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Abstract

Mixed Reality in the Loop – Ein iteratives, prototy-
penbasiertes Entwurfsvorgehen für die Entwicklung
von Mixed Reality Anwendungen

Mixed Reality in the Loop ist ein iteratives, prototypenbasiertes Ent-
wurfsvorgehen für Mixed Reality Anwendungen. Das Vorgehen besteht
aus einem iterativen Prozess, an dessen Ende immer eine testbare
Designrepräsentation der Anwendung, kurz ein Prototyp, steht, der
für die nächste Iteration verwendet wird. Die Iterationen werden
kurz gehalten, so dass ständig eine testbare Designrepräsentation der
Anwendung gewährleistet ist. Dem Mixed Reality in the Loop-Entwurfs-
vorgehen steht ein eigens dafür entwickeltes Architekturmuster zur
Seite, das es erlaubt, die einzelnen Teile der Anwendung in insgesamt
vier Kategorien einzuteilen, die separat und unabhängig voneinan-
der weiterentwickelt werden können. Der zentrale Vorteil bei Mixed
Reality in the Loop gegenüber anderen Verfahren ist die Entwicklung
entlang des Mixed Reality Kontinuums. So bieten das Entwurfsvor-
gehen und der iterative Entwicklungsprozess die Möglichkeit, in einer
rein virtuellen Welt mit der Implementierung der MR Anwendung
zu beginnen und in den späteren Phasen schrittweise die virtuellen
Teile durch ihre realen Gegenstücke zu ersetzten. Das bedeutet für
die frühen Entwicklungsphasen eine Implementation in einer fest
definierten virtuellen Umgebung, die komplett unter der Kontrolle
des Entwicklers liegt. Um eine Einschätzung des Entwicklungsstandes
der Prototypen zu erhalten wurde für jede Komponente eine eigene
Metrik entworfen, die den Entwicklungsstand anhand verschiedener
Parameter errechnet.
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ABSTRACT

Mixed Reality in the Loop – An iterative prototype-
based design method for the development of mixed
reality applications

Mixed Reality in the Loop is an iterative, prototype-based design method
for mixed reality applications. The design method includes an iterative
process which results a testable design representation of the applicati-
on, what is referred as prototype, at each iteration. This prototype is
also used for further development in the next iteration. To achieve a
persistent design representation of the application, the design method
has short iterations. The Mixed Reality in the Loop design method in-
cludes an additional software architecture supporting a classification
of single application parts in four categories. Each classified part can
be developed separately and independently, The central advantage
over other design methods is the development along the mixed reality
continuum. The Mixed Reality in the Loop design method provides the
opportunity to begin the development of a mixed reality application
in a pure virtual environment and to iteratively replace the virtual
parts with its real counterparts in later phases of the development
process. That imply a defined virtual environment in early develop-
ment phases which is completely under control of the developer. To
get an estimation of the development status for the prototype a metric
for each of the four components has been designed, calculating the
development status with the help of various parameters.
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Hinweise

In dieser Arbeit wurden die Verweise auf Kapitel oder Abbildun-
gen speziell formatiert, um die entsprechende Referenz schneller zu
finden. Verweise sind folgendermaßen aufgebaut: <Kapitel><Seite>.
<Kapitel> steht für das Kapitel, in dem die Referenz steht und die
unten angehängte <Seite> gibt die jeweilige Seite an. Diese Forma-
tierung existiert jedoch nur, sobald sich die Referenz nicht auf der
aktuellen Seite befindet. Diese Formatierung erlaubt es dem Leser,
schneller die Quelle des Verweises zu finden.
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5.1 Überblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.1.1 Der Zeppelin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.2 Prototypenentwicklung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.2.1 Die Initialphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.2.2 Der erste Prototyp: Eine einfache VR Version . . . . . . . . . . . 168

5.2.3 Der zweite Prototyp: Virtueller Prototyp mit Physiksimulation . 170

5.2.4 Der dritte Prototyp: Verfeinerung der Steuerung . . . . . . . . . . 174

5.2.5 Der vierte Prototyp: Verbesserte real existierende Umgebung . . 178

5.2.6 Der fünfte Prototyp: Virtueller Prototyp mit einfacher Gesten-
steuerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.2.7 Der sechste Prototyp: Virtueller Prototyp mit verbesserter Phy-
siksimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.2.8 Der siebte Prototyp: Virtueller Prototyp in realer Umgebung . . 189

viii



INHALTSVERZEICHNIS

5.2.9 Der achte Prototyp: Realer Zeppelin mit AR-Unterstützung und
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KAPITEL1
Einführung

MRiL
Mixed Reality in the Loop

In diesem Kapitel versuche ich mein entwickeltes ”Mixed Reality in
the Loop“-Entwurfsvorgehen (abgekürzt: MRiL) zu motivieren, indem
ich aufzeige, dass in der Entwicklung vom Mixed Reality Anwendun-
gen ein Vorgehen fehlt, das entlang des Mixed Reality Kontinuums
aufbaut und mit Hilfe von Prototypen eine immer testbare Designre-
präsentation bietet. Anschließend an die Motivation erläutere ich die
Ziele, die ich mir für diese Arbeit gesetzt habe und die mit Hilfe
des ”Mixed Reality in the Loop“-Entwurfsvorgehens erreicht werden
sollen. Daraufhin stelle ich kurz den aktuellen Stand der Arbeit vor.
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EINFÜHRUNG

Zum Ende des Kapitels folgt eine Beschreibung der Strukturierung
dieser Arbeit.

1.1 Motivation

Mit der Entwicklung schneller Hardware, sowohl der CPUs als auch
der Grafikeinheiten, ergab sich die Möglichkeit, reale Videobilder
in Echtzeit1 analysieren zu können. Ende der Neunziger Jahre be-
gannen Forscher mit der Echtzeitanalyse der Videobilder, um so die
Struktur der aufgenommenen Objekte zu ermitteln. Mit Hilfe kleiner
schwarz-weiß Piktogramme, der sogenannten Marker, gelang es, Po-
sition und Orientierung eines Objektes im dreidimensionalen Raum
nur unter Zuhilfenahme eines, von einer Videokamera aufgenom-
menen, 2D-Bildes zu ermitteln und an dieser Position ein virtuelles
3D-Objekt zu positionieren. Augmented Reality (AR), also die ange-
reicherte Realität, war geboren. In den folgenden Jahren wurde das
Thema Augmented Reality detailliert erforscht, sowohl im Theoreti-
schen, indem der Begriff AR definiert und in Zusammenhang mit
der echten Realität gesetzt wurde, als auch im Praktischen, indem
Softwarelösungen angeboten wurden, die es einer breiten Masse an
Entwicklern ermöglichten, selbst AR Anwendungen zu realisieren.

Anfänglich wurden die technischen Methoden, die es ermöglichten,
Augmented Reality anzuwenden, verstärkt entwickelt und erforscht.
Nachdem die ersten reinen API2-basierten Softwarelösungen für die
breite Masse der Entwickler zur Verfügung standen, konzentrierten
sich viele Forscher auf die grundlegenden Kamera-Tracking3 Verfah-
ren und deren Verbesserung. Die ersten Konferenzen, die sich speziell
mit Augmented Reality und später auch mit dem erweiterten Gebiet
von Mixed Reality (MR) auseinander setzten, wurden veranstaltet, dar-
unter beispielsweise die IEEE ISMAR, die zum ersten Mal im Jahre
1998 stattfand [IEE98]. An den dort vorgestellten Beiträgen ist gut zu
erkennen, welche Themen im Bereich Mixed Reality über die Jahre
die Aufmerksamkeit der Forscher erhielten. Und genau hier ist zu
sehen, dass viel Energie in die Erforschung der Basistechnik geflos-
sen ist, allerdings erst sehr viel später erkannt wurde, dass sich die
Entwicklung von MR Anwendung von der Entwicklung traditioneller
Software in vielen Punkten unterscheidet.

1In dieser Arbeit ist unter dem Begriff Echtzeit ein weiches Echtzeitverhalten zu verstehen, das sich
an der menschliche Wahrnehmung für bewegte Bilder orientiert. Da ein Mensch ab ca. 16 Bilder pro
Sekunde eine flüssige Bewegung erkennt, liegen die Reaktionszeit somit bei ≤ 63ms.

2API = Application Programming Interface – Eine Programmierschnittstelle auf Quelltextebene.
3Mit Tracking bezeichnet man die kontinuierliche Positionsbestimmung realer Objekte im Raum. Die

Positionsbestimmung kann Zwei- oder Dreidimensional erfolgen.
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1.1 MOTIVATION

Es stellte sich nach einiger Zeit der Entwicklung von MR Anwendun-
gen heraus, dass es nicht ausreicht, nur eine reine Low Level API-
basierte Programmierunterstützung zu nutzen. Durch die zunehmen-
de Komplexität der Projekte, die eine MR Unterstützung integrierten,
kamen die Entwickler bald an die Grenzen ihrer Möglichkeiten struk-
turiert zu entwickeln. Da kein einheitliches Vorgehen für den Entwurf
von AR Anwendungen existierte, mussten viele Lösungen individuell
für jedes Projekt entworfen werden, testbare Designrepräsentationen
der Software waren nicht vorhanden, so dass die Projekte erst kurz
vor Ende der Entwicklung wirklich getestet werden konnten. Des
Weiteren waren die Entwickler an die Technik gebunden, auf die
sie sich zu Beginn der Entwicklung festgelegt hatten. Da im Laufe
der Zeit einige konkurrierende Lösungen aufkamen, die jedoch nicht
unbedingt untereinander kompatibel waren, teilweise aber Vorteile
gegenüber der Konkurrenz boten, war es den Entwicklern nur schwer
möglich, die Basistechnologien einfach zu wechseln.

Aus dieser Problematik heraus entstanden die ersten High Level
Entwicklungsumgebungen, die es sich zur Aufgabe gemacht hat-
ten, die MR Anwendungsentwicklung von den Basistechnologien zu
trennen. Ein frühes Beispiel einer solchen Entwicklungsumgebung
ist DART [MGDB04], das im Kapitel 390 vorgestellt wird. Auch die
von uns entwickelte Integration in die Szenegraph-Bibliothek Java3D
zielte auf diese Trennung von Basistechnologie und Anwendungs-
entwicklung ab [GRSP02]. Die Trennung von Basistechnologie und
Anwendungsprogrammierung war ein Schritt in die richtige Rich-
tung, allerdings fehlte zu dieser Zeit komplett ein Entwurfsvorgehen,
das beschreiben konnte, wie Entwickler Mixed Reality Anwendungen
effizient programmieren können.

In den folgenden Jahren wurde auch der Bereich des Entwurfsvorge-
hens erforscht und es wurden Verfahren vorgestellt, die sowohl das
Entwurfsvorgehen selbst als auch ein eigenes Modell zur Entwicklung
anboten. Was allerdings nicht vorgestellt wurde, war ein Vorgehen
einschließlich Werkzeugumgebung, das es ermöglichte, Mixed Reality
Anwendungen mit einer immer testbaren Designrepräsentation zu
realisieren. Genau hier setzt meine Arbeit an und versucht diese Lücke
zu schließen.

Mit ”Mixed Reality in the Loop“ steht dem Entwickler von Mixed
Reality Anwendungen ein Entwurfsvorgehen zur Verfügung, das ihn
durch die Phasen der Entwicklung der Anwendungen leitet. Mehr
noch, das Vorgehen ist ein iterativer Prozess, an dessen Ende immer
ein testbarer Prototyp der Anwendung steht, der für die nächste Itera-
tion verwendet wird. Die Iterationen werden kurz gehalten, so dass
ständig eine testbare Designrepräsentation der Anwendung existiert.

3



EINFÜHRUNG

Dem ”Mixed Reality in the Loop“-Entwurfsvorgehen steht ein eigens
dafür entwickeltes Architekturmuster zur Seite, das es erlaubt, die ein-
zelnen Teile der Anwendung in insgesamt vier Kategorien einzuteilen,
die separat und unabhängig voneinander weiterentwickelt werden
können.

Der zentrale Vorteil bei ”Mixed Reality in the Loop“ gegenüber an-
deren Verfahren ist jedoch die Entwicklung entlang des Mixed Reality
Kontinuums (siehe zur Begriffserklärung Kapitel 2.454). So bieten das
Entwurfsvorgehen und der iterative Entwicklungsprozess die Möglich-
keit, in einer rein virtuellen Welt mit der Implementierung der MR
Anwendung zu beginnen und in den späteren Phasen schrittweise
die virtuellen Teile durch ihre realen Gegenstücke zu ersetzten. Das
bedeutet für die frühen Entwicklungsphasen eine Implementation
in einer fest definierten virtuellen Umgebung, die komplett unter
der Kontrolle des Entwicklers liegt. In der späteren Entwicklung,
sobald die Grundfunktionalität der Anwendung ausreichend stabil
läuft, können Teile dieser Umgebung dann durch reale Komponenten
ersetzt werden. So ist es beispielsweise möglich, neue Algorithmen
zuerst in einer sehr eingeschränkten Umgebung auf ihre Korrektheit
zu überprüfen und nach erfolgreichem Abschluss dieser Tests die
Algorithmen in Komponenten der realen Welt einzusetzen. Des Weite-
ren ist es möglich, Teile der Anwendung schon zu implementieren,
obwohl die realen Komponenten entweder noch nicht existieren oder
die technischen Bedingungen noch nicht geschaffen sind, mit ihnen
aus der Anwendung heraus zu interagieren. Auch der Weg zurück,
aus der realen Welt in die virtuelle Welt, ist mit ”Mixed Reality in
the Loop“ möglich. So können z. B. neue Versionen von Algorithmen
zuerst in der virtuellen Welt validiert werden, bevor sie die Kompo-
nenten der realen Welt steuern.

Zusammenfassend bietet das ”Mixed Reality in the Loop“-Entwurfs-
vorgehen einen Lösungsweg, wie schrittweise aus einer virtuellen
Anwendung eine Mixed Reality Anwendung entstehen kann. Es bietet
ein Vorgehen, um eine Transition vom virtual Prototyping und der
finalen Anwendung erfolgreich zu realisieren.

1.2 Ziel der Arbeit

Diese Arbeit hat zum Ziel, ein werkzeuggestütztes, prototypenbasier-
tes, iteratives Entwurfsvorgehen für Mixed Reality Anwendungen zu
entwickeln. Dieses Entwurfsvorgehen soll entlang des Mixed Reality
Kontinuums führen und folgende Konzepte beinhalten:
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1.2 ZIEL DER ARBEIT

Entwurfsvorgehen: Das Vorgehen zur Entwicklung von Mixed Reality
Anwendungen soll auf einem iterativen, prototypenbasierten
Ansatz basieren. Es soll eine Werkzeugunterstützung bieten, so
dass die Entwicklung softwaretechnisch getragen wird.

Architekturmuster: Die Grundlage des Entwurfsvorgehens soll ein
Architekturmuster sein, das die iterative Anwendungsentwick-
lung unterstützt. Es basiert auf dem bekannten MVC Architek-
turmuster (Kapitel 2.2.145) und wurde um eine Komponente
erweitert, um die Besonderheit bei Mixed Reality Anwendungen
zu unterstützten.

Akteurmodell: Zur Verfeinerung des Architekturmusters soll ein ei-
genes Akteurmodell verwendet werden. Dieses gewährleistet bei
der Entwicklung der Mixed Reality Prototypen kurze Iterationen
und gewährleistet somit eine ständig testbare Repräsentation
der aktuellen Anwendung.

Metrik: Es soll eine Metrik entwickelt werden, die den entsprechen-
den Entwicklungstand des aktuellen Prototypen charakterisieren
kann. Diese Metrik soll das Architekturmuster berücksichtigen
und auf der Entwicklung der einzelnen Komponenten basieren.

Verglichen mit anderen aktuellen Arbeiten im Bereich des Mixed
Reality Entwurfs hat diese Arbeit folgende Herausstellungsmerkmale:

1. Die Entwicklung der Anwendung geschieht entlang des Mixed
Reality Kontinuums, was bedeutet, dass die Applikation aus der
reinen virtuellen Welt in die reale Welt entwickelt wird. Kom-
ponenten und Objekte, die am Anfang der Entwicklung virtuell
definiert werden, können im Laufe der Entwicklung zu realen
Objekten übergehen. Auch der umgekehrte Fall ist möglich, dass
reale Objekte wieder zu virtuellen Objekten werden. Diese Tran-
sition zwischen der realen und der virtuellen Welt ist sinnvoll,
wenn am Anfang der Entwicklung die realen Objekte noch nicht
zur Verfügung stehen, oder wenn im Laufe der Entwicklung auf
eine spezielle Ausprägung getestet werden soll und deshalb nur
die beteiligten Objekte in der realen Form vorhanden sein sollen.

2. Die Anwendung ist in kleine Komponenten, die sogenannten
Akteure, die anhand des vorgestellten Architekturmusters klas-
sifiziert und entsprechend entwickelt werden können, aufgeteilt.

3. Eine Metrik erlaubt den Entwicklungsstand bezogen auf Klassi-
fizierung der einzelnen Akteure und so den gesamten Entwick-
lungsstand der Mixed Reality Anwendung zu ermitteln.

5



EINFÜHRUNG

4. Die softwaremäßige Wiederverwendbarkeit der Akteure wird
mit Hilfe des Adapter-Prinzips gelöst, so dass in den meisten
Fällen die Akteure nicht neu programmiert werden müssen.
Durch eine definierte Schnittstelle ist so auch der Austausch von
virtuellen zu realen Akteuren möglich.

5. Ein eigenes iteratives, prototypenbasiertes Entwurfsvorgehen
erlaubt kurze Iterationszyklen und eine ständig testbare Re-
präsentation der Mixed Reality Anwendung. Durch die Wieder-
verwendbarkeit können die Iterationszyklen noch kürzer gehal-
ten werden.

6. Durch die Entwicklung entlang des Mixed Reality Kontinuums
und der Klassifizierung des Architekturmusters können Kom-
ponenten während der Entwicklung unterschiedlich priorisiert
werden.

7. Eine Softwareumgebung, die das komplette Entwurfsvorgehen
unterstützt und so die Entwicklung einer Mixed Reality Anwen-
dung von der rein konzeptionellen Ebene in die Machbarkeit
überführt.

Nach der Entwicklung der konzeptionellen Grundlagen dieser Arbeit
wurde das Entwurfsvorgehen zunächst an einem kleineren Beispiel
getestet. Dieses entstand ohne eine spezielle Entwicklungsumgebung,
so dass zuerst ein kleiner Umfang des Entwurfsvorgehens validiert
werden konnte.

Während der Arbeit entstanden zwei voneinander unabhängige Ent-
wicklungsumgebungen, die unterschiedliche Aspekte der Entwick-
lung fokussierten. Die erste Entwicklungsumgebung basiert auf einem
proprietären 3D Autorenwerkzeug, das es dem Entwickler von An-
wendungen ermöglicht, diese visuell (und nicht wie sonst üblich
textuell) zu entwickeln. Dieses proprietäre Werkzeug wurde mit Hilfe
von Plug-ins dahingehend erweitert, dass die Entwicklung von Mixed
Reality Anwendungen ermöglicht wurden. Allerdings war es nicht
möglich, alle Konzepte des Entwurfsvorgehens zu realisieren. Aus
diesem Grund wurde ein komplett eigenes Werkzeug, das speziell
für das ”Mixed Reality in the Loop“-Entwurfsvorgehen ausgearbeitet
wurde, entworfen. Hier war es möglich, alle Aspekte von MRiL zu
verwenden. Mit Hilfe dieses Werkzeuges wurde dann ein komplexes
Beispiel realisiert, um die Anwendbarkeit von MRiL zu demonstrie-
ren.
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1.3 Aktueller Stand der Arbeit

Aktuell ist das Entwurfsvorgehen konzeptionell vollständig (siehe
Kapitel 497). Die beiden Entwicklungsumgebungen sind komplett im-
plementiert und einsatzbereit. Da die Entwicklungsumgebungen, die
auf dem proprietären 3D Autorenwerkzeug basieren, mit Hilfe von
Plug-ins realisiert wurden, ist nicht jede Funktionalität für alle denkba-
ren Fälle implementiert. Hier müssten für konkrete Projekte entweder
die vorhandenen Plug-ins angepasst oder neue Plug-ins entwickelt
werden. Dies ist jedoch im Sinne des Autors, da die Entwicklung
einer Mixed Reality Anwendung die Implementierung spezialisierter
Plug-ins nicht ausschließt sondern, gerade durch die einfache Einbin-
dung in die Entwicklungsumgebung, ermöglicht. Auch in der aus
dieser Arbeit hervorgegangenen eigenen Entwicklungsumgebung ist
es erwünscht, spezielle Funktionalität selbst mit Hilfe von Akteuren
zu entwickeln. Die Grundstrukturen für solche Entwicklungen sind
allerdings in beiden Entwicklungsumgebungen explizit vorhanden.

Bei den Beispielen, die mit Hilfe der eigenen Entwicklungsumgebung
entstanden sind, ist die Implementierung zum größten Teil vollendet.
Da es sich bei dem Beispiel allerdings um ein interdisziplinäres Projekt
mehrerer Fachgruppen, sowohl an der Universität Paderborn als auch
an der Fachhochschule Düsseldorf, handelt, konnten einige Punkte
nur konzeptionell entwickelt werden (siehe dazu Kapitel 5159). Leider
wurde die Entwicklung einer erforderlichen Hardwarekomponente
nicht fristgerecht vollendet, so dass die Prototypen, die diese Kom-
ponente erfordern, nicht vollständig implementiert werden konnten.
Konzeptionell allerdings wurden alle Beispiele komplett entwickelt.

1.4 Strukturierung der Arbeit

Dem aktuellen Kapitel folgt das Kapitel über die Grundlagen. Hier
werden bekannte Vorgehensmodelle (Kapitel 2.112) und Architektur-
muster (Kapitel 2.243) sowie eine kurzer Überblick über Modellbildung
und Simulation (Kapitel 2.349) vorgestellt und eine Einführung in Mi-
xed Reality (Kapitel 2.454) gegeben. Die vorgestellten Themen sollen
ein grundlegendes Wissen in den jeweiligen Bereichen vermitteln, so
dass auch ein Leser, der in diesen Gebieten nicht bewandert ist, die
Arbeit verstehen kann.

Es folgt das Kapitel über die aktuellen Forschungsergebnisse in dem
Bereich dieser Arbeit. Dieses Kapitel unterteilt sich in die Mixed Reality
Entwurfskonzepte (Kapitel 3.260), die Entwurfskonzepte mit Werk-
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zeugumgebung (Kapitel 3.366) und den reinen Softwareumgebungen
und Softwarelösungen (Kapitel 3.487). In jedem Gebiet wurden Arbei-
ten ausgewählt, die sich in Teilen dieser Arbeit gleichen, allerdings
nicht den kompletten Umfang dieser Arbeit besitzen. Die jeweiligen
Unterschiede wurden in einer Tabelle kenntlich gemacht.

Kapitel 497 ist das erste der beiden Hauptkapitel. Hier wird das kom-
plette ”Mixed Reality in the Loop“-Entwurfvorgehen vorgestellt. Bei
der Anforderungsanalyse (Kapitel 4.198) wird festgestellt, für welche
Anwendungen sich das Vorgehen eignet. Die Vorgehensweise (Kapitel
4.2101) beschreibt das Verfahren, wie Anwendungen mit dem Ent-
wurfsvorgehen zu entwickeln sind. Die benötigten Methoden (Kapitel
4.3103) werden im darauf folgenden Kapitel beschrieben. Mit Hilfe
eines kleinen Beispiels (Kapitel 4.4128) soll gezeigt werden, wie sich
das Entwurfsvorgehen auch ohne Werkzeugunterstützung verwen-
den lässt. Nach dem Beispiel werden die zwei Softwareumgebungen
(Kapitel 4.5136) vorgestellt, die auf dem ”Mixed Reality in the Loop“-
Entwurfsvorgehen basieren.

Um sowohl das Entwurfsvorgehen als auch eine der Softwareumge-
bungen zu überprüfen, wird in Kapitel 5159 ein nicht triviales Beispiel
entwickelt, das zehn aufeinander aufbauende Prototypen umfasst.
Bei der Realisierung der einzelnen Prototypen wird das Entwurfsvor-
gehen und die Berechnung der Metrik komplett angewendet, so dass
sich immer der Stand des aktuellen Prototypen ableiten lässt. Die ein-
zelnen Prototypen fokussieren dabei größtenteils jeweils eine andere
Ausprägung der Anwendung, beispielsweise eine Verfeinerung des
Modells oder eine überarbeitete Steuerung.

Im Kapitel 6201 wird abschließend mein Vorgehen den aus der Litera-
tur bekannten und in Kapitel 359 vorgestellten Arbeiten gegenüber-
gestellt und verglichen. Die einzelnen für mein Vorgehen relevanten
Arbeiten werden noch einmal kurz zusammengefasst und die Unter-
schiede zu meinem Vorgehen aufgezeigt.

Im letzten Kapitel (Kapitel 7207) fasse ich die Ergebnisse meiner Ar-
beit zusammen und gebe einen Ausblick auf zukünftige Forschungs-
schwerpunkte, die aufbauen auf dem hier vorgestellten Entwurfsvor-
gehen erarbeitet werden könnten.

1.5 Zusammenfassung

In diesem Kapitel habe ich motiviert, warum es sinnvoll ist, ein Ent-
wurfsvorgehen entlang des Mixed Reality Kontinuums zu entwickeln.
Ich habe die Ziele dieser Arbeit aufgezeigt und erläutert, in wie weit

8



1.5 ZUSAMMENFASSUNG

sich das hier vorgestellt Entwurfsvorgehen von anderen Arbeiten un-
terscheidet. Es wurde der aktuelle Stand der Entwicklung des Vorge-
hens erläutert und die Strukturierung der gesamten Arbeit vorgestellt.
Im nun folgenden Kapitel gehe ich auf grundlegende Verfahren in
den Bereichen ein, die ich in meiner Arbeit benötige.
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KAPITEL2
Grundlagen

Dieses Kapitel behandelt die grundlegenden Methoden und Strategi-
en, auf der meine Arbeit basiert. In Kapitel 2.112 werden verschiedene
Vorgehensmodelle vorgestellt, die für die Erstellung von Softwarean-
wendungen entwickelt wurden und noch heute im Einsatz sind. Das
Kapitel 2.243 beschreibt unterschiedliche Architekturmuster, die für
verschiedene Probleme in der Softwareentwicklung geschaffen wur-
den. Die verschiedenen In-the-Loop Simulationsverfahren, die u. a. zur
Entwicklung von mechatronischen Systemen verwendet werden, sind
in Kapitel 2.349 aufgeführt und werden dort kurz erläutert. Kapitel
2.454 erklärt das Reality-Virtuality Kontinuum (RV), welches Grundlage
meines Entwicklungsprozesses ist, und erläutert es an Beispielen.

Die hier vorgestellten Methoden, Strategien, Verfahren und Definitio-
nen sind in der Literatur wohl bekannt und gelten als Standard bzw.
Grundlage in der Softwareentwicklung. Die meisten Verfahren werden
seit vielen Jahren in der Softwareentwicklung erfolgreich eingesetzt,
gerade im Bereich Vorgehensmodelle und Architekturmuster. Teil-
weise sind die Methoden auch schon überholt, werden allerdings für
das grundlegende Verständnis der in Kapitel 359 vorgestellten Stand
der Forschung aufgeführt. Dieses Kapitel bietet somit einen groben
Überblick über die Methoden, Strategien, Verfahren und Definitionen,
die zum Verständnis meiner Arbeit dienen sollen. Aus diesem Grund
beziehe ich mich in diesem Kapitel teilweise auf Artikel der freien
Enzyklopädie Wikipedia [Wik11], referenziere jedoch immer für die
einzelnen Themen die grundlegenden wissenschaftlichen Veröffentli-
chungen bzw. Fachbücher, so dass die einzelnen vorgestellten Themen
immer wissenschaftlich belegt sind.
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2.1 Vorgehensmodelle

Ein Vorgehensmodell im Allgemeinen organisiert einen Prozess der
gestaltenden Produktion in verschiedene, strukturierte Phasen, denen
wiederum entsprechende Methoden und Techniken der Organisation
zugeordnet sind. Die Aufgabe eines Vorgehensmodells ist es, die allge-
mein in einem Gestaltungsprozess auftretenden Aufgabenstellungen
und Aktivitäten in einer deutlich erkennbaren logischen Ordnung
darzustellen.

Ein Vorgehensmodell in der Softwareentwicklung im Speziellen ist
ein angepasstes Vorgehensmodell, welches bei der professionellen
Anwendungsentwicklung verwendet wird. Es dient dazu, die Softwa-
reentwicklung übersichtlicher zu gestalten und in der Komplexität
beherrschbar zu machen.

Komplexe Software ist nur schwer zu erstellen und zu warten, so dass
sich Softwareentwickler eines Planes zur Entwicklung von Software
bedienen. Dieser Plan – das so genannte Vorgehensmodell – unterteilt
den Entwicklungsprozess in überschaubare, zeitlich und inhaltlich
begrenzte Phasen. Die Software wird daher Schritt für Schritt fertig-
gestellt. Dem eigentlichen Entwicklungsprozess stehen dabei sowohl
das Projektmanagement als auch die Qualitätssicherung begleitend
zur Seite.

Vorgehensmodelle spalten die einzelnen Aktivitäten auf verschiedene
Phasen im Entwicklungsprozess auf. Diese werden dann, ggf. mit
geringen Modifikationen, einmalig (z. B. Wasserfallmodell, siehe Ka-
pitel 2.1.214) oder mehrfach (z. B. Spiralmodell, siehe Kapitel 2.1.317)
durchlaufen. Bei mehrmaligen Durchlauf erfolgt eine iterative Ver-
feinerung der einzelnen Softwarekomponenten. Um die optimalen
Vorgehensmodelle herrscht Uneinigkeit. In der Regel unterscheiden
sie beim Entwicklungsprozess mindestens zwei große Tätigkeitsgrup-
pen: Die, von der programmiertechnischen Realisierung unabhängige,
Analyse von Geschäftsprozessen (Geschäftsprozessmodell und Daten-
modell) einerseits und die EDV-technische Realisierung (Design und
Programmierung) andererseits.

Vorgehensmodelle unterscheiden sich wesentlich in ihrem Detaillie-
rungsgrad. Dabei sind z. B. der OOTC-Approach [IOOTC97] oder der
Rational Unified Process [KR96] detailliert ausgearbeitete Vorgehens-
weisen, die den an der Entwicklung Beteiligten konkrete Arbeitsan-
weisungen an die Hand geben. Das V-Modell (Kapitel 2.1.419) nimmt
diesbezüglich übrigens eine hybride Stellung ein, da es sowohl ein
Prinzip (jeder Stufe der Entwicklung entspricht eine Testphase) als
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auch (wie zumeist gebräuchlich) ein detailliertes Modell ist.

Agile Softwareentwicklung ist der Oberbegriff für den Einsatz von
Agilität (lat. agilis, zu deutsch ”flink, beweglich“) in der Softwareent-
wicklung. Die Agile Softwareentwicklung beschäftigt sich mit Me-
thoden, die den Entwickler kreativ arbeiten und Verwaltungsaspekte
zurücktreten lassen. Je nach Kontext bezieht sich der Begriff auf Teil-
bereiche der Softwareentwicklung – wie im Fall von Agile Modeling
– oder auf den gesamten Softwareentwicklungsprozess – exempla-
risch sei Feature Driven Development (Kapitel 2.1.828) oder Extreme
Programming (Kapitel 2.1.1031) angeführt. Agile Softwareentwicklung
versucht mit geringem bürokratischem Aufwand und wenigen Regeln
auszukommen.

2.1.1 Typen von Vorgehensmodellen

Es existieren insgesamt drei unterschiedliche Typen von Vorgehens-
modellen [Wik11]:

Software-Entwicklungsprozesse: Sie dienen zur Steuerung der Soft-
wareentwicklung von der Konzeption bis zum endgültigen Einsatz
inklusive der anfallenden Änderungen einer Software. Es gibt viele
verschiedene Prozesse, wobei die unten angegebenen die bekanntesten
dieser Klasse sind [Wik11]:

• Wasserfallmodell

• Spiralmodell

• V-Modell

Software-Lebenszyklusmanagement: Sie erweitert die Phasen über
den gesamten Lebenszyklus einer Software. Das Vorgehensmodell
definiert die Anforderungen an betriebliche Prozesse (das ”WAS“)
und beschreibt die konkreten, EDV-technisch realisierten Prozesse
(das ”WIE“). Dieser Typ ist eine Mischung aus Ist-Beschreibung und
normativer Vorgabe. Je nach Standardisierungsgrad werden verschie-
dene Entwicklungsstufen vergeben. Unternehmen können sich diese
Entwicklungsstufen von externen Stellen zertifizieren lassen. Ein rele-
vantes Beispiel hierfür ist [Wik11]:

• Norm ISO/IEC 12207

Softwareentwicklungs-Philosophie: Eine konkrete Programmierer-
Philosophie bzw. ein bestimmter Ansatz, wie Software nach Ansicht
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der Entwickler am besten entwickelt werden sollte. Diese Philosophien
beinhalten sehr oft auch Prozesselemente und werden daher ebenfalls
als Prozessmodell bezeichnet. Die unten angegebenen Modelle sind
nur ein kleiner, aber für diese Arbeit relevanter, Teil:

• Norm DIN ISO 13407

• ModellgetriebeneSoftwareentwicklung (MDSD)

• Feature Driven Development (FDD)

• Rational Unified Process (RUP)

• Extreme Programming (XP)

• Scrum

• Prototyping

In den folgenden Kapiteln werden die oben genannten Vorgehens-
modelle kurz vorgestellt und beschrieben. Einiger der Modelle wer-
den ausführlicher beschrieben, da sie zum Teil Grundlage meines
Entwurfsvorgehens sind. Der Vollständigkeit halber und wegen des
Verständnisses stelle ich auch teilweise sehr frühe Vorgehensmodelle
der Softwareentwicklung vor.

2.1.2 Wasserfallmodell

Das Wasserfallmodell ist ein lineares und nicht-iteratives Vorgehens-
modell, bei dem der Entwicklungsprozess in Phasen organisiert wird.
Dabei gehen die Phasenergebnisse wie bei einem Wasserfall immer
als bindende Vorgaben für die nächsttiefere Phase ein [Wik11].

Jede Phase im Wasserfallmodell hat vordefinierte Start- und Endpunk-
te, die eindeutig definierte Ergebnisse liefern. In Meilensteinsitzungen
am jeweiligen Phasenende werden die Ergebnisdokumente verabschie-
det. Zu den wichtigsten Dokumenten zählen dabei das Lastenheft
sowie das Pflichtenheft. In der betrieblichen Praxis gibt es viele Va-
rianten des reinen Modells. Es ist aber das traditionell am weitesten
verbreitete Vorgehensmodell [Wik11].

Das Wasserfallmodell wurde in seiner ursprünglichen Form zum ers-
ten Mal von Dr. Winston W. Royce 1970 präsentiert [Roy87]. Man
konnte aber bereits schon früher die Grundstrukturen des heutigen
Wasserfallmodells in verschiedenen Publikationen der U.S. Air Force
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und aus der Industrie erkennen. Es fand z. B. Einfluss bei der Entwick-
lung eines Air Defense Software Systems namens SAGE (semi automated
ground environment) in den 1950ern [MRZ11].

Der Name ”Wasserfall“ kommt von der häufig gewählten grafischen
Darstellung der fünf bis sechs als Kaskade angeordneten Phasen, wie
in Abbildung 2.116 zu sehen. Eigentlich ist das Wasserfallmodell eine
Verbesserung des einfachen Phasenmodells, das Herbert D. Benington
bereits 1956 vorgestellt hatte [Ben56]. In dem als Nine Phase Stage-
wise Model bekannten Ansatz wurde der Entwicklungsprozess für
Software in insgesamt 9 Phasen eingeteilt. Royce’s Einteilung der
Phasen erfolgte so, dass jede Phase von ihrer vorhergehenden Phase
abhängig ist. Somit war es möglich, den Prozess in Einzelteile zu
zerlegen [MRZ11].

Dass sich das Modell ursprünglich nicht sonderlich durchsetzte lag
vor allem daran, dass kein Informationsfluss (engl. feedback) entgegen
des eigentlichen Phasenverlaufs existierte. Diese zu einem späteren
Zeitpunkt eingeführte Erweiterung des Modells, die auch als Rück-
kopplung bezeichnet wird, ist auch die Ursache dafür, warum das
von Barry Boehm in den 80er Jahren vorgestellte Modell nicht nur
großes Interesse und viele Anwender fand, sondern noch heute als
das Wasserfall Modell bezeichnet wird [Boe81]. Die Rückkopplung
ermöglichte die Behebung aufgetretener Fehler in der nächsthöheren
Phase, sofern in der aktuellen Phase Fehler erkannt wurden. Das
Wasserfallmodell kann im Allgemeinen dort erfolgreich angewen-
det werden, wo sich Anforderungen, Leistungen und Abläufe in der
Planungsphase relativ präzise beschreiben lassen [MRZ11].

Es existieren zwei Varianten des Wasserfallmodells, eine Variante
mit 5 Stufen und eine erweiterte Variante mit 6 Stufen, die auch in
Abbildung 2.116 zu sehen ist.

Die 5-stufige Variante beinhaltet folgende Phasen [Wik11]:

1. Anforderungsanalyse und -spezifikation (engl. Requirement
analysis and specification)

2. Systemdesign und -spezifikation (engl. System design and specifi-
cation)

3. Programmierung und Modultests (engl. Coding and module tes-
ting)

4. Integrations- und Systemtest (engl. Integration and system testing)

5. Auslieferung, Einsatz und Wartung (engl. Delivery, deployment
and maintenance)
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Abbildung 2.1: Ein erweitertes Wasserfallmodell mit Rückkopplung.

Die erweiterte 6-stufige Variante ist in die folgenden Phasen aufge-
teilt [Wik11]:

1. Planung (mit Erstellung des Lastenhefts, Projektkalkulation,
Projektplan) (engl. Systems Engineering)

2. Analyse (mit Erstellung des Pflichtenhefts, Produktmodell,
GUI-Modell und evtl. schon Benutzerhandbuch) (engl. Analysis)

3. Entwurf (UML, Struktogramme) (engl. Design)

4. Realisierung (engl. Coding)

5. Testen (engl. Testing)

6. Nutzung und Wartung (engl. Maintenance)

Beim Wasserfallmodell muss jede Aktivität in der vorgegebenen Rei-
henfolge und in der vollen Breite vollständig durchgeführt werden,
bevor eine neue Aktivität angefangen werden kann. Am Ende jeder
Aktivität steht ein fertiggestelltes Dokument, d. h. das Wasserfall-
Modell ist ein dokument-getriebenes Modell. Der Entwicklungsablauf
ist rein sequenziell, d. h. jede Aktivität muss komplett beendet sein,
bevor mit der nächsten Aktivität begonnen werden kann. Das Wasser-
fallmodell orientiert sich am so genannten Top-Down-Verfahren. Es ist
einfach, verständlich und benötigt nur wenig Managementaufwand.
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Eine Benutzerbeteiligung ist nur in der Anfangsphase vorgesehen,
anschließend erfolgen der Entwurf und die Implementierung ohne
Beteiligung des Benutzers bzw. Auftraggebers. Weitere Änderungen
stellen danach Neuaufträge dar [Wik11].

Da es schwierig ist, bereits zu Projektbeginn alles endgültig und im De-
tail festzulegen, besteht das Risiko, dass die letztendlich fertiggestellte
Software nicht den tatsächlichen Anforderungen entspricht. Um dem
zu begegnen, wird oftmals ein unverhältnismäßig hoher Aufwand in
der Analyse- und Konzeptionsphase betrieben. Zudem erlaubt das
Wasserfallmodell nicht bzw. nur sehr eingeschränkt im Laufe des aktu-
ellen Projekts Änderungen aufzunehmen. Die fertiggestellte Software
bildet folglich nicht den aktuellen, sondern den Anforderungsstand
zu Projektbeginn wieder. Da größere Softwareprojekte meist auch
eine sehr lange Laufzeit haben, kann es vorkommen, dass eine neue
Software bereits zum Zeitpunkt ihrer Einführung inhaltlich veraltet
ist [Wik11].

2.1.3 Spiralmodell

Das Spiralmodell ist ein Vorgehensmodell in der Softwareentwick-
lung, das im Jahr 1988 von Barry W. Boehm [Boe88] in seinem Artikel

”A Spiral Model of Software Development and Enhancement“ be-
schrieben wurde. Es ist ein generisches Vorgehensmodell und daher
offen für bereits existierende Vorgehensmodelle. Das Management
kann immer wieder eingreifen, da man sich spiralförmig voran ent-
wickelt [Wik11]. Das Spiralmodell gehört zu den inkrementellen bzw.
iterativen Vorgehensmodellen. Es ist eine Weiterentwicklung des Was-
serfallmodells, in der die Phasen mehrfach spiralförmig durchlaufen
werden. Es sieht also eine zyklische Wiederholung der einzelnen Pha-
sen vor. Dabei nähert sich das Projekt langsam den Zielen an, selbst
wenn sich die Ziele während des Projektfortschrittes verändern. Durch
das Spiralmodell wird nach Boehm das Risiko eines Scheiterns bei
großen Softwareprojekten entscheidend verringert [Bal08].

Das Spiralmodell fasst den Entwicklungsprozess in der Software-
entwicklung als iterativen Prozess auf. Jeder Zyklus ist in einzelne
Quadranten unterteilt, die folgende Aktivitäten enthalten (siehe Ab-
bildung 2.218):

1. Festlegung der Ziele: In dieser Teilphase werden die Ziele der
laufenden Phase festgelegt, Alternativen identifiziert und Rah-
menbedingungen beschrieben.

2. Risikoanalyse: Dieser Teil einer Iteration schätzt die Risiken ab
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Abbildung 2.2: Spiralmodell nach Boehm.

und versucht sie zu reduzieren, z. B. durch Prototyping, Simulati-
on oder Analysen. Es werden Alternativen evaluiert, sollten die
Risiken zu hoch sein.

3. Entwicklung und Tests: Das Zwischenprodukt wird während
dieser Teilphase realisiert und verifiziert.

4. Planung der nächsten Iteration: Soll ein Projekt weiter geführt
werden, wird in dieser Teilphase die Planung der nächsten aus-
zuführenden Schritte erarbeitet.

Ein wesentlicher Aspekt des Spiralmodells ist die Risikobetrachtung,
die von anderen Vorgehensmodellen meist vernachlässigt wird. Hier-
bei werden zunächst alle Risiken, die im Projekt auftreten können,
identifiziert und anschließend bewertet. Wird ein Risiko als zu hoch
bewertet versucht werden Alternativen mit geringerem Risiko gesucht.
Wird keine Alternative gefunden und das Risiko bleibt bestehen gilt
das Projekt als gescheitert. Wenn hingegen keine Risiken mehr exis-
tieren, so ist das Projekt kann das Projekt erfolgreich abgeschlossen
werden [Wik11].
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2.1.4 V-Modell

Das V-Modell ist eine abstrakte und umfassende Methode für das
Projektmanagement zur Entwicklung und Realisierung von Softwa-
reprojekten. Dabei resultiert die Bezeichnung V-Modell einerseits aus
dem ersten Buchstaben von ”Vorgehensmodell“, andererseits aus der
V-förmigen Darstellung der Projektelemente aus Spezifikation und
Zerlegung (im absteigenden Ast) und Realisierung und Integration
im aufsteigenden Ast (siehe Abbildung 2.319).
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Abbildung 2.3: Phasen des V-Modells über Zeit und Detaillisierung.

Die Idee des V-förmigen Vorgehens wurde von Barry Boehm im Jahre
1979 vorgestellt [Boe79]. Das erste V-Modell wurde 1988 in Deutsch-
land für militärische Zwecke entwickelt, ausgehend aus dem im Jahre
1986 gestarteten Projekt SEU-WS (Softwareentwicklungsumgebung
für Waffen- und Waffeneinsatzsysteme) des Bundesverteidigungsmi-
nisteriums. In dieses erste V-Modell wurden dann bis April 1990 die
Erkenntnisse aus dem Projekt SEU-IS (Softwareentwicklungsumge-
bung für Informationssysteme) integriert und die verbesserte Version
des V-Modells per Erlass vom Februar 1991 durch den Bundesminister
für Verteidigung als Entwicklungsstandard für die Softwareerstellung
bei der Bundeswehr festgeschrieben. Inzwischen wird das V-Modell
aber auch in der Privatwirtschaft eingesetzt [Wik11].

In der Regel wird eine neue Variante des V-Modells aus der jeweils
vorhergehenden Variante entwickelt, sobald ein Verbesserungsbedarf
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erkannt wird. Im Gegensatz zu einem klassischen Phasenmodell wer-
den im V-Modell lediglich Aktivitäten und Ergebnisse definiert und
es wird keine strikte zeitliche Abfolge gefordert. Insbesondere fehlen
die typischen Abnahmen, die ein Phasenende definieren. Dennoch ist
es möglich, die Aktivitäten des V-Modells zum Beispiel auf ein Was-
serfallmodell (Kapitel 2.1.214) oder ein Spiralmodell (Kapitel 2.1.317)
abzubilden [Wik11].

Ein zentraler Punkt des V-Modells ist die Detailisierung. Zu Beginn
wird über eine Systemanforderungsanalyse ermittelt, was die zu ent-
wickelnde Software leisten soll. Nach Abschluss dieser Phase erfolgt
die erste Detailisierung, in der die Ergebnisse der Systemanforderungs-
analyse für die Entwicklung der Systemarchitektur verwendet werden
(siehe auch Abbildung 2.319). Ist die Entwicklung an der Systemarchi-
tektur abgeschlossen, wird in einem weiteren Detailisierungsschritt
der Systementwurf erarbeitet. Weitere Detailisierungschritte folgen,
namentlich die Softwarearchitektur und der Softwareentwurf, d. h.
die eigentliche Realisierung der Software. Dies ist die feinste Stufe
der Detailisierung und nach Vollendung der Softwarearchitektur ist
die Software im Prinzip fertiggestellt. Was fehlt sind die Tests, die
das korrekte Arbeitender Software prüfen. Bei den Tests wird nun die
Detailisierung mit jeder Phase wieder verringert, so dass erst einzelne
Module (Units) auf ihre Funktionalität geprüft werden, danach das
Zusammenspiel der einzelnen Module miteinander (Integrationstests),
folgend von den Tests der Software auf den einzelnen Arbeitsplatz-
rechnern (Systemtests). Sind alle Tests erfolgreich wird die Software
abgenommen und kann genutzt werden [Wik11].

Ein Nachteil des V-Modells, der sofort auffällt, ist die geringe Einbin-
dung des Benutzers in den Entwicklungsprozess und das Fehlen von
Prototypen für Tests. Somit wird die Software erst einmal komplett
entwickelt. Dies hat zur Folge, dass die Systemanforderungsanalyse
sehr detailliert ausfallen muss, da logische Fehler, wurden sie nicht
erkannt, sehr schwer zu beheben sind.

2.1.5 Norm ISO/IEC 12207

ISO/IEC 12207 definiert einen Rahmen für Prozesse im Lebenszyklus
von Software (engl. Software Life-Cycle Processes) [ISO95]. In Abbil-
dung 2.421 sind die verschiedenen Phasen eines Lebenszyklus von
Software dargestellt. Die Norm beschreibt auf einer sehr abstrak-
ten Ebene alle wichtigen Prozesse des Lebenszyklus einer Software,
von der Ideenfindung bis hin zur Stilllegung und den Beziehungen
untereinander. Die in der Norm definierten Prozesse bestehen aus
Aktivitäten, die in sich wiederum aus einzelnen Aufgaben bestehen.
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ISO/IEC 12207 definiert eine Prozessstruktur unter Verwendung einer
allgemein akzeptierten Terminologie, sie legt sich nicht fest auf ein
bestimmtes Lebenszyklusmodell oder eine bestimmte Entwicklungs-
methode. Es werden keine Details bezüglich des Konzepts bei der
Durchführung der Aktivitäten und Aufgaben und auch keine Vor-
schriften bezüglich Namen, Formaten oder Inhalten von Dokumenten
vorgegeben [Wik11].

Zusätzlich beschreibt ISO/IEC 12207 wie der Standard auf eine be-
stimmte Organisation oder auf ein konkretes Projektvorhaben zuge-
schnitten werden kann [Wik11].
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Anforderungen

Pflege/Wartung

Änderungen

Organisatorische Aspekte Informationstechnische Aspekte
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Abbildung 2.4: Phasen eines Softwarelebenszyklus.

Die Norm beschreibt folgende drei Prozesse [ISO95]:

– Primärprozesse: Die grundlegenden Prozesse für die Verwendung
der ISO/IEC 12207. Folgende Prozesse sind dabei involviert:
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Beschaffung: Stellt die Aktivitäten des Beschaffers von Software
und Dienstleistungen dar

Lieferung: Beschreibt die Aktivitäten des Lieferers von Software
und Dienstleistungen

Entwicklung: Aktivitäten der Entwicklung der Software

Betrieb: Zu diesen Aktivitäten zählen Systemeinführung und
Systemtests sowie die Benutzerunterstützung

Wartung: Fehlerbehebung und Beseitigung von Mängel, Ver-
besserung des Durchsatzes, Anpassung an ein verändertes
Umfeld, etc.

– Unterstützende Prozesse: Diese Prozesse unterstützen andere Pro-
zesse, in dem sie spezielle Funktionalitäten zur Verfügung stel-
len, die nachfolgend beschreiben werden:

Dokumentation: Dokumentieren der gesamten Software über
die verschiedenen Phasen hinweg

Konfigurationsmanagement: Aktivitäten für organisatorische
und verhaltensmäßige Regeln auf den Produktlebenslauf
der Software von seiner Entwicklung über Herstellung bis
hin zur Betreuung

Qualitätssicherung: Aktivitäten zum Sicherstellen des festge-
legtes Qualitätsniveaus der Software

Verifizierung: Formale Überprüfung der Prozesse

Validierung: Aktivität zur inhaltlichen Überprüfung der Pro-
zesse

Joint Review: Aktivität zur Abstimmung zwischen dem Kun-
den und dem Lieferant/Entwickler

Audit: Untersuchungsverfahren zur Bewertung der Erfüllung
von den Anforderungen und Richtlinien der Prozesse

Problembehebung: Aktivität zur Behebung von Problemen bei
Prozessen

– Unternehmensprozesse: Die Unternehmensprozesse sollen speziel-
le Prozesse auf Unternehmensebene verwalten und verbessern:

Management: Umfasst die Steuerung von Kernprozessen im
gesamten Prozess, mit dem Fokus auf Strukturierung der
organisatorischen Rollen und deren Aufgaben

Infrastruktur: Aktivitäten zur Bereitstellung der notwendigen
Infrastruktur wie z.B. Hardware, Software oder Werkzeuge
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Optimierung: Messen, Überprüfen, Verbessern der Lebenszy-
klusprozesse

Schulungsmaßnahmen: Aktivität zur Schulung der Benutzer
der Software

Da die Norm ISO/IEC 12207 einen Lebenszyklus einer Software be-
schreibt, ist diese nicht mit den anderen Vorgehensmodellen vergleich-
bar. Trotzdem kann man Aussagen bzgl. einiger Eigenschaften des
Vorgehensmodells treffen. Die drei Prozesse, die die Norm vorschlägt,
sind größtenteils nebenläufig, d. h. parallel bearbeitbar. Das ist ein
großer Vorteil, da sich mehrere Teams mit verschiedenen Aufgaben
gleichzeitig beschäftigen können. Über die gewählte Implementierung
und das Vorgehen bei der eigentlichen Softwareentwicklung wird
nichts vorgeschrieben, d. h. hier können wieder klassische Modelle
(Wasserfall-Modell. Spiralmodell) benutzt werden. Die Norm ist aus-
gelegt für größere Projekte, denn für kleine bis mittlere Produktionen
würde zuviel Mehrarbeit in die Organisation und Verwaltung fließen.

2.1.6 Norm DIN ISO 13407

Die Norm DIN EN ISO 13407 (Benutzerorientierte Gestaltung interak-
tiver Systeme) [ISO99] beschreibt einen prototypischen benutzerorien-
tierten Softwareentwicklungsprozess. Sollten die Empfehlungen der
Norm DIN EN ISO 13407 erfüllt werden kann ein spezieller Entwick-
lungsprozess als konform betrachtet werden. Die DIN EN ISO 13407

wurde im November 2000 in der deutschen Fassung als DIN-Norm
veröffentlicht [Wik11].

Die Norm besteht in ihrem Aufbau sowohl aus den Beschreibungen
der Planung benutzerorientierter Gestaltung, als auch aus Erläuterun-
gen zur Entwicklung interaktiver Systeme, die sich darauf konzentrie-
ren, benutzerfreundliche Systeme zu erschaffen. Sie beschreiben in
kurzer, übersichtlicher und für eine Norm gut lesbaren Form einen
iterativen Entwicklungsprozess, bei dem Nutzer- und Aufgabeneigen-
schaften die Entwicklung der Software bestimmen. Außerdem enthält
die Norm weitere Richtlinien und Tabellen für das Berichten über
benutzerorientierte Aktivitäten [Wik11].

Die Norm stellt nutzerorientierte Gestaltung als eine fachübergreifen-
de Aktivität dar, die Wissen über menschliche Faktoren und ergono-
mische Kenntnisse und Techniken umfasst. Der ISO-Prozess besteht
aus vier wesentlichen Phasen [ISO99]:

1. Nutzungskontext verstehen: Das Ergebnis dieser Phase ist eine
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Entwurf

Abbildung 2.5: DIN EN ISO 13407: Der Entwicklungsprozess

Beschreibung der relevanten Benutzer, ihrer Arbeitsaufgaben
und ihrer Umgebung.

2. Anforderungen spezifizieren: Während dieser Phase werden
die Zielgrößen aus der bereits vorhandenen Dokumentation auf
einer Kompromissebene abgeleitet. Dabei wird die Teilung der
Systemaufgaben in solche, die von Menschen und in solche, die
von der Technik durchgeführt werden, sollen bestimmt.

3. Lösungen produzieren: Dies kann im Sinne eines Prototyping
oder eines anderen iterativen Prozesses erfolgen. Diese Proto-
typen können noch reine Papierentwürfe (Mock-ups) oder aber
schon lauffähige Programmversionen sein.

4. Lösungen bewerten: Die Lösungen werden auf die Erfüllung
der zuvor festgelegten Anforderungen geprüft. Dazu können
Experten-Reviews, Usability-Tests, Befragungen oder auch eine
Mischung daraus dienen. Die dabei entdeckten Abweichungen
werden dann auf ihre Relevanz hin bewertet und sind Ausgangs-
punkt der nächsten Iteration des Entwicklungsprozesses.

Dieses Verfahren ist komplementär zu bestehenden Prozessmodellen
des Software-Engineering und ergänzt diese. Der benutzerorientierte
Gestaltungsprozess sollte der Norm zufolge bereits im frühesten Sta-
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dium des Projekts beginnen und sollte dann wiederholt durchlaufen
werden, bis das System die Anforderungen erfüllt [Wik11].

Die DIN EN ISO 13407 stellt einen interaktiven, benutzerzentrierten
Entwurfsprozess dar, der Prototypen für die Benutzeranalyse verwen-
det. Zu Anfang der Entwicklung werden die Anforderungen an die
Software festgelegt. Diese Anforderungen können im laufenden Pro-
zess nicht mehr verändert oder erweitert werden, so dass diese Phase
sehr ausführlich und gewissenhaft erarbeitet werden sollte. Sind die
Anforderungen an die Software bekannt, beginnt die erste Iteration
mit der Benutzeranalyse, bei der die relevanten Aufgaben der Benut-
zer identifiziert werden. Die nächste Phase analysiert die Tätigkeit, die
einerseits vom Benutzer und andererseits von der Software geleistet
werden soll. Es folgt die Entwicklung eines Prototypen, der von den
Benutzern getestet werden kann. Die Ergebnisse dieser Tests werden
in der nächsten Phase evaluiert und bewertet. Daraus folgt die nächste
Iteration, oder, falls die Software den Anforderungen entspricht, der
Entwurf. Bei dem Prozess werden die Prototypen in jeder Iteration
neu entwickelt, es findet keine Weiterentwicklung statt.

Die DIN EN ISO 13407 wurde Anfang 2011 durch die Norm DIN EN
ISO 9241-210 [ISO11] ersetzt, auf die ich allerdings in dieser Arbeit
nicht weiter eingehen werde.

2.1.7 Modellgetriebene Softwareentwicklung (MDSD)

Modellgetriebene Softwareentwicklung (engl. Model Driven Software
Development, MDSD) ist ein Oberbegriff für Techniken, die aus for-
malen Modellen automatisiert lauffähige Software bzw. kompilierba-
ren Quelltext erzeugen [SVEH07]. Dabei werden domänenspezifische
Sprachen (engl. Domain-Specific Languages, DSL) zusammen mit ent-
sprechenden Codegeneratoren und Interpretern eingesetzt [Wik11].

Bei MDSD nach Stahl et al. [SVEH07] geht es darum, sich bei der
Entwicklung von Softwaresystemen möglichst nicht zu wiederholen
(DRY-Prinzip – Don’t-Repeat-Yourself ). Weil allein mit den Mitteln der
jeweiligen Programmiersprache nicht immer passende Abstraktionen
zur Beschreibung verschiedener Sachverhalte (Domain) eines Softwa-
resystems gefunden werden können, werden unabhängig von der
Zielsprache entsprechende Abstraktionen in Form von domänenspe-
zifischen Sprachen erschaffen. Diese werden dann entweder generativ
oder interpretativ auf die Zielplattform abgebildet [SVEH07].

Natürlich hat der Einsatz dieser Variante eine Auswirkung auf allen
Ebenen eines Projektes, sowohl technisch und fachlich als auch im
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Managementbereich. Deshalb beschreibt die MDSD nicht nur, wie
man DSLs, Generatoren usw. entwickelt, sondern auch, wie man
diese in (hauptsächlich agilen) Entwicklungsprozessen sinnvoll inte-
griert [SVEH07].

Durch den erhöhten Abstraktionsgrad der DSLs sind die Problem-
beschreibungen wesentlich klarer, einfacher und weniger redundant
festgehalten. Dies erhöht nicht nur die Entwicklungsgeschwindig-
keit, sondern sorgt innerhalb eines Projektes für klar verstandene
Domänenkonzepte. Das Konzept der omnipräsenten Sprache (engl.
Ubiquitous Language) aus dem Domain-Driven Design wird hier auf die
Konzeptebene der Softwarearchitektur angewandt [SVEH07].

Weiterhin wird die Evolution der Software durch die Trennung der
technischen Abbildung und der fachlichen Modelle wesentlich verein-
facht. Auch das Testen fällt leichter, da nicht mehr jede einzelne Zeile
Quelltext getestet werden muss, sondern nur noch exemplarisch die
Modelle. Domänenspezifische Validierung in den Entwicklungswerk-
zeugen sorgt für sehr kurze Turnarounds [SVEH07].

Für MDSD existieren eine Vielzahl an Werkzeugen, die jeweils nur
einzelne Aspekte, wie z. B. die Modellierung, oder alle Funktionalität
unterstützen [Wik11].

• Reine Modellierungswerkzeuge: Sie dienen lediglich zur grafi-
schen Darstellung und unterstützen keine automatischen Trans-
formationen. Das Modell wird hier in ein Austauschformat (bei-
spielsweise XMI1) exportiert und mit gesonderten Transformato-
ren weiterbearbeitet.

• Reine Transformatoren: Diese dienen ausschließlich der Trans-
formation von Modellen und beinhalten keine grafischen Model-
lierungsfunktionalitäten. Die Modelle werden in einem bestimm-
ten Austauschformat in ein internes Modellformat importiert,
transformiert und danach wieder exportiert.

• Integrierte MDD-Werkzeuge: Diese bieten Modellierung, Mo-
delltransformationen und Codegenerierung gebündelt in einem
Werkzeug. Überflüssige Export- und Importvorgänge, Kompati-
bilitätsprobleme beim Datenaustausch und Rüstaufwand bzgl.
Integration werden vermieden. Die Navigierbarkeit und Syn-
chronisation zwischen fachlichem und technischem Modell und
Implementierungscode wird optimal unterstützt.

1XMI steht für XML Metadata Interchange und ist ein Austauschformat für Metadaten in XML.
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Abbildung 2.6: Modellgetriebene Softwareentwicklung.

Der Entwicklungsprozess beim MDSD kann variabel sein. Größten-
teils ist es aber ein iterativer Top-Down Ansatz, der Prototypen mit
berücksichtigt. Alleine schon die Vorgehensweise, wie die Modelle ent-
wickelt werden, und dass die Codegenerierung und das Erstellen der
endgültigen Applikation computergestützt verläuft, macht einen itera-
tiven Prozess unter Benutzung von Prototypen sinnvoll. In Abbildung
2.627 wird ein generischer MDSD Prozess dargestellt. Die Annota-
tionen an den Übergängen von einer Phase zur nächsten beinhalten
die jeweilige Form der Applikation. Nachdem die Anforderungen
benannt sind, werden sie meist in textbasierte Form (DSL) an die
Entwickler weiter gegeben. Diese analysieren die Anforderungen und
entwickeln ein erstes Modell, das meist plattformunabhängig ist. Ist
das Modell zufriedenstellend, wird das Low-Level Design entwickelt,
sodass das Modell auf der späteren (Hardware-)Plattform lauffähig ist.
Ist die Anpassung, vollendet wird die Applikation mit Hilfe von Code-
generatoren in Quelltext transformiert und übersetzt. Dies geschieht
automatisch und am Ende des Prozesses steht die lauffähige Applika-
tion. Diese wird nun eingesetzt und getestet. Sollten Fehler auftreten
oder die Applikation um Funktionalität erweitert werden, müssen die
Änderungen erst im plattformunabhängigen Modell korrigiert bzw.
zugefügt werden.
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2.1.8 Feature Driven Development (FDD)

Funktionsgetriebene Softwareentwicklung (engl. Feature Driven Deve-
lopment, FDD) wurde von Jeff De Luca im Jahre 1998 als eine schlanke
Methode für zeitkritische Softwareentwicklung definiert [DL98]. Seit
der Zeit wurde FDD kontinuierlich weiterentwickelt. FDD stellt den
Feature-Begriff in den Mittelpunkt der Entwicklung. Jedes Feature
stellt einen Mehrwert für den Kunden dar. Die Entwicklung wird
anhand eines Feature-Plans organisiert. Eine wichtige Rolle spielt der
Chefarchitekt (engl. Chief Architect), der ständig den Überblick über
die Gesamtarchitektur und die fachlichen Kernmodelle behält. Bei
größeren Teams werden einzelne Entwicklerteams von den Chefpro-
grammierern (engl. Chief Programmer) geführt [WRL05] [PF02].

FDD definiert ein Prozess- und ein Rollenmodell, die gut mit exis-
tierenden klassischen Projektstrukturen harmonieren. Daher fällt es
vielen Unternehmen leichter, FDD einzuführen als XP (siehe Kapitel
2.1.1031) oder Scrum (siehe Kapitel 2.1.1134). Des Weiteren ist FDD
ganz im Sinne der agilen Methoden sehr kompakt und lässt sich auf
wenigen Seiten komplett beschreiben [DL04].

Entwicklung des
Gesamtmodell

Erstellen der
Featureliste

Planung für
jedes Feature

Entwurf
jedes Features

Konstruktion
jedes Features

Legende

Gesamtmodell Featureplanung FeatureentwurfPhasen:

Abbildung 2.7: Feature Driven Development.

FDD-Projekte durchlaufen fünf Prozesse, wie sie in Abbildung 2.7 zu
sehen sind.

Prozess 1 - Entwicklung eines Gesamtmodells: Im ersten Prozess
definieren die Fachexperten und Entwickler unter Leitung des
Chefarchitekten Inhalt und Umfang des zu entwickelnden Sys-
tems. In Kleingruppen werden Fachmodelle für die einzelnen
Bereiche des Systems erstellt, die in der Gruppe vorgestellt, ggf.
überarbeitet und schließlich integriert werden. Das Ziel dieser
ersten Phase ist ein Konsens über Inhalt und Umfang des zu
entwickelnden Systems sowie das fachliche Kernmodell [DL04].

Prozess 2 - Erstellung einer Feature-Liste: Die aus dem ersten Pro-
zess festgelegten Systembereiche werden von dem jeweiligen
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Chefprogrammierer in Features detaillieren. Es wird ein drei-
stufiges Schema verwendet: Fachgebiete (engl. Subject Areas)
bestehen aus Geschäftstätigkeiten (engl. Business Activities), die
durch Schritte (engl. Steps) ausgeführt werden. Die Schritte ent-
sprechen den Features. Die Features werden nach dem einfa-
chen Schema <Aktion> <Ergebnis> <Objekt> aufgeschrieben.
Ein Feature darf maximal zwei Wochen zu seiner Realisierung
benötigen. Das Ergebnis dieses zweiten Prozesses ist eine ka-
tegorisierte Feature-Liste, deren Kategorien auf oberster Ebene
von den Fachexperten aus dem ersten Prozess stammen [DL04].

Prozess 3 - Planung jedes Feature: Projektleiter, Entwicklungsleiter
und die Chefprogrammierer planen die Reihenfolge, in der Fea-
tures realisiert werden sollen. Dabei richten sie sich nach den
Abhängigkeiten zwischen den Features, der Auslastung des
jeweiligen Programmierteams sowie der Komplexität der Fea-
tures. Auf Basis des Plans werden die Fertigstellungstermine je
Geschäftsaktivität festgelegt. Jede Geschäftsaktivität bekommt
einen Chefprogrammierer als Besitzer zugeordnet. Außerdem
werden für die bekannten Kernklassen Entwickler als Besitzer
festgelegt (engl. Class Owner List) [DL04].

Prozess 4 - Entwurf jedes Feature: Die Chefprogrammierer
weisen die anstehenden Features den Entwicklerteams auf Basis
des Klassenbesitztums zu. Die Entwicklerteams erstellen ein
oder mehrere Sequenzdiagramme für die Features, die Chef-
programmierer verfeinern die Klassenmodelle auf Basis der Se-
quenzdiagramme. Die Entwickler schreiben dann erste Klassen-
und Methodenrümpfe. Schließlich werden die erstellten Ergeb-
nisse inspiziert. Bei fachlichen Unklarheiten können die Fachex-
perten hinzugezogen werden [DL04].

Prozess 5 - Konstruiere jedes Feature: Die Entwickler programmie-
ren die im vierten Prozess vorbereiteten Features. Zur Qualitäts-
sicherung werden bei der Programmierung sowohl Komponen-
tentests als auch Code-Inspektionen eingesetzt [DL04].

FDD ist ein sehr kompaktes Vorgehensmodell, das sich im Allgemei-
nen schnell in Unternehmen umsetzten lässt, vorausgesetzt die zu
entwickelnde Software kann auf die für die Entwicklung zentralen
Features reduziert werden. Um eine schnelle Fertigstellung der ein-
zelnen Features zu erreichen, sollten diese nicht zu komplex sein,
da sonst die Implementierung viel Zeit kosten würde. Da jedoch bei
FDD der Fokus nicht auf kurzen Iterationen zwischen den Softwa-
reversionen liegt, kann der oben genannte Punkt im Allgemeinen
vernachlässigt werden. Im weitesten Sinne kann mein Verfahren, das
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ich in dieser Arbeit vorstelle, auch als FDD gesehen werden, allerdings
wird in meinem Prozess auf die kurzen Iterationen geachtet und des-
halb die Features, die implementiert werden sollen, sehr feingranular
aufgeteilt.

2.1.9 Rational Unified Process

Der Rational Unified Process (RUP) [WIN+
06] ist ein kommerzielles Pro-

dukt der Firma Rational Software, die seit 2002 Teil des IBM Konzerns
ist. IBM entwickelt den RUP und die zugehörige Software weiter. Die
neunte Version vom Jahre 2006 ist die derzeit die aktuelle Version.
Der RUP benutzt die Unified Modeling Language (UML) als Notati-
onssprache. Der RUP wurde von Philippe Kruchten [KR96] in seiner
Urform erstmals 1996 vorgestellt.

Der RUP war möglich geworden, als sich die bekannten Program-
mierer Grady Booch, Ivar Jacobson und James Rumbaugh des Unter-
nehmens Rational Inc. auf ein einheitliches Notationssystem einigen
konnten. Als Resultat dieser Bemühungen entstand die UML. Die Stan-
dardisierung und Weiterentwicklung der Sprache wurde an die Object
Management Group (OMG) übergeben. Mit einer gemeinsamen Sprache
konnte nun eine gemeinsame objektorientierte Methode entwickelt
werden. Der Unified Process ist dabei ein Metamodell für Vorgehens-
modelle zur Softwareentwicklung und wurde parallel zur Unified
Modelling Language von den oben genannten Personen entwickelt und
veröffentlicht [Wik11].

Der Unified Process basiert auf mehreren Prinzipien [Wik11]:

• Anwendungsfällen

• Architektur im Zentrum der Planung

• inkrementellem und iterativen Vorgehen

Eine konkrete Implementierung des oben beschriebenen Unified Pro-
cess ist der Rational Unified Process. Die erste Version des RUP aus
dem Jahre 1999 [Kru99] [JBR99] führte die Vorschläge der drei oben
genannten Begründer für eine einheitliche Methode zur Modellierung
zusammen [Wik11].

Der Rational Unified Process legt grundlegende Arbeitsdisziplinen fest
(siehe auch Abbildung 2.831). Die Kernarbeitsdisziplinen sind die
Geschäftsprozessmodellierung (engl. Business Modeling), die Anfor-
derungsanalyse (engl. Requirements), Analyse & Design (engl. Ana-
lysis & Design), die Implementierung (engl. Implementation) und der
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Phasen
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Abbildung 2.8: Rational Unified Process.

Test (engl. Test) und die Auslieferung (engl. Deployment). Zu den un-
terstützenden Arbeitsdiszilinen gehört das Konfigurations- & Ände-
rungsmanagement (engl. Configuration & Change Management), das
Projektmanagement (engl. Project Management) und die Infrastruktur
(engl. Environment) [Wik11].

Orthogonal zu den Arbeitsdisziplinen gibt es im Rational Unified Pro-
cess vier Phasen, in der jeder der Diszilinen mehr oder weniger intensiv
zur Anwendung kommt. Die Phasen sind die Konzeptionsphase (engl.
Inception), die Entwurfsphase (engl. Elaboration), die Konstruktions-
phase (engl. Construction) und die Übergabephase (engl. Transition).
Diese Phasen sind in sich in Iterationen unterteilt, so dass der Rational
Unified Process ein iteratives Vorgehensmodell ist. Resultate der Phasen
sind die so genannten Meilensteine (engl. Milestones) [Wik11].

2.1.10 Extreme Programming (XP)

Extreme Programming (XP), oder auch Extremprogrammierung, ist eine
Methode, die das Lösen einer Programmieraufgabe in den Vorder-
grund der Softwareentwicklung stellt und dabei einem formalisierten
Vorgehen geringere Bedeutung zumisst. Diese Vorgehensweise de-
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finiert ein Vorgehensmodell, welches sich den Anforderungen des
Kunden in kleinen Schritten annähert [AH02].

Extreme Programming wurde von Kent Beck, Ward Cunningham und
Ron Jeffries während ihrer Arbeit im Projekt Comprehensive Compensa-
tion System (C3-Projekt) bei Chrysler zur Erstellung von Software ent-
wickelt. Die Arbeiten am C3-Projekt begannen 1995 und wurden 2000

nach der Übernahme durch Daimler eingestellt. Die dabei entwickelte
Software wurde im Bereich der Lohnabrechnung eingesetzt [Sys06].
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Abbildung 2.9: Lebenszyklus des Extreme Programming.

XP ist ein durch fortlaufende Iterationen und den Einsatz mehrerer
Einzelmethoden strukturierendes Vorgehensmodell (siehe Lebenszy-
klus in Abbildung 2.9). Es entstand durch die Synthese verschiedener
Disziplinen der Softwareentwicklung und basiert auf in der Praxis
bewährten Methoden, auch Best Practice2 genannt. XP folgt einem
strukturierten Vorgehen und stellt die Teamarbeit, Offenheit und stete
Kommunikation zwischen allen Beteiligten in den Vordergrund. Dabei
ist die Kommunikation eine Grundsäule von Extreme Programming.
Die Methode geht davon aus, dass der Kunde die Anforderungen
an die zu erstellende Software zu Projektbeginn noch nicht komplett
kennt und nicht hinreichend strukturieren kann beziehungsweise
das mit der Realisierung betraute Entwicklerteam nicht über alle In-
formationen verfügt, um eine verlässliche Aufwandsschätzung über
die notwendige Dauer bis zum Abschluss zu geben. Im Laufe eines
Projektes ändern sich nicht selten Prioritäten und Gewichte. Zu Be-

2Die Bezeichnung Best Practice stammt aus der Betriebswirtschaft und bezeichnet eine bewährte bzw.
optimale Vorgehensweise in einem Unternehmen.
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ginn geforderte Funktionen der Software werden möglicherweise in
einer anderen Form benötigt oder im Laufe der Zeit sogar komplett
hinfällig [Wik11].

Bei einer konsequenten Ausrichtung an XP soll die zu erstellende
Software schneller bereitgestellt sowie eine höhere Softwarequalität
und Zufriedenheit des Kunden erreicht werden, als es mit den tra-
ditionellen Ansätzen möglich ist. Der Kunde soll ein einsatzbereites
Produkt erhalten, an dessen Herstellung er aktiv teilgenommen hat.
Neue Funktionalität wird permanent entwickelt, integriert und getes-
tet. Um zu der zu entwickelnden Funktionalität zu gelangen, werden
jeweils die Schritte Risikoanalyse, Nutzenanalyse, die Bereitstellung ei-
ner ersten ausführbaren Version (Prototyping) und ein Akzeptanztest
durchgeführt [Bec00].

Nach Vertretern dieses Vorgehensmodells ist XP ein Risikomanage-
ment. Es bejaht das Risiko, geht aktiv darauf ein und versucht, es zu
minimieren. Dieser implizite Umgang mit dem Faktor Risiko steht
im Gegensatz zu eher expliziten Vorgehensweisen, wie der Aufstel-
lung einer Risikoliste [DeM03]. Softwareentwicklungsprojekte sind
unterschiedlichen Gefahren ausgesetzt, für die XP Lösungen anbieten
soll [Wik11].

Dem Kunden bietet XP, gerade durch seine kurzen Entwicklungszy-
klen, jederzeit die Möglichkeit, steuernd auf das Projekt einzuwir-
ken. Dadurch soll erreicht werden, dass sich das Produkt aktuellen
Anforderungen anpasst, statt überholten Anforderungen aus einer
längst vergangenen Analysephase zu genügen und damit bereits bei
Einführung veraltet zu sein. Zudem kann der Kunde bereits nach
kurzer Zeit ein unvollständiges, aber zumindest funktionstüchtiges
Produkt einsetzen. Der Kunde ist im besten Fall jederzeit auf dem-
selben aktuellen Informationsstand bezüglich des Projektes wie das
Entwicklerteam [Wik11].

Aus der Sicht der Programmierer existiert keine strikte Rollentren-
nung, da die Aufgabenverteilung abhängig von Situation und Fähig-
keiten geschieht. Der allgemeine Wissensaustausch und die stetige
Kommunikation beugen einem Wissensmonopol vor. Dies soll den
Einzelnen entlasten, wohingegen der Druck auf einer Person lastet,
wenn diese sich als Einzige in einem Modul auskennt [Wik11].

Dem Projekt bietet XP die Möglichkeit, Risiken zu minimieren. So
sollte unter richtiger Anwendung von XP der Kunde Software erhal-
ten, deren Umfang ihn nicht überrascht. Das Team soll ferner gegen
Krankheit Einzelner nicht mehr so anfällig sein. Ein ehrlicher Umgang
mit dem Kunden soll die Glaubwürdigkeit und Zufriedenheit steigern
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und die Angst minimieren, die unter Umständen zwischen Kunde
und Entwicklung vorherrscht [Wik11].

XP stellt aus wirtschaftswissenschaftlicher Sicht eine Form der Orga-
nisation dar, die direkt die Prozesse der Wertschöpfung3 beschreibt.
In den Wirtschaftswissenschaften werden zur Bewertung von Extreme
Programming auch Erkenntnisse anderer Sozialwissenschaften, insbe-
sondere der Soziologie, genutzt [Wik11].

Vereinzelt wird Extreme Programming als informelle und damit unver-
bindliche Methode bezeichnet. Das trifft jedoch weder den Ansatz
noch das Ziel. Tatsächlich ist die Formalisierung der Methode des
Extreme Programming bewusst flach und schlank gehalten. Hinge-
gen muss ein Einvernehmen zwischen Kunden und Programmierern
hinsichtlich der Verbindlichkeit der erstellten Unterlagen hergestellt
werden, solange diese noch nicht durch neuere Fassungen ersetzt
wurden. Weiter muss der Vorgang des Ersetzens einer Fassung einer
Unterlage durch eine neuere Fassung dieser Unterlage soweit formali-
siert sein, dass beide Parteien Kenntnis von dieser Ersetzung haben
und diese Ersetzung annehmen [Wik11].

Extreme Programming ist die Summe einzelner, gemeinsam zur Op-
timierung des Nutzens eingesetzter Erfolgsmethoden. XP definiert
sich selbst mit diesen Prinzipien, allerdings nicht als Patentlösung für
alle Probleme. Da, wo es speziellen oder individuellen Anforderun-
gen nicht genügt, soll es angepasst werden. Viele Prinzipien greifen
verzahnt ineinander. Einzelne Praktiken sind an sich nicht neu und
werden teilweise bereits lange genutzt, oder sind sogar von trivialer
und doch oft unterschätzter Natur. Die Praktiken sind die greifbaren,
konkreten Maßnahmen, die sich aus den Werten und den Prinzipien
ableiten lassen [Wik11].

2.1.11 Scrum

Scrum (engl. das Gedränge) ist ein Vorgehensmodell, dass auf Treffen
(engl. Meetings), Artefakten, Rollen, Werten und Grundüberzeugun-
gen basiert und beim Entwickeln von Produkten im Rahmen agiler
Softwareentwicklung hilfreich ist. Teammitglieder organisieren ihre
Arbeit weitgehend selbst und wählen auch die eingesetzten Software-
Entwicklungswerkzeuge und -Methoden. Ken Schwaber, Jeff Suther-
land und Mike Beedle haben Scrum erfunden und in der Softwareent-
wicklung etabliert [BDS+99]. Als Methode zur Entwicklung von Soft-

3Der Begriff Wertschöpfung ist in einer Geldwirtschaft das Ziel produktiver Tätigkeit. Diese
transformiert vorhandene Güter in Güter mit höherem Geldwert. Die allgemeine Formel lautet:
Wertschöp f ung = Gesamtleistung−Vorleistungen.
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ware wird Scrum das erstmalig im Buch ”Wicked Problems, Righteous
Solutions“ [DS90] beschrieben. Scrum in Produktionsumgebungen
wird zum ersten Mal im Artikel ”The New New Product Development
Game“ [Gam86] erläutert und später in der Veröffentlichung ”The
Knowledge Creating Company“ [NT95] weiter ausgeführt [Wik11].

Im Jahre 2003 legte Ken Schwaber ein Zertifizierungsprogramm für
Scrum Master auf. Das Ziel, heute wie damals, ist es, die Software-
Entwicklung durch das Nutzen von Scrum zu professionalisieren.
Inzwischen wird das Training Certified Scrum Master unter der Schirm-
herrschaft der Scrum Alliance durchgeführt [Wik11].

Produkt Backlog Sprint Backlog Sprint Überarbeitete und lauffähige
Version der Software

30 Tage

24 Std.

Abbildung 2.10: Der Scrum-Prozess.

Scrum erfüllt die Bedingungen der agilen Software-Entwicklung, die
2001 im Agilen Manifest u. a. von Ken Schwaber und Jeff Sutherland
mit formuliert wurden [BBvB+

01]:

• Individuen und Interaktionen gelten mehr als Prozesse und
Tools.

• Funktionierende Programme gelten mehr als ausführliche Do-
kumentation.

• Die stetige Zusammenarbeit mit dem Kunden steht über Ver-
trägen.

• Der Mut und die Offenheit für Änderungen steht über dem
Befolgen eines festgelegten Plans.

Bei Scrum gibt es drei klar getrennte Rollen, die von Mitarbeitern
ausgefüllt werden, die im selben Projekt zusammen arbeiten und
damit auch dasselbe Ziel haben. Damit jeder für das, was er kann,
zuständig und verantwortlich ist, werden die Zuständigkeiten wie
folgt aufgeteilt:
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Product Owner: Der Product Owner legt das gemeinsame Ziel fest,
welches das Team zusammen mit ihm erreichen muss. Zur De-
finition der Ziele dienen ihm User Stories. Er stellt das Budget
zur Umsetzung dieser User Stories zur Verfügung. Er setzt re-
gelmäßig die Prioritäten der einzelnen Product-Backlog-Elemente
(siehe unten). Dadurch legt er fest, welches die wichtigsten Fea-
tures sind, aus denen das Entwicklungsteam eine Auswahl für
den nächsten Sprint trifft [Wik11].

Team: Das Team schätzt die Aufwände der einzelnen Backlog-Elemente
ab und beginnt mit der Implementierung der für den nächsten
Sprint machbaren Elemente. Dazu wird vor dem Beginn des
Sprints ein weiteres Planungstreffen durchgeführt, bei dem die
am höchsten priorisierten Elemente des Backlogs und konkrete
Aufgaben aufgeteilt werden. Das Team arbeitet selbstorganisiert
im Rahmen einer Time Box (dem Sprint) und hat das Recht
(und die Pflicht), selbst zu entscheiden, wie viele Elemente des
Backlogs nach dem nächsten Sprint erreicht werden müssen, man
spricht dabei von commitments [Wik11].

Scrum Master: Der Scrum Master hat die Aufgabe, die Prozesse der
Entwicklung und Planung durchzuführen und die Aufteilung
der Rollen und Rechte zu überwachen. Er hält die Transparenz
während der gesamten Entwicklung aufrecht und unterstützt da-
bei, Verbesserungspotentiale zu erkennen und zu nutzen. Er ist
keinesfalls für die Kommunikation zwischen Team und Product
Owner verantwortlich, da diese direkt miteinander kommunizie-
ren. Er steht dem Team zur Seite, ist aber weder Product Owner
noch Teil des Team. Der Scrum Master sorgt mit allen Mitteln
dafür, dass das Team produktiv ist, also die Arbeitsbedingungen
stimmen und die Teammitglieder zufrieden sind. Er tritt somit
für die ordnungsgemäße Durchführung und Implementierung
von Scrum im Rahmen des Projektes ein [Wik11].

Bei der Rollenaufteilung wurde berücksichtigt, dass das Team sich
selbst organisiert. Der Product Owner gibt nicht vor, welches Team-
mitglied wann was macht und wer mit wem zusammenarbeitet. Bei
Scrum wird von der Annahme ausgegangen, dass das Team sich intui-
tiv selbst organisiert, und zu jeder Aufgabe dynamisch eine optimale
innere Organisationsstruktur bildet, die sich relativ schnell an die sich
wandelnden komplexen Aufgaben anpasst. Der Scrum Master hat die
Pflicht, darauf zu achten, dass der Product Owner nicht in diesen ad-
aptiven Selbstorganisationsprozess eingreift und das Team stört oder
Verantwortlichkeiten an sich nimmt, die ihm nicht zustehen [Wik11].
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Artefakte

Wie in Abbildung 2.1035 dargestellt besteht der Lebenszyklus von
Scrum aus Backlogs und Sprints. In dem Prozess existieren insgesamt
folgende Backlogs [Wik11]:

Product Backlog: Das Product Backlog enthält die Features des zu
entwickelnden Produkts. Es umfasst alle Funktionen, die der
Kunde wünscht, zuzüglich technischer Abhängigkeiten. Vor
jedem Sprint werden die Elemente des Product Backlogs neu
bewertet und priorisiert. Dabei können bestehende Elemente
entfernt sowie neue hinzugefügt werden. Hoch priorisierte Fea-
tures werden von den Entwicklern im Aufwand geschätzt und
in den Sprint Backlog übernommen. Ein wesentliches Merkmal
des Backlogs ist die Tiefe der Beschreibung von einzelnen Featu-
res. Hoch priorisierte Features werden im Gegensatz zu niedrig
priorisierten sehr detailliert beschrieben. Somit wird viel Zeit
für die wesentlichen Elemente und wenig für unwesentliche
verwendet [Wik11].

Sprint Backlog: Das Sprint Backlog enthält alle Aufgaben, die notwen-
dig sind, um das Ziel des Sprints zu erfüllen. Eine Aufgabe sollte
dabei nicht länger als 16 Stunden dauern. Längere Aufgaben
sollten in kurze Teilaufgaben zerlegt werden. Bei der Planung
des Sprint werden nur so viele Aufgaben eingeplant, wie das
Team an Kapazität aufweisen kann [Wik11].

Burndown Chart: Das Burndown Chart ist eine graphische, pro Tag
zu erfassende Darstellung des noch zu erbringenden Restauf-
wands pro Sprint. Im Idealfall fällt die Kurve kontinuierlich
(daher Burndown) und der Restaufwand ist somit am Ende des
Sprints gleich Null. Am Chart ist anhand der Verlängerung der
negativen Steigung bereits während des Sprints erkennbar, ob
der zu Beginn geschätzte Aufwand realisierbar ist [Wik11].

Impediment Backlog: In das Impediment Backlog werden alle Hin-
dernisse des Projekts eingetragen. Der Scrum Master ist dafür
zuständig, diese Hindernisse gemeinsam mit dem Team aus-
zuräumen [Wik11].

Zyklusmodell

Sprint: Zentrales Element des Entwicklungszyklus von Scrum ist
der Sprint. Ein Sprint bezeichnet die Umsetzung einer Iterati-
on, Scrum schlägt ca. 30 Tage als Dauer einer Iteration vor. Vor
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dem Sprint werden die Produkt-Anforderungen des Kunden in
einem Product Backlog gesammelt. Auch technische und admi-
nistrative Aufgaben werden dort aufgenommen. Das Product
Backlog muss nicht vollständig sein; es wird laufend fortgeführt.
Die Anforderungen für den ersten Sprint sind meistens rasch
aufgestellt. Die Anforderungen werden informell skizziert. Für
einen Sprint wird ein Sprint Backlog erstellt. In diesen werden
Anforderungen übernommen, die während des Sprints umge-
setzt werden sollen. Die Entscheidung, welche Anforderungen
umgesetzt werden, wird vom Kunden nach von ihm festgelegten
Prioritäten getroffen. Zum Sprint organisiert sich das Entwick-
lungsteam selbst, braucht also keine detaillierten methodischen
Vorschriften [Wik11].

Daily Scrum: An jedem Tag findet ein kurzes (maximal 15-minütiges)
Daily Scrum, heißt eine Sitzung (engl. Meeting), statt. Das Team
stellt sich gegenseitig die folgenden Fragen:

• ”Bist du gestern mit dem fertig geworden, was du dir vor-
genommen hast?“

• ”Welche Aufgaben wirst du bis zum nächsten Meeting
bearbeiten?“

• ”Gibt es ein Problem, das dich blockiert?“

Die Sitzung dient dem Informationsaustausch des Teams unter-
einander. Hier geht es darum, dass möglichst alle alles wissen.
Falls neue Hindernisse erkannt wurden, müssen diese vom
Scrum Master bearbeitet werden. Dazu werden sie in das Im-
pediment Backlog eingetragen. Größere Projekte werden durch
das Einführen von Scrum-of-Scrum Meetings, Product Owner Daily
Scrums und ScrumMaster Weekly gesteuert [Wik11].

Review: Nach einem Sprint wird das Sprint-Ergebnis einem infor-
mellen Review durch Team und Kunden unterzogen. Hierzu
wird das Ergebnis des Sprints (also die laufende Software) vor-
geführt, eventuell werden technische Eigenschaften präsentiert.
Der Kunde prüft, ob das Sprint-Ergebnis seinen Anforderungen
entspricht, eventuelle Änderungen werden im Product Backlog
dokumentiert [Wik11].

Retrospektive: In der Retrospektive wird die zurückliegende Sprint-
Phase betrachtet. Es handelt sich dabei nicht um Lessons Lear-
ned4, sondern um einen zunächst wertfreien Rückblick auf die

4Lessons Learned ist ein Fachbegriff des Projektmanagements und bezeichnet allgemein die Auswer-
tung von Erfahrungen in Projekten, die zuvor durchgeführt wurden.
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Ereignisse des Sprints. Alle Teilnehmer notieren dazu die für
sie wichtigen Ereignisse auf Zetteln und ordnen sie dem Zeit-
strahl des Sprints zu. Anschließend schreiben die Teilnehmer
alle Punkte auf, welche ihnen zu den Themen Best Practice, bzw.
Verbesserungspotential einfallen. Jedes Verbesserungspotential
wird priorisiert und einem Verantwortungsbereich (Team oder
Organisation) zugeordnet. Alle der Organisation zugeordneten
Themen werden vom Scrum Master aufgenommen und in das
Impediment Backlog eingetragen. Die gesamten teambezogenen
Details werden in das Product Backlog aufgenommen. Sollte für
die Retrospektiven und deren Vorbereitung nicht genug Zeit
eingeräumt werden, bleiben die Erkenntnisse und Ergebnisse
oberflächlich und die Resultate nach jedem Sprint ähneln sich.
Dann läuft man Gefahr, dass die Retrospektiven an Stellenwert
verlieren oder ganz gestrichen werden, weil die Ergebnisse der
Retrospektiven vorhersehbar sind [Wik11].

2.1.12 Prototyping

Prototyping, oder auch Prototypenbau, ist eine Methode der Softwa-
reentwicklung, die schnell zu ersten Ergebnissen (den sogenannten
Prototypen) führt und frühzeitiges Feedback bezüglich der Eignung
eines Lösungsansatzes ermöglicht [Wik11].

Der Begriff des Prototyping im Bereich der Softwareentwicklung trat
erstmals Anfang der achtziger Jahre in ersten Publikationen in Er-
scheinung. Zu dieser Zeit vollzogen sich teils drastische Wandel im
Bereich der Softwareentwicklung. Man war auf der Suche nach neuen
Designkonzepten und Entwicklungsstrategien um Schwächen bzw.
Unzulänglichkeiten vorhandener Entwicklungsmodelle für Software
zu umgehen, da insbesondere in umfangreichen Projekten zuneh-
mend Probleme im Bereich der Anforderung bzgl. des Endprodukts
auftraten [CS89] [KOSS11].

Im Jahre 1979 sollte eine weitläufig angelegte amerikanische Studie
klären, worin die Gründe für ein oftmaliges Scheitern von Software-
projekten unter Verwendung herkömmlicher Entwicklungsmodelle
wären. Es zeigte sich, dass viele Softwareprojekte nicht etwa an un-
zureichenden Entwicklungsumgebungen oder Entwicklungswerkzeu-
gen, sondern zunehmend am Problem mangelnder Kommunikation
zwischen Auftraggebern, Benutzern und Entwicklern scheiterten. Die
zur damaligen Zeit gängigen Entwicklungsmodelle setzten auf so
genannte Life Cycle Plans auf. Das wohl bekannteste und gebräuch-
lichste derartige Modell war das Wasserfallmodell (Kapitel 2.1.214).
Das Problem bei diesen Modellen war, dass die Benutzer nur zu
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Abbildung 2.11: Entwicklungsprozess nach Pomberger [PW94].

Beginn eines Projektes im Rahmen der Aufgabenbeschreibung bzw.
-spezifikation mit einbezogen wurden, jedoch vom weiteren Entwick-
lungsprozess konsequent ausgeschlossen waren. Dies machte zwar
den Entwicklungsprozess überschaubar und kalkulierbar, resultierte
allerdings in Software, die oftmals nicht den Erwartungen der Auftrag-
geber und Nutzer aufgrund unzureichender Aufgabenbeschreibung
entsprach. Unklarheiten und Fehler, die bereits im Rahmen der Anfor-
derungsanalyse auftraten, zogen sich somit bis ins Endprodukt durch,
wobei im schlimmsten Fall die Software nahezu unbrauchbar geraten
konnte [BKK92] [KOSS11].

Das Prototyping als Softwareentwicklungsmodell unterscheidet sich
grundsätzlich nicht von traditionellen, auf dem Life Cycle-Prinzip ba-
sierenden Entwicklungsmodellen. Vielmehr stellt es eine Ergänzung
zu herkömmlichen Modellen dar. Prototyping bildet ein Kernanliegen
dieses Paradigmas ab, den Benutzer während des gesamten Entwick-
lungsfortschritts einbinden, um möglichst gute Kommunikation zwi-
schen Entwicklern und Benutzern zu gewährleisten und eventuelle
Ungenauigkeiten in der Softwarespezifikation jederzeit ausbessern zu
können. Dadurch können etwaige Unklarheiten und Unzulänglichkei-
ten frühzeitig erkannt und auch im Laufe des Entwicklungsprozesses
geklärt werden, eines der größten Mängel vorausgehender Model-
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le [CS89] [KOSS11].

Das Konzept des Prototyping versucht relativ früh im Entwicklungs-
prozess funktionsfähige Prototypen von Teilfunktionen der Software
zu entwickeln, welche Teilaspekte des Gesamtprojektes in ihrer Funk-
tionsweise demonstrieren und vom späteren Nutzer getestet bzw. in
Zusammenarbeit mit dem Entwickler verbessert werden können. Da
Prototypen nur Basiseigenschaften von Teilaspekten des Programms
beschreiben, können sie schnell und kostengünstig erstellt werden, wo-
bei auch experimentelles Vorgehen ermöglicht wird. Die Prototypen
an sich definieren zwar Teilaspekte der zu erstellenden Software, sind
aber selbst als solche nicht Teil des endgültigen Produktes. Derartige
Prototypen können dann sukzessive entsprechend den Nutzerbedürf-
nissen erweitert oder aber auch gänzlich verworfen und durch einen
anderen Prototypen ersetzt werden. Durch diesen evolutionären An-
satz bei der Softwareentwicklung entsteht die Software stufenweise
in Zusammenarbeit mit den Nutzern [PW94] [KOSS11].

Ansatzmethoden beim Prototyping

Es existieren drei verschiedene Ansätze, wie die Prototypen zu erstel-
len sind [KOSS11].

Throw-Away Ansatz: Bei der Verwendung eines Throw-Away Ansat-
zes wird ein nicht vollständiges, aber im Sinne der Anforderun-
gen lauffähiges Programm beschrieben. Dies wird dann dem
Benutzer zur experimentellen Auswertung übergeben. Der Proto-
typ wird nach der Auswertung nicht weiterverwendet, sondern
verworfen. Die gewonnenen Ergebnisse werden bei der Neukon-
struktion eines neuen Prototypen verwendet [KOSS11].

Inkrementeller Ansatz: Beim inkrementellen Ansatz wird zu Beginn
ein stabiler Programmkern aufgebaut, dem danach schrittwei-
se neue Funktionen oder auch neue Systemteile hinzugefügt
werden. Programmteile, die dem Prototypen noch fehlen, wer-
den durch Simulationen vervollständigt. Dieser Prototyp besteht
gewissermaßen aus zwei verschiedenen Teilen, einem fest im-
plementieren Softwareteil und einem Simulationsteil. Nachteil
dieses Konzeptes ist, dass ein neu hinzugefügter Programm-
teil das Gesamtsystem in der Regel in einem so hohem Maße
beeinflusst, so dass frühere Entwurfsentscheidungen korrigiert
werden müssen [KOSS11].

Evolutionärer Ansatz: Diese Ansatzmethode legt die jeweiligen Ar-
chitekturkonzepte zu keinem Zeitpunkt fest. Das ermöglicht zu
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jeder Zeit das Aufnehmen neue Anforderungen. Die Architektur
passt sich den Umgebungsanforderungen an. So ist der Proto-
typ beim Beenden der evolutionären Ansatzmethode das fertige
Endprodukt. Die Idee des evolutionären Ansatzes geht bis in
die 60er Jahre zurück, aber sie ist bis heute noch sehr schwer
umzusetzten [KOSS11].

Arten von Prototypen

Je nach den vorliegenden Anforderungen werden unterschiedliche
Prototypen benötigt. Es können vier verschiedene Arten unterschieden
werden [KOSS11]:

Vollständiges System

Verschiedene Features

Funktionalität

Horizontaler Prototyp

Vertikaler Prototyp

Scenario

Abbildung 2.12: Horizontaler und vertikaler Prototyp.

Demonstrationsprototyp: Dieser Prototyp soll vor allem die Benut-
zerschnittstelle, allerdings auch die Handhabung und die prin-
zipiellen Einsatzmöglichkeiten des zukünftigen Endproduktes
zeigen. Für Demonstrationsprototypen wird in vielen Fällen der
Throw-Away Ansatz gewählt [KOSS11].

Funktionaler Prototyp: Bei dieser Art Prototyp werden eine oder
mehrere Aspekte der Funktionalität implementiert. Dabei gibt es
zwei unterschiedliche Vorgehensweisen, zum einen den horizon-
talen Prototyp und zum anderen den vertikalen Prototyp (siehe
auch Abbildung 2.12). Der horizontale Prototyp deckt eine Viel-
zahl an Funktionalität, die aber nicht komplett implementiert ist.
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Beispiel wäre eine Benutzerschnittstelle, die schon komplett ent-
wickelt ist, bei der aber die Verarbeitung der Eingaben fehlt. Der
vertikale Prototyp spezialisiert sich meist auf nur eine spezielle
Aufgabe, dafür ist diese aber auch voll implementiert. Als Bei-
spiel, bei einer Benutzerschnittstelle wäre diese bis auf wenige
Bedienelemente leer, dafür würde allerdings die Funktionalität
hinter den vorhandenen Bedienelementen schon komplett imple-
mentiert sein. Auch für den funktionalen Prototyp wird häufig
der Throw-Away Ansatz gewählt [KOSS11].

Labormuster (Labormodell): Dieser Prototyp dient den Entwicklern
intern als Bewertungsgegenstand, der Fragen der technischen
Umsetzung und der Realisierbarkeit klären soll [KOSS11].

Pilotsystem: Pilotsysteme sind Weiterentwicklungen der Labormus-
ter, die so ausgereift sind, dass sie nicht nur im Labor sondern
auch schon im Anwendungsbereich selbst eingesetzt werden
können. [KOSS11]

2.1.13 Vorgehensmodelle Zusammenfassung

Die in diesem Kapitel vorgestellten Vorgehensmodelle sind die klassi-
schen Methoden zur Entwicklung von Software. Sie sind allgemein-
gültige Modelle, die für die Entwicklung fast jedes Softwareprojektes
verwendet werden können. Sie bieten keine speziellen Lösungen für
bestimmte Projekte und sind oft nicht durch Softwarewerkzeuge un-
terstützt. Allerdings basiert auch mein vorgestelltes Entwurfsvorgehen
auf Prinzipien der hier vorgestellten Vorgehensmodelle. Begriffe wie
Iteration, Prototyp und kurze Zyklen werden sich auch in meinem
Entwurfsvorgehen wiederfinden.

In Kapitel 3.260 gehe ich auf speziell für Mixed Reality entwickelte
Vorgehensmodelle und Entwurfskonzepte ein, die den Stand der
aktuellen Forschung widerspiegeln.

2.2 Architekturmuster

Im Bereich der Softwareentwicklung sind Architekturmuster (auch:
Architekturstil, engl. architectural style) in den Arten von Mustern auf
oberster Ebene einzuordnen. Im Gegensatz zu Idiomen5 oder Ent-

5Idiome sind den Mustern (engl. pattern) zugeordnet. Buschmann definiert: ”Ein Idiom ist ein
programmiersprachenspezifisches Muster und damit ein Muster auf einer niedrigen Abstraktionsebene.
Ein Idiom beschreibt, wie man bestimmte Aspekte von Komponenten oder Beziehungen zwischen ihnen
mit den Mitteln einer bestimmten Programmiersprache implementiert.“ [BMRS98]
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wurfsmustern6 bestimmen sie nicht ein konkretes (meist kleines oder
lokales) Teilproblem, sondern den Grundaufbau, also das Fundament
der Anwendung. [BMRS98]

Architekturmuster lassen sich in vier verschiedene Kategorien eintei-
len [Wik11]:

Chaos zu Struktur (engl. Mud-to-structure): Diese speziellen Mus-
ter sollen helfen, die Vielzahl an Komponenten und Objekten
eines Softwaresystems zu organisieren. Die Funktionalität des
Gesamtsystems wird hierbei in kooperierende Subsysteme auf-
geteilt. Diese Kategorie beinhaltet folgende Muster:

• Pipes und Filter

• Schichtenarchitektur (auch: mehrschichtige bzw.
N-Tier-Architektur)

• Schwarzes Brett (engl. Blackboard)

Verteilte Systeme: Diese Kategorie unterstützt die Verwendung ver-
teilter Ressourcen und Dienste in Netzwerken (z. B. service-
orientierte Architekturen, Orchestrierung). Die beiden Modelle
Mikrokernel und Pipes und Filter) unterstützen eine Verteilung
auch, aber eher zweitrangig. Folgende Muster fallen unter diese
Kategorie:

• Broker bzw. Vermittler

• Client-Server

Interaktive Systeme: Interaktive Systeme sollen die Mensch-Com-
puter-Interaktionen strukturieren und vereinfachen. In dieser
Kategorie stehen folgende Muster:

• Model-View-Controller (MVC)

• Presentation-Abstraction-Control (PAC)

Adaptive Systeme: Bei diesem Muster wird die Erweiterungs- und
Anpassungsfähigkeit von Softwaresystemen besonderes unter-
stützt. Es fallen folgende Muster unter diese Kategorie:

• Mikrokernel

• Reflexion

• Dependency Injection

6Entwurfsmuster (engl. design patterns) sind bewährte Lösungs-Schablonen für wiederkehrende
Entwurfsprobleme in Softwarearchitektur und Softwareentwicklung. [GHJV96]
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In meiner Arbeit habe ich das bekannte MVC-Modell verwendet und
dahingehend erweitert, dass es in mein Entwurfsvorgehen eingepasst
wurde. Deshalb werde ich hier nur die beiden Architekturmodelle
MVC und PAC aus der Kategorie der Interaktiven Systeme vorstellen.

2.2.1 Model-View-Controller

Das Model-View-Controller (MVC, zu deutsch ”Modell, Präsentation,
Steuerung“) Architekturmuster dient bei der Entwicklung von Soft-
ware zur Strukturierung in drei Einheiten: Dem Datenmodell (engl.
Model), der Präsentation (engl. View) und Programmsteuerung (engl.
Controller). Das Ziel dieses Musters ist ein flexibler Programment-
wurf, der spätere Änderungen oder Erweiterungen erleichtert und
eine Wiederverwendbarkeit der einzelnen Komponenten ermöglicht.
MVC ist in der Entwicklung von Benutzerschnittstellen (engl. User
Interfaces, kurz UI) ein weit verbreitetes Muster. Es wurde im Jahre
1979 zunächst exakt für UIs in Smalltalk durch Trygve Reenskaug, der
damals an Smalltalk im Xerox PARC arbeitete, beschrieben (Seeheim-
Modell) [Ree03]. Mittlerweile gilt MVC aber als De-facto Standard für
den Grobentwurf aller komplexen Softwaresysteme, teils mit Diffe-
renzierungen und oftmals mehreren, jeweils nach dem MVC-Muster
aufgeteilten, Modulen [Wik11].

Model (M)

View (V) Controller (C)

Direkte Assoziation

Indirekte Assoziation

ch
an

ge
 no

tifi
ca

tio
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qu
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yD
ata

()

changeDisplay()

user action

changeData()

Abbildung 2.13: Model-View-Controller Architekturmuster.

In Abbildung 2.13 sind die drei Komponenten Model, View und Con-
troller und deren Beziehung zueinander zu sehen. In der Abbildung
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repräsentiert die durchgezogene Linie eine direkte Assoziation, die
gestrichelte eine indirekte Assoziation (z. B. über einen Observer7). Die
Annotation an den Pfeilen beschreibt die Aktionen bzw. Funktionen,
die jeweils aufgerufen werden können. So schickt z. B. das Model eine
Benachrichtigung an den View, dass sich die Daten des Model geändert
haben (change notification) woraufhin der View dann die neuen Daten
vom Model abfragt (queryData() ) und sie dann darstellt.

Je nach Realisierung hängen die Komponenten unterschiedlich stark
voneinander ab und sind für folgende Aufgaben gedacht:

Model: Es beinhaltet die darzustellenden Daten und ist vom View
und vom Controller unabhängig. Die Bekanntgabe von Ände-
rungen an relevanten Daten im Model geschieht nach dem Ent-
wurfsmuster Beobachter (engl. Observer). Das Modell ist das zu
beobachtende Subjekt, auch Publisher, genannt [Wik11].

View: Der View ist für die Darstellung der Daten aus dem Model und
die Entgegennahme von Benutzerinteraktionen zuständig. Dem
View sind sowohl sein Controller als auch das Model bekannt,
dessen Daten er darstellt. Für die Weiterverarbeitung der vom
Benutzer übergebenen Daten ist er aber nicht zuständig. Im
Regelfall wird der View über Änderungen von Daten im Mo-
dell mithilfe des Entwurfsmusters Beobachter unterrichtet und
kann sich daraufhin die aktualisierten Daten besorgen. Der View
verwendet das Entwurfsmuster Kompositum8 [Wik11].

Controller: Der Controller kann einen oder mehrere Views verwalten
und nimmt von ihnen Benutzeraktionen entgegen, die er dann
auswertet entsprechend agiert. Zu jedem View existiert ein Model.
Es ist nicht die Aufgabe der Steuerung, Daten zu manipulieren.
Der Controller entscheidet aufgrund der Benutzeraktion im View,
welche Daten im Model geändert werden müssen. Er enthält
weiterhin Mechanismen, um die Benutzerinteraktionen des View
einzuschränken. View und Controller verwenden zusammen das
Entwurfsmuster Strategie9, wobei der Controller der Strategie
entspricht. Der Controller kann in manchen Implementierungen

7Der Observer gehört zur Kategorie der Verhaltensmuster (engl. Behavioural Patterns). Es dient zur
Weitergabe von Änderungen an einem Objekt an von diesem Objekt abhängige Strukturen. [GHJV96]

8Das Kompositum (engl. Composite) gehört zu der Kategorie der Strukturmuster (Structural Patterns).
Es wird angewendet, um Teil-Ganzes-Hierarchien zu repräsentieren, indem Objekte zu Baumstrukturen
zusammengefügt werden. Die Grundidee des Kompositionsmusters (Composite-Pattern) ist, in einer
abstrakten Klasse sowohl primitive Objekte als auch ihre Behälter zu repräsentieren. Somit können
sowohl einzelne Objekte, als auch ihre Kompositionen einheitlich behandelt werden. [GHJV96]

9Die Strategie (engl. Strategy)gehört zu der Kategorie der Verhaltensmuster (Behavioural Patterns).
Das Muster definiert eine Familie austauschbarer Algorithmen.. [GHJV96]
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ebenfalls zu einem Beobachter des Model werden, um bei Ände-
rungen der Daten den View direkt zu manipulieren [Wik11].

Der Vorteil der Dekomposition nach dem Model-View-Controller Ar-
chitekturmuster, die hier am Beispiel von Benutzerschnittstellen be-
schrieben wurde, ist, dass die Aspekte der Visualisierung und der
Interaktion von der unterliegenden Applikation getrennt behandelt
werden können. Mit dem Model-View-Controller Architekturmuster
wird ein modulares Design ermöglicht, bei dem Änderungen einer
Komponente keine Auswirkungen auf die Implementation der übri-
gen Komponenten haben. Ein weiterer Vorteil ist die Möglichkeit der
Verwendung mehrere Views und Controller für ein Model.

2.2.2 Presentation-Abstraction-Control

Das Architekturmuster Presentation-Abstraction-Control (PAC, was ins
Deutsche übersetzt bedeutet ”Darstellung-Abstraktion-Steuerung“)
wird zur Strukturierung von interaktiven Softwaresystemen vewren-
det. Es ist eine Weiterentwicklung des in Kapitel 2.2.145 vorgestellten
MVC Models und wurde von Prof. Joëlle Coutaz im Jahre 1987 vor-
gestellt [Cou87]. Mit dem PAC Muster können interaktive Systeme
so entwickeln werden, dass diese aus einzelnen Teilen bestehen, die
jeweils einen Teil der Aufgaben des gesamten Systems abbilden und
damit eine hohe Flexibilität des Systems gewähren. PAC stellt sicher,
dass die Teile zu einem funktionierenden Ganzen zusammengesetzt
werden können [Wik11].

Top-Level-Agent

Abstraction (A)Presentation (P)

Control (C)

Intermediate-Level-Agent

Abstraction (A)Presentation (P)

Control (C)

Intermediate-Level-Agent

Abstraction (A)Presentation (P)

Control (C)

Bottom-Level-Agent

Abstraction (A)Presentation (P)

Control (C)

Bottom-Level-Agent

Abstraction (A)Presentation (P)

Control (C)

Abbildung 2.14: Aufbau von Presentation-Abstraction-Control(PAC).

PAC teilt ein System in zwei Richtungen auf: Zum einen in die drei
Einheiten grafische Benutzungsschnittstelle (engl. Presentation), Ver-
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mittlung und Kommunikation (engl. Control) und das Datenmodell
(engl. Abstraction) – dies ist ähnlich dem MVC Muster – und zum
anderen hierarchisch in verschiedene Elemente, die jeweils einen Teil
der Aufgaben des Systems abbilden. Diese Teile werden im PAC
Muster als Agenten bezeichnet und sie stellen die erste Stufe der
Strukturierung während des Architekturentwurfes dar [Wik11].

Die Hierarchie von PAC ist in insgesamt drei Ebenen unterteilt, wie
in Abbildung 2.1447 zu erkennen ist. Die oberste Ebene besteht aus
einem einzigen so genannten Top-Level-Agent, der für das System alle
globalen Aufgaben übernimmt, z. B. Datenbankzugriffe. Auf der zwei-
ten Ebene liegen die Intermediate-Level-Agents, die eine Schnittstelle
zwischen der untersten (Bottom-Level) und der obersten (Top-Level)
Ebene bilden und mehrere Bottom-Level-Agents zu einer Einheit zu-
sammenfassen. Dabei besteht die Möglichkeit, dass in dieser Ebene
die Teilsysteme weiter hierarchisch aufgeteilt werden können, so dass
ein Teilsystem auch aus einem oder mehreren anderen bestehen kann,
was bedeutet, dass ein Intermediate-Level-Agent auch mehrere ande-
re Intermediate-Level-Agents zusammenfassen kann. Die dritte Ebene
besteht aus den Bottom-Level-Agents, welche die eigentlichen Funk-
tionen des interaktiven Systems abbilden, wobei jeder seine eigene,
möglichst abgeschlossene, Funktion beinhaltet und möglichst über
keine Abhängigkeiten zu anderen Bottom-Level-Agents verfügen soll-
te [Wik11].

Der Architekturentwurf beginnt mit der Aufteilung der geforderten
Funktionalität auf mehrere Bottom-Level-Agents. Anschließend wird bei
dem Top-Level-Agent festgelegt, welche Funktionalität dieser erbringen
soll. Die Hierarchie wird daraufhin mit der Festlegung der Intermediate-
Level-Agents vervollständigt, die eine Kombination aus Bottom-Level-
Agents darstellen und diesen den Zugriff auf den Top-Level-Agent
vermitteln [Wik11].

Wie schon oben beschrieben wird jeder Agent in drei Komponenten
aufgeteilt. Die erste Komponente entspricht der grafischen Benutzero-
berfläche (Presentation), die die komplette Ein- und Ausgabe umfasst
(anders bei dem MVC Muster, bei dem diese noch aufgeteilt wird in
View und Controller). Die zweite Komponente repräsentiert die Ab-
straktion (Abstraction), die das Datenmodell des jeweiligen Agenten
realisiert. Die dritte Komponente, die Vermittlung und Kommunika-
tion (Control), stellt die Verbindung zwischen den beiden anderen
Komponenten her und ermöglicht die Kommunikation mit ande-
ren Agenten. Damit ist diese Komponente die zentrale Schnittstelle
für die Zusammenarbeit der einzelnen Teile eines Systems im PAC-
Muster [Wik11].
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Es ist nicht zwingend notwendig, dass jeder Agent alle drei Kompo-
nenten beinhaltet, sondern jeder Agent bringt die Benutzerschnittstelle
und das Datenmodell für seine Aufgabe mit. Es ist somit vorstellbar,
dass z. B. ein Intermediate-Level-Agent nur in einem Fenster ihm unter-
geordnete Agenten zusammenfasst und anzeigt, selber aber dafür kein
Datenmodell benötigt. Jeder Agent muss allerdings die Steuerungs-
komponente beinhalten, da ansonsten eine Kommunikation zwischen
Komponenten und mit anderen Agenten nicht möglich wäre [Wik11].

2.2.3 Zusammenfassung

MVC und PAC eignen sich hervorragend, um Komponenten entspre-
chend ihrer Funktionalität aufzuteilen und so getrennt zu entwickeln.
Für meinen Entwurfsprozess habe ich das MVE Architekturmuster
als Grundlage gewählt und erweitert, da ich die Hierarchie von PAC
nicht benötigte. Die Aufteilung in kleinere Teile kann in meinem
Entwurfsprozess optional innerhalb der einzelnen Komponenten des
erweiterten MVE Architekturmusters vorgenommen werden.

2.3 Modellbildung und Simulation kontinuierlicher
Systeme

In vielen Bereichen der Entwicklung von kontinuierlichen Systemen
wird heutzutage die Simulation als Werkzeug genutzt. Durch die
Simulation erlangt man ein besseres Verständnis über komplexe, dy-
namische Systeme und sie erleichtert die Entwicklung dieser Systeme.
In diesem Abschnitt beziehe ich mich nur auf die Simulation kontinu-
ierlicher Systeme. Bei der Simulation beispielsweise diskreter Systeme
(z. B. Digitalschaltungen) muss das resultierende Modell nicht not-
wendigerweise mit Differenzialgleichungen beschreiben werden.

Grundlage der Simulation ist ein mathematisches bzw. physikalisches
Modell des kontinuierlichen Systems, welches anhand von Beobach-
tungen bzw. theoretischer Grundlagen entwickelt wird. Dieses Modell
sollte das zu analysierende System hinreichend gut beschreiben. Die
aus dem Modell resultierenden Differenzialgleichungen können durch
einen Computer berechnet und gelöst werden. Modelle können, je
nach Anforderung, beliebig komplex werden, meist reichen jedoch
Approximationen des Systems aus, um verwertbare Daten zu erhalten.
Um den Aufwand der Berechnung gering zu halten, sollte das Modell
nur genau das beschreiben, was für die spätere Auswertung nötig
ist [Sch04]. Die Daten der Simulation können, je nach Zielsetzung,
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vielfältig genutzt werden, z. B. um das reale System oder das Modell
zu verbessern.

Die Durchführung von Simulationen kann verschiedene Gründe ha-
ben, z. B.

Entwicklung: Überprüfung und Optimierung des Systems und seiner
Parameter vor der eigentlichen Prototypenentwicklung.

Wiederholbarkeit: Simulationen können immer mit denselben Vor-
raussetzungen wiederholt werden, was zu gleichen Ergebnissen
führt. Daher gestaltet sich eine Fehleranalyse leicht, da Fehler
reproduzierbar werden.

Beobachtbarkeit: Viele technische Systeme sind nur schwer zu beob-
achten. Durch die Simulation ist es möglich, die Vorgänge, die
sonst nicht sichtbar wären, zu visualisieren. Dabei ist sowohl
der zeitliche (z. B. Zeitlupe) als auch der optische Aspekt (z. B.
Visualisierung von nicht sichtbaren Vorgängen) zu nennen.

Gefahrenvermeidung: Das Entwickeln an realen Systemen kann zu
einer Gefährdung von Mensch und Maschine führen, die durch
die Simulation verhindert wird.

Training: Über die Simulation kann der Benutzer lernen, das System
zu bedienen, ohne sich und andere in Gefahr zu bringen oder
das reale System zu beschädigen.

Kosten: Die Entwicklung von Simulatoren ist günstiger als die Her-
stellung realer Prototypen, gerade in den ersten Phasen der
Entwicklung.

Für die Simulation gibt es zwei grundsätzlich verschiedene Arten
der Durchführung, Offline oder in Echtzeit. Die Offline-Simulation
generiert Daten, die nach Abschluss der Simulation analysiert werden
können. Auf diesen Daten können verschiedene Visualisierungen
ausgeführt werden und es ist möglich, die Simulation zu stoppen,
zu verlangsamen oder rückwärts laufen zu lassen. Eine Echtzeit-
Visualisierung, d. h. die Daten werden zeitlich korrekt wiedergegeben,
ist möglich, aber eine Interaktion mit dem System kann in einer Offline-
Simulation nicht erreicht werden. Sollte etwas am System verändert
werden, muss die Offline-Simulation komplett neu ausgeführt werden.

Das andere Verfahren zur Durchführung einer Simulation ist die
Echtzeit-Simulation. Sie erlaubt die Interaktion des Benutzers mit dem
System während der Laufzeit und kann auf Änderung der Parameter

50



2.3 MODELLBILDUNG UND SIMULATION KONTINUIERLICHER SYSTEME

reagieren. In der Echtzeitsimulation, gerade auch wenn die Simulation
mit realen Sensoren bzw. Aktuatoren gekoppelt ist, ist es nicht mehr
möglich die zeitliche Abfolge zu verändern oder zu verlangsamen.
Damit wird die Beobachtbarkeit der Ereignisse etwas eingeschränkt.

2.3.1 In-the-Loop Simulation

In der Elektrotechnik und im Maschinenbau beziehungsweise der
Mechatronik haben sich Methoden für einen strukturierten Entwurfs-
prozess etabliert, die eine Simulation eines Systems und seiner Ein-
zelkomponenten auch im Kontext der Zusammenarbeit mit realen
Systemkomponenten ermöglichen. Hierbei handelt es sich häufig um
Regelkreise oder Prozesssteuerungen [CMPH08].

Regler

Führungsgröße

e(t)

Reglerabweichung

Regelstreckeu(t)

Stellgröße
d(t) Störgröße

Regelgröße

y(t)w(t)

Rückführung

Abbildung 2.15: Aufbau eines allgemeinen Regelkreises.

Neben den hier vorgestellten mechatronischen Regelkreisen existie-
ren auch Regelkreise für rein elektrische Systeme. Allgemein können
Regelkreise für jedes komplexe System existieren, so dass die Träger-
struktur nicht notwendigerweise aus dem Bereich des Maschinenbaus
stammen muss, wie in Abbildung 2.15 zu erkennen ist. Die Abbildung
zeigt einen einfachen Regelkreis der aus einer Regelstrecke, einem
Regler und einer Rückkopplung der Regelgröße y (dem Istwert) be-
steht. Dabei wird die Regelgröße y mit der Führungsgröße w (dem
Sollwert) verglichen und die Regelabweichung e = w− y berechnet.
Die Regelabweichung wird dem Regler übergeben, der daraus die
Stellgröße u gemäß der gewünschten Dynamik berechnet. Die Stell-
größe u und die Störgröße d werden der Regelstrecke übergeben,
die daraus die Regelgröße y bildet. Im Gegensatz zum allgemeinen
Regelkreis können Mechatronischen Regelkreise wie in Abbildung
2.1652 dargestellt werden.

Wie in Abbildung 2.1652 zu sehen gibt es beim mechatronischen Regel-
kreis ein Grundsystem, dass sich in einer Umgebung befindet. Dieses
bildet die Tragestruktur des gesamten Systems und ist normalerweise
dem Bereich Maschinenbau zuzuordnen. Im Grundsystem befinden
sich Sensoren, die Informationen der Umgebung aufnehmen oder den
Zustand des Grundsystems feststellen. Die Informationen der Senso-
ren werden durch Hard- und Softwarekomponenten verarbeitet. Die
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Grundsystem

Informations-
verarbeitung

Aktuatoren Sensorenmechatronischer
Regelkreis

Signalfluss Energiefluss

Energie Umgebung

Umgebung Umgebung

Abbildung 2.16: Aufbau eines mechatronischen Regelkreises.

Informationsverarbeitung steuert über Aktuatoren das mechanische
Grundsystem.

Ein solches System kann in verschiedenen Stufen simuliert werden,
bevor am Ende der Entwicklung ein fertiges System entsteht.

Model-in-the-Loop (MiL)

Die erste Phase der Simulation ist die Model-in-the-Loop Simulation
(MiL), in der das zu simulierende Komponente mit speziellen Werk-
zeugen (z. B. MATLAB/Simulink oder Labview) modelliert und in das
Simulationsmodell der Umgebung eingebettet wird. In dieser Phase
wird die Funktionalität geprüft und ggf. das Modell angepasst. Das
Modell existiert nur in den Werkzeugen und die Funktionalität wird
dort simuliert.

Software-in-the-Loop (SiL)

Bei der Software-in-the-Loop Simulation (SiL) wird das zuvor in oberen
Abschnitt beschriebene Modell nun in einen Code für eine bestimm-
te Plattform übersetzt. Dieser Code wird dann simuliert, d. h. er
wird nicht auf der speziellen Hardwareplattform ausgeführt, sondern
in einem Hardwaresimulator. Dabei sollten die simulierten Daten
möglichst den Daten der MiL Simulation gleichen. Werkzeuge wie
beispielsweise MATLAB/Simulink bieten eine Codegenerierung in
Plattformabhängigen Quelltext an, so dass der Schritt vom Modell
zum Code keine Schwierigkeiten beinhaltet.
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Grundsystem

Steuergerät

Aktuatoren SensorenMiL Simulator

Signalfluss Energiefluss

Energie Umgebung

Umgebung Umgebung

Funktionalität

Hardware Software

Modellgeneriert

Abbildung 2.17: Model-in-the-Loop Simulation.

Hardware-in-the-Loop (HiL)

Die letzte Phase ist die Hardware-in-the-Loop Simulation (HiL), bei
der nun der Code, der in der SiL Simulation generiert wurde, auf
der entsprechenden Hardware (Embedded System) ausgeführt wird.
Die Hardware wird mit der Simulationsumgebung gekoppelt, die die
Eingaben und Ausgaben der Hardware übernimmt und auswertet.

Marin Schlager beschreibt in seinem Buch ”Hardware-in-the-Loop
Simulation: A Scalable, Component-based, Time-triggered Hardware-
in-the-loop Simulation Framework“ [Sch08] die grundlegenden Prin-
zipen der Entwicklung von HiL-Simulatoren. Gerade im Bereich der
sicherheitskritischen Realzeitsysteme ist es wichtig, das eine korrekte
Ausführung in jeder Situation gewährleistet ist, auch bei sehr un-
wahrscheinlichen Situationen. Dabei sind Hardware-in-the-Loop (HiL)
Simulationen ein gebräuchlicher Weg um die Realzeitsysteme zu vali-
dieren.

2.3.2 Zusammenfassung

Für mein Problem ergab sich, dass alle drei In-the-Loop-Techniken für
den Design-Prozess geeignet sind und sich in das Architekturmuster
perfekt eingliedern. So war es möglich, die verschiedenen Arten der
Simulationen in einem Beispiel, das in Kapitel 5159 beschrieben wird,
einzubinden. Es wurde in diesem Beispiel iterativ von der ersten bis
zur dritten In-the-Loop-Technik zuerst das Modell, gefolgt von der
Software bis hin zur Hardware eine Höhensteuerung entwickelt und
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Abbildung 2.18: Software-in-the-Loop Simulation.

validiert. Dabei wurden unterschiedliche Werkzeuge verwendet, die
die unterschiedlichen Stufen unterstützten.

2.4 Reality-Virtuality Kontinuum (RV)

Das Reality-Virtuality Kontinuum (RV)10 wurde 1994 von Paul Mil-
gram et. al. in der Veröffentlichung ”Augmented reality: A class of
displays on the reality-virtuality continuum“ [MTUK94] definiert. Es
umschließt alle Mischformen von Virtualität (oder besser virtuelle
Realität) und Realität, die jeweils die Grenzen des Kontinuums bilden,
wie an Abbildung 2.2055 zu sehen ist Der Raum zwischen den beiden
Extremen wird ”Mixed Reality“ (MR), also Vermischte Realität bzw.
Gemischte Realität, genannt. Die bekanntesten Zwischenformen sind
dabei die Augmented Virtuality (AV, zu deutsch erweiterte Virtualität)
und die Augmented Reality (AR, zu deutsch erweiterte Realität).

2.4.1 Realität

Die Realität ist das rechte Ende des Reality-Virtuality Kontinuum
(siehe Abbildung 2.2055) und beschreibt die Wirklichkeit, so wie sie
ein Mensch wahrnimmt. Dieses kann durch eine einfache Darstellung
eines Videobildes über einen Bildschirm geschehen oder auch durch

10In dieser Arbeit werde ich das Reality-Virtuality Kontinuum auch als Mixed Reality Kontinuum
bezeichnen, da sich die Anwendungen, die mit meinem Entwurfsvorgehen entwickelt werden, im
Bereich der gemischten Realität ansiedeln.
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Grundsystem
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Aktuatoren SensorenHiL Simulator
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Energie Umgebung

Umgebung Umgebung
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Abbildung 2.19: Hardware-in-the-Loop Simulation.

Virtualität RealitätErweiterte Virtualität Erweiterte Realität

Gemischte Realität

Abbildung 2.20: Reality-Virtuality Continuum von Milgram [MTUK94].

die direkte Betrachtung ohne zusätzliche elektronische Hilfsmittel.
Die Realität benötigt keine Positionsbestimmung, da hier nur rein
reale Objekte dargestellt werden. Auch aufwendige Visualisierungen
fallen hier weg. Software, die rein auf der Realität basiert, ist z.B. eine
Videokamera, die einfach die Realität als Abfolge von Einzelbildern
auf dem Computer speichert.

2.4.2 Virtuelle Realität

Als virtuelle Realität (engl. Virtual Reality, kurz VR), wird die Dar-
stellung und gleichzeitige Wahrnehmung der Wirklichkeit und ihrer
physikalischen Eigenschaften in einer in Echtzeit computergenerierten,
interaktiven virtuellen Umgebung bezeichnet. Es wird versucht die
Wirklichkeit so gut wie möglich abzubilden und die physikalischen
Eigenschaften zu simulieren. Beispiele sind Flug- oder Fahrzeugsimu-
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latoren, die versuchen die Gravitationskräfte nachzuempfinden. Aber
auch einfache virtuelle Umgebungen, die nicht die physikalischen
Eigenschaften zu simulieren versuchen, werden zur virtuellen Realität
gezählt. Hierzu zählen auch Großraumprojektionen und CAVEs11. Für
virtuelle Systeme werden meist leistungsstarke Rechner und Grafik-
systeme benötigt, die in der Lage sind die virtuelle Umgebung in
Echtheit darzustellen. Für CAVEs werden zusätzlich Trackingsyste-
me12 benötigt um die korrekte Projektion für den Benutzer bestimmen
zu können.

2.4.3 Augmented Virtuality

Als erweiterte Virtualität (engl. Augmented Virtuality, kurz AV) werden
Systeme angesehen, die größtenteils aus einer VR-Umgebung bestehen
und Teile der Realität in die VR-Umgebung einbeziehen. Beispiele
wären ein reales Video, was in der virtuellen Umgebung dargestellt
wird, oder reale Audioquellen wie z. B. eine Türklingel, die an die
virtuelle Umgebung weitergeleitet wird. Leistungsstarke Rechner und
Grafiksysteme sind für die Verwendung von AV notwendig, da die
Umgebung zum größten Teil virtuell ist. Tracking kann in Einzelfällen
nötig sein, um z. B. das reale Bild mit der virtuellen Umgebung zu
synchronisieren.

2.4.4 Augmented Reality

Bei der erweiterte Realität (engl. Augmented Reality, kurz AR) steht
im Gegensatz zur virtuellen Realität, bei der der Benutzer komplett
in einer virtuellen Welt eintaucht, die Darstellung zusätzlicher In-
formationen im Vordergrund. Für die visuelle Modalität führt dies
zu wesentlich härteren Anforderungen an die Positionsbestimmung
(Tracking) und Kalibrierung. Unter einem AR-System (kurz ARS) ver-
steht man das System der technischen Bestandteile, die nötig sind,
um eine Augmented-Reality Anwendung aufzubauen, die da wären:
Kamera, Trackinggeräte, Unterstützungssoftware usw.

Die Literatur verwendet meist die Definition der erweiterten Realität
von Azuma [Azu97]:

• Die virtuelle Realität und die Realität sind miteinander kombi-
niert (teilweise überlagert).

11CAVE steht für ”Cave Automatic Virtual Environment“, zu deutsch ”Höhle mit automatisierter,
virtueller Umwelt“.

12Mit Tracking bezeichnet man die kontinuierliche Positionsbestimmung realer Objekte im Raum. Die
Positionsbestimmung kann Zwei- oder Dreidimensional erfolgen.
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• Die Interaktivität erfolgt in Echtzeit.

• Reale und virtuelle Objekte haben einen dreidimensional Bezug
zueinander.

Diese Definition beschränkt sich leider nur auf die technischen Merk-
male, die allerdings nur ein Teilaspekt der erweiterten Realität sind.
AR wird in anderen Arbeiten (beispielsweise bei ”Cybertechnolo-
gien als Werkzeug im Bauwesen“ [EB08]) als eine Ausweitung der
Sinneswahrnehmung des Menschen durch Sensoren von Umgebungs-
eigenschaften definiert, die der Mensch selbst nicht wahrnehmen kann.
Beispiele für diese Definition sind Radar, Infrarot, Distanzbilder, etc.,
die die Normale Sichtweise des Benutzers erweitern können.

2.5 Zusammenfassung

In diesem Kapitel wurden zu Anfang die verschiedenen Vorgehensmo-
delle und Architekturmuster vorgestellt, die Grundlage dieser Arbeit
sind. Die herausragenden Aspekte der einzelnen Modelle und Mus-
ter wurden in den jeweiligen Unterkapiteln kurz herausgestellt und
erläutert. Weiterhin wurde der Aufbau der Modelle und Muster dar-
gestellt und durch Abbildungen verdeutlicht. Die wichtigsten Quellen
wurden für weiterführende Nachforschungen angegeben.

Im Kapitel ”Modellbildung und Simulation“wurden die In-The-Loop-
Simulationen vorgestellt, die Teil meines Entwurfsvorgehens sind.
Es wurden die einzelnen Simulationstechniken in einzelnen Kapitel
vorgestellt und an Grafiken deren Vorgehen verdeutlicht.

Als eine weitere Grundlage dieser Arbeit wurde das von Milgram
eingeführte Reality-Virtuality Kontinuum in diesem Kapitel vorgestellt
und beschrieben. Dabei wurde der Begriff Mixed Reality eingeführt
und die einzelnen Zwischenformen Realität, virtuelle Realität, er-
weiterte Virtualität und angereicherte Realität wurden in einzelnen
Abschnitten kurz erklärt.
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KAPITEL3
Stand der Forschung

In diesem Kapitel wird der aktuelle Stand der Forschung in den Ge-
bieten Mixed Reality Entwurfskonzepte und Software Frameworks
vorgestellt, auf denen der MRiL-Entwurfsprozess basiert bzw. die er
zu verbessern versucht. Dabei werden aktuelle Arbeiten in den Gebie-
ten vorgestellt und kurz umrissen. Diese Arbeiten sind als Grundlage
zum einen des Entwurfsprozesses selbst und zum anderen des MiRe-
AS Software Framework zu sehen.

3.1 Übersicht

© Jeremy Visser, 2009

Abbildung 3.1: Anwendungen basierend auf dem ARToolKit.

Die Technik, Augmented Reality bzw. Mixed Reality Konzepte softwa-
remäßig zu verwenden, ist schon einige Jahre alt und wurde gerade
durch das ARToolKit [KB99] für viele Entwickler erstmals einsetzbar.
Dabei wurde mit dem ARToolKit eine Software-Umgebung bereitge-
stellt, die es dem Entwickler ermöglichte, einfach und unkompliziert
eigene Inhalte in AR zu realisieren (linkes Bild in Abbildung 3.1).
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allerdings benötigte die Verwendung des ARToolKits Programmierer-
fahrung in C und speziell in OpenGL. Da bei den ersten Versionen des
ARToolKits die Grafik, die Videobildaufzeichung und das Tracking
softwaretechnisch verbunden waren, war es nicht möglich, diese Kom-
ponenten zu trennen und Teile in anderen Bibliotheken zu verwenden.
Ein früher Versuch sich zumindest von der Programmiersprache C zu
trennen, wurde in [GRSP02] vorgestellt, bei dem das ARToolKit mit
Hilfe der JNI1 in Java eingebunden wurde (mittleres und rechtes Bild
in Abbildung 3.1). Des Weiteren wurde die OpenGL Grafikschnittstel-
le gekapselt und in die damals aktuelle Szenegraphbibliothek Java3D
eingebunden [GSS04b]. So war es möglich auf einem höheren Level
AR Applikationen zu entwickeln [GSS04c] [GSS04a]. Da die Entwick-
lung von Java3D eingestellt wurde, war auch die Anbindung an das
ARToolKit obsolet.

Um komplexere Anwendungen im Bereich Mixed Reality zu entwi-
ckeln benötigt es jedoch mehr als nur eine Softwareumgebung. Wich-
tig ist auch ein Entwurfsvorgehen, um die neuen Herausforderungen,
die bei der Entwicklung von bzw. mit Mixed Reality entstehen, zu
bewältigen. In diesem Bereich sind auch schon einige Arbeiten ent-
standen. Das ”Mixed Reality in the Loop“- Entwurfsvorgehen (MRiL)
basiert auf den Grundlagen der iterativen Entwicklung von Software,
die bereits im Kapitel 11 vorgestellt wurden, dem Virtual Prototyping
vorgestellt von Rix [RHT95] und Krassi [Kra08] und dem Prinzip der

”Hardware in the Loop“ (HiL) Simulationen, das bei Schlager [Sch08]
veröffentlicht wurde.

Sowohl das Konzept als auch die Implementierung des MRiL-Ent-
wurfsvorgehens ist im Allgemeinen nahe verwandt mit existierenden
Arbeiten im Bereich der Entwicklung von Benutzerschnittstellen ,
speziell mit Arbeiten aus dem Bereich der ”Mixed Reality User In-
terfaces“, wie beispielsweise den Arbeiten von Cuppens [CRC06],
Ishii [Ish08] und De Boeck [DBVRC07].

Nachfolgend werden die aktuellen Arbeiten in diesem Gebiet kurz
vorgestellt und umrissen.

3.2 Mixed Reality Entwurfskonzepte

In den letzten Jahren haben sich eine Reihe namhafter Experten-
gruppen mit der Entwicklung neuartiger Software-Entwurfskonzepte
für und mit Mixed Reality befasst. Grund dafür ist die steigende

1Java Native Interface, eine Schnittstelle in Java, um plattformabhängigen C/C++-Code in Java
einzubinden.
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Komplexität dieser Anwendungen und das Fehlen passender Ent-
wurfskonzepte gerade im Bereich Mixed Reality.

Virtual Prototyping - Virtual environments and the product design
process

In seinem Buch ”Virtual Prototyping - Virtual environments and the
product design process“ [RHT95] fasste Rix et al. den damals neuen
Begriff des ”Virtual Prototyping“ durch verschiedene Arbeiten mehre-
rer Wissenschaftlern zusammen. Rix erklärt den virtuellen Prototypen
als ”einen bedeutenden Zwischenschritt zum Endprodukt. Anhand
der gegebenen Design Information [· · · ] wird es möglich sein, einen
Prototypen mit dem Computer zu generieren, der sowohl für realisti-
sche Präsentationen als auch zur Interaktion mit dem Produkt schon
in frühen Entwicklungsphasen geeignet ist“2. Rix erwartete ”durch die
Entwicklung dieser Technologie und die Integration in den Produkt-
Entwicklungsprozess bedeutende Vorteile im industriellen Einsatz“3.
Dabei waren die Hauptargumente die Zeit- und Kostenersparnis und
die Steigerung der Qualität eines Produkts. Aus diesem Grund wur-
den zwei Workshops im Herbst 1994 abgehalten, die zum Ziel hatten,
die damaligen Konzepte und Methoden von ”Virtual Prototyping“
zusammenzutragen. Zu diesem Zeitpunkt existierte allerdings noch
kein Entwurfsvorgehen für jegliche Art von virtuellem Prototyping.

VP - Virtual environments and the product design process
Autoren Rix, Haas, José Jahr 1995

Bereich Grundlagen, Theorie
Beschreibung Vorstellung des Begriffs Virtual prototyping
Merkmale: + Definition des Begriffs

+ Anwendungsbeispiele

- Nur VR

- Kein konkretes Entwurfsvorgehen

- Kein Modell

2Aus ”Virtual Prototyping - Virtual environments and the product design process“ [RHT95], Seite
viii (eigene Übersetzung)

3Aus ”Virtual Prototyping - Virtual environments and the product design process“ [RHT95], Seite
viii (eigene Übersetzung)
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Dynamic Virtual Prototyping for Control Engineering

Boris Krassi erläutert in seinem Buch ”Dynamic Virtual Prototyping
for Control Engineering“ [Kra08], dass ”virtuelle Prototypen, oder
digitale Mockups, die Basis der digitalen Entwicklung sind. Virtual
Prototyping ist seit Jahren ein nützliches Werkzeug im Bereich der
Control System Analyse und nach und nach wächst das Interesse an
der direkten Entwicklung von Kontrollsystemen auf Basis von virtuel-
len Prototypen. Würde man die Lücke zwischen dem Control Design
und dem Virtual Prototyping schließen, könnte man die Redundanz
von Modellen vermeiden, Designfehler minimieren, Anpassungen
von Produktänderungen erleichtern, die Zusammenarbeit zwischen
Produkt- und Lifecycle-Prozessen verbessern und die Zeit bis zur
Produkteinführung verkürzen. Erschwert wird dies jedoch durch die
Heterogenität, Komplexität, Inkompatibilität und Unvollständigkeit
der Modelle, vergleicht man die virtuellen Prototypen und Modelle,
die für die Entwicklung von Kontrollsystemen benötigt werden“4.
Krassi stellt in seinem Buch nun Konzepte, Methoden und Werkzeuge
vor, um das Control System Development im dynamischen virtuellen
Prototyping – einer Unterklasse des virtuellen Prototyping – zu inte-
grieren. Das Buch zeigt, dass virtuelle Prototypen auch in Bereichen
eingesetzt werden können, die normalerweise sehr präzise Modelle
für die Entwicklung benötigen. Das vorliegende Buch konzentriert
sich allerdings nur auf den Bereich Control Engeneering und auch
die Überführung der virtuellen Prototypen zu realen Prototypen wird
vernachlässigt.

Dynamic Virtual Prototyping for Control Engineering
Autor Krassi Jahr 2008

Bereich Grundlagen, Anwendungen
Beschreibung Verknüpfung zweier Gebiete
Merkmale: + Konzepte, Methoden, Werkzeuge

+ Anwendungsbeispiele

- Nur VR

- Nur der Bereich Control Engeneering

- Nur dynamisches Prototyping

4Aus ”Dynamic Virtual Prototyping for Control Engineering“ [Kra08], Vorwort (eigene Übersetzung)
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Abbildung 3.2: TUI von Ishii. [Ish08]

The tangible user interface and its evolution

Auch Ishii hat schon in seinen Arbeiten, die er in ”The tangible user
interface and its evolution“ [Ish08] aus dem Jahre 2008 zusammen-
fasst, versucht, das Prinzip der grafischen Benutzerschnittstelle zu
verändern. Dies ist ähnlich dem in dieser Arbeit vorgestellten Vor-
gehen, das MVC Architekturmuster zu erweitert. In seiner Arbeit
beschrieb er die Entwicklung der sogenannten Tangible User Interfaces
(TUI), was zu Deutsch bedeutet: fühlbare bzw. greifbare Benutzer-
schnittstellen.

”Die Tangible Media Group des MIT Media Laboratory stellte schon
Mitte der 90er Jahre von der GUI zu TUIs um. Dabei repräsentieren
TUIs einen neuen Ansatz der Vision von Mark Weiser [Wei91] über
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ubiquitous computing (was soviel bedeutet wie die Allgegenwärtigkeit
der rechnergestützten Informationsverarbeitung), indem digitale Tech-
nologie in die Strukturen der physikalischen Umgebung eingewoben
wird und so die Technologie unsichtbar erscheint. Anstatt Pixel zu
Benutzerschnittstellen zu verschmelzen, benutzen TUIs eine physi-
kalische Form, die sich nahtlos in die physikalische Umgebung des
Benutzers einpasst. Ziel der TUIs ist das haptische Können bei der
Interaktion auszunutzen, ein Ansatz der sich signifikant von den GUIs
unterscheidet. Dabei bleibt die Hauptidee bestehen: Verleihe physi-
kalischen Gegenständen digitale Informationen [IU97], benutze sie
als Repräsentation und kontrolliere damit die digitalen Gegenstücke.
TUIs machen somit digitale Informationen direkt durch unsere Hände
manipulierbar und sind mit Hilfe unserer peripheren Sinne über ihre
physikalische Verkörperung wahrnehmbar, siehe Abbildung 3.2 oben
links“5.

Mit Hilfe der Definition von TUIs entwickelte Ishii 1999 die erste
Generation von TUIs, die sogenannte Urban Planning Workbench oder
kurz Urp [UI99].

”Urp verwendet maßstabsgetreue physikalische Modelle architektoni-
scher Bauwerke, um damit eine Simulation der Schatten, der Lichtre-
flexionen sowie der Windbewegung und der Verkehrsbelastung einer
Stadt zu konfigurieren und zu kontrollieren, dargestellt in Abbildung
3.263 oben rechts“6. Dabei sind die physikalischen Modelle der Bau-
werke die greifbaren (tangible) Repräsentanten der digitalen Modelle.

”Um die Position oder Orientierung eines Gebäudes zu ändern muss
der Benutzer nur das physikalische Modell bewegen anstatt mit einer
Maus die graphische Repräsentation am Bildschirm auszuwählen und
zu verschieben. Die physikalische Form der Modellgebäude in Urp
und die Informationen, die mit der Position und Orientierung auf der
Arbeitsfläche verknüpft sind, repräsentieren und kontrollieren somit
den Status der Simulation“7.

Urp hatte allerdings das Problem, dass alle Modelle, sowohl phy-
sikalisch als auch digital, vordefiniert sein mussten. Der Benutzer
konnte während der Arbeit mit Urp die Formen nicht ändern. Mit
diesem Hintergrund entstand die zweite Generation der TUIs von
Ishii., SandScape [IRP+

04].

”Die Entstehung neuer Abtast- (sensing) und Anzeigetechnologien
machte es möglich, die Entwicklung von dynamischen Formen in
TUIs zu integrieren. Vorgeschlagen wurde die Richtung hin zu digi-

5Aus ”The tangible user interface and its evolution“ [Ish08], Seite 34 (eigene Übersetzung)
6Aus ”The tangible user interface and its evolution“ [Ish08], Seite 34 (eigene Übersetzung)
7Aus ”The tangible user interface and its evolution“ [Ish08], Seite 35 (eigene Übersetzung)
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talen/physikalischen Materialien, die nahtlos Fühlen (sensing) und
Anzeigen miteinander verbinden. Anstatt vordefinierte diskrete Objek-
te mit statischen Formen zu benutzen, entwickelte die Tangible Media
Group einen neuen Typ der organischen TUIs, der ein kontinuierliches
fühlbares Material (ähnlich Ton oder Sand) verwendete. Als Beispiele
wurden der Illuminating Clay [PRI02] und SandScape [IRP+

04] (siehe
Abbildung 3.263 unten) entwickelt. Mit der Entwicklung von flexiblem
Materialien, die vollflexible Sensoren und Anzeigen integrieren, zeigt
die Kategorie der organischen TUIs ein großes Potenzial um Ideen in
fühlbarer Form auszudrücken“8.

Allgemein versucht Ishii eine physikalische/reale Repräsentation di-
gitaler Daten zu erzeugen, mit dem der Benutzer interagieren kann,
die jedoch gleichzeitig wieder die digitalen Daten ändern. Dieselbe
Vorgehensweise ist auch bei vielen Mixed Reality Anwendungen zu
finden: Es wird versucht Informationen, aus der realen Welt zu ex-
trahieren und diese dann digital zu verarbeiten. Dabei ist es wichtig,
dass das Feedback zum Benutzer mit der physikalischen/realen Welt
konform geht, so dass eine gewisse Verschmelzung der realen und
der digitalen Welt entsteht. Ishii setzt hier mehr den Fokus auf die
Benutzerschnittstellen und stellt einige Prototypen von TUIs vor, geht
allerdings nicht auf die allgemeine Entwicklung ein. In dieser Arbeit
steht jedoch die Entwicklung solcher Applikationen im Vordergrund
und es wird versucht, eine Vorgehensweise bei der Entwicklung von
MR Anwendungen zu finden.

The tangible user interface and its evolution
Autor Ishii Jahr 1999

Bereich Grundlagen, Anwendungsbeispiele
Beschreibung Beispiele und Methoden für TUIs
Merkmale: + Konzepte, Methoden, Werkzeuge

+ Anwendungsbeispiele

+ Mixed Reality

- Beschränkt auf Benutzerschnittstellen

- Kein Entwurfsvorgehen

- Kein Prototyping-Ansatz

8Aus ”The tangible user interface and its evolution“ [Ish08], Seite 35 (eigene Übersetzung)
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Weitere Entwurfskontzepte

Weitere interessante Arbeiten im Themengebiet des modellbasierter
Entwurf und der grafische Programmierung sowie die Prinzipien
und Leitlinien der Mensch-Maschine-Interaktion für Mixed Reality
Systeme, deren konkrete Vorstellung jedoch den Rahmen dieser Arbeit
überschreiten würde, finden sich u. a. bei den Präsentationen des
MRUI07-Workshop, der auf der VR 2007 stattgefunden hat. [DFL06]
Eine weitere sehr gute Quelle für vertiefende Informationen ist der
jährlich stattfindende SEARIS Workshop. [SEA08]

3.3 Entwurfskonzepte mit Werkzeugumgebung

Im vorangegangenen Kapitel wurden reine Konzepte (teilweise mit
konkreten Implementierungen) vorgestellt. In diesem Kapitel beinhal-
ten die vorgestellten Konzepte gleichzeitig noch eine Werkzeugum-
gebung zur Entwicklung eigener Projekte im Bereich Mixed Reality.
Teilweise bieten die Arbeiten auch automatische Generatoren, die aus
den gegebenen Konzepten ausführbare Programme generieren. Ich
möchte hier nur die wichtigsten Arbeiten in diesem Bereich vorstellen,
die auch einen Bezug zu meiner Arbeit haben.

A model-based design process for interactive virtual environments

Ein spezielles Entwurfsvorgehen stellt Cuppens bereits 2006 in seiner
Arbeit ”A model-based design process for interactive virtual envi-
ronments“ [CRC06] vor. Es ist ein modellbasierter Entwurfsprozess
für virtuelle Umgebungen, im Speziellen die Benutzerschnittstellen
innerhalb dieser virtuellen Umgebungen. Cuppens führt an, dass ”die
Entwicklung der Benutzerschnittstellen in diesen virtuellen Umgebun-
gen kein unkomplizierter Prozess und somit für Nicht-Programmierer
nicht einfach verständlich und anwendbar ist. Das Papier stellt einen
modellbasierter Entwurfsprozess für genau diese im hohen Maße
interaktiven Anwendungen vor, um die Diskrepanz zwischen Desi-
gner und Programmierer zu minimieren. Der Prozess basiert sowohl
auf den Anforderungen eines modellbasierter Entwurfsprozesses für
Benutzerschnittstellen und Werkzeugen und Toolkits für virtuelle
Umgebungen“9.

Bei dem Entwurfsprozess, der in Abbildung 3.367 visuell dargestellt

9Aus ”A model-based design process for interactive virtual environments“ [CRC06], Seite 225 (eigene
Übersetzung)

66



3.3 ENTWURFSKONZEPTE MIT WERKZEUGUMGEBUNG

Abbildung 3.3: Entwurfsprozess von Cuppens [CRC06].

ist, wird zu Beginn ein Aufgabenmodell (Task Modell) mit Hilfe der
ConcurTaskTree (CTT) Notation [Pat99] erstellt, und über das Interac-
tion Description Model (IDM) erweitert. ”Nachdem ein Task Model
einmal entworfen wurde, kann der Algorithmus, der von Luyten
et al. [LCCV03] beschrieben wurde, dazu benutzt werden, um das
Dialog Model automatisch von der CTT zu extrahieren. Das Dialog
Model basiert auf den Enabled Task Sets (ETS) [Pat99], die vom Task
Modell der Applikation abgeleitet werden. [· · · ] Die resultierenden
ETSs können auf verschiedene Zustände der Anwendung abgebildet
werden, die alle Interaktionsaufgaben des jeweiligen Zustands bein-
halten. [· · · ] Nachdem das Dialog Model extrahiert wurde, können
die unterschiedlichen Zustände der Anwendung mit den Interakti-
onstechniken verbunden werden, die von den IDMs definiert wurden.
Des Weiteren muss der Entwickler nun das Dialog Model mit dem
Presentation Model zusammenfügen. [· · · ] Nach Beendigung des ge-
samten Entwurfsprozesses werden die spezifizierten Modelle für eine
automatisierte Generierung einer lauffähigen Version der virtuellen
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Umgebungs-Anwendung verwendet. “10

Das von Cuppens vorgestellte Entwurfsvorgehen basiert auf einem
linearen Ansatz und sieht keine Iterationen und dementsprechend
keine Entwicklung mehrerer Prototpyen vor. Weiterhin bezieht es den
Aspekt der Mixed Reality nicht mit ein, der Prozess ist ausschließlich
für reine virtuelle Umgebungen entworfen worden.

A model-based design process for interactive virtual environments
Autoren Cuppens, Raymaekers, Coninx Jahr 2006

Bereich Entwurfsvorgehen
Beschreibung Spezielles Entwurfsvorgehen in VR
Merkmale: + Konzepte, Methoden, Werkzeuge

+ Anwendungsbeispiele

+ Automatische Generierung

- Beschränkt auf Benutzerschnittstellen

- Nur VR

- Nicht iterativ

Mixed Reality: A model of Mixed Interaction

Eine weitere Arbeit im Bereich Entwurf, die sich speziell auf die Inter-
aktion in Mixed Reality bezieht, ist ”Mixed Reality: A model of Mixed
Interaction“ von Coutrix und Nigay aus dem Jahre 2006 [CN06]. ”Bei
Mixed Reality Systemen wird versucht, die physikalische und die
elektronische (digitale) Umgebung nahtlos zu verknüpfen. Obschon
Mixed Reality Systeme sich stetig weiter verbreiten, existiert noch
kein klares Verständnis über das Interaktionsparadigma. Um dieses
Problem zu zu lösen, wird in dem Artikel ein neues Interaktionsmo-
dell [BL04] mit dem Namen Mixed Interaction Model vorgestellt“11.
Dabei ist es ”das Ziel des Interaktionsmodells dem Designer ein Fra-
mework anzubieten, die ihn durch der Erschaffung von interaktiven
Systemen leiten“12. Ein Interaktionsmodell kann dabei entlang der
folgenden drei Dimensionen charakterisiert werden [BL04]:

Darstellung/Klassifizierung: Entspricht dem Potential, eine aussa-
gekräftige Auswahl existierender Schnittstellen zu beschreiben

10Aus ”A model-based design process for interactive virtual environments“ [CRC06], Seite 231 (eigene
Übersetzung)

11Aus ”Mixed Reality: A model of Mixed Interaction“ [CN06], Seite 43 (eigene Übersetzung)
12Aus ”Mixed Reality: A model of Mixed Interaction“ [CN06], Seite 43 (eigene Übersetzung)
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und zu klassifizieren.

Erzeugung: Entspricht dem Potential, dem Designer dabei zu helfen,
neue Designs zu entwerfen.

Komparativität: Entspricht dem Potential, mehrere Designalternati-
ven zu beurteilen.

”Das Mixed Interaction Model setzt den Schwerpunkt auf die Ver-
knüpfung der physikalischen und digitalen Welt und die Interaktion
des Benutzers mit der dadurch entstandenen Mixed Reality Umge-
bung. [· · · ] Das Hauptkonzept des Mixed Interaction Model ist dabei
das mixed object“13.

mixed object

physical 
properties

digital 
properties

do
i

do
o

lo
i

lo
o

accquired 
physical 

data

generated 
physical 

data

Abbildung 3.4: Mixed Object [CN06]

”Ein reales Objekt besteht aus einer Menge verschiedener physikali-
scher Eigenschaften. Gleiches gilt für ein digitales Objekt, welches
aus einer Menge verschiedener digitaler Eigenschaften besteht. Ein
mixed object ist nun eine Kombination beider Mengen: Eine Menge
physikalischer Eigenschaften, die mit einer Menge digitaler Eigen-
schaften verknüpft sind. Um die Verknüpfung der beiden Mengen zu
beschreiben, werden zwei Arten (d, l) berücksichtigt. Einerseits die
Verknüpfungen zwischen physikalischen und digitalen Eigenschaften
eines Objektes, die linking modalities genannt werden, andererseits die
Verknüpfungen zur Interaktion des Benutzers mit der Mixed Reality
Umgebung, die interaction modalities heißen. Aus Sicht des Systems
können also zwei Arten von Verknüpfung für ein mixed object identifi-
ziert werden, wie in Abbildung 3.4 zu sehen ist“14:

• Die Eingabeverknüfungen (do
i, loi) sind zuständig für:

13Aus ”Mixed Reality: A model of Mixed Interaction“ [CN06], Seite 43 f. (eigene Übersetzung)
14Aus ”Mixed Reality: A model of Mixed Interaction“ [CN06], Seite 44 (eigene Übersetzung)
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1. Beschaffung einer Untermenge von physikalischen Eigen-
schaften mit Hilfe des Devices do

i (object input device).

2. Interpretieren der empfangenen physikalischen Daten be-
züglich der digitalen Eigenschaften mit Hilfe der Sprache
loi (object input language).

• Die Ausgabeverknüfungen (do
o, loo) sind zuständig für:

1. Generierung von Daten auf Basis der Menge der digita-
len Eigenschaften mit Hilfe der Sprache loo (object output
language),

2. Übersetzten der generierten physikalischen Daten in er-
kennbare physikalische Eigenschaften mit Hilfe des Devices
do

o (object output device).

”Ein mixed object kann nun (1) auf einer Eingabeverknüfung, (2) auf
einer Ausgabeverknüfung oder (3) auf einer Ein- und Ausgabever-
knüfung basieren“15.

picture

physical 
properties

identifier, 
information 
related to 
the picture 

(author, etc.)

camera

head 
mounted 
display

lo
i

lo
o

image

image

Abbildung 3.5: Ein Bild in NaviCam [RN95]

”In Abbildung 3.5 wir das Beispiel des NaviCam Systems von Reki-
moto [RN95] betrachtet und ein augmented picture als mixed object mo-
delliert. Dabei zeichnet die Kamera die physikalischen Eigenschaften
dieses Objektes auf. Das Foto wird dann in ein Identifizierungsmerk-
mal des erkannten Bildes übersetzt. Die zu diesem Bild zugehörigen
Informationen werden nachfolgend auf einem Head-Mounted Dis-
play (HMD) angezeigt. Die Verknüpfungen bei diesem Beispiel sind
elementar, allerdings können die Ein- und Ausgabeverknüfung auch
zusammengesetzt sein. Die Zusammensetzung der Ein- und Ausga-
beverknüfungen wurde basierend auf dem CARE (Complementarity,

15Aus ”Mixed Reality: A model of Mixed Interaction“ [CN06], Seite 44 (eigene Übersetzung)
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Assignment, Redundancy and Equivalence) Framework charakteri-
siert [NC97] [VN00]“16.

”Zusammenfassend kann also ein mixed object anhand seiner Ein- und
Ausgabeverknüfung charakterisiert werden, wobei die Verknüpfungen
ihrerseits entweder nicht vorhanden, elementar oder zusammenge-
setzt sind“17.

”Eine Mixed Interaction bedingt ein mixed object. [· · · ] Um eine Mi-
xed Interaction zu modellieren wurde das Instrumental Interaction mo-
del [BL04] durch die Definition des mixed object und die Definition der
Art der Interaktion, die als eine Kopplung eines Devices d mit einer
Sprache l beschreiben ist, erweitert“18.

In der Arbeit wurde mit Hilfe der mixed object versucht, die reale bzw.
physikalische Umgebung zu erfassen und sofwaretechnisch abzubil-
den. Die mixed object sind eine Möglichkeit, die realen Eigenschaften
der Umgebung zu kapseln bzw. digitale Ereignisse der Umgebung
zur Verfügung zu stellen. In meiner Arbeit gehe ich allerdings einen
anderen Weg, da ich die Umgebung als gegeben und unveränderlich
(bzgl. der programmierten Anwendung) sehe. Durch eine Erweiterung
des MVC Architekturmusters kann dieses erreicht werden.

Mixed Reality: A model of Mixed Interaction
Autoren Coutrix, Nigay Jahr 2006

Bereich Entwurfsvorgehen
Beschreibung Interaktion in Mixed Reality
Merkmale: + Modell, Methoden, Werkzeuge

+ Anwendungsbeispiele

+ Mixed Reality

- Beschränkt auf Interaktionen

- Nicht iterativ

High-level modeling of multimodal interaction techniques using
NiMMiT

Ein weiteres Projekt im Bereich Entwurf von VR/MR Interaktionstech-
niken ist NiMMiT19. In der Arbeit von von De Boeck et al. mit dem

16Aus ”Mixed Reality: A model of Mixed Interaction“ [CN06], Seite 44 (eigene Übersetzung)
17Aus ”Mixed Reality: A model of Mixed Interaction“ [CN06], Seite 44 (eigene Übersetzung)
18Aus ”Mixed Reality: A model of Mixed Interaction“ [CN06], Seite 44 (eigene Übersetzung)
19NiMMiT steht für Notation for Modeling Multimodal interaction Techniques.
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Titel ”High-level modeling of multimodal interaction techniques using
NiMMiT“ [DBVRC07] wird eine grafische Notation für multimodale
VR Interaktionstechniken vorgestellt, die auf der Statechart-Notation
von David Harel [Har87] basiert.

”NiMMiT erlaubt es dem Designer multimodaler Interaktionstech-
niken schnell Alternativen zu testen oder sehr einfach existieren-
de Lösungen zu adaptieren je nach Evaluation von Benutzertests,
was den Entwicklungszyklus signifikant verkürzt. Die automatische
Ausführung der Interaktionstechniken wird von NiMMiT unterstützt
indem die Diagramm-Repräsentation interpretiert wird. Des Weite-
ren wird durch die High-Level Beschreibung die Wiederverwendung
einzelner Lösungen vereinfacht“20.

Für De Boeck sollte eine Notation, die eine Interaktionstechnik be-
schreiben will, folgenden Anforderungen entsprechen [DBVRC07]:

• Ereignisgetrieben (event driven)

• Zustandsgetrieben (state driven)

• Datengetrieben (data driven)

• Unterstützung einer Kapselung für die hierarchische Wiederver-
wendbarkeit

Die Notation von NiMMiT basiert auf allen oben angeführten An-
forderungen, so dass sich eine Interaktionstechnik folgendermaßen
beschreiben lässt:

”NiMMiTs Notation ist sowohl ereignis- als auch zustandsgetrieben,
so dass ein Diagramm grundsätzlich der Gestalt von Statecharts ent-
spricht. Eine Interaktionstechnik wird immer mit einem Startzustand
initialisiert. Ein Zustand reagiert auf eine beschränkte Menge von
Ereignissen (Events), beispielsweise Spracheingabe, Zeigerbewegung
oder einen Click auf einen Button. Wird ein Event erkannt wird ei-
ne Task chain ausgeführt, zu sehen in Abbildung 3.673 a). [· · · ] Die
Ausführung einer Task chain ist strikt linear, was bedeutet, dass der
nächste Task einer Task chain dann und nur dann ausgeführt wird,
wenn der vorherige Task erfolgreich beendet wurde. Abbildung 3.673
b) zeigt eine Task chain mit zwei Tasks. [· · · ] Ein Ausgangsport ei-
nes vorangegangenen Tasks ist typischerweise mit dem Eingangsport
des nachfolgenden Task verbunden. Diese Eingangsports können so-
wohl optional als auch obligatorisch sein. Sollte ein obligatorischer

20Aus ”High-level modeling of multimodal interaction techniques using NiMMiT“ [DBVRC07], Seite
2 (eigene Übersetzung)
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a) Startzustand mit möglichen Events b) Task chain c) Datenfluss zwischen Tasks u. Label 

d) Zustandsübergang e) Bedingter Zustandsübergang

Abbildung 3.6: Grafische Repräsentation von NiMMiT [DBVRC07].

Eingangsport eines Tasks einen nicht zulässigen Wert erhalten, wird
die Ausführung der kompletten Task chain abgebrochen. Um Daten
zwischen Tasks unterschiedlicher Task chains miteinander nutzen oder
um Daten für spätere Verwendung speichern zu können, wurden
High-Level Variablen in Form von Labels eingeführt, wie in Abbildung
3.673 c) gezeigt wird. Nach der erfolgreichen Ausführung einer Task
chain findet ein Zustandsübergang statt, zu sehen in 3.673 d). Hier
kann nun in einen neuen Zustand gewechselt oder wieder zurück
in denselben Zustand gesprungen werden (in einer Schleife). In ei-
nem neuen Zustand könnte die beschriebene Interaktionstechnik nun
auf eine andere Menge von Ereignissen reagieren. Einer Task chain
können mehrere verschiedene Zustandsübergänge assoziiert werden:
Der Wert des Label einer Task chain legt fest welcher Zustandsübergang
ausgeführt wird. Abbildung 3.673 e) zeigt eine Task chain mit dem Label
’ID’ und drei mögliche Zustandsübergänge“21.

Mit Hilfe der grafischen Notation kann der Designer schnell Inter-
aktionstechniken realisieren. Damit diese allerdings auch getestet
werden können, bedarf es einer schnellen Umsetzung der Diagram-
me in ausführbaren Programmcode. Der NiMMiT Editor bietet diese
Funktionalität an. Da NiMMiT für die Erstellung virtueller Umgebung
entwickelt wurde, ist es mit dem Editor möglich, die Interaktionstech-
niken über ein XML Austauschformat zu exportieren und dieses in
die für NiMMiT entwickelte virtuelle Umgebung zu laden. Diese führt

21Aus ”High-level modeling of multimodal interaction techniques using NiMMiT“ [DBVRC07], Seite
3 f. (eigene Übersetzung)
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Conversion

Execution

Load

Abbildung 3.7: Die NiMMiT Toolchain [DBVRC07].

dann die Interaktionstechniken aus. Der Ablauf wird in Abbildung
3.774 noch einmal verdeutlicht. Nachdem die Interaktionstechnik im
Editor entwickelt wurde, wird sie in XML umgewandelt und in die
virtuelle Umgebung geladen, die sie dann ausführt.

NiMMiT ist für die Entwicklung von Interaktionstechniken gut geeig-
net: Gerade mit der grafischen Repräsentation lassen sich schnell neue
Techniken entwickeln. Jedoch basiert NiMMiT auf einer rein virtuellen
Umgebung, die statisch definiert und somit schwer erweiterbar ist. Da
sich mit NiMMiT nur Interaktionstechniken schnell evaluieren lassen,
ist es für einen kompletten Entwurfsprozess nicht geeignet.

High-level modeling of multim. interaction techniques
Autoren De Boeck, Coninx et al. Jahr 2007

Bereich Entwurfsvorgehen
Beschreibung Multimodale Interaktionstechniken in VR
Merkmale: + Konzept, Modell, Werkzeuge

+ Anwendungsbeispiele

+ Automatische Generierung

+ Grafische Repräsentation

- Beschränkt auf Interaktionstechniken

- Nur VR

- Nicht iterativ
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A Design-Oriented Information-Flow Refinement of the ASUR In-
teraction Model

Eine weiteres Modell einschließlich grafischer Notation wurde in der
Veröffentlichung ”A Design-Oriented Information-Flow Refinement
of the ASUR Interaction Model“ von Emmanuel Dubois und Phi-
lip Gray aus dem Jahre 2008 vorgestellt [DG08]. Basierend auf den
beiden Arbeiten ”ASUR++: A Design Notation for Mobile Mixed Sys-
tems“ [DGN02] aus dem Jahre 2002 und ”Requirements and Impacts
of Model driven engineering on Mixed Systems Design“ [DCD05] aus
dem Jahre 2005 beschreibt die Arbeit ein Modell und eine Modellie-
rungstechnik zum Erfassen der Schwerpunkte der Benutzerinteraktion
während der Anforderungsanalyse in einer frühen Phase der Entwick-
lung von Mixed Reality Systemen.
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share level
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Rtool
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Stool
Robject
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Sinfo
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Computer System
S

action sense
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Adapter
A

action sense
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Real Entity
R

Abbildung 3.8: Komponenten bei ASUR [DCD05].

”ASUR ist ein auf grafischer Darstellung basiertes Modell zur Be-
schreibung von Benutzer-System Interaktionen in Mixed Reality Sys-
temen. ASUR soll bei der Beurteilung helfen, physikalische und di-
gitale Welten so zu verbinden, dass benutzerfreundliche Resultate
erzielt werden. Zusätzlich wir es in Verbindung mit der traditionellen
Benutzer-System Aufgabenbeschreibung verwendet, um Objekte zu
identifizieren, die bei der Interaktion beteiligt sind und zwischen den
Grenzen der beiden Welten liegen. Aus Sicht der Benutzerinteraktion
hilft das Modell die Resultate der Anforderungsanalyse zu beschrei-
ben und die globale Entwurfsphase von Mixed Reality Systemen zu
unterstützen. AUSR unterstützt die Beschreibung von digitalen und

75



STAND DER FORSCHUNG

physikalischen Entitäten, die ein Mixed Reality System ausmachen,
u. a. Adapter (Ain , Aout ), die die Kluft zwischen der digitalen
und physikalischen Welt überbrücken, digitale Werkzeuge (Stool )
bzw. Konzepte (Sinfo , Sobj ), ein oder mehrere Benutzer (U )
und reale Objekte, die als Werkzeuge (Rtool ) involviert sind oder
den Fokus der Aufgabe darstellen (Robj ). Weiterhin drücken gerich-
tete Beziehungen (Linien mit Pfeilen) den physikalischen und/oder
digitalen Fluss von Informationen und die Verbindung zwischen Kom-
ponenten aus. Um diese Elemente besser spezifizieren zu können, d. h.
AUSR Komponenten und Beziehungen, wurden eine Anzahl an Cha-
rakteristika identifiziert“22. Die unterschiedlichen Komponenten incl.
ihrer Bezeichnungen, die in ASUR existieren, sind in Abbildung 3.8
zu sehen.

Die ASUR Komponenten (Compontent) können somit einem der
folgenden vier Typen angehören [DCD05]:

Computer System (S ): Die Komponente repräsentiert das Compu-
tersystem und alle digitalen Entitäten, die an einer Interaktion
beteiligt sind. Ähnlich den realen Objekten kann das Compu-
tersystem auch in zwei Teile aufgeteilt werden. Zum einen in
die digitalen Entitäten, die entweder das Verhalten oder das
Erscheinungsbild anderer digitaler Entitäten verändern (Stool

), zum anderen die digitalen Entitäten, die ein Ziel einer In-
teraktion und somit Ziel einer Veränderung darstellen. Dabei
wird zwischen Objekten, die nur Feedback-Informationen liefen
(Sinfo ) und anderen Objekten (Sobject ) unterschieden.

User (U ): Der Benutzer repräsentiert den Anwender des Systems.
ASUR unterstützt sowohl Einzel- als auch Mehrbenutzeranwen-
dungen.

Real Entity (R ): Die realen Entitäten repräsentieren reale Objekte.
Das können sowohl physikalische Werkzeuge (Rtool ) sein,
die vom Benutzer verwendet werden können, um eine Funktion
auszuüben, oder physikalische Objekte (Robject ), auf die sich
eine Funktion bezieht.

Adapter (A ): Adapter schlagen eine Brücke zwischen der digita-
len und der physikalischen Welt. Dabei unterscheidet ASUR
zwischen Eingabeadapter (Ain ), die Daten von der physika-
lischen Welt in die digitale Welt übertragen (z. B. eine Kamera)

22Aus ”A Design-Oriented Information-Flow Refinement of the ASUR Interaction Model“ [DG08],
Seite 467 (eigene Übersetzung)
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und Ausgabeadaptern (Aout ), die numerische Daten an die
physikalische Welt liefern (z. B. ein Bildschirm).

Camera Wand User_0

Screen

Pointer

Activator

3D volume

Pointer Activator3D volume

Abbildung 3.9: Beispiel eines ASUR Diagramms [DG08].

In Abbildung 3.9 ”wird die Interaktion eines Benutzers und einer
digitalen 3D Umgebung mit Hilfe eines ”magischen Zauberstabes“
gezeigt. Der Benutzer User 0 verwendet und bewegt einen physikali-
schen ”Zauberstab“ Wand, der mit Hilfe einer Kamera Camera (Ain

) verfolgt wird. Die Kamera sendet die Position des Zauberstabes
an einen digitalen Aktivator (Stool ), der vielleicht noch auf andere
digitale Entitäten wirkt. Die Kamera sendet des Weiteren die Position
an das Zeigerobjekt Pointer (Sinfo ). Das Zeigerobjekt ist eigent-
lich eine Repräsentation der Spitze des physikalischen Zauberstabes
(angedeutet durch den gestrichelten Pfeil); diese Repräsentation ist
gerade für die Bereitstellung eines Interaktion-Feedbacks zweckmäßig.
Sobald die Funktionalität aktiviert ist, werden Daten wie beispiels-
weise der Rotationswinkel des Zauberstabes an den 3D-Raum 3D
volume (Sobj ) transferiert. Letztendlich wird der 3D Raum, der
Aktivator und das Zeigerobjekt auf dem Bildschirm Screen (Aout )
dargestellt. Eine detailliertere Beschreibung dieses Beispiels mit allen
modellierten Charakteristika ist in [DCD05] zu finden“23.

”ASUR ist eine reine Modell-Notation: während ASUR eine hervorra-
gende Orientierungshilfe für die Entwickler beschreibt, ist das entwi-
ckelte Modell nicht ausführbar und muss per Hand in den entspre-

23Aus ”A Design-Oriented Information-Flow Refinement of the ASUR Interaction Model“ [DG08],
Seite 467 (eigene Übersetzung)
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chenden Quelltext konvertiert werden. ASUR bietet keine explizite
Unterstützung von Kollaboration“24.

Mit ASUR ist es sehr einfach möglich, eine Mixed Reality Applikation
auf Basis eines Modells zu entwickeln. Mit Hilfe der vorhandenen
Komponenten, die ASUR zur Verfügung stellt, ist eine Abdeckung
der digitalen und physikalischen Objekte gegeben. ASUR unterstützt
allerdings nicht eine Entwicklung entlang des Mixed Reality Kontinu-
ums. Objekte, die entweder in der digitalen oder physikalischen Welt
verankert wurden, verbleiben während der gesamten Entwicklung
darin. Will man die Objekte ändern, so bedarf es einer kompletten
Umstrukturierung der beteiligten Objekte. ASUR bietet weiterhin
nicht die Möglichkeit, aus dem entwickelten Modell eine lauffähige
Applikation zu generieren, wie es beispielsweise bei NiMMiT (siehe
Abschnitt ”High-level modeling of multimodal interaction techniques
using NiMMiT“ auf Seite 71) möglich ist.

Information-Flow Refinement of the ASUR Interaction Model
Autoren Dubois, Gray Jahr 2008

Bereich Modell und Notation
Beschreibung Modellierung von Interaktionstechniken in MR
Merkmale: + Konzept, Modell, Werkzeuge

+ Anwendungsbeispiele

+ Grafische Notation

+ Mixed Reality

- Keine Entwicklung entlang d. MR Kontinuums

- Keine Automatische Generierung

- Nicht iterativ

The Engineering of Mixed Reality Systems

In dem aus dem Jahre 2010 stammenden Buch ”The Engineering of Mi-
xed Reality Systems“ [DGN10], herausgegeben von Emmanuel Dubois
et al., wird speziell auf die Entwicklung von Mixed Reality Systemen
eingegangen. Es ist eine Zusammenfassung vieler Artikel bekannter
Wissenschaftler aus den drei großen Bereichen Interactiondesign, Soft-
ware Design und Implementierung sowie Anwendungen von Mixed
Reality. ”Human Computer Interaction (HCI – zu Deutsch: Mensch-
Maschine-Interaktion) ist nicht mehr auf die Interaktion des Benutzers
mit dem Computer über die Tastatur und Bildschirm beschränkt: zur

24Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 298 (eigene Übersetzung)
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Zeit ist es eine der herausfordernden Aufgaben von interaktiven Sys-
temen, die Integration von physikalischen und digitalen Aspekten auf
benutzbare Konzepte zu verknüpfen. Die Herausforderung bei der
Entwicklung solcher Mixed Reality (MR) Systeme liegt in der fließen-
den und harmonischen Fusion der physikalischen und der digitalen
Welten. Beispiele solcher Systeme beinhalten Tangible User Interfa-
ces (TUIs – zu deutsch: Greifbare Benutzerschittstellen), Augmented
Reality, Augmented Virtuality und Embodied Interfaces25. Alleine
die Vielfältigkeit der Begriffe in diesem Bereich hebt das wachsen-
de Interesse an MR Systemen hervor und die hieraus resultierende
dynamische und herausfordernde Domäne“26.

Im Allgemeinen sind die Arbeiten aus dem ersten Teil (Interactionde-
sign) und dem zweiten Teil (Software Design und Implementierung)
des Buches sind hervorzuheben. Insbesondere sind ”An Integrating
Framework for Mixed Systems“ von Céline Coutrix und Laurence Ni-
gay und ”Fiia: A Model-Based Approach to Engineering Collaborative
Augmented Reality“ von Christopher Wolfe et al. hier erwähnenswert
uns sollen im Folgenden näher vorgestellt werden.

Im Artikel ”An Integrating Framework for Mixed Systems“ wird
erläutert, dass ”in dem sehr dynamischen Mixed Reality Bereich ein
Vergleich der vorhandenen Mixed (Reality) Systems und die daraus
folgende Designspace Exploration sehr schwer realisierbar sind. Um
dieses Entwurfsproblem zu lösen, stellt der Artikel eine einheitliche
Betrachtungsweise auf Mixed Systems vor, indem auf sogenannte mixed
objects 27, die bei der Interaktion involviert sind, der Fokus gelegt
wird. Der vorgestellte integrierte Framework besteht aus zwei sich
gegenseitig ergänzend Aspekten der mixed objects: Es definiert sowohl
die inhärenten als auch die extrinsischen Charakteristika eines Objekts
unter Berücksichtigung der seiner Rolle bei der Interaktion. Solche
Charakteristika eines Objekts sind für den feingranularen Vergleich
existierender Mixed Systems nützlich. Dabei wird die taxonomische
Mächtigkeit dieser Charakteristika an aus der Literatur bekannten
Mixed Systems diskutiert. Die generative Mächtigkeit wird anhand
eines von den Autoren entwickelten Systems namens Roam erklärt“28.

In Abbildung 3.1080 ist das Schema der Charakteristika von mixed

25Schnittstellen, die durch Objekte der realen Welt definiert sind. ”Embodiment“ meint nicht nur
die physische Verkörperung von Objekten, sondern bezieht auch andere Aspekte der realen Welt wie
Sprache und soziale Faktoren mit ein. Häufig wird auch der Oberbegriff ”Ubiquitous Computing“
verwendet.

26Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 1 (eigene Übersetzung)
27mixed object sind hybride physikalisch-digitale Objekte, die die physikalische und digitale Welt

überspannen. Sie wurden schon im Kapitel 368:”Mixed Reality: A model of Mixed Interaction“ [CN06]
vorgestellt.

28Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 9 (eigene Übersetzung)
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Abbildung 3.10: Charakterisierung von mixed objects [DGN10].

objects zu sehen. ”Die physikalischen Eigenschaften werden über zwei
orthogonale (sensed/generated)-Achsen definiert, korrespondierend
zu den Eingabe-Ausgabe Achsen aus Bricks [FIB95]. [· · · ] Unter Be-
rücksichtigung der Besonderheit, dass digitale Eigenschaften sym-
metrisch zu den physikalischen Eigenschaften sein sollen, können
digitale Eigenschaften über zwei orthogonale (acquired/materialized)-
Achsen definiert werden. Eine digitale Eigenschaft kann über jede
Art von Verbindung erlangt (engl. acquired) und/oder materialisiert
werden. Diese Menge an Charakteristika ist unabhängig vom Typ der
Verbindung.“29.

Als Beispiel für die Verwendung von mixed objects wird der Digitale
Tisch genutzt, zu sehen in Abbildung 3.1181. ”Der Benutzer verwen-
det und bewegt den Radiergummi – das mixed tool. Diese Aktion,
basierend auf den physikalischen Eigenschaften des Objekts, wird
von der Eingabeverbindung (hier: eine Kamera und ein Computer-
Vision Algorithmus) erkannt, um dann die entsprechenden digitalen
Eigenschaften <location> und <recognized movements> zu aktua-
lisieren. Die Änderungen in den digitalen Eigenschaften des mixed
tools werden danach von der interaction language zu einer elementaren
Aufgabe (elementary task) interpretiert: Die (x, y)-Position wird in die
elementare Aufgabe “Lösche Zeichnung an Position (x, y) auf dem
Tisch“ überführt. Die elementare Aufgabe wird dann auf das Task
Objekt angewendet und die digitalen Eigenschaften der mixed drawing
werden infolgedessen modifiziert. Die mixed drawings zeigt ihre inter-
ne digitale Veränderung über die Aktualisierung der Anzeige ihrer
Ausgabeverbindung – dem Feedback für den Benutzer“30.

Zusammenfassend kann über die Arbeit von Céline Coutrix und Lau-
rence Nigay gesagt werden, dass sie mit diesem Artikel eine neue

29Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 16 ff. (eigene Übersetzung)
30Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 20 f. (eigene Übersetzung)
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Abbildung 3.11: Interaktion: Benutzer und mixed objects [DGN10].

Sichtweise auf die Entwicklung von Interaktionen in Mixed Reality
Systemen mit Hilfe der mixed objects ermöglicht haben. ”Sie haben die
inhärenten als auch die extrinsischen Charakteristika der mixed objects
vorgestellt, bei dem das Objekt entweder als Werkzeug oder aber eine
Aufgabe gesehen werden kann. Indem ähnliche existierende Systeme
mit Hilfe der vorgestellten Charakteristika klassifiziert werden konn-
ten, wurde damit ihre taxonomische Mächtigkeit demonstriert“31.

Als weitere hervorzuhebende Arbeit in diesem Buch ist der Artikel

”Fiia: A Model-Based Approach to Engineering Collaborative Aug-
mented Reality“von Christopher Wolfe et al. zu nennen. Er beschreibt
die visuelle Notation Fiia zu Formulierung der Entwicklung von kol-
laborativen AR Anwendungen. Diese visuelle Notation basiert auf der

”Actor & Adaptor“-Metapher, die ich für meine Arbeit auch verwendet
habe.

31Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 29 (eigene Übersetzung)
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”AR Anwendungen benötigen häufig eine Kollaboration von Personen
oder Personengruppen. Obwohl eine Reihe an Werkzeugen existieren,
die die Entwicklung solcher AR Systeme unterstützen (z. B. das AR-
ToolKit oder das Groupkit), bleibt jedoch eine große Kluft zwischen
der Spezifikation und der Implementierung dieser Systeme “32. Diese
Kluft versucht der Autor mit Hilfe von Fiia zu schließen.

”Fiia.Net ist ein Werkzeug (basierend auf der visuellen Notation Fiia),
welches die Entwicklung von kollaborativen AR Applikationen verein-
fachen soll. Mit Hilfe der Fiia modeling language kann der Entwickler
die Struktur seiner Anwendung spezifizieren, um so die Details der
Vernetzung zu abstrahieren und die Spezifikation der Adapter zwi-
schen der physikalischen und realen Welt auf einer hohen Ebene zu
definieren. Das Fiia.Net Laufzeitsystem bildet dieses konzeptionelle
Modell auf eine Laufzeitumgebung ab“33.

”Die Fiia Entwurfsnotation ist ein Architekturmuster oder besser eine
visuelle Notation, mit der kollaborative AR Applikationen software-
technisch entwickelt werden können. Viele andere Architekturmuster
haben das Ziel, die Schwierigkeiten bei der Programmierung entwe-
der der Groupware (also kollaborativen Anwendungen) oder der AR
Anwendungen zu minimieren. Es ist zur Zeit kein Architekturmuster
bekannt, das beide Gebiete unterstützt“34.

”Architekturmuster legen Regeln fest, die es Entwicklern ermögli-
chen, die Groupware-Systeme in ihre Komponenten aufzuteilen, so
dass der ”Teile-und-Hersche“ Ansatz (engl.: devide and conquer) der
Softwareentwicklung angewendet werden kann. Beispiele für dieses
Vorgehen sind das Clover-Modell [LN02] und PAC* [CCN97], die dem
Entwickler Ratschläge geben, wie die Benutzerschnittstelle bzw. die
Applikation unter Berücksichtigung der Gruppenaufgaben Produktion,
Kommunikation und Koordination am geeignetsten aufgeteilt werden
kann. Beide Architekturen sind rein konzeptionell, was bedeutet, dass
sie sich nicht mit den Problemen befassen, wie die Vorschläge auf
einem verteilten System implementiert werden sollen. Die Entwick-
ler stehen also der schwierigen Aufgabe gegenüber, die Vorschläge
in ausführbaren Code zu transformieren. Phillips liefert eine detail-
lierte Zusammenfassung der konzeptionellen Architekturmuster für
Groupware-Anwendungen [Phi99]“35.

”Aus den Architekturmustern für die Entwicklung von AR Anwen-
dungen ist ASUR [DG08] erwähnenswert. Ähnlich wie bei Fiia erlaubt

32Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 293 (eigene Übersetzung)
33Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 293 (eigene Übersetzung)
34Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 298 (eigene Übersetzung)
35Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 298 (eigene Übersetzung)
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ASUR die Modellierung der Applikation mit Hilfe von Szenarios, die
aus Komponenten und Verbindungen zwischen diesen bestehen. “36.
ASUR wurde schon in diesem Kapitel auf Seite 75 vorgestellt.

”Es existiert eine Vielzahl an Werkzeugen für die Entwicklung von
Groupware, allerdings nur wenige für die Entwicklung von AR Ap-
plikationen. Ein Werkzeug für beide Arten ist den Verfassern des
Artikels nicht bekannt“37.

”Die meisten Werkzeuge zur Entwicklung von Groupware (wie bei-
spielsweise Groupkit [RG96], ALV [HBR+

94] oder Clock [UG99]) be-
dingen, dass alle Benutzer mit dem System in gleicher Weise intera-
gieren, so dass es nicht möglich ist, eine heterogene Rollenverteilung
der Benutzer und der Systeme zu realisieren. Als einziger Ansatz in
diesem Bereich unterstützt Networking shared dictionary [MGRB06] die
Verwendung von heterogenen Klienten“38.

”Mehrere Groupware-Tooklits unterstützen dynamische Adaption, die
zur Transition zwischen Szenen genutzt werden kann. Schmalsteig
et al. liefert einen Ansatz zur Migration von Klienten in VR Anwen-
dungen [SH02]. Realisiert wird dies über eine geteilte Szenegraph
Datenstruktur mit Hilfe von Replikation. Der Code und der Szene-
graph können so mit Hilfe einer Device-Anpassung auf neue Klienten
migriert werden“39.

”Die meisten Werkzeuge, die für die Entwicklung von AR Anwendun-
gen gedacht sind, widmen sich speziell dem Problem der Ermittlung
der Kameraposition und Orientierung und der Ermittlung der Positi-
on von physikalischen Objekten. [· · · ] Augmented Reality Werkzeuge
sind typischerweise Bibliotheken, die in einer großen Auswahl von
Programmiersprachen eingebunden und benutzt werden können, z. B.
das ARToolKit [KB99] oder ARTag [Fia05]. Beide verwenden spezielle
Bildmuster (Pattern, Tags), die an die reale Umgebung angebracht
werden. Diese werden dann programmiertechnisch mit Objekten der
virtuellen Welt verknüpft. Die Position und Orientierung der Kame-
ra kann dann über die Analyse der Tags im aufgezeichneten Bild
errechnet werden. GoblinXNA verfolgt einen ähnlichen Ansatz mit
dem Unterschied, dass es in die XNA Entwicklungsumgebung von
Microsoft integriert ist [OLWF07]. Weitere Probleme, mit denen sich
Augmented Reality Werkzeuge befassen, sind beispielsweise Lokali-
sierung, Gestenerkennung und Grafik [Fis02]. [· · · ] Fiia kann nun als
Generalisierung der vorgestellten Ansätze gesehen werden, indem es

36Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 298 (eigene Übersetzung)
37Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 298 (eigene Übersetzung)
38Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 298 (eigene Übersetzung)
39Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 299 (eigene Übersetzung)
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weit mehr Flexibilität liefert, zum einen auf der konzeptionellen und
verteilten Architektur-Ebene, zum anderen in der Bereitstellung der
notwendigen Infrastruktur für die Realisierung von AR Anwendun-
gen“40.

”Fiia ist eine Entwurfsnotation für kollaborative AR Anwendungen.
Mit Hilfe des Werkzeugs Fiia.Net werden diese Entwürfe zu ausführba-
ren Anwendungen realisiert. Fiia ist weiter ein modellbasierter Ansatz
der es erlaubt, ein abstraktes High-Level Modell eines Systems als
verteile Anwendung mit physikalischen und virtuellen Objekten auto-
matisch zu erzeugen. Verglichen mit früheren Ansätzen enthält Fiia
drei prinzipielle Fortschritte“41:

High-Level Notation: Fiia verwendet eine High-Level Notation zur
Modellierung sowohl der Groupware als auch der Augmented
Reality einschließlich der Funktionalität von gemeinsamer Da-
tennutzung (Data Sharing) und der virtuellen/physikalischen
Adapter.

Szenario-basierter Entwurf: Fiia nutzt einen Szenario-basierten Ent-
wurf und eine Szenario-basierte Implementation.

Einfacher Modell-Code Übergang: Fiia bietet einen einfachen Über-
gang vom abstrakten Modell zur ausführbaren Anwendung an.

Abbildung 3.1285 zeigt ein Beispiel eines Fiia Diagramms (hier die von
Wolfe entwickelte Anwendung mit Namen Raptor). Der Entwickler
(Designer) interagiert bei dieser Anwendung mit dem Editor, der es
erlaubt, die Szene zu manipulieren, das Terrain zu gestalten, Spielele-
mente einzufügen und diesen dann Verhalten zuzuordnen. Elemente
werden in Form eines Szenegraphen gespeichert. Dieser Szenegraph
ist in der Komponente Scene gespeichert. Der Editor ist eine Actor-
Komponente ( ), was bedeutet, dass diese Komponente in der Lage
ist, Aktionen zu initiieren. Die Scene ist eine Store-Komponente ( ),
das heißt ein passiver Datenspeicher. [DGN10]

Der Entwickler benutzt den Editor mit Hilfe eines Multitouch-Tisches,
der in Abbildung 3.1285 durch das Table Surface dargestellt ist. Das
Table Surface bieten Eingabe- und Ausgabemöglichkeiten für den rea-
len Multitouch-Tisch (benutzt wird ein Microsoft Surface [Mic11]).
Interagiert wird mit dem Table Surface über einen bidirektionalen
Informationsfluss. Das wird im Diagramm durch die beiden Stream-
Verbindungen ( ) angedeutet (die Bidirektionalität wird durch

40Aus ”The Engineering of Mixed Reality Systems“ [DGN10], Seite 299 (eigene Übersetzung)
41Aus ”The Engineering of Mixed Reality Systems.“ [DGN10], Seite 299 (eigene Übersetzung)
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Abbildung 3.12: Fiia Modell einer Anwendung [DGN10].

die Doppelpfeile an beiden Enden der Linie dargestellt). Der Editor
erfragt den aktuellen Status des Multitouch-Tisches mit Hilfe der
Call-Verbindung ( ) und aktualisiert die Anzeige des Tisches über
die Stream-Verbindung. Allgemein repräsentieren Streams einen asyn-
chronen Datenfluss, der für die Kommunikation diskreter Ereignisse
oder kontinuierlicher Daten, beispielsweise Audio oder Video, ver-
wendet werden kann. Im Gegensatz dazu steht die Call-Verbindung,
die den traditionellen synchronen Aufruf von Methoden repräsen-
tiert. [DGN10]

Gleichzeitig, während der Entwickler die Szene im Editor bearbei-
tet, können Testbenutzer (Tester) die Anwendung auf dem Display
anschauen. Der Displayer-Aktor aktualisiert die Darstellung entspre-
chend den Änderungen des Entwicklers. Beide Versionen der Scene,
sowohl die der Entwickler als auch die von den Testbenutzern, werden
über eine Sychronisationsverbindung ( ) konsistent gehalten. Eine
Synchronisationsverbindung sorgt dafür, dass zwei oder mehr Daten-
speicher konsistent bleiben, so dass Änderungen automatisch an alle
Stores propagiert werden. [DGN10]

Die Diagramme von Fiia werden als verteiltes System implementiert.
In diesem Beispiel werden zwei Computer verwendet; Ein Computer,
der den Multitouch-Tisch ansteuert (Tabletop PC) und vom Entwickler
benutzt wird, und ein Computer, der die Darstellung der Szene für
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die Testbenutzer aufbereitet (Game PC). Fiia Diagramme spezifizieren
jedoch nicht die Details des verteilten Systems. Sie abstrahieren die
wichtigen Aufgaben wie beispielsweise die Aufteilung der Komponen-
ten, den verwendeten Algorithmus zur Datenübertragung zwischen
Knoten und die Konsistenzverwaltung für die Datensynchronisati-
on. Das Fiia.Net-Werkzeug kann bei der späteren Umwandlung in
ausführbare Anwendungen diese abstrakten Aufgaben automatisch
bestimmen. Das erlaubt es dem Entwickler, sich auf die Funktiona-
lität seiner Anwendung zu konzentrieren und nicht die Details der
Implementation zu betrachten. [DGN10]

Fiia bietet über eigene Notation eine gute und einfache Möglichkeit,
verteilte Mixed Reality Anwendungen konzeptionell zu realisieren
und mit Hilfe des mitgelieferten Fiia.Net-Werkzeuges in eine ausführ-
bare Anwendung zu überführen. Fiia bietet leider nicht die Möglich-
keit, eine Anwendung entlang des Mixed Reality Kontinuums zu
entwickeln. So ist es schwierig, Komponenten, die als virtuelles Ob-
jekt definiert sind, in real existierende Komponenten zu überführen.
Fiia bietet hier weder einen Automatismus noch ein Vorgehen an. So
müsste für jeden Prototypen das komplette Modell überarbeitet wer-
den, um eine entsprechende Entwicklung entlang des Mixed Reality
Kontinuums zu realisieren. Das ist allerdings nicht wünschenswert.
Die Groupware-Eigenschaften und die automatische Generierung
ausführbarer Applikationen sind jedoch bei Fiia hervorzuheben.

Fiia: Model-Based Approach to Engineering Collaborative AR
Autoren Wolfe, Smith, Phillips, Graham Jahr 2010

Bereich Modell und Notation
Beschreibung Entwicklung von kollaborativen MR-Anwend.
Merkmale: + Notation, Modell, Werkzeuge

+ Anwendungsbeispiele

+ Grafische Notation

+ Automatische Generierung

+ Groupware-Eigenschaften

- Keine Entwicklung entlang d. MR Kontinuums

- Nicht iterativ

Weitere Entwurfskonzepte

Eine große Anzahl an weiteren Entwurfskonzepten wurde schon im
vorherigen Abschnitt ab Seite 78 erwähnt. Auch hier sei des Weiteren
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der jährlich stattfindende SEARIS Workshop für weitere, tiefergehende
Informationen zu diesem Themenfeld erwähnt [SEA08].

3.4 Softwareumgebungen und -lösungen

Die im letzten Kapitel vorgestellten Arbeiten stellen neben einem kon-
zeptionellen Entwurf gleichzeitig eine Software zur (automatischen)
Erzeugung von ausführbaren Programmen zur Verfügung. Die mit
Hilfe der verschiedenen, im letzten Kapitel vorgestellten Konzepte
entwickelten Anwendungen bieten somit nur eine sehr abstrakte Sicht.
Das bedeutet, dass die Entwickler eine Sicht auf ihre Anwendun-
gen nicht auf quelltextbasis erhalten, sondern auf Modellebene die
Anwendungen entwickeln.

Eine Grundvoraussetzung für einen praktikablen Entwurfsprozess ist
die Bereitstellung von Werkzeugen, die eine rasche Entwicklung von
Mixed Reality Komponenten unterstützten. Hier existiert eine Vielzahl
von Arbeiten in diesem Bereich, angefangen von API42-basierenden
Low-Level Ansätzen über Software-Frameworks bis hin zu komplexen
High-Level Autoren-Werkzeugen. Ich beschränke mich hier auf die
Arbeiten, die mein System beeinflusst haben.

Im folgenden Kapitel möchte ich gerne einige dieser Softwareumge-
bungen und -lösungen kurz vorstellen, die es erlauben, eigene An-
wendungen auf eine etwas konkreteren Art zu entwickeln. Vorgestellt
werden verschiedene Softwareumgebungen, die es dem Entwickler
ermöglichen, Virtual und Mixed Reality Anwendungen zu entwerfen.

Frühe API-basierte VR Frameworks

Ein sehr frühes API-basiertes Framework, das ausschließlich für VR
Anwendungen verwendet werden kann, ist VRJuggler [BJH+

01]. Es ist
ein objektorientierts C++ VR-System, kann plattformübergreifend ver-
wendet werden und steht unter einer Open Source Lizenz. VRJuggler
erlaubt eine beliebige Kombinationen von Eingabegeräten, Grafik-
APIs und Plattformkonfigurationen. Eine VR-API mit einem Fokus
auf Simulationen ist Delta3D [DMJ05]. Dieses Framework basiert auf
der häufig im wissenschaftlichen Bereich eingesetzten Szenengraph-
Bibliothek OpenSceneGraph [Ope10] und vereint eine erhebliche An-
zahl an Open Source Bibliotheken beispielsweise für Charakteranima-
tion, Physik oder Künstliche Intelligenz und bietet daher eine enorme

42API = Application Programming Interface – Eine Programmierschnittstelle auf Quelltextebene.
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Funktionsvielfalt. Delta3D kann zusammen mit der Skriptsprache Py-
thon benutzt werden und liefert einen umfangreichen Szenen-Editor
namens STAGE.

Autorenbasiertes MR Framework AMIRE
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Abbildung 3.13: AMIRE Framework und Komponente [DGHP02].

Einer der ersten Versuche von den reinen APIs hin zu einer autoren-
basierten Entwicklung zu gelangen, war das AMIRE43 Werkzeug, das
als Teil des europäischen IST Projektes entwickelt wurde [GHP+

02].
AMIRE stellt ein Autorenframework zur Verfügung (siehe Abbildung
3.13), auf den die Anwendungen basieren. Die Basis dieses Frame-
works sind die sogenannten Gems. Gems sind eine Sammlung von
Techniken und Algorithmen, die für Programmierer gedacht sind.
Die Grundgedanke bei diesen Gems ist, dass Entwickler ihre Ideen,
Algorithmen und Werkzeuge mit anderen Entwicklern (und den Ent-
wicklern von AMIRE) teilen und so die Ressourcen wiederverwendet
werden können. Durch eine große Beteiligung von vielen Programmie-
rern entwickelt sich so eine große Basis an innovativen Lösungen für
eine Vielzahl von Problemen im Mixed Reality Bereich. Ein Problem
bei der Bereitstellung der Gems ist allerdings, dass viele Ideen und
Algorithmen nicht für die Wiederverwendung programmiert wurden
bzw. die Schnittstellen sehr unterschiedlich sind. Auch ist es schwierig,
allgemeine Prozesse für Mixed Reality Anwendungen von Lösungen
Dritter zu finden und wieder zu verwenden. Die Lösung, die AMIRE
vorschlägt, ist, etablierte Lösungen für einzelne Aufgaben in einer MR
Gem Collection zu sammeln [GHP+

02].

Die Mixed Reality Komponenten (oder einfach Komponenten) sind die
grundlegenden Elemente im Entwicklungsprozess.Dabei repräsentie-
ren Komponenten konkrete Lösungen für domänenspezifische Proble-

43AMIRE steht für ”Authoring MIxed REality“.
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me und kombinieren bzw. erweitern typischerweise die Gems in Rich-
tung High-Level Funktionalität von MR Anwendungen. Komponenten
sind als domänenspezifische Elemente definiert. Abstrakt betrachtet
teilen sich Komponenten in geometrische Modelle und Verhalten auf,
wobei Verhalten sowohl die Animation als auch die Simulation ei-
nes spezifischen Verhaltens beinhalten kann. Einige wünschenswerte
Ausprägungen der Komponenten sind folgende: strukturiert, wieder-
verwendbar in unterschiedlichen Versionen, wiederverwendbar in
unterschiedlichen Anwendungen, erweiterbar, flexibel [GHP+

02].
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Abbildung 3.14: Experten bei einer AMIRE-Entwicklung [DGHP02].

Das MR Framework von AMIRE dient schließlich als Bindeglied zwi-
schen den Gems und den Komponenten. Weiterhin bietet es eine High-
Level API und eine Schnittstelle für die Komponenten an. Das MR
Framework beinhaltet sowohl ein Laufzeit-Framework als auch ein
Autoren-Framework. Dies stellt bei der Anwendungsentwicklung
sicher, dass die domänenspezifischen Experten an den dafür vorge-
sehen Baustellen arbeiten können, wie in Abbildung 3.14 zu sehen
ist [GHP+

02]. Bei einer Entwicklung einer Anwendung sind fünf
domänenspezifische Experten beteiligt: Der Gem Expert entwickelt
neue benötigten Gems bzw. findet schon existierende aus der Gem Col-
lection. Der Component Expert entwickelt die Komponenten mit Hilfe
der vorhandenen Gems. Der Framework Expert integriert die Kompo-
nenten schließlich in das Framework, so dass der Authoring Expert
sie in der Anwendung verwenden kann. Eine überprüfende Rolle hat
der Evaluation Expert, der das komplette Projekt evaluiert und ggf. bei
den entsprechenden Experten Korrekturen vorschlägt. Jeder dieser

89



STAND DER FORSCHUNG

Experten muss somit nur Teilaufgaben übernehmen, und zwar genau
in dem Gebiet, in dem seine Kompetenzen liegen.

Konzeptionell leistet AMIRE gute Arbeit im Bereich Mixed Reality
Anwendungsentwicklung. Ein Problem ist jedoch, dass normalerweise
Lösungen sehr schwer auf die Gems-Ebene reduziert werden können,
da sie meist in einem komplexeren Zusammenhang entwickelt wur-
den. Des Weiteren ist es schwierig, eine einheitliche, gut verständliche
Schnittstelle für alle zur Verfügung gestellten Gems zu entwerfen, so
dass bei der Entwicklung einer Applikation meist viel Arbeit in die
eigentlichen Bausteine, den Gems und den Components fließt und so
die eigentliche Entwicklung verkompliziert. Für diese Arbeit fehlte
auch das Entwurfsvorgehen, das bei AMIRE nicht konkret entwickelt
wurde.

Autorenbasiertes MR Framework AMIRE
Autoren Europäisches IST Projekt Jahr 2002

Bereich Framework
Beschreibung Mixed Reality Framework
Merkmale: + Iterativ

+ Komponentenbasiert

+ Anwendungsbeispiele

- Kein konkretes Entwurfsvorgehen

- Keine Entwicklung entlang d. MR Kontinuums

The Designer’s AR Toolkit: DART

Im Mixed Reality Bereich ist DART44 eines der ersten erfolgreichen
Autoren Werkzeuge, die Mixed Reality Erweiterung in die Anwen-
dung Director, einer kommerziellen Autorenlösung von Adobe, inte-
griert [MGDB04]. MacIntyre stellte DART im Jahre 2004 vor. Da es sich
um eine Erweiterung einer proprietären Software handelt, musste sich
MacIntyre an das von Director vorgegebene konzeptionelle Modell
halten, das aus der Theater-Metapher basiert. In Director existieren
Akteure, die sichtbare und interaktive Objekte repräsentieren, eine
Bühne (stage), auf dem die Akteure platziert werden, und Kameras,
die die Akteure auf der Bühne darstellen. DART erweiterte diese Meta-
pher konsequent indem es spezielle Akteure, sogenannte DART-Aktors
und Kameras lieferte, die für Mixed Reality Anwendungen benötigt
wurden. In Abbildung 3.1591 ist die Integration von DART in Director

44Abk. für ”The Designer’s AR Toolkit“, das Augmented Reality Werkzeug für Designer.
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zu sehen.

Abbildung 3.15: DART von MacIntyre [MGDB04].

”DART will besonders die frühen Entwurfsaktivitäten unterstützten,
speziell die schnelle Umsetzung von Storyboards zu Prototypen, so
dass der experimentelle Teil des Entwurfs sehr früh und sehr oft
getestet werden kann. DART erlaubt es dem Entwickler komplexe
Beziehungen zwischen der physikalischen und der virtuellen Welt
zu spezifizieren und unterstützt 3D Animatic45-Akteure (informeller,
skizzenbasierter Inhalt) zusätzlich zu den besser aufbereiteten Inhal-
ten. Die Entwickler können Video und Sensordaten synchronisiert
aufzeichnen und abspielen, was es erlaubt, unabhängig von der echten
Kamera zu arbeiten und spezifische Teile der Anwendung effizient zu
testen“46.

DART ging denselben Weg, den ich am Anfang meiner Arbeit ge-
gangen bin, indem ein proprietäres Werkzeug, das schon eine große
Verbreitung bei Anwendern hatte, mit Komponenten aus dem Bereich
Mixed Reality erweitert wurde. Dadurch musste nur ein kleiner Teil
der Software entwickelt werden und man konnte auf schon bestehen-
de und gut funktionierende Strukturen zurück greifen. Diese festen
Strukturen können sich allerdings auch zum Nachteil entwickeln,

45Eine Animatic, auch Story Reel genannt, ist ein gefilmtes Storyboard.[Wik11]
46Aus ”DART: a toolkit for rapid design exploration of augmented reality experiences“ [MGDB04],

Seite 197 (eigene Übersetzung)
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gerade in meinem Fall, wie man in Kapitel 4.5.1136 nachlesen kann.
DART hatte das Problem, dass sich viele Entwickler von Director
abgewendet haben und stattdessen auf Flash umgestiegen sind, so
dass die Entwicklung von DART eingestellt wurde.

DART: toolkit for rapid design exploration of AR experiences
Autoren MacIntyre, Gandy, Dow, Bolter Jahr 2004

Bereich Framework
Beschreibung Mixed Reality Framework in Director
Merkmale: + Theatermetapher

+ Professionelle Entwicklungsumgebung

+ Anwendungsbeispiele

- Kein konkretes Entwurfsvorgehen

- Keine Entwicklung entlang d. MR Kontinuums

- Nicht iterativ

Studierstube

Ein weiteres bekanntes System im Bereich Mixed Reality ist das Stu-
dierstube System [SFH+

02] von Dieter Schmalstieg, entwickelt an der
Technischen Universität Wien und weiterentwickelt an der Techni-
schen Universität Graz. Studierstube basiert auf der Szenegraph-API
Coin3D, einem Open Inventor Clone der norwegischen Firma Kongs-
berg Oil & Gas Technologies [Tec11], und einer Middleware für die
I/O-Abstraktion namens OpenTracker [RS01], welche einen flexiblen
Einsatz von Tracking-Geräten erlaubt. Studierstube erlaubt eine einfa-
che Entwicklung von Mehrbenutzer AR-Anwendungen, sowohl auf
klassischen Computern als auch auf mobilen Endgeräten mit der spe-
ziellen allerdings kommerziellen Version Studierstube ES. Die Verwen-
dung von mobilen Endgeräten wird auch im Bereich Mixed Reality
immer interessanter, da es die heutige Leistung erlaubt, die komplette
Verarbeitung lokal auf dem mobilen Gerät auszuführen. Noch vor
einigen Jahren was das nicht möglich, und mobile AR Anwendungen
mussten mit Hilfe von Bildübertragung und Bildberechnung auf dem
PC gelöst werden, wie das Beispiel der AR-Enigma aus dem Jahre
2002 [PSG+

02] oder die testbare Design-Repräsentation für mobiles
AR Authoring [GPR+

02] zeigt.

Studierstube ES läuft auf mehreren (mobilen) Plattformen (z. B. Win-
dows, Windows CE, Symbian, Andriod und iOS47). Alle relevanten

47iOS Geräte sind nicht offiziell unterstützt, es existiert jedoch eine Entwicklerversion.
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Studierstube ES
Applikation

Studierstube ES
Applikation

Studierstube ES
Applikation

Applications

Studierstube ES

Muddleware

Studierstube
Scenegraph

Studierstube IO Studierstube Tracker

Studierstube Core Studierstube Math

Studierstube Softw
are Stack

Operating System
Windows, WIndows Mobile, 

Symbian, MacOS, Linux

APIs
DirectShow, Symbian Camera, OpenMAX, Direct3D, 

OpenGL ES, OpenGL, Winsock, etc.

Hardware
CPU, GPU, FPU, Display, Touchscreen, Buttons, Audio, Camera, Wifi, Bluetooth

Plattform

Abbildung 3.16: Aufbau von Studierstube ES [SW07].

Details der Entwicklung von AR Anwendungen werden von Studier-
stube ES berücksichtigt: Grafikausgabe, Videoverarbeitung, Tracking,
Multimedia, Speicherverwaltung und Synchronisation von Mehrbe-
nutzer Mehrbenutzern (siehe Abbildung 3.1693). Studierstube ES bietet
eine große Zahl von Schnittstellen (Muddleware48, Studierstube Scene-
graph, Studierstube Tracker, etc. und, da es von Grund auf für mobile
Endgeräte programmiert wurde und nicht auf existierenden Lösun-
gen basiert, eine sehr hohe Performance. Damit ist die Entwicklung
von komplexen AR Anwendungen auf mobilen Endgeräten für den
kommerziellen Markt bzw. im akademischen Rahmen sehr schnell
realisierbar. Da Studierstube ES speziell auf mobile Endgeräte opti-
miert wurde, werden 3D Beschleunigung der eingesetzten Grafikpro-
zessoren, Fließkommazahl- und Fixpunktzahlarithmetik sowie die
Verwendung der verbauten Kameramodule unterstützt, soweit diese
auf der mobilen Plattform vorhanden sind. Das ermöglicht mobile AR
Anwendungen, die vor wenigen Jahren nur auf Desktop-PC möglich
waren. Durch die Integration vom Studierstube ES in die Softwareum-

48Muddleware ist eine Netzwerklösung für mobile Endgeräte und stammt von denselben Entwicklern
wie Studierstube ES.
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gebung der einzelnen mobilen Plattformen ist die Einbindung in
eigene Projekte sehr einfach. Da es sich, wie bereits erwähnt, um eine
kommerzielle Lösung handelt, ist die Benutzung von Studierstube ES
leider nur Entwicklern vorenthalten, die eine Lizenz besitzen.

Studierstube
Autoren Schmalstieg et al. Jahr 2002

Bereich Framework
Beschreibung Mixed Reality Framework
Merkmale: + Komplexes Framework

+ Mobile Plattformen

+ Anwendungsbeispiele

- Kein konkretes Entwurfsvorgehen

- Entwicklung nicht entlang d. MR Kontinuums

- Nicht iterativ

Weitere High-Level Werkzeuge der letzten Jahre

Broll beschreibt in seiner Arbeit, die 2008 auf der 3DUI-Konferenz
vorstellt wurde, ein visuelles Autorenwerkzeug für 3D Interaktions-
techniken [BHB08]. Das Konzept ”Interactive Bits“ ist ein komponen-
tenbasierter Ansatz zur visuellen Spezifikation von Mixed Reality
Interaktionstechniken, Objektverhalten oder vollständiger Mixed Rea-
lity Prototypen. Das Werkzeug kombiniert synchronen Kontroll- und
Datenfluss mit asynchronen Events und Netzwerkkommunitation.
Spezifiziert wird es über eine XML-basierte Beschreibung, die die Ob-
jekte, die Komponenten und den Kontroll- bzw. Datenfluss definiert.

Sandor et al. beschreiben in ihrer Arbeit ”Immersive mixed-reality
configuration of hybrid user interfaces“ [SOBF05] ein Mixed Reality
System, welches Anwendern erlaubt, eine Mixed Reality Applika-
tion zur Laufzeit zu konfigurieren und eine Vielzahl von Anzeige-
und Interaktionsgeräten beliebig zu kombinieren. Dabei wird eine
Datenfluss-orientierte Visualisierung durch verbindende Linien zwi-
schen grafischen 2D-Symbolen verwendet. Diese Methode habe ich
auch in meinem ersten Ansatz verwendet, indem ein proprietäres 3D
Autorensystem als Grundlage für die Entwicklung von Mixed Reality
Applikationen verwendet wurde. Ein Unterschied allerdings ist, dass
die Software, die ich verwendet habe, eine Kontrollfluss-orientierte vi-
suelle Programmierung verwendete. Näheres kann in Kapitel 4.5.1136
nachgelesen werden.
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Envir3D ist ein Modellierungswerkzeug, mit dem 3D Inhalte visu-
ell spezifiziert werden. Dabei steht immer ein abstraktes Modell der
Benutzungsschnittstelle zur Evaluierung und Verfeinerungen zur Ver-
fügung. Dieses wird zur Erzeugung einer VRML-Darstellung verwen-
det [VCBT04].

Ein Beispiel für ein High-Level Authoring-Werkzeug, das allerdings
nicht für Mixed Reality Anwendungen gedacht war, ist 3DVIA Vir-
tools [Das09]. In Kapitel 4.5.1136 wird 3DVIA Virtools und die von mir
entwickelte Mixed Reality Erweiterung näher vorgestellt.

Es existieren auch in diesem Bereich noch viele andere gute Werkzeu-
ge. Eine gute Quelle ist hier wieder der jährlich stattfindende SEARIS
Workshop, der eine vertiefende Quelle für diese Entwicklungen bie-
tet. [SEA08] Die für meine Arbeit wichtigsten Arbeiten habe ich jedoch
vorgestellt.

3.5 Zusammenfassung

In diesem Kapitel wurden aktuelle Forschungsergebnisse in den für
diese Arbeit relevanten Bereichen ”Mixed Reality Entwurfskonzepte“,

”Entwurfskonzepte mit Werkzeugumgebung“ und ”Softwareumge-
bungen und -lösungen“ vorgestellt und bewertet. Es wurden die für
diese Arbeit wichtigsten Beiträge in den jeweiligen Gebieten kurz
beschrieben, die Merkmale herausgestellt und deren Vor- und Nach-
teile angeführt. Bei den früheren Arbeiten galt das Hauptaugenmerk
vorwiegend einer einzelnen Ausprägung, wie beispielsweise der Vor-
stellung eines neuen Frameworks oder einer neuen Methode der
Modellierung, während bei späteren Arbeiten die Zusammenführung
mehrerer Ausprägungen im Vordergrund stand. Waren es zu Be-
ginn nur einfache API-basierte Frameworks, die es dem Benutzer
ermöglichten, Mixed Reality Anwendungen zu realisieren, so entwi-
ckelten sich später daraus komplette Werkzeuge, die es ermöglichten,
auf abstrakte Weise seine Anwendung zu entwerfen. Zusammenfas-
send kann man sagen, dass alle Arbeiten in ihrem speziellen Gebiet
ihre Vorteile haben.

Was allerdings noch nicht in der Literatur versucht wurde, ist, eine
Anwendung entlang des Mixed Reality Kontinuums zu entwickeln. So
muss man bei allen Arbeiten die realen und virtuellen Objekte schon
zu Beginn der Entwicklung festlegen, eine spätere Transformation
ist nicht vorgesehen. Dabei ist es gerade bei der Entwicklung von
Mixed Reality Applikationen sinnvoll, reale Komponenten zu Beginn
virtuell zu modellieren, sei es, weil die realen Objekte noch nicht
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existieren oder weil die technischen Grundlagen zur Erkennung der
realen Objekte noch nicht existiert. Allein bei DART [MGDB04] ist es
möglich, die Entwicklung auf zuvor aufgezeichneten Daten (sowohl
Video als auch Position und Orientierung) fortzusetzen. So kann
auch bei Abwesenheit der benötigten Hardware zur Erkennung von
realen Objekten bzw. der realen Objekte selbst (sei es, weil die Objekte
noch nicht existieren oder sich an einem anderen Ort befinden) die
Entwicklung fortgesetzt werden. DART jedoch beschränkt sich nur
auf Video bzw. Tracking-Informationen, eine Transition von virtuellen
zu realen Objekten findet hier nicht statt. In meinem Ansatz ist die
Transition von virtuellen zu realen Objekten (und zurück) möglich,
um so eine während der Entwicklung größtmögliche Unterstützung
zu erhalten.

Viele der späteren hier vorgestellten Arbeiten stellen eine eigene Vor-
gehensweise bzw. ein eigenes Modell vor. Das ist durchaus sinnvoll,
da die Entwicklung von Mixed Reality Anwendungen mit üblichen
Entwicklungswerkzeugen und -Abläufen nicht vollständig abgedeckt
wird. Eine Unterscheidung zwischen den realen, physikalischen Ob-
jekten und den virtuellen Objekten wird bei allen Arbeiten im Bereich
Mixed Reality gemacht, sei es Fiia, ASUR oder Studierstube. Mein
Ansatz geht indes noch einen Schritt weiter und kategorisiert die vor-
handenen Objekte einer Anwendung in vier spezielle Arten, die dem
MVC-Ansatz (siehe Seite 2.2.145) angelehnt ist. Diese Aufteilung er-
laubt eine feingranularere Entwicklung einzelner Komponenten. Des
Weiteren wird damit auch die Entwicklung entlang des Mixed Reality
Kontinuums unterstützt, was bedeutet, dass Objekte bzw. Komponen-
ten zuerst virtuell entworfen und später durch reale, physikalische
Komponenten bzw. Objekte ersetzt werden. Dieser Schritt lässt sich
auch umkehren, so dass reale Objekte wieder durch ihre virtuellen
Gegenstücke ersetzt werden können. Das ermöglicht bei der Entwick-
lung eine gezielte Fokussierung auf eine spezielle Ausprägung einer
Anwendung, indem nicht benötige Funktionalität auf ein Minimum
reduziert wird.

Im Allgemeinen ist in der Literatur zu erkennen, dass die Bedeu-
tung von speziellen Vorgehensweisen und Modelle für Mixed Reality
Anwendungen mit steigender Leistungsfähigkeit, sowohl der klas-
sischen PCs als auch der mobilen Endgeräte, zunimmt. Da sich die
Entwicklung von Mixed Reality Anwendung von der Entwicklung
klassischer Anwendungen stark unterschiedet und sich noch keine
allgemein gültige Vorgehensweise kristallisiert hat, ist ein erhöhter
Forschungsbedarf in diesem Gebiet vorhanden. Das sieht man auch
speziell an den vielen, eigenständigen Konferenzen und Workshops
im Bereich Mixed Reality.
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KAPITEL4
Mixed Reality in the Loop

Das folgende Kapitel beschreibt das eigentliche ”Mixed Reality in
the Loop“-Entwurfsvorgehen (MRiL). Den Anfang macht die Anfor-
derungsanalyse, in der die Anforderungen an die zu entwickelnde
Applikation beschrieben und erläutert werden. Nachdem die Anfor-
derungen klar definiert sind, wird die Vorgehensweise des MRiL be-
schrieben. Da MRiL neue bzw. angepasste Methoden benötigt, werden
im Kapitel 4.3103 diese vorgestellt. Beginnend mit dem MVCE-Modell
wird die Grundstruktur des Entwurfsvorgehens erklärt. Darauf auf-
bauend wird das Akteurmodell beschrieben, welches benötigt wird
um die Entwicklung zu strukturiert. In Kapitel 4.3.4124 wird das das ei-
gentliche Entwurfsvorgehen beschrieben, welches auf einem iterativen
Vorgehen basiert.

Um das Vorgehen besser verständlich zu machen, wird in Kapitel
4.4128 ein kleines Beispiel, eine Entwicklung nach MRiL, beschrieben.
Dieses Beispiel ist klein gehalten uns soll nur die Besonderheiten von
MRiL aufzeigen.

Damit MRiL sinnvoll angewendet werden kann, wird eine Software-
und Werkzeugumgebung benötigt, die diesen Prozess unterstützt. Es
wurden insgesamt zwei exemplarische Softwareumgebungen im Rah-
men dieser Arbeit entwickelt. Bei der ersten Umgebung lag der Fokus
auf der einfachen und visuellen Erstellung von Prototypen und basiert
auf einer proprietären Softwarelösung. Sie unterstützt den Prozess
aber nicht vollständig, gerade im Bezug auf die Akteure gab es dort
Defizite. Die zweite Umgebung basiert auf einer Open Source Grafik-
bibliothek und versucht alle Aspekte der MRiL Vorgehens abzubilden.
Dabei wurde auf die einfache visuelle Programmierung verzichtet
und auf textuelle imperative Programmierung zurückgegriffen. Für
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Experten, die einer Programmiersprache mächtig sind, ist die letzte
Umgebung zu bevorzugen. Anwendern, die aus z. B. dem Bereich
Design stammen, wird die erste Softwarelösung mehr zusagen.

Eine Reihe an eigenen Veröffentlichungen zum Thema MRiL, u.a.

”Mixed reality in the loop – design process for interactive mecha-
tronical systems“ [SGP10], ”MVCE – A Design Pattern to Guide the
Development of Next Generation User Interfaces“ [SGP+

09], ”Mi-
xed Reality Design of Control Strategies“ [GSBP09], ”Modellbasier-
ter Entwurf von Mixed Reality-Interaktionstechniken für ein Indoor-
Zeppelin“ [GPS+09], ”A Design Method for Next Generation User
Interfaces inspired by the Mixed Reality Continuum“ [SGPP09], ”Mi-
ReAS: a mixed reality software framework for iterative prototyping
of control strategies for an indoor airship“ [SPGP10] und ”Iterati-
ves Mixed-Reality-Prototyping und virtuelle Studiopräsentation einer
Steuerung für ein Indoor-Lufschiff“ [PSHG10], wurde auf verschie-
denen nationalen und internationalen Konferenzen vorgestellt und
überwiegend positiv bewertet.

4.1 Anforderungsanalyse

Um das ”Mixed Reality in the Loop“-Entwurfsvorgehen erfolgreich
einsetzten zu können werden bestimmte Voraussetzungen an die zu
entwickelnde Applikation gestellt. Da der zugrundeliegene Ansatz
des Entwurfs auf einem prototypenbasierten Vorgehen (siehe Kapitel
2.1.1239 basiert, sollten während der Entwicklung der Software meh-
rere verschiedene Prototypen vorgesehen sein. Sollte die Entwicklung
keine Prototypen erfordern, wäre MRiL nicht das richtige Entwurfs-
vorgehen. Die Entwicklung der Prototypen ist noch mit der Bedingung
der schrittweisen Verfeinerung verknüpft. Nicht jeder Prototyp sollte
eine komplett andere Funktionalität bieten, sondern die Prototypen
sollten auf einander aufbauen und nach und nach mehr Funktiona-
lität erhalten. Sollte die Entwicklung der Applikation fordern, dass
mehrere Prototypen mit komplett unterschiedlicher Funktionalität
entwickelt werden, ist die Entwicklung mit MRiL nicht optimal aber
durchaus möglich.

Selbst wenn eine Entwicklung einer Applikation die Herstellung von
Prototypen beinhaltet, muss MRiL noch nicht der passende Ansatz
sein. Es sollte mindestens eines der folgenden vier Kriterien für die
Prototypenentwicklung zutreffen, um MRiL erfolgreich anwenden zu
können:

Darstellung: Damit ist sowohl die Verfeinerung der rein virtuellen
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Visualisierung als auch die Änderung der Darstellung von rein
virtuell über gemischte Realität hin zur reinen Realität gemeint.

Steuerung: Die Steuerstrategien der zu entwickelnden Prototypen
wird verfeinert. Dabei sollte die Entwicklung von einfachen,
Tastatur- oder Maus-basierten Steuerungen hin zu komplexen,
neuartigen Steuerstrategien verfeinert werden.

Modell: Das Modell der Software wird verfeinert. Es ist möglich,
von einem rein virtuellen Modell zu einem realen Modell zu
migrieren.

Umgebung: Die Umgebung hat Einfuss auf die Applikation. Auch
hier, wie bei der Darstellung, kann mit einer rein virtuellen
Umgebung begonnen werden, die dann nach und nach realer
wird. Die Umgebung wird nie zu 100% erfasst, sondern Teile der
Umgebung werden über Sensoren erkannt und der Applikation
zur Verfügung gestellt.

Der Ansatz ist nicht für jede Art von Applikation sinnvoll. Es sollte
mindestens einer der im Folgenden aufgeführten Punkte zutreffen,
damit die Verwendung von MRiL erfolgreich angewendet werden
kann:

Mixed Reality Applikation: Bei der Entwicklung von Mixed Reality
Applikationen, im speziellen Augmented Reality Applikationen,
kann das MRiL-Entwurfsvorgehen erfolgreich eingesetzt wer-
den. Mixed Reality Applikationen zeichnen sich durch die Ein-
beziehung der realen Umgebung in die Software aus. Teile der
realen Umgebung können dabei durch verschiedene Sensoren er-
kannt und der Software zur Verfügung gestellt werden. Beispiele
hierfür sind Ultraschall Entfernungssensoren oder Videotracker
(z. B. Studierstube, ART+) zur Erkennung von Position und Ori-
entierung.

Mixed Reality Benutzerschnittstellen: Eine gesonderte Klasse von
Applikationen sind Mixed Reality Benutzerschnittstellen (MR
User Interfaces, auch Next Generation User Interfaces (NGUI) ge-
nannt), die neue Benutzerschnittstellen für Mixed Reality Appli-
kationen implementieren. Durch die Verwendung des MRiL-Ent-
wurfsvorgehens können die neuartigen Benutzerschnittstellen
in frühen Phasen auch ohne die spezielle Hardware, die norma-
lerweise benötigt wird, getestet werden.

Mechatronische Systeme: Software für die Steuerung von mechatro-
nischen Systemen ist sehr gut mit dem MRiL-Entwurfsvorgehen
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zu realisieren. Dabei wird mehr die Entwicklung der Software
als die Einbettung in Hardwarecontroller (Entwicklung des ein-
gebetteten Systems) in den Vordergrund gestellt. Es ist aber auch
möglich, die Software später auf speziellen für die Anwendung
Controllern auszuführen, dabei wird hier auf das Prinzip von
MiL, SiL und HiL (Siehe Kapitel 2.3.151) zurückgegriffen.

Für bestimmte Klassen von Applikationen ist die Verwendung von
des MRiL-Entwurfsvorgehens nicht sinnvoll, da die klassischen Ent-
wurfsprozesse dort besser geeignet sind:

Klassische Applikationen: Damit ist die Klasse von Anwendungen
gemeint, die als Standardsoftware bezeichnet werden kann. Da-
zu zählen Officeanwendungen, Datenbanken, etc. Diese Pro-
gramme basieren größtenteils auf den Eingabemöglichkeiten,
die von einem Betriebssystem zur Verfügung gestellt werden,
und verwenden die normale fensterbasierte Ausgabe.

WIMP1: Anwendungen, die auf einer grafischen Benutzeroberfläche
basieren, die mit Hilfe einer Maus bedient werden können sind
für die Entwicklung mit MRiL nicht geeignet. Beispiele für solche
Anwendungen sind dialogbasierte Programme, die über die
Maus und die Tastatur gesteuert werden.

Webbasierte Inhalte2: Webanwendungen sollten vorzugsweise mit
klassischen Ansätzen der Softwareentwicklung realisiert werden,
da die MRiL hier keine Vorteile sondern eher Nachteile bringen
würde.

Eingebettete Systeme: Diese Art von Software benötigt meist spezi-
elle Werkzeuge, die das Programm auf die passende Plattform
kompilieren. Daher ist hier auch einer der klassischen Ansätze
für die Entwicklung sinnvoll.

Damit sind die Anwendungen, die mit Hilfe des MRiL-Entwurfs-
vorgehen entwickelt werden können, klar eingegrenzt. Vorgestellt
wurden sowohl Anwendungen, die von MRiL unterstützt werden, also
auch Software, die nicht unterstützt wird und sinnvollerweise einem
anderen Entwurfvorgehen folgen sollte. Die nachfolgende Tabelle
zeigt nochmals im Überblick, welche Applikationen mit Hilfe von
MRiL entwickelt werden können:

1WIMP steht für Windows Icons Menus Pointer.
2Als webbasierte Anwendungen, auch Webanwendung oder Webapplikation genannt, wird Software

bezeichnet, die auf einem Webserver ausgeführt wird und beim Anwender mit Hilfe eines Webbrowsers
angezeigt wird.
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Geeignet für MRiLApplikation Ja Teilweise Nein
Mixed Reality Applikation ×
MR Benutzerschnittstellen ×
Mechatronische Systeme × ×
Eingebettete Systeme × ×
Webbasierte Inhalte ×
Klassische Applikationen ×

Zusammenfassend zeigt die unten angegebene Tabelle die Kriterien,
nach denen das MRiL-Entwurfsvorgehen für eine Anwendungsent-
wicklung verwendet werden kann:

RelevanzKriterien Wichtig Optional Unwichtig
AR / MR ×
Prototyping ×
Komponentenbasiert ×
Akteurbasiert ×
Plattformabhängig ×
Programmiersprache ×

Damit sind die Anforderungen an eine Applikation bestimmt. Im
folgenden Kapitel wird die Vorgehensweise des MRiL-Entwurfsvor-
gehen beschrieben.

4.2 Vorgehensweise

Das in dieser Arbeit entwickelte MRiL Entwurfsvorgehen basiert auf
mehreren, speziell angepassten Vorgehensmodellen und dem Model-
View-Controller Architekturmuster (Siehe Kapitel 2.2.145), welches
für MRiL eine Erweiterung erfahren hat. Um eine Applikation nach
dem MRiL-Entwurfsvorgehen zu entwickeln, muss folgendermaßen
vorgegangen werden:

1. Beschreibung in schriftlicher Form (Optional)
Um die spätere Applikation in die vier Komponenten unterteilen
zu können ist es sinnvoll die Funktionsweise der Anwendung
schriftlich aufzuzeichnen. In dieser Form können dann die Iden-
tifizierungen des nächsten Schritts leichter realisiert werden.
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Diese schriftliche Zusammenfassung der Anwendung sollte so
genau wie möglich sein, es sind jedoch normalerweise zu Beginn
einer Entwicklung noch nicht komplett alle Aspekte bekannt,
so dass die erste Fassung der Beschreibung eher ungenau und
oberflächlich sein wird. Zu Beginn reicht diese Beschreibung
allerdings aus, um mit der Identifizierung beginnen zu können.

2. Identifizierung einzelner Elemente
Die einzelnen Elemente der Applikation sollten zu Beginn der
Entwicklung identifiziert werden. Da es sich beim MRiL-Ent-
wurfsvorgehen um einen iterativen Prozess handelt, kann diese
Identifizierung erst recht grob und ungenau sein. In späteren
Iterationen können die Elemente weiter verfeinert werden. Bei
der Identifizierung sollte allerdings schon darauf geachtet wer-
den, dass die Elemente der Applikation nicht in mehr als eine
Komponente der MVCE Architekturmusters fallen.

3. Kategorisierung identifizierter Elemente
Nach der Identifizierung der einzelnen Elemente einer Applika-
tion müssen diese nun in die MVCE-Komponenten kategorisiert
werden. Nach der Kategorisierung können schon die Schnittstel-
len zwischen den Elementen definiert werden, die ja über das
MVCE Architekturmuster vorgegeben sind.

4. Unterteilung in Akteure. (Optional)
Die Unterteilung der identifizierten Elemente in Akteure ist ein
optionaler Schritt, der jedoch sinnvoll ist, wenn die Softwareum-
gebung dies unterstützt. Vorteil ist, dass die einzelnen Akteure
einzeln verfeinert werden können. Ohne Akteure müsste jeweils
eine gesamte MVCE-Komponente verfeinert werden. Je nach
Komplexität dieser Komponente könnte eine Verfeinerung länge-
re Zeit in Anspruch nehmen. Bei einer geringen Komplexität,
wie sie normalerweise in frühen Prototyp-Stadien vorzufinden
ist, ist der Aufwand der Verfeinerung ohne Akteure jedoch
nicht viel aufwändiger, so dass am Anfang der Entwicklung
auf die Unterteilung in Akteure verzichtet werden kann. Sollte
die Softwareumgebung allerdings die Unterteilung in Akteure
unterstützen (siehe 4.5.2148), sollte sie auch durchführt werden.

5. Erster Prototypen mit Platzhalter
Nach Identifikation und Unterteilung kann das Grundgerüst der
Elemente bzw. Akteure in einer Softwareumgebung implemen-
tiert werden. Eine Implementation der definierten Schnittstellen
der Komponenten bzw. Akteure ist denkbar, eine Funktionalität
muss allerdings zu diesem Zeitpunkt noch nicht vorhanden
sein. Der erste Prototyp wird in den meisten Fällen nur das
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Programmgerüst mit den Schnittstellen und Verbindungen zwi-
schen den Komponenten bzw. Akteuren abbilden.

6. Iterationen zur Verfeinerung
Der Prototyp kann nun durch das iterative Entwurfsvorgehen
weiter verfeinert werden. Je nach festgelegtem Schwerpunkt bei
der Entwicklung können alle Komponenten gleichzeitig oder
aber einzelne Komponenten verfeinert implementiert werden.
Durch dieses Vorgehen besteht z. B. die Möglichkeit, zuerst die
Komponenten des Controllers zu verfeinern, um sie schon in
frühen Prototypen zu testen, andere Komponenten jedoch in
einem sehr frühen Entwicklungsstadium beizubehalten. Es ist
auch möglich, von einer verfeinerten Komponente zurück zu
einer früheren Implementation zu gehen, wenn z. B. andere
Komponenten isoliert betrachtet werden sollen. Beispiele für die
verschiedenen Arten der Vorgehensweise bei der Verfeinerung
zeigt Kapitel 5159

7. Fertige Applikation
Nachdem jede Komponente zu ihrer gewünschten Form ver-
feinert ist kann der Prototyp als fertige Applikation bezeichnet
werden. Soll diese Applikation zu einem späteren Zeitpunkt
weiter entwickelt werden, stehen ihr die gesamten Prototypen
der vergangenen Iterationen zur Verfügung. D. h. die Entwick-
ler können für eine Komponente wieder auf ein sehr frühes
Stadium der Entwicklung zugreifen um beispielsweise für ande-
re Komponenten eine kontrollierte Umgebung zu erhalten. Es
ist also Möglich auch nach der Fertigstellung der Applikation
wieder in nachfolgenden Iterationen weiter zu entwickeln.

Damit die hier vorgestellte Vorgehensweise realisierbar ist, mussten
Methoden zur Unterstützung des Verfahrens entwickelt werden. In
nun folgenden Kapitel werden diese Methoden vorgestellt und be-
schrieben.

4.3 Entwickelte Methoden

Zur Realisierung des MRiL-Entwurfsvorgehen mussten mehrere Me-
thoden entwickelt werden. Diese Methoden basieren meist auf schon
in der Literatur bekannten Verfahren, wurden aber für das MRiL-Ent-
wurfsvorgehen angepasst oder erweitert. Im einzelnen sind das:

MVCE: Das aus dem Entwurf von Benutzerschnittstellen bekannte
Model-View-Controller Architekturmuster wurde um die Kom-
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ponente ”Environment“ erweitert und ergibt nun das MVCE
Architekturmuster. Es ist die Grundlage des MRiL-Entwurfs-
vorgehens, welches voraussetzt, einzelne Teile der Anwendung
zu einer der vier Komponenten zuzuordnen. Die klassifizierten
Teile der Anwendung können dann unabhängig von den ande-
ren MVCE Komponenten entwickelt und verfeinert werden. Die
Aufteilung in die einzelnen Komponenten ermöglicht darüber
hinaus die gemeinsame Visualisierung des Entwicklungstand
jeder einzelnen Komponente gemeinsam in einem Kiviatgraph.

Die MRiL Metrik: Um eine Einschätzung über den Entwicklungs-
tand der Applikation zu erhalten muss müssen für die einzelnen
Komponenten des MVCE Architekturmusters eigene Metriken
entwickelt werden. Die Metriken sind essenziell für eine sinn-
volle Visualisierung des Entwicklungstand im Kiviatgraphen.

Akteurmodell: Zur Verfeinerung der MVCE-Komponenten wurde
das Akteurmodell entwickelt, das die Möglichkeit bietet, die
jeweiligen Komponenten feingranularer zu unterteilen. Die Ak-
teuere können einzeln und unabhängig voneinander entwickelt
und über sogenannte Adapter erweitert werden. Das Akteur-
modell ist für die spätere Implementation des MRiL-Entwurfs-
vorgehen nicht zwingend erforderlich. Sollte die verwendete
Entwicklungsumgebung das Akteurmodell unterstützten, sollte
die Aufteilung allerdings durchgeführt werden.

Das Entwurfsvorgehen: Das vorgestellte Entwurfsvorgehen basiert
auf einem iterativen Prototyping Prozess, der in jedem Schritt
Teile der Applikation verfeinert bzw. weiter entwickelt. Nach
jeder Iteration steht ein neuer Prototyp zur Verfügung, der für
Tests verwendet werden kann. Bei der Verfeinerung ist es uner-
heblich, ob alle Komponenten gleichzeitig oder nur eine spezielle
Komponente verfeinert werden.

Die einzelnen oben aufgezählten Methoden werden im einzelnen in
den nachfolgenden Kapiteln ausführlich beschrieben.

4.3.1 MVCE - Model-View-Controller-Environment

Das Model-View-Controller Architekturmuster ist unter anderem in
der Benutzerschnittstellen-Entwicklung so erfolgreich, da es die ein-
zelnen Aufgaben in drei unterschiedliche und voneinander getrennte
Komponenten unterteilt. Daher können die interaktiven und visuellen
Aspekte einer Benutzerschnittstelle getrennt von der eigentlichen Ap-
plikation bearbeitet werden. Das Modell (Model) repräsentiert dabei
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die Daten der Applikation und kapselt diese. Die Darstellung (View)
kapselt die visuellen Elemente wie z. B. die Schaltflächen, Textbo-
xen oder Visualisierungen. Die Steuerung (Controller)3 implementiert
die Interaktionsdetails zwischen der Applikation und dem Benut-
zer, beispielsweise Mausklicks oder Tastatureingaben. Diese leitet
er dann weiter an das Modell welches dann die Änderungen der
jeweiligen Interaktion ausführt. Das Modell wiederum benachrich-
tigt die Darstellung, das sich Daten geändert haben, so dass sich
die Benutzerschnittstelle passend ändern kann. MVC ermöglicht also
modulares Design, indem die einzelnen Komponenten nicht voneinan-
der abhängig sind. Es ermöglicht weiterhin die Benutzung mehrerer
Darstellungen und unterschiedlicher Controller innerhalb derselben
Applikation für dasselbe Modell. Diese Eigenschaften sind gerade im
MRiL-Entwurfsvorgehen wünschenswert, da so modular und kompo-
nentenweise implementiert werden kann.

Ein zentrales Merkmal des MRiL-Entwurfsvorgehen ist die Integration
der realen Umgebung in die digitale Anwendung. Die Applikation
benötigt Informationen über Objekte oder Koordinaten der realen
Welt, dessen Geometrie und Verhalten aber nicht unter der Kontrolle
der Applikation steht. Reale Objekte können unter dem Einfuss von
realen Manipulationen oder externen Kräften stehen. Daher muss
es für die Applikation eine Möglichkeit geben, die Veränderungen
der realen Objekte zu erkennen. In der Praxis besteht solch ein Real
World Model einer Mixed Reality Applikation aus der Kombination
aus statischen Informationen, z. B. Geometriedaten, die als fest gelten,
und dynamischen Informationen, z. B. die Position und Orientierung
des Nutzers bzw. eines zentralen Objektes. Diese dynamischen Da-
ten können über spezielle Sensoren während der Laufzeit ermittelt
werden. Sensordaten könnten als Controller-Events im MVC Modell
gehandhabt werden, allerdings würde dies zu einem sehr unübersicht-
lichen Modell der Applikation führen.

Um daher Mixed Reality tatsächlich in einer digitalen Anwendung
zu berücksichtigen, wurde das Model-View-Controller Architektur-
muster [Ree03] (siehe auch 2.2.145) um eine Dimension ”Umgebung“
(Environment) erweitert, so dass die Sonderstellung der Umgebung
bei Mixed Reality Anwendungen abgedeckt wird. Diese Erweiterung
ist in Abbildung 4.1106 zu sehen. Ein Problem bei MR-Applikationen
ist, dass die Umgebung nicht zu 100 Prozent erfasst werden kann
bzw. muss. Durch verschiedene Sensoren und Techniken können In-
formationen wie Position und Orientierung von Objekten, bestimmte
technische oder physikalische Eigenschaften oder Zustandsänderun-

3Steuerung wird im weiteren Text durch das englischen Wort ”Controller“ ersetzt, da sich dieser
Begriff in diesem Zusammenhang in der Literatur durchgesetzt hat.
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Abbildung 4.1: MVCE Architekturmuster

gen erfasst werden. Es ist aber fast unmöglich und auch nicht sinnvoll,
alle Informationen der Umgebung zu erhalten. Für eine performante
MR-Applikation sollten nur Informationen der Umgebung abgefragt
werden, die wirklich benötigt werden. Beispielsweise sollte eine Ap-
plikation, die die Höhe eines Objektes der Umgebung erfordert, diese
auch möglichst direkt geliefert bekommen und sie nicht über kompli-
zierte Algorithmen umständlich berechnen müssen. Letzteres würde
für die Berechnung der realen Höhe viel Ressourcen und Rechen-
zeit benötigen. Besser wäre es, diese Information mit Hilfe z. B. eines
Höhensensors zu realisieren, der an dem abzufragenden Objekt ange-
bracht ist.

In Abbildung 4.1 wird die Integration der Komponente ”Umgebung“
dargestellt. Sie ist ähnlich dem Modell an die Darstellung gekoppelt
und tauscht ihrerseits Daten mit dem Modell aus. Ein entscheidender
Unterschied ist, dass der Controller keinen Einfluss auf die Umge-
bung hat. Das weist auf die Sonderstellung gegenüber dem Modell
hin. Der Controller ist nicht in der Lage, Daten der Umgebung zu
verändern. Auch das Abfragen der Daten geht über den Umweg des
Modells, da dies die Daten der Umgebung empfängt und passend
aufbereitet. Die Darstellung und das Modell benutzten dieselben Me-
thoden zur Interaktion mit der Umgebung, auch werden beide von der
Umgebung benachrichtigt, sollte sich an den Daten etwas geändert
haben. Die Darstellung wird versuchen, die geänderten Daten dann
zu visualisieren. Das Modell kann die Daten der Umgebung weiter
verarbeiten und ggf. auch die Darstellung über Veränderungen am
Modell informieren. Über die Darstellung, die die Benutzeraktionen
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an den Controller weiterleitet, ist es nun auch möglich, Änderungen
der Umgebung als Benutzerinteraktion zu interpretieren. Dafür sendet
die Umgebung ein Notifikation an die Darstellung, dass sich Daten
geändert haben. Die Darstellung kann diese Änderung als Eingabe des
Benutzers interpretieren und eine Meldung einer Benutzerinteraktion
an den Controller senden. So sind Mixed Reality Benutzerschnitt-
stellen mit Hilfe von MVCE einfach realisierbar und strukturiert zu
implementieren.

Es folgt nun eine detaillierte Übersicht der einzelnen Komponenten
von MVCE, ihren Eigenschaften und der Verwendung:

Model: Das Modell kapselt die eigentlichen Daten der Applikation.
Das Modell ist im allgemeinen eine passive Komponente, d. h.
es kann sich nicht selbstständig ändern. Änderungen werden
nur über den Controller realisiert. Es ist indes möglich , dass
sich Änderungen auf mehrere Teile des Modells auswirken,
die intern im Modell berechnet werden können. Als Beispiel
könnte der Controller die Position eines Modells ändern und
das Modell könnte zusätzlich aus der gegebenen Position die
Farbe der Geometrie über eine interne Funktion neu bestimmten.

View: In der Darstellung wird das Modell komplett oder auch nur
teilweise visualisiert. In MVCE kann es eine oder mehrere unter-
schiedliche Darstellungen vom selben Modell geben, die spezifi-
sche Teile des Modells darstellen. Als Beispiel könnten das zwei
Ansichten sein, die eine visualisiert die virtuelle 3D Umgebung,
eine andere nur die Kollisionsmodelle der Physikbibliothek. Die
Darstellung erhält Notifikationen bei Änderung der Umgebung
und des Modells um seine Darstellung anpassen zu können. Die
Informationen muss die Darstellung allerdings selbst bei der
Umgebung bzw. beim Modell erfragen. Da weder Umgebung
noch Modell wissen, was die jeweilige Darstellung für Daten
benötigt, ist es sinnvoller, dass sich die Darstellung selbst um
die Beschaffung der Daten kümmert, als wenn Umgebung und
Modell die Änderungen an jede Darstellung schicken. So wird
das Datenvolumen zwischen den Komponenten kleinstmöglich
gehalten.

Controller: Der Controller ist für die Verarbeitung der Benutzerein-
gaben zuständig. Die Eingaben können sowohl über den View
mitgeteilt als auch intern erzeugt werden. Eine Interaktion mir
einer grafischen Benutzerschnittstelle wäre ein Beispiel für den
ersten Fall, eine Bewegung mit einer Wiimote4 ein Beispiel für

4Die Wiimote ist ein Gamecontroller der Spielkonsole Wii von Nintendo, der auch mit Standard-
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den zweiten Fall. Auch Komponenten, die keine Benutzerein-
gabe erfordern, jedoch zu gegebenen Zeitschritten das Modell
ändern, werden im Controller gekapselt. Beispielsweise würde
eine Physiksimulation, die auf den Daten des Modells arbeitet,
als Controller angesehen.

Environment: Die Umgebung ist die Komponente in MVCE, in der
die Applikation wenig Einfluss ausüben kann. In dieser Kompo-
nente wird nicht die komplette Umwelt abgebildet, sondern nur
ein kleiner Teil, der für die Applikation sinnvoll und wichtig
ist. Dieser Teil der Umgebung wird meist über Sensoren erfasst
und der Darstellung bzw. dem Modell zur Verfügung gestellt. Es
gilt, dass alle Komponenten, die mit der Umwelt interagieren, in
der Umgebungs-Komponente von MVCE realisiert werden. Als
Beispiel kann ein Objekt, welches über einen visuellen Tracker
erfasst wird, seine Position ändern. Der Tracker, der die Verbin-
dung zur Umgebung darstellt, teilt diese Änderung dem Modell
mit, das seinerseits die Daten aktualisiert. Keine der anderen
Komponenten hat Einfluss auf die Umgebung und kann diese
nicht manipulieren. Es ist eine reine ”Read-Only“-Komponente,
die der Darstellung und dem Modell Daten zur Verfügung stellt.
Welche Daten das sind, entscheiden die Sensoren, die die Umge-
bung analysieren, z. B. Position und Orientierung eines Objektes,
Höhe und Entfernung aber auch Geschwindigkeit und Lage im
Raum. Letzteres kann gut zur Interaktion von realen Objekten
mit der Applikation genutzt werden und wird oft im Bereich

”Mixed Reality User Interfaces“ eingesetzt.

Durch diese Aufteilung der Komponenten lässt sich die Applikation
sehr modular entwickeln. Ein weiterer Vorteil der Einteilung in die
vier Komponenten MVCE ist, dass die Software anhand des Enwick-
lungsstaus der einzelnen Komponenten analysiert werden kann. In
Abbildung 4.2109 ist ein Kiviatgraph zu sehen, der den Enwicklungs-
status einer Applikation repräsentiert. Hierbei werden die einzelnen
Komponenten von der Mitte aus zu den Rändern abgetragen, je nach
ihrem aktuellen Status. Im Kiviatgraphen entspricht die Mitte einer
sehr geringen Komplexität bzw. Realismus. Die ersten Prototypen
einer Applikation werden somit in der Mitte des Kiviatgraphen an-
gesiedelt sein. Je weiter die Komponenten entwickelt werden und
komplexer bzw. realer werden, um so weiter entfernt sich die Kom-
ponenten aus der Mitte. Das heißt, je weiter eine Komponente zum
Rand abgetragen werden kann, desto komplexer bzw. realer ist sie.

Rechnern über Bluetooth angeschlossen werden kann. Über die Wiimote können Beschleunigungen und
die Lage des Gamecontrollers im Raum ermittelt werden. So können z. B. Gesten des Benutzers erkannt
und als Interaktion genutzt werden.
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Abbildung 4.2: Kiviatgraph zu Analyse des Entwicklungsstatus.

Der Kiviatgraph ermöglicht somit eine genauere Analyse des Ent-
wicklungsstandes der MVCE-Komponenten. Bei der Entwicklung von
Mixed Reality Applikationen kann es öfter sinnvoll sein, von einer
komplexen zurück auf eine etwas einfachere Implementation einer ein-
zelnen Komponente zurück zu gehen, um beispielsweise eine andere
komplexere Komponente sicher testen zu können bzw. Seiteneffek-
te auszuschließen. Über den Kiviatgraphen kann man diese beiden
Prototypen der Applikation gut unterscheiden, da sich die einzelnen
aufgetragenen Komponenten ändern, anders als hätte man nur einen
Wert, der die Entwicklung beschreibt, wie das bei einer normalen
Softwareentwicklung der Fall ist (z. B. über eine Versionsnummerie-
rung). Theoretisch könnte der Kiviatgraph auch noch feingranularer
aufgezeichnet werden, beispielsweise über alle Akteure (siehe Kapitel
4.3.3120) in der Applikation. Diese Information wäre in einigen Situa-
tionen sinnvoll, im Allgemeinen reicht allerdings der allgemeine Stand
der MVCE-Komponenten, da auch diese Informationen einfacher zu
lesen sind.

Für die Bewertung des Entwicklungsstatus der einzelnen Komponen-
ten war es allerdings notwendig, eine geeignete Metrik zu definieren.
Diese MRiL-Metrik wird im folgenden Kapitel beschrieben.

4.3.2 Die MRiL-Metrik

Bei der Bewertung des Entwicklungsstatus der Applikation kann der
in Kapitel 4.3.1104 vorgestellte Kiviatgraph genutzt werden, Um eine
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definierte Aussage treffen zu können, wird für jede Achse des Ki-
viatgraphen eine eigene Metrik benötigt, die aussagt, in wie weit die
Applikation in der entsprechenden Dimension entwickelt ist. Detail-
liert werden folgende Metriken benötigt:

Modell-Metrik: Ein Maß, welches angibt, in wie weit das Modell der
Applikation entwickelt ist.

View-Metrik: Metrik für die visuelle Komponente einer Applikation.

Controller-Metrik: Eine Einheit zur Beschreibung der Entwicklung
des Controllers.

Environment-Metrik: Metrik für die Einordnung der Umgebung in
die Applikation.

Für jedes dieser Maße wird eine eigene Metrik benötigt, da sich die
Methoden zur Bestimmung für jede Dimension im Kiviatgraphen
zum Teil grundlegend unterscheiden. Angelehnt sind die Metriken an
Arbeiten aus dem Bereich der Wiederverwendbarkeit von Software-
Komponenten, u. a. die Arbeiten von Boxall et al. [BA04] und Wa-
shizaki et al. [WYF03]. Dabei werden Daten, die schon aus der finalen
Quelle stammen, höher gewertet als simulierte Daten. Daten, die nur
für bestimmte Prototypen benutzt werden und in der finalen Appli-
kation nicht vorhanden sind (hier virtuelle Daten genannt), werden
komplett unberücksichtigt, da diese Daten eigentlich nicht wiederver-
wendet werden können.

Modell-Metrik

Um die Metrik für das Modell zu bestimmen, benötigt man eine
Definition des Modells der finalen Applikation. In diesem Kontext
kann das Modell folgendermaßen definiert werden:
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Definition 4.3.2.1 – Modell
Ein Modell ist die Summe aller Daten σn, die es der Applikation
zur Verfügung stellt bzw. die die Applikation auslesen und/oder
verändern kann. Die Daten können dabei virtuell, simuliert oder
real sein (εi), was aussagt, ob die Daten aus der endgültigen Quelle
stammen (real) oder noch in irgendeiner Form simuliert werden
(simuliert). Sollten die Daten im späteren Modell nicht existieren,
so sind sie virtuell.

M :=
n

∑
i=0

εi (4.1)

n : Anzahl der Daten von σn

εi =


0 : σi ist ein virtuelles Datum

0, 5 : σi ist ein simuliertes Datum
1 : σi ist ein reales Datum

Das Modell wird hier auf einer objektorientierten Ebene definiert
und beinhaltet nicht Parameter wie beispielsweise die Anzahl der
Zeilen im Quelltext. Da das Modell abstrakt angesehen werden soll,
muss auch die Definition und die daraus resultierende Metrik abstrakt
gehalten werden. Dies ist mit der Definition 4.1 des Modells erreicht
worden. Es werden hier nur die Ein- bzw. Ausgaben eines Modells
betrachtet, also die Schnittstellen zur Applikation. Des Weiteren wird
dabei berücksichtigt, ob die Daten, die zur Verfügung gestellt werden,
schon den endgültigen Daten entsprechen.

Um nun eine passende Metrik für das Modell zu definieren, betrachtet
man das Modell der finalen Applikation und vergleicht es mit dem
zur Zeit vorhandenen Modell. Die Modell-Metrik lässt sich daher
folgendermaßen definieren:

Definition 4.3.2.2 – Modell-Metrik
Die Model-Metrik ΓM ist Quotient vom vorliegenden Modell zum
finalen Modell.

ΓM :=
Mproto

M f inal
, 0 ≤ ΓM ≤ 1 (4.2)

Mproto : Modell des aktuellen Prototypen

M f inal : finales Modell
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Mit der Definition des Modells durch 4.1 wird sicher gestellt, dass
Prototypen nie einen größeren Wert erhalten als das finale Modell.
Somit liegt der skalare Wert der Modell-Metrik ΓM immer zwischen
0 und 1. Dieser Wert kann auf der Modell-Achse des Kiviatgraphen
abtragen werden, wobei 0 dem Punkt auf dem innersten und 1 dem
Punkt auf dem äußersten Kreis des Kiviatgraphen entspricht, wie es
an Abbildung 4.3112 dargestellt ist.

Model (M)

0 1,00,2 0,4 0,6 0,8

!"

Abbildung 4.3: Modell-Metrik dargestellt im Kiviatgraphen.

Sollte sich das finale Modell ändern, da es z. B. in der weiteren Ent-
wicklung erweitert wird, müssen die Werte für ΓM neu berechnet
werden, da sonst ein Vergleich mit älteren Versionen des Modells
nicht möglich ist.

Ein andere Möglichkeit bei der Weiterentwicklung und Erweiterungen
von Prototypen ist die Version des Prototypen mit in die Modell-
Metrik ΓM einfließen zu lassen.

Definition 4.3.2.3 – Modell-Metrik (Weiterentwicklung)
Die Modell-Metrik ΓMn ist Quotient einer Weiterentwicklung des
Modells (n− 1) zum finalen weiterentwickelten Modell n.

ΓMn := (n− 1) +
Mproto

M f inaln
, n− 1 ≤ ΓM ≤ n, n ∈ N+ (4.3)

Mproto : aktuelles Modell auf Basis vom Modell (n-1)

M f inaln : finales weiterentwickeltes Modell n

Der Wert der Modell-Metrik Model-Metrik ΓMn liegt nun zwischen
dem Vorgängermodell (n− 1) und der finalen Weiterentwicklung n.
Das bedeutet für die grafische Repräsentation mit Hilfe des Kiviat-
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graphen, dass ein neuer Bereich (von (n− 1) - n) hinzugefügt werden
muss, wie in Abbildung 4.4113 zu sehen ist.

Model (M)

0 1,00,2 0,4 0,6 0,8

!"!

1,2 1,4 1,6 1,8 2,0

Abbildung 4.4: Kiviatgraph eines weiterentwickelten Modells.

Problematisch ist bei mehreren Weiterentwicklungen, dass der Kiviat-
graph immer größer und daher auch unübersichtlicher wird. Um dem
vorzubeugen, kann auch nur die Entwicklung des aktuellen Prototy-
pen verwendet werden. Damit können jedoch nur die Entwicklungen
der aktuellen Entwicklungsstufe miteinander verglichen werden.

View-Metrik

Ähnlich der Modell-Metrik kann auch die View-Metrik definiert wer-
den. Zuvor muss jedoch der View definiert werden, um darauf danach
eine Metrik anwenden zu können. Dabei muss der View der finalen
Applikation bekannt sein, da die Klassifizierung der Objekte davon
abhängt.
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Definition 4.3.2.4 – View
Der View ist die Summe aller Objekte ωn, die von der Applikation
visualisiert werden. Diese Objekte können dabei bezüglich ihrer
Existenz in folgende Klassen aufgeteilt werden: temporär, virtuell
oder real (φi). Objekte, die genau so in der finalen Applikation
vorhanden sind, bezeichnet man als real. Objekte, die zwar in der
finalen Applikation vorhanden sind, allerdings in irgendeiner Weise
anders dargestellt werden, bezeichnet man als virtuell. Sollten Ob-
jekte nur in Zwischenversionen und nicht in der finalen Applikation
vorhanden sein, so nennt man diese temporär.

V :=
n

∑
i=0

φi (4.4)

n : Anzahl der Objekte von ωn

φi =


0 : ωi ist ein temporäres Objekt

0, 5 : ωi ist ein virtuelles Objekt
1 : ωi ist ein reales Objekt

Auch bei dieser Definition des Views wird ein abstraktes Maß zugrun-
de gelegt. Dabei kann sich die Granularität der einzelnen Objekte
sehr stark unterscheiden, je nachdem, in welchen Fokus sie stehen.
Dabei ist indes zu beachten, dass sich die Granlarität während der
Entwicklung zur Finalen Version nicht ändern darf, da sonst keine
eindeutige Metrik berechnet werden kann. Aus der Definition des
Views ergibt sich folgende Metrik:

Definition 4.3.2.5 – View-Metrik
Die View-Metrik ΘV ist Quotient des vorliegenden Views zum
finalen View.

ΘV :=
Vproto

Vf inal
, 0 ≤ ΘV ≤ 1 (4.5)

Vproto : View des aktuellen Prototypen

Vf inal : finaler View

Genau wie bei der Definition des Modells wird auch bei der Definition
des Views in 4.4 darauf geachtet, dass keine Zwischenversion einer
Applikation einen Wert V ≥ 1 bezüglich der finalen Applikation
bekommen kann. Dieser Wert kann dann im Kiviatgraphen abgetragen
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werden, genau wie es auch beim Modell in Abbildung 4.3112 zu sehen
ist.

Für Weiterentwicklungen der finalen Version der Applikation kann
die View-Metrik genauso erweitert werden, wie die Modell-Metrik:

Definition 4.3.2.6 – View-Metrik (Weiterentwicklung)
Die View-Metrik ΘVn ist Quotient einer Weiterentwicklung des
Views (n− 1) zum finalen weiterentwickelten View n.

ΘVn := (n− 1) +
Vproto

Vf inaln
, n− 1 ≤ ΘV ≤ n, n ∈ N+ (4.6)

Vproto : aktueller View auf Basis vom View (n-1)

Vf inaln : finaler weiterentwickelter View n

ΘVn liegt nun zwischen (n− 1) und n und kann genau wie der Wert
der Modell-Metrik für Weiterentwicklungen auf dem Kiviatgraphen
abgetragen werden.

Controller-Metrik

Der Controller kann sich von einem Prototyp zu anderen sehr stark
unterscheiden, da genau hier die unterschiedlichsten Bedienungskon-
zepte implementiert und getestet werden. Daher kann der Controller
nicht ähnlich dem Modell oder dem View definiert werden. Die imple-
mentierten Controller-Strategien können nicht nach ihrer Komplexität
gemessen werden, da dies keine Aussage über die Qualität der Strate-
gie aussagt. Somit muss der Controller eine Metrik erhalten, die mehr
die Benutzbarkeit widerspiegelt.

Für den Controller ist es daher sinnvoll, sich an der Usability-Metrik
nach Jakob Nielsen [Nie93] [Nie94] anzulehnen. Bei der Usability-
Metrik nach Nielsen sind die Erfolgsrate, die Ausführungszeit und
die Fehlerrate die wichtigsten Kenngrößen zur Einordnung des Con-
trollers. Optional kann die Zufriedenheit und die Erlernbarkeit zur
Metrik hinzugezogen werden. Gerade bei neu entworfenen Benut-
zerschnittstellen, bei denen noch nicht abzusehen ist, in wie weit sie
vom Anwender verstanden werden und effizient verwendbar sind,
ist eine Erhebung der optionalen Kenngrößen vorteilhaft, um so die
Akzeptanz der Benutzer zu erfahren.
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Im speziellen sollten folgende Kriterien die Metrik bestimmen:

Obligatorisch

Erfolgsrate: Ist es dem Benutzer gelungen, eine gegebene Auf-
gabe überhaupt zu lösen?

Ausführungszeit: Wie lange hat der Benutzer benötigt, um eine
gegebene Aufgabe zu bewältigen?

Fehlerrate: Wie viele Fehler hat der Benutzer bei der Bewälti-
gung der Aufgabe begangen?

Optional

Zufriedenheit: Wie zufrieden ist der Benutzer mit dem Control-
ler?

Erlernbarkeit: Wie viel Zeit hat der Benutzer benötigt, um sich
die Steuerung anzueignen?

Die ersten drei Kriterien können mit Hilfe entsprechend vorbereiteter
Tests objektiv gemessen werden. Im Gegensatz dazu ist die Zufrie-
denheit eine subjektive Größe, die je nach Vorlieben des Benutzers
extrem unterschiedlich ausfallen und nicht objektiv bestimmt werden
kann. Dementsprechend sollte die Zufriedenheit des Benutzers op-
tional berücksichtigt und eine geringere Gewichtung als die anderen
Kenngrößen erfahren. Allerdings kann bei Tests mit vielen Benut-
zern eine Tendenz der Zufriedenheit abgeleitet werden, die besonders
bei neuen Benutzerschnittstellen vorteilhaft ist. Die Erlernbarkeit des
Controllers sollte auch nur optional behandelt werden, da auch die-
se Bestimmung subjektiv ist, da jeder Benutzer sowohl verschiede
Vorkenntnisse als auch unterschiedliches Lernverhalt besitzt. Bei sehr
komplizierten Steuerungen sollte allerdings auf diese Messung nicht
verzichtet werden, da auch hier Tendenzen sichtbar sind.

Definition 4.3.2.7 – Controller
Der Controller ist für die Steuerung der Applikation zuständig.
Da sich die unterschiedlichen Arten der Controller jedes Prototyps
essenziell unterscheiden können, existiert keine mathematische De-
finition eines Controllers wie es bei dem View oder beim Modell
der Fall ist. Die Metrik wird über Benutzertests ermittelt.

Für die Controller-Metrik können die aus den Usability-Tests ermit-
telten Werte verwendet werden, um einen eindeutigen Wert zu be-
kommen, so dass Controller über die Controller-Metrik miteinander
verglichen werden können:
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Definition 4.3.2.8 – Controller-Metrik
Die Contoller-Metrik ΨC ist die Summe der Ergebnisse der un-
terschiedlichen Benutzertests geteilt durch die Anzahl der durch-
geführten Benutzertests.

ΨC :=
n

∑
i=0

αCi

n
, 0 ≤ ΨC ≤ 1, n ∈ N+ (4.7)

n : Anzahl der unterschiedlichen Usability-Tests

αCi : Ergebnis des Usability Tests Ci

Dabei ist αCi folgendermaßen definiert:

αCi := 1− 1
m

m

∑
j=1

ζ j (4.8)

mit ζi :=
ξi −minm

k=1(ξk)

maxm
k=1(ξk)−minm

k=1(ξk)
, m ∈ N+ (4.9)

ξi : nicht normierter Messwert i des Usability-Test

ζi : normierter Messwert i des Usability-Test, 0 ≤ ζi ≤ 1,

m : Anzahl der ermittelten Werte in einem Usability-Test

Die Controller-Metrik ΨC aus 4.7 liefert einen Wert zwischen 0 und
1, der, wie auch die Werte der anderen Metriken, auf dem Kiviatgra-
phen dargestellt werden können. Dabei werden die Daten aus den
Benutzertests normiert und der arithmetische Mittelwert mit Hilfe der
Gleichung 4.8 bestimmt. Die Normierung geschieht über die Formel
4.9, die das Minimum und das Maximum der Messwerte bestimmt
und so den aktuellen Messwert in den Bereich von [0..1] legt.

Bei der Angabe zur Zufriedenheit des Benutzers muss darauf geachtet
werden, wie die Daten, die der Benutzer macht, gewertet werden.
Würde das deutsche Schulnotensystem als Grundlage genommen
werden, bei dem eine 1.0 eine sehr hohe Zufriedenheit und eine 6.0
eine ungenügende Zufriedenheit des Benutzers ausdrückt, stimmt die
Berechnung mit Hilfe der Formel 4.8. Bei Bewertungssystemen, bei
denen ein höherer Wert eine größere Zufriedenheit darstellt, muss die
Formel allerdings entsprechend umgestellt werden:
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Definition 4.3.2.9 – Controller-Metrik mit inverser Gewichtung
Bei Bewertungssystemen, bei denen ein höherer Wert eine besse-
re Leistung ausdrückt, muss die Formel 4.8 zur Berechnung des
arithmetischen Mittels geändert werden.

αCi :=
1
m

m

∑
j=1

ζ j (4.10)

Alle anderen Formeln und Definitionen können beibehalten werden.

Über die Gleichung 4.10 können nun auch Bewertungsysteme ver-
wendet werden, die mit höheren Werten auch eine bessere Leistung
bzw. Zufriedenheit ausdrücken. Diese Änderung ist wichtig, damit
die Darstellung im Kiviatgraphen analog zu den anderen Metriken ist.
So würde ein Wert, der größer als ein anderer ist, immer ein besseres
Ergebniss darstellen und im Kiviatgraphen weiter außen dargestellt
werden.

Environment-Metrik

Die Environment-Metrik kann größtenteils analog zur View- bzw.
Modell-Metrik definiert werden. Dabei kann die Umgebung (Environ-
ment) folgendermaßen definiert werden:

Definition 4.3.2.10 – Environment
Das Environment ist die Summe aller Daten ηn, die der Applika-
tion aus der realen Umgebung bereitgestellt werden. Diese Daten
können dabei bezüglich ihrer Herkunft als real oder simuliert klas-
sifiziert werden (δi). Daten, die aus der realen Umgebung mit Hilfe
von Sensoren ausgelesen werden, werden real genannt. Alle ande-
ren Daten können als simuliert angesehen werden.

E :=
n

∑
i=0

δi (4.11)

n : Anzahl der Daten von ηn

δi =

{
0, 5 : ηi ist ein simuliertes Datum

1 : ηi ist ein reales Datum

Bei der Definition des Environments werden die Daten, die der Appli-
kation aus der realen Umgebung geliefert werden, berücksichtig. Je
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nach Entwicklungsstand können diese Daten in jeglicher Art simuliert
sein oder aus der realen Umgebung stammen. In frühen Entwick-
lungsphasen werden diese Daten meist simuliert. Für die Applikation
ist die Art der Daten, also ob sie simuliert oder real sind, transparent.
Simuliert kann in diesem Zusammenhang auch bedeuten, das immer
nur ein fester Wert zurück geschickt wird, es wird hier also nicht die
Qualität der Simulation mitbewertet. Das ist gewollt, denn es wird hier
nicht die Qualität der Simulation der Umgebung betrachtet, sondern
der Anteil an realen Daten, die der Applikation bereitgestellt werden.

Aus der Definition des Environments kann nun die Environment-
Metrik analog zu der Modell- bzw. View-Metrik definiert werden:

Definition 4.3.2.11 – Environment-Metrik
Die Environment-Metrik ΩE ist Quotient vom vorliegenden Envi-
ronment zum finalen Environment.

ΩE :=
Eproto

E f inal
, 0 ≤ ΩE ≤ 1 (4.12)

Eproto : Environment des aktuellen Prototypen

E f inal : finales Environment

Die Definition 4.12 stellt sicher, das die Environment-Metrik ΩE immer
einen Wert zwischen [0..1] erhält. So kann ΩE auf der entsprechenden
Achse des Kiviatgraphen abgetragen werden, wobei auch hier ein
größerer Wert einer höheren Entwicklungsstufe entspricht.

Ebenso lässt sich für die Weiterentwicklung eines Prototypen eine
Definition der Environment-Metrik definieren:

Definition 4.3.2.12 – Environment-Metrik (Weiterentwicklung)
Die Environment-Metrik ΩEn ist Quotient einer Weiterentwicklung
des Environments (n− 1) zum finalen weiterentwickelten Environ-
ments n.

ΩEn := (n− 1) +
Eproto

E f inaln
, n− 1 ≤ ΩE ≤ n, n ∈ N+ (4.13)

Eproto : aktuelles Environment auf Basis von Environment (n-1)

E f inaln : finales weiterentwickeltes Environment n
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ΩEn liegt nun zwischen den Werten (n− 1) und n und kann genau
wie der Wert der Modell- bzw. View-Metrik für Weiterentwicklungen
auf dem Kiviatgraphen abgetragen werden.

Zusammenfassung

Die vier hier vorgestellten Metriken können im MRiL-Entwurfsvor-
gehen dazu verwendet werden, einen erstellten Prototypen bezüglich
seines Entwicklungsgrades zu klassifizieren. Dies geschieht, indem die
Metriken ermittelt werden und auf den entsprechenden Achsen des
Kiviatgraphen abgetragen werden. Da sich das MRiL-Entwurfsvor-
gehen sowohl für die schnelle Entwicklung von Prototypen als auch
für die Evaluierung von neuen Eingabemethoden eignet, muss für jede
dieser beiden Prioritäten der Aufwand zur Bestimmung der einzel-
nen Metriken mitberücksichtigt werden. Insbesondere die Ermittlung
der Controller-Metrik kann viel Zeit und Resourcen an Benutzern
kosten, wenn ausführliche Tests an einer großen Gruppe an Anwen-
dern ausgeführt werden sollen. Die Tests und deren Auswertung
kann sehr viel Zeit kosten. Deshalb stehen die beiden Ziele ”schnelle
Prototypenentwicklung“ und ”ausführliche Evaluierung neuer Be-
nutzerschnittstellen“ entgegengesetzt zueinander. Für die schnelle
Prototypenentwicklung sind keine bzw. nur in einem geringen Maße
ausgeführte Benutzertests für die Bestimmung der Controller-Metrik
sinnvoll. Hier könnte schon ein Test mit einem der Entwickler reichen.
Anders ist es bei der Entwicklung von neuen Benutzerschnittstellen.
Hier sollten ausführliche Tests zumindest für die final entwickelten
Strategien durchgeführt und ausführlich analysiert werden. So ist
es möglich, eine sehr genaue Bestimmung der Controller-Metrik zu
erhalten, die dann mit anderen Entwicklungen in diesem Bereich
verglichen werden kann.

4.3.3 Das Akteurmodell

Im vorherigen Kapitel wurde das MVCE Architekturmodell vorge-
stellt, das es erlaubt, die zu entwickelnde Applikation in vier un-
terschiedliche Komponenten zu unterteilen und diese dann getrennt
voneinander zu entwickeln. Um bei der Entwicklung eine noch feinere
Granularität der Elemente zu erhalten, basiert das MRiL-Entwurfs-
vorgehen auf sogenannten Akteuren (engl. Actors), die wiederum
unabhängig voneinander entwickelt werden können. Die Verwendung
von Akteuren sind beim MRiL-Entwurfsvorgehen optional, d. h. diese
Unterteilung ist bei der Entwicklung nicht zwingend erforderlich,
allerdings wirkt sie sich positiv auf die Implementierung aus. Da die
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Akteure untereinander über festgelegte Ports miteinander kommu-
nizieren, ist eine getrennte Entwicklung der einzelnen Akteure nach
Festlegung der Schnittstellen leicht möglich.
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Abbildung 4.5: Abstrakter Aufbau eines Akteurs.

In Abbildung 4.5 ist Aufbau eines Akteurs abstrakt dargestellt. Ein
Akteur besteht aus einer Anzahl vom Eingangs-Ports, die skalare
Werte, Vektoren oder Matrizen als Wert annehmen können. Der Ak-
teur benutzt diese Werte zur Erzeugung seiner Ausgaben. Dies kann
über einfache Transformationen bis hin zu komplizierten Funktionen
reichen. Ein Akteur kann des Weiteren noch interne Eingabe-Ports
besitzen, die mit verarbeitet werden. Diese internen Eingabe-Ports
stammen aus gekapselten Komponenten, beispielsweise dedizierter
Hardware oder interne Softwarekomponenten, die über diesen Akteur
abgefragt werden kann. Dabei kann ein Akteur sowohl eine einzelne
als auch mehrere Komponenten in sich kapseln, die sowohl Ausgaben
produzieren als auch Eingaben annehmen. Gerade Akteure, die zur
Komponente Controller gehören, besitzen solche internen gekapselten
Komponenten, da sie häufig spezielle Hardware kapseln müssen. Die
Ausgaben werden einerseits über die Ausgabe-Ports zur Verfügung
gestellt und können andererseits über interne Ausgabe-Ports aus-
gegeben werden. Intern werden die Ausgaben auch wieder an die
gekapselten Komponenten übertragen, die beispielsweise eine dedi-
zierte Hardware darstellt. Die internen Ausgabe-Ports sind, genau wie
die internen Eingabe-Ports, wichtig für die Kommunikation zwischen
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dem Akteur und den gekapselten Komponenten. Die Akteure können
nun untereinander verbunden werden, so dass ein Datenflussnetz-
werk entsteht. Über eine entsprechende ”Verdrahtung“ der einzelnen
Akteure entsteht so die Applikationslogik einer Applikation. Dabei
wird jeder Akteur einer bestimmten MVCE-Komponente zugeordnet.
Es ist zu beachten, dass ein Akteur keinen zwei Komponenten zu-
geordnet werden darf, damit die Aufteilung in Modell, Darstellung,
Umgebung und Controller nicht verletzt wird.

Adaptor

Aktor

Capsulated Component(s)

f(x) g(x)

Abbildung 4.6: Abstrakter Aufbau eines Eingabe-Ausgabe-Adapters.

Um die Entwicklung der Akteure zu vereinfachen wurde das Prin-
zip des Adapters eingeführt. Adapter erweitern die Funktionalität
eines Akteurs, indem Sie über ihre interne Logik passende Werte
an die Eingabe- bzw. Ausgabeports der Akteure liefern bzw. entge-
gennehmen. Adapter haben ihrerseits eine Menge an Eingabe- und
Ausgabeports, so dass sie für das Datenflussnetzwerk wie normale
Akteure wirken. Weiterhin können Adapter auch Komponenten kap-
seln, die intern Ausgaben erzeugen und Eingaben erwarten. Dabei
kann ein Adapter sowohl keine Komponente kapseln, so dass keine
internen Ein- und Ausgabe-Ports existieren und ein Adapter auch als
Protokollkonverter gesehen werden kann. Es können jedoch auch ein
oder mehrere Komponenten in einem Adapter gekapselt werden, wie
es auch beim Akteur der Fall ist. Damit sind Erweiterungen von Ak-
teuren denkbar, die ihrerseits keine Komponenten kapseln, allerdings
durch einen Adapter spezielle Komponenten zur Verfügung gestellt
werden.

Es gibt insgesamt drei unterschiedliche Arten von Adaptern: den
Eingabe-Adapter, der nur die Eingaben des jeweiligen Akteurs kapselt
und durch eigene Eingabe-Ports ersetzt, den Ausgabe-Adapter, der
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die Ausgaben des Akteurs kapselt und den Eingabe-Ausgabe-Adapter,
der sowohl die Ein- als auch die Ausgaben des Akteurs kapselt. In
Abbildung 4.6 ist der Aufbau eines Eingabe-Ausgabe-Adapters zu
sehen. Er nimmt Daten aus dem Datenflussnetzwerk an und berechnet
die Eingaben für den gekapselten Akteur über die Funktion f (x). Die
Ausgaben, die der Akteur zur Verfügung stellt, wandelt der Adapter
anschließend mit der Funktion g(x) um und gibt diese an das Daten-
flussnetzwerk weiter. Adapter können, genau wie Akteure, interne
Ein- und Ausgaben verarbeiten, um so z. B. zusätzliche Hardware
anzusprechen. Des Weiteren hat der Eingabe-Ausgabe Adapter die
Möglichkeit, Daten zwischen den beiden Funktionen f (x) und g(x)
auszutauschen. So hat z. B. die Funktion g(x) die Möglichkeit, auf die
Eingabedaten des Adapters zuzugreifen.

Aktor
ComponentAd

ap
te

r 1

Ad
ap

te
r 2

Component

Abbildung 4.7: Schachtelung von Adapern.

Mit dem Prinzip des Adapters lassen sich sehr elegant Spezialisie-
rungen bzw. Verfeinerungen von Akteuren realisieren. So müssen
die Akteure nicht komplett neu programmiert werden, um auf neue
Daten reagieren zu können. Es reicht aus, einen Adapter vor den
Akteur zu schalten, der die passende Transformation der Daten vor-
nimmt. Über Adapter ist es auch möglich, inkompatible Ports in
einem Datenflussnetzwerk miteinander zu verbinden. Ein Adapter
übernimmt in einem solchen Fall die Transformation der Daten in das
für den Akteur geforderte Format. So ist ein Austausch bestimmter
Softwarebibliotheken (beispielsweise unterschiedliche Bibliotheken
zur Berechnung von physikalischen Effekten) einfach möglich, da das
Datenflussnetzwerk zum größten Teil unverändert bleiben kann.

Ein über einen Adapter erweiterter Akteur kann von außen betrachtet
wiederum als einzelner Akteur betrachtet werden. So ergibt sich die
Möglichkeit, mehrere Adapter zu verschachteln, wie in Abbildung
4.7 dargestellt ist. So ist es möglich, einen Akteur, der zu Anfang nur
Grundfunktionalität anbot, schrittweise über iterative Kapselung von

123



MIXED REALITY IN THE LOOP

Adaptern allmählich Funktionalität zuzufügen. Dies entspricht dem
Prinzip der Vererbung in der objektorientierten Programmierung, bei
der auch einem Objekt mit jeder weiteren Vererbung mehr Funktiona-
lität zugefügt wird. Diese Möglichkeit der iterativen Verfeinerung bzw.
Erweiterung eines Akteurs finden wir im Grundprinzip vom MRiL
wieder, da dieser Prozess auf einem iterativen Prozess aufsetzt. Somit
können in einem Iterationsschritt die Verfeinerungen der Akteure
über die Verschachtelung von Adaptern gelöst werden. Über dieses
Prinzip lassen sich sehr kleine Iterationszyklen erreichen, so dass die
Erstellung von Prototypen zu Testzwecken schnell und mit wenig
Aufwand realisiert werden kann.

4.3.4 Das Entwurfsvorgehen

Konzeption Implementierung Tests Bewertung

Abbildung 4.8: Abstrakte Übersicht des iterativen Prototyping Prozess.

Wie schon in Kapitel 4.2101 kurz erwähnt, ist die Grundlage des MRiL-
Entwurfsvorgehen ein iterativer Prototyping Prozess. Im Wesentlichen
basiert dieser Prozess auf dem von Pomberger vorgstellten Prototy-
ping Entwicklungsprozess [PW94], der in Kapitel 2.1.1239 vorstellt
wurde. Es wurden allerdings einzelne Phasen anders definiert. Die
Grundlage der kurzen Iterationen stammt aus dem Scrum Vorgehens-
modell [BDS+99], das in Kapitel 2.1.1134 vorgestellt wurde. Abbildung
4.8 zeigt die abstrakte Übersicht des gesamten Prozesses. Der Prozess
ist in vier Phasen unterteilt, die aus der Konzeptionierung, der Imple-
mentierung, der Testphase und der Bewertungsphase bestehen. Diese
Phasen werden in mehreren Iterationen durchlaufen.

In der detaillierteren Ansicht des Prozesses in Abbildung 4.9125 ist der
konkrete Aufbau des Prozesses zu erkennen. Die einzelnen abstrakten
Phasen sind hier in die konkreten Phasen eingebettet worden. So
wird die Konzeptionierung in der Initialisierungsphase des Prozesses
bearbeitet. Die Implementierung geschieht in der Verfeinerungsphase,
die Tests werden in der Prototypphase durchgeführt. Die Bewertung
der Tests werden in der gleichnamigen Bewertungsphase ermittelt. Im
Einzelnen haben die vier Phasen folgende Aufgaben:

Initialisierung: In der Initialisierungsphase wird der Prototyp auf
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Initialisierung

Verfeinerung

Bewertung

Prototyp

Abbildung 4.9: Konkreter Aufbau des iterativen Prototyping Prozess.

den nächsten Verfeinerungsschritt vorbereitet. Zu Beginn der
Entwicklung, wenn noch kein Prototyp aus einer früheren Itera-
tion vorliegt, wird in dieser Phase das grundlegende Verhalten
des ersten Prototypen festgelegt.

Verfeinerung: Am existierenden Prototypen werden die Verfeine-
rungen vorgenommen. Verfeinerung kann bedeuten, dass eine
Komponente komplexer wird, dass sie aufgeteilt wird bzw. dass
mehrere Teiler einer Komponente verschmolzen werden. Dassel-
be gilt selbstverständlich auch für Akteure, falls die Applikation
in solche aufgeteilt wurde. Da zu Beginn der Entwicklung noch
kein Prototyp aus einer vorherigen Phase vorhanden ist, wird
hier das grundlegende Verhalten, wie es in der Initialisierung
festgelegt wurde, implementiert. Meist wird in dem ersten Pro-
totypen der Funktionsumfang und die Komplexität sehr einfach
gehalten.

Prototyp: In dieser Phase sind alle vorangegangenen Verfeinerungen
abgeschlossen und ein neuer Prototyp steht zur Verfügung. Mit
diesem Prototypen können nun Benutzer- und Useablility-Tests
durchgeführt und analysiert werden. Der entstandene Prototyp
gilt als Basis für weitere Iterationen.

Bewertung: In dieser Phase werden die Ziele des nächsten Prototypen
anhand der Bewertung der zuvor durchgeführten Tests festgelegt
und die daraus folgenden Verfeinerungen definiert. Sollten sich
vorhandene Schnittstellen ändern oder neue hinzu kommen,
werden sie hier definiert.

Nach diesem groben Überblick werden nun die einzelnen Phasen
detailliert beschrieben.
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Die Initialisierungsphase

Initialisierung

Prototyp

Festlegen der 
Änderungen

(Verfeinerung, 
Aufteilung, 

Zusammenfügung)

Auswählen der zu 
benutzenden 
Komponenten 

Erster Durchlauf
Festlegen der zu 

implementierenden 
Komponenten 

Abbildung 4.10: Detailansicht der Initialisierungsphase.

Die Initialisierungsphase wird zur Vorbereitung der Verfeinerungs-
phase benötigt. Hier wird festgelegt, welche Komponenten verfeinert
werden sollen und auf welchen zuvor schon implementierten Kompo-
nenten aufgebaut wird. Zu Beginn der Entwicklung einer Applikation
wird in dieser Phase das Verhalten des ersten Prototyps festgelegt,
welches dann in der Verfeinerungsphase implementiert wird. Diese
Phase sollte nach Möglichkeit nicht viel Zeit verbrauchen. Das kann
man erreichen, wenn nur wenig während der Verfeinerungsphase
verändert wird. Es sollte jedoch nicht zu wenig verändert werden, da
sich dann die Prototypen nicht weit genug unterscheiden und so keine
sinnvollen Schlüsse aus der Entwicklung gezogen werden können.

In dieser Phase wird konzeptionell an der Applikation entwickelt,
Implementierungen sind nicht vorgesehen. Es werden die Vorraus-
setzungen für die nächste Verfeinerungssphase geschaffen. Im ers-
ten Durchlauf wird die Grundfunktionalität des ersten Prototypen
festgelegt. Da hier noch nicht auf einen aus einer vorherigen Pha-
se stammenden Prototypen zurückgegriffen werden kann und auch
nicht auf schon vorhandene implementierte Komponenten, sollten der
Funktionsumfang und die Komplexität recht einfach gehalten werden,
um die Implementierungsphase zeitlich kurz zu halten.

Die Verfeinerungssphase

In der Verfeinerungsphase werden die konzeptionellen Änderungen
und Verfeinerungen, die in der Initialisierungsphase entwickelt wur-
den, implementiert. Es werden zuerst die Komponenten in die Appli-
kation eingebunden, die für den jeweiligen Schritt benötigt werden.
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Verfeinerung

Prototyp
Einbau der schon 

vorhandenen 
Komponenten

Änderungen der 
Komponenten
(Verfeinerung 

Aufteilung, 
Zusammenfügung)

Erster Durchlauf
Implementierung 
der Komponenten 

des ersten 
Prototypen

Abbildung 4.11: Detailansicht der Verfeinerungsphase.

Diese werden dann je nach Konzept erweitert, verfeinert, aufgeteilt
oder zusammengefügt.

Im ersten Durchlauf des Prozesses werden hier die Teile für den
ersten Prototypen implementiert. Normalerweise sollten zu diesem
Zeitpunkt noch keine Verfeinerungen der einzelnen Komponenten
entwickelt werden, da Ziel des ersten Durchlaufs die Fertigstellung
eines rudimentären Prototypen ist.

Diese Phase benötigt die meiste Zeit im Entwurfsvorgehen, kann
jedoch von mehreren Entwicklern gleichzeitig bearbeitet werden (vor-
ausgesetzt es wird an mehr als einer Stelle entwickelt).

Die Prototypphase

Prototyp

Prototyp Fertig
Funktions- und 
Benutzertests 

des Prototypen

Be
w

er
tu

ng

Bewertung der 
Funktions- und 
Benutzertests

Abbildung 4.12: Detailansicht der Prototypphase.

Die Prototypphase wird dazu verwendet, den Prototypen, der in
der Verfeinerungsphase entwickelt wurde, zu testen. In dieser Pha-
se können Benutzertests durchgeführt werden und die neuen bzw.
verfeinerten Komponenten auf ihre Tauglichkeit getestet werden. Kom-
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ponenten, die in der Verfeinerungsphase weiter entwickelt wurden,
sollten in der Prototypphase genauestes untersucht werden, sowohl
auf ihre funktionale Korrektheit als auch auf die Benutzbarkeit. Hier-
zu lassen sich sehr gut Benutzertests verwenden, die dann über die
Qualität der Applikation Aufschluss geben. Die Ergebnisse dieser
Tests können in der Bewertungsphase ausgewertet und für den nach-
folgenden Durchlauf in die Entwicklung mit eingebracht werden.

Sollte der Prototyp sein Endstadium erreicht haben, kann in der
Prototypphase die Endkontrolle der Funktionalität und Benutzbarkeit
ausführlich getestet werden. Nach erfolgreichen Tests ist die Applika-
tion fertig und kann verwendet werden. Sollten spätere Änderungen
gewünscht werden, können einfach weitere Iterationen verwendet
werden, um diese Änderungswünsche zu realisieren.

Die Bewertungsphase

Bewertung

Testbewertung zur 
Festlegung der 
Verfeinerungen

Definition der zu 
ändernden 

Komponenten

Festlegung der zu 
verwendenden 
Komponenten

Abbildung 4.13: Detailansicht der Bewertungsphase.

In der Bewertungsphase werden die Ergebnisse der Prototypphase
ausgewertet und die Ziele des nächsten Prototypen festgelegt. Es wird
in dieser Phase entschieden, welche Komponenten geändert werden
sollen und ob auf bereits vorhandene, allerdings weniger verfeinerte
Komponenten bei der nächsten Iteration zurückgegriffen werden soll.

Nachdem der Entwurfsprozess erläutert wurde, ist es sinnvoll, diesen
an einem kleinen Beispiel exemplarisch durchzuführen. Nachfolgend
stelle ich ein solches Beispiel vor und beschreibe, wie hier MRiL
eingesetzt wurde.

4.4 Erläuterung des Entwurfsvorgehens an einem
Beispiel

Die zuvor vorgestellten Methoden wurden an einem kleineren Bei-
spiel angewendet, um deren Anwendbarkeit zu testen. Es wurde
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hier noch keine spezielle Softwareumgebung verwendet sondern das
Beispiel wurde in reinem Java implementiert. Realisiert wurde das
Beispiel im Rahmen eine Bachelorarbeit, die zum Ziel hatte, meh-
rere wissensbasierte Verfahren zur Wegeplanung zu entwerfen und
zu vergleichen [Bol10]. Um das MRiL-Entwurfsvorgehen auf diese
Aufgabe anwenden zu können, wurde diese Applikation auf einem
Multitouch-Tisch (siehe Abbildung 4.14129) implementiert und eine
neue Bedienung hinzugefügt [SBK+

10].

Abbildung 4.14: Beispielapplikation auf einem Multitouch-Tisch.

4.4.1 Überblick des Beispiels

Als Aufgabe für die Bachelorarbeit wurde der Entwurf und der Ver-
gleich wissensbasierter Verfahren zur Wegeplanung gestellt. Die Idee
war hierbei, verschiedene Arten von Wegeplanungsalgorithmen mit
dem Hintergrund zu testen, dass autonome Roboter einen kurzen,
nicht gefährlichen Weg in einer gegebenen Werkshalle finden soll-
ten. Dabei sollte zum einen die Wegstrecke und zum anderen die
Gefahren der Wegstrecke berücksichtigt werden. So wurden stati-
onäre Fertigungsanlagen definiert, die einen gewissen Raum immer
für sich beanspruchten, allerdings teilweise in freie Gebiete hineinra-
gen konnten. Die autonomen Roboter können diesen Raum für ihre
Wegeplanung nutzen, müssen allerdings warten, falls die Fertigungs-
anlagen diesen Raum zeitweise belegen. Daher kann es zwar einen
sehr kurzen Weg durch eine Werkshalle geben, jedoch durch die War-
tezeiten der autonomen Roboter muss dies nicht der schnellste Weg
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sein.

Die Arbeit sollte auf einem schon vorhandenen Software-Framework
der Hochschule Harz aufgebaut werden [SGR08]. Das Framework
bot eine schon vorhandene Realisierung einer 3D Darstellung samt
Management und Import verschiedener 3D Modelle und Texturen
aus entsprechenden Dateien an. Eine Wegeplanung war grundsätzlich
implementiert, sollte allerdings im Rahmen der Arbeit neu entwi-
ckelt werden. In der Bachelorarbeit sollte zunächst der Framework
um passende Schnittstellen erweitert und im zweiten Schritt verschie-
dene Wegeplanungen implementiert werden. Konzeptionell wurde
die Applikation soweit entwickelt, dass sie augmentiert in der realen
Umgebung benutzt werden sollte, wobei die Hindernisse, die von
der Wegeplanung umgangen werden sollten, über reale Objekte, soge-
nannte ”Tangibles“, realisiert wurden. Implementiert wurde allerdings
nur soweit, dass die Applikation auf einem Multitouch-Tisch lauffähig
war.

Das Konzept, dass die Grundlage der Anwendung bildete, wurde mit
Hilfe des MRiL-Entwurfsvorgehens realisiert. Dabei wurden folgen-
de Teile der Applikation den entsprechenden MVCE-Komponenten
zugeteilt:

Model: Jeder implementierte Algorithmus zur Wegeplanung wird
der Modell-Komponente zugeordnet.

View: Sowohl eine 2D- als auch eine 3D-Ansicht der Szene wurde
dem View zugeordnet.

Controller: Der Controller beinhaltet alle Interaktionsmethoden, an-
gefangen von einfachen Klicks mit der Maus bis zu späteren
Interaktionen mit Tangibles.

Environment: Die reale Umwelt, die der Applikation zur Verfügung
gestellt wurde. Anfangs wurde kein Teil der realen Umgebung
erkannt, später wurden die Tangibles in der realen Umgebung
zur Positionierung verwendet. In der AR-Version sollten noch
weitere Aspekte der Umgebung verwendet werden.

Auf eine weitere Einteilung in Akteure wurde in diesem Beispiel
verzichtet, da dies vom eingesetztem Software-Framework nicht un-
terstützt wurde.
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4.4.2 Realisierung des Beispiels

Zu Beginn der Entwicklung wurde das vorhandene Software-Frame-
work auf die bevorstehende Aufgabe vorbereitet und soweit konfigu-
riert, dass es effizient eingesetzt werden konnte. Nachdem die Teile
der Applikation, wie oben beschrieben, in ihre MVCE-Komponenten
eingeteilt wurden, begann die Implementierung des ersten Prototy-
pen. Dieser sollte nicht sehr komplex sein und nur sicherstellen, dass
Framework und das Zusammenspiel der einzelnen Komponenten
funktioniert. Da die 3D Darstellung schon vom Framework bereitge-
stellt wurde, wurde schon zu Anfang eine sehr detaillierte Darstellung
gewählt, wie in Abbildung 4.15131 zu sehen ist. Dabei wurde der au-
tonome Roboter (1) sowie die Fertigungsanlagen (5) durch Platzhalter
visualisiert, die im Framework vorhanden waren. Die Grundfläche
der Werkshalle wurde in der 3D Darstellung über eine Textur (2)
definiert, die die Ausmaße repräsentiert. Der Start- und Endpunkt (3
und 4) wurden zuerst fest gewählt, sollte jedoch in einem späteren
Prototypen frei wählbar sein.

E M

CV

Abbildung 4.15: 3D Darstellung des ersten Prototypen.

Als Controller des ersten Prototypen kam eine einfache 2D-GUI zum
Einsatz (siehe Abbildung 4.16132), die es ermöglichte, die Wegepla-
nung zu starten, stoppen und zu pausieren. Dies wurde über Kreise
im oberen Bildteil von Abbildung 4.16132 realisiert. Die Fertigungs-
anlagen wurden über Maus-Interaktionen gesetzt, in der die Art,
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Anzahl, Position und Orientierung der einzelnen Fertigungsanlagen
gesetzt werden konnten. Da für spätere Prototypen eine AR-Version
geplant war, die auf reale Objekte reagieren sollte, wurde schon in
diesem Prototyp die Interaktion mit dem Benutzer über das TUIO-
Protokoll5 [KBBC05] realisiert, so dass die 2D GUI die entsprechenden
TUIO-Befehle simulierte. Da die Anbindung an das TUIO-Protokoll
vom Framework angeboten wurde, war die die Implementation einer
TUIO-basierten GUI ohne großen Aufwand zu realisieren.

Abbildung 4.16: Rudimentäre GUI zur Steuerung der Prototypen.

Für die Wegeplanung des ersten Prototypen kam der in der Litera-
tur bekannte A∗-Algorithmus [Sto00] [Rab00a] [Rab00b] zum Einsatz.
Dieser gilt als robuster Algorithmus, der ohne Ausnahme einen Weg
findet, solle ein Pfad vom Start- zum Endpunkt existieren. Der A∗-
Algorithmus sollte als Referenz für die folgenden Wegeplanungsal-
gorithmen gelten, um diese vergleichen zu können. Im Rahmen der
Bachelorarbeit sollten verschiedene Wegeplanungsalgorithmen, die
aus dem Bereich Organic Computing stammen, miteinander bzgl.
Robustheit, Weglänge und Effizienz verglichen werden.

Am Kiviargraph in Abbildung 4.15131 wurde der Entwicklungsstand
5TUIO steht für Tangible User Interface Object. Das TUIO-Protokoll erlaubt die Übertragung (über

Netzwerk) einer abstrakten Beschreibung von interaktiven Oberflächen (und auch über Kamera getracke
Objekte), die beispielsweise den Zustand oder die Position eines Objektes enthalten.
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des ersten Prototypen dargestellt. Es ist zu erkennen, dass die Umge-
bung in diesem Prototypen nicht berücksichtigt wurde, allerdings die
Darstellung schon ein hohes Niveau besitzt. Der Controller, der im
ersten Prototypen durch die 2D GUI realisiert wurde, ist noch sehr
rudimentär genau wie das das Modell, das durch den zugrundeliegen-
den Algorithmus zur Wegeplanung definiert wird. Nach Fertigstellung
des ersten Prototypen gab es noch viel Potential zur Verfeinerung.

Um die Aufgabenstellung der Bachelorarbeit schnellst möglich zu
realisieren, wurde in der Bewertungsphase für den zweiten Proto-
typen festgelegt, einen komplexeren Algorithmus, den Ant Colony
Optimization-Algorithmus (ACO) [DBS06], zu implementieren und
eine abstrakte 2D Darstellung des Szenarios zu integrieren, die es
erlaubt, die gefundenen Wege der Algorithmen besser zu visualisie-
ren. Da im ersten Prototypen die Simulation an die 3D Darstellung
gekoppelt war, musste hier noch eine Entkopplung der Darstellung
und der Simulation erfolgen. Das war erforderlich, da der ACO ein
heuristischer, biologisch-inspirierter Algorithmus ist und erst nach
einer gewissen Anzahl an Durchläufen eine geeignete Lösung findet.
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Abbildung 4.17: 2D Ansicht des zweiten Prototypen.

In Abbildung 4.17 ist die 2D-Ansicht des zweiten Prototypen zu
sehen. Die Fertigungsanlagen werden durch ein graues Quadrat dar-
gestellt. Die Kreise um diese Quadrate sind die Gefahrenbereiche, in
denen Teile der Fertigungsanlage temporär reinragen können. Der
Weg des autonomen Roboters ist in zwei Teile geteilt. Der erste Teil ist
der zurückgelegte Weg (hier grün dargestellt), der zweite Teil ist der
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geplante Weg, den der Roboter noch zurücklegen muss. Am Kiviatgra-
phen erkennt man, dass das Modell des Prototypen verfeinert wurde,
da hier der ACO-Algorithmus gewählt werden kann. Die Darstellung
ist etwas komplexer geworden, da die abstrakte 2D Darstellung zur
schon vorhandenen 3D Darstellung hinzugekommen ist. Sowohl der
Controller als auch die Umgebung haben keine Verfeinerung erfahren
und sind deshalb unverändert gegenüber dem ersten Prototypen.

Nach Fertigstellung des zweiten Prototypen waren die Tests erfolg-
reich und es war möglich, die beiden implementierten Algorithmen
miteinander zu vergleichen. In der nachfolgenden Iteration sollte nun
ein letzter Algorithmus, der Particle Swarm Optimization-Algorith-
mus (PSO) [KE95] [LQH06], implementiert werden. Weiterhin ergab
sich durch eine Zusammenarbeit mit einer Projektgruppe die Möglich-
keit, die Benutzerschnittstelle auf einen Multitouch-Tisch zu reali-
sieren [SBK+

10]. Da das Framework schon eine Anbindung an das
TUIO-Protokoll hatte, war die Umsetzung nicht sehr kompliziert, da
auch die Tracking-Software des Mulitouch-Tisches auf dem TUIO-
Protokoll basierte.
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Abbildung 4.18: Multitouch-Oberfläche des dritten Prototypen.

In der Abbildung 4.18 ist die Benutzerschnittstelle auf dem Multi-
touch-Tisch zu sehen. Die Fertigungseinheiten können über Tangibles.
die hier als schwarze Zylinder zu erkennen sind, auf dem Tisch positio-
niert werden. Weiterhin wurde die Möglichkeit geschaffen, bestimmte
Parameter der implementierten Algorithmen über den Multitouch-
Tisch zu verändern. Eine 3D-Darstellung der Szene wurde über ein

134
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L-Shape realisiert, das hinter dem Multitouch-Tisch platziert wurde.
So war eine gleichzeitige Darstellung der abstrakten 2D Ansicht und
der realistischen 3D Darstellung möglich. Am Kiviatgraphen ist zu
erkennen, dass durch die Implementierung des PSO-Algorithmus und
die Möglichkeit der Veränderung der Parameter der Algorithmen das
Modell weiter verfeinert wurde. Auch die Ansicht wurde verfeinert, da
die vormals einfachen Modelle durch realistische 3D-Modelle ersetzt
wurden. Die Verfeinerung des Controllers ergab sich durch die Inter-
aktion über en Multitouch-Tisch und der Benutzung von ”Tangibles“
als reale Repräsentanten der Fertigungsanlagen. Die Verwendung der

”Tangibles“ hat auch Einfluss auf die Verfeinerung der Umgebung, da
nun Teile der realen Umgebung erkannt und verarbeitet werden.

Der letzte Prototyp wurde aus zeitlichen Gründen nur theoretisch
vorbereitet. Anstelle des im vorangegangenen Prototypen verwende-
ten Multitouch-Tisches einschließlich der 3D-Darstellung über das
L-Shape sollte eine Augmented Reality Anwendung entwickelt wer-
den. Das Tracking sollte auch über ”Tangibles“ realisiert werden, die
jedoch nun im 3D Raum getrackt werden sollten. Auf der Position
dieser ”Tangibles“ sollte dann eine 3D-Darstellung der Fertigungs-
anlagen ”augmentiert“ werden. Durch diesen Schritt würden die
3D-Darstellung und die realen ”Tangibles“ zu einer Einheit zusam-
mengefügt werden. Alle vorhandenen Informationen, die derzeit auf
der 2D-Benutzerschnittstelle des Mutlitouch-Tisches zu sehen sind,
sollten in die reale Umgebung gezeichnet werden. Die AR-Applikation
hätte dementsprechend die Darstellung und die Umgebung im Ki-
viatgraphen verfeinert. Modell und Controller wären gleich geblieben,
da sich an der grundsätzlichen Benutzung der Applikation wenig
geändert hätte.

4.4.3 Fazit des Beispiels

An diesem kleinen Beispiel wurde das MRiL-Entwurfsvorgehen ge-
testet. Es kam keine spezielle Softwareumgebung, die das Vorge-
hen unterstützt, zum Einsatz. Deshalb konnten nur die generellen
Aspekte angewendet werden. Allerdings unterstützte das Framework
teilweise die Verarbeitung von Tracking-Informationen, was die Rea-
lisierung von MR-Interaktionen erleichterte. Die Einteilung in die
MVCE-Komponenten war hilfreich, da sie die Entwicklung erleichtert
und beschleunigt hat. Des Weiteren war die Erstellung von Prototypen
mit Hilfe der MVCE-Einteilung schnell zu realisieren.

Da das hier eingesetzte Framework nicht auf das MRiL-Entwurfsvor-
gehen angepasst war, konnten viele Vorteile, wie z. B. der Einteilung in
Akteure und die Verfeinerung durch Adapter, nicht verwendet werden.
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Grundsätzlich war die Verwendung von MRiL aber vorteilhaft, da die
schnelle Anpassung an innovative Benutzerschnittstellen sehr einfach
möglich war.

Es ist zu sehen, dass MRiL grundsätzlich auch ohne spezielle Werk-
zeugunterstützung anwendbar ist. Um allerdings eine optimale Un-
terstützung des MRiL Entwurfsvorgehens zu erhalten, sollte dieser
mit Hilfe spezieller Entwicklungswerkzeuge angewendet werden. Da
es allerdings keine Werkzeuge dieser Art gab, wurden zwei Lösungen
implementiert, die im Folgenden beschrieben werden.

4.5 Die Softwareumgebung

Um MRiL in der Entwicklung einsetzten zu können, benötigt man
eine Softwareumgebung, die das Vorgehen unterstützt. Dabei ist es
wichtig, dass die grundsätzlichen Prinzipen von MRiL in den Werk-
zeugen unterstützt werden. Um zu Beginn der Arbeit die Ansätze von
MRiL anwenden zu können, wurde auf eine proprietäre 3D Entwick-
lungsumgebung zurückgegriffen, die durch unterschiedliche eigene
Erweiterungen auf das Entwurfsvorgehen angepasst wurde. Da sich
im Laufe der Arbeit aber herausstellte, dass nicht alle Aspekte des
Entwurfsvorgehens mit dieser Softwarelösung abgebildet werden
konnten, habe ich mich entschieden, eine komplett eigene Entwick-
lungsumgebung im Rahmen einer Masterarbeit an der FH Düsseldorf
entwickeln zu lassen [Pog09]. Hier wurde das MRiL-Entwurfsvor-
gehen komplett in Software abgebildet, so dass es keine Unterschiede
zwischen dem Konzept und der späteren Implementierung auftraten.

Im Folgenden Kapitel 4.5.1 stelle ich 3DVIA Virtools und die Er-
weiterungen, die die Entwicklung von Mixed Reality Anwendungen
ermöglichen, kurz vor und beschreibe dann in Kapitel 4.5.2148 die
eigens für MRiL entwickelte Softwareumgebung MiReAS.

4.5.1 Erweiterungen des proprietären Autorensystems 3DVIA
Virtools

Um das MRiL-Entwurfsvorgehen zu Beginn dieser Arbeit schnell
evaluieren zu können und Anwendern mit wenig Programmierer-
fahrung ein Werkzeug an die Hand zu geben, mit dem sie schnell
Applikationen entwerfen können, wurde auf eine proprietäre Ent-
wicklungsumgebung zurückgegriffen und diese mit Hilfe von Plug-
ins erweitert. Ich habe mich für das Autorensystem 3DVIA Virtools
(vormals Virtools) von Dassault Systems in der Version 4.0 entschie-
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den [Das09]. Hier war einiges an Erfahrung schon vorhanden, so dass
die Entwicklung eigener Komponenten für dieses System in kurzer
Zeit möglich war. Diese Umgebung wurde in einigen Veröffentlichen
und Demonstratoren verwendet, beispielsweise ”Entwicklung von
Augmented Reality-Präsentationen mit einem High-Level Authoring
System – eine Fallstudie“ [GSR+

06], ”Development of an augmented
reality game by extending a 3D authoring system“ [GSKF07], ”Mixed
Reality Authoring“ [GS07], ”HYUI: a visual framework for prototy-
ping hybrid user interfaces“ [GFLS08] und ”Authoring of 3D and AR
Applications for Educational Purposes“ [SGDZ08].

Abbildung 4.19: Die Entwicklungsumgebung 3DVIA Virtools.

3DVIA Virtools - Übersicht

3DVIA Virtools6 ist eine komplette Entwicklungs- und Verteilungs-
plattform mit einem innovativen Ansatz zur interaktiven Erstellung
von 3D-Inhalten. Eine Innovation dieser Plattform gegenüber anderen
Entwicklungsumgebungen in diesem Gebiet besteht darin, dass die
imperative Programmierung zum größten Teil durch eine visuelle
Programmierung ersetzt wurde, dem so genannten Behavior Graph,
zu sehen in Abbildung 4.20138. Der Behavior Graph ist ein gerichteter

6
3DVIA Virtools wird nachfolgend nur noch Virtools genannt.
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Graph von miteinander verbundenen Building Blocks (die Grundele-
mente der visuellen Programmierung in Virtools, siehe Abbildung
4.20138), der das Programm darstellt. Virtools bietet eine große Aus-
wahl an schon vorhandenen Building Block an, die über einfach Aufga-
ben, wie Transformation eines 3D Objekts, bis hin zu sehr komplexen
Aufgaben, wie die Bewegungssteuerung eines Charakters, verfügt.
Die Funktion der einzelnen Building Blocks ist sehr gut dokumen-
tiert und meist an Beispielen erklärt, so dass die Entwicklung von
Applikationen selbst für programmierunerfahrene Anwender einfach
möglich. Durch graphische hierarchische Zusammenfassung schon
bestehender Buidling Blocks ist es weiterhin möglich, eigene, neue,
wiederverwendbare Building Blocks zu erzeugen, diese zu speichern
und in anderen Projekten weiter zu verwenden (In Abbildung 4.20138
ist z. B. der Building Block ”Get Phantom State“ ein zusammenge-
fasster Building Block). Neben der Wiederverwendbarkeit kann das
visuelle Programm durch diese Zusammenfassungen in neue Building
Blocks übersichtlicher gestaltet werden.

Abbildung 4.20: Behavior Graph mit verbundenen Building Blocks.

Sollte die visuelle Programmierung für manche Probleme nicht ausrei-
chen bzw. die Komplexität der visuellen Programme zu groß werden,
gibt es die Möglichkeit, Teile des Programms in einer der Skript-
sprachen VSL (Virtools Scripting Language) oder LUA [ICdF99] (ab
Version 5.0 von Virtools) zu erstellen und in einem Building Block
zu kapseln, wie in Abbildung 4.21139 zu sehen. Über VSL/LUA kann
jede Funktionalität von Virtools verwendet werden, so dass die Pro-
grammierung über die Skriptsprache keine Nachteile bietet. Vorteil ist
z. B. die kürzere Form der Programme, gerade bei Konstrukten wie
Schleifen und Bedingungen.

Sollten die integrierten Building Blocks für spezielle Aufgaben nicht
ausreichen bzw. der Programmablauf sowohl über Building Blocks
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VSL Building Block

Abbildung 4.21: VSL Skript Manager und VSL Building Block.

als auch über Skripts zu lange dauern bzw. zu komplex werden,
besteht die Möglichkeit, eigene Building Blocks über das mitgelieferte
SDK in C/C++ zu entwickeln. Das SDK bietet vollen Zugriff auf alle
Funktionen in Virtools, es besteht die Möglichkeit sowohl auf die
Behavior Engine als auch auf die Render Engine zuzugreifen und dort
Manipulationen vorzunehmen. Die eigenen Building Blocks können
genau wie die internen in einen Behavior Graphen eingefügt werden
und unterscheiden sich grundsätzlich nicht von diesen. Zusätzlich zu
Building Blocks können so genannte Manager mit dem SDK entwickelt
werden, die globale Funktionen übernehmen können. Manager folgen
dem Prinzip eines Singleton (vgl. [GHJV96] Seite 156 ff.), d. h. es
existiert immer nur jeweils eine Instanz dieses Managers innerhalb
eines Programms. In den einzelnen Building Blocks kann auf diese
Manager global zugegriffen werden. Somit lässt sich dort globale
Funktionalität kapseln.

Neben den unterschiedlichen Programmierarten bietet Virtools eine
komplexe und moderne 3D Rendering Engine, die effizient auch große
Szenen darstellen kann. Sie basiert auf Microsofts DirectX 9.0c und
integriert fortgeschrittene Techniken wie Schattenwurf, Shaderintegra-
tion, Rendertargets, etc., die einfach über die bereitgestellten Bulding
Blocks benutzt werden können. Diese Techniken sind auf einer hohen
Abstraktionsebene in Virtools implementiert, so dass sich der Ent-
wickler nicht um technische Details kümmern muss. Um Modelle in
Virtools benutzten zu können, werden für alle gängigen 3D Design
Programme wie Maya oder 3D Studio Max Export-Plug-ins bereitge-
stellt, die die Modelle in das für Virtools lesbare Format speichern.
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Damit ist sichergestellt, dass die Inhalte, egal mit welcher Software
entwickelt, mit Virtools weiterverarbeitet werden können.

Bei Fertigstellung der Anwendung kann diese als lauffähiges Pro-
gramm exportiert bzw. in einem webbasierten Player wiedergegeben
werden. Damit kann die Anwendung auf verschiedenen Plattformen
und mit unterschiedlichen Benutzergruppen getestet werden. Leider
verbietet die strenge Lizenzpolitik von Dassault Systems eine einfache
Handhabung, dazu mehr im Abschnitt ”3DVIA Virtools - Nachteile“
in Kapitel 4148.

Als Entwicklungsumgebung bietet Virtools zusammenfassend folgen-
de Merkmale:

Behavior Graph: Über den Behavior Graphen kann Programmlogik
und Algorithmik visuell programmiert werden.

Bibliothek vordefinierte Programmblöcke: Über die mitgelieferten
Building-Blocks von Virtools können visuelle Programme erstellt
werden. Sie werden in den Behavior Graphen eingefügt und
untereinander verbunden.

Skriptsprachenanbindung: Zu der visuellen Programmierung bietet
Virtools zusätzlich die Möglichkeit, Teile der Algorithmik in
einer textuellen imperativen Skriptsprache zu realisieren. Dabei
stehen die Skriptsprachen VSL und LUA zur Verfügung.

Entwicklung eigener Building Block über SDK: Ist die Implemen-
tierung über Building-Blocks nicht ausreichen, zu komplex wer-
den oder die Ausführungszeit bestimmter Programmteile opti-
miert werden, können über das mitgelieferte SDK diese Abschnit-
te in C/C++ realisiert und Virtools als eigenständige Building
Blocks bzw. Manager zur Verfügung gestellt werden.

Moderne 3D Render Engine: Die Darstellung der 3D-Inhalte wird
durch eine moderne auf DirectX 9.0c basierende 3D Render
Engine realisiert, die u.a. Schattenberechnung, Shaderintegration
und Rendertargets unterstützt.

Export: Die fertige Anwendung kann aus Virtools exportiert werden
und sowohl in einem webbasierten Player abgespielt als auch in
eine ausführbare Datei abgespeichert werden.

3DVIA Virtools - Konzepte

3DVIA Virtools beinhaltet fünf Schlüsselkomponenten:

140



4.5 DIE SOFTWAREUMGEBUNG

• Die graphische Benutzerschnittstelle zur Entwicklung von An-
wendungen durch visuelle Programmierung von Objekten und
Verhalten.

• Die Behavior Engine zur Ausführung von interaktiven Anwen-
dungen.

• Die Render Engine zur Visualisierung der Anwendung in Echt-
zeit.

• Die Virtools Skriptsprache für die Low-Level Programmierung
bestimmter Funktionen.

• Das SDK für benutzerspezifische Behaviors.

Die graphische Benutzerschnittstelle von Virtools wir in jedem Schritt
in der Entwicklung genutzt. Sie beinhaltet u. a. Ein 3D Layout zur
Darstellung des Inhalts der Anwendung in Echtzeit. Hier wird die
komplette virtuelle 3D Szene dargestellt. Unter Verwendung der zur
Verfügung stehenden grafische Werkzeuge können 3D Objekte, Kame-
ras, Lichter, etc. erzeugt, verändert selektiert und manipuliert werden.
Über Drag & Drop kann Entitäten einer virtuellen 3D Szene Verhal-
ten hinzugefügt werden. Dieses Verhalten wird über die Behavior
Buildung Blocks visuell erzeugt und in einer schematischen Ansicht
dargestellt. Ausgeführt wird dieses Verhalten durch die Behavior
Engine, die zu Anfang jedes darzustellenden Bildes ausgeführt wird.

Die Behavior Engine führt sowohl selbst entwickelte als auch von Vir-
tools mitgeliefertes Building Blocks aus. Die mitgelieferten Building
Blocks umfassen u. a. die Kategorien Kamera, CHaracter, Kollisions-
erkennung, Optimierung, Pfadfindung, Mesh-Modifikation, Logik,
Partikel, Sound, etc. Die Behavior-Bibliothek kann durch selbst ent-
wickelte Building Blocks erweitert werden. Diese werden mit dem
mitgelieferten SDK in C++ programmiert und in Virtools eingebunden
werden.

Virtools Render Engine kann für viele Plattformen verwendet werden
und kann von DirektX 5 über DirectX 9.0c bis OpenGL 2.0 konfigu-
riert werden, so dass eine große Anzahl an Konfigurationen abgedeckt
werden kann. Die Render Engine unterstützt in den neueren Konfigu-
rationen programmierbare Vertex- und Pixel-Shader bis Version 3.0,
die in DirextX mit HLSL, CgFX oder Assembler und in OpenGL in
GLSL programmiert werden können. Für den Import von Modellen
bietet Virtools Plug-ins für alle gängigen 3D Modeling Systeme an,
die sowohl Modelle als auch Animationen nach Virtools exportieren
können. Dynamische Erzeugung und Löschung von Objekten und
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Modellen wird mit der Render Engine komplett unterstützt. Für die
Animation von Charakteren bietet die Render Engine ein Skin and
Bones System an, mit dem sich Bewegungen natürlich animieren las-
sen. Die gesamte Funktionalität der Render Engine lässt sich auch für
selbst geschriebene Building Blocks über das SDK verwenden.

Die Skriptsprachen VSL und LUA sind in Virtools voll integriert und
werden über einen speziellen Editor direkt programmiert. Virtools be-
sitzt für die Skriptprogrammierung eine intelligentes Farbsystem, eine
kontextsensitive Vervollständigung und eine Anzeige von Argumen-
ten einer Funktion. Weiterhin bietet Virtools für die Skriptprogrammie-
rung einen kompletten Debug-Mode mit Breakpoints, anzeigen und
ändern von Variableninhalten und eine Schritt-Ausführung (Sinlge-
Step) an.

Das SDK von Virtools ist eine Sammlung von Entwicklungswerkzeu-
gen, die aus Biblioteken, sowohl statisch als auch dynamisch, und
Header-Dateien bestehen. Sie bieten vollen Zugriff auf alle Low-Level
Funktionen von Virtools. Mit dem SDK können Entwickler sowohl
eigenständige Applikationen, die auf Virtools basieren, als auch Erwei-
terungen von Virtools selbst entwickeln. Erweiterung können dabei
Behaviors, Medien-Importer, Manager, Render Engine Plug-ins oder
Rasterizer sein.

3DVIA Virtools - Erweiterungen

Damit Virtools das MRiL-Entwurfsvorgehen zum Teil unterstützten
konnte, mussten einige eigene Komponenten mit Hilfe des SDKs
realisiert werden. Im Einzelnen waren das folgende Erweiterungen:

Tracking: Diese Building Blocks sind für die Registrierung von realen
Objekten in der virtuellen Welt zuständig.

• ReacTIVision Building Blocks und Manager für ein bildba-
siertes 2D Tracking [GFLS08]

• ARToolkitPlus Building Blocks und Manager für ein bildba-
siertes 3D Tracking [GSKF07]

• OptiTrack Building Blocks und Manager für ein 2D/3D
Infrarot-Tracking [GSR+

06]

• OpenCV Building Blocks und Manager für ein bildbasiertes
2D/3D Tracking [GFLS08]
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Kommunikation: Building Blocks, die für eine Kommunikation zwi-
schen Virtools und anderen Applikationen, z. B. MATLAB/Si-
mulink, zuständig sind.

• COMMUVIT Building Block und Manager zur synchronen
Kommunikation mit externen Tools [SGDZ08]

Eingabe: Diese Kategorie von Building Blocks beinhaltet die Anbin-
dung verschiedener Eingabe-Hardware an Virtools.

• Wiimote Building Blocks zur Steuerung der virtuellen In-
halte [GSKF07]

• OpenHaptics Building Block und Manager zur Steuerung
von haptischen Geräten [GSKF07]

Ausgabe: Building Blocks, die Ergebnisse auf spezieller Hardware
ausgeben können.

• Ausgabe über einen externen Midiadapter, um so Midi-
gesteuerte Geräte ansprechen zu können [GFLS08]

Abbildung 4.22: 2D Tracking mit ReacTIVision in Virtools.

Die wichtigsten Erweiterungen für das MRiL-Entwurfsvorgehen sind
die Tracking Building Blocks, mit denen es möglich ist, 2D bzw. 3D
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Positionen aus einem Videobild zu berechnen. Das 2D Tracking mit Re-
acTIVision(siehe Abbildung 4.22) kann für eine einfache Registrierung
von realen Objekten genutzt werden, bei denen die Tiefeninformation
nicht wichtig ist (z. B. Infotext, der an ein reales Objekt gebunden sein
soll). Der Vorteil der 2D Registrierung ist die Performance und die
Robustheit dieser Methode. Daher kann das 2D Tracking auch gut für
reale Benutzerschnittstellen eingesetzt werden. Die Implementierung
von ReacTIVision hat weiterhin den Vorteil, dass die Erkennung durch
eine eigenständige Anwendung realisiert wird und die Tracking-Daten
mittels TUIO-Protokoll [KBBC05] über ein Netzwerk versendet wer-
den. D. h. Hauptanwendung und Trackinganwendung können auf
verschiedenen Rechnern laufen so dass die Performance gesteigert
werden kann.

Abbildung 4.23: Tracking mit ARToolKitPlus Building Blocks.

Für das 3D-Tracking sind zwei verschiedene Verfahren verwendet
worden, zum einen ein bildbasiertes Tracking über Marker mit Hilfe
vom ARToolKitPlus (siehe Abbildung 4.23), zum anderen ein Infrarot-
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Tracking mit Hilfe von OptiTrack (siehe Abbildung 4.24145). Das
Tracking mit ARToolKitPlus geschieht über ein Videobild, in wel-
chem spezielle Marker gesucht werden. Werden diese gefunden, ist
ARToolKitPlus in der Lage, die 3D Position dieser Marker im Ka-
meraraum zu bestimmen. Dafür ist aber eine Kalibrierung auf die
jeweilige Kamera und auf das jeweilige Objektiv der Kamera not-
wendig. Für Virtools wurde diese Funktionalität in mehrere logische
Building Blocks aufgeteilt. Für die globale Erkennung wurde ein spe-
zieller Building Block entwickelt, der einmal pro Frame aufgerufen
wird, das aktuelle Videobild ausliest und dieses analysiert. Damit
nur jeweils eine Instanz vom ARToolKitPlus zur Laufzeit aktiv ist,
wurde diese in einem Manager gekapselt, der die Funktionalität für
die einzelnen Building Blocks im Behavior Graphen zur Verfügung
stellt. Einzelne Marker werden durch jeweils einen Building Block
im Behavior Graphen abgebildet und reagieren somit nur auf einen
spezifischen Marker. Diese Building Blocks fragen den Manager nach
ihren Daten. Falls der spezielle Marker im Videobild erkannt wur-
de liefert der Manager die Position zurück. Je nach Anzahl der im
Bild befindlichen Marker und der Größe des Videobildes kann die
Erkennung viel Rechenleistung beanspruchen.

Abbildung 4.24: Infrarot-Tracking mit OptiTrack Building Blocks.

Das Infrarot-Tracking funktioniert im Prinzip wie das oben beschriebe-
ne bildbasierte Tracking, mit dem Unterschied, dass die OptiTrack-API
zur Erkennung benutzt wird. Beim Infrarot-Tracking kann nicht zwi-
schen verschiedenen Markern unterschieden werden, da diese keine
ID-Informationen kodiert haben. Daher ist es im 3D Tracking nur
möglich, ein einzelnes Objekt per Infrarot zu tracken und eindeutig
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zuzuweisen. Vorteil des Infrarot-Trackings ist die hohe Genauigkeit
und die größere Entfernung, gemessen an bildbasierten Trackingver-
fahren, in der die Erkennung funktioniert. Des Weiteren ist, gegeben
durch die schnelle Bildwiederholrate der Infrarot-Kamera (im vorlie-
genden Fall: 120 Bilder pro Sekunde), ein genaues Tracking möglich,
bei dem die Latenzen sehr gering sind. Das kann zwar auch beim
bildbasierten Tracking erreicht werden, jedoch werden dann spezielle
Kameras benötigt und die Leistung des Rechners muss ausreichend
sein um die Einzelbilder zu analysieren.

Eine zweite bildbasierte Tracking-Methode wurde mit Hilfe der offe-
nen Bibliothek OpenCV realisiert. Diese ist aber erst in einem frühen
Stadium der Entwicklung und wurde, nachdem auf MiReAS gewech-
selt wurde, nicht weiter entwickelt. Grund für die Entwicklung eines
OpenCV-basierten Trackers war die Unabhängigkeit von anderen
Tracking-Verfahren und die dadurch resultierende Freiheit in der
Entwicklung.

COMMUVIT

Abbildung 4.25: COMMUVIT Building Block und Simulink Modell.

Eine weitere wichtige Erweiterung in Virtools ist die Anbindung an
externe Anwendungen. Dies wurde über das von Henning Zabel ent-
wickelte Werkzeug COMMUVIT [SGDZ08] [LZE+

06] [LZB07] reali-
siert, das eine Übergabe von jeglichen Daten zwischen Anwendungen
zur Verfügung stellt. Ein wichtiger Punkt ist, dass COMMUVIT die
Anwendungen auch zeitlich koppelt, so dass die Werte immer aktuell
sind. In unseren Beispielen haben wir COMMUVIT verwendet, um
physikalisch korrekte Modelle in MATLAB/Simulink zu berechnen
und in Virtools zu visualisieren und damit zu interagieren. Abbildung
4.25 zeigt eine Virtools-Anwendung, die zur Berechnung der Bewe-
gung der roten Kugel ein MATLAB/Simulink Modell hinterlegt hat,
das für jeden Frame die physikalisch richtige Position berechnet.

Um neue Interaktionsmöglichkeiten zu schaffen, wurden zwei Buil-
ding Blocks realisiert, die unterschiedliche Eingabehardware in Vir-
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tools zur Verfügung stellen. Zum einen ist das der Wiimote Building
Block, der es erlaubt, die Wiimote (die eigentlich zur Benutzung der
Spielekonsole Wii von Nintendo gedacht ist) in Virtools-Projekten zu
benutzen. Gerade durch die eingebauten Beschleunigungssensoren
ist es eine kostengünstige Alternative zu anderen Speziallösungen.
Über die Beschleunigungssensoren ist es möglich eine einfache Ges-
tenerkennung zu realisieren, die für die Steuerung benutzt werden
kann. Über die eingebaute Kamera wird weiterhin ein 2D Tracking
zur Verfügung gestellt, so dass eine Pointer-basierte Interaktion mit
Hilfe der Wiimote möglich ist.

Abbildung 4.26: Eingabe über das OpenHaptics Interface in Virtools.

Der OpenHaptics Building Block (siehe Abbildung 4.26) wurde spe-
ziell für das haptische Feedback zum Benutzter realisiert. Gesteuert
werden kann damit z. B. ein SensAble Phantom Omni Haptic Devi-
ce [Sen10], das dem Benutzer als Eingabemedium dient. Über das
Phantom kann ein Punkt im 3D Raum incl. Richtung angesteuert wer-
den. Der Programmierer hat die Möglichkeit, eine gewisse Gegenkraft
auf das Eingabegerät zu geben, so dass das Gefühl eines Widerstandes
entsteht. Über verschiedene Parameter lassen sich unterschiedliche
haptische Materialeigenschaften programmieren.

Über die oben beschriebenen Building Blocks, die die Funktionalität
von Virtools erweiterten, ließen sich einige Konzepte des MRiL-Ent-
wurfsvorgehens realisieren, wie es in Kapitel 5159 beschrieben wird.
Allerdings konnten nicht alle Konzepte in Virtools realisiert werden,
da die Struktur von Virtools dies nicht zuließ.
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3DVIA Virtools - Nachteile

Leider gab es bei der Verwendung von Virtools auch einige Nachteile,
die u. a. dafür verantwortlich waren, dass eine eigene Entwicklungs-
umgebung realisiert wurde. Zu diesen Nachteilen zählen:

MRiL Prozess nicht komplett abbildbar: Infolge der vorgegebenen
Struktur von Virtools war es nicht möglich, das gesamte MRiL-
Entwurfsvorgehen abzubilden. Damit aber dieser Prozess kom-
plett evaluiert werden konnte, war es essenziell, eine Entwick-
lungsumgebung zu besitzen, die diese Abbildbarkeit leistete.

Lizenzproblematik: Leider wurde infolge einer Lizenzänderung in
neueren Versionen von Virtools untersagt, selbst geschriebene
Bulding Blocks weiterhin der Community zur Verfügung zu
stellen. Des Weiteren ist der Webplayer in den neueren Versio-
nen nicht mehr in der Lage selbst geschriebene Building Blocks
zu laden und auszuführen. Dementsprechend müssen für je-
de Demo eigene ausführbare Dateien kompiliert werden, falls
auf dem Zielsystem kein Virtools installiert ist. Leider müssen
diese Demos einen Lizenzschlüssel haben, so dass es schwierig
ist, Demos auf Konferenzen oder Messen vorzustellen oder im
wissenschaftlichen Rahmen zu veröffentlichen.

Proprietär: Da Virtools eine proprietäre Software ist, gestaltet sich
eine Anpassung auf eigene Bedürfnisse äußerst schwierig. Über
das SDK kann viel Funktionalität realisiert werden, leider aber
nicht alles. Daher war es auch nicht möglich, das komplette
MRiL-Entwurfsvorgehen auf Virtools abzubilden, da wichtige
Strukturen und Funktionsweisen nicht veränderbar waren.

Aus den oben genannten Gründen war es notwendig, eine eigene, auf
das MRiL-Entwurfsvorgehen zugeschnittene Entwicklungsumgebung
zu programmieren. Es wurde besonders darauf geachtet, dass eine
quelltextoffene Implementation einer 3D Grafikbibliothek als Grund-
lage diente, um ggf. Konzepte nachträglich ins System integrieren zu
können.

4.5.2 MiReAS - Eine Mixed Reality Softwareumgebung

Die Ergebnisse, die mit der Entwicklungsumgebung basierend auf Vir-
tools entstanden sind, waren zum großen Teil akzeptabel. Da jedoch
die von uns entwickelten Erweiterungen in Virtools nicht das komplet-
te MRiL-Entwurfsvorgehen abdecken, insbesondere die Rollen von
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Akteuren, wurde eine Softwareumgebung entwickelt, die speziell für
meinen MRiL Prozess entworfen wurde. Diese Softwareumgebung
wurde an der Hochschule Düsseldorf im Rahmen einer Masterar-
beit [Pog09] nach den Vorgaben des MRiL-Entwurfsvorgehens entwi-
ckelt und trägt den Namen MiReAS: Mixed Reality Actor Simulation.
MiReAS kann als Werkzeug für schnelles Prototyping sowie für die
einfache Entwicklung von Mixed Reality Anwendungen verwendet
werden. Durch die konsequente Umsetzung des MRiL Vorgehens ist
MiReAS eine ideale Plattform für die Entwicklung und die Tests von
Mixed Reality Anwendungen.

Damit MiReAS die Vorraussetzungen für den MRiL-Entwurfsprozess
erfüllt, mussten folgende Anforderungen erfüllt werden:

• Bereitstellung einer komponentenbasierten Architektur mit der
Möglichkeit, Komponenten einfach zu adaptieren, auszutau-
schen oder wieder zu verwenden

• Verwendung einer Quelltext-offenen 3D Renderbibliothek ba-
sierend auf einem Szenegraphen zur einfachen Erstellung von
Szenarios

• Unterstützung essenzieller Mixed Reality Funktionalität, bei-
spielsweise die Verwendung von Videogeräten und Tracking-
systemen sowie die einfache Erweiterbarkeit auf neue Tracking-
systeme

• Unterstützung einer großen Anzahl von Eingabegeräten bzw.
die Möglichkeit, solche einfach in das System einzubinden

• Anbindung an eine Physiksimulation, systemintern über eine
schnelle Physikbibliothek aus dem Game-Sektor, darüber hin-
aus allerdings auch über externe Programme wie z. B. MAT-
LAB/Simulink für mathematisch präzisere Berechnungen

• Einfache Nutzung von Netzwerkschnittstellen zur Verteilung

• Benutzerfreundliche und einfach anwendbare Systemkonfigura-
tion über Konfigurationsdateien im XML Format bzw. grafische
Benutzerschnittstellen

Konzepte von MiReAS

Das zentrale Konzept von MiReAS ist das Prinzip des ”Actors & Adap-
tors“. Akteure (engl. Actors) sind aktive Elemente einer Anwendung,
die in einem Szenario betrachtet und gesteuert werden sollen. Für eine
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typische Mixed Reality Anwendung sind dies Eingabegeräte sowie
interaktive und/oder dynamische Szenenelemente. Im Kontext von
Mixed Reality sind hier sowohl virtuelle als auch reale steuerbare
Systeme als Akteur zu verstehen. Die Grundlagen zum Akteurmodell
können in Kapitel 4.3.3120 nachgelesen werden.

Actor2
InputA<float>

InputB<Vector>

InputC<Matrix>

OutputA<float>

OutputB<Object>

Actor1
OutputA<Matrix>

OutputB<Vector>

OutputC<float>

Actor3
InputA<float>

InputB<Vector>
OutputA<Matrix>

Actor4
InputA<Matrix>

InputB<Vector>

InputC<Matrix>

OutputA<float>

Inkompatible
Datentypen

Mehrfach
verbundener

Eingang 

Abbildung 4.27: Datenflussnetzwerk basierend auf Akteure.

In MiReAS sind Akteure in der Lage, Steuer-und Informationsdaten
über Ports zu senden beziehungsweise zu empfangen. Ports können
dabei einen beliebigen Datentyp annehmen, z. B. vektorielle Werte für
zusammenhängende Daten oder skalare Werte für einzelne Datenlei-
tungen. Selbst komplexe Objekte können als Datentyp verschickt bzw.
empfangen werden. Die Ports können beliebig miteinander verschaltet
werden, allerdings müssen die jeweiligen Datentypen des Ein- und
Ausgangs kompatibel sein. Ein Ausgangsport kann mit mehreren Ein-
gangsports verbunden werden, Eingangsports können indes nur mit
einem Ausgangsport verbunden sein. In jedem Zeitschritt aktualisiert
ein Akteur seinen Zustand indem er die Werte an seinen Eingangs-
ports liest, diese verarbeitet und die neu berechneten Werte an seine
Ausgangsports anlegt. Damit ist es möglich ein interaktives Daten-
flussnetzwerk aufzubauen, welches das Verhalten der Anwendung
steuert. In Abbildung 4.27 ist so ein Datenflussnetzwerk zu sehen.
Hier wird des Weiteren dargestellt, dass weder zwei Ports miteinander
verbunden werden können, die inkompatible Datentypen haben, noch
Ausgänge mehrfach belegt werden dürfen.

Akteure, die über die gleichen Ein- und Ausgangsports verfügen,
können problemlos untereinander ausgetauscht werden. So können
z. B. Prototypen von Akteuren entwickelt werden, die ein bestimmtes
Portinterface bieten und direkt in die Software eingebunden werden.
Im Laufe der Entwicklung können diese Prototypen mit neueren bzw.
anderen Versionen von Akteuren getauscht werden, ohne das das
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Datenflussnetzwerk geändert werden muss.

VelocityMeter
Propeller

PhysicalActor

ForceAtCenter<float[]>

AngularVelocity
<float>

f(x)

f(x)

TorqueAtCenter<float[]> Pose<Matrix4x4>

Position<Vector3>

Orientation<Vector3>

Position
<Vector3>
Orientation
<Vector3>
Power
<float>
Parameter
<Vector>

LinearVelocity
<float>

Abbildung 4.28: Kopplung zwischen einem Akteur und Adaptern.

Ein bereits implementierter Akteur kann durch sogenannte Adapter
(engl. Adaptors) erweitert werden. Adapter haben ebenso wie Akteu-
re eine Menge an Eingangs- und Ausgangsports. Wird ein Adapter
einem Akteur zugewiesen, erhält der Akteur sämtliche Ports des Ad-
apters. Diese Ports können dann von außen so angesprochen werden,
als wenn sie Teil des jeweiligen Akteurs wären. Um die Ports des
Adapters mit den Ports des Akteurs zu verbinden, muss eine entspre-
chende Funktionalität in den Adapter implementiert werden. Beispiele
für Adapter wären zum einen, inkompatible Ports miteinander zu
verbinden, indem der Adapter intern eine Umwandlung durchführt
und die gewandelten Signale an die entsprechenden Eingangsports
des Akteurs bzw. die Ausgangsports des Adapters weiterleitet. Die
grundsätzliche Funktionalität von Adaptern kann in Kapitel 4.3.3120
nachgelesen werden.

Der Vorteil eines Adapters gegenüber einer Vorschaltung bzw. Nach-
schaltung eines neuen Akteurs ist die automatische Verschaltung.
Verbindungen müssen nicht neu gesetzt werden, was vor allem bei
mehrfachem Verwenden von Adaptern der Übersichtlichkeit des Da-
tenflussnetzwerk dient.

Dieses Konzept gestattet komplexe, aufeinander aufbauende Struk-
turen, die aus einfachen, wiederverwendbaren Einzelkomponenten
zusammengesetzt sind. In einer ersten Iteration des MRiL-Prozesses
kann ein Akteur z. B. ein einfaches physikalisches Objekt ohne spezi-
elle Funktionen sein, d. h. ein physikalisches Körper mit Eingängen
für Kraft und Drehmoment sowie Ausgängen für Positionsinforma-
tionen. Durch das Aufsetzen eines eingangsseitigen Adapters für die
Simulation eines Propellers mit Eingängen für Position und Orientie-
rung sowie angelegte Energie wird aus dem einfachen physikalischen
Körper ein aktiv steuerbares System. Durch einen ausgangsseitigen
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Adapter kann z. B. ein Sensor zur Geschwindigkeitsmessung aufge-
setzt werden. Dieses einfache Beispiel für eine Kopplung zwischen
einem Akteur und einem Adapter ist in Abbildung 4.28 zu sehen.
Andere Arten von Adaptern sind z. B. Typkonvertierungen für in-
kompatible Ports, Erweiterungen für intelligente Steuerungen (z. B.
Reglersteuerungen, etc.) oder alle Arten von Sensoren und Akteuren.

Abbildung 4.29: Das Plug-in-System von MiReAS.

Ein weiteres Konzept von MiReAS ist ein flexibles Plug-in-System,
welches erlaubt, alle benötigten Komponenten separat zu implemen-
tieren, einzubinden und zu nutzen. Da Plug-ins zur Laufzeit geladen
werden können, wird mit ihnen das modulare Konzept sowie die
Erweiterbarkeit von MiReAS unterstützt. Für die größtmögliche Flexi-
bilität sind sowohl der 3D-Renderer als auch die Trackingsysteme bzw.
Videogeräte als Plug-in realisiert und können während der Laufzeit
geladen werden. Auch Akteuren oder Adapter sind über Plug-ins
realisiert. Somit ist auch die Entwicklung von Anwendungen in einem
großen Team möglich, da sich die einzelnen Programmierer nur auf
ihre Plug-ins konzentrieren müssen.

MiReAS unterscheidet zwischen zwei Arten von Plug-ins. System-
Plug-ins, die essenziell für die Funktionalität sind und Erweiterungs-
Plug-ins, mit denen vor allem Szenenelemente und Funktionserwei-
terungen für bestimmte Aufgaben erstellt werden können. Unter die
System-Plug-ins fallen Komponentien wie der 3D Renderer, Tracker
und Videoquellen, wobei Akteure, Adapter und Sensoren unter die
Erweiterungs-Plug-ins fallen.

Damit die unterschiedlichen systeminternen sowie extern-angebun-
denen Komponenten innerhalb eines einzelnen Simulationsschrittes
aktualisiert werden können, wurde MiReAS mit einem dreistufigen
Simulationszyklus realisiert. Dies geschieht indem die Akteure, die
über Ports miteinander verbunden sind, ihre Ausgabeports erst am
Ende eines Simulationsschrittes aktualisieren. Diese Technik vermei-
det, dass die Reihenfolge der einzelnen Aktualisierungen eine Aus-
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Abbildung 4.30: Der Simulationszyklus von MiReAS

wirkung auf die Simulation hat. Anders ist dies bei Berechnungen,
die noch im selben Frame visualisiert werden sollen, wie z. B. Phy-
sikberechnungen. Diese Berechnungen müssen vor dem aktuellen
Frame behandelt werden. Für eine größtmögliche Flexibilität wurde
deshalb ein Simulationszyklus wie in Abbildung 4.30153 entworfen.
Jede Komponente, die in diesen Simulationszyklus eingebunden wird,
kann in jedem dieser drei Abschnitte Funktionalität hinterlegen. Es
sollte allerdings weiterhin die Möglichkeit geben, innerhalb dieser
Zykluselemente Prioritäten zu vergeben, um einen möglichst verzöge-
rungsfreien Ablauf der Simulation zu gewährleisten. Daher wurde z. B.
eine Visualisierung als letzte Phase im Simulationszyklus realisiert.

Um Rapid Prototyping zu unterstützten, wurde eine geeignete Metho-
de zur Konfiguration der Anwendung durch den Entwickler realisiert,
die ohne großen Programmieraufwand möglich ist. Es müssen le-
diglich die benötigten Akteure und Adapter einmal implementiert
werden. Die Basis dieser Konfiguration bildet ein hierarchisches Da-
tenmodell, welches im XML-Format abgelegt werden kann. Eine Szene
wird durch einen Szenegraph abgebildet, in der alle Akteure, Adapter
und Geräte samt Einstellungen integriert sind. Benötigte Dateien wer-
den in einer eigenen Ordnerstruktur abgelegt. Ist eine erste Iteration
erfolgreich abgeschlossen, kann die nächste Iteration direkt auf der
bisherigen XML-Datei aufbauen und benötigte Änderungen direkt
implementieren.

In der derzeitigen Entwicklung befindet sich eine grafische Benutzero-
berfläche, die den Zugriff auf alle Systemkomponenten erlaubt, um die
Konfiguration des Systems noch benutzerfreundlicher zu gestalten.
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Abbildung 4.31: Konfiguration über XML.

Systemstruktur von MiReAS

Für die Implementierung des MiReAS-Systems wurde C++ als Pro-
grammiersprache gewählt. Das Design der Applikation wurde ob-
jektorientiert ausgelegt, so dass die nötigen Komponenten modular
programmiert werden konnten. Eine Reihe Opensource-Bibliotheken,
die Basisfunktionalitäten zur Verfügung stellen, wurden genutzt um
den Implementierungsaufwand zu begrenzen. Bei der Auswahl wurde
darauf geachtet, dass eine freie Verwendung sowie eine eventuelle
Abänderung der Bibliotheken möglich ist. Auch sollten die Biblio-
theken plattformübergreifend verwendet werden können. Entwickelt
wurde das System jedoch vollständig auf einer Windows-Plattform,
so dass eine Portierung auf ein anderes System zwar möglich ist,
allerdings nicht entwickelt wurde.

Die verschiedenen Funktionen von MiReAS wurden in eigenen dy-
namischen Bibliotheken implementiert, um so eine hohe Modula-
rität des Systems zu gewährleisten. Die Bibliotheken können daher
unabhängig voneinander entwickelt werden, solange die Schnittstel-
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len gleich bleiben. Beispielsweise werden die Grundfunktionen ei-
niger Bibliotheken, z. B. der Physik- und der Input-Bibliothek, über
Opensource-Bibliotheken realisiert, die bei Bedarf durch andere Bi-
bliotheken ausgetauscht werden können.

mireas::ApplicationLayer

ConsoleApplication GUIApplication

Application

mireas::LibraryLayer

Network Physics

Core

InputBase

Externe Komponenten (Opensource Bibliotheken)

FLTKPocoPALgmtlOIS

Abbildung 4.32: Die Systemstruktur von MiReAS

In Abbildung 4.32 wird die Softwarestruktur von MiReAS dargestellt.
Die externen Komponenten, die über Opensource-Bibliotheken reali-
siert sind, bieten bereits fertige Strukturen, die von MiReAS genutzt
werden, z. B. die Unterstützung von unterschiedlichen Eingabegeräten,
eine Physiksimulation, mathematische Funktionen und eine 2D-GUI-
Bibliothek. Das eigentliche MiReAS-System kann in zwei Kompo-
nenten geteilt werden: den Library-Layer und den Applications-Layer.
Der Library-Layer beinhaltet die gesamte Simulationslogik und ist in
die Bibliotheken Base, Input, Core, Physics und Network unterteilt. Der
Applications-Layer enthält die ausführbaren Anwendungen. Je nach
Wunsch des Anwenderprogrammierers kann die fertige Applikation
von einer Konsolenanwendung (ConsoleApplication), die durch eine
XML-Konfigurationsdatei erstellt wird, oder eine Applikation mit gra-
fischer Benutzeroberfläche (GUIApplication) abgeleitet werden. Dabei
bietet die GUI eine flexiblere Möglichkeit zum Eingriff in das laufende
Programm und kann zur Laufzeit nachkonfiguriert werden. In der
Bibliothek Application werden gemeinsam verwendete Funktionen,
wie z. B. das Konfigurationssystem implementiert.

Es wurden folgende externe Opensource-Bibliotheken für die Ent-
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wicklung von MiReAS genutzt:

POCO (Portable Components): Eine Bibliothek für die Entwicklung
von portablen, netzwerkzentrierten Anwendungen. Implemen-
tiert sind z. B. ein Threadsystem, ein System zum Laden von dy-
namischen Bibliotheken, Sockets und Netzwerkprotokollen, ein
Konfigurationssystem und ein XML-Parser [Obi10]. In MiReAS
wurde gerade das System zum Einlesen von Konfigurationsin-
formationen aus XML-Dateien intensiv genutzt.

GMTL (Generic Math Template Library): Eine mathematische, auf
Template-Klassen basierende Bibliothek, die Funktionen der li-
nearen Algebra zur Verfügung stellt [BMS10]. Diese werden
vor allem in 3D-Anwendungen benötigt. Des Weiteren bein-
haltet GMTL allgemeine mathematische Funktionen, die platt-
formübergreifend dieselbe Funktionalität bieten.

OIS (Object-Oriented Input System): Eine Bibliothek zur Abstrakti-
on von Plattform-Schnittstellen. OIS bietet die Möglichkeit der
Abstraktion sämtlicher Standard-Eingabegeräte wie z. B. Tasta-
tur, Maus oder Joystick [Cas10]. Weitere Eingabegeräte, die z. B.
für Mixed Reality Anwendung benötigt werden, können über
OIS einfach integriert werden. OIS wurde für die Verwendung in
MiReAS durch eigene Input-Handler erweitert, z. B. eine bessere
Anbindung an die Nintendo Wiimote.

PAL (Physics Abstraction Layer): Bibliothek zur Abstraktion physi-
kalischer Simulationen [Boe09]. In PAL ermöglicht die Nutzung
eine Vielzahl von Physik-Bibliotheken innerhalb einer einzel-
nen Anwendung. Die einzelnen Physik-Bibliotheken müssen
jeweils als Plug-in vorhanden sein bzw. als PAL-Plug-in imple-
mentiert worden sein. Somit besteht eine große Flexibilität bei
der Auswahl der Physik-Bibliotheken. Nachteil der Abstrakti-
on ist jedoch die fehlende Unterstützung spezieller Merkmale
bestimmter Physik-Bibliothek, es können nur allgemeine Funk-
tionen genutzt werden. In MiReAS wird das PAL-Plug-in der
BulletEngine als Standard Bibliothek genutzt [Cou10].

FLTK (Fast Light Toolkit): Eine Bibliothek, die eine plattformunab-
hängige grafische Benutzerschnittstelle bereitstellt [Spi10]. Die
Bibliothek basiert auf OpenGL und über den integrierten Desi-
gner FLUID (Fast Light User-Interface Designer) können Benut-
zerschnittstellen sehr schnell grafisch erstellt werden.

Diese Bibliotheken sind auch in der Abbildung 4.32155 zu sehen und
werden von den verschiedenen Layern in der MiReAS Architektur
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genutzt. Alle verwendeten Bibliotheken stehen unter einer Open-
Source-Lizenz, z. B. GPL, LGPL, Boost License, etc., und sind somit
allgemein zugänglich und änderbar. Des Weiteren wurde darauf ge-
achtet, dass die verwendeten Bibliotheken für mehrere Betriebssyste-
me zur Verfügung stehen, so dass eine Cross-Plattform Tauglichkeit
grundsätzlich vorstellbar ist.

Weitere Einzelheiten zur Implementierung können in der Master-
Arbeit von Patrick Pogscheba nachgelesen werden [Pog09].

4.6 Zusammenfassung

In diesem Kapitel wurde beschrieben, was das MRiL-Entwurfsvor-
gehen ist und wie es anwendet werden kann. Zu Beginn wurden die
Vorraussetzungen definiert, die benötigt werden, damit das MRiL-Ent-
wurfsvorgehen erfolgreich bei einer Applikationsentwicklung ange-
wendet werden kann. Dabei ist es wichtig, dass die zu entwickelnde
Anwendung in die MVCE-Komponetnen aufgeteilt werden kann und
aus einem der Bereiche Mixed Reality Applikationen, Mixed Reality
Benutzerschittstellen oder mechatronische Systeme stammt. Diese An-
wendungen lassen sich sehr gut durch das MRiL-Entwurfsvorgehen
entwickeln.

Nach Klärung der Voraussetzungen wurde auf grobe Vorgehenswei-
se des MRiL-Entwurfsvorgehens eingegangen. Hier wurde gezeigt,
wie ein Entwickler erfolgreich den Prozess an seiner Applikation an-
wenden kann. Die einzelnen Schritte bei der Entwicklung wurden
beschrieben und erklärt.

Der Vorgehensweise folgte die Beschreibung der für das MRiL-Ent-
wurfsvorgehen entwickelten Methoden. Dazu gehörte das MVCE
Architekturmuster, das die Anwendung in vier verschiedene Kompo-
nenten einteilt und es ermöglicht, diese Komponenten unabhängig
von einander zu entwickeln bzw. verfeinern. Die MRiL-Metrik erlaubt
eine Bewertung des Entwicklungsstaus der Applikation anhand der
MVCE Komponenten. Über das Akteurmodell wurden dann verschie-
dene Teile der Applikation nochmals gekapselt. Akteure sind eine
Verfeinerung des MVCE Architekturmusters und teilen die jeweiligen
Komponenten in kleinere autarke Teile auf. Daraufhin wurde das Ent-
wurfsvorgehen nochmals in allen Details beschrieben und erklärt, wie
das MRiL-Entwurfsvorgehen verwendet wird. Diese Akteure lassen
sich konzeptionell mit Hilfe von Adaptern erweitern um so eine Ver-
feinerung der Komponenten mit geringem programmiertechnischen
Aufwand zu bewältigen.
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Das Entwurfsvorgehen beschreibt den iterativen Entwurfsprozess. Ab-
strakt gesehen werden die Phasen Konzeption, Implementierung, Tests
und Bewertung durchlaufen und ggf. wiederholt. Konkret wird in
jeder Initialisierungsphase des MRiL-Entwurfsvorgehens der nachfol-
gende Verfeinerungsschritt geplant. In der Verfeinerugsphase werden
die Änderungen implementiert und so die Komponenten bzw. Ak-
teure verfeinert. Nach der Verfeinerung entsteht ein neuer Prototyp,
der über funktionale Tests oder Benutzertests validiert und analysiert
wird. Hier entscheidet sich, ob eine weitere Iteration nötig ist oder
ob der Prototyp funktional fertig ist. Sollte eine weitere Iteration vor-
genommen werden, werden in der Bewertungsphase die Ziele des
nächsten Prototypen festgelegt.

Damit der MRiL Prozess softwaretechnisch unterstützt wird, wurden
zwei unterschiedliche Softwareumgebungen entwickelt. Als erstes
wurde die proprietäre Entwicklungsumgebung Virtools dahingehend
erweitert, dass der MRiL Prozess zum größten Teil abgebildet werden
konnte. Hierfür wurden mehrere Plug-ins entwickelt, die u. a. das
Tracking, Benutzung neuer Eingabegeräte und die Interapplikations-
Kommunikation ermöglichten. Damit konnte das MRiL-Entwurfsvor-
gehen angewendet werden, da die Anwendung in die entsprechenden
MVCE-Komponenten aufgeteilt und diese Komponenten dann ver-
feinert werden konnte. Leider konnte das Prinzip der Akteure nicht
in Virtools umgesetzt werden, da es keine Möglichkeit gab, dieses
abzubilden. Aus diesem Grund wurde eine komplett neue Softwa-
reumgebung, die speziell auf das MRiL-Entwurfsvorgehen angepasst
war, entwickelt. MiReAS wurde auf Opensource-Bibliotheken entwi-
ckelt und bietet alle Möglichkeiten, die das MRiL-Entwurfsvorgehen
benötigt, vom MVCE Architekturmuster bis hin zur Akteurmodell.
Letzteres ist in MiReAS ein zentraler Punkt bei der Entwicklung, da
jede Komponente der Applikation über einen Akteur abstrahiert wird.
Damit Akteure verfeinert werden können und nicht immer von Grund
auf neu implementiert werden müssen, wurde das Prinzip des Ad-
apters, der einen Akteur mit neuer Funktionalität kapseln kann, in
MiReAS realisiert.

In diesem Kapitel wurde somit das komplette MRiL-Entwurfsvor-
gehen mit der entsprechenden Softwareumgebung vorgestellt und
erläutert. Im folgenden Kapitel wird nun gezeigt, wie der MRiL Pro-
zess an einem nicht trivialen Beispiel erfolgreich eingesetzt wurde.
Es werden die einzelnen Schritte der Entwicklung vorgestellt und es
wird auf auftretende Probleme hingewiesen.

158
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Beispiel

Nach der Vorstellung des MRiL-Entwurfsvorgehes im letzten Kapitel
konzentriert sich dieses Kapitel auf die Anwendung von MRiL auf
ein nicht triviales Beispiel. Als Softwaregrundlage diente hier das
Werkzeug MiReAS 4.5.2148 unter Verwendung u. a. des Akteurmo-
dells und des Prinzip des Adapters 4.3.3120. In diesem Kapitel wird
detailliert die Entwicklung der Prototypen dieser Beispielapplikation
beschrieben und jede Iteration der Entwicklung erläutert. Insgesamt
wurden während der Entwicklung sieben Prototypen entwickelt, die
jeweils eine geforderte Funktionalität implementierten. Angefangen
von einer sehr einfachen, abstrakten Applikation, die die Funktions-
weise verdeutlichen soll, bis hin zu komplexen Prototypen, die für
Tests einer speziellen Ausprägung der Applikation verwendet wurden.
Am Ende wurde ein Prototyp entwickelt, der als fertige Applikation
bezeichnet werden kann.

5.1 Überblick

An der Fachhochschule Düsseldorf wurde im Fachbereich Elektro-
technik ein ferngesteuerter Indoor-Zeppelin zu Forschungszewecken
aufgebaut. In Kooperation mit der VR-Abteilung des Fachbereich
Medien der Fachhochschule Düsseldorf sollten im Rahmen des Pro-
jektes MoVeIT (Mobilität, Verteilung und Interaktion: Realisierung
einer Testumgebung für Multimediaanwendungen) neue, intuitive
Steuerstrategien für diesen Zeppelin entwickelt werden. Für die Ent-
wicklung dieser Strategien sollte das in dieser Arbeit vorgestellte
MRiL-Entwurfsvorgehen angewendet und mit Hilfe von MiReAS

159



BEISPIEL

realisiert werden.

Die Idee für die Entwicklung neuer Steuerstrategien entstand aus der
Tatsache, dass die normale Steuerung des Zeppelins mit Hilfe einer
Funkfernsteuerung kompliziert und schwer zu erlernen ist. Das liegt
zum einen an den wenigen Freiheitsgraden, die durch die Bauweise
des Zeppelins gegeben sind, und zum anderen durch die Trägheit des
Zeppelins. Um ihn präzise und genau zu steuern ist es für den Be-
nutzer wichtig, die zu erzielende Bewegung in richtigen Bewegungen
der einzelnen Freiheitsgrade des Zeppelins aufzuspalten, dabei die
Trägheit mit zu berücksichtigen und ggf. gegenzusteuern. Die ersten
Versuche, den Zeppelin kontrolliert zu steuern, wurden deshalb in
einer großen Halle durchgeführt, um die Kollisionsgefahr mit Hinder-
nissen zu minimieren. Nach mehreren Stunden intensiver Übung war
schließlich ein Benutzer in der Lage, den Zeppelin halbwegs sicher zu
fliegen.

Um auch einer größeren Gruppe an Benutzern die Bedienung des
Zeppelins zu ermöglichen, war die Idee, die klassische Steuerung des
Zeppelins durch eine neue, intuitivere Steuerung zu ersetzten. Da die
Umsetzung einer neuen intuitiven Steuerung sehr of das ”Trail-and-
Error“-Prinzip verwendet, gerade wenn es sich um das Finetuning
bestimmter Parameter der Steuerung handelt, war der Einsatz des
realen Zeppelins für diese Tests schon von Beginn an ausgeschlos-
sen. Durch unsachgemäße Handhabung kann der Zeppelin schnell
beschädigt oder zur Gefahr für Personen werden, so dass die Entwick-
lung einer neuen Steuerung prädestiniert für eine VR Simulation ist.
Des Weiteren gab es viele Ideen einer intuitiven Steuerung, so dass
mehrere dieser Ideen getestet werden sollten. Auch hier war eine VR
Simulation die beste Lösung.

Zu diesem Zeitpunkt entstand die Idee das MRiL-Entwurfsvorgehen
zu verwenden und die Prototypen mit Hilfe der MiReAS-Software zu
entwickeln. Die Überlegung war, erst eine sehr einfache Applikation
zu entwickeln, die grob das Verhalten des Zeppelins simuliert, um
so Steuerstrategien mit diesem Prototypen entwickeln und testen zu
können. Um in weiteren Entwicklungsschritten auf den vorherigen
Prototypen aufzubauen, wurde MiReAS dazu verwendet, langsam die
VR-Komponenten in MR bzw. reale Komponenten zu ersetzten. So
konnte die Steuerung immer feiner getestet werden, erst an einfachen,
später an komplexen Simulationen sowohl virtuell als auch real.

Für die Berechnung der Metriken war es notwendig, den endgültigen
Prototypen der Anwendung zu spezifizieren. Das war in allen Berei-
chen nicht sehr kompliziert, da schon der reale Zeppelin existierte
und die Applikation diesen steuern sollte. Über die Metriken war eine

160
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Einschätzung des Entwicklungsstatus mit Hilfe des Kiviatgraphen
möglich. Für die Controller-Metrik wurden allerdings keine groß ange-
legten Benutzertests durchgeführt, da hier die Zeit und die Personen
fehlten. Es wurden hier nur die Aussagen der Entwickler berücksich-
tigt um so eine Einschätzung der verwendeten Controller-Strategie zu
erhalten.

Insgesamt wurden für dieses Beispiel zehn aufeinander aufbauende
Prototypen entwickelt und getestet, wobei zwei Beispiele nur kon-
zeptionell entwickelt wurden, da hier die Hardware, die eingesetzt
werden sollte, nicht rechtzeitig fertiggestellt werden konnte. Alle Pro-
totypen wurden aufeinander aufbauend entwickelt und mit Hilfe von
dem Werkzeug MiReAS realisiert.

5.1.1 Der Zeppelin

Abbildung 5.1: Modell des Zeppelins.

Das Modell des Zeppelins (Abbildung 5.1, hier beim Testen des AR-
Prototypen mit Markern) besteht aus einer speziellen Kunststoffhülle
mit einer Länge von drei Metern und einem Durchmesser von einem
Meter. Befüllt wird die Hülle mit Helium, was den erforderlichen
Auftrieb des Zeppelins liefert. Dabei beträgt die Tragkraft des Zep-
pelins exklusiv der Elektronik und der Motoren ca. 250 Gramm. Am
Heck des Zeppelins befindet sich ein Propeller, der sich über einen
DC-Motor rechts bzw. links drehen lässt. Unten an der Hülle ist ei-
ne Gondel befestigt, die die Bordelektronik fasst. An beiden Seiten
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der Gondel befindet sich jeweils ein weiterer Propeller, der auf einer
drehbaren Achse gelagert ist.

yaw

roll pitch

a

b c

Abbildung 5.2: Der Zeppelin im Detail.

Der Propeller am Heck des Zeppelins (Abbildung 5.2 – c) ist für
das Gieren1 zuständig und kann über den DC-Motor in beide Rich-
tungen betrieben werden. Die beiden Schubmotoren an der Gondel
(Abbildung 5.2 – b) ermöglichen die Bewegung in der Ebene, die von
der Gierachse und der Rollachse2 aufgespannt wird, also vorwärts,
rückwärts, aufwärts oder abwärts. Beide Schubmotoren sind über eine
Drehachse miteinander verbunden, die je nach Stellung die Schub-
richtung der Propeller vorgibt. Dabei ist die Drehung um diese Achse
auf 360

◦ beschränkt (aus der Normalstellung die horizontal nach
vorne zeigt, jeweils 180

◦ in beide Richtungen). Beide Schubmotoren
ermöglichen eine maximale Geschwindigkeit von ca. 6, 1m

s .

1Die Gierachse, auch Hoch- bzw. Vertikalachse (engl. yaw axis), bezeichnet die vertikale Achse eines
Luftfahrzeugs, um die sich das Fahrzeug dreht. Als Gieren bezeichnet man eine Drehbewegung um
diese Achse. In Abbildung 5.2 – a sind die Achsen zur Verdeutlichung in den Zeppelin eingezeichnet.

2Die Rollachse (engl. roll axis) wird auch als Längsachse bezeichnet.
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Abbildung 5.3: Handelsübliche 4-Kanal Funkfernbedienung.

In der Gondel befindet sich eine Platine mit der Bordelektronik, die
aus der Motorsteuerung sowie der Kommunikation mit der Fernbedie-
nung besteht. Wie im Flugzeug-Modellbau üblich wird der Zeppelin
über eine handelsübliche 4-Kanal Fernbedienung, wie in Abbildung
5.3163 zu sehen, gesteuert. Über die einzelnen Hebel der Fernbedie-
nung können der Heckrotor, die Drehachse und die beiden Schub-
motoren gesteuert werden. Beide Schubmotoren sind miteinander
gekoppelt, so dass sie nur gemeinsam steuerbar sind. Daraus ergibt
sich, das drei der vier Kanäle der Fernbedienung mit Funktionen
belegt sind. Der linke Hebel ist vertikal für die Steuerung der Schub-
motoren belegt, der rechte Hebel ist vertikal für für den Winkel der
Schubmotoren zuständig. Des Weiteren ist der linke Hebel auf der ho-
rizontalen Achse für den Heckmotor verantwortlich. Die horizontale
Achse des rechten Hebels ist nicht belegt.

5.2 Prototypenentwicklung

Wie schon im Überblick erwähnt, bedarf es einer gewissen Erfahrung,
den Zeppelin präzise zu steuern. Die korrekte Steuerung der drei
beschriebenen Freiheitsgrade (Rotation und Translation in einer Ebe-
ne) gelingt aufgrund der Trägheit des Zeppelins nur mit viel Übung.
Selbst kleinste Impulse der einzelnen Rotoren können große Auswir-
kungen auf die Bewegung des Zeppelins haben. Daher ist ein häufiges
Gegensteuern für exakte Manöver unumgänglich.

Bei der Prototypentwicklung sollen nun verschiedene Techniken ent-
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wickelt werden, die die Steuerung des Zeppelins vereinfachen und
auch für ungeübte Benutzer anwendbar sind. Die Kommandos an die
einzelnen Rotoren sollen durch eine High-Level Steuerung abstrahiert
werden, so dass sich der Zeppelin durch einfach Befehle wie beispiels-
weise ”Vorwärts“, ”Rückwärts“, ”Aufwärts“ oder ”Abwärts“ steuern
lässt. Die Fernsteuerung soll weiterhin durch andere Eingabegeräte
ersetzt werden, die eine intuitivere Steuerung des Zeppelins verspre-
chen, beispielsweise Gestensteuerung oder Stellvertreterobjekte.

Da die Arbeit am realen Zeppelin einerseits mit hohen laufenden
Kosten3 verbunden ist und andererseits durch die Kooperation der
FH Düsseldorf und der Universität Paderborn der Zeppelin nicht an
beiden Standorten verfügbar war, sollte die Entwicklung mit Hilfe
einer Simulation durchgeführt werden. Die zu entwickelnden Steu-
erstrategien sollten erst an der Simulation getestet und später dann
auf den realen Zeppelin übertragen werden. Diese Schritte sollten mit
Hilfe des MRiL-Entwurfsvorgehens realisiert und unter Verwendung
des Werkzeuges MiReAS implementiert werden.

Die folgenden Abschnitte beschreiben die iterative Entwicklung der
zehn Prototypen mit Hilfe des MRiL-Entwurfsprozesses am Beispiel
des Zeppelins. Dabei wurden alle Prototypen mit Hilfe des MiRe-
AS Frameworks entwickelt. Bis auf die letzten drei Prototypen, die
nur konzeptionell entwickelt wurden, sind alle Prototypen komplett
lauffähig.

5.2.1 Die Initialphase

Zu Beginn der Initialisierungsphase wurde die endgültige Applikation
in schriftlicher Form festgehalten, um so eine Basis für die Entwick-
lung zu erhalten. Die schriftliche Ausarbeitung, die dem ersten Schritt
der Vorgehensweise aus Kapitel 4.2101 entspricht, wurde so detailliert
wie möglich verfasst, um die Entwicklung zu vereinfachen und die
Berechnung der Metriken zu ermöglichen00. Aus der schriftlichen
Form wurden im folgenden Schritt die einzelnen Teile der Appli-
kation identifiziert und in die einzelnen Komponenten des MVCE
Architekturmusters eingeordnet. Diese erste Einteilung war eine sehr
grobe Einteilung der Komponenten, die allerdings sowohl für die
Entwicklung als auch für die Berechnung der einzelnen Werte der
Metrik ausreichte.

Daraus entstand die unten angegebene Tabelle mit den folgenden
Komponenten:

3Da durch die Kunststoffhülle des Zeppelin leider immer etwas Helium diffundiert, muss sie häufig
nachgefüllt werden, eine Füllung mit Helium kostet derzeit ca. 40,00e.
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Komponente MVCE-Kategorien

Zeppelin Modell, View

Steuerung Controller, View

Umgebung Environment, Modell, View

Metadaten View, Modell, Controller, Envi-
ronment

Aus der obigen Tabelle ist ersichtlich, in welche Kategorien die ein-
zelnen Komponenten der Applikation fallen. Dabei entsprechen die
hervorgehobenen Komponenten der primären MVCE-Kategorie, der
sie zugeordnet werden. Der Zeppelin muss dementsprechend als Mo-
dell vorliegen, um das Verhalten abzubilden, sollte aber auch eine
visuelle Repräsentation besitzen. Die Steuerung wird im Controller
abgebildet, kann jedoch auch eine visuelle Repräsentation haben. Die
Umgebung ist sowohl dem Environment zugeordnet, da wir keinen
Einfluss in der Software auf Ereignisse der Umgebung haben, kann
aber auch eine Entsprechung im Modell und im View haben, wenn
in späteren Prototypen die Daten der Umgebung zur Kollisionser-
kennung benutzt werden sollen. Die Metadaten stehen in diesem
Zusammenhang für z. B. Debuginformationen, die in allen Kategorien
erzeugt werden können und im View visualisiert werden sollen.

Nach der ersten groben Einteilung der Komponenten kann nun mit
der Arbeit am ersten Prototypen begonnen werden. Zunächst werden
alle Akteure des ersten Szenarios identifiziert. Das erste Szenario soll
einfach gehalten werden und zur Planung und Kommunikation des
Entwicklungsteams dienen. Des Weiteren soll die Entwicklung des
ersten Prototypen schnell und unkompliziert sein. So sind im ersten
Szenario wenig Akteure und auch der View und der Controller sind
einfach gehalten. Die Umgebung ist rein virtuell und basiert weder
auf simulierten noch auf realen Daten der echten Umgebung. Eine
Interaktion mit der Umgebung ist nicht vorhanden, sie besitzt nur eine
visuelle Repräsentation. Das Modell des Zeppelins ist repräsentiert
durch eine Transformation, die das visuelle Modell des Zeppelins
in der virtuellen Welt positioniert. Die Steuerung erfolgt über die
Tastatur des Rechners.

Es wurden somit für das erste Szenario die aufgeführten Akteure
definiert, die in der nachfolgenden Tabelle angegeben sind:
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Akteur Modell View Controller Environm.

Zeppelin × ×

Umgebung ×

Tastatur ×

Für die Einordnung des Prototypen und die Aussage über den Ent-
wicklungsstand müssen die Metriken, die in Kapitel 4.3.2109 definiert
wurden, berechnet werden. Dazu ist es notwendig eine Definition
der endgültigen Applikation zu erstellen. Dies wurde schon im ers-
ten Schritt in schriftlicher Form realisiert, so dass jetzt nur noch die
jeweiligen MVCE-Komponenten extrahiert und beschrieben werden
müssen. Dies wurde für die Modell-Metrik ΓM, die View-Metrik ΘV
und die Environment-Metrik ΩE durchgeführt.

In den nun folgenden Tabellen werden die Komponenten, die aus-
schlaggebend für die finale Version sind, aufgeführt, ob es sich um Ein-
bzw. Ausgaben handelt und, wenn dies möglich ist, von welchem Typ
sie sind und in welchem Wertebereich sie liegen. Für das endgültige
Modell M f inal ergab sich folgende Einteilung, die als Berechnungs-
grundlage der Modell-Metrik ΓM verwendet wurde:

Modell-Komponenten Eingabe Ausgabe

Heckrotor [−1, 0, . . . , 1, 0] –

Seitenrotoren [−1, 0, . . . , 1, 0] –

Winkel Seitenrotoren [−180, 0, . . . , 180, 0] –

Flughöhe – [0, 0, . . . , 10, 0]

Das Modell beschreibt hier die Ein- und Ausgaben der Hardware
des Zeppelins, die von der Software verwendet werden können. Der
Höhensensor wurde dabei speziell entwickelt und soll für die fortge-
schrittenen Steuerstrategien zum Einsatz kommen. Dabei wurde der
Höhensensor zu Anfang als Softwarekomponente realisiert, die die
Höhe des Zeppelins in der virtuellen Umgebung zurückgibt. Später
wurde eine spezielle Hardwarekomponente in den Zeppelin verbaut,
die die reale Höhe des Zeppelins mit Hilfe von Luftdruck ermittelte.
Zählen wir die in der oben angegebenen unterschiedlichen Ein- und
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Ausgabequellen für das endgültige Modell M f inal zusammen erhalten
wir einen Wert von Vier (M f inal = 4).

Für das Environment E f inal wurden folgende Parameter für die Be-
rechnungsgrundlage der Environment-Metrik ΩE festgestellt:

Environment-
Komponenten Eingabe Ausgabe

Hindernisse – Tracking

Umgebung – Tracking

Umwelteinflüsse – Gyroskop,
Tracking

Beim Environment soll in späteren Prototypen Hindernisse erkannt
und die Position der Umgebung relativ zu einer festen Kamera be-
stimmt werden, um so bestimmte Manöver ausführen zu können. Des
Weiteren sollen Umwelteinflüsse, die auf den Zeppelin wirken, wie
z.,B. Gegen- oder Seitenwind, mit Hilfe eines Gyroskops4 oder eines
Camera-Tracking erkannt und darauf reagiert werden. Damit ergeben
sich laut obiger Tabelle drei Komponenten für das finale Environment
(E f inal = 3).

Für den View Vf inal wurden folgende Parameter für ΘV festgelegt:

View-
Komponenten Eingabe Ausgabe

Zeppelin – Realer Zeppein

Umgebung – Reale Umgebung

Zustand Flughöhe, Positi-
on, etc. Visualisierung in VR/AR

Modell Modellparameter Visualisierung des Mo-
dells

Für den View soll der endgültige Prototyp der reale Zeppelin in der
realen Umgebung sein, vorzugsweise sollen bestimmte Parameter
entweder durch AR- oder durch VR-Techniken visualisiert werden.
Die Techniken richten sich dabei nach der aktuellen Darstellung. Wir

4Da sich der Zeppelin bei Gegenwind um die Querachse (pitch axis in Abbildung 5.2162) neigt, kann
er über über ein Gyroskop erkannt werden.
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erhalten somit vier Komponenten für finalen View ist somit (Vf inal =
4).

Der eingesetzte Controller wird (zumindest bei neuen Steuerstrategi-
en) mit Hilfe von Benutzertests gewertet, um einen Wert für die Metrik
zu erhalten. Diese Benutzertests sind hier allerdings klein gehalten
und werden meist nur von den Entwicklern selbst ausgeführt. Somit
ist die Einordnung eher subjektiv.

5.2.2 Der erste Prototyp: Eine einfache VR Version

Wie schon im Kapitel 5.2.1164 beschrieben soll der erste Prototyp
zur Planung und Kommunikation des Entwicklungsteams dienen
und dementsprechend einfach gehalten werden. Über diesen sehr
einfachen virtuellen Prototypen können Manöver visualisiert und so
besser im Team besprochen werden.

Abbildung 5.4: Bilder aus dem ersten Prototypen.

Die Entwicklungszeit für diesen Prototypen war sehr kurz, dabei wur-
de die meiste Zeit die Modellierung des 3D-Modells des Zeppelins
verwendet. Das 3D Modell wurde in MiReAS als spezieller Akteur
(RenderableActor) implementiert. Über einen KeyboardManipulator, der
auf Tastatureingaben reagieren kann, wurde die Transformation des
Zeppelins in der virtuellen Welt gesteuert. Die Umgebung wurde
durch eine einfache Bodenplatte (Groundplane) realisiert. Des Weiteren
wurden zwei einfache 3D Objekte in die Szene eingefügt, um die der
Zeppelin gesteuert werden kann. Es wurde jedoch keine Kollisionser-
kennung in diesen Prototypen eingebaut, so dass der Zeppelin auch
durch diese Objekte gesteuert werden kann. In Abbildung 5.4 sind
einige Screenshots vom ersten Prototypen abgebildet.

Um nun über die Metriken festzustellen, wie weit der Prototyp entwi-
ckelt ist, muss dieser mit dem finalen Prototypen verglichen werden.
In der folgenden Tabelle werden die in dem Szenario verwendeten

168



5.2 PROTOTYPENENTWICKLUNG

Komponenten entsprechend klassifiziert und der Wert der Metrik
berechnet.

Modell-Metrik ΓM
σi Typ εi

Zeppelin Transformation Virtuell 0

ΓM = 0
4 = 0

Der Wert für die Modell-Metrik ΓM ist somit für diesen Prototypen 0,
da noch keines der erwarteten Komponenten implementiert ist. Die
Bewegung des Zeppelins über eine einfache Manipulation der Trans-
formationsmatrix ist eine rein virtuelle Lösung für diesen Prototypen.

View-Metrik ΘV
ωi Typ φi
3D Modell des Zeppelins Virtuell 0,5
Virtuelle Umgebung Temporär 0

ΘV = 0,5
4 = 1

8

Die View-Metrik ΘV ist für diesen Prototypen 1
8 , da als einzige Kompo-

nente der Zeppelin als virtuelles 3D Modell existiert. Es ist zwar eine
virtuelle Umgebung in dem Szenario vorhanden, allerdings entspricht
es nicht der Realität, ist also nur temporär für diesen Prototypen
implementiert.

Environment (E)

Controller (C)

Model (M)

View (V)

Abbildung 5.5: Kiviatgraph des ersten Prototypen.

Die Environment-Metrik ΩE ist bei diesem Prototypen 0, da keine
Informationen der realen Umgebung, weder simuliert noch per Sensor,
ermittelt werden.

Da die Steuerung über die Tastatur des Computers geschieht, wur-
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den keine Benutzertests durchgeführt, so dass sich auch hier für die
Controller-Metrik ΨC 0 ergibt.

Werden nun die einzelnen Metriken auf die entsprechenden Achsen
des Kiviatgraphen abgetragen, erhalten wir den Entwicklungsstand
für den vorliegenden Prototypen, wie er in Abbildung 5.5169 darge-
stellt ist. An dem Kiviatgraphen kann man gut erkennen, dass die
Entwicklung in einem sehr frühen Stadium ist. Der einzige Wert, der
nicht Null ist, ist der View, da hier schon ein einigermaßen genaues
Modell des Zeppelins als Visualisierung verwendet wird. Alle ande-
ren Komponenten sind nur temporär, sie werden früher oder später
ersetzt.

5.2.3 Der zweite Prototyp: Virtueller Prototyp mit Physiksi-
mulation

Auf dem ersten Prototypen aufbauend wurde der zweite Prototyp
entwickelt, bei dem das realistische Verhalten des Zeppelins im Mittel-
punkt stand. Wurde im ersten Prototypen die Position des Zeppelins
über die direkte Manipulation des Transformationsmatrix realisiert,
sollte beim zweiten Prototyp ein physikalisches Modell zum Einsatz
kommen, welches das Verhalten des Zeppelins realistisch nachbilden
sollte.

Abbildung 5.6: Bilder des zweiten Prototypen.

Um dieses Ziel zu erreichen, mussten einige Änderungen an dem
bisherigen Prototypen vorgenommen werden. Das visuelle Modell
des Zeppelins erhielt zu allererst eine Kollisionsgeometrie, so dass es
möglich war, Kollisionen mit der Umgebung zu erkennen. Da das 3D
Modell des Zeppelins, das zur Darstellung verwendet wurde, eine
zu hohe Anzahl an Polygonflächen enthielt, musste eine vereinfachte
Version des Zeppelins für die Kollisionserkennung erzeugt werden. In
Abbildung 5.7171 ist der Unterschied zwischen den beiden Modellen
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sichtbar. Zu Erkennen ist, dass die Geometrie zur Kollisionserkennung
gegenüber dem visuellen 3D Modell des Zeppelins stark vereinfacht
wurde. Die Qualität des vereinfachten Kollisionsmodells reicht jedoch
aus, um eine genaue Simulation zu erhalten.

Abbildung 5.7: 3D Modell vs. Kollisionsmodell des Zeppelins.

In MiReAS wurde nun das Modell des Zeppelins um physikalische
Eigenschaften erweitert, indem dort der vorhandene RenderableAc-
tor durch einen PhysicalActor ersetzt wurde. Dieser beinhaltet zum
einen die 3D Geometrie, die dargestellt werden soll, zum anderen
die Kollisionsgeometrie, die unsichtbar nur für die physikalischen
Berechnungen genutzt wird. An diesen PhysicalActor können nun Ak-
tuatoren angehängt werden, die physikalische Kräfte auf den Zeppelin
ausüben. Einerseits existieren die physikalische Effekte wie die Auf-
triebskraft oder den aerodynamischen Widerstand und andererseits
gibt es die einzelnen Propeller des Zeppelins, die dem physikalischen
Modell zugefügt werden müssen. Die Achse der Schubrotoren wird
über einen modellierten DC-Motor gesteuert. Alle Motoren und Pro-
peller beziehen sich auf den entsprechenden Knoten im 3D-Modell,
so dass diese auch die exakte Position besitzen. Damit die Drehrich-
tung der Schubmotoren in der virtuellen Umgebung besser sichtbar
ist, sind auf diese rote Kegel aufgesetzt. Abbildung 5.6170 zeigt drei
Screenshots aus dem fertigen Prototypen.

Wenn wir nun die Modell-Komponente des Prototypen betrachten,
kommen wir auf folgendes Ergebnis für die Berechnung der Modell-
Metrik ΓM:

Modell-Metrik ΓM
σi Typ εi

Physikalisches Modell Virtuell 0

Heckrotor Simuliert 0,5
Seitenrotoren Simuliert 0,5

Fortsetzung auf der nächster Seite
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Fortsetzung von der vorherigen Seite
σi Typ εi

Winkel Seitenrotoren Simuliert 0,5

ΓM = 1,5
4 = 3

8

Das physikalische Modell, was wir in diesem Prototypen eingebaut
haben, ist rein virtueller Natur, da es in der finalen Version durch
den realen Zeppelin gegeben ist und wir diese Eigenschaft nicht
beeinflussen können. Durch das physikalische Modell des Zeppelins
sind wir jedoch in der Lage, die Bewegung des Zeppelins durch die
korrekten Kräfte an den Rotoren zu simulieren. Damit erhalten wir
einen Wert von 3

8 für die Modell-Metrik ΓM.

Der View wurde dahingehend aufgewertet, dass Schatten dem Sze-
nario zugefügt wurden. Durch die Visualisierung der Drehrichtung
der Rotoren wurde weiterhin eine Darstellung von Modellparametern
eingefügt, die die Darstellung erweitert. Da sich allerdings nichts an
der visuellen Repräsentation des Umgebung geändert hat, ist der Wert
für die View-Metrik nicht viel höher als der des ersten Prototypen:

View-Metrik ΘV
ωi Typ φi
3D Modell des Zeppelins Virtuell 0,5
Virtuelle Umgebung Temporär 0

Visualisierung Modellparameter Virtuell 0,5

ΘV = 1
4

Zu sehen ist, dass sich der Wert für die View-Metrik verbessert hat,
da nun Parameter des Modells visualisiert werden und dem Benutzer
die Möglichkeit zur Kontrolle bieten. Da die Umgebung noch immer
nicht die Realität widerspiegelt, fließt sie nicht in die Bewertung mit
ein.

Wie bei dem ersten Prototypen ist der Wert der Environemnt-Metrik
ΩE 0, da keine Daten der Umwelt der Applikation zur Verfügung
gestellt werden.

Die Steuerung wurde überarbeitet und es ist nun möglich, den Zep-
pelin über einen Joystick oder einen Gamecontroller zu steuern. Mit
Hilfe einer Fernsteuerung, die über USB an den Computer angeschlos-
sen werden kann (siehe Abbildung 5.8173) kann der virtuelle Zeppelin
genau so gesteuert werden wie der reale Zeppelin. Ein Benutzer, der
geübt in der Steuerung des realen Zeppelins ist, kam auf Anhieb
mit der Steuerung des virtuellen Zeppelins zurecht und konnte ihn
schnell kontrolliert steuern. Um eine Einschätzung dieser Steuerung
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Abbildung 5.8: USB Fernsteuerung.

zu bekommen, wurde ein kleiner Test mit den Entwicklern und dem
geübten Benutzer durchgeführt, bei dem der Zeppelin zwischen den
beiden Hindernissen in einer Acht gesteuert werden sollte, ohne dabei
die Hindernisse zu berühren. Es wurden die Zeit und die Kollisionen
protokolliert und mit Hilfe der Contoller-Metrik ΨC der Wert 0.25

berechnet.

Die Akteure in diesem Prototypen sind somit folgendermaßen defi-
niert:

Akteur Modell View Controller Environm.
Zeppelin × ×
Heckrotor × ×
Seitenrotoren × ×
Kollisionsmodell ×
Umgebung × ×
Fernsteuerung ×

Der Zeppelin wurde weiter unterteilt und es wurden der Heckrotor
und die beiden Seitenrotoren sowohl im Modell als auch im View
zugefügt. Des Weiteren wurde die Kollisionsgeometrie dem Modell
zugefügt, damit Kollisionen erkannt werden können. Die Umgebung
findet sich auch im Modell wieder, da der Zeppelin mit den beiden
Hindernissen kollidieren kann. Die Tastatur wurde durch die USB
Fernsteuerung ersetzt und ist nun für die Steuerung zuständig.

In der Abbildung 5.9174 sind nun die einzelnen Metriken in den Kiviat-
graphen eingetragen worden. Im Gegensatz zum ersten Prototypen
ist nun sowohl der Wert für die Modell-Metrik als auch der Wert

5Dieser Wert ist durch die kleine Gruppe an Teilnehmern jedoch nicht repräsentativ.
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Environment (E)

Controller (C)

Model (M)

View (V)

Abbildung 5.9: Kiviatgraph des zweiten Prototypen.

für die Controller-Metrik auf einen Wert > 0 gestiegen. Der Wert für
den View konnte sich über die Visualisierung der Modellparameter
verdoppeln. Die Schatten werten zwar den visuellen Eindruck auf,
spielen allerdings in der Bewertung des Views keine Rolle.

5.2.4 Der dritte Prototyp: Verfeinerung der Steuerung

Mit dem verbesserten Modell, das im letzten Prototypen eingebaut
wurde, verhält sich der Zeppelin im allgemeinen Fall realitätsnah.
Der Prototyp kann nun als Grundlage für die Entwicklung einer
verbesserten Steuerung verwendet werden. Im dritten Prototyp soll
nun die Steuerung verbessert werden, um die Erfolgsrate zu erhöhen.
Dabei soll das Eingabegerät dasselbe bleiben wie im zweiten Prototyp,
allerdings soll der Benutzer nicht mehr direkten Einfluss auf die
einzelnen Motoren haben, sondern den Zeppelin intuitiver steuern
können.

Abbildung 5.10: Bilder aus dem dritten Prototypen.

Bei der zu entwickelnden Steuerung soll der Benutzer die Höhe
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und den Kurs des Zeppelins angeben, woraufhin der Zeppelin dann
versucht, diese Vorgaben umzusetzen. Hierfür wurden zunächst vir-
tuelle Sensor-Plug-ins entwickelt, die einen Höhensensor sowie einen
Kompass(-sensor) abbilden. Zur Regelung der Höhe wurden über
einen PID-Regler6 die Informationen des virtuellen Höhensensors in
Steuersignale der Antriebsmotoren so umgesetzt, dass sie den Zeppe-
lin auf der eingestellten Höhe halten.Da die Antriebsrotoren nur zwei
Freiheitsgrade besitzen (Vortrieb und Auftrieb), ist die Realisierung
eines solchen Reglers aufwändig.

Zielhöhe

Aktuelle Höhe
Gewählter Vorwärtsschub

H
öh

en
di

ffe
re

nz

resultierender
Winkelresultierene Leistung

Aktuelle Position t

Berechnete Position t+1

Abbildung 5.11: Berechnung des Winkels und der Leistung.

In Abbildung 5.11 ist die Methode der Berechnung zur Höhenregu-
lierung abgebildet. Dabei wird zunächst die Höhendifferenz zum
Zeitpunkt t zwischen der momentanen Höhe des Zeppelins und der
gewählten Höhe berechnet. Aus dem gewählten Vorwärtsschub, den
der Benutzer eingestellt hat, kann nun der resultierende Winkel für
die Antriebsmotoren berechnet werden. Damit der Zeppelin sowohl
die Höhe als auch den gewählten Vorwärtsschub erlangt, wird die
resultierende Leistung der Motoren berechnet und eingestellt. Damit
sollte der Zeppelin rechnerisch zum Zeitpunkt t + 1 an die berech-
nete Position gelangen. Da die Trägheit hier nicht mit berücksichtigt
wird, wurde ein PID Regler verwendet, der die Berechnung konti-
nuierlich neu berechnet und dabei versucht, starke Schwingungen
zu mindern. Abbildung 5.12176 verdeutlicht noch einmal genau die
Zusammenhänge zwischen der Höhenreglung und dem Vorschub, die
im Rahmen einer Bachelorarbeit [Lau08] bereits vor der Realisierung
des Prototypen konzipiert wurden.

Auch der Kurs wurde über einen entsprechenden Regler, der die
Informationen des Kompasssensors verarbeitet, realisiert. Die Steuer-
werte für den jeweiligen Kurs werden für den Heckrotor berechnet.
Da dieser jedoch nur einen Freiheitsgrad besitzt, ist die Implementie-
rung des Reglers einfacher als bei der Höhensteuerung. Analog zur
Kursabweichung wird die Stärke des Heckrotors geregelt.

6Der Regelkreises eines PID-Reglers (proportional–integral–derivative controller) besteht aus einem
P-Anteil, einem I-Anteil und einem D-Anteil.
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Abbildung 5.12: Berechnungsgrundlage der Höhenregelung [Lau08]

Damit der Benutzer ein Feedback der eingegebenen Höhe und des
Kurses hat, wurden diese beiden Parameter visualisiert. In Abbildung
5.10174 sind diese Visualisierungen zu sehen. Dabei gibt der blaue
Kreis die vom Benutzer eingestellt Höhe an, der gelbe Kreis die aktu-
elle Höhe des Zeppelins und das rote Kreissegment die Abweichung
des eingestellten Kurses zur aktuellen Flugrichtung.

Zum Testen der Kurskontrolle wurde in das Szenario eine virtuelle
Windquelle positioniert, In Abbildung 5.10174 ist diese Windquelle
mit einem Drahtgitter-Zylinder in der Mitte der Szene visualisiert.
Befindet sich der Zeppelin innhalb des Wirkbereiches der virtuellen
Windquelle, wird das physikalische Modell des Zeppelins von diesem
beeinflusst.

Die Zielwerte des Kurses und der Höhensteuerung werden mit Hilfe
der Fernbedienung, die schon beim zweiten Prototypen zum Einsatz
kam, eingestellt. Solange der Benutzer Steuersignale sendet, wird
der jeweilige Zielwert eingestellt. Setzt der Benutzer die Steuerung
aus, wird der aktuelle Wert von Höhe bzw. Kurs als Zielwert für die
Regelung festgelegt. Dies vereinfacht die Steuerung, da die Zielwerte
direkt auf die Eingaben des Benutzers reagieren.

Bei dem dritten Prototypen hat sich weder am View noch am Modell
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etwas verändert. Dem View wurde zwar die Visualisierung der Höhe
und des Kurses hinzugefügt, allerdings ändert das nicht den Wert
der von uns definierten View-Metrik, da schon im zweiten Prototy-
pen Parameter visualisiert wurden. Als Akteure müssen diese beiden
Visualisierungen indes mit angeführt werden. Das Modell ist dasselbe
wie im zweiten Prototypen, nur dass sich die Methode, wie der Be-
nutzer damit interagiert, verändert hat. Geändert hat sich allerdings
der Controller, der nun die Low-Level Motorsteuerung abstrahiert
und eine Höhen- und Kurssteuerung anbietet. Des Weiteren wurde
eine virtuelle Windquelle implementiert, die Umwelteinflüsse wider-
spiegelt. Damit ist die erste Komponente im Bereich Environment
integriert.

Environment-Metrik ΩE
ηi Typ δi
Umwelteinflüsse Simuliert 0,5

ΘV = 1
6

Wie im zweiten Prototypen wurde nur ein Benutzertest im kleinen
Rahmen unter den Entwicklern durchgeführt. Der Aufbau war hier
auch derselbe wie zuvor. Es sollte wieder zwischen den Hindernissen
eine Acht geflogen werden, ohne dass der Zeppelin mit den Hinder-
nissen kollidiert. Erschwerend hinzu kam die Windquelle, die sich in
der Mitte zwischen den beiden Hindernissen befand. Hier musste je-
doch nicht der Benutzer den Kurs neu setzten, sondern der Controller
musste die entstandene Kursänderung korrigieren. Es waren nur die
Reaktionen der Benutzer interessant, da die sich auf die automatische
Kurskorrektur einrichten mussten. Nach der Bewertung berechnete
sich ein Wert für die Controller-Metrik von 0.457.

Für den dritten Prototypen ergibt sich folgende Aufteilung:

Akteur Modell View Controller Environm.
Zeppelin × ×
Heckrotor × ×
Seitenrotoren × ×
Kollisionsmodell ×
Umgebung × ×
Fernsteuerung ×
Kurs ×
Höhe ×
Wind × ×

Neu als Akteur hinzugekommen sind der Kurs und die Höhe, die

7Der Wert wurde zur Übersichtlichkeit im Kiviatgraphen abgerundet.
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visualisiert werden. Der virtuelle Wind, der die Umgebung wider-
spiegelt, wird dem Environment zugeordnet, hat allerdings auch eine
visuelle Repräsentation. Als Controller dient wie im zweiten Prototy-
pen die USB Fernsteuerung, die jetzt jedoch anders verwendet wird,
da sie nicht mehr direkt die Rotoren steuern.

Environment (E)

Controller (C)

Model (M)

View (V)

Abbildung 5.13: Kiviatgraph des dritten Prototypen.

Damit ergibt sich für den Kiviatgraphen das Bild, das in Abbildung
5.13 zusehen ist. Der Wert für den Controller hat sich merklich verbes-
sert und durch die Verwendung des virtuellen Windes wurde auch
die Environment-Metrik etwas erhöht. Durch die Verwendung der
neuen Steuerung ist die Kontrolle des Zeppelins einfacher geworden
und die Benutzer lernen schneller den Zeppelin zu beherrschen. Al-
lerdings benötigt diese Steuerung auch eine gewisse Lernphase, weil
die Elemente des Controllers erlernt und eingeprägt werden müssen.

Im nächsten Schritt soll nun eine realistischere Umgebung entstehen,
um den Zeppelin unter fast realen Bedingungen steuern zu können.

5.2.5 Der vierte Prototyp: Verbesserte real existierende Um-
gebung

Nach erfolgreichem Test der ersten verbesserten Steuerung wurde
für den vierten Prototypen eine verbesserte und real existierende
Umgebung angestrebt. Hierzu wurde ein 3D-Modell des Lichthofs
der Fachhochschule Düsseldorf modelliert und eingebaut, wie in
Abbildung 5.14179 zu sehen.

Das visuelle 3D Modell wurde exakt nach den architektonischen Vor-
gaben modelliert und eine daraus entwickelte, einfachere Version
diente zur Kollisionserkennung (Abbildung 5.15179). Da der Zeppelin
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Abbildung 5.14: Bilder aus dem vierten Prototypen.

in dieser Umgebung schon mehrfach geflogen wurde, konnte mit Hilfe
des realistischen Umgebungseindrucks die Steuerung und das Ver-
halten des Zeppelins besser beurteilt werden. Dies sollte noch einmal
das physikalische Modell des Zeppelins auf Korrektheit überprüfen.

Abbildung 5.15: 3D Modell vs. Kollisionsmodell der Umgebung.

Dieser Prototyp ist ein Zwischenschritt zur Einführung der nächsten
Verbesserung der Steuerung. Es war wichtig, dass hier die Umgebung
exakt modelliert wurde, damit im nächsten Schritt die neue Steuerung
mit dem virtuellen und realen Zeppelin verglichen werden konnte.
Deshalb wurden hier auch die Kurs- und Höhenkontrolle wieder
durch die einfachere Steuerung aus dem zweiten Prototypen ersetzt.

Es ergeben sich für den vierten Prototypen folgende Akteure:

Akteur Modell View Controller Environm.
Zeppelin × ×
Heckrotor × ×
Seitenrotoren × ×
Kollisionsmodell ×
Umgebung × ×

Fortsetzung auf der nächster Seite
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Fortsetzung von der vorherigen Seite
Akteur Modell View Controller Environm.
Fernsteuerung ×

Da die neue Steuerung vom dritten Prototypen wieder entfernt wur-
de, sind auch die entsprechenden Akteure nicht mehr im Szenario
vorhanden. Die Umgebung ist nun auch im Environment vorhan-
den, da es sich um ein Abbild der realen Umgebung handelt und
der Zeppelin mit der Umgebung kollidieren kann. Dabei wird die
virtuelle Umgebung als simulierte reale Umgebung gesehen, das be-
deutet, die Applikation kann nicht auf die Daten zugreifen, außer es
würde in passender Sensor existieren. Die Kollision ist dabei von der
visuellen Darstellung gekapselt. Somit erhöht sich der Wert für die
Environment-Metrik folgendermaßen:

Environment-Metrik ΩE
ηi Typ δi
Hindernisse Simuliert 0,5
Umgebung Simuliert 0,5

ΘV = 1
3

Die Darstellung wurde durch die real existierende virtuelle Umge-
bung aufgewertet, so dass sich der Wert der View-Metrik ein wenig
erhöht hat. Die Modellparameter aus dem dritten Prototypen (Kurs
und Höhe) wurden zwar nicht mehr visualisiert, allerdings wurde
weiterhin die Drehrichtung der Rotoren angezeigt, so dass sich der
Wert für die Visualisierung von Modellparametern nicht ändert.

View-Metrik ΘV
ωi Typ φi
3D Modell des Zeppelins Virtuell 0,5
Virtuelle Umgebung Virtuell 0.5
Visualisierung Modellparameter Virtuell 0,5

ΘV = 3
8

Der Wert für die Controller-Metrik ist derselbe wie im zweiten Pro-
totyp. Es wurden keine Benutzertests für die Metrik durchgeführt,
allerdings wurde dieser Prototypen von einem erfahrenen Anwender
ausführlich getestet, um den virtuellen Prototyp und den realen Zep-
pelin vergleichen zu können. Das Ergebnis war, dass sich der virtuelle
Prototypen für die meisten Fälle hinreichend genau so verhielt, wie
der reale Zeppelin. Auf diesem Ergebnis aufbauend konnte die Arbeit
an neuen Steuerstrategien aufgenommen werden.

Im Kiviatgraphen in Abbildung 5.16181 ist die Veränderung des vier-
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Environment (E)

Controller (C)

Model (M)

View (V)

Abbildung 5.16: Kiviatgraph des vierten Prototypen.

ten Prototypen gut zu erkennen. Der Wert der Controller-Metrik ist
wieder auf dem Niveau vom zweiten Prototypen, das Modell ist
unverändert und die Werte vom View und vom Environment sind
gegenüber dem Vorgänger etwas gestiegen. Noch bewegt sich die gan-
ze Entwicklung eher im unteren Drittel des Graphen, Der Grund ist,
dass zum vorliegenden Zeitpunkt der ganze Prototyp in VR existiert
und noch keine realen Akteuere zur Anwendung gekommen sind.

Am Ende der Entwicklung des vierten Prototypen wurde die verbes-
serte Steuerung des dritten Prototypen wieder eingebaut, jedoch ohne
die Visualisierung des Kurses und der Höhe. Damit ließ sich nun
auch diese Steuerung in einer real existierenden Umgebung testen.
Die Ergebnisse sind mit denen aus dem dritten Prototypen identisch,
so dass der Wert der Controller-Metrik gleich blieb. Die grün gestri-
chelte Linie in Abbildung 5.16 zeigt diese Ausprägung des vierten
Prototypen.

5.2.6 Der fünfte Prototyp: Virtueller Prototyp mit einfacher
Gestensteuerung

Nachdem der Zeppelin mit der einfachen und der High-Level Steue-
rung in einer vertrauten real existierenden Umgebung getestet werden
konnte, sollte nun im fünften Prototypen eine weitere Verbesserung
der Steuerung implementiert werden.

Die USB Fernsteuerung soll nun durch eine einfache Gestenerkennung
ersetzt werden, die Manöver des Zeppelins intuitiver ausführen soll.
Der Zeppelin soll über die Kommandos Hoch, Runter, Links, Rechts,
Vorwärts und Rückwärts gesteuert werden. Diese Kommandos sollen in
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Abbildung 5.17: Bilder aus dem fünften Prototypen.

möglichst intuitive Gesten gewandelt werden. Die Gesten sollen mit
Hilfe der Wiimote, einem Eingabegerät der Spielekonsole Nintendo
Wii, das über einen 3-Achsen Beschleunigungssensor die Lage des
Controllers im Raum erkennen kann, in die entsprechenden Komman-
dos umgesetzt werden. Die Wiimote kann über Bluetooth mit Hilfe der
Bibliothek OIS [Cas10] in MiReAS genutzt werden. Für ein genaues
Tracking ist der 3-Achsen Sensor, der in der Wiimote verbaut wurde,
zu unpräzise, allerdings reicht er für eine Gestenerkennung aus. Auf
Basis der Accelerometer Gesture Recogniser Bibliothek (AGR), die
mit Hilfe der Hidden Markov Modellen (HMMs) [SPHB08] eine Ges-
tenerkennung realisiert8 wurde ein Plug-in für MiReAS entwickelt.
AGR erlaubt Gesten für 3D Beschleunigungsdaten zu trainieren und
trainierte Gesten zu erkennen.

Vorwärts Rückwärts

Abbildung 5.18: Gesten zur Schubkraftregulierung des Zeppelins.

Die Kommandos für die Steuerung des Zeppelins wurden über ent-
sprechende Gesten realisiert. In Abbildung 5.19183 und Abbildung
5.18 sind die Gesten dargestellt, die den Zeppelin steuern. Sie wur-
den mit dem von AGR mitgelieferten Programm ”GestureCreator“
trainiert und die entsprechenden HMM-Modelle zur Erkennung der

8Weitere Details der Realisierung der Gestenerkennung sind in der Masterarbeit von Pogsche-
ba [Pog09], zu finden.
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Gesten in MiReAS importiert. Beim Training der Gesten wurde die
Bewegung mehrfach aufgenommen, um so Fehler bei der Eingabe zu
kompensieren. Bei der Erkennung der Gesten haben sich gekrümmte
Bewegungen robuster gegenüber Fehlinterpretationen erwiesen, bei
geradlinigen Bewegungen traten zu viele Fehlerkennungen auf.

Die Schubkraft des Zeppelins nach vorne bzw. hinten wird über
den Neigungswinkel der Wiimote geregelt, wie in Abbildung 5.18182
dargestellt. Dieser kann über den 3-Achsen Beschleunigungssensor
direkt berechnet werden. Um eine gewisse Toleranz für die Ruhelage
der Wiimote zu gewährleisten, wurde der Neigungswinkel erst ab
einem bestimmten Schwellwert berücksichtigt.

Links Rechts

Runter

Hoch

Abbruch

Abbildung 5.19: Gesten zur Navigation des Zeppelins.

Soll der Zeppelin nach links oder rechts fliegen, muss der Benutzer die
Wiimote mit einem schnellen Impuls in die entsprechende Richtung
bewegen. Soll der Zeppelin hoch oder runter fliegen, muss entspre-
chend die Wiimote mit einem schnellen Impuls in die gewünschte
Richtung bewegt werden. Damit diese Gesten nicht fälschlicherwei-
se, beisielsweise bei der Einstellung der Schubkraft, erkannt werden
können, muss der Benutzer die B-Taste der Wiimote während der Ein-
gabe der Geste gedrückt halten (angedeutet durch die rot eingefärbten
Taste in Abbildung 5.19). Dadurch wird gewährleistet, dass bei unge-
wollten Bewegungen der Wiimote keine Gesten erkannt werden. Ist
eine Geste erkannt, wird die Aktion, die mit der Geste verbunden ist,
so lange ausgeführt, bis der Benutzer die Abbruch-Geste ausführt. Da-
durch werden alle Aktionen, die der Zeppelin gerade ausführt, ohne
Verzögerung abgebrochen. Die Geste für den Abbruch aller Aktionen
sollte für den Benutzer einfach zu merken und auch einfach in der
Ausführung sein, so dass sie schnell in Notsituationen ausgeführt
werden kann. Die Entscheidung fiel auf das Schütteln der Wiimote,
da diese Geste auch schon erfolgreich z. B. beim iPhone von Apple als
entsprechende Geste bekannt war.

Diese Art von Steuerung vereinfacht die Benutzung des Zeppelins,
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da sich der Benutzer nur fünf Gesten für die jeweiligen Kommandos
merken muss. Die Schwierigkeit in der Steuerung liegt jedoch nun in
der strikt sequenziellen Ausführung der Kommandos. Es ist mit den
vorgestellten Gesten nicht möglich, eine Kurs- bzw. Höhenänderung
während der Vorwärts oder Rückwärtsbewegung des Zeppelins zu
initiieren, die Kommandos werden hier strikt getrennt. Das bedeutet
bei einer Kurs- bzw. Höhenänderung, dass der Benutzer den Schub
auf Null zurücksetzten und die Geste zur Kurs- bzw. Höhenänderung
ausführen muss. Sobald der gewünschte Kurz bzw. die gewünschte
Höhe erreicht ist, muss der Benutzer die Aktion durch die Abbruch-
geste beenden und kann dann wieder den Schub des Zeppelins setzen.
Soll sowohl Kurs als auch Höhe verändert werden, muss dies auch
sequenziell geschehen, z. B. kann erst die Höhe und danach der Kurs
geändert werden. Es wäre auch eine parallele Ausführung der einzel-
nen Aktionen möglich gewesen, allerdings hätte das zu einer sehr viel
komplizierteren Steuerung geführt.

Bei dem fünften Prototypen ergab sich somit folgende Aufteilung der
Akteure:

Akteur Modell View Controller Environm.
Zeppelin × ×
Heckrotor × ×
Seitenrotoren × ×
Kollisionsmodell ×
Umgebung × ×
Wiimote ×
Gestenerkennung ×
Kurs ×
Höhe ×

Die Visualisierung der Höhe und des gewählten Kurses wurde wieder
eingebaut, so dass der Benutzer ein Feedback bekam. Anstatt der USB
Fernsteuerung wurde nun die Wiimote eingebunden und zusätzlich
die Gestenerkennung als Plug-in eingebaut. Die anderen Akteure
waren dieselben wie im vierten Prototypen.

Auch bei diesem Prototypen wurde ein kleiner Benutzertest mit den
Entwicklern und einem erfahrenen Benutzer, der den Zeppelin mit
der normalen Fernbedienung sehr gut steuern konnte, durchgeführt.
Die gestellte Aufgabe war, den Zeppelin einmal schnellstmöglich um
den Lichthof zu steuern, ohne dabei mit der Umgebung zu kollidieren.
Es zeigte sich, dass der erfahrene Benutzer mit der Fernbedienung
aus dem vierten Prototypen schneller die Aufgabe löste, jedoch war
die Fehlerrate und auch die Zeit, die die unerfahrenen Entwickler
benötigten, mit der Gestensteuerung sehr viel besser. Es wurde ein
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Wert von 0.65 (gerundet) für die Controller-Metrik berechnet.

Environment (E)

Controller (C)

Model (M)

View (V)

Abbildung 5.20: Kiviatgraph des fünften Prototypen.

Im Kiviatgraphen ist zu sehen, dass sich die Gestensteuerung über die
Wiimote positiv auf die Controller-Metrik ausgewirkt hat. Die anderen
Werte sind in Bezug auf den vierten Prototypen gleich geblieben, weil
sich nur die Steuerung geändert hat.

5.2.7 Der sechste Prototyp: Virtueller Prototyp mit verbesser-
ter Physiksimulation

Nach erfolgreichen Tests der ersten Konzepte für neue Interaktions-
techniken sollte nun in diesem sechsten Prototypen eine verbesserte
physikalische Simulation eingebaut werden.

Abbildung 5.21: Bilder des sechsten Prototypen (einfache Umgebung).

Anstatt der aktuell implementierten Game-Physik Bibliothek, die die
Simulation des Zeppelins übernimmt, soll ein komplexes und präzises
physikalisches Modell des Zeppelin mit Hilfe des Softwarepaketes
Software MATLAB/Simulink [Mat11a, Mat11b] erstellt und simuliert
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werden. Für MATLAB /Simulink existiert eine Vielzahl an Toolbo-
xen, die Funktionsblöcke zur Verfügung stellen. Diese sind teilweise
von Universitäten bzw. ambitionierten MATLAB/Simulink Benutzern
erstellt worden und stehen zur freien Verfügung. Daher ist MAT-
LAB/Simulink für präzise Simulation sehr gut geeignet und wird
auch in der Industrie und Forschung häufig für die Lösung solcher
Probleme eingesetzt.

Das Modell des Zeppelins sollte unabhängig von MiReAS entwi-
ckelt und simuliert werden. Um eine Kopplung zwischen der Softwa-
re MiReAS und MATLAB/Simulink zu realisieren, wurde zunächst
COMMUVIT benutzt, das auch schon bei der Kopplung von Virtools
und MATLAB/Simulink Modellen Verwendung fand (siehe Kapi-
tel 4.5.1136). Da es sich bei COMMUVIT um eine externe, einzeln
ausführbare Anwendung handelte, haben wir uns indes für eine in-
tegrierte Lösung entscheiden, die in MiRaAS integriert wurde. So
wurde ein spezielles Netzwerk-Plug-in sowohl in MiReAS als auch in
MATLAB/Simulink eingebaut, das es erlaubt, zwischen den beiden
Programmen zu kommunizieren. Wichtig dabei ist, dass die Übertra-
gung der Daten synchron geschieht, so dass keine Probleme bei der
Kopplung entstehen können. Dies ist insbesondere wichtig bei Übert-
ragungen von externen Kräften und Impulsen zum physikalischen
Modell.

Abbildung 5.22: Das MATLAB/Simulink Modell des Zeppelins.

In Simulink werden die Bewegungsgleichungen berechnet, die Pog-
scheba in seiner Masterarbeit [Pog09] erarbeitet und implementiert
hat. Hierzu wird ein spezieller Equations of Motion-Block in MAT-
LAB/Simulink erstellt, wie in Abbildung 5.22 zu sehen ist. Dieser
Block führt eine doppelte Integration von Kraft und Drehmoment aus,
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um die korrekte Position und Orientierung zu errechnen. In dem Mo-
dell existieren des Weiteren Blöcke zur Simulation der Corioliskraft,
des aerodynamisches Widerstandes, der Auftriebskraft und der An-
triebsmotoren. Die so berechneten Kräfte werden summiert und dem
Block, der für die Bewegungsgleichungen zuständig ist, bereitgestellt.
Dieser errechnet mit den Werten die Position, Orientierung und Ge-
schwindigkeit des Zeppelins und sendet diese Informationen über den
Block ”SimCom“, der eine Netzwerkschnittstelle kapselt, an MiReAS.
Die von MiReAS empfangenen Daten können nun benutzt werden,
um das visuelle Modell des Zeppelins korrekt auszurichten und zu
animieren. Die Informationen über die Motorleistungen, die über den
Controller eingestellt werden, und weitere externe Kräfte, liefert Mi-
ReAS im Gegenzug an das MATLAB/Simulink Modell zurück. Auf
dieser Basis berechnen sich dann die neuen Werte für den nächsten
Simulationsschritt.

Das in MATLAB/Simulink entworfene Modell des Zeppelins ist allei-
ne schon durch die Verwendung der exakten Berechnungsmethoden
genauer als die allgemeine Festkörpersimulation der Game-Physik
Engine. Um eine noch genauere Simulation zu erhalten, könnten z. B.
Verfahren, die in [Kor06] vorgestellt wurden, implementiert werden.
Das implementierte Modell des Zeppelins reicht allerdings komplett
für unsere Zwecke aus, so dass auf eine weitere Verfeinerung verzich-
tet wurde.

Eine Kollisionserkennung wurde der Einfachheit halber direkt in
MiReAS mit Hilfe von PAL (Physics Abstraction Layer, siehe Kapi-
tel 4.5.2148) implementiert. Kontaktpunkte zwischen dem Zeppelin
und anderen Objekten werden mit Hilfe von PAL generiert, nach
MATLAB/Simulink geschickt und dort in Impulse und Kräfte umge-
rechnet, die den Zeppelin vom Kollisionsobjekt abstoßen, um so eine
Durchdringung der beiden Objekte zu verhindern. Leider funktio-
nierte die Kollisionsverarbeitung mit Hilfe von PAL nicht so gut wie
die Kollisionserkennung der Game-Physik Engine. Hier wäre Bedarf
der Verbesserung, auf die jedoch aus zeitlichen Gründen verzichtet
wurde.

Betrachten wir nun die Akteure, die sich in diesem Prototypen wie-
derfinden, so erhalten wir folgende Aufteilung:

Akteur Modell View Controller Environm.
Zeppelin ×
Heckrotor × ×
Seitenrotoren × ×

Fortsetzung auf der nächster Seite
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Fortsetzung von der vorherigen Seite
Akteur Modell View Controller Environm.
Kollisionsmodell ×
Simulink Modell ×
Kommunikation ×
Umgebung × ×
Wiimote ×
Gestenerkennung ×
Kurs ×
Höhe ×

Durch die Auslagerung des Zeppelin-Modells nach MATLAB/Simu-
link ist in MiReAS nur noch das visuelle Zeppelinmodell vorhan-
den. Hinzu kam das Simulink-Modell, das extern die physikalischen
Berechnungen ausführt und sie MiReAS zur Verfügung stellt. Da-
zu wird ein Kommunikations-Akteur benötigt, der Daten von MAT-
LAB/Simulink empfängt bzw. diese dorthin sendet.

Der Wert für die Modell-Metrik hat sich nun geändert, da nun auch
noch die Berechnung der Flughöhe hinzukam:

Modell-Metrik ΓM
σi Typ εi

Physikalisches Modell Virtuell 0

Heckrotor Simuliert 0,5
Seitenrotoren Simuliert 0,5
Winkel Seitenrotoren Simuliert 0,5
Flughöhe Simuliert 0,5

ΓM = 2
4 = 1

2

Zu Beginn der Entwicklung dieses Prototypen wurde auf eine ein-
fache Umgebung und eine einfache Steuerung zurückgegriffen, um
sich auf die Entwicklung des Modells in MATLAB/Simulink bzw.
die Kommunikation zwischen MiReAS und MATLAB/Simulink zu
konzentrieren. Bilder aus dieser Phase sind in Abbildung 5.21185 zu
sehen. Später wurde allerdings wieder in dieselbe Umgebung und
auf dieselbe Steuerung wie in Prototyp 5 umgestellt, so dass sich für
diese beiden Varianten des sechsten Prototypen folgender Kiviatgraph
ergab:

Die Punkte, die mit der transparent-gestrichelten Linie verbunden
sind, repräsentieren den Prototypen mit der einfachen Steuerung und
Umgebung, die anderen den endgültigen sechsten Prototypen. Das
Modell ist etwas verbessert, da nun auch die Flughöhe mit simuliert
wird.
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Environment (E)

Controller (C)

Model (M)

View (V)

Abbildung 5.23: Kiviatgraph des sechsten Prototypen.

5.2.8 Der siebte Prototyp: Virtueller Prototyp in realer Umge-
bung

Die Entwicklung der virtuellen Prototypen ist nun bis auf wenige Klei-
nigkeiten abgeschlossen. Als nächster Schritt folgt nun der Übergang
von der virtuellen Umgebung in den realen Raum.

Abbildung 5.24: Bilder des siebten Prototypen.

Hierzu wird die virtuelle Umgebung aus aus dem Prototypen entfernt.
Das Kollisionsmodell wird jedoch beibehalten, um die Interaktion zwi-
schen realem Raum und virtuellem Zeppelin zu ermöglichen. Die
entfernte virtuelle Umgebung wird durch ein Live-Video desselben
Raumes ausgetauscht. Um die reale Umgebung sowohl mit dem vir-
tuellen Zeppelin als auch mit dem Kollisionsmodell zu registrieren,
werden in der realen Umgebung Marker an definierten Punkten plat-
ziert (Abbildung 5.24). Diese Marker können von MiReAS erkannt
werden und stellen eine Beziehung zwischen der virtuellen und rea-
len Welt her. Erst über diese Beziehung ist es möglich, den virtuellen
Zeppelin im realen Raum fliegen zu lassen und auch auf die reale
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Umgebung zu reagieren.9

Bei diesem Prototypen würde sich zur Visualisierung der Szene ein
Head-Mounted Display (HMD) anbieten, wir haben uns allerdings für
eine normale Videokamera entschieden, da wir so auch in der Lage
waren, nachträglich mit Hilfe des aufgenommenen Videomaterials
Offline-Versuche durchzuführen. Bei den Aufnahmen stellten sich
schnell einige Probleme beim Tracking der Marker heraus. Sind die
mit 20cm Größe relativ großen Marker zu weit entfernt, konnte ein
durchgängiges Verfolgen der Marker nicht immer garantiert werden.
Auch spielte die Ausleuchtung und der Winkel zwischen Marker
und Kamera eine große Rolle bei der Erkennung. Diese Probleme
sind jedoch bei visuellem Markertracking bekannt und können durch
geschickte Platzierung und gute Ausleuchtung behoben werden.

Ein weiteres Problem sind Verdeckungen von virtuellen Objekten
mit realen Objekten. Da nur das Videobild vorhanden ist, fehlen die
Tiefeninformationen, um das virtuelle Modell verdecken zu können.
Hier kann jedoch das Kollisionsmodell verwendet werden, das bei
der Berechnung der sichtbaren Pixel erkennen lässt, ob das Videobild
oder das virtuelle Objekt zu sehen ist. So kann entweder das Pixel
vom Videobild oder das Pixel vom Zeppelin je nach Entscheidung
gezeichnet werden. Diese Methode kann direkt auf modernen Gra-
fikkarten entschieden werden und benötigt kaum Rechenzeit. Diese
Technik wurde u. A. in der Arbeit ”Entwicklung virtueller Kreaturen
in 3D- und AR-Umgebungen“ [GSS04c] vorgestellt.

Bei den Akteuren hat sich im siebten Prototypen Folgendes geändert:

Akteur Modell View Controller Environm.
Zeppelin ×
Heckrotor × ×
Seitenrotoren × ×
Kollisionsmodell ×
Simulink Modell ×
Kommunikation ×
Umgebung ×
Fernsteuerung ×

Da in diesem Prototypen der Schwerpunkt auf die Integration des
virtuellen Zeppelins in die reale Umgebung gelegt wurde, haben
wir die Gestensteuerung wieder durch die einfache USB Fernbedie-
nung ersetzt. So konnte uns der geübte Benutzer ein Feedback über
die Qualität der Visualisierung und des Modells geben, da er diesel-

9Vorraussetzung zur realistischen Interaktion zwischen virtuellem Zeppelin und realer Umgebung
ist die exakte Modellierung des Kollisionsmodells.
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ben Manöver einmal mit dem virtuellen Prototypen und einmal mit
dem realen Zeppelin nachfliegen und beurteilen konnte. Hier zeigte
sich ein weiteres Mal, dass das physikalische Modell, das in MAT-
LAB/Simulink berechnet wurde, sehr exakt war. Leider war, wie auch
schon zuvor erwähnt, die Kollisionserkennung zwischen Zeppelin
und Kollisionsmodell teilweise unpräzise und träge. Da keine visuelle
Repräsentation der Umgehung mehr in dem Prototypen vorhanden
war, entfiel auch der entsprechende Akteur. Somit war die Umge-
bung nur noch durch einen Environment Akteur repräsentiert, hinter
dem ein Tracking System stand. Das Tracking System erkannte die
visuellen Marker in der Videoaufnahme und berechnete daraus die
die Position und Orientierung des Kollisionsmodells. Über die La-
ge des Kollisionsmodells konnten nun die Kollisionskräfte zwischen
dem Zeppelin und der Umgebung in MATLAB/Simulink berechnet
werden.

So ergab sich für die Environment-Metrik folgernder Wert:

Environment-Metrik ΩE
ηi Typ δi
Hindernisse Simuliert 0,5
Umgebung Real 1

ΘV = 1
2

Die Hindernisse sind zwar der realen Umgebung angepasst, allerdings
wird die Kollision noch simuliert. Die Umgebung ist komplett real
und muss mit Hilfe eines Trackingverfahrens erkannt werden. Da eine
bekannte Umgebung gewählt wurde, reicht ein einfaches visuelles
Marker-Tracking aus, um die Position und Orientierung der Kamera
im Raum zu berechnen und damit sowohl den Zeppelin als auch das
Kollisionsmodell auszurichten.

An der View-Metrik hat sich auch etwas geändert, da nun nicht eher
die virtuelle, sondern die reale Umgebung visualisiert wird.

View-Metrik ΘV
ωi Typ φi
3D Modell des Zeppelins Virtuell 0,5
Umgebung Real 1,0
Visualisierung Modellparameter Virtuell 0,5

ΘV = 1
2

Die Visualisierung der realen Umgebung ließ den Wert der View-
Metrik nun auf 1

2 ansteigen. Durch diese Veränderungen ergibt sich
folgender Kiviatgraph:
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Environment (E)

Controller (C)

Model (M)

View (V)

Abbildung 5.25: Kiviatgraph des siebten Prototypen.

Die Werte der Environment-Metrik und der View-Metrik sind gestie-
gen, da jedoch die einfachere Steuerung wieder benutzt wurde, ist
der Wert der Controller-Metrik gefallen. Für die Modell-Metrik ist der
Wert gleich geblieben bzgl. des sechsten Prototypen, da auch hier das
MATLAB/Simulink Modell aus dem sechsten Prototypen verwendet
wurde.

5.2.9 Der achte Prototyp: Realer Zeppelin mit AR-Unterstüt-
zung und verbesserter Steuerung

Die folgende Iteration konnte leider auf Grund fehlender Hardware-
unterstützung nur theoretisch betrachtet werden. Es wurde allerdings
das Konzept entwickelt und könnte in Zukunft umgesetzt werden,
wenn die Hardware entwickelt wurde. Im achten Prototypen geht
es um die Einbindung des realen Zeppelins mit der im dritten Pro-
totypen aus Kapitel 5.2.4174 vorgestellten Steuerung. Hierzu soll die
Fernbedienung des Zeppelins (Abbildung 5.26193, rechts) über USB
mit den entsprechenden Werten für die Motorensteuerung gespeist
werden. Die Möglichkeit, die Fernsteuerung über USB anzusteuern
ist allerdings nicht fertig entwickelt.

In den Zeppelin wird ein Embedded System Modul eingebaut, das
aus einer Controller-Einheit, einem Höhensensor und einem Kompass
besteht. Links in Abbildung 5.26193 ist die Platine des Moduls zu se-
hen, wie es in der Gondel des Zeppelins platziert ist. Das Modul soll
später komplett für die Kurs- und Höhenregelung alleine zuständig
sein, zunächst jedoch werden die Daten der beiden Sensoren über die
Fernbedienung an MiReAS weitergeleitet. Mit diesen realen Werten
kann die schon entwickelte Steuerung arbeiten und es ist möglich,
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Abbildung 5.26: Zeppelinplatine und Fernbedienung mit USB Modul

den Algorithmus zur Kurs- bzw. Höhenregulierung auch mit dem
realen Zeppelin zu testen. Später kann dieser Algorithmus dann auf
das Embedded System Modul übertragen werden und so autonom
die Regelung übernehmen. In diesem Prototypen soll der Zeppelin
mit Hilfe eines Trackings verfolgt werden, um so die gelieferten Wer-
te auch validieren zu können. Dabei können die Position und die
Höhendaten durch AR-Techniken am getrackten Zeppelin visualisiert
werden. Alternativ zum Embedded System Modul könnte auch das
Tracking die Informationen zum Kurs und zur Höhe liefern.

Im achten Prototypen haben wir demzufolge diese Akteure:
Akteur Modell View Controller Environm.
Zeppelin × ×
Heckrotor ×
Seitenrotoren ×
Kollisionsmodell ×
Umgebung ×
Umwelteinflüsse ×
Kommunikation ×
Fernsteuerung ×
Flughöhe × ×
Kurs × ×

In diesem Prototypen befindet sich der realen Zeppelin in der realen
Umgebung, allerdings wird immer noch ein Modell des Zeppelins
zur Berechnung des Kurses und der Höhenregulierung benötigt. In
diesem Modell sind Heck- und Seitenmotoren vorhanden, da die Um-
drehung und der Stellwinkel für diese am realen Zeppelin berechnen
werden müssen. Die Umgebung und die Umwelteinflüsse sowie das
Kollisionsmodell gehören hierbei zum Environment. Die Kommuni-
kation zwischen der Fernbedienung und dem MiReAS System muss
als Akteur vorhanden sein, damit die benötigten Daten empfangen
werden können.
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Bei der Betrachtung der Environment-Metrik kann folgender Wert
ermittelt werden:

Environment-Metrik ΩE
ηi Typ δi
Hindernisse Real 1,0
Virtuelle Umgebung Real 1,0
Umwelteinflüsse Real 1,0

ΘV = 1

Hier haben wir nun einen Wert von 1, so dass wir alle im Vorfeld
definierten Punkte realisiert haben. Der Wert für die View-Metrik sieht
dementsprechend so aus:

View-Metrik ΘV
ωi Typ φi
3D Modell des Zeppelins Real 1,0
Umgebung Real 1,0
Visualisierung Modellparameter Real 1,0
Visualisierung Zustandsparame-
ter Real 1,0

ΘV = 1

Auch bei dieser Metrik ermitteln wir einen Wert von 1, da alle Vor-
gaben erreicht worden sind. Dasselbe gilt auch für den Wert der
Modell-Metrik:

Modell-Metrik ΓM
σi Typ εi

Physikalisches Modell Virtuell 0

Heckrotor Real 1,0
Seitenrotoren Real 1,0
Winkel Seitenrotoren Real 1,0
Flughöhe Real 1,0

ΓM = 1

Wir benötigen immer noch ein virtuelles physikalisches Modell, um
den Kurs und die Höhenregulierung zu realisieren. Alle anderen
Bestandteile des Modells spiegeln die realen Bauteile des Zeppelins
wieder. Auch die Flughöhe ist ein realer Wert, der über den Höhen-
sensor im Zeppelin gemessen wird.

Zusammenfassend ergibt sich nun folgender Kiviatgraph:

Wir machen hier die Annahme, dass der Wert der Controller-Metrik
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Environment (E)

Controller (C)

Model (M)

View (V)

Abbildung 5.27: Kiviatgraph des achten Prototypen.

demselben Wert aus dem dritten Prototypen aus Kapitel 5.2.4174 ent-
spricht, da es sich um dieselbe Steuerung handelt. Da wir diesen
Prototypen nur konzeptionell entwickelt haben, konnten wie keine
Benutzertests durchführen. Wir hätten nun den Prototypen in den drei
übrigen Metriken soweit entwickelt, wie wir es zuvor festgelegt hatten.
Bei der Entwicklung kann nun der Schwerpunkt auf eine verbesserte
Steuerung gelegt werden.

5.2.10 Der neunte Prototyp: Realer Zeppelin mit AR-Unterstüt-
zung und verbesserter Hardware-Steuerung

Der neunte Prototyp ist eine konsequente Weiterentwicklung des
achten Prototypen und konnte daher nur konzeptionell entwickelt
werden. Die Steuerung ist in diesem Prototypen nun komplett auf
dem Embedded System umgesetzt worden, nachdem die Algorithmen
zunächst im achten Prototypen mit MiReAS getestet worden sind.

Abbildung 5.28: Bilder des neunten Prototypen.
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Wie im achten Prototypen werden Informationen direkt an dem mit
Markern verfolgten Zeppelin visualisiert. Hierzu gehören die Anzeige
des zurückgelegten Pfades sowie die aktuelle Richtung, in der sich der
Zeppelin bewegt. Des Weiteren werden die Positionsdaten über dem
Zeppelin angezeigt. Durch ein entsprechendes Plug-in werden diese
Zusatzinformationen im Kreis um den Zeppelin angeordnet. Leider
konnte die Höhenregelung auf Grund der fehlenden Anbindung
der Fernbedienung an MiReAS, die die Sensor- und Reglerdaten
senden sollte, nicht visualisiert werden. Aus demselben Grund konnte
auch die Gestensteuerung nicht in diesen Prototypen implementiert
werden.

Environment (E)

Controller (C)

Model (M)

View (V)

Abbildung 5.29: Kiviatgraph des neuneten Prototypen.

Gerne hätten wir die Gestensteuerung des fünften Prototypen aus
Kapitel 5.2.6181 eingebaut, jedoch war das wegen der fehlenden Anbin-
dung der Fernbedienung an MiReAS nicht möglich. Da sich ansonsten
an diesem Prototypen gegenüber dem achten Prototyp nichts weiter
geändert hat als die konzeptionelle Idee der Gestensteuerung, ändert
sich am Kiviatgraph auch nur der Wert der Controller-Metrik. Der
hier eingetragene Wert ist einfach vom fünften Prototypen übertragen
worden, würde man den Prototypen realisieren, müsste man den Wert
allerdings noch validieren.

5.2.11 Der zehnte Prototyp: Realer Zeppelin in virtueller Um-
gebung

Auch dieser Prototyp wurde nur konzeptionell entwickelt, es wurde
jedoch schon teilweise mit der Entwicklung begonnen. Leider war der
Prototyp zum Zeitpunkt des Verfassens dieses Textes noch nicht fertig,
so dass hier nur auf Teilergebnisse zurückgegriffen werden kann.
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Abbildung 5.30: Konzeptbilder des zehnten Prototypen.

In diesem Prototypen wird gezeigt, dass bei der Weiterentwicklung
der Steuerung wieder zurück in die Virtualität gewechselt werden
kann. Allerdings soll hier nicht der virtuelle Zeppelin zum Einsatz
kommen, sondern der reale Zeppelin, der sich in einer virtuellen
Umgebung bewegt. So ist es möglich, neue Konzepte der Steuerung
direkt am realen Zeppelin zu testen, jedoch die Gefahr zu minimie-
ren, den Zeppelin zu beschädigen. Denkbar wäre ein intelligentes
Steuersystem, das Fehler des Benutzers erkennt und zu korrigieren
versucht. Beispiel hierfür wäre eine Kollisionsvermeidung auf Basis
von Ultraschallsensoren, die den Abstand des Zeppelins zu möglichen
Hindernissen misst und ggf. in die Steuerung eingreift, sollte sich der
Zeppelin einem Hindernis nähern.

Damit im Zuge der Testreihen dieser Ausweichstrategien der Zeppe-
lin nicht beschädigt wird, bietet sich hier eine virtuelle Umgebung
an, in der sich der Zeppelin bewegt. Eine virtuelle Umgebung bietet
ein hohes Maß an Kontrolle, da die Gestaltung der Umgebung frei
gewählt werden kann, um darin dann die Steuerung zu testen. Wei-
terhin könnten virtuelle Kräfte, wie schon im dritten Prototypen aus
Kapitel 5.2.4174 vorgestellt, eingebaut werden, die die Steuerung des
Zeppelins erschweren und den intelligenten Steueralgorithmus testen
sollen.

Um virtuelle Kräfte und Kollisionen mit virtuellen Objekten zu rea-
lisieren, muss auf die Rotorensteuerung des Zeppelins zugegriffen
werden. Kollidiert der Zeppelin mit einem virtuellen Objekt, muss die
resultierende Kraft und die Richtung berechnet werden und der Zep-
pelin in diese Richtung gesteuert werden. Dabei wird die Kontrolle
der Benutzers bzw. des intelligenten Algorithmus für kurze Zeit außer
Kraft gesetzt. Leider funktioniert diese Methode nur bedingt, da bei
hohen Impulsen, die normalerweise bei Kollisionen auftreten, der Zep-
pelin durch seine Trägheit nicht sofort seine Richtung ändert. Für den
Test einer Steuerung ist dieser Nachteil allerdings zu vernachlässigen.
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Um eine virtuelle Umgebung zu realisieren, würde man den Zeppelin
in einer ausreichend großen Halle fliegen lassen. Über ein festinstallier-
tes Tracking-System, das die Position einer Kamera (oder eines HMDs)
in dieser Halle ermittelt, kann nun die virtuelle Umgebung eingeblen-
det werden. Der Benutzer muss nun entweder über einen Monitor
oder über ein HMD den Zeppelin in dieser virtuellen Umgebung
fliegen. Um virtuelle Objekte auch vor dem realen Zeppelin darstellen
zu können, müsste auch der Zeppelin mit Hilfe des Tracking-Systems
verfolgt und die Position im Raum bestimmt werden. So kann bei
der Bilddarstellung entschieden werden, welches Objekt näher zum
Betrachter liegt und somit dargestellt wird.

Betrachten wir die Environment-Metrik bei diesem Prototypen, erhal-
ten wir folgenden Wert:

Environment-Metrik ΩE
ηi Typ δi
Hindernisse Virtuell 0,5
Virtuelle Umgebung Real 0,5
Umwelteinflüsse Virtuell 0,5

ΘV = 1
2

Da die komplette Umgebung wieder virtuell ist, erhalten wir einen
Wert von 1

2 . Bei der View-Metrik haben wir folgende Aufteilung:

View-Metrik ΘV
ωi Typ φi
3D Modell des Zeppelins Real 1,0
Umgebung Virtuell 0,5
Visualisierung Modellparameter Real 1,0
Visualisierung Zustandsparame-
ter Virtuell 0,5

ΘV = 3
4

Die Umgebung und die Zustandsparameter sind virtuell10, Modell-
parameter und der Zeppelin sind real, so dass sich ein Wert für die
View-Metrik von 3

4 ergibt. Am Wert der Model-Metrik verändert sich
nichts, da es sich um den realen Zeppelin handelt und somit die rea-
len Baugruppen angesprochen werden. Ein virtuelles physikalisches
Modell muss indes immer noch vorhanden sein, um Kollisionskräfte
berechnen zu können.

10Die Zustandsparameter beziehen sich auf die virtuelle Umgebung und sind aus diesem Grund als
virtuell anzusehen.
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Environment (E)

Controller (C)

Model (M)

View (V)

Abbildung 5.31: Kiviatgraph des zehnten Prototypen.

In Abbildung 5.31199 ist der Kiviatgraph für den zehnten Prototypen
zu sehen. Es wurde angenommen, dass die Steuerung aus dem neun-
ten Prototypen verwendet wurde. Für die intelligente Steuerung kann
leider keine Angabe über den Wert der Controller-Metrik gemacht
werden, da diese Steuerung nur konzeptionell existiert. Man erkennt,
dass der Wert für das Environment und für den View geringer ist als
im neunten Prototypen, da die virtuelle Umgebung verwendet wird.
Das Modell bleibt jedoch bezogen auf den neunten Prototypen gleich.

5.3 Zusammenfassung

In diesem Kapitel wurde beschrieben, wie sich eine nicht triviale
Applikation mit dem MRiL-Entwurfsvorgehens entwickeln lässt. Mit
Hilfe der Software MiReAS, die das MRiL-Entwurfsvorgehen un-
terstützt, wurden insgesamt sieben Prototypen komplett und drei
Prototypen konzeptionell entwickelt. Die Aufteilung der Applikation,
einerseits in die MVCE-Komponenten und andererseits in Akteure,
hat die Entwicklung der Prototypen beschleunigt. Da am Anfang
der Entwicklung definiert wurde, wie der endgültige Prototyp ausse-
hen sollte, konnte mit Hilfe der vorgestellten Metriken der Entwick-
lungsstatus über einen Kiviatgraphen grafisch angegeben werden. So
war die Klassifizierung der Prototypen nach Status der Entwicklung
schnell möglich.

Es zeigt sich, dass die Initialisierungsphase kritisch in der Entwicklung
der Applikation ist. Hier haben Fehler im grundlegenden Design
schwere Folgen für die spätere Entwicklung. Deshalb sollte für die
Initialisierungsphase ausreichend Zeit veranschlagt werden, so dass
Probleme schon zu Beginn erkannt und gelöst werden können. Gerade
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die Einteilung in die MVCE-Kategorien muss sorgfältig geschehen,
allerdings ist es auch später möglich, eine Komponente in zwei MVCE
Kategorien aufzuteilen. Es kann aber sein, dass dann einige Akteure,
die zu dieser Komponente gehören, getrennt werden müssen, was
zusätzlich Arbeit bedeutet.

Ist die Initialisierungsphase beendet, kann nun begonnen werden, den
ersten Prototypen zu entwickeln. Dies muss nicht, wie es hier der
Fall war, eine sehr einfache Version der Applikation sein, es kann
auch sofort ein komplexer Prototyp entwickelt werden, was jedoch
zeitlich aufwändiger wird. Des Weiteren ist es sinnvoll schnell eine
einfache Anwendung zu haben, in der auch später schnell einige
Ideen realisiert werden können, beispielsweise in unserem Fall die
verbesserte physikalische Simulation aus Kapitel 5.2.7185, bei der wir
zurück zur einfachen Umgebung gewechselt haben, um besser die
Simulation debuggen zu können.

Abschließend ist zu sagen, dass die Entwicklung der Prototypen
mit Hilfe von MiReAS über das MRiL-Entwurfsvorgehen schnell zu
realisieren war. Ein großer Vorteil war der akteurbasierte Aufbau, so
dass bei der Entwicklung schnell auf schon vorhandene Komponenten
zurückgegriffen und so z. B. die Steuerung einfach gewechselt werden
konnte. So war es möglich, Fehler, die sich bei der Programmierung
eingeschlichen hatten, schnell zu isolieren und zu entfernen, auch
wenn an mehreren Akteuren gleichzeitig entwickelt wurde. Indem
zu einem stabilen Stand gewechselt wurde, konnten die einzelnen
Akteure bzw. Komponenten getrennt validiert und so Fehler schneller
gefunden werden.
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KAPITEL6
Synopsis

In diesem Kapitel möchte ich noch einmal kurz mein ”Mixed Reality
in the Loop“-Entwurfsvorgehen mit den herausragenden Arbeiten
in diesem Bereich vergleichen und die Gemeinsamkeiten und Unter-
schiede der Verfahren aufzeigen.

6.1 Mixed Reality in the Loop im Vergleich

Das vorgestellte ”Mixed Reality in the Loop“-Entwurfsvorgehen bietet
eine Lösung zur Entwicklung von Mixed Reality Anwendungen unter
Zuhilfenahme des Mixed Reality Kontinuums. Das ist einzigartig
in der Literatur, es lehnt sich allerdings an anerkannte Verfahren
einiger Wissenschaftler an. Die Arbeiten, auf die sich ”Mixed Reality
in the Loop“ bezieht, habe ich bereits in Kapitel 359 beschrieben.
Ich möchte hier, nachdem ich mein Verfahren vorgestellt habe, eine
Zusammenfassung der Gemeinsamkeiten und Unterschiede an drei
in Kapitel 359 vorgestellten Arbeiten geben.

A model-based design process for interactive virtual environments

Cuppens verwendet in seinem Vorgehen (siehe Kapitel 366) ein modell-
basierten Entwurfsprozess, um mit Hilfe eines visuell dargestellten
Task Model und einem textbasierten Interaction Description Model eine
lauffähige virtuelle Anwendung zu generieren. Die visuelle ”Program-
mierung“ des Task Model ist ein wesentlicher Aspekt in seiner Arbeit
um die Entwicklung auch für Anwender, die wenig oder keinen Hin-
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tergrund in der imperativen Programmierung haben, anwendbar zu
machen. Diesen Schritt bin ich in meiner ersten Werkzeugumgebung,
die mit Hilfe des proprietären Autorenwerkzeuges Virtools entstan-
den ist, auch gegangen. Hier lag der Fokus auf der Benutzbarkeit
der Werkzeugumgebung durch einen Personenkreis, der eher im Be-
reich Entwickler für 3D-Inhalte anstatt in der reinen Programmierung
von Anwendungen angesiedelt war. Mit Hilfe der visuellen Program-
mierung und den von mir angebotenen Plug-ins war es dem Perso-
nenkreis möglich, Mixed Reality Anwendungen ohne das technische
Wissen um die Basistechnologie zu entwerfen. Mit Hilfe der Abstrak-
tion wurde einem größeren Kreis von Personen die Entwicklung von
Mixed Reality Anwendungen ermöglicht. Dieses Prinzip findet man
nicht nur bei Cuppens, auch und gerade MacIntyre zeigt mit seiner
Werkzeugumgebung DART (siehe Kapitel 390), dass sich mit Hilfe von
Personen, die im Gebiet von Kunst und Design bewandert sind, sehr
interessante MR Anwendungen entwickeln lassen.

Bei Cuppens existiert zwar kein iteratives Entwurfsvorgehen, jedoch
ist die automatische Generierung der abstrakten Darstellung in eine
ausführbare Anwendung vergleichbar mit einem iterativen Prozess.
So können auch hier die Ergebnisse schnell evaluiert werden und
ggf. über das Model und einer entsprechend neuen Generierung der
Anwendung in sehr kurzer Zeit ein neuer Prototyp entwickelt werden.
Diese Methode entspricht in Allgemeinen dem iterativen, prototypen-
basierten Verfahren, das ich vorgestellt habe. Das Model von Cuppens
bietet allerdings nicht explizit die Möglichkeit der Verfeinerung der
Komponenten an.

Mein Vorgehen unterscheidet sich von der Methode bei Cuppens, da
es bei der Entwicklung einer Anwendung entlang des Mixed Reality
Kontinuums führt, Cuppens indes rein virtuelle Anwendungen er-
zeugt und keine Möglichkeit bietet, reale Komponenten in seinem
Prozess zu verarbeiten. Auch beschränkt er sich auf die Implemen-
tierung von Benutzerschnittstellen in virtuellen Umgebungen, sein
Ansatz kann allerdings auch für andere rein virtuelle Anwendungen
Verwendung finden.

Mixed Reality: A model of Mixed Interaction

In der Arbeit von Coutrix et al. (siehe Kapitel 368) wird auf die Ver-
knüpfung der digitalen mit der physikalischen Welt fokussiert. Mit
Hilfe des Mixed Interaction Model wird dem Entwickler hier ein Frame-
work angeboten, das ihn bei der die Realisierung seiner Anwendung
unterstützen soll. Dabei ist das Hauptkonzept das mixed object, eine

202



6.1 MIXED REALITY IN THE LOOP IM VERGLEICH

Komponente, die gewisse Eigenschaften des digitale Modells mit den
entsprechenden Eigenschaften des physikalischen Objekts verknüpft.
Diese mixed objects beinhalten somit die komplette Basistechnologie,
um die physikalischen Objekte zu erkennen und die entsprechen-
den Eigenschaften zu extrahieren. Auch ermöglichen sie die Ausgabe
an physikalische Objekte, die jedoch im gegebenen Beispiel auf die
Ausgabe auf ein HMD beschränkt sind.

Die Verwendung von mixed objects ist ein sinnvoller Schritt um physi-
kalische Objekte in einer digitalen Anwendung zu erfassen und zu
kapseln. Die Basistechnologie kann hier perfekt vor dem Entwicker
versteckt werden, so dass dieser sich nur die Eigenschaften der mixed
objects definieren muss. Denselben Weg gehe ich mit den Akteuren,
die auch die Funktionalität in sich kapseln. Allerdings können die
Akteure nicht nur eine Verbindung zwischen digitalen und physi-
kalischen Daten sein, sondern können auch rein virtuell bzw. rein
physikalisch sein. Je nach Entwicklungsstand kann zwischen den ein-
zelnen Versionen der Akteure gewechselt werden, vorausgesetzt es
existieren die entsprechenden Implementierungen. Jedoch würden die
bei Coutrix et al. vorgestellten mixed objects in meinem Ansatz zwei
getrennte Akteure ergeben, da die Hin- und Rückrichtung getrennt
betrachtet würde. Auch sieht mein Ansatz vor, dass physikalische
Objekte, die nicht unter der Kontrolle der Anwendung stehen, der
Komponente Environemnt angehören. Diese kann von der Anwen-
dung nur abgefragt, allerdings nie verändert werden. Beispiel wäre
ein getracktes physikalisches Objekt, das zwar vom Benutzer der An-
wendung verändert werden kann (durch Manipulation des realen
Objekts), aus der Anwendung heraus jedoch keine Möglichkeit der
Manipulation besteht.

Daher ist der Ansatz von Coutrix et al. etwas unterschiedlich zu mei-
ner Sichtweise, was sich auch in den Softwarekomponenten widerspie-
gelt. Des Weiteren sieht Coutrix et al. keine iterative Vorgehensweise
für seine Methode vor und behandelt ausschließlich die Entwicklung
von Interaktionstechniken in Mixed Reality.

A Design-Oriented Information-Flow Refinement of the ASUR In-
teraction Model

ASUR von Dubois (siehe Kapitel 375) bietet ein Modell und eine grafi-
sche Notation zur Entwicklung von Mixed Reality Anwendungen mit
dem Schwerpunkt auf Benutzerinteraktion. Das auf grafische Darstel-
lung basierende Modell beschreibt dabei die Interaktion zwischen dem
Benutzer und dem Mixed Reality System. Es soll helfen, die digitale

203



SYNOPSIS

und physikalische Welt miteinander zu verbinden und eine benutzer-
freundliche Anwendung zu erhalten. ASUR unterscheidet in seinem
Modell zwischen unterschiedlichen Komponenten, erwähnenswert
sind hier die Adapter und die realen Entitäten.

Wie in meinem Ansatz verwendet ASUR in seinem Modell eine Art
Environment, das hier aus den zwei Komponenten Adapter und Real
Entity zusammengesetzt sind. Die Adapter können sowohl für die
Eingabe von Daten (z. B. von einer Kamera) als auch für die Ausgabe
(z. B. auf einem Monitor) verwendet werden. Ein Adapter stellt somit
die Schnittstelle zur physikalischen Welt dar und kann Daten aus
ihr extrahieren. Allerdings definiert ASUR die grafische Ausgabe auf
einem Monitor genau mit solch einem Ausgabeadapter; dies wird im
Gegensatz dazu in meinem Vorgehen über die View-Komponenten
realisiert, die als nicht physikalisch angesehen werden.

In ASUR existieren zudem Adapter, die eine Schnittstelle zur physi-
kalischen Welt darstellen, die Real Entities, also reale Objekte in der
physikalischen Welt, deren Eigenschaften über die Adapter den Digita-
len Komponenten zur Verfügung gestellt werden. Die Kombination
aus beidem, den Adaptern und den Real Entities ermöglicht erst die
Entwicklung von Mixed Reality Anwendungen. In meinem Ansatz
entspricht genau diese Kombination den E-Komponenten aus dem
MVCE-Architekturmuster, mit dem oben beschriebenen Unterschied,
dass bei mir die grafische Ausgabe nicht als Ausgabeadapter verstan-
den wird. E-Komponenten in meinem Vorgehen sind reale Objekte,
die in der realen, ”physikalischen“ Umgebung existieren, auf die die
Anwendung keinen Einfluss nehmen, sie jedoch auslesen kann. Dass
die Umgebung physikalisch existiert, ist nur teilweise richtig, da die
Entwicklung nach meinem Ansatz entlang des Mixed Reality Kon-
tinuums geschieht, und so auch die Umgebung in frühen Phasen
virtuell ist. Der Unterschied hier ist allerdings, dass die Umgebung
nie unter der Kontrolle der Anwendung steht, so wie es auch bei den
Real Entities in ASUR der Fall ist.

Den Real Entities stehen in ASUR noch die digitalen Entitäten zur Sei-
te, die mit Hilfe des Adapters verschiedene Eigenschaften der realen
Objekte auslesen können. All das ist in einer E-Komponente in mei-
nem Vorgehen gekapselt. Sollen mehrere Eigenschaften eines realen
Objektes erfasst werden, so kann der Entwickler entweder eine wei-
tere E-Komponente integrieren oder die vorhandene E-Komponente
dahingehend erweitern, dass sie auch die gewünschten Informationen
liefert.

Da die Entwicklung bei ASUR nicht entlang des Mixed Reality Konti-
nuums geschieht und des weiteren kein iterativer, prototypenbasierter
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Prozess ist, wird die Transition von virtuellen zu realen Objekten nicht
unterstützt. Die Möglichkeit der Transition ist allerdings prinzipiell
gegeben, auch wenn einige Teile des entwickelten Modells verändert
werden müssen. So kann der Entwickler die virtuellen Komponen-
ten in Real Entities (durch Ersetzung) umwandeln, muss jedoch ggf.
Adapter und neue digitale Entitäten hinzufügen, die die Eigenschaf-
ten des realen Objektes abbilden. Da diese Transition nicht durch
Weiterentwicklung sondern durch Ersetzung geschieht, ist eine Wie-
derverwendung der schon vorhandenen Komponenten nicht möglich.
Anders als in meinem Vorgehen, bei dem die Komponenten (bei mir
Akteure) durch Adapter erweitert werden und so die restlichen Kom-
ponenten der Anwendung nicht angepasst werden müssen. Da ASUR
keine automatische Generierung von lauffähigen Programmcode hat,
ist die Änderung des Modells aufwändiger als beispielsweise bei Cup-
pens. Mein Ansatz bietet zwar auch keine automatische Generierung,
da allerdings die vorhandenen Komponenten weiterentwickelt wer-
den und so nur kleine Änderungen anfallen, hält sich der Aufwand
in annehmbaren Grenzen.

6.2 Zusammenfassung

In diesem Kapitel habe ich kurz die Gemeinsamkeiten und die Un-
terschiede meines ”Mixed Reality in the Loop“-Entwurfsvorgehens
mit anderen, relevanten Arbeiten aus der Literatur, die ich im Kapitel
359 ausführlich beschrieben habe, vorgestellt. Im Allgemeinen ist fest-
zustellen, das es sinnvoll ist, Mixed Reality Anwendungen einerseits
getrennt von der Basistechnologie, andererseits entlang des Mixed Rea-
lity Kontinuums zu entwickeln. Da sich die Basistechnologien schnell
ändern können, hat man mit der Abstraktion eine Möglichkeit, die
unterliegende Technik zu ändern ohne die Anwendung an sich anzu-
passen. Dieses Vorgehen wird in der Softwareentwicklung sehr häufig
eingesetzt, es ist also eine konsequente Weiterentwicklung bei Mixed
Reality Anwendungen. Die Entwicklung entlang des Mixed Reality
Kontinuums ist genau deshalb auch sinnvoll. So kann bei fehlender
Basistechnologie bzw. vor Fertigstellung dieser die Entwicklung der
Anwendung schon begonnen werden und in späteren Prototypen die
Komponenten mit der Basistechnologie erweitert werden. Ein anderer
wichtiger Punkt ist die Entwicklung der Anwendung aus einer vom
Programmierer kontrollierbaren virtuellen Umgebung hin in zur rea-
len Umgebung. So können sicherheitsrelevante Algorithmen zuerst
in der virtuellen Umgebung auf ihre Funktionsweise hin überprüft
werden, bevor sie in der realen Welt verwendet werden.

Aus dem Stand der Forschung geht hervor, dass mein Verfahren auf re-
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nommierten Ansätzen der Entwicklung von im Bereich der Mixed Rea-
lity basiert. Das zeigen die hier vorgestellten Arbeiten. Weiterführend
stellt mein Entwurfsvorgehen eine konsequente Weiterentwicklung
dieser bekannten Verfahren darstellt, in dem es versucht, die Vorteile
der einzelnen Verfahren zu kombinieren und so die Entwicklung vom
MR Anwendungen weiter vereinfacht.
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KAPITEL7
Zusammenfassung und Ausblick

Dieses Kapitel schließt meine Arbeit mit einer Zusammenfassung
der Ergebnisse und einem Ausblick ab. Die Zusammenfassung bietet
einen Überblick über die entstandenen Ergebnisse, die ich in dieser
Arbeit vorgestellt habe. Ich versuche die Ergebnisse in Beziehung zu
den Zielen zu stellen, die ich in Kapitel 1.24 vorgestellt habe. Darüber
hinaus biete ich am Ende dieses Kapitel einen Ausblick, wie sich
MRiL in Zukunft weiter entwickeln ließe und welche Erweiterungen
vorstellbar wären.

7.1 Zusammenfassung

In der hier vorliegenden Arbeit habe ich ein werkzeuggestütztes ,
prototypenbasiertes, iteratives Entwurfsvorgehen für Mixed Reality
Anwendungen vorgestellt. MRiL wird entlang des Mixed Reality Kon-
tinuums angewendet, so dass die Entwicklung einer Anwendungen
aus der Virtualität in die Realität stattfindet. Mit Hilfe des iterati-
ven prototypenbasierten Ansatzes ist eine ständig testbare Designre-
präsentation der Anwendung vorhanden, die zu Evaluationszwecken
verwendet werden kann. Folgende Punkte wurden im Einzelnen vor-
gestellt:

Entwurfsvorgehen: Das Entwurfsvorgehen stellt die zentrale Vorge-
hensweise bei der Entwicklung einer Mixed Reality Anwendung
mit MRiL dar. Basierend auf einem iterativen Prototyping Pro-
zess verfeinert es in jedem Schritt die jeweiligen Teile einer
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Anwendung und stellt nach jeder Iteration einen testbaren Pro-
totypen zur Verfügung.

Architekturmuster: Um den Entwurf einer Mixed Reality Anwen-
dung zu vereinfachen, steht das MVCE Architekturmuster zur
Verfügung, das Teile der Anwendung bestimmten Komponenten
zuordnet. Ist eine Anwendung nach dem MVCE Architekturmus-
ter klassifiziert, so lassen sich die jeweiligen Teile unabhängig
voneinander weiterentwickeln. Dabei legt MVCE die Beziehun-
gen fest, wie welche Komponenten miteinander interagieren
können. Beispielsweise ist es einer Mixed Reality Anwendung
nicht möglich, Daten der Environment-Komponente zu ändern,
da sich die Manipulation physikalischer Eigenschaften realer
Objekte nicht durch die Anwendung steuern lässt. Die Umge-
bung kann nur erfasst, allerdings nicht geändert werden. Mit
diesem Prinzip lassen sich auch virtuelle Objekte bzw. Umge-
bungen realisieren, die jedoch von der Anwendung als reale,
nicht kontrollierbare Komponenten angesehen werden.

Akteurmodell: Eine Verfeinerung der Aufteilung in MVCE Kompo-
nenten bietet das Akteurmodell. Hinsichtlich der vorhandenen
Werkzeugunterstützung ist die Aufteilung in Akteure sinnvoll,
da sie einerseits eine fein granularere Weiterentwicklung der
Mixed Reality Anwendung bietet und andererseits direkt softwa-
reseitig durch ein Entwicklungswerkzeug unterstützt wird. Dem
Akteur steht im Entwicklungswerkzeug der Adapter zur Seite,
der es erlaubt, den Akteur mit mehr Funktionalität auszustatten
und die Schnittstellen des Akteurs zu erweitern.

Metrik: Zur genaueren Analyse des Entwicklungsstandes der Mixed
Reality Anwendung wurden für jede der MVCE-Komponenten
eigene Metriken entwickelt. Diese Metriken sollen den Stand der
Entwicklung entlang einer bestimmten Komponente ermitteln
und können mit Hilfe eines Kiviatgraphen dargestellt werden.
Alle Komponenten basieren auf der Annahme der Funktionalität
der fertig entwickelten Anwendung, einzig die Metrik für den
Controller bildet eine Ausnahme. Sie stellt die Benutzbarkeit der
vorliegenden Anwendung dar, vorausgesetztes es werden spezi-
elle Nutzertests durchgeführt. Dies ist gerade in der Entwicklung
von neuen Mixed Reality Interaktionstechniken nützlich, so die
Metrik dem Entwickler ein relativ gutes Feedback gibt.

Werkzeugunterstützung: Mit dem Ziel, dass das MRiL-Entwurfsvor-
gehen bei Mixed Reality Anwendungen ebenfalls auf Softwa-
reebene unterstützt wird, wurden insgesamt zwei Softwareum-
gebungen in dieser Arbeit vorgestellt. Die erste, die mehr an
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Designer gerichtet war anstatt an Programmierer, basierte auf
dem proprietären Werkzeug 3DVIA Virtools und wurde mit Hil-
fe von Plug-ins realisiert, die dem Anwendungsentwickler zur
Verfügung standen. Diese Umgebung entstand zu Beginn dieser
Arbeit und deckt nicht alle Aspekte von MRiL ab. Damit MRiL
komplett von einer Werkzeugumgebung unterstützt wird, wurde
MiReAS entwickelt. MiReAS wurde unter Berücksichtigung von
MRiL entworfen und unterstützt den Entwurfsprozess daher na-
tiv. Hier wird mit Hilfe von Akteuren und Adaptern die Mixed
Reