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Abstract

Mixed Reality in the Loop — Ein iteratives, prototy-
penbasiertes Entwurfsvorgehen fiir die Entwicklung
von Mixed Reality Anwendungen

Mixed Reality in the Loop ist ein iteratives, prototypenbasiertes Ent-
wurfsvorgehen fiir Mixed Reality Anwendungen. Das Vorgehen besteht
aus einem iterativen Prozess, an dessen Ende immer eine testbare
Designreprasentation der Anwendung, kurz ein Prototyp, steht, der
fiir die ndchste Iteration verwendet wird. Die Iterationen werden
kurz gehalten, so dass stdndig eine testbare Designreprasentation der
Anwendung gewdhrleistet ist. Dem Mixed Reality in the Loop-Entwurfs-
vorgehen steht ein eigens dafiir entwickeltes Architekturmuster zur
Seite, das es erlaubt, die einzelnen Teile der Anwendung in insgesamt
vier Kategorien einzuteilen, die separat und unabhéngig voneinan-
der weiterentwickelt werden kénnen. Der zentrale Vorteil bei Mixed
Reality in the Loop gegeniiber anderen Verfahren ist die Entwicklung
entlang des Mixed Reality Kontinuums. So bieten das Entwurfsvor-
gehen und der iterative Entwicklungsprozess die Moglichkeit, in einer
rein virtuellen Welt mit der Implementierung der MR Anwendung
zu beginnen und in den spédteren Phasen schrittweise die virtuellen
Teile durch ihre realen Gegenstiicke zu ersetzten. Das bedeutet fiir
die frithen Entwicklungsphasen eine Implementation in einer fest
definierten virtuellen Umgebung, die komplett unter der Kontrolle
des Entwicklers liegt. Um eine Einschdtzung des Entwicklungsstandes
der Prototypen zu erhalten wurde fiir jede Komponente eine eigene
Metrik entworfen, die den Entwicklungsstand anhand verschiedener
Parameter errechnet.



Mixed Reality in the Loop — An iterative prototype-
based design method for the development of mixed
reality applications

Mixed Reality in the Loop is an iterative, prototype-based design method
for mixed reality applications. The design method includes an iterative
process which results a testable design representation of the applicati-
on, what is referred as prototype, at each iteration. This prototype is
also used for further development in the next iteration. To achieve a
persistent design representation of the application, the design method
has short iterations. The Mixed Reality in the Loop design method in-
cludes an additional software architecture supporting a classification
of single application parts in four categories. Each classified part can
be developed separately and independently, The central advantage
over other design methods is the development along the mixed reality
continuum. The Mixed Reality in the Loop design method provides the
opportunity to begin the development of a mixed reality application
in a pure virtual environment and to iteratively replace the virtual
parts with its real counterparts in later phases of the development
process. That imply a defined virtual environment in early develop-
ment phases which is completely under control of the developer. To
get an estimation of the development status for the prototype a metric
for each of the four components has been designed, calculating the
development status with the help of various parameters.



Hinweise

In dieser Arbeit wurden die Verweise auf Kapitel oder Abbildun-
gen speziell formatiert, um die entsprechende Referenz schneller zu
tinden. Verweise sind folgendermafien aufgebaut: <Kapitel> _geite> -
<Kapitel> steht fiir das Kapitel, in dem die Referenz steht und die
unten angehidngte <Seite> gibt die jeweilige Seite an. Diese Forma-
tierung existiert jedoch nur, sobald sich die Referenz nicht auf der
aktuellen Seite befindet. Diese Formatierung erlaubt es dem Leser,
schneller die Quelle des Verweises zu finden.



HINWEISE

vi



Inhaltsverzeichnis

Abstract

Hinweise

Inhaltsverzeichnis

1 Einfiihrung

1.1
1.2
1.3
1.4
1.5

Motivation . . . . . ... ... L
Zielder Arbeit . . . . .. ... L L
Aktueller Stand der Arbeit. . . . . .. ... oL o Lo
Strukturierung der Arbeit . . . . ... ... oo 0oL
Zusammenfassung . . . . ... .. ...

2 Grundlagen

2.1

2.2

2.3

Vorgehensmodelle . . . ... ... ... ... ... ... . ... . . ...
2.1.1  Typen von Vorgehensmodellen . . . . ... .............
2.1.2 Wasserfallmodell . . . .. ... ... ... . 000000
2.1.3 Spiralmodell . . . . .. ... Lo
214 V-Modell . . ... ... oo
2.1.5 Norm ISO/IEC 12207 . . .. ... ... ... ... .....
216 Norm DINISO 13407 . ... .. ... ... ... ... ......
2.1.7 Modellgetriebene Softwareentwicklung (MDSD) . .. ... ...
2.1.8 Feature Driven Development (FDD) . . . . ... .. ... ... ..
2.1.9 Rational Unified Process . . . . . ... ... .............
2.1.10 Extreme Programming (XP) . . . ... ... .............
2.1.11 Scrum ...
2.1.12 Prototyping . . . ... ... ..
2.1.13 Vorgehensmodelle Zusammenfassung . . . . . ... ... ... ..
Architekturmuster . . . . ... ... Lo Lo
2.2.1  Model-View-Controller . . . . ... ... ... ...........
2.2.2 Presentation-Abstraction-Control . . . . . . . ... ... ... ...
2.2.3 Zusammenfassung . . . . . . ... ...
Modellbildung und Simulation kontinuierlicher Systeme . . . . . . . ..
2.3.1 In-the-Loop Simulation . . ... ... ... ... ..........

2.3.2 Zusammenfassung . . . .. ... ..

iii

ix

~ N

[O.IN RN



2.4 Reality-Virtuality Kontinuum (RV) . . .. .................. 54

24.1 Realitat . . . ... ... 54
2.4.2 Virtuelle Realitat . ... ... ... ... ... ... . ..... 55
2.4.3 Augmented Virtuality . .. ... ... ... .. ... . ... .. 56
2.4.4 Augmented Reality . . . . .. ... ... ... ... . ... ... 56
2.5 Zusammenfassung . . . . . . ... ... 57
Stand der Forschung 59
31 Ubersicht . . .. ... ... ... ... .. 59
3.2 Mixed Reality Entwurfskonzepte . . . . . ... ... .. ......... 60
3.3 Entwurfskonzepte mit Werkzeugumgebung . . . . ... ... ... ... 66
3.4 Softwareumgebungen und -losungen . . . ... ... ... L. 87
3.5 Zusammenfassung . . . . . . ... ... 95
Mixed Reality in the Loop 97
4.1 Anforderungsanalyse . . . . . ... ... ... Lo Lo 98
4.2 Vorgehensweise . . . .. ... ... ... ... ... ... .. .. 101
4.3 Entwickelte Methoden . . . . ... ... ... o 0oL 103
4.3.1  MVCE - Model-View-Controller-Environment . . . . ... .. .. 104
4.3.2 Die MRiL-Metrik . . . . ... ... 109
4.3.3 Das Akteurmodell . . ... ... ... ... . L. 120
4.3.4 Das Entwurfsvorgehen. . . . . ... ... ... o 0000 124
4.4 Erlduterung des Entwurfsvorgehens an einem Beispiel . . . .. ... .. 128
4.4.1  Uberblick des Beispiels . . ...................... 129
4.4.2 Realisierung des Beispiels . . . . ... .... ... ......... 131
4.43 FazitdesBeispiels . . ... ... ... ... . ... . ... . ..., 135
4.5 Die Softwareumgebung . . . ... ... ... ... 0L 136
4.5.1 Erweiterungen des proprietdren Autorensystems 3DVIA Virtools 136
4.5.2 MiReAS - Eine Mixed Reality Softwareumgebung . . . . . . . .. 148
4.6 Zusammenfassung . . . . .. ... ..o 157
Beispiel 159
5.0 Uberblick . . .. ... ... ... ... ... 159
5.1.1 Der Zeppelin . ... ... ... ... ... ... .. ... 161
5.2 Prototypenentwicklung . . ... .. ... ... . ... 0 0oL 163
5.2.1 Dielnitialphase . . . . . ... ... .. .. L Lo 164
5.2.2 Der erste Prototyp: Eine einfache VR Version .. ... ... ... 168
5.2.3 Der zweite Prototyp: Virtueller Prototyp mit Physiksimulation . 170
5.2.4 Der dritte Prototyp: Verfeinerung der Steuerung . . . . . .. . .. 174
5.2.5 Der vierte Prototyp: Verbesserte real existierende Umgebung . . 178

5.2.6 Der fiinfte Prototyp: Virtueller Prototyp mit einfacher Gesten-
steuerung . . .. ... 181

5.2.7 Der sechste Prototyp: Virtueller Prototyp mit verbesserter Phy-
siksimulation . . . . ... ... L o L 185

5.2.8 Der siebte Prototyp: Virtueller Prototyp in realer Umgebung . . 189



5.2.9 Der achte Prototyp: Realer Zeppelin mit AR-Unterstiitzung und
verbesserter Steuerung . . . . ... ...

5.2.10 Der neunte Prototyp: Realer Zeppelin mit AR-Unterstiitzung und
verbesserter Hardware-Steuerung . . . . ... ... ... .. ...

5.2.11 Der zehnte Prototyp: Realer Zeppelin in virtueller Umgebung

5.3 Zusammenfassung

6 Synopsis

6.1  Mixed Reality in the Loop im Vergleich . . . . ... ... ... ......

6.2 Zusammenfassung

7 Zusammenfassung und Ausblick

7.1 Zusammenfassung

7.2 Ausblick . ... ..

7.2.1  Visuelle Notation . . . . .. ... ... ... .. ... ........
7.2.2  Entwicklungswerkzeug fiir die visuelle Notation . .. ... ...
7.2.3 Automatische Generierung von ausfiihrbaren Prototypen . . . .

7.3 Zusammenfassung
Abbildungsverzeichnis
Abkiirzungsverzeichnis
Literaturverzeichnis

Publikationen

207
207
210
210
211
212
213

217

221

234

237



INHALTSVERZEICHNIS




KAPITEL

Einfiihrung

In diesem Kapitel versuche ich mein entwickeltes ,Mixed Reality in
the Loop”-Entwurfsvorgehen (abgekiirzt: MRiL) zu motivieren, indem
ich aufzeige, dass in der Entwicklung vom Mixed Reality Anwendun-
gen ein Vorgehen fehlt, das entlang des Mixed Reality Kontinuums
aufbaut und mit Hilfe von Prototypen eine immer testbare Designre-
prasentation bietet. Anschlieffend an die Motivation erldutere ich die
Ziele, die ich mir fiir diese Arbeit gesetzt habe und die mit Hilfe
des ,Mixed Reality in the Loop”-Entwurfsvorgehens erreicht werden
sollen. Darauthin stelle ich kurz den aktuellen Stand der Arbeit vor.



Zum Ende des Kapitels folgt eine Beschreibung der Strukturierung
dieser Arbeit.

1.1 Motivation

Mit der Entwicklung schneller Hardware, sowohl der CPUs als auch
der Grafikeinheiten, ergab sich die Moglichkeit, reale Videobilder
in Echtzeit' analysieren zu konnen. Ende der Neunziger Jahre be-
gannen Forscher mit der Echtzeitanalyse der Videobilder, um so die
Struktur der aufgenommenen Objekte zu ermitteln. Mit Hilfe kleiner
schwarz-weifs Piktogramme, der sogenannten Marker, gelang es, Po-
sition und Orientierung eines Objektes im dreidimensionalen Raum
nur unter Zuhilfenahme eines, von einer Videokamera aufgenom-
menen, 2D-Bildes zu ermitteln und an dieser Position ein virtuelles
3D-Objekt zu positionieren. Augmented Reality (AR), also die ange-
reicherte Realitdt, war geboren. In den folgenden Jahren wurde das
Thema Augmented Reality detailliert erforscht, sowohl im Theoreti-
schen, indem der Begriff AR definiert und in Zusammenhang mit
der echten Realitdt gesetzt wurde, als auch im Praktischen, indem
Softwareldosungen angeboten wurden, die es einer breiten Masse an
Entwicklern ermdglichten, selbst AR Anwendungen zu realisieren.

Anfanglich wurden die technischen Methoden, die es ermoglichten,
Augmented Reality anzuwenden, verstarkt entwickelt und erforscht.
Nachdem die ersten reinen API*-basierten Softwareldsungen fiir die
breite Masse der Entwickler zur Verfiigung standen, konzentrierten
sich viele Forscher auf die grundlegenden Kamera-Tracking3 Verfah-
ren und deren Verbesserung. Die ersten Konferenzen, die sich speziell
mit Augmented Reality und spéter auch mit dem erweiterten Gebiet
von Mixed Reality (MR) auseinander setzten, wurden veranstaltet, dar-
unter beispielsweise die IEEE ISMAR, die zum ersten Mal im Jahre
1998 stattfand [IEE98]. An den dort vorgestellten Beitrdgen ist gut zu
erkennen, welche Themen im Bereich Mixed Reality iiber die Jahre
die Aufmerksamkeit der Forscher erhielten. Und genau hier ist zu
sehen, dass viel Energie in die Erforschung der Basistechnik geflos-
sen ist, allerdings erst sehr viel spater erkannt wurde, dass sich die
Entwicklung von MR Anwendung von der Entwicklung traditioneller
Software in vielen Punkten unterscheidet.

'In dieser Arbeit ist unter dem Begriff Echtzeit ein weiches Echtzeitverhalten zu verstehen, das sich
an der menschliche Wahrnehmung fiir bewegte Bilder orientiert. Da ein Mensch ab ca. 16 Bilder pro
Sekunde eine fliissige Bewegung erkennt, liegen die Reaktionszeit somit bei < 63ms.

2API = Application Programming Interface — Eine Programmierschnittstelle auf Quelltextebene.

3Mit Tracking bezeichnet man die kontinuierliche Positionsbestimmung realer Objekte im Raum. Die
Positionsbestimmung kann Zwei- oder Dreidimensional erfolgen.



Es stellte sich nach einiger Zeit der Entwicklung von MR Anwendun-
gen heraus, dass es nicht ausreicht, nur eine reine Low Level API-
basierte Programmierunterstiitzung zu nutzen. Durch die zunehmen-
de Komplexitdt der Projekte, die eine MR Unterstiitzung integrierten,
kamen die Entwickler bald an die Grenzen ihrer Moglichkeiten struk-
turiert zu entwickeln. Da kein einheitliches Vorgehen fiir den Entwurf
von AR Anwendungen existierte, mussten viele Losungen individuell
tiir jedes Projekt entworfen werden, testbare Designreprasentationen
der Software waren nicht vorhanden, so dass die Projekte erst kurz
vor Ende der Entwicklung wirklich getestet werden konnten. Des
Weiteren waren die Entwickler an die Technik gebunden, auf die
sie sich zu Beginn der Entwicklung festgelegt hatten. Da im Laufe
der Zeit einige konkurrierende Losungen aufkamen, die jedoch nicht
unbedingt untereinander kompatibel waren, teilweise aber Vorteile
gegeniiber der Konkurrenz boten, war es den Entwicklern nur schwer
moglich, die Basistechnologien einfach zu wechseln.

Aus dieser Problematik heraus entstanden die ersten High Level
Entwicklungsumgebungen, die es sich zur Aufgabe gemacht hat-
ten, die MR Anwendungsentwicklung von den Basistechnologien zu
trennen. Ein friithes Beispiel einer solchen Entwicklungsumgebung
ist DART [MGDBog4], das im Kapitel 399 vorgestellt wird. Auch die
von uns entwickelte Integration in die Szenegraph-Bibliothek JavazD
zielte auf diese Trennung von Basistechnologie und Anwendungs-
entwicklung ab [GRSPoz]. Die Trennung von Basistechnologie und
Anwendungsprogrammierung war ein Schritt in die richtige Rich-
tung, allerdings fehlte zu dieser Zeit komplett ein Entwurfsvorgehen,
das beschreiben konnte, wie Entwickler Mixed Reality Anwendungen
effizient programmieren konnen.

In den folgenden Jahren wurde auch der Bereich des Entwurfsvorge-
hens erforscht und es wurden Verfahren vorgestellt, die sowohl das
Entwurfsvorgehen selbst als auch ein eigenes Modell zur Entwicklung
anboten. Was allerdings nicht vorgestellt wurde, war ein Vorgehen
einschliefflich Werkzeugumgebung, das es ermoglichte, Mixed Reality
Anwendungen mit einer immer testbaren Designreprasentation zu
realisieren. Genau hier setzt meine Arbeit an und versucht diese Liicke
zu schliefSen.

Mit ,Mixed Reality in the Loop” steht dem Entwickler von Mixed
Reality Anwendungen ein Entwurfsvorgehen zur Verfiigung, das ihn
durch die Phasen der Entwicklung der Anwendungen leitet. Mehr
noch, das Vorgehen ist ein iterativer Prozess, an dessen Ende immer
ein testbarer Prototyp der Anwendung steht, der fiir die ndchste Itera-
tion verwendet wird. Die Iterationen werden kurz gehalten, so dass
standig eine testbare Designreprasentation der Anwendung existiert.



1.2

Dem ,Mixed Reality in the Loop”-Entwurfsvorgehen steht ein eigens
dafiir entwickeltes Architekturmuster zur Seite, das es erlaubt, die ein-
zelnen Teile der Anwendung in insgesamt vier Kategorien einzuteilen,
die separat und unabhéngig voneinander weiterentwickelt werden
konnen.

Der zentrale Vorteil bei ,Mixed Reality in the Loop” gegeniiber an-
deren Verfahren ist jedoch die Entwicklung entlang des Mixed Reality
Kontinuums (siehe zur Begriffserklarung Kapitel 2.454). So bieten das
Entwurfsvorgehen und der iterative Entwicklungsprozess die Moglich-
keit, in einer rein virtuellen Welt mit der Implementierung der MR
Anwendung zu beginnen und in den spiteren Phasen schrittweise
die virtuellen Teile durch ihre realen Gegenstiicke zu ersetzten. Das
bedeutet fiir die frithen Entwicklungsphasen eine Implementation
in einer fest definierten virtuellen Umgebung, die komplett unter
der Kontrolle des Entwicklers liegt. In der spdteren Entwicklung,
sobald die Grundfunktionalitdt der Anwendung ausreichend stabil
lauft, konnen Teile dieser Umgebung dann durch reale Komponenten
ersetzt werden. So ist es beispielsweise moglich, neue Algorithmen
zuerst in einer sehr eingeschrankten Umgebung auf ihre Korrektheit
zu tberpriifen und nach erfolgreichem Abschluss dieser Tests die
Algorithmen in Komponenten der realen Welt einzusetzen. Des Weite-
ren ist es moglich, Teile der Anwendung schon zu implementieren,
obwohl die realen Komponenten entweder noch nicht existieren oder
die technischen Bedingungen noch nicht geschaffen sind, mit ihnen
aus der Anwendung heraus zu interagieren. Auch der Weg zurtick,
aus der realen Welt in die virtuelle Welt, ist mit ,Mixed Reality in
the Loop” moglich. So konnen z. B. neue Versionen von Algorithmen
zuerst in der virtuellen Welt validiert werden, bevor sie die Kompo-
nenten der realen Welt steuern.

Zusammenfassend bietet das ,Mixed Reality in the Loop”-Entwurfs-
vorgehen einen Losungsweg, wie schrittweise aus einer virtuellen
Anwendung eine Mixed Reality Anwendung entstehen kann. Es bietet
ein Vorgehen, um eine Transition vom virtual Prototyping und der
tinalen Anwendung erfolgreich zu realisieren.

Ziel der Arbeit

Diese Arbeit hat zum Ziel, ein werkzeuggestiitztes, prototypenbasier-
tes, iteratives Entwurfsvorgehen fiir Mixed Reality Anwendungen zu
entwickeln. Dieses Entwurfsvorgehen soll entlang des Mixed Reality
Kontinuums fithren und folgende Konzepte beinhalten:



Entwurfsvorgehen: Das Vorgehen zur Entwicklung von Mixed Reality
Anwendungen soll auf einem iterativen, prototypenbasierten
Ansatz basieren. Es soll eine Werkzeugunterstiitzung bieten, so
dass die Entwicklung softwaretechnisch getragen wird.

Architekturmuster: Die Grundlage des Entwurfsvorgehens soll ein
Architekturmuster sein, das die iterative Anwendungsentwick-
lung unterstiitzt. Es basiert auf dem bekannten MVC Architek-
turmuster (Kapitel 2.2.145) und wurde um eine Komponente
erweitert, um die Besonderheit bei Mixed Reality Anwendungen
zu unterstitzten.

Akteurmodell: Zur Verfeinerung des Architekturmusters soll ein ei-
genes Akteurmodell verwendet werden. Dieses gewihrleistet bei
der Entwicklung der Mixed Reality Prototypen kurze Iterationen
und gewdhrleistet somit eine standig testbare Reprasentation
der aktuellen Anwendung.

Metrik: Es soll eine Metrik entwickelt werden, die den entsprechen-
den Entwicklungstand des aktuellen Prototypen charakterisieren
kann. Diese Metrik soll das Architekturmuster beriicksichtigen
und auf der Entwicklung der einzelnen Komponenten basieren.

Verglichen mit anderen aktuellen Arbeiten im Bereich des Mixed
Reality Entwurfs hat diese Arbeit folgende Herausstellungsmerkmale:

1. Die Entwicklung der Anwendung geschieht entlang des Mixed
Reality Kontinuums, was bedeutet, dass die Applikation aus der
reinen virtuellen Welt in die reale Welt entwickelt wird. Kom-
ponenten und Objekte, die am Anfang der Entwicklung virtuell
definiert werden, konnen im Laufe der Entwicklung zu realen
Objekten tibergehen. Auch der umgekehrte Fall ist moglich, dass
reale Objekte wieder zu virtuellen Objekten werden. Diese Tran-
sition zwischen der realen und der virtuellen Welt ist sinnvoll,
wenn am Anfang der Entwicklung die realen Objekte noch nicht
zur Verfligung stehen, oder wenn im Laufe der Entwicklung auf
eine spezielle Auspragung getestet werden soll und deshalb nur
die beteiligten Objekte in der realen Form vorhanden sein sollen.

2. Die Anwendung ist in kleine Komponenten, die sogenannten
Akteure, die anhand des vorgestellten Architekturmusters klas-
sifiziert und entsprechend entwickelt werden kénnen, aufgeteilt.

3. Eine Metrik erlaubt den Entwicklungsstand bezogen auf Klassi-
tizierung der einzelnen Akteure und so den gesamten Entwick-
lungsstand der Mixed Reality Anwendung zu ermitteln.



4. Die softwaremaflige Wiederverwendbarkeit der Akteure wird
mit Hilfe des Adapter-Prinzips gelost, so dass in den meisten
Fillen die Akteure nicht neu programmiert werden miissen.
Durch eine definierte Schnittstelle ist so auch der Austausch von
virtuellen zu realen Akteuren moglich.

5. Ein eigenes iteratives, prototypenbasiertes Entwurfsvorgehen
erlaubt kurze Iterationszyklen und eine stindig testbare Re-
prasentation der Mixed Reality Anwendung. Durch die Wieder-
verwendbarkeit konnen die Iterationszyklen noch kiirzer gehal-
ten werden.

6. Durch die Entwicklung entlang des Mixed Reality Kontinuums
und der Klassifizierung des Architekturmusters konnen Kom-
ponenten wahrend der Entwicklung unterschiedlich priorisiert
werden.

7. Eine Softwareumgebung, die das komplette Entwurfsvorgehen
unterstiitzt und so die Entwicklung einer Mixed Reality Anwen-
dung von der rein konzeptionellen Ebene in die Machbarkeit
tiberfiihrt.

Nach der Entwicklung der konzeptionellen Grundlagen dieser Arbeit
wurde das Entwurfsvorgehen zunichst an einem kleineren Beispiel
getestet. Dieses entstand ohne eine spezielle Entwicklungsumgebung,
so dass zuerst ein kleiner Umfang des Entwurfsvorgehens validiert
werden konnte.

Wiéhrend der Arbeit entstanden zwei voneinander unabhéngige Ent-
wicklungsumgebungen, die unterschiedliche Aspekte der Entwick-
lung fokussierten. Die erste Entwicklungsumgebung basiert auf einem
proprietiren 3D Autorenwerkzeug, das es dem Entwickler von An-
wendungen ermoglicht, diese visuell (und nicht wie sonst iiblich
textuell) zu entwickeln. Dieses proprietare Werkzeug wurde mit Hilfe
von Plug-ins dahingehend erweitert, dass die Entwicklung von Mixed
Reality Anwendungen ermoglicht wurden. Allerdings war es nicht
moglich, alle Konzepte des Entwurfsvorgehens zu realisieren. Aus
diesem Grund wurde ein komplett eigenes Werkzeug, das speziell
fiir das ,,Mixed Reality in the Loop”-Entwurfsvorgehen ausgearbeitet
wurde, entworfen. Hier war es moglich, alle Aspekte von MRIL zu
verwenden. Mit Hilfe dieses Werkzeuges wurde dann ein komplexes
Beispiel realisiert, um die Anwendbarkeit von MRiL zu demonstrie-
ren.



1.3

1.4

Aktueller Stand der Arbeit

Aktuell ist das Entwurfsvorgehen konzeptionell vollstindig (siehe
Kapitel 497). Die beiden Entwicklungsumgebungen sind komplett im-
plementiert und einsatzbereit. Da die Entwicklungsumgebungen, die
auf dem proprietdaren 3D Autorenwerkzeug basieren, mit Hilfe von
Plug-ins realisiert wurden, ist nicht jede Funktionalitét fiir alle denkba-
ren Fille implementiert. Hier miissten fiir konkrete Projekte entweder
die vorhandenen Plug-ins angepasst oder neue Plug-ins entwickelt
werden. Dies ist jedoch im Sinne des Autors, da die Entwicklung
einer Mixed Reality Anwendung die Implementierung spezialisierter
Plug-ins nicht ausschliefit sondern, gerade durch die einfache Einbin-
dung in die Entwicklungsumgebung, ermoglicht. Auch in der aus
dieser Arbeit hervorgegangenen eigenen Entwicklungsumgebung ist
es erwiinscht, spezielle Funktionalitdt selbst mit Hilfe von Akteuren
zu entwickeln. Die Grundstrukturen fiir solche Entwicklungen sind
allerdings in beiden Entwicklungsumgebungen explizit vorhanden.

Bei den Beispielen, die mit Hilfe der eigenen Entwicklungsumgebung
entstanden sind, ist die Implementierung zum grofsten Teil vollendet.
Da es sich bei dem Beispiel allerdings um ein interdisziplinares Projekt
mehrerer Fachgruppen, sowohl an der Universitdt Paderborn als auch
an der Fachhochschule Diisseldorf, handelt, konnten einige Punkte
nur konzeptionell entwickelt werden (siehe dazu Kapitel 5;59). Leider
wurde die Entwicklung einer erforderlichen Hardwarekomponente
nicht fristgerecht vollendet, so dass die Prototypen, die diese Kom-
ponente erfordern, nicht vollstindig implementiert werden konnten.
Konzeptionell allerdings wurden alle Beispiele komplett entwickelt.

Strukturierung der Arbeit

Dem aktuellen Kapitel folgt das Kapitel tiber die Grundlagen. Hier
werden bekannte Vorgehensmodelle (Kapitel 2.115) und Architektur-
muster (Kapitel 2.243) sowie eine kurzer Uberblick {iber Modellbildung
und Simulation (Kapitel 2.349) vorgestellt und eine Einfiihrung in Mi-
xed Reality (Kapitel 2.454) gegeben. Die vorgestellten Themen sollen
ein grundlegendes Wissen in den jeweiligen Bereichen vermitteln, so
dass auch ein Leser, der in diesen Gebieten nicht bewandert ist, die
Arbeit verstehen kann.

Es folgt das Kapitel iiber die aktuellen Forschungsergebnisse in dem
Bereich dieser Arbeit. Dieses Kapitel unterteilt sich in die Mixed Reality
Entwurfskonzepte (Kapitel 3.24p), die Entwurfskonzepte mit Werk-
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zeugumgebung (Kapitel 3.345) und den reinen Softwareumgebungen
und Softwarelosungen (Kapitel 3.4g;). In jedem Gebiet wurden Arbei-
ten ausgewdhlt, die sich in Teilen dieser Arbeit gleichen, allerdings
nicht den kompletten Umfang dieser Arbeit besitzen. Die jeweiligen
Unterschiede wurden in einer Tabelle kenntlich gemacht.

Kapitel 497 ist das erste der beiden Hauptkapitel. Hier wird das kom-
plette ,Mixed Reality in the Loop”-Entwurfvorgehen vorgestellt. Bei
der Anforderungsanalyse (Kapitel 4.19g) wird festgestellt, fiir welche
Anwendungen sich das Vorgehen eignet. Die Vorgehensweise (Kapitel
4.21091) beschreibt das Verfahren, wie Anwendungen mit dem Ent-
wurfsvorgehen zu entwickeln sind. Die benétigten Methoden (Kapitel
4.3193) werden im darauf folgenden Kapitel beschrieben. Mit Hilfe
eines kleinen Beispiels (Kapitel 4.413) soll gezeigt werden, wie sich
das Entwurfsvorgehen auch ohne Werkzeugunterstiitzung verwen-
den ldsst. Nach dem Beispiel werden die zwei Softwareumgebungen
(Kapitel 4.513¢) vorgestellt, die auf dem , Mixed Reality in the Loop”-
Entwurfsvorgehen basieren.

Um sowohl das Entwurfsvorgehen als auch eine der Softwareumge-
bungen zu tiberpriifen, wird in Kapitel 5159 ein nicht triviales Beispiel
entwickelt, das zehn aufeinander aufbauende Prototypen umfasst.
Bei der Realisierung der einzelnen Prototypen wird das Entwurfsvor-
gehen und die Berechnung der Metrik komplett angewendet, so dass
sich immer der Stand des aktuellen Prototypen ableiten ldsst. Die ein-
zelnen Prototypen fokussieren dabei grofstenteils jeweils eine andere
Auspragung der Anwendung, beispielsweise eine Verfeinerung des
Modells oder eine iiberarbeitete Steuerung.

Im Kapitel 6,91 wird abschlieffend mein Vorgehen den aus der Litera-
tur bekannten und in Kapitel 359 vorgestellten Arbeiten gegeniiber-
gestellt und verglichen. Die einzelnen fiir mein Vorgehen relevanten
Arbeiten werden noch einmal kurz zusammengefasst und die Unter-
schiede zu meinem Vorgehen aufgezeigt.

Im letzten Kapitel (Kapitel 7,97) fasse ich die Ergebnisse meiner Ar-
beit zusammen und gebe einen Ausblick auf zukiinftige Forschungs-
schwerpunkte, die aufbauen auf dem hier vorgestellten Entwurfsvor-
gehen erarbeitet werden konnten.

Zusammenfassung

In diesem Kapitel habe ich motiviert, warum es sinnvoll ist, ein Ent-
wurfsvorgehen entlang des Mixed Reality Kontinuums zu entwickeln.
Ich habe die Ziele dieser Arbeit aufgezeigt und erldutert, in wie weit



sich das hier vorgestellt Entwurfsvorgehen von anderen Arbeiten un-
terscheidet. Es wurde der aktuelle Stand der Entwicklung des Vorge-
hens erldutert und die Strukturierung der gesamten Arbeit vorgestellt.
Im nun folgenden Kapitel gehe ich auf grundlegende Verfahren in
den Bereichen ein, die ich in meiner Arbeit benétige.
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Grundlagen

Dieses Kapitel behandelt die grundlegenden Methoden und Strategi-
en, auf der meine Arbeit basiert. In Kapitel 2.1y, werden verschiedene
Vorgehensmodelle vorgestellt, die fiir die Erstellung von Softwarean-
wendungen entwickelt wurden und noch heute im Einsatz sind. Das
Kapitel 2.243 beschreibt unterschiedliche Architekturmuster, die fiir
verschiedene Probleme in der Softwareentwicklung geschaffen wur-
den. Die verschiedenen In-the-Loop Simulationsverfahren, die u. a. zur
Entwicklung von mechatronischen Systemen verwendet werden, sind
in Kapitel 2.349 aufgefiihrt und werden dort kurz erldutert. Kapitel
2.454 erkldrt das Reality-Virtuality Kontinuum (RV), welches Grundlage
meines Entwicklungsprozesses ist, und erldutert es an Beispielen.

Die hier vorgestellten Methoden, Strategien, Verfahren und Definitio-
nen sind in der Literatur wohl bekannt und gelten als Standard bzw.
Grundlage in der Softwareentwicklung. Die meisten Verfahren werden
seit vielen Jahren in der Softwareentwicklung erfolgreich eingesetzt,
gerade im Bereich Vorgehensmodelle und Architekturmuster. Teil-
weise sind die Methoden auch schon tiberholt, werden allerdings fiir
das grundlegende Verstandnis der in Kapitel 359 vorgestellten Stand
der Forschung aufgefiihrt. Dieses Kapitel bietet somit einen groben
Uberblick tiber die Methoden, Strategien, Verfahren und Definitionen,
die zum Verstdndnis meiner Arbeit dienen sollen. Aus diesem Grund
beziehe ich mich in diesem Kapitel teilweise auf Artikel der freien
Enzyklopadie Wikipedia [Wik11], referenziere jedoch immer fiir die
einzelnen Themen die grundlegenden wissenschaftlichen Veroffentli-
chungen bzw. Fachbiticher, so dass die einzelnen vorgestellten Themen
immer wissenschaftlich belegt sind.
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Vorgehensmodelle

Ein Vorgehensmodell im Allgemeinen organisiert einen Prozess der
gestaltenden Produktion in verschiedene, strukturierte Phasen, denen
wiederum entsprechende Methoden und Techniken der Organisation
zugeordnet sind. Die Aufgabe eines Vorgehensmodells ist es, die allge-
mein in einem Gestaltungsprozess auftretenden Aufgabenstellungen
und Aktivitdten in einer deutlich erkennbaren logischen Ordnung
darzustellen.

Ein Vorgehensmodell in der Softwareentwicklung im Speziellen ist
ein angepasstes Vorgehensmodell, welches bei der professionellen
Anwendungsentwicklung verwendet wird. Es dient dazu, die Softwa-
reentwicklung tibersichtlicher zu gestalten und in der Komplexitat
beherrschbar zu machen.

Komplexe Software ist nur schwer zu erstellen und zu warten, so dass
sich Softwareentwickler eines Planes zur Entwicklung von Software
bedienen. Dieser Plan — das so genannte Vorgehensmodell — unterteilt
den Entwicklungsprozess in iiberschaubare, zeitlich und inhaltlich
begrenzte Phasen. Die Software wird daher Schritt fiir Schritt fertig-
gestellt. Dem eigentlichen Entwicklungsprozess stehen dabei sowohl
das Projektmanagement als auch die Qualitdtssicherung begleitend
zur Seite.

Vorgehensmodelle spalten die einzelnen Aktivitdten auf verschiedene
Phasen im Entwicklungsprozess auf. Diese werden dann, ggf. mit
geringen Modifikationen, einmalig (z. B. Wasserfallmodell, siehe Ka-
pitel 2.1.214) oder mehrfach (z. B. Spiralmodell, siehe Kapitel 2.1.317)
durchlaufen. Bei mehrmaligen Durchlauf erfolgt eine iterative Ver-
feinerung der einzelnen Softwarekomponenten. Um die optimalen
Vorgehensmodelle herrscht Uneinigkeit. In der Regel unterscheiden
sie beim Entwicklungsprozess mindestens zwei grofse Tatigkeitsgrup-
pen: Die, von der programmiertechnischen Realisierung unabhéngige,
Analyse von Geschiftsprozessen (Geschéftsprozessmodell und Daten-
modell) einerseits und die EDV-technische Realisierung (Design und
Programmierung) andererseits.

Vorgehensmodelle unterscheiden sich wesentlich in ihrem Detaillie-
rungsgrad. Dabei sind z. B. der OOTC-Approach [IOOTCgy] oder der
Rational Unified Process [KRg6] detailliert ausgearbeitete Vorgehens-
weisen, die den an der Entwicklung Beteiligten konkrete Arbeitsan-
weisungen an die Hand geben. Das V-Modell (Kapitel 2.1.419) nimmt
diesbeztiglich tibrigens eine hybride Stellung ein, da es sowohl ein
Prinzip (jeder Stufe der Entwicklung entspricht eine Testphase) als
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auch (wie zumeist gebrduchlich) ein detailliertes Modell ist.

Agile Softwareentwicklung ist der Oberbegriff fiir den Einsatz von
Agilitat (lat. agilis, zu deutsch ,flink, beweglich”) in der Softwareent-
wicklung. Die Agile Softwareentwicklung beschiftigt sich mit Me-
thoden, die den Entwickler kreativ arbeiten und Verwaltungsaspekte
zuriicktreten lassen. Je nach Kontext bezieht sich der Begriff auf Teil-
bereiche der Softwareentwicklung — wie im Fall von Agile Modeling
— oder auf den gesamten Softwareentwicklungsprozess — exempla-
risch sei Feature Driven Development (Kapitel 2.1.8pg) oder Extreme
Programming (Kapitel 2.1.1031) angefiihrt. Agile Softwareentwicklung
versucht mit geringem biirokratischem Aufwand und wenigen Regeln
auszukommen.

Typen von Vorgehensmodellen

Es existieren insgesamt drei unterschiedliche Typen von Vorgehens-
modellen [Wik11]:

Software-Entwicklungsprozesse: Sie dienen zur Steuerung der Soft-
wareentwicklung von der Konzeption bis zum endgiiltigen Finsatz
inklusive der anfallenden Anderungen einer Software. Es gibt viele
verschiedene Prozesse, wobei die unten angegebenen die bekanntesten
dieser Klasse sind [Wik11]:

e Wasserfallmodell
e Spiralmodell
e V-Modell

Software-Lebenszyklusmanagement: Sie erweitert die Phasen tiber
den gesamten Lebenszyklus einer Software. Das Vorgehensmodell
definiert die Anforderungen an betriebliche Prozesse (das ,WAS")
und beschreibt die konkreten, EDV-technisch realisierten Prozesse
(das ,WIE"). Dieser Typ ist eine Mischung aus Ist-Beschreibung und
normativer Vorgabe. Je nach Standardisierungsgrad werden verschie-
dene Entwicklungsstufen vergeben. Unternehmen konnen sich diese
Entwicklungsstufen von externen Stellen zertifizieren lassen. Ein rele-
vantes Beispiel hierfiir ist [Wik11]:

e Norm ISO/IEC 12207

Softwareentwicklungs-Philosophie: Eine konkrete Programmierer-
Philosophie bzw. ein bestimmter Ansatz, wie Software nach Ansicht
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der Entwickler am besten entwickelt werden sollte. Diese Philosophien
beinhalten sehr oft auch Prozesselemente und werden daher ebenfalls
als Prozessmodell bezeichnet. Die unten angegebenen Modelle sind
nur ein kleiner, aber fiir diese Arbeit relevanter, Teil:

e Norm DIN ISO 13407

ModellgetriebeneSoftwareentwicklung (MDSD)

Feature Driven Development (FDD)

Rational Unified Process (RUP)

Extreme Programming (XP)
e Scrum

e Prototyping

In den folgenden Kapiteln werden die oben genannten Vorgehens-
modelle kurz vorgestellt und beschrieben. Einiger der Modelle wer-
den ausfiihrlicher beschrieben, da sie zum Teil Grundlage meines
Entwurfsvorgehens sind. Der Vollstandigkeit halber und wegen des
Verstandnisses stelle ich auch teilweise sehr frithe Vorgehensmodelle
der Softwareentwicklung vor.

Wasserfallmodell

Das Wasserfallmodell ist ein lineares und nicht-iteratives Vorgehens-
modell, bei dem der Entwicklungsprozess in Phasen organisiert wird.
Dabei gehen die Phasenergebnisse wie bei einem Wasserfall immer
als bindende Vorgaben fiir die ndchsttiefere Phase ein [Wik11].

Jede Phase im Wasserfallmodell hat vordefinierte Start- und Endpunk-
te, die eindeutig definierte Ergebnisse liefern. In Meilensteinsitzungen
am jeweiligen Phasenende werden die Ergebnisdokumente verabschie-
det. Zu den wichtigsten Dokumenten zdhlen dabei das Lastenheft
sowie das Pflichtenheft. In der betrieblichen Praxis gibt es viele Va-
rianten des reinen Modells. Es ist aber das traditionell am weitesten
verbreitete Vorgehensmodell [Wik11].

Das Wasserfallmodell wurde in seiner urspriinglichen Form zum ers-
ten Mal von Dr. Winston W. Royce 1970 présentiert [Roy87]. Man
konnte aber bereits schon frither die Grundstrukturen des heutigen
Wasserfallmodells in verschiedenen Publikationen der U.S. Air Force



und aus der Industrie erkennen. Es fand z. B. Einfluss bei der Entwick-
lung eines Air Defense Software Systems namens SAGE (semi automated
ground environment) in den 1950ern [MRZ11].

Der Name ,,Wasserfall” kommt von der haufig gewihlten grafischen
Darstellung der fiinf bis sechs als Kaskade angeordneten Phasen, wie
in Abbildung 2.1;4 zu sehen. Eigentlich ist das Wasserfallmodell eine
Verbesserung des einfachen Phasenmodells, das Herbert D. Benington
bereits 1956 vorgestellt hatte [Bens6]. In dem als Nine Phase Stage-
wise Model bekannten Ansatz wurde der Entwicklungsprozess fiir
Software in insgesamt 9 Phasen eingeteilt. Royce’s Einteilung der
Phasen erfolgte so, dass jede Phase von ihrer vorhergehenden Phase
abhdngig ist. Somit war es moglich, den Prozess in Einzelteile zu
zerlegen [MRZ11].

Dass sich das Modell urspriinglich nicht sonderlich durchsetzte lag
vor allem daran, dass kein Informationsfluss (engl. feedback) entgegen
des eigentlichen Phasenverlaufs existierte. Diese zu einem spéteren
Zeitpunkt eingefiihrte Erweiterung des Modells, die auch als Riick-
kopplung bezeichnet wird, ist auch die Ursache dafiir, warum das
von Barry Boehm in den 8oer Jahren vorgestellte Modell nicht nur
grofies Interesse und viele Anwender fand, sondern noch heute als
das Wasserfall Modell bezeichnet wird [Boe81]. Die Riickkopplung
ermoglichte die Behebung aufgetretener Fehler in der ndchsthéheren
Phase, sofern in der aktuellen Phase Fehler erkannt wurden. Das
Wasserfallmodell kann im Allgemeinen dort erfolgreich angewen-
det werden, wo sich Anforderungen, Leistungen und Ablédufe in der
Planungsphase relativ prazise beschreiben lassen [MRZ11].

Es existieren zwei Varianten des Wasserfallmodells, eine Variante
mit 5 Stufen und eine erweiterte Variante mit 6 Stufen, die auch in
Abbildung 2.114 zu sehen ist.

Die 5-stufige Variante beinhaltet folgende Phasen [Wik11]:
1. Anforderungsanalyse und -spezifikation (engl. Requirement
analysis and specification)

2. Systemdesign und -spezifikation (engl. System design and specifi-
cation)

3. Programmierung und Modultests (engl. Coding and module tes-
ting)
4. Integrations- und Systemtest (engl. Integration and system testing)

5. Auslieferung, Einsatz und Wartung (engl. Delivery, deployment
and maintenance)
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Abbildung 2.1: Ein erweitertes Wasserfallmodell mit Riickkopplung.

Die erweiterte 6-stufige Variante ist in die folgenden Phasen aufge-
teilt [Wik11]:

1. Planung (mit Erstellung des Lastenhefts, Projektkalkulation,
Projektplan) (engl. Systems Engineering)

2. Analyse (mit Erstellung des Pflichtenhefts, Produktmodell,
GUI-Modell und evtl. schon Benutzerhandbuch) (engl. Analysis)

3. Entwurf (UML, Struktogramme) (engl. Design)
4. Realisierung (engl. Coding)
5. Testen (engl. Testing)

6. Nutzung und Wartung (engl. Maintenance)

Beim Wasserfallmodell muss jede Aktivitédt in der vorgegebenen Rei-
henfolge und in der vollen Breite vollstandig durchgefiihrt werden,
bevor eine neue Aktivitdt angefangen werden kann. Am Ende jeder
Aktivitat steht ein fertiggestelltes Dokument, d.h. das Wasserfall-
Modell ist ein dokument-getriebenes Modell. Der Entwicklungsablauf
ist rein sequenziell, d. h. jede Aktivitdt muss komplett beendet sein,
bevor mit der ndchsten Aktivitdt begonnen werden kann. Das Wasser-
fallmodell orientiert sich am so genannten Top-Down-Verfahren. Es ist
einfach, verstandlich und benétigt nur wenig Managementaufwand.
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Eine Benutzerbeteiligung ist nur in der Anfangsphase vorgesehen,
anschlieflend erfolgen der Entwurf und die Implementierung ohne
Beteiligung des Benutzers bzw. Auftraggebers. Weitere Anderungen
stellen danach Neuauftrage dar [Wik11].

Da es schwierig ist, bereits zu Projektbeginn alles endgiiltig und im De-
tail festzulegen, besteht das Risiko, dass die letztendlich fertiggestellte
Software nicht den tatsdachlichen Anforderungen entspricht. Um dem
zu begegnen, wird oftmals ein unverhéltnisméfiig hoher Aufwand in
der Analyse- und Konzeptionsphase betrieben. Zudem erlaubt das
Wasserfallmodell nicht bzw. nur sehr eingeschrankt im Laufe des aktu-
ellen Projekts Anderungen aufzunehmen. Die fertiggestellte Software
bildet folglich nicht den aktuellen, sondern den Anforderungsstand
zu Projektbeginn wieder. Da grofiere Softwareprojekte meist auch
eine sehr lange Laufzeit haben, kann es vorkommen, dass eine neue
Software bereits zum Zeitpunkt ihrer Einfithrung inhaltlich veraltet
ist [Wik11].

Spiralmodell

Das Spiralmodell ist ein Vorgehensmodell in der Softwareentwick-
lung, das im Jahr 1988 von Barry W. Boehm [Boe88] in seinem Artikel
A Spiral Model of Software Development and Enhancement” be-
schrieben wurde. Es ist ein generisches Vorgehensmodell und daher
offen fiir bereits existierende Vorgehensmodelle. Das Management
kann immer wieder eingreifen, da man sich spiralférmig voran ent-
wickelt [Wik11]. Das Spiralmodell gehort zu den inkrementellen bzw.
iterativen Vorgehensmodellen. Es ist eine Weiterentwicklung des Was-
serfallmodells, in der die Phasen mehrfach spiralférmig durchlaufen
werden. Es sieht also eine zyklische Wiederholung der einzelnen Pha-
sen vor. Dabei ndhert sich das Projekt langsam den Zielen an, selbst
wenn sich die Ziele wihrend des Projektfortschrittes verdndern. Durch
das Spiralmodell wird nach Boehm das Risiko eines Scheiterns bei
grofien Softwareprojekten entscheidend verringert [Balo8].

Das Spiralmodell fasst den Entwicklungsprozess in der Software-
entwicklung als iterativen Prozess auf. Jeder Zyklus ist in einzelne
Quadranten unterteilt, die folgende Aktivitdten enthalten (sieche Ab-
bildung 2.2g):

1. Festlegung der Ziele: In dieser Teilphase werden die Ziele der
laufenden Phase festgelegt, Alternativen identifiziert und Rah-
menbedingungen beschrieben.

2. Risikoanalyse: Dieser Teil einer Iteration schétzt die Risiken ab
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Abbildung 2.2: Spiralmodell nach Boehm.

und versucht sie zu reduzieren, z. B. durch Prototyping, Simulati-
on oder Analysen. Es werden Alternativen evaluiert, sollten die
Risiken zu hoch sein.

3. Entwicklung und Tests: Das Zwischenprodukt wird wahrend
dieser Teilphase realisiert und verifiziert.

4. Planung der nichsten Iteration: Soll ein Projekt weiter gefiihrt
werden, wird in dieser Teilphase die Planung der nidchsten aus-
zufiihrenden Schritte erarbeitet.

Ein wesentlicher Aspekt des Spiralmodells ist die Risikobetrachtung,
die von anderen Vorgehensmodellen meist vernachlassigt wird. Hier-
bei werden zunéchst alle Risiken, die im Projekt auftreten konnen,
identifiziert und anschlieffend bewertet. Wird ein Risiko als zu hoch
bewertet versucht werden Alternativen mit geringerem Risiko gesucht.
Wird keine Alternative gefunden und das Risiko bleibt bestehen gilt
das Projekt als gescheitert. Wenn hingegen keine Risiken mehr exis-
tieren, so ist das Projekt kann das Projekt erfolgreich abgeschlossen
werden [Wik11].
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2.1.4 V-Modell

Das V-Modell ist eine abstrakte und umfassende Methode fiir das
Projektmanagement zur Entwicklung und Realisierung von Softwa-
reprojekten. Dabei resultiert die Bezeichnung V-Modell einerseits aus
dem ersten Buchstaben von , Vorgehensmodell”, andererseits aus der
V-formigen Darstellung der Projektelemente aus Spezifikation und
Zerlegung (im absteigenden Ast) und Realisierung und Integration
im aufsteigenden Ast (siehe Abbildung 2.319).

Zeit

Systemanforderungs-
analyse Abnahme & Nutzung

Systemarchitektur System Integration

Systementwurf Integrationstests

Softwarearchitektur Unit-Tests

Softwareentwurf

Detailisierung

<

Legende

Abbildung 2.3: Phasen des V-Modells iiber Zeit und Detaillisierung.

Die Idee des V-formigen Vorgehens wurde von Barry Boehm im Jahre
1979 vorgestellt [Boe79]. Das erste V-Modell wurde 1988 in Deutsch-
land fiir militdrische Zwecke entwickelt, ausgehend aus dem im Jahre
1986 gestarteten Projekt SEU-WS (Softwareentwicklungsumgebung
tiir Waffen- und Waffeneinsatzsysteme) des Bundesverteidigungsmi-
nisteriums. In dieses erste V-Modell wurden dann bis April 1990 die
Erkenntnisse aus dem Projekt SEU-IS (Softwareentwicklungsumge-
bung fiir Informationssysteme) integriert und die verbesserte Version
des V-Modells per Erlass vom Februar 1991 durch den Bundesminister
tiir Verteidigung als Entwicklungsstandard fiir die Softwareerstellung
bei der Bundeswehr festgeschrieben. Inzwischen wird das V-Modell
aber auch in der Privatwirtschaft eingesetzt [Wik11].

In der Regel wird eine neue Variante des V-Modells aus der jeweils
vorhergehenden Variante entwickelt, sobald ein Verbesserungsbedarf
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erkannt wird. Im Gegensatz zu einem klassischen Phasenmodell wer-
den im V-Modell lediglich Aktivitdten und Ergebnisse definiert und
es wird keine strikte zeitliche Abfolge gefordert. Insbesondere fehlen
die typischen Abnahmen, die ein Phasenende definieren. Dennoch ist
es moglich, die Aktivitdten des V-Modells zum Beispiel auf ein Was-
serfallmodell (Kapitel 2.1.214) oder ein Spiralmodell (Kapitel 2.1.317)
abzubilden [Wik11].

Ein zentraler Punkt des V-Modells ist die Detailisierung. Zu Beginn
wird tiber eine Systemanforderungsanalyse ermittelt, was die zu ent-
wickelnde Software leisten soll. Nach Abschluss dieser Phase erfolgt
die erste Detailisierung, in der die Ergebnisse der Systemanforderungs-
analyse fiir die Entwicklung der Systemarchitektur verwendet werden
(siehe auch Abbildung 2.319). Ist die Entwicklung an der Systemarchi-
tektur abgeschlossen, wird in einem weiteren Detailisierungsschritt
der Systementwurf erarbeitet. Weitere Detailisierungschritte folgen,
namentlich die Softwarearchitektur und der Softwareentwurf, d. h.
die eigentliche Realisierung der Software. Dies ist die feinste Stufe
der Detailisierung und nach Vollendung der Softwarearchitektur ist
die Software im Prinzip fertiggestellt. Was fehlt sind die Tests, die
das korrekte Arbeitender Software priifen. Bei den Tests wird nun die
Detailisierung mit jeder Phase wieder verringert, so dass erst einzelne
Module (Units) auf ihre Funktionalitdt gepriift werden, danach das
Zusammenspiel der einzelnen Module miteinander (Integrationstests),
folgend von den Tests der Software auf den einzelnen Arbeitsplatz-
rechnern (Systemtests). Sind alle Tests erfolgreich wird die Software
abgenommen und kann genutzt werden [Wik11].

Ein Nachteil des V-Modells, der sofort auffillt, ist die geringe Einbin-
dung des Benutzers in den Entwicklungsprozess und das Fehlen von
Prototypen fiir Tests. Somit wird die Software erst einmal komplett
entwickelt. Dies hat zur Folge, dass die Systemanforderungsanalyse
sehr detailliert ausfallen muss, da logische Fehler, wurden sie nicht
erkannt, sehr schwer zu beheben sind.

Norm 1SO/IEC 12207

ISO/IEC 12207 definiert einen Rahmen fiir Prozesse im Lebenszyklus
von Software (engl. Software Life-Cycle Processes) [ISOg5]. In Abbil-
dung 2.45; sind die verschiedenen Phasen eines Lebenszyklus von
Software dargestellt. Die Norm beschreibt auf einer sehr abstrak-
ten Ebene alle wichtigen Prozesse des Lebenszyklus einer Software,
von der Ideenfindung bis hin zur Stilllegung und den Beziehungen
untereinander. Die in der Norm definierten Prozesse bestehen aus
Aktivitdten, die in sich wiederum aus einzelnen Aufgaben bestehen.
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ISO/IEC 12207 definiert eine Prozessstruktur unter Verwendung einer
allgemein akzeptierten Terminologie, sie legt sich nicht fest auf ein
bestimmtes Lebenszyklusmodell oder eine bestimmte Entwicklungs-
methode. Es werden keine Details beztiglich des Konzepts bei der
Durchfithrung der Aktivititen und Aufgaben und auch keine Vor-
schriften beziiglich Namen, Formaten oder Inhalten von Dokumenten
vorgegeben [Wik11].

Zusitzlich beschreibt ISO/IEC 12207 wie der Standard auf eine be-
stimmte Organisation oder auf ein konkretes Projektvorhaben zuge-
schnitten werden kann [Wik11].

Organisatorische Aspekte Informationstechnische Aspekte

Anforderungen

Analyse/Entwurf Implementierung

Einflhrung

Pflege/Wartung

Legende

Abbildung 2.4: Phasen eines Softwarelebenszyklus.

Die Norm beschreibt folgende drei Prozesse [ISOg5]:

— Primédrprozesse: Die grundlegenden Prozesse fiir die Verwendung
der ISO/IEC 12207. Folgende Prozesse sind dabei involviert:
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Beschaffung: Stellt die Aktivitdten des Beschaffers von Software
und Dienstleistungen dar

Lieferung: Beschreibt die Aktivitdten des Lieferers von Software
und Dienstleistungen

Entwicklung: Aktivititen der Entwicklung der Software

Betrieb: Zu diesen Aktivitdten zdhlen Systemeinfithrung und
Systemtests sowie die Benutzerunterstiitzung

Wartung: Fehlerbehebung und Beseitigung von Mingel, Ver-
besserung des Durchsatzes, Anpassung an ein verdndertes
Umfeld, etc.

— Unterstiitzende Prozesse: Diese Prozesse unterstiitzen andere Pro-
zesse, in dem sie spezielle Funktionalitdten zur Verfiigung stel-
len, die nachfolgend beschreiben werden:

Dokumentation: Dokumentieren der gesamten Software iiber
die verschiedenen Phasen hinweg

Konfigurationsmanagement: Aktivitdten fiir organisatorische
und verhaltensméflige Regeln auf den Produktlebenslauf
der Software von seiner Entwicklung iiber Herstellung bis
hin zur Betreuung

Qualitdtssicherung: Aktivititen zum Sicherstellen des festge-
legtes Qualitdtsniveaus der Software

Verifizierung: Formale Uberpriifung der Prozesse

Validierung: Aktivitit zur inhaltlichen Uberpriifung der Pro-
zesse

Joint Review: Aktivitit zur Abstimmung zwischen dem Kun-
den und dem Lieferant/Entwickler

Audit: Untersuchungsverfahren zur Bewertung der Erfiillung
von den Anforderungen und Richtlinien der Prozesse

Problembehebung: Aktivitdt zur Behebung von Problemen bei
Prozessen

— Unternehmensprozesse: Die Unternehmensprozesse sollen speziel-
le Prozesse auf Unternehmensebene verwalten und verbessern:

Management: Umfasst die Steuerung von Kernprozessen im
gesamten Prozess, mit dem Fokus auf Strukturierung der
organisatorischen Rollen und deren Aufgaben

Infrastruktur: Aktivitdten zur Bereitstellung der notwendigen
Infrastruktur wie z.B. Hardware, Software oder Werkzeuge
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Optimierung: Messen, Uberpriifen, Verbessern der Lebenszy-
klusprozesse

Schulungsmafinahmen: Aktivitdt zur Schulung der Benutzer
der Software

Da die Norm ISO/IEC 12207 einen Lebenszyklus einer Software be-
schreibt, ist diese nicht mit den anderen Vorgehensmodellen vergleich-
bar. Trotzdem kann man Aussagen bzgl. einiger Eigenschaften des
Vorgehensmodells treffen. Die drei Prozesse, die die Norm vorschlagt,
sind grofstenteils nebenldufig, d.h. parallel bearbeitbar. Das ist ein
grofser Vorteil, da sich mehrere Teams mit verschiedenen Aufgaben
gleichzeitig beschiftigen kénnen. Uber die gewéhlte Implementierung
und das Vorgehen bei der eigentlichen Softwareentwicklung wird
nichts vorgeschrieben, d.h. hier konnen wieder klassische Modelle
(Wasserfall-Modell. Spiralmodell) benutzt werden. Die Norm ist aus-
gelegt fiir groflere Projekte, denn fiir kleine bis mittlere Produktionen
wiirde zuviel Mehrarbeit in die Organisation und Verwaltung fliefSen.

Norm DIN ISO 13407

Die Norm DIN EN ISO 13407 (Benutzerorientierte Gestaltung interak-
tiver Systeme) [ISOgg] beschreibt einen prototypischen benutzerorien-
tierten Softwareentwicklungsprozess. Sollten die Empfehlungen der
Norm DIN EN ISO 13407 erfiillt werden kann ein spezieller Entwick-
lungsprozess als konform betrachtet werden. Die DIN EN ISO 13407
wurde im November 2000 in der deutschen Fassung als DIN-Norm
veroffentlicht [Wik11].

Die Norm besteht in ihrem Aufbau sowohl aus den Beschreibungen
der Planung benutzerorientierter Gestaltung, als auch aus Erlduterun-
gen zur Entwicklung interaktiver Systeme, die sich darauf konzentrie-
ren, benutzerfreundliche Systeme zu erschaffen. Sie beschreiben in
kurzer, tibersichtlicher und fiir eine Norm gut lesbaren Form einen
iterativen Entwicklungsprozess, bei dem Nutzer- und Aufgabeneigen-
schaften die Entwicklung der Software bestimmen. AufSerdem enthilt
die Norm weitere Richtlinien und Tabellen fiir das Berichten tiber
benutzerorientierte Aktivitaten [Wik11].

