and would require determining the inverse of all activation expressions, which is
not trivial. Compared to that, the derivation of an encoder is quite simple for
ViDL, as a pattern implies a bidirectional mapping between operands and bits
of the instruction word.

For the typical one-to-one relation between activations and instructions, ac-
tivations typically need to be disjoint. This means, that there must not be two
activations that hold for the same instruction word. The developer therefore
needs to ensure, that activations are disjoint, which is not a trivial task. This is
especially true, if instructions are not only identified by a single opcode field. If
the instruction encoding is specified by patterns instead, the generator can check
for disjoint instructions by very simple and fast operations on the patterns.

3.3.5 Actions

The semantics of instructions are specified by so called actions in ISP. An action
is a sequence of assignments, which are executed concurrently, as long as there
is no intervening next statement. This is similar to the paradigm of concurrent
assignments in VHDL.

In ISP, primitive operations like “47, “x”, “A” “@®” are used to specify the
semantics of instructions. The set of available operations and their precise
semantics are not defined in literature.

3.3. ISP 55

3.3.6 Data-types

In ISP, bit-strings may be interpreted in different ways. For example, a string
of 32 bits may be interpreted as a floating point number with single precision or
as an unsigned integer. The particular interpretation of bit strings is specified
explicitly on expression level. In detail, one interpretation can be specified for
each side of an assignment. All operands on each side are then interpreted the
same way.

If the interpretations on the two sides are different, the expression on the
right hand side is converted to the interpretation of the left hand side. The
semantics of the conversion can not be defined and there seems to be no way, to
influence the conversion. There are for example at least 3 meaningful ways to
convert a floating point number into an integral number: Rounding to the next
smaller integer, rounding to the next larger integer or rounding towards zero.

To specify arithmetic operations on bit-strings, which are interpreted as
floating point numbers, primitives are overloaded. The arithmetic primitive “+”
is for example overloaded for the interpretations “integer” and “floating point”.
It is left open, which operations are overloaded for which data types and what
their semantics are. For example, if there are meaningful semantics for the &
primitive on floating point numbers.

ISP suggests a set of interpretations of bit-strings, including a three letter
scheme for denoting floating point interpretations. Beyond this set, there is
an infinite number of meaningful interpretations, which are not covered by the
proposed set of interpretations.

To overcome the complexity introduced by multiple data types, ViDL uses
only one class of data types namely bit-string. The interpretation of a bit string
as integer or floating point is folded into primitives. There may for example be
one “add-integer” primitive and one “add-ieee754-single” primitive. A primitive
is therefore not overloaded for different interpretations.

3.3.7 Review

Simplicity ISP is a quite simple ISA specification language. It uses only a
limited number of concepts to describe ISAs. The set of instructions is defined
implicitly by a hierarchy of operations, activations and sub-operations. Basi-
cally, this is a decision tree on the encoding of instructions. The nodes of the
decision tree are annotated with assignments, which define the next processor
state. This structure is different from instruction set manuals, where each ele-
ment of the instruction set is defined separately. Formalizing an instruction set
manual in ISP may therefore be complex, as the structure of the instruction set
must be analyzed first by the developer.

Maintainability The structure of the instruction space and the semantics of
instructions are strongly coupled by the decision tree. This has a major impact
on maintainability and may complicate design space explorations and instruction

56 CHAPTER 3. RELATED APPROACHES

set extensions. Instructions can not directly be added or removed from the set
of instructions.

Expressiveness Compared to other approaches, the expressiveness of ISP is
limited. The language was designed in the 70s and is suited for simple instruction
sets without visible pipeline effects. Properties of modern instruction sets, such
as delay slots, conditional execution or register windowing can not be described.
Only a very basic set of arithmetic and logic operations is used in [5] to define a
PDP-8 instruction set. An approach to formally specify further operations is not
mentioned. The width of operations and the analysis of bit-widths are left open.
ISP provides the concept of aliases. An alias defines a static view on a single
register. It is a special case of architectural interfaces in ViDL (Section 4.8).

An ISP specification is founded on a decision tree. This tree imposes a certain
structure on the instruction set. It is well suited to develop highly orthogonal
instruction sets from scratch. However, existing instruction sets that do not
exactly fit this structure may be hard to describe.

Reuse Aliases in ISP offer a kind of reuse. A view on a bit-slice is defined once
and then reused among the specification. In addition, ViDL also offers further
concepts to enable reuse and factorization. This includes variables, functions
and functionals.

Reliability As assignments are distributed over the decision tree, the effects
of an instruction may not always be clear. Unintended side-effects may result,
which lead to incorrect specifications. To reason about the effects of an instruc-
tion, great parts of the specification must be understood. This is different in
ViDL, where each instruction is specified on its own. An instruction in ViDL is
self contained, except for applications of functions. However, functions do not
have side-effects, which need to be considered.

3.4 nML

The specification language nML [15, 17, 44] belongs to the class of processor
description languages (PDL), as aspects of the microarchitectural implementa-
tion are defined. An nML specification includes for instance a definition of the
pipeline structure and is thereby bound to a specific microarchitecture. The
concepts of nML are well suited to develop highly orthogonal instruction sets
from scratch. The specification is founded on a so called “structural skeleton”,
which reflects the structure of the instruction set as well as the structure of
instructions. The skeleton can be used to factor common aspects of instructions
out. This concept is described later in detail.

An nML specification can be divided into the specification of the processor
state (Section 3.4.1) and the specification of instructions (Section 3.4.2). All
instructions are specified commonly using the formalism of attribute grammars.
The elements of the instruction set are therefore not enumerated explicitly.

3.4. NML o7

Section 3.4.2.1 takes a very close look at this formalism and discusses open
questions and inaccuracies. It should be noted in advance, that this discussion
is based on a very limited amount of available literature on nML. The correctness
of the following conclusions can therefore not be guaranteed. The section closes
with a brief discussion of instruction set modeling (Section 3.4.3) and aspects
of language quality (Section 3.4.4).

3.4.1 State

In nML, the state of a processor is defined by a set of storages. Each storage is
defined by a number of elements and the width of elements. A storage may for
example be a register-bank of 8 registers, where each register is 64-bit wide. Us-
ing these storages, all memories and registers of the ISA are defined. Basically,
these are all storages that are directly exposed to the application programmer
and therefore described in the ISA manual. In addition, microarchitectural stor-
ages, such as pipeline registers are defined in nML. These storages are not part of
the ISA. The number and size of these registers depends on the chosen microar-
chitecture and may be different for different implementations of the same ISA.
For a non-pipelined implementation of the ISA, the processor implementation
will not contain pipeline registers at all. The nML specification does therefore
not only specify the ISA, but also aspects of the microarchitecture, like the
number of pipeline stages. Changing the microarchitecture at a later time may
therefore necessitate expensive modifications of the processor specification.

3.4.2 Instruction set

An nML specification defines a set of instructions in a structural way. Instead
of defining each instruction separately, a single structure is defined, from which
all instructions are derived.

Instructions and their semantics are defined using so called rules. The set
of rules implies a set of trees, where each tree corresponds to one instruction.
A node of a tree is called an operation. Operations contribute the behavior,
encoding and assembly syntax of an instruction.

The set of instructions is thereby defined intensionally! in nML. It is derived
from the set of rules and not specified extensionally, as in ViDL. An intensional
definition is well suited for highly orthogonal instruction sets. Common aspects
of instructions can be factored out into common operations. Exceptional be-
havior however is hard to express in nML, as orthogonality and the respective
factorization are fundamental concepts in nML. In contrast to nML, ViDL de-
fines each instruction independently. Common behavior may be factored out
using functions or functionals. However, factorization is optional in ViDL and
can be applied by the developer as desired. For instance, the specification of a
small irregular instruction set may not use any factorization at all. The defini-
tion of each instruction is therefore self-contained.

n terms of intensionally defined sets in mathematics.

58 CHAPTER 3. RELATED APPROACHES

3.4.2.1 Attribute grammar

The formalism behinds an nML specification is basically an attribute gram-
mar [34] that obeys a certain structure. An attribute grammar AG = (G, A4, C)
is defined by a context free grammar G, a set of attributes A and a set of compu-
tations C. A context free grammar G is defined by a quadruple G = (T, N, P, S),
where T is the set of terminal symbols, N is the set of non-terminal symbols, P
is the set of productions and S is the start symbol.

In nML, the set of terminals is empty (T = 0)), as every non-terminal ap-
pears on the left hand side of exactly one production. A non-terminal z € N
corresponds to an operation in nML. A production p € P corresponds to a rule
in nML. A rule must either be a so called AND-rule or a so called OR-rule. An
OR-rule corresponds to a production of the form X ::= X1 | X2 | ... | Xn
and an AND-rule to a production of the form X ::= X1 X2 ... ZXn. The
set of valid productions is thereby restricted. For instance, the production
X ::= X1 X2 | X3 does not model a valid nML Rule. For each non-terminal X,
there must be exactly one production of the form X := ... in P. As a result
of this constraint |P| = |N| holds.

Fach non-terminal has exactly three synthesized attributes, namely ACTION,
IMAGE and SYNTAX. The ACTION attribute defines the behavior of an operation.
The IMAGE attribute defines its encoding, i.e. how an operation is encoded as
part of an instruction word. The last attribute SYNTAX defines the assembly
notation of the operation, i.e. how it is represented as part of an assembly
instruction. All attributes are synthesized, i.e. they can be computed during a
single bottom up pass in the tree. An nML specification therefore belongs to
the grammar class SAG.

3.4.2.2 Grammar properties

The nML grammar defines an abstract syntaz, i.e. it defines a set of trees. The
language of such a grammar contains at most the empty word, since the set of
terminals is empty (7" =)). Hence, the set of instructions corresponds to the
set of derivation trees and not to the language L(G) as stated in [44].

An nML grammar may not be sound, as demonstrated by the following
example.

A ::=

B |
B ::=AC
C ::=

C

According to nML literature, the grammar is valid. The first production cor-
responds to an OR-Rule and the second production to an AND-rule. However,
this grammar implies an infinite set of derivation trees and thereby an infinite
set of instructions. As a result, the number of A, B and C nodes in a deriva-
tion is unlimited. Depending on the definition of attributes, this may lead to
instruction encodings of unlimited width and data-paths of unlimited length.
The specification is therefore not sound.

3.4. NML 99

Although not stated in nML literature, it seems necessary to demand non-
recursive rules to ensure soundness. Formally this means, that there is an order-
ing “<” on the set of non-terminals, such that the symbol on the left hand side
of a production is smaller than the symbols on the right hand side. A developer
should be aware of this restriction, to define sound instruction sets.

3.4.3 Modeling of instruction sets

In nML, OR rules partition a set of instructions into disjoint instruction sets. An
AND rule specifies, that all instructions in the set of instructions are composed
of multiple disjoint sub-operations. For an existing instruction set description
(e.g. an ISA manual), it may be hard to derive the corresponding nML grammar.
Common instruction aspects and orthogonal sub-instructions need to be factored
out.

In the process of design space exploration, instructions are typically added,
changed or removed. In nML, instructions are coupled via operations. Changing
the semantics of only one single instruction may therefore be difficult. For
instance, to modify the semantics of an instruction, an operation needs to be
changed, which may then affect other instructions.

An instruction corresponds to a derivation tree, which represents a dataflow
graph. Each node (operation) in the tree corresponds to one logical block.
Data flows from child nodes to parent nodes. The ACTION attribute defines the
transfer function of the logical block. The ports of a node or logical block are not
defined explicitly in nML. Instead, global signals are used in the specification to
communicate between logical blocks. The designer needs to take care, that the
dataflow specified using global signals matches the structure of the derivation
tree.

In nML, a single structure (the grammar) is used to specify the semantics,
the encoding and the assembly notation of instructions. It is assumed, that all
aspects obey the same structure. This may be a problem, if the instruction set
structure differs for the three aspects. Assume for instance, that the instruction
pairs A/B and C/D have common semantics, but the pairs A/C and B/D have
a common encoding.

3.4.4 Review

Abstraction Parts of an nML specification are defined in C++. This includes
the definition of element types and the address types of storages. The embed-
ding of C++ code breaks abstraction from target languages. As a result, the
implementation language of a simulator is bound to C++4. For instance, the
language is not suited to generate a simulator in terms of Java code.

Great parts of the microarchitecture are explicitly specified in nML. This
includes signals, functional units, register ports and the instruction pipeline.
The latter includes pipeline registers and pipeline control. An nML specifi-
cation is thereby bound to one specific microarchitecture. Due to the lack of
abstraction, it is virtually impossible to generate different microarchitectural

60 CHAPTER 3. RELATED APPROACHES

implementations from the same specification. Aspects of the microarchitecture
are the foundation of an nML specification and can not be selected at a later
time.

Literature states, that the generator GO generates a netlist of RTL blocks
from an nML specification. The implementation of these blocks in terms of HDL
code is not mentioned. It is also not stated, if the code is ready for synthesis or
if certain parts need to be contributed manually by the developer.

Expressiveness As nML does not strictly abstract from the target domain, it
can cover a wide range of processors. The pipeline is under the developer’s
control, which enables uncommon and irregular timing behavior.

An nML specification uses a common “structural skeleton” to specify the
behavior, assembly notation and encoding of instructions. Instructions with a
common encoding are assumed to also share a common behavior and a common
assembly syntax. Instruction sets that do not conform to this condition are not
discussed in literature.

Simplicity The language defines a variety of syntactic elements and concepts
that are tailored to the domain of processor specification. This section has
only focused on a small fraction of nML and its language constructs. The
instruction set structure is defined using a grammar in nML. Users in the domain
of processor development may not be familiar with this formalism. A robust
understanding of grammars and their properties may be necessary to specify
real world instruction sets. Section 3.4.2 has demonstrated the complexity and
pitfalls of this formalism.

Significant parts of an nML specification are defined by embedded C++
code. This includes the specification of data types and primitive functions.
Therefore, users likely need to know the programming language C++ to some
extend. Since data types are defined in C++, nML uses the type-system of C++.
Implicit typing by type inference or generic bit-string types are not mentioned
in literature. Instead, it seems necessary that instruction set specific types and
respective conversion functions must be specified in C++. The specification
appears to be typed explicitly. Both increase the complexity of a specification.

To formalize an existing instruction set manual, a developer needs to analyze
the instruction set. Common behavior has to be factor out and appropriate
instruction groups need to be identified. This is a complex process of reverse
engineering, where a set of derivation trees (i.e. instructions) is given and an
appropriate grammar must be reconstructed.

Reuse Reuse is provided by the structural skeleton. Each operation in that
skeleton may contribute to multiple instructions. Further concepts of reuse,
such as abstraction by functions, are not mentioned. Architectural registers can
be defined in terms of storage aliases. The mapping must be static, uniform
and registers must have the same size, i.e. the same type in nML. Virtual

3.5. ASIP MEISTER/PEAS-III 61

address spaces or mode specific registers can not be modeled by aliases. Such
ISA properties must be specified as part of the semantics.

Reliability Pipeline control is specified explicitly by the developer, which is
typically a complex and error-prone task. Bypasses, interlocking, stalls, flushes
and delay slots must be considered properly.

The behavior of an instruction is constituted by the respective “ACTION”
attributes. The attributes are distributed over the ISA grammar and the ef-
fects of an instruction may therefore not immediately be clear. In particular,
unintended side effects may lead to errors.

Maintainability Consistent changes to a group of related instructions can effi-
ciently be performed, by changing the attributes of the common non-terminal.
Changes that affect the instruction set structure seem to be complex. Unfor-
tunately, this case is not discussed in literature. As the grammar couples the
encoding, behavior and syntax of instructions, these aspects can not be changed
independently. Moving an instruction to a different location in the instruction
space will for instance also affects its behavior.

3.5 ASIP Meister/PEAS-III

A specification in the language ASIP Meister([29] (formerly known as PEAS-IIT)
basically describes a processor on a microarchitectural level. Pipeline structures,
such as stages and storage ports are specified explicitly. The language therefore
belongs to the class of processor description languages (PDL).

The behavior of instructions is defined by micro-operations, which are simi-
lar to operations in nML. A micro-operation is defined in the “Micro-operation
description language”, which only consists of (conditional) signal assignments
and applications of so called resource-functions. Resources and their functions
are defined externally in a database called FHM-DBMS. Putting all together,
the behavior of instructions is composed from the behavior of resources. The
specification of resource behavior is therefore a crucial component of the ap-
proach. Unfortunately, literature on FHM-DBMS and its specification language
appears to be unavailable. Only the popular “add” example (c=a+b) is pre-
sented in [35]. However, the language behind this statement is not described.
It remains unclear, how a complex function, such as “count-significant-bits” is

formally specified in FHM-DMBS.

Review

Reuse Similar to primitives in ViDL, resources provide a way of reuse, as they
abstract from processor specifications. Resources are coarse grained building
blocks (ALUs), which encapsulate multiple functions. They are intended to be
utilized by multiple instructions. Resources enable explicit sharing of hardware
among multiple functions.

62 CHAPTER 3. RELATED APPROACHES

In contrast, primitives in ViDL enable a fine-grained specification of in-
structions. Each primitive provides only one basic function, such as “add” or
“count-leading-zeros”. Complex behavior is then defined in ViDL by combining
primitives to instructions or functions. As primitives are less customized than
resources, one may expect a higher degree of reuse.

Another kind of reuse in ASIP Meister is provided by micro-operations.
A micro-operation is defined once and then reused among multiple functions.
General concepts for reuse, such as functions or functionals are not mentioned
in literature.

Expressiveness The resolution of data-hazards by means of bypasses and in-
terlocking seems not to be covered by ASIP Meister. Peddersen et al. [43]
describe, how to patch generated HDL code (from ASIP Meister) to include reg-
ister bypasses. The approach necessitates the specification of additional pipeline
registers and signals, to control forwarding. A concrete algorithm to generate
bypasses is not presented and it remains unclear, to which extend the approach
can be applied.

Simplicity Signals are typed explicitly by declarations such as wire[32:0].
Type inference does not seem to be applied. Literature does not state explicitly
if the width is arbitrary or limited in some way. However, it is noticeable,
that examples in literature do not exceed 32 bits and that the resource in [35]
explicitly declares parameters to be of type int32.

3.6 Lisa

The specification language Lisa is very similar to nML. A Lisa specification
defines aspects of the instruction set as well as aspects of the microarchitecture.
It is therefore bound to one specific microarchitecture. The instruction set is
specified on the foundation of this microarchitecture. Lisa is therefore considered
a processor description language (PDL) and not an instruction set description
language (IDL).

3.6.1 Storages

Similar to nML, a Lisa specification defines a set of storages, where each storage
is characterized by its size and its width.

The choice of width is limited for some cases. For instance, the width of the
program counter register must correspond to the width of a C integer type?.
A 30-bit program counter can for instance not be defined in Lisa. To generate
an efficient simulator, the same restriction must be obeyed by all registers.
For instance, according to the Lisa manual [27], the definition of a 48-bit wide
registers would significantly slow down the generated simulator.

2stdint.h defines 8,16,32 and 64-bit integers

3.6. LISA 63

3.6.1.1 Data-types

The definition of a storage also includes the definition of its interpretation. A
storage is defined to be either signed or unsigned. This choice basically controls
the extension of the registers content (zero or sign). This aspect should not be
bound to a storage, as it belongs to instruction semantics, rather than to the
processor state. Different instructions may for instance interpret the content of
the same register differently. Wide multiplications of MIPS interpret the content
of as a signed (mult) or unsigned integer (multu).

A storage in Lisa is always defined to contain a signed or unsigned integer.
However, there are various different data-types, which imply other interpreta-
tions. For instance, a register may contain a sequence of flags (status register), a
floating point number or an integral number in sign-magnitude representation.
An implicit sign or zero extension of such values, as defined in Lisa, is not sound.

3.6.1.2 Pipeline registers

To generate a pipelined processor, pipeline registers must be defined in Lisa.
This is a result of the mixed ISA /microarchitecture paradigm. The definition
includes the width and the stage of each pipeline register. The pipeline registers
are then used in the specification of instruction semantics. Instruction semantics
are thereby divided and effectively bound to pipeline stages.

As a result, the microarchitecture can hardly be changed after defining the
instruction set. This restriction may limit the application of Lisa in the scenario
of design space exploration. Effectively, the instruction set architecture and the
microarchitecture are strongly coupled.

3.6.2 Instruction set

In Lisa, an instruction is constituted by a set of operations. Each operation
has three attributes, which define the semantics, encoding and assembly syntax.
The semantics, encoding and syntax of an instruction is then composed from
the attributes of the operations.

This approach is similar to nML, where the same attributes are defined for
operations. A major difference between nML and Lisa is the specification of the
relation between operations and instructions. In nML the set of instructions
and their relation to operations is defined by a grammar. In Lisa, the relation
is defined explicitly by listing the operations of each instruction.

3.6.2.1 Semantics of operations

The semantics of operations may be defined redundantly in Lisa. Once in terms
of C-code for the simulator and once for the generation of synthesizable HDL
code. The developer must take care to define exactly the same semantics in both
definitions. Otherwise, the behavior of the simulator may not be consistent
to the hardware processor’s behavior. Extensive equivalence testing of both
generated products is therefore advisable.

64 CHAPTER 3. RELATED APPROACHES

3.6.2.2 Errors in semantics

Using Lisa, the semantics of an operation can be defined in terms of C-code. It
seems that these code fragments are literally copied into the source code of a
simulator without further analysis or transformations. Muhammad et al. [40]
report, that syntactic errors in the Lisa specification are not detected by the
Lisa generator. Instead, incorrect simulator code is generated, which is then
rejected by the C-compiler. Identifying such an error in the Lisa specification
may be time-consuming.

3.6.2.3 C-to-VHDL translation

The authors of Lisa state [7], that the C-code of the behavioral specification can
be translated into HDL code. Restrictions or limitations are not mentioned.
However, such restrictions actually exist. Only a very limited subset of C-code
can be translated into VHDL code by the generator. For instance, typical C-
code that includes loops or function calls can not be translated into HDL code.
In such a case, the generator reports an error and aborts translation. The sep-
arate specification of behavior for the simulator and processor appears to be
necessary. It has been reported by users from industry, that two independent
Lisa specifications have been developed, one for the simulator and another one
for the hardware model. Similar to the independent development of simula-
tor and hardware, this scenario is laborious and requires extensive testing for
equivalence.

Even if the Lisa generator would support translation of arbitrary C-code into
HDL code, it is questionable that the resulting HDL code is efficient. Regard for
instance the following C-implementation of a well known processor instruction.

for (i=0; i<32 ; ++i){
if ((a>>(31-1))&1) break;
}

res=i;

Even for the experienced user, it may not be obvious that this code is a straight
forward implementation of the count-leading-zeros instruction for 32 bit proces-
sors. There are at least a dozen alternative ways to describe the same semantics
in terms of C-Code. A good C-to-HDL translator would have to identify all
these implementations and map them to an efficient HDL implementation, i.e.
to a priority decoder.

3.6.2.4 Wide operations

The semantics of instructions can efficiently be defined in C, as long as the
width of operations matches the width of C-integer arithmetic, i.e. 8, 16, 32 or
64 bit. If the width of an operation does not match one of these widths, the
C-code tends to get very complex and error-prone. Narrow operations require
explicit masking in C and wide operations must be broken down to sequences
of C-operations.

3.6. LISA 65

For example, a 96-bit unsigned multiplication must be reduced to a sequence
of multiplications, additions and appropriate masking. In the following example,
a.lo, a.hi, b.lo, b.hi are assumed to be 64 bit wide integer variables.

res.lo = a.loxb.lo;

res.hi ((((a.10>>32)*b.1lo&Oxffffffff) >> 32)
+ (((b.lo>>32)*a.lo&Oxffffffff) >> 32)
+ (a.10>>32)*(b.10>>32);
+ a.hixb.hi) & Oxffffffff;

A good C-to-HDL translator would have to recognize this code as a 96 bit wide
multiplication and generate a 96 bit wide instance of a multiplier component. If
the pattern of the 96 bit wide multiplication is not recognized, the C-to-VHDL
translator is likely to yield an expensive cascade of 5 64-bit multipliers and 3
64-bit adders.

Aslong as Lisa does not include a C-to-HDL translator of exceptional quality,
either the generated VHDL code is poor or the semantics must be specified
redundantly, which leads to potential inconsistencies and thereby breaks the
claim of a golden model.

3.6.3 Hardware sharing

The sharing of hardware is specified explicitly in Lisa, in terms of operations
and units. To share the same hardware entity, two instructions are specified to
use the same operation. For instance, addressing modes are specified once as
operations and then used by a set of instructions. The instructions do thereby
share the logic for decoding of operands and calculation of addresses.

Another way to explicitly share resources is the use of so called “units”. Units
are only used in the context of HDL code generation, i.e. they do not apply
to simulators. The processor designer explicitly maps a set of operations to
one unit. The unit then implements the semantics of all these operations. For
instance, the operations “Add”, “Sub”, “Mult” may be mapped to a unit “ALU”.
The ALU must then be specified such, that it unites the semantics of the three
operations. In detail, a HDL source-code frame is generated for each unit. This
frame must then manually be filled with appropriate HDL code, depending on
the set of mapped operations.

This is a critical point in processor development, as the specification of oper-
ation semantics must match the semantics of the unit’s HDL code. Otherwise,
the simulator and the processor implementation would be inconsistent. Once
the unit is implemented, changes to operations imply consistent changes to the
unit.

ViDL strictly abstracts from microarchitecture and consequently from hard-
ware sharing. Hardware sharing is postponed to the generator, such that user
can focus on ISA development. Besides, instructions remain independent in
ViDL, as they are not coupled by shared resources.

66 CHAPTER 3. RELATED APPROACHES

3.6.4 Pipeline

Pipelining has to be specified explicitly in Lisa. The specification includes the
number and names of pipeline stages. These names are then used to manually
assign operations to specific stages.

In contrast, the pipeline depth is not specified in ViDL, but derived auto-
matically by the ViDL compiler. The pipeline depth and structure is a microar-
chitectural aspect, which does not belong to an instruction set. It is therefore
not specified in ViDL, which strictly abstracts from microarchitecture.

3.6.4.1 Forwarding

In Lisa, a forwarding circuit is defined on a microarchitectural level, as it is done
in a VHDL specification of a processor. To forward a value to early pipeline
stages, the developer has to define bypass signals. These signals are then “writ-
ten” by a late stage and “read” by an early stage. The definition of a typical
forwarding circuit in Lisa may be considered complex. For instance, a very
simple 5-stage MIPS pipeline includes 6 bypasses [24] for the general purpose
register file.

FEach bypass consists of 3 signals, namely the forwarded value, the register
number and the activation signal. In total, this makes 18 signals. These signals
are fed into a special multiplexer, along with values from the read stage. Note,
that the multiplexer is quite complex, as it must consider register numbers,
activation signals and the number of source stages. It seems that the multiplexer
logic must be defined manually in Lisa. This task may be considered complex.
Although forwarding is a key concept of pipelines, a respective example is not
given in literature.

A ViDL developer does not have to consider forwarding, as the forwarding
circuit is automatically contributed by the generator. This greatly simplifies
the instruction set specification and avoids flaws. The generated forwarding
circuit is guaranteed to be correct and consistent. In addition, processor im-
plementations with different pipeline structures and forwarding circuits can be
generated from the very same ViDL specification. This allows for an automated
exploration of the microarchitectural design space.

3.6.4.2 Pipeline control

Realistic processors typically involve hazards, due to pipelining. Such pipeline
hazards have to be resolved by respective pipeline control. In particular, stages
have to be stalled and flushed. A Lisa developer has to define this pipeline
control manually, as part of operation semantics. In case of a mispredicted
branch, all speculatively executed instructions have to be canceled, by flushing
their stages. If a register is read, that is written by a preceding instruction
X and the result of X can not be forwarded due to its latency, the read stage
and its predecessors have to be stalled, until the result is computed and can be
forwarded. The designer is responsible to define correct pipeline control that

3.6. LISA 67

solves all hazards for all sequences of instructions. This task can be considered
complex and error-prone.

Fortunately, this task is solved by ViDL’s processor generator. A ViDL de-
veloper does not have to consider hazard and their resolution. The specification
is thereby simplified and a major source of processor flaws is eliminated.

3.6.5 Complexity of language

A Lisa specification defines the instruction set of a processor as well as its
microarchitecture. To describe different microarchitectural aspects, a variety of
concepts and language constructs are defined in Lisa. Just to give an impression:
Lisa defines over 120 Keywords. The language may therefore be considered
rather complex and hard to learn. In addition, a user likely needs knowledge on
microarchitectures, programming in C and VHDL.

ViDL in contrast features a lean design with a clear set of very powerful and
orthogonal concepts. The user neither needs knowledge on processor microar-
chitectures, nor on other languages, such as C or VHDL.

3.6.6 Practical application

In the following, the results of four recent publications on the application of Lisa
are presented.

Meyer-Bise et al. [38] describe how Lisa may be applied in teaching students,
using the example of two academic processors, namely URISC and ERISC. The
URISC processor is a modified “one instruction set computer”, which is very
similar to the OISC that has been defined in ViDL. The ERISC implements a
rather small set of 13 basic instructions, which includes arithmetic and logic in-
structions. Aspects, like conditional execution, 64-bit multiplications or delayed
branches are not mentioned.

Both processor specifications use a two-stage pipeline, which is structurally
equivalent to a non-pipelined processor. Typical aspects of pipelines, such as
forwarding, interlocking and speculative execution are not applicable for this
microarchitecture. A faster implementation of the instruction sets requires a
longer pipeline and the aforementioned techniques for hazard-resolution. Both
has to be specified in Lisa by the developer. The simplicity and maintainability
of the specifications can not be judged, as they have not been published. Basic
figures on the length of the specification or the required development time are not
mentioned. The applicability of Lisa in education can therefore not be estimated
on the foundation of this paper. The authors do not state, that students have
specified the the URISC and ERIS processors in Lisa. Experiences from teaching
and applying Lisa are not mentioned.

Jae-Jin Lee et al. [36] propose an application specific processor, which is
implemented using Lisa. The instruction set consists of a set of basic instructions
and 9 application specific instructions. The total number of instructions and
their semantics are not described. The resulting processor can therefore not
be compared to other processors. The authors state, that the Lisa specification

68 CHAPTER 3. RELATED APPROACHES

‘ VHDL Lisa ViDL
Length of specification | 291 SLOC 1176 SLOC 207 SLOC (97 LLOC)
Development time 1 week 1 month 90 minutes
FPGA Clock Speed 61.1MHz 44.3MHz
FPGA Slices 650 3489

Table 3.1: Comparison of VHDL, Lisa and ViDL. Data for VHDL and Lisa has
been reported by Franz [16].

uses a 6-stage pipeline, which is fully bypassed. Further information on how it is
implementation in Lisa is not given. The complexity of bypassing, interlocking
and branch prediction in Lisa can therefore not be estimated. The specification
seems not to be published. The dynamic behavior of the processor by means
of branch penalties and instruction latencies is not described. Characteristics
of the Lisa specification, such as length, maintainability and development effort
are not given. Synthesis for an 180nm TSMC standard cell technology yields
a clock frequency of 100 MHz. Estimates on the area requirement and power
consumption are missing.

Dodani et al. [8] present an implementation of a simple processor in Lisa. The
processor features a usual set of 19 basic instructions. Exceptional instructions
or complex addressing modes are not mentioned. The Lisa specification uses a
3-stage pipeline. Resolution of hazards by means of forwarding, interlocking and
speculative execution is not mentioned. The authors state, that the processor
has been synthesized for a 65nm TSMC standard cell technology, resulting
in an estimated chip area of 0.075mm?. It is not stated, which components
(datapath, register-file, memory, multiplier) have been included in the synthesis.
An estimated clock frequency is not mentioned. The Lisa specification or figures
on its length and development effort are not given.

Franz [16] has evaluated Lisa in his master thesis. He specified two proces-
sors in Lisa, one of which is the simple reduced instruction set computer (SRC),
which is defined in the book Computer Systems Design and Architecture [25].
The instruction set consists of 28 instructions. Franz’s supervisor implemented
the SRC instruction set in VHDL and Franz in Lisa. Franz characterized his
supervisor as an experience VHDL developer and himself as a new Lisa devel-
oper. After specifying a non-pipelined version of the SRC processor in Lisa
(which took two month), he defined another pipelined version in Lisa. For the
latter, the reported development time and length of specification is shown in
Table 3.1. The table also shows the time it took me to specify the SRC in-
struction set in ViDL. For the ViDL specification, simulation on an FPGA has
been left out, as it requires the same prototyping hardware and setup for a fair
comparison. However, a generated 5-stage processor yields a clock frequency of
770 MHz on a 65 nm low power technology. The ViDL specification of SRC has
been published [10], to allow for a direct comparison with the Lisa specification
that Franz has published ([16] Appendix B; pages 109-137).

Franz states, that Lisa has a steep learning curve and reported a number of

3.7. ISDL 69

pitfalls, which he encountered during development. Examples include undoc-
umented aspects, unsupported features and modeling techniques that do not
work or yield poor code. He states, that “Pipeline stalls proved to be a hard
feature to model with the LISA language.”. He mentions, that it took quite long
to debug pipeline control and fix the specification.

To sum up, most reports on Lisa give only few facts and figures on the
actual specification and the development effort. The resolution of data-hazards
and control-hazards is hardly discussed, although this is a key aspect of pipelined
processor implementations. Franz has published a detailed report on the use of
Lisa, which also reveals weak points.

3.7 ISDL

The Instruction Set Description Language (ISDL) is targeted at the generation
of compiler tools. Necessary language aspects for the generation of an assembler
are discussed [22]. The generation of a compiler is announced, but no literature
is available on this topic. A technical report on ISDL was published, but is no
longer available. Some aspects of ISDL can therefore not properly be discussed
in the following. Due to the lack of information, ISDL can not be assigned to
one of the language classes that have been defined in Section 3.1.

Storages As in other processor description languages, storages are modeled as
arrays. Each array has a specific width and element type. The element type is
a bit-string of a specific width. The special case of a single register is modeled
as a scalar, which contains a bit-string of a specific width.

Instruction Set Structure Similar to nML, the set of instructions is intension-
ally defined by a context free grammar G = (T, N, P, S) in ISDL. The grammar
seems to be derived from the syntactic structure of assembly instructions. This is
questionable, as the syntactic structure of assembly instructions may not match
the logical structure of an instruction set.

As in nML, an instruction corresponds to a derivation tree of a grammar G.
The set of all instructions therefore corresponds to the set of derivation trees.
In addition to nML, rules may be specified in ISDL, which further restrict the
considered set of derivation trees. This restricted set is called the set of “valid
instructions”. A derivation tree of this set obeys all specified rules. Practically,
rules are used to express constraints between instructions in a VLIW.

Technically, a rule is a Boolean expression on the symbols of G. A derivation
tree implies an interpretation of all symbols: The interpretation of a symbols
X € NUT is true iff the derivation tree contains a node of X. To belong to
the set of valid derivation trees, the interpretation of all rules must be true.

Instruction Semantics Instruction semantics are constituted from the seman-
tics of non-terminals, as in nML. The semantics of non-terminals are specified in

70 CHAPTER 3. RELATED APPROACHES

an undefined language, which reminds of C. A formal definition of the language
is not given.

Summary ISDL is in great parts similar to nML. In addition, a set of rules can
be defined to restrict the set of instructions. The instruction semantics seem to
be defined in a C-like language, which is not well suited to generate processor
implementations in terms of HDL code.

3.8 Expression

The specification language Expression [23, 39, 21] belongs to the class of pro-
cessor description languages (PDL), as it describes a processor on a microarchi-
tectural level. Roughly speaking, a set of resources and their interconnection
is defined in Expression. In particular, a pipeline is defined as a sequence of
stages. Each stage may be composed from multiple parallel units. Each unit
may again be a pipeline or an execution unit. An execution unit is associated
with a set of instructions. An instruction is defined by its encoding, its assembly
notation and its semantics.

Literature gives only an impression of the specification language. Questions
on soundness and completeness arise, but are not addressed. For instance: May
two pipelines of different length be arranged as parallel units and what does
that mean for the overall pipeline? What language is used to specify instruction
semantics? Examples in [23, 39] apply only basic arithmetic operations (+ - *).
Sophisticated examples, that would demonstrate the expressiveness (like “count-
leading-zeros”) are not given. In an early technical report [21], the context free
grammar of Expression does not define the structure of the semantics specifi-
cation. The corresponding non-terminal is only annotated with the comment
“% the semantics of the operation”. A related point that is not covered is
the width of operations.

3.9 Tensilica instruction extension (TIE)

As the name suggests, the Tensilica Instruction Extension (TIE) language [19,
53, 50, 37| is intended to define instruction set extensions. An existing instruc-
tion set can be extended by application specific instructions to accelerate hot-
spots of applications. In contrast to related approaches, the basic instruction
set (Xtensa core) is fixed and remains unchanged. TIE primarily targets the
scenario of instruction set extension. The specification of complete ISAs seems
not to be intended and respective examples are not mentioned in literature.
TIE is based on a subset of the hardware description language Verilog [47].
Operations and the type system of TIE are for instance inherited from Verilog.
Among all specification languages, TIE is most similar to ViDL. Both languages
share common aspects, such as the distinct specification of instructions and a

3.9. TENSILICA INSTRUCTION EXTENSION (TIE) 71

certain abstraction from processor implementations. Nevertheless, there are still
significant differences, which are discussed later.

TIE can mostly be regarded as an instruction set description language, ac-
cording to the taxonomy in Section 3.1. However, the abstraction from microar-
chitectural aspects is not as strict as in ViDL. Two exceptions are discussed later
in Section 3.9.3 and 3.9.4.

3.9.1 State

The ISA state can be extended by user defined registers and register files. The
width of a register or register file must lie in the range of 1 to 1024 bits. The
depth of register files has to be a power of two up to 1024. These limits are
acceptable for realistic instruction sets. The instantiation of additional data
memories is not mentioned in literature [50].

3.9.2 Instruction semantics

The semantics of an instruction are defined by a sequence of assignments, which
are “executed” concurrently. To support conditional assignments, a write dis-
able expression (negation of a write enable expression) can be defined for each
register.

reg <valueExpr>
reg_kill = <writeDisableExpr>

The value <valueExpr> is only written to the register reg, if <writeDisableExpr>
evaluates to false. Using this concept, conditional branches and conditional ex-
ecution can be specified. The concept of a write disable expression in TIE is a
special case of epsilon logic in ViDL, which is discussed in Section 4.6.

Operations To define semantics of an instruction, TIE provides about 40 prim-
itive operations. These are mainly inherited from the hardware description lan-
guage Verilog. The set of operations in TIE corresponds to the set of transfer
primitives in ViDL. In contrast to TIE, the set of ViDL’s primitives can be
extended by the user, as described in Chapter 5.

Wires To reuse the value of an expression, TIE inherits the concept of wires
from Verilog. The value of a wire is defined by assigning an expression. The
value can then be referenced by the name of the wire. The concept is similar to
variables in ViDL. The width of a wire is specified explicitly by the user. In con-
trast, the width of a variable in ViDL is derived by the generator (Section 4.9.2)
using type inference.

Functions To encapsulate common semantics, TIE features the concept of
functions. A TIE function has an arbitrary number of parameters and yields
exactly one result. Parameter and result types are specified explicitly along with
the function definition. In addition to TTE, ViDL enables the specification of

72 CHAPTER 3. RELATED APPROACHES

e polymorphic functions,
e higher order functions (functionals) and
e functions with multiple results

The advantages of these concepts are discussed in Section 4.5. Basically, the de-
gree of reuse is increased and the definition of computation patters (e.g. SIMD)
is enabled.

Bit-widths To interpret an expression in TIE, the bit-width of each application
of an operation needs to be known. TIE defines these widths by an algorithm
that is inherited from Verilog and is defined in the IEEE 1364 standard [47].
Given an expression tree, the algorithm computes the bit-width of each applica-
tion of an operation in the tree. To understand a Verilog resp. TTE specification,
a developer needs to know this algorithm as well as width-computations that
are specific to each operation. This knowledge is for instance essential to under-
stand the semantics of the expressions (a+b)>>1 and (a+b+0)>>1. Although the
expressions seem to be semantically equivalent, they may yield different results,
according to bit-width inference. In contrast to Verilog and TIE, ViDL defines
bit-widths by means of sub-typing (Section 4.9) rather than an algorithm. As
a result, bit-width rules of operations can concisely be expressed by signatures
in ViDL.

Operands An instruction has a number of explicit and implicit operands.
An operand may be either an immediate or a register operand. For register
operands, the respective register file and the direction (in, out or inout) are
specified. Memory however is treated differently from registers. It is regarded
as an interface, which consists of 5 signals: address, data-in, data-out, read-
disable and write-disable. The latter two signals allow byte-precise disabling
(enabling) of read and write accesses on the memory. This distinct concept for
the data memory is related to the write disable expressions for registers. How-
ever, both concepts are defined separately in TIE. In ViDL, these concepts are
subsumed by epsilon logic. As a result, a memory can be defined and used as
simple as a register file in ViDL. There is no need for a special memory interface,
as in TIE.

3.9.3 Hardware sharing

Hardware sharing between instructions is defined explicitly in TIE. The se-
mantics of several instructions is defined in a so called semantic block. To
distinguish between instructions, a Boolean variable X is introduced for each
instruction X. The variable X is true, if and only if the respective instruction
is executed. ViDL does not include such constructs, as hardware sharing is not
considered part of an instruction set.

3.10. DPG — DATAPATH GENERATOR 73

3.9.4 Datapath scheduling

The schedule directive in TIE is used to explicitly specify the relation between
datapath and pipeline. In particular, the publication stage of an instruction
result is specified. Technically, this is the stage in which a result is fed into the
bypass. Effectively, the schedule directive thereby defines the bypass and the
resulting interlocking. In addition, the schedule directive is used to assign the
stages of read ports and assign intermediate signals to stages.

Scheduling aspects are part of the microarchitectural implementation and
therefore not defined in ViDL. Instead, these aspects are derived automatically
by the port scheduler (Section 7.6.4) and forwarding generator (Section 7.6.7),
which are part of the processor generator.

3.10 DPG — Datapath generator

The datapath generator (DPG) presented by Weiss et al. [55] is actually not
directly related to the domain of processor and ISA specification. However, it
has been considered, since ViDL’s processor generator also produces a datapath.
However, ViDL operates on RTL level, whereas the DPG focuses on the physical
level. In particular, the generator instantiates parameterized hard macros3.
The input is a signal flow graph (SFG) which is denoted in the domain specific
language DDL. It includes the definition of delays and is related to the register
transfer level.

Compared to ViDL, the DPG helps to implement a specific signal flow on a
low level of hardware design. It focuses on the implementation of algorithmic
kernels rather than on the implementation of instruction sets. This is a very
different domain. The DPG does for instance not synthesize processor struc-
tures like decoder, register ports or a complete pipeline including bypass and
forwarding. Therefore, the DPG gives the developer control over the physical
implementation using parameterized macros. ViDL on the other hand postpones
the physical implementation to RTL compilers, which map the RTL description
to a standard-cell technology.

3Parameterized logical primitive with an associated physical design for a certain chip tech-
nology

74

CHAPTER 3. RELATED APPROACHES

Chapter 4

ViDL — Versatile ISA
description language

A language designer typically defines a language with certain design goals in
mind. During the development of ViDL, three major goals have been consid-
ered. First, ViDL should support typical development processes of instruction
sets. Typical processes and design scenarios have been introduced in Section 2.2.
In particular, the scenarios of rapid design space exploration (DSE) and instruc-
tion set extension (ISE) are of interest. Second, the language should have a high
quality with respect to general language design criteria, which have been outline
in Section 2.3. A language that obeys these criteria is expected to reduce devel-
opment time, avoid specification flaws and increase maintainability. Finally, the
language should be powerful, to specify serious real-world instruction sets in a
natural way. A language that covers only artificial instruction sets that are tai-
lored to the language will certainly not be accepted by developers from industry.
ViDL was developed against the background of existing instruction sets, such
as ARM, MIPS, Power and CoreVA (Section 2.1). Each of these instruction
sets challenges ViDL in a different way, as each instruction set uses a dedicated
set of concepts. For instance, ARM features conditional execution, branches of
MIPS have delay-slots and CoreVA defines a set of condition registers. In the
following, ViDL’s design goals are discussed along with each language concept.

To give a basic impression of ViDL, a small specification is presented in the
next section. Typical specifications are clear and reliable, as ViDL is a highly
structured language (Section 4.2). Besides, it strictly abstracts from microarchi-
tectural aspects (Section 4.3), which simplifies specification and allows to gen-
erate very different products. Similar to instruction set manuals, instructions
are defined separately in ViDL (Section 4.4). Nevertheless, common behav-
ior can be factored out using concepts from functional programming languages
(Section 4.5). Further concepts have been developed, which are specific to the
domain of instruction set specification. For instance, conditional and partial
write accesses of instructions can concisely be defined using epsilon logic (Sec-

76 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

storage PC Physical Storages
width 32
size 1

end

storage IMEM
width 8
size 2%x10
end

storage r
width 32
size 4

end

storage mem
width 32
size 2%x14
end

ioport port I/0 Ports
width 32
size 2x*14

end

interface virt Architectural Interfaces
width 32
size 2%x15
map addr
virt[addr] = if bit(addr,14) then port[tr(addr,14)] else mem[tr(addr,14)];
port[tr(addr,14)] = if bit(addr,14) then virt[addr] else EPSILON;
mem[tr(addr,14)] = if bit(addr,14) then EPSILON else virt[addr];
end
end

instruction add Instructions
encoding "00ddnnii"
semantics begin
r[d] = add(r[n],exts(i));
end
end

instruction ldinc
encoding "Olddnnii"
semantics begin
r[n] = add(r[n],exts(i));
r[d] = virt[r[nl];
end
end

Figure 4.1: Example of a simple and complete ViDL specification.

tion 4.6). The temporal behavior an instruction (e.g. delay-slots of branches)
can directly be denoted as a so called delay (Section 4.7). Using architectural
interfaces (Section 4.8), views on storages and I/O ports can be defined, which
greatly improves the quality of instruction set specifications. Finally, instruc-
tions can be specified without denoting the bit-width of operations, as ViDL is
implicitly typed (Section 4.9).

4.1 A ViDL example

To give a rough impression of ViDL, Figure 4.1 shows a simple, yet complete ISA
specification. The example includes four storages, one I/O port, an architectural
interface and two instructions. It is only meant to give a rough impression of
ViDL, and does not demonstrate all concepts and capabilities of the language.
The storages PC and IMEM are mandatory and define the program counter and

4.1. A VIDL EXAMPLE 7

the instruction memory. The program counter is modeled as a normal storage!,
since it is part of the processor state.

A register file r is specified to consist of 4 registers, each 32-bit wide. In the
same way, a data memory (mem) is specified to contain 2!4 32-bit words. These
four storages constitute the state of the instruction set. For I/0O, one port
(port) is defined similar to the memory. The port has a data-bus of 32-bits and
an address space of 2' words. The next declaration defines an architectural
interface (virt), which models a virtual address space. The memory is mapped
into the lower and the port into the upper half of the space. In other words, the
architectural interface implements memory mapped I/O. Further applications
of architectural interfaces are described in Chapter 6.

The specified ISA defines two instructions add and 1dinc. Each instruction
is defined independently by its encoding and its semantics (behavior). For the
encoding, a notation similar to ISA manuals is used. The add instruction is
encoded in 8 bits, where the two most significant bits are zero. The remaining
bits encode three operands named d, n and i. These names are then used
in the instruction’s semantics section to refer to the encoded operands. Note
that the developer does not have to distinguish between register operands and
signed /unsigned immediates. The addressing mode is instead specified as part
of the semantics.

The semantics of an instruction are defined by a set of assignments. The
add instruction contains one assignment to the destination register r[d]. The
right hand side of the assignment defines the value to be assigned. For add, this
is the sum of register r [n] and the sign extended immediate i.

The 1dinc instruction loads a word from the data memory into the desti-
nation register r[d]. It uses the addressing mode “Post-Increment”,; as defined
in [24], i.e. the memory is addressed by register r [n], which is then incremented
by the signed immediate i. For each of the two operations (load and increment),
one assignment is specified. The assignments are executed concurrently, i.e. the
assignment to r [n] does not have an effect on the expression mem[r [n]]. Hence,
assignments in ViDL behave like signal assignments in VHDL. The set of all in-
structions constitutes the transfer function of the instruction set.

Both instructions contain the common subexpression add(r[n],exts(i)).
A hardware related reader may be inclined to factor this common aspect out,
to reduce hardware complexity. Fortunately, this is done automatically by the
processor generator, so the user can focus on instruction set development. Actu-
ally, optimization driven factorization is even counter productive. It introduces
logical dependences between otherwise unrelated instructions, which corrupts
maintainability.

Note, that aspects of the microarchitecture are not specified in ViDL, as
ViDL focuses on the instruction set. Instead, microarchitectural aspects are
derived automatically by the processor generator (Section 7.6). This includes the
pipeline structure, forwarding, interlocking, speculative execution and register
ports.

INevertheless, the generated implementation significantly differs from normal registers.

78 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

() Physical 1/0 ports Instruction (b)

storages encoding 2 (input)
. I !
2 Architectural d (Transition) S (State)
g interface
[=%
]
< v

T (Output)

Instruction semantics

Figure 4.2: Structure of an ISA specification in ViDL.

4.2 Structure of a specification

On an abstract level, an instruction set can be regarded as a finite-state ma-
chine. It has a limited amount of registers and memory (state), an interface for
communication (input and output) and a set of instructions, which define the
behavior (transition).

This simple structure is the foundation of ViDL. The components of a ViDL
specification and their relation are shown in Figure 4.2a. It defines a set of
physical storages, which constitute the state of an instruction set. A physical
storage may for instance be a register file or a data memory. The communica-
tion interface of an instruction set is defined by a set of I/O ports. The behavior
(transition) is defined by the set of all instructions. An instruction itself is
defined by its encoding and its semantics (Section 4.4). The specification of
semantics refers to storages, ports and the instruction encoding. It typically ac-
counts for the greatest part of an ISA specification. In addition, ViDL features
so called architectural interfaces (Section 4.8). An architectural interface basi-
cally models a view on storages and ports. It is an optional layer of abstraction,
which leads to a clearer ISA specification and increases its maintainability.

As Figure 4.2a shows, the components of a ViDL specification are loosely
coupled. The instruction’s semantics can for instance be changed without touch-
ing the specification of physical storages. The same holds for storages, ports and
the encoding, which are completely decoupled. Instructions can be added and
removed without reconsidering other parts of the specification. This feature is
important in the context of instruction set extension and design space explo-
ration.

Figure 4.2b illustrates ViDL’s execution semantics in terms of a finite-state
machine. The interface of the finite-state machine (X and T') is defined by the
ISA’s I/O ports and the state S by the set of physical storages. The transition
function is defined by the set of all instructions and architectural interfaces.

4.3 Abstraction from microarchitecture

A ViDL specification strictly focuses on aspects of the instruction set. Aspects of
the implementation (microarchitecture) are not defined, for the sake of abstrac-

4.3. ABSTRACTION FROM MICROARCHITECTURE 79

(Processor implementation \
Instruction set Microarchitecture
State Register file, data memory Pipeline registers
I/0 Interface to coprocessor Clock, debugging interface
Transition = Instr. semantics Forwarding, interlocking
Timing = Delays Latencies, penalties

J

Figure 4.3: Aspects of instruction sets and micorarchitectures.

tion and simplicity. Instead, all implementation specific aspects are contributed
by the generators. Figure 4.3 shows examples of instruction set related aspects
and microarchitectural aspects of a pipelined processor.

State This thesis divides the state of a processor into an ISA part and a mi-
croarchitectural part. The ISA state contains all storages that are exposed to
a program, such as general purpose registers and data memories. The microar-
chitectural state includes additional storages of the microarchitecture, such as
pipeline registers. The microarchitectural state is only introduced to imple-
ment the microarchitecture and is thereby implementation dependent. It is not
exposed to the application, and can not be accessed by instructions.

I/O The I/O interface of a processor consists of instruction set specific inter-
faces, and interfaces that are introduces by the microarchitectural implementa-
tion. An example of the former is an interface to a coprocessor, which is typically
accessible by dedicated coprocessor instructions. Examples of the latter include
the processors clock signal and a debugging interface (e.g. JTAG).

Transition The behavior of the processor is constituted from the instruction’s
semantics and microarchitectural control. The latter includes branch prediction
and interlocking, which is entirely contributed by the processor generator. ViDL
strictly abstracts from such pipeline control.

Timing This thesis distinguished two kinds of timing. Timing that affects
program semantics and timing that affects execution speed only. Delays of in-
structions (e.g. delay slots of branches) affect data-flow or control-flow in a
program and are therefore a part of the instruction set. Latencies and branch
penalties in contrast are the result of hazard-resolution and do not affect pro-
gram semantics. They are implementation defined and need not be considered

80 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

to interpret a program. However, latencies and penalties have an impact on
execution speed, in terms of CPI2.

4.4 Instructions

The definition of instructions accounts for the greatest part of a ViDL specifi-
cation. An instruction is defined by its encoding and its semantics by means of
register transfer.

4.4.1 Encoding

The encoding of an instruction is defined by a pattern. The pattern consists of
literal bits (0 and 1) and fields. The literal bits constitute the opcode of the
instruction, i.e. they are used to identify an instruction. Fields are used to
encode operands such as register numbers and immediates. Each field is asso-
ciated with a one letter identifier. This identifier can be used in the instruction
semantics to refer to the field’s value. Note that the purpose or sign extension
of a field is not an aspect of the encoding. These aspects are therefore specified
as part of instruction semantics.

The pattern 01dd10iii for example defines an 8-bit instruction with two
fields d and i. The example demonstrates that the opcode (0110) may not be
encoded in adjacent bits of the instruction. This is an important feature, which
is required to specify most realistic instruction sets. The notation in ViDL is very
similar to that in instruction set manuals. Formalization of existing instruction
sets is thereby simplified. In contrast, other approaches require the user to
manually analyze the instruction space and define a decision tree. ViDL shifts
this analysis from the developer to the generator. The generator also checks for
conflicting instruction encodings. Overlapping instructions are identified and
reported to the user. Hence, copy-paste errors and typing errors are typically
detected. Although the encoding is defined in a declarative manner by a set of
patterns, the generated decoders are very efficient.

4.4.2 Semantics

The semantics of an instruction are defined by a set of assignments. Each
assignment sets a storage, port or architectural interface to a given value. The
assignments are “executed” concurrently, similar to signal assignments in VHDL.
The following example defines a simple instruction that swaps the contents of
registers r[a] and r[b].

instruction rswap
encoding "010laabb"
semantics begin
r[al=r[b]

2¢ycles per instruction

4.5. FUNCTIONAL CONCEPTS 81

r[bl=r[a]
end
end

Note that the assignments are executed concurrently. If this would not be true,
the swap instruction could not be defined in such a concise way.

As a result of concurrent execution, assignments do not interfere. Unin-
tended side-effects are excluded, which increases reliability of the ISA specifica-
tion. Each assignment can be regarded without considering other assignments
of the instruction. Besides, the order of assignments does not affect instruction
semantics, as it is typical for declarative languages.

The set of assignments can be regarded as a definition of the next proces-
sor state. Storages on the right hand side of assignments refer to the current
processor state and storages on the left hand side refer to the next processor
state. The referred state can be specified explicitly, using the concept of “delays”
(Section 4.7).

4.5 Functional concepts

ViDL belongs to the class of functional languages, which is a subclass of declar-
ative languages. The semantics of instructions are specified in a dialect of SML
(Standard Meta Language). A functional language has been chosen as the foun-
dation of ViDL, since it allows for clear specification of instructions. Semantics
can be defined in a declarative manner, free of unintended side effects. In con-
trast, an imperative language is based on the principle of side effects. Besides,
functional languages are a super set of dataflow languages. Data flow languages
are by their nature well suited to describe register transfer of instructions. The
same holds for functional languages, as long as recursion is excluded as in ViDL.
In addition to a classical dataflow language, ViDL inherits sophisticated con-
cepts, such as polymorphism and higher order functions. Both enable a signif-
icant degree of reuse, which is crucial for concise specifications of instruction
sets.

In particular, ViDL includes most concepts of SML, such as variables, condi-
tions (if), switches (switch), tuples, patterns, lambda expressions, higher order
functions, polymorphism and type inference. In addition, ViDL defines further
concepts that are specific to the domain of ISA specification, such as vectors and
bit-string literals. Like SML, ViDL is statically and implicitly typed using type
inference. The type system however is very different, as instructions operate
on bit-strings rather than integers and floating point numbers. ViDL defines
two polymorphic types, to model the width of bit-strings, among other types.
The type system and the respective type inference are described by Dreesen et
al. [14] and in Section 4.9.

82 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

4.5.1 Functions

Functions in ViDL are similar to functions in SML. A named function can be
defined using the notation fun £ (...) = ... in the context of a definition. An
anonymous function can be defined by a lambda expression fn (...) => ...
in the context of an expression. As in SML, the parameter and result of a
ViDL function is a tuple, which enables the definition of functions with multiple
parameters and multiple results (Section 4.5.6).

ViDL supports higher order functions (functionals), which means that func-
tions can be passed as arguments and returned by functions. The following
functional vect2 applies a function f on the components of two dimensional
vectors. The function and both vectors are passed as arguments to vect2.

fun vect2(f, (ah,al), (bh,bl)) = (£(ah,bh) , f(al,bl))

4.5.2 Polymorphism

Functions are polymorphic with respect to bit-widths. The following function
concatenates three bit-strings. It can be applied for any widths z,y, z of a,b
and c.

fun cat3(a,b,c) = cat(cat(a,b),c)

Its signature is E, x Fy, X E, — E,,,., where z,y, z are integral type pa-
rameters. The type system is discussed in Section 4.9. Due to polymorphic
functions, dataflow of arbitrary width can be specified in ViDL. The dataflow
is not limited or restricted to certain bit-widths. The specification of 4711-bit
arithmetic is as simple as the specification of 32-bit arithmetic.

4.5.3 Closures

In ViDL, functions may use variables from their definition context. These vari-
ables are added to the function’s closure. A function may for instance refer to
a register or to a field of an instruction. Closures are properly implemented
in ViDL. In the following example, the application of f yields the value 1, as
expected. The use of x is bound to the first definition of x, which is valid in £’s
definition context.

let
x =1,
fun f() = x,
x =2

in

.0

end

4.5. FUNCTIONAL CONCEPTS 83

r[d] = let
sum = add(r([al,r[bl),
overflow = bit(sum,32)
in
if overflow then OxfHHHF else sum
end

Figure 4.4: Scopes and bindings introduced by an application of let.

4.5.4 Recursion

As a major difference to SML, functions must be non-recursive in ViDL. This
property is checked statically by the generator. ViDL imposes this restriction, to
ensure soundness and to enable the generation of efficient hardware and software
implementations. Actually, recursion is not needed to specify realistic instruc-
tion sets. As a consequence, recursive data-types and lists are not integrated
in ViDL as well. There is no meaningful application of a recursive data-type
in the absence of recursive functions. As ViDL does neither include loops nor
recursion, the simulation of instructions is guaranteed to terminate. In general
termination is undecidable.

4.5.5 Name binding

In functional languages, name bindings denote the association of expressions
and identifiers. For example, a definition like v=add (47,11) binds the expres-
sion add (47,11) to the identifier v. In the scope of this definition, the variable v
represents the expression add (47,11). Any use of v is conceptually substituted
by the bound expression. A binding is different from an assignment, in the way
that a binding can not be “changed”. ViDL has 3 constructs to defined bind-
ings: let expressions, semantics blocks and define sections. There are further
sources of bindings in ViDL, which are not directly exposed to the developer
and therefore not described in the following.

The let construct in ViDL is defined just as in SML, including scope rules. In
practice, let is used to introduce local bindings within expressions. A frequent
subexpression can be bound to a variable, which is then used in its place. The
example in Figure 4.4 defines a saturating add instruction, using two bindings,
where the first binding sum is used twice. The scopes of both bindings are
also indicated by blue and yellow highlighting. Note that the first binding
is valid in the definition of the second binding and the scope of the second
binding is a subscope of the first one. This small example already gives a rough
impression on how bindings can improve an ISA specification. Subexpressions
can be given meaningful names, such as sum and overflow, which improves
readability. Common subexpressions can be factored out, which increases reuse
and thereby consistency and maintainability.

The semantics block is very similar to the let construct, but its scope ranges
over an entire instruction, i.e. over all assignments. This scope can not be cov-
ered by let, since let is an expression and thereby limited to a single assign-

84 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

ment. The semantics block is typically used to define operands, and expressions
that are used in different assignments.

The define block has the largest scope. It reaches from the definition to
the end of specification. It is typically used to define common behavior of
instructions. A typical example is the definition of an addressing mode, which
is used by many instructions. Note that all definitions in the define block are
instruction independent by design. In contrast, definitions in the semantics
block are likely instruction specific and can use fields of the instruction encoding,.

4.5.6 Tuples

ViDL implements the concept of tuples. As in SML, the parameter and result
of a function is regarded to be a tuple. This enables functions with multiple
parameters and multiple results. Hence, an HDL entity with multiple in-ports
and out-ports can be resembled in ViDL by a function with multiple parameters
and results. The components of a tuple can be accessed by binding their values
to dedicated variables, using a pattern. In the following code, the addx function
is assumed to return a pair. The components of that pair are bound to variables
sum and carry

let (sum,carry) = addx(x,y) in ... end

If the structure of the left and right hand side of a definition is not compatible,
the generator reports an error, including the position of the definition. Tuples
may be nested arbitrary, which enables more sophisticated data structures. A
vector of three complex numbers may for instance be represented by a tuple
((r1,i1),(xr2,i2),(r3,i3)).

Tuples can be used to specify SIMD and Vector instructions. A vector of
size n is simply represented as an n-tuple. Components can easily be accessed
and the specification becomes more readable. Tuples also offer a simple way to
define and use functions with multiple (related) results. For instance, the split
function divides a value into its high and low part. An ISA specific evalFlags
function may return the 4 status flags (Z,N,C,V) for a given value. An ISA
specific addrMode function for pre/post-increment load/store instructions may
return the effective address and the new value for the base register.

4.5.7 Vectors

ViDL uses a common notation to refer to storages, I/O ports and architectural
interfaces. All three concepts use the notation of vectors. For instance, the
vector foo[x] may refer to a storage, port or interface called “foo”, where x
denotes the address.

The common notation not only simplifies the language, but also increases
its maintainability. Storages and ports and architectural interfaces can easily
be exchanged, without touching the specification of instructions. A physical
storage mem may for instance be replaced by an architectural interface mem,
which models a virtual address space, as initially shown in Figure 4.1. Such

4.5. FUNCTIONAL CONCEPTS 85

rapid and reliable modifications of the ISA are especially important in the DSE
scenario. Again, instructions remain unchanged by these modifications.

4.5.8 Review of concepts

In the following, the functional concepts that have been presented so far are
briefly reviewed with respect to general language design criteria. The concepts
are intentionally reviewed at this point, to keep the discussion close to their
explanation. Design criteria of domain specific languages have been introduced
in Section 2.3.

Reuse

The concepts described so far allow for different kinds of reuse. The simplest
form is the reuse of an expression. An intermediate result can be bound to a
variable, which is then used multiple times. A higher degree of reuse is provided
by functions. A function abstracts from expressions and can be used to define
recurring behavior such as an addressing mode. An addressing mode function
is instruction independent and can therefore be used throughout the whole ISA
specification. As functions in ViDL are polymorphic, they also abstract from
bit-widths. A function can therefore be applied in contexts of different widths.

The highest degree of abstraction and reuse in ViDL is offered by functionals.
Functionals do not only abstract from expressions, but also from behavior, which
is contributed by the “caller” as an argument. A functional can be used to
define a pattern for defining a series of similar instructions. The instruction
specific behavior is encapsulated in a function and passed to the functional.
The functional only defines the semantics that are common to all instructions.

A functional can for instance be used to define the SIMD concepts, as shown
in the following.

fun simd(f, (al,a2),(b1,b2)) = (f(al,bl),f(a2,b2))

The simd functional leaves the actual operation on vector components open.
The operation is supplied by the application context via the parameter £. The
applications of £ can be regarded as extension points.

Most functions and functionals are ISA independent and can therefore be
added to libraries. These libraries may then be reused among different instruc-
tion set specifications. ViDL defines a standard library, which includes many
practical functions and functionals for ISA specification. The library includes
typical addressing modes, functions for condition evaluation and functionals for
SIMD instructions. Besides, the library defines convenience functions, which
simplify ISA specification. The zeros(n) function for instance yields a sequence
of n zero-bits and is defined as

fun zeros(n) = trunc(0,n)

Note that zeros (n) is neither defined as part of the language, nor as a primitive,
but as a library function within ViDL. Such functions can be added by the ViDL
user without touching the generator.

86 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

| ViDL library | Abstract, portable, reliable

Extendability, expertise | | TPSL library | Simplicity

| Language | Customizable, efficient

Figure 4.5: Extending ViDL on different levels.

Extendability

The functionality of ViDL can be extended on different levels, as shown in
Figure 4.5. The easiest ways to extend ViDL is to define a function or functional
in the ViDL library. The developer only needs to know ViDL to implement such
extensions.

If some functionality can not efficiently be defined by combining existing
functions, a primitive may be defined in the so called TPSL library. TPSL is
used to define transfer primitives, such as and or not. It is described in detail
in Chapter 5. The definition of a transfer primitive is more complex, as code
generators have to be defined for each target language (e.g. C and VHDL). To
perform such an extension, the user needs to known ViDL, TPSL and the target
languages.

Extending the language by new constructs offers most flexibility, but is also
most laborious. The grammar of ViDL and the generators need to be adapted,
which involves excessive testing. The user requires knowledge on good language
design and compiler construction. The extension must be sound and should not
interfere with existing language concepts. As language extensions are costly, the
ViDL library and the TPSL library are provided as primary extension points.
Fortunately, even concepts like SIMD can be defined as functionals in the ViDL
library and do not require dedicated language supports.

Simplicity

The existence of closures in ViDL simplifies specification. A developer is not
forced, to pass values such as instruction operands via parameters. Instead,
functions can use variables from their definition context. In the following exam-
ple, the function bias uses the immediate i, which is defined by the instructions
encoding.

encoding "1100iiii"

semantics
fun bias(b) = add(zero(i),b)
begin
. bias(-64) ... bias(-128)

end

4.5. FUNCTIONAL CONCEPTS 87

Variables and functions not only offer a way of reuse, but also help to increase
readability. Complex expressions can be broken down to smaller pieces, which
are assigned descriptive names. In the following example, both semantics blocks
describe the same behavior and result in the same implementation. The second
block however is clearer, as subexpressions are bound to descriptive variables.

semantics begin
pcl0] = if ne(sub(r[al,r[bl),0)
then add(pc[0],ext(i)) else EPSILON
end

semantics

dist = exts(cat(i,0b00)),

target add(pc[0],dist),

cond ne(sub(r[al,r[bl),0)
begin

pcl0] = if cond then target else EPSILON
end

Reliability

Errors and flaws in software and hardware are frequently introduced by unin-
tended side effects. In ViDL, the effects of an instruction are only defined in
the semantics block in terms of assignments. To understand the effects of an
instruction, the developer need only regard this block and can be assured, that
the instruction does not have any further side effects on the processor state. As
the effects of instructions are clear, unintended or unconsidered side effects are
excluded. A classical source of flaws is therefore closed.

Another major source of flaws is the resolution of hazards by means of
pipeline control. Such errors likely show up, for exceptional combinations of
instructions under certain circumstances. Such exotic corner cases may not be
covered during testing and the flaws are therefore not detected. In ViDL, such
flaws are excluded by generating pipeline control and by decoupled instructions.
Pipeline control is entirely generated, by generic construction methods. The
developer is not responsible to specify pipeline control that correctly considers
all feasible instruction streams for all possible pipeline states. This not only
simplifies the specification, but also excludes a major source of processor flaws.

Second, flaws are excluded by the fact that instructions are completely de-
coupled in ViDL. Instructions only interact via the ISA state, which is clearly
defined by the ISA storages. The semantics of an instruction are not affected by
side effects of other instructions. As a result, a ViDL developer does not have
to reason about the execution context of an instruction.

Learning Curve

ViDL should offer easy access for new developers. It is based on the functional
programming language SML and should therefore be familiar to developers, who

88 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

have a basic understanding of functional programming. Developers without
such background need only learn a small set of basic concepts. Besides, only
few of these concepts need to be considered, to specify basic instruction sets.
Concepts, such as I/O ports, architectural interfaces, functions, and tuples can
be ignored at the beginning. They can be learned after first steps with ViDL
have succeeded.

Thanks to abstraction, a developer only needs to known ViDL and the prin-
ciples of instruction sets. Expertise on microarchitectures, simulator implemen-
tation, C and VHDL is not required. For instance, a developer does not have
to know, how a pipeline bypass is implemented and how pipeline hazards are
correctly resolved.

Compared to other ISA and processor specification languages, ViDL uses a
simple model for instruction sets. It consists of storages, I/O ports and transfer,
including epsilon logic. The developer does not have to learn numerous concepts,
their relation and exceptions.

Efficiency

The extensive use of variables, functions, tuples and functionals does not affect
efficiency of the generated implementation, i.e. these concepts do not introduce
any overhead. An ISA developer may be inclined to avoid variables, functions
and functionals, as in classical programming languages, their use may have a
negative effect on efficiency. However, this is not true for ViDL. The generator
statically eliminates all applications of functions and uses of variables. Develop-
ers are therefore highly encouraged to use ViDL’s functional concepts to improve
readability and maintainability.

The same holds for tuples. Even a deeply nested tuple does not cause any
overhead in the processor or simulator. Furthermore, if a component of a tuple is
not used in the specification, it is eliminated by the generator. In the same way,
unused functions and unused variables are eliminated. An eliminated variable
resp. function does not allocate any resources, such as functional units in the
generated processor.

Functions do not restrain optimizations of the generators. For the function
definition

fun nand(a,b) = not(and(a,b))

the expression not(nand(a,b) is transformed into the equivalent expression
and(a,b). Optimizations can therefore be regarded as inter-procedural.

Common subexpressions are identified by the generator and respective re-
sources are only instantiated once. This also hold true for subexpressions of
different instructions. Hence, the user is not required to factor out common
behavior using functions and variables.

4.6. EPSILON LOGIC 89

Register
State i 1010

Olee

Statei+1 0110

Figure 4.6: Effect of assigning an epsilon expression to a storage.

4.6 Epsilon logic

Instruction sets typically include instructions, which write storages condition-
ally or partially. For instance, a conditional branch can be understood as a
conditional write access to the program counter. Some instruction sets, such
as ARM, even define all instruction to be executed conditionally. A store-byte
instruction can be regarded as partial write accesses to a 32-bit wide memory.
Conditionally executed SIMD instructions may write an arbitrary subset of vec-
tor elements of a register. Arithmetic instructions may set an arbitrary set of
bits in the status word.

Epsilon logic is a simple and effective method to define such conditional and
partial write accesses. It is a unified concept that is powerful enough to define
the aforementioned in an intuitive way. The definition is consistent and can
easily be changed, compared to the specification of an additional write-enable
mask. Basically, epsilon logic is an application of ternary logic, which is a special
case of multi-value logic. In ternary logic, a bit may have one of three states.
For epsilon logic this is 0, 1 or e, which means “inactive”.

Existing uses of multi valued logic Multi-valued logic (n-ary logic) is a widely
known concept. The IEEE standard 1164 [1] for instance defines 9 states for a
bit. This logic is also used in VHDL. Bus drivers traditionally use a tri-state
logic, where a bit has one of the values 0, 1 or Z (high impedance).

However, VHDL and tri-state logic only focus on buses and do not regard
the control of register write enable. Existing ISA specification languages do not
seem to utilize a concept like epsilon logic. Instead, separate expressions for
the assigned value and for the write enable mask have to be defined in such
languages.

Notation Epsilon logic constants can be denoted as literals, such as Ob10eel.
Besides, the special constant EPSILON is defined, which represents an infinite
sequence of e-bits, similar to the integer -1, which represents an infinite sequence
of 1-bits.

Assignments Assigning an epsilon logic value to a storage has the effect, that
some bits of the storage remain unchanged, as shown in Figure 4.6. An inactive
bit (e) does not change the state of the corresponding bit in storage. Writing
EPSILON to a storage does not affect the state at all. To implement this behavior,

90 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

the generator decomposes epsilon logic into a value and an enable mask, as
described in Section 7.4.2. If an epsilon logic value is written to a port, it is
translated into tri-state logic, by mapping the “inactive” state e to the “high
impedance” state z. This enables the specification of typical bus behavior.

4.6.1 Operating on epsilon logic

Epsilon logic values can not only be assigned to storages and ports. They can
also be used in expressions. An epsilon logic expression can for example be
rotated using the rotate primitive. The expression rotr (Obeell,0bl) yields
the bit-string rotr (Obleel). However, some primitives, such as add, are not
defined on epsilon logic. There is for instance no meaningful interpretation of
the expression add (0b01,0b0e).

Basically, all operands that are only subject to bit-permutation may use
epsilon logic. This includes the first operand of cut, rotate, rev, exts and
both operands of cat. The alternatives of an if-primitive may also use epsilon
logic, but the condition must not, as it controls the dataflow. The validity of
epsilon logic is checked statically by the generator. If a bit-sensitive operation,
such as add, is applied on an epsilon logic value, the generator reports an error
including its position in the specification.

4.6.2 Review

In the following, the concept of epsilon logic is reviewed with respect to language
design criteria (Section 2.3). In particular, its expressiveness is examined.

Expressiveness

Epsilon logic is a simple, yet powerful concept that significantly enlarges the set
of specifiable instruction sets. It can be used to specify a wide range of instruc-
tion set concepts. This includes conditional execution, bitwise write accesses
and narrow store operations (e.g. store-byte).

Conditional SIMD instructions can be defined in a simple way. In the fol-
lowing example <COND_X> and <RES_X> represent the condition and the written
value for the high- and low-part of a 2x16-bit vector.

r[d] = cat(
trunc(if <COND_H> then <RES_H> else EPSILON,16),
trunc(if <COND_L> then <RES_L> else EPSILON,16)
)

A conditional branch can be considered a special case of conditional execu-
tion. The following branch is only triggered, if cond holds and the link register
r15 is only written, if the 1ink bit is set in addition.

pcl0]
r[15]

if cond then branchTarget else EPSILON
if and(cond,link) then add(pc[0],4) else EPSILON

4.6. EPSILON LOGIC 91

So far, a storage has either been written or not. Epsilon logic also allows bit-
precise control over write accesses. The following assignment sets only the two
most significant bits of a status register.

status[0] = OblOeeeeee

ViDL is not limited to the aforementioned special cases. More complex behav-
ior can be specified, by combining conditional execution, partial accesses and
operations on epsilon logic. The following conditional “set-bit” instruction sets
bit i to the value v, if cond holds.

status[0] = if cond then esl(cat(Obeeeeeee,v),i) else EPSILON

The example also demonstrates the application of an epsilon-shift-left operation
(esl). The esl primitive is a variant of logical-shift-left (1s1), which shifts
in e-bits, instead of zeros. Additional practical examples on epsilon logic can
be found in Chapter 6. This section also shows how architectural interfaces
and epsilon logic can be combined to define for instance a byte-wise view on
word-organized memory.

Reuse

Epsilon logic expressions can be used in combination with ViDL functions with-
out any restriction. The following example shows the definition and application
of a function for conditional execution.

fun ce(v) = if bit(status[0],7) then v else EPSILON

r[d] = ce(add(r[al,r[bl))

The ce function encapsulates a specific definition of conditional execution and
can be reused among all instructions that are executed conditionally. In the
context of a design space exploration, the developer can easily change the con-
dition in ce, affecting all instructions consistently. Without epsilon logic, the
specification of two separate, but related functions would be necessary.

Portability

The high degree of abstraction also adds to portability. The following ViDL
code sets the 4 least significant bits of the 8-bit register r to 0101 and leaves
the remaining bits unmodified.

r = Obeeee0101

This behavior is implemented in C and VHDL in completely different ways. In
C, it is implemented in a read-modify-write manner, including logical operations
for masking.

r = (r & 0xf0) | 0x5

92 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

In contrast, the VHDL implementation defines separate value and mask signals
for the register.

r(..., value=>"00000101", enable=>"00001111", ...)

Thanks to abstraction, both implementations are produced by the generator
from the same epsilon logic expression.

Efficiency

Although epsilon logic is a high level concept, it is efficiently broken down to bi-
nary logic by the generator. The simulator for instance only evaluates the target
of a branch, if the branch is actually taken. This lazy evaluation significantly
increases simulation speed (see Section 8.4.5.1).

4.7 Delays

In an instruction set, most instructions have a simple temporal behavior. An
instruction immediately reads from registers and writes its result, such that it
becomes visible to sequentially executed instructions. However, there are also
exceptions to this rule. A load instruction may for instance be delayed. The
loaded value does not become visible to the next instruction, but to the next
but one. Another example is a branch instruction with delay slots. A delayed
branch can be regarded as a delayed write access to the program counter.

As such delays have an effect on program semantics, they must be defined as
part of the instruction set. The concept of delays in ViDL enables specification of
such temporal aspects, while retaining full abstraction from microarchitectural
implementation. Using delays, functional and temporal behavior of instructions
are decoupled. A delay defines the timing of a read access or a write access.
By defining delay-intervals, rather than a specific number of cycles, uncertainty
can be modeled. The specification is simple and clear. It abstracts from im-
plementation specific aspects, such as pipeline stages and respective pipeline
registers.

In contrast to ViDL, existing specification languages, such as Lisa and nML
express temporal behavior indirectly in terms of pipeline registers, bypasses,
pipeline stages and their control. Functional and temporal behavior is thereby
mixed and can not be regarded separately. Abstraction from microarchitectural
aspects is broken, which binds the specification to a specific implementation
structure.

Delays in ViDL solve these problems. A delay can be defined for each read
and write access. They are also used to precisely define the timing of I/O ports.
In the following, the term “vector” is used as an abstraction from storages, ports
and architectural interfaces. For each access to a vector, a delay can be defined
by two integers a,b € Ny with a < b.

r[...]<a,b>

4.7. DELAYS 93

(a) (b)

instruction A r[x] rly]l rlz]

State 0

semantics begin _"‘E Instruction A %
rlx]<1> = f(r[x]<0>) 2 State 1 ° e
ryl<2> = g(rlyl<0>) .g
r[z]<2,3> := h(r[z]l<1>) g State 2 y .
end %
end =

¥ State 3

Figure 4.7: Examples of delayed accesses.

The integer a defines the earliest access cycle and the integer b the latest access
cycle. If both integers are equal, a single access cycle is defined. This case can
be abbreviated as r[...]<a>. If instead a is smaller then b, an uncertainty
is modeled. In this case, the instruction set does not define exactly, when an
access is committed. It only assures, that the access is not committed before
cycle a and not after cycle b.

Figure 4.7 shows, the application of delays and their effect on states. The
states are enumerated relative to the instruction issue cycle, where state 0 is
the state right before instruction issue. The first statement reads from r[x]
with a delay of 0 and writes with a delay of 1. The instruction therefore maps
state 0 to state 1. This is the “normal” behavior of non-delayed instructions.
The second statement defines an instruction with one “delay-slot”. The result
becomes visible in state 2, rather than state 1. A practical example of such
an instruction is a branch with one delay slot. The third statement specifies
an exceptional timing behavior. A value is captured with one cycle delay from
state 1 and becomes visible in state 2 or 3. The interval defines an uncertainty
about the cycle in which the result becomes available.

For each vector, a default delay can be defined separately for read and write
accesses. If an access does not denote a delay, this default is used. If neither
an access delay, nor a vector default delay is defined, an overall delay of 1 is
assumed for write accesses and a delay of 0 for read accesses. Hence, “normal”
instruction sets without delayed instructions need not define any delays at all.
All instructions will map state i to state i + 1 according to the overall default
delay.

4.7.1 Causality

Roughly speaking, causality means, that an effect is always triggered by a pre-
ceding event. In the area of digital systems this means, that a state ¢ is only
defined by preceding states j for j < i. A future state never has an effect on
a past state and a state is never defined by itself. Systems in register transfer
notation are always causal.

Using ViDL’s notation of delays however, non-causal systems can be denoted,

94 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

as demonstrated by the following statement
r[x]<0> = rlyl<i>

Register x of state s+ 0 depends on register y of state s+ 1. In other words, the
result is written back, before it can be computed. Such an anomaly is statically
detected by the generator and reported to the user. ViDL therefore defines a
causality constraint. For each statement, read accesses must precede the write
access. For a general statement

rl...J<v> = r[...]J ... r[...1<u2> ... r[...]<un>
with a write access in cycle v and n read accesses in cycles u;, the constraint
Vi<i<n:u; <wv

must hold. Using this constraint, causality can easily be checked by the gener-
ator as part of static semantic analysis.

4.7.2 Review

In the following, the concept of delays is reviewed with respect to language
design criteria (Section 2.3). In particular, the simplicity of specifications is
regarded.

Simplicity

Delays provide a formalism to directly denoted, the temporal behavior of delayed
instructions. Additional variables, FIFOs or registers are avoided, which sim-
plifies notation and increases readability. The following example illustrates, the
definition of a delayed branch width two delay slots in an imperative language,
in an HDL and in ViDL.

Imperative Programming Language:
simulation_loop

pc:=next2
next2:=nextl
nextl:=pc+offs

end
Hardware Description Language:
register regl(dataln=>pc+offs, datalut=>pcl)

register reg2(dataln=>pcl, datalut=>pc)

ViDL
pc[0]1<2>=add (pc,offs)

4.8. ARCHITECTURAL INTERFACES 95

Thanks to the clear notation in ViDL, delayed instructions are directly rec-
ognized as such. There is no need to manually analyze instruction behavior and
pipeline control to understand the ISA timing. Temporal behavior of existing
instruction sets can directly be expressed. In the process of a design space ex-
ploration, timing can be adapted in a matter of seconds. For instance, delay
slots of branches may be added or removed.

Portability

Delays define the timing behavior in an abstract way. They are not specific
to one target domain, such as pipeline registers are specific for a pipelined
microarchitecture. Therefore, they can efficiently be mapped to the simulator
and to processor implementations with different microarchitectures.

Efficiency

In a microarchitectural implementation, delays are put in effect by the pipeline
and its control. Basically, delays lead to omitted forwarding and interlocking.
The simulator implements delays in a different way. Only the pipelining effects
are simulated, instead of a complete pipeline. The sequential simulation of an
inherently parallel pipeline would be extremely slow. Thanks to the abstract
specification of temporal behavior, an efficient simulator can be generated, as
well as an efficient processor.

The generator may exploit the uncertainty of an access interval to optimize
the implementation. Any implementation that commits an access in the defined
interval conforms to the ISA. Among all these implementations, the generator
can select the simplest one. A specific commit cycle would impose a tighter
constraint on the solution.

4.8 Architectural interfaces

Instruction sets typically use structures like architectural register files, virtual
address spaces and processor-mode dependent registers. Such structures are ba-
sically views on physical storages and 1/O ports. It is desirable to specify and
use such views directly in an instruction set specification language. For this pur-
pose, ViDL features so called architectural interfaces. Architectural interfaces
unify the specification of very different instruction set concepts and views. For
instance, architectural register files, virtual address spaces and processor-mode
dependent registers can be specified.

Figure 4.8 shows an example of an architectural register file that combines
32-bit registers to 64-bit registers. The physical 32-bit registers r0 and r1 for
instance constitute the architectural 64-bit register s0. A write access to s0
will therefore set the content of rO and r1. The architectural register file s does
not have any state. It is just a view on the physical register file r. It may also
be regarded as an alias to r. The architectural register file can be used like a

96 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

31 0
Physical register file [x0 [r1 [r2 [r8 [r4 | x5 | 6 | r7 |

Mapping

Architectural register file | s0 | si | s2 | s3 |
63 0

Figure 4.8: Architectural register file.

normal storage. It can be read, written and indexed like a storage of 4 64-bit
registers. However, all accesses are delegated to the register file r.

In ViDL, the architectural register file is modeled by an architectural inter-
face s.

storage r
size 8
width 32

end

interface s
size 4
width 64
map idx
s[idx] = cat(r[mul(idx,2)],r[add(mul (idx,2),1)]1);
r[mul(idx,2)] = cut(s[idx],63,32);
r[add (mul (idx,2),1)] = cut(s[idx],31, 0);
end
end

The architectural interface is defined by its size, width and mapping.

4.8.1 Mapping

The mapping defines the effect of read accesses and write accesses to the archi-
tectural interface. It consists of one read mapping and a set of write mappings.
The set contains an arbitrary number of write mappings and may also be empty.
The architectural interface s defines one read mapping and two write mappings.

Read-mapping The first equation describes the effect of a read access to s. It
is called the read-mapping in the following. According to the equation, the ex-
pression s [3] for instance is equal to cat (r [mul(3,2)],r[add(mul(3,2),1)]),
which is equivalent to the expression cat(r[6],r[7]). The value that is read
from s3 is thereby the concatenation of r6 and r7, as shown in Figure 4.8.

Write-mapping The effect of a write access is defined by the remaining equa-
tions, which constitute the write-mapping. According to the write-mapping
in the example, the assignment s[3]=0xdeadbeef76543210 corresponds to the
assignments

4.8. ARCHITECTURAL INTERFACES 97

r[mul(3,2)] = cut (Oxdeadbeef76543210,63,32)
r[add(mul(3,2),1)] cut (Oxdeadbeef76543210,31, 0)

which are equivalent to

r[6] = Oxdeadbeef
r[7] = 0x76543210

The assignment to s is broken down to two assignments. The high part of the
assigned constant is assigned to r6 and the low part to r7, as illustrated in
Figure 4.8.

Uniform mapping For the given example, the same physical bits are accessed
for both, read and write accesses. Technically this means, that the read mapping
is the inverse of the write mapping. This can be shown formally, by applying
the read and write mappings on the expression s [x]=s[x].

s[x]=s[x]
Apply read-mapping
s[x] = cat(r[mul(x,2)],rladd(mul(x,2),1)]1)
Apply write-mapping
r[mul(x,2)] cut (cat(r[mul(x,2)],rladd(mul(x,2),1)]),63,32)
rladd(mul(x,2),1)] = cut(cat(r[mul(x,2)],r[add(mul(x,2),1)]1),31, 0)
Apply algebraic transformations
r[mul (x,2)] r[mul(x,2)]
r[add (mul(x,2),1)] r[add (mul(x,2),1)]

The last two lines express the identity function, as expected for the combina-
tion of a function and its inverse. Read and write accesses to s[x] will there-
fore refer to the same physical bits. In practice, many architectural interfaces
have a uniform read and write mapping. This includes partial memory accesses
(Section 6.1) and register windowing (Section 6.4). However, there are also
meaningful non-uniform mappings, such as the definition of a constant register
(Section 6.7).

4.8.2 Review

In the following, the concept of architectural interfaces is reviewed with respect
to language design criteria (Section 2.3). Architectural interfaces are very ex-
pressive and can be used to define a large set of common storage structures.
Specifications of instruction set are simplified and their maintainability is in-
creased.

Expressiveness

Architectural interfaces are a versatile and powerful concept in ViDL that can
be used to define a large class of storage and I/O structures. The set of specifi-
able structures is significantly enlarged compared to existing approaches. Fig-
ure 4.9 demonstrates how architectural interfaces are used to model different

98 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

Physical [|] [| []

Architectural | [] [[]

Permutation Combined Register parts Combined
of registers storages registers
Physical [x| (|] | [] | |
Architectural %/ [o g
Value Non-uniform Constant Dynamic
mapping register

Figure 4.9: Different kinds of mappings between physical and architectural reg-
isters.

kinds views on vectors. Views range from static permutation of vector elements
to dynamically reconfigurable mappings.

The combination of vector elements shows that an architectural interface
is not necessarily mapped to exactly one vector. In general, one architectural
interface can be mapped to n vectors. A practical example is the embedding of
the program counter into the set of general purpose registers, as for ARM (Sec-
tion 2.1.1). The extraction of bit-strings and the combination of elements shows
that architectural interfaces are not limited to mappings between elements. In
general, arbitrary mappings between architectural and vector values can be de-
fined. This enables for instance a normal and a negated view on a value x of a
status register. The mapping between architectural interfaces and vectors does
not have to be uniform. For instance, two unidirectional physical 1I/O ports
may be combined into one architectural bidirectional I/O port. Another exam-
ple is the definition of a constant register, which is read as zero, but can not be
written, as defined by MIPS (Section 2.1.2). Finally, the mapping between an
architectural interface and vectors need not be static. An architectural status
register may for instance be connected to different physical storages, depending
on the processor mode. A more complex example for a dynamic mapping is
register windowing (Section 6.4), which is utilized by SPARC.

Simplicity

Using architectural interfaces, alternative views with meaningful names can be
defined, which are then used by instructions. For instance, pairs of 32-bit reg-
isters can be combined to architectural 64-bit registers, which are then used by
wide instructions. This simplifies the specification of instructions and increases
readability. The developer can specify wide instructions in terms of 64-bit reg-
isters. Wide instructions are immediately identified by the appearance of archi-
tectural 64-bit registers. Their semantics are clear, as the developer only needs

4.9. TYPE SYSTEM 99

to consider architectural 64-bit registers.

Reuse

The abstraction of architectural interfaces also provides a way of reuse. Com-
mon views are factored out of instructions and encapsulated in an architectural
interface. The interface is then reused among all instructions. In the above
example, all wide instructions reuse the definition of register pairs. This guar-
antees a consistent view and thereby also increases reliability.

Maintainability

The pairing of registers can easily be modified, without changing touching any
instruction. This supports in particular the process of a design space explo-
ration, where rapid and consistent modifications are essential. Another nice
example is that of partial memory accesses and their endianness. Byte and half-
word views on the memory accesses can be defined by architectural interfaces.
These interfaces are then used by the respective load and store instructions.
Consistently changing the endianness of an instruction set is thereby a matter
of seconds.

4.9 Type system

Primitives in ViDL operate on bit-strings and only on bit-strings. A bit-string
is a sequence of bits with a specific length, such as 010010. For instance, the
expression cat(10,010) describes the concatenation of the bit-strings 10 and
010, yielding the bit-string 10010. To determine the widths of bit-strings and
the width of operations, this section introduces a type-system and a respective
type-inference algorithm.

Bit-strings are the only kind of values in ViDL. There are no integers, floating
point or string values. This simplifies the language, as the developer has to
regard just one kind of value. There is no necessity to define extensive coercion
rules between integers, floating point numbers and bit-strings. Although ViDL
operates on bit-strings, integer literals may be used in ViDL. These literals
actually represent bit-strings of infinite width, as described later.

To implement bit-string expressions in hardware, the width of primitives
and intermediate results must be known statically. As this information is not
specified explicitly in ViDL, it must be derived from the application context of
primitives. For this purpose, the width of bit-strings is modeled using types.
Two parameterized types are introduced for exact and minimal widths. The
parameter of these types is an integer, which represents the width. Another
parameterized singleton type is defined for integer literals. Bit-width rules of
primitives are expressed by signatures, which are typically polymorphic. Prim-
itives can therefore be applied to arbitrary bit-widths.

The type of an expression is derived by type inference. Basically, a system
of equations and inequalities on parameterized types is solved. The solution of

100 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

Branch I-form
b target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1)

18 LI AA|LK
0 6 30 | 31

if AA then NIA ¢, EXTS(LI || 0b00O)
else NIA €;., CIA + EXTS(LI || 0boo)
if LK then LR &, CIA + 4

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
LI'|| ObO0O sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
LI || Ob0O sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

Figure 4.10: Definition of branch instructions in the Power ISA manual [26].

the system of equations is a valid assignment of bit-widths to primitives. The
type inference algorithm is implemented in the generator and calculates types
of a representative instruction set in less than a second.

Running example As a running example, the branch instruction of the Power
ISA [26] is used in the following. Figure 4.10 shows the respective excerpt from
the ISA manual.

The highlighted expression describes the computation of the branch target
address for relative branches. In this expression, the bit-strings LI and 0b00
are concatenated (|1) first. The result is then sign extended (EXTS) and finally
added (+) to the contents of the register CIA, which contains the “Current In-
struction Address”. This sum is then written to register NIA, which represents
the “Next Instruction Address”. The domain of this specification is that of bit-
strings, i.e. all operations operate on bit-strings only, not on integers. In the

4.9. TYPE SYSTEM 101

NIA

Figure 4.11: Kantorovich tree of the target address computation.

following, the functional notation
NIA = add(CIA, exts(cat(LI,0000)))

is used, to denote the computation of the bit-string expression. The expression
is visualized by a Kantorovich tree, as shown in Figure 4.11.

Hardware implementation The Kantorovich tree of the bit-string expression
can be used as the dataflow graph (DFG) of a hardware implementation. To
implement the DFG in Figure 4.11 in hardware, the width of functions and
intermediate results must be known. As hardware is inherently static, these
widths must be determined statically. For the EXTS function in Figure 4.11, for
example, the width of the argument and of the result must be determined. The
width of the argument is 26 bits, which is the sum of the widths of the LI field
(24 bits) and the literal 0b00 (2 bits). As the registers NIA and CIA are 64 bits
wide, the add function must operate on 64 bits and hence, the result of EXTS
must be 64 bits wide. To derive the widths of functions and intermediate results
systematically, we use type inference.

4.9.1 Types

The type system that is presented in this section is the result of an extensive
exploration on how instructions can be specified clearly, efficiently and unam-
biguously. Besides, the type system should be simple and understandable on
the one hand and powerful enough to specify real-world ISAs on the other hand.

In the following, a set of parameterized types (4.9.1.1), which model bit-
width and are in subtype relation (4.9.1.2), is defined first. Using these types,
bit-width constraints of functions can be formulated by polymorphic signatures
(4.9.1.3). This includes functions that implicitly truncate their actual arguments
(4.9.1.4) to support resource sharing. Using a parameterized type for integer

102 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

SV I 7S I PR

Figure 4.12: Type hierarchy.

literals, even signatures can be expressed that effectively bind arguments to
type variables (4.9.1.5). To demonstrate the power of the type system, some
representative and non-trivial signatures are finally discussed (4.9.1.6).

4.9.1.1 Bit-string types

The width of a bit-string is represented by a type. Figure 4.12 shows the hier-
archy of types used. The types E,, C, and Z, are parameterized types. For E,
and C,, the type variable x € Ny is a non-negative integer. For Z,, the type
variable x € Z is an integer.

E, type: The parameterized type E, represents the set of bit-strings that are
exactly x bits wide.

E, = {07 1}93

The set of values of Es is for example Ey = {00,01,10,11}. Two types E,, E,,
x # y are disjoint and thereby not in subtype relation. The type Fy contains
only the bit-string of length 0, which is the empty word e. As the type contains
only a single element, a value of that type carries no information.

Co type: The type Cy represents the set of bit-strings with an infinite width.
In mathematics, this set is known as Cantor set (denoted 2V or 2) which is
homeomorphic to the set of functions Ny — {0,1}. In the following, an infinite
bit-string of C, is represented by such a function, which maps each bit position
to a bit value.

C, type: The parameterized type C, represents the set of bit-strings that are
at least x bits wide. The set contains bit-string with a finite width ¢ > x and
bit-strings of infinite width. The C' type is defined using the E type and the

4.9. TYPE SYSTEM 103

Cw type.
ng - U Ei U Coo

1€Ng,i>x

The set of Cy contains for example the bit-strings {00, 01, 10,11, 000,001, ...}.
Note, that the set is infinite.

Z, type: The third parameterized type Z, is the type of the integer literal
x € 7Z and only of this integer literal. Z, is a singleton set containing the
bit-string of the integer x, according to its two’s complement representation.

Z, = {twosComp,, : Ng — {0,1}}

The bit-string of an integer has an infinite width. The bit-string is therefore
defined by a function twosComp,, (7), which yields the i-th bit of the bit-string.
The function twosComp,, is defined with respect to the two’s complement.

bij mod 2 x>0

1-— {—”;w mod2 z<0

twosComp,, (1) = {

In addition to these bit-string types, types for tuples of bit-strings are de-
fined. The introduction of tuple types simplifies the discussion of the type
system.

4.9.1.2 Subtyping

The parameterized types E,,C,, Z, and the type Cy, are in subtype relation.
According to the definition of the C type, C, 11 and E, are subtypes of C,. In
other words, the set of bit-strings of C, is a superset of F, and C,11. As the
subtype relation is reflexive and transitive, any type I, resp. C, is a subtype
of C, for x < y. The subtype relation expresses that wherever a bit-string of
at least x bits is expected, a bit-string of exact or minimal length v,y > = may
be given. If a bit-string of exactly x bits is expected, a bit-string of exactly =
bits must be supplied.

As the type Cy, contains the bit-strings of infinite width, it is a subtype of
any Cp,z € Ng. In other words: wherever a bit-string of minimal width z is
expected, a bit-string of infinite width may be given.

The type Z, is a subtype of C,. The type Z, contains only the infinitely
wide bit-string of the integer literal =, which is also a value of Cy,. In the
domain of bit-strings this means that wherever a bit-string of minimal width
y is expected, an integer literal may be given instead. In addition, the integer
literal x may be given, where the type Z, is expected. This property of the type
system is used in Section 4.9.1.5 to couple arguments and type parameters.

The type Cy is the top element of the type hierarchy. It represents all bit-
strings of at least 0 bits, which is the set of all bit-strings {0,1}* U {0, 1}°.
The type hierarchy does not include a bottom element. The set of values of the
bottom type would be empty, as two different F, types are disjoint.

104 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

Y E:,

Figure 4.13: Implicit truncation of add’s parameters.

4.9.1.3 Signatures

In the previous section, the type hierarchy was introduced, including three pa-
rameterized types. These types are now used to define the signature of functions.
Most functions are parametrically polymorphic, as they are defined for arbitrary
bit-widths. Each function introduces a set of type variables, which are used in
parameterized types of the signature. The concatenation function cat for in-
stance concatenates a bit-string of exactly x bits and a bit-string of exactly
y bits to a bit-string of exactly x + y bits. This is reflected by the signature
caty,y : By X By — E,y,, where x and y are type variables of cat.

As we use implicit typing, the type variables x and y are inferred from the
application context of cat. In the example in Figure 4.11, the type of LI is
known to be Fy4 and the type of 0b00 to be Fs. According to the signature,
the result type of cat must be Fys. This is just a small example to give an idea
of the type inference, which is covered in depth in Section 4.9.2.

An important property of implicit typing is that type parameters are inferred
and need not be defined by the developer. This is different from explicit typ-
ing, where the developer has to specify the values of type variables along with
the instantiation. Explicit typing increases the complexity of the specification
and reduces the maintainability. This effect is discussed in the evaluation in
Section 4.9.3. Implicit typing also allows for optimization of the datapath, but
requires an additional analysis phase in the generator.

4.9.1.4 Implicit truncation

To simplify the specification and support the optimization of the hardware im-
plementation, some functions perform an implicit truncation on arguments. A
truncation tr,(a) yields the x least significant bits of the argument a and dis-
cards any excessive most significant bits. Figure 4.13 shows an example of
implicit truncation. The add, function truncates the arguments to x bits before
the addition is performed. The semantics of the truncating add, function are
defined as
add, (A, B) := add” (tr,(A), tr,(B))

where tr, : C, — E, truncates a bit-string of at least x bits to exactly x bits
and add]zv T . B, x E, — E, represents a non-truncating x bit adder. From

4.9. TYPE SYSTEM 105

the signature of tr and add™”, the signature of the truncating addition can
be derived as add, : C, x C, +— E,. To ensure unambiguous semantics of any
bit-string expression, the result type is weakened to be C}, accepting a loss
of precision in typing. The rules for unambiguous semantics are discussed in
Section 4.9.2.1 in detail. The final signature of add is

add: C, x Cp, — C},

This signature expresses, that the add function expects two bit-strings of at
least = bits and yields a bit-string of at least x bits.

Implicit truncation is only allowed for functions with certain semantics. The
parameter of the exts function must for example not be truncated implicitly.
This would lead to ambiguous semantics, if the typing is ambiguous. This
phenomenon is discussed in detail in Section 4.9.2.1.

4.9.1.5 Coupling of actual parameters and type variables

There are some functions, for which the signature depends on an argument. An
example is the ones(A) function, which returns a bit-string of exactly A "1’-bits.
The result of ones(5) is for example the bit-string 11111 of type Fs5. The type
parameter x of the result type E, is effectively given by the argument A.

As the hardware implementation relies on static typing, the argument of
ones must be a static value. If the parameter would be dynamic, the result
type and thereby the width of the signal would be dynamic.

Exploiting, that a constant argument x has the type Z,, the signature of
ones is

ones : Z, — F,

The type Z, restricts arguments to integer constants. A dynamic argument will
be reported as a type conflict.

Basically, the parameterized type Z, couples constant arguments with type
variables. This way, a value for a type parameter x can be specified explicitly by
a (formal) parameter of type Z,. A nice example to demonstrate the power of
this paradigm is the cut function. The cut(V, X,Y") function extracts a bit slice
from bit X to bit Y from the bit-string V. The application cut(06111000,4,2)
yields for example the bit-string 110 of type E3. The signature of cut is defined
as

cut : Cx+1 X Zx X Ly — Ex_y41

The type variables X and Y are conceptually defined by the second and third
argument in the application of cut. These two parameters therefore resemble
generic integer parameters. If the type system would not include the parame-
terized type Z, a concept like generic parameters would be necessary to model
the signature of cut. However, the combination of parametric polymorphism
and the parameterized type Z supersedes the need of generic parameters.

106 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

add, :C, x C, — C,
caty,y By x By — Eyqy
extz, , B, — Oy
exts, By — Oy

rotate, , :E, x B, — E,
cuty y :Coy1 X Zy X Zy = By ypa
I,y :Cy X Z,— E,
Obaz,1 L..ag EI
Reg : +— EWidth(Reg)
RegAssign :Cyiqin(reg) = UNIT
Imm : = Flyidth(imm)
< IntLit > :+— Z<IntLit>

Figure 4.14: Signatures of polymorphic functions.

4.9.1.6 Signatures of typical functions

In addition to signatures already mentioned, further signatures of representative
functions are listed in Figure 4.14 and discussed in the following. The extz (zero-
extension) and exts (sign-extension) functions for instance extend a bit-string
of exactly x bits to a bit-string of at least y bits, where y is independent of x.
The result can therefore have an arbitrary width. In the DFG in Figure 4.11,
the exts function extends a bit-string of exactly 26 bits to a bit-string of at
least 64 bits.

A bit-string literal is regarded as a constant function, where the result type
expresses the width of the literal. The constant function of the literal 0600 has
for example the signature 0000 :— FE5. The type Cy (which is a supertype of
E5) would also be a valid result type, but is less precise and can therefore not
be used, where the type Fs is expected.

A “using” occurrence of a single register in a bit-string expression is also
modeled by a constant function. The width of the result is given by the width
of the register. The function is therefore not polymorphic. For the CIA register,
the signature of the function is CIA :— Fgq4.

An assignment to a register is modeled by a unary function which expects
a bit-string that has at least the width of the register. Wider bit-strings are
implicitly truncated to the width of the register. An assignment has no result,
which is expressed by the result type “UNIT = {()}"”, as known from SML and
other functional languages. For the NIA register for instance, the assignment
function has the signature NIA : Cg4 — UNIT.

An immediate instruction operand is modeled by a constant function, whose
result type corresponds to the width of the immediate. For the LI immediate

4.9. TYPE SYSTEM 107

T <:Ty | Ty

Cy E, Z, Cwso

T, C, | x>y False False False
E, |x>y x=y False False
Z, | True False x=y True
Cs | True False False True

Table 4.1: Equivalent equations for subtype relations.

in the example, the signature is LI :— Foy.

An integer literal z is also modeled by a constant function, where the result
type Z, represents the value of the integer. For example, the signature of the
integer literal 4 is 4 :— Z4.

4.9.2 Type inference

The type inference algorithm determines feasible values for all type variables.
The values are selected such that the bit-string expression is properly typed.
That is the case, if the type of each argument is a subtype of the respective
parameter type. Hence, the input for the type inference is a set of constraints,
where each constraint is a subtype relation between two types.

For the inference, the set of subtype constraints is transformed into a system
of equations, which is then solved by the generator. Table 4.1 shows the trans-
lations of subtype constraints into equations, as derived from the type hierarchy
in 4.12. For example, the constraint £, <: C, is transformed into the inequality
x > y. The constraint Z, <: Cy always holds and is therefore transformed into
the statement “True”, which means, that the constraint does not contribute an
equation. The constraint C, <: E, never holds and is therefore transformed
into the statement “False”, which means, that the type constraints are contra-
dictory. There is no valid typing of the bit-string expression in this case. The
specification is not sound and a respective error is reported to the user.

If there is no contradictory subtype constraint, the transformation yields
a system of equations, which is equivalent to the set of subtype constraints.
Further inequalities are added to the system of equations, to ensure that the type
parameters of E and C' types are non-negative. For instance, for an application
of cut : Cx 1 X Zx X Zy — Ex_vy 41, the inequalities X+1 > 0and X -Y +1 >
0 are added.

This system of equations is then solved by an equation solver. If it has no
solution, the bit-string expression can not be typed properly, which means that
the bit-string expression is not sound. If it has exactly one solution, the typing
is unique. If the system of equations has multiple solutions, the type inference
algorithm selects one solution. The proposed theory ensures that the bit-string
expressions of all solutions are semantically equivalent (Section 4.9.2.1). The
inference exploits this degree of freedom, to optimize the datapath of the bit-
string. In particular, the sharing of resources in the hardware implementation

108 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

r=1 r=2
Bz r <2 aiag aiag
CT
REV Y
™|
E, ag aiag
A
EVNT
Eq 1<z aop apay
&1
A
TR
Ey ao aj

Figure 4.15: An ambiguous typing of the reverse function implies ambiguous
semantics.

is maximized, by merging common subexpressions in the DFG. An aggressive
optimization of the datapath-width may be in conflict with this optimization
goal. The next section shows that the semantics of a bit-string expression are
equivalent for all solutions.

4.9.2.1 Invariant semantics

The type system may have multiple solutions, in which case the type inference
algorithm selects a solution based on an optimization criterion. Which solution
is chosen is not defined by ViDL and is therefore undefined from the developer’s
perspective. The semantics of a bit-string must therefore be the same for all
solutions.

The example in Figure 4.15 demonstrates ambiguous semantics for an appli-
cation of the reverse function. The reverse : C, +— FE, function reverses the
bits of a bit-string. In the example, an argument of type F5 is given and a result
of type C1 is expected. To be properly typed, the inequality 1 < z < 2 must
hold. For the solution x = 1, the least significant bit (LSB) of the result is the
LSB ag of the argument, but for x = 2 it is bit a; of the argument. As the selec-
tion of the solution for z is undefined, the result of the expression is undefined.
The origin of this ambiguity lies in the semantics of reverse and the implicit
truncation of its argument. If the signature is chosen to be reverse : E, — FE,
there is only one solution for z (1 < z = 2) and the semantics are thereby
unique.

In contrast to reverse, implicit truncation of the not : C, + C\ function
does not lead to ambiguous semantics because not is a bitwise function. In
general, solution invariant semantics are guaranteed by two conditions.

4.9. TYPE SYSTEM 109

e A specific dependence between the type variables of parameter types and
the type variables of result types (E type derivation).

e A specific relation between the signature and the semantics of a function
(invariant function semantics).

The resulting invariance of semantics is proven later in this paper.

E type derivation This condition demands that the type parameter of an E,
result is uniquely defined by the F types of the parameters. This informal de-
scription of the condition can formally be expressed as follows: For the function

f

fm?m@k :Egl(zlwu»f”k) Koo X Eg"(zl"“’mk)
XC._ X...XxC = Epg,,..)

and constants a;, the system of equations

91($17~--71’k) =

must have at most one solution for b.

Invariant function semantics The second condition demands that for a given
context of a function application, all valid instances of the function must have
the same semantics.

Vf:A'—>B<:A

The context of the function is given by the type of the argument A and the
expected result type B. For this context, a specific argument a must be mapped
to the same value b by all instances f : A — B, which are subtypes of the
expected signature A B. The signature is a subtype of the expected signature,
if the parameter type is contravariant (A <: A) and the result type is covariant
(B <: B).

To be precise, the function result and the value b need not necessarily be
equal. The result and b need only be in ~4 relation, which is weaker than the

110 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

equal relation.

U’:B

o try(u) = try(v) for B=C,
u="v otherwise

If B is of type C,, only the z least significant bits must be equal. That is
because the result is truncated by any succeeding function to at most z bits.
Any other bits are discarded and need therefore not be equal.

These constraints only regard the signature and semantics of functions. The
developer of a primitive must define the signature such, that the constraints
hold. The constraints need not be considered by a ViDL user and need not be
checked during type inference.

4.9.2.2 Proof of solution invariance

In the following, the proof of solution invariance for all intermediate values is
briefly outlined. An intermediate value a; resp. b; is solution invariant, if it is a
substring of a fixed value a*° for all solutions s € TSol of the type system.

Ja;® : Vs € TSol : a] ~4¢ a;°
3b7° 1 Vs € TSol : b} ~p: a;°

Solution invariance of E/Z-types In the following, only F types are regarded,
but the same applies to Z types. It is first shown that the type parameter of
each FE-type is solution invariant. This is proven by induction over the topo-
logical order of function applications f;. The induction basis holds, as f; is an
application of a constant function. The type-parameter x of each E-type result
must therefore be constant according to the F type derivation condition. For
an application f;, each E parameter is invariant, as the corresponding F result
of f;, j < i is invariant. Since all &/ parameters are invariant, each F result of
fi is invariant.

Solution invariant subtype 7°° To show the solution invariance of values, the
smallest subtype T°° of a given type T is defined first. The type T°° is a common
subtype of all T® for s € TSol, as E/Z-Types are invariant and C*° is a subtype
of any type C.

T=Tx...xT,
T° =17 x ... xTx

T — c>* for T, =C,
. otherwise

4.9. TYPE SYSTEM 111

Solution invariance of intermediate values The solution invariance of the
values a;, b; is shown by induction over the topological order of f;. The induction
basis holds for a1, as f; is constant and Ay is UNIT. As a; is composed of results
bj,j < i which are invariant, a; is invariant. The next section shows, that b; is
invariant, if a; is invariant.

Solution invariant result As only a single function application f; is regarded
in the following, the index i of a; and b; is omitted. It is proved by contradiction
that b is invariant, by assuming that b is not invariant. This means, that b>
does not exist. Hence, there must be two solutions r, s € TSol, such that

b~ BT AD g, bP

does not hold for any 5. Let B be the smallest common supertype of B" and
B?. Then, the values b" and b° are not equal with respect to B.

bT ﬁé bS

_ The Invariant Function Semantics condition implies, that for a result type
B all valid function instances f yield an invariant result.

dbeB:
Vf:AI—)B<SAOOI—>BSf(CLOO)ZBB

As f" and f* are functions of type A% — B, the results b” and b® must be
equal with respect to B
IBeB:fr(a®) =g bA f(a>)~pb
= b" ’:Be b®

This is a contradiction to b° 25 b, which was inferred from the assumption
that b is not invariant. Therefore b must be invariant. Hence, all values in the
DFG are invariant and the semantics of the DFG do therefore not depend on
the solution that is selected by the type inference.

4.9.3 Evaluation

In the following, the type system of ViDL is evaluated using the ARM ISA and
the Power ISA. First, the branch of the Power ISA is regarded to demonstrate,
how to specify non-trivial, real world instructions in ViDL. The specification is
simple, compact and intuitive. It is then shown that flaws in the specification
such as ambiguous semantics are detected by our type inference algorithm. For
instance, a non-obvious ambiguity in the ARM ISA manual has been found.
The example of the ARM add instruction is used to demonstrate, how implicit
truncation increases hardware sharing and reduces the width of the datapath.
Finally, the results of the type inference are analyzed, to show that implicit
typing and implicit truncation eliminate amounts of type annotations and many
applications of explicit truncation.

112 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

let
target = if AA then EXTS(CAT(LI,O0b00))
else ADD(CIA,EXTS(CAT(LI,0b00))),
NIA = if M32 then EXTZ(TR(target,32))
else target,
LR = if LK then ADD(CIA,4) else EPSILON
in
end

Figure 4.16: Specification of semantics of Power ISA branch.

Branch of Power ISA in ViDL Figure 4.16 shows the specification of a real
world example in the ISA specification language ViDL. The two bit-string ex-
pressions specify the behavior of the Power branch instruction shown in Fig-
ure 4.10, including relative and absolute branches in 32 and 64 bit mode, as well
as the optional setting of the link register.

Figure 4.17 shows the resulting DFG of the example, annotated with all
inferred types. Signatures are selected such, that common subexpressions in
the code in Figure 4.16 can be merged in the DFG. The example demonstrates,
how easily a complex real-world instruction can be described in ViDL. The
complexity of width assignment, implicit truncation and hardware sharing is
moved from the user to the type inference of the generator.

Ambiguous semantics in ARM manual Figure 4.18 shows the semantics of
the MSR instruction, as specified in the ARM ISA manual. The highlighted
expressions describe the rotation of an 8 bit immediate, followed by an extraction
of bits 31 to 24. The result of the rotation must therefore at least be 32 bit
wide.

Although the semantics of the expression seem to be sound, the application
of the rotation is not well defined. The width of the argument suggests an 8
bit wide rotation, whereas the expected result suggests a 32 bit wide rotation.
In both cases, either the argument or the result must be extended. Which kind
of extension should be applied (sign or zero extension) is not specified. Two
aspects of the instruction are therefore undefined: The width of the rotation
and the kind of extension.

In ViDL, the combination of both expressions is denoted

cut(rotate(imm8, cat(imm4, 000)), 31, 24)

The ambiguity of this expression is detected by type inference. According to
the signatures in Figure 4.14, the result type of rotate is Fg, but the expected
type for the first parameter of cut is C3s. As FEg is not a subtype of Css, a
type error is reported. This notifies the designer to correct the expression by
inserting a proper sign extension. The following expression precisely defines the

4.9. TYPE SYSTEM 113

Figure 4.17: Optimized and typed DFG of Power ISA branch.

semantics, as described in an informal text of the ARM manual.

cut(rotate(tr(extz(imm8), 32), cat(imm4, 000)), 31,24)

Type analysis on the ARM ISA The ViDL specification contains about 40
explicit truncations to uniquely define instruction semantics. The front-end
of the generator transforms the ViDL specification into a DFG, on which the
following results are based.

The DFG consists of about 1500 function applications, which introduce
about 1600 type variables. About 20% of all function applications contribute no
type variable, 54% contribute one type variable and 26% contribute two vari-
ables. On average, each function application contributes one type variable. The
type inference phase of the generator constructs and solves the equation system
in less than two seconds.

The 1600 derived type variables define about 4550 types (approx. 3 types
per function) in the DFG, of which 60% are C types, 29% are F types and 11%
are Z types. The percentage of C types in the DFG is remarkably high, which
facilitates the application of implicit truncation in the DFG.

114 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

Operation

if ConditionPassed (cond) then

if opcode[25] ==

operand = 8_bit_immediate Rotate_Right (rotate_imm * 2)
else /* opcode[25] == 0 */
operand = Rm
if R == 0 then
if field mask[0] == 1 and InAPrivilegedMode () then
CPSR[7:0] = operand[7:0]
if field _mask[1l] == 1 and InAPrivilegedMode () then
CPSR[15:8] = operand[15:8]
if field mask[2] == 1 and InAPrivilegedMode () then
CPSR[23:16] = operand[23:16]
if field mask([3] == 1 then
CPSR[31:24] = operand[31:24]
alam /* R == 1 */

Figure 4.18: Excerpt from ARM ISA manual [2], page A4-62.

There are 2200 positions in the DFG, where implicit truncation may legally
be applied. A real implicit truncation, where the bit-string is actually narrowed,
is applied at 140 positions (6.6%) in the DFG. Figure 4.19 shows the number of
implicit truncations for the width before and after truncation.

The frequent truncation from infinite bit-strings (INF) to 32 bit is a re-
sult of using integers, where a bit-string of at least 32 bits is expected (e.g.
eq(register,0)).

The implicit truncations from 33 bits to 32 bits are a result of resource
sharing. An add instruction for example includes the following two definitions.

carry_flag = bit(add(a,b),32)
gp_register add(a,b)

Due to resource sharing, only one adder is instantiated, which adds a, b and
yields a 33 bit result. The most significant bit of the result is assigned to
the carry flag. For the assignment to the GP register, the 33 bit result is
implicitly truncated to 32 bits. Further 33 bit computations that result in
implicit truncation include subtraction, left-shift, rotation and the addressing
modes of the second operand.

Figure 4.20 shows the distribution of implicit truncations among functions.
The 4 most prevalent contributors are the eq, branch, cut and bit functions.
For the eq : E, x C, — F; function, the second parameter is implicitly trun-
cated to the width of the first parameter. The branch function is a two-way
multiplexer, which implicitly truncates parameters of different widths. For the
bit and cut functions, the occurrence of implicit truncation expresses, that the
argument is wider than required for the extraction.

Exploration of ISA width To demonstrate, that implicit typing increases the
maintainability of the specification, the ARM ISA has been generalized from 32

4.9. TYPE SYSTEM 115

50

45

40

30

25 | sl N .

Truncations

20

~INF

=
012345 7 8121618 24 30 32 33 64INF
From [Width]

Figure 4.19: Number of implicit truncations from a given bit-width to a given
bit-width.

W add

[l Read PC

[0 Read CPSR
B sub

B Read SPSR
O and

M islc

O mux

M bit

Ocut

B branch

B eq

Figure 4.20: Distribution of implicit truncations among functions.

116 CHAPTER 4. VIDL — VERSATILE ISA DESCRIPTION LANGUAGE

bit to n > 32 bits. For instance, 64, 65 and 256 bit wide implementations of
the ARM processor have been generated. To change the width of the ISA, only
the width of the general purpose register file needs to be changed. The width
of the datapath (including the shifter-operand) is adjusted automatically, as it
is inferred by type inference.

To provoke conflicts, the width of the program counter, status register and
memory has not been extended. Therefore, instructions that transfer data be-
tween these 32-bit storages and the n-bit general purpose registers have to be
considered. Fortunately, these transfers are identified and reported by the type
inference as type errors. For the ARM ISA, this is the “branch and link” in-
struction, the MSR? instruction and the load instruction.

To define the most significant bits of the wider general purpose register, a
zero-extension is applied. After the insertion of these extensions the width of
the ARM ISA can be widened as desired in an instant, by redefining the width
of the general purpose registers. For the special case n = 32, the extensions
have no effect.

Thanks to implicit truncation, transfers from an n-bit general purpose regis-
ter to a 32 bit register need not be considered. The n-bit value is automatically
truncated to 32 bits.

3MSR copies the content of the Status registers CPSR and SPSR to a general purpose
register

Chapter 5

Transfer primitives

ViDL uses primitives, such as add or exts to define the semantics of instruc-
tions. The primitives itself are defined in a library, using the transfer primitive
specification language (TPSL). The definition of a primitive in TPSL includes
its signature and its semantics. Semantics are defined separately for each do-
main (simulator and processor) and each target language, such as C or VHDL.
A primitive that is specified in TPSL automatically appears as a polymorphic
function in ViDL. From the user’s point of view, there is no difference between
ViDL functions and TPSL primitives.

The purpose of TPSL is twofold. First, primitives in ViDL are decoupled
from target languages. Second, the set of primitives can easily be extended. The
generator need not be modified, as the library of primitives is loaded dynami-
cally. The library can be extended in two dimensions, as shown in Figure 5.1.
Further primitives can be defined and all primitives can be extended by another
target language. This is a major difference to related approaches, which define
primitives as part of the specification language. The set of primitives is thereby
fixed and typically hard-coded in the generators. The library can be regarded
as a planned extension point for ViDL.

ViDL I VHDL Verilog JavaScript
Extend target languages
GO:CO CO O
@M oo O
@GO @
& oo O

Figure 5.1: Extension of primitive library.

118 CHAPTER 5. TRANSFER PRIMITIVES

Signature Code generators
Dynamic loader \ C VHDL ..
/ Primitive X o Gen. Gen.
TPSL 7 alg. alg.
Primitive Y o Gen. Gen.
k.
m

Generator

\

| Simulator | | Processor |

library

alg. alg.

I I —

Figure 5.2: Relation between generator and primitive library (TPSL).

5.1 Library

The set of all primitives constitutes the primitive library, as shown in Figure 5.2.
The library can be regarded as a layer of abstraction, to separate the specifi-
cation language from target languages. The example in Figure 5.2 assumes the
target languages C and VHDL of the simulator and processor domain.

In contrast to related approaches, primitives are not hardwired in the gen-
erator. Instead, the library of primitives is dynamically loaded by the generator
on every invocation. Extending the set of primitives does therefore not require
recompilation of the generator. This enables a rapid exploration of different
primitive implementations, as changes become immediately effective. Different
versions of the library may coexist. Each library may use a different imple-
mentation scheme for primitives. One library may for instance map primitives
to standard VHDL code, whereas another instantiates IP! blocks of a certain
supplier. The developer can then select one of these libraries at generation time.

The interface between the generator and the library is clear. A developer of
primitives need not know about the generator’s internals. The capabilities of
ViDL can be extended, even if the generator’s source code is not published. If
primitives would instead be integrated directly in the generator, an extension
would typically require access to the generator’s source code and recompilation.

An important feature of the primitive library is abstraction from instruction
sets. The same library can be reused among all ISA specifications. The expert
knowledge that is encapsulated in the definition of primitives is heavily reused.
An extension or enhancement of the library directly affects all legacy and future
ISA specifications. Currently, the library contains approximately 50 primitives
for the target domains C and VHDL. The library is quite comprehensive and
extension should be exceptional.

5.2 Primitive

Each primitive in the TPSL library is defined by a signature and a set of code
generators. For each target language, one code generator is defined. The ex-
ample in Figure 5.3 defines an and primitive, which conjugates two bit strings.
The signature expresses, that “and” is a polymorphic function, which operates

Hntellectual Property

5.2. PRIMITIVE 119

primitive and
signature C(x) * C(x) -> C(x)
generator ¢
for s in range(slots):
res[s] = "(%s & %s)" 7 (paramO[s],paraml[s])

endgen
generator vhdl
code = "%s <= %s and %s " % (res,paramO,paraml)
endgen
end

Figure 5.3: Definition of a primitive in TPSL.

on bit-strings of arbitrary width x. The primitive defines a code generator for
the target language C and another for VHDL. The code generation algorithms
are defined in the embedded language Python. Python is a general purpose
scripting language, which provides convenient control structures and powerful
string operations. It is therefore well suited to define code generation algo-
rithms. The ability to specify generation algorithms is necessary, as the target
code typically depends on the actual width of a primitive. A pattern based
approach, is therefore not applicable. In Figure 5.3, the slots variable denotes
the number of integer values used to represent the x-bit wide bit-string. This
value depends on the primitive’s width and the width of integers (e.g. 32 or 64
bit). The latter can be selected by the user at generation time.

X
slots = LntWidthW

The generator then produces a respective sequence of C-statements to imple-
ment the add primitive.

The C and VHDL generators use different interfaces, as the target domains
are quite different. The simulator represents a bit-string as a sequence of inte-
gers, which are called “slots”. The C-generator therefore has to produce code for
each slot of the result. In the example, the result slot res[s] is computed by ap-
plying C’s bitwise &-operation on the respective parameter slots paramO[s] and
paraml[s]. The VHDL-generator in contrast yields only one signal assignment,
which uses the and operation of VHDL to conjugate the parameter signals.

VHDL-Signals and C-Variables for the result are automatically created by
the generator as needed. The same holds for masking of C-expressions. The
generator automatically applies masking on excessive bits, which are undefined
by convention.

State of primitives

Transfer primitives are required to be stateless. ViDL strictly divides state and
transfer of an instruction set to improve clearness of specifications (Section 4.3).

120 CHAPTER 5. TRANSFER PRIMITIVES

uint32 res = param;
res = ((res&Oxaaaaaaaa) << 1)
res = ((res&Oxcccccccc) >> 2)

((res&0x55555555) << 3);
((res&0x33333333) << 2);

res = ((res&0xfOf0f0f0) >> 4) ((res&0x0f0f0f0f) << 4);
res = ((res&0xff00f£f00) >> 8) ((res&0x00ff00ff) << 8);
res = ((res&Oxffff0000) >> 16) ((res&0x0000ffff) << 16);

Figure 5.4: Implementation of bit-reverse in C.

As transfer is composed of primitives, a primitive must not carry any state. This
constraint must be obeyed by the code generators. For instance, generated C-
code that uses a static integer variable would violate this constraint. Actually,
this convention is not a limitation in practice, as transfer primitives are likely
stateless by their nature.

5.3 Generic primitives

Primitives are versatile, as their code generators can handle arbitrary bit-widths.
An example is the C-code generator of the and primitive, which can produce
code for any bit-width. The generator breaks a wide and operation in ViDL
down to a sequence of “&” operations in C. The generators for such bitwise
primitives are quite simple. However, generation algorithms of other primitives
are much more complex. For instance, try to write a program that generates
efficient C-code that multiplies an n-bit integer width an m-bit integer using
k-bit integers, with n, m, k € N. The primitive library includes such a generator.

Complexity of C-code

The code generators for VHDL are typically simple. In most cases, primitives
can directly be mapped to generic entities in VHDL. The C-code generators
however are more challenging, as they need to break primitives down to standard
C integer arithmetic. An example is ViDL’s bit-reverse primitive rev, which has
no direct counterpart in C. A straight forward implementation may use a loop,
to assemble the result bit by bit, using shift and mask operations. This solution
is linear in the number of bits and therefore slow. ViDL includes a sophisticated
code generator, which computes the result in O(log(n)) steps in a divide-and-
conquer manner. The generated code in Figure 5.4 demonstrates, how a 30-bit
wide bit string is reversed in 5 steps. The example shows, that an optimized C
implementation of a primitive may be quite complex. Code generators in the
library encapsulate the expert knowledge on how to generate such code.

Optimization of C-Code

To optimize the generated C-code, the primitive generators exploit knowledge
from static ISA analysis. The simulation code of a primitive is thereby tailored to

5.3. GENERIC PRIMITIVES 121

(a) Isr(x,y) (b) Isr(x64,¥6)
lots=width>>32; param[2]=0;
offs=y>>5; param[3]=0;
shiftr=y&0x1if; offs=y>>5;
if (shiftr==0){ shiftr=y&0x1f;
for (i=0; i<slots; ++i){ if (shiftr==0){
if (i+offs<slots){ res[0]=param[offs];
res[i]=param[i+offs]; res[1]=param[offs+1];
} else{
res[i]=0; else{
shiftl=32-shiftr;
3 res[0]=param[offs+1]<<shiftl | param[offs]>>shiftr;
} else{ res[1]=param[offs+1]<<shiftl | param[offs+1]>>shiftr;
shift1=32-shiftr; i

for (i=0; i<slots; ++i){
if (it+offs+i<slots){
res[i]=param[i+offs+1]<<shiftl|param[i+offs]>>shiftr;

} else if (i+offs<slots){ (c) Isr(xe4,32) (d) lsr(x44,8)
res[i]=param[i+offs]>>shiftr;

else{ res[0]=param[1];| | res[0]=param[1]<<24 | param[0]>>8;
res[i]=0; res[1]=0; res[1]=param[1]>>8;

Figure 5.5: Customization of primitive implementation in C.

its application context. Figure 5.5a shows the general purpose implementation of
a 64 bit 1sr primitive using 32 bit slots in C. Unfortunately, the implementation
is rather inefficient as it includes much control code (marked red), such as loops
and conditions. Without information from static analyzes, this is the fastest
implementation of the 1sr primitive in C.

Fortunately, the code generator can produce a more efficient implementation,
by using information from static analysis of bit-widths. The result is shown
in 5.5b. As the number of slots is known statically, loops can be unrolled, which
eliminates expensive control code. In addition, the param array can be zero
extended, which eliminates a distinction of cases and thereby control code. The
optimized code contains only one remaining case distinction. This distinction
may seem to be redundant, but actually it is not. The expression v<<shiftl is
undefined in C for shiftl > 32. On Intel processors, the result for shiftl = 32
is v and not 0, as one may expect. This shows that implementing a primitive
in C has its pitfalls and is a non-trivial task. For ViDL, this task is solved by
the generator and the developer need not pay attention to the specifics of C.

The code generator can further optimize the C-code in case that the shift
distance is constant. Figure 5.5¢ shows the result for a static 8-bit shift. If the
shift distance is a multiple of the slot-width (Figure 5.5d), the primitive can be
implemented using only two assignments. Actually, even the assignments are
eliminated by the generator. Instead, the expression param[1] and the constant
0 are propagated.

Summing up, the examples demonstrate that code-generators produce highly
optimized C-code. The customization exploits information from static ISA an-
alyzes, such as bit-widths and constant-parameters. The resulting code is typi-
cally free of control structures. It can therefore efficiently be executed on deeply
pipelined host processors.

122 CHAPTER 5. TRANSFER PRIMITIVES

ViDL specification

Extendability. N

ISA domain 7 \
. 5 C VHDL { Verilog Java i
Siritei absiimeviion generator generator 5‘ generator generator ;
Tmplementation domains \ /
Simulator Processor Processor Simulator
in C in VHDL in Verilog in Java

Figure 5.6: Extension by further target domains.

5.4 Review

Reliability is a major concern in processor engineering. Each code-generator
defines the mapping of a primitive to one target domain. Of course, the TPSL
developer may specify inconsistent generators, such that the resulting imple-
mentations behave differently. Therefore, primitives must be tested excessively.
Fortunately, primitives are small compared to whole ISAs and do not carry any
state, as demanded earlier. Testing can therefore be automated.

Once defined and tested, a primitive can be reused in any ISA specification.
A primitive is ISA independent and encapsulates expert knowledge on how to
implement the primitive in different domains. The examples have shown that
an implementation may be rather complex, which confirms the great value of
reuse.

The 1sr example has demonstrated that code generators produce efficient
implementations. The resulting C-code is typically free of control instructions,
which speeds up execution on deeply pipelined architectures. Hence, the ViDL
developer does not have to consider special cases and their optimization, but
can focus on ISA development. New optimizations can easily be integrated
into existing ISA implementations. For instance, an optimization of an existing
primitive can be incorporated, by simply regenerating the simulator and the
processor. Instruction set specifications need not be touched.

The ViDL generator and the primitives can be extended by further target
domains, as shown in Figure 5.6. For instance, to add a Verilog target, each
primitive is extended by a Verilog generator. After extending the generator as
well, each existing ISA specification can be compiled to Verilog code. Again,
there is no need to touch any existing ISA specification.

Chapter 6

Design patterns

This section explains how common concepts of instruction sets are elegantly
expressed in ViDL. Informal descriptions of instruction sets use various concepts,
which can be reduced to a small set of formalisms in ViDL. Typically, multiple
orthogonal formalisms of ViDL are combined to resemble a certain concept of
an instruction sets. A byte-wise view on a word-wide memory is for instance
defined by combining architectural interfaces and epsilon logic. The resulting
architectural interface encapsulates the endianness of the instruction set.

In the following, one design pattern is defined for each concept of instruction
sets. Some of these design patterns may seem obvious, while others are not
suggestive. The patterns have proven to be good practice during specification
of ARM, MIPS and Power.

6.1 Partial memory accesses

Many instruction sets define a 32-bit wide data memory and load and store
instructions for naturally aligned 32-bit, 16-bit and 8-bit accesses. The latter two
obey either a little-endian or big-endian byte-ordering. Such “smaller” accesses
can be defined using architectural interfaces and epsilon logic.

In general, an instruction set defines a memory of n words, where each word
is m-bit wide. Instructions impose a set of views on the memory, where each

32 Bit physical memory 0 |1 |2
31 0]31 0]31
Mapping
16 Bit architectural memory 0 |1 |2 (3 |4
15 0115 0115 0115 0115

Figure 6.1: A 32 bit wide physical memory and a 16 bit view via an architectural
interface.

124 CHAPTER 6. DESIGN PATTERNS

view divides a word into 2%,k € Ny equal sized parts. The view uses either a
little-endian or big-endian ordering on the parts.

The following pattern defines a view <<view>> on a memory mem. The value
of <<e>> is either LittleEndian or BigEndian.

interface <<view>>
width <<m / 2¥xk>>
size <<n * 2x%*k>>
map index
mem [omitr (index,<<k>>)] = write<<e>>(view[index],tr(index,<<k>>));
view[index] = extract<<e>>(mem[omitr(index,<<k>>)],tr(index,<<k>>));
end
end

The functions writeBigEndian and writeBigEndian use epsilon logic, to
write only one part of a memory cell. The address of the memory is the address
of the view with the k least significant bits removed. This corresponds to an
integer division by 2*.

The pattern has the following properties: The mapping defined by the archi-
tectural interface is uniform. Read and write accesses to the view refer to the
same physical bits. The relation between memory bits and view bits can be re-
garded as a bijective function. This means, that each bit of a view is associated
with exactly one bit of the memory. In accordance with bijectivity, the product
of size and width is the same for memory and view.

The following example is an application of the pattern. It defined a 32-bit
memory mem32 of 2'6 words and defines two views. The first view mem16 divides
the memory into half-words and the second view mem8 divides the memory into
bytes. Both views use a big-endian byte-ordering. A developer may define
further views, which use a little-endian byte ordering.

storage mem32
width 32
size 2%x16
end

interface mem16
width 16
size 2*x17
map index
mem32 [omitr(index,1)] = writeBigEndian(mem16[index],tr(index,1));
meml16[index] = extractBigEndian(mem32[omitr(index,1)],tr(index,1));
end
end

interface mem8
width 8
size 2%*18
map index
mem32 [omitr(index,2)] = writeBigEndian(mem8[index],tr(index,2));
mem8[index] = extractBigEndian(mem32[omitr(index,2)],tr(index,2));

6.2. STATUS REGISTERS 125

31 [30 |29 |2 |1 0 | Bit-wise view
0 10 10 0 10 10

0 | Status register
31 0

| 3 2 1 0) | Byte-wise view

7 0]7 017 017

Figure 6.2: Physical status register and additional views via architectural reg-
isters.

end
end

6.2 Status registers

Most instruction sets define a status register, which contains a set of flags.
Instructions typically read and write a subset of these flags. Besides, special
save and restore instructions are typically defined, which transfer the entire
status register to a general purpose register and vice versa.

A status register of n flags can be defined in two ways in ViDL. First, it can
be defined as a storage of n 1-bit elements and second, it can be defined as a
storage of one n-bit element. The first alternative allows random access to the
bits of the register. However, this degree of freedom is typically not utilized,
but requires a complex implementation. The save and restore instructions for
instance read and write all n flags concurrently, which would results in n read
and write ports.

The second alternative of one n-bit element is therefore preferred. It enables
reading and writing of the entire status word. Besides, a subset of bits can be
written using epsilon logic. To enable simple access to distinct flags or parts
of the status word, architectural interfaces are used. Figure 6.2 shows a 32 bit
wide status register. The bits of the register can be accessed via the upper
architectural register file. For a byte-wise access, a second architectural register
file is defined. Actually, the example shows the specification of the ARM status
register. The ARM instructions access the status register in a bit-wise, byte-
wise and word-wise manner. Thanks to architectural interfaces, these accesses
can directly be expressed in ViDL.

The following patterns define a status register of w bits and a view to access
v-bit wide parts of the register. The width w is assumed to be a multiple of v.

storage status
width <<w>>
size 1

126 CHAPTER 6. DESIGN PATTERNS

A0 |1 | B|O |1 | Clo |1 | Physical registers
31 0]31 0 31 0]31 0 31 0]31 0
e " «—Mode
R0 |1 , |2 |3 | Architectural registers

31 0]31 0]31 0]31 0

—
Permanent Reconfigurable
mapping mapping

Figure 6.3: Mode dependent mapping between architectural and physical regis-
ters.

end

interface <<view>>
width <<v>>
size <<w/v>>
map index
status[0] = writelLittleEndian(view[index],index);
view[index] = extractlLittleEndian(status[0],index);
end
end

This pattern uses the write functions and extract functions that are also used to
define partial memory accesses. The pattern assumes a little-endian ordering,
i.e. view[0] will refer to the least significant bits of the status register. To
define the status register of ARM, the pattern is instantiated for w = 32 and
p =1 resp. p =8 to define bitwise and byte-wise views.

6.3 Processor-mode sensitive registers

Some instruction sets define dedicated registers for different processor modes.
For instance, the register R14 of ARM represents 6 physical registers, which
are associated with 8 processor modes. Depending on the current mode, the
respective physical register is accessed.

Such a register structure can be expressed in ViDL using architectural in-
terfaces. Figure 6.3 shows a simple example, which consists of an architectural
register file R and three physical register files A, B, C. The architectural reg-
isters RO and R1 are permanently mapped to Al and A2. In contrast, the
architectural registers R2 and R3 are mapped to either BO and B1 or CO and
C1, depending on the mode.

Figure 6.4 shows the corresponding ViDL implementation. The variable
mode yields the current processor mode and is typically bound to a specific bit
of the status word. The first line of the mapping defines the association for
reading accesses. Depending on the mode, either a register of B or C is mapped

6.4. REGISTER WINDOWING 127

storage A, B, C
width 32
size 2

end

interface R
width 32
size 4
map index
Rl[index] = if mode then C[tr(index,1)] else B[tr(index,1)];
B[tr(index,1)] = if not(mode) then R[index] else EPSILON;
C[tr(index,1)] = if mode then R[index] else EPSILON;
end
end

Figure 6.4: ViDL implementation of mode dependent registers.

Physical registers Plo |1 |2 |3 |4 |5 |6 |7 |8 |9 |10| |31|

= =
,,,,,
. S S
Shiftable mapping /-~ /S
- -
,,,,,,,,

Figure 6.5: Register windowing.

to R. The index is truncated, as the elements 2,3 of R correspond to elements
0,1 of B and C. The other two lines specify the mapping for writing accesses.
Depending on the mode, either a register of B or C is written, which is expressed
using epsilon logic. For a given mode, the mapping is uniform, i.e. the read and
write accesses refer to the same physical register.

6.4 Register windowing

Register windowing is a technique to access a large set of physical registers via
a small window of addressable registers. The window can be shifted to change
the set of accessible physical registers. Register windowing is for example used
by the SPARC architecture [49].

Figure 6.5 shows an example of register windowing, where physical registers
can be accessed via a window of 6 registers. The solid red line shows the current
mapping and the dashed line the mapping after a right shift by 2 registers. In
general, register windowing is defined by the width of registers (r), the size of
the window (w), the number of physical registers (27) and the distance of shifts
(24). The following pattern uses these parameters to specify register windowing
in ViDL.

storage P

128 CHAPTER 6. DESIGN PATTERNS

Physical register file

Reconfigurable mapping

Architectural register file

Register block 32-bit register

Figure 6.6: Example of a dynamically reconfigurable register file.

width << w >>
size << 2%xp >>
end

storage pos
width << p-d >>
size 1

end

interface R
width << w >>
size << r >>
map idx
R[idx] = P[add(mul(pos[0],<< 2*xd >>),idx)];
P[add (mul (pos[0],<< 2**d >>),idx)] = R[idx];
end
end

The mapping of the architectural interface is uniform, i.e. read and write
accesses refer to the same physical storage. The register pos defines the current
position of the register window. The window is shifted by incrementing and
decrementing this register by one. In case that the window stretches beyond
the end of physical registers, it wraps around to the beginning. The sequence
of physical registers can therefore be imagined as a ring. The “shift-window”
instruction can also be defined to save and reload content of physical registers,
in case of a wrap around.

6.5 Dynamically reconfigurable register files

A dynamically reconfigurable register file [11] consists of a set of physical regis-
ters and a smaller set of architectural registers for accessing physical registers.
It can be considered a generalization of register windowing. An example of a
dynamically reconfigurable register file is shown in Figure 6.6. Architectural reg-
isters are mapped block-wise to physical registers. The mapping can be changed
dynamically using reconfiguration instructions. The instructions only refer to
architectural registers. As their number is smaller than the number of physical

6.6. REGISTER PAIRS 129

registers, fewer bits are required to encode register operands. Hence, a large set
of registers can be utilized, while retaining a tight encoding at the expense of
additional reconfiguration instructions.

The following design pattern assumes a dynamically reconfigurable register
file of w bit wide registers, 2° registers per block, 2P physical blocks and 2%
architectural blocks. This makes 2°7? physical registers and 2°*¢ architectural
registers. The parameters w, b, p and a are natural numbers, i.e. the block size
and the number of blocks must be a power of two.

storage p
size << 2*x*x(b+p) >>
width << w >>

end

storage cfg
size << 2%*a >>
width << p >>
end

interface a
size << 2*x(b+a) >>
width << w >>
map idx
alidx] = plcat(cfglomitr(idx,<>)],tr(idx,<>)) 1;
plcat (cfglomitr (idx,<>)],tr(idx,<>))] = alidx];
end
end

The storage cfg contains the configuration of the actual register file, i.e. the
current mapping from architectural to physical blocks. It is indexed with the
number of the accessed architectural block and yields the number of the associ-
ated physical block. A reconfiguration instruction can change the mapping by
assigning the number of a physical block to cfg. The mapping of the architec-
tural interface is uniform, i.e. read and write accesses refer to the same physical
bits. To implement the example in Figure 6.6, the pattern is instantiated with
the parameters w =32,b=1,p=3 and a = 2.

6.6 Register pairs

Some 32-bit instruction sets define a small number of 64-bit instructions, such
as wide multiplications. The 64-bit instructions typically operate on pairs of
32-bit instructions. The specification of these instructions can be simplified,
by defining an architectural register file of 64-bit registers, that refer to 32-bit
registers. In other words, the i-th 64-bit register is an alias to registers 2¢ and
2¢ + 1 of the 32-bit register file. Figure 6.7 shows a physical register file of 8
32-bit registers and an architectural register file of 4 64 bit registers, which are

130 CHAPTER 6. DESIGN PATTERNS

(e
—
[
3%
|
32
[=
|

32-Bit registers R 3

64-Bit registers X [0 1 2 3
63 32|31 0163 32|31 0163 32|31 0]63 32|31 0

Figure 6.7: Example of a physical register file and a register-pair view.

storage R
width <<w>>
size <<s>>

end

interface X
width <<w*2>>
size <<s/2>>
map index
X[index] = cat(R[cat(index,0b0)], R[cat(index,0b1)]);
Rlcat(index,0b0)] = cut(X[index],<<w*2-1>>,<<w>>);
Rlcat(index,0b1)] = cut(X[index],<<w-1>>,0);
end
end

Figure 6.8: ViDL implementation of register pairs.

mapped to pairs of the 32-bit registers. Note, that in contrast to the “memory
access” pattern and the “status register” pattern, this design pattern combines
smaller physical registers to a larger architectural register.

A design pattern for a physical register file R and an architectural register
file X of register pairs is shown in Figure 6.8. The physical register file consists
of s registers of w bits, where s is assumed to be even. The mapping between
physical and architectural registers is uniform and static. The order of physical
registers that constitute an architectural register can be changed, by swapping
the constants ObO and Ob1. The register structure in Figure 6.7 is implemented
by instantiating the pattern for w = 8 and s = 32.

6.7 Constant register

Some instruction sets such as SPARC and MIPS define one general purpose
register to be always read as 0. The effect of a write access to this register is
undefined. As the state of the register is constant, it can be implemented as a
constant signal, eliminating the need for a hardware register.

Figure 6.9 shows a register file R of 8 architectural registers, where RO is
always read as zero. The remaining 7 registers of R are statically mapped to
the physical register file P, which consists of 7 registers. Note that the order of

6.8. EMBEDDED PROGRAM COUNTER 131

Constant 0

P16 5 1 0 | 7 Register
31 0]31 0 31 0)31 0

8 Register R |0
31

31 0]31 0 31 031 ol

Figure 6.9: Definition of a constant register.

storage P

width <<w>>

size <<2*xs-1>>
end

interface R
width <<w>>
size <<2**xg>>
map index
Rlindex] = if eq(index,0) then O else P[not(index)];
P[index] = R[not(index)];
end
end

Figure 6.10: ViDL implementation of a constant register.

registers in P differs from R, to allow for a simple mapping. The pattern for a
register file R with a “constant zero” register R[0] is shown in Figure 6.10. It
has 2° registers, where each register is w bit wide. The physical register file P
contains one register less. The mapping uses a simple bitwise negation, which
corresponds to the computation 2° — index. As bitwise negation is involutive, it
is used for both mappings, physical to architectural and vice versa. Instantiating
the pattern with w = 32 and s = 3 yields the structure in Figure 6.9.

6.8 Embedded program counter

Some ISAs such as the ARM or CoreVA embed the program counter into the
general purpose register file. It can be accesses like any other general purpose
register, yielding the current instruction pointer (read) or resulting in a branch
(write).

In ViDL, the program counter is a dedicated register. It can be embedded
into the general purpose registers using an architectural register file, as shown
in Figure 6.11. The corresponding ViDL code is shown in Figure 6.12. Note,
that a branch is only triggered if register R7 is written. As the last architectural
register is mapped to the program counter, the physical register file need only
consists of 7 register.

132 CHAPTER 6. DESIGN PATTERNS

7 Physical registers P |931 Program counter

0131

8 Architectural registers R|21

Figure 6.11: Embedding of the program counter in the general purpose register
file.

storage P
width 32
size 7

end

interface R
width 32
size 8
map index

R[index]
pcl0]
P[0]
end
end

if eq(index,7) then pc[0] else P[index];
if eq(index,7) then R[index] else EPSILON;
if eq(index,7) then EPSILON else R[index];

Figure 6.12: ViDL implementation of PC embedding.

6.9. BRANCH 133

6.9 Branch

In ViDL, the program counter is represented by the dedicated register PC. It
can be used and behaves like any other register, with two exceptions. First, the
register PC is automatically incremented by the size of the current instruction,
unless it is written by the current instruction. Second, a write access to PC sets
the address of the next instruction to be executed. Instructions that write PC
are therefore control flow instructions.

Branch instruction can be classified by different orthogonal aspects. In the
following, a small ViDL pattern is given for each aspect. By combining these
patterns, a variety of branch instructions can be specified.

Reference of branch target: A branch may be relative, absolute or section
relative.

/* relative */

pcl0] = add(pc[0],<<offset>>)

/* absolute */

pcl0] = <<target>>

/* section relative */

pcl0] = cat(omitr(pc[0],widthof (<<starget>>)),<<starget>>)

The parameter <<starget>> specifies the location of the branch within
the current section. The size of a section is 2", where w is the with of
starget.

Source of address/offset: A target address (respectively offset) may be given
by an immediate operand or by a register operand.

<<immediate>> /* immediate */
<<register>> /x register x/

pc 0]
pcl0]

The immediate is likely sign- or zero-extended. The pattern assumes an
absolute addressing for the sake of simplicity. However, a relative address-
ing is more likely, especially for an immediate offset.

Condition of branch: A branch may be conditional or unconditional.

/* unconditional */
pcl0] = <<target>>
/* conditional */
pcl0] = if <<cond>> then <<target>> else EPSILON

Note, that a conditional branch is expressed using epsilon-logic.

Additional linking: A branch may store a return address in a link register.

134

CHAPTER 6. DESIGN PATTERNS

/* branch */

pcl0] = <<target>>

/* branch and link */

pcl0] = <<target>>

r[15] = add(pc[0],<<instruction size>>)

The return address is the address of the instruction that follows after the
branch. In case of delay slots, a multiple of the instruction size is added.

Delay slots: A branch may have a specific number of delay slots. The number

of delay slots basically defines when the branch takes effect. If a branch
has n delay slots, the n instruction following the branch are executed,
before execution continues at the target address.

pc[0]
pclOl< <<d+1>> >

<<target>> /* no delay slot */
<<target>> /* d delay slots */

In ViDL, delay slots are defined by a delayed assignment to the program
counter. By default, the branch immediately takes effect, i.e. the branch
has zero delay slots. Note, that a branch with d delay slots has a write
delay of d + 1 in ViDL.

6.10 SIMD instructions

A SIMD instruction (Single Instruction Multiple Data) applies the same oper-
ation on multiple components of a vector. Vectors are likely stored in general
purpose registers. A 32 bit register may for instance hold a vector of 4 8-bit
values.

The functional concepts of ViDL allow for a simple specification of SIMD
instructions. The following code shows the definition of a two dimensional SIMD

addition.

let
(ah,al) = split2(r[al),
(bh,bl) = split2(r[bl),
dh = add(ah,bh),
dl = add(al,bl)

in

r[d] = join2(dh,dl)

end

The first two lines bind the low and high part of register r[a] and r[b] to
dedicated variables using the split2 function. The next two lines compute the
high and low part of the result, which are then packed using the join2 function.
Using the predefined functional SIMD2binary, the specification can further be
simplified.

6.11. CONDITIONAL EXECUTION 135

r[d] = SIMD2binary(r[al, r[b], add)

The SIMD2binary(x,y,f) functional interprets the values x and y as two di-
mensional vectors. It applies the binary function f for each dimension and yields
a two dimensional vector. The function argument f basically defines the seman-
tics of the processing elements (PEs) of the SIMD instruction. The argument
may be a predefined function like add or a lambda expression.

Besides SIMD2binary, ViDL offers further functionals for unary SIMD func-
tions and functionals for more dimensions. All functionals are polymorphic with
respect to the width of the parameters. The SIMD4unary(x,f) functional may
for instance be applied on a 20-bit wide value, as well as a 64-bit wide value x.

6.11 Conditional execution

Some instruction sets like ARM and CoreVA allow instructions to be executed
conditionally. Basically, conditional execution enables elimination of control
flow instructions by the compiler. For ARM, the execution depends on the
value of four status flags (zero, negative, carry, overflow) and a condition-mode.
The CoreVA architecture on the other hand defines a register file of condition
flags, which control execution. In general, execution of an instruction is enabled
by some expression <<cond>>. For ARM this is a predicate on the condition
flags and for CoreVA it is a condition register.

In ViDL, an instruction is specified to be conditional, by making all assign-
ments conditional. A conditional assignment of a value <<result>> to a storage
<<storage>> is defined using a conditional expression and epsilon logic.

<<storage>> = if <<cond>> then <<result>> else EPSILON

If the condition holds, the result is assigned to the storage. Otherwise,
a sequence of epsilon bits is assigned, which means that the storage remains
unchanged. If all assignments are defined this way, the instruction does not
have an effect on the processor state.

As conditional execution is typically applied uniformly to all instructions, it
is good practice to factor this common aspect out, using a global function. For
instance, the following function encapsulates conditional execution as defined
by the ARM instruction set.

fun ce(cmode,result) =

let
cond = switch cmode
case 0: zFlg;
case 1: not(zFlg);
end
in

if cond then result else EPSILON
end

136 CHAPTER 6. DESIGN PATTERNS

Cases 2 to 14 of the switch statement have been omitted for the sake of simplicity.
The parameter cmode represents the condition mode, which is encoded in the
instruction. Using this function, a conditional addition can be expressed as
simple as r[d]=ce(c,add(a,b)).

6.12 Complex operand encodings

Some instructions may encode an operand in non-adjacent bits. For instance,
the condition mode of CoreVA instructions is encoded in bits 29,28 and 23,20,
which results in two fields in ViDL. To refer to the operand as a whole, it is
good practice to define a respective variable at the beginning of the semantics
section. In general, one variable may be defined for each exceptional operand.

semantics
<<opl>>=<<expr on fields>>,
<<op2>>=<<expr on fields>>,

begin
end

The operands <<op1>>,<<op1>>,...can then be used throughout the specifica-
tion of instruction semantics. For more complex operands, it is good style to de-
fine respective functions to factor out common behavior. The ARM specification
for instance uses such a function for mantissa-exponent encoded immediates.

6.13 Addressing modes

In ViDL, addressing modes are expressed as part of instruction semantics. Com-
mon addressing modes can be factored out by defining a function, which is then
applied in a many instructions. ViDL does not include specialized constructs to
specify an addressing mode, which simplifies the language and the implementa-
tion of generators.

An immediate operand corresponds to a field in the encoding. Its signedness
is defined as part of the semantics.

r[d]
r[d]

exts(i) /* signed immediate */
extz(i) /* unsigned immediate */

If the immediate is used more than once, it is good style to bind the extended
immediate to a variable

semantics

imm=exts (i)
begin

r[d] = £(..., imm, ..., imm,...)
end

6.13. ADDRESSING MODES 137

Some instructions use a mantissa-exponent representation to encode immediates
in instructions. For a mantissa m and an exponent e, the represented constant
is m - 2¢. Such an operand can be defined by 1lslc(exts(m),e), where m
is interpreted as a signed immediate. As an alternative to left-shifting, the
mantissa may be rotated (ARM), which slightly extends the set of representable
integers.

Some instruction sets define load store instructions with auto-increment
functionality. The base register used for addressing is automatically incremented
(respectively decremented) by a certain value. The base register may be incre-
mented before (pre-increment) or after (post-increment) computing the memory
address. The offset is typically signed and may be encoded in a mantissa-
exponent representation. In ViDL, an auto-increment addressing mode can be
expressed by an ordinary assignment to the base register. The following ex-
ample shows the definition of a naturally aligned load-word instruction with
pre-increment functionality.

semantics

addr = add(r[a],exts(cat(i,0b00)))
begin

r[d] = mem[addr]

r[a] = addr

end

138 CHAPTER 6. DESIGN PATTERNS

Chapter 7

Generators

This chapter discusses the simulator generator and the processor generator. The
simulator generator translates a ViDL specification into an efficient processor
simulator, which is implemented in C. The processor generator yields a hardware
implementation in terms of VHDL code. Both generators process the very same
ViDL specification. The generated products are guaranteed® to be semantically
equivalent, i.e. there is no need for equivalence testing. The processor generator
contributes the entire microarchitecture, including register ports, forwarding
and error-prone pipeline control. In the context of a design space exploration,
processors with different pipeline structures have been generate and evaluated.
As the VHDL Code is entirely generated, it need not be tested. The generated
simulator can be used for rapid testing and evaluation of the instruction set
specification. Ultra-wide operations in ViDL (e.g. 500 bit multiplication) are
automatically broken down to efficient 32/64 bit wide integer arithmetic.

Both generators share the same front-end (Section 7.1) as well as transforma-
tion and optimization methods (Section 7.4). The generators only differ in their
back-ends, which implement dedicated transformation methods, as described in
Section 7.5 and 7.6. Great parts of the implementation are therefore shared by
both generators.

7.1 Processing of ViDL

A ViDL specification is first processed by the generator’s front-end, which trans-
forms a textual ViDL specification into an intermediate representation. The
intermediate representation of instruction semantics is a dataflow graph (Sec-
tion 7.2). Actually, the generators include two front-ends, one for ViDL and
one for TPSL. This section focuses on methods and techniques for the ViDL
front-end, which is the considered to be more sophisticated.

The ViDL front-end obeys the classical structure of compilers, as introduced
in Section 2.4.1. Great parts of the front-end are generated from specifications

1Under the assumption that the generators are correct.

140 CHAPTER 7. GENERATORS

(1)}“1 ® @ @

a = let a = add(a,3) in a end,
fun b (b) = add(a,b),
a = add(a,3)
in
. = b(a)
end

Figure 7.1: Example of scopes in ViDL code.

using the Eli [31] system. One of these specifications is the context free grammar.
ViDL has a clear grammar, which consists only of 48 EBNF productions. It
belongs to the grammar class LALR(1), which allows for the generation of an
efficient bottom-up parser.

Besides lexical and syntactic analysis, the front-end performs name analysis,
type analysis and some back-end independent optimizations. The implemented
type analysis is discussed along with the type system of ViDL in Section 4.9.
Basically, it is used to derive the bit-width of all program objects using type
inference techniques. The next sections focus on ViDL’s name analysis and some
of the front-end’s optimizations.

7.1.1 Name analysis

The task of name analysis is to link names to program objects, according to
scope rules. ViDL implements basically the scope rules of SML, which are quite
intuitive. However, care must be taken to correctly implement name analysis.
Scopes may be nested highly recursive, as shown in the artificial example in the
Figure 7.1. Although such code is unlikely, name analysis must correctly handle
such nesting.

In the example, scopes are indicated by rectangles. A defining occurrence of
an identifier is marked red and a using occurrence is marked blue. A definition
is valid within the innermost scope, unless it is hidden by another definition
in an enclosed scope. For instance, in Figure 7.1 the use (2) of “a” belongs to
the definition (1) and the use (4) to definition (3). The definition of the inner
scope hides the definition in the outer scope. The example also demonstrates
a difference in scope rules between ViDL and SML. In SML, the scope of a
function’s name includes the body of the function, to enable recursion. As
ViDL prohibits recursion, the scope of a function’s name does intentionally not
include the body.

7.1.2 Optimizations

This section covers some general optimizations, to eliminate for instance redun-
dant definitions. The optimizations are applied by the simulator generator as
well as by the processor generator. Examples include the elimination of dead

7.1. PROCESSING OF VIDL 141

functions, dead variables, dead parameters and dead tuple components. Note,
that additional optimizations (Section 7.4) are performed later on the interme-
diate representation.

Elimination of dead functions If a function is defined, but not used, it is
said to be dead. In such a case, the function can be removed to simplify the
generated products. As a result, dead functions do not require any resources. In
practice, many functions of libraries are dead. Such functions are automatically
identified and removed in an early phase of generation.

Elimination of dead variables If a variable is defined (e.g. using let) but not
used, it is said to be dead. The expression that is bound to the variable need
not be evaluated, as its result is not used. Hardware resources or computation
resources for the expression are therefore omitted. Dead variables are automat-
ically identified and eliminated by the front-end. There is no need to manually
remove such variables from the specification.

Elimination of dead parameters A dead parameter is a formal parameter of
a function that is not used in the function’s body. The front-end eliminates
such parameters and the respective arguments. Resources for the arguments
are thereby omitted.

Elimination of dead tuple components If the component of a tuple is not used,
it is said to be dead. In this case, the component and its computation can be
eliminated. Assume for instance an add carry out function addco, which yields
the pair of a sum and carry-out. If the carry-out is not used in the application
context, the component and its computation are automatically eliminated by
the generator.

7.1.3 Translation of architectural interfaces

Architectural interfaces are used in ViDL to abstract from storages and ports.
They are intended to improve the quality of an instruction set specification,
by increasing the degree of reuse. A developer may use as many architectural
interfaces as desired without affecting the complexity of the generated processor
or simulator. The implementations are not affected, as the generator translates
architectural interfaces into respective dataflow in an early phase of generation.
The dataflow is then jointly optimized with the dataflow of instruction seman-
tics. The optimization is typically very effective and eliminates great parts of
the dataflow that was introduced by architectural interfaces.

Figure 7.2a shows a simple architectural interface SB and its relation to a
16-bit wide status register SH. The register can be accessed directly or via the
architectural interface SB, which consists of the 8-bit wide halves of SH. In the
adjoining specification of instruction semantics (7.2b), the architectural interface
is used in two assignments that set certain bits of the status register. The

142 CHAPTER 7. GENERATORS

(a) Architectural interface (b) Use in specification (c) Translated dataflow
s |0 e .
16 817 0 SB[0] = or(1,SB[0]) SH[0] = or(0x0102,SH[0])
SB[1] = or(2,SB[1])

SB |0

Figure 7.2: Translation of a simple architectural interface.

generator transforms this specification into the representation shown in 7.2c.
Both assignments and the or primitive are joined to one equivalent assignment
to the physical storage SH. The transformation considers the specification of the
architectural register and applies a variety of algebraic transformations.

The given example is very simple, as it is only intended to demonstrate the
principle of architectural interface translation. Actually, the implemented gen-
erator translates and optimizes any valid architectural interface. This includes
sophisticated applications of architectural interfaces, as presented in Chapter 6.

7.1.4 Analysis of instruction encoding

In ViDL, the specification of each instruction includes the definition of its en-
coding. The encoding is defined by a pattern, which consists of literal bits (0,1),
field bits (e.g. d) and don’t care bits (_), as described in Section 4.4.1. Tt can
directly be copied from instruction set manuals, which use the same notation.

The set of all encoding patterns effectively defines the instruction space. The
generator first transforms this set into a decision tree, which is then used to
generate the decoder in terms of C- and VHDL-code. The generator constructs
the decision tree using the method described by Theiling [51].

The decision tree classifies instruction words, which means that it identifies
the instruction of an encoded word. Each node in the decision tree is annotated
with a set of discrimination bits and a set of instruction candidates. Each edge is
annotated with a value for the discrimination bits. During decoding, a decision
is made at each node, according to the value of the discrimination bits in the
instruction word. A leaf node finally represents the decoded instruction. The
actual generation of decoder code is described in Sections 7.5.3.

7.2 Intermediate representation

The front-end yields an intermediate representation of the ViDL specification.
The intermediate representation describes the structure of storages and the se-
mantics of instructions. The front-end has eliminated redundant parts and sub-
stituted architectural interfaces. Besides, ViDL functions have been inlined and
variables have been eliminated by copy propagation. As a result, the semantics
of all instructions can now be represented by a single dataflow graph (DFG).

7.2. INTERMEDIATE REPRESENTATION 143

Dataflow graph

—
- x
% | Read R | | Constant 1 | %
% val val %
" "
8 8
2 2
5 5
8 a b]
~ addsub ~
diff

State of unmodified storages

Figure 7.3: Example of a simple dataflow graph (DFG).

A dataflow graph has been chosen, as it is a very basic data structure, which
has many advantages in the context of generation. It can easily be analyzed
and transformed by the generator. Dedicated algorithms that operate on the
DFG are efficient and clear. This reduces the risk of flaws in the generator
and thereby improves its reliability. Many transformations can be described
concisely as term rewriting rules (Section 7.3). The DFG directly reflects data
dependencies between operations. Hence, dead operations are immediately iden-
tified and removed. As data dependencies are immanent, the DFG is well suited
for code generation. This includes the generation of lazy evaluated C-code (Sec-
tion 7.5.4).

A DFG consists of operation nodes and their interconnection. The DFG is
a directed acyclic graph (DAG), i.e. the dataflow does not include any cycles.
Figure 7.3 shows a very simple example of a DFG. It describes the semantics of
an “increment” instruction, which operates on a register r [d]. In practice, DFGs
are much larger. During processing of the ARM instruction set, the number of
nodes ranges from 2.000 to 100.000 nodes. An efficient data structure for DFGs
is therefore essential.

A DFG can be interpreted as a state transition function, which maps pro-
cessor state 7 to state ¢ + 1. The state is defined as the contents of all registers
and all memories of the instruction set (Section 4.2, 4.3). As shown in Fig-
ure 7.3, state ¢ is accessed via a read node. The read node yields the contents
of a register, i.e. a part of state i. This relation to state i is indicated by a
dashed arrow, which does actually not belong to the DFG. The next state ¢ 4+ 1
is defined by the write node and the current state i. The write node sets the
content of a register, i.e. it defines a part of the next state ¢ + 1. The content of
the remaining registers and memories remains unchanged. The respective part
of state ¢ + 1 is therefore defined by state 1.

144 CHAPTER 7. GENERATORS

Node types A dataflow graph consists of nodes. A node is either an internal
node or a primitive node. The set of primitive node types is defined by the
primitive library (Chapter 5). Besides, 4 different types of internal nodes are
defined, namely Immediate, Read, Constant and Write. These node types have
been identified as the minimal set of internal nodes that are required to define
realistic instruction sets. These nodes are called internal, as they require special
treatment during generation. The example includes one node of each internal
type and a primitive node, namely “addsub”.

Ports Each node of the graph has a specific number of so called in-ports and
out-ports. Each in-port is connected to exactly one out-port. Otherwise, the
value at that port would not be well defined. An out-port on the other hand
may be connected to an arbitrary number of in-ports. The “addsub” node for
instance has two in-ports (a and b) and two out-ports (sum and diff). The value
of the “sum” out-port is passed to the write node, while the value of the “diff”
out-port is unused.

Transfer A node maps values from in-ports to out-ports, where the mapping
is specific to the node. The addsub node for instance sets the out-port “sum” to
the value a + b and the out-port “diff” to the value a — b. It is important to note
that nodes in the DFG do not carry any state. As a result, the value at out-ports
solely depends on the values at in-ports. This enables numerous optimizations
and leads to a clear understanding of processor state. The demand for state-less
primitives distinguished ViDL from VHDL, where entities may very well contain
registers and therefore carry state.

7.2.1 Instruction DFGs

As mentioned, the dataflow graph combines the semantics of all instructions.
The DFG is therefore also called a global DFG. The use of a single DFG enables
sharing of common subexpressions among different instructions. This signifi-
cantly reduces the number of nodes and thereby the complexity of the interme-
diate representation.

However, for some tasks of the generator, the dataflow of single instructions
needs to be regarded. In such cases, the generator derives an instruction DFG
from the global DFG. The instruction DFG is a subgraph of the global DFG and
contains all nodes that are relevant for a particular instruction. Basically, those
are the instruction’s write accesses and their predecessors. For an instruction
x, the set of nodes V,, is the minimal fixpoint of

Ve = writesOf () U{v € V|Fw € V, : (v,w) € E}

The instruction DFG G, is then the subgraph of G that is induced by V.. Note,
that the sets V,,Vy,x # y may not be disjoint, due to common subexpressions
of different instructions.

7.2. INTERMEDIATE REPRESENTATION 145

|Constant 0 | |Immediate D |
val

—

idx x

[Read R] [Constant 1] 2

val val <

=

2

b a b <

addsub addsub A
sum diff diff

Figure 7.4: Example of a reducible DFG.

7.2.2 DFG simplification

So far, the structure of the DFG and its nodes has been described. This section
discusses how the complexity of a DFG can be reduced by removing irrelevant
nodes. A node is irrelevant, if there is no path from that node to a write node.
In this case, the result of the node does not affect the next processor state and
can therefore be removed without affecting the semantics of the DFG. Figure 7.4
shows a simple example, in which the red nodes can be removed. There is no
path from these nodes to a write node and therefore, they do not contribute to
the next processor state. Irrelevant nodes frequently show up after translations
on the dataflow graph. An efficient reduction is therefore essential. The reduc-
tion algorithm that is implemented in the generator iteratively removes nodes
that are neither write nodes, nor have a successor. Using a queue to keep track
of such nodes, the DFG is reduced in O(|V]). The red nodes in the example are
removed bottom-up.

7.2.3 Origin information

The ViDL generators annotate each node in the DFG with information about
its origin. An “add” node is for instance annotated with the line number of the
respective add (. . .) call in the ViDL specification. Origin information basically
relates the DFG to the original ViDL specification. This mainly servers two
purposes: First, to help the user to debug an ISA specification and second, to
help the user to improve an instruction set.

7.2.3.1 Debugging

To efficiently debug an incorrect instruction set specification, the user relies
on meaningful error messages. If the specification includes for instance a type
conflict, the ViDL generator emits an error message, which includes the source
position of the error. The user can directly fix the specification without tedious

146 CHAPTER 7. GENERATORS

Implementation

ViDL specification HDL code ot
statistics

Generation Synthesis

Feedback

Improve

Figure 7.5: Feedback driven optimization of a ViDL specification.

debugging. Some static semantic errors are detected in very late translation
phases of the generator. Assume for instance, that a user defines an instruction
with dependent load and store accesses to the data memory. Such instructions
can not be implemented using a load-store microarchitecture. During synthesis
of the microarchitecture, the generator therefore emits an error message, which
includes source code references to the read accesses and write accesses.

7.2.3.2 Feedback driven ISA optimization

Assume a scenario where a processor is generated from a ViDL specification
and synthesized, as shown in Figure 7.5. The process finally yields a set of
implementation characteristics in terms of speed, area and power consumption
of the processor. A developer may want to improve these characteristics by
changing the instruction set. The critical path of the generated processor may
for instance be reduced, by changing the semantics of an addressing mode. To
reduce the area or power consumption of a processor, the developer may remove
instructions or part of their functionality. To perform such improvements, it is
crucial to relate entities of the generated processors to the original ViDL source
code. The generator therefore annotates the generated HDL code with source
positions of the ViDL specification. A VHDL entity is for instance annotated
with an instruction name and the line number of its origin. A developer can then
use the annotated feedback from synthesis to optimize the initial instruction set
specification.

7.2.3.3 Origin relation

Source positions and nodes in the DFG are actually not associated in a one-
to-one manner. For instance, one source position may result in multiple DFG
nodes as a result of transformations. On the other hand, one node may be
associated with multiple source positions, due to merging of common subex-
pressions. Entities of the specification that are statically evaluated are not even
associated with any node of the DFG. And finally, some nodes that are intro-
duced by the generator are not associated with any source position. The nodes
of the forwarding circuit are an example for such nodes.

7.3. TERM REWRITING SYSTEM 147

The association of source positions and DFG nodes is modeled by a binary
relation “Origin” on the source positions and the DFG nodes.

Origin C SrcPos x V'

The relation Origin(p,v) holds if and only if the source position p is associated
with the node v. Using the relation, all of the phenomenons mentioned above
can be represented.

7.2.3.4 Transformations

During generation, the DFG is massively transformed. Nodes are replaced,
merged, deleted and created. During generation of an ARM processor, approx-
imately 100.000 nodes are created and deleted. To maintain origin information,
each transformation of the generator needs to updates the Origin relation. For
instance, if a node v is replaced by a node w, the relation is updated such that

Origin’(p, w) = Origin(p, v)

holds. If two nodes v, w are merged to a node z, the resulting relation Origin’
satisfies

Origin’(p, x) = Origin(p, v) V Origin(p, w)

These simple examples are just meant to give a rough impression. The generator
includes transformations which operate on a much larger set of nodes.

All translations in the ViDL generator are implemented to properly maintain
origin information. This includes the term rewriting system, which has been ex-
tended for this purpose, as described in Section 7.3.3. If only one generation
phase would not update the Origin relation, origin information would be lost.
Fortunately, the ViDL generator carries origin information through the whole
generation process. The implementation of this generator feature has been la-
borious, but it is crucial for debugging of instruction sets and feedback driven
optimizations.

7.3 Term rewriting system

The generator includes a term rewriting system to transform the dataflow graph.
It basically implements optimizations and helps to simplify handcrafted trans-
formations (Section 7.3.2). Actually, the rewriting system drives most transfor-
mations and optimizations that are explained in Section 7.4.

The term rewriting system has been developed along with the ViDL genera-
tor as part of this thesis. It includes 4 important features that are not provided
by existing systems. These features are somewhat specific to dataflow graphs
and the task of processor generation. In particular, the term rewriting system

e preserves origin information (Section 7.3.3),

148 CHAPTER 7. GENERATORS

merge (
merge (
Isomorphism state(),

a(e,c(e0))
),
b(c(e()),d(f0,g0))
)

Figure 7.6: Isomorphism between dataflow graphs and terms.

e supports arithmetic and predicates on virtually unlimited integers (Sec-
tion 7.3.4),

e allows for the definition of labeled sets of transformation rules (Section 7.3.5)
and

e includes an extension to define bit-width sensitive rules (Section 7.3.6).

The need for these features and technical aspects have motivated the develop-
ment of a dedicated term rewriting system. It is seamlessly integrated into the
generator, as it operates directly on the dataflow graph. A respective isomor-
phism between the dataflow graph and terms is discussed in the next section.

7.3.1 Isomorphism

To apply term rewriting on a dataflow graph, the graph has to be modeled as
a term. This section describes an isomorphism between dataflow graphs and
terms, which is used by the implemented term rewriting system. Each dataflow
graph can be represented by a term and vice versa. Basically, a node in the
DFG corresponds to an operation and the structure of the DFG matches the
structure of the term.

Figure 7.6 shows the correspondence between a dataflow graph and its rep-
resentation as term on the right. The black subgraph is the actual dataflow
graph. The dataflow graph is usually a DAG with multiple root nodes, where
each root node is a write accesses (a and b in the example). These root nodes are
combined to a single root node using the red subgraph. As a result, the graph
can be represented by a single term. Otherwise, a set of terms would have been
needed, one for each write node. There is also a meaningful interpretation of the
red subgraph. The merge (s,w) operation applies the write access w on the state
s and yields the new state. The constant function state() yields the current
processor state. The whole term thereby represents the next processor state.

7.3. TERM REWRITING SYSTEM 149

(a)

|Tcrm rewriting system | (b) (C)
if (and(bact1,eq(0,0)), -f-=---.. i (and(<<bact>>,eq(<<bidx>>,ridx)),
Normalized dataflow bvall, L <<bval>>,
_-- if(and(0,eq(0,0)), -~ ," <<val>>)
[Forwarding constr. method | o bval2, s
o if(and(0,eq(0,0)), -’
Generic dataflow=-=" bval3,
rval)))
|Term rewriting system |
(d)
Optimized dataflow=m=======- - if (bact1,bval,rval) |

Figure 7.7: Simplification of transformations by term rewriting.

7.3.2 Applications

Term rewriting plays an important role in the generator for two reasons. First,
most optimizations are formulated as rewrite rules. For instance, term rewriting
is used to evaluate constant expressions (Section 7.4.1).

Second, term rewriting helps to simplify most transformation algorithms,
such as the construction of forwarding circuits (Section 7.6.7). Handcrafted
transformations benefit in two ways. First, they can assume a normalized
dataflow graph, as produced be term rewriting. For instance, all constant
terms are represented by their value. Second, handcrafted transformations need
not struggle to produce efficient dataflow. Instead, they can produce generic
dataflow which typically includes much overhead. Figure 7.7b shows an exam-
ple of such inefficient generic dataflow, which is produced by the forwarding
construction method (Section 7.6.7). The code describes a bypass multiplexer,
which is simply constructed by successively instantiating the pattern in Fig-
ure 7.7c. For the assumed application of forwarding in the example, the mul-
tiplexer’s complexity can be reduced significantly. The reduction is performed
by term rewriting, which evaluates constant subexpressions. The resulting op-
timized dataflow is shown in 7.7d.

7.3.3 Origin information

Each node in the dataflow graph is associated with an origin, which is typically
a line number of the ViDL specification. During term rewriting, nodes are
repeatedly removed and created. In practice, most nodes of the dataflow graph
are replaced during rewriting. Applying existing term rewriting systems likely
leads to a loss of nearly all origin information.

As mentioned at the beginning of this section, the preservation of origin
information has been one of the reasons for the development of a dedicated term
rewriting system. The system uses an extended notation for rewriting rules, as
shown in Figure 7.8a. The term rewriting rules R1 and R2 are annotated (blue)
to transfer origin information from the redex to the contractum. For instance,
in the first rule R1, the not operation is related to the origins of sub and -1.

150 CHAPTER 7. GENERATORS

(a) Ri: sub:p(-1:q,v) -> not:p,q(v)
R2: if:p(c,not:q(t),not:r(e)) -> mot:q,r(if:p(c,t,e))

Figure 7.8: Preserving origin information during term rewriting.

The annotation basically expresses the correspondence between operations of
the redex and the contractum.

Figure 7.8b shows the application of R1 and R2 on a DFG. Nodes in the
DFG are annotated with line numbers L1 to L7. Origin information from the left
DFG is entirely preserved. Without the proposed mechanism, the information
marked red would have been lost. The origin relation of if remained unchanged,
while not is related to the origins of three nodes that have been eliminated. The
example also demonstrates, that after term rewriting, one node may be related
to multiple origins. In such a case, multiple ViDL definitions contributed to
that node.

The transfer of origin information is optional, i.e. a developer is not forced
to annotate a rule. One origin variable can be used for multiple operations in
the contractum. In this case, multiple nodes are linked to the same origin.

7.3.4 Integer arithmetic

Many rewrite rules, especially those for static evaluation (Section 7.4.1), need
to operate on integers. Assume for instance an application of the add primitive
on two constant nodes. An evaluation rule for add needs to compute the sum
of the integers that are associated with the constant nodes.

An efficient and unrestricted support for integer computations is therefore
crucial. The implemented term rewriting system uses the arbitrary-precision
library gmp to operate on integers. The precision of these integer operations is
virtually unlimited. In particular, integers are not limited by the host width,
i.e. 32 or 64 bit. Integer arithmetic is very efficient, since it is directly mapped
to gmp operations.

The following evaluation rule matches any application of add on two con-
stants.

add(Const,, Const,) — Constyyyp

The integral values of the arguments are bound to a and b. The contractum
then constructs a new constant value, which is defined to be the sum of a and
b. The sum of a and b is computed using gmp functions? of virtually unlimited

2For the sake of readability, this thesis uses an intuitive mathematical notation instead of
GMP function calls

7.3. TERM REWRITING SYSTEM 151

=8 =S S S
A A A A
B <S =T <S
=S oT B
< B C >S,T
¢ <T <T B
D -S D C
T I <S <S,T
<S
(a) Sets (b) Partial (c) Nesting (d) Set lists

Figure 7.9: Example of rule set definitions.

precision. Note, that the rule only matches static arguments. In contrast, a
radix like add(a,b) would match any application of add, including those with
dynamic arguments, which can not be evaluated statically.

The applicability of some rules does not only depend on the structure of
the radix, but also on the value of some integral arguments. For instance, a
multiplication can be replaced by a shift, if one factor is constant and a power of
two. To express such constraints, the term rewriting system features predicates
on integer variables that are bound in the radix.

mult(x, Const,) |isPow2(a)| — cat(z,zeros(Constioga(a)))

The rule is only applied, if the radix matches and the predicate holds true. The
term mult(z,8) is for instance translated into cat(z,zeros(3)), but mult(z,7)
remains unmodified. The notation of the predicate has been simplified for read-
ability. Actually, it uses gmp functions to check the condition.

7.3.5 Rule sets

In some cases, it is desirable to suppress the application of certain term rewriting
rules. For instance, the generator includes rules that are beneficial for the gener-
ation of processors with long pipelines, but downgrade the quality of processors
with short pipelines. The developed term rewriting system therefore includes
a mechanism to selectively activate and deactivate certain sets of rules. The
mechanism has also been used to evaluate the effects of rewrite rules. Besides,
it has proven to be very practical during debugging. A major application of rule
sets, namely pipelining of operations, is discussed in Section 7.6.2.

Rule sets are defined along with term rewriting rules, as shown in Figure 7.9.
Letters A to D denote rules and S, T represent rule sets. A simple definition of
two disjoint sets is shown in (a). The definition of a set may also be split (b) into
multiple parts. In the example, S is defined to contain the rules A and C. The
definition of sets may be nested (c), to easily define subsets. In the example, S
contains rules A to D and T contains rules B and C. Finally, rules can easily
be added to multiple sets using the notation in (d). Rule A is contained in set
S and rules B,C in set S and T. The latter definition is very practical for the
definition of target frequency dependent transformations.

152 CHAPTER 7. GENERATORS

7.3.6 Bit-widths

A surprisingly large number of rewrite rules need to consider bit-widths of sub-
terms. For instance, the bit extraction bit(cat(x,y),8) can be rewritten into
an extraction on x or y, depending on the width of y. If y is 6 bit wide, it can be
transformed into bit(z,2). If y is 16 bit wide, it can be rewritten to bit(y, 8).

To seamlessly integrate bit-widths, the term rewriting system uses an ex-
tended notation of rules. In the redex, the width of a term ¢ is bound to a
variable a using the notation ¢/a. The variable a can then be used like a con-
stant that was bound by Const,. In particular, it can be used in the rule’s
predicate and contractum in combination with other bit-widths and constants.
As a result, the extended term rewriting is very powerful and can express a
variety of transformations. For instance, the following rules use the extension
to implement the aforementioned optimization

bit(cat(z,y/a), Const.)[z < a|— bit(y, Const,)
bit(cat(z,y/a), Constz) — bit(x, Const,_g)

The width of y is bound to a variable a. The variable is then used in the
predicate to decide, which rule to apply. It is also used in the second rule, to
compute the bit position within x. As the example demonstrates, the extended
notation is intuitive and readable. Currently, the generator includes 260 rewrite
rules, among which 38 rules are bit-widths dependent. The notation is therefore
crucial to define a clear and simple database of rewrite rules.

7.4 Transformations and optimizations

This section presents transformations on the intermediate representation, i.e.
the dataflow graph. They are independent from ViDL as well as from the gener-
ated products. Most transformations utilize the term rewriting system. Either
a part of a transformation or the entire transformation is implemented using
rewrite rules. For instance, algebraic transformations and strength reduction
can entirely be expressed by term rewriting rules.

Another optimization that utilizes term rewriting is partial evaluation (Sec-
tion 7.4.1), which eliminates static parts of the dataflow graph. Besides these op-
timizations, a so called epsilon transformation is presented (Section 7.4.2). Ep-
silon transformation substitutes epsilon logic by semantically equivalent write-
enable expressions. Such expressions are required to implement efficient sim-
ulators and processors. The respective code generators therefore expect the
intermediate representation to be in this form.

7.4.1 Partial evaluation

A realistic instruction set specification contains many expressions that can par-
tially be evaluated by the generator. These parts need not be evaluated by the
simulator and do not require any hardware resources. In practice, there are four

7.4. TRANSFORMATIONS AND OPTIMIZATIONS 153

x: 32 bit register
Static evaluation for y: 16 bit register
if 1t(width(x),width(y)) > bit(x,31)
then
bit (y,sub(width(y),1))
else x: 8 bit register

bit(x,sub(width(x),1)) Static evaluation for y: 16 bit register
end > bit(y,15)

Figure 7.10: Example of static evaluation.

major sources for constant expressions, namely (1) constant fragments of the
specification (2) functions that are called with constant arguments, (3) static
indexing of architectural interfaces and (4) bit-width dependent expressions.

An example for the latter is shown in Figure 7.10. The example is somewhat
artificial, but is well suited for the purpose of demonstration. The expression
on the left yields the most significant bit of the values x and y. For instance, if
x is an 8-bit wide register and y is a 16-bit wide register, the expression returns
bit 15 of y. Since the width of all expressions is determined statically by type
inference, term rewriting substitutes the width operation by the width of its
argument, i.e. 16 resp. 8. In subsequent rewrite steps, 1t, if and sub are
replaced, which finally yields the expression on the right.

It should be mentioned, that static evaluation operates on integral numbers
of virtually unlimited precision. The generator uses an arbitrary precision li-
brary. In literature, the term “arbitrary prevision” refers to integer operations
that are only limited by the computer’s memory. For the generator, this is
the range of approximately —101292913986 ¢4 101292913986 [particular, there
is no limitation to 32-bit or 64-bit integers. This is an important property of
the generator, as some static address computations may easily exceed a 64-bit
limit. The integration of an arbitrary-precision arithmetic has been laborious,
but prepares the generator for ultra-wide instruction sets, for instance in the
area of cryptography.

The generator implements static evaluation by term rewriting. Therefore,
an evaluation rule has been specified for each operation, as described in Sec-
tion 7.3.4. This comprehensive set of evaluation rules can easily be extended, if
operations are added to the primitive library. A constant subtree in the dataflow
graph is evaluated from leaf nodes towards the root node. The evaluation is very
fast, as term rewriting rules directly operate on integers using native operations.

7.4.2 Epsilon transformation

ViDL introduces the concept of epsilon logic, as described in Section 4.6. It is a
unified concept, which can be used to express conditional as well as partial write
accesses. Epsilon logic is an instance of a multi-value logic, which uses the states
zero, one and epsilon. Although epsilon logic is well suited for specification, it
can not directly be implemented in a simulator and in a hardware processor.
Both rely on a binary representation of values, rather than ternary values.

154 CHAPTER 7. GENERATORS

/ \ Ternary logic
Result & Mask Binary logic

cat

Figure 7.11: Transformation of epsilon logic into binary logic.

The front-end of the generator therefore contains an epsilon transformation,
which transforms epsilon logic into binary logic. The transformation yields
two binary expressions, one for the result and one for a write enable mask.
These expressions are suited to control hardware registers and to implement
lazy evaluation in the simulator (Section 7.5.4).

The idea of epsilon transformation is outlined in the following. Its imple-
mentation in the generator is actually very comprehensive and complex. It can
therefore not be covered in-depth in this thesis. Figure 7.11 shows a simple
example of epsilon transformation. It is used in the following to explain the
transformation. For clearness, the illustration of the dataflow graph has been
simplified.

The example shows the dataflow of a conditionally executed 2-way SIMD
instruction, which operates on 2x2-bit vectors, i.e. 4-bit values. The parts of
the result components are concatenated by the cat operation. Each component
(v1, v2) of the result vector is written conditionally, depending on the condition
clresp. c2. For instance, if c1 does not hold, the two most significant bits of the
4-bit result vector are set to e. As shown in the Figure, the ternary expression is
transformed into a binary Result and a binary Mask expression. In the Result
expression, e is replaced by “don’t care” bits (=). If writing is disabled, these
bits do not affect the processor state and can therefore be undefined. Don’t
care values are later exploited to simplify the dataflow graph. In the mask
expression, each appearance of e is replaced by 0, meaning “write-disable”. In
the example, the bits of v1 and v2 are replaced by ones, representing a write-
enable. These Result and Mask expression may already be used to produce a
processor implementation. However, to increase performance they are simplified
by subsequent algebraic transformations. At the bottom of Figure 7.11, the

7.5. METHODS FOR GENERATING SIMULATORS 155

Simulation level Instruction set Microarchitecture System

Simulated aspects Instruction semantics + Hazards + Caches

Profiling information Execution cycles + Stall cycles + Memory stalls

Used for Development of Evaluation of Evaluation of
instruction sets, microarchitecture memory subsystem

testing of specification

Simulated aspects

Simulation speed
Figure 7.12: Levels of processor simulation.

optimized expressions are shown. The if operations in the result expression can
be eliminated, as one alternative yields a “don’t care” value. The transformation
on the mask expression exploits, that the alternatives correspond to logical value
of the conditions c1 resp. c2. Each if operation can therefore be replaced by the
condition. The final result and mask expressions contain only static operations
on bits, which do not require any resources in a hardware implementation. if-
operations, which result in costly multiplexers, have been eliminated entirely.
The basic idea of epsilon transformation is to split any subtree in the DFG
that involves epsilon logic into a tree for its Result and a tree for its Mask.
Both trees are then simplified by algebraic transformations, as demonstrated by
the example. In addition, the implemented transformation also detects unde-
fined applications of epsilon logic, which belong to the class of static semantic
errors. For instance, the expression add(5,EPSILON) is not defined, as there is
no meaningful interpretation of an addition on epsilon values. The generator
also considers deeply nested epsilon expressions. Assume for instance that the
ternary expression in Figure 7.11 is used in an add-operation. The generator
reports a semantic error to the developer, since (depending on c1 and c2), the
expression may yield an epsilon result. However, if c1 and c2 are statically true,
the generator does not complain, as the expression is always defined. Such an
expression is of course simplified by subsequent algebraic transformations.

7.5 Methods for generating simulators

After discussing general translations and optimizations, this section focuses on
methods for generating simulators. The methods are applied in the back-end
of the simulator generator, which produces a simulator in terms of C-code.
The code is ready for compilation, i.e. no additional line of C-Code has to be
programmed by an instruction set developer.

Multiple kinds of simulators can be distinguished, which differ in their level
of abstraction. This thesis distinguishes three such levels, which are illustrated

156 CHAPTER 7. GENERATORS

in Figure 7.12. On any level of simulation, the function of a program is accu-
rately simulated, i.e. the result of simulation is the same, as program execution
with respect to instruction semantics. The simulation speed and the amount of
execution statistics however differs.

A simulation on instruction set level focuses on the semantics of instructions.
The simulator that is generated from ViDL belongs to this class. It correctly
executes any program of the specified instruction set. The simulator can be
used to test the instruction set specification, as the functionality of instructions
is accurately simulated. This includes delayed instructions, such as branches
with delay slots. Remind that delays affect program semantics, as opposed to
latencies (Section 4.3). A simulation on instruction set level can yield a wide
range of profiling information. This includes precise statistics on the dynamic
execution frequency of each instruction, dynamic data dependences, the flow of
control and register accesses. Such information can be used to explore the in-
struction set for a given set of applications. In practice, a simulator in this level
is also used to debug application software and compiler tools. On microarchi-
tectural level, aspects of the microarchitecture are simulated in addition. This
typically includes data-, resource- and control-hazards. Simulation on this level
can yield statistics on stalls and utilization of bypasses. This information is
used to optimize the microarchitectural processor implementation. However,
such a simulation requires tracking of pipeline states and simulation of forward-
ing, which slows down simulation. On system level, components beyond the
actual processor core are simulated. This includes the memory subsystem of
the instruction memory and the data memory. A profiling also yields statistics
on cache misses and hits. This level of simulation yields most information, but
is also the slowest.

As described in Section 4.3, ViDL abstracts from all aspects of the microar-
chitecture. Accordingly, such aspects are not simulated. Instead, the simulator
focuses on the instruction set, its functional behavior and its timing, by means
of delays. In contrast, the processor generator implements methods to produce
a microarchitectural processor implementation. However, these methods are not
applied for the simulator, as they would slow down execution.

7.5.1 Structure of simulator

The simulation of an instruction consists of three steps, which are illustrated in
Figure 7.13. First, an instruction word from memory is decoded (Section 7.5.3).
The respective instruction is then simulated (Section 7.5.4), yielding a set of
transactions. The state transition (Section 7.5.5) is finally performed by com-
mitting all transactions. Simulation and state transition have been decoupled
to eliminate interferences and to enable delayed execution. These aspects are
discussed later along with transactions. Before the phases of simulation are
regarded in-depth, the representation of bit-strings is introduced in the next
section. The representation of bit-strings is a key aspect of the generator, which
touches all phases of simulation and has a major impact on simulation speed.

7.5. METHODS FOR GENERATING SIMULATORS 157

Simulator

Instruction

Instruction

Transactions

State transition)

(. J

Figure 7.13: Layout of the simulator.

[byse by| Bitstring
| unused by ... by bror by, | by by| Array v
v[2] v[1] v[0] Slices

Figure 7.14: Representation of bit-strings in the simulator.

7.5.2 Bit-strings

In ViDL, any result and intermediate value is a bit-string. A bit-string may
have any width in ViDL, i.e. the width is not limited by the language. A bit-
string may have a length of one bit or even 3141 bits. The simulator needs
to represent such bit-strings to store intermediate results. The representation
needs to support ultra-wide bit-strings and should allow efficient simulation.

Some related approaches use C integers to represent intermediate values.
However, such an approach does not scale. The width of bit-strings would be
limited to 64 bit, which is the maximal size of integer variables in ANSI C.
A naive implementation may represent a bit-string as an array of bits. This
solution scales, but leads to very poor performance, as all operations have to
operate on bits. For instance, a 64-bit addition will result in 64 computation
steps. Besides, great parts of memory are wasted. A practical simulator may
use an arbitrary-precision library, such as 1ibgmp, to represent bit-strings. Such
libraries consider the width of bit-strings to be dynamic, which increases flexi-
bility. Unfortunately, this also leads to poor performance. It involves dynamic
data structures and unbounded loops, which can not completely be unrolled by
the compiler.

The generated simulator uses an approach similar to arbitrary-precision li-
braries, but exploits generation time information on bit-widths. A bit-string is
represented as a static array of integers. An element of the array is called slice
in the following. Figure 7.14 shows an example of a 160-bit wide bit-string and
its representation as an array of three 64-bit slices. Slice number 2 stores only
32 significant bits of the bit-string. The remaining 32 bits are unused. Oper-
ations regard these bits to be undefined, which implies masking in some cases.
Most operations however need not consider undefined bits. The size of the array
corresponds to the width of bit-strings. Since the width of bit-strings is deter-

158 CHAPTER 7. GENERATORS

mined by type-inference at generation time, the size of the array is statically
known. This enables an optimizing compiler to apply scalarization. As a result
of scalarization, most slices can be mapped to registers of the host-processor,
which leads to a very efficient execution. As an alternative, the simulator may
directly represent each slice by a dedicated integer variable. However, shift in-
structions need random access to bits and therefore random access to slices.
Such an access on integer variables can not be implemented efficiently. For this
reason, the generator uses arrays of slices.

7.5.2.1 Operations on bit-strings

The generator breaks an operation on a bit-string down to integer-operations
on slices. An add operation on 160-bit wide values is for instance broken down
to the following ANSI C-code.

r[0]=v[0]+w[0O]
r[1]=v[1]+w[1]+(r[0]<v[0] || r[0]l<w([O])
r[2]=v[2]+w[2]+(r[1]<v[1] || r[1l<w([1])

The code contains only basic integer operations, which are likely mapped to cor-
responding host instructions. Since the arrays r, w and v are indexed statically,
slices can be mapped to host registers after scalarization. The generator aims
to produce straight-line C-code, as in the example. Such code does not include
any control flow and can therefore efficiently be executed on deeply pipelined
host processors. Thanks to static arrays, most loops can be unrolled by the
generator. There are only few primitives, which utilize control structures of C.

7.5.2.2 Custom width of slices

The bit-width of slices can be defined by the user on invocation of the generator.
It is not hard-coded in the generator and the code generators of primitives.
This way, simulators can be generated that are tailored to the width of the
host processor. For instance, a 32-bit simulator may be generated for a 32-bit
host system and a 64-bit simulator for a 64-bit host. An n-bit simulator uses
only n-bit integers and n-bit integer operations. Actually, the generator is not
limited to these two bit-widths. It may as well produce a 128 bit® simulator or
a 16 bit simulator.

7.5.3 Decoding

The task of the instruction-decoder is to determine the instruction of a given
instruction word. The decoder may for example map the instruction word
1101001101010010 to the opcode “add-immediate”.

Instruction-decoders are used in simulators as well as in compiler tools. They
are for example part of disassemblers to decode instructions of executables and

3gcc defines a type __128_t on 64-bit hosts, however this is not a standard C-type of

stdint.h to this day.

7.5. METHODS FOR GENERATING SIMULATORS 159

(a) (b) ()

switch (<<bitpacking>>){ Instruction word w

L={..} case 0: // 00000 edge [27 7 2 Bybyby? byby?
Di_{bubybibybi} <<code of subtree T, >>

break; Bit-packing

case 1: // 00001 edge (w>>2)&0x1c | (w>>1)&0x3

<<code of subtree T; >>

break; Switched value

(00000 0bsbybybyb

Figure 7.15: Example of decoder code generation for C.

object files. This section describes the generation of a decoder, in the context
of a simulator. Nevertheless, the decoder can also be integrated in other tools,
as it has a clear interface.

The input of the decoder generator is a decision tree, which is constructed
by the front-end, as described in Section 7.1.4. The decision tree can be imple-
mented in C in a straight forward way. The structure of the tree corresponds
to the control flow of the generated code. Each node in the tree is mapped to
a switch statement. Each child node corresponds to one case of that state-
ment. Figure 7.15a shows a decision tree with subtrees Ty to T51. Figure 7.15b
shows the respective C-code that implements the tree. Each case statement
corresponds to one subtree. The code for each subtree is generated recursively.
The case values correspond to the edge-annotations in the tree. The construc-
tion of the value <<bitpacking>> that is used for switching is illustrated in
Figure 7.15¢c. Basically, the discrimination bits D of the instruction word are
packed, such that they constitute a |D| bit wide value. In the example, a 5-bit
value is constructed, which yields an integral value in the range of 0 to 31. In
C, bit-packing is implemented using only shift and logical operations. These
operations are executed very fast on modern computers, compared to control
flow. If a switch statement has only two cases (0 and 1), the generator replaces
it by an if statement. Evaluation of the generated decoder has shown that
approximately 150 million instructions are decoded per second on a 3 GHz host.

7.5.4 Implementing instruction semantics

For each instruction, the generator produces a sequence of C-Code, which imple-
ments its semantics. For instance, a branch instruction results in C-code, which
computes the branch condition and the branch target. The code is generated
from the instruction DFG, which represents the instruction’s semantics. For
the sake of simplicity, the DFG is assumed to be a tree in the following. The
instruction DFG can be evaluated in a bottom-up pass. The code is therefore
generated in the same order (bottom-up), as shown in Figure 7.16a. The code
thereby obeys the data dependencies between DFG nodes, i.e. the code of a
child A is executed before the code of a parent node B is executed. For a typi-
cal instruction this means, that addresses are computed first, followed by read
operations, the actual computation and final issuing of a transaction.

160 CHAPTER 7. GENERATORS

() (b)

o
6

DFG

Address Value

<<code of Enable>> <<code of Cond>>
<<code of A>> if (<<result of Enable>>){ if (<<result of Cond>>){
<<code of Address>> <<code of Then>>
<<code of B>> <<code of Value>> } else{
} <<code of Else>>
¥

Generated code

Figure 7.16: Simulation of instructions by evaluating the dataflow graph.

The simulation code of each nodes is produced by the respective generator,
which is defined in the primitive library (Chapter 5). The generators are generic
with respect to bit-widths and generate proper masking of slices. Wide primi-
tives are broken down to simple integer arithmetic, as outlined in Section 7.5.2.1.

Lazy evaluation

A simple generator may produce C-code, which always computes the complete
instruction DFG. Actually, this is not necessary in many cases. For instance,
if the condition of a branch evaluates to false, the target address need not be
computed. To exploit such optimization potential, the generator applies the idea
of lazy evaluation, as it is found in some functional programming languages. To
explain lazy evaluation, the DFGs in Figure 7.16b are regarded first. For awrite
node, the enable tree is evaluated first. If the write is enabled, the address tree
and the value tree are evaluated. Otherwise, the evaluation is omitted, as the
result is not used. Accordingly, the condition of the if node is evaluated first.
Depending on the result, either the then-alternative or the else-alternative is
evaluated. The evaluation of switch statements is similar, i.e. only one case is
evaluated. In contrast to lazy evaluation, an eager evaluation would compute
the result of all subtrees, even if it is not used.

The generated C-Code that obeys a lazy evaluation strategy is shown below
each DFG. It is organized such, that the code of a subtree is only executed, if it
needs to be evaluated. The code of the condition tree or enable tree is always
executed. The code of the other trees instead is executed conditionally.

The application of lazy evaluation for dataflow graphs is sound, since the
DFG is pure. Primitives do not have any side effects and their evaluation can
therefore be omitted. If primitives would have side effects, lazy evaluation might
break execution semantics. Note that lazy evaluation of write nodes relies on
epsilon transformation (Section 7.4.2).

Lazy evaluation has a significant effect on simulation speed, as shown in
Section 8.4.5.1. For instance, the target address of a conditional branch is
only computed, if the branch is taken. Expensive computations of status flags
are omitted, if they are not to be set (which is most likely). The result of a
conditionally executed instruction is only computed, if the condition holds. On
the other hand, the computation of the condition is omitted, if the instruction

7.5. METHODS FOR GENERATING SIMULATORS 161

(a) (®)

Sim Transactions

State i —)@m >—>|Tramactions

State i+1 —P@m >—>|Trunszutﬁ(ms

Figure 7.17: Decoupling of simulation and transition using transactions.

Cycle i

Iransactions
[ransactions

Execution

Cycle i+2 Cyclei+1 Cyclei

Cycle i+1

is executed unconditionally.

7.5.5 Transactions

The execution model of ViDL assumes an atomic change of processor state.
This principle is resembled in the simulator using transactions. Transactions
effectively decouple simulation from state transition. They are also used to
implement delayed execution. The concept of transactions also prepares the
simulation of parallel architectures, such as VLIW.

Basically, transactions defer state changes till the end of simulation. The
principle of transactions is illustrated in Figure 7.17a. During simulation, each
write access issues a transaction. The processor state is thereby not affected,
i.e. the simulation code operates on the unmodified state i. After simulation,
all transactions are committed, which corresponds to the actual transfer from
state 7 to ¢ + 1. This transfer is atomic from the perspective of simulation.

As an alternative to transactions, double buffering may be used. Double
buffering copies the state. One copy is used for read accesses and one for write
accesses. In practice, the state is much larger than the number of transactions.
Double buffering is therefore slow compared to the transaction base approach.
The execution time for transactions is linear in the number of transactions and
independent from state size. Its implementation in the generator is highly op-
timized. For instance, a static data structure is generated to hold transactions.
This avoids expensive memory accesses, control code and allocation operations.

The generator also uses the transaction mechanism to implement delayed
write accesses. A write access can be delayed, by issuing the respective trans-
action to a future cycle. In Figure 7.17b, the simulation code of cycle 7 issued
a transaction to the current cycle, to cycle ¢ + 1 (red), and one transaction to
cycle i+ 2 (blue). These transactions are then committed with no delay, a delay
of one and a delay of two cycles. The data structures that store transactions
are organized in a ring, where the size of the ring corresponds to the maximal
delay that is specified in ViDL. A delayed transaction is issued and processed
in constant time. The actual delay and the number of outstanding accesses do
not affect execution time.

162 CHAPTER 7. GENERATORS

State i Transactions

Sim FU1
‘I ll Sim FU2 'I
Sim FU3

Figure 7.18: Simulation of parallel processors using transactions.

|7 Pipeline

Branch unit l—> Stage

— Pipeline registers
Scheduled dataflow —— —Decoder

| —Read stage

——]
IJ__| E_’ Read port
Regis
file

| =

Forwarding

ister
I - Write port

—Write stage

Interlocking

Figure 7.19: Components of the generated microarchitectural processor imple-
mentation.

The concept of transactions prepares the simulator for simulation of parallel
functional units. For instance, in a 4-way VLIW processor, all 4 functional
units can be simulated sequentially, as show in Figure 7.18. After simulation,
the collected transactions are committed. The simulation of parallel instructions
does thereby not interfere. The approach scales well, since the overall execution
time is linear in the number of functional units. Using multiple transaction
buffers, functional units can even be simulated concurrently, which may increase
simulation speed on multi-core systems.

7.6 Methods for generating processors

This section describes the generation of a microarchitectural processor imple-
mentation. All methods that are described in this section are implemented in
the processor generator, which is evaluated in Section 8.5. An overview of a
generated processor structure is shown in Figure 7.19. The Figure is just meant
to give a basic impression of the structure of one specific processor. The pro-
cessor consists of a pipeline and a register file. The pipeline has multiple stages,

7.6. METHODS FOR GENERATING PROCESSORS 163

which are divided by pipeline registers. An instruction is fetched in stage 0,
decoded in stage 1, traverses the entire pipeline and is finally retired in stage
5. The execution of instructions in the pipeline is controlled by the branch unit
and interlocking. Parts of the dataflow graph are represented by black clouds,
which are distributed among the entire pipeline.

The figure is referred in the following, to introduce the components of the
processor generator. The processor’s instruction decoder is produced by a de-
coder generator, which is similar to the decoder generator of the simulator (Sec-
tion 7.5.3). The next phases are highly dependent, i.e. one phase relies on
the result of the previous phase. The first phase called port assignment (Sec-
tion 7.6.1) generates read and write ports for each register file and each data
memory. The example in Figure 7.19 shows a register file with two read ports
and two write ports. Before the pipeline is constructed, some primitives (e.g.
multiplier) may be pipelined by the operation pipelining phase (Section 7.6.2).
This phase affects the latency of operations and must therefore be executed be-
fore any other pipeline related phase. The read stage and the write stage of each
storage are determined in the subsequent port scheduling phase (Section 7.6.4).
The resulting stages are connected to the read and write ports that have been
derived in the previous phase. In the example (Figure 7.19), the register file is
read in stage 2 and written in stage 4. Depending on the location of read and
write ports, the remaining nodes of the DFG are scheduled by the operation
scheduler (Section 7.6.5). The dataflow that is assigned to stages is indicated
by black clouds in the example. Once all nodes of the DFG are scheduled,
pipeline registers can be inserted (Section 7.6.6). The insertion of pipeline reg-
isters depends on the previous operation scheduling. As shown in the example,
pipeline registers are placed on the boundaries between stages, which effectively
interrupt dataflow between stages. To eliminate resulting data-hazards, a for-
warding circuit (Section 7.6.7) is generated for each register, unless such hazards
can be excluded. The generation involves sophisticated analysis of the dataflow.
Forwarding is always applied, unless it would introduce further critical paths.
The forwarding circuit must be inserted after pipeline registers have been in-
serted. Otherwise, the DFG would become a cyclic graph. If a data-hazard
can not be resolved by forwarding, interlocking (Section 7.6.8) is applied. The
generation of interlocking is based on analysis information from the previous
forwarding phase. The processor generator aims to construct pipeline control
such, that the number of pipeline stalls is minimized. The final phase of the
transformation constructs a branch unit (Section 7.6.9). The branch unit applies
speculative execution and instruction canceling in case of misprediction. The
generation involves analysis of dataflow and optimizations to simplify control
logic. It depends on results from the forwarding phase.

7.6.1 Register port allocation

A processor typically includes one or more register files. Each register file has
a set of read ports and a set of write ports, as described in Section 2.7.1. A
register file can be accesses concurrently through these ports. One read access

164 CHAPTER 7. GENERATORS

or write access can be performed through each port at a time.

In the DFG, read and write accesses to a register file are represented by read
and write nodes. To construct an efficient processor implementation, these ac-
cess nodes must be assigned statically to ports. The assignment has to consider
two aspects. First, the assignment must not introduce any resource-conflicts
and second, the number of register ports should be minimized. Register ports
are an expensive resource in terms of chip area and power consumption. A
minimal number of read-ports and write-ports that does not lead to resource
conflicts is therefore desirable.

A resource conflict exists, if two access nodes that are assigned to the same
port are activated concurrently. For instance, assume a 3-address instruction
that reads from registers via read nodes X and Y. As these nodes are activated
concurrently by the instruction, they must be assigned to different read ports.
The register file must therefore include at least two read ports.

What makes port assignment hard is the fact, that access nodes in the DFG
have likely been merged by previous phases. An access node is therefore asso-
ciated with a set of instructions rather than a single instruction. For instance,
read nodes of two instructions are merged, if they use the same addressing mode.
In practice, the DFG contains about ten read nodes, which are associated with
numerous instructions. Merging of write nodes is less common, but actually
appears. For instance, the write nodes for auto-increment of load and store in-
structions are typically merged. Figure 7.20a shows a simplified DFG of 5 read
nodes R1 to R5, and dataflow that belongs to instructions A through D. The
read node R1 is therefore a part of instructions A and B, i.e. Rl is activated
by A and B. The color of a read node corresponds to the assigned port. The
computation of the assignment is explained in the next section.

7.6.1.1 Assignment algorithm

This section describes the assignment algorithm that is implemented in the
processor generator. To simplify explanation, the assignment of read nodes to
read ports is regarded for one register file.

Basically, the assignment problem is solved by coloring a graph G = (V, E).
Each node v € V in the conflict graph corresponds to one read node. An edge
between two nodes expresses, that the respective accesses may be activated
concurrently, i.e. they must not be assigned to the same port. In detail, two
nodes are connected by an edge, if the sets of activating instructions are not
disjoint.

E = {(u,v)|active(u) N active(v) # 0}

The function active(xz) C Instructions yields the set of activating instructions
for a node =x.

A color corresponds to a read port. A coloring of the graph thereby assigns
read ports to read nodes, where the chromatic number of the conflict graph
corresponds to the number of read ports. To minimize the number of read
ports, the graph must be colored conflict free using a minimal number of colors

7.6. METHODS FOR GENERATING PROCESSORS 165

Figure 7.20: Conflict graph for port assignment.

Figure 7.20b shows the conflict graph of the adjoining DFG. The set of
nodes V' = {1..5} corresponds to the read nodes R1 to R5. Each node in the
conflict graph is annotated with the set active(z) of activating instructions.
The read access of node 1 is for instance activated by instructions A and B.
Nodes 1 and 2 are connected by a conflict edge, as they are both activated by
instruction A. As shown, the conflict graph can be colored using 3 colors. It
can not be colored with fewer colors, as nodes 1, 2, and 3 constitute a clique.
The chromatic number of the graph is 3, i.e. the minimum number of required
read-ports to avoid resource conflicts is 3. In practice, the constructed conflict
graph is a sparse graph. It contains only few edges and is efficiently colored by
the processor generator.

7.6.2 Operation pipelining

To increase the clock frequency of generated processors, operations may be
pipelined by the generator. For instance, the multiplier may be pipelined, such
that it is distributed among multiple stages. However, pipelining of operations
typically increases instruction latencies, chip area and power consumption of the
processor. It is therefore only applied if necessary. The decision if an operation is
pipelined depends on its estimated delay and the user supplied target frequency,
which is introduced in the next section.

Operation pipelining is implemented using the term rewriting system and
timing sensitive rewrite rules. The latter are defined using rule sets, which have
been described in section 7.3.5. The target frequency is therefore divided into
different ranges. For each range, one rule set is defined. The rules in this set
then translate non-pipelined operations into their pipelined counterparts.

7.6.3 Timing

So far, we have a simple DFG, which defines the mapping from the current
processor state to the next processor state. This DFG could immediately be
used to generate a non-pipelined processor. To generate a pipeline processor, the
generator has to consider two kinds of timing, namely the timing of operations
in the DFG and the targeted timing of the processor. The latter is supplied in
terms of a target frequency fiarger by the user. The timing of each operation
is defined in a so called delay library. The library defines propagation delays

166 CHAPTER 7. GENERATORS

(a) Valid port assignment (b) Violation of causality (c) Violation of schedulability
2 RPort X 2 RPort X 2
3 RPort Y 3 WPort Y 3 RPort X
WPort Y I WPort X
5 WPort X 5 WPort X 5

Figure 7.21: Examples of valid and invalid port schedules.

and latencies for all operations. The propagation delay depends on the chip
technology that is targeted during synthesis. For this reason, multiple delay
libraries may be specified, one for each technology.

Pipeline related decisions of the generator are guided by the timing of op-
erations and by the user defined target frequency fiarget- The generator tries
to organize the pipeline such, that the critical path does not exceed the tim-
ing constraint ft;rlger On the other hand, unnecessary pipelining is avoided to
save resources. The target frequency is a significant parameter, which is used in
practice to guide the generation of processors. It has a major impact on the pro-
cessors frequency (as determined by synthesis), chip area, power consumption
and instruction latencies. Using fiarget, the developer can generate very differ-
ent processor implementations from the same instruction set specification. The
relation between fiarget and physical characteristics of the processor is evaluated
in Section 8.5.3. Its impact on instruction latencies is discussed in Section 8.5.9.

The remaining sections describe methods to construct an instruction pipeline.
Most methods consider the target frequency and the timing of operations in some
respect.

7.6.4 Port scheduling

The port scheduling phase determines the read stage and the write-back stage
of each storage, by assigning read ports and write ports to stages. For instance,
the read ports of a register X may be assigned to stage 2 of the pipeline and the
write ports may be assigned to stage 5, as shown in Figure 7.21a. In this case,
stage 2 is called the read stage and stage 5 is called the write-back stage of X.
Note, that distinct stages may be assigned for each storage, as demonstrated in
the example for X and Y.

For port scheduling the generator considers the structure of the DFG, the
propagation delays of its nodes and the targeted frequency of the final processor.
The resulting port assignment must be valid and should be optimized. The
optimization criteria are discussed later.

A valid schedule must satisfy two constraints, namely causality and schedu-
lability. The causality constraint demands that the write stage of a storage Y
must not precede the read stage of Y. Otherwise, a processor state ¢ may depend
on a state ¢ + 1, which violates causality. In Figure 7.21b, causality is violated,
as Y is written before it is read. For data dependent read-write accesses (see

7.6. METHODS FOR GENERATING PROCESSORS 167

(a) (b) (c)
I RPort X 1 1 RPort Y
RPort X
% 2 2 RPort X
‘WPort X WPort Y
3 3
WPort X
WPort X

Figure 7.22: Example of valid port schedules of different quality.

storage x) causality always holds. However, if there is no such dependence,
causality may be violated. The causality constraint is therefore enforced by the
port scheduling of the ViDL generator.

The second constraint regards the schedulability of the entire dataflow graph.
The constraint demands that the dataflow graph can be scheduled among pipeline
stages, as described in Section 7.6.5. If data dependent ports are scheduled too
tight, as in Figure 7.21¢, the intervening dataflow may not be schedulable with-
out violating timing constraints. The port scheduler therefore considers the
target frequency fiarget and the timing of DFG nodes.

Any port schedule that satisfies the previously mentioned constraints can
be used to implement a processor. However, the implementation may be inef-
ficient. In particular, the pipeline of the processor and write latencies may be
unnecessarily long. Figure 7.22 shows two valid port assignments for the storage
X. The first assignment (a) requires two pipeline stages, whereas the second (b)
uses three stages and requires forwarding (red).

To yield an efficient processor implementation, the port scheduler aims to
minimize the write latency and the pipeline length. The write latency is defined
as the difference between the write and read stage of a storage. A low latency
reduces data-hazards and simplifies the forwarding circuit. A long latency re-
sults in many pipeline bypasses. The implemented port scheduler also aims
to minimize the pipeline length. Figure 7.22c¢ shows a more complex dataflow
graph and a port assignment, which minimizes write latencies as well as the
pipeline length.

7.6.4.1 Algorithm

The scheduling of ports can be modeled as a linear integral optimization prob-
lem. For each storage one variable is introduced for the read ports and one
variable for the write ports. The variables represent the stage of the ports. For
n storages this makes 2n variables. The scheduling constraints are expressed
by inequalities on the variables. The objective function is given by the distance
between read and write stages, which is to be minimized. The solution of this
problem corresponds to a valid assignment of stages to each port.

168 CHAPTER 7. GENERATORS

7.6.4.2 Bypass-relaxing

If the distance between read and write stages is larger than one, a forwarding
circuit is to be inserted in a later phase of generation (Section 7.6.7). The
bypasses of the forwarding circuit may introduce further critical paths. These
critical paths of bypasses are relaxed at the expense of an additional propagation
delay on the datapath. The delay in turn affects the port scheduling and may
increase the distance between ports.

The port scheduler therefore iteratively schedules ports and relaxes bypasses.
The number of forwarding circuits thereby rises monotonic. As the number of
forwarding circuits is limited by the number of storages, the iterative computa-
tion is guaranteed to converge. In practice, the ViDL generator likely reaches a
fixpoint after two iterations.

7.6.5 Operation scheduling

After registers ports have been scheduled, the remaining nodes of the DFG are
assigned to pipeline stages. The scheduler is similar to the port scheduler. It
considers the user supplied target frequency fiarget, the port schedule, the DFG,
and the estimated propagation delay of its nodes.

7.6.5.1 Modeling

The scheduling constraints on DFG nodes can be modeled by a system of equa-
tions. The schedule of a node z is characterized by two values: The stage s, of
the node and the arrival time a, within the stage. The arrival time a, is the
estimated signal delay from pipeline registers to z’s inputs. The propagation
delay that is contributed by node z is denoted d, in the following. It must
lie in the range of the period p, which is the inverse of the user supplied clock
frequency.

1
p= ftarget
0<d,<p

If this property does not hold, the DFG is not schedulable and the generator
reports an error. The user then has to reduce the target frequency fiarget-
The finish time at x’s outputs is given by the node’s arrival time and prop-
agation delay
fx = az +dg.

For instance, a node x with a propagation delay of d, = 800 ps (picoseconds)
may be scheduled in stage s, = 2 with an arrival time of a, = 150 ps, which
results in a finish time of f, = 950ps. For read and write nodes, the stage
is already fixed by previous port scheduling. These variables can therefore be
considered constant.

Sz = Sport(z)

7.6. METHODS FOR GENERATING PROCESSORS 169

7.6.5.2 Scheduling constraints

The scheduling constraints are modeled by inequalities on the variables that
have previously been introduced. The timing of a node must lie within the user
defined period p. Otherwise, the generated processor may not yield the targeted
clock frequency.

Ogax/\fw <p

For two data dependent nodes x — y, the result of must be available before
it is expected by y. This constraint holds, if x is located in an earlier stage then
y. In this case, both nodes are separated by pipeline registers and there is no
direct dataflow between both nodes. If instead both nodes are located in the
same stage, the finish time of z must be smaller than the arrival time of y.

Sz < Sy V (Sg =58y A fo < ay)

Note that this equation implies s, < s, i.e. the dataflow between = and y must
obey the dataflow direction of the pipeline. If s, would be greater then s,, data
would flow from later stages to earlier stages.

The processor generator solves the system of equations by a two pass algo-
rithm in linear time. For the ARM instruction set, stage numbers are assigned
to approximately 2.000 nodes in less then a minute. The arrival and finish
times are discarded after scheduling, as they are not needed for any subsequent
transformations.

7.6.6 Pipeline registers

The previous assignment of DFG nodes to stages implies the location of pipeline
registers. If two consecutive nodes in the DFG are assigned to different stages,
pipeline registers have to be inserted on their connecting edge. For two nodes
r — y exactly s, — s, pipeline registers have to be inserted between z and y.

A pipeline register interrupts the dataflow between nodes. In the dataflow
graph, a pipeline register is represented by two associated nodes. A write node
in stage s, which receives a value and a read node in stage s 4+ 1, which yields
a value. Figure 7.23 show an example for the insertion of two pipeline registers
between nodes X and Y. Each pipeline register consists of the pair PW and
PR. These nodes are associated, but not connected in terms of the DFG. After
insertion, nodes of different stages are not connected by a path in the DFG. The
dataflow graph is thereby divided into at least n connected components, where
n is the number of pipeline stages.

7.6.7 Forwarding circuit

The pipelined DFG that has been constructed so far can be used to generate
a pipeline processor implementation. However, the implementation likely in-
cludes unresolved data-hazards, which appear as write delays. These hazards

170 CHAPTER 7. GENERATORS

X Stage 2 Stage 2
Stage 2
Insert Stage 3

pipeline registers
PW Stage 3
Stage 4

Y

Y Stage 4 Stage 4

Figure 7.23: Insertion of pipeline registers.

avail := false
value := UNDEF
: avail := not(4)
value := C

avail := true
V‘(Llll(‘ = res

Figure 7.24: Example of early result forwarding.

must be resolved, to retain execution semantics of instructions. Hazards are
primarily resolved by forwarding as described in this section. If forwarding can
not be applied due to latencies, interlocking is applied to resolve the hazard
(Section 7.6.8).

The principle of forwarding has been explained in Section 2.7.5. This section
describes the construction method for a forwarding circuit, as it is implemented
in the generator. To give an impression of the construction task, a small for-
warding example is discussed first. Using this example, the actual construction
method is explained.

For a storage with read stage s, and write stage s,,, bypasses must be inserted
from all stages s, s, +1 < s < s,,. Actually, a bypass must be inserted for each
stage s, each write port and each read port. The bypasses are then merged by
a generated multiplexer in stage s, + 1.

What makes forwarding hard, is the fact that the generator has to decide, in
which stage a result is fed into the forwarding circuit and under which condition.
A result can only be bypassed from a stage s, if it is already available in that
stage. Figure 7.24 shows a highly simplified example of forwarding. The values
A, B and C are fed into a condition node (if). Its result is written back in stage
Sw = 3. The positions of the nodes A, B and C are assumed to be fixed, as
shown in the Figure. Due to the position of B, the if-node must be scheduled in
stage 2. The final result can therefore only be forwarded from the beginning of

7.6. METHODS FOR GENERATING PROCESSORS 171

stage 3 (“value:=res” in the Figure). The result is always available in this stage,
which is expressed by “avail:=true”.

In stage 2, the final result is not computed yet. However, if A does not
hold, the result is equal to C, which is already available at the beginning of
stage 2. The value of the bypass is therefore set to C and the availability to
the expression not(A4). In stage 1, the result is not known in any case. The
availability is therefore set to false and the value to UNDEF. A bypass from
this stage is therefore omitted.

The structure shown in the example is typically produced by the genera-
tor’s port and hardware sharing transformations. The term A may for instance
distinguish between two instructions, which yield the results B and C.

7.6.7.1 Construction method

The previous example was intended to give a rough idea on construction of for-
warding. This section describes the method that is implemented in the generator
to systematically construct the forwarding circuit.
In the following, the value that is written-back is regarded as a term ¢. For
the example this is
t=if(A, B,C)

The algorithm derives the “value” and the “defined” expression for each stage s
separately. Therefore, the write back node is conceptually scheduled to stage s.
This typically leads to a violation of scheduling constraints.

The violation is resolved by a so called thin-out phase. This phase removes
all subterms from ¢ that contribute to the violation. For the example and stage
s = 2, node B is removed, which results in the term

tenin = if(A, UNDEF, C)

The term tpin thereby becomes partially defined. If A holds, the result of the
term is undefined.

A subsequent is-defined analysis determines when the term is defined. For
the example, the analysis yields the expression

tdef = not (A)

If this expression holds, the term ty;, is defined, otherwise it is not. The
expression tqer is then used to control interlocking, as described in the next
section.

In a third reduction phase, the term typ;y is simplified, yielding a term tyeq.
Basically, all parts of the term that contribute only to an undefined result can be
removed. This likely enables the simplification of other operations in the term.
In the example, the “if” operation can be eliminated, as only one alternative
yields a defined value. This also eliminates the subterm A, which evaluates the
condition. The resulting simplified term is

tred = C

172 CHAPTER 7. GENERATORS

Undefined nodes Root node

_ (/A&. ©

Figure 7.25: Expression tree of a partially defined result term as used to derive
the forwarding of a 6-stage MIPS processor.

(a) Cycle k (b) Cycle k+1

Stall
Stall

0 0

Active
Active

Instr A

Instr A

Instr B

Instr B

Hazard
detection

Cancel

— Stall

Availability,) Bubble
addresses

Instr D

Instr E

Figure 7.26: Scheme of constructed interlocking.

This simplified term tgmp = C' is finally fed into the forwarding circuit, as
shown in stage 2 of Figure 7.24. Timing constraints of the forwarding circuit
are obeyed due to previous thin-out phase. If t4ef holds, the forwarded value
tsimp 1S equal to the value ¢ that is finally written back to the register. If ¢q.f
does not hold, the undefined forwarded value is not used due to interlocking.
Interlocking is discussed in the next section.

This section gave only a very simple example to demonstrate the forwarding-
insertion method. In practice, the generator processes terms that consist of
hundreds of nodes, including nested conditions, arithmetic operations and switch
statements. Figure 7.25 gives an impression of such a term. It has been exported
by the processor generator during generation of a 6 stage MIPS processor. The
term represents the partial result tin;y of the GPR registers at the end of the
execute stage (EX). The black nodes are undefined, as they would lead to a
violation of scheduling constraints. One of these nodes is for instance a read
access on data memory, which is scheduled in the next stage (MA).

7.6.8 Interlocking

The previous section explained how availability information is computed. This
information is now used to control the pipeline, as shown in Figure 7.26a. The
availability information from all stages is fed into a hazard detection circuit,
along with the addresses of forwarded values. If a forwarded value is accessed,
but not yet available, this circuit stalls the pipeline and inserts a bubble. There-
fore, the processor generator creates two signal paths called “active” and “stall”,

7.6. METHODS FOR GENERATING PROCESSORS 173

(a) Cycle k (b) Cycle k+1
0 £ g
g 0 2|
é Instr Z <‘th
[]
Bubble
Instruction
address Bubble
[]
Branch
Request | unit Bubble
[]

Figure 7.27: Example of a branch and its processing by the branch unit.

which range through all stages. The stall path propagates stall information
upwards, i.e. from stages i to stages j,j < 7. Note, that this path is not inter-
rupted by any pipeline registers. In case of a data hazard, the detection circuit
triggers a stall. In the example, the stall is triggered in stage 2, which is then
propagated to stage 1 and 0. The stall path disables the pipeline registers be-
tween stages 0/1 and 1/2 (drawn red in the Figure). Thereby, instructions B
and C remain in stages 1 and 2. In addition, the instruction fetch logic (IF) is
controlled such, that instruction A remains in stage 0.

To insert a bubble in stage 3, the active-path is used. The hazard detection
circuit triggers an instruction cancel at the end of stage 2. Note, that this does
not affect any instruction, until the next clock cycle. On the next clock edge,
the cancelation is passed to stage 3, as shown in Figure 7.26b. This stage is
thereby deactivated in stage k + 1, i.e. it is regarded to contain a bubble.

Actually, the explanations given in this section are highly simplified. The
construction method that is implemented in the processor generator has to con-
sider additional aspects of a pipeline of arbitrary length. For instance, hazard
detection also considers write enable signals and has to prioritize availability
information according to originating stages. A stall signal need not only disable
pipeline registers, but also has to disable registered memories. To optimize the
generated processor, the active- and stall-paths are only generated in part. The
active-path likely starts in the execute stage and logic to interconnect hazard de-
tection is omitted in most stages. This depends on the specified instruction set
and the generated microarchitecture. The hazard detection circuit is simplified,
by eliminating address comparisons for single registers and static addressing.

7.6.9 Branch prediction

The processor generator constructs a branch unit based on the specified instruc-
tion set and the derived pipeline structure. Its complexity basically depends on
the number of branch instructions that have different timings. Currently, the
generated branch unit implements a very simple “not-taken” prediction scheme.

174 CHAPTER 7. GENERATORS

However, the generation method can be extended to yield other branch predic-
tors. This has not been subject to the evaluation of this thesis.

The branch unit basically has two tasks: To supply the (predicted) next
instruction address and second, to cancel speculative instructions in case of
misprediction. For the “not-taken” scheme, the branch unit predicts the next
instruction address to be the successor of the current address.

To change the control flow, the branch unit receives branch requests from
branch instructions. The branch requests may typically be issued from multiple
pipeline stages. Figure 7.27a shows the effects of a branch instruction (Instr
D). The branch instruction issues a branch request from stage 3, which is pro-
cessed by the branch unit. As the prediction scheme is “not-taken”, the branch
unit cancels instructions A to C, which have been executed speculatively. The
cancelation takes effect from cycle k + 1 on, as shown in Figure 7.27b.

A branch request consists of two values, the branch’s target address and a
taken flag, which triggers the request. Using such a pair of signals, multiple
stages are connected to the branch unit. Each stage that is connected may trig-
ger a branch. Based on the instruction set and propagation delays, the generator
determines, which stages are to be connected. For instance, an “unconditional
relative” branch is likely issued from stage 1, a “register” branch from stage 2
and a “register+offset” branch from stage 3. The generator may therefore con-
nect stages 1 to 3 to the branch unit. The branch unit then prioritizes requests
with respect to their originating stage. The construction of the target and taken
signal uses methods from forwarding and interlocking construction.

Since the branch unit may cancel instructions, additional constraints must
be considered by the generator. In general, a branch request from stage ¢ may
cancel instructions in stages 0 through ¢ — 1. The instructions in these stages
must therefore be cancelable. An instruction is cancelable in a specific stage, if
all its effects on the processor state can be eliminated. That is the case, if the
instruction has not committed any changes by register write-back. As a result,
write-back stages must not precede the latest stage that may trigger a branch.
This constraint is already considered during port scheduling 7.6.4.

Chapter 8

Evaluation

Both generators have been developed beyond the state of prototypes. They have
been tested and can be considered quite stable and correct. Extensive amounts
of simulators and processors have been generated using the system. Almost all
aspects of the instruction sets are properly implemented in the generated prod-
ucts, including ultra-wide operations, conditional execution and partial write
accesses. Exceptions are discussed in Section 8.2.5. Both, simulators and pro-
cessors are generated entirely and solely from the ViDL specification. There is
no patching or fine-tuning involved. No single line of C or VHDL code has been
added to the generated code.

8.1 Evaluation process

The entire evaluation process is visualized in Figure 8.1. To show the fitness of
ViDL, 13 instruction sets and ISA variations have been specified (Section 8.2).
This includes ARM, MIPS, Power, OISC, SRC, and the DNACore instruction
set extension of MIPS. The latter is discussed in the context of a case study on
instruction set extension (Section 8.6). The specification of SRC is covered in
Section 3.6.6, where it is compared to a respective Lisa specification. Since the
evaluation is quite comprehensive, it has been automated using a set of evalua-
tion scripts. For instance, a build mechanism repeatedly invokes the simulator
and processor generator, yielding a set of simulators and a set of processors,
as shown in the figure. The generators have been tuned with respect to gen-
eration time, such that the entire generation process takes only a short time
(Section 8.3).

The generated simulators are evaluated (Section 8.4), by executing binary
programs of the respective instruction set. The programs have been written in
assembler and include micro-benchmarks, as well as algorithmic kernels. The
processor implementations are generated from the very same ViDL specifica-
tions. For each instruction set specification, multiple processors are generated.
The processors differ in their microarchitectural implementation, i.e. pipeline

176

Translation

Specification

Software
(assembler)

ViDL
Evaluation
script,

ViDL specs.
(13)

Processor
enerator

Simulator Simulators
eneraty (13)

Products

—

Executables
(binary)
—

CHAPTER 8. EVALUATION

Simulation Results

Application
software

— 3
Simulator im. s o
ST
(MIPS) ERE
~— g2
2]
=R
=l
£
VHDL code ModelSim Waveforms =
(83) = g
= 8
R
| Synthesis Slack] Synthesis |
script
H
= 17
g :
= g
5
— g
RTL 3| Netlist, metrics 5
compiler (83) E
~—— m
—— .
Microarch., 3] %
latencies g 8
& 8
—— oA

Figure 8.1: Overview of the automated evaluation process.

8.2. VIDL 177

depth, forwarding and interlocking. For each processor, the build mechanism
invokes the processor generator with a combination of a configuration and ViDL
specification. The result is a set of 83 processors in terms of VHDL code and
figures on their microarchitectural implementation.

The correctness of processors has been tested on register transfer level (RTL)
using ModelSim (Section 8.5.10). Therefore, binary test programs have been ex-
ecuted on the simulated processor. Test cases cover exceptional instructions and
aim to stress the pipeline of the processor. Some programs are self checking and
some have been validated by inspecting the waveforms of significant processor
signals. Apart from testing, simulation also yields information on the proces-
sor’s dynamic behavior, in terms of stalls, branch penalties and the resulting
CPI'.

As shown in the figure, each processor has been synthesized, to estimate its
clock frequency, chip area, and power consumption (Section 8.5.2). This process
has been automated by a script, which invokes the RTL compiler with different
timing constraints. In a first pass (red), synthesis is constrained very hard with
1ns, to get the fastest, but feasible timing from synthesis tools. In a second
pass (blue), this timing (with an addition of 5%) has been used to estimate
the physical processor characteristics. The netlist from synthesis has also been
tested my means of a gate-level simulation in ModelSim.

8.2 ViDL

This section evaluates the application of ViDL in practice. Language properties,
such as maintainability, simplicity and reliability have already been discussed
along with the description of ViDL (Chapter 4). To demonstrate the power
of ViDL, real world instruction sets have been specified (Section 8.2.1). The
specifications are compact and have been defined in a comparably short time
(Section 8.2.2). Some instruction sets have been defined by inexperienced users,
which highlights the simplicity of ViDL (Section 8.2.3). The formalized instruc-
tion set of ARM has been explored with respect to bit-widths of computations
(Section 8.2.4).

8.2.1 Real world instruction sets

ViDL is suited to precisely specify real world instruction sets. This property
guarantees the applicability of ViDL in serious projects, apart from idealized
academic instruction sets. For evaluation, ViDL has been used to define four
general purpose instruction sets, namely ARM, MIPS, Power and CoreVA. The
amount of instructions that have been specified is shown in Figure 8.2. It
includes almost all arithmetic, logic, memory and branch instructions. Restric-
tions are discussed in Section 8.2.5.

As you can see in the Figure, the DNACore instruction set is nearly identi-
cal to the MIPS instruction set, except that multiplications have been omitted

Lcycles per instruction

178 CHAPTER 8. EVALUATION

ARM MIPS Power DNACore CoreVA

ADC SMULL ADD MOVZ ADD LBZUX STBU ADD ORI ABS STB
ADD STC ADDI MSUB ADDC LBZX STBUX ADDI ROTR ADC STH
AND STM ADDIU MSUBU ADDE LHA STBX ADDIU ROTRV ADD STW
B STR ADDU MTHI ADDI LHAU STH ADDU SB AND VMLA
BL STRB AND MTLO ADDIC LHAUX STHBRX AND SEB ANDN VMLS
BIC STRBT ANDIT MUL ADDICR LHAX STHU ANDT SEH ASR VSMLA
BKPT STRH B MULT ADDIS LHBRX STHUX B SH BR VPACK
BLX STRT BEQ MULTU ADDME LHZ STHX BEQ SLL BRL VABS
BX SUB BGEZ NOP ADDZE LHZU STW BGEZ SLLV CAN VADD
CDP SWI BGEZAL NOR AND LHZUX STWBRX BGEZAL SLT CEO VSAS
CLZ SWPB BGTZ OR ANDC LHZX STWU BGTZ SLTI CLZ VSSA
CMN TEQ BLEZ ORI ANDIR LWBRX STWUX BLEZ SLTIU CMP VASR
CMP TST BLTZ ROTR ANDISR LWZ STWX BLTZ SLTU COR VLSL
EOR UMLAL BLTZAL ROTRV B LWzZU SUBF BLTZAL SRA DEC VLSR
LDC UMULL BNE SB BC LWZUX SUBFC BNE SRAV DEC4 VSUB
LDM CLO SEB BCCTR LWZX SUBFE CLO SRL EOR VRSB
LDR CLZ SEH BCLR MCRF SUBFIC CLZ SRLV LDW

LDRB EXT SH CMP MCRXR SUBFME EXT SUB LSL.

LDRBT INS SLL CMPI MFCR SUBFZE INS SUBU LSR

LDRH JAL SLLV CMPL MTCRF XOR J SW MCR

LDRSB JALR SLT CMPLI MTSPR XORI JAL SWAT MLA

LDRSH J SLTI CNTLZW MULHWU XORIS JALR SWATLA MRC

LDRT JR SLTIU CRAND MULLHW JR SWATLB MoV

MCR LB SLTU CRANDC MULLI LB SWATLH MOVLO

MLA LBU SRA CREQV MULLW LBU SWATMM MOVHI

MoV LH SRAV CRNAND NAND LH SWATRES MVAL

MRC LHU SRL CRNOR NEG LHU SWATSH MVAH

MRS LUI SRLV CROR NOR LUI SWL MVB

MSR W SUB CRORC OR W SWR MVH

MUL LWL SUBU CRXOR ORC LWL WSBH MVSB

MVN LWR SW EQV ORI LWR XOR MVSH

ORR MADD SWL EXTSB ORIS MOV XORI OR

RSB MADDU SWR EXTSH RLWIMI MOvZ RSB

RSC MFHI WSBH ISEL RLWINM NOP RSC

SBC MFLO XOR LBZ RLWNM NOR SBC

SMLAL MOV XORI LBZU STB OR SUB

Figure 8.2: Overview of all instructions that have been specified in ViDL.

and an extension has been added. The instruction set extension includes 7 in-
structions for acceleration of the Smith-Waterman algorithm. Thanks to ViDL’s
maintainability, the DNACore ISA has rapidly been derived from the MIPS ISA.
Besides, two academic instruction sets have been specified, namely the “one
instruction set computer” (OISC) and the “simplified reduced instruction set
computer” (SRC), which has been proposed by Heuring and Jordan [25].

8.2.2 Efficient specification

ViDL can be used to specify realistic instruction sets at an acceptable effort. As
a result, time-to-market is improved and the costs of development are reduced.
For evaluation, several existing instruction sets have been specified in ViDL.
Semantics of specified instructions have been defined exactly. This is much more
challenging than defining an instruction set that is tailored to the features of the
specification language. The effort for specification is linear in the complexity of
the instruction set, due to loose coupling in ViDL.

The specification of the ARM ISA comprises 143 instructions using 800
lines of code. Semantics of condition evaluation, conditional execution, auto-
increment of LD /ST, and the shifter-operand have been factored out using func-
tions. The functions are reused among instructions and can easily be changed,
for instance in the scenario of design space exploration. Formalization took
approximately one month and was dominated by understanding the ARM in-
struction set, which is described in the 800 pages comprising ISA manual.

The MIPS ISA was defined in one day only. The specification consists of 550
lines of ViDL code for 74 instructions. Specification of registers and memories

8.2. VIDL 179

instruction jal
semantics begin
pc[0]<2>=cat (removeBitsRight (pc[0],28) ,addZerosRight (i,2));
r[31]=add(pc[0],8);
end
end

Figure 8.3: Specification of MIPS’s “jump-and-link” instruction in ViDL.

(the state) accounts for another 80 lines. An instruction is typically specified
using 6-7 lines, where only 1-2 lines are required to define its semantics. Fig-
ure 8.3 shows the ViDL code of a section-relative “jump-and-link” instruction,
which belongs to the more complex instructions. It has one delay slot, as spec-
ified.

The ViDL specification of an OISC' (one-instruction-set-computer) consists
of 30 lines of code, including one additional instruction, which is required for
initialization. The semantics of the subleq instruction? require only three lines
of ViDL code. The SRC instruction set has been specified for a comparison with
a respective Lisa specification (Section 3.6.6). The instruction set consists of 27
instructions and has been specified in ViDL in 90 minutes, which includes the
time for reading about the instruction set. The ViDL specification consists of
207 lines of code (97 logical lines of code).

The Power ISA specification is by far the longest of all ViDL specifications.
It includes 95 instructions and is specified by approximately 1600 lines of ViDL
code. It is a strict one-to-one formalization of the Power instruction set manual.
For instance, common instruction semantics have not been factored out. Instead,
this task is postponed to the processor generator. The instruction set has been
specified in ViDL by a computer science student, who did not have experience
in ViDL and engineering of processors.

8.2.3 Usability

Compared to other specification languages, ViDL has a lower complexity. This
reduces costs for training of new users and enables deployment of less experi-
enced developers. Hence, processor and instruction set development is opened
to a wider range of users. Developers greatly benefit from the expert knowledge
that is encapsulated in the generators.

For evaluation, two real word instruction sets have been formalized in ViDL
by students, who were previously not involved in the development of processors
and instruction sets. The Power ISA was specified and evaluated by a computer
science student in the context of his master thesis. He did not have experience in
the area of instruction sets, ViDL and implementation of processors. His thesis

2subtract and branch on lower equal

180 CHAPTER 8. EVALUATION

took 6 month, including learning of ViDL and understanding the Power ISA.
During this time, he has also evaluated the generated simulator, the generated
processor and has written his thesis. The Core VA ISA was specified by a student
of electronic engineering within two months. The student did neither know
ViDL, nor the CoreVA instruction set in advance.

Both students used the ViDL manual and required only little help to spec-
ify the instruction sets. The same holds for the generation of the simulator
and the processor implementation. These two projects also provided new in-
sights on how ViDL is understood and used by other developers. For instance,
common computations have likely not been factored out and “expensive” or re-
dundant operations have been applied. Fortunately, such code is optimized by
the generator. Hence, inefficient specifications do likely not affect the generated
products.

8.2.4 Rapid exploration of instruction sets

Using ViDL, the design space of an instruction set can rapidly be explored.
Instructions can easily be removed, added or changed. This property accelerates
the development of application specific instruction set processors (ASIPS) and
thereby reduces development time and costs.

For evaluation, the bit-with of the entire ARM instruction set has been ex-
plored. The ARM ISA had at first been specified as described in the manual,
namely as a 32-bit instruction set. It has then later been extended to a generic
n-bit instruction set. Therefore, the width of the general purpose register file
has been redefined. Other storages (program counter, status register and mem-
ory) remained unmodified, i.e. 32-bit wide. Instructions, which transfer data
between these storages and the general purpose registers therefore had to be
considered. Fortunately, these transfers have been identified and reported by
the type inference as type errors. The conflicts (one for brl and one for msr)
have been resolved by inserting zero-extensions. Actually, the kind of extension
is a design decision of the developer and can not be automated. Since these
changes, the instruction set is generic with respect to bit-widths. To change the
width of the ARM specification, only the width of the general purpose registers
needs to be redefined. This unplanned extension to an n-bit instruction set took
about one hour. The resulting ultra-wide instruction sets are correctly imple-
mented as simulators and processors. Evaluation results for ARM processors
and ARM simulators of various widths are presented in the next sections.

8.2.5 Restrictions

ViDL is a powerful language, which can be used to precisely specify semantics
of a wide range of instructions. Against the background of a PhD thesis, gener-
ators have been developed to an exceptional high level. Correct simulators and
processors have been generated for a series of instruction sets. However, some
kinds of instructions have not been included in the ViDL specification. In the

8.2. VIDL 181

following, these kinds of instructions are described, along with proposed future
extensions.

Coprocessor related instructions have been omitted, as they refer to an exter-
nal peripheral, namely the coprocessor. To support such functions, I/O
ports need to be defined in ViDL. I/O Ports (Section 4.2) can be defined
in ViDL, but are not supported by the generators yet.

Memory management instructions, which control virtual memory (see [24],
Chapter 5), have been omitted, as they refer to an external peripheral,
namely the memory management unit (MMU). To support this feature, a
(generic) MMU needs to be developed, and made accessible via I/O ports
in ViDL.

VLIW /DSP instruction sets can not be defined, as ViDL does not include
respective language constructs yet. An extension of ViDL may allow to
define the structure of a VLIW and the relation between its slots and
instructions.

Iterative semantics of instructions can not be described in ViDL yet. This
affects for instance load/store multiple instructions of ARM. Support may
be added in terms of a predefined “iteration” functional. The iteratively
“executed” behavior could be supplied as a function to this functional.

Floating-point instructions are omitted, as respective primitives have not
been defined yet. To support floating point instructions, a respective set
of primitives needs to be added to the primitive library.

Integer division instructions have been omitted, as respective primitives have
not been defined yet. Division instructions can be supported by adding
division or division-step primitives to the primitive library.

Delay slots of branches are not implemented in processors, as the generator
does not support this feature yet. However, the simulator generator sup-
ports delayed branches. To add support to the processor generator, the
construction algorithm for branch prediction needs to be extended.

Variable length instructions are not supported by the generator yet. To sup-
port such instructions, the construction of instruction fetch logic needs to
be extended.

Hybrid 16/32 bit wide instruction sets (e.g. ARM Thumb or MIPS16) are
used in embedded systems, to reduce code size. Such 16-bit extensions
can conveniently be specified in ViDL, although they overlap with 32-
bit instructions and require reconfiguration of the instruction decoder.
However, they involve variable length instructions and are therefore not
supported by generators yet.

182 CHAPTER 8. EVALUATION

Embedding of the program counter into ARM’s register file has been omit-
ted, as only one storage per architectural interface is supported by the
generator yet.

The solution for most of these restrictions is considered a matter of program-
ming. Although this list is quite long, these restrictions only have an impact
on exceptional and very few “general purpose” instructions. Almost all data
processing instructions, control instructions and load/store instructions have
exactly been specified, without any modification of semantics.

8.3 Generator speed

The simulator generator and the processor generator are fast. The speed of a
generator is a major objective in practice. A generator that takes one day to
produce a simulator or processor will hardly be accepted by users, as it defers
development and makes iterative improvements virtually impossible. During
development of generators, care has been taken to implement efficient data
structures and algorithms. Using profiling tools, like Valgrind, bottle necks
have been detected and eliminated in both generators. As a result, generating
a processor or simulator is a matter of minutes or even seconds.

To evaluate the speed of the generators, many simulators and processors have
been generated. Generating simulators of 13 different instruction sets has taken
3.5 minutes, i.e. 17 seconds per simulator on average. The longest generation
took 26 seconds for a 257-bit wide ARM simulator and the fastest (OISC) was
finished after less than 1 second. The generation of the 83 processors that have
been used for all evaluations took 118 minutes, i.e. 85 seconds per processor
on average. The generation time significantly depends on the complexity of the
instruction set. Generating a processor for OISC takes 1 second, whereas the
longest time of 4 minutes is required for an ARM processor. As generation is
fast, modified instruction sets can rapidly be evaluated. This allows for iterative
development processes and exploration of the instruction set’s design space.

8.4 Simulator generator

A fast instruction set simulator is crucial for profiling of real word applications
and for testing the specification by simulating an extensive set of test programs.
The main objective of this section is therefore to show, that generated simula-
tors are fast and that the implemented generation methods are effective. For
evaluation, the ARM instruction set is regarded. The generated simulators of
the other instruction sets yield similar results.

After describing the evaluation environment (Section 8.4.1), characteristic
classes of ARM instructions are introduced, which significantly differ in simula-
tion speed (Section 8.4.2). Benchmarks for these classes are then used to eval-
uate simulation speed. It is shown, that simulation is also fast for ultra-wide
instruction sets (Section 8.4.3), by simulating 64-bit to 256-bit wide variants

8.4. SIMULATOR GENERATOR 183

Copy Status to GP
Compare

Multiply Double
Multiply Single

Load (Byte/Half)
Load (post modify)
Load (pre modify)
Load

Count leading Zeros
Branch

Arithmetic & Status

Arithmetic
T T T
0 20 40 60 80 100 120 140 160

Execution Speed [MIPS]

Figure 8.4: Simulation speed in million instructions per second (Mips) for char-
acteristic instruction classes.

of the ARM ISA. Tailoring the simulator implementation to the width of the
host computer improves simulation speed (Section 8.4.4), as shown for 32-bit
and 64-bit wide C-code. Optimizations that are implemented in the simula-
tor generator significantly accelerate simulation (Section 8.4.5). For evaluation,
each optimization has been deactivated separately. The speed of the resulting
simulator has then been compared to the fully optimized simulator.

8.4.1 Setup

The ISS has been evaluated on an Intel® Core™2 Duo E8400 machine at 3 GHz
running Linux. The generated ISS code has been compiled using GCC-4.4.5
with optimization level -03 turned on. To measure simulation time, the time
command has been used.

To measure the simulation speed of a specific class of instructions, dedicated
benchmarks have been created, in which the respective instructions are exe-
cuted repeatedly. For all simulations, at least 108 ISA instructions have been
executed. Execution time for simulator initialization and control instructions in
the benchmark are insignificant.

8.4.2 Characteristic instructions

The semantics of an instruction have a significant impact on its simulation speed.
In the following, classes of similar instructions are evaluated with respect to sim-
ulation speed. To evaluate the simulation speed, an optimized 32-bit simulator
is generated for the original ARM ISA. Neither the generated simulator code,
nor the ARM ISA have manually been tuned in any way. Figure 8.4 shows the
simulation speed in million ARM instructions per second (Mips) for character-
istic instruction classes. The simulation speed highly depends on the executed

184 CHAPTER 8. EVALUATION

140

120

100

80

B ARM 32
B ARM 64
OARM 65

60
B ARM 256

Execution Speed [MIPS]

40

20

Arithmetic Arithmetic & Status Branch Load Multiply Single Multiply Double

Figure 8.5: Effect of ISA width on simulation speed.

instruction, ranging from 35 Mips to 140 Mips. The simulation of branch, mul-
tiply, count-leading-zeros and copy-status-register instructions is rather fast.
These instructions do not use the shifter-operand of the ARM architecture,
which consumes much simulation time.

The simulation speed of load instructions lies between 55 Mips for plain loads,
35 Mips for pre-incremented loads and 40 Mips for post-incremented loads. The
incrementing load instructions also modify the base register, which slightly re-
duces simulation speed. There is also a notable difference between arithmetic
instructions and arithmetic instructions, which set the status flags in addition.
The evaluation of the status flags (carry, negative, zero and overflow) is expen-
sive and reduces simulation speed by about 25%. In summary, there may be a
large gap between the simulation speed of an instruction and its complexity of
its hardware implementation. Simple operations that are executed concurrently
in hardware need to be simulated sequentially, which has a major impact on
speed. A multiplication on the other hand is complex in terms of hardware, but
can efficiently be simulated.

8.4.3 ISA width

Wide instructions are efficiently simulated, i.e. the simulation speed decreases
only slightly with the width of operations. For evaluation, an ARM instruction
set has been instantiated for a datapath width of 32, 64, 65, and 256 bits.
The ISS has been generated and compiled for a 64-bit system, i.e. slots are
64 bit wide. Figure 8.5 shows, that the simulation speed for the 32 and 64
bit ARM ISAs is approximately the same. A bit-string of the ARM fits into a
single 64-bit slot and therefore only single integer operations are required for
evaluation. The only exception is the double multiplication, which opposed
to other instruction yields a 128 bit wide result for the 64-bit ARM ISA. To
compute the 128 bit result, 4 multiplications must be performed on the host,

8.4. SIMULATOR GENERATOR 185

140

120

100

80

W 1SS32
M 1Ss64
60 O 1SS64 on 32

40

Execution Speed [MIPS]

0 T T T
Arithmetic Arithmetic & Status Branch Load Multiply Single Multiply Double

Figure 8.6: Effect of simulator-width on simulation speed.

which decreases simulation speed.

By increasing the ISA width beyond 64 bits, bit-strings need to be stored in
more than one slot. Thereby a series of 64-bit integer operations is required to
evaluate one n-bit (n > 64) primitive. For the 65-bit ARM, two 64-bit slots are
used to hold a bit-string. The ISS thereby operates on 128 bit data, by applying
a series of integer operations. As the 63 most significant bits of the high order
slot are undefined, the ISS masks intermediate results, where necessary.

The simulation speed of the branch instruction is not affected, as the width
of the program counter has not been modified. The branch target is computed
using 32 bit arithmetic.

As one may expect, widening the ARM ISA has a major effect on multipli-
cation instructions, as the number of 64-bit multiplications grows quadratically
in the number of slots. Although wide multiplication is complex, the generated
ISS simulates 107 256/512-bit multiplication instructions per second.

Evaluation shows, that the generated simulator is very fast, even for excep-
tionally wide instruction sets. Instructions that are not affected by widening
(e.g. branch) retain a high simulation speed. Only those instructions that have
to perform wide computations are affected. Wide arithmetic is efficiently broken
down to host integer arithmetic. Hence, ViDL offers the comfort of arbitrary
precision libraries at the speed of plain integer C-code.

8.4.4 Width of simulator code

The simulator generator can produce C-code of different widths (e.g. 32-bit
and 64-bit). This width can be configured by the developer at generation time.
Tailoring the width to the host system yields significant speed improvements.
For the 32-bit ARM ISA, best results are yielded for 32-bit code, as shown
in Figure 8.6. Generating 64-bit ISS code results in additional masking and
therefore even slows down simulation. The long multiplication benefits from

186 CHAPTER 8. EVALUATION

Multiply Double

Multiply Single

Load

Branch

Arithmetic & Status

Arithmetic

T T
0,00% 50,00% 100,00% 150,00% 200,00% 250,00%
Speed Gain

Figure 8.7: Effect of lazy evaluation on simulation speed.

64-bit wide ISS code, as it computes a 64-bit wide result. As the figure shows,
compiling 64-bit ISS code for a 32-bit machine leads to a slow simulation, as
64-bit integer arithmetic in the ISS code can not efficiently be executed on a
32-bit host.

8.4.5 Generator optimizations

The ISS generator performs a number of transformations and optimizations
to produce efficient ISS code. The effect of some of these optimizations on
the simulation speed is evaluated in the following. For the evaluation of an
optimization X, the fully optimized ISS is compared to the fully optimized ISS
without optimization X.

8.4.5.1 Evaluation strategy

The ISS generator can generate ISS code with an eager or lazy evaluation strat-
egy, where lazy evaluation significantly increases simulation speed. Using eager
evaluation, all operations are evaluated in a single bottom-up pass. Each oper-
ation is evaluated exactly once and the result is then reused. The latter is valid,
as primitives are free of side-effects. Using eager evaluation, a primitive is always
evaluated, whether the result is used or not. In contrast, lazy evaluation com-
putes the result of a primitive only, if it is actually used, i.e. when it affects the
processor state. The implementation of lazy evaluation uses a recursive bottom
up evaluation with caching of previously computed results. Figure 8.7 shows
the speed gain by using lazy evaluation, instead of eager evaluation. In average,
the speed is increased by 120%. As the multiplication instruction is already
simulated efficiently, the relative speed gain becomes even clearer (210%).

8.4.5.2 Instruction decode cache

Using a decode cache, an instruction is decoded at most once. The association
between instruction address and instruction is then cached and reused through-
out simulation. The decode cache significantly increases simulation speed, es-

8.4. SIMULATOR GENERATOR 187

Multiply Double

Multiply Single

Load

Branch

Arithmetic & Status

Arithmetic

T T T T T
0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00%
Speed Gain

Figure 8.8: Effect of decode cache on simulation speed.

Multiply Double

Multiply Single

Load

Branch

Arithmetic & Status

Arithmetic

T T
0,00% 5,00% 10,00% 15,00% 20,00%

Speed Gain

Figure 8.9: Effect of rewriting on simulation speed.

pecially of instructions that are dominated by decoding. Figure 8.8 shows the
speed gain by using a decode cache. Depending on the class of instructions, a
speedup of up to 60% is reached. Especially instructions that are dominated
by decoding benefit from a decode cache. The multiplication instructions for
instance are efficiently simulated, but have a depth of 7 in the decision tree,
which means that the ISS has to perform approximately 7 branches® to decode
the instruction.

8.4.5.3 Term rewriting

Term rewriting is used in the generator to simplify the DFG, for example by
strength reduction or partial evaluation. Term rewriting leads to more efficient
C-code and a faster simulator. For the instruction classes in Figure 8.9, a speed
gain between 4% and 17% is reached. For some instructions, term rewriting
does not seem to have an effect. However, this does not mean that the ISS
generator did not enhance the ISS-code. It shows that some simplifications
done by the ISS generator can equally be performed by the C-compiler. As

3This is the nesting depth of “if-then-else” and “switch” statements in the generated C-Code.
The actual number of branches also depends on compiler optimizations.

188 CHAPTER 8. EVALUATION

Multiply Double

Multiply Single

Load

Branch

Arithmetic & Status

Arithmetic

T
0,00% 20,00% 40,00% 60,00% 80,00% 100,00%

Speed Gain

Figure 8.10: Effect of write merging on simulation speed.

mentioned, the ISS-code is compiled with a high optimization level (-03). If
for instance constant expressions are not evaluated by the ISS generator, they
are evaluated by the C-compiler and therefore the optimization of the generator
does not become visible. A speed gain therefore means that the ISS generator
applied optimizations that can not be performed by the C-compiler.

8.4.5.4 Merging of write accesses

The simulator generator includes a “Write Merge” optimization, which detects
and merges write accesses to the same storage. For the ARM ISA for instance,
multiple write accesses to separate status bits are merged to a single write
access to the whole status register. The diagram in Figure 8.10 clearly shows
that instructions that set status bits are accelerated by this optimization. The
execution speed of these instructions is increased by 92%. Instead of performing
4 sequential write accesses to the status word for each status flag (C,N,Z, V), only
one merged write access is performed. This reduces the overhead for masking
and the number of transactions by a factor of 4. The remaining instructions are
not affected by the optimization and the speed is therefore nearly unchanged.

8.4.5.5 Summary

It has been shown, that the optimizations of the generator are essential for effi-
cient simulation. Omitting one or more of these optimizations decreases simula-
tion speed notably. The ISS reaches a simulation speed of 60 Mips to 120 Mips
on an Intel Pentium 3 GHz desktop processor. The simulator is implemented
using platform independent standard C-code, i.e. the code does not include in-
line assembly or compiler specific extensions to further increase the simulation
speed. Neither the ViDL specification of ARM nor the generated simulator code
has manually been tuned to increase simulation speed.

Compared to other interpretative simulators (~ 10 Mips), the generated sim-
ulator is quite fast (= 60 Mips). However, it is slower than simulators that ap-
ply just in time compilation and binary translation. The latter reach simulation

8.5. PROCESSOR GENERATOR 189

speeds of 200 Mips to 800 Mips. Generating such a simulator is considered future
work.

8.5 Processor generator

This section evaluates the quality of generated processors with respect to phys-
ical and dynamic characteristics. The former includes the estimated clock fre-
quency, chip area, and power consumption of a physical processor. These figures
have a major impact on production costs and the application area of the pro-
cessor. For instance, a processor with high power consumption is not suited for
mobile applications. Dynamic characteristics of a processor comprise pipeline
stalls and penalties due to misprediction. These figures determine how efficient
a certain program can be executed. For instance, long instruction latencies
and high penalties likely lead to a much lower number of executed instructions
compared to the processors clock frequency.

To give a basic impression of the generator’s quality, processors of major in-
struction sets are presented first (Section 8.5.2). The microarchitectural design
space of these processor is explored afterwards (Section 8.5.3), to demonstrate
the benefits of ViDL and the flexibility of the processor generator. It is also
shown that the target frequency parameter (Section 7.6.3) effectively guides de-
cisions of the processor generator on microarchitectural aspects. A comparison
between generated and handcrafted processors is presented using the example
of the CoreVA instruction set (Section 8.5.4). The scalability of the processor
generator with respect to exceptional instruction sets is examined at the exam-
ple of OISC (Section 8.5.5) and ultra-wide ARM instruction sets (Section 8.5.6).
After evaluating physical characteristics of generated processors, the microar-
chitecture is discussed. In particular, the number of ports (Section 8.5.7) and
the pipeline structure is regarded (Section 8.5.8), to show that the generated
microarchitecture is reasonable. To examine dynamic characteristics, the effect
of different microarchitectures on instruction latencies and branch penalties is
evaluated (Section 8.5.9). Finally, the resolution of data-hazards and control-
hazards is demonstrated, by executing programs on the generated processor in
ModelSim. The resulting waveforms are analyzed with respect to correctness
and efficiency (Section 8.5.10). The setup for evaluation is briefly described in
the next section.

8.5.1 Setup

Processors have been generated on a 2.6 GHz server system*. The generated

VHDL code uses simple VHDL primitives and Synopsys DesignWare datapath
and building block IP. The generated processors have been tested using Model-
Sim 6.4. Therefore, test programs haven been loaded into the memory of the
simulated processor and executed. Waveforms of registers and pipeline-control

432-bit Linux; 2 Intel Xeon E5430 processors; 16GiB of RAM

190 CHAPTER 8. EVALUATION

signals have been checked. A waveform shows the state of a digital signal over
time, similar to an oscilloscope.

Processors have been synthesized using Encounter RTL Compiler v8.10 from
Cadence. Synthesis was performed for STMicroelectronics 65nm low power
standard cell technology. A synthesis breaks the register-transfer level descrip-
tion (VHDL) down to a technology specific netlist of standard cells. A standard
cell is a low level implementation of a digital building block, such as a logical
NAND-gate, a 2-bit full adder or a flip-flop. The netlist defines the set of stan-
dard cells and their interconnection. Synthesis has been performed for worst
case conditions, which means that the digital circuit has been dimensioned for
a lowered supply voltages of 1.1V and a chip temperature of 125°C. Worst case
conditions have a negative impact on synthesis results, but ensure correct oper-
ation of the final chip, which may then even be run at a higher clock frequency.

Synthesis has been performed for the entire processor core, i.e. all func-
tional units and all registers. Data- and instruction-memory have been omitted,
to evaluate the generated core only. The process for synthesis is described in
Section 8.1. Each processor has been synthesized with a very tight timing con-
straint of 1ns (corresponds to 1 GHz) first, to determine the critical path and
the related feasible timing ¢,,;, = 1ns — SLACK. To maximize clock frequency
in a second pass, synthesis has been constrained for 1.05 * ¢, i.e. almost the
lowest feasible timing. Besides figures on clock frequency, synthesis also esti-
mates power consumption and chip area. Estimation of power consumption is
based on a statistical switching probability of 0.2, which has proven to be a
good approximation in practice. Area estimations include the precise area of
standard cells and estimated area for routing.

8.5.2 Overview of generated processors

In the following, physical characteristics (clock, power, area) of generated pro-
cessors are presented. A comparison to a handcrafted processor is given later in
Section 8.5.4.

Figure 8.11 shows the synthesis results for ARM, MIPS, Power, CoreVA,
DNACore and OISC. The ARM and MIPS processors have been generated for
a high target frequency of 500 MHz, Power for 400 MHz and DNACore and
OISC for 100 MHz. The target frequency and its impact on clock, power and
area is discussed in the next section. Under worst case conditions, all generated
processors reach a clock frequency of more than 600 MHz. The frequency can be
considered as high, especially since a low power technology has been used. The
clock frequency of the OISC exceeds 1 GHz. It is limited by a 32-bit adder for
computation of the next instruction address. The estimated power consumption
lies in the range of 20mW to 160 mW. Surprisingly, the generated ARM pro-
cessor has the highest power consumption, although it is known as a processor
for low power applications. The high power consumption is a result from deep
pipelining, which is itself a result of the high target frequency (500 MHz). Re-
ducing the target frequency leads to a shorter pipeline and significantly reduces
power consumption. As shown later the power consumption of the ARM pro-

8.5. PROCESSOR GENERATOR 191

1200 180
160
1000
E 140
N
L 800 £ 120
= =
2 S 100
g 600 — g
g S 80
g 2
I 400~ S 60+
5 =
S 200 g 07
o T o
o 20—
0 - 0 -
MIPS DNACore CoreVA MIPS DNACore CoreVA
ARM Power olsc ARM Power olsc
0,50
0,45

Chip Area [mm”2]

MIPS DNACore CoreVA
ARM Power olsc

Figure 8.11: Clock frequency, power consumption and chip area of generated
Processors.

192 CHAPTER 8. EVALUATION

cessor can be reduced to 28 mW for a target frequency of 200 MHz. It should
further be reduced by enabling clock gating, which likely reduces power con-
sumption by 50%. The effects of target frequency are discussed in the next
Section. As Figure 8.11 shows, the estimated area requirements lie in a range of
0.03 — 0.45mm?. It is nearly proportional to power consumption. As for power
consumption, chip area can significantly be reduced, by generating for lower
target frequencies.

Unfortunately, the results for ARM, Power and MIPS can not be compared
to handcrafted VHDL code, as such implementations are not available. Respec-
tive synthesis results of the processor cores for different technologies appear to
be a well kept secret. For instance, the ARM company only publishes relative
figures, such as “Variant X is 20% faster then variant Y”. Fortunately, a hand-
crafted VHDL implementation of the CoreVA processor has been available for
a comparison (Section 8.5.4).

8.5.3 Exploration of microarchitecture

In the following, the impact of the target frequency on clock frequency, power
consumption and chip area of the generated processors is evaluated. Therefore,
at least 5 processors have been generated for each instruction set. The target
frequency for generation ranges from 100 MHz to 700 MHz, in steps of 100 MHz.
For each target frequency, a processor implementation with a dedicated microar-
chitecture has been generated. In the following, a processor is denoted by the
name of its instruction set and the target frequency. For instance, the ARM_F300
processor has been generated for a target frequency of 300 MHz. All processors
of one instruction set have been generated from the very same ViDL specifi-
cation. Only the target frequency parameter has been varied. This allows for
automatic exploration of the microarchitectural design space.

As Figure 8.12 shows, the target frequency that is passed to the processor
generator successfully guides generation. Remind that the generator aims to
construct the microarchitecture such, that the target frequency is met, while
minimizing latencies and hardware resources.

With an increasing target frequency, the generator reduces the critical path
by deepening the pipeline and by deferring forwarding. This in turn leads to a
higher feasible clock frequency, of the synthesized processor. The highest gain
for ARM, MIPS and Power is encountered between 200 MHz and 500 MHz. The
gain is mainly caused by pipelining of the multiplier. For 200 MHz, the generator
instantiates a non-pipelined multiplier, for 300 MHz a 2 stage multiplier and for
500 MHz a three stage multiplier. In contrast to generated ARM, MIPS and
Power processors, the clock frequency of DNACore processors is nearly constant,
as its ISA does not include multiplication instructions.

As you can see in the Figure, the maximal clock frequency of the synthesized
processor lies approximately 100 MHz over the user supplied target frequency.
The generator estimates the critical path quite conservatively. The generator
may be adjusted, such that the relation between both frequencies is nearly linear.

Increasing the target frequency leads to longer pipelines. As a result, chip

8.5. PROCESSOR GENERATOR 193

1200

1000
¥
S 800
= = ARM
8 == Power
g 600 MIPS
g == DNACore
T 400 == DNACore-mult
% e olsc
2 == CoreVA
© 200

0 T T T T T T T
0 100 200 300 400 500 600 700 800

Target Frequency [MHz]

Figure 8.12: Relation between targeted frequency and achieved clock frequency
of synthesized processors.

0,50
0,45 /R
040 /
o / /
<
E 030 T _———> — = ARM
£ — == Power
s 0,25 MIPS
= - ==DNACore
% 020
Q — ==DNACore-mult
5 0.15 oIsc
0,10 == CoreVA
0,05
0,00 T T T T T
100 200 300 400 500 600 700

Target Frequency [MHZz]

Figure 8.13: Effect of target frequency on chip area.

194 CHAPTER 8. EVALUATION

180

160 r——
140 J/

E j—
g 120 / - ARM
o 100 == Power
€
= 80 - - MIPS
2 ==DNACore
8 60 == DNACore-mult
5 40 oisc
= == CoreVA
g 20

0 T T T T T

100 200 300 400 500 600 700

Target Frequency [MHz]

Figure 8.14: Effect of target frequency on power consumption.

area and power consumption increase, as shown in Figure 8.13 and Figure 8.14.
A major rise in power consumption can be seen between 300 MHz and 400 MHz.
This can be attributed to additional resources for pipelining, as well as tighter
timing constraints for synthesis. Remind that a timing constraint is supplied to
the synthesis tool (Figure 8.1), which is not related to the target frequency of the
processor generator. For most ISAs, the synthesis timing constraint is reduced
by approximately 1ns from 2.8ns (360 MHz) to 1.8ns (625 MHz). Lowering
the timing constraint (synthesis) of ARM_F500 from 1.7ns to 1.4ns increases
power consumption by 23%, although the RTL description remains unchanged.
With respect to the microarchitecture, the generated forwarding circuit of the
ARM_F500 processor accounts for 25% of power consumption.

It has been shown that the microarchitectural design space can automati-
cally be explored using ViDL and its processor generator. The instruction set
is specified once and a series of different processors with very different physical
characteristics is generated at no additional effort. According to the area of
application and timing requirements, the developer can select one of the gen-
erated processors. For instance, the generated ARM_F300 processor is energy
efficient, whereas the ARM_F500 processor maximizes performance. The target
frequency does not only affect physical characteristics of the processor, but also
its dynamic behavior, which is evaluated in Section 8.5.9.

8.5.4 Comparison to handcrafted processors

So far, synthesis results of various generated processors have been discussed. To
estimate the quality of the processor generator, these results need to be com-
pared to results for handcrafted and optimized VHDL code. However, results
for ARM, MIPS and Power can not be compared. Neither are respective HDL
implementations freely available, nor have synthesis results been published for
the processor core and similar chip technologies. Most publications on these
commercial processors only make relative statements on physical characteris-

8.5. PROCESSOR GENERATOR 195

tics. Fortunately, handcrafted and optimized VHDL code has been available for
the CoreVA® processor. This section therefore compares this implementation to
the generated CoreVA processors.

In the following, minor differences in the handcrafted and the generated
processors are explained. Physical and dynamic characteristics of processors
are then compared. Finally, the specification time for ViDL is related to that
for manual development of VHDL code.

The comparison between handcrafted and generated processors for CoreVA
is fair. The same synthesis tools have been used with the same configuration
and the same chip technology® has been targeted. Synthesis results consider the
same part of the processor, i.e. the core, including all registers, but excluding
instruction- and data-memory. The CoreVA instruction set has completely been
specified, except for three aspects.

e Branches have no delay slots.
e Division instructions are not specified.

e The 64-bit wide move-immediate instruction has been replaced by a “move
high” instruction and a “move low” instruction.

These aspects should have a minor impact on synthesis results. The hardware
implementation of the 64-bit move instruction is very simple. The SRT division
step-unit accounts for less than one 1% of chip area. It does not contribute to the
critical path and does therefore not affect the processor’s frequency. The non-
delayed branch even introduces a tighter timing for the computation of the target
address and the condition. One can therefore assume that the modifications
barely improve synthesis results of the generated processors.

Figure 8.15 shows the synthesis results for the handcrafted CoreVA processor
and 5 generated implementations. For all processors, clock gating has been
activated for synthesis. Clock gating is a method to reduce power consumption
of digital circuits, by deactivating unused parts, at the expense of an additional
propagation delay. It can automatically be added by synthesis tools.

As Figure 8.15 shows, the pipeline depth of the generated processors ranges
from 4 stages to 7 stages, increasing with target frequency. For a target fre-
quency of 300 MHz, the generated pipeline matches the depth of the hand-
crafted one. The clock frequency, power consumption and area requirements
of generated processors increase with pipeline depth. The clock frequencies
of generated processors lie in the order of the handcrafted implementation.
The 4-stage processor CoreVA_F100/nRx (target frequency 100 MHz; no bypass-
relaxing) is 18% slower and the 7-stage processor CoreVA_F400 is 37% faster
compared to the handcrafted implementation. Considering the same pipeline
depth, the CoreVA_F300 processor faster, but requires approximately 3 times as
much power and area. The high values for power and area may be attributed
to the simple hardware sharing method that is implemented in the generator.

5scalar version (not VLIW)
6STMicroelectronics 65 nm low power

196 CHAPTER 8. EVALUATION

500
450
400
350 -

300
250 -
200 -
150 -

Pipeline Depth [Stages]
Clock Frequency [MHz]

100
50

0
Hand nRX 100 200 300 400 Hand nRX 100 200 300 400

Target Frequency [MHz] Target Frequency [MHz]

80 0,5

70 0,45

0,4
60

0,35

50 0,3

40

0,25

30 027

0,15
20
0,1

Power Consumption [mW]
Area Requirements [mm*2]

107 0,05 -

0 - 0 -
Hand nRX 100 200 300 400 Hand nRX 100 200 300 400
Target Frequency [MHz] Target Frequency [MHz]

Figure 8.15: Clock frequency, power consumption and chip area of a handcrafted
and multiple generated CoreVA processors for activated clock gating.

8.5. PROCESSOR GENERATOR 197

More sophisticated methods can significantly increase the degree of sharing and
thereby reduce area as well as power consumption.

The dynamic behavior of the generated CoreVA processors is similar to the
handcrafted one. The latter has a latency of 0 for nearly all (95%) instructions,
except for multiplication- and load-instructions. For the CoreVA_F100/nRx pro-
cessor, all instructions have a latency of zero and branches have no penalty. With
increasing pipeline depth, the number of zero-latency instructions decreases to
73% for the 7T-stage CoreVA_F400 processor.

Specifying the instruction set by a student took two month, compared to ap-
proximately one year for a manual processor implementation by an experienced
VHDL developer. Thanks to generation, testing of generated pipeline control
can be omitted. Besides, a compatible simulator has been generated at no extra
effort. Correctness of the ViDL specification can easily and efficiently be tested
using this simulator. The microarchitectural design space has automatically
been explored, by generating processors with pipelines from 4 to 7 stages.

Summing up, processors of similar performance (by means of clock frequency
and CPI) have been generated in a very short time. Power consumption and
area requirement are comparably high, but are expected to be reduced in future
by hardware sharing methods.

8.5.5 OISC — A simple processor

The complexity of generated processors scales well with the complexity of in-
struction sets. In particular, simple instruction sets lead to small and fast imple-
mentations. The entire datapath, including ALU, register ports and forwarding
is tailored to the semantics of instructions. To examine the relation between
instruction set and generated processor, an OISC (Section 2.1.3) is evaluated in
the following.

As presented in the previous section, the power consumption and chip area
of OISC processors is low, while reaching high clock frequencies. For 0ISC_F100,
the register file accounts for 78% of chip area and 73% of power consumption.
The remainder is mostly consumed by a 32-bit adder. The 0ISC_F100 processor
does not include much overhead, such as unused functionality of an ALU or
excessive register ports.

8.5.6 Wide instruction sets

This section briefly evaluates processors for ARM instruction sets of different
widths. ARM instruction sets of different widths have already been explored
in the context of the simulator (8.4.3). Figure 8.16 shows the synthesis results
for ARM_F500 processors with a width from 32-bits to 257-bits. The width of
257 is not a typo, but has been chosen as it is a prime number. Chip area
rises and the clock frequency falls nearly linear in the number bits. The results
also demonstrate that the generator can cope with very large and exceptional
widths. In addition, it shows, that all bit-widths can statically be determined

198 CHAPTER 8. EVALUATION

4,50

4,00

w
)
=)

w
o
S

2,50

1,50

Clock Frequency [MHz]
Chip Area [mm~2]
N
8

1,00

0,50

0,00 —
32 64 96 128 160 224 257 32 64 96 128 160 224 257
Width of ARM ISA [Bit] Width of ARM ISA [Bit]

Figure 8.16: Effect of width of ARM instruction sets on processor frequency
and chip area.

by type inference, as required to generate VHDL code. This feature can not be
taken for granted, as the discussion of Lisa (3.6) has shown.

8.5.7 Register ports

Register ports are not specified explicitly by the developer, but derived by the
generator. Since register ports are expensive in terms of chip area and power
consumption, the generator aims to minimize their number. For instance, the
generator typically binds mutually exclusive accesses to the same port. Even
non-exclusive accesses are bound to the same port, if the generator can prove
that they always refer to the same address. As a result, single registers always
have only one read port and one write port.

For all evaluated instruction sets, the number of ports has been minimized
by the generator, as shown in Figure 8.17. For each instruction set and storage,
a record of the form S:Rx/Wy is given, where S is the name of a storage, x is
the number of read ports and y is the number of write ports. For instance,
the register file r of ARM has 4 read ports and 2 write ports. Single registers
have only one read and one write port, as all accesses have been merged. The
instruction memory IMEM does not have a write port, as it is only read. The
number of ports of the general purpose register file is most interesting. For the
ARM instruction set, the generator instantiates a register file with 4 read and 2
write ports. These ports are required to avoid conflicts for 64-bit multiplications,
which read two register pairs and write one register-pair at a time. After remov-
ing multiplication instructions, the number of read ports drops to 3. Again, this
is the minimal number of read ports, as arithmetic instructions require one port
for the first operand and two ports for the shifter operand. For some addressing
modes (e.g. <Rm>, LSL <Rs>), the shifter operand accesses two registers. Two
write ports are required, as load instructions write the loaded value and may
modify the base register in some addressing modes. Generated DNACore and

8.5. PROCESSOR GENERATOR 199

--— ARM
IMEM:R1/WO r:R4/W2 cpsr:R1/W1l spsr:R1/W1l pc:R1/W1 mem:R1/W1

-—— ARM-nomult
IMEM:R1/WO r:R3/W2 cpsr:R1/W1 spsr:R1/Wl pc:R1/W1 mem:R1/W1

-—— DNA Core
IMEM:R1/WO gpr:R2/W1 swa:R1/W1 swb:R1/W1 swh1l:R1/W1 swh2:R1/W1
swh3:R1/W1 swh4:R1/W1 swm:R1/W1 pc:R1/W1 mem:R1/W1

--— MIPS
IMEM:R1/WO gpr:R2/W1 hi:R1/W1 lo:R1/W1 pc:R1/W1 mem:R1/W1

-—-— Power
IMEM:R1/WO mem:R1/W1 pc:R1/W1 CR:R1/W1 LR:R1/W1 CTR:R1/W1
GPR:R3/W2 XER:R1/W1

Figure 8.17: Number of generated register ports for major instruction sets.

MIPS processors include a register file with two read and one write port, as it
is expected for 3-address instructions. The 64-bit multiplication instructions do
not introduce further ports, as they have 32-bit source operands and store their
64-bit result in the dedicated hi/lo registers.

Provided that all resource hazards are eliminated by the generator, the num-
ber of register ports is minimal. This also holds true for realistic instruction sets,
which involve exceptional addressing modes and may include multiple references
to the same register. The automated adaption of ports has been demonstrated
by removing ARM’s multiplication instructions. No other part of the ViDL
specification had to be changed, as ViDL completely abstracts from register
ports.

8.56.8 Structure of generated pipeline

This section presents an in-depth evaluation of generated pipelines. It focuses
on the MIPS instruction set, as evaluation is very comprehensive and time
consuming. The MIPS instruction set has some nice peculiarities, such as a
dedicated register for multiply-accumulate instructions. Figure 8.18 is meant
to give an impression of the complete pipelined dataflow graph for MIPS. The
graph has been exported by the processor generator and layouted using the
dot tool from the graphviz graph layout package. As it is quite large, a more
abstract visualization is used in the following, which focuses on storage accesses
and significant data-dataflow.

Figure 8.19 shows the structures of two generated pipelines. Their configu-
ration and the generated schedule are shown below the diagrams. The configu-
ration is supplied by the user and basically guides the generator. It significantly

200 CHAPTER 8. EVALUATION

Figure 8.18: Dataflow graph of pipelined MIPS processor, as used for VHDL
code generation.

(a) MIPS_F600 processor (b) MIPS_F100 processor
PC IMEM - MEM . gpr hi.lo PC IMEM . MEM . gpr hi.lo
0 0
1 1
2 2
3 3
4 4
5
--- CONFIG --- --- SCHEDULE ---
6 TargetFreq := 100MHz IMEM RD=0 WB=# BP=#
RelaxForward:= yes gpr RD=1 WB=4 BP=1
MEMLatency := 1 hi RD=2 WB=3 BP=#
lo RD=2 WB=3 BP=#
pc RD=0 WB=2 BP=#
--- CONFIG --- --- SCHEDULE --- mem RD=2 WB=3 BP=#
TargetFreq := 600MHz IMEM RD=0 WB=# BP=#
RelaxForward:= yes gpr RD=2 WB=6 BP=2
MEMLatency := 1 hi RD=5 WB=6 BP=#

lo RD=5 WB=6 BP=#
pc RD=0 WB=3 BP=#
mem RD=4 WB=5 BP=#

Figure 8.19: Structure of generated MIPS pipeline for a target frequency of (a)
600 MHz and (b) 100 MHz.

8.5. PROCESSOR GENERATOR 201

affects the structure of the generated pipeline. The adjoining schedule informa-
tion shows the read stage, the write stage and the optional bypass stage for each
storage. For instance, for a target frequency of 600 MHz, the general purpose
registers (gpr) are read in stage 2 and written back in stage 6. The bypasses of
the forwarding circuit are joined in stage 2. For the other storages, forwarding
is omitted, as the distance between read and write stage is 1. Note, that the
program counter is regarded as register for the task of scheduling.

The illustration of the pipeline structure in Figure 8.19 shows the location
of ports and intervening dataflow. Each row in the figure corresponds to one
pipeline stage, which are numbered from 0 through 6. Each column is associated
with one storage. The storages hi and lo use a common column, to simplify
visualization.

In the following, it is shown, that the generated pipeline has a short length
and avoids forwarding in consideration of dataflow dependencies (Section 8.5.8.1),
propagation delays and latencies (Section 8.5.8.2), as well as the user supplied
target frequency (Section 8.5.8.3). To demonstrate scalability of the processor
generator, a very short pipeline (Section 8.5.8.4) and a non-pipelined processor
(Section 8.5.8.5) are presented. Finally, a generated MIPS pipeline is compared
to a pipeline that is proposed by Hennessy and Patterson (Section 8.5.8.6).

8.5.8.1 Dataflow and its dependencies

In the following, the dataflow (red lines) in Figure 8.19 is briefly explained. For
the sake of simplicity, irrelevant dataflow has been omitted. In the first stage
(stage 0), the program counter is read. The resulting instruction address is used
to index the instruction memory (IMEM) in stage 0/1. The instruction word
from IMEM is decoded, yielding a set of operands. The operands are (for in-
stance) used to index the general purpose register file in stage 2. The values from
the register file are used by register branches and conditional branches, which
set the program counter in stage 3. Besides, values from gpr are (indirectly)
used to address the data memory (MEM) and to execute arithmetic instructions
as well as multiplications. Multiplications write their results to hi/lo registers
in stage 6. Multiply-accumulate instructions also read these registers for accu-
mulation. The “move from high/low” instructions (mfhi/mflo) transfer values
to the general purpose register file, which is written in stage 6. Besides, the gpr
register file is written by arithmetic and load instructions.

The scheduler of the generator obeys this dataflow to determine the read
stage and the write stage of each storage (Section 7.6.4). For instance, due
to mfhi/mflo instructions the general purpose registers must be written after
the hi/lo registers have been read. On the other hand, the hi/lo register
can be read after the memory is accessed, since there are no “store high/low”
instructions. Hence, the scheduler is sensitive to dataflow between storages.

202 CHAPTER 8. EVALUATION

8.5.8.2 Propagation delay and latencies

The scheduler yields a short pipeline, while considering the propagation delays
and latencies of functional units. For instance, the pipelined multiplication unit
in Figure 8.19a has a latency of two cycles, which is honored by the distance
between the read stage of gpr and the write stage of hi/lo. In contrast, the
dataflow between read and write of hi/lo involves only an addition, which
has an estimated propagation delay that does not exceed one instruction cycle.
These registers are therefore read and written in subsequent stages, to avoid
forwarding.

8.5.8.3 Considering target frequency

The scheduler also considers the user supplied target frequency. This can clearly
be seen by comparing the pipeline structure that has been discussed so far
(Figure 8.19a) with the structure that is generated for a target frequency of
100 MHz (Figure 8.19b). For the lower target frequency, the multiplication is
not pipelined and memory address computations are estimated to require one
stage only. Besides, stages 1 and 2 are merged to a “decode and read” stage. As
a result the pipeline length is reduced by 2 stages to a 5-stage pipeline.

For now, this is the minimal pipeline length due to synchronous memory
accesses and bypass-relaxing. The memory accesses account for two stages and
relaxing for one stage. Together with instruction fetch and write back of a
baseline pipeline, this adds to 5 stages. The instruction and data memory are
considered to be synchronous, i.e. they have a latency of one cycle. If the
address of the memory is set in cycle 4, the result becomes available in cycle
t 4+ 1. Synchronous memory can be imagined to contain one row of pipeline
registers, which account for the latency. Memory accesses are therefore placed
on the border of pipeline stages, as shown in Figure 8.19.

As mentioned, one pipeline stage is introduced by relaxing of gpr’s bypasses.
Relaxing eliminates bypass-carried critical paths, by moving dataflow into later
pipeline stages. For instance, the access on MEM and its address computation is
moved into stage 2.

8.5.8.4 Reducing pipeline length

The pipeline length can be reduced by deactivating bypass-relaxing. The result-
ing 4-stage pipeline in shown Figure 8.20a. The access to the data memory and
the write stage of hi/lo move up by one stage. As a result, all instructions have
a latency of zero, i.e. the pipeline is never stalled during execution. Latencies
are discussed later in Section 8.5.9. A major disadvantage of this simple pipeline
is a longer critical path, which leads through the bypass. Synthesis shows, that
the 4-stage pipeline yields a frequency of only 260 MHz, whereas the relaxed
5-stage pipeline exceeds 350 MHz. Bypass-relaxing is therefore configurable and
can be controlled by the user to tailor the processor to its area of application.

8.5. PROCESSOR GENERATOR 203

(a) MIPS_F100_nRX processor (b) MIPS_F100_nRX_ASYNC processor

PC IMEM | MEM © gpr hi,lo PC IMEM | MEM | gpr hi,lo

--- CONFIG --- --- SCHEDULE ---

3 TargetFreq := 100MHz IMEM RD=0 WB=# BP=#
RelaxForward:= yes gpr RD=0 WB=1 BP=#
MEMLatency := 0 hi RD=0 WB=1 BP=#

lo RD=0 WB=1 BP=#
pc RD=0 WB=0 BP=#

--- CONFIG --- --- SCHEDULE --- mem RD=0 WB=1 BP=#
TargetFreq := 100MHz IMEM RD=0 WB=# BP=#
RelaxForward:= no gpr RD=1 WB=3 BP=1
MEMLatency := 1 hi RD=1 WB=2 BP=#

lo RD=1 WB=2 BP=#
pc RD=0 WB=1 BP=#
mem RD=1 WB=2 BP=#

Figure 8.20: Structure of generated MIPS pipeline (a) without bypass-relaxing
and (b) with asynchronous memory.

8.5.8.5 A non-pipelined implementation

The processor generator can also produce a non-pipelined processor. Therefore,
the length of the pipeline is further reduced, by defining memories to be asyn-
chronous instead of synchronous. Technically, this is achieved by setting the
memory’s latency in the delay library from 1 to 0. This change is a matter of
seconds and does not require any modifications in the generator. The resulting
pipeline is shown in Figure 8.20b. It consists of two stages and does not include
any forwarding. In general, a two-stage pipeline is equivalent to a non-pipelined
implementation. It should be noted, that the generated processor has not been
synthesized, as the underlying memories are synchronous.

8.5.8.6 Comparison

The generated MIPS pipelines are similar to a manually designed pipelines. The
MIPS architecture was developed in 1981 by a team around John L. Hennessy.
It is described in the book Computer architecture [24] by Hennessy and Pat-
terson. The authors present an exemplary MIPS pipeline, which is shown in
Figure 8.21b. To evaluate the quality of the processor generator, this pipeline is
compared to the generated MIPS pipeline in Figure 8.21a. For a target frequency
of 400 MHz (MIPS_F400), the generator derives the same pipeline structure, that
is proposed by Hennessy and Patterson, namely IF,DC/RD,EX,MA,WB. Both ar-
chitectures apply forwarding only on the general purpose registers and have a
load latency of one cycle, which is interlocked. Both pipelines perform branches

204 CHAPTER 8. EVALUATION

(a) MIPS_F400 processor

PC IMEM | MEM © gpr hi,lo (b)
12
ig
3%
0 15
[i]z
z
1 3 215 |5
l“\ l A
5
lf!
’ L
:
g
--- CONFIG --- —-- SCHEDULE ---
TargetFreq := 400MHz IMEM RD=0 WB=# BP=#
RelaxForward:= yes gpr RD=1 WB=4 BP=1
MEMLatency := 1 hi RD=3 WB=4 BP=3 §
lo RD=3 WB=4 BP=3 l Jg
pc RD=0 WB=2 BP=# Sy
mem RD=2 WB=3 BP=# I

Figure 8.21: Comparison of (a) generated MIPS pipeline and (b) MIPS pipeline,
as proposed in the book Computer Architecture [24].

8.5. PROCESSOR GENERATOR 205

(a) PC (b) gpr (C) Latency 0:

0 0 hi madd ,maddu,msub,msubu,
- mthi,mult,multu

1 1 lo madd ,maddu,msub,msubu,

mtlo,mult,multu
. Penalty 0:

2 b,bal,j,jal 2 mem sb,sh,sw,swl,swr
<
3 3
““““ Latency 0:
— s Penalty 2: — add,addi,addiu,addu,and,andi,bal,
4 beq,bgez,bgezal, 4 bgezal,bltzal,clo,clz,ext,ins,jal,jalr,
bgtz,blez,bltz, lui,movn,movz,nor,or,ori,rotr,rotrv,
bltzal,bne,jalr,jr — seb,seh,sll,sllv,slt,slti,sltiu,sltu,sra,
5 5 srav,srl,srlv,sub,subu,wsbh,xor,xori
WB s
6 6 * Latency 2:

1b,1bu,lh,lhu,lw,lwl,lwr,
mfhi,mflo,mul

Figure 8.22: (a) Branch penalties and (b,c) instruction latencies for the gener-
ated MIPS_F600 processor.

in stage 2. However, the generated MIPS processor does not implement branch
delay-slots and triggers unconditional branches in stage 1 (Section 8.5.9). Note,
that the generated multiplier is pipelined and utilizes the EX and MA stage. In
contrast, the generated MIPS_F100 pipeline in Figure 8.19b uses a non-pipelined
multiplier.

8.5.9 Latencies and penalties

Instructions have a low latency, which increases with the user supplied target
frequency. The same holds for penalties of mispredicted branches. Figure 8.22
shows the latencies and penalties of a MIPS_F600 processor. Although, this
processor has a long 7-stage pipeline, most instructions have zero-latency, i.e.
can be executed consecutively without causing any pipeline stalls. Write accesses
tohi, 1o and mem always have a latency of zero (Figure 8.22c¢), due to the location
of read and write stages. Data-hazards on the general purpose register file are
mostly resolved by forwarding (blue arrow). Only the load instructions and the
“move from hi/lo” instructions (mfhi, mf1lo) have non-zero latencies. The latency
of the latter can be attributed to the pipelined multiplication. Effectively, the
latency of multiplication instructions is transferred to mfhi and mflo via the
hi/lo registers. As a result, data-dependent multiply-accumulate instructions
can be issued in every cycle (e.g. in the context of signal processing applications),
without causing any stalls. The latency of load instructions results from the
synchronous data memory and address computations. Summing up, most data-
hazards are resolved by forwarding. Only few “critical” instructions involve
interlocking and have a non-zero latency. The majority of instructions has zero-

206 CHAPTER 8. EVALUATION
100%
90%
v 80%
5 70%
‘g 60%
§ 50% 02 Cycles
- 40% W 1 Cycle
Q 30% B No Penalty
g 20%
10%
0%

100/nRX 100 200 300 400 500 600
Target Frequency [MHz]

Figure 8.23: Effect of target frequency on branch penalties for MIPS.

100%
90%
80%
70%

2 60%

0 o

g 50% O 2 Cycles
B 40% Ml 1 Cycle
o

30% B No Latency
20%
10%

0%

100/nRX 100 200 300 400 500 600
Target Frequency [MHz]

Figure 8.24: Effect of target frequency on instruction latencies for MIPS.

latency and can tightly be scheduled without causing any stalls during execution.

The penalty for mispredicted branches depends on the semantics of branch
instructions. Relative branches that are executed unconditionally have a penalty
of zero. Executing such instructions does not involve any speculative execution
and instruction-canceling. Misprediction of other branches (register branches
and conditional branches) causes a penalty of 2 cycles. These branches rely on
results that are computed in stage 3. The instructions in stage 1 and 2 are
therefore executed speculatively and may be canceled, which implies a penalty
of 2.

8.5.9.1 Effect of configuration

The latencies and penalties of an instructions increase with target frequency.
They can be reduced by deactivating bypass-relaxing. Figure 8.24 shows the
percentage of instructions with a latency of 0, 1 and 2 cycles for different con-
figurations. The same is done for branch instructions and their penalties in
Figure 8.23. For a target frequency of 100 MHz and suppression of bypass-

8.5. PROCESSOR GENERATOR 207

relaxing (100/nRX), all instructions have a latency of 0 and all branches have a
penalty of 0. This means, that the processor does not include any interlocking.
With bypass-relaxing activated, 77% of branches have a penalty of one cycle for
MIPS_100 to MIPS_F300 and a penalty of two cycles for MIPS_400 to MIPS_F600.
The remaining 22% of branches are unconditional-relative and have a penalty
of 0.

With a rising target frequency, the percentage of zero-latency instructions
drops from 90% to 86%. Basically, the latency of load and “move from hi/lo”
instructions increases, till it reaches 2 cycles. Nevertheless, most processor in-
structions have a latency of zero. Their result is directly available to subsequent
instructions via forwarding, without a need for pipeline stalls.

8.5.9.2 Instruction scheduling

All information on branch penalties and instruction latencies presented so far
has been emitted by the processor generator. It is validated in Section 8.5.10
by simulating the MIPS processor on RTL level. The generator solely derives
latencies and penalties from instruction semantics. In particular there is no need
for any manual analysis or specification of further aspects of instructions.

The derived information is not only interesting for evaluation, but may also
be passed to a compiler generator. The scheduler of the compiler can then
consider latencies, such that stalls are avoided. In addition the delay information
that is specified in ViDL can be passed to the scheduler. A scheduler that
considers both, delays and latencies is outlined in [12].

8.5.10 Resolution of hazards

So far, the static pipeline structure and resulting properties of instructions by
means of latencies have been discussed. This section is primarily intended to
demonstrate the resolution of data and control hazards in the generated proces-
sor. Therefore, small test programs are executed on the processor. An image of
each program is loaded into the instruction memory of the simulated processor.
The entire processor core (VHDL code) is then simulated in ModelSim on RTL
level. This includes the pipeline, forwarding, interlocking and pipeline registers.
In contrast, these microarchitectural aspects are not considered by the generated
simulator, which focuses on the instruction set for sake of efficiency.

This section also serves as a proof of concept to show that the pipeline works
correctly and that it has a high throughput of instructions. The throughput is
for instance not limited by unnecessary pipeline stalls or excessive instruction
canceling. The executed programs test error-prone aspects of the processor,
such as forwarding, interlocking, speculative execution and canceling.

Before the execution of programs is discussed, the visualization of wave-
forms in ModelSim is explained. This includes a description of relevant signals
of the generated processors. Afterwards, the resolution of control-hazards (Sec-
tion 8.5.10.2) and data-hazards (Section 8.5.10.3) is demonstrated. The resolu-
tion of data hazards is also compared among different processors that have been

208 CHAPTER 8. EVALUATION

targeted at different frequencies (Section 8.5.10.4). But first, a short introduc-
tion to waveforms is given in the next section.

8.5.10.1 Waveforms in ModelSim

ModelSim is a tool to simulate hardware descriptions, such as the VHDL code of
a processor. The state of signals over time is visualized in ModelSim by so called
waveforms. This section explains how to read such waveforms and describes
the meaning of relevant processor signals. For the explanations, Figure 8.25
is regarded in the following. It shows the assembly code of a test program
on the left and a screenshot of ModelSim on the right. The screenshot shows
the waveforms of selected processor signals. Time advances from left to right.
A timeline is shown at the bottom, together with annotated cycle numbers
(yellow). Interesting parts of the waveforms have been annotated (yellow) and
will be discussed in the next sections. Waveforms have hexadecimal values or
the special value X, meaning “unknown”. The latter shows up, when a register
is read, before it has been written. These values can be ignored, as they do not
affect execution of correct programs.

The program counter signal (pc/next) refers to the instruction address in
stage 0 and matches the instruction address (IA), which is shown on the left of
program code. During execution of linear code, the program counter is increased
by 4 in each cycle. A value of 1 for the pc/trigger/Sx signal means, that a
branch is triggered by the instruction in stage x. The gpr/write0/ signals
denote the address (idx), the value (val) and the write enable (we) of a write
access to general purpose registers. The opc/Sx signal shows the name of the
instruction that is located in stage x. These signals nicely visualize the flow of
instructions through the pipeline. A value of 0 for the nCancel/Sx signal means,
that the instruction in stage x has been canceled. The instruction does neither
write its result back to registers nor does it bypass the result to subsequently
executed instructions. Cancel signals are not displayed for all stages, as some
have been optimized out by the processor generator.

The assembly code on the left of Figure 8.25 uses a conventional notation,
as understood by the gnu assembler (gas). Two things should be noted: First,
1i (load immediate) is a pseudo instruction, that is translated into addiu and
second, the registers $t0 to $t3 are actually aliases for gpr [8] through gpr[11].

8.5.10.2 Control hazards

Figure 8.25 shows the execution of a test program, which contains conditional
(beq) and unconditional branches (b,j). In cycle 2, the branch b at address 34y
is located in stage 1 and triggers a branch to x1 at address 40;,. No instruction
needs to be canceled. In contrast, the conditional branch beq at address 44y
triggers a branch to x2 in cycles 6 and stage 3. The speculatively executed
instructions at address 48, and 4Cy, are therefore canceled in this cycle. Due to
canceling, the write enable signal of gpr is disabled in cycle 8 and 9. The condi-
tional branch at address 5Cy, is not taken. The speculatively issued instructions

209

8.5. PROCESSOR GENERATOR

Program

x0:

$t0, x2
-1
-2
-3
-4

1i $to, 3
beq $t0, $t1, x3
1i $to, 4
1i $t0, 5
beq $t0, $t1, x3
1i $t0, 6
j 10
x3:
1i $to,
1i $to,

AT |+ D NN (¢ N N N N |+ D N Y RN (+ Y N (RN Y ' Y NN '+ N HY '+ N RN (¢ RN N Y N '+ Y R (¢ Y H(+ N

03
00000000

loo Jos oo o oo Joa [
100000001 J00000D00 (00000002 O [

lo il

0000000

\FEFFEFFF |FFFFEFFE J00000DOZ }00000D00 00000004 00000005 |

]

U]

Loop

il

Figure 8.25: Speculative execution in the generated MIPS_F600 processor.

210 CHAPTER 8. EVALUATION

in cycle 8 and 9 are therefore not canceled and take effect. The last two branche
instructions at address 68, and 70, are in an interesting constellation. The
second instruction is executed speculatively. Both branch instructions trigger a
branch in cycle 13. However, the second branch is suppressed, as it is canceled
by the first branch. Execution therefore continues at address 34y, as expected.

To sum up, the example has demonstrated that speculative execution and
canceling works correctly. This also holds true for conflicts between speculatively
executed branches. In case of misprediction, only few instructions need to be
canceled, which results in an efficient execution.

8.5.10.3 Data hazards

Figure 8.26 shows the execution of a small program, which demonstrates for-
warding and interlocking (stalling). It contains applications of the mfhi, mflo
and 1w instructions, which have a latency of 2 cycles for the regarded MIPS_F600
processor. The other instructions, including multiply and multiply-accumulate
(MAC) have zero-latency. In cycle 3, the multiplication at address 24y, reads
its source operands gpr[8],gpr[9] in stage 2. The values are taken from the
bypass, as the results (2 and 3) of the previous instructions (addiu and addi)
have not yet been written back to gpr[8] and gpr[9]. The register still con-
tain the outdated values 0 and -1 (FFFFFFFFy,). Besides, forwarding on gpr
is utilized in cycles 2, 4, 9, 10, 11, and 14. In cycle 6, the result of the multi-
plication appears in hi and lo. The subsequent zero-latency MAC instruction
at address 28y, is executed without any need for forwarding or interlocking. Its
result appears in hi/lo in the following cycle.

In contrast, the mfhi and mflo instructions cause a stall of the data-dependent
add instruction in stage 2 at cycles 7 and 8. As a result, stages 0 and 1 are stalled
as well and bubbles are inserted in stage 3 at cycle 8 and 9. The bubble appears
as a canceled add instruction, which does not take effect. In the same way, the
addi instruction at address 40}, which depends on the loaded value from 1w is
stalled in cycles 12 and 13. The result of the last instruction of the program is
written back in cycle 17.

The example has shown that forwarding and interlocking is correctly applied
to solve data-hazards. Interlocking is only applied if necessary, to maximize
instruction throughput. Considering pipelining, the execution of these 10 in-
structions takes 14 cycles. The average number of cycles per instructions (CPI)
is therefore 1.4.

8.5.10.4 Comparison of microarchitectures

Figure 8.27 shows the execution of the program from Figure 8.26 on 7 different
MIPS processors, which have been generated from the same specification. Next
to each simulation, the name of the processor, its configuration, the derived
latencies, and the estimated clock frequency are shown. Besides, the average
CPI and the resulting number of “million-instructions-per-seconds” (Mips) for

EVALUATION

CHAPTER 8.

212

rated MIPS pro-

8.5. PROCESSOR GENERATOR 213

this program is shown. Instructions that cause data hazards are highlighted in
the waveforms, as well as the end of program execution.

The mips_F100_nRX processor does not involve any interlocking. The CPI
is therefore 1.0 and the number of Mips corresponds” to the clock frequency
from synthesis (260 MHz). With an increasing target frequency, the latency
of 1w, mfhi and mflo rises, which results in an increasing number of stalls
during execution. The CPI therefore rises as well. For mips_F100_nRX through
mips_F400, the clock frequency rises stronger than the CPI. For mips_F600,
the increase in clock frequency does not compensate the increase in CPI, which
results in a reduced number of Mips. Assuming, that an efficient processor
is required and that this program is representative for its area of application,
a developer will likely select the mips_F400 processor, as it has the highest
throughput of instructions.

8.5.11 Generating waveform definitions for ModelSim

The processor generator includes a well working extension to generate waveform
definitions for ModelSim. In ModelSim, waveforms are used to observe the
behavior of an integrated circuit. To test and evaluate a processor, a set of
significant waveforms needs to be defined. This includes meaningful grouping
of waveforms, as well as a concise and schematic naming.

Defining and maintaining dozens of signals for each generated processor is
quite tedious. The processor generator has therefore been extended to generate
these waveform definitions. The definitions are correct and consistent with the
generated VHDL code. An additional register port will for instance result in
further waveforms to be generated. The waveforms are grouped and use a
unified naming scheme. This allows for simple navigation in the waveforms of
different processors. The extension of the generator has been quite complex.
Most signal identifiers need to be assigned in early phases of generation. This
association then has to survive subsequent transformations and optimizations
in the generator. The task is related to the handling of origin information
(Section 7.2.3).

During development, a bug has been found in ModelSim 6.1. If two signals
(of different groups) share the same name, the display of waveforms is unpre-
dictable. The generator circumvents this problem by adding a varying amount
of white space after each name, such that they become literally unique. Their
display on the other hand remains unaffected.

All waveforms shown in previous examples have been defined by the pro-
cessor generator. Figure 8.28 shows the number of waveforms for different pro-
cessors. The number of signals clearly increases with the complexity of the
instruction set and the length of the generated pipeline. Thanks to the gener-
ator extension, a processor can immediately be simulated and observed. The
waveforms are processor specific and consistent to the VHDL code. No addi-
tional information needs to be supplied by the developer. Changes to the ViDL

7Since the processor core is to be evaluated, stalls from the memory subsystem are not
considered.

214 CHAPTER 8. EVALUATION

power_F500
power_F1_nRX
oisc_F500
oisc_F1_nRX
mips_F500

mips_F1_nRX

Processor

dnacore_F500
dnacore-mult_F1_nRX
arm-032_F500
arm-032_F1_nRX

T
50 100 150 200 250

Number of Waves

o -

Figure 8.28: Number of defined waveforms for different processors.

specification or the microarchitectural configuration directly affect waveform
definitions.

8.6 DNACore — A case study on ISE

So far, distinct aspects of the language ViDL, its generators and their products
have been evaluated. This final section presents an all-embracing application
of the system in a typical design scenario, to demonstrate its fitness for prac-
tice. Therefore, the existing MIPS specification is enriched by an instruction set
extension (ISE), which accelerates the execution of the Smith-Waterman algo-
rithm. The resulting instruction set is called DNACore. The Smith-Waterman
algorithm [46] is used in bioinformatics to identify similar molecular subse-
quences in DNA, RNA or proteins. A generated DNACore processor compute
2.6 GCUPS or 57 GCUPS/W. With respect to energy efficiency, it outperforms
desktop-CPU based approaches by a factor of 100 [56].

8.6.1 Development process

To develop the extension, the Smith-Waterman algorithm has been analyzed
and typical use cases in bioinformatics have been gathered (Section 8.6.2). The
resulting extension exploits data parallelism for acceleration and data locality
to reduce memory accesses (Section 8.6.3). It has been specified in ViDL and
added to an existing MIPS specification, yielding the DNACore instruction set
(Section 8.6.4).

The dynamic behavior of DNACore processors has been inspected, by re-
garding latency and pipeline information, which is supplied by the processor
generator. For evaluation, an implementation of the Smith-Waterman algo-
rithm has been programmed, which utilizes the ISE. The extension has been

8.6. DNACORE — A CASE STUDY ON ISE 215

() j () (c) (d)

—

P A

~—

n

Figure 8.29: Data dependences and computation strategies for H.

tested by executing the program on the generated simulator. After testing, the
same program has been executed on the generated processors in ModelSim, to
validate the predicted dynamic behavior (Section 8.6.5). Finally, the generated
DNACore processors have been synthesized for a 65nm STMicroelectronics low
power technology. Their physical characteristics have been presented in Sec-
tion 8.5.3, along with other processors.

8.6.2 Algorithm

The Smith-Waterman algorithm [46] uses dynamic programming to find the
optimal local alignment of two sequences with respect to a scoring function w.
The algorithm is computation intensive, as its runtime is quadratic in the length
n of the compared sequences. In the following, the input of the Smith-Waterman
algorithm is assumed to be a pair of two sequences a, b of length n and m in an
alphabet ¥, where n > m holds.

a=(ay,...,a,) X"
b= (b1,...,by) €X™

To find the optimal local alignment, the algorithm computes a matrix H of size
m X mn, which is defined by the following recurrence

0 fori=0Vvj=0
0

H(i,j) = max H(i—1,j = 1) + w(ai, b)) for1<i<mAl<j<n
H(i—1,5) +w(a;,’—") T -

H(j—1)4+w(—',b))

The data dependences within the matrix H are illustrated in Figure 8.29a.
Using m processing elements (PEs), the matrix can be computed in n + m
steps, as shown in Figure 8.29b. As only few elements are computed at the
beginning and at the end, utilization of PEs is low (&~ 0.5). In general , the

216 CHAPTER 8. EVALUATION

number of computation steps and the utilization is given by

-1
Steps = 7(714—]{;)m
k
n
Util= ———
! n+k—1

To yield a good trade-off between speed and utilization, the proposed in-
struction set extension uses k < m PEs to compute k rows of the matrix in
parallel, as shown in Figure 8.29c. For typical values like n = m = 512 and
k = 4, this yields a high utilization of 0.99. During 100 computation steps, the
PEs compute 397 elements of the matrix.

If only the alignment score is to be computed, memory accesses to the matrix
H can be reduced. Figure 8.29d shows, which parts of H are alive (green), i.e.
are going to be read by pending computations. To compute the score, it is
sufficient to store only these n alive elements of the matrix.

8.6.3 Instruction set extension

The instruction set extension consists of 7 instructions, which update multiple
cells of H in parallel. It also defines a set of dedicated processor registers, to
reduce utilization of the main memory. Besides, memory accesses are reduced
by packing multiple symbols into one data word. In the following it is assumed,
that [= 4 adjacent 8-bit-values of a, b and H are packed into one 32-bit word.
This way, 4 symbols are transferred by one memory access.

The set of internal registers is shown in Figure 8.30a for £k = 4 PEs. Data
is transferred between memory (gray) and 32-bit registers (blue), which hold 4
8-bit values. The purple registers represent an opaque internal state of the ISE.
The 4 PEs are indicated by black dots. Figure 8.30b illustrates the dataflow
(arrows) between registers. The registers that are accessed by PE1 are high-
lighted. Each PE updates one cell of H and a register of M which contains the
maximum score.

A Smith-Waterman instruction integrates all PEs and the shift on registers
A and H. After [= 4 executions of a Smith-Waterman instruction, register A
and the top of register H are reloaded with data from memory. The bottom of
register H then contains 4 matrix elements, which are written back to memory.
In total, this makes 3 memory operations for 4 cycles of execution. Fortunately,
these memory accesses can be performed in parallel, by folding them into Smith-
Waterman instructions. Further instructions are specified to load register B, to
get the score from M, and to initialize internal registers. In total, the instruction
set extension consists of 7 instructions.

8.6.4 Specification in ViDL

The DNACore instruction set has been specified by extending the existing MIPS
specification. The Smith-Waterman instructions have been embedded into an
unused region of the instruction space, which is intended for extensions. Only

8.6. DNACORE — A CASE STUDY ON ISE 217

2 RN EEEN
_ AN RN
M B_ @ PEo
®DEl
I ore:
HeEEE ®7E3
(b)

He}

g

g

=}

5
i E=— .
|

=

H LD lgjice of H

M B

Figure 8.30: (a) Internal registers of the Smith-Waterman ISE and (b) their
data dependences.

the 7 instructions and the internal registers had to be specified. The complete
extension consists of less than 100 lines of ViDL code and took about half a
day. This includes the generation of a highly optimized simulator and several
processors. The total development time (about two weeks) was dominated by
the analysis of the Smith-Waterman algorithm, its dependencies and the devel-
opment of an ISE idea.

Actually, two DNACore instruction sets have been defined. The first includes
all instructions of MIPS and the new instructions. The resulting processors
are therefore 100% compatible to the generated MIPS processors. The second
instruction set is equal, but does not include the multiplication instructions,
as they are not required to execute the Smith-Waterman algorithm. Since the
generated processors of this instruction set do not include the 64-bit multiplier,
they are smaller, faster and require less power. Unless noted otherwise, this
instruction set is regarded in the following.

8.6.5 Dynamic behavior of processor

The Smith-Waterman algorithm is executed efficiently on the generated DNA-
Core processor. In particular, execution is not slowed down by memory bottle
necks or data-hazards. All instructions of the extension have zero-latency, i.e.
they do not cause any stalls. As a result, the PEs are highly utilized.

EVALUATION

CHAPTER 8.

218

DISTUL]

poajeImnges wms

Waterman algorithm on the generated

Execution of the Smith-

DNACore processor.

Figure 8.31

8.7. SUMMARY 219

For the following evaluation, the alignment of two sequences is considered,
where each sequence has a length of 512 symbols. The alphabet ¥ has a size of
256 symbols. The actual value of symbols does not have an effect on execution.
In particular, control flow and memory accesses are not affected. To allow for
simple reasoning, two identical sequences are regarded in the following.

The execution of the entire algorithm on the generated processor is shown
in Figure 8.31. During the first 7140 clock cycles, input data is generated.
This part is only required for testing and can therefore be ignored. The actual
Smith-Waterman algorithm starts in clock cycle 7140 and ends in cycle 75400.
During these 68260 cycles, 262144 cells of the H-matrix are computed. On
average, this makes 3.84 cell updates per cycle. The 4 PEs are thereby utilized
by 96%. Note, that this is a practical value, including stalls, branch penalties
and memory accesses.

As the algorithm processes 4 rows in parallel, the algorithm scans 128 times
over the matrix. Accordingly, the swb register is loaded 128 times, as one can
see in the figure. The nStall signal seems to change heavily, however these
are only glitches from simulation. Actually, the pipeline is hardly ever stalled.
The score register swm is a vector of 4 8-bit values, one for each processing
element. The score is stored separately for each PE, to reduce the critical path.
The final score is computed once at the end of the entire algorithm. Since the
input sequences are equal, the score rises rapidly, whenever the diagonal of H is
processed. It is finally saturated, as shown in the Figure.

8.6.6 Results and remarks

The synthesized DNACore reaches a worst case frequency of 680 MHz at an
estimated power consumption of 45mW and a chip area of 0.17mm?. Since
the processor executes 3.84 cell updates per cycle, this makes 2.6 GCUPS (giga
cell updates per second). This value lies in the order of magnitude of related
approaches. Since the DNACore is very energy efficient (58 GCUPS/Watt)
and small, it may be instantiated multiple times to process many alignments in
parallel. As sequence alignment is a data-parallel problem, throughput should
scale well with the number of processors. Alternatively, the number of PEs (k)
may be increased.

Although the DNACore includes special support for sequence alignment, it
is still a general purpose processor. It can be programmed like any other MIPS
processor. This is expected to be beneficial in combination with heuristic algo-
rithms that are based on Smith-Waterman, but compute only certain parts of
the H-matrix. These algorithms can be implemented using the MIPS instruction
set, whereas the Smith-Waterman kernel is accelerated by the ISE.

8.7 Summary

Using ViDL and its generators, efficient simulators and processors have been
generated from specifications of real world instruction sets. This includes ARM,

220 CHAPTER 8. EVALUATION

MIPS, Power and CoreVA. Besides, an instruction set extension for MIPS has
been developed and implemented. A simulator and more than 5 processors with
different microarchitectures have been generated for each instruction set.

Language

For evaluation, 4 real world instruction sets (ARM, MIPS, Power and CoreVA)
and 2 academic instruction sets (OISC and SRC) have been specified using
ViDL’s powerful and orthogonal concepts, such as epsilon logic and delays. This
includes delayed branch instructions, exceptionally wide arithmetic and auto-
incrementing addressing-modes. Instruction sets have rapidly been specified,
due to a high level of abstraction and effective concepts for reuse. The MIPS
instruction set has been specified in one day and its DNACore extension in half
a day.

Specifications are concise, as bit-widths of operations and microarchitectural
aspects, such as register ports and pipeline stages are not specified. The seman-
tics of most MIPS instructions require only one line of specification. Specifica-
tions are clear and reliable, due to strict separation of state, transfer, and I/O.
Side effects and dependencies between instruction specifications are excluded
by design. Respective errors have not been encountered during development.
Instead, an ambiguity in the pseudo code of the ARM manual has been detected
by the generator’s type analysis. In detail, the width of the rotate operation of
the MSR instruction is not well defined in the manual and lacks a sign extension.

ViDL is easy to learn, as it does not require knowledge on C, VHDL or pro-
cessor microarchitectures. It has been used by inexperienced users to develop
simulators and processors of Power and CoreVA. ViDL allows for rapid DSE and
ISE, due to loose coupling of specifications (e.g. independent instructions). In-
structions have rapidly been removed (multiplication) or added (DNACore ISE),
without touching any other part of the specification. The width of the ARM
ISA has been explored, by redefining the width of general purpose registers.

ViDL provides a high degree of reuse and maintainability, thanks to func-
tional concepts and a library of transfer primitives. Addressing modes and the
SIMD concept have been encapsulated using functions and functionals. A set of
approximately 50 transfer primitives has been specified, which is reused among
all specifications. Products that are generated from a ViDL specification are
guaranteed to be consistent, due to strict and high level abstraction. The simu-
lator and all generated processors are semantically equivalent. In contrast, other
approaches rely on redundant specification of C and VHDL, which may result
in inconsistent simulators and processors

Simulator

High-performance simulators have been generated for all instruction sets. They
execute 60 Mips on average and 140 Mips peak on a 3 GHz Intel workstation. De-
layed branches and bit-precise write-enabling is efficiently simulated. The same
holds for ultra-wide instruction sets (=~ 30 Mips for 256-bit arithmetic), as the

8.7. SUMMARY 221

generator breaks wide arithmetic down to efficient C-integer arithmetic. This
task, as well as masking of short bit-strings is shifted from the ISA developer to
the generator.

The generator includes a series of optimizations, which significantly increase
simulation speed. For instance, lazy evaluation accelerates simulation by 100%
on average. Merging of write accesses accelerates simulation by up to 90%.
The implementation width of a simulator can be selected at generation time.
Tailoring the width of a simulator to the host system accelerates simulation by
up to 125%.

Processors

For each instruction set (ARM, MIPS, Power and DNACore), efficient processors
have been generated and synthesized for a 65 nm STMicroelectronics standard
cell technology and worst case conditions. Their clock frequency lies in the
range of 600 MHz to 1.1 GHz, for a deeply pipelined microarchitecture. For less
pipelined microarchitectures, clock frequency lies in the range of 350 MHz to
780 MHz. For this microarchitecture, chip area lies in the range of 0.03 mm? to
0.32mm? and power consumption in the range of 15mW to 65 mW. As shown
for CoreVA, the clock frequency of generate processors lies in the range of hand-
crafted VHDL code. Estimates for area requirement and power consumption are
larger by a factor of 3. First examinations of the intermediate representation
have revealed a high potential for hardware sharing in the generator. Currently,
only a very simple hardware sharing method has been implemented.

Processor generation is guided by a user supplied target frequency. This
parameter significantly affects physical characteristics of the processor, as well
as the dynamic behavior of its instructions. It has been used to generate small
and energy efficient processors, as well as deeply pipelined high-performance
processors from the same specification. Based on this parameter and instruc-
tion semantics, all aspects of the microarchitecture are derived automatically.
This includes forwarding, interlocking and speculative execution. The resulting
pipeline control is correctly implemented by the generator, such that instruction
semantics are preserved. For a target frequency of 400 MHz, the microarchitec-
ture of the generated MIPS processor matches the pipeline structure that is
proposed by Hennessy and Patterson.

DNACore

As an all embracing proof of concept, the existing MIPS instruction set has
been enriched by a SIMD instruction set extension for the Smith-Waterman
algorithm. The extension, has been developed in the context of this thesis,
consists of 7 instructions, 7 internal registers, and has been specified in half a day.
Synthesis has estimated a clock frequency of 680 MHz at a power consumption
of 45mW for the generated processor. According to hardware simulation, the
4 processing elements of the SIMD extension are utilized by 96%, which results
in a performance of 2.6 GCUPS or 58 GCUPS/W.

222 CHAPTER 8. EVALUATION

Chapter 9

Conclusion

This thesis has shown how efficient processors can be generated from specifica-
tions of instruction sets and only from those specifications. All microarchitec-
tural aspects of processors are automatically derived from instruction semantics,
without exception. This principle sets the presented approach apart from re-
lated work. A simulator and very different processors with well balanced phys-
ical and dynamic characteristics are generated from the very same instruction
set specification, guided by a user supplied target frequency only. Processor
implementations range from non-pipeline processors, via stall and penalty free
implementations to 6 stage pipelines, which solve hazards by forwarding, inter-
locking and canceling. The generated simulator and all generated processors
are guaranteed to be consistent to the instruction set specification. There is no
way, a ViDL developer can break this consistency, neither by accident, nor by
intention. The need to test equivalence of different implementations is thereby
eliminated.

The methods for pipelines construction have proven to be effective for real
instruction sets. The clock frequency of generated processors lies in the order
of handcrafted VHDL code. Power consumption and area requirements are ap-
proximately 3 times higher, but first examinations have revealed a high potential
for hardware sharing methods in the generator. The average CPI of generated
processors is close to one, i.e. in the order of manually designed processors. A
generated processor does therefore actually utilize its high clock frequency, to
yield a high throughput of instructions. Generated simulators are up to 6 times
as fast as other interpreting simulators. Ultra-wide instruction semantics (e.g.
256-bit ARM) are automatically broken down to plain C-arithmetic, resulting
in fast simulation.

ViDL obeys fundamental language design guidelines and thereby allows for
specifications of high-quality. Novel language concepts, such as architectural
interfaces, epsilon logic, delays add to simplicity, reliability and expressiveness,
while retaining strict abstraction from implementation level. A high degree
of reuse and maintainability is enabled by functional concepts, polymorphism
and a sophisticated type system. A respective type inference also checks static

224 CHAPTER 9. CONCLUSION

semantics and reports undefined or ambiguous aspects of the specification. Re-
liability is further improved by the side-effect free language design and the clear
separation of state and transfer.

Using the system of ViDL and generators, the design space of an instruction
set can easily be explored, due to loose coupling in specifications and sophis-
ticated language concepts. Instructions can be added, removed or modified
independently without the need to reconsider the entire specification. The mi-
croarchitectural design space of processors can automatically be explored by
repetitive generation with different target frequencies. The resulting VHDL
code is ready for synthesis and simulation in ModelSim. For the latter, well
structured waveform definitions are generated, to make significant processor
signals immediately observable. Existing instruction sets are easily extended
by application specific instructions and registers. The resulting processors are
guaranteed to be backward compatible, i.e. testing of existing instructions is
unnecessary. The specification of 4 major instruction sets (ARM, MIPS, Power,
and CoreVA) and one instruction set extension (DNACore) demonstrates the
quality of ViDL and proves the effectiveness of generation methods. The design
space of instruction sets and their microarchitectural implementation is rapidly
explored. The system has been adopted by new users (students) in a short time
and is ready to be utilized by further developers to accelerate their design flow.
I'm looking forward to its application in serious industrial environments in near
future. The system is expected to bring simplicity to the development of so-
phisticated processors. This makes development more reliable and affordable
for a wider range of applications. For instance, a variety of small and highly
specialized processors can be developed within few days and integrated into a
system on a chip.

Future work

The proposed system is well prepared for extensions, as ViDL uses a high level
of abstraction and the generators feature a modular design. The set of genera-
tors may be extended, to produce further products, such as compiler tools. The
existing generators can be refined, to improve the efficiency of produced simu-
lators and processors. The language ViDL on the other hand may be extended,
to enable the natural specification of less common aspects of instruction sets.

Compiler toolchain

A compiler toolchain consists of a compiler, an assembler, a linker and further
tools for debugging and conversion. A generator that produces these tools from
a ViDL specification would be a valuable extension. Although such generators
are beyond the scope of this thesis, they have been considered during the de-
sign of ViDL. The specification language UPSLA has been developed at our
research group and supports generation of complete toolchains, including com-
piler, assembler and linker. As ViDL defines instruction sets on a similar level,

225

it should be well suited to generate compiler tools. However, ViDL does not
directly define compiler relevant aspects of instructions. A good compiler gen-
erator should derive these aspects from instruction semantics by analyses, to
guarantee consistency and simplify specification. According to my experience’
in compiler tool development, I've a quite clear idea on the implementation of
such generators. I consider the development a good deal of work, but feasible
and worthwhile. Alternatively, a generator may be developed, which translates
a ViDL specification into an UPSLA specification. The UPSLA generators can
then be applied.

Tuning of generated HDL code

As a matter of principle, ViDL strictly abstracts from all microarchitectural
aspects. The goal is to develop the processor generator to the extent that
generated HDL code is of the same quality as highly optimized handcrafted
code.

Until then, it may be desirable to give the developer a possibility to manually
fine-tune the generated HDL code. For instance, tuning commands may define
the location of read and write stages for each storage. To retain abstraction in
ViDL, such commands for the generator should be defined in a separate “tuning”
file. To refer to instruction semantics, operations in ViDL may be annotated
with identifiers, as usual for entity instances in VHDL. The identifiers could
then be used in tuning commands.

Nevertheless, manual tuning significantly increases the effort for development
and reduces maintainability. Extending the generator by further methods that
encapsulate knowledge of processor developers is still the preferred solution.
Besides, direct modification of generated VHDL code is strongly discouraged, as
this will prevent future modifications of the ViDL specification and regeneration.

Close gaps in generators

In Section 8.2.5, aspects of the generators and ViDL have been mentioned, that
are not supported yet. The section also outlined how these gaps can be closed.
The extensions are considered a matter or programming. Closing these gaps is
a prior objective, to eliminate restrictions on instruction set specifications.

Microarchitecture

Currently, the processor generator produces an efficient pipelined microarchitec-
ture, including forwarding, interlocking and speculative execution. The gener-
ator may be extended, to produce further microarchitectural concepts, such as
dynamic scheduling or sophisticated branch predictors. Such extensions would
expand the microarchitectural design space. Additional processor implementa-
tions could be generated from the existing ViDL specifications.

IDevelopment of an assembler generator, a disassembler generator and a linker generator
for UPSLA; Generation and extension of an optimizing C compiler for the CoreVA VLIW
processor.

226 CHAPTER 9. CONCLUSION

Hardware sharing

There is a high optimization potential left to reduce the area requirement and
power consumption of generated processors. The current generator implements
a simple sharing method, which only merges functional units, if it does not
have to introduce multiplexers. Basically, two functional units of the same kind
can be merged, if they are not activated concurrently. A method for hardware
sharing may be based on the existing method for port-assignment, which is
similar in some respect.

Target languages

The existing generators produce a simulator in terms of C code and processors in
terms of VHDL code. Further back-ends may be added, to produce for instance
a processor specification in terms of Verilog code. Due to the modular design of
generators, such extensions can be considered simple. As ViDL strictly abstracts
from target languages, the existing specifications can be reused without any
modification.

Web-based processor simulator

For the purpose of demonstration and education, a web-based processor simula-
tor may be desirable, which runs in a web-browser. Technically, such a simulator
may run on the client using JavaScript. To generate such a simulator, the sim-
ulator generator needs to be extended by a JavaScript back-end. The existing
ViDL specifications are not affected by such an extension.

Parallel architectures

ViDL can be used to specify scalar processors, including vector and SIMD in-
structions. It may be extended in future, to support DSP instruction sets and
VLIW instruction sets, such as the VLIW variant of CoreVA. An extension for
VLIW may for instance define a set of execution slots and their relation to in-
structions. Scheduling constraints may be expressed using artificial resources.
As an alternative, the set of valid schedules may be defined by a concrete gram-
mar, where each non-terminal corresponds to one instruction.

Bibliography

1]

2]

IEEE standard multivalue logic system for VHDL model interoperability
(stdlogicl164). IEEFE Std 1164-1993, 1993.

ARM Limited. ARM Architecture Reference Manual, ARM DDI 0100E
edition, 2000.

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, New York, NY, USA, 1998.

J.L. Baer. Microprocessor Architecture: From Simple Pipelines to Chip
Multiprocessors. Cambridge University Press, 2009.

C. Gordon Bell and Allen Newell. The PMS and ISP descriptive systems
for computer structures. In AFIPS 70 (Spring): Proceedings of the May
5-7, 1970, spring joint computer conference, pages 351-374, New York, NY,
USA, 1970. ACM.

C. Gordon Bell and Allen Newell. Computer Structures: Readings and
Ezamples. McGraw-Hill, 1971.

Anupam Chattopadhyay, Heinrich Meyr, and Rainer Leupers. Lisa. a uni-
form adl for embedded processor modeling, implementation, and software
toolsuite generation. In Prabhat Mishra and Nikil Dutt, editors, Processor
Description Languages, pages 95-132. Morgan Kaufmann, 2008.

V.R. Dodani, N. Kumar, U. Nanda, and K. Mahapatra. Optimization of an
application specific instruction set processor using application description
language. In Industrial and Information Systems (ICIIS), 2010 Interna-
tional Conference on, pages 325 —328, 29 2010-aug. 1 2010.

Charles Donnelly and Richard Stallman. Bison - The Yacc-compatible
Parser Generator, 2010.

Ralf Dreesen. ViDL specification of the Simple RISC (SRC) instruction
set. http://dreesen.net/vidl/specs/srisc/, 2011.

Ralf Dreesen, Michael HuBmann, Michael Thies, and Uwe Kastens. Register
allocation for processors with dynamically reconfigurable register banks. In

http://dreesen.net/vidl/specs/srisc/

228

[17]
[18]

[19]

BIBLIOGRAPHY

Proceedings of the 5rd Workshop on Optimizations for DSP and Embedded
Systems (ODES) held in conjunction with the 5th IEEE/ACM International
Symposium on Code Generation and Optimization (CGO 2007), March
2007.

Ralf Dreesen, Thorsten Jungeblut, Michael Thies, and Uwe Kastens. De-
pendence analysis of VLIW code for non-interlocked pipelines. In Proceed-
ings of the 8th Workshop on Optimizations for DSP and Embedded Systems
(ODES-8), April 2010.

Ralf Dreesen, Thorsten Jungeblut, Michael Thies, Mario Porrmann, Uwe
Kastens, and Ulrich Riickert. A synchronization method for register traces
of pipelined processors. In Analysis, Architectures and Modelling of Em-
bedded Systems, volume 310 of IFIP Advances in Information and Commu-
nication Technology, pages 207-217. Springer Boston, 2009.

Ralf Dreesen, Michael Thies, and Uwe Kastens. Type analysis on bitstring
expressions. In Proceedings of the 9th Workshop on Optimizations for DSP
and Embedded Systems (ODES-9), April 2011.

A. Fauth, J. Van Praet, and M. Freericks. Describing instruction set pro-
cessors using nML. pages 503 —507, mar. 1995.

Jonathan D. Franz. An evaluation of CoWare Inc.’s processor designer tool
suite for the design of embedded processors. Master’s thesis, Department
of Electrical and Computer Engineering, Baylor University, 2008.

Markus Freericks. The nML machine description formalism. 1993.

William F. Gilreath and Phillip A. Laplante. Computer Architecture: A
Minimalist Perspective. 2003.

R.E. Gonzalez. Xtensa: a configurable and extensible processor. Micro,
IEEE, 20(2):60 —70, mar/apr 2000.

Gerhard Goos and William Waite. Compiler Construction. Springer, Jan
1984.

Peter Grun, Ashok Halambi, Asheesh Khare, Vijay Ganesh, Nikil Dutt,
and Alexandru Nicolau. EXPRESSION: An ADL for system level design
exploration. Technical Report 98-29, University of California, Irvine, 1998.

G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An instruction set
description language for retargetability. In Design Automation Conference,
1997. Proceedings of the 34th, pages 299 —302, jun. 1997.

Ashok Halambi, Peter Grun, Vijay Ganesh, and Asheesh Khare. Expres-
sion: A language for architecture exploration through compiler/simulator
retargetability. In In Proceedings of the Furopean Conference on Design,
Automation and Test, pages 485-490, 1999.

BIBLIOGRAPHY 229

[24]

[25]

John Hennessy and David Patterson. Computer Architecture - A Quanti-
tative Approach. Morgan Kaufmann, 2006.

Vincent P. Heuring and Harry F. Jordan. Computer Systems Design and
Architecture (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 2003.

IBM. Power ISA, Version 2.04 edition, April 2007.
CoWare Inc. LISA Language Reference Manual, 2008.

MIPS Technologies Inc. MIPS Architecture For Programmers Valume I11-A:
The MIPS32 Instruction Set, 2010.

M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi, A. Kitajima, and
M. Imai. PEAS-III: an ASIP design environment. In Computer Design,
2000. Proceedings. 2000 International Conference on, pages 430 —436, 2000.

Uwe Kastens. Ubersetzerbau. Oldenbourg, 1990.

Uwe Kastens, Peter Pfahler, and Matthias Jung. The eli system. In Kai
Koskimies, editor, Compiler Construction, volume 1383 of Lecture Notes
in Computer Science, pages 294-297. Springer Berlin / Heidelberg, 1998.
10.1007/BFb0026439.

Uwe Kastens, Anthony M. Sloane, and William M. Waite. Generating
software from specifications. Jones and Bartlett Publishers, 2007.

J. W. Klop, Marc Bezem, and R. C. De Vrijer, editors. Term Rewriting
Systems. Cambridge University Press, New York, NY, USA, 2001.

Donald E. Knuth. Semantics of context-free languages. Theory of Comput-
ing Systems, 2(2):127-145, June 1968.

Kobayashi, Takeuchi, Kitajima, and Imai. Compiler generation in PEAS-
III: an ASIP development system. In Proceedings of the 5th International
Workshop on Software and Compilers for Embedded Systems, SCOPES
2001, 2001.

Jae-Jin Lee, SeongMo Park, and NakWoong Eum. Design of application
specific processor for h.264 inverse transform and quantization. In SoC
Design Conference, 2008. ISOCC ’08. International, volume 02, pages 11—
57 —11-60, nov. 2008.

Steve Leibson. Designing SOCs with Configured Cores, 2006.

U. Meyer-Baese, Guillermo Botella, Encarnacion Castillo, and Antonio
Garcia. A balanced hw/sw teaching approach for embedded micropro-
cessors. International Journal of Engineering Education, 26(3):584-592,
2010.

230

[39]

[40]

BIBLIOGRAPHY

Prabhat Mishra, Arun Kejariwal, and Nikil Dutt. Rapid exploration of
pipelined processors through automatic generation of synthesizable RTL
models. Rapid System Prototyping, IEEE International Workshop on,
0:226, 2003.

Rashid Muhammad, Ludovic Apvrille, and Renaud Pacalet. Evaluation of
ASIPs design with LISATek. In Embedded Computer Systems: Architec-
tures, Modeling, and Simulation, volume 5114 of Lecture Notes in Computer
Science, pages 177-186. Springer Berlin / Heidelberg, 2008.

S.M. Miiller and W.J. Paul. Computer Architecture, Complezity and Cor-
rectness. Springer, 2000.

Vern Paxson, Will Estes, and John Millaway. The flex Manual, 2007.

Jorgen Peddersen, Seng Lin Shee, Andhi Janapsatya, and Sri
Parameswaran. Rapid embedded hardware/software system generation.
In In Proceedings of the International Conference on VLSI Design, pages
111-116, 2005.

Johan Van Praet, Dirk Lanneer, Werner Geurts, and Gert Goossens. nML:
A structural processor modeling language for retargetable compilation and
ASIP design. In Prabhat Mishra and Nikil Dutt, editors, Processor De-
scription Languages, pages 65-93. Morgan Kaufmann, 2008.

Robert W. Sebesta. Concepts of Programming Languages. Addison-Wesley
Publishing Company, USA, 9th edition, 2009.

T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of molecular biology, 147(1):195-197, March 1981.

IEEE Computer Society. IEEE Std 1364-2001 - IEEE Standard Verilog
Hardware Description Language. The Institute of Electrical and Electronics
Engineers, Inc, 2001.

SPARC International, Inc. The SPARC Architecture Manual,
SAV080SI9106 version 8 edition, 1992.

Sun Microsystems, Inc. UltraSPARC' Architecture 2005, Draft D0.9,15 edi-
tion, May 2007.

Inc Tensilica. Tensilica Instruction Extension (TIE) Language, 2006.

Henrik Theiling. Generating decision trees for decoding binaries. In Proc.
SIGPLAN Workshop on Languages, Compilers and Tools for Embedded
Systems (LCTES 01, pages 112-120. ACM, 2001.

W.L. van der Poel. The Logical Principles of Some Simple Computers. PhD
thesis, 56.

BIBLIOGRAPHY 231

[53]

[57]

Albert Wang, Earl Killian, Dror Maydan, and Chris Rowen. Hard-
ware/software instruction set configurability for system-on-chip processors.
In Proceedings of the 38th annual Design Automation Conference, DAC 01,
pages 184-188, New York, NY, USA, 2001. ACM.

David A. Watt. Programming Language Design Concepts. John Wiley &
Sons, 2004.

O. Weiss, M. Gansen, and T.G. Noll. A flexible datapath generator for
physical oriented design. In Solid-State Circuits Conference, 2001. ESS-
CIRC 2001. Proceedings of the 27th European, pages 393 — 396, 2001.

Yoshiki Yamaguchi, Hung Tsoi, and Wayne Luk. FPGA-based smith-
waterman algorithm: Analysis and novel design. In Andreas Koch, Ram
Krishnamurthy, John McAllister, Roger Woods, and Tarek El-Ghazawi,
editors, Reconfigurable Computing: Architectures, Tools and Applications,
volume 6578 of Lecture Notes in Computer Science, pages 181-192. Springer
Berlin / Heidelberg, 2011.

Zilog, Inc. Z8001/2 Z8000 CPU Product Specification, 1985.

	Introduction
	Motivation
	Overview
	Processor aspects
	Scientific contributions
	Language concepts
	Generation methods

	Processor implementations
	System overview
	Evolution of ViDL and its generators
	Areas of expertise

	Fundamentals
	Instruction set architectures
	ARM
	MIPS
	OISC — One instruction set computer

	Design scenarios
	Domain specific languages
	Compilation methods
	Front-end
	Middle-end
	Back-end
	Compiler framework

	Type systems
	Subtyping
	Tuples
	Signatures
	Polymorphic types
	Polymorphic functions

	Term rewriting systems
	Term
	Rewrite rules
	Termination and confluence

	Microarchitecture
	Storages
	Datapath
	Pipeline
	Execution order
	Forwarding
	Interlocking
	Branch prediction

	Related approaches
	Taxonomy of ISA specification languages
	Notation in ISA manuals
	ARM manual
	Review

	ISP
	State
	Aliases
	Instruction encoding
	Activations
	Actions
	Data-types
	Review

	nML
	State
	Instruction set
	Modeling of instruction sets
	Review

	ASIP Meister/PEAS-III
	Lisa
	Storages
	Instruction set
	Hardware sharing
	Pipeline
	Complexity of language
	Practical application

	ISDL
	Expression
	Tensilica instruction extension (TIE)
	State
	Instruction semantics
	Hardware sharing
	Datapath scheduling

	DPG — Datapath generator

	ViDL — Versatile ISA description language
	A ViDL example
	Structure of a specification
	Abstraction from microarchitecture
	Instructions
	Encoding
	Semantics

	Functional concepts
	Functions
	Polymorphism
	Closures
	Recursion
	Name binding
	Tuples
	Vectors
	Review of concepts

	Epsilon logic
	Operating on epsilon logic
	Review

	Delays
	Causality
	Review

	Architectural interfaces
	Mapping
	Review

	Type system
	Types
	Type inference
	Evaluation

	Transfer primitives
	Library
	Primitive
	Generic primitives
	Review

	Design patterns
	Partial memory accesses
	Status registers
	Processor-mode sensitive registers
	Register windowing
	Dynamically reconfigurable register files
	Register pairs
	Constant register
	Embedded program counter
	Branch
	SIMD instructions
	Conditional execution
	Complex operand encodings
	Addressing modes

	Generators
	Processing of ViDL
	Name analysis
	Optimizations
	Translation of architectural interfaces
	Analysis of instruction encoding

	Intermediate representation
	Instruction DFGs
	DFG simplification
	Origin information

	Term rewriting system
	Isomorphism
	Applications
	Origin information
	Integer arithmetic
	Rule sets
	Bit-widths

	Transformations and optimizations
	Partial evaluation
	Epsilon transformation

	Methods for generating simulators
	Structure of simulator
	Bit-strings
	Decoding
	Implementing instruction semantics
	Transactions

	Methods for generating processors
	Register port allocation
	Operation pipelining
	Timing
	Port scheduling
	Operation scheduling
	Pipeline registers
	Forwarding circuit
	Interlocking
	Branch prediction

	Evaluation
	Evaluation process
	ViDL
	Real world instruction sets
	Efficient specification
	Usability
	Rapid exploration of instruction sets
	Restrictions

	Generator speed
	Simulator generator
	Setup
	Characteristic instructions
	ISA width
	Width of simulator code
	Generator optimizations

	Processor generator
	Setup
	Overview of generated processors
	Exploration of microarchitecture
	Comparison to handcrafted processors
	OISC — A simple processor
	Wide instruction sets
	Register ports
	Structure of generated pipeline
	Latencies and penalties
	Resolution of hazards
	Generating waveform definitions for ModelSim

	DNACore — A case study on ISE
	Development process
	Algorithm
	Instruction set extension
	Specification in ViDL
	Dynamic behavior of processor
	Results and remarks

	Summary

	Conclusion