Die Norm stellt nutzerorientierte Gestaltung als eine fachiibergreifen-
de Aktivitdt dar, die Wissen tiber menschliche Faktoren und ergono-
mische Kenntnisse und Techniken umfasst. Der ISO-Prozess besteht
aus vier wesentlichen Phasen [ISOgg]:

1. Nutzungskontext verstehen: Das Ergebnis dieser Phase ist eine
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Anforderungsanalyse

Benutzeranalyse

Evaluation Tatigkeitsanalyse

Entwurf Prototyp

Legende

Phasen: Konzeptionierung Entwicklung

Abbildung 2.5: DIN EN ISO 13407: Der Entwicklungsprozess

Beschreibung der relevanten Benutzer, ihrer Arbeitsaufgaben
und ihrer Umgebung.

2. Anforderungen spezifizieren: Wahrend dieser Phase werden
die Zielgrofien aus der bereits vorhandenen Dokumentation auf
einer Kompromissebene abgeleitet. Dabei wird die Teilung der
Systemaufgaben in solche, die von Menschen und in solche, die
von der Technik durchgefiihrt werden, sollen bestimmt.

3. Losungen produzieren: Dies kann im Sinne eines Prototyping
oder eines anderen iterativen Prozesses erfolgen. Diese Proto-
typen konnen noch reine Papierentwiirfe (Mock-ups) oder aber
schon lauffihige Programmversionen sein.

4. Losungen bewerten: Die Losungen werden auf die Erfiillung
der zuvor festgelegten Anforderungen gepriift. Dazu koénnen
Experten-Reviews, Usability-Tests, Befragungen oder auch eine
Mischung daraus dienen. Die dabei entdeckten Abweichungen
werden dann auf ihre Relevanz hin bewertet und sind Ausgangs-
punkt der nédchsten Iteration des Entwicklungsprozesses.

Dieses Verfahren ist komplementdr zu bestehenden Prozessmodellen
des Software-Engineering und ergdnzt diese. Der benutzerorientierte
Gestaltungsprozess sollte der Norm zufolge bereits im friihesten Sta-
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dium des Projekts beginnen und sollte dann wiederholt durchlaufen
werden, bis das System die Anforderungen erfiillt [Wik11].

Die DIN EN ISO 13407 stellt einen interaktiven, benutzerzentrierten
Entwurfsprozess dar, der Prototypen fiir die Benutzeranalyse verwen-
det. Zu Anfang der Entwicklung werden die Anforderungen an die
Software festgelegt. Diese Anforderungen konnen im laufenden Pro-
zess nicht mehr verdndert oder erweitert werden, so dass diese Phase
sehr ausfiihrlich und gewissenhaft erarbeitet werden sollte. Sind die
Anforderungen an die Software bekannt, beginnt die erste Iteration
mit der Benutzeranalyse, bei der die relevanten Aufgaben der Benut-
zer identifiziert werden. Die nédchste Phase analysiert die Tatigkeit, die
einerseits vom Benutzer und andererseits von der Software geleistet
werden soll. Es folgt die Entwicklung eines Prototypen, der von den
Benutzern getestet werden kann. Die Ergebnisse dieser Tests werden
in der ndchsten Phase evaluiert und bewertet. Daraus folgt die ndchste
Iteration, oder, falls die Software den Anforderungen entspricht, der
Entwurf. Bei dem Prozess werden die Prototypen in jeder Iteration
neu entwickelt, es findet keine Weiterentwicklung statt.

Die DIN EN ISO 13407 wurde Anfang 2011 durch die Norm DIN EN
ISO 9241-210 [ISO11] ersetzt, auf die ich allerdings in dieser Arbeit
nicht weiter eingehen werde.

Modellgetriebene Softwareentwicklung (MDSD)

Modellgetriebene Softwareentwicklung (engl. Model Driven Software
Development, MDSD) ist ein Oberbegriff fiir Techniken, die aus for-
malen Modellen automatisiert lauffdhige Software bzw. kompilierba-
ren Quelltext erzeugen [SVEHo07]. Dabei werden doménenspezifische
Sprachen (engl. Domain-Specific Languages, DSL) zusammen mit ent-
sprechenden Codegeneratoren und Interpretern eingesetzt [Wik11].

Bei MDSD nach Stahl et al. [SVEHo7] geht es darum, sich bei der
Entwicklung von Softwaresystemen moglichst nicht zu wiederholen
(DRY-Prinzip — Don't-Repeat-Yourself). Weil allein mit den Mitteln der
jeweiligen Programmiersprache nicht immer passende Abstraktionen
zur Beschreibung verschiedener Sachverhalte (Domain) eines Softwa-
resystems gefunden werden kénnen, werden unabhéngig von der
Zielsprache entsprechende Abstraktionen in Form von domé&nenspe-
zifischen Sprachen erschaffen. Diese werden dann entweder generativ
oder interpretativ auf die Zielplattform abgebildet [SVEHo07].

Nattirlich hat der Einsatz dieser Variante eine Auswirkung auf allen
Ebenen eines Projektes, sowohl technisch und fachlich als auch im



Managementbereich. Deshalb beschreibt die MDSD nicht nur, wie
man DSLs, Generatoren usw. entwickelt, sondern auch, wie man

diese in (hauptsédchlich agilen) Entwicklungsprozessen sinnvoll inte-
griert [SVEHo7].

Durch den erhthten Abstraktionsgrad der DSLs sind die Problem-
beschreibungen wesentlich klarer, einfacher und weniger redundant
festgehalten. Dies erhoht nicht nur die Entwicklungsgeschwindig-
keit, sondern sorgt innerhalb eines Projektes fiir klar verstandene
Doménenkonzepte. Das Konzept der omniprédsenten Sprache (engl.
Ubiquitous Language) aus dem Domain-Driven Design wird hier auf die
Konzeptebene der Softwarearchitektur angewandt [SVEHo7].

Weiterhin wird die Evolution der Software durch die Trennung der
technischen Abbildung und der fachlichen Modelle wesentlich verein-
facht. Auch das Testen fillt leichter, da nicht mehr jede einzelne Zeile
Quelltext getestet werden muss, sondern nur noch exemplarisch die
Modelle. Doménenspezifische Validierung in den Entwicklungswerk-
zeugen sorgt fuir sehr kurze Turnarounds [SVEHo7].

Fiir MDSD existieren eine Vielzahl an Werkzeugen, die jeweils nur
einzelne Aspekte, wie z. B. die Modellierung, oder alle Funktionalitét
untersttitzen [Wik11].

e Reine Modellierungswerkzeuge: Sie dienen lediglich zur grafi-
schen Darstellung und unterstiitzen keine automatischen Trans-
formationen. Das Modell wird hier in ein Austauschformat (bei-
spielsweise XMI") exportiert und mit gesonderten Transformato-
ren weiterbearbeitet.

e Reine Transformatoren: Diese dienen ausschliefilich der Trans-
formation von Modellen und beinhalten keine grafischen Model-
lierungsfunktionalitdten. Die Modelle werden in einem bestimm-
ten Austauschformat in ein internes Modellformat importiert,
transformiert und danach wieder exportiert.

o Integrierte MDD-Werkzeuge: Diese bieten Modellierung, Mo-
delltransformationen und Codegenerierung gebiindelt in einem
Werkzeug. Uberfliissige Export- und Importvorginge, Kompati-
bilitdtsprobleme beim Datenaustausch und Riistaufwand bzgl.
Integration werden vermieden. Die Navigierbarkeit und Syn-
chronisation zwischen fachlichem und technischem Modell und
Implementierungscode wird optimal unterstiitzt.

IXMI steht fiir XML Metadata Interchange und ist ein Austauschformat fiir Metadaten in XML.



2.1 VORGEHENSMODELLE

Anforderungen

Auf Text basierend

Analyse

Anwendung | Plattformunabhangiges Modell

Einsatz Low-Level Design

Quellcode | Plattformabhangiges Modell

Validierung
Quellcode

Legende |

Phasen: Konzeptionierung Entwicklung Codegenerierung

Abbildung 2.6: Modellgetriebene Softwareentwicklung.

Der Entwicklungsprozess beim MDSD kann variabel sein. Grofiten-
teils ist es aber ein iterativer Top-Down Ansatz, der Prototypen mit
berticksichtigt. Alleine schon die Vorgehensweise, wie die Modelle ent-
wickelt werden, und dass die Codegenerierung und das Erstellen der
endgiiltigen Applikation computergestiitzt verlduft, macht einen itera-
tiven Prozess unter Benutzung von Prototypen sinnvoll. In Abbildung
2.6p7 wird ein generischer MDSD Prozess dargestellt. Die Annota-
tionen an den Ubergingen von einer Phase zur nichsten beinhalten
die jeweilige Form der Applikation. Nachdem die Anforderungen
benannt sind, werden sie meist in textbasierte Form (DSL) an die
Entwickler weiter gegeben. Diese analysieren die Anforderungen und
entwickeln ein erstes Modell, das meist plattformunabhéngig ist. Ist
das Modell zufriedenstellend, wird das Low-Level Design entwickelt,
sodass das Modell auf der spdteren (Hardware-)Plattform lauffahig ist.
Ist die Anpassung, vollendet wird die Applikation mit Hilfe von Code-
generatoren in Quelltext transformiert und tibersetzt. Dies geschieht
automatisch und am Ende des Prozesses steht die lauffiahige Applika-
tion. Diese wird nun eingesetzt und getestet. Sollten Fehler auftreten
oder die Applikation um Funktionalitdt erweitert werden, miissen die
Anderungen erst im plattformunabhéngigen Modell korrigiert bzw.
zugefiigt werden.
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2.1.8 Feature Driven Development (FDD)
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Funktionsgetriebene Softwareentwicklung (engl. Feature Driven Deve-
lopment, FDD) wurde von Jeff De Luca im Jahre 1998 als eine schlanke
Methode fiir zeitkritische Softwareentwicklung definiert [DLg8]. Seit
der Zeit wurde FDD kontinuierlich weiterentwickelt. FDD stellt den
Feature-Begriff in den Mittelpunkt der Entwicklung. Jedes Feature
stellt einen Mehrwert fiir den Kunden dar. Die Entwicklung wird
anhand eines Feature-Plans organisiert. Eine wichtige Rolle spielt der
Chefarchitekt (engl. Chief Architect), der stindig den Uberblick iiber
die Gesamtarchitektur und die fachlichen Kernmodelle behdlt. Bei
grofieren Teams werden einzelne Entwicklerteams von den Chefpro-
grammierern (engl. Chief Programmer) gefiihrt [WRLo5] [PFoz].

FDD definiert ein Prozess- und ein Rollenmodell, die gut mit exis-
tierenden klassischen Projektstrukturen harmonieren. Daher fallt es
vielen Unternehmen leichter, FDD einzufiihren als XP (siehe Kapitel
2.1.1031) oder Scrum (siehe Kapitel 2.1.1134). Des Weiteren ist FDD
ganz im Sinne der agilen Methoden sehr kompakt und ldsst sich auf
wenigen Seiten komplett beschreiben [DLo4].

Entwicklung des Erstellen der Planung fir Entwurf Konstruktion

Gesamtmodell Featureliste jedes Feature jedes Features jedes Features

Legende |

Phasen: Gesamtmodell Featureplanung Featureentwurf

Abbildung 2.7: Feature Driven Development.

FDD-Projekte durchlaufen fiinf Prozesse, wie sie in Abbildung 2.7 zu
sehen sind.

Prozess 1 - Entwicklung eines Gesamtmodells: Im ersten Prozess
definieren die Fachexperten und Entwickler unter Leitung des
Chefarchitekten Inhalt und Umfang des zu entwickelnden Sys-
tems. In Kleingruppen werden Fachmodelle fiir die einzelnen
Bereiche des Systems erstellt, die in der Gruppe vorgestellt, ggf.
tiberarbeitet und schliefSlich integriert werden. Das Ziel dieser
ersten Phase ist ein Konsens tiber Inhalt und Umfang des zu
entwickelnden Systems sowie das fachliche Kernmodell [DLo4].

Prozess 2 - Erstellung einer Feature-Liste: Die aus dem ersten Pro-
zess festgelegten Systembereiche werden von dem jeweiligen



Chefprogrammierer in Features detaillieren. Es wird ein drei-
stufiges Schema verwendet: Fachgebiete (engl. Subject Areas)
bestehen aus Geschiftstatigkeiten (engl. Business Activities), die
durch Schritte (engl. Steps) ausgefiihrt werden. Die Schritte ent-
sprechen den Features. Die Features werden nach dem einfa-
chen Schema <Aktion> <Ergebnis> <Objekt> aufgeschrieben.
Ein Feature darf maximal zwei Wochen zu seiner Realisierung
benoétigen. Das Ergebnis dieses zweiten Prozesses ist eine ka-
tegorisierte Feature-Liste, deren Kategorien auf oberster Ebene
von den Fachexperten aus dem ersten Prozess stammen [DLo4].

Prozess 3 - Planung jedes Feature: Projektleiter, Entwicklungsleiter
und die Chefprogrammierer planen die Reihenfolge, in der Fea-
tures realisiert werden sollen. Dabei richten sie sich nach den
Abhéngigkeiten zwischen den Features, der Auslastung des
jeweiligen Programmierteams sowie der Komplexitidt der Fea-
tures. Auf Basis des Plans werden die Fertigstellungstermine je
Geschaéftsaktivitit festgelegt. Jede Geschaftsaktivitat bekommt
einen Chefprogrammierer als Besitzer zugeordnet. Aufierdem
werden fiir die bekannten Kernklassen Entwickler als Besitzer
testgelegt (engl. Class Owner List) [DLog4].

Prozess 4 - Entwurf jedes Feature: Die Chefprogrammierer

weisen die anstehenden Features den Entwicklerteams auf Basis
des Klassenbesitztums zu. Die Entwicklerteams erstellen ein
oder mehrere Sequenzdiagramme fiir die Features, die Chef-
programmierer verfeinern die Klassenmodelle auf Basis der Se-
quenzdiagramme. Die Entwickler schreiben dann erste Klassen-
und Methodenriimpfe. Schliefslich werden die erstellten Ergeb-
nisse inspiziert. Bei fachlichen Unklarheiten kénnen die Fachex-
perten hinzugezogen werden [DLog].

Prozess 5 - Konstruiere jedes Feature: Die Entwickler programmie-
ren die im vierten Prozess vorbereiteten Features. Zur Qualitéts-
sicherung werden bei der Programmierung sowohl Komponen-
tentests als auch Code-Inspektionen eingesetzt [DLog].

FDD ist ein sehr kompaktes Vorgehensmodell, das sich im Allgemei-
nen schnell in Unternehmen umsetzten ldsst, vorausgesetzt die zu
entwickelnde Software kann auf die fiir die Entwicklung zentralen
Features reduziert werden. Um eine schnelle Fertigstellung der ein-
zelnen Features zu erreichen, sollten diese nicht zu komplex sein,
da sonst die Implementierung viel Zeit kosten wiirde. Da jedoch bei
FDD der Fokus nicht auf kurzen Iterationen zwischen den Softwa-
reversionen liegt, kann der oben genannte Punkt im Allgemeinen
vernachlassigt werden. Im weitesten Sinne kann mein Verfahren, das
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ich in dieser Arbeit vorstelle, auch als FDD gesehen werden, allerdings
wird in meinem Prozess auf die kurzen Iterationen geachtet und des-
halb die Features, die implementiert werden sollen, sehr feingranular
aufgeteilt.

Rational Unified Process

Der Rational Unified Process (RUP) [WINT06] ist ein kommerzielles Pro-
dukt der Firma Rational Software, die seit 2002 Teil des IBM Konzerns
ist. IBM entwickelt den RUP und die zugehorige Software weiter. Die
neunte Version vom Jahre 2006 ist die derzeit die aktuelle Version.
Der RUP benutzt die Unified Modeling Language (UML) als Notati-
onssprache. Der RUP wurde von Philippe Kruchten [KRg6] in seiner
Urform erstmals 1996 vorgestellt.

Der RUP war moglich geworden, als sich die bekannten Program-
mierer Grady Booch, Ivar Jacobson und James Rumbaugh des Unter-
nehmens Rational Inc. auf ein einheitliches Notationssystem einigen
konnten. Als Resultat dieser Bemiihungen entstand die UML. Die Stan-
dardisierung und Weiterentwicklung der Sprache wurde an die Object
Management Group (OMG) tibergeben. Mit einer gemeinsamen Sprache
konnte nun eine gemeinsame objektorientierte Methode entwickelt
werden. Der Unified Process ist dabei ein Metamodell fiir Vorgehens-
modelle zur Softwareentwicklung und wurde parallel zur Unified
Modelling Language von den oben genannten Personen entwickelt und
veroffentlicht [Wik11].

Der Unified Process basiert auf mehreren Prinzipien [Wik11]:

e Anwendungsfillen
e Architektur im Zentrum der Planung

e inkrementellem und iterativen Vorgehen

Eine konkrete Implementierung des oben beschriebenen Unified Pro-
cess ist der Rational Unified Process. Die erste Version des RUP aus
dem Jahre 1999 [Krugg] [JBR99] fiihrte die Vorschldge der drei oben
genannten Begriinder fiir eine einheitliche Methode zur Modellierung
zusammen [Wik11].

Der Rational Unified Process legt grundlegende Arbeitsdisziplinen fest
(siehe auch Abbildung 2.831). Die Kernarbeitsdisziplinen sind die
Geschiftsprozessmodellierung (engl. Business Modeling), die Anfor-
derungsanalyse (engl. Requirements), Analyse & Design (engl. Ana-
lysis & Design), die Implementierung (engl. Implementation) und der
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Phasen

Arbeitsdiszilinen Konzeptionsphase Entwurfsphase Konstruktionsphase Ubergabephase
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Abbildung 2.8: Rational Unified Process.

Test (engl. Test) und die Auslieferung (engl. Deployment). Zu den un-
terstiitzenden Arbeitsdiszilinen gehort das Konfigurations- & Ande-
rungsmanagement (engl. Configuration & Change Management), das
Projektmanagement (engl. Project Management) und die Infrastruktur
(engl. Environment) [Wik11].

Orthogonal zu den Arbeitsdisziplinen gibt es im Rational Unified Pro-
cess vier Phasen, in der jeder der Diszilinen mehr oder weniger intensiv
zur Anwendung kommt. Die Phasen sind die Konzeptionsphase (engl.
Inception), die Entwurfsphase (engl. Elaboration), die Konstruktions-
phase (engl. Construction) und die Ubergabephase (engl. Transition).
Diese Phasen sind in sich in Iterationen unterteilt, so dass der Rational
Unified Process ein iteratives Vorgehensmodell ist. Resultate der Phasen
sind die so genannten Meilensteine (engl. Milestones) [Wik11].

2.1.10 Extreme Programming (XP)

Extreme Programming (XP), oder auch Extremprogrammierung, ist eine
Methode, die das Losen einer Programmieraufgabe in den Vorder-
grund der Softwareentwicklung stellt und dabei einem formalisierten
Vorgehen geringere Bedeutung zumisst. Diese Vorgehensweise de-
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finiert ein Vorgehensmodell, welches sich den Anforderungen des
Kunden in kleinen Schritten annidhert [AHo2].

Extreme Programming wurde von Kent Beck, Ward Cunningham und
Ron Jeffries wiahrend ihrer Arbeit im Projekt Comprehensive Compensa-
tion System (C3-Projekt) bei Chrysler zur Erstellung von Software ent-
wickelt. Die Arbeiten am C3-Projekt begannen 1995 und wurden 2000
nach der Ubernahme durch Daimler eingestellt. Die dabei entwickelte
Software wurde im Bereich der Lohnabrechnung eingesetzt [Syso6].

lteration

Abbildung 2.9: Lebenszyklus des Extreme Programming.

XP ist ein durch fortlaufende Iterationen und den Einsatz mehrerer
Einzelmethoden strukturierendes Vorgehensmodell (siehe Lebenszy-
klus in Abbildung 2.9). Es entstand durch die Synthese verschiedener
Disziplinen der Softwareentwicklung und basiert auf in der Praxis
bewédhrten Methoden, auch Best Practice? genannt. XP folgt einem
strukturierten Vorgehen und stellt die Teamarbeit, Offenheit und stete
Kommunikation zwischen allen Beteiligten in den Vordergrund. Dabei
ist die Kommunikation eine Grundsdule von Extreme Programming.
Die Methode geht davon aus, dass der Kunde die Anforderungen
an die zu erstellende Software zu Projektbeginn noch nicht komplett
kennt und nicht hinreichend strukturieren kann beziehungsweise
das mit der Realisierung betraute Entwicklerteam nicht tiber alle In-
formationen verfiigt, um eine verldssliche Aufwandsschitzung tiber
die notwendige Dauer bis zum Abschluss zu geben. Im Laufe eines
Projektes dndern sich nicht selten Priorititen und Gewichte. Zu Be-

*Die Bezeichnung Best Practice stammt aus der Betriebswirtschaft und bezeichnet eine bewahrte bzw.
optimale Vorgehensweise in einem Unternehmen.



ginn geforderte Funktionen der Software werden moglicherweise in
einer anderen Form benoétigt oder im Laufe der Zeit sogar komplett

hinfallig [Wik11].

Bei einer konsequenten Ausrichtung an XP soll die zu erstellende
Software schneller bereitgestellt sowie eine hohere Softwarequalitit
und Zufriedenheit des Kunden erreicht werden, als es mit den tra-
ditionellen Ansdtzen moglich ist. Der Kunde soll ein einsatzbereites
Produkt erhalten, an dessen Herstellung er aktiv teilgenommen hat.
Neue Funktionalitdt wird permanent entwickelt, integriert und getes-
tet. Um zu der zu entwickelnden Funktionalitdt zu gelangen, werden
jeweils die Schritte Risikoanalyse, Nutzenanalyse, die Bereitstellung ei-
ner ersten ausfiithrbaren Version (Prototyping) und ein Akzeptanztest
durchgefiihrt [Becoo].

Nach Vertretern dieses Vorgehensmodells ist XP ein Risikomanage-
ment. Es bejaht das Risiko, geht aktiv darauf ein und versucht, es zu
minimieren. Dieser implizite Umgang mit dem Faktor Risiko steht
im Gegensatz zu eher expliziten Vorgehensweisen, wie der Aufstel-
lung einer Risikoliste [DeMo3]. Softwareentwicklungsprojekte sind
unterschiedlichen Gefahren ausgesetzt, fiir die XP Losungen anbieten
soll [Wik11].

Dem Kunden bietet XP, gerade durch seine kurzen Entwicklungszy-
klen, jederzeit die Moglichkeit, steuernd auf das Projekt einzuwir-
ken. Dadurch soll erreicht werden, dass sich das Produkt aktuellen
Anforderungen anpasst, statt tiberholten Anforderungen aus einer
langst vergangenen Analysephase zu geniigen und damit bereits bei
Einfithrung veraltet zu sein. Zudem kann der Kunde bereits nach
kurzer Zeit ein unvollstandiges, aber zumindest funktionstiichtiges
Produkt einsetzen. Der Kunde ist im besten Fall jederzeit auf dem-
selben aktuellen Informationsstand beziiglich des Projektes wie das
Entwicklerteam [Wik11].

Aus der Sicht der Programmierer existiert keine strikte Rollentren-
nung, da die Aufgabenverteilung abhédngig von Situation und Fahig-
keiten geschieht. Der allgemeine Wissensaustausch und die stetige
Kommunikation beugen einem Wissensmonopol vor. Dies soll den
Einzelnen entlasten, wohingegen der Druck auf einer Person lastet,
wenn diese sich als Einzige in einem Modul auskennt [Wik11].

Dem Projekt bietet XP die Moglichkeit, Risiken zu minimieren. So
sollte unter richtiger Anwendung von XP der Kunde Software erhal-
ten, deren Umfang ihn nicht tiberrascht. Das Team soll ferner gegen
Krankheit Einzelner nicht mehr so anféllig sein. Ein ehrlicher Umgang
mit dem Kunden soll die Glaubwiirdigkeit und Zufriedenheit steigern



und die Angst minimieren, die unter Umstdnden zwischen Kunde
und Entwicklung vorherrscht [Wik11].

XP stellt aus wirtschaftswissenschaftlicher Sicht eine Form der Orga-
nisation dar, die direkt die Prozesse der Wertschépfung3 beschreibt.
In den Wirtschaftswissenschaften werden zur Bewertung von Extreme
Programming auch Erkenntnisse anderer Sozialwissenschaften, insbe-
sondere der Soziologie, genutzt [Wik11].

Vereinzelt wird Extreme Programming als informelle und damit unver-
bindliche Methode bezeichnet. Das trifft jedoch weder den Ansatz
noch das Ziel. Tatsachlich ist die Formalisierung der Methode des
Extreme Programming bewusst flach und schlank gehalten. Hinge-
gen muss ein Einvernehmen zwischen Kunden und Programmierern
hinsichtlich der Verbindlichkeit der erstellten Unterlagen hergestellt
werden, solange diese noch nicht durch neuere Fassungen ersetzt
wurden. Weiter muss der Vorgang des Ersetzens einer Fassung einer
Unterlage durch eine neuere Fassung dieser Unterlage soweit formali-
siert sein, dass beide Parteien Kenntnis von dieser Ersetzung haben
und diese Ersetzung annehmen [Wik11].

Extreme Programming ist die Summe einzelner, gemeinsam zur Op-
timierung des Nutzens eingesetzter Erfolgsmethoden. XP definiert
sich selbst mit diesen Prinzipien, allerdings nicht als Patentlosung fiir
alle Probleme. Da, wo es speziellen oder individuellen Anforderun-
gen nicht gentigt, soll es angepasst werden. Viele Prinzipien greifen
verzahnt ineinander. Einzelne Praktiken sind an sich nicht neu und
werden teilweise bereits lange genutzt, oder sind sogar von trivialer
und doch oft unterschétzter Natur. Die Praktiken sind die greifbaren,
konkreten MafSsnahmen, die sich aus den Werten und den Prinzipien
ableiten lassen [Wik11].

2.1.11 Scrum

Scrum (engl. das Gedrdnge) ist ein Vorgehensmodell, dass auf Treffen
(engl. Meetings), Artefakten, Rollen, Werten und Grundiiberzeugun-
gen basiert und beim Entwickeln von Produkten im Rahmen agiler
Softwareentwicklung hilfreich ist. Teammitglieder organisieren ihre
Arbeit weitgehend selbst und wéhlen auch die eingesetzten Software-
Entwicklungswerkzeuge und -Methoden. Ken Schwaber, Jeff Suther-
land und Mike Beedle haben Scrum erfunden und in der Softwareent-
wicklung etabliert [BDSTg9]. Als Methode zur Entwicklung von Soft-

3Der Begriff Wertschopfung ist in einer Geldwirtschaft das Ziel produktiver Tatigkeit. Diese
transformiert vorhandene Giiter in Giiter mit hoherem Geldwert. Die allgemeine Formel lautet:
Wertschopfung = Gesamtleistung — Vorleistungen.



ware wird Scrum das erstmalig im Buch , Wicked Problems, Righteous
Solutions” [DSgo] beschrieben. Scrum in Produktionsumgebungen
wird zum ersten Mal im Artikel , The New New Product Development
Game” [Gam86] erldutert und spéter in der Veroffentlichung , The
Knowledge Creating Company” [NTg5] weiter ausgefiihrt [Wik11].

Im Jahre 2003 legte Ken Schwaber ein Zertifizierungsprogramm fiir
Scrum Master auf. Das Ziel, heute wie damals, ist es, die Software-
Entwicklung durch das Nutzen von Scrum zu professionalisieren.
Inzwischen wird das Training Certified Scrum Master unter der Schirm-
herrschaft der Scrum Alliance durchgefiihrt [Wik11].
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Abbildung 2.10: Der Scrum-Prozess.

Scrum erfiillt die Bedingungen der agilen Software-Entwicklung, die
2001 im Agilen Manifest u. a. von Ken Schwaber und Jeff Sutherland
mit formuliert wurden [BBvB™o1]:

e Individuen und Interaktionen gelten mehr als Prozesse und
Tools.

e Funktionierende Programme gelten mehr als ausfiihrliche Do-
kumentation.

e Die stetige Zusammenarbeit mit dem Kunden steht tiber Ver-
tragen.

e Der Mut und die Offenheit fiir Anderungen steht iiber dem
Befolgen eines festgelegten Plans.

Bei Scrum gibt es drei klar getrennte Rollen, die von Mitarbeitern
ausgefiillt werden, die im selben Projekt zusammen arbeiten und
damit auch dasselbe Ziel haben. Damit jeder fiir das, was er kann,
zustandig und verantwortlich ist, werden die Zustdndigkeiten wie
folgt aufgeteilt:



Product Owner: Der Product Owner legt das gemeinsame Ziel fest,
welches das Team zusammen mit ihm erreichen muss. Zur De-
tinition der Ziele dienen ihm User Stories. Er stellt das Budget
zur Umsetzung dieser User Stories zur Verfiigung. Er setzt re-
gelméfiig die Prioritdten der einzelnen Product-Backlog-Elemente
(siehe unten). Dadurch legt er fest, welches die wichtigsten Fea-
tures sind, aus denen das Entwicklungsteam eine Auswabhl fiir
den néchsten Sprint trifft [Wik11].

Team: Das Team schitzt die Aufwénde der einzelnen Backlog-Elemente
ab und beginnt mit der Implementierung der fiir den nédchsten
Sprint machbaren Elemente. Dazu wird vor dem Beginn des
Sprints ein weiteres Planungstreffen durchgefiihrt, bei dem die
am hochsten priorisierten Elemente des Backlogs und konkrete
Aufgaben aufgeteilt werden. Das Team arbeitet selbstorganisiert
im Rahmen einer Time Box (dem Sprint) und hat das Recht
(und die Pflicht), selbst zu entscheiden, wie viele Elemente des
Backlogs nach dem nédchsten Sprint erreicht werden miissen, man
spricht dabei von commitments [Wik11].

Scrum Master: Der Scrum Master hat die Aufgabe, die Prozesse der
Entwicklung und Planung durchzufiihren und die Aufteilung
der Rollen und Rechte zu iiberwachen. Er hélt die Transparenz
wihrend der gesamten Entwicklung aufrecht und unterstiitzt da-
bei, Verbesserungspotentiale zu erkennen und zu nutzen. Er ist
keinesfalls fiir die Kommunikation zwischen Team und Product
Owner verantwortlich, da diese direkt miteinander kommunizie-
ren. Er steht dem Team zur Seite, ist aber weder Product Owner
noch Teil des Team. Der Scrum Master sorgt mit allen Mitteln
dafiir, dass das Team produktiv ist, also die Arbeitsbedingungen
stimmen und die Teammitglieder zufrieden sind. Er tritt somit
fiir die ordnungsgeméfie Durchfithrung und Implementierung
von Scrum im Rahmen des Projektes ein [Wik11].

Bei der Rollenaufteilung wurde berticksichtigt, dass das Team sich
selbst organisiert. Der Product Owner gibt nicht vor, welches Team-
mitglied wann was macht und wer mit wem zusammenarbeitet. Bei
Scrum wird von der Annahme ausgegangen, dass das Team sich intui-
tiv selbst organisiert, und zu jeder Aufgabe dynamisch eine optimale
innere Organisationsstruktur bildet, die sich relativ schnell an die sich
wandelnden komplexen Aufgaben anpasst. Der Scrum Master hat die
Pflicht, darauf zu achten, dass der Product Owner nicht in diesen ad-
aptiven Selbstorganisationsprozess eingreift und das Team stort oder
Verantwortlichkeiten an sich nimmt, die ihm nicht zustehen [Wik11].



Artefakte

Wie in Abbildung 2.1035 dargestellt besteht der Lebenszyklus von
Scrum aus Backlogs und Sprints. In dem Prozess existieren insgesamt
folgende Backlogs [Wik11]:

Product Backlog: Das Product Backlog enthélt die Features des zu
entwickelnden Produkts. Es umfasst alle Funktionen, die der
Kunde wiinscht, zuziiglich technischer Abhédngigkeiten. Vor
jedem Sprint werden die Elemente des Product Backlogs neu
bewertet und priorisiert. Dabei konnen bestehende Elemente
entfernt sowie neue hinzugefiigt werden. Hoch priorisierte Fea-
tures werden von den Entwicklern im Aufwand geschitzt und
in den Sprint Backlog iibernommen. Ein wesentliches Merkmal
des Backlogs ist die Tiefe der Beschreibung von einzelnen Featu-
res. Hoch priorisierte Features werden im Gegensatz zu niedrig
priorisierten sehr detailliert beschrieben. Somit wird viel Zeit
fir die wesentlichen Elemente und wenig fiir unwesentliche
verwendet [Wik11].

Sprint Backlog: Das Sprint Backlog enthilt alle Aufgaben, die notwen-
dig sind, um das Ziel des Sprints zu erfiillen. Eine Aufgabe sollte
dabei nicht langer als 16 Stunden dauern. Liangere Aufgaben
sollten in kurze Teilaufgaben zerlegt werden. Bei der Planung
des Sprint werden nur so viele Aufgaben eingeplant, wie das
Team an Kapazitdt aufweisen kann [Wik11].

Burndown Chart: Das Burndown Chart ist eine graphische, pro Tag
zu erfassende Darstellung des noch zu erbringenden Restauf-
wands pro Sprint. Im Idealfall fillt die Kurve kontinuierlich
(daher Burndown) und der Restaufwand ist somit am Ende des
Sprints gleich Null. Am Chart ist anhand der Verlangerung der
negativen Steigung bereits wahrend des Sprints erkennbar, ob
der zu Beginn geschitzte Aufwand realisierbar ist [Wik11].

Impediment Backlog: In das Impediment Backlog werden alle Hin-
dernisse des Projekts eingetragen. Der Scrum Master ist dafiir
zustandig, diese Hindernisse gemeinsam mit dem Team aus-
zurdumen [Wik11].

Zyklusmodell

Sprint: Zentrales Element des Entwicklungszyklus von Scrum ist
der Sprint. Ein Sprint bezeichnet die Umsetzung einer Iterati-
on, Scrum schldgt ca. 30 Tage als Dauer einer Iteration vor. Vor



dem Sprint werden die Produkt-Anforderungen des Kunden in
einem Product Backlog gesammelt. Auch technische und admi-
nistrative Aufgaben werden dort aufgenommen. Das Product
Backlog muss nicht vollstandig sein; es wird laufend fortgefiihrt.
Die Anforderungen fiir den ersten Sprint sind meistens rasch
aufgestellt. Die Anforderungen werden informell skizziert. Fiir
einen Sprint wird ein Sprint Backlog erstellt. In diesen werden
Anforderungen tibernommen, die wiahrend des Sprints umge-
setzt werden sollen. Die Entscheidung, welche Anforderungen
umgesetzt werden, wird vom Kunden nach von ihm festgelegten
Prioritaten getroffen. Zum Sprint organisiert sich das Entwick-
lungsteam selbst, braucht also keine detaillierten methodischen
Vorschriften [Wik11].

Daily Scrum: An jedem Tag findet ein kurzes (maximal 15-mintitiges)
Daily Scrum, heif3t eine Sitzung (engl. Meeting), statt. Das Team
stellt sich gegenseitig die folgenden Fragen:

e ,Bist du gestern mit dem fertig geworden, was du dir vor-
genommen hast?”

o ,Welche Aufgaben wirst du bis zum nichsten Meeting
bearbeiten?”

e ,Gibt es ein Problem, das dich blockiert?”

Die Sitzung dient dem Informationsaustausch des Teams unter-
einander. Hier geht es darum, dass moglichst alle alles wissen.
Falls neue Hindernisse erkannt wurden, miissen diese vom
Scrum Master bearbeitet werden. Dazu werden sie in das Im-
pediment Backlog eingetragen. Grofiere Projekte werden durch
das Einfiihren von Scrum-of-Scrum Meetings, Product Owner Daily
Scrums und ScrumMaster Weekly gesteuert [Wik11].

Review: Nach einem Sprint wird das Sprint-Ergebnis einem infor-
mellen Review durch Team und Kunden unterzogen. Hierzu
wird das Ergebnis des Sprints (also die laufende Software) vor-
gefiihrt, eventuell werden technische Eigenschaften présentiert.
Der Kunde priift, ob das Sprint-Ergebnis seinen Anforderungen
entspricht, eventuelle Anderungen werden im Product Backlog
dokumentiert [Wik11].

Retrospektive: In der Retrospektive wird die zurtickliegende Sprint-
Phase betrachtet. Es handelt sich dabei nicht um Lessons Lear-
ned4, sondern um einen zunichst wertfreien Riickblick auf die

4Lessons Learned ist ein Fachbegriff des Projektmanagements und bezeichnet allgemein die Auswer-
tung von Erfahrungen in Projekten, die zuvor durchgefiihrt wurden.



Ereignisse des Sprints. Alle Teilnehmer notieren dazu die fiir
sie wichtigen Ereignisse auf Zetteln und ordnen sie dem Zeit-
strahl des Sprints zu. Anschlieffend schreiben die Teilnehmer
alle Punkte auf, welche ihnen zu den Themen Best Practice, bzw.
Verbesserungspotential einfallen. Jedes Verbesserungspotential
wird priorisiert und einem Verantwortungsbereich (Team oder
Organisation) zugeordnet. Alle der Organisation zugeordneten
Themen werden vom Scrum Master aufgenommen und in das
Impediment Backlog eingetragen. Die gesamten teambezogenen
Details werden in das Product Backlog aufgenommen. Sollte fiir
die Retrospektiven und deren Vorbereitung nicht genug Zeit
eingerdumt werden, bleiben die Erkenntnisse und Ergebnisse
oberflachlich und die Resultate nach jedem Sprint dhneln sich.
Dann lduft man Gefahr, dass die Retrospektiven an Stellenwert
verlieren oder ganz gestrichen werden, weil die Ergebnisse der
Retrospektiven vorhersehbar sind [Wik11].

2.1.12 Prototyping

Prototyping, oder auch Prototypenbau, ist eine Methode der Softwa-
reentwicklung, die schnell zu ersten Ergebnissen (den sogenannten
Prototypen) fiihrt und friithzeitiges Feedback beziiglich der Eignung
eines Losungsansatzes ermoglicht [Wik11].

Der Begriff des Prototyping im Bereich der Softwareentwicklung trat
erstmals Anfang der achtziger Jahre in ersten Publikationen in Er-
scheinung. Zu dieser Zeit vollzogen sich teils drastische Wandel im
Bereich der Softwareentwicklung. Man war auf der Suche nach neuen
Designkonzepten und Entwicklungsstrategien um Schwéchen bzw.
Unzulédnglichkeiten vorhandener Entwicklungsmodelle fiir Software
zu umgehen, da insbesondere in umfangreichen Projekten zuneh-
mend Probleme im Bereich der Anforderung bzgl. des Endprodukts
auftraten [CS89] [KOSS11].

Im Jahre 1979 sollte eine weitldufig angelegte amerikanische Studie
klaren, worin die Griinde fiir ein oftmaliges Scheitern von Software-
projekten unter Verwendung herkdmmlicher Entwicklungsmodelle
wiren. Es zeigte sich, dass viele Softwareprojekte nicht etwa an un-
zureichenden Entwicklungsumgebungen oder Entwicklungswerkzeu-
gen, sondern zunehmend am Problem mangelnder Kommunikation
zwischen Auftraggebern, Benutzern und Entwicklern scheiterten. Die
zur damaligen Zeit giangigen Entwicklungsmodelle setzten auf so
genannte Life Cycle Plans auf. Das wohl bekannteste und gebrauch-
lichste derartige Modell war das Wasserfallmodell (Kapitel 2.1.214).
Das Problem bei diesen Modellen war, dass die Benutzer nur zu
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Abbildung 2.11: Entwicklungsprozess nach Pomberger [PWo4].

Beginn eines Projektes im Rahmen der Aufgabenbeschreibung bzw.
-spezifikation mit einbezogen wurden, jedoch vom weiteren Entwick-
lungsprozess konsequent ausgeschlossen waren. Dies machte zwar
den Entwicklungsprozess tiberschaubar und kalkulierbar, resultierte
allerdings in Software, die oftmals nicht den Erwartungen der Auftrag-
geber und Nutzer aufgrund unzureichender Aufgabenbeschreibung
entsprach. Unklarheiten und Fehler, die bereits im Rahmen der Anfor-
derungsanalyse auftraten, zogen sich somit bis ins Endprodukt durch,
wobei im schlimmsten Fall die Software nahezu unbrauchbar geraten
konnte [BKK9g2] [KOSS11].

Das Prototyping als Softwareentwicklungsmodell unterscheidet sich
grundsétzlich nicht von traditionellen, auf dem Life Cycle-Prinzip ba-
sierenden Entwicklungsmodellen. Vielmehr stellt es eine Ergdnzung
zu herkommlichen Modellen dar. Prototyping bildet ein Kernanliegen
dieses Paradigmas ab, den Benutzer wahrend des gesamten Entwick-
lungsfortschritts einbinden, um moglichst gute Kommunikation zwi-
schen Entwicklern und Benutzern zu gewéhrleisten und eventuelle
Ungenauigkeiten in der Softwarespezifikation jederzeit ausbessern zu
konnen. Dadurch kénnen etwaige Unklarheiten und Unzuldnglichkei-
ten friihzeitig erkannt und auch im Laufe des Entwicklungsprozesses
geklart werden, eines der grofiten Mangel vorausgehender Model-



le [CS89] [KOSS11].

Das Konzept des Prototyping versucht relativ frith im Entwicklungs-
prozess funktionsfahige Prototypen von Teilfunktionen der Software
zu entwickeln, welche Teilaspekte des Gesamtprojektes in ihrer Funk-
tionsweise demonstrieren und vom spidteren Nutzer getestet bzw. in
Zusammenarbeit mit dem Entwickler verbessert werden kénnen. Da
Prototypen nur Basiseigenschaften von Teilaspekten des Programms
beschreiben, konnen sie schnell und kostengiinstig erstellt werden, wo-
bei auch experimentelles Vorgehen ermoglicht wird. Die Prototypen
an sich definieren zwar Teilaspekte der zu erstellenden Software, sind
aber selbst als solche nicht Teil des endgiiltigen Produktes. Derartige
Prototypen konnen dann sukzessive entsprechend den Nutzerbediirf-
nissen erweitert oder aber auch génzlich verworfen und durch einen
anderen Prototypen ersetzt werden. Durch diesen evolutiondren An-
satz bei der Softwareentwicklung entsteht die Software stufenweise
in Zusammenarbeit mit den Nutzern [PWog4] [KOSS11].

Ansatzmethoden beim Prototyping

Es existieren drei verschiedene Ansétze, wie die Prototypen zu erstel-
len sind [KOSS11].

Throw-Away Ansatz: Bei der Verwendung eines Throw-Away Ansat-
zes wird ein nicht vollstdndiges, aber im Sinne der Anforderun-
gen lauffdhiges Programm beschrieben. Dies wird dann dem
Benutzer zur experimentellen Auswertung tibergeben. Der Proto-
typ wird nach der Auswertung nicht weiterverwendet, sondern
verworfen. Die gewonnenen Ergebnisse werden bei der Neukon-
struktion eines neuen Prototypen verwendet [KOSS11].

Inkrementeller Ansatz: Beim inkrementellen Ansatz wird zu Beginn
ein stabiler Programmkern aufgebaut, dem danach schrittwei-
se neue Funktionen oder auch neue Systemteile hinzugefiigt
werden. Programmteile, die dem Prototypen noch fehlen, wer-
den durch Simulationen vervollstindigt. Dieser Prototyp besteht
gewissermafien aus zwei verschiedenen Teilen, einem fest im-
plementieren Softwareteil und einem Simulationsteil. Nachteil
dieses Konzeptes ist, dass ein neu hinzugefiigter Programm-
teil das Gesamtsystem in der Regel in einem so hohem Mafle
beeinflusst, so dass frithere Entwurfsentscheidungen korrigiert
werden miissen [KOSS11].

Evolutiondrer Ansatz: Diese Ansatzmethode legt die jeweiligen Ar-
chitekturkonzepte zu keinem Zeitpunkt fest. Das ermoglicht zu



jeder Zeit das Aufnehmen neue Anforderungen. Die Architektur
passt sich den Umgebungsanforderungen an. So ist der Proto-
typ beim Beenden der evolutiondren Ansatzmethode das fertige
Endprodukt. Die Idee des evolutiondren Ansatzes geht bis in
die 60er Jahre zurtick, aber sie ist bis heute noch sehr schwer
umzusetzten [KOSS11].

Arten von Prototypen

Je nach den vorliegenden Anforderungen werden unterschiedliche
Prototypen benétigt. Es konnen vier verschiedene Arten unterschieden
werden [KOSS11]:
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Abbildung 2.12: Horizontaler und vertikaler Prototyp.

Demonstrationsprototyp: Dieser Prototyp soll vor allem die Benut-
zerschnittstelle, allerdings auch die Handhabung und die prin-
zipiellen Einsatzmoglichkeiten des zukiinftigen Endproduktes
zeigen. Fiir Demonstrationsprototypen wird in vielen Féllen der
Throw-Away Ansatz gewdhlt [KOSS11].

Funktionaler Prototyp: Bei dieser Art Prototyp werden eine oder
mehrere Aspekte der Funktionalitdt implementiert. Dabei gibt es
zwei unterschiedliche Vorgehensweisen, zum einen den horizon-
talen Prototyp und zum anderen den vertikalen Prototyp (siehe
auch Abbildung 2.12). Der horizontale Prototyp deckt eine Viel-
zahl an Funktionalitdt, die aber nicht komplett implementiert ist.



Beispiel wire eine Benutzerschnittstelle, die schon komplett ent-
wickelt ist, bei der aber die Verarbeitung der Eingaben fehlt. Der
vertikale Prototyp spezialisiert sich meist auf nur eine spezielle
Aufgabe, dafiir ist diese aber auch voll implementiert. Als Bei-
spiel, bei einer Benutzerschnittstelle wére diese bis auf wenige
Bedienelemente leer, dafiir wiirde allerdings die Funktionalitat
hinter den vorhandenen Bedienelementen schon komplett imple-
mentiert sein. Auch fiir den funktionalen Prototyp wird hdufig
der Throw-Away Ansatz gewahlt [KOSS11].

Labormuster (Labormodell): Dieser Prototyp dient den Entwicklern
intern als Bewertungsgegenstand, der Fragen der technischen
Umsetzung und der Realisierbarkeit kldren soll [KOSS11].

Pilotsystem: Pilotsysteme sind Weiterentwicklungen der Labormus-
ter, die so ausgereift sind, dass sie nicht nur im Labor sondern
auch schon im Anwendungsbereich selbst eingesetzt werden
konnen. [KOSS11]

2.1.13 Vorgehensmodelle Zusammenfassung

Die in diesem Kapitel vorgestellten Vorgehensmodelle sind die klassi-
schen Methoden zur Entwicklung von Software. Sie sind allgemein-
gliltige Modelle, die fiir die Entwicklung fast jedes Softwareprojektes
verwendet werden konnen. Sie bieten keine speziellen Losungen fiir
bestimmte Projekte und sind oft nicht durch Softwarewerkzeuge un-
terstiitzt. Allerdings basiert auch mein vorgestelltes Entwurfsvorgehen
auf Prinzipien der hier vorgestellten Vorgehensmodelle. Begriffe wie
Iteration, Prototyp und kurze Zyklen werden sich auch in meinem
Entwurfsvorgehen wiederfinden.

In Kapitel 3.2¢9 gehe ich auf speziell fiir Mixed Reality entwickelte
Vorgehensmodelle und Entwurfskonzepte ein, die den Stand der
aktuellen Forschung widerspiegeln.

2.2 Architekturmuster

Im Bereich der Softwareentwicklung sind Architekturmuster (auch:
Architekturstil, engl. architectural style) in den Arten von Mustern auf
oberster Ebene einzuordnen. Im Gegensatz zu Idiomen® oder Ent-

5]diome sind den Mustern (engl. pattern) zugeordnet. Buschmann definiert: ,Ein Idiom ist ein
programmiersprachenspezifisches Muster und damit ein Muster auf einer niedrigen Abstraktionsebene.
Ein Idiom beschreibt, wie man bestimmte Aspekte von Komponenten oder Beziehungen zwischen ihnen
mit den Mitteln einer bestimmten Programmiersprache implementiert.” [BMRS98]



wurfsmustern® bestimmen sie nicht ein konkretes (meist kleines oder
lokales) Teilproblem, sondern den Grundaufbau, also das Fundament
der Anwendung. [BMRSg8]

Architekturmuster lassen sich in vier verschiedene Kategorien eintei-
len [Wik11]:

Chaos zu Struktur (engl. Mud-to-structure): Diese speziellen Mus-
ter sollen helfen, die Vielzahl an Komponenten und Objekten
eines Softwaresystems zu organisieren. Die Funktionalitdt des
Gesamtsystems wird hierbei in kooperierende Subsysteme auf-
geteilt. Diese Kategorie beinhaltet folgende Muster:

e Pipes und Filter

e Schichtenarchitektur (auch: mehrschichtige bzw.
N-Tier-Architektur)

e Schwarzes Brett (engl. Blackboard)

Verteilte Systeme: Diese Kategorie unterstiitzt die Verwendung ver-
teilter Ressourcen und Dienste in Netzwerken (z.B. service-
orientierte Architekturen, Orchestrierung). Die beiden Modelle
Mikrokernel und Pipes und Filter) unterstiitzen eine Verteilung
auch, aber eher zweitrangig. Folgende Muster fallen unter diese
Kategorie:

e Broker bzw. Vermittler
e Client-Server

Interaktive Systeme: Interaktive Systeme sollen die Mensch-Com-
puter-Interaktionen strukturieren und vereinfachen. In dieser
Kategorie stehen folgende Muster:

e Model-View-Controller (MVC)
e Presentation-Abstraction-Control (PAC)

Adaptive Systeme: Bei diesem Muster wird die Erweiterungs- und
Anpassungsfahigkeit von Softwaresystemen besonderes unter-
stiitzt. Es fallen folgende Muster unter diese Kategorie:

e Mikrokernel
e Reflexion

e Dependency Injection

®Entwurfsmuster (engl. design patterns) sind bewihrte Lésungs-Schablonen fiir wiederkehrende

Entwurfsprobleme in Softwarearchitektur und Softwareentwicklung. [GHJV96]



2.2 ARCHITEKTURMUSTER

In meiner Arbeit habe ich das bekannte MVC-Modell verwendet und
dahingehend erweitert, dass es in mein Entwurfsvorgehen eingepasst
wurde. Deshalb werde ich hier nur die beiden Architekturmodelle
MVC und PAC aus der Kategorie der Interaktiven Systeme vorstellen.

2.2.1 Model-View-Controller

Das Model-View-Controller (MVC, zu deutsch ,Modell, Prasentation,
Steuerung”) Architekturmuster dient bei der Entwicklung von Soft-
ware zur Strukturierung in drei Einheiten: Dem Datenmodell (engl.
Model), der Prasentation (engl. View) und Programmsteuerung (engl.
Controller). Das Ziel dieses Musters ist ein flexibler Programment-
wurf, der spétere Anderungen oder Erweiterungen erleichtert und
eine Wiederverwendbarkeit der einzelnen Komponenten ermoglicht.
MVC ist in der Entwicklung von Benutzerschnittstellen (engl. User
Interfaces, kurz UI) ein weit verbreitetes Muster. Es wurde im Jahre
1979 zundchst exakt fiir Uls in Smalltalk durch Trygve Reenskaug, der
damals an Smalltalk im Xerox PARC arbeitete, beschrieben (Seeheim-
Modell) [Reeo3]. Mittlerweile gilt MVC aber als De-facto Standard fiir
den Grobentwurf aller komplexen Softwaresysteme, teils mit Diffe-
renzierungen und oftmals mehreren, jeweils nach dem MVC-Muster
aufgeteilten, Modulen [Wik11].

View (V) Controller (C)

user action

@—— Direkte Assoziation

¢~ — — — — |ndirekte Assoziation

Abbildung 2.13: Model-View-Controller Architekturmuster.

In Abbildung 2.13 sind die drei Komponenten Model, View und Con-
troller und deren Beziehung zueinander zu sehen. In der Abbildung



reprasentiert die durchgezogene Linie eine direkte Assoziation, die
gestrichelte eine indirekte Assoziation (z. B. iiber einen Observer”). Die
Annotation an den Pfeilen beschreibt die Aktionen bzw. Funktionen,
die jeweils aufgerufen werden konnen. So schickt z. B. das Model eine
Benachrichtigung an den View, dass sich die Daten des Model gedndert
haben (change notification) woraufhin der View dann die neuen Daten
vom Model abfragt (queryData()) und sie dann darstellt.

Je nach Realisierung hingen die Komponenten unterschiedlich stark
voneinander ab und sind fiir folgende Aufgaben gedacht:

Model: Es beinhaltet die darzustellenden Daten und ist vom View
und vom Controller unabhéngig. Die Bekanntgabe von Ande-
rungen an relevanten Daten im Model geschieht nach dem Ent-
wurfsmuster Beobachter (engl. Observer). Das Modell ist das zu
beobachtende Subjekt, auch Publisher, genannt [Wik11].

View: Der View ist fiir die Darstellung der Daten aus dem Model und
die Entgegennahme von Benutzerinteraktionen zustindig. Dem
View sind sowohl sein Controller als auch das Model bekannt,
dessen Daten er darstellt. Fiir die Weiterverarbeitung der vom
Benutzer tibergebenen Daten ist er aber nicht zustindig. Im
Regelfall wird der View iiber Anderungen von Daten im Mo-
dell mithilfe des Entwurfsmusters Beobachter unterrichtet und
kann sich daraufhin die aktualisierten Daten besorgen. Der View
verwendet das Entwurfsmuster Kompositum8 [Wik11].

Controller: Der Controller kann einen oder mehrere Views verwalten
und nimmt von ihnen Benutzeraktionen entgegen, die er dann
auswertet entsprechend agiert. Zu jedem View existiert ein Model.
Es ist nicht die Aufgabe der Steuerung, Daten zu manipulieren.
Der Controller entscheidet aufgrund der Benutzeraktion im View,
welche Daten im Model gedndert werden miissen. Er enthilt
weiterhin Mechanismen, um die Benutzerinteraktionen des View
einzuschranken. View und Controller verwenden zusammen das
Entwurfsmuster Strategie?, wobei der Controller der Strategie
entspricht. Der Controller kann in manchen Implementierungen

7Der Observer gehort zur Kategorie der Verhaltensmuster (engl. Behavioural Patterns). Es dient zur
Weitergabe von Anderungen an einem Objekt an von diesem Objekt abhéngige Strukturen. [GHJV96]

8Das Kompositum (engl. Composite) gehort zu der Kategorie der Strukturmuster (Structural Patterns).
Es wird angewendet, um Teil-Ganzes-Hierarchien zu reprédsentieren, indem Objekte zu Baumstrukturen
zusammengeftigt werden. Die Grundidee des Kompositionsmusters (Composite-Pattern) ist, in einer
abstrakten Klasse sowohl primitive Objekte als auch ihre Behdlter zu représentieren. Somit kénnen
sowohl einzelne Objekte, als auch ihre Kompositionen einheitlich behandelt werden. [GH]JV9g6]

9Die Strategie (engl. Strategy)gehort zu der Kategorie der Verhaltensmuster (Behavioural Patterns).
Das Muster definiert eine Familie austauschbarer Algorithmen.. [GHJVg6]
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2.2 ARCHITEKTURMUSTER

ebenfalls zu einem Beobachter des Model werden, um bei Ande-
rungen der Daten den View direkt zu manipulieren [Wik11].

Der Vorteil der Dekomposition nach dem Model-View-Controller Ar-
chitekturmuster, die hier am Beispiel von Benutzerschnittstellen be-
schrieben wurde, ist, dass die Aspekte der Visualisierung und der
Interaktion von der unterliegenden Applikation getrennt behandelt
werden konnen. Mit dem Model-View-Controller Architekturmuster
wird ein modulares Design ermoglicht, bei dem Anderungen einer
Komponente keine Auswirkungen auf die Implementation der {ibri-
gen Komponenten haben. Ein weiterer Vorteil ist die Moglichkeit der
Verwendung mehrere Views und Controller fiir ein Model.

Presentation-Abstraction-Control

Das Architekturmuster Presentation-Abstraction-Control (PAC, was ins
Deutsche tibersetzt bedeutet , Darstellung-Abstraktion-Steuerung”)
wird zur Strukturierung von interaktiven Softwaresystemen vewren-
det. Es ist eine Weiterentwicklung des in Kapitel 2.2.145 vorgestellten
MVC Models und wurde von Prof. Joélle Coutaz im Jahre 1987 vor-
gestellt [Cou87]. Mit dem PAC Muster konnen interaktive Systeme
so entwickeln werden, dass diese aus einzelnen Teilen bestehen, die
jeweils einen Teil der Aufgaben des gesamten Systems abbilden und
damit eine hohe Flexibilitdt des Systems gewédhren. PAC stellt sicher,
dass die Teile zu einem funktionierenden Ganzen zusammengesetzt
werden konnen [Wik11].

Top-Level-Agent

Control (C)

Presentation (P) Abstraction (A)

/ \

Intermediate-Level-Agent Intermediate-Level-Agent

Control (C) Control (C)

Presentation (P) Abstraction (A) Presentation (P) Abstraction (A)

/ / \

Bottom-Level-Agent Bottom-Level-Agent

Control (C) Control (C)

Presentation (P) Abstraction (A) Presentation (P) Abstraction (A)

Abbildung 2.14: Aufbau von Presentation-Abstraction-Control(PAC).

PAC teilt ein System in zwei Richtungen auf: Zum einen in die drei
Einheiten grafische Benutzungsschnittstelle (engl. Presentation), Ver-
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mittlung und Kommunikation (engl. Control) und das Datenmodell
(engl. Abstraction) — dies ist dhnlich dem MVC Muster — und zum
anderen hierarchisch in verschiedene Elemente, die jeweils einen Teil
der Aufgaben des Systems abbilden. Diese Teile werden im PAC
Muster als Agenten bezeichnet und sie stellen die erste Stufe der
Strukturierung wahrend des Architekturentwurfes dar [Wikz11].

Die Hierarchie von PAC ist in insgesamt drei Ebenen unterteilt, wie
in Abbildung 2.144; zu erkennen ist. Die oberste Ebene besteht aus
einem einzigen so genannten Top-Level-Agent, der fiir das System alle
globalen Aufgaben tibernimmt, z. B. Datenbankzugriffe. Auf der zwei-
ten Ebene liegen die Intermediate-Level-Agents, die eine Schnittstelle
zwischen der untersten (Bottom-Level) und der obersten (Top-Level)
Ebene bilden und mehrere Bottom-Level-Agents zu einer Einheit zu-
sammenfassen. Dabei besteht die Moglichkeit, dass in dieser Ebene
die Teilsysteme weiter hierarchisch aufgeteilt werden kénnen, so dass
ein Teilsystem auch aus einem oder mehreren anderen bestehen kann,
was bedeutet, dass ein Intermediate-Level-Agent auch mehrere ande-
re Intermediate-Level-Agents zusammenfassen kann. Die dritte Ebene
besteht aus den Bottom-Level-Agents, welche die eigentlichen Funk-
tionen des interaktiven Systems abbilden, wobei jeder seine eigene,
moglichst abgeschlossene, Funktion beinhaltet und moglichst tiber
keine Abhdngigkeiten zu anderen Bottom-Level-Agents verfiigen soll-
te [Wik11].

Der Architekturentwurf beginnt mit der Aufteilung der geforderten
Funktionalitdt auf mehrere Bottom-Level-Agents. AnschliefSend wird bei
dem Top-Level-Agent festgelegt, welche Funktionalitdt dieser erbringen
soll. Die Hierarchie wird daraufhin mit der Festlegung der Intermediate-
Level-Agents vervollstandigt, die eine Kombination aus Bottom-Level-
Agents darstellen und diesen den Zugriff auf den Top-Level-Agent
vermitteln [Wik11].

Wie schon oben beschrieben wird jeder Agent in drei Komponenten
aufgeteilt. Die erste Komponente entspricht der grafischen Benutzero-
berflache (Presentation), die die komplette Ein- und Ausgabe umfasst
(anders bei dem MVC Muster, bei dem diese noch aufgeteilt wird in
View und Controller). Die zweite Komponente reprasentiert die Ab-
straktion (Abstraction), die das Datenmodell des jeweiligen Agenten
realisiert. Die dritte Komponente, die Vermittlung und Kommunika-
tion (Control), stellt die Verbindung zwischen den beiden anderen
Komponenten her und ermoglicht die Kommunikation mit ande-
ren Agenten. Damit ist diese Komponente die zentrale Schnittstelle
tir die Zusammenarbeit der einzelnen Teile eines Systems im PAC-
Muster [Wik11].
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Es ist nicht zwingend notwendig, dass jeder Agent alle drei Kompo-
nenten beinhaltet, sondern jeder Agent bringt die Benutzerschnittstelle
und das Datenmodell fiir seine Aufgabe mit. Es ist somit vorstellbar,
dass z. B. ein Intermediate-Level-Agent nur in einem Fenster ihm unter-
geordnete Agenten zusammenfasst und anzeigt, selber aber dafiir kein
Datenmodell benétigt. Jeder Agent muss allerdings die Steuerungs-
komponente beinhalten, da ansonsten eine Kommunikation zwischen
Komponenten und mit anderen Agenten nicht moglich ware [Wik11].

Zusammenfassung

MVC und PAC eignen sich hervorragend, um Komponenten entspre-
chend ihrer Funktionalitidt aufzuteilen und so getrennt zu entwickeln.
Fiir meinen Entwurfsprozess habe ich das MVE Architekturmuster
als Grundlage gewdhlt und erweitert, da ich die Hierarchie von PAC
nicht benotigte. Die Aufteilung in kleinere Teile kann in meinem
Entwurfsprozess optional innerhalb der einzelnen Komponenten des
erweiterten MVE Architekturmusters vorgenommen werden.

Modellbildung und Simulation kontinuierlicher
Systeme

In vielen Bereichen der Entwicklung von kontinuierlichen Systemen
wird heutzutage die Simulation als Werkzeug genutzt. Durch die
Simulation erlangt man ein besseres Verstdandnis tiber komplexe, dy-
namische Systeme und sie erleichtert die Entwicklung dieser Systeme.
In diesem Abschnitt beziehe ich mich nur auf die Simulation kontinu-
ierlicher Systeme. Bei der Simulation beispielsweise diskreter Systeme
(z.B. Digitalschaltungen) muss das resultierende Modell nicht not-
wendigerweise mit Differenzialgleichungen beschreiben werden.

Grundlage der Simulation ist ein mathematisches bzw. physikalisches
Modell des kontinuierlichen Systems, welches anhand von Beobach-
tungen bzw. theoretischer Grundlagen entwickelt wird. Dieses Modell
sollte das zu analysierende System hinreichend gut beschreiben. Die
aus dem Modell resultierenden Differenzialgleichungen kénnen durch
einen Computer berechnet und gelost werden. Modelle konnen, je
nach Anforderung, beliebig komplex werden, meist reichen jedoch
Approximationen des Systems aus, um verwertbare Daten zu erhalten.
Um den Aufwand der Berechnung gering zu halten, sollte das Modell
nur genau das beschreiben, was fiir die spatere Auswertung notig
ist [Schog]. Die Daten der Simulation kénnen, je nach Zielsetzung,



vielfdltig genutzt werden, z. B. um das reale System oder das Modell
zu verbessern.

Die Durchfithrung von Simulationen kann verschiedene Griinde ha-
ben, z.B.

Entwicklung: Uberpriifung und Optimierung des Systems und seiner
Parameter vor der eigentlichen Prototypenentwicklung.

Wiederholbarkeit: Simulationen konnen immer mit denselben Vor-
raussetzungen wiederholt werden, was zu gleichen Ergebnissen
tithrt. Daher gestaltet sich eine Fehleranalyse leicht, da Fehler
reproduzierbar werden.

Beobachtbarkeit: Viele technische Systeme sind nur schwer zu beob-
achten. Durch die Simulation ist es moglich, die Vorgdnge, die
sonst nicht sichtbar waren, zu visualisieren. Dabei ist sowohl
der zeitliche (z. B. Zeitlupe) als auch der optische Aspekt (z.B.
Visualisierung von nicht sichtbaren Vorgiangen) zu nennen.

Gefahrenvermeidung: Das Entwickeln an realen Systemen kann zu
einer Gefdhrdung von Mensch und Maschine fiihren, die durch
die Simulation verhindert wird.

Training: Uber die Simulation kann der Benutzer lernen, das System
zu bedienen, ohne sich und andere in Gefahr zu bringen oder
das reale System zu beschéadigen.

Kosten: Die Entwicklung von Simulatoren ist giinstiger als die Her-
stellung realer Prototypen, gerade in den ersten Phasen der
Entwicklung.

Fiir die Simulation gibt es zwei grundsétzlich verschiedene Arten
der Durchfithrung, Offline oder in Echtzeit. Die Offline-Simulation
generiert Daten, die nach Abschluss der Simulation analysiert werden
konnen. Auf diesen Daten konnen verschiedene Visualisierungen
ausgefiihrt werden und es ist moglich, die Simulation zu stoppen,
zu verlangsamen oder riickwarts laufen zu lassen. Eine Echtzeit-
Visualisierung, d. h. die Daten werden zeitlich korrekt wiedergegeben,
ist moglich, aber eine Interaktion mit dem System kann in einer Offline-
Simulation nicht erreicht werden. Sollte etwas am System verdndert
werden, muss die Offline-Simulation komplett neu ausgefiihrt werden.

Das andere Verfahren zur Durchfithrung einer Simulation ist die
Echtzeit-Simulation. Sie erlaubt die Interaktior} des Benutzers mit dem
System wéhrend der Laufzeit und kann auf Anderung der Parameter
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reagieren. In der Echtzeitsimulation, gerade auch wenn die Simulation
mit realen Sensoren bzw. Aktuatoren gekoppelt ist, ist es nicht mehr
moglich die zeitliche Abfolge zu verdndern oder zu verlangsamen.
Damit wird die Beobachtbarkeit der Ereignisse etwas eingeschrankt.

In-the-Loop Simulation

In der Elektrotechnik und im Maschinenbau beziehungsweise der
Mechatronik haben sich Methoden fiir einen strukturierten Entwurfs-
prozess etabliert, die eine Simulation eines Systems und seiner Ein-
zelkomponenten auch im Kontext der Zusammenarbeit mit realen
Systemkomponenten ermdoglichen. Hierbei handelt es sich haufig um
Regelkreise oder Prozesssteuerungen [CMPHOoS].

d (t)lStérg réBe

StellgroBBe RegelgréBe

FihrungsgréBe  Reglerabweichung

Regelstrecke

u(t)

Rickfuhrung

Abbildung 2.15: Aufbau eines allgemeinen Regelkreises.

Neben den hier vorgestellten mechatronischen Regelkreisen existie-
ren auch Regelkreise fiir rein elektrische Systeme. Allgemein kénnen
Regelkreise fiir jedes komplexe System existieren, so dass die Trdger-
struktur nicht notwendigerweise aus dem Bereich des Maschinenbaus
stammen muss, wie in Abbildung 2.15 zu erkennen ist. Die Abbildung
zeigt einen einfachen Regelkreis der aus einer Regelstrecke, einem
Regler und einer Riickkopplung der Regelgrofie y (dem Istwert) be-
steht. Dabei wird die Regelgrofie y mit der Fithrungsgrofie w (dem
Sollwert) verglichen und die Regelabweichung e = w — y berechnet.
Die Regelabweichung wird dem Regler iibergeben, der daraus die
Stellgrofie u gemafs der gewiinschten Dynamik berechnet. Die Stell-
grofie u und die Storgrofie d werden der Regelstrecke iibergeben,
die daraus die Regelgrofie y bildet. Im Gegensatz zum allgemeinen
Regelkreis konnen Mechatronischen Regelkreise wie in Abbildung
2.165; dargestellt werden.

Wie in Abbildung 2.165; zu sehen gibt es beim mechatronischen Regel-
kreis ein Grundsystem, dass sich in einer Umgebung befindet. Dieses
bildet die Tragestruktur des gesamten Systems und ist normalerweise
dem Bereich Maschinenbau zuzuordnen. Im Grundsystem befinden
sich Sensoren, die Informationen der Umgebung aufnehmen oder den
Zustand des Grundsystems feststellen. Die Informationen der Senso-
ren werden durch Hard- und Softwarekomponenten verarbeitet. Die
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Abbildung 2.16: Aufbau eines mechatronischen Regelkreises.

Informationsverarbeitung steuert tiber Aktuatoren das mechanische
Grundsystem.

Ein solches System kann in verschiedenen Stufen simuliert werden,
bevor am Ende der Entwicklung ein fertiges System entsteht.

Model-in-the-Loop (Mil)

Die erste Phase der Simulation ist die Model-in-the-Loop Simulation
(MiL), in der das zu simulierende Komponente mit speziellen Werk-
zeugen (z. B. MATLAB/Simulink oder Labview) modelliert und in das
Simulationsmodell der Umgebung eingebettet wird. In dieser Phase
wird die Funktionalitdt gepriift und ggf. das Modell angepasst. Das
Modell existiert nur in den Werkzeugen und die Funktionalitdt wird
dort simuliert.

Software-in-the-Loop (SiL)

Bei der Software-in-the-Loop Simulation (SiL) wird das zuvor in oberen
Abschnitt beschriebene Modell nun in einen Code fiir eine bestimm-
te Plattform tibersetzt. Dieser Code wird dann simuliert, d.h. er
wird nicht auf der speziellen Hardwareplattform ausgefiihrt, sondern
in einem Hardwaresimulator. Dabei sollten die simulierten Daten
moglichst den Daten der MiL Simulation gleichen. Werkzeuge wie
beispielsweise MATLAB/Simulink bieten eine Codegenerierung in
Plattformabhéangigen Quelltext an, so dass der Schritt vom Modell
zum Code keine Schwierigkeiten beinhaltet.
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Abbildung 2.17: Model-in-the-Loop Simulation.

Hardware-in-the-Loop (HilL)

Die letzte Phase ist die Hardware-in-the-Loop Simulation (HiL), bei
der nun der Code, der in der SiL Simulation generiert wurde, auf
der entsprechenden Hardware (Embedded System) ausgefiihrt wird.
Die Hardware wird mit der Simulationsumgebung gekoppelt, die die
Eingaben und Ausgaben der Hardware {ibernimmt und auswertet.

Marin Schlager beschreibt in seinem Buch ,Hardware-in-the-Loop
Simulation: A Scalable, Component-based, Time-triggered Hardware-
in-the-loop Simulation Framework” [Scho8] die grundlegenden Prin-
zipen der Entwicklung von HiL-Simulatoren. Gerade im Bereich der
sicherheitskritischen Realzeitsysteme ist es wichtig, das eine korrekte
Ausfithrung in jeder Situation gewdihrleistet ist, auch bei sehr un-
wahrscheinlichen Situationen. Dabei sind Hardware-in-the-Loop (HiL)
Simulationen ein gebrdauchlicher Weg um die Realzeitsysteme zu vali-
dieren.

Zusammenfassung

Fiir mein Problem ergab sich, dass alle drei In-the-Loop-Techniken fiir
den Design-Prozess geeignet sind und sich in das Architekturmuster
perfekt eingliedern. So war es moglich, die verschiedenen Arten der
Simulationen in einem Beispiel, das in Kapitel 5159 beschrieben wird,
einzubinden. Es wurde in diesem Beispiel iterativ von der ersten bis
zur dritten In-the-Loop-Technik zuerst das Modell, gefolgt von der
Software bis hin zur Hardware eine Hohensteuerung entwickelt und
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Abbildung 2.18: Software-in-the-Loop Simulation.

validiert. Dabei wurden unterschiedliche Werkzeuge verwendet, die
die unterschiedlichen Stufen untersttitzten.

2.4 Reality-Virtuality Kontinuum (RV)

Das Reality-Virtuality Kontinuum (RV)' wurde 1994 von Paul Mil-
gram et.al. in der Veroffentlichung ,,Augmented reality: A class of
displays on the reality-virtuality continuum” [MTUKo94] definiert. Es
umschliefst alle Mischformen von Virtualitdt (oder besser virtuelle
Realitdt) und Realitét, die jeweils die Grenzen des Kontinuums bilden,
wie an Abbildung 2.2055 zu sehen ist Der Raum zwischen den beiden
Extremen wird ,Mixed Reality” (MR), also Vermischte Realitidt bzw.
Gemischte Realitdt, genannt. Die bekanntesten Zwischenformen sind
dabei die Augmented Virtuality (AV, zu deutsch erweiterte Virtualitat)
und die Augmented Reality (AR, zu deutsch erweiterte Realitdt).

2.4.1 Realitat

Die Realitdt ist das rechte Ende des Reality-Virtuality Kontinuum
(siehe Abbildung 2.2055) und beschreibt die Wirklichkeit, so wie sie
ein Mensch wahrnimmt. Dieses kann durch eine einfache Darstellung
eines Videobildes iiber einen Bildschirm geschehen oder auch durch

°In dieser Arbeit werde ich das Reality-Virtuality Kontinuum auch als Mixed Reality Kontinuum
bezeichnen, da sich die Anwendungen, die mit meinem Entwurfsvorgehen entwickelt werden, im
Bereich der gemischten Realitdt ansiedeln.
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Abbildung 2.19: Hardware-in-the-Loop Simulation.

Virtualitat Erweiterte Virtualitat Erweiterte Realitat Realitat

Abbildung 2.20: Reality-Virtuality Continuum von Milgram [MTUKg4].

die direkte Betrachtung ohne zuséitzliche elektronische Hilfsmittel.
Die Realitdt benotigt keine Positionsbestimmung, da hier nur rein
reale Objekte dargestellt werden. Auch aufwendige Visualisierungen
fallen hier weg. Software, die rein auf der Realitét basiert, ist z.B. eine
Videokamera, die einfach die Realitdt als Abfolge von Einzelbildern
auf dem Computer speichert.

Virtuelle Realitat

Als virtuelle Realitdt (engl. Virtual Reality, kurz VR), wird die Dar-
stellung und gleichzeitige Wahrnehmung der Wirklichkeit und ihrer
physikalischen Eigenschaften in einer in Echtzeit computergenerierten,
interaktiven virtuellen Umgebung bezeichnet. Es wird versucht die
Wirklichkeit so gut wie moglich abzubilden und die physikalischen
Eigenschaften zu simulieren. Beispiele sind Flug- oder Fahrzeugsimu-
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latoren, die versuchen die Gravitationskrafte nachzuempfinden. Aber
auch einfache virtuelle Umgebungen, die nicht die physikalischen
Eigenschaften zu simulieren versuchen, werden zur virtuellen Realitét
gezahlt. Hierzu zdhlen auch Grofsraumprojektionen und CAVEs'". Fiir
virtuelle Systeme werden meist leistungsstarke Rechner und Grafik-
systeme benoétigt, die in der Lage sind die virtuelle Umgebung in
Echtheit darzustellen. Fiir CAVEs werden zusatzlich Trackingsyste-
me™* benotigt um die korrekte Projektion fiir den Benutzer bestimmen
zu konnen.

2.4.3 Augmented Virtuality

Als erweiterte Virtualitat (engl. Augmented Virtuality, kurz AV) werden
Systeme angesehen, die groftenteils aus einer VR-Umgebung bestehen
und Teile der Realitdt in die VR-Umgebung einbeziehen. Beispiele
wairen ein reales Video, was in der virtuellen Umgebung dargestellt
wird, oder reale Audioquellen wie z. B. eine Tiirklingel, die an die
virtuelle Umgebung weitergeleitet wird. Leistungsstarke Rechner und
Grafiksysteme sind fiir die Verwendung von AV notwendig, da die
Umgebung zum grofiten Teil virtuell ist. Tracking kann in Einzelfdllen
notig sein, um z. B. das reale Bild mit der virtuellen Umgebung zu
synchronisieren.

2.4.4 Augmented Reality

Bei der erweiterte Realitdt (engl. Augmented Reality, kurz AR) steht
im Gegensatz zur virtuellen Realitét, bei der der Benutzer komplett
in einer virtuellen Welt eintaucht, die Darstellung zusitzlicher In-
formationen im Vordergrund. Fiir die visuelle Modalitét fiihrt dies
zu wesentlich hdrteren Anforderungen an die Positionsbestimmung
(Tracking) und Kalibrierung. Unter einem AR-System (kurz ARS) ver-
steht man das System der technischen Bestandteile, die notig sind,
um eine Augmented-Reality Anwendung aufzubauen, die da waren:
Kamera, Trackinggerite, Unterstiitzungssoftware usw.

Die Literatur verwendet meist die Definition der erweiterten Realitit
von Azuma [Azugy]:

e Die virtuelle Realitdt und die Realitit sind miteinander kombi-
niert (teilweise iiberlagert).

IICAVE steht fiir ,Cave Automatic Virtual Environment”, zu deutsch ,,Hohle mit automatisierter,
virtueller Umwelt”.

2Mit Tracking bezeichnet man die kontinuierliche Positionsbestimmung realer Objekte im Raum. Die
Positionsbestimmung kann Zwei- oder Dreidimensional erfolgen.



2.5

e Die Interaktivitat erfolgt in Echtzeit.

e Reale und virtuelle Objekte haben einen dreidimensional Bezug
zueinander.

Diese Definition beschriankt sich leider nur auf die technischen Merk-
male, die allerdings nur ein Teilaspekt der erweiterten Realitdt sind.
AR wird in anderen Arbeiten (beispielsweise bei ,Cybertechnolo-
gien als Werkzeug im Bauwesen” [EBo8]) als eine Ausweitung der
Sinneswahrnehmung des Menschen durch Sensoren von Umgebungs-
eigenschaften definiert, die der Mensch selbst nicht wahrnehmen kann.
Beispiele fiir diese Definition sind Radar, Infrarot, Distanzbilder, etc.,
die die Normale Sichtweise des Benutzers erweitern konnen.

Zusammenfassung

In diesem Kapitel wurden zu Anfang die verschiedenen Vorgehensmo-
delle und Architekturmuster vorgestellt, die Grundlage dieser Arbeit
sind. Die herausragenden Aspekte der einzelnen Modelle und Mus-
ter wurden in den jeweiligen Unterkapiteln kurz herausgestellt und
erldutert. Weiterhin wurde der Aufbau der Modelle und Muster dar-
gestellt und durch Abbildungen verdeutlicht. Die wichtigsten Quellen
wurden fiir weiterfithrende Nachforschungen angegeben.

Im Kapitel ,Modellbildung und Simulation”wurden die In-The-Loop-
Simulationen vorgestellt, die Teil meines Entwurfsvorgehens sind.
Es wurden die einzelnen Simulationstechniken in einzelnen Kapitel
vorgestellt und an Grafiken deren Vorgehen verdeutlicht.

Als eine weitere Grundlage dieser Arbeit wurde das von Milgram
eingefiihrte Reality-Virtuality Kontinuum in diesem Kapitel vorgestellt
und beschrieben. Dabei wurde der Begriff Mixed Reality eingefiihrt
und die einzelnen Zwischenformen Realitdt, virtuelle Realitit, er-
weiterte Virtualitdt und angereicherte Realitdt wurden in einzelnen
Abschnitten kurz erklart.
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KAPITEL

Stand der Forschung

3.1

In diesem Kapitel wird der aktuelle Stand der Forschung in den Ge-
bieten Mixed Reality Entwurfskonzepte und Software Frameworks
vorgestellt, auf denen der MRiL-Entwurfsprozess basiert bzw. die er
zu verbessern versucht. Dabei werden aktuelle Arbeiten in den Gebie-
ten vorgestellt und kurz umrissen. Diese Arbeiten sind als Grundlage
zum einen des Entwurfsprozesses selbst und zum anderen des MiRe-
AS Software Framework zu sehen.

Ubersicht

© Jeremy Visser, 200988

Abbildung 3.1: Anwendungen basierend auf dem ARToolKit.

Die Technik, Augmented Reality bzw. Mixed Reality Konzepte softwa-
remdflig zu verwenden, ist schon einige Jahre alt und wurde gerade
durch das ARToolKit [KBgg] fiir viele Entwickler erstmals einsetzbar.
Dabei wurde mit dem ARToolKit eine Software-Umgebung bereitge-
stellt, die es dem Entwickler ermoglichte, einfach und unkompliziert
eigene Inhalte in AR zu realisieren (linkes Bild in Abbildung 3.1).
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allerdings benétigte die Verwendung des ARToolKits Programmierer-
fahrung in C und speziell in OpenGL. Da bei den ersten Versionen des
ARToolKits die Grafik, die Videobildaufzeichung und das Tracking
softwaretechnisch verbunden waren, war es nicht moglich, diese Kom-
ponenten zu trennen und Teile in anderen Bibliotheken zu verwenden.
Ein frither Versuch sich zumindest von der Programmiersprache C zu
trennen, wurde in [GRSPo2] vorgestellt, bei dem das ARToolKit mit
Hilfe der JNI" in Java eingebunden wurde (mittleres und rechtes Bild
in Abbildung 3.1). Des Weiteren wurde die OpenGL Grafikschnittstel-
le gekapselt und in die damals aktuelle Szenegraphbibliothek JavazD
eingebunden [GSSo4b]. So war es moglich auf einem hoheren Level
AR Applikationen zu entwickeln [GSSo4c] [GSSo4a]. Da die Entwick-
lung von Java3D eingestellt wurde, war auch die Anbindung an das
ARToolKit obsolet.

Um komplexere Anwendungen im Bereich Mixed Reality zu entwi-
ckeln benétigt es jedoch mehr als nur eine Softwareumgebung. Wich-
tig ist auch ein Entwurfsvorgehen, um die neuen Herausforderungen,
die bei der Entwicklung von bzw. mit Mixed Reality entstehen, zu
bewiltigen. In diesem Bereich sind auch schon einige Arbeiten ent-
standen. Das ,Mixed Reality in the Loop”- Entwurfsvorgehen (MRiL)
basiert auf den Grundlagen der iterativen Entwicklung von Software,
die bereits im Kapitel 1; vorgestellt wurden, dem Virtual Prototyping
vorgestellt von Rix [RHT95] und Krassi [Krao8] und dem Prinzip der
,Hardware in the Loop” (HiL) Simulationen, das bei Schlager [Scho8]
verdffentlicht wurde.

Sowohl das Konzept als auch die Implementierung des MRiL-Ent-
wurfsvorgehens ist im Allgemeinen nahe verwandt mit existierenden
Arbeiten im Bereich der Entwicklung von Benutzerschnittstellen ,
speziell mit Arbeiten aus dem Bereich der ,Mixed Reality User In-
terfaces”, wie beispielsweise den Arbeiten von Cuppens [CRCo6],
Ishii [Isho8] und De Boeck [DBVRCo7].

Nachfolgend werden die aktuellen Arbeiten in diesem Gebiet kurz
vorgestellt und umrissen.

3.2 Mixed Reality Entwurfskonzepte

In den letzten Jahren haben sich eine Reihe namhafter Experten-
gruppen mit der Entwicklung neuartiger Software-Entwurfskonzepte
tiir und mit Mixed Reality befasst. Grund dafiir ist die steigende

'Java Native Interface, eine Schnittstelle in Java, um plattformabhéangigen C/C++-Code in Java
einzubinden.



Komplexitdt dieser Anwendungen und das Fehlen passender Ent-
wurfskonzepte gerade im Bereich Mixed Reality.

Virtual Prototyping - Virtual environments and the product design
process

In seinem Buch ,Virtual Prototyping - Virtual environments and the
product design process” [RHT9s5] fasste Rix et al. den damals neuen
Begriff des , Virtual Prototyping” durch verschiedene Arbeiten mehre-
rer Wissenschaftlern zusammen. Rix erklédrt den virtuellen Prototypen
als ,einen bedeutenden Zwischenschritt zum Endprodukt. Anhand
der gegebenen Design Information [- - - | wird es moglich sein, einen
Prototypen mit dem Computer zu generieren, der sowohl fiir realisti-
sche Prasentationen als auch zur Interaktion mit dem Produkt schon
in frithen Entwicklungsphasen geeignet ist”>. Rix erwartete , durch die
Entwicklung dieser Technologie und die Integration in den Produkt-
Entwicklungsprozess bedeutende Vorteile im industriellen Einsatz”3.
Dabei waren die Hauptargumente die Zeit- und Kostenersparnis und
die Steigerung der Qualitdt eines Produkts. Aus diesem Grund wur-
den zwei Workshops im Herbst 1994 abgehalten, die zum Ziel hatten,
die damaligen Konzepte und Methoden von ,Virtual Prototyping”
zusammenzutragen. Zu diesem Zeitpunkt existierte allerdings noch
kein Entwurfsvorgehen fiir jegliche Art von virtuellem Prototyping.

VP - Virtual environments and the product design process

Autoren Rix, Haas, José Jahr 1995
Bereich Grundlagen, Theorie
Beschreibung | Vorstellung des Begriffs Virtual prototyping
Merkmale: + Definition des Begriffs

+ Anwendungsbeispiele

- Nur VR

- Kein konkretes Entwurfsvorgehen

- Kein Modell

2Aus ,Virtual Prototyping - Virtual environments and the product design process” [RHTg5], Seite
viii (eigene Ubersetzung)

3Aus ,Virtual Prototyping - Virtual environments and the product design process” [RHTg5], Seite
viii (eigene Ubersetzung)



Dynamic Virtual Prototyping for Control Engineering

Boris Krassi erldutert in seinem Buch ,Dynamic Virtual Prototyping
for Control Engineering” [Krao8], dass ,virtuelle Prototypen, oder
digitale Mockups, die Basis der digitalen Entwicklung sind. Virtual
Prototyping ist seit Jahren ein niitzliches Werkzeug im Bereich der
Control System Analyse und nach und nach wichst das Interesse an
der direkten Entwicklung von Kontrollsystemen auf Basis von virtuel-
len Prototypen. Wiirde man die Liicke zwischen dem Control Design
und dem Virtual Prototyping schliefien, konnte man die Redundanz
von Modellen vermeiden, Designfehler minimieren, Anpassungen
von Produktdnderungen erleichtern, die Zusammenarbeit zwischen
Produkt- und Lifecycle-Prozessen verbessern und die Zeit bis zur
Produkteinfiihrung verkiirzen. Erschwert wird dies jedoch durch die
Heterogenitadt, Komplexitat, Inkompatibilitdt und Unvollstandigkeit
der Modelle, vergleicht man die virtuellen Prototypen und Modelle,
die fiir die Entwicklung von Kontrollsystemen benétigt werden”4.
Krassi stellt in seinem Buch nun Konzepte, Methoden und Werkzeuge
vor, um das Control System Development im dynamischen virtuellen
Prototyping — einer Unterklasse des virtuellen Prototyping — zu inte-
grieren. Das Buch zeigt, dass virtuelle Prototypen auch in Bereichen
eingesetzt werden konnen, die normalerweise sehr prédzise Modelle
tir die Entwicklung bendétigen. Das vorliegende Buch konzentriert
sich allerdings nur auf den Bereich Control Engeneering und auch
die Uberfiihrung der virtuellen Prototypen zu realen Prototypen wird
vernachldssigt.

Dynamic Virtual Prototyping for Control Engineering

Autor Krassi Jahr 2008
Bereich Grundlagen, Anwendungen

Beschreibung | Verkniipfung zweier Gebiete

Merkmale: + Konzepte, Methoden, Werkzeuge

+ Anwendungsbeispiele
- Nur VR

- Nur der Bereich Control Engeneering

- Nur dynamisches Prototyping

4Aus ,Dynamic Virtual Prototyping for Control Engineering” [Krao8], Vorwort (eigene Ubersetzung)



3.2 MIXED REALITY ENTWURFSKONZEPTE
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Abbildung 3.2: TUI von Ishii. [Isho8]

The tangible user interface and its evolution

Auch Ishii hat schon in seinen Arbeiten, die er in , The tangible user
interface and its evolution” [Isho8] aus dem Jahre 2008 zusammen-
fasst, versucht, das Prinzip der grafischen Benutzerschnittstelle zu
verdndern. Dies ist dhnlich dem in dieser Arbeit vorgestellten Vor-
gehen, das MVC Architekturmuster zu erweitert. In seiner Arbeit
beschrieb er die Entwicklung der sogenannten Tangible User Interfaces
(TUI), was zu Deutsch bedeutet: fithlbare bzw. greifbare Benutzer-
schnittstellen.

,Die Tangible Media Group des MIT Media Laboratory stellte schon
Mitte der goer Jahre von der GUI zu TUIs um. Dabei reprasentieren
TUIs einen neuen Ansatz der Vision von Mark Weiser [Weig1] uiber



ubiquitous computing (was soviel bedeutet wie die Allgegenwartigkeit
der rechnergestiitzten Informationsverarbeitung), indem digitale Tech-
nologie in die Strukturen der physikalischen Umgebung eingewoben
wird und so die Technologie unsichtbar erscheint. Anstatt Pixel zu
Benutzerschnittstellen zu verschmelzen, benutzen TUIs eine physi-
kalische Form, die sich nahtlos in die physikalische Umgebung des
Benutzers einpasst. Ziel der TUIs ist das haptische Kénnen bei der
Interaktion auszunutzen, ein Ansatz der sich signifikant von den GUIs
unterscheidet. Dabei bleibt die Hauptidee bestehen: Verleihe physi-
kalischen Gegenstianden digitale Informationen [IUgy7], benutze sie
als Reprdsentation und kontrolliere damit die digitalen Gegenstiicke.
TUIs machen somit digitale Informationen direkt durch unsere Hande
manipulierbar und sind mit Hilfe unserer peripheren Sinne {iiber ihre
physikalische Verkorperung wahrnehmbar, siehe Abbildung 3.2 oben
links"5.

Mit Hilfe der Definition von TUIs entwickelte Ishii 1999 die erste
Generation von TUIs, die sogenannte Urban Planning Workbench oder
kurz Urp [Ulgg].

,Urp verwendet mafistabsgetreue physikalische Modelle architektoni-
scher Bauwerke, um damit eine Simulation der Schatten, der Lichtre-
flexionen sowie der Windbewegung und der Verkehrsbelastung einer
Stadt zu konfigurieren und zu kontrollieren, dargestellt in Abbildung
3.263 oben rechts”®. Dabei sind die physikalischen Modelle der Bau-
werke die greifbaren (tangible) Reprédsentanten der digitalen Modelle.
,Um die Position oder Orientierung eines Gebdudes zu dndern muss
der Benutzer nur das physikalische Modell bewegen anstatt mit einer
Maus die graphische Reprasentation am Bildschirm auszuwéhlen und
zu verschieben. Die physikalische Form der Modellgebdude in Urp
und die Informationen, die mit der Position und Orientierung auf der
Arbeitsflache verkniipft sind, reprdsentieren und kontrollieren somit
den Status der Simulation””.

Urp hatte allerdings das Problem, dass alle Modelle, sowohl phy-
sikalisch als auch digital, vordefiniert sein mussten. Der Benutzer
konnte wahrend der Arbeit mit Urp die Formen nicht d&ndern. Mit
diesem Hintergrund entstand die zweite Generation der TUIs von
Ishii., SandScape [IRP " o04].

,Die Entstehung neuer Abtast- (sensing) und Anzeigetechnologien
machte es moglich, die Entwicklung von dynamischen Formen in
TUIs zu integrieren. Vorgeschlagen wurde die Richtung hin zu digi-

5Aus ,The tangible user interface and its evolution” [Isho8], Seite 34 (eigene Ubersetzung)
®Aus ,The tangible user interface and its evolution” [Isho8], Seite 34 (eigene Ubersetzung)
7Aus , The tangible user interface and its evolution” [Isho8], Seite 35 (eigene Ubersetzung)



talen/physikalischen Materialien, die nahtlos Fiihlen (sensing) und
Anzeigen miteinander verbinden. Anstatt vordefinierte diskrete Objek-
te mit statischen Formen zu benutzen, entwickelte die Tangible Media
Group einen neuen Typ der organischen TUIs, der ein kontinuierliches
tiihlbares Material (dhnlich Ton oder Sand) verwendete. Als Beispiele
wurden der [lluminating Clay [PRIo2] und SandScape [IRP"04] (siehe
Abbildung 3.243 unten) entwickelt. Mit der Entwicklung von flexiblem
Materialien, die vollflexible Sensoren und Anzeigen integrieren, zeigt
die Kategorie der organischen TUIs ein grofies Potenzial um Ideen in
fiihlbarer Form auszudriicken”.

Allgemein versucht Ishii eine physikalische/reale Repréasentation di-
gitaler Daten zu erzeugen, mit dem der Benutzer interagieren kann,
die jedoch gleichzeitig wieder die digitalen Daten d&ndern. Dieselbe
Vorgehensweise ist auch bei vielen Mixed Reality Anwendungen zu
finden: Es wird versucht Informationen, aus der realen Welt zu ex-
trahieren und diese dann digital zu verarbeiten. Dabei ist es wichtig,
dass das Feedback zum Benutzer mit der physikalischen/realen Welt
konform geht, so dass eine gewisse Verschmelzung der realen und
der digitalen Welt entsteht. Ishii setzt hier mehr den Fokus auf die
Benutzerschnittstellen und stellt einige Prototypen von TUIs vor, geht
allerdings nicht auf die allgemeine Entwicklung ein. In dieser Arbeit
steht jedoch die Entwicklung solcher Applikationen im Vordergrund
und es wird versucht, eine Vorgehensweise bei der Entwicklung von
MR Anwendungen zu finden.

The tangible user interface and its evolution

Autor Ishii Jahr 1999
Bereich Grundlagen, Anwendungsbeispiele
Beschreibung | Beispiele und Methoden fiir TUIs

Merkmale: + Konzepte, Methoden, Werkzeuge

+ Anwendungsbeispiele
+ Mixed Reality
- Beschrankt auf Benutzerschnittstellen

- Kein Entwurfsvorgehen

- Kein Prototyping-Ansatz

8 Aus , The tangible user interface and its evolution” [Isho8], Seite 35 (eigene Ubersetzung)



Weitere Entwurfskontzepte

Weitere interessante Arbeiten im Themengebiet des modellbasierter
Entwurf und der grafische Programmierung sowie die Prinzipien
und Leitlinien der Mensch-Maschine-Interaktion fiir Mixed Reality
Systeme, deren konkrete Vorstellung jedoch den Rahmen dieser Arbeit
uberschreiten wiirde, finden sich u.a. bei den Prasentationen des
MRUIo7-Workshop, der auf der VR 2007 stattgefunden hat. [DFLo6]
Eine weitere sehr gute Quelle fiir vertiefende Informationen ist der
jahrlich stattfindende SEARIS Workshop. [SEA08]

3.3 Entwurfskonzepte mit Werkzeugumgebung

Im vorangegangenen Kapitel wurden reine Konzepte (teilweise mit
konkreten Implementierungen) vorgestellt. In diesem Kapitel beinhal-
ten die vorgestellten Konzepte gleichzeitig noch eine Werkzeugum-
gebung zur Entwicklung eigener Projekte im Bereich Mixed Reality.
Teilweise bieten die Arbeiten auch automatische Generatoren, die aus
den gegebenen Konzepten ausfithrbare Programme generieren. Ich
mochte hier nur die wichtigsten Arbeiten in diesem Bereich vorstellen,
die auch einen Bezug zu meiner Arbeit haben.

A model-based design process for interactive virtual environments

Ein spezielles Entwurfsvorgehen stellt Cuppens bereits 2006 in seiner
Arbeit ,,A model-based design process for interactive virtual envi-
ronments” [CRCo6] vor. Es ist ein modellbasierter Entwurfsprozess
tiir virtuelle Umgebungen, im Speziellen die Benutzerschnittstellen
innerhalb dieser virtuellen Umgebungen. Cuppens fiihrt an, dass ,die
Entwicklung der Benutzerschnittstellen in diesen virtuellen Umgebun-
gen kein unkomplizierter Prozess und somit fiir Nicht-Programmierer
nicht einfach verstdandlich und anwendbar ist. Das Papier stellt einen
modellbasierter Entwurfsprozess fiir genau diese im hohen Mafse
interaktiven Anwendungen vor, um die Diskrepanz zwischen Desi-
gner und Programmierer zu minimieren. Der Prozess basiert sowohl
auf den Anforderungen eines modellbasierter Entwurfsprozesses fiir
Benutzerschnittstellen und Werkzeugen und Toolkits fiir virtuelle
Umgebungen”?.

Bei dem Entwurfsprozess, der in Abbildung 3.3¢; visuell dargestellt

9Aus , A model-based design process for interactive virtual environments” [CRCo6], Seite 225 (eigene
Ubersetzung)
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Abbildung 3.3: Entwurfsprozess von Cuppens [CRCo6].

ist, wird zu Beginn ein Aufgabenmodell (Task Modell) mit Hilfe der
ConcurTaskTree (CTT) Notation [Patgg] erstellt, und tiber das Interac-
tion Description Model (IDM) erweitert. ,Nachdem ein Task Model
einmal entworfen wurde, kann der Algorithmus, der von Luyten
et al. [LCCVo3] beschrieben wurde, dazu benutzt werden, um das
Dialog Model automatisch von der CTT zu extrahieren. Das Dialog
Model basiert auf den Enabled Task Sets (ETS) [Patgg], die vom Task
Modell der Applikation abgeleitet werden. [- - - | Die resultierenden
ETSs konnen auf verschiedene Zustinde der Anwendung abgebildet
werden, die alle Interaktionsaufgaben des jeweiligen Zustands bein-
halten. [- - -] Nachdem das Dialog Model extrahiert wurde, kénnen
die unterschiedlichen Zustinde der Anwendung mit den Interakti-
onstechniken verbunden werden, die von den IDMs definiert wurden.
Des Weiteren muss der Entwickler nun das Dialog Model mit dem
Presentation Model zusammenfiigen. [- - - | Nach Beendigung des ge-
samten Entwurfsprozesses werden die spezifizierten Modelle fiir eine
automatisierte Generierung einer lauffdhigen Version der virtuellen



Umgebungs-Anwendung verwendet. “*°

Das von Cuppens vorgestellte Entwurfsvorgehen basiert auf einem
linearen Ansatz und sieht keine Iterationen und dementsprechend
keine Entwicklung mehrerer Prototpyen vor. Weiterhin bezieht es den
Aspekt der Mixed Reality nicht mit ein, der Prozess ist ausschliefSlich
tiir reine virtuelle Umgebungen entworfen worden.

A model-based design process for interactive virtual environments

Autoren Cuppens, Raymaekers, Coninx Jahr 2006
Bereich Entwurfsvorgehen

Beschreibung | Spezielles Entwurfsvorgehen in VR

Merkmale: + Konzepte, Methoden, Werkzeuge

+ Anwendungsbeispiele

+ Automatische Generierung

- Beschrankt auf Benutzerschnittstellen
- Nur VR

- Nicht iterativ

Mixed Reality: A model of Mixed Interaction

Eine weitere Arbeit im Bereich Entwurf, die sich speziell auf die Inter-
aktion in Mixed Reality bezieht, ist ,Mixed Reality: A model of Mixed
Interaction” von Coutrix und Nigay aus dem Jahre 2006 [CNo6]. ,Bei
Mixed Reality Systemen wird versucht, die physikalische und die
elektronische (digitale) Umgebung nahtlos zu verkniipfen. Obschon
Mixed Reality Systeme sich stetig weiter verbreiten, existiert noch
kein klares Verstdndnis iiber das Interaktionsparadigma. Um dieses
Problem zu zu 16sen, wird in dem Artikel ein neues Interaktionsmo-
dell [BLog] mit dem Namen Mixed Interaction Model vorgestellt”™".
Dabei ist es ,,das Ziel des Interaktionsmodells dem Designer ein Fra-
mework anzubieten, die ihn durch der Erschaffung von interaktiven
Systemen leiten”*?. Ein Interaktionsmodell kann dabei entlang der
folgenden drei Dimensionen charakterisiert werden [BLo4]:

Darstellung/Klassifizierung: Entspricht dem Potential, eine aussa-
gekraftige Auswahl existierender Schnittstellen zu beschreiben

°Aus ,, A model-based design process for interactive virtual environments” [CRCo6], Seite 231 (eigene
Ubersetzung)

1 Aus ,Mixed Reality: A model of Mixed Interaction” [CNo6], Seite 43 (eigene Ubersetzung)

2 Aus ,Mixed Reality: A model of Mixed Interaction” [CNo6], Seite 43 (eigene Ubersetzung)



und zu klassifizieren.

Erzeugung: Entspricht dem Potential, dem Designer dabei zu helfen,
neue Designs zu entwerfen.

Komparativitit: Entspricht dem Potential, mehrere Designalternati-
ven zu beurteilen.

,Das Mixed Interaction Model setzt den Schwerpunkt auf die Ver-
kniipfung der physikalischen und digitalen Welt und die Interaktion
des Benutzers mit der dadurch entstandenen Mixed Reality Umge-
bung. [- - - | Das Hauptkonzept des Mixed Interaction Model ist dabei
das mixed object” 3.

4 1\
mixed object

accquired
physical

data .

digital

physical
properties

properties

generated
physical
data

Abbildung 3.4: Mixed Object [CNo6]

,Ein reales Objekt besteht aus einer Menge verschiedener physikali-
scher Eigenschaften. Gleiches gilt fiir ein digitales Objekt, welches
aus einer Menge verschiedener digitaler Eigenschaften besteht. Ein
mixed object ist nun eine Kombination beider Mengen: Eine Menge
physikalischer Eigenschaften, die mit einer Menge digitaler Eigen-
schaften verkniipft sind. Um die Verkniipfung der beiden Mengen zu
beschreiben, werden zwei Arten (d, 1) berticksichtigt. Einerseits die
Verkniipfungen zwischen physikalischen und digitalen Eigenschaften
eines Objektes, die linking modalities genannt werden, andererseits die
Verkniipfungen zur Interaktion des Benutzers mit der Mixed Reality
Umgebung, die interaction modalities heifsen. Aus Sicht des Systems
konnen also zwei Arten von Verkniipfung fiir ein mixed object identifi-
ziert werden, wie in Abbildung 3.4 zu sehen ist”'4:

e Die Eingabeverkniifungen (d,’, l,') sind zustindig fiir:

13Aus ,Mixed Reality: A model of Mixed Interaction” [CNo6], Seite 43 f. (eigene Ubersetzung)
4 Aus ,Mixed Reality: A model of Mixed Interaction” [CNo6], Seite 44 (eigene Ubersetzung)



1. Beschaffung einer Untermenge von physikalischen Eigen-
schaften mit Hilfe des Devices d,’ (object input device).

2. Interpretieren der empfangenen physikalischen Daten be-
ziiglich der digitalen Eigenschaften mit Hilfe der Sprache
I, (object input language).

e Die Ausgabeverkniifungen (d,’, 1,°) sind zustindig fiir:

1. Generierung von Daten auf Basis der Menge der digita-
len Eigenschaften mit Hilfe der Sprache ,° (object output
language),

2. Ubersetzten der generierten physikalischen Daten in er-
kennbare physikalische Eigenschaften mit Hilfe des Devices
d,’ (object output device).

,Ein mixed object kann nun (1) auf einer Eingabeverkniifung, (2) auf
einer Ausgabeverkniifung oder (3) auf einer Ein- und Ausgabever-
kniifung basieren”*>.

'd R T\
picture
image identifier,
hvsical information
physica related to
properties the picture
head (author, etc.)
mounted image
display
\ /

Abbildung 3.5: Ein Bild in NaviCam [RNg5]

,In Abbildung 3.5 wir das Beispiel des NaviCam Systems von Reki-
moto [RN9gs5] betrachtet und ein augmented picture als mixed object mo-
delliert. Dabei zeichnet die Kamera die physikalischen Eigenschaften
dieses Objektes auf. Das Foto wird dann in ein Identifizierungsmerk-
mal des erkannten Bildes tibersetzt. Die zu diesem Bild zugehorigen
Informationen werden nachfolgend auf einem Head-Mounted Dis-
play (HMD) angezeigt. Die Verkniipfungen bei diesem Beispiel sind
elementar, allerdings kénnen die Ein- und Ausgabeverkniifung auch
zusammengesetzt sein. Die Zusammensetzung der Ein- und Ausga-
beverkniifungen wurde basierend auf dem CARE (Complementarity,

5Aus ,Mixed Reality: A model of Mixed Interaction” [CNo6], Seite 44 (eigene Ubersetzung)



Assignment, Redundancy and Equivalence) Framework charakteri-
siert [NCg7] [VNool”®.

,Zusammenfassend kann also ein mixed object anhand seiner Ein- und
Ausgabeverkniifung charakterisiert werden, wobei die Verkniipfungen
ihrerseits entweder nicht vorhanden, elementar oder zusammenge-
setzt sind”'7.

,Eine Mixed Interaction bedingt ein mixed object. |---| Um eine Mi-
xed Interaction zu modellieren wurde das Instrumental Interaction mo-
del [BLog] durch die Definition des mixed object und die Definition der
Art der Interaktion, die als eine Kopplung eines Devices d mit einer
Sprache I beschreiben ist, erweitert” 5.

In der Arbeit wurde mit Hilfe der mixed object versucht, die reale bzw.
physikalische Umgebung zu erfassen und sofwaretechnisch abzubil-
den. Die mixed object sind eine Moglichkeit, die realen Eigenschaften
der Umgebung zu kapseln bzw. digitale Ereignisse der Umgebung
zur Verfiigung zu stellen. In meiner Arbeit gehe ich allerdings einen
anderen Weg, da ich die Umgebung als gegeben und unverédnderlich
(bzgl. der programmierten Anwendung) sehe. Durch eine Erweiterung
des MVC Architekturmusters kann dieses erreicht werden.

Mixed Reality: A model of Mixed Interaction

Autoren Coutrix, Nigay Jahr 2006
Bereich Entwurfsvorgehen
Beschreibung | Interaktion in Mixed Reality
Merkmale: + Modell, Methoden, Werkzeuge
+ Anwendungsbeispiele
+ Mixed Reality

- Beschrankt auf Interaktionen
- Nicht iterativ

High-level modeling of multimodal interaction techniques using
NiMMIT

Ein weiteres Projekt im Bereich Entwurf von VR/MR Interaktionstech-
niken ist NiMMiT™". In der Arbeit von von De Boeck et al. mit dem

16 Aus ,Mixed Reality: A model of Mixed Interaction” [CNo6], Seite 44 (eigene Ubersetzung)
7Aus ,Mixed Reality: A model of Mixed Interaction” [CNo6], Seite 44 (eigene Ubersetzung)
B Aus ,Mixed Reality: A model of Mixed Interaction” [CNo6], Seite 44 (eigene Ubersetzung)
NIMMIT steht fiir Notation for Modeling Multimodal interaction Techniques.



Titel ,,High-level modeling of multimodal interaction techniques using
NiMMiT” [DBVRCo7y] wird eine grafische Notation fiir multimodale
VR Interaktionstechniken vorgestellt, die auf der Statechart-Notation
von David Harel [Har87] basiert.

,NIMMiT erlaubt es dem Designer multimodaler Interaktionstech-
niken schnell Alternativen zu testen oder sehr einfach existieren-
de Losungen zu adaptieren je nach Evaluation von Benutzertests,
was den Entwicklungszyklus signifikant verkiirzt. Die automatische
Austithrung der Interaktionstechniken wird von NiMMIiT unterstiitzt
indem die Diagramm-Reprasentation interpretiert wird. Des Weite-
ren wird durch die High-Level Beschreibung die Wiederverwendung
einzelner Losungen vereinfacht”>°.

Fuir De Boeck sollte eine Notation, die eine Interaktionstechnik be-
schreiben will, folgenden Anforderungen entsprechen [DBVRCo7]:

Ereignisgetrieben (event driven)

Zustandsgetrieben (state driven)

Datengetrieben (data driven)

Unterstiitzung einer Kapselung ftir die hierarchische Wiederver-
wendbarkeit

Die Notation von NiMMIiT basiert auf allen oben angefithrten An-
forderungen, so dass sich eine Interaktionstechnik folgendermafien
beschreiben lasst:

,NiMMiTs Notation ist sowohl ereignis- als auch zustandsgetrieben,
so dass ein Diagramm grundsétzlich der Gestalt von Statecharts ent-
spricht. Eine Interaktionstechnik wird immer mit einem Startzustand
initialisiert. Ein Zustand reagiert auf eine beschriankte Menge von
Ereignissen (Events), beispielsweise Spracheingabe, Zeigerbewegung
oder einen Click auf einen Button. Wird ein Event erkannt wird ei-
ne Task chain ausgefiihrt, zu sehen in Abbildung 3.673 a). |- - - | Die
Ausfiihrung einer Task chain ist strikt linear, was bedeutet, dass der
néchste Task einer Task chain dann und nur dann ausgefiihrt wird,
wenn der vorherige Task erfolgreich beendet wurde. Abbildung 3.673
b) zeigt eine Tuask chain mit zwei Tasks. [- - -] Ein Ausgangsport ei-
nes vorangegangenen Tasks ist typischerweise mit dem Eingangsport
des nachfolgenden Task verbunden. Diese Eingangsports konnen so-
wohl optional als auch obligatorisch sein. Sollte ein obligatorischer

*°Aus ,High-level modeling of multimodal interaction techniques using NiMMiT" [DBVRCoy7], Seite
2 (eigene Ubersetzung)
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Abbildung 3.6: Grafische Reprasentation von NiMMiT [DBVRCo7y].

Eingangsport eines Tasks einen nicht zuldssigen Wert erhalten, wird
die Ausfithrung der kompletten Task chain abgebrochen. Um Daten
zwischen Tasks unterschiedlicher Task chains miteinander nutzen oder
um Daten fiir spdtere Verwendung speichern zu konnen, wurden
High-Level Variablen in Form von Labels eingefiihrt, wie in Abbildung
3.673 c) gezeigt wird. Nach der erfolgreichen Ausfithrung einer Task
chain findet ein Zustandsiibergang statt, zu sehen in 3.673 d). Hier
kann nun in einen neuen Zustand gewechselt oder wieder zuriick
in denselben Zustand gesprungen werden (in einer Schleife). In ei-
nem neuen Zustand konnte die beschriebene Interaktionstechnik nun
auf eine andere Menge von Ereignissen reagieren. Einer Task chain
konnen mehrere verschiedene Zustandsiibergidnge assoziiert werden:
Der Wert des Label einer Task chain legt fest welcher Zustandstibergang
ausgefiihrt wird. Abbildung 3.673 e) zeigt eine Task chain mit dem Label
‘ID’” und drei mogliche Zustandstibergange”>".

Mit Hilfe der grafischen Notation kann der Designer schnell Inter-
aktionstechniken realisieren. Damit diese allerdings auch getestet
werden konnen, bedarf es einer schnellen Umsetzung der Diagram-
me in ausfiithrbaren Programmcode. Der NiMMIiT Editor bietet diese
Funktionalitdt an. Da NiMMIT fiir die Erstellung virtueller Umgebung
entwickelt wurde, ist es mit dem Editor moglich, die Interaktionstech-
niken {iber ein XML Austauschformat zu exportieren und dieses in
die fiir NiIMMiT entwickelte virtuelle Umgebung zu laden. Diese fiihrt

2! Aus ,High-level modeling of multimodal interaction techniques using NiMMiT” [DBVRCoy], Seite
3 f. (eigene Ubersetzung)
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Abbildung 3.7: Die NiMMIiT Toolchain [DBVRCoy].

dann die Interaktionstechniken aus. Der Ablauf wird in Abbildung
3.774 noch einmal verdeutlicht. Nachdem die Interaktionstechnik im
Editor entwickelt wurde, wird sie in XML umgewandelt und in die
virtuelle Umgebung geladen, die sie dann ausfiihrt.

NiMMIT ist fiir die Entwicklung von Interaktionstechniken gut geeig-
net: Gerade mit der grafischen Représentation lassen sich schnell neue
Techniken entwickeln. Jedoch basiert NIMMIT auf einer rein virtuellen
Umgebung, die statisch definiert und somit schwer erweiterbar ist. Da
sich mit NiMMIiT nur Interaktionstechniken schnell evaluieren lassen,
ist es fiir einen kompletten Entwurfsprozess nicht geeignet.

High-level modeling of multim. interaction techniques

Autoren De Boeck, Coninx et al. Jahr 2007
Bereich Entwurfsvorgehen

Beschreibung | Multimodale Interaktionstechniken in VR
Merkmale: + Konzept, Modell, Werkzeuge

+ Anwendungsbeispiele

+ Automatische Generierung

+ Grafische Représentation

- Beschrénkt auf Interaktionstechniken
- Nur VR

- Nicht iterativ




A Design-Oriented Information-Flow Refinement of the ASUR In-
teraction Model

Eine weiteres Modell einschliefilich grafischer Notation wurde in der
Veroffentlichung ,,A Design-Oriented Information-Flow Refinement
of the ASUR Interaction Model” von Emmanuel Dubois und Phi-
lip Gray aus dem Jahre 2008 vorgestellt [DGo8]. Basierend auf den
beiden Arbeiten ,,ASUR++: A Design Notation for Mobile Mixed Sys-
tems” [DGNoz2] aus dem Jahre 2002 und , Requirements and Impacts
of Model driven engineering on Mixed Systems Design” [DCDos] aus
dem Jahre 2005 beschreibt die Arbeit ein Modell und eine Modellie-
rungstechnik zum Erfassen der Schwerpunkte der Benutzerinteraktion
wihrend der Anforderungsanalyse in einer frithen Phase der Entwick-
lung von Mixed Reality Systemen.

Component
C
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location
share level

T X

 Computer System e User Real Entity m Adapter
S u

R A

nature erception sense action sense action sense
; . percep perception sense perception sense
dimension action sense i e
description description

(N S TN

Spresentation [@5 Stool
I§ Rtool ["B?Robject m Aout m Ain

command role

ﬁ; Sobject @5 Sinfo

description role

Abbildung 3.8: Komponenten bei ASUR [DCDos].

#ASUR ist ein auf grafischer Darstellung basiertes Modell zur Be-
schreibung von Benutzer-System Interaktionen in Mixed Reality Sys-
temen. ASUR soll bei der Beurteilung helfen, physikalische und di-
gitale Welten so zu verbinden, dass benutzerfreundliche Resultate
erzielt werden. Zusétzlich wir es in Verbindung mit der traditionellen
Benutzer-System Aufgabenbeschreibung verwendet, um Objekte zu
identifizieren, die bei der Interaktion beteiligt sind und zwischen den
Grenzen der beiden Welten liegen. Aus Sicht der Benutzerinteraktion
hilft das Modell die Resultate der Anforderungsanalyse zu beschrei-
ben und die globale Entwurfsphase von Mixed Reality Systemen zu
unterstiitzen. AUSR unterstiitzt die Beschreibung von digitalen und



physikalischen Entitdten, die ein Mixed Reality System ausmachen,
u.a. Adapter (Ain I, Aout i), die die Kluft zwischen der digitalen
und physikalischen Welt tiberbriicken, digitale Werkzeuge (Stool &)
bzw. Konzepte (Sinfo @s, Sobj E%s), ein oder mehrere Benutzer (U ﬁ.)
und reale Obijekte, die als Werkzeuge (Rtool I2) involviert sind oder

den Fokus der Aufgabe darstellen (Robj I%). Weiterhin driicken gerich-
tete Beziehungen (Linien mit Pfeilen) den physikalischen und/oder
digitalen Fluss von Informationen und die Verbindung zwischen Kom-
ponenten aus. Um diese Elemente besser spezifizieren zu kénnen, d. h.
AUSR Komponenten und Beziehungen, wurden eine Anzahl an Cha-
rakteristika identifiziert”*. Die unterschiedlichen Komponenten incl.
ihrer Bezeichnungen, die in ASUR existieren, sind in Abbildung 3.8
zu sehen.

Die ASUR Komponenten (Compontent) konnen somit einem der
folgenden vier Typen angehoren [DCDos]:

Computer System (S @): Die Komponente représentiert das Compu-
tersystem und alle digitalen Entitdten, die an einer Interaktion
beteiligt sind. Ahnlich den realen Objekten kann das Compu-
tersystem auch in zwei Teile aufgeteilt werden. Zum einen in
die digitalen Entitdten, die entweder das Verhalten oder das
Erscheinungsbild anderer digitaler Entitdten verdndern (Stool
fﬁﬁ), zum anderen die digitalen Entitdten, die ein Ziel einer In-
teraktion und somit Ziel einer Verdnderung darstellen. Dabei
wird zwischen Objekten, die nur Feedback-Informationen liefen

(Sinfo @) und anderen Objekten (Sobject ﬁ) unterschieden.

User (U ): Der Benutzer reprasentiert den Anwender des Systems.
ASUR unterstiitzt sowohl Einzel- als auch Mehrbenutzeranwen-
dungen.

Real Entity (R L)): Die realen Entititen reprasentieren reale Objekte.
Das konnen sowohl physikalische Werkzeuge (Rtool I2) sein,
die vom Benutzer verwendet werden konnen, um eine Funktion
auszuiiben, oder physikalische Objekte (Robject I¥), auf die sich
eine Funktion bezieht.

Adapter (A [@): Adapter schlagen eine Briicke zwischen der digita-
len und der physikalischen Welt. Dabei unterscheidet ASUR
zwischen Eingabeadapter (Ain ), die Daten von der physika-
lischen Welt in die digitale Welt iibertragen (z. B. eine Kamera)

22Aus ,,A Design-Oriented Information-Flow Refinement of the ASUR Interaction Model” [DGo8],
Seite 467 (eigene Ubersetzung)



und Ausgabeadaptern (Aout i), die numerische Daten an die
physikalische Welt liefern (z. B. ein Bildschirm).

-v’

[ﬁ’ — 3D Volume

Activator \ m
[E@ / sCTen \

Pointer Pointer 3D volume  Activator

2y

Camera

Wand User_0

Abbildung 3.9: Beispiel eines ASUR Diagramms [DGo8].

In Abbildung 3.9 ,wird die Interaktion eines Benutzers und einer
digitalen 3D Umgebung mit Hilfe eines , magischen Zauberstabes”
gezeigt. Der Benutzer User_o verwendet und bewegt einen physikali-
schen ,Zauberstab” Wand, der mit Hilfe einer Kamera Camera (Ain
) verfolgt wird. Die Kamera sendet die Position des Zauberstabes

an einen digitalen Aktivator (Stool @S), der vielleicht noch auf andere
digitale Entitdten wirkt. Die Kamera sendet des Weiteren die Position

an das Zeigerobjekt Pointer (Sinfo @). Das Zeigerobjekt ist eigent-
lich eine Représentation der Spitze des physikalischen Zauberstabes
(angedeutet durch den gestrichelten Pfeil); diese Reprédsentation ist
gerade fiir die Bereitstellung eines Interaktion-Feedbacks zweckmafig.
Sobald die Funktionalitat aktiviert ist, werden Daten wie beispiels-
weise der Rotationswinkel des Zauberstabes an den 3D-Raum 3D
volume (Sobj ) transferiert. Letztendlich wird der 3D Raum, der

Aktivator und das Zeigerobjekt auf dem Bildschirm Screen (Aout o)
dargestellt. Eine detailliertere Beschreibung dieses Beispiels mit allen
modellierten Charakteristika ist in [DCDos] zu finden” 3.

LASUR ist eine reine Modell-Notation: wihrend ASUR eine hervorra-
gende Orientierungshilfe fiir die Entwickler beschreibt, ist das entwi-
ckelte Modell nicht ausfithrbar und muss per Hand in den entspre-

23Aus , A Design-Oriented Information-Flow Refinement of the ASUR Interaction Model” [DGo8],
Seite 467 (eigene Ubersetzung)



chenden Quelltext konvertiert werden. ASUR bietet keine explizite
“ 24'

Unterstiitzung von Kollaboration
Mit ASUR ist es sehr einfach moglich, eine Mixed Reality Applikation
auf Basis eines Modells zu entwickeln. Mit Hilfe der vorhandenen
Komponenten, die ASUR zur Verfiigung stellt, ist eine Abdeckung
der digitalen und physikalischen Objekte gegeben. ASUR unterstiitzt
allerdings nicht eine Entwicklung entlang des Mixed Reality Kontinu-
ums. Objekte, die entweder in der digitalen oder physikalischen Welt
verankert wurden, verbleiben wihrend der gesamten Entwicklung
darin. Will man die Objekte dndern, so bedarf es einer kompletten
Umstrukturierung der beteiligten Objekte. ASUR bietet weiterhin
nicht die Moglichkeit, aus dem entwickelten Modell eine lauffdhige
Applikation zu generieren, wie es beispielsweise bei NiMMIiT (siehe
Abschnitt ,,High-level modeling of multimodal interaction techniques
using NiMMIiT” auf Seite 71) moglich ist.

Information-Flow Refinement of the ASUR Interaction Model
Autoren Dubois, Gray Jahr 2008
Bereich Modell und Notation

Beschreibung | Modellierung von Interaktionstechniken in MR

Merkmale: + Konzept, Modell, Werkzeuge

+ Anwendungsbeispiele

+ Grafische Notation

+ Mixed Reality

- Keine Entwicklung entlang d. MR Kontinuums
- Keine Automatische Generierung

- Nicht iterativ

The Engineering of Mixed Reality Systems

In dem aus dem Jahre 2010 stammenden Buch , The Engineering of Mi-
xed Reality Systems” [DGN10], herausgegeben von Emmanuel Dubois
et al., wird speziell auf die Entwicklung von Mixed Reality Systemen
eingegangen. Es ist eine Zusammenfassung vieler Artikel bekannter
Wissenschaftler aus den drei grofien Bereichen Interactiondesign, Soft-
ware Design und Implementierung sowie Anwendungen von Mixed
Reality. ,Human Computer Interaction (HCI — zu Deutsch: Mensch-
Maschine-Interaktion) ist nicht mehr auf die Interaktion des Benutzers
mit dem Computer iiber die Tastatur und Bildschirm beschrankt: zur

24Aus ,The Engineering of Mixed Reality Systems” [DGN10], Seite 298 (eigene Ubersetzung)



Zeit ist es eine der herausfordernden Aufgaben von interaktiven Sys-
temen, die Integration von physikalischen und digitalen Aspekten auf
benutzbare Konzepte zu verkniipfen. Die Herausforderung bei der
Entwicklung solcher Mixed Reality (MR) Systeme liegt in der fliefSen-
den und harmonischen Fusion der physikalischen und der digitalen
Welten. Beispiele solcher Systeme beinhalten Tangible User Interfa-
ces (TUIs — zu deutsch: Greifbare Benutzerschittstellen), Augmented
Reality, Augmented Virtuality und Embodied Interfaces?>. Alleine
die Vielfdltigkeit der Begriffe in diesem Bereich hebt das wachsen-
de Interesse an MR Systemen hervor und die hieraus resultierende
dynamische und herausfordernde Doméne”2°.

Im Allgemeinen sind die Arbeiten aus dem ersten Teil (Interactionde-
sign) und dem zweiten Teil (Software Design und Implementierung)
des Buches sind hervorzuheben. Insbesondere sind , An Integrating
Framework for Mixed Systems” von Céline Coutrix und Laurence Ni-
gay und ,Fiia: A Model-Based Approach to Engineering Collaborative
Augmented Reality” von Christopher Wolfe et al. hier erwdhnenswert
uns sollen im Folgenden ndher vorgestellt werden.

Im Artikel ,,An Integrating Framework for Mixed Systems” wird
erldutert, dass ,in dem sehr dynamischen Mixed Reality Bereich ein
Vergleich der vorhandenen Mixed (Reality) Systems und die daraus
folgende Designspace Exploration sehr schwer realisierbar sind. Um
dieses Entwurfsproblem zu l6sen, stellt der Artikel eine einheitliche
Betrachtungsweise auf Mixed Systems vor, indem auf sogenannte mixed
objects ?7, die bei der Interaktion involviert sind, der Fokus gelegt
wird. Der vorgestellte integrierte Framework besteht aus zwei sich
gegenseitig ergdnzend Aspekten der mixed objects: Es definiert sowohl
die inhdrenten als auch die extrinsischen Charakteristika eines Objekts
unter Berticksichtigung der seiner Rolle bei der Interaktion. Solche
Charakteristika eines Objekts sind fiir den feingranularen Vergleich
existierender Mixed Systems niitzlich. Dabei wird die taxonomische
Maichtigkeit dieser Charakteristika an aus der Literatur bekannten
Mixed Systems diskutiert. Die generative Méchtigkeit wird anhand
eines von den Autoren entwickelten Systems namens Roam erklart” 3.

In Abbildung 3.10g) ist das Schema der Charakteristika von mixed

25Schnittstellen, die durch Objekte der realen Welt definiert sind. ,Embodiment” meint nicht nur
die physische Verkorperung von Objekten, sondern bezieht auch andere Aspekte der realen Welt wie
Sprache und soziale Faktoren mit ein. Haufig wird auch der Oberbegriff , Ubiquitous Computing”
verwendet.

26 Aus , The Engineering of Mixed Reality Systems” [DGN10], Seite 1 (eigene Ubersetzung)

*7mixed object sind hybride physikalisch-digitale Objekte, die die physikalische und digitale Welt
tiberspannen. Sie wurden schon im Kapitel 343:,Mixed Reality: A model of Mixed Interaction” [CNo6]
vorgestellt.

28 Aus , The Engineering of Mixed Reality Systems” [DGN10], Seite 9 (eigene Ubersetzung)
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Abbildung 3.10: Charakterisierung von mixed objects [DGN10].

objects zu sehen. ,Die physikalischen Eigenschaften werden tiber zwei
orthogonale (sensed/generated)-Achsen definiert, korrespondierend
zu den Eingabe-Ausgabe Achsen aus Bricks [FIBgs]. |- - - | Unter Be-
riicksichtigung der Besonderheit, dass digitale Eigenschaften sym-
metrisch zu den physikalischen Eigenschaften sein sollen, konnen
digitale Eigenschaften iiber zwei orthogonale (acquired /materialized)-
Achsen definiert werden. Eine digitale Eigenschaft kann {iber jede
Art von Verbindung erlangt (engl. acquired) und/oder materialisiert
werden. Diese Menge an Charakteristika ist unabhidngig vom Typ der
Verbindung.”?9.

Als Beispiel fiir die Verwendung von mixed objects wird der Digitale
Tisch genutzt, zu sehen in Abbildung 3.11g;. ,,Der Benutzer verwen-
det und bewegt den Radiergummi — das mixed tool. Diese Aktion,
basierend auf den physikalischen Eigenschaften des Objekts, wird
von der Eingabeverbindung (hier: eine Kamera und ein Computer-
Vision Algorithmus) erkannt, um dann die entsprechenden digitalen
Eigenschaften <location> und <recognized movements> zu aktua-
lisieren. Die Anderungen in den digitalen Eigenschaften des mixed
tools werden danach von der interaction language zu einer elementaren
Aufgabe (elementary task) interpretiert: Die (x, y)-Position wird in die
elementare Aufgabe “Losche Zeichnung an Position (X, y) auf dem
Tisch” tiberfiihrt. Die elementare Aufgabe wird dann auf das Task
Objekt angewendet und die digitalen Eigenschaften der mixed drawing
werden infolgedessen modifiziert. Die mixed drawings zeigt ihre inter-
ne digitale Verdnderung tiber die Aktualisierung der Anzeige ihrer
Ausgabeverbindung — dem Feedback fiir den Benutzer”3°.

Zusammenfassend kann tiber die Arbeit von Céline Coutrix und Lau-
rence Nigay gesagt werden, dass sie mit diesem Artikel eine neue

29Aus , The Engineering of Mixed Reality Systems” [DGN10], Seite 16 ff. (eigene Ubersetzung)
3°Aus , The Engineering of Mixed Reality Systems” [DGN10], Seite 20 f. (eigene Ubersetzung)



3.3 ENTWURFSKONZEPTE MIT WERKZEUGUMGEBUNG
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Abbildung 3.11: Interaktion: Benutzer und mixed objects [DGN1o0].

shapes

Sichtweise auf die Entwicklung von Interaktionen in Mixed Reality
Systemen mit Hilfe der mixed objects ermdglicht haben. ,Sie haben die
inhédrenten als auch die extrinsischen Charakteristika der mixed objects
vorgestellt, bei dem das Objekt entweder als Werkzeug oder aber eine
Aufgabe gesehen werden kann. Indem &dhnliche existierende Systeme
mit Hilfe der vorgestellten Charakteristika klassifiziert werden konn-
ten, wurde damit ihre taxonomische Machtigkeit demonstriert”3*.

Als weitere hervorzuhebende Arbeit in diesem Buch ist der Artikel
,Fiia: A Model-Based Approach to Engineering Collaborative Aug-
mented Reality”von Christopher Wolfe et al. zu nennen. Er beschreibt
die visuelle Notation Fiia zu Formulierung der Entwicklung von kol-
laborativen AR Anwendungen. Diese visuelle Notation basiert auf der
,Actor & Adaptor”-Metapher, die ich fiir meine Arbeit auch verwendet
habe.

31 Aus ,The Engineering of Mixed Reality Systems” [DGN10], Seite 29 (eigene Ubersetzung)
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»~AR Anwendungen benétigen hiufig eine Kollaboration von Personen
oder Personengruppen. Obwohl eine Reihe an Werkzeugen existieren,
die die Entwicklung solcher AR Systeme unterstiitzen (z. B. das AR-
ToolKit oder das Groupkit), bleibt jedoch eine grofie Kluft zwischen
der Spezifikation und der Implementierung dieser Systeme “32. Diese
Kluft versucht der Autor mit Hilfe von Fiia zu schliefsen.

,Fiia.Net ist ein Werkzeug (basierend auf der visuellen Notation Fiia),
welches die Entwicklung von kollaborativen AR Applikationen verein-
fachen soll. Mit Hilfe der Fiia modeling language kann der Entwickler
die Struktur seiner Anwendung spezifizieren, um so die Details der
Vernetzung zu abstrahieren und die Spezifikation der Adapter zwi-
schen der physikalischen und realen Welt auf einer hohen Ebene zu
definieren. Das Fiia.Net Laufzeitsystem bildet dieses konzeptionelle
Modell auf eine Laufzeitumgebung ab”33.

,Die Fiia Entwurfsnotation ist ein Architekturmuster oder besser eine
visuelle Notation, mit der kollaborative AR Applikationen software-
technisch entwickelt werden konnen. Viele andere Architekturmuster
haben das Ziel, die Schwierigkeiten bei der Programmierung entwe-
der der Groupware (also kollaborativen Anwendungen) oder der AR
Anwendungen zu minimieren. Es ist zur Zeit kein Architekturmuster
bekannt, das beide Gebiete unterstiitzt”34.

,Architekturmuster legen Regeln fest, die es Entwicklern ermogli-
chen, die Groupware-Systeme in ihre Komponenten aufzuteilen, so
dass der , Teile-und-Hersche” Ansatz (engl.: devide and conquer) der
Softwareentwicklung angewendet werden kann. Beispiele fiir dieses
Vorgehen sind das Clover-Modell [LNoz2] und PAC* [CCNg7], die dem
Entwickler Ratschldge geben, wie die Benutzerschnittstelle bzw. die
Applikation unter Bertiicksichtigung der Gruppenaufgaben Produktion,
Kommunikation und Koordination am geeignetsten aufgeteilt werden
kann. Beide Architekturen sind rein konzeptionell, was bedeutet, dass
sie sich nicht mit den Problemen befassen, wie die Vorschldge auf
einem verteilten System implementiert werden sollen. Die Entwick-
ler stehen also der schwierigen Aufgabe gegentiiber, die Vorschldge
in ausfithrbaren Code zu transformieren. Phillips liefert eine detail-
lierte Zusammenfassung der konzeptionellen Architekturmuster fiir
Groupware-Anwendungen [Phigg]”35.

,Aus den Architekturmustern fiir die Ent_yvicklung von AR Anwen-
dungen ist ASUR [DGo8] erwdhnenswert. Ahnlich wie bei Fiia erlaubt

"

32Aus ,, The Engineering of Mixed Reality Systems
33Aus ,The Engineering of Mixed Reality Systems
34Aus , The Engineering of Mixed Reality Systems
35Aus ,, The Engineering of Mixed Reality Systems

DGN10], Seite 293 (eigene Ubersetzung)
DGN10], Seite 293 (eigene Ubersetzung)
)
)

7

7

DGN10], Seite 298 (eigene Ubersetzung
DGN10], Seite 298 (eigene Ubersetzung
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ASUR die Modellierung der Applikation mit Hilfe von Szenarios, die
aus Komponenten und Verbindungen zwischen diesen bestehen. “3°.
ASUR wurde schon in diesem Kapitel auf Seite 75 vorgestellt.

,Es existiert eine Vielzahl an Werkzeugen fiir die Entwicklung von
Groupware, allerdings nur wenige fiir die Entwicklung von AR Ap-
plikationen. Ein Werkzeug fiir beide Arten ist den Verfassern des
Artikels nicht bekannt”37.

,Die meisten Werkzeuge zur Entwicklung von Groupware (wie bei-
spielsweise Groupkit [RGg6], ALV [HBR " 94] oder Clock [UGgg]) be-
dingen, dass alle Benutzer mit dem System in gleicher Weise intera-
gieren, so dass es nicht moglich ist, eine heterogene Rollenverteilung
der Benutzer und der Systeme zu realisieren. Als einziger Ansatz in
diesem Bereich unterstiitzt Networking shared dictionary [MGRBo6] die
Verwendung von heterogenen Klienten”3%.

»,Mehrere Groupware-Tooklits unterstiitzen dynamische Adaption, die
zur Transition zwischen Szenen genutzt werden kann. Schmalsteig
et al. liefert einen Ansatz zur Migration von Klienten in VR Anwen-
dungen [SHoz]. Realisiert wird dies iiber eine geteilte Szenegraph
Datenstruktur mit Hilfe von Replikation. Der Code und der Szene-
graph konnen so mit Hilfe einer Device-Anpassung auf neue Klienten
migriert werden”39.

,Die meisten Werkzeuge, die fiir die Entwicklung von AR Anwendun-
gen gedacht sind, widmen sich speziell dem Problem der Ermittlung
der Kameraposition und Orientierung und der Ermittlung der Positi-
on von physikalischen Objekten. [- - - | Augmented Reality Werkzeuge
sind typischerweise Bibliotheken, die in einer grofien Auswahl von
Programmiersprachen eingebunden und benutzt werden konnen, z. B.
das ARToolKit [KBgg] oder ARTag [Fiaos]. Beide verwenden spezielle
Bildmuster (Pattern, Tags), die an die reale Umgebung angebracht
werden. Diese werden dann programmiertechnisch mit Objekten der
virtuellen Welt verkniipft. Die Position und Orientierung der Kame-
ra kann dann {iber die Analyse der Tags im aufgezeichneten Bild
errechnet werden. GoblinXNA verfolgt einen dhnlichen Ansatz mit
dem Unterschied, dass es in die XNA Entwicklungsumgebung von
Microsoft integriert ist [OLWFoy]. Weitere Probleme, mit denen sich
Augmented Reality Werkzeuge befassen, sind beispielsweise Lokali-
sierung, Gestenerkennung und Grafik [Fisoz]. [- - - | Fiia kann nun als
Generalisierung der vorgestellten Ansédtze gesehen werden, indem es

3%Aus , The Engineering of Mixed Reality Systems” [DGN10], Seite 298 (eigene Ubersetzung)
37 Aus , The Engineering of Mixed Reality Systems” [DGN10], Seite 298 (eigene Ubersetzung)
38Aus , The Engineering of Mixed Reality Systems” [DGN10], Seite 298 (eigene Ubersetzung)
39Aus , The Engineering of Mixed Reality Systems” [DGN10], Seite 299 (eigene Ubersetzung)



weit mehr Flexibilitat liefert, zum einen auf der konzeptionellen und
verteilten Architektur-Ebene, zum anderen in der Bereitstellung der
notwendigen Infrastruktur fiir die Realisierung von AR Anwendun-
gen”4°.

,Fiia ist eine Entwurfsnotation fiir kollaborative AR Anwendungen.
Mit Hilfe des Werkzeugs Fiia.Net werden diese Entwtirfe zu ausfiihrba-
ren Anwendungen realisiert. Fiia ist weiter ein modellbasierter Ansatz
der es erlaubt, ein abstraktes High-Level Modell eines Systems als
verteile Anwendung mit physikalischen und virtuellen Objekten auto-
matisch zu erzeugen. Verglichen mit fritheren Ansatzen enthélt Fiia
drei prinzipielle Fortschritte”4':

High-Level Notation: Fiia verwendet eine High-Level Notation zur
Modellierung sowohl der Groupware als auch der Augmented
Reality einschliefdlich der Funktionalitdt von gemeinsamer Da-
tennutzung (Data Sharing) und der virtuellen/physikalischen
Adapter.

Szenario-basierter Entwurf: Fiia nutzt einen Szenario-basierten Ent-
wurf und eine Szenario-basierte Implementation.

Einfacher Modell-Code Ubergang: Fiia bietet einen einfachen Uber-
gang vom abstrakten Modell zur ausfiihrbaren Anwendung an.

Abbildung 3.12g5 zeigt ein Beispiel eines Fiia Diagramms (hier die von
Wolfe entwickelte Anwendung mit Namen Raptor). Der Entwickler
(Designer) interagiert bei dieser Anwendung mit dem Editor, der es
erlaubt, die Szene zu manipulieren, das Terrain zu gestalten, Spielele-
mente einzufiigen und diesen dann Verhalten zuzuordnen. Elemente
werden in Form eines Szenegraphen gespeichert. Dieser Szenegraph
ist in der Komponente Scene gespeichert. Der Editor ist eine Actor-

Komponente (©), was bedeutet, dass diese Komponente in der Lage

ist, Aktionen zu initiieren. Die Scene ist eine Store-Komponente (8),
das heifst ein passiver Datenspeicher. [DGN10]

Der Entwickler benutzt den Editor mit Hilfe eines Multitouch-Tisches,
der in Abbildung 3.12g5 durch das Table Surface dargestellt ist. Das
Table Surface bieten Eingabe- und Ausgabemoglichkeiten fiir den rea-
len Multitouch-Tisch (benutzt wird ein Microsoft Surface [Mic11]).
Interagiert wird mit dem Table Surface tiber einen bidirektionalen
Informationsfluss. Das wird im Diagramm durch die beiden Stream-

Verbindungen (—>”) angedeutet (die Bidirektionalitit wird durch

4°Aus , The Engineering of Mixed Reality Systems” [DGN1o0], Seite 299 (eigene Ubersetzung)
41 Aus , The Engineering of Mixed Reality Systems.” [DGN10], Seite 299 (eigene Ubersetzung)
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Abbildung 3.12: Fiia Modell einer Anwendung [DGN1o0].

Game PC

Tabletop PC

die Doppelpfeile an beiden Enden der Linie dargestellt). Der Editor
erfragt den aktuellen Status des Multitouch-Tisches mit Hilfe der

Call-Verbindung (—) und aktualisiert die Anzeige des Tisches tiber
die Stream-Verbindung. Allgemein reprdsentieren Streams einen asyn-
chronen Datenfluss, der fiir die Kommunikation diskreter Ereignisse
oder kontinuierlicher Daten, beispielsweise Audio oder Video, ver-
wendet werden kann. Im Gegensatz dazu steht die Call-Verbindung,
die den traditionellen synchronen Aufruf von Methoden reprasen-
tiert. [DGN10]

Gleichzeitig, wahrend der Entwickler die Szene im Editor bearbei-
tet, konnen Testbenutzer (Tester) die Anwendung auf dem Display
anschauen. Der Displayer-Aktor aktualisiert die Darstellung entspre-
chend den Anderungen des Entwicklers. Beide Versionen der Scene,
sowohl die der Entwickler als auch die von den Testbenutzern, werden
tiber eine Sychronisationsverbindung (——) konsistent gehalten. Eine
Synchronisationsverbindung sorgt dafiir, dass zwei oder mehr Daten-
speicher konsistent bleiben, so dass Anderungen automatisch an alle
Stores propagiert werden. [DGN10]

Die Diagramme von Fiia werden als verteiltes System implementiert.
In diesem Beispiel werden zwei Computer verwendet; Ein Computer,
der den Multitouch-Tisch ansteuert (Tabletop PC) und vom Entwickler
benutzt wird, und ein Computer, der die Darstellung der Szene fiir



die Testbenutzer aufbereitet (Game PC). Fiia Diagramme spezifizieren
jedoch nicht die Details des verteilten Systems. Sie abstrahieren die
wichtigen Aufgaben wie beispielsweise die Aufteilung der Komponen-
ten, den verwendeten Algorithmus zur Datentibertragung zwischen
Knoten und die Konsistenzverwaltung fiir die Datensynchronisati-
on. Das Fiia.Net-Werkzeug kann bei der spiateren Umwandlung in
ausfithrbare Anwendungen diese abstrakten Aufgaben automatisch
bestimmen. Das erlaubt es dem Entwickler, sich auf die Funktiona-
litdt seiner Anwendung zu konzentrieren und nicht die Details der
Implementation zu betrachten. [DGN10]

Fiia bietet tiber eigene Notation eine gute und einfache Moglichkeit,
verteilte Mixed Reality Anwendungen konzeptionell zu realisieren
und mit Hilfe des mitgelieferten Fiia.Net-Werkzeuges in eine ausfiihr-
bare Anwendung zu iiberfiihren. Fiia bietet leider nicht die Moglich-
keit, eine Anwendung entlang des Mixed Reality Kontinuums zu
entwickeln. So ist es schwierig, Komponenten, die als virtuelles Ob-
jekt definiert sind, in real existierende Komponenten zu tiberfiithren.
Fiia bietet hier weder einen Automatismus noch ein Vorgehen an. So
miisste fiir jeden Prototypen das komplette Modell tiberarbeitet wer-
den, um eine entsprechende Entwicklung entlang des Mixed Reality
Kontinuums zu realisieren. Das ist allerdings nicht wiinschenswert.
Die Groupware-Eigenschaften und die automatische Generierung
ausftihrbarer Applikationen sind jedoch bei Fiia hervorzuheben.

Fiia: Model-Based Approach to Engineering Collaborative AR

Autoren Wolfe, Smith, Phillips, Graham Jahr 2010
Bereich Modell und Notation

Beschreibung | Entwicklung von kollaborativen MR-Anwend.
Merkmale: + Notation, Modell, Werkzeuge

+ Anwendungsbeispiele

+ Grafische Notation

+ Automatische Generierung

+ Groupware-Eigenschaften

- Keine Entwicklung entlang d. MR Kontinuums
- Nicht iterativ

Weitere Entwurfskonzepte

Eine grofie Anzahl an weiteren Entwurfskonzepten wurde schon im
vorherigen Abschnitt ab Seite 78 erwdhnt. Auch hier sei des Weiteren



3.4

der jahrlich stattfindende SEARIS Workshop fiir weitere, tiefergehende
Informationen zu diesem Themenfeld erwdhnt [SEA08].

Softwareumgebungen und -l6sungen

Die im letzten Kapitel vorgestellten Arbeiten stellen neben einem kon-
zeptionellen Entwurf gleichzeitig eine Software zur (automatischen)
Erzeugung von ausfithrbaren Programmen zur Verfiigung. Die mit
Hilfe der verschiedenen, im letzten Kapitel vorgestellten Konzepte
entwickelten Anwendungen bieten somit nur eine sehr abstrakte Sicht.
Das bedeutet, dass die Entwickler eine Sicht auf ihre Anwendun-
gen nicht auf quelltextbasis erhalten, sondern auf Modellebene die
Anwendungen entwickeln.

Eine Grundvoraussetzung fiir einen praktikablen Entwurfsprozess ist
die Bereitstellung von Werkzeugen, die eine rasche Entwicklung von
Mixed Reality Komponenten unterstiitzten. Hier existiert eine Vielzahl
von Arbeiten in diesem Bereich, angefangen von API#*-basierenden
Low-Level Ansitzen iiber Software-Frameworks bis hin zu komplexen
High-Level Autoren-Werkzeugen. Ich beschrdanke mich hier auf die
Arbeiten, die mein System beeinflusst haben.

Im folgenden Kapitel mochte ich gerne einige dieser Softwareumge-
bungen und -l6sungen kurz vorstellen, die es erlauben, eigene An-
wendungen auf eine etwas konkreteren Art zu entwickeln. Vorgestellt
werden verschiedene Softwareumgebungen, die es dem Entwickler
ermdglichen, Virtual und Mixed Reality Anwendungen zu entwerfen.

Friihe APIl-basierte VR Frameworks

Ein sehr frithes API-basiertes Framework, das ausschliefslich fiir VR
Anwendungen verwendet werden kann, ist VRJuggler [BJH " 01]. Es ist
ein objektorientierts C++ VR-System, kann plattformiibergreifend ver-
wendet werden und steht unter einer Open Source Lizenz. VRJuggler
erlaubt eine beliebige Kombinationen von Eingabegeriten, Grafik-
APIs und Plattformkonfigurationen. Eine VR-API mit einem Fokus
auf Simulationen ist DeltazD [DMJos]. Dieses Framework basiert auf
der haufig im wissenschaftlichen Bereich eingesetzten Szenengraph-
Bibliothek OpenSceneGraph [Ope1o] und vereint eine erhebliche An-
zahl an Open Source Bibliotheken beispielsweise fiir Charakteranima-
tion, Physik oder Kiinstliche Intelligenz und bietet daher eine enorme

42API = Application Programming Interface — Eine Programmierschnittstelle auf Quelltextebene.
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Funktionsvielfalt. Delta3D kann zusammen mit der Skriptsprache Py-
thon benutzt werden und liefert einen umfangreichen Szenen-Editor
namens STAGE.

Autorenbasiertes MR Framework AMIRE

Application

Authoring Framework
Component

I
Component Layer

In Slots
Out Slots

IO
Gem Collection
Internal

= i — State

] N
omponent Interfaces Gem interfaces

Inter-object communication layer

Abbildung 3.13: AMIRE Framework und Komponente [DGHPo2].

Einer der ersten Versuche von den reinen APIs hin zu einer autoren-
basierten Entwicklung zu gelangen, war das AMIRE#3 Werkzeug, das
als Teil des europdischen IST Projektes entwickelt wurde [GHP " 02].
AMIRE stellt ein Autorenframework zur Verfiigung (siehe Abbildung
3.13), auf den die Anwendungen basieren. Die Basis dieses Frame-
works sind die sogenannten Gems. Gems sind eine Sammlung von
Techniken und Algorithmen, die fiir Programmierer gedacht sind.
Die Grundgedanke bei diesen Gems ist, dass Entwickler ihre Ideen,
Algorithmen und Werkzeuge mit anderen Entwicklern (und den Ent-
wicklern von AMIRE) teilen und so die Ressourcen wiederverwendet
werden konnen. Durch eine grofie Beteiligung von vielen Programmie-
rern entwickelt sich so eine grofse Basis an innovativen Losungen fiir
eine Vielzahl von Problemen im Mixed Reality Bereich. Ein Problem
bei der Bereitstellung der Gems ist allerdings, dass viele Ideen und
Algorithmen nicht fiir die Wiederverwendung programmiert wurden
bzw. die Schnittstellen sehr unterschiedlich sind. Auch ist es schwierig,
allgemeine Prozesse fiir Mixed Reality Anwendungen von Losungen
Dritter zu finden und wieder zu verwenden. Die Losung, die AMIRE
vorschldgt, ist, etablierte Losungen fiir einzelne Aufgaben in einer MR
Gem Collection zu sammeln [GHP ' o2].

Die Mixed Reality Komponenten (oder einfach Komponenten) sind die
grundlegenden Elemente im Entwicklungsprozess.Dabei représentie-
ren Komponenten konkrete Losungen fiir doménenspezifische Proble-

43 AMIRE steht fiir ,Authoring MIxed REality”.
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3.4 SOFTWAREUMGEBUNGEN UND -LOSUNGEN

me und kombinieren bzw. erweitern typischerweise die Gems in Rich-
tung High-Level Funktionalitdt von MR Anwendungen. Komponenten
sind als doménenspezifische Elemente definiert. Abstrakt betrachtet
teilen sich Komponenten in geometrische Modelle und Verhalten auf,
wobei Verhalten sowohl die Animation als auch die Simulation ei-
nes spezifischen Verhaltens beinhalten kann. Einige wiinschenswerte
Auspragungen der Komponenten sind folgende: strukturiert, wieder-
verwendbar in unterschiedlichen Versionen, wiederverwendbar in
unterschiedlichen Anwendungen, erweiterbar, flexibel [GHP " oz2].

Framework Component Authoring
Expert Expert Expert

c
8
=
<
1]
o
o
<

Evaluation

Abbildung 3.14: Experten bei einer AMIRE-Entwicklung [DGHPo2].

Das MR Framework von AMIRE dient schliefslich als Bindeglied zwi-
schen den Gems und den Komponenten. Weiterhin bietet es eine High-
Level API und eine Schnittstelle fiir die Komponenten an. Das MR
Framework beinhaltet sowohl ein Laufzeit-Framework als auch ein
Autoren-Framework. Dies stellt bei der Anwendungsentwicklung
sicher, dass die domé&nenspezifischen Experten an den dafiir vorge-
sehen Baustellen arbeiten konnen, wie in Abbildung 3.14 zu sehen
ist [GHP " 02]. Bei einer Entwicklung einer Anwendung sind fiinf
doménenspezifische Experten beteiligt: Der Gem Expert entwickelt
neue bendtigten Gems bzw. findet schon existierende aus der Gem Col-
lection. Der Component Expert entwickelt die Komponenten mit Hilfe
der vorhandenen Gems. Der Framework Expert integriert die Kompo-
nenten schliefllich in das Framework, so dass der Authoring Expert
sie in der Anwendung verwenden kann. Eine {iberpriifende Rolle hat
der Evaluation Expert, der das komplette Projekt evaluiert und ggf. bei
den entsprechenden Experten Korrekturen vorschligt. Jeder dieser
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Experten muss somit nur Teilaufgaben iibernehmen, und zwar genau
in dem Gebiet, in dem seine Kompetenzen liegen.

Konzeptionell leistet AMIRE gute Arbeit im Bereich Mixed Reality
Anwendungsentwicklung. Ein Problem ist jedoch, dass normalerweise
Losungen sehr schwer auf die Gems-Ebene reduziert werden konnen,
da sie meist in einem komplexeren Zusammenhang entwickelt wur-
den. Des Weiteren ist es schwierig, eine einheitliche, gut verstandliche
Schnittstelle fiir alle zur Verfiigung gestellten Gems zu entwerfen, so
dass bei der Entwicklung einer Applikation meist viel Arbeit in die
eigentlichen Bausteine, den Gems und den Components fliefst und so
die eigentliche Entwicklung verkompliziert. Fiir diese Arbeit fehlte
auch das Entwurfsvorgehen, das bei AMIRE nicht konkret entwickelt
wurde.

Autorenbasiertes MR Framework AMIRE
Autoren Europadisches IST Projekt Jahr 2002

Bereich Framework

Beschreibung | Mixed Reality Framework

Merkmale: + Iterativ
+ Komponentenbasiert
+ Anwendungsbeispiele

- Kein konkretes Entwurfsvorgehen

- Keine Entwicklung entlang d. MR Kontinuums

The Designer’'s AR Toolkit: DART

Im Mixed Reality Bereich ist DART44 eines der ersten erfolgreichen
Autoren Werkzeuge, die Mixed Reality Erweiterung in die Anwen-
dung Director, einer kommerziellen Autorenlésung von Adobe, inte-
griert [MGDBo4]. Maclntyre stellte DART im Jahre 2004 vor. Da es sich
um eine Erweiterung einer proprietdren Software handelt, musste sich
MacIntyre an das von Director vorgegebene konzeptionelle Modell
halten, das aus der Theater-Metapher basiert. In Director existieren
Akteure, die sichtbare und interaktive Objekte reprdsentieren, eine
Biihne (stage), auf dem die Akteure platziert werden, und Kameras,
die die Akteure auf der Biihne darstellen. DART erweiterte diese Meta-
pher konsequent indem es spezielle Akteure, sogenannte DART-Aktors
und Kameras lieferte, die fiir Mixed Reality Anwendungen benotigt
wurden. In Abbildung 3.159; ist die Integration von DART in Director

#ADbk. fir ,, The Designer’s AR Toolkit”, das Augmented Reality Werkzeug fiir Designer.
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Abbildung 3.15: DART von MacIntyre [MGDBogy].

,DART will besonders die frithen Entwurfsaktivititen unterstiitzten,
speziell die schnelle Umsetzung von Storyboards zu Prototypen, so
dass der experimentelle Teil des Entwurfs sehr frith und sehr oft
getestet werden kann. DART erlaubt es dem Entwickler komplexe
Beziehungen zwischen der physikalischen und der virtuellen Welt
zu spezifizieren und unterstiitzt 3D Animatic*>-Akteure (informeller,
skizzenbasierter Inhalt) zusatzlich zu den besser aufbereiteten Inhal-
ten. Die Entwickler konnen Video und Sensordaten synchronisiert
aufzeichnen und abspielen, was es erlaubt, unabhingig von der echten
Kamera zu arbeiten und spezifische Teile der Anwendung effizient zu
testen” 4°.

DART ging denselben Weg, den ich am Anfang meiner Arbeit ge-
gangen bin, indem ein proprietdares Werkzeug, das schon eine grofie
Verbreitung bei Anwendern hatte, mit Komponenten aus dem Bereich
Mixed Reality erweitert wurde. Dadurch musste nur ein kleiner Teil
der Software entwickelt werden und man konnte auf schon bestehen-
de und gut funktionierende Strukturen zurtick greifen. Diese festen
Strukturen konnen sich allerdings auch zum Nachteil entwickeln,

45Eine Animatic, auch Story Reel genannt, ist ein gefilmtes Storyboard.[Wik11]
46 Aus ,DART: a toolkit for rapid design exploration of augmented reality experiences” [MGDBo4],
Seite 197 (eigene Ubersetzung)
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gerade in meinem Fall, wie man in Kapitel 4.5.113¢ nachlesen kann.
DART hatte das Problem, dass sich viele Entwickler von Director
abgewendet haben und stattdessen auf Flash umgestiegen sind, so
dass die Entwicklung von DART eingestellt wurde.

DART: toolkit for rapid design exploration of AR experiences
Autoren Maclntyre, Gandy, Dow, Bolter Jahr 2004

Bereich Framework

Beschreibung = Mixed Reality Framework in Director

Merkmale: + Theatermetapher

+ Professionelle Entwicklungsumgebung

+ Anwendungsbeispiele

- Kein konkretes Entwurfsvorgehen

- Keine Entwicklung entlang d. MR Kontinuums
- Nicht iterativ

Studierstube

Ein weiteres bekanntes System im Bereich Mixed Reality ist das Stu-
dierstube System [SFH T 02] von Dieter Schmalstieg, entwickelt an der
Technischen Universitdt Wien und weiterentwickelt an der Techni-
schen Universitdt Graz. Studierstube basiert auf der Szenegraph-API
Coin3D, einem Open Inventor Clone der norwegischen Firma Kongs-
berg Oil & Gas Technologies [Tec11], und einer Middleware fiir die
I/O-Abstraktion namens OpenTracker [RSo1], welche einen flexiblen
Einsatz von Tracking-Geréten erlaubt. Studierstube erlaubt eine einfa-
che Entwicklung von Mehrbenutzer AR-Anwendungen, sowohl auf
klassischen Computern als auch auf mobilen Endgerdten mit der spe-
ziellen allerdings kommerziellen Version Studierstube ES. Die Verwen-
dung von mobilen Endgerédten wird auch im Bereich Mixed Reality
immer interessanter, da es die heutige Leistung erlaubt, die komplette
Verarbeitung lokal auf dem mobilen Gerdt auszufithren. Noch vor
einigen Jahren was das nicht moglich, und mobile AR Anwendungen
mussten mit Hilfe von Bildiibertragung und Bildberechnung auf dem
PC gelost werden, wie das Beispiel der AR-Enigma aus dem Jahre
2002 [PSGTo2] oder die testbare Design-Reprasentation fiir mobiles
AR Authoring [GPR02] zeigt.

Studierstube ES lauft auf mehreren (mobilen) Plattformen (z. B. Win-
dows, Windows CE, Symbian, Andriod und iOS%7). Alle relevanten

47i0S Gerdate sind nicht offiziell unterstiitzt, es existiert jedoch eine Entwicklerversion.
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Abbildung 3.16: Aufbau von Studierstube ES [SWor].

Details der Entwicklung von AR Anwendungen werden von Studier-
stube ES berticksichtigt: Grafikausgabe, Videoverarbeitung, Tracking,
Multimedia, Speicherverwaltung und Synchronisation von Mehrbe-
nutzer Mehrbenutzern (siehe Abbildung 3.1693). Studierstube ES bietet
eine grofle Zahl von Schnittstellen (Muddleware*®, Studierstube Scene-
graph, Studierstube Tracker, etc. und, da es von Grund auf fiir mobile
Endgerdte programmiert wurde und nicht auf existierenden Losun-
gen basiert, eine sehr hohe Performance. Damit ist die Entwicklung
von komplexen AR Anwendungen auf mobilen Endgeriten fiir den
kommerziellen Markt bzw. im akademischen Rahmen sehr schnell
realisierbar. Da Studierstube ES speziell auf mobile Endgerate opti-
miert wurde, werden 3D Beschleunigung der eingesetzten Grafikpro-
zessoren, Flieff(kommazahl- und Fixpunktzahlarithmetik sowie die
Verwendung der verbauten Kameramodule untersttitzt, soweit diese
auf der mobilen Plattform vorhanden sind. Das ermd&glicht mobile AR
Anwendungen, die vor wenigen Jahren nur auf Desktop-PC moglich
waren. Durch die Integration vom Studierstube ES in die Softwareum-

#Muddleware ist eine Netzwerklosung fiir mobile Endgerite und stammt von denselben Entwicklern
wie Studierstube ES.



gebung der einzelnen mobilen Plattformen ist die Einbindung in
eigene Projekte sehr einfach. Da es sich, wie bereits erwdhnt, um eine
kommerzielle Losung handelt, ist die Benutzung von Studierstube ES
leider nur Entwicklern vorenthalten, die eine Lizenz besitzen.

Studierstube
Autoren Schmalstieg et al. Jahr 2002
Bereich Framework

Beschreibung | Mixed Reality Framework

Merkmale: + Komplexes Framework

+ Mobile Plattformen

+ Anwendungsbeispiele

- Kein konkretes Entwurfsvorgehen

- Entwicklung nicht entlang d. MR Kontinuums
- Nicht iterativ

Weitere High-Level Werkzeuge der letzten Jahre

Broll beschreibt in seiner Arbeit, die 2008 auf der 3DUI-Konferenz
vorstellt wurde, ein visuelles Autorenwerkzeug fiir 3D Interaktions-
techniken [BHBo08]. Das Konzept ,Interactive Bits” ist ein komponen-
tenbasierter Ansatz zur visuellen Spezifikation von Mixed Reality
Interaktionstechniken, Objektverhalten oder vollstandiger Mixed Rea-
lity Prototypen. Das Werkzeug kombiniert synchronen Kontroll- und
Datenfluss mit asynchronen Events und Netzwerkkommunitation.
Spezifiziert wird es iiber eine XML-basierte Beschreibung, die die Ob-
jekte, die Komponenten und den Kontroll- bzw. Datenfluss definiert.

Sandor et al. beschreiben in ihrer Arbeit ,Immersive mixed-reality
configuration of hybrid user interfaces” [SOBFo5] ein Mixed Reality
System, welches Anwendern erlaubt, eine Mixed Reality Applika-
tion zur Laufzeit zu konfigurieren und eine Vielzahl von Anzeige-
und Interaktionsgerdten beliebig zu kombinieren. Dabei wird eine
Datenfluss-orientierte Visualisierung durch verbindende Linien zwi-
schen grafischen 2D-Symbolen verwendet. Diese Methode habe ich
auch in meinem ersten Ansatz verwendet, indem ein proprietares 3D
Autorensystem als Grundlage fiir die Entwicklung von Mixed Reality
Applikationen verwendet wurde. Ein Unterschied allerdings ist, dass
die Software, die ich verwendet habe, eine Kontrollfluss-orientierte vi-
suelle Programmierung verwendete. Ndheres kann in Kapitel 4.5.113¢
nachgelesen werden.



3.5

Envir3D ist ein Modellierungswerkzeug, mit dem 3D Inhalte visu-
ell spezifiziert werden. Dabei steht immer ein abstraktes Modell der
Benutzungsschnittstelle zur Evaluierung und Verfeinerungen zur Ver-
fiigung. Dieses wird zur Erzeugung einer VRML-Darstellung verwen-
det [VCBTo4].

Ein Beispiel fiir ein High-Level Authoring-Werkzeug, das allerdings
nicht fiir Mixed Reality Anwendungen gedacht war, ist 3DVIA Vir-
tools [Dasog]. In Kapitel 4.5.1135 wird 3DVIA Virtools und die von mir
entwickelte Mixed Reality Erweiterung nidher vorgestellt.

Es existieren auch in diesem Bereich noch viele andere gute Werkzeu-
ge. Eine gute Quelle ist hier wieder der jahrlich stattfindende SEARIS
Workshop, der eine vertiefende Quelle fiir diese Entwicklungen bie-
tet. [SEA08] Die fiir meine Arbeit wichtigsten Arbeiten habe ich jedoch
vorgestellt.

Zusammenfassung

In diesem Kapitel wurden aktuelle Forschungsergebnisse in den fiir
diese Arbeit relevanten Bereichen ,Mixed Reality Entwurfskonzepte”,
,Entwurfskonzepte mit Werkzeugumgebung” und ,Softwareumge-
bungen und -l6sungen” vorgestellt und bewertet. Es wurden die fiir
diese Arbeit wichtigsten Beitrdge in den jeweiligen Gebieten kurz
beschrieben, die Merkmale herausgestellt und deren Vor- und Nach-
teile angefiihrt. Bei den fritheren Arbeiten galt das Hauptaugenmerk
vorwiegend einer einzelnen Auspragung, wie beispielsweise der Vor-
stellung eines neuen Frameworks oder einer neuen Methode der
Modellierung, wahrend bei spéteren Arbeiten die Zusammenfiihrung
mehrerer Auspriagungen im Vordergrund stand. Waren es zu Be-
ginn nur einfache API-basierte Frameworks, die es dem Benutzer
ermoglichten, Mixed Reality Anwendungen zu realisieren, so entwi-
ckelten sich spéter daraus komplette Werkzeuge, die es ermoglichten,
auf abstrakte Weise seine Anwendung zu entwerfen. Zusammenfas-
send kann man sagen, dass alle Arbeiten in ihrem speziellen Gebiet
ihre Vorteile haben.

Was allerdings noch nicht in der Literatur versucht wurde, ist, eine
Anwendung entlang des Mixed Reality Kontinuums zu entwickeln. So
muss man bei allen Arbeiten die realen und virtuellen Objekte schon
zu Beginn der Entwicklung festlegen, eine spédtere Transformation
ist nicht vorgesehen. Dabei ist es gerade bei der Entwicklung von
Mixed Reality Applikationen sinnvoll, reale Komponenten zu Beginn
virtuell zu modellieren, sei es, weil die realen Objekte noch nicht



existieren oder weil die technischen Grundlagen zur Erkennung der
realen Objekte noch nicht existiert. Allein bei DART [MGDBoy4] ist es
moglich, die Entwicklung auf zuvor aufgezeichneten Daten (sowohl
Video als auch Position und Orientierung) fortzusetzen. So kann
auch bei Abwesenheit der benétigten Hardware zur Erkennung von
realen Objekten bzw. der realen Objekte selbst (sei es, weil die Objekte
noch nicht existieren oder sich an einem anderen Ort befinden) die
Entwicklung fortgesetzt werden. DART jedoch beschrankt sich nur
auf Video bzw. Tracking-Informationen, eine Transition von virtuellen
zu realen Objekten findet hier nicht statt. In meinem Ansatz ist die
Transition von virtuellen zu realen Objekten (und zurtick) moglich,
um so eine wihrend der Entwicklung grofitmogliche Unterstiitzung
zu erhalten.

Viele der spéteren hier vorgestellten Arbeiten stellen eine eigene Vor-
gehensweise bzw. ein eigenes Modell vor. Das ist durchaus sinnvoll,
da die Entwicklung von Mixed Reality Anwendungen mit tiblichen
Entwicklungswerkzeugen und -Abldufen nicht vollstandig abgedeckt
wird. Eine Unterscheidung zwischen den realen, physikalischen Ob-
jekten und den virtuellen Objekten wird bei allen Arbeiten im Bereich
Mixed Reality gemacht, sei es Fiia, ASUR oder Studierstube. Mein
Ansatz geht indes noch einen Schritt weiter und kategorisiert die vor-
handenen Objekte einer Anwendung in vier spezielle Arten, die dem
MVC-Ansatz (siehe Seite 2.2.145) angelehnt ist. Diese Aufteilung er-
laubt eine feingranularere Entwicklung einzelner Komponenten. Des
Weiteren wird damit auch die Entwicklung entlang des Mixed Reality
Kontinuums unterstiitzt, was bedeutet, dass Objekte bzw. Komponen-
ten zuerst virtuell entworfen und spéter durch reale, physikalische
Komponenten bzw. Objekte ersetzt werden. Dieser Schritt ldsst sich
auch umkehren, so dass reale Objekte wieder durch ihre virtuellen
Gegenstiicke ersetzt werden konnen. Das ermdglicht bei der Entwick-
lung eine gezielte Fokussierung auf eine spezielle Auspragung einer
Anwendung, indem nicht benétige Funktionalitdt auf ein Minimum
reduziert wird.

Im Allgemeinen ist in der Literatur zu erkennen, dass die Bedeu-
tung von speziellen Vorgehensweisen und Modelle fiir Mixed Reality
Anwendungen mit steigender Leistungsfahigkeit, sowohl der klas-
sischen PCs als auch der mobilen Endgerite, zunimmt. Da sich die
Entwicklung von Mixed Reality Anwendung von der Entwicklung
klassischer Anwendungen stark unterschiedet und sich noch keine
allgemein giiltige Vorgehensweise kristallisiert hat, ist ein erhohter
Forschungsbedarf in diesem Gebiet vorhanden. Das sieht man auch
speziell an den vielen, eigenstandigen Konferenzen und Workshops
im Bereich Mixed Reality.



Mixed Reality in the Loop

Das folgende Kapitel beschreibt das eigentliche ,Mixed Reality in
the Loop”-Entwurfsvorgehen (MRiL). Den Anfang macht die Anfor-
derungsanalyse, in der die Anforderungen an die zu entwickelnde
Applikation beschrieben und erldutert werden. Nachdem die Anfor-
derungen klar definiert sind, wird die Vorgehensweise des MRIL be-
schrieben. Da MRiL neue bzw. angepasste Methoden benétigt, werden
im Kapitel 4.31¢3 diese vorgestellt. Beginnend mit dem MVCE-Modell
wird die Grundstruktur des Entwurfsvorgehens erklart. Darauf auf-
bauend wird das Akteurmodell beschrieben, welches benétigt wird
um die Entwicklung zu strukturiert. In Kapitel 4.3.41,4 wird das das ei-
gentliche Entwurfsvorgehen beschrieben, welches auf einem iterativen
Vorgehen basiert.

Um das Vorgehen besser verstiandlich zu machen, wird in Kapitel
4.4153 ein kleines Beispiel, eine Entwicklung nach MRiL, beschrieben.
Dieses Beispiel ist klein gehalten uns soll nur die Besonderheiten von
MRIL aufzeigen.

Damit MRiL sinnvoll angewendet werden kann, wird eine Software-
und Werkzeugumgebung bendtigt, die diesen Prozess unterstiitzt. Es
wurden insgesamt zwei exemplarische Softwareumgebungen im Rah-
men dieser Arbeit entwickelt. Bei der ersten Umgebung lag der Fokus
auf der einfachen und visuellen Erstellung von Prototypen und basiert
auf einer proprietiren Softwarelosung. Sie unterstiitzt den Prozess
aber nicht vollstindig, gerade im Bezug auf die Akteure gab es dort
Defizite. Die zweite Umgebung basiert auf einer Open Source Grafik-
bibliothek und versucht alle Aspekte der MRiL Vorgehens abzubilden.
Dabei wurde auf die einfache visuelle Programmierung verzichtet
und auf textuelle imperative Programmierung zurtickgegriffen. Fiir



4.1

Experten, die einer Programmiersprache méchtig sind, ist die letzte
Umgebung zu bevorzugen. Anwendern, die aus z.B. dem Bereich
Design stammen, wird die erste Softwarelosung mehr zusagen.

Eine Reihe an eigenen Veroffentlichungen zum Thema MRIL, u.a.
,Mixed reality in the loop — design process for interactive mecha-
tronical systems” [SGP10], ,MVCE — A Design Pattern to Guide the
Development of Next Generation User Interfaces” [SGPT09], ,Mi-
xed Reality Design of Control Strategies” [GSBPog], ,Modellbasier-
ter Entwurf von Mixed Reality-Interaktionstechniken fiir ein Indoor-
Zeppelin” [GPSTo9], ,,A Design Method for Next Generation User
Interfaces inspired by the Mixed Reality Continuum” [SGPPog], ,Mi-
ReAS: a mixed reality software framework for iterative prototyping
of control strategies for an indoor airship” [SPGP10] und ,Iterati-
ves Mixed-Reality-Prototyping und virtuelle Studioprdsentation einer
Steuerung fiir ein Indoor-Lufschiff” [PSHG10], wurde auf verschie-
denen nationalen und internationalen Konferenzen vorgestellt und
tiberwiegend positiv bewertet.

Anforderungsanalyse

Um das ,Mixed Reality in the Loop”-Entwurfsvorgehen erfolgreich
einsetzten zu konnen werden bestimmte Voraussetzungen an die zu
entwickelnde Applikation gestellt. Da der zugrundeliegene Ansatz
des Entwurfs auf einem prototypenbasierten Vorgehen (siehe Kapitel
2.1.1239 basiert, sollten wahrend der Entwicklung der Software meh-
rere verschiedene Prototypen vorgesehen sein. Sollte die Entwicklung
keine Prototypen erfordern, wiare MRiL nicht das richtige Entwurfs-
vorgehen. Die Entwicklung der Prototypen ist noch mit der Bedingung
der schrittweisen Verfeinerung verkniipft. Nicht jeder Prototyp sollte
eine komplett andere Funktionalitdt bieten, sondern die Prototypen
sollten auf einander aufbauen und nach und nach mehr Funktiona-
litat erhalten. Sollte die Entwicklung der Applikation fordern, dass
mehrere Prototypen mit komplett unterschiedlicher Funktionalitét
entwickelt werden, ist die Entwicklung mit MRiL nicht optimal aber
durchaus moglich.

Selbst wenn eine Entwicklung einer Applikation die Herstellung von
Prototypen beinhaltet, muss MRiL noch nicht der passende Ansatz
sein. Es sollte mindestens eines der folgenden vier Kriterien fiir die
Prototypenentwicklung zutreffen, um MRIL erfolgreich anwenden zu
konnen:

Darstellung: Damit ist sowohl die Verfeinerung der rein virtuellen



Visualisierung als auch die Anderung der Darstellung von rein
virtuell tiber gemischte Realitédt hin zur reinen Realitdt gemeint.

Steuerung: Die Steuerstrategien der zu entwickelnden Prototypen
wird verfeinert. Dabei sollte die Entwicklung von einfachen,
Tastatur- oder Maus-basierten Steuerungen hin zu komplexen,
neuartigen Steuerstrategien verfeinert werden.

Modell: Das Modell der Software wird verfeinert. Es ist moglich,
von einem rein virtuellen Modell zu einem realen Modell zu
migrieren.

Umgebung: Die Umgebung hat Einfuss auf die Applikation. Auch
hier, wie bei der Darstellung, kann mit einer rein virtuellen
Umgebung begonnen werden, die dann nach und nach realer
wird. Die Umgebung wird nie zu 100% erfasst, sondern Teile der
Umgebung werden {iber Sensoren erkannt und der Applikation
zur Verfligung gestellt.

Der Ansatz ist nicht fiir jede Art von Applikation sinnvoll. Es sollte
mindestens einer der im Folgenden aufgefiihrten Punkte zutreffen,
damit die Verwendung von MRIiL erfolgreich angewendet werden
kann:

Mixed Reality Applikation: Bei der Entwicklung von Mixed Reality
Applikationen, im speziellen Augmented Reality Applikationen,
kann das MRiL-Entwurfsvorgehen erfolgreich eingesetzt wer-
den. Mixed Reality Applikationen zeichnen sich durch die Ein-
beziehung der realen Umgebung in die Software aus. Teile der
realen Umgebung kénnen dabei durch verschiedene Sensoren er-
kannt und der Software zur Verfiigung gestellt werden. Beispiele
hierfiir sind Ultraschall Entfernungssensoren oder Videotracker
(z. B. Studierstube, ART+) zur Erkennung von Position und Ori-
entierung.

Mixed Reality Benutzerschnittstellen: Eine gesonderte Klasse von
Applikationen sind Mixed Reality Benutzerschnittstellen (MR
User Interfaces, auch Next Generation User Interfaces (NGUI) ge-
nannt), die neue Benutzerschnittstellen fiir Mixed Reality Appli-
kationen implementieren. Durch die Verwendung des MRiL-Ent-
wurfsvorgehens konnen die neuartigen Benutzerschnittstellen
in frithen Phasen auch ohne die spezielle Hardware, die norma-
lerweise benotigt wird, getestet werden.

Mechatronische Systeme: Software fiir die Steuerung von mechatro-
nischen Systemen ist sehr gut mit dem MRiL-Entwurfsvorgehen



zu realisieren. Dabei wird mehr die Entwicklung der Software
als die Einbettung in Hardwarecontroller (Entwicklung des ein-
gebetteten Systems) in den Vordergrund gestellt. Es ist aber auch
moglich, die Software spéter auf speziellen fiir die Anwendung
Controllern auszufiihren, dabei wird hier auf das Prinzip von
MiL, SiL und HilL (Siehe Kapitel 2.3.151) zurtickgegriffen.

Fiir bestimmte Klassen von Applikationen ist die Verwendung von
des MRiL-Entwurfsvorgehens nicht sinnvoll, da die klassischen Ent-
wurfsprozesse dort besser geeignet sind:

Klassische Applikationen: Damit ist die Klasse von Anwendungen
gemeint, die als Standardsoftware bezeichnet werden kann. Da-
zu zdhlen Officeanwendungen, Datenbanken, etc. Diese Pro-
gramme basieren grofitenteils auf den Eingabemoglichkeiten,
die von einem Betriebssystem zur Verfiigung gestellt werden,
und verwenden die normale fensterbasierte Ausgabe.

WIMP": Anwendungen, die auf einer grafischen Benutzeroberfldche
basieren, die mit Hilfe einer Maus bedient werden konnen sind
fiir die Entwicklung mit MRiL nicht geeignet. Beispiele fiir solche
Anwendungen sind dialogbasierte Programme, die tiber die
Maus und die Tastatur gesteuert werden.

Webbasierte Inhalte®: Webanwendungen sollten vorzugsweise mit
klassischen Ansdtzen der Softwareentwicklung realisiert werden,
da die MRiL hier keine Vorteile sondern eher Nachteile bringen
wiirde.

Eingebettete Systeme: Diese Art von Software benotigt meist spezi-
elle Werkzeuge, die das Programm auf die passende Plattform
kompilieren. Daher ist hier auch einer der klassischen Ansitze
tiir die Entwicklung sinnvoll.

Damit sind die Anwendungen, die mit Hilfe des MRiL-Entwurfs-
vorgehen entwickelt werden koénnen, klar eingegrenzt. Vorgestellt
wurden sowohl Anwendungen, die von MRiL unterstiitzt werden, also
auch Software, die nicht unterstiitzt wird und sinnvollerweise einem
anderen Entwurfvorgehen folgen sollte. Die nachfolgende Tabelle
zeigt nochmals im Uberblick, welche Applikationen mit Hilfe von
MRIiL entwickelt werden kénnen:

"WIMP steht fiir Windows Icons Menus Pointer.

2Als webbasierte Anwendungen, auch Webanwendung oder Webapplikation genannt, wird Software
bezeichnet, die auf einem Webserver ausgefiihrt wird und beim Anwender mit Hilfe eines Webbrowsers
angezeigt wird.




4.2

Mixed Reality Applikation X

MR Benutzerschnittstellen X

Mechatronische Systeme X X
Eingebettete Systeme X X
Webbasierte Inhalte X
Klassische Applikationen X

Zusammenfassend zeigt die unten angegebene Tabelle die Kriterien,
nach denen das MRiL-Entwurfsvorgehen fiir eine Anwendungsent-
wicklung verwendet werden kann:

Kriterien Relovang
Wichtig Optional | Unwichtig

AR / MR X

Prototyping X

Komponentenbasiert X

Akteurbasiert X
Plattformabhéngig X
Programmiersprache X

Damit sind die Anforderungen an eine Applikation bestimmt. Im
folgenden Kapitel wird die Vorgehensweise des MRiL-Entwurfsvor-
gehen beschrieben.

Vorgehensweise

Das in dieser Arbeit entwickelte MRiL Entwurfsvorgehen basiert auf
mehreren, speziell angepassten Vorgehensmodellen und dem Model-
View-Controller Architekturmuster (Siehe Kapitel 2.2.145), welches
fiir MRiL eine Erweiterung erfahren hat. Um eine Applikation nach
dem MRiL-Entwurfsvorgehen zu entwickeln, muss folgendermafien
vorgegangen werden:

1. Beschreibung in schriftlicher Form (Optional)
Um die spédtere Applikation in die vier Komponenten unterteilen
zu konnen ist es sinnvoll die Funktionsweise der Anwendung
schriftlich aufzuzeichnen. In dieser Form kénnen dann die Iden-
tifizierungen des ndchsten Schritts leichter realisiert werden.



Diese schriftliche Zusammenfassung der Anwendung sollte so
genau wie moglich sein, es sind jedoch normalerweise zu Beginn
einer Entwicklung noch nicht komplett alle Aspekte bekannt,
so dass die erste Fassung der Beschreibung eher ungenau und
oberflachlich sein wird. Zu Beginn reicht diese Beschreibung
allerdings aus, um mit der Identifizierung beginnen zu konnen.

2. Identifizierung einzelner Elemente

Die einzelnen Elemente der Applikation sollten zu Beginn der
Entwicklung identifiziert werden. Da es sich beim MRiL-Ent-
wurfsvorgehen um einen iterativen Prozess handelt, kann diese
Identifizierung erst recht grob und ungenau sein. In spéteren
Iterationen konnen die Elemente weiter verfeinert werden. Bei
der Identifizierung sollte allerdings schon darauf geachtet wer-
den, dass die Elemente der Applikation nicht in mehr als eine
Komponente der MVCE Architekturmusters fallen.

3. Kategorisierung identifizierter Elemente
Nach der Identifizierung der einzelnen Elemente einer Applika-
tion miissen diese nun in die MVCE-Komponenten kategorisiert
werden. Nach der Kategorisierung kénnen schon die Schnittstel-
len zwischen den Elementen definiert werden, die ja tiber das
MVCE Architekturmuster vorgegeben sind.

4. Unterteilung in Akteure. (Optional)
Die Unterteilung der identifizierten Elemente in Akteure ist ein
optionaler Schritt, der jedoch sinnvoll ist, wenn die Softwareum-
gebung dies untersttitzt. Vorteil ist, dass die einzelnen Akteure
einzeln verfeinert werden konnen. Ohne Akteure miisste jeweils
eine gesamte MVCE-Komponente verfeinert werden. Je nach
Komplexitat dieser Komponente konnte eine Verfeinerung lange-
re Zeit in Anspruch nehmen. Bei einer geringen Komplexitit,
wie sie normalerweise in frithen Prototyp-Stadien vorzufinden
ist, ist der Aufwand der Verfeinerung ohne Akteure jedoch
nicht viel aufwéndiger, so dass am Anfang der Entwicklung
auf die Unterteilung in Akteure verzichtet werden kann. Sollte
die Softwareumgebung allerdings die Unterteilung in Akteure
unterstiitzen (siehe 4.5.214g), sollte sie auch durchfiihrt werden.

5. Erster Prototypen mit Platzhalter
Nach Identifikation und Unterteilung kann das Grundgeriist der
Elemente bzw. Akteure in einer Softwareumgebung implemen-
tiert werden. Eine Implementation der definierten Schnittstellen
der Komponenten bzw. Akteure ist denkbar, eine Funktionalitdt
muss allerdings zu diesem Zeitpunkt noch nicht vorhanden
sein. Der erste Prototyp wird in den meisten Fillen nur das



Programmgeriist mit den Schnittstellen und Verbindungen zwi-
schen den Komponenten bzw. Akteuren abbilden.

6. Iterationen zur Verfeinerung

Der Prototyp kann nun durch das iterative Entwurfsvorgehen
weiter verfeinert werden. Je nach festgelegtem Schwerpunkt bei
der Entwicklung koénnen alle Komponenten gleichzeitig oder
aber einzelne Komponenten verfeinert implementiert werden.
Durch dieses Vorgehen besteht z. B. die Moglichkeit, zuerst die
Komponenten des Controllers zu verfeinern, um sie schon in
frithen Prototypen zu testen, andere Komponenten jedoch in
einem sehr frithen Entwicklungsstadium beizubehalten. Es ist
auch moglich, von einer verfeinerten Komponente zuriick zu
einer fritheren Implementation zu gehen, wenn z.B. andere
Komponenten isoliert betrachtet werden sollen. Beispiele fiir die
verschiedenen Arten der Vorgehensweise bei der Verfeinerung
zeigt Kapitel 5159

7. Fertige Applikation

Nachdem jede Komponente zu ihrer gewiinschten Form ver-
feinert ist kann der Prototyp als fertige Applikation bezeichnet
werden. Soll diese Applikation zu einem spéteren Zeitpunkt
weiter entwickelt werden, stehen ihr die gesamten Prototypen
der vergangenen Iterationen zur Verftigung. D.h. die Entwick-
ler konnen fiir eine Komponente wieder auf ein sehr friithes
Stadium der Entwicklung zugreifen um beispielsweise fiir ande-
re Komponenten eine kontrollierte Umgebung zu erhalten. Es
ist also Moglich auch nach der Fertigstellung der Applikation
wieder in nachfolgenden Iterationen weiter zu entwickeln.

Damit die hier vorgestellte Vorgehensweise realisierbar ist, mussten
Methoden zur Unterstiitzung des Verfahrens entwickelt werden. In
nun folgenden Kapitel werden diese Methoden vorgestellt und be-
schrieben.

Entwickelte Methoden

Zur Realisierung des MRiL-Entwurfsvorgehen mussten mehrere Me-
thoden entwickelt werden. Diese Methoden basieren meist auf schon
in der Literatur bekannten Verfahren, wurden aber fiir das MRiL-Ent-
wurfsvorgehen angepasst oder erweitert. Im einzelnen sind das:

MVCE: Das aus dem Entwurf von Benutzerschnittstellen bekannte
Model-View-Controller Architekturmuster wurde um die Kom-



4.3.1

ponente , Environment” erweitert und ergibt nun das MVCE
Architekturmuster. Es ist die Grundlage des MRiL-Entwurfs-
vorgehens, welches voraussetzt, einzelne Teile der Anwendung
zu einer der vier Komponenten zuzuordnen. Die klassifizierten
Teile der Anwendung konnen dann unabhéngig von den ande-
ren MVCE Komponenten entwickelt und verfeinert werden. Die
Aufteilung in die einzelnen Komponenten ermdoglicht dariiber
hinaus die gemeinsame Visualisierung des Entwicklungstand
jeder einzelnen Komponente gemeinsam in einem Kiviatgraph.

Die MRiL Metrik: Um eine Einschdtzung tiber den Entwicklungs-
tand der Applikation zu erhalten muss miissen fiir die einzelnen
Komponenten des MVCE Architekturmusters eigene Metriken
entwickelt werden. Die Metriken sind essenziell fiir eine sinn-
volle Visualisierung des Entwicklungstand im Kiviatgraphen.

Akteurmodell: Zur Verfeinerung der MVCE-Komponenten wurde
das Akteurmodell entwickelt, das die Moglichkeit bietet, die
jeweiligen Komponenten feingranularer zu unterteilen. Die Ak-
teuere konnen einzeln und unabhéingig voneinander entwickelt
und {iiber sogenannte Adapter erweitert werden. Das Akteur-
modell ist fiir die spadtere Implementation des MRiL-Entwurfs-
vorgehen nicht zwingend erforderlich. Sollte die verwendete
Entwicklungsumgebung das Akteurmodell unterstiitzten, sollte
die Aufteilung allerdings durchgefiihrt werden.

Das Entwurfsvorgehen: Das vorgestellte Entwurfsvorgehen basiert
auf einem iterativen Prototyping Prozess, der in jedem Schritt
Teile der Applikation verfeinert bzw. weiter entwickelt. Nach
jeder Iteration steht ein neuer Prototyp zur Verfiigung, der fiir
Tests verwendet werden kann. Bei der Verfeinerung ist es uner-
heblich, ob alle Komponenten gleichzeitig oder nur eine spezielle
Komponente verfeinert werden.

Die einzelnen oben aufgezidhlten Methoden werden im einzelnen in
den nachfolgenden Kapiteln ausfiihrlich beschrieben.

MVCE - Model-View-Controller-Environment

Das Model-View-Controller Architekturmuster ist unter anderem in
der Benutzerschnittstellen-Entwicklung so erfolgreich, da es die ein-
zelnen Aufgaben in drei unterschiedliche und voneinander getrennte
Komponenten unterteilt. Daher konnen die interaktiven und visuellen
Aspekte einer Benutzerschnittstelle getrennt von der eigentlichen Ap-
plikation bearbeitet werden. Das Modell (Model) reprasentiert dabei



die Daten der Applikation und kapselt diese. Die Darstellung (View)
kapselt die visuellen Elemente wie z.B. die Schaltflachen, Textbo-
xen oder Visualisierungen. Die Steuerung (Controller)3 implementiert
die Interaktionsdetails zwischen der Applikation und dem Benut-
zer, beispielsweise Mausklicks oder Tastatureingaben. Diese leitet
er dann weiter an das Modell welches dann die Anderungen der
jeweiligen Interaktion ausfiihrt. Das Modell wiederum benachrich-
tigt die Darstellung, das sich Daten gedndert haben, so dass sich
die Benutzerschnittstelle passend d&ndern kann. MVC erméglicht also
modulares Design, indem die einzelnen Komponenten nicht voneinan-
der abhingig sind. Es ermoglicht weiterhin die Benutzung mehrerer
Darstellungen und unterschiedlicher Controller innerhalb derselben
Applikation fiir dasselbe Modell. Diese Eigenschaften sind gerade im
MRiL-Entwurfsvorgehen wiinschenswert, da so modular und kompo-
nentenweise implementiert werden kann.

Ein zentrales Merkmal des MRiL-Entwurfsvorgehen ist die Integration
der realen Umgebung in die digitale Anwendung. Die Applikation
benotigt Informationen iiber Objekte oder Koordinaten der realen
Welt, dessen Geometrie und Verhalten aber nicht unter der Kontrolle
der Applikation steht. Reale Objekte konnen unter dem Einfuss von
realen Manipulationen oder externen Kréften stehen. Daher muss
es fiir die Applikation eine Moglichkeit geben, die Verdanderungen
der realen Objekte zu erkennen. In der Praxis besteht solch ein Real
World Model einer Mixed Reality Applikation aus der Kombination
aus statischen Informationen, z. B. Geometriedaten, die als fest gelten,
und dynamischen Informationen, z. B. die Position und Orientierung
des Nutzers bzw. eines zentralen Objektes. Diese dynamischen Da-
ten konnen tiber spezielle Sensoren wiahrend der Laufzeit ermittelt
werden. Sensordaten konnten als Controller-Events im MVC Modell
gehandhabt werden, allerdings wiirde dies zu einem sehr uniibersicht-
lichen Modell der Applikation fiihren.

Um daher Mixed Reality tatsdchlich in einer digitalen Anwendung
zu berticksichtigen, wurde das Model-View-Controller Architektur-
muster [Reeo3] (siehe auch 2.2.145) um eine Dimension ,Umgebung”
(Environment) erweitert, so dass die Sonderstellung der Umgebung
bei Mixed Reality Anwendungen abgedeckt wird. Diese Erweiterung
ist in Abbildung 4.11¢¢ zu sehen. Ein Problem bei MR-Applikationen
ist, dass die Umgebung nicht zu 100 Prozent erfasst werden kann
bzw. muss. Durch verschiedene Sensoren und Techniken kénnen In-
formationen wie Position und Orientierung von Objekten, bestimmte
technische oder physikalische Eigenschaften oder Zustandsdanderun-

3Steuerung wird im weiteren Text durch das englischen Wort ,Controller” ersetzt, da sich dieser
Begriff in diesem Zusammenhang in der Literatur durchgesetzt hat.
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Abbildung 4.1: MVCE Architekturmuster

gen erfasst werden. Es ist aber fast unmoglich und auch nicht sinnvoll,
alle Informationen der Umgebung zu erhalten. Fiir eine performante
MR-Applikation sollten nur Informationen der Umgebung abgefragt
werden, die wirklich benétigt werden. Beispielsweise sollte eine Ap-
plikation, die die Hohe eines Objektes der Umgebung erfordert, diese
auch moglichst direkt geliefert bekommen und sie nicht iiber kompli-
zierte Algorithmen umstandlich berechnen miissen. Letzteres wiirde
tir die Berechnung der realen Hohe viel Ressourcen und Rechen-
zeit benotigen. Besser wire es, diese Information mit Hilfe z. B. eines
Hohensensors zu realisieren, der an dem abzufragenden Objekt ange-
bracht ist.

In Abbildung 4.1 wird die Integration der Komponente ,Umgebung”
dargestellt. Sie ist dhnlich dem Modell an die Darstellung gekoppelt
und tauscht ihrerseits Daten mit dem Modell aus. Ein entscheidender
Unterschied ist, dass der Controller keinen Einfluss auf die Umge-
bung hat. Das weist auf die Sonderstellung gegeniiber dem Modell
hin. Der Controller ist nicht in der Lage, Daten der Umgebung zu
verdndern. Auch das Abfragen der Daten geht tiber den Umweg des
Modells, da dies die Daten der Umgebung empfingt und passend
aufbereitet. Die Darstellung und das Modell benutzten dieselben Me-
thoden zur Interaktion mit der Umgebung, auch werden beide von der
Umgebung benachrichtigt, sollte sich an den Daten etwas gedndert
haben. Die Darstellung wird versuchen, die gednderten Daten dann
zu visualisieren. Das Modell kann die Daten der Umgebung weiter
verarbeiten und ggf. auch die Darstellung tiber Verdnderungen am
Modell informieren. Uber die Darstellung, die die Benutzeraktionen



an den Controller weiterleitet, ist es nun auch moglich, Anderungen
der Umgebung als Benutzerinteraktion zu interpretieren. Dafiir sendet
die Umgebung ein Notifikation an die Darstellung, dass sich Daten
gedndert haben. Die Darstellung kann diese Anderung als Eingabe des
Benutzers interpretieren und eine Meldung einer Benutzerinteraktion
an den Controller senden. So sind Mixed Reality Benutzerschnitt-
stellen mit Hilfe von MVCE einfach realisierbar und strukturiert zu
implementieren.

Es folgt nun eine detaillierte Ubersicht der einzelnen Komponenten
von MVCE, ihren Eigenschaften und der Verwendung:

Model: Das Modell kapselt die eigentlichen Daten der Applikation.
Das Modell ist im allgemeinen eine passive Komponente, d. h.
es kann sich nicht selbststindig dndern. Anderungen werden
nur iiber den Controller realisiert. Es ist indes moglich , dass
sich Anderungen auf mehrere Teile des Modells auswirken,
die intern im Modell berechnet werden konnen. Als Beispiel
konnte der Controller die Position eines Modells andern und
das Modell kdnnte zusétzlich aus der gegebenen Position die
Farbe der Geometrie iiber eine interne Funktion neu bestimmten.

View: In der Darstellung wird das Modell komplett oder auch nur
teilweise visualisiert. In MVCE kann es eine oder mehrere unter-
schiedliche Darstellungen vom selben Modell geben, die spezifi-
sche Teile des Modells darstellen. Als Beispiel konnten das zwei
Ansichten sein, die eine visualisiert die virtuelle 3D Umgebung,
eine andere nur die Kollisionsmodelle der Physikbibliothek. Die
Darstellung erhilt Notifikationen bei Anderung der Umgebung
und des Modells um seine Darstellung anpassen zu konnen. Die
Informationen muss die Darstellung allerdings selbst bei der
Umgebung bzw. beim Modell erfragen. Da weder Umgebung
noch Modell wissen, was die jeweilige Darstellung fiir Daten
benétigt, ist es sinnvoller, dass sich die Darstellung selbst um
die Beschaffung der Daten kiimmert, als wenn Umgebung und
Modell die Anderungen an jede Darstellung schicken. So wird
das Datenvolumen zwischen den Komponenten kleinstmdoglich
gehalten.

Controller: Der Controller ist fiir die Verarbeitung der Benutzerein-
gaben zustdndig. Die Eingaben konnen sowohl tiber den View
mitgeteilt als auch intern erzeugt werden. Eine Interaktion mir
einer grafischen Benutzerschnittstelle wére ein Beispiel fiir den
ersten Fall, eine Bewegung mit einer Wiimote* ein Beispiel fiir

4Die Wiimote ist ein Gamecontroller der Spielkonsole Wii von Nintendo, der auch mit Standard-



den zweiten Fall. Auch Komponenten, die keine Benutzerein-
gabe erfordern, jedoch zu gegebenen Zeitschritten das Modell
dndern, werden im Controller gekapselt. Beispielsweise wiirde
eine Physiksimulation, die auf den Daten des Modells arbeitet,
als Controller angesehen.

Environment: Die Umgebung ist die Komponente in MVCE, in der
die Applikation wenig Einfluss austiben kann. In dieser Kompo-
nente wird nicht die komplette Umwelt abgebildet, sondern nur
ein kleiner Teil, der fiir die Applikation sinnvoll und wichtig
ist. Dieser Teil der Umgebung wird meist iiber Sensoren erfasst
und der Darstellung bzw. dem Modell zur Verfligung gestellt. Es
gilt, dass alle Komponenten, die mit der Umwelt interagieren, in
der Umgebungs-Komponente von MVCE realisiert werden. Als
Beispiel kann ein Objekt, welches iiber einen visuellen Tracker
erfasst wird, seine Position dndern. Der Tracker, der die Verbin-
dung zur Umgebung darstellt, teilt diese Anderung dem Modell
mit, das seinerseits die Daten aktualisiert. Keine der anderen
Komponenten hat Einfluss auf die Umgebung und kann diese
nicht manipulieren. Es ist eine reine ,Read-Only”-Komponente,
die der Darstellung und dem Modell Daten zur Verfiigung stellt.
Welche Daten das sind, entscheiden die Sensoren, die die Umge-
bung analysieren, z. B. Position und Orientierung eines Objektes,
Hohe und Entfernung aber auch Geschwindigkeit und Lage im
Raum. Letzteres kann gut zur Interaktion von realen Objekten
mit der Applikation genutzt werden und wird oft im Bereich
,Mixed Reality User Interfaces” eingesetzt.

Durch diese Aufteilung der Komponenten ldsst sich die Applikation
sehr modular entwickeln. Ein weiterer Vorteil der Einteilung in die
vier Komponenten MVCE ist, dass die Software anhand des Enwick-
lungsstaus der einzelnen Komponenten analysiert werden kann. In
Abbildung 4.21g9 ist ein Kiviatgraph zu sehen, der den Enwicklungs-
status einer Applikation reprédsentiert. Hierbei werden die einzelnen
Komponenten von der Mitte aus zu den Ridndern abgetragen, je nach
ihrem aktuellen Status. Im Kiviatgraphen entspricht die Mitte einer
sehr geringen Komplexitdt bzw. Realismus. Die ersten Prototypen
einer Applikation werden somit in der Mitte des Kiviatgraphen an-
gesiedelt sein. Je weiter die Komponenten entwickelt werden und
komplexer bzw. realer werden, um so weiter entfernt sich die Kom-
ponenten aus der Mitte. Das heifst, je weiter eine Komponente zum
Rand abgetragen werden kann, desto komplexer bzw. realer ist sie.

Rechnern iiber Bluetooth angeschlossen werden kann. Uber die Wiimote kénnen Beschleunigungen und
die Lage des Gamecontrollers im Raum ermittelt werden. So kénnen z. B. Gesten des Benutzers erkannt
und als Interaktion genutzt werden.
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Abbildung 4.2: Kiviatgraph zu Analyse des Entwicklungsstatus.

Der Kiviatgraph ermoglicht somit eine genauere Analyse des Ent-
wicklungsstandes der MVCE-Komponenten. Bei der Entwicklung von
Mixed Reality Applikationen kann es 6fter sinnvoll sein, von einer
komplexen zuriick auf eine etwas einfachere Implementation einer ein-
zelnen Komponente zuriick zu gehen, um beispielsweise eine andere
komplexere Komponente sicher testen zu konnen bzw. Seiteneffek-
te auszuschliefen. Uber den Kiviatgraphen kann man diese beiden
Prototypen der Applikation gut unterscheiden, da sich die einzelnen
aufgetragenen Komponenten dndern, anders als hdtte man nur einen
Wert, der die Entwicklung beschreibt, wie das bei einer normalen
Softwareentwicklung der Fall ist (z. B. {iber eine Versionsnummerie-
rung). Theoretisch kénnte der Kiviatgraph auch noch feingranularer
aufgezeichnet werden, beispielsweise tiber alle Akteure (siehe Kapitel
4.3.31p0) in der Applikation. Diese Information wére in einigen Situa-
tionen sinnvoll, im Allgemeinen reicht allerdings der allgemeine Stand
der MVCE-Komponenten, da auch diese Informationen einfacher zu
lesen sind.

Fiir die Bewertung des Entwicklungsstatus der einzelnen Komponen-
ten war es allerdings notwendig, eine geeignete Metrik zu definieren.
Diese MRiL-Metrik wird im folgenden Kapitel beschrieben.

Die MRiL-Metrik

Bei der Bewertung des Entwicklungsstatus der Applikation kann der
in Kapitel 4.3.114 vorgestellte Kiviatgraph genutzt werden, Um eine



definierte Aussage treffen zu konnen, wird fiir jede Achse des Ki-
viatgraphen eine eigene Metrik benétigt, die aussagt, in wie weit die
Applikation in der entsprechenden Dimension entwickelt ist. Detail-
liert werden folgende Metriken benétigt:

Modell-Metrik: Ein Maf3, welches angibt, in wie weit das Modell der
Applikation entwickelt ist.

View-Metrik: Metrik fiir die visuelle Komponente einer Applikation.

Controller-Metrik: Eine Einheit zur Beschreibung der Entwicklung
des Controllers.

Environment-Metrik: Metrik fiir die Einordnung der Umgebung in
die Applikation.

Fiir jedes dieser MafSe wird eine eigene Metrik benotigt, da sich die
Methoden zur Bestimmung fiir jede Dimension im Kiviatgraphen
zum Teil grundlegend unterscheiden. Angelehnt sind die Metriken an
Arbeiten aus dem Bereich der Wiederverwendbarkeit von Software-
Komponenten, u. a. die Arbeiten von Boxall et al. [BAog] und Wa-
shizaki et al. [WYFo3]. Dabei werden Daten, die schon aus der finalen
Quelle stammen, hoher gewertet als simulierte Daten. Daten, die nur
fiir bestimmte Prototypen benutzt werden und in der finalen Appli-
kation nicht vorhanden sind (hier virtuelle Daten genannt), werden
komplett unberiicksichtigt, da diese Daten eigentlich nicht wiederver-
wendet werden konnen.

Modell-Metrik

Um die Metrik fiir das Modell zu bestimmen, benétigt man eine
Definition des Modells der finalen Applikation. In diesem Kontext
kann das Modell folgendermafien definiert werden:



Ein Modell ist die Summe aller Daten ¢;,, die es der Applikation
zur Verfiigung stellt bzw. die die Applikation auslesen und/oder
verandern kann. Die Daten konnen dabei virtuell, simuliert oder
real sein (€;), was aussagt, ob die Daten aus der endgiiltigen Quelle
stammen (real) oder noch in irgendeiner Form simuliert werden
(simuliert). Sollten die Daten im spédteren Modell nicht existieren,
so sind sie virtuell.

n
M:=) ¢ (4.1)
i=0
n : Anzahl der Daten von oy,
0 : o;istein virtuelles Datum
€, =< 0,5 : o;istein simuliertes Datum
1 : o0 istein reales Datum

Das Modell wird hier auf einer objektorientierten Ebene definiert
und beinhaltet nicht Parameter wie beispielsweise die Anzahl der
Zeilen im Quelltext. Da das Modell abstrakt angesehen werden soll,
muss auch die Definition und die daraus resultierende Metrik abstrakt
gehalten werden. Dies ist mit der Definition 4.1 des Modells erreicht
worden. Es werden hier nur die Ein- bzw. Ausgaben eines Modells
betrachtet, also die Schnittstellen zur Applikation. Des Weiteren wird
dabei berticksichtigt, ob die Daten, die zur Verfiigung gestellt werden,
schon den endgiiltigen Daten entsprechen.

Um nun eine passende Metrik fiir das Modell zu definieren, betrachtet
man das Modell der finalen Applikation und vergleicht es mit dem

zur Zeit vorhandenen Modell. Die Modell-Metrik ldsst sich daher
folgendermafien definieren:

Die Model-Metrik I'y; ist Quotient vom vorliegenden Modell zum
finalen Modell.

0<Ty<1 (4.2)

Mproto : Modell des aktuellen Prototypen
Mfing : finales Modell



Mit der Definition des Modells durch 4.1 wird sicher gestellt, dass
Prototypen nie einen grofieren Wert erhalten als das finale Modell.
Somit liegt der skalare Wert der Modell-Metrik I'j; immer zwischen
o und 1. Dieser Wert kann auf der Modell-Achse des Kiviatgraphen
abtragen werden, wobei 0 dem Punkt auf dem innersten und 1 dem
Punkt auf dem dufiersten Kreis des Kiviatgraphen entspricht, wie es
an Abbildung 4.311, dargestellt ist.
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Abbildung 4.3: Modell-Metrik dargestellt im Kiviatgraphen.

Sollte sich das finale Modell dndern, da es z. B. in der weiteren Ent-
wicklung erweitert wird, miissen die Werte fiir I'y; neu berechnet
werden, da sonst ein Vergleich mit dlteren Versionen des Modells
nicht moglich ist.

Ein andere Moglichkeit bei der Weiterentwicklung und Erweiterungen
von Prototypen ist die Version des Prototypen mit in die Modell-
Metrik I'j; einfliefSen zu lassen.

Die Modell-Metrik I'ys, ist Quotient einer Weiterentwicklung des
Modells (7 — 1) zum finalen weiterentwickelten Modell 7.

Mm—1<Ty<n neNT (43)

Mproto : aktuelles Modell auf Basis vom Modell (n-1)

Mfina, : finales weiterentwickeltes Modell n

Der Wert der Modell-Metrik Model-Metrik I'y;, liegt nun zwischen
dem Vorgingermodell (n — 1) und der finalen Weiterentwicklung .
Das bedeutet fiir die grafische Reprasentation mit Hilfe des Kiviat-



graphen, dass ein neuer Bereich (von (n — 1) - n) hinzugefiigt werden
muss, wie in Abbildung 4.4;13 zu sehen ist.
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Abbildung 4.4: Kiviatgraph eines weiterentwickelten Modells.

Problematisch ist bei mehreren Weiterentwicklungen, dass der Kiviat-
graph immer grofier und daher auch uniibersichtlicher wird. Um dem
vorzubeugen, kann auch nur die Entwicklung des aktuellen Prototy-
pen verwendet werden. Damit kénnen jedoch nur die Entwicklungen
der aktuellen Entwicklungsstufe miteinander verglichen werden.

View-Metrik

Ahnlich der Modell-Metrik kann auch die View-Metrik definiert wer-
den. Zuvor muss jedoch der View definiert werden, um darauf danach
eine Metrik anwenden zu konnen. Dabei muss der View der finalen
Applikation bekannt sein, da die Klassifizierung der Objekte davon
abhangt.



Der View ist die Summe aller Objekte w;,, die von der Applikation
visualisiert werden. Diese Objekte konnen dabei beztiglich ihrer
Existenz in folgende Klassen aufgeteilt werden: temporir, virtuell
oder real (¢;). Objekte, die genau so in der finalen Applikation
vorhanden sind, bezeichnet man als real. Objekte, die zwar in der
finalen Applikation vorhanden sind, allerdings in irgendeiner Weise
anders dargestellt werden, bezeichnet man als virtuell. Sollten Ob-
jekte nur in Zwischenversionen und nicht in der finalen Applikation
vorhanden sein, so nennt man diese temporar.

n
Vi=) ¢ (4.4)
i=0
n : Anzahl der Objekte von w;,
0 : wjistein tempordres Objekt
¢; =< 0,5 : w;istein virtuelles Objekt
1 : wjistein reales Objekt

Auch bei dieser Definition des Views wird ein abstraktes Maf$ zugrun-
de gelegt. Dabei kann sich die Granularitdt der einzelnen Objekte
sehr stark unterscheiden, je nachdem, in welchen Fokus sie stehen.
Dabei ist indes zu beachten, dass sich die Granlaritiat wihrend der
Entwicklung zur Finalen Version nicht é&ndern darf, da sonst keine
eindeutige Metrik berechnet werden kann. Aus der Definition des
Views ergibt sich folgende Metrik:

Die View-Metrik Oy ist Quotient des vorliegenden Views zum
finalen View.

0<0Oy <1 (4.5)

Viproto : View des aktuellen Prototypen

Vinal © finaler View

Genau wie bei der Definition des Modells wird auch bei der Definition
des Views in 4.4 darauf geachtet, dass keine Zwischenversion einer
Applikation einen Wert V > 1 beziiglich der finalen Applikation
bekommen kann. Dieser Wert kann dann im Kiviatgraphen abgetragen



werden, genau wie es auch beim Modell in Abbildung 4.3117 zu sehen
ist.

Fiir Weiterentwicklungen der finalen Version der Applikation kann
die View-Metrik genauso erweitert werden, wie die Modell-Metrik:

Die View-Metrik Oy, ist Quotient einer Weiterentwicklung des
Views (n — 1) zum finalen weiterentwickelten View n.

Vproto
Vf inaly

Oy = (n—1)+ Mm—1<O@y<n, neN" (4.6)

n

Vroto : aktueller View auf Basis vom View (n-1)

Vina, : finaler weiterentwickelter View n

Oy, liegt nun zwischen (n — 1) und n und kann genau wie der Wert
der Modell-Metrik fiir Weiterentwicklungen auf dem Kiviatgraphen
abgetragen werden.

Controller-Metrik

Der Controller kann sich von einem Prototyp zu anderen sehr stark
unterscheiden, da genau hier die unterschiedlichsten Bedienungskon-
zepte implementiert und getestet werden. Daher kann der Controller
nicht dhnlich dem Modell oder dem View definiert werden. Die imple-
mentierten Controller-Strategien kénnen nicht nach ihrer Komplexitat
gemessen werden, da dies keine Aussage tiber die Qualitdt der Strate-
gie aussagt. Somit muss der Controller eine Metrik erhalten, die mehr
die Benutzbarkeit widerspiegelt.

Fiir den Controller ist es daher sinnvoll, sich an der Usability-Metrik
nach Jakob Nielsen [Nieg3] [Nieg4] anzulehnen. Bei der Usability-
Metrik nach Nielsen sind die Erfolgsrate, die Ausfiihrungszeit und
die Fehlerrate die wichtigsten Kenngrofien zur Einordnung des Con-
trollers. Optional kann die Zufriedenheit und die Erlernbarkeit zur
Metrik hinzugezogen werden. Gerade bei neu entworfenen Benut-
zerschnittstellen, bei denen noch nicht abzusehen ist, in wie weit sie
vom Anwender verstanden werden und effizient verwendbar sind,
ist eine Erhebung der optionalen Kenngrofsen vorteilhaft, um so die
Akzeptanz der Benutzer zu erfahren.



Im speziellen sollten folgende Kriterien die Metrik bestimmen:

Obligatorisch

Erfolgsrate: Ist es dem Benutzer gelungen, eine gegebene Auf-
gabe tiberhaupt zu l6sen?

Ausfiihrungszeit: Wie lange hat der Benutzer benétigt, um eine
gegebene Aufgabe zu bewiltigen?

Fehlerrate: Wie viele Fehler hat der Benutzer bei der Bewilti-
gung der Aufgabe begangen?

Optional

Zufriedenheit: Wie zufrieden ist der Benutzer mit dem Control-
ler?

Erlernbarkeit: Wie viel Zeit hat der Benutzer benétigt, um sich
die Steuerung anzueignen?

Die ersten drei Kriterien konnen mit Hilfe entsprechend vorbereiteter
Tests objektiv gemessen werden. Im Gegensatz dazu ist die Zufrie-
denheit eine subjektive Grofie, die je nach Vorlieben des Benutzers
extrem unterschiedlich ausfallen und nicht objektiv bestimmt werden
kann. Dementsprechend sollte die Zufriedenheit des Benutzers op-
tional berticksichtigt und eine geringere Gewichtung als die anderen
Kenngrofien erfahren. Allerdings kann bei Tests mit vielen Benut-
zern eine Tendenz der Zufriedenheit abgeleitet werden, die besonders
bei neuen Benutzerschnittstellen vorteilhaft ist. Die Erlernbarkeit des
Controllers sollte auch nur optional behandelt werden, da auch die-
se Bestimmung subjektiv ist, da jeder Benutzer sowohl verschiede
Vorkenntnisse als auch unterschiedliches Lernverhalt besitzt. Bei sehr
komplizierten Steuerungen sollte allerdings auf diese Messung nicht
verzichtet werden, da auch hier Tendenzen sichtbar sind.

Der Controller ist fiir die Steuerung der Applikation zustandig.
Da sich die unterschiedlichen Arten der Controller jedes Prototyps
essenziell unterscheiden konnen, existiert keine mathematische De-
finition eines Controllers wie es bei dem View oder beim Modell
der Fall ist. Die Metrik wird iiber Benutzertests ermittelt.

Fiir die Controller-Metrik konnen die aus den Usability-Tests ermit-
telten Werte verwendet werden, um einen eindeutigen Wert zu be-
kommen, so dass Controller tiber die Controller-Metrik miteinander
verglichen werden konnen:



Die Contoller-Metrik ¥ ist die Summe der Ergebnisse der un-
terschiedlichen Benutzertests geteilt durch die Anzahl der durch-
gefiihrten Benutzertests.

1 Xc.

Yoi=) —+ ,0<¥c<1, nelN* (4.7)
i=0

n : Anzahl der unterschiedlichen Usability-Tests

ac, - Ergebnis des Usability Tests C;

Dabei ist ac, folgendermafsen definiert:
1 m
ac,i=1——=Y 0; (4.8)
m =

Gi — minkm:1 (Ck)

+
max (&) — min (&) " 49)

mit ; 1=

¢; : nicht normierter Messwert i des Usability-Test
;i : normierter Messwert i des Usability-Test, 0 < ¢; <1,

m : Anzahl der ermittelten Werte in einem Usability-Test

Die Controller-Metrik ¥ aus 4.7 liefert einen Wert zwischen o und
1, der, wie auch die Werte der anderen Metriken, auf dem Kiviatgra-
phen dargestellt werden kénnen. Dabei werden die Daten aus den
Benutzertests normiert und der arithmetische Mittelwert mit Hilfe der
Gleichung 4.8 bestimmt. Die Normierung geschieht tiber die Formel
4.9, die das Minimum und das Maximum der Messwerte bestimmt
und so den aktuellen Messwert in den Bereich von [0..1] legt.

Bei der Angabe zur Zufriedenheit des Benutzers muss darauf geachtet
werden, wie die Daten, die der Benutzer macht, gewertet werden.
Wiirde das deutsche Schulnotensystem als Grundlage genommen
werden, bei dem eine 1.0 eine sehr hohe Zufriedenheit und eine 6.0
eine ungentigende Zufriedenheit des Benutzers ausdriickt, stimmt die
Berechnung mit Hilfe der Formel 4.8. Bei Bewertungssystemen, bei
denen ein hoherer Wert eine grofiere Zufriedenheit darstellt, muss die
Formel allerdings entsprechend umgestellt werden:



Bei Bewertungssystemen, bei denen ein hoherer Wert eine besse-
re Leistung ausdriickt, muss die Formel 4.8 zur Berechnung des
arithmetischen Mittels gedndert werden.

1 m
ac = Y g (4.10)
=1

Alle anderen Formeln und Definitionen konnen beibehalten werden.

Uber die Gleichung 4.10 kénnen nun auch Bewertungsysteme ver-
wendet werden, die mit hoheren Werten auch eine bessere Leistung
bzw. Zufriedenheit ausdriicken. Diese Anderung ist wichtig, damit
die Darstellung im Kiviatgraphen analog zu den anderen Metriken ist.
So wiirde ein Wert, der grofier als ein anderer ist, immer ein besseres
Ergebniss darstellen und im Kiviatgraphen weiter aufsen dargestellt

werden.

Environment-Metrik

Die Environment-Metrik kann grofitenteils analog zur View- bzw.
Modell-Metrik definiert werden. Dabei kann die Umgebung (Environ-
ment) folgendermafien definiert werden:

Das Environment ist die Summe aller Daten 7#,,, die der Applika-
tion aus der realen Umgebung bereitgestellt werden. Diese Daten
konnen dabei beziiglich ihrer Herkunft als real oder simuliert klas-
sifiziert werden (4;). Daten, die aus der realen Umgebung mit Hilfe
von Sensoren ausgelesen werden, werden real genannt. Alle ande-
ren Daten konnen als simuliert angesehen werden.

E:= Z(si (4.11)

n : Anzahl der Daten von 77,

5 — 0,5 : p;istein simuliertes Datum
L 1 : ;istein reales Datum

Bei der Definition des Environments werden die Daten, die der Appli-
kation aus der realen Umgebung geliefert werden, berticksichtig. Je



nach Entwicklungsstand konnen diese Daten in jeglicher Art simuliert
sein oder aus der realen Umgebung stammen. In frithen Entwick-
lungsphasen werden diese Daten meist simuliert. Fiir die Applikation
ist die Art der Daten, also ob sie simuliert oder real sind, transparent.
Simuliert kann in diesem Zusammenhang auch bedeuten, das immer
nur ein fester Wert zurtick geschickt wird, es wird hier also nicht die
Qualitdt der Simulation mitbewertet. Das ist gewollt, denn es wird hier
nicht die Qualitdt der Simulation der Umgebung betrachtet, sondern
der Anteil an realen Daten, die der Applikation bereitgestellt werden.

Aus der Definition des Environments kann nun die Environment-
Metrik analog zu der Modell- bzw. View-Metrik definiert werden:

Die Environment-Metrik () ist Quotient vom vorliegenden Envi-
ronment zum finalen Environment.

,0< 0O <1 (4.12)

Eproto : Environment des aktuellen Prototypen

Efina ¢ finales Environment

Die Definition 4.12 stellt sicher, das die Environment-Metrik Q) immer
einen Wert zwischen [0..1] erhilt. So kann Qf auf der entsprechenden
Achse des Kiviatgraphen abgetragen werden, wobei auch hier ein
groflerer Wert einer hoheren Entwicklungsstufe entspricht.

Ebenso ldsst sich fiir die Weiterentwicklung eines Prototypen eine
Definition der Environment-Metrik definieren:

Die Environment-Metrik Qg ist Quotient einer Weiterentwicklung
des Environments (n — 1) zum finalen weiterentwickelten Environ-
ments 7.

E proto

finaly

QE = (Tl—l)—|—

n

Mm—1<Qp<n, neN" (413)

Eproto : aktuelles Environment auf Basis von Environment (n-1)

Efinal, : finales weiterentwickeltes Environment n
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Qf, liegt nun zwischen den Werten (n — 1) und # und kann genau
wie der Wert der Modell- bzw. View-Metrik fiir Weiterentwicklungen
auf dem Kiviatgraphen abgetragen werden.

Zusammenfassung

Die vier hier vorgestellten Metriken kéonnen im MRiL-Entwurfsvor-
gehen dazu verwendet werden, einen erstellten Prototypen beziiglich
seines Entwicklungsgrades zu klassifizieren. Dies geschieht, indem die
Metriken ermittelt werden und auf den entsprechenden Achsen des
Kiviatgraphen abgetragen werden. Da sich das MRiL-Entwurfsvor-
gehen sowohl fiir die schnelle Entwicklung von Prototypen als auch
tiir die Evaluierung von neuen Eingabemethoden eignet, muss fiir jede
dieser beiden Prioritdten der Aufwand zur Bestimmung der einzel-
nen Metriken mitbertiicksichtigt werden. Insbesondere die Ermittlung
der Controller-Metrik kann viel Zeit und Resourcen an Benutzern
kosten, wenn ausfiihrliche Tests an einer grofien Gruppe an Anwen-
dern ausgefiihrt werden sollen. Die Tests und deren Auswertung
kann sehr viel Zeit kosten. Deshalb stehen die beiden Ziele ,,schnelle
Prototypenentwicklung” und ,ausfiihrliche Evaluierung neuer Be-
nutzerschnittstellen” entgegengesetzt zueinander. Fiir die schnelle
Prototypenentwicklung sind keine bzw. nur in einem geringen Mafse
ausgefiihrte Benutzertests fiir die Bestimmung der Controller-Metrik
sinnvoll. Hier konnte schon ein Test mit einem der Entwickler reichen.
Anders ist es bei der Entwicklung von neuen Benutzerschnittstellen.
Hier sollten ausfiihrliche Tests zumindest fiir die final entwickelten
Strategien durchgefiihrt und ausfiihrlich analysiert werden. So ist
es moglich, eine sehr genaue Bestimmung der Controller-Metrik zu
erhalten, die dann mit anderen Entwicklungen in diesem Bereich
verglichen werden kann.

Das Akteurmodell

Im vorherigen Kapitel wurde das MVCE Architekturmodell vorge-
stellt, das es erlaubt, die zu entwickelnde Applikation in vier un-
terschiedliche Komponenten zu unterteilen und diese dann getrennt
voneinander zu entwickeln. Um bei der Entwicklung eine noch feinere
Granularitidt der Elemente zu erhalten, basiert das MRiL-Entwurfs-
vorgehen auf sogenannten Akteuren (engl. Actors), die wiederum
unabhéngig voneinander entwickelt werden kénnen. Die Verwendung
von Akteuren sind beim MRiL-Entwurfsvorgehen optional, d. h. diese
Unterteilung ist bei der Entwicklung nicht zwingend erforderlich,
allerdings wirkt sie sich positiv auf die Implementierung aus. Da die



Akteure untereinander iiber festgelegte Ports miteinander kommu-
nizieren, ist eine getrennte Entwicklung der einzelnen Akteure nach
Festlegung der Schnittstellen leicht moglich.
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Abbildung 4.5: Abstrakter Aufbau eines Akteurs.

In Abbildung 4.5 ist Aufbau eines Akteurs abstrakt dargestellt. Ein
Akteur besteht aus einer Anzahl vom Eingangs-Ports, die skalare
Werte, Vektoren oder Matrizen als Wert annehmen konnen. Der Ak-
teur benutzt diese Werte zur Erzeugung seiner Ausgaben. Dies kann
tiber einfache Transformationen bis hin zu komplizierten Funktionen
reichen. Ein Akteur kann des Weiteren noch interne Eingabe-Ports
besitzen, die mit verarbeitet werden. Diese internen Eingabe-Ports
stammen aus gekapselten Komponenten, beispielsweise dedizierter
Hardware oder interne Softwarekomponenten, die tiber diesen Akteur
abgefragt werden kann. Dabei kann ein Akteur sowohl eine einzelne
als auch mehrere Komponenten in sich kapseln, die sowohl Ausgaben
produzieren als auch Eingaben annehmen. Gerade Akteure, die zur
Komponente Controller gehoren, besitzen solche internen gekapselten
Komponenten, da sie hadufig spezielle Hardware kapseln miissen. Die
Ausgaben werden einerseits {iber die Ausgabe-Ports zur Verfiigung
gestellt und konnen andererseits iiber interne Ausgabe-Ports aus-
gegeben werden. Intern werden die Ausgaben auch wieder an die
gekapselten Komponenten iibertragen, die beispielsweise eine dedi-
zierte Hardware darstellt. Die internen Ausgabe-Ports sind, genau wie
die internen Eingabe-Ports, wichtig fiir die Kommunikation zwischen



dem Akteur und den gekapselten Komponenten. Die Akteure kénnen
nun untereinander verbunden werden, so dass ein Datenflussnetz-
werk entsteht. Uber eine entsprechende ,,Verdrahtung” der einzelnen
Akteure entsteht so die Applikationslogik einer Applikation. Dabei
wird jeder Akteur einer bestimmten MVCE-Komponente zugeordnet.
Es ist zu beachten, dass ein Akteur keinen zwei Komponenten zu-
geordnet werden darf, damit die Aufteilung in Modell, Darstellung,
Umgebung und Controller nicht verletzt wird.

Aktor

=5 —

f(x) 9(x)

Adaptor
Capsulated Component(s) g

Abbildung 4.6: Abstrakter Aufbau eines Eingabe-Ausgabe-Adapters.

Um die Entwicklung der Akteure zu vereinfachen wurde das Prin-
zip des Adapters eingefiihrt. Adapter erweitern die Funktionalitat
eines Akteurs, indem Sie tiber ihre interne Logik passende Werte
an die Eingabe- bzw. Ausgabeports der Akteure liefern bzw. entge-
gennehmen. Adapter haben ihrerseits eine Menge an Eingabe- und
Ausgabeports, so dass sie fiir das Datenflussnetzwerk wie normale
Akteure wirken. Weiterhin konnen Adapter auch Komponenten kap-
seln, die intern Ausgaben erzeugen und Eingaben erwarten. Dabei
kann ein Adapter sowohl keine Komponente kapseln, so dass keine
internen Ein- und Ausgabe-Ports existieren und ein Adapter auch als
Protokollkonverter gesehen werden kann. Es kénnen jedoch auch ein
oder mehrere Komponenten in einem Adapter gekapselt werden, wie
es auch beim Akteur der Fall ist. Damit sind Erweiterungen von Ak-
teuren denkbar, die ihrerseits keine Komponenten kapseln, allerdings
durch einen Adapter spezielle Komponenten zur Verfligung gestellt
werden.

Es gibt insgesamt drei unterschiedliche Arten von Adaptern: den
Eingabe-Adapter, der nur die Eingaben des jeweiligen Akteurs kapselt
und durch eigene Eingabe-Ports ersetzt, den Ausgabe-Adapter, der



die Ausgaben des Akteurs kapselt und den Eingabe-Ausgabe-Adapter,
der sowohl die Ein- als auch die Ausgaben des Akteurs kapselt. In
Abbildung 4.6 ist der Aufbau eines Eingabe-Ausgabe-Adapters zu
sehen. Er nimmt Daten aus dem Datenflussnetzwerk an und berechnet
die Eingaben fiir den gekapselten Akteur tiber die Funktion f(x). Die
Ausgaben, die der Akteur zur Verfiigung stellt, wandelt der Adapter
anschliefend mit der Funktion g¢(x) um und gibt diese an das Daten-
flussnetzwerk weiter. Adapter konnen, genau wie Akteure, interne
Ein- und Ausgaben verarbeiten, um so z.B. zusétzliche Hardware
anzusprechen. Des Weiteren hat der Eingabe-Ausgabe Adapter die
Moglichkeit, Daten zwischen den beiden Funktionen f(x) und g(x)
auszutauschen. So hat z. B. die Funktion g(x) die Moglichkeit, auf die
Eingabedaten des Adapters zuzugreifen.

«| 5| Aktor
3|5
_§ 2 | Component& ]
<
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Abbildung 4.7: Schachtelung von Adapern.

Mit dem Prinzip des Adapters lassen sich sehr elegant Spezialisie-
rungen bzw. Verfeinerungen von Akteuren realisieren. So miissen
die Akteure nicht komplett neu programmiert werden, um auf neue
Daten reagieren zu konnen. Es reicht aus, einen Adapter vor den
Akteur zu schalten, der die passende Transformation der Daten vor-
nimmt. Uber Adapter ist es auch moglich, inkompatible Ports in
einem Datenflussnetzwerk miteinander zu verbinden. Ein Adapter
tibernimmt in einem solchen Fall die Transformation der Daten in das
tiir den Akteur geforderte Format. So ist ein Austausch bestimmter
Softwarebibliotheken (beispielsweise unterschiedliche Bibliotheken
zur Berechnung von physikalischen Effekten) einfach mdéglich, da das
Datenflussnetzwerk zum grofiten Teil unverdndert bleiben kann.

Ein {iber einen Adapter erweiterter Akteur kann von aufien betrachtet
wiederum als einzelner Akteur betrachtet werden. So ergibt sich die
Moglichkeit, mehrere Adapter zu verschachteln, wie in Abbildung
4.7 dargestellt ist. So ist es moglich, einen Akteur, der zu Anfang nur
Grundfunktionalitdt anbot, schrittweise tiber iterative Kapselung von



Adaptern allméhlich Funktionalitdt zuzuftigen. Dies entspricht dem
Prinzip der Vererbung in der objektorientierten Programmierung, bei
der auch einem Objekt mit jeder weiteren Vererbung mehr Funktiona-
litat zugeftigt wird. Diese Moglichkeit der iterativen Verfeinerung bzw.
Erweiterung eines Akteurs finden wir im Grundprinzip vom MRiL
wieder, da dieser Prozess auf einem iterativen Prozess aufsetzt. Somit
konnen in einem Iterationsschritt die Verfeinerungen der Akteure
tiber die Verschachtelung von Adaptern gelost werden. Uber dieses
Prinzip lassen sich sehr kleine Iterationszyklen erreichen, so dass die
Erstellung von Prototypen zu Testzwecken schnell und mit wenig
Aufwand realisiert werden kann.

4.3.4 Das Entwurfsvorgehen

Konzeption Implementierung Bewertung

{

Abbildung 4.8: Abstrakte Ubersicht des iterativen Prototyping Prozess.

Wie schon in Kapitel 4.21p; kurz erwéhnt, ist die Grundlage des MRiL-
Entwurfsvorgehen ein iterativer Prototyping Prozess. Im Wesentlichen
basiert dieser Prozess auf dem von Pomberger vorgstellten Prototy-
ping Entwicklungsprozess [PWo4], der in Kapitel 2.1.1239 vorstellt
wurde. Es wurden allerdings einzelne Phasen anders definiert. Die
Grundlage der kurzen Iterationen stammt aus dem Scrum Vorgehens-
modell [BDST9g], das in Kapitel 2.1.1134 vorgestellt wurde. Abbildung
4.8 zeigt die abstrakte Ubersicht des gesamten Prozesses. Der Prozess
ist in vier Phasen unterteilt, die aus der Konzeptionierung, der Imple-
mentierung, der Testphase und der Bewertungsphase bestehen. Diese
Phasen werden in mehreren Iterationen durchlaufen.

In der detaillierteren Ansicht des Prozesses in Abbildung 4.9155 ist der
konkrete Aufbau des Prozesses zu erkennen. Die einzelnen abstrakten
Phasen sind hier in die konkreten Phasen eingebettet worden. So
wird die Konzeptionierung in der Initialisierungsphase des Prozesses
bearbeitet. Die Implementierung geschieht in der Verfeinerungsphase,
die Tests werden in der Prototypphase durchgefiihrt. Die Bewertung
der Tests werden in der gleichnamigen Bewertungsphase ermittelt. Im
Einzelnen haben die vier Phasen folgende Aufgaben:

Initialisierung: In der Initialisierungsphase wird der Prototyp auf
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Abbildung 4.9: Konkreter Aufbau des iterativen Prototyping Prozess.

den ndchsten Verfeinerungsschritt vorbereitet. Zu Beginn der
Entwicklung, wenn noch kein Prototyp aus einer fritheren Itera-
tion vorliegt, wird in dieser Phase das grundlegende Verhalten
des ersten Prototypen festgelegt.

Verfeinerung: Am existierenden Prototypen werden die Verfeine-
rungen vorgenommen. Verfeinerung kann bedeuten, dass eine
Komponente komplexer wird, dass sie aufgeteilt wird bzw. dass
mehrere Teiler einer Komponente verschmolzen werden. Dassel-
be gilt selbstverstandlich auch fiir Akteure, falls die Applikation
in solche aufgeteilt wurde. Da zu Beginn der Entwicklung noch
kein Prototyp aus einer vorherigen Phase vorhanden ist, wird
hier das grundlegende Verhalten, wie es in der Initialisierung
festgelegt wurde, implementiert. Meist wird in dem ersten Pro-
totypen der Funktionsumfang und die Komplexitat sehr einfach
gehalten.

Prototyp: In dieser Phase sind alle vorangegangenen Verfeinerungen
abgeschlossen und ein neuer Prototyp steht zur Verfiigung. Mit
diesem Prototypen konnen nun Benutzer- und Useablility-Tests
durchgefiihrt und analysiert werden. Der entstandene Prototyp
gilt als Basis fiir weitere Iterationen.

Bewertung: In dieser Phase werden die Ziele des nédchsten Prototypen
anhand der Bewertung der zuvor durchgefiihrten Tests festgelegt
und die daraus folgenden Verfeinerungen definiert. Sollten sich
vorhandene Schnittstellen dndern oder neue hinzu kommen,
werden sie hier definiert.

Nach diesem groben Uberblick werden nun die einzelnen Phasen
detailliert beschrieben.
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Abbildung 4.10: Detailansicht der Initialisierungsphase.

Die Initialisierungsphase wird zur Vorbereitung der Verfeinerungs-
phase benétigt. Hier wird festgelegt, welche Komponenten verfeinert
werden sollen und auf welchen zuvor schon implementierten Kompo-
nenten aufgebaut wird. Zu Beginn der Entwicklung einer Applikation
wird in dieser Phase das Verhalten des ersten Prototyps festgelegt,
welches dann in der Verfeinerungsphase implementiert wird. Diese
Phase sollte nach Moglichkeit nicht viel Zeit verbrauchen. Das kann
man erreichen, wenn nur wenig wéahrend der Verfeinerungsphase
verdndert wird. Es sollte jedoch nicht zu wenig verdndert werden, da
sich dann die Prototypen nicht weit genug unterscheiden und so keine
sinnvollen Schliisse aus der Entwicklung gezogen werden konnen.

In dieser Phase wird konzeptionell an der Applikation entwickelt,
Implementierungen sind nicht vorgesehen. Es werden die Vorraus-
setzungen fiir die ndchste Verfeinerungssphase geschaffen. Im ers-
ten Durchlauf wird die Grundfunktionalitdt des ersten Prototypen
festgelegt. Da hier noch nicht auf einen aus einer vorherigen Pha-
se stammenden Prototypen zuriickgegriffen werden kann und auch
nicht auf schon vorhandene implementierte Komponenten, sollten der
Funktionsumfang und die Komplexitit recht einfach gehalten werden,
um die Implementierungsphase zeitlich kurz zu halten.

Die Verfeinerungssphase

In der Verfeinerungsphase werden die konzeptionellen Anderungen
und Verfeinerungen, die in der Initialisierungsphase entwickelt wur-
den, implementiert. Es werden zuerst die Komponenten in die Appli-
kation eingebunden, die fiir den jeweiligen Schritt benttigt werden.
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Abbildung 4.11: Detailansicht der Verfeinerungsphase.

Diese werden dann je nach Konzept erweitert, verfeinert, aufgeteilt
oder zusammengefiigt.

Im ersten Durchlauf des Prozesses werden hier die Teile fiir den
ersten Prototypen implementiert. Normalerweise sollten zu diesem
Zeitpunkt noch keine Verfeinerungen der einzelnen Komponenten
entwickelt werden, da Ziel des ersten Durchlaufs die Fertigstellung
eines rudimentédren Prototypen ist.

Diese Phase benotigt die meiste Zeit im Entwurfsvorgehen, kann
jedoch von mehreren Entwicklern gleichzeitig bearbeitet werden (vor-
ausgesetzt es wird an mehr als einer Stelle entwickelt).
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Abbildung 4.12: Detailansicht der Prototypphase.

Die Prototypphase wird dazu verwendet, den Prototypen, der in
der Verfeinerungsphase entwickelt wurde, zu testen. In dieser Pha-
se konnen Benutzertests durchgefiihrt werden und die neuen bzw.
verfeinerten Komponenten auf ihre Tauglichkeit getestet werden. Kom-



4.4

ponenten, die in der Verfeinerungsphase weiter entwickelt wurden,
sollten in der Prototypphase genauestes untersucht werden, sowohl
auf ihre funktionale Korrektheit als auch auf die Benutzbarkeit. Hier-
zu lassen sich sehr gut Benutzertests verwenden, die dann tiber die
Qualitat der Applikation Aufschluss geben. Die Ergebnisse dieser
Tests konnen in der Bewertungsphase ausgewertet und fiir den nach-
folgenden Durchlauf in die Entwicklung mit eingebracht werden.

Sollte der Prototyp sein Endstadium erreicht haben, kann in der
Prototypphase die Endkontrolle der Funktionalitdt und Benutzbarkeit
ausfiihrlich getestet werden. Nach erfolgreichen Tests ist die Applika-
tion fertig und kann verwendet werden. Sollten spatere Anderungen
gewiinscht werden, konnen einfach weitere Iterationen verwendet
werden, um diese Anderungswiinsche zu realisieren.

Die Bewertungsphase

Bewertung
Testbewertung zur Festlegung der zu Definition der zu
[ Festlegung der verwendenden andernden [
Verfeinerungen Komponenten Komponenten
L | L |

Abbildung 4.13: Detailansicht der Bewertungsphase.

In der Bewertungsphase werden die Ergebnisse der Prototypphase
ausgewertet und die Ziele des ndchsten Prototypen festgelegt. Es wird
in dieser Phase entschieden, welche Komponenten gedndert werden
sollen und ob auf bereits vorhandene, allerdings weniger verfeinerte
Komponenten bei der nédchsten Iteration zuriickgegriffen werden soll.

Nachdem der Entwurfsprozess erldutert wurde, ist es sinnvoll, diesen
an einem kleinen Beispiel exemplarisch durchzufiihren. Nachfolgend
stelle ich ein solches Beispiel vor und beschreibe, wie hier MRiL
eingesetzt wurde.

Erlauterung des Entwurfsvorgehens an einem
Beispiel

Die zuvor vorgestellten Methoden wurden an einem kleineren Bei-
spiel angewendet, um deren Anwendbarkeit zu testen. Es wurde
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hier noch keine spezielle Softwareumgebung verwendet sondern das
Beispiel wurde in reinem Java implementiert. Realisiert wurde das
Beispiel im Rahmen eine Bachelorarbeit, die zum Ziel hatte, meh-
rere wissensbasierte Verfahren zur Wegeplanung zu entwerfen und
zu vergleichen [Bol1o]. Um das MRiL-Entwurfsvorgehen auf diese
Aufgabe anwenden zu konnen, wurde diese Applikation auf einem
Multitouch-Tisch (siehe Abbildung 4.14159) implementiert und eine
neue Bedienung hinzugefiigt [SBK™ 10].

Abbildung 4.14: Beispielapplikation auf einem Multitouch-Tisch.

Uberblick des Beispiels

Als Aufgabe fiir die Bachelorarbeit wurde der Entwurf und der Ver-
gleich wissensbasierter Verfahren zur Wegeplanung gestellt. Die Idee
war hierbei, verschiedene Arten von Wegeplanungsalgorithmen mit
dem Hintergrund zu testen, dass autonome Roboter einen kurzen,
nicht gefdhrlichen Weg in einer gegebenen Werkshalle finden soll-
ten. Dabei sollte zum einen die Wegstrecke und zum anderen die
Gefahren der Wegstrecke berticksichtigt werden. So wurden stati-
ondre Fertigungsanlagen definiert, die einen gewissen Raum immer
tiir sich beanspruchten, allerdings teilweise in freie Gebiete hineinra-
gen konnten. Die autonomen Roboter konnen diesen Raum fiir ihre
Wegeplanung nutzen, miissen allerdings warten, falls die Fertigungs-
anlagen diesen Raum zeitweise belegen. Daher kann es zwar einen
sehr kurzen Weg durch eine Werkshalle geben, jedoch durch die War-
tezeiten der autonomen Roboter muss dies nicht der schnellste Weg
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sein.

Die Arbeit sollte auf einem schon vorhandenen Software-Framework
der Hochschule Harz aufgebaut werden [SGRo8]. Das Framework
bot eine schon vorhandene Realisierung einer 3D Darstellung samt
Management und Import verschiedener 3D Modelle und Texturen
aus entsprechenden Dateien an. Eine Wegeplanung war grundsétzlich
implementiert, sollte allerdings im Rahmen der Arbeit neu entwi-
ckelt werden. In der Bachelorarbeit sollte zundchst der Framework
um passende Schnittstellen erweitert und im zweiten Schritt verschie-
dene Wegeplanungen implementiert werden. Konzeptionell wurde
die Applikation soweit entwickelt, dass sie augmentiert in der realen
Umgebung benutzt werden sollte, wobei die Hindernisse, die von
der Wegeplanung umgangen werden sollten, iiber reale Objekte, soge-
nannte , Tangibles”, realisiert wurden. Implementiert wurde allerdings
nur soweit, dass die Applikation auf einem Multitouch-Tisch lauffdhig
war.

Das Konzept, dass die Grundlage der Anwendung bildete, wurde mit
Hilfe des MRiL-Entwurfsvorgehens realisiert. Dabei wurden folgen-
de Teile der Applikation den entsprechenden MVCE-Komponenten
zugeteilt:

Model: Jeder implementierte Algorithmus zur Wegeplanung wird
der Modell-Komponente zugeordnet.

View: Sowohl eine 2D- als auch eine 3D-Ansicht der Szene wurde
dem View zugeordnet.

Controller: Der Controller beinhaltet alle Interaktionsmethoden, an-
gefangen von einfachen Klicks mit der Maus bis zu spéteren
Interaktionen mit Tangibles.

Environment: Die reale Umwelt, die der Applikation zur Verfiigung
gestellt wurde. Anfangs wurde kein Teil der realen Umgebung
erkannt, spater wurden die Tangibles in der realen Umgebung
zur Positionierung verwendet. In der AR-Version sollten noch
weitere Aspekte der Umgebung verwendet werden.

Auf eine weitere Einteilung in Akteure wurde in diesem Beispiel
verzichtet, da dies vom eingesetztem Software-Framework nicht un-
terstiitzt wurde.
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4.4.2 Realisierung des Beispiels

Zu Beginn der Entwicklung wurde das vorhandene Software-Frame-
work auf die bevorstehende Aufgabe vorbereitet und soweit konfigu-
riert, dass es effizient eingesetzt werden konnte. Nachdem die Teile
der Applikation, wie oben beschrieben, in ihre MVCE-Komponenten
eingeteilt wurden, begann die Implementierung des ersten Prototy-
pen. Dieser sollte nicht sehr komplex sein und nur sicherstellen, dass
Framework und das Zusammenspiel der einzelnen Komponenten
funktioniert. Da die 3D Darstellung schon vom Framework bereitge-
stellt wurde, wurde schon zu Anfang eine sehr detaillierte Darstellung
gewdhlt, wie in Abbildung 4.1513; zu sehen ist. Dabei wurde der au-
tonome Roboter (1) sowie die Fertigungsanlagen (5) durch Platzhalter
visualisiert, die im Framework vorhanden waren. Die Grundflache
der Werkshalle wurde in der 3D Darstellung tiber eine Textur (2)
definiert, die die Ausmafie reprasentiert. Der Start- und Endpunkt (3
und 4) wurden zuerst fest gewdhlt, sollte jedoch in einem spéteren
Prototypen frei wahlbar sein.

Abbildung 4.15: 3D Darstellung des ersten Prototypen.

Als Controller des ersten Prototypen kam eine einfache 2D-GUI zum
FEinsatz (siehe Abbildung 4.1613;), die es ermoglichte, die Wegepla-
nung zu starten, stoppen und zu pausieren. Dies wurde tiber Kreise
im oberen Bildteil von Abbildung 4.1613;, realisiert. Die Fertigungs-
anlagen wurden iiber Maus-Interaktionen gesetzt, in der die Art,
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Anzahl, Position und Orientierung der einzelnen Fertigungsanlagen
gesetzt werden konnten. Da fiir spétere Prototypen eine AR-Version
geplant war, die auf reale Objekte reagieren sollte, wurde schon in
diesem Prototyp die Interaktion mit dem Benutzer tiber das TUIO-
Protokoll> [KBBCos] realisiert, so dass die 2D GUI die entsprechenden
TUIO-Befehle simulierte. Da die Anbindung an das TUIO-Protokoll
vom Framework angeboten wurde, war die die Implementation einer
TUIO-basierten GUI ohne grofien Aufwand zu realisieren.

o000 reacTIVision TUIO Simulator
File Help

]

Abbildung 4.16: Rudimentédre GUI zur Steuerung der Prototypen.

Fiir die Wegeplanung des ersten Prototypen kam der in der Litera-
tur bekannte A*-Algorithmus [Stooo] [Rabooa] [Raboob] zum Einsatz.
Dieser gilt als robuster Algorithmus, der ohne Ausnahme einen Weg
tindet, solle ein Pfad vom Start- zum Endpunkt existieren. Der A*-
Algorithmus sollte als Referenz fiir die folgenden Wegeplanungsal-
gorithmen gelten, um diese vergleichen zu konnen. Im Rahmen der
Bachelorarbeit sollten verschiedene Wegeplanungsalgorithmen, die
aus dem Bereich Organic Computing stammen, miteinander bzgl.
Robustheit, Wegldange und Effizienz verglichen werden.

Am Kiviargraph in Abbildung 4.1513; wurde der Entwicklungsstand

5TUIO steht fiir Tangible User Interface Object. Das TUIO-Protokoll erlaubt die Ubertragung (iiber
Netzwerk) einer abstrakten Beschreibung von interaktiven Oberflachen (und auch iiber Kamera getracke
Objekte), die beispielsweise den Zustand oder die Position eines Objektes enthalten.
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des ersten Prototypen dargestellt. Es ist zu erkennen, dass die Umge-
bung in diesem Prototypen nicht berticksichtigt wurde, allerdings die
Darstellung schon ein hohes Niveau besitzt. Der Controller, der im
ersten Prototypen durch die 2D GUI realisiert wurde, ist noch sehr
rudimentér genau wie das das Modell, das durch den zugrundeliegen-
den Algorithmus zur Wegeplanung definiert wird. Nach Fertigstellung
des ersten Prototypen gab es noch viel Potential zur Verfeinerung.

Um die Aufgabenstellung der Bachelorarbeit schnellst moglich zu
realisieren, wurde in der Bewertungsphase fiir den zweiten Proto-
typen festgelegt, einen komplexeren Algorithmus, den Ant Colony
Optimization-Algorithmus (ACO) [DBSo06], zu implementieren und
eine abstrakte 2D Darstellung des Szenarios zu integrieren, die es
erlaubt, die gefundenen Wege der Algorithmen besser zu visualisie-
ren. Da im ersten Prototypen die Simulation an die 3D Darstellung
gekoppelt war, musste hier noch eine Entkopplung der Darstellung
und der Simulation erfolgen. Das war erforderlich, da der ACO ein
heuristischer, biologisch-inspirierter Algorithmus ist und erst nach
einer gewissen Anzahl an Durchldufen eine geeignete Losung findet.

HEERRS =l
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Abbildung 4.17: 2D Ansicht des zweiten Prototypen.

In Abbildung 4.17 ist die 2D-Ansicht des zweiten Prototypen zu
sehen. Die Fertigungsanlagen werden durch ein graues Quadrat dar-
gestellt. Die Kreise um diese Quadrate sind die Gefahrenbereiche, in
denen Teile der Fertigungsanlage temporéar reinragen konnen. Der
Weg des autonomen Roboters ist in zwei Teile geteilt. Der erste Teil ist
der zuriickgelegte Weg (hier griin dargestellt), der zweite Teil ist der
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geplante Weg, den der Roboter noch zurticklegen muss. Am Kiviatgra-
phen erkennt man, dass das Modell des Prototypen verfeinert wurde,
da hier der ACO-Algorithmus gewdhlt werden kann. Die Darstellung
ist etwas komplexer geworden, da die abstrakte 2D Darstellung zur
schon vorhandenen 3D Darstellung hinzugekommen ist. Sowohl der
Controller als auch die Umgebung haben keine Verfeinerung erfahren
und sind deshalb unverdndert gegeniiber dem ersten Prototypen.

Nach Fertigstellung des zweiten Prototypen waren die Tests erfolg-
reich und es war moglich, die beiden implementierten Algorithmen
miteinander zu vergleichen. In der nachfolgenden Iteration sollte nun
ein letzter Algorithmus, der Particle Swarm Optimization-Algorith-
mus (PSO) [KEg5] [LQHo06], implementiert werden. Weiterhin ergab
sich durch eine Zusammenarbeit mit einer Projektgruppe die Moglich-
keit, die Benutzerschnittstelle auf einen Multitouch-Tisch zu reali-
sieren [SBK™10]. Da das Framework schon eine Anbindung an das
TUIO-Protokoll hatte, war die Umsetzung nicht sehr kompliziert, da
auch die Tracking-Software des Mulitouch-Tisches auf dem TUIO-
Protokoll basierte.

Abbildung 4.18: Multitouch-Oberfldache des dritten Prototypen.

In der Abbildung 4.18 ist die Benutzerschnittstelle auf dem Multi-
touch-Tisch zu sehen. Die Fertigungseinheiten konnen tiber Tangibles.
die hier als schwarze Zylinder zu erkennen sind, auf dem Tisch positio-
niert werden. Weiterhin wurde die Moglichkeit geschaffen, bestimmte
Parameter der implementierten Algorithmen iiber den Multitouch-
Tisch zu verdandern. Eine 3D-Darstellung der Szene wurde {iber ein
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L-Shape realisiert, das hinter dem Multitouch-Tisch platziert wurde.
So war eine gleichzeitige Darstellung der abstrakten 2D Ansicht und
der realistischen 3D Darstellung moglich. Am Kiviatgraphen ist zu
erkennen, dass durch die Implementierung des PSO-Algorithmus und
die Moglichkeit der Verdnderung der Parameter der Algorithmen das
Modell weiter verfeinert wurde. Auch die Ansicht wurde verfeinert, da
die vormals einfachen Modelle durch realistische 3D-Modelle ersetzt
wurden. Die Verfeinerung des Controllers ergab sich durch die Inter-
aktion tiber en Multitouch-Tisch und der Benutzung von , Tangibles”
als reale Reprasentanten der Fertigungsanlagen. Die Verwendung der
,Tangibles” hat auch Einfluss auf die Verfeinerung der Umgebung, da
nun Teile der realen Umgebung erkannt und verarbeitet werden.

Der letzte Prototyp wurde aus zeitlichen Griinden nur theoretisch
vorbereitet. Anstelle des im vorangegangenen Prototypen verwende-
ten Multitouch-Tisches einschliefSlich der 3D-Darstellung tiber das
L-Shape sollte eine Augmented Reality Anwendung entwickelt wer-
den. Das Tracking sollte auch tiber ,, Tangibles” realisiert werden, die
jedoch nun im 3D Raum getrackt werden sollten. Auf der Position
dieser , Tangibles” sollte dann eine 3D-Darstellung der Fertigungs-
anlagen ,augmentiert” werden. Durch diesen Schritt wiirden die
3D-Darstellung und die realen ,Tangibles” zu einer Einheit zusam-
mengefiigt werden. Alle vorhandenen Informationen, die derzeit auf
der 2D-Benutzerschnittstelle des Mutlitouch-Tisches zu sehen sind,
sollten in die reale Umgebung gezeichnet werden. Die AR-Applikation
hitte dementsprechend die Darstellung und die Umgebung im Ki-
viatgraphen verfeinert. Modell und Controller wéren gleich geblieben,
da sich an der grundséatzlichen Benutzung der Applikation wenig
gedndert hatte.

Fazit des Beispiels

An diesem kleinen Beispiel wurde das MRiL-Entwurfsvorgehen ge-
testet. Es kam keine spezielle Softwareumgebung, die das Vorge-
hen unterstiitzt, zum Einsatz. Deshalb konnten nur die generellen
Aspekte angewendet werden. Allerdings untersttitzte das Framework
teilweise die Verarbeitung von Tracking-Informationen, was die Rea-
lisierung von MR-Interaktionen erleichterte. Die Einteilung in die
MVCE-Komponenten war hilfreich, da sie die Entwicklung erleichtert
und beschleunigt hat. Des Weiteren war die Erstellung von Prototypen
mit Hilfe der MVCE-Einteilung schnell zu realisieren.

Da das hier eingesetzte Framework nicht auf das MRiL-Entwurfsvor-
gehen angepasst war, konnten viele Vorteile, wie z. B. der Einteilung in
Akteure und die Verfeinerung durch Adapter, nicht verwendet werden.
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4.5.1

Grundsitzlich war die Verwendung von MRiL aber vorteilhaft, da die
schnelle Anpassung an innovative Benutzerschnittstellen sehr einfach
moglich war.

Es ist zu sehen, dass MRiL grundsitzlich auch ohne spezielle Werk-
zeugunterstiitzung anwendbar ist. Um allerdings eine optimale Un-
terstiitzung des MRiL Entwurfsvorgehens zu erhalten, sollte dieser
mit Hilfe spezieller Entwicklungswerkzeuge angewendet werden. Da
es allerdings keine Werkzeuge dieser Art gab, wurden zwei Losungen
implementiert, die im Folgenden beschrieben werden.

Die Softwareumgebung

Um MRIL in der Entwicklung einsetzten zu konnen, benétigt man
eine Softwareumgebung, die das Vorgehen unterstiitzt. Dabei ist es
wichtig, dass die grundsatzlichen Prinzipen von MRIL in den Werk-
zeugen unterstiitzt werden. Um zu Beginn der Arbeit die Ansédtze von
MRiL anwenden zu kénnen, wurde auf eine proprietdre 3D Entwick-
lungsumgebung zuriickgegriffen, die durch unterschiedliche eigene
Erweiterungen auf das Entwurfsvorgehen angepasst wurde. Da sich
im Laufe der Arbeit aber herausstellte, dass nicht alle Aspekte des
Entwurfsvorgehens mit dieser Softwarelosung abgebildet werden
konnten, habe ich mich entschieden, eine komplett eigene Entwick-
lungsumgebung im Rahmen einer Masterarbeit an der FH Diisseldorf
entwickeln zu lassen [Pogog]. Hier wurde das MRiL-Entwurfsvor-
gehen komplett in Software abgebildet, so dass es keine Unterschiede
zwischen dem Konzept und der spdteren Implementierung auftraten.

Im Folgenden Kapitel 4.5.1 stelle ich 3DVIA Virtools und die Er-
weiterungen, die die Entwicklung von Mixed Reality Anwendungen
ermoglichen, kurz vor und beschreibe dann in Kapitel 4.5.2145 die
eigens fiir MRIL entwickelte Softwareumgebung MiReAS.

Erweiterungen des proprietdaren Autorensystems 3DVIA
Virtools

Um das MRiL-Entwurfsvorgehen zu Beginn dieser Arbeit schnell
evaluieren zu konnen und Anwendern mit wenig Programmierer-
fahrung ein Werkzeug an die Hand zu geben, mit dem sie schnell
Applikationen entwerfen kénnen, wurde auf eine proprietdre Ent-
wicklungsumgebung zuriickgegriffen und diese mit Hilfe von Plug-
ins erweitert. Ich habe mich fiir das Autorensystem 3DVIA Virtools
(vormals Virtools) von Dassault Systems in der Version 4.0 entschie-
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den [Dasog]. Hier war einiges an Erfahrung schon vorhanden, so dass
die Entwicklung eigener Komponenten fiir dieses System in kurzer
Zeit moglich war. Diese Umgebung wurde in einigen Verotffentlichen
und Demonstratoren verwendet, beispielsweise ,Entwicklung von
Augmented Reality-Prasentationen mit einem High-Level Authoring
System — eine Fallstudie” [GSR™06], ,Development of an augmented
reality game by extending a 3D authoring system” [GSKFo7], , Mixed
Reality Authoring” [GSo7], ,HYUI: a visual framework for prototy-
ping hybrid user interfaces” [GFLS08] und , Authoring of 3D and AR
Applications for Educational Purposes” [SGDZo8].

Abbildung 4.19: Die Entwicklungsumgebung 3DVIA Virtools.

3DVIA Virtools - Ubersicht

3DVIA Virtools® ist eine komplette Entwicklungs- und Verteilungs-
plattform mit einem innovativen Ansatz zur interaktiven Erstellung
von 3D-Inhalten. Eine Innovation dieser Plattform gegeniiber anderen
Entwicklungsumgebungen in diesem Gebiet besteht darin, dass die
imperative Programmierung zum grofiten Teil durch eine visuelle
Programmierung ersetzt wurde, dem so genannten Behavior Graph,
zu sehen in Abbildung 4.20;33. Der Behavior Graph ist ein gerichteter

63DVIA Virtools wird nachfolgend nur noch Virtools genannt.
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Graph von miteinander verbundenen Building Blocks (die Grundele-
mente der visuellen Programmierung in Virtools, siehe Abbildung
4.20138), der das Programm darstellt. Virtools bietet eine grofie Aus-
wahl an schon vorhandenen Building Block an, die tiber einfach Aufga-
ben, wie Transformation eines 3D Objekts, bis hin zu sehr komplexen
Aufgaben, wie die Bewegungssteuerung eines Charakters, verfiigt.
Die Funktion der einzelnen Building Blocks ist sehr gut dokumen-
tiert und meist an Beispielen erklirt, so dass die Entwicklung von
Applikationen selbst fiir programmierunerfahrene Anwender einfach
moglich. Durch graphische hierarchische Zusammenfassung schon
bestehender Buidling Blocks ist es weiterhin moglich, eigene, neue,
wiederverwendbare Building Blocks zu erzeugen, diese zu speichern
und in anderen Projekten weiter zu verwenden (In Abbildung 4.20133
ist z. B. der Building Block ,Get Phantom State” ein zusammenge-
tasster Building Block). Neben der Wiederverwendbarkeit kann das
visuelle Programm durch diese Zusammenfassungen in neue Building
Blocks tibersichtlicher gestaltet werden.

Get Nearest Obsalcle
5

sCalculate View dependent Force

Abbildung 4.20: Behavior Graph mit verbundenen Building Blocks.

Sollte die visuelle Programmierung fiir manche Probleme nicht ausrei-
chen bzw. die Komplexitit der visuellen Programme zu grof$ werden,
gibt es die Moglichkeit, Teile des Programms in einer der Skript-
sprachen VSL (Virtools Scripting Language) oder LUA [ICdFg9] (ab
Version 5.0 von Virtools) zu erstellen und in einem Building Block
zu kapseln, wie in Abbildung 4.21139 zu sehen. Uber VSL/LUA kann
jede Funktionalitdt von Virtools verwendet werden, so dass die Pro-
grammierung iiber die Skriptsprache keine Nachteile bietet. Vorteil ist
z.B. die kiirzere Form der Programme, gerade bei Konstrukten wie
Schleifen und Bedingungen.

Sollten die integrierten Building Blocks fiir spezielle Aufgaben nicht
ausreichen bzw. der Programmablauf sowohl iiber Building Blocks



VSL Sorpts “Compied | Comp Time SetAsUnit

Coaavs,
> QRanveL void main()
— Do Vector unit(1.0,1.0,1.0):
Jump on vabe Deg
Set Single Screen Res. Debug
SeiSngesomnResVet  Debw
AtiTon Dey
> Clhetons
v []3DEntities.
Aign Detug
Datoute D
= BN
= i

VSL Building Block

ERERE

) {
ac.selection[il):

ty

ale;
0,0.0);
continue;

11 ¢

ntities

ities

++3) 1

ty3D.Cast (ac.selectionl3]);

b Cuesh

¥ CI0bject Creation
CreateZDFrams fom texture  Detug

CresteSound Debug if (firstEntity) {
b OTewe firstEntity = FALSE:

o = ent_GetScale(scale, FALSE) ; % o
i P

Vector s:
ent .GetScale(s, FALSE) :

/7 Keep only the one using the current nesl
if (ent.GetCurrentMesh() 1= mesh) continue:

if (s 1= scale) {

Varaoes Name T Varaties Vaies T

1.000000

1.000000

v “toast_move’, ID=10873.5¢
 movse x=358.000000.y=713.000000

Abbildung 4.21: VSL Skript Manager und VSL Building Block.

als auch tiber Skripts zu lange dauern bzw. zu komplex werden,
besteht die Moglichkeit, eigene Building Blocks iiber das mitgelieferte
SDK in C/C++ zu entwickeln. Das SDK bietet vollen Zugriff auf alle
Funktionen in Virtools, es besteht die Moglichkeit sowohl auf die
Behavior Engine als auch auf die Render Engine zuzugreifen und dort
Manipulationen vorzunehmen. Die eigenen Building Blocks kénnen
genau wie die internen in einen Behavior Graphen eingefiigt werden
und unterscheiden sich grundsétzlich nicht von diesen. Zusétzlich zu
Building Blocks kdnnen so genannte Manager mit dem SDK entwickelt
werden, die globale Funktionen tibernehmen kénnen. Manager folgen
dem Prinzip eines Singleton (vgl. [GHJV96] Seite 156 ff.), d.h. es
existiert immer nur jeweils eine Instanz dieses Managers innerhalb
eines Programms. In den einzelnen Building Blocks kann auf diese
Manager global zugegriffen werden. Somit ldsst sich dort globale
Funktionalitat kapseln.

Neben den unterschiedlichen Programmierarten bietet Virtools eine
komplexe und moderne 3D Rendering Engine, die effizient auch grofie
Szenen darstellen kann. Sie basiert auf Microsofts DirectX g9.oc und
integriert fortgeschrittene Techniken wie Schattenwurf, Shaderintegra-
tion, Rendertargets, etc., die einfach tiber die bereitgestellten Bulding
Blocks benutzt werden konnen. Diese Techniken sind auf einer hohen
Abstraktionsebene in Virtools implementiert, so dass sich der Ent-
wickler nicht um technische Details kiimmern muss. Um Modelle in
Virtools benutzten zu kénnen, werden fiir alle giangigen 3D Design
Programme wie Maya oder 3D Studio Max Export-Plug-ins bereitge-
stellt, die die Modelle in das fiir Virtools lesbare Format speichern.



Damit ist sichergestellt, dass die Inhalte, egal mit welcher Software
entwickelt, mit Virtools weiterverarbeitet werden konnen.

Bei Fertigstellung der Anwendung kann diese als lauffdhiges Pro-
gramm exportiert bzw. in einem webbasierten Player wiedergegeben
werden. Damit kann die Anwendung auf verschiedenen Plattformen
und mit unterschiedlichen Benutzergruppen getestet werden. Leider
verbietet die strenge Lizenzpolitik von Dassault Systems eine einfache
Handhabung, dazu mehr im Abschnitt ,3DVIA Virtools - Nachteile”
in Kapitel 414g.

Als Entwicklungsumgebung bietet Virtools zusammenfassend folgen-
de Merkmale:

Behavior Graph: Uber den Behavior Graphen kann Programmlogik
und Algorithmik visuell programmiert werden.

Bibliothek vordefinierte Programmblécke: Uber die mitgelieferten
Building-Blocks von Virtools konnen visuelle Programme erstellt
werden. Sie werden in den Behavior Graphen eingefiigt und
untereinander verbunden.

Skriptsprachenanbindung: Zu der visuellen Programmierung bietet
Virtools zusitzlich die Moglichkeit, Teile der Algorithmik in
einer textuellen imperativen Skriptsprache zu realisieren. Dabei
stehen die Skriptsprachen VSL und LUA zur Verfiigung.

Entwicklung eigener Building Block iiber SDK: Ist die Implemen-
tierung tiber Building-Blocks nicht ausreichen, zu komplex wer-
den oder die Ausfiihrungszeit bestimmter Programmteile opti-
miert werden, konnen tiber das mitgelieferte SDK diese Abschnit-
te in C/C++ realisiert und Virtools als eigenstdndige Building
Blocks bzw. Manager zur Verfiigung gestellt werden.

Moderne 3D Render Engine: Die Darstellung der 3D-Inhalte wird
durch eine moderne auf DirectX 9.oc basierende 3D Render
Engine realisiert, die u.a. Schattenberechnung, Shaderintegration
und Rendertargets untersttitzt.

Export: Die fertige Anwendung kann aus Virtools exportiert werden
und sowohl in einem webbasierten Player abgespielt als auch in
eine ausfiihrbare Datei abgespeichert werden.

3DVIA Virtools - Konzepte

3DVIA Virtools beinhaltet fiinf Schltisselkomponenten:



e Die graphische Benutzerschnittstelle zur Entwicklung von An-
wendungen durch visuelle Programmierung von Objekten und
Verhalten.

e Die Behavior Engine zur Ausfithrung von interaktiven Anwen-
dungen.

e Die Render Engine zur Visualisierung der Anwendung in Echt-
zeit.

e Die Virtools Skriptsprache fiir die Low-Level Programmierung
bestimmter Funktionen.

e Das SDK fiir benutzerspezifische Behaviors.

Die graphische Benutzerschnittstelle von Virtools wir in jedem Schritt
in der Entwicklung genutzt. Sie beinhaltet u.a. Ein 3D Layout zur
Darstellung des Inhalts der Anwendung in Echtzeit. Hier wird die
komplette virtuelle 3D Szene dargestellt. Unter Verwendung der zur
Verfiigung stehenden grafische Werkzeuge konnen 3D Objekte, Kame-
ras, Lichter, etc. erzeugt, verandert selektiert und manipuliert werden.
Uber Drag & Drop kann Entitdten einer virtuellen 3D Szene Verhal-
ten hinzugeftigt werden. Dieses Verhalten wird tiber die Behavior
Buildung Blocks visuell erzeugt und in einer schematischen Ansicht
dargestellt. Ausgefithrt wird dieses Verhalten durch die Behavior
Engine, die zu Anfang jedes darzustellenden Bildes ausgefiihrt wird.

Die Behavior Engine fiihrt sowohl selbst entwickelte als auch von Vir-
tools mitgeliefertes Building Blocks aus. Die mitgelieferten Building
Blocks umfassen u. a. die Kategorien Kamera, CHaracter, Kollisions-
erkennung, Optimierung, Pfadfindung, Mesh-Modifikation, Logik,
Partikel, Sound, etc. Die Behavior-Bibliothek kann durch selbst ent-
wickelte Building Blocks erweitert werden. Diese werden mit dem
mitgelieferten SDK in C++ programmiert und in Virtools eingebunden
werden.

Virtools Render Engine kann fiir viele Plattformen verwendet werden
und kann von DirektX 5 tiber DirectX 9.oc bis OpenGL 2.0 konfigu-
riert werden, so dass eine grofie Anzahl an Konfigurationen abgedeckt
werden kann. Die Render Engine unterstiitzt in den neueren Konfigu-
rationen programmierbare Vertex- und Pixel-Shader bis Version 3.0,
die in DirextX mit HLSL, CgFX oder Assembler und in OpenGL in
GLSL programmiert werden konnen. Fiir den Import von Modellen
bietet Virtools Plug-ins fiir alle giangigen 3D Modeling Systeme an,
die sowohl Modelle als auch Animationen nach Virtools exportieren
konnen. Dynamische Erzeugung und Loschung von Objekten und



Modellen wird mit der Render Engine komplett unterstiitzt. Fiir die
Animation von Charakteren bietet die Render Engine ein Skin and
Bones System an, mit dem sich Bewegungen nattirlich animieren las-
sen. Die gesamte Funktionalitdt der Render Engine ldsst sich auch fiir
selbst geschriebene Building Blocks iiber das SDK verwenden.

Die Skriptsprachen VSL und LUA sind in Virtools voll integriert und
werden tiber einen speziellen Editor direkt programmiert. Virtools be-
sitzt fiir die Skriptprogrammierung eine intelligentes Farbsystem, eine
kontextsensitive Vervollstindigung und eine Anzeige von Argumen-
ten einer Funktion. Weiterhin bietet Virtools fiir die Skriptprogrammie-
rung einen kompletten Debug-Mode mit Breakpoints, anzeigen und
dndern von Variableninhalten und eine Schritt-Ausfiihrung (Sinlge-
Step) an.

Das SDK von Virtools ist eine Sammlung von Entwicklungswerkzeu-
gen, die aus Biblioteken, sowohl statisch als auch dynamisch, und
Header-Dateien bestehen. Sie bieten vollen Zugriff auf alle Low-Level
Funktionen von Virtools. Mit dem SDK kénnen Entwickler sowohl
eigenstdndige Applikationen, die auf Virtools basieren, als auch Erwei-
terungen von Virtools selbst entwickeln. Erweiterung kénnen dabei
Behaviors, Medien-Importer, Manager, Render Engine Plug-ins oder
Rasterizer sein.

3DVIA Virtools - Erweiterungen

Damit Virtools das MRiL-Entwurfsvorgehen zum Teil unterstiitzten
konnte, mussten einige eigene Komponenten mit Hilfe des SDKs
realisiert werden. Im Einzelnen waren das folgende Erweiterungen:

Tracking: Diese Building Blocks sind fiir die Registrierung von realen
Objekten in der virtuellen Welt zustandig.

e ReacTIVision Building Blocks und Manager fiir ein bildba-
siertes 2D Tracking [GFLSo8]

e ARToolkitPlus Building Blocks und Manager fiir ein bildba-
siertes 3D Tracking [GSKFo7]

e OptiTrack Building Blocks und Manager fiir ein 2D/3D
Infrarot-Tracking [GSR™ 06]

e OpenCV Building Blocks und Manager fiir ein bildbasiertes
2D/3D Tracking [GFLSo8]
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Kommunikation: Building Blocks, die fiir eine Kommunikation zwi-
schen Virtools und anderen Applikationen, z. B. MATLAB/Si-
mulink, zustdndig sind.

e COMMUVIT Building Block und Manager zur synchronen
Kommunikation mit externen Tools [SGDZo08]

Eingabe: Diese Kategorie von Building Blocks beinhaltet die Anbin-
dung verschiedener Eingabe-Hardware an Virtools.

e Wiimote Building Blocks zur Steuerung der virtuellen In-
halte [GSKFo7]

e OpenHaptics Building Block und Manager zur Steuerung
von haptischen Gerdten [GSKFo7]

Ausgabe: Building Blocks, die Ergebnisse auf spezieller Hardware
ausgeben konnen.

e Ausgabe {iiber einen externen Midiadapter, um so Midi-
gesteuerte Gerdte ansprechen zu kénnen [GFLSo8]
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Abbildung 4.22: 2D Tracking mit ReacTIVision in Virtools.

Die wichtigsten Erweiterungen fiir das MRiL-Entwurfsvorgehen sind
die Tracking Building Blocks, mit denen es moglich ist, 2D bzw. 3D
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Positionen aus einem Videobild zu berechnen. Das 2D Tracking mit Re-
acTTVision(siehe Abbildung 4.22) kann fiir eine einfache Registrierung
von realen Objekten genutzt werden, bei denen die Tiefeninformation
nicht wichtig ist (z. B. Infotext, der an ein reales Objekt gebunden sein
soll). Der Vorteil der 2D Registrierung ist die Performance und die
Robustheit dieser Methode. Daher kann das 2D Tracking auch gut fiir
reale Benutzerschnittstellen eingesetzt werden. Die Implementierung
von ReacTIVision hat weiterhin den Vorteil, dass die Erkennung durch
eine eigenstdndige Anwendung realisiert wird und die Tracking-Daten
mittels TUIO-Protokoll [KBBCos5] tiber ein Netzwerk versendet wer-
den. D.h. Hauptanwendung und Trackinganwendung koénnen auf
verschiedenen Rechnern laufen so dass die Performance gesteigert
werden kann.

o use the ARToolKitPlus BBs you need a Camera in your Project whid Initialize the Single Markar
is located in the cernter of the welrd {0,0,0). If you use another Camera, racker
you get a wrong tradcking!

apture the video Detect single marker in the hedk, if 8 specific marker was found
ideo image by the detedtion, in this case marker 2

hed, if & specific marker was found
by the detedtion, in this case marker 0

Abbildung 4.23: Tracking mit ARToolKitPlus Building Blocks.

Fiir das 3D-Tracking sind zwei verschiedene Verfahren verwendet
worden, zum einen ein bildbasiertes Tracking tiber Marker mit Hilfe
vom ARToolKitPlus (siehe Abbildung 4.23), zum anderen ein Infrarot-
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Tracking mit Hilfe von OptiTrack (siehe Abbildung 4.24145). Das
Tracking mit ARToolKitPlus geschieht iiber ein Videobild, in wel-
chem spezielle Marker gesucht werden. Werden diese gefunden, ist
ARToolKitPlus in der Lage, die 3D Position dieser Marker im Ka-
meraraum zu bestimmen. Dafiir ist aber eine Kalibrierung auf die
jeweilige Kamera und auf das jeweilige Objektiv der Kamera not-
wendig. Fiir Virtools wurde diese Funktionalitdt in mehrere logische
Building Blocks aufgeteilt. Fiir die globale Erkennung wurde ein spe-
zieller Building Block entwickelt, der einmal pro Frame aufgerufen
wird, das aktuelle Videobild ausliest und dieses analysiert. Damit
nur jeweils eine Instanz vom ARToolKitPlus zur Laufzeit aktiv ist,
wurde diese in einem Manager gekapselt, der die Funktionalitét fiir
die einzelnen Building Blocks im Behavior Graphen zur Verfiigung
stellt. Einzelne Marker werden durch jeweils einen Building Block
im Behavior Graphen abgebildet und reagieren somit nur auf einen
spezifischen Marker. Diese Building Blocks fragen den Manager nach
ihren Daten. Falls der spezielle Marker im Videobild erkannt wur-
de liefert der Manager die Position zuriick. Je nach Anzahl der im
Bild befindlichen Marker und der Grofie des Videobildes kann die
Erkennung viel Rechenleistung beanspruchen.
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Abbildung 4.24: Infrarot-Tracking mit OptiTrack Building Blocks.

Das Infrarot-Tracking funktioniert im Prinzip wie das oben beschriebe-
ne bildbasierte Tracking, mit dem Unterschied, dass die OptiTrack-API
zur Erkennung benutzt wird. Beim Infrarot-Tracking kann nicht zwi-
schen verschiedenen Markern unterschieden werden, da diese keine
ID-Informationen kodiert haben. Daher ist es im 3D Tracking nur
moglich, ein einzelnes Objekt per Infrarot zu tracken und eindeutig



zuzuweisen. Vorteil des Infrarot-Trackings ist die hohe Genauigkeit
und die groiere Entfernung, gemessen an bildbasierten Trackingver-
fahren, in der die Erkennung funktioniert. Des Weiteren ist, gegeben
durch die schnelle Bildwiederholrate der Infrarot-Kamera (im vorlie-
genden Fall: 120 Bilder pro Sekunde), ein genaues Tracking moglich,
bei dem die Latenzen sehr gering sind. Das kann zwar auch beim
bildbasierten Tracking erreicht werden, jedoch werden dann spezielle
Kameras benotigt und die Leistung des Rechners muss ausreichend
sein um die Einzelbilder zu analysieren.

Eine zweite bildbasierte Tracking-Methode wurde mit Hilfe der offe-
nen Bibliothek OpenCV realisiert. Diese ist aber erst in einem frithen
Stadium der Entwicklung und wurde, nachdem auf MiReAS gewech-
selt wurde, nicht weiter entwickelt. Grund fiir die Entwicklung eines
OpenCV-basierten Trackers war die Unabhingigkeit von anderen
Tracking-Verfahren und die dadurch resultierende Freiheit in der
Entwicklung.

COMMUVIT |(e—

Abbildung 4.25: COMMUVIT Building Block und Simulink Modell.

Eine weitere wichtige Erweiterung in Virtools ist die Anbindung an
externe Anwendungen. Dies wurde {iber das von Henning Zabel ent-
wickelte Werkzeug COMMUVIT [SGDZo8] [LZE" 06] [LZBo7] reali-
siert, das eine Ubergabe von jeglichen Daten zwischen Anwendungen
zur Verfiigung stellt. Ein wichtiger Punkt ist, dass COMMUVIT die
Anwendungen auch zeitlich koppelt, so dass die Werte immer aktuell
sind. In unseren Beispielen haben wir COMMUVIT verwendet, um
physikalisch korrekte Modelle in MATLAB/Simulink zu berechnen
und in Virtools zu visualisieren und damit zu interagieren. Abbildung
4.25 zeigt eine Virtools-Anwendung, die zur Berechnung der Bewe-
gung der roten Kugel ein MATLAB/Simulink Modell hinterlegt hat,
das fiir jeden Frame die physikalisch richtige Position berechnet.

Um neue Interaktionsmoglichkeiten zu schaffen, wurden zwei Buil-
ding Blocks realisiert, die unterschiedliche Eingabehardware in Vir-



tools zur Verfiigung stellen. Zum einen ist das der Wiimote Building
Block, der es erlaubt, die Wiimote (die eigentlich zur Benutzung der
Spielekonsole Wii von Nintendo gedacht ist) in Virtools-Projekten zu
benutzen. Gerade durch die eingebauten Beschleunigungssensoren
ist es eine kostengiinstige Alternative zu anderen Speziallosungen.
Uber die Beschleunigungssensoren ist es moglich eine einfache Ges-
tenerkennung zu realisieren, die fiir die Steuerung benutzt werden
kann. Uber die eingebaute Kamera wird weiterhin ein 2D Tracking
zur Verfligung gestellt, so dass eine Pointer-basierte Interaktion mit
Hilfe der Wiimote moglich ist.
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Abbildung 4.26: Eingabe iiber das OpenHaptics Interface in Virtools.

Der OpenHaptics Building Block (siehe Abbildung 4.26) wurde spe-
ziell fiir das haptische Feedback zum Benutzter realisiert. Gesteuert
werden kann damit z. B. ein SensAble Phantom Omni Haptic Devi-
ce [Sen1o], das dem Benutzer als Eingabemedium dient. Uber das
Phantom kann ein Punkt im 3D Raum incl. Richtung angesteuert wer-
den. Der Programmierer hat die Moglichkeit, eine gewisse Gegenkraft
auf das Eingabegerit zu geben, so dass das Gefiihl eines Widerstandes
entsteht. Uber verschiedene Parameter lassen sich unterschiedliche
haptische Materialeigenschaften programmieren.

Uber die oben beschriebenen Building Blocks, die die Funktionalitat
von Virtools erweiterten, lieSen sich einige Konzepte des MRiL-Ent-
wurfsvorgehens realisieren, wie es in Kapitel 5159 beschrieben wird.
Allerdings konnten nicht alle Konzepte in Virtools realisiert werden,
da die Struktur von Virtools dies nicht zuliefs.



4.5.2

3DVIA Virtools - Nachteile

Leider gab es bei der Verwendung von Virtools auch einige Nachteile,
die u. a. dafiir verantwortlich waren, dass eine eigene Entwicklungs-
umgebung realisiert wurde. Zu diesen Nachteilen z&hlen:

MRIL Prozess nicht komplett abbildbar: Infolge der vorgegebenen
Struktur von Virtools war es nicht moglich, das gesamte MRiL-
Entwurfsvorgehen abzubilden. Damit aber dieser Prozess kom-
plett evaluiert werden konnte, war es essenziell, eine Entwick-
lungsumgebung zu besitzen, die diese Abbildbarkeit leistete.

Lizenzproblematik: Leider wurde infolge einer Lizenzdnderung in
neueren Versionen von Virtools untersagt, selbst geschriebene
Bulding Blocks weiterhin der Community zur Verfiigung zu
stellen. Des Weiteren ist der Webplayer in den neueren Versio-
nen nicht mehr in der Lage selbst geschriebene Building Blocks
zu laden und auszufiithren. Dementsprechend miissen fiir je-
de Demo eigene ausfiihrbare Dateien kompiliert werden, falls
auf dem Zielsystem kein Virtools installiert ist. Leider miissen
diese Demos einen Lizenzschliissel haben, so dass es schwierig
ist, Demos auf Konferenzen oder Messen vorzustellen oder im
wissenschaftlichen Rahmen zu veroffentlichen.

Proprietdr: Da Virtools eine proprietire Software ist, gestaltet sich
eine Anpassung auf eigene Bediirfnisse dufSerst schwierig. Uber
das SDK kann viel Funktionalitit realisiert werden, leider aber
nicht alles. Daher war es auch nicht moglich, das komplette
MRIiL-Entwurfsvorgehen auf Virtools abzubilden, da wichtige
Strukturen und Funktionsweisen nicht veranderbar waren.

Aus den oben genannten Griinden war es notwendig, eine eigene, auf
das MRiL-Entwurfsvorgehen zugeschnittene Entwicklungsumgebung
zu programmieren. Es wurde besonders darauf geachtet, dass eine
quelltextoffene Implementation einer 3D Grafikbibliothek als Grund-
lage diente, um ggf. Konzepte nachtréglich ins System integrieren zu
konnen.

MiReAS - Eine Mixed Reality Softwareumgebung

Die Ergebnisse, die mit der Entwicklungsumgebung basierend auf Vir-
tools entstanden sind, waren zum grofien Teil akzeptabel. Da jedoch
die von uns entwickelten Erweiterungen in Virtools nicht das komplet-
te MRiL-Entwurfsvorgehen abdecken, insbesondere die Rollen von



Akteuren, wurde eine Softwareumgebung entwickelt, die speziell fiir
meinen MRiL Prozess entworfen wurde. Diese Softwareumgebung
wurde an der Hochschule Diisseldorf im Rahmen einer Masterar-
beit [Pogog] nach den Vorgaben des MRiL-Entwurfsvorgehens entwi-
ckelt und tragt den Namen MiReAS: Mixed Reality Actor Simulation.
MiReAS kann als Werkzeug fiir schnelles Prototyping sowie fiir die
einfache Entwicklung von Mixed Reality Anwendungen verwendet
werden. Durch die konsequente Umsetzung des MRiL Vorgehens ist
MiReAS eine ideale Plattform fiir die Entwicklung und die Tests von
Mixed Reality Anwendungen.

Damit MiReAS die Vorraussetzungen fiir den MRiL-Entwurfsprozess
erfiillt, mussten folgende Anforderungen erfiillt werden:

o Bereitstellung einer komponentenbasierten Architektur mit der
Moglichkeit, Komponenten einfach zu adaptieren, auszutau-
schen oder wieder zu verwenden

e Verwendung einer Quelltext-offenen 3D Renderbibliothek ba-
sierend auf einem Szenegraphen zur einfachen Erstellung von
Szenarios

e Unterstiitzung essenzieller Mixed Reality Funktionalitit, bei-
spielsweise die Verwendung von Videogerdten und Tracking-
systemen sowie die einfache Erweiterbarkeit auf neue Tracking-
systeme

e Unterstiitzung einer grofsen Anzahl von Eingabegerédten bzw.
die Moglichkeit, solche einfach in das System einzubinden

e Anbindung an eine Physiksimulation, systemintern tiber eine
schnelle Physikbibliothek aus dem Game-Sektor, dariiber hin-
aus allerdings auch {iber externe Programme wie z. B. MAT-
LAB/Simulink fiir mathematisch préazisere Berechnungen

e Einfache Nutzung von Netzwerkschnittstellen zur Verteilung

e Benutzerfreundliche und einfach anwendbare Systemkonfigura-
tion tiber Konfigurationsdateien im XML Format bzw. grafische
Benutzerschnittstellen

Konzepte von MiReAS

Das zentrale Konzept von MiReAS ist das Prinzip des , Actors & Adap-
tors”. Akteure (engl. Actors) sind aktive Elemente einer Anwendung,
die in einem Szenario betrachtet und gesteuert werden sollen. Fiir eine



typische Mixed Reality Anwendung sind dies Eingabegerite sowie
interaktive und/oder dynamische Szenenelemente. Im Kontext von
Mixed Reality sind hier sowohl virtuelle als auch reale steuerbare
Systeme als Akteur zu verstehen. Die Grundlagen zum Akteurmodell
konnen in Kapitel 4.3.315p nachgelesen werden.
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Abbildung 4.27: Datenflussnetzwerk basierend auf Akteure.

In MiReAS sind Akteure in der Lage, Steuer-und Informationsdaten
tiber Ports zu senden beziehungsweise zu empfangen. Ports konnen
dabei einen beliebigen Datentyp annehmen, z. B. vektorielle Werte fiir
zusammenhdngende Daten oder skalare Werte fiir einzelne Datenlei-
tungen. Selbst komplexe Objekte konnen als Datentyp verschickt bzw.
empfangen werden. Die Ports konnen beliebig miteinander verschaltet
werden, allerdings miissen die jeweiligen Datentypen des Ein- und
Ausgangs kompatibel sein. Ein Ausgangsport kann mit mehreren Ein-
gangsports verbunden werden, Eingangsports konnen indes nur mit
einem Ausgangsport verbunden sein. In jedem Zeitschritt aktualisiert
ein Akteur seinen Zustand indem er die Werte an seinen Eingangs-
ports liest, diese verarbeitet und die neu berechneten Werte an seine
Ausgangsports anlegt. Damit ist es moglich ein interaktives Daten-
flussnetzwerk aufzubauen, welches das Verhalten der Anwendung
steuert. In Abbildung 4.27 ist so ein Datenflussnetzwerk zu sehen.
Hier wird des Weiteren dargestellt, dass weder zwei Ports miteinander
verbunden werden konnen, die inkompatible Datentypen haben, noch
Ausginge mehrfach belegt werden diirfen.

Akteure, die tiber die gleichen Ein- und Ausgangsports verfiigen,
konnen problemlos untereinander ausgetauscht werden. So kénnen
z. B. Prototypen von Akteuren entwickelt werden, die ein bestimmtes
Portinterface bieten und direkt in die Software eingebunden werden.
Im Laufe der Entwicklung kénnen diese Prototypen mit neueren bzw.
anderen Versionen von Akteuren getauscht werden, ohne das das



Datenflussnetzwerk gedandert werden muss.
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Abbildung 4.28: Kopplung zwischen einem Akteur und Adaptern.

Ein bereits implementierter Akteur kann durch sogenannte Adapter
(engl. Adaptors) erweitert werden. Adapter haben ebenso wie Akteu-
re eine Menge an Eingangs- und Ausgangsports. Wird ein Adapter
einem Akteur zugewiesen, erhilt der Akteur simtliche Ports des Ad-
apters. Diese Ports konnen dann von aufSen so angesprochen werden,
als wenn sie Teil des jeweiligen Akteurs wéaren. Um die Ports des
Adapters mit den Ports des Akteurs zu verbinden, muss eine entspre-
chende Funktionalitdt in den Adapter implementiert werden. Beispiele
fiur Adapter wiren zum einen, inkompatible Ports miteinander zu
verbinden, indem der Adapter intern eine Umwandlung durchfiihrt
und die gewandelten Signale an die entsprechenden Eingangsports
des Akteurs bzw. die Ausgangsports des Adapters weiterleitet. Die
grundsétzliche Funktionalitdt von Adaptern kann in Kapitel 4.3.3129
nachgelesen werden.

Der Vorteil eines Adapters gegeniiber einer Vorschaltung bzw. Nach-
schaltung eines neuen Akteurs ist die automatische Verschaltung.
Verbindungen miissen nicht neu gesetzt werden, was vor allem bei
mehrfachem Verwenden von Adaptern der Ubersichtlichkeit des Da-
tenflussnetzwerk dient.

Dieses Konzept gestattet komplexe, aufeinander aufbauende Struk-
turen, die aus einfachen, wiederverwendbaren Einzelkomponenten
zusammengesetzt sind. In einer ersten Iteration des MRiL-Prozesses
kann ein Akteur z. B. ein einfaches physikalisches Objekt ohne spezi-
elle Funktionen sein, d. h. ein physikalisches Kérper mit Eingédngen
fiur Kraft und Drehmoment sowie Ausgéngen fiir Positionsinforma-
tionen. Durch das Aufsetzen eines eingangsseitigen Adapters fiir die
Simulation eines Propellers mit Eingédngen fiir Position und Orientie-
rung sowie angelegte Energie wird aus dem einfachen physikalischen
Korper ein aktiv steuerbares System. Durch einen ausgangsseitigen



Adapter kann z. B. ein Sensor zur Geschwindigkeitsmessung aufge-
setzt werden. Dieses einfache Beispiel fiir eine Kopplung zwischen
einem Akteur und einem Adapter ist in Abbildung 4.28 zu sehen.
Andere Arten von Adaptern sind z.B. Typkonvertierungen fiir in-
kompatible Ports, Erweiterungen fiir intelligente Steuerungen (z. B.
Reglersteuerungen, etc.) oder alle Arten von Sensoren und Akteuren.

Pugs _ Application

___ Plugin Interface

e e

Abbildung 4.29: Das Plug-in-System von MiReAS.

Ein weiteres Konzept von MiReAS ist ein flexibles Plug-in-System,
welches erlaubt, alle benétigten Komponenten separat zu implemen-
tieren, einzubinden und zu nutzen. Da Plug-ins zur Laufzeit geladen
werden konnen, wird mit ihnen das modulare Konzept sowie die
Erweiterbarkeit von MiReAS unterstiitzt. Fiir die grofitmogliche Flexi-
bilitdt sind sowohl der 3D-Renderer als auch die Trackingsysteme bzw.
Videogerite als Plug-in realisiert und konnen wéhrend der Laufzeit
geladen werden. Auch Akteuren oder Adapter sind iiber Plug-ins
realisiert. Somit ist auch die Entwicklung von Anwendungen in einem
grofien Team moglich, da sich die einzelnen Programmierer nur auf
ihre Plug-ins konzentrieren miissen.

MiReAS unterscheidet zwischen zwei Arten von Plug-ins. System-
Plug-ins, die essenziell fiir die Funktionalitdt sind und Erweiterungs-
Plug-ins, mit denen vor allem Szenenelemente und Funktionserwei-
terungen fiir bestimmte Aufgaben erstellt werden konnen. Unter die
System-Plug-ins fallen Komponentien wie der 3D Renderer, Tracker
und Videoquellen, wobei Akteure, Adapter und Sensoren unter die
Erweiterungs-Plug-ins fallen.

Damit die unterschiedlichen systeminternen sowie extern-angebun-
denen Komponenten innerhalb eines einzelnen Simulationsschrittes
aktualisiert werden konnen, wurde MiReAS mit einem dreistufigen
Simulationszyklus realisiert. Dies geschieht indem die Akteure, die
tiber Ports miteinander verbunden sind, ihre Ausgabeports erst am
Ende eines Simulationsschrittes aktualisieren. Diese Technik vermei-
det, dass die Reihenfolge der einzelnen Aktualisierungen eine Aus-
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Abbildung 4.30: Der Simulationszyklus von MiReAS

wirkung auf die Simulation hat. Anders ist dies bei Berechnungen,
die noch im selben Frame visualisiert werden sollen, wie z.B. Phy-
sikberechnungen. Diese Berechnungen miissen vor dem aktuellen
Frame behandelt werden. Fiir eine grofstmogliche Flexibilitat wurde
deshalb ein Simulationszyklus wie in Abbildung 4.30153 entworfen.
Jede Komponente, die in diesen Simulationszyklus eingebunden wird,
kann in jedem dieser drei Abschnitte Funktionalitdt hinterlegen. Es
sollte allerdings weiterhin die Moglichkeit geben, innerhalb dieser
Zykluselemente Prioritdten zu vergeben, um einen moglichst verzoge-
rungsfreien Ablauf der Simulation zu gewéhrleisten. Daher wurde z. B.
eine Visualisierung als letzte Phase im Simulationszyklus realisiert.

Um Rapid Prototyping zu unterstiitzten, wurde eine geeignete Metho-
de zur Konfiguration der Anwendung durch den Entwickler realisiert,
die ohne grofien Programmieraufwand moglich ist. Es miissen le-
diglich die benottigten Akteure und Adapter einmal implementiert
werden. Die Basis dieser Konfiguration bildet ein hierarchisches Da-
tenmodell, welches im XML-Format abgelegt werden kann. Eine Szene
wird durch einen Szenegraph abgebildet, in der alle Akteure, Adapter
und Geréte samt Einstellungen integriert sind. Benétigte Dateien wer-
den in einer eigenen Ordnerstruktur abgelegt. Ist eine erste Iteration
erfolgreich abgeschlossen, kann die nédchste Iteration direkt auf der
bisherigen XML-Datei aufbauen und benétigte Anderungen direkt
implementieren.

In der derzeitigen Entwicklung befindet sich eine grafische Benutzero-
berfldche, die den Zugriff auf alle Systemkomponenten erlaubt, um die
Konfiguration des Systems noch benutzerfreundlicher zu gestalten.



MIXED REALITY IN THE LOOP

<Application name="SimplePhysics" dataDirectory="../data/SimplePhysics/" >
<Logger level="INFO" selection="NONE" />
<Timestep>8.02</Timestep>
<Physics><Engine>Bullet</Engine></Physics>
<Scene name="Scene"></Scene>
<Renderer plugin="0SGRenderer" configFile="configs/OSGRendererConfig.xml" />

<Physical name="Plane" scene="Scene">
<Mode>STATIC</Mode>
<Visibility»>On</Visibility>
<Model>models/plane.osg</Model>
<RenderMode>NORMAL</RenderMode>
<CastShadow>On</CastShadow>
<ReceiveShadow>On</ReceiveShadow>
<Material>Normal</Material>

</Physical>

<Physical name="Cube" scene="Scene">
<Mode>DYNAMIC< /Mode>
<Scale>®.5¢/Scale>
<Pose>
<Position x="@" y="-2.5" z="1" />
<Orientation x="@" y="8" z="0" />
</Pose>
<Visibility»>On</Visibility>
<Model>models/simpleCube.flt</Model>
<RenderMode>NORMAL</RenderMode>
<CastShadow>On</CastShadow>
<ReceiveShadow>On</ReceiveShadow>
<Material>Normal</Material>
<Mass>@.5</Mass>
</Physical>

<Physical name="RedSphere" scene="Scene">

%

Abbildung 4.31: Konfiguration tiber XML.

Systemstruktur von MiReAS

Fiir die Implementierung des MiReAS-Systems wurde C++ als Pro-
grammiersprache gewdhlt. Das Design der Applikation wurde ob-
jektorientiert ausgelegt, so dass die notigen Komponenten modular
programmiert werden konnten. Fine Reihe Opensource-Bibliotheken,
die Basisfunktionalitdten zur Verfiigung stellen, wurden genutzt um
den Implementierungsaufwand zu begrenzen. Bei der Auswahl wurde
darauf geachtet, dass eine freie Verwendung sowie eine eventuelle
Abidnderung der Bibliotheken moglich ist. Auch sollten die Biblio-
theken plattformiibergreifend verwendet werden kénnen. Entwickelt
wurde das System jedoch vollstindig auf einer Windows-Plattform,
so dass eine Portierung auf ein anderes System zwar moglich ist,
allerdings nicht entwickelt wurde.

Die verschiedenen Funktionen von MiReAS wurden in eigenen dy-
namischen Bibliotheken implementiert, um so eine hohe Modula-
ritdt des Systems zu gewéhrleisten. Die Bibliotheken konnen daher
unabhéngig voneinander entwickelt werden, solange die Schnittstel-



len gleich bleiben. Beispielsweise werden die Grundfunktionen ei-
niger Bibliotheken, z. B. der Physik- und der Input-Bibliothek, tiber
Opensource-Bibliotheken realisiert, die bei Bedarf durch andere Bi-
bliotheken ausgetauscht werden konnen.
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Abbildung 4.32: Die Systemstruktur von MiReAS

In Abbildung 4.32 wird die Softwarestruktur von MiReAS dargestellt.
Die externen Komponenten, die iiber Opensource-Bibliotheken reali-
siert sind, bieten bereits fertige Strukturen, die von MiReAS genutzt
werden, z. B. die Unterstiitzung von unterschiedlichen Eingabegeriten,
eine Physiksimulation, mathematische Funktionen und eine 2D-GUI-
Bibliothek. Das eigentliche MiReAS-System kann in zwei Kompo-
nenten geteilt werden: den Library-Layer und den Applications-Layer.
Der Library-Layer beinhaltet die gesamte Simulationslogik und ist in
die Bibliotheken Base, Input, Core, Physics und Network unterteilt. Der
Applications-Layer enthdlt die ausfithrbaren Anwendungen. Je nach
Wunsch des Anwenderprogrammierers kann die fertige Applikation
von einer Konsolenanwendung (ConsoleApplication), die durch eine
XML-Konfigurationsdatei erstellt wird, oder eine Applikation mit gra-
tischer Benutzeroberfliche (GUIApplication) abgeleitet werden. Dabei
bietet die GUI eine flexiblere Moglichkeit zum Eingriff in das laufende
Programm und kann zur Laufzeit nachkonfiguriert werden. In der
Bibliothek Application werden gemeinsam verwendete Funktionen,
wie z. B. das Konfigurationssystem implementiert.

Es wurden folgende externe Opensource-Bibliotheken fiir die Ent-



wicklung von MiReAS genutzt:

POCO (Portable Components): Eine Bibliothek fiir die Entwicklung
von portablen, netzwerkzentrierten Anwendungen. Implemen-
tiert sind z. B. ein Threadsystem, ein System zum Laden von dy-
namischen Bibliotheken, Sockets und Netzwerkprotokollen, ein
Konfigurationssystem und ein XML-Parser [Obi1o]. In MiReAS
wurde gerade das System zum Einlesen von Konfigurationsin-
formationen aus XML-Dateien intensiv genutzt.

GMTL (Generic Math Template Library): Eine mathematische, auf
Template-Klassen basierende Bibliothek, die Funktionen der li-
nearen Algebra zur Verfiigung stellt [BMS10]. Diese werden
vor allem in 3D-Anwendungen benoétigt. Des Weiteren bein-
haltet GMTL allgemeine mathematische Funktionen, die platt-
formiibergreifend dieselbe Funktionalitit bieten.

OIS (Object-Oriented Input System): Eine Bibliothek zur Abstrakti-
on von Plattform-Schnittstellen. OIS bietet die Moglichkeit der
Abstraktion samtlicher Standard-Eingabegerite wie z. B. Tasta-
tur, Maus oder Joystick [Cas10]. Weitere Eingabegeréte, die z. B.
tiir Mixed Reality Anwendung benétigt werden, konnen tiber
OIS einfach integriert werden. OIS wurde fiir die Verwendung in
MiReAS durch eigene Input-Handler erweitert, z. B. eine bessere
Anbindung an die Nintendo Wiimote.

PAL (Physics Abstraction Layer): Bibliothek zur Abstraktion physi-
kalischer Simulationen [Boeog]. In PAL erméglicht die Nutzung
eine Vielzahl von Physik-Bibliotheken innerhalb einer einzel-
nen Anwendung. Die einzelnen Physik-Bibliotheken miissen
jeweils als Plug-in vorhanden sein bzw. als PAL-Plug-in imple-
mentiert worden sein. Somit besteht eine grofse Flexibilitat bei
der Auswahl der Physik-Bibliotheken. Nachteil der Abstrakti-
on ist jedoch die fehlende Unterstiitzung spezieller Merkmale
bestimmter Physik-Bibliothek, es konnen nur allgemeine Funk-
tionen genutzt werden. In MiReAS wird das PAL-Plug-in der
BulletEngine als Standard Bibliothek genutzt [Cou1o].

FLTK (Fast Light Toolkit): Eine Bibliothek, die eine plattformunab-
hédngige grafische Benutzerschnittstelle bereitstellt [Spi1o]. Die
Bibliothek basiert auf OpenGL und {iiber den integrierten Desi-
gner FLUID (Fast Light User-Interface Designer) konnen Benut-
zerschnittstellen sehr schnell grafisch erstellt werden.

Diese Bibliotheken sind auch in der Abbildung 4.32;55 zu sehen und
werden von den verschiedenen Layern in der MiReAS Architektur
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genutzt. Alle verwendeten Bibliotheken stehen unter einer Open-
Source-Lizenz, z. B. GPL, LGPL, Boost License, etc., und sind somit
allgemein zugénglich und d@nderbar. Des Weiteren wurde darauf ge-
achtet, dass die verwendeten Bibliotheken fiir mehrere Betriebssyste-
me zur Verfligung stehen, so dass eine Cross-Plattform Tauglichkeit
grundsétzlich vorstellbar ist.

Weitere Einzelheiten zur Implementierung konnen in der Master-
Arbeit von Patrick Pogscheba nachgelesen werden [Pogog].

Zusammenfassung

In diesem Kapitel wurde beschrieben, was das MRiL-Entwurfsvor-
gehen ist und wie es anwendet werden kann. Zu Beginn wurden die
Vorraussetzungen definiert, die benotigt werden, damit das MRiL-Ent-
wurfsvorgehen erfolgreich bei einer Applikationsentwicklung ange-
wendet werden kann. Dabei ist es wichtig, dass die zu entwickelnde
Anwendung in die MVCE-Komponetnen aufgeteilt werden kann und
aus einem der Bereiche Mixed Reality Applikationen, Mixed Reality
Benutzerschittstellen oder mechatronische Systeme stammt. Diese An-
wendungen lassen sich sehr gut durch das MRiL-Entwurfsvorgehen
entwickeln.

Nach Kldrung der Voraussetzungen wurde auf grobe Vorgehenswei-
se des MRiL-Entwurfsvorgehens eingegangen. Hier wurde gezeigt,
wie ein Entwickler erfolgreich den Prozess an seiner Applikation an-
wenden kann. Die einzelnen Schritte bei der Entwicklung wurden
beschrieben und erklart.

Der Vorgehensweise folgte die Beschreibung der fiir das MRiL-Ent-
wurfsvorgehen entwickelten Methoden. Dazu gehorte das MVCE
Architekturmuster, das die Anwendung in vier verschiedene Kompo-
nenten einteilt und es ermoglicht, diese Komponenten unabhéngig
von einander zu entwickeln bzw. verfeinern. Die MRiL-Metrik erlaubt
eine Bewertung des Entwicklungsstaus der Applikation anhand der
MVCE Komponenten. Uber das Akteurmodell wurden dann verschie-
dene Teile der Applikation nochmals gekapselt. Akteure sind eine
Verfeinerung des MVCE Architekturmusters und teilen die jeweiligen
Komponenten in kleinere autarke Teile auf. Daraufhin wurde das Ent-
wurfsvorgehen nochmals in allen Details beschrieben und erkldrt, wie
das MRiL-Entwurfsvorgehen verwendet wird. Diese Akteure lassen
sich konzeptionell mit Hilfe von Adaptern erweitern um so eine Ver-
feinerung der Komponenten mit geringem programmiertechnischen
Aufwand zu bewdltigen.



Das Entwurfsvorgehen beschreibt den iterativen Entwurfsprozess. Ab-
strakt gesehen werden die Phasen Konzeption, Implementierung, Tests
und Bewertung durchlaufen und ggf. wiederholt. Konkret wird in
jeder Initialisierungsphase des MRiL-Entwurfsvorgehens der nachfol-
gende Verfeinerungsschritt geplant. In der Verfeinerugsphase werden
die Anderungen implementiert und so die Komponenten bzw. Ak-
teure verfeinert. Nach der Verfeinerung entsteht ein neuer Prototyp,
der iiber funktionale Tests oder Benutzertests validiert und analysiert
wird. Hier entscheidet sich, ob eine weitere Iteration notig ist oder
ob der Prototyp funktional fertig ist. Sollte eine weitere Iteration vor-
genommen werden, werden in der Bewertungsphase die Ziele des
ndchsten Prototypen festgelegt.

Damit der MRiL Prozess softwaretechnisch unterstiitzt wird, wurden
zwei unterschiedliche Softwareumgebungen entwickelt. Als erstes
wurde die proprietdre Entwicklungsumgebung Virtools dahingehend
erweitert, dass der MRIL Prozess zum grofiten Teil abgebildet werden
konnte. Hierfiir wurden mehrere Plug-ins entwickelt, die u.a. das
Tracking, Benutzung neuer Eingabegerite und die Interapplikations-
Kommunikation ermdéglichten. Damit konnte das MRiL-Entwurfsvor-
gehen angewendet werden, da die Anwendung in die entsprechenden
MVCE-Komponenten aufgeteilt und diese Komponenten dann ver-
feinert werden konnte. Leider konnte das Prinzip der Akteure nicht
in Virtools umgesetzt werden, da es keine Moglichkeit gab, dieses
abzubilden. Aus diesem Grund wurde eine komplett neue Softwa-
reumgebung, die speziell auf das MRiL-Entwurfsvorgehen angepasst
war, entwickelt. MiReAS wurde auf Opensource-Bibliotheken entwi-
ckelt und bietet alle Moglichkeiten, die das MRiL-Entwurfsvorgehen
benotigt, vom MVCE Architekturmuster bis hin zur Akteurmodell.
Letzteres ist in MiReAS ein zentraler Punkt bei der Entwicklung, da
jede Komponente der Applikation tiber einen Akteur abstrahiert wird.
Damit Akteure verfeinert werden konnen und nicht immer von Grund
auf neu implementiert werden miissen, wurde das Prinzip des Ad-
apters, der einen Akteur mit neuer Funktionalitdt kapseln kann, in
MiReAS realisiert.

In diesem Kapitel wurde somit das komplette MRiL-Entwurfsvor-
gehen mit der entsprechenden Softwareumgebung vorgestellt und
erldutert. Im folgenden Kapitel wird nun gezeigt, wie der MRiL Pro-
zess an einem nicht trivialen Beispiel erfolgreich eingesetzt wurde.
Es werden die einzelnen Schritte der Entwicklung vorgestellt und es
wird auf auftretende Probleme hingewiesen.



Beispiel

5.1

Nach der Vorstellung des MRiL-Entwurfsvorgehes im letzten Kapitel
konzentriert sich dieses Kapitel auf die Anwendung von MRiL auf
ein nicht triviales Beispiel. Als Softwaregrundlage diente hier das
Werkzeug MiReAS 4.5.2143 unter Verwendung u.a. des Akteurmo-
dells und des Prinzip des Adapters 4.3.315. In diesem Kapitel wird
detailliert die Entwicklung der Prototypen dieser Beispielapplikation
beschrieben und jede Iteration der Entwicklung erldutert. Insgesamt
wurden wihrend der Entwicklung sieben Prototypen entwickelt, die
jeweils eine geforderte Funktionalitdt implementierten. Angefangen
von einer sehr einfachen, abstrakten Applikation, die die Funktions-
weise verdeutlichen soll, bis hin zu komplexen Prototypen, die fiir
Tests einer speziellen Auspriagung der Applikation verwendet wurden.
Am Ende wurde ein Prototyp entwickelt, der als fertige Applikation
bezeichnet werden kann.

Uberblick

An der Fachhochschule Diisseldorf wurde im Fachbereich Elektro-
technik ein ferngesteuerter Indoor-Zeppelin zu Forschungszewecken
aufgebaut. In Kooperation mit der VR-Abteilung des Fachbereich
Medien der Fachhochschule Diisseldorf sollten im Rahmen des Pro-
jektes MoVelT (Mobilitdt, Verteilung und Interaktion: Realisierung
einer Testumgebung fiir Multimediaanwendungen) neue, intuitive
Steuerstrategien fiir diesen Zeppelin entwickelt werden. Fiir die Ent-
wicklung dieser Strategien sollte das in dieser Arbeit vorgestellte
MRiL-Entwurfsvorgehen angewendet und mit Hilfe von MiReAS



realisiert werden.

Die Idee fiir die Entwicklung neuer Steuerstrategien entstand aus der
Tatsache, dass die normale Steuerung des Zeppelins mit Hilfe einer
Funkfernsteuerung kompliziert und schwer zu erlernen ist. Das liegt
zum einen an den wenigen Freiheitsgraden, die durch die Bauweise
des Zeppelins gegeben sind, und zum anderen durch die Tragheit des
Zeppelins. Um ihn prazise und genau zu steuern ist es fiir den Be-
nutzer wichtig, die zu erzielende Bewegung in richtigen Bewegungen
der einzelnen Freiheitsgrade des Zeppelins aufzuspalten, dabei die
Tragheit mit zu beriicksichtigen und ggf. gegenzusteuern. Die ersten
Versuche, den Zeppelin kontrolliert zu steuern, wurden deshalb in
einer grofsen Halle durchgefiihrt, um die Kollisionsgefahr mit Hinder-
nissen zu minimieren. Nach mehreren Stunden intensiver Ubung war
schliefilich ein Benutzer in der Lage, den Zeppelin halbwegs sicher zu
tliegen.

Um auch einer grofieren Gruppe an Benutzern die Bedienung des
Zeppelins zu ermoglichen, war die Idee, die klassische Steuerung des
Zeppelins durch eine neue, intuitivere Steuerung zu ersetzten. Da die
Umsetzung einer neuen intuitiven Steuerung sehr of das , Trail-and-
Error”-Prinzip verwendet, gerade wenn es sich um das Finetuning
bestimmter Parameter der Steuerung handelt, war der Einsatz des
realen Zeppelins fiir diese Tests schon von Beginn an ausgeschlos-
sen. Durch unsachgemaéfse Handhabung kann der Zeppelin schnell
beschéddigt oder zur Gefahr fiir Personen werden, so dass die Entwick-
lung einer neuen Steuerung pradestiniert fiir eine VR Simulation ist.
Des Weiteren gab es viele Ideen einer intuitiven Steuerung, so dass
mehrere dieser Ideen getestet werden sollten. Auch hier war eine VR
Simulation die beste Losung.

Zu diesem Zeitpunkt entstand die Idee das MRiL-Entwurfsvorgehen
zu verwenden und die Prototypen mit Hilfe der MiReAS-Software zu
entwickeln. Die Uberlegung war, erst eine sehr einfache Applikation
zu entwickeln, die grob das Verhalten des Zeppelins simuliert, um
so Steuerstrategien mit diesem Prototypen entwickeln und testen zu
konnen. Um in weiteren Entwicklungsschritten auf den vorherigen
Prototypen aufzubauen, wurde MiReAS dazu verwendet, langsam die
VR-Komponenten in MR bzw. reale Komponenten zu ersetzten. So
konnte die Steuerung immer feiner getestet werden, erst an einfachen,
spdter an komplexen Simulationen sowohl virtuell als auch real.

Fiir die Berechnung der Metriken war es notwendig, den endgiiltigen
Prototypen der Anwendung zu spezifizieren. Das war in allen Berei-
chen nicht sehr kompliziert, da schon der reale Zeppelin existierte
und die Applikation diesen steuern sollte. Uber die Metriken war eine
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Einschdtzung des Entwicklungsstatus mit Hilfe des Kiviatgraphen
moglich. Fiir die Controller-Metrik wurden allerdings keine grofS ange-
legten Benutzertests durchgefiihrt, da hier die Zeit und die Personen
fehlten. Es wurden hier nur die Aussagen der Entwickler berticksich-
tigt um so eine Einschdtzung der verwendeten Controller-Strategie zu
erhalten.

Insgesamt wurden fiir dieses Beispiel zehn aufeinander aufbauende
Prototypen entwickelt und getestet, wobei zwei Beispiele nur kon-
zeptionell entwickelt wurden, da hier die Hardware, die eingesetzt
werden sollte, nicht rechtzeitig fertiggestellt werden konnte. Alle Pro-
totypen wurden aufeinander aufbauend entwickelt und mit Hilfe von
dem Werkzeug MiReAS realisiert.

5.1.1 Der Zeppelin

Abbildung 5.1: Modell des Zeppelins.

Das Modell des Zeppelins (Abbildung 5.1, hier beim Testen des AR-
Prototypen mit Markern) besteht aus einer speziellen Kunststofthiille
mit einer Ldnge von drei Metern und einem Durchmesser von einem
Meter. Befiillt wird die Hiille mit Helium, was den erforderlichen
Auftrieb des Zeppelins liefert. Dabei betragt die Tragkraft des Zep-
pelins exklusiv der Elektronik und der Motoren ca. 250 Gramm. Am
Heck des Zeppelins befindet sich ein Propeller, der sich iiber einen
DC-Motor rechts bzw. links drehen ldsst. Unten an der Hiille ist ei-
ne Gondel befestigt, die die Bordelektronik fasst. An beiden Seiten
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der Gondel befindet sich jeweils ein weiterer Propeller, der auf einer
drehbaren Achse gelagert ist.

Abbildung 5.2: Der Zeppelin im Detail.

Der Propeller am Heck des Zeppelins (Abbildung 5.2 — c) ist fiir
das Gieren' zustdandig und kann tiber den DC-Motor in beide Rich-
tungen betrieben werden. Die beiden Schubmotoren an der Gondel
(Abbildung 5.2 — b) erméglichen die Bewegung in der Ebene, die von
der Gierachse und der Rollachse® aufgespannt wird, also vorwaérts,
riickwarts, aufwirts oder abwarts. Beide Schubmotoren sind tiber eine
Drehachse miteinander verbunden, die je nach Stellung die Schub-
richtung der Propeller vorgibt. Dabei ist die Drehung um diese Achse
auf 360° beschrdnkt (aus der Normalstellung die horizontal nach
vorne zeigt, jeweils 180° in beide Richtungen). Beide Schubmotoren
ermoglichen eine maximale Geschwindigkeit von ca. 6,17

'Die Gierachse, auch Hoch- bzw. Vertikalachse (engl. yaw axis), bezeichnet die vertikale Achse eines
Luftfahrzeugs, um die sich das Fahrzeug dreht. Als Gieren bezeichnet man eine Drehbewegung um
diese Achse. In Abbildung 5.2 — a sind die Achsen zur Verdeutlichung in den Zeppelin eingezeichnet.

2Die Rollachse (engl. roll axis) wird auch als Langsachse bezeichnet.
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52 PROTOTYPENENTWICKLUNG

Abbildung 5.3: Handelstibliche 4-Kanal Funkfernbedienung.

In der Gondel befindet sich eine Platine mit der Bordelektronik, die
aus der Motorsteuerung sowie der Kommunikation mit der Fernbedie-
nung besteht. Wie im Flugzeug-Modellbau {tiblich wird der Zeppelin
tiber eine handelsiibliche 4-Kanal Fernbedienung, wie in Abbildung
5.3163 zu sehen, gesteuert. Uber die einzelnen Hebel der Fernbedie-
nung konnen der Heckrotor, die Drehachse und die beiden Schub-
motoren gesteuert werden. Beide Schubmotoren sind miteinander
gekoppelt, so dass sie nur gemeinsam steuerbar sind. Daraus ergibt
sich, das drei der vier Kanile der Fernbedienung mit Funktionen
belegt sind. Der linke Hebel ist vertikal fiir die Steuerung der Schub-
motoren belegt, der rechte Hebel ist vertikal fiir fiir den Winkel der
Schubmotoren zustdandig. Des Weiteren ist der linke Hebel auf der ho-
rizontalen Achse fiir den Heckmotor verantwortlich. Die horizontale
Achse des rechten Hebels ist nicht belegt.

Prototypenentwicklung

Wie schon im Uberblick erwédhnt, bedarf es einer gewissen Erfahrung,
den Zeppelin prdzise zu steuern. Die korrekte Steuerung der drei
beschriebenen Freiheitsgrade (Rotation und Translation in einer Ebe-
ne) gelingt aufgrund der Tragheit des Zeppelins nur mit viel Ubung.
Selbst kleinste Impulse der einzelnen Rotoren kénnen grofse Auswir-
kungen auf die Bewegung des Zeppelins haben. Daher ist ein hiufiges
Gegensteuern fiir exakte Manover unumganglich.

Bei der Prototypentwicklung sollen nun verschiedene Techniken ent-
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wickelt werden, die die Steuerung des Zeppelins vereinfachen und
auch fiir ungeiibte Benutzer anwendbar sind. Die Kommandos an die
einzelnen Rotoren sollen durch eine High-Level Steuerung abstrahiert
werden, so dass sich der Zeppelin durch einfach Befehle wie beispiels-
weise , Vorwarts”, , Riickwarts”, ,,Aufwarts” oder ,,Abwirts” steuern
lasst. Die Fernsteuerung soll weiterhin durch andere Eingabegerate
ersetzt werden, die eine intuitivere Steuerung des Zeppelins verspre-
chen, beispielsweise Gestensteuerung oder Stellvertreterobjekte.

Da die Arbeit am realen Zeppelin einerseits mit hohen laufenden
Kosten3 verbunden ist und andererseits durch die Kooperation der
FH Diisseldorf und der Universitdt Paderborn der Zeppelin nicht an
beiden Standorten verfiigbar war, sollte die Entwicklung mit Hilfe
einer Simulation durchgefiihrt werden. Die zu entwickelnden Steu-
erstrategien sollten erst an der Simulation getestet und spéater dann
auf den realen Zeppelin tibertragen werden. Diese Schritte sollten mit
Hilfe des MRiL-Entwurfsvorgehens realisiert und unter Verwendung
des Werkzeuges MiReAS implementiert werden.

Die folgenden Abschnitte beschreiben die iterative Entwicklung der
zehn Prototypen mit Hilfe des MRiL-Entwurfsprozesses am Beispiel
des Zeppelins. Dabei wurden alle Prototypen mit Hilfe des MiRe-
AS Frameworks entwickelt. Bis auf die letzten drei Prototypen, die
nur konzeptionell entwickelt wurden, sind alle Prototypen komplett
lauffahig.

5.2.1 Die Initialphase

Zu Beginn der Initialisierungsphase wurde die endgtiltige Applikation
in schriftlicher Form festgehalten, um so eine Basis fiir die Entwick-
lung zu erhalten. Die schriftliche Ausarbeitung, die dem ersten Schritt
der Vorgehensweise aus Kapitel 4.219; entspricht, wurde so detailliert
wie moglich verfasst, um die Entwicklung zu vereinfachen und die
Berechnung der Metriken zu ermoglichenoo. Aus der schriftlichen
Form wurden im folgenden Schritt die einzelnen Teile der Appli-
kation identifiziert und in die einzelnen Komponenten des MVCE
Architekturmusters eingeordnet. Diese erste Einteilung war eine sehr
grobe Einteilung der Komponenten, die allerdings sowohl fiir die
Entwicklung als auch fiir die Berechnung der einzelnen Werte der
Metrik ausreichte.

Daraus entstand die unten angegebene Tabelle mit den folgenden
Komponenten:

3Da durch die Kunststoffhiille des Zeppelin leider immer etwas Helium diffundiert, muss sie héufig
nachgefiillt werden, eine Fiillung mit Helium kostet derzeit ca. 40,00 €.



Komponente MVCE-Kategorien

Zeppelin Modell, View
Steuerung Controller, View
Umgebung Environment, Modell, View

View, Modell, Controller, Envi-

Metadaten
ronment

Aus der obigen Tabelle ist ersichtlich, in welche Kategorien die ein-
zelnen Komponenten der Applikation fallen. Dabei entsprechen die
hervorgehobenen Komponenten der primdren MVCE-Kategorie, der
sie zugeordnet werden. Der Zeppelin muss dementsprechend als Mo-
dell vorliegen, um das Verhalten abzubilden, sollte aber auch eine
visuelle Reprasentation besitzen. Die Steuerung wird im Controller
abgebildet, kann jedoch auch eine visuelle Repradsentation haben. Die
Umgebung ist sowohl dem Environment zugeordnet, da wir keinen
Einfluss in der Software auf Ereignisse der Umgebung haben, kann
aber auch eine Entsprechung im Modell und im View haben, wenn
in spéteren Prototypen die Daten der Umgebung zur Kollisionser-
kennung benutzt werden sollen. Die Metadaten stehen in diesem
Zusammenhang fiir z. B. Debuginformationen, die in allen Kategorien
erzeugt werden kénnen und im View visualisiert werden sollen.

Nach der ersten groben Einteilung der Komponenten kann nun mit
der Arbeit am ersten Prototypen begonnen werden. Zunéchst werden
alle Akteure des ersten Szenarios identifiziert. Das erste Szenario soll
einfach gehalten werden und zur Planung und Kommunikation des
Entwicklungsteams dienen. Des Weiteren soll die Entwicklung des
ersten Prototypen schnell und unkompliziert sein. So sind im ersten
Szenario wenig Akteure und auch der View und der Controller sind
einfach gehalten. Die Umgebung ist rein virtuell und basiert weder
auf simulierten noch auf realen Daten der echten Umgebung. Eine
Interaktion mit der Umgebung ist nicht vorhanden, sie besitzt nur eine
visuelle Reprasentation. Das Modell des Zeppelins ist reprasentiert
durch eine Transformation, die das visuelle Modell des Zeppelins
in der virtuellen Welt positioniert. Die Steuerung erfolgt tiber die
Tastatur des Rechners.

Es wurden somit fiir das erste Szenario die aufgefiihrten Akteure
definiert, die in der nachfolgenden Tabelle angegeben sind:



Akteur Modell View Controller | Environm.

Zeppelin X X
Umgebung X
Tastatur X

Fiir die Einordnung des Prototypen und die Aussage iiber den Ent-
wicklungsstand miissen die Metriken, die in Kapitel 4.3.21p9 definiert
wurden, berechnet werden. Dazu ist es notwendig eine Definition
der endgiiltigen Applikation zu erstellen. Dies wurde schon im ers-
ten Schritt in schriftlicher Form realisiert, so dass jetzt nur noch die
jeweiligen MVCE-Komponenten extrahiert und beschrieben werden
missen. Dies wurde fiir die Modell-Metrik T'y;, die View-Metrik Oy
und die Environment-Metrik O durchgefiihrt.

In den nun folgenden Tabellen werden die Komponenten, die aus-
schlaggebend fiir die finale Version sind, aufgefiihrt, ob es sich um Ein-
bzw. Ausgaben handelt und, wenn dies mdoglich ist, von welchem Typ
sie sind und in welchem Wertebereich sie liegen. Fiir das endgiiltige
Modell My;, ergab sich folgende Einteilung, die als Berechnungs-
grundlage der Modell-Metrik I'y; verwendet wurde:

Modell-Komponenten Eingabe Ausgabe
Heckrotor [-1,0,...,1,0] -
Seitenrotoren [—1,0,...,1,0] -

Winkel Seitenrotoren [—180,0,...,180,0]| —

Flughohe - [0,0,...,10,0]

Das Modell beschreibt hier die Ein- und Ausgaben der Hardware
des Zeppelins, die von der Software verwendet werden konnen. Der
Hohensensor wurde dabei speziell entwickelt und soll fiir die fortge-
schrittenen Steuerstrategien zum Einsatz kommen. Dabei wurde der
Hohensensor zu Anfang als Softwarekomponente realisiert, die die
Hohe des Zeppelins in der virtuellen Umgebung zuriickgibt. Spéter
wurde eine spezielle Hardwarekomponente in den Zeppelin verbaut,
die die reale Hohe des Zeppelins mit Hilfe von Luftdruck ermittelte.
Ziahlen wir die in der oben angegebenen unterschiedlichen Ein- und



Ausgabequellen fiir das endgiiltige Modell My;,, zusammen erhalten
wir einen Wert von Vier (Mg, = 4).

Fiir das Environment Ey;,,, wurden folgende Parameter fiir die Be-
rechnungsgrundlage der Environment-Metrik Qg festgestellt:

Ero“rfril;oor;r:g;; Eingabe Ausgabe
Hindernisse - Tracking
Umgebung - Tracking
Umwelteinfliisse - ,?r };zﬁﬁgp’

Beim Environment soll in spdteren Prototypen Hindernisse erkannt
und die Position der Umgebung relativ zu einer festen Kamera be-
stimmt werden, um so bestimmte Mandver ausfiihren zu konnen. Des
Weiteren sollen Umwelteinfliisse, die auf den Zeppelin wirken, wie
z.,B. Gegen- oder Seitenwind, mit Hilfe eines Gyroskops* oder eines
Camera-Tracking erkannt und darauf reagiert werden. Damit ergeben
sich laut obiger Tabelle drei Komponenten fiir das finale Environment

(Efinal = 3).

Fir den View Vg, wurden folgende Parameter fiir Oy festgelegt:

\Iéioe;r\:}-)onenten Eingabe Ausgabe

Zeppelin - Realer Zeppein

Umgebung - Reale Umgebung

Zustand Flughdhe, Positi- Visualisierung in VR/AR
on, etc.

Modell Modellparameter Zi}slilsalisierung des Mo-

Fiir den View soll der endgiiltige Prototyp der reale Zeppelin in der
realen Umgebung sein, vorzugsweise sollen bestimmte Parameter
entweder durch AR- oder durch VR-Techniken visualisiert werden.
Die Techniken richten sich dabei nach der aktuellen Darstellung. Wir

4Da sich der Zeppelin bei Gegenwind um die Querachse (pitch axis in Abbildung 5.2142) neigt, kann
er iiber tiber ein Gyroskop erkannt werden.
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erhalten somit vier Komponenten fiir finalen View ist somit (V;;, =
4).

Der eingesetzte Controller wird (zumindest bei neuen Steuerstrategi-
en) mit Hilfe von Benutzertests gewertet, um einen Wert fiir die Metrik
zu erhalten. Diese Benutzertests sind hier allerdings klein gehalten
und werden meist nur von den Entwicklern selbst ausgefiihrt. Somit
ist die Einordnung eher subjektiv.

Der erste Prototyp: Eine einfache VR Version

Wie schon im Kapitel 5.2.1144 beschrieben soll der erste Prototyp
zur Planung und Kommunikation des Entwicklungsteams dienen
und dementsprechend einfach gehalten werden. Uber diesen sehr
einfachen virtuellen Prototypen kénnen Manéver visualisiert und so
besser im Team besprochen werden.

Abbildung 5.4: Bilder aus dem ersten Prototypen.

Die Entwicklungszeit fiir diesen Prototypen war sehr kurz, dabei wur-
de die meiste Zeit die Modellierung des 3D-Modells des Zeppelins
verwendet. Das 3D Modell wurde in MiReAS als spezieller Akteur
(RenderableActor) implementiert. Uber einen KeyboardManipulator, der
auf Tastatureingaben reagieren kann, wurde die Transformation des
Zeppelins in der virtuellen Welt gesteuert. Die Umgebung wurde
durch eine einfache Bodenplatte (Groundplane) realisiert. Des Weiteren
wurden zwei einfache 3D Objekte in die Szene eingefiigt, um die der
Zeppelin gesteuert werden kann. Es wurde jedoch keine Kollisionser-
kennung in diesen Prototypen eingebaut, so dass der Zeppelin auch
durch diese Objekte gesteuert werden kann. In Abbildung 5.4 sind
einige Screenshots vom ersten Prototypen abgebildet.

Um nun tiber die Metriken festzustellen, wie weit der Prototyp entwi-
ckelt ist, muss dieser mit dem finalen Prototypen verglichen werden.
In der folgenden Tabelle werden die in dem Szenario verwendeten



Komponenten entsprechend klassifiziert und der Wert der Metrik
berechnet.

Modell-Metrik I'ps

i Typ €i

Zeppelin Transformation Virtuell 0
IMm=3=0

Der Wert fiir die Modell-Metrik I'y; ist somit fiir diesen Prototypen o,
da noch keines der erwarteten Komponenten implementiert ist. Die
Bewegung des Zeppelins tiber eine einfache Manipulation der Trans-
formationsmatrix ist eine rein virtuelle Losung fiir diesen Prototypen.

View-Metrik Oy
) Typ i
3D Modell des Zeppelins Virtuell 0,5
Virtuelle Umgebung Temporidr 0
_ 05 _
Ov="p =3

Die View-Metrik @y ist fiir diesen Prototypen §, da als einzige Kompo-
nente der Zeppelin als virtuelles 3D Modell existiert. Es ist zwar eine
virtuelle Umgebung in dem Szenario vorhanden, allerdings entspricht
es nicht der Realitét, ist also nur temporér fiir diesen Prototypen
implementiert.

Environment (E) Model (M)

View (V) Controller (C)

Abbildung 5.5: Kiviatgraph des ersten Prototypen.

Die Environment-Metrik Q) ist bei diesem Prototypen 0, da keine
Informationen der realen Umgebung, weder simuliert noch per Sensor,
ermittelt werden.

Da die Steuerung tiber die Tastatur des Computers geschieht, wur-
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den keine Benutzertests durchgefiihrt, so dass sich auch hier fiir die
Controller-Metrik ¥ 0 ergibt.

Werden nun die einzelnen Metriken auf die entsprechenden Achsen
des Kiviatgraphen abgetragen, erhalten wir den Entwicklungsstand
tiir den vorliegenden Prototypen, wie er in Abbildung 5.51¢9 darge-
stellt ist. An dem Kiviatgraphen kann man gut erkennen, dass die
Entwicklung in einem sehr frithen Stadium ist. Der einzige Wert, der
nicht Null ist, ist der View, da hier schon ein einigermafien genaues
Modell des Zeppelins als Visualisierung verwendet wird. Alle ande-
ren Komponenten sind nur tempordr, sie werden friither oder spéter
ersetzt.

Der zweite Prototyp: Virtueller Prototyp mit Physiksi-
mulation

Auf dem ersten Prototypen aufbauend wurde der zweite Prototyp
entwickelt, bei dem das realistische Verhalten des Zeppelins im Mittel-
punkt stand. Wurde im ersten Prototypen die Position des Zeppelins
tber die direkte Manipulation des Transformationsmatrix realisiert,
sollte beim zweiten Prototyp ein physikalisches Modell zum Einsatz
kommen, welches das Verhalten des Zeppelins realistisch nachbilden
sollte.

Abbildung 5.6: Bilder des zweiten Prototypen.

Um dieses Ziel zu erreichen, mussten einige Anderungen an dem
bisherigen Prototypen vorgenommen werden. Das visuelle Modell
des Zeppelins erhielt zu allererst eine Kollisionsgeometrie, so dass es
moglich war, Kollisionen mit der Umgebung zu erkennen. Da das 3D
Modell des Zeppelins, das zur Darstellung verwendet wurde, eine
zu hohe Anzahl an Polygonfldachen enthielt, musste eine vereinfachte
Version des Zeppelins fiir die Kollisionserkennung erzeugt werden. In
Abbildung 5.717 ist der Unterschied zwischen den beiden Modellen
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sichtbar. Zu Erkennen ist, dass die Geometrie zur Kollisionserkennung
gegeniiber dem visuellen 3D Modell des Zeppelins stark vereinfacht
wurde. Die Qualitdt des vereinfachten Kollisionsmodells reicht jedoch
aus, um eine genaue Simulation zu erhalten.

Abbildung 5.7: 3D Modell vs. Kollisionsmodell des Zeppelins.

In MiReAS wurde nun das Modell des Zeppelins um physikalische
Eigenschaften erweitert, indem dort der vorhandene RenderableAc-
tor durch einen PhysicalActor ersetzt wurde. Dieser beinhaltet zum
einen die 3D Geometrie, die dargestellt werden soll, zum anderen
die Kollisionsgeometrie, die unsichtbar nur fiir die physikalischen
Berechnungen genutzt wird. An diesen PhysicalActor konnen nun Ak-
tuatoren angehédngt werden, die physikalische Kréfte auf den Zeppelin
ausiiben. Einerseits existieren die physikalische Effekte wie die Auf-
triebskraft oder den aerodynamischen Widerstand und andererseits
gibt es die einzelnen Propeller des Zeppelins, die dem physikalischen
Modell zugefiigt werden miissen. Die Achse der Schubrotoren wird
tiber einen modellierten DC-Motor gesteuert. Alle Motoren und Pro-
peller beziehen sich auf den entsprechenden Knoten im 3D-Modell,
so dass diese auch die exakte Position besitzen. Damit die Drehrich-
tung der Schubmotoren in der virtuellen Umgebung besser sichtbar
ist, sind auf diese rote Kegel aufgesetzt. Abbildung 5.617y zeigt drei
Screenshots aus dem fertigen Prototypen.

Wenn wir nun die Modell-Komponente des Prototypen betrachten,
kommen wir auf folgendes Ergebnis fiir die Berechnung der Modell-
Metrik I'y;:

Modell-Metrik I'p;
0; Typ €
Physikalisches Modell Virtuell 0
Heckrotor Simuliert 0,5
Seitenrotoren Simuliert 0,5

Fortsetzung auf der niichster Seite
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Fortsetzung von der vorherigen Seite
0; Typ €i
Winkel Seitenrotoren Simuliert 0,5

Das physikalische Modell, was wir in diesem Prototypen eingebaut
haben, ist rein virtueller Natur, da es in der finalen Version durch
den realen Zeppelin gegeben ist und wir diese Eigenschaft nicht
beeinflussen konnen. Durch das physikalische Modell des Zeppelins
sind wir jedoch in der Lage, die Bewegung des Zeppelins durch die
korrekten Kréfte an den Rotoren zu simulieren. Damit erhalten wir
einen Wert von % fiir die Modell-Metrik T'p;.

Der View wurde dahingehend aufgewertet, dass Schatten dem Sze-
nario zugefiigt wurden. Durch die Visualisierung der Drehrichtung
der Rotoren wurde weiterhin eine Darstellung von Modellparametern
eingefiigt, die die Darstellung erweitert. Da sich allerdings nichts an
der visuellen Reprdsentation des Umgebung gedndert hat, ist der Wert
fiir die View-Metrik nicht viel hoher als der des ersten Prototypen:

View-Metrik Oy
wi Typ ¢i
3D Modell des Zeppelins Virtuell 0,5
Virtuelle Umgebung Temporar 0
Visualisierung Modellparameter | Virtuell 0,5

Oy =3

Zu sehen ist, dass sich der Wert fiir die View-Metrik verbessert hat,
da nun Parameter des Modells visualisiert werden und dem Benutzer
die Moglichkeit zur Kontrolle bieten. Da die Umgebung noch immer
nicht die Realitdt widerspiegelt, fliefst sie nicht in die Bewertung mit
ein.

Wie bei dem ersten Prototypen ist der Wert der Environemnt-Metrik
Qf o, da keine Daten der Umwelt der Applikation zur Verfiigung
gestellt werden.

Die Steuerung wurde tiberarbeitet und es ist nun moglich, den Zep-
pelin tiber einen Joystick oder einen Gamecontroller zu steuern. Mit
Hilfe einer Fernsteuerung, die iiber USB an den Computer angeschlos-
sen werden kann (siehe Abbildung 5.8;73) kann der virtuelle Zeppelin
genau so gesteuert werden wie der reale Zeppelin. Ein Benutzer, der
gelibt in der Steuerung des realen Zeppelins ist, kam auf Anhieb
mit der Steuerung des virtuellen Zeppelins zurecht und konnte ihn
schnell kontrolliert steuern. Um eine Einschitzung dieser Steuerung
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Abbildung 5.8: USB Fernsteuerung.

zu bekommen, wurde ein kleiner Test mit den Entwicklern und dem
geiibten Benutzer durchgefiihrt, bei dem der Zeppelin zwischen den
beiden Hindernissen in einer Acht gesteuert werden sollte, ohne dabei
die Hindernisse zu beriihren. Es wurden die Zeit und die Kollisionen
protokolliert und mit Hilfe der Contoller-Metrik ¥ der Wert 0.25
berechnet.

Die Akteure in diesem Prototypen sind somit folgendermafsen defi-
niert:

Akteur Modell View Controller | Environm.
Zeppelin X X

Heckrotor X X

Seitenrotoren X X

Kollisionsmodell X

Umgebung X X

Fernsteuerung X

Der Zeppelin wurde weiter unterteilt und es wurden der Heckrotor
und die beiden Seitenrotoren sowohl im Modell als auch im View
zugefiigt. Des Weiteren wurde die Kollisionsgeometrie dem Modell
zugeftigt, damit Kollisionen erkannt werden kénnen. Die Umgebung
findet sich auch im Modell wieder, da der Zeppelin mit den beiden
Hindernissen kollidieren kann. Die Tastatur wurde durch die USB
Fernsteuerung ersetzt und ist nun fiir die Steuerung zustandig.

In der Abbildung 5.9;74 sind nun die einzelnen Metriken in den Kiviat-
graphen eingetragen worden. Im Gegensatz zum ersten Prototypen
ist nun sowohl der Wert fiir die Modell-Metrik als auch der Wert

5Dieser Wert ist durch die kleine Gruppe an Teilnehmern jedoch nicht reprasentativ.
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Environment (E) Model (M)

View (V) Controller (C)

Abbildung 5.9: Kiviatgraph des zweiten Prototypen.

fiir die Controller-Metrik auf einen Wert > 0 gestiegen. Der Wert fiir
den View konnte sich iiber die Visualisierung der Modellparameter
verdoppeln. Die Schatten werten zwar den visuellen Eindruck auf,
spielen allerdings in der Bewertung des Views keine Rolle.

Der dritte Prototyp: Verfeinerung der Steuerung

Mit dem verbesserten Modell, das im letzten Prototypen eingebaut
wurde, verhilt sich der Zeppelin im allgemeinen Fall realitdtsnah.
Der Prototyp kann nun als Grundlage fiir die Entwicklung einer
verbesserten Steuerung verwendet werden. Im dritten Prototyp soll
nun die Steuerung verbessert werden, um die Erfolgsrate zu erhchen.
Dabei soll das Eingabegerét dasselbe bleiben wie im zweiten Prototyp,
allerdings soll der Benutzer nicht mehr direkten Einfluss auf die
einzelnen Motoren haben, sondern den Zeppelin intuitiver steuern
konnen.

Abbildung 5.10: Bilder aus dem dritten Prototypen.

Bei der zu entwickelnden Steuerung soll der Benutzer die Hohe



und den Kurs des Zeppelins angeben, woraufhin der Zeppelin dann
versucht, diese Vorgaben umzusetzen. Hierfiir wurden zunéchst vir-
tuelle Sensor-Plug-ins entwickelt, die einen Hohensensor sowie einen
Kompass(-sensor) abbilden. Zur Regelung der Hohe wurden tiber
einen PID-Regler® die Informationen des virtuellen Hhensensors in
Steuersignale der Antriebsmotoren so umgesetzt, dass sie den Zeppe-
lin auf der eingestellten Hohe halten.Da die Antriebsrotoren nur zwei
Freiheitsgrade besitzen (Vortrieb und Auftrieb), ist die Realisierung
eines solchen Reglers aufwéandig.

Zielhdéhe

resultierender
Winkel

Hohendifferenz |

Aktuelle Hé6he
Aktuelle Positiont Gewahlter Vorwartsschub

Abbildung 5.11: Berechnung des Winkels und der Leistung.

In Abbildung 5.11 ist die Methode der Berechnung zur Hohenregu-
lierung abgebildet. Dabei wird zundchst die Hohendifferenz zum
Zeitpunkt t zwischen der momentanen Hohe des Zeppelins und der
gewdhlten Hohe berechnet. Aus dem gewéhlten Vorwértsschub, den
der Benutzer eingestellt hat, kann nun der resultierende Winkel fiir
die Antriebsmotoren berechnet werden. Damit der Zeppelin sowohl
die Hohe als auch den gewdéhlten Vorwértsschub erlangt, wird die
resultierende Leistung der Motoren berechnet und eingestellt. Damit
sollte der Zeppelin rechnerisch zum Zeitpunkt ¢ + 1 an die berech-
nete Position gelangen. Da die Tragheit hier nicht mit bertiicksichtigt
wird, wurde ein PID Regler verwendet, der die Berechnung konti-
nuierlich neu berechnet und dabei versucht, starke Schwingungen
zu mindern. Abbildung 5.127¢ verdeutlicht noch einmal genau die
Zusammenhinge zwischen der Hohenreglung und dem Vorschub, die
im Rahmen einer Bachelorarbeit [Lauo8] bereits vor der Realisierung
des Prototypen konzipiert wurden.

Auch der Kurs wurde tiber einen entsprechenden Regler, der die
Informationen des Kompasssensors verarbeitet, realisiert. Die Steuer-
werte fiir den jeweiligen Kurs werden fiir den Heckrotor berechnet.
Da dieser jedoch nur einen Freiheitsgrad besitzt, ist die Implementie-
rung des Reglers einfacher als bei der Hohensteuerung. Analog zur
Kursabweichung wird die Starke des Heckrotors geregelt.

®Der Regelkreises eines PID-Reglers (proportional-integral-derivative controller) besteht aus einem
P-Anteil, einem I-Anteil und einem D-Anteil.
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Abbildung 5.12: Berechnungsgrundlage der Hohenregelung [Lauo8]

Damit der Benutzer ein Feedback der eingegebenen Hohe und des
Kurses hat, wurden diese beiden Parameter visualisiert. In Abbildung
5.10174 sind diese Visualisierungen zu sehen. Dabei gibt der blaue
Kreis die vom Benutzer eingestellt Hohe an, der gelbe Kreis die aktu-
elle Hohe des Zeppelins und das rote Kreissegment die Abweichung
des eingestellten Kurses zur aktuellen Flugrichtung.

Zum Testen der Kurskontrolle wurde in das Szenario eine virtuelle
Windquelle positioniert, In Abbildung 5.10;74 ist diese Windquelle
mit einem Drahtgitter-Zylinder in der Mitte der Szene visualisiert.
Befindet sich der Zeppelin innhalb des Wirkbereiches der virtuellen
Windquelle, wird das physikalische Modell des Zeppelins von diesem
beeinflusst.

Die Zielwerte des Kurses und der Hohensteuerung werden mit Hilfe
der Fernbedienung, die schon beim zweiten Prototypen zum Einsatz
kam, eingestellt. Solange der Benutzer Steuersignale sendet, wird
der jeweilige Zielwert eingestellt. Setzt der Benutzer die Steuerung
aus, wird der aktuelle Wert von Hohe bzw. Kurs als Zielwert fiir die
Regelung festgelegt. Dies vereinfacht die Steuerung, da die Zielwerte
direkt auf die Eingaben des Benutzers reagieren.

Bei dem dritten Prototypen hat sich weder am View noch am Modell



etwas verdndert. Dem View wurde zwar die Visualisierung der Hohe
und des Kurses hinzugefiigt, allerdings dndert das nicht den Wert
der von uns definierten View-Metrik, da schon im zweiten Prototy-
pen Parameter visualisiert wurden. Als Akteure miissen diese beiden
Visualisierungen indes mit angefiihrt werden. Das Modell ist dasselbe
wie im zweiten Prototypen, nur dass sich die Methode, wie der Be-
nutzer damit interagiert, verdndert hat. Gedndert hat sich allerdings
der Controller, der nun die Low-Level Motorsteuerung abstrahiert
und eine Hohen- und Kurssteuerung anbietet. Des Weiteren wurde
eine virtuelle Windquelle implementiert, die Umwelteinfliisse wider-
spiegelt. Damit ist die erste Komponente im Bereich Environment

integriert.
Environment-Metrik Qg
i Typ i
Umwelteinfliisse Simuliert 0,5
Oy = ¢

Wie im zweiten Prototypen wurde nur ein Benutzertest im kleinen
Rahmen unter den Entwicklern durchgefiihrt. Der Aufbau war hier
auch derselbe wie zuvor. Es sollte wieder zwischen den Hindernissen
eine Acht geflogen werden, ohne dass der Zeppelin mit den Hinder-
nissen kollidiert. Erschwerend hinzu kam die Windquelle, die sich in
der Mitte zwischen den beiden Hindernissen befand. Hier musste je-
doch nicht der Benutzer den Kurs neu setzten, sondern der Controller
musste die entstandene Kursdnderung korrigieren. Es waren nur die
Reaktionen der Benutzer interessant, da die sich auf die automatische
Kurskorrektur einrichten mussten. Nach der Bewertung berechnete
sich ein Wert fiir die Controller-Metrik von 0.457.

Fiir den dritten Prototypen ergibt sich folgende Aufteilung;:

Akteur Modell View Controller | Environm.
Zeppelin X X

Heckrotor X X

Seitenrotoren X X

Kollisionsmodell X

Umgebung X X

Fernsteuerung X

Kurs X

Hohe X

Wind X %

Neu als Akteur hinzugekommen sind der Kurs und die Hohe, die

7Der Wert wurde zur Ubersichtlichkeit im Kiviatgraphen abgerundet.
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visualisiert werden. Der virtuelle Wind, der die Umgebung wider-
spiegelt, wird dem Environment zugeordnet, hat allerdings auch eine
visuelle Représentation. Als Controller dient wie im zweiten Prototy-
pen die USB Fernsteuerung, die jetzt jedoch anders verwendet wird,
da sie nicht mehr direkt die Rotoren steuern.

Environment (E) Model (M)

View (V) Controller (C)

Abbildung 5.13: Kiviatgraph des dritten Prototypen.

Damit ergibt sich fiir den Kiviatgraphen das Bild, das in Abbildung
5.13 zusehen ist. Der Wert fiir den Controller hat sich merklich verbes-
sert und durch die Verwendung des virtuellen Windes wurde auch
die Environment-Metrik etwas erhoht. Durch die Verwendung der
neuen Steuerung ist die Kontrolle des Zeppelins einfacher geworden
und die Benutzer lernen schneller den Zeppelin zu beherrschen. Al-
lerdings benétigt diese Steuerung auch eine gewisse Lernphase, weil
die Elemente des Controllers erlernt und eingeprédgt werden miissen.

Im néchsten Schritt soll nun eine realistischere Umgebung entstehen,
um den Zeppelin unter fast realen Bedingungen steuern zu kénnen.

Der vierte Prototyp: Verbesserte real existierende Um-
gebung

Nach erfolgreichem Test der ersten verbesserten Steuerung wurde
fiir den vierten Prototypen eine verbesserte und real existierende
Umgebung angestrebt. Hierzu wurde ein 3D-Modell des Lichthofs
der Fachhochschule Diisseldorf modelliert und eingebaut, wie in
Abbildung 5.14179 zu sehen.

Das visuelle 3D Modell wurde exakt nach den architektonischen Vor-
gaben modelliert und eine daraus entwickelte, einfachere Version
diente zur Kollisionserkennung (Abbildung 5.15179). Da der Zeppelin
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Abbildung 5.14: Bilder aus dem vierten Prototypen.

in dieser Umgebung schon mehrfach geflogen wurde, konnte mit Hilfe
des realistischen Umgebungseindrucks die Steuerung und das Ver-
halten des Zeppelins besser beurteilt werden. Dies sollte noch einmal
das physikalische Modell des Zeppelins auf Korrektheit tiberpriifen.

Abbildung 5.15: 3D Modell vs. Kollisionsmodell der Umgebung.

Dieser Prototyp ist ein Zwischenschritt zur Einfiihrung der nédchsten
Verbesserung der Steuerung. Es war wichtig, dass hier die Umgebung
exakt modelliert wurde, damit im nédchsten Schritt die neue Steuerung
mit dem virtuellen und realen Zeppelin verglichen werden konnte.
Deshalb wurden hier auch die Kurs- und Hohenkontrolle wieder
durch die einfachere Steuerung aus dem zweiten Prototypen ersetzt.

Es ergeben sich fiir den vierten Prototypen folgende Akteure:

Akteur Modell View Controller | Environm.

Zeppelin X X

Heckrotor X X

Seitenrotoren X X

Kollisionsmodell X

Umgebung X X
Fortsetzung auf der nichster Seite
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Fortsetzung von der vorherigen Seite
Akteur Modell View Controller | Environm.
Fernsteuerung X

Da die neue Steuerung vom dritten Prototypen wieder entfernt wur-
de, sind auch die entsprechenden Akteure nicht mehr im Szenario
vorhanden. Die Umgebung ist nun auch im Environment vorhan-
den, da es sich um ein Abbild der realen Umgebung handelt und
der Zeppelin mit der Umgebung kollidieren kann. Dabei wird die
virtuelle Umgebung als simulierte reale Umgebung gesehen, das be-
deutet, die Applikation kann nicht auf die Daten zugreifen, aufier es
wiirde in passender Sensor existieren. Die Kollision ist dabei von der
visuellen Darstellung gekapselt. Somit erhoht sich der Wert fiir die
Environment-Metrik folgendermafien:

Environment-Metrik Qg
1 Typ )
Hindernisse Simuliert 0,5
Umgebung Simuliert 0,5

Ov =3

Die Darstellung wurde durch die real existierende virtuelle Umge-
bung aufgewertet, so dass sich der Wert der View-Metrik ein wenig
erhoht hat. Die Modellparameter aus dem dritten Prototypen (Kurs
und Hohe) wurden zwar nicht mehr visualisiert, allerdings wurde
weiterhin die Drehrichtung der Rotoren angezeigt, so dass sich der
Wert fiir die Visualisierung von Modellparametern nicht dndert.

View-Metrik Oy
wi Typ ¢i
3D Modell des Zeppelins Virtuell 0,5
Virtuelle Umgebung Virtuell 0.5
Visualisierung Modellparameter | Virtuell 0,5

oy =3

Der Wert fiir die Controller-Metrik ist derselbe wie im zweiten Pro-
totyp. Es wurden keine Benutzertests fiir die Metrik durchgefiihrt,
allerdings wurde dieser Prototypen von einem erfahrenen Anwender
ausfiihrlich getestet, um den virtuellen Prototyp und den realen Zep-
pelin vergleichen zu kénnen. Das Ergebnis war, dass sich der virtuelle
Prototypen fiir die meisten Félle hinreichend genau so verhielt, wie
der reale Zeppelin. Auf diesem Ergebnis aufbauend konnte die Arbeit
an neuen Steuerstrategien aufgenommen werden.

Im Kiviatgraphen in Abbildung 5.16g; ist die Verdnderung des vier-
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Environment (E) Model (M)

L

View (V) Controller (C)

Abbildung 5.16: Kiviatgraph des vierten Prototypen.

ten Prototypen gut zu erkennen. Der Wert der Controller-Metrik ist
wieder auf dem Niveau vom zweiten Prototypen, das Modell ist
unverdndert und die Werte vom View und vom Environment sind
gegeniiber dem Vorgdnger etwas gestiegen. Noch bewegt sich die gan-
ze Entwicklung eher im unteren Drittel des Graphen, Der Grund ist,
dass zum vorliegenden Zeitpunkt der ganze Prototyp in VR existiert
und noch keine realen Akteuere zur Anwendung gekommen sind.

Am Ende der Entwicklung des vierten Prototypen wurde die verbes-
serte Steuerung des dritten Prototypen wieder eingebaut, jedoch ohne
die Visualisierung des Kurses und der Hohe. Damit liefs sich nun
auch diese Steuerung in einer real existierenden Umgebung testen.
Die Ergebnisse sind mit denen aus dem dritten Prototypen identisch,
so dass der Wert der Controller-Metrik gleich blieb. Die griin gestri-
chelte Linie in Abbildung 5.16 zeigt diese Auspragung des vierten
Prototypen.

Der fiinfte Prototyp: Virtueller Prototyp mit einfacher
Gestensteuerung

Nachdem der Zeppelin mit der einfachen und der High-Level Steue-
rung in einer vertrauten real existierenden Umgebung getestet werden
konnte, sollte nun im fiinften Prototypen eine weitere Verbesserung
der Steuerung implementiert werden.

Die USB Fernsteuerung soll nun durch eine einfache Gestenerkennung
ersetzt werden, die Manover des Zeppelins intuitiver ausfiihren soll.
Der Zeppelin soll tiber die Kommandos Hoch, Runter, Links, Rechts,
Vorwirts und Riickwirts gesteuert werden. Diese Kommandos sollen in
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Abbildung 5.17: Bilder aus dem fiinften Prototypen.

moglichst intuitive Gesten gewandelt werden. Die Gesten sollen mit
Hilfe der Wiimote, einem Eingabegerit der Spielekonsole Nintendo
Wii, das tiber einen 3-Achsen Beschleunigungssensor die Lage des
Controllers im Raum erkennen kann, in die entsprechenden Komman-
dos umgesetzt werden. Die Wiimote kann tiber Bluetooth mit Hilfe der
Bibliothek OIS [Cas10] in MiReAS genutzt werden. Fiir ein genaues
Tracking ist der 3-Achsen Sensor, der in der Wiimote verbaut wurde,
zu unprézise, allerdings reicht er fiir eine Gestenerkennung aus. Auf
Basis der Accelerometer Gesture Recogniser Bibliothek (AGR), die
mit Hilfe der Hidden Markov Modellen (HMMs) [SPHBo8] eine Ges-
tenerkennung realisiert® wurde ein Plug-in fiir MiReAS entwickelt.
AGR erlaubt Gesten fiir 3D Beschleunigungsdaten zu trainieren und
trainierte Gesten zu erkennen.

) E
Vorwarts \ Riickwirts

—

S

Abbildung 5.18: Gesten zur Schubkraftregulierung des Zeppelins.

Die Kommandos fiir die Steuerung des Zeppelins wurden iiber ent-
sprechende Gesten realisiert. In Abbildung 5.191g3 und Abbildung
5.18 sind die Gesten dargestellt, die den Zeppelin steuern. Sie wur-
den mit dem von AGR mitgelieferten Programm ,GestureCreator”
trainiert und die entsprechenden HMM-Modelle zur Erkennung der

8Weitere Details der Realisierung der Gestenerkennung sind in der Masterarbeit von Pogsche-
ba [Pogog], zu finden.

182



Gesten in MiReAS importiert. Beim Training der Gesten wurde die
Bewegung mehrfach aufgenommen, um so Fehler bei der Eingabe zu
kompensieren. Bei der Erkennung der Gesten haben sich gekriimmte
Bewegungen robuster gegentiber Fehlinterpretationen erwiesen, bei
geradlinigen Bewegungen traten zu viele Fehlerkennungen auf.

Die Schubkraft des Zeppelins nach vorne bzw. hinten wird tiber
den Neigungswinkel der Wiimote geregelt, wie in Abbildung 5.18;g,
dargestellt. Dieser kann iiber den 3-Achsen Beschleunigungssensor
direkt berechnet werden. Um eine gewisse Toleranz fiir die Ruhelage
der Wiimote zu gewdhrleisten, wurde der Neigungswinkel erst ab
einem bestimmten Schwellwert berticksichtigt.

Abbruch
Links Rechts

- Hoch

Runter

Abbildung 5.19: Gesten zur Navigation des Zeppelins.

Soll der Zeppelin nach links oder rechts fliegen, muss der Benutzer die
Wiimote mit einem schnellen Impuls in die entsprechende Richtung
bewegen. Soll der Zeppelin hoch oder runter fliegen, muss entspre-
chend die Wiimote mit einem schnellen Impuls in die gewtinschte
Richtung bewegt werden. Damit diese Gesten nicht fdlschlicherwei-
se, beisielsweise bei der Einstellung der Schubkraft, erkannt werden
konnen, muss der Benutzer die B-Taste der Wiimote wihrend der Ein-
gabe der Geste gedriickt halten (angedeutet durch die rot eingefdrbten
Taste in Abbildung 5.19). Dadurch wird gewéhrleistet, dass bei unge-
wollten Bewegungen der Wiimote keine Gesten erkannt werden. Ist
eine Geste erkannt, wird die Aktion, die mit der Geste verbunden ist,
so lange ausgefiihrt, bis der Benutzer die Abbruch-Geste ausfiihrt. Da-
durch werden alle Aktionen, die der Zeppelin gerade ausfiihrt, ohne
Verzogerung abgebrochen. Die Geste fiir den Abbruch aller Aktionen
sollte fiir den Benutzer einfach zu merken und auch einfach in der
Ausfiihrung sein, so dass sie schnell in Notsituationen ausgefiihrt
werden kann. Die Entscheidung fiel auf das Schiitteln der Wiimote,
da diese Geste auch schon erfolgreich z. B. beim iPhone von Apple als
entsprechende Geste bekannt war.

Diese Art von Steuerung vereinfacht die Benutzung des Zeppelins,



da sich der Benutzer nur fiinf Gesten fiir die jeweiligen Kommandos
merken muss. Die Schwierigkeit in der Steuerung liegt jedoch nun in
der strikt sequenziellen Ausfithrung der Kommandos. Es ist mit den
vorgestellten Gesten nicht moglich, eine Kurs- bzw. Hohendnderung
wihrend der Vorwirts oder Riickwértsbewegung des Zeppelins zu
initiieren, die Kommandos werden hier strikt getrennt. Das bedeutet
bei einer Kurs- bzw. Hohendnderung, dass der Benutzer den Schub
auf Null zuriicksetzten und die Geste zur Kurs- bzw. Héhendnderung
ausfiihren muss. Sobald der gewtinschte Kurz bzw. die gewtinschte
Hohe erreicht ist, muss der Benutzer die Aktion durch die Abbruch-
geste beenden und kann dann wieder den Schub des Zeppelins setzen.
Soll sowohl Kurs als auch Hohe verdandert werden, muss dies auch
sequenziell geschehen, z. B. kann erst die Hohe und danach der Kurs
gedndert werden. Es wire auch eine parallele Ausfithrung der einzel-
nen Aktionen moglich gewesen, allerdings hétte das zu einer sehr viel
komplizierteren Steuerung gefiihrt.

Bei dem fiinften Prototypen ergab sich somit folgende Aufteilung der
Akteure:

Akteur Modell View Controller | Environm.
Zeppelin X X

Heckrotor X X

Seitenrotoren X X

Kollisionsmodell X

Umgebung X X
Wiimote X

Gestenerkennung X

Kurs X

Hohe X

Die Visualisierung der Hohe und des gewihlten Kurses wurde wieder
eingebaut, so dass der Benutzer ein Feedback bekam. Anstatt der USB
Fernsteuerung wurde nun die Wiimote eingebunden und zusétzlich
die Gestenerkennung als Plug-in eingebaut. Die anderen Akteure
waren dieselben wie im vierten Prototypen.

Auch bei diesem Prototypen wurde ein kleiner Benutzertest mit den
Entwicklern und einem erfahrenen Benutzer, der den Zeppelin mit
der normalen Fernbedienung sehr gut steuern konnte, durchgefiihrt.
Die gestellte Aufgabe war, den Zeppelin einmal schnellstméglich um
den Lichthof zu steuern, ohne dabei mit der Umgebung zu kollidieren.
Es zeigte sich, dass der erfahrene Benutzer mit der Fernbedienung
aus dem vierten Prototypen schneller die Aufgabe 16ste, jedoch war
die Fehlerrate und auch die Zeit, die die unerfahrenen Entwickler
bendtigten, mit der Gestensteuerung sehr viel besser. Es wurde ein



Wert von 0.65 (gerundet) fiir die Controller-Metrik berechnet.

Environment (E) Model (M)

View (V) Controller (C)

Abbildung 5.20: Kiviatgraph des fiinften Prototypen.

Im Kiviatgraphen ist zu sehen, dass sich die Gestensteuerung iiber die
Wiimote positiv auf die Controller-Metrik ausgewirkt hat. Die anderen
Werte sind in Bezug auf den vierten Prototypen gleich geblieben, weil
sich nur die Steuerung gedndert hat.

5.2.7 Der sechste Prototyp: Virtueller Prototyp mit verbesser-
ter Physiksimulation

Nach erfolgreichen Tests der ersten Konzepte fiir neue Interaktions-
techniken sollte nun in diesem sechsten Prototypen eine verbesserte
physikalische Simulation eingebaut werden.

B

-

Abbildung 5.21: Bilder des sechsten Prototypen (einfache Umgebung).

Anstatt der aktuell implementierten Game-Physik Bibliothek, die die
Simulation des Zeppelins {ibernimmt, soll ein komplexes und prazises
physikalisches Modell des Zeppelin mit Hilfe des Softwarepaketes
Software MATLAB/Simulink [Mat11a, Mat11b] erstellt und simuliert
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werden. Fir MATLAB /Simulink existiert eine Vielzahl an Toolbo-
xen, die Funktionsbldcke zur Verfiigung stellen. Diese sind teilweise
von Universitdten bzw. ambitionierten MATLAB/Simulink Benutzern
erstellt worden und stehen zur freien Verfiigung. Daher ist MAT-
LAB/Simulink fiir prazise Simulation sehr gut geeignet und wird
auch in der Industrie und Forschung héufig fiir die Losung solcher
Probleme eingesetzt.

Das Modell des Zeppelins sollte unabhingig von MiReAS entwi-
ckelt und simuliert werden. Um eine Kopplung zwischen der Softwa-
re MiReAS und MATLAB/Simulink zu realisieren, wurde zunichst
COMMUVIT benutzt, das auch schon bei der Kopplung von Virtools
und MATLAB/Simulink Modellen Verwendung fand (siehe Kapi-
tel 4.5.113¢). Da es sich bei COMMUVIT um eine externe, einzeln
ausfithrbare Anwendung handelte, haben wir uns indes fiir eine in-
tegrierte Losung entscheiden, die in MiRaAS integriert wurde. So
wurde ein spezielles Netzwerk-Plug-in sowohl in MiReAS als auch in
MATLAB/Simulink eingebaut, das es erlaubt, zwischen den beiden
Programmen zu kommunizieren. Wichtig dabei ist, dass die Ubertra-
gung der Daten synchron geschieht, so dass keine Probleme bei der
Kopplung entstehen konnen. Dies ist insbesondere wichtig bei Ubert-
ragungen von externen Kriften und Impulsen zum physikalischen
Modell.
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Abbildung 5.22: Das MATLAB/Simulink Modell des Zeppelins.

In Simulink werden die Bewegungsgleichungen berechnet, die Pog-
scheba in seiner Masterarbeit [Pogog] erarbeitet und implementiert
hat. Hierzu wird ein spezieller Equations of Motion-Block in MAT-
LAB/Simulink erstellt, wie in Abbildung 5.22 zu sehen ist. Dieser
Block fiihrt eine doppelte Integration von Kraft und Drehmoment aus,



um die korrekte Position und Orientierung zu errechnen. In dem Mo-
dell existieren des Weiteren Blocke zur Simulation der Corioliskraft,
des aerodynamisches Widerstandes, der Auftriebskraft und der An-
triebsmotoren. Die so berechneten Kréfte werden summiert und dem
Block, der fiir die Bewegungsgleichungen zustindig ist, bereitgestellt.
Dieser errechnet mit den Werten die Position, Orientierung und Ge-
schwindigkeit des Zeppelins und sendet diese Informationen iiber den
Block ,SimCom”, der eine Netzwerkschnittstelle kapselt, an MiReAS.
Die von MiReAS empfangenen Daten kénnen nun benutzt werden,
um das visuelle Modell des Zeppelins korrekt auszurichten und zu
animieren. Die Informationen {iber die Motorleistungen, die tiber den
Controller eingestellt werden, und weitere externe Kréfte, liefert Mi-
ReAS im Gegenzug an das MATLAB/Simulink Modell zurtick. Auf
dieser Basis berechnen sich dann die neuen Werte fiir den nédchsten
Simulationsschritt.

Das in MATLAB/Simulink entworfene Modell des Zeppelins ist allei-
ne schon durch die Verwendung der exakten Berechnungsmethoden
genauer als die allgemeine Festkorpersimulation der Game-Physik
Engine. Um eine noch genauere Simulation zu erhalten, kénnten z. B.
Verfahren, die in [Koro6] vorgestellt wurden, implementiert werden.
Das implementierte Modell des Zeppelins reicht allerdings komplett
fiir unsere Zwecke aus, so dass auf eine weitere Verfeinerung verzich-
tet wurde.

Eine Kollisionserkennung wurde der Einfachheit halber direkt in
MiReAS mit Hilfe von PAL (Physics Abstraction Layer, siehe Kapi-
tel 4.5.2148) implementiert. Kontaktpunkte zwischen dem Zeppelin
und anderen Objekten werden mit Hilfe von PAL generiert, nach
MATLAB/Simulink geschickt und dort in Impulse und Kréfte umge-
rechnet, die den Zeppelin vom Kollisionsobjekt abstofien, um so eine
Durchdringung der beiden Objekte zu verhindern. Leider funktio-
nierte die Kollisionsverarbeitung mit Hilfe von PAL nicht so gut wie
die Kollisionserkennung der Game-Physik Engine. Hier wire Bedarf
der Verbesserung, auf die jedoch aus zeitlichen Griinden verzichtet
wurde.

Betrachten wir nun die Akteure, die sich in diesem Prototypen wie-
derfinden, so erhalten wir folgende Aufteilung:

Akteur Modell View Controller | Environm.
Zeppelin X
Heckrotor X X
Seitenrotoren X X
Fortsetzung auf der niichster Seite




Fortsetzung von der vorherigen Seite

Akteur Modell View Controller | Environm.
Kollisionsmodell X

Simulink Modell X

Kommunikation X

Umgebung X X
Wiimote X

Gestenerkennung X

Kurs X

Hohe X

Durch die Auslagerung des Zeppelin-Modells nach MATLAB/Simu-
link ist in MiReAS nur noch das visuelle Zeppelinmodell vorhan-
den. Hinzu kam das Simulink-Modell, das extern die physikalischen
Berechnungen ausfiithrt und sie MiReAS zur Verfiigung stellt. Da-
zu wird ein Kommunikations-Akteur benétigt, der Daten von MAT-
LAB/Simulink empfangt bzw. diese dorthin sendet.

Der Wert fiir die Modell-Metrik hat sich nun gedndert, da nun auch
noch die Berechnung der Flughohe hinzukam:

Modell-Metrik T"js

0 Typ €i
Physikalisches Modell Virtuell 0
Heckrotor Simuliert 0,5
Seitenrotoren Simuliert 0,5

Winkel Seitenrotoren Simuliert 0,5
Flughthe Simuliert 0,5

Im=3=3

Zu Beginn der Entwicklung dieses Prototypen wurde auf eine ein-
fache Umgebung und eine einfache Steuerung zuriickgegriffen, um
sich auf die Entwicklung des Modells in MATLAB/Simulink bzw.
die Kommunikation zwischen MiReAS und MATLAB/Simulink zu
konzentrieren. Bilder aus dieser Phase sind in Abbildung 5.21;g5 zu
sehen. Spiter wurde allerdings wieder in dieselbe Umgebung und
auf dieselbe Steuerung wie in Prototyp 5 umgestellt, so dass sich fiir
diese beiden Varianten des sechsten Prototypen folgender Kiviatgraph
ergab:

Die Punkte, die mit der transparent-gestrichelten Linie verbunden
sind, reprasentieren den Prototypen mit der einfachen Steuerung und
Umgebung, die anderen den endgiiltigen sechsten Prototypen. Das
Modell ist etwas verbessert, da nun auch die Flughohe mit simuliert
wird.
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Environment (E) Model (M)
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View (V) Controller (C)

Abbildung 5.23: Kiviatgraph des sechsten Prototypen.

5.2.8 Der siebte Prototyp: Virtueller Prototyp in realer Umge-
bung

Die Entwicklung der virtuellen Prototypen ist nun bis auf wenige Klei-
nigkeiten abgeschlossen. Als néchster Schritt folgt nun der Ubergang
von der virtuellen Umgebung in den realen Raum.

Abbildung 5.24: Bilder des siebten Prototypen.

Hierzu wird die virtuelle Umgebung aus aus dem Prototypen entfernt.
Das Kollisionsmodell wird jedoch beibehalten, um die Interaktion zwi-
schen realem Raum und virtuellem Zeppelin zu ermoglichen. Die
entfernte virtuelle Umgebung wird durch ein Live-Video desselben
Raumes ausgetauscht. Um die reale Umgebung sowohl mit dem vir-
tuellen Zeppelin als auch mit dem Kollisionsmodell zu registrieren,
werden in der realen Umgebung Marker an definierten Punkten plat-
ziert (Abbildung 5.24). Diese Marker kénnen von MiReAS erkannt
werden und stellen eine Beziehung zwischen der virtuellen und rea-
len Welt her. Erst tiber diese Beziehung ist es moglich, den virtuellen
Zeppelin im realen Raum fliegen zu lassen und auch auf die reale
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Umgebung zu reagieren.?

Bei diesem Prototypen wiirde sich zur Visualisierung der Szene ein
Head-Mounted Display (HMD) anbieten, wir haben uns allerdings fiir
eine normale Videokamera entschieden, da wir so auch in der Lage
waren, nachtrdglich mit Hilfe des aufgenommenen Videomaterials
Offline-Versuche durchzufiihren. Bei den Aufnahmen stellten sich
schnell einige Probleme beim Tracking der Marker heraus. Sind die
mit 20cm Grofie relativ grofien Marker zu weit entfernt, konnte ein
durchgéngiges Verfolgen der Marker nicht immer garantiert werden.
Auch spielte die Ausleuchtung und der Winkel zwischen Marker
und Kamera eine grofie Rolle bei der Erkennung. Diese Probleme
sind jedoch bei visuellem Markertracking bekannt und kénnen durch
geschickte Platzierung und gute Ausleuchtung behoben werden.

Ein weiteres Problem sind Verdeckungen von virtuellen Objekten
mit realen Objekten. Da nur das Videobild vorhanden ist, fehlen die
Tiefeninformationen, um das virtuelle Modell verdecken zu konnen.
Hier kann jedoch das Kollisionsmodell verwendet werden, das bei
der Berechnung der sichtbaren Pixel erkennen ldsst, ob das Videobild
oder das virtuelle Objekt zu sehen ist. So kann entweder das Pixel
vom Videobild oder das Pixel vom Zeppelin je nach Entscheidung
gezeichnet werden. Diese Methode kann direkt auf modernen Gra-
tikkarten entschieden werden und benétigt kaum Rechenzeit. Diese
Technik wurde u. A. in der Arbeit ,Entwicklung virtueller Kreaturen
in 3D- und AR-Umgebungen” [GSSo4c] vorgestellt.

Bei den Akteuren hat sich im siebten Prototypen Folgendes gedndert:

Akteur Modell View Controller | Environm.
Zeppelin X
Heckrotor X
Seitenrotoren X
Kollisionsmodell
Simulink Modell
Kommunikation
Umgebung X
Fernsteuerung X

X X X X X

Da in diesem Prototypen der Schwerpunkt auf die Integration des
virtuellen Zeppelins in die reale Umgebung gelegt wurde, haben
wir die Gestensteuerung wieder durch die einfache USB Fernbedie-
nung ersetzt. So konnte uns der getibte Benutzer ein Feedback iiber
die Qualitdt der Visualisierung und des Modells geben, da er diesel-

9Vorraussetzung zur realistischen Interaktion zwischen virtuellem Zeppelin und realer Umgebung
ist die exakte Modellierung des Kollisionsmodells.



ben Mandver einmal mit dem virtuellen Prototypen und einmal mit
dem realen Zeppelin nachfliegen und beurteilen konnte. Hier zeigte
sich ein weiteres Mal, dass das physikalische Modell, das in MAT-
LAB/Simulink berechnet wurde, sehr exakt war. Leider war, wie auch
schon zuvor erwdhnt, die Kollisionserkennung zwischen Zeppelin
und Kollisionsmodell teilweise unprizise und trdge. Da keine visuelle
Reprasentation der Umgehung mehr in dem Prototypen vorhanden
war, entfiel auch der entsprechende Akteur. Somit war die Umge-
bung nur noch durch einen Environment Akteur reprasentiert, hinter
dem ein Tracking System stand. Das Tracking System erkannte die
visuellen Marker in der Videoaufnahme und berechnete daraus die
die Position und Orientierung des Kollisionsmodells. Uber die La-
ge des Kollisionsmodells konnten nun die Kollisionskréfte zwischen
dem Zeppelin und der Umgebung in MATLAB/Simulink berechnet
werden.

So ergab sich fiir die Environment-Metrik folgernder Wert:

Environment-Metrik Q)
i Typ oi
Hindernisse Simuliert 0,5
Umgebung Real 1

Ov =3

Die Hindernisse sind zwar der realen Umgebung angepasst, allerdings
wird die Kollision noch simuliert. Die Umgebung ist komplett real
und muss mit Hilfe eines Trackingverfahrens erkannt werden. Da eine
bekannte Umgebung gewdhlt wurde, reicht ein einfaches visuelles
Marker-Tracking aus, um die Position und Orientierung der Kamera
im Raum zu berechnen und damit sowohl den Zeppelin als auch das
Kollisionsmodell auszurichten.

An der View-Metrik hat sich auch etwas gedndert, da nun nicht eher
die virtuelle, sondern die reale Umgebung visualisiert wird.

View-Metrik Oy
w; Typ i
3D Modell des Zeppelins Virtuell 0,5
Umgebung Real 1,0
Visualisierung Modellparameter | Virtuell 0,5

Ov =3

Die Visualisierung der realen Umgebung lief} den Wert der View-
Metrik nun auf J ansteigen. Durch diese Veranderungen ergibt sich
folgender Kiviatgraph:



5.2.9

Environment (E) Model (M)

View (V) Controller (C)

Abbildung 5.25: Kiviatgraph des siebten Prototypen.

Die Werte der Environment-Metrik und der View-Metrik sind gestie-
gen, da jedoch die einfachere Steuerung wieder benutzt wurde, ist
der Wert der Controller-Metrik gefallen. Fiir die Modell-Metrik ist der
Wert gleich geblieben bzgl. des sechsten Prototypen, da auch hier das
MATLAB/Simulink Modell aus dem sechsten Prototypen verwendet
wurde.

Der achte Prototyp: Realer Zeppelin mit AR-Unterstiit-
zung und verbesserter Steuerung

Die folgende Iteration konnte leider auf Grund fehlender Hardware-
unterstiitzung nur theoretisch betrachtet werden. Es wurde allerdings
das Konzept entwickelt und kénnte in Zukunft umgesetzt werden,
wenn die Hardware entwickelt wurde. Im achten Prototypen geht
es um die Einbindung des realen Zeppelins mit der im dritten Pro-
totypen aus Kapitel 5.2.4174 vorgestellten Steuerung. Hierzu soll die
Fernbedienung des Zeppelins (Abbildung 5.26193, rechts) iiber USB
mit den entsprechenden Werten fiir die Motorensteuerung gespeist
werden. Die Moglichkeit, die Fernsteuerung tiber USB anzusteuern
ist allerdings nicht fertig entwickelt.

In den Zeppelin wird ein Embedded System Modul eingebaut, das
aus einer Controller-Einheit, einem Hohensensor und einem Kompass
besteht. Links in Abbildung 5.261¢3 ist die Platine des Moduls zu se-
hen, wie es in der Gondel des Zeppelins platziert ist. Das Modul soll
spater komplett fiir die Kurs- und Hohenregelung alleine zustdndig
sein, zundchst jedoch werden die Daten der beiden Sensoren {iber die
Fernbedienung an MiReAS weitergeleitet. Mit diesen realen Werten
kann die schon entwickelte Steuerung arbeiten und es ist moglich,



Abbildung 5.26: Zeppelinplatine und Fernbedienung mit USB Modul

den Algorithmus zur Kurs- bzw. Hohenregulierung auch mit dem
realen Zeppelin zu testen. Spéater kann dieser Algorithmus dann auf
das Embedded System Modul tibertragen werden und so autonom
die Regelung tibernehmen. In diesem Prototypen soll der Zeppelin
mit Hilfe eines Trackings verfolgt werden, um so die gelieferten Wer-
te auch validieren zu kénnen. Dabei konnen die Position und die
Hohendaten durch AR-Techniken am getrackten Zeppelin visualisiert
werden. Alternativ zum Embedded System Modul kénnte auch das
Tracking die Informationen zum Kurs und zur Hohe liefern.

Im achten Prototypen haben wir demzufolge diese Akteure:

Akteur Modell View Controller | Environm.
Zeppelin X X
Heckrotor X

Seitenrotoren X

Kollisionsmodell X
Umgebung X
Umwelteinfliisse X
Kommunikation X

Fernsteuerung X

Flughohe X X

Kurs X X

In diesem Prototypen befindet sich der realen Zeppelin in der realen
Umgebung, allerdings wird immer noch ein Modell des Zeppelins
zur Berechnung des Kurses und der Hohenregulierung benétigt. In
diesem Modell sind Heck- und Seitenmotoren vorhanden, da die Um-
drehung und der Stellwinkel fiir diese am realen Zeppelin berechnen
werden miissen. Die Umgebung und die Umwelteinfliisse sowie das
Kollisionsmodell gehoren hierbei zum Environment. Die Kommuni-
kation zwischen der Fernbedienung und dem MiReAS System muss
als Akteur vorhanden sein, damit die benétigten Daten empfangen
werden konnen.



Bei der Betrachtung der Environment-Metrik kann folgender Wert
ermittelt werden:

Environment-Metrik Qg

i Typ di

Hindernisse Real 1,0

Virtuelle Umgebung Real 1,0

Umwelteinfliisse Real 1,0
Oy=1

Hier haben wir nun einen Wert von 1, so dass wir alle im Vorfeld
definierten Punkte realisiert haben. Der Wert fiir die View-Metrik sieht
dementsprechend so aus:

View-Metrik Oy
w; Typ i
3D Modell des Zeppelins Real 1,0
Umgebung Real 1,0
Visualisierung Modellparameter | Real 1,0
Visualisierung Zustandsparame- Real e
ter

Oy =1

Auch bei dieser Metrik ermitteln wir einen Wert von 1, da alle Vor-
gaben erreicht worden sind. Dasselbe gilt auch fiir den Wert der
Modell-Metrik:

Modell-Metrik I'p;

0; Typ €;
Physikalisches Modell Virtuell 0
Heckrotor Real 1,0
Seitenrotoren Real 1,0
Winkel Seitenrotoren Real 1,0
Flughcthe Real 1,0

I'm=1

Wir benétigen immer noch ein virtuelles physikalisches Modell, um
den Kurs und die Hohenregulierung zu realisieren. Alle anderen
Bestandteile des Modells spiegeln die realen Bauteile des Zeppelins
wieder. Auch die Flughohe ist ein realer Wert, der iiber den Hohen-
sensor im Zeppelin gemessen wird.

Zusammenfassend ergibt sich nun folgender Kiviatgraph:

Wir machen hier die Annahme, dass der Wert der Controller-Metrik
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Environment (E) Model (M)

*

View (V) Controller (C)

Abbildung 5.27: Kiviatgraph des achten Prototypen.

demselben Wert aus dem dritten Prototypen aus Kapitel 5.2.4174 ent-
spricht, da es sich um dieselbe Steuerung handelt. Da wir diesen
Prototypen nur konzeptionell entwickelt haben, konnten wie keine
Benutzertests durchfiihren. Wir hitten nun den Prototypen in den drei
tibrigen Metriken soweit entwickelt, wie wir es zuvor festgelegt hatten.
Bei der Entwicklung kann nun der Schwerpunkt auf eine verbesserte
Steuerung gelegt werden.

5.2.10 Der neunte Prototyp: Realer Zeppelin mit AR-Unterstiit-
zung und verbesserter Hardware-Steuerung

Der neunte Prototyp ist eine konsequente Weiterentwicklung des
achten Prototypen und konnte daher nur konzeptionell entwickelt
werden. Die Steuerung ist in diesem Prototypen nun komplett auf
dem Embedded System umgesetzt worden, nachdem die Algorithmen
zundchst im achten Prototypen mit MiReAS getestet worden sind.

Abbildung 5.28: Bilder des neunten Prototypen.
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Wie im achten Prototypen werden Informationen direkt an dem mit
Markern verfolgten Zeppelin visualisiert. Hierzu gehoren die Anzeige
des zurtickgelegten Pfades sowie die aktuelle Richtung, in der sich der
Zeppelin bewegt. Des Weiteren werden die Positionsdaten tiber dem
Zeppelin angezeigt. Durch ein entsprechendes Plug-in werden diese
Zusatzinformationen im Kreis um den Zeppelin angeordnet. Leider
konnte die Hohenregelung auf Grund der fehlenden Anbindung
der Fernbedienung an MiReAS, die die Sensor- und Reglerdaten
senden sollte, nicht visualisiert werden. Aus demselben Grund konnte
auch die Gestensteuerung nicht in diesen Prototypen implementiert
werden.

Environment (E) Model (M)
\%

View (V) Controller (C)

Abbildung 5.29: Kiviatgraph des neuneten Prototypen.

Gerne hitten wir die Gestensteuerung des fiinften Prototypen aus
Kapitel 5.2.613; eingebaut, jedoch war das wegen der fehlenden Anbin-
dung der Fernbedienung an MiReAS nicht mdoglich. Da sich ansonsten
an diesem Prototypen gegeniiber dem achten Prototyp nichts weiter
gedndert hat als die konzeptionelle Idee der Gestensteuerung, dndert
sich am Kiviatgraph auch nur der Wert der Controller-Metrik. Der
hier eingetragene Wert ist einfach vom fiinften Prototypen tibertragen
worden, wiirde man den Prototypen realisieren, miisste man den Wert
allerdings noch validieren.

5.2.11 Der zehnte Prototyp: Realer Zeppelin in virtueller Um-
gebung

Auch dieser Prototyp wurde nur konzeptionell entwickelt, es wurde
jedoch schon teilweise mit der Entwicklung begonnen. Leider war der
Prototyp zum Zeitpunkt des Verfassens dieses Textes noch nicht fertig,
so dass hier nur auf Teilergebnisse zuriickgegriffen werden kann.
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Abbildung 5.30: Konzeptbilder des zehnten Prototypen.

In diesem Prototypen wird gezeigt, dass bei der Weiterentwicklung
der Steuerung wieder zuriick in die Virtualitat gewechselt werden
kann. Allerdings soll hier nicht der virtuelle Zeppelin zum Einsatz
kommen, sondern der reale Zeppelin, der sich in einer virtuellen
Umgebung bewegt. So ist es moglich, neue Konzepte der Steuerung
direkt am realen Zeppelin zu testen, jedoch die Gefahr zu minimie-
ren, den Zeppelin zu beschddigen. Denkbar wére ein intelligentes
Steuersystem, das Fehler des Benutzers erkennt und zu korrigieren
versucht. Beispiel hierfiir wére eine Kollisionsvermeidung auf Basis
von Ultraschallsensoren, die den Abstand des Zeppelins zu moglichen
Hindernissen misst und ggf. in die Steuerung eingreift, sollte sich der
Zeppelin einem Hindernis ndhern.

Damit im Zuge der Testreihen dieser Ausweichstrategien der Zeppe-
lin nicht beschéddigt wird, bietet sich hier eine virtuelle Umgebung
an, in der sich der Zeppelin bewegt. Eine virtuelle Umgebung bietet
ein hohes Maf$ an Kontrolle, da die Gestaltung der Umgebung frei
gewdhlt werden kann, um darin dann die Steuerung zu testen. Wei-
terhin kénnten virtuelle Kréfte, wie schon im dritten Prototypen aus
Kapitel 5.2.4174 vorgestellt, eingebaut werden, die die Steuerung des
Zeppelins erschweren und den intelligenten Steueralgorithmus testen
sollen.

Um virtuelle Kréfte und Kollisionen mit virtuellen Objekten zu rea-
lisieren, muss auf die Rotorensteuerung des Zeppelins zugegriffen
werden. Kollidiert der Zeppelin mit einem virtuellen Objekt, muss die
resultierende Kraft und die Richtung berechnet werden und der Zep-
pelin in diese Richtung gesteuert werden. Dabei wird die Kontrolle
der Benutzers bzw. des intelligenten Algorithmus fiir kurze Zeit aufSer
Kraft gesetzt. Leider funktioniert diese Methode nur bedingt, da bei
hohen Impulsen, die normalerweise bei Kollisionen auftreten, der Zep-
pelin durch seine Tragheit nicht sofort seine Richtung &ndert. Fiir den
Test einer Steuerung ist dieser Nachteil allerdings zu vernachléssigen.



Um eine virtuelle Umgebung zu realisieren, wiirde man den Zeppelin
in einer ausreichend groflen Halle fliegen lassen. Uber ein festinstallier-
tes Tracking-System, das die Position einer Kamera (oder eines HMDs)
in dieser Halle ermittelt, kann nun die virtuelle Umgebung eingeblen-
det werden. Der Benutzer muss nun entweder {iiber einen Monitor
oder iiber ein HMD den Zeppelin in dieser virtuellen Umgebung
fliegen. Um virtuelle Objekte auch vor dem realen Zeppelin darstellen
zu konnen, miisste auch der Zeppelin mit Hilfe des Tracking-Systems
verfolgt und die Position im Raum bestimmt werden. So kann bei
der Bilddarstellung entschieden werden, welches Objekt ndher zum
Betrachter liegt und somit dargestellt wird.

Betrachten wir die Environment-Metrik bei diesem Prototypen, erhal-
ten wir folgenden Wert:

Environment-Metrik Qf
i Typ di
Hindernisse Virtuell 0,5
Virtuelle Umgebung Real 0,5
Umwelteinfliisse Virtuell 0,5

Ov = 3

Da die komplette Umgebung wieder virtuell ist, erhalten wir einen
Wert von 3. Bei der View-Metrik haben wir folgende Aufteilung:

View-Metrik Oy
w; Typ i
3D Modell des Zeppelins Real 1,0
Umgebung Virtuell 0,5
Visualisierung Modellparameter | Real 1,0
Visualisierung Zustandsparame- Virtuell 0,5
ter

oy =1

Die Umgebung und die Zustandsparameter sind virtuell’®, Modell-
parameter und der Zeppelin sind real, so dass sich ein Wert fiir die
View-Metrik von 3 ergibt. Am Wert der Model-Metrik verandert sich
nichts, da es sich um den realen Zeppelin handelt und somit die rea-
len Baugruppen angesprochen werden. Ein virtuelles physikalisches
Modell muss indes immer noch vorhanden sein, um Kollisionskrifte
berechnen zu kénnen.

°Die Zustandsparameter beziehen sich auf die virtuelle Umgebung und sind aus diesem Grund als
virtuell anzusehen.
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Environment (E) Model (M)
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Abbildung 5.31: Kiviatgraph des zehnten Prototypen.

In Abbildung 5.31199 ist der Kiviatgraph fiir den zehnten Prototypen
zu sehen. Es wurde angenommen, dass die Steuerung aus dem neun-
ten Prototypen verwendet wurde. Fiir die intelligente Steuerung kann
leider keine Angabe iiber den Wert der Controller-Metrik gemacht
werden, da diese Steuerung nur konzeptionell existiert. Man erkennt,
dass der Wert fiir das Environment und fiir den View geringer ist als
im neunten Prototypen, da die virtuelle Umgebung verwendet wird.
Das Modell bleibt jedoch bezogen auf den neunten Prototypen gleich.

Zusammenfassung

In diesem Kapitel wurde beschrieben, wie sich eine nicht triviale
Applikation mit dem MRiL-Entwurfsvorgehens entwickeln lasst. Mit
Hilfe der Software MiReAS, die das MRiL-Entwurfsvorgehen un-
terstiitzt, wurden insgesamt sieben Prototypen komplett und drei
Prototypen konzeptionell entwickelt. Die Aufteilung der Applikation,
einerseits in die MVCE-Komponenten und andererseits in Akteure,
hat die Entwicklung der Prototypen beschleunigt. Da am Anfang
der Entwicklung definiert wurde, wie der endgiiltige Prototyp ausse-
hen sollte, konnte mit Hilfe der vorgestellten Metriken der Entwick-
lungsstatus tiber einen Kiviatgraphen grafisch angegeben werden. So
war die Klassifizierung der Prototypen nach Status der Entwicklung
schnell moglich.

Es zeigt sich, dass die Initialisierungsphase kritisch in der Entwicklung
der Applikation ist. Hier haben Fehler im grundlegenden Design
schwere Folgen fiir die spdtere Entwicklung. Deshalb sollte fiir die
Initialisierungsphase ausreichend Zeit veranschlagt werden, so dass
Probleme schon zu Beginn erkannt und gelost werden kénnen. Gerade



die Einteilung in die MVCE-Kategorien muss sorgfiltig geschehen,
allerdings ist es auch spéter moglich, eine Komponente in zwei MVCE
Kategorien aufzuteilen. Es kann aber sein, dass dann einige Akteure,
die zu dieser Komponente gehoren, getrennt werden miissen, was
zusdtzlich Arbeit bedeutet.

Ist die Initialisierungsphase beendet, kann nun begonnen werden, den
ersten Prototypen zu entwickeln. Dies muss nicht, wie es hier der
Fall war, eine sehr einfache Version der Applikation sein, es kann
auch sofort ein komplexer Prototyp entwickelt werden, was jedoch
zeitlich aufwiandiger wird. Des Weiteren ist es sinnvoll schnell eine
einfache Anwendung zu haben, in der auch spéter schnell einige
Ideen realisiert werden konnen, beispielsweise in unserem Fall die
verbesserte physikalische Simulation aus Kapitel 5.2.71g5, bei der wir
zuriick zur einfachen Umgebung gewechselt haben, um besser die
Simulation debuggen zu kénnen.

Abschlieflend ist zu sagen, dass die Entwicklung der Prototypen
mit Hilfe von MiReAS {iiber das MRiL-Entwurfsvorgehen schnell zu
realisieren war. Ein grofier Vorteil war der akteurbasierte Aufbau, so
dass bei der Entwicklung schnell auf schon vorhandene Komponenten
zurtickgegriffen und so z. B. die Steuerung einfach gewechselt werden
konnte. So war es moglich, Fehler, die sich bei der Programmierung
eingeschlichen hatten, schnell zu isolieren und zu entfernen, auch
wenn an mehreren Akteuren gleichzeitig entwickelt wurde. Indem
zu einem stabilen Stand gewechselt wurde, konnten die einzelnen
Akteure bzw. Komponenten getrennt validiert und so Fehler schneller
gefunden werden.



Synopsis

6.1

In diesem Kapitel mochte ich noch einmal kurz mein ,Mixed Reality
in the Loop”-Entwurfsvorgehen mit den herausragenden Arbeiten
in diesem Bereich vergleichen und die Gemeinsamkeiten und Unter-
schiede der Verfahren aufzeigen.

Mixed Reality in the Loop im Vergleich

Das vorgestellte ,Mixed Reality in the Loop”-Entwurfsvorgehen bietet
eine Losung zur Entwicklung von Mixed Reality Anwendungen unter
Zuhilfenahme des Mixed Reality Kontinuums. Das ist einzigartig
in der Literatur, es lehnt sich allerdings an anerkannte Verfahren
einiger Wissenschaftler an. Die Arbeiten, auf die sich ,Mixed Reality
in the Loop” bezieht, habe ich bereits in Kapitel 359 beschrieben.
Ich mochte hier, nachdem ich mein Verfahren vorgestellt habe, eine
Zusammenfassung der Gemeinsamkeiten und Unterschiede an drei
in Kapitel 359 vorgestellten Arbeiten geben.

A model-based design process for interactive virtual environments

Cuppens verwendet in seinem Vorgehen (siehe Kapitel 3¢6) ein modell-
basierten Entwurfsprozess, um mit Hilfe eines visuell dargestellten
Task Model und einem textbasierten Interaction Description Model eine
lauffdhige virtuelle Anwendung zu generieren. Die visuelle ,Program-
mierung” des Task Model ist ein wesentlicher Aspekt in seiner Arbeit
um die Entwicklung auch fiir Anwender, die wenig oder keinen Hin-



tergrund in der imperativen Programmierung haben, anwendbar zu
machen. Diesen Schritt bin ich in meiner ersten Werkzeugumgebung,
die mit Hilfe des proprietdren Autorenwerkzeuges Virtools entstan-
den ist, auch gegangen. Hier lag der Fokus auf der Benutzbarkeit
der Werkzeugumgebung durch einen Personenkreis, der eher im Be-
reich Entwickler fiir 3D-Inhalte anstatt in der reinen Programmierung
von Anwendungen angesiedelt war. Mit Hilfe der visuellen Program-
mierung und den von mir angebotenen Plug-ins war es dem Perso-
nenkreis moglich, Mixed Reality Anwendungen ohne das technische
Wissen um die Basistechnologie zu entwerfen. Mit Hilfe der Abstrak-
tion wurde einem grofieren Kreis von Personen die Entwicklung von
Mixed Reality Anwendungen erméglicht. Dieses Prinzip findet man
nicht nur bei Cuppens, auch und gerade MacIntyre zeigt mit seiner
Werkzeugumgebung DART (siehe Kapitel 3¢p), dass sich mit Hilfe von
Personen, die im Gebiet von Kunst und Design bewandert sind, sehr
interessante MR Anwendungen entwickeln lassen.

Bei Cuppens existiert zwar kein iteratives Entwurfsvorgehen, jedoch
ist die automatische Generierung der abstrakten Darstellung in eine
ausfithrbare Anwendung vergleichbar mit einem iterativen Prozess.
So koénnen auch hier die Ergebnisse schnell evaluiert werden und
ggf. tiber das Model und einer entsprechend neuen Generierung der
Anwendung in sehr kurzer Zeit ein neuer Prototyp entwickelt werden.
Diese Methode entspricht in Allgemeinen dem iterativen, prototypen-
basierten Verfahren, das ich vorgestellt habe. Das Model von Cuppens
bietet allerdings nicht explizit die Moglichkeit der Verfeinerung der
Komponenten an.

Mein Vorgehen unterscheidet sich von der Methode bei Cuppens, da
es bei der Entwicklung einer Anwendung entlang des Mixed Reality
Kontinuums fithrt, Cuppens indes rein virtuelle Anwendungen er-
zeugt und keine Moglichkeit bietet, reale Komponenten in seinem
Prozess zu verarbeiten. Auch beschrankt er sich auf die Implemen-
tierung von Benutzerschnittstellen in virtuellen Umgebungen, sein
Ansatz kann allerdings auch fiir andere rein virtuelle Anwendungen
Verwendung finden.

Mixed Reality: A model of Mixed Interaction

In der Arbeit von Coutrix et al. (siehe Kapitel 3¢g) wird auf die Ver-
kntipfung der digitalen mit der physikalischen Welt fokussiert. Mit
Hilfe des Mixed Interaction Model wird dem Entwickler hier ein Frame-
work angeboten, das ihn bei der die Realisierung seiner Anwendung
unterstiitzen soll. Dabei ist das Hauptkonzept das mixed object, eine



Komponente, die gewisse Eigenschaften des digitale Modells mit den
entsprechenden Eigenschaften des physikalischen Objekts verkniipft.
Diese mixed objects beinhalten somit die komplette Basistechnologie,
um die physikalischen Objekte zu erkennen und die entsprechen-
den Eigenschaften zu extrahieren. Auch erméglichen sie die Ausgabe
an physikalische Objekte, die jedoch im gegebenen Beispiel auf die
Ausgabe auf ein HMD beschrankt sind.

Die Verwendung von mixed objects ist ein sinnvoller Schritt um physi-
kalische Objekte in einer digitalen Anwendung zu erfassen und zu
kapseln. Die Basistechnologie kann hier perfekt vor dem Entwicker
versteckt werden, so dass dieser sich nur die Eigenschaften der mixed
objects definieren muss. Denselben Weg gehe ich mit den Akteuren,
die auch die Funktionalitit in sich kapseln. Allerdings konnen die
Akteure nicht nur eine Verbindung zwischen digitalen und physi-
kalischen Daten sein, sondern konnen auch rein virtuell bzw. rein
physikalisch sein. Je nach Entwicklungsstand kann zwischen den ein-
zelnen Versionen der Akteure gewechselt werden, vorausgesetzt es
existieren die entsprechenden Implementierungen. Jedoch wiirden die
bei Coutrix et al. vorgestellten mixed objects in meinem Ansatz zwei
getrennte Akteure ergeben, da die Hin- und Riickrichtung getrennt
betrachtet wiirde. Auch sieht mein Ansatz vor, dass physikalische
Objekte, die nicht unter der Kontrolle der Anwendung stehen, der
Komponente Environemnt angehoren. Diese kann von der Anwen-
dung nur abgefragt, allerdings nie verdndert werden. Beispiel wire
ein getracktes physikalisches Objekt, das zwar vom Benutzer der An-
wendung verdndert werden kann (durch Manipulation des realen
Obijekts), aus der Anwendung heraus jedoch keine Moglichkeit der
Manipulation besteht.

Daher ist der Ansatz von Coutrix et al. etwas unterschiedlich zu mei-
ner Sichtweise, was sich auch in den Softwarekomponenten widerspie-
gelt. Des Weiteren sieht Coutrix et al. keine iterative Vorgehensweise
tir seine Methode vor und behandelt ausschliefilich die Entwicklung
von Interaktionstechniken in Mixed Reality.

A Design-Oriented Information-Flow Refinement of the ASUR In-
teraction Model

ASUR von Dubois (siehe Kapitel 375) bietet ein Modell und eine grafi-
sche Notation zur Entwicklung von Mixed Reality Anwendungen mit
dem Schwerpunkt auf Benutzerinteraktion. Das auf grafische Darstel-
lung basierende Modell beschreibt dabei die Interaktion zwischen dem
Benutzer und dem Mixed Reality System. Es soll helfen, die digitale



und physikalische Welt miteinander zu verbinden und eine benutzer-
freundliche Anwendung zu erhalten. ASUR unterscheidet in seinem
Modell zwischen unterschiedlichen Komponenten, erwdhnenswert
sind hier die Adapter und die realen Entitdten.

Wie in meinem Ansatz verwendet ASUR in seinem Modell eine Art
Environment, das hier aus den zwei Komponenten Adapter und Real
Entity zusammengesetzt sind. Die Adapter konnen sowohl fiir die
Eingabe von Daten (z. B. von einer Kamera) als auch fiir die Ausgabe
(z.B. auf einem Monitor) verwendet werden. Ein Adapter stellt somit
die Schnittstelle zur physikalischen Welt dar und kann Daten aus
ihr extrahieren. Allerdings definiert ASUR die grafische Ausgabe auf
einem Monitor genau mit solch einem Ausgabeadapter; dies wird im
Gegensatz dazu in meinem Vorgehen tiber die View-Komponenten
realisiert, die als nicht physikalisch angesehen werden.

In ASUR existieren zudem Adapter, die eine Schnittstelle zur physi-
kalischen Welt darstellen, die Real Entities, also reale Objekte in der
physikalischen Welt, deren Eigenschaften tiber die Adapter den Digita-
len Komponenten zur Verfiigung gestellt werden. Die Kombination
aus beidem, den Adaptern und den Real Entities ermoglicht erst die
Entwicklung von Mixed Reality Anwendungen. In meinem Ansatz
entspricht genau diese Kombination den E-Komponenten aus dem
MVCE-Architekturmuster, mit dem oben beschriebenen Unterschied,
dass bei mir die grafische Ausgabe nicht als Ausgabeadapter verstan-
den wird. E-Komponenten in meinem Vorgehen sind reale Objekte,
die in der realen, ,physikalischen” Umgebung existieren, auf die die
Anwendung keinen Einfluss nehmen, sie jedoch auslesen kann. Dass
die Umgebung physikalisch existiert, ist nur teilweise richtig, da die
Entwicklung nach meinem Ansatz entlang des Mixed Reality Kon-
tinuums geschieht, und so auch die Umgebung in frithen Phasen
virtuell ist. Der Unterschied hier ist allerdings, dass die Umgebung
nie unter der Kontrolle der Anwendung steht, so wie es auch bei den
Real Entities in ASUR der Fall ist.

Den Real Entities stehen in ASUR noch die digitalen Entitdten zur Sei-
te, die mit Hilfe des Adapters verschiedene Eigenschaften der realen
Objekte auslesen kénnen. All das ist in einer E-Komponente in mei-
nem Vorgehen gekapselt. Sollen mehrere Eigenschaften eines realen
Objektes erfasst werden, so kann der Entwickler entweder eine wei-
tere E-Komponente integrieren oder die vorhandene E-Komponente
dahingehend erweitern, dass sie auch die gewtinschten Informationen
liefert.

Da die Entwicklung bei ASUR nicht entlang des Mixed Reality Konti-
nuums geschieht und des weiteren kein iterativer, prototypenbasierter
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Prozess ist, wird die Transition von virtuellen zu realen Objekten nicht
unterstiitzt. Die Moglichkeit der Transition ist allerdings prinzipiell
gegeben, auch wenn einige Teile des entwickelten Modells verdndert
werden miissen. So kann der Entwickler die virtuellen Komponen-
ten in Real Entities (durch Ersetzung) umwandeln, muss jedoch ggf.
Adapter und neue digitale Entitdten hinzuftigen, die die Eigenschaf-
ten des realen Objektes abbilden. Da diese Transition nicht durch
Weiterentwicklung sondern durch Ersetzung geschieht, ist eine Wie-
derverwendung der schon vorhandenen Komponenten nicht moglich.
Anders als in meinem Vorgehen, bei dem die Komponenten (bei mir
Akteure) durch Adapter erweitert werden und so die restlichen Kom-
ponenten der Anwendung nicht angepasst werden miissen. Da ASUR
keine automatische Generierung von lauffihigen Programmcode hat,
ist die Anderung des Modells aufwindiger als beispielsweise bei Cup-
pens. Mein Ansatz bietet zwar auch keine automatische Generierung,
da allerdings die vorhandenen Komponenten weiterentwickelt wer-
den und so nur kleine Anderungen anfallen, halt sich der Aufwand
in annehmbaren Grenzen.

Zusammenfassung

In diesem Kapitel habe ich kurz die Gemeinsamkeiten und die Un-
terschiede meines ,Mixed Reality in the Loop”-Entwurfsvorgehens
mit anderen, relevanten Arbeiten aus der Literatur, die ich im Kapitel
359 ausfiihrlich beschrieben habe, vorgestellt. Im Allgemeinen ist fest-
zustellen, das es sinnvoll ist, Mixed Reality Anwendungen einerseits
getrennt von der Basistechnologie, andererseits entlang des Mixed Rea-
lity Kontinuums zu entwickeln. Da sich die Basistechnologien schnell
dndern konnen, hat man mit der Abstraktion eine Moglichkeit, die
unterliegende Technik zu dndern ohne die Anwendung an sich anzu-
passen. Dieses Vorgehen wird in der Softwareentwicklung sehr haufig
eingesetzt, es ist also eine konsequente Weiterentwicklung bei Mixed
Reality Anwendungen. Die Entwicklung entlang des Mixed Reality
Kontinuums ist genau deshalb auch sinnvoll. So kann bei fehlender
Basistechnologie bzw. vor Fertigstellung dieser die Entwicklung der
Anwendung schon begonnen werden und in spéteren Prototypen die
Komponenten mit der Basistechnologie erweitert werden. Ein anderer
wichtiger Punkt ist die Entwicklung der Anwendung aus einer vom
Programmierer kontrollierbaren virtuellen Umgebung hin in zur rea-
len Umgebung. So kénnen sicherheitsrelevante Algorithmen zuerst
in der virtuellen Umgebung auf ihre Funktionsweise hin tiberpriift
werden, bevor sie in der realen Welt verwendet werden.

Aus dem Stand der Forschung geht hervor, dass mein Verfahren auf re-



nommierten Ansédtzen der Entwicklung von im Bereich der Mixed Rea-
lity basiert. Das zeigen die hier vorgestellten Arbeiten. Weiterfiihrend
stellt mein Entwurfsvorgehen eine konsequente Weiterentwicklung
dieser bekannten Verfahren darstellt, in dem es versucht, die Vorteile
der einzelnen Verfahren zu kombinieren und so die Entwicklung vom
MR Anwendungen weiter vereinfacht.



Zusammenfassung und Ausblick

7.1

Dieses Kapitel schliefst meine Arbeit mit einer Zusammenfassung
der Ergebnisse und einem Ausblick ab. Die Zusammenfassung bietet
einen Uberblick iiber die entstandenen Ergebnisse, die ich in dieser
Arbeit vorgestellt habe. Ich versuche die Ergebnisse in Beziehung zu
den Zielen zu stellen, die ich in Kapitel 1.24 vorgestellt habe. Dartiber
hinaus biete ich am Ende dieses Kapitel einen Ausblick, wie sich
MRIL in Zukunft weiter entwickeln liefse und welche Erweiterungen
vorstellbar wéren.

Zusammenfassung

In der hier vorliegenden Arbeit habe ich ein werkzeuggestiitztes ,
prototypenbasiertes, iteratives Entwurfsvorgehen fiir Mixed Reality
Anwendungen vorgestellt. MRiL wird entlang des Mixed Reality Kon-
tinuums angewendet, so dass die Entwicklung einer Anwendungen
aus der Virtualitdt in die Realitdt stattfindet. Mit Hilfe des iterati-
ven prototypenbasierten Ansatzes ist eine standig testbare Designre-
prasentation der Anwendung vorhanden, die zu Evaluationszwecken
verwendet werden kann. Folgende Punkte wurden im Einzelnen vor-
gestellt:

Entwurfsvorgehen: Das Entwurfsvorgehen stellt die zentrale Vorge-
hensweise bei der Entwicklung einer Mixed Reality Anwendung
mit MRiL dar. Basierend auf einem iterativen Prototyping Pro-
zess verfeinert es in jedem Schritt die jeweiligen Teile einer



Anwendung und stellt nach jeder Iteration einen testbaren Pro-
totypen zur Verfiigung.

Architekturmuster: Um den Entwurf einer Mixed Reality Anwen-
dung zu vereinfachen, steht das MVCE Architekturmuster zur
Verfiigung, das Teile der Anwendung bestimmten Komponenten
zuordnet. Ist eine Anwendung nach dem MVCE Architekturmus-
ter klassifiziert, so lassen sich die jeweiligen Teile unabhédngig
voneinander weiterentwickeln. Dabei legt MVCE die Beziehun-
gen fest, wie welche Komponenten miteinander interagieren
konnen. Beispielsweise ist es einer Mixed Reality Anwendung
nicht moglich, Daten der Environment-Komponente zu dndern,
da sich die Manipulation physikalischer Eigenschaften realer
Objekte nicht durch die Anwendung steuern ldsst. Die Umge-
bung kann nur erfasst, allerdings nicht gedndert werden. Mit
diesem Prinzip lassen sich auch virtuelle Objekte bzw. Umge-
bungen realisieren, die jedoch von der Anwendung als reale,
nicht kontrollierbare Komponenten angesehen werden.

Akteurmodell: Eine Verfeinerung der Aufteilung in MVCE Kompo-
nenten bietet das Akteurmodell. Hinsichtlich der vorhandenen
Werkzeugunterstiitzung ist die Aufteilung in Akteure sinnvoll,
da sie einerseits eine fein granularere Weiterentwicklung der
Mixed Reality Anwendung bietet und andererseits direkt softwa-
reseitig durch ein Entwicklungswerkzeug unterstiitzt wird. Dem
Akteur steht im Entwicklungswerkzeug der Adapter zur Seite,
der es erlaubt, den Akteur mit mehr Funktionalitdt auszustatten
und die Schnittstellen des Akteurs zu erweitern.

Metrik: Zur genaueren Analyse des Entwicklungsstandes der Mixed
Reality Anwendung wurden fiir jede der MVCE-Komponenten
eigene Metriken entwickelt. Diese Metriken sollen den Stand der
Entwicklung entlang einer bestimmten Komponente ermitteln
und konnen mit Hilfe eines Kiviatgraphen dargestellt werden.
Alle Komponenten basieren auf der Annahme der Funktionalitat
der fertig entwickelten Anwendung, einzig die Metrik fiir den
Controller bildet eine Ausnahme. Sie stellt die Benutzbarkeit der
vorliegenden Anwendung dar, vorausgesetztes es werden spezi-
elle Nutzertests durchgefiihrt. Dies ist gerade in der Entwicklung
von neuen Mixed Reality Interaktionstechniken niitzlich, so die
Metrik dem Entwickler ein relativ gutes Feedback gibt.

Werkzeugunterstiitzung: Mit dem Ziel, dass das MRiL-Entwurfsvor-
gehen bei Mixed Reality Anwendungen ebenfalls auf Softwa-
reebene untersttitzt wird, wurden insgesamt zwei Softwareum-
gebungen in dieser Arbeit vorgestellt. Die erste, die mehr an



Designer gerichtet war anstatt an Programmierer, basierte auf
dem proprietdren Werkzeug 3DVIA Virtools und wurde mit Hil-
fe von Plug-ins realisiert, die dem Anwendungsentwickler zur
Verfiigung standen. Diese Umgebung entstand zu Beginn dieser
Arbeit und deckt nicht alle Aspekte von MRiL ab. Damit MRiL
komplett von einer Werkzeugumgebung unterstiitzt wird, wurde
MiReAS entwickelt. MiReAS wurde unter Berticksichtigung von
MRIL entworfen und unterstiitzt den Entwurfsprozess daher na-
tiv. Hier wird mit Hilfe von Akteuren und Adaptern die Mixed
Reality Anwendung entworfen und implementiert. Da MiReAS
auf der Programmiersprache C++ und der OpenSceneGraph-
Grafikbibliothek basiert, ist die Entwicklung von Mixed Reality
Anwendungen jedoch eher fiir Entwickler mit Programmierhin-
tergrund geeignet als fiir Designer.

Testbare Designreprasentation: Angesichts der Tatsache, dass das
hier vorgestellte iterative MRiL-Entwurfsvorgehen nach jeder
Iteration einen lauffahigen Prototypen als Ergebnis liefert, sind
Benutzertests auch in frithen Entwicklungsphasen moglich. So
konnen Fehler in der frithen Entwicklungsphasen schnell er-
kannt und korrigiert werden. Weiterhin erlaubt die Aufteilung
in die MVCE Komponenten und die Wiederverwendung von Ak-
teure und deren Erweiterung durch Adapter gezielt entwickelte
Prototypen, die speziell eine Komponente fiir Benutzertests be-
reitstellen.

MRiL wurde an mehreren exemplarischen Beispielen angewendet,
wobei sowohl nur die Vorgehensweise als auch beide Werkzeuge ver-
wendet wurden. Das erste Beispiel, das im Kapitel 4.41,g beschrieben
wurde, basiert auf dem reinen Vorgehen und wurde ohne Zuhilfe-
nahme eines Werkzeuges entwickelt. Hier sollte das Entwurfsvor-
gehen angewendet und evaluiert werden, um zu erfahren, ob ein
sinnvoller Einsatz moglich ist. Die Werkzeugumgebung, die auf Vir-
tools basiert, wurde schon im Vorfeld bei mehreren Projekten und
Veroffentlichungen verwendet, die in Kapitel 4.5.1;35 erwdhnt wur-
den. Fiir die schnelle und einfache Entwicklung von Demonstratoren
von, in Programmiersprachen nicht versierten, Entwickler ist diese
Umgebung sehr gut geeignet, da die Programmierung der Anwendun-
gen visuell erfolgte. Leider deckte die auf 3DVIA Virtools basierende
Werkzeugumgebung nicht das komplette Entwurfsvorgehen abdeckt,
was es notig machte, eine eigene Losung zu entwickeln. Mit MiReAS,
vorgestellt in Kapitel 4.5.2143, erschien eine Werkzeugumgebung, die
alle Aspekte des MRiL-Entwurfsvorgehens beinhaltete. Mit MiReAS
wurde ein sehr umfangreicher Demonstrator erfolgreich realisiert, der
in Kapitel 5159 beschrieben wurde. Mit Hilfe der Entwicklung dieses
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7.2.1

Demonstrators war dann moglich, MRiL komplett von Entwicklern
zu evaluieren.

Das ,Mixed Reality in the Loop”-Entwurfsvorgehen bietet ein sinn-
volles Verfahren zur Entwicklung von Mixed Reality Anwendungen.
Durch die Werkzeugunterstiitzung mit MiReAS ist es nicht nur kon-
zeptionell moglich, eine MR Anwendung zu entwerfen, sondern auch
schnell Prototypen in einer sehr frithen Phase der Entwicklung zu
realisieren. Mit Hilfe des iterativen Prozesses konnen die einzelnen
Komponenten sehr feingranular verfeinert werden und durch kurze
Iterationszyklen erhélt der Entwickler einen stindig testbaren Pro-
totypen, der fiir die Evaluation verwendet werden kann. Die vor-
gestellte Metrik bietet ein Mafd sowohl fiir den Entwicklungstand
der einzelnen Komponenten als auch fiir die Benutzerfreundlichkeit
der Anwendung, wenn Benutzertests fiir die Controller-Komponente
durchgefiihrt wurden.

Ausblick

Fiir die Zukunft konnte man sich einige Erweiterungen fiir MRiL
vorstellen, die die Entwicklung von Mixed Reality Anwendungen
weiter vereinfachen und verkiirzen konnten. Vorstellbar wire eine
grafische Notation fiir die modellbasierte Entwicklung mit MRiL. Um
die grafische Notation in der Entwicklung auch sinnvoll einsetzten
zu konnen, wire eine Werkzeugunterstiitzung vorstellbar, in der der
Entwickler seine MR Anwendung entwirft. Hieraus wiirde sich dann
die dritte Erweiterung ergeben, die automatische Generierung von
ausfiihrbaren Prototypen aus dem grafischen Modell. Beide Erweite-
rungen wiirden die Entwicklung von Mixed Reality Anwendungen
mit dem MRiL-Entwurfsvorgehen mehr in den modellbasierten Ent-
wurf heben, so dass sich der Entwickler nicht mehr um die technische
Implementierung der Anwendung Gedanken machen miisste. Es wére
ein konsequenter Schritt in Richtung des schnellen Prototypings.

Visuelle Notation

MRIL hat zur Zeit keine grafische Représentation fiir das Modell der
Anwendung. Das liegt an der Entwicklungsgeschichte von MRiL. Da
die erste softwareseitige Realisierung auf 3DVIA Virtools basierte
und dieses Werkzeug eine visuelle Programmiersprache anbot, wur-
de auf eine grafische Notation verzichtet. Im spéateren Verlauf bei
der Entwicklung von MiReAS wurde kein Fokus auf eine grafische
Notation gelegt, da die Entwicklung der einzelnen Akteure und Ad-
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apter und deren Schnittstellen auch textuell sehr gut funktionierten.
Das lag grofitenteils an den Entwicklern, die ein tiefgehendes Hinter-
grundwissen in imperativen Programmiersprachen hatten und mit
der textuellen Darstellung einer Anwendung gut arbeiten konnten.
Den Entwicklern, die zuvor mit Hilfe von 3DVIA Virtools die An-
wendungen entwickelt hatten, fiel die Verwendung von der MiReAS
Werkzeugumgebung schwerer, da sie nicht das Hintergrundwissen
hatten. Um auch diese Entwickler zu unterstiitzten, wire eine visuelle
Notation des Modells der Anwendung sinnvoll.

Vorstellen konnte man sich eine Notation in der Art von ASUR (siehe
Kapitel 375), um das Modell der Mixed Reality Anwendung zu definie-
ren. Hier konnten die Beziehungen zwischen den einzelnen Akteuren
und damit die Schnittstellen zwischen ihnen definiert werden. Um
das Prinzip der Adapter zu realisieren, konnte man sich eine hier-
archische Notation vorstellen, dhnlich dem Komponentendiagramm
in UML 2 [JRH*07]. Da ein Akteur auch nach der Erweiterung mit
einem Adapter ein Akteur bleibt, ist es in der obersten Ebene eines
Modells unwichtig, ob und mit wie vielen Adaptern ein Akteur erwei-
tert wurde. Einzig die Art und die Anzahl der Schnittstellen kénnen
sich per Erweiterung des Akteurs d&ndern.

Mit Hilfe der visuellen Notation kénnte die Mixed Reality Anwen-
dung einfach beschrieben und konzeptionell aufgebaut werden. Dieser
Prozess konnte bei der Vorgehensweise aus Kapitel 4.219; den zwei-
ten bis vierten Punkt visuell unterstiitzen und wiirde eine kompakte
visuelle Ansicht auf die zu entwickelnde Mixed Reality Anwendung
geben. Gerade bei einem Team von mehreren Entwicklern diirfte sich
hier die Definition der einzelnen Schnittstellen als einfacher erweisen.

Entwicklungswerkzeug fiir die visuelle Notation

Aufgesetzt auf MiReAS wire ein Entwicklungswerkzeug denkbar,
das es erlaubt, mit Hilfe der grafischen Notation die Mixed Reality
Anwendung zu entwerfen. Die Entwicklung von MR Anwendungen
wiirde sich von der Programmierung zur Modellierung verschieben.
Iteriert wiirde nur noch im visuellen Modell der Anwendung. Das
Entwicklungswerkzeug miisste eine Moglichkeit bieten, aus dem Mo-
dell entweder Konfigurationsdateien fiir MiReAS, Quelltext oder, wie
in ndchsten Abschnitt vorgeschlagen, einen ausfiihrbaren Prototypen
zu generieren. Die Austauschbarkeit der Komponenten mit dlteren
Versionen im visuellen Modell, die dem der Softwarekomponenten
in MiReAS entsprechen, konnte iiber eine Versionierung realisiert
werden. Bei einer Verfeinerung eines Akteurs (beispielsweise durch
das Anfiigen eines Adapters), konnte der Akteur eine neue Versi-
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onsnummer erhalten. Im spéteren Verlauf der Entwicklung hétte der
Anwender nun die Moglichkeit im grafischen Modell anzugeben, wel-
che Version er fiir die einzelnen Akteure verwenden mochte. Dabei
ist zu beachten, dass sich die Schnittstellen bei den aktuellen Versio-
nen zu den é&lteren Versionen des Akteurs gedndert haben kénnen.
Dadurch entstandene Probleme miissten entweder durch den Ent-
wickler manuell entfernt werden, wobei das Entwicklungswerkzeug
Losungsvorschldge bieten konnte. Auch eine automatische Auflosung
von inkompatiblen Schnittstellen wéire denkbar, da alle Informatio-
nen sowohl iiber die neuen als auch {tiber die alten Schnittstellen
vorhanden sind. Fiir das Entwicklungswerkzeug kénnten noch wei-
tergehende Techniken aus dem modellbasierten Entwurf integriert
werden, wie beispielsweise automatische Optimierungsverfahren oder
Fehlererkennungen.

Automatische Generierung von ausfiihrbaren Prototypen

Eine konsequente Erweiterung zum in Abschnitt 7.2.251; vorgestellten
Entwicklungswerkzeug fiir die visuelle Notation ist die automatische
Generierung von ausfiihrbaren Prototypen, wie sie beispielsweise bei
der Arbeit von Cuppens et al. (Kapitel 3¢6) und bei NiMMIiT von De
Boeck et al. (Kapitel 3;1) der Fall ist. Anstatt Konfigurationdateien fiir
MiReAS oder Quelltext zu generieren, konnte sofort ein lauffahiger
Prototyp aus dem Modell erzeugt werden, der fiir die Evaluation
verwendet werden kann. Wire ein Entwicklungswerkzeug fiir die
visuelle Notation vorhanden, wiirde die automatische Generierung
grundsatzlich unkompliziert zu realisieren sein. Im ersten Schritt
wiirden die Akteure und Adapter in MiReAS realisiert und daraus
Quelltext erzeugt. Nachfolgend konnte man die MR Anwendung mit
Hilfe der normalen C/C++ Kompilier iibersetzten und wiirde ein
ausfithrbares Programm erhalten.

Akteure, die neue Hardware kapseln, miissten sowohl im Entwick-
lungswerkzeug also auch in MiReAS implementiert werden. Ahnlich
wie bei AMIRE (siehe Kapitel 3g3) wiirde mehrere Arten von Ent-
wicklern existieren, zum einen der Anwenderentwickler, der fiir die
Realisierung der MR Anwendung zustdndig ist, zum anderen der
Systementwickler, der die erforderlichen Komponenten in das Ent-
wicklungssystem integriert. Dabei wiirde der Anwendungsentwickler
mit Hilfe der visuellen Notation entwickeln, der Systementwickler
allerdings mit einer imperativen Programmiersprache (bei MiReAS
waére das C++).
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Zusammenfassung

In diesem Kapitel habe ich die Ergebnisse meiner Arbeit zusammen-
gefasst und noch einmal die wichtigsten Punkte des ,Mixed Reality
in the Loop”-Entwurfsvorgehens aufgezeigt. Im zweiten Teil habe ich
einen Ausblick gegeben, welche forschungsrelevanten Weiterentwick-
lungen bei MRiL moglich sind. Dabei handelte es sich einerseits um
Arbeiten im theoretischen Umfeld, wie die Entwicklung einer visuel-
len Notation fiir MRiL, und andererseits im praktischen Umfeld, wie
die Entwicklung eines Werkzeuges fiir die Verwendung der visuellen
Notation.

Abschliefiend ist zu erwédhnen, dass das MRiL-Entwurfsvorgehen die
Entwicklung von Prototypen und die daraus resultierende Moglich-
keit, schon in frithen Phasen der Entwicklung eine testbare Desi-
gnreprasentation zu erhalten und durch Benutzertest zu tiberpriifen,
durchaus erleichtert und zu besser benutzbaren MR Anwendungen
tiihren kann.
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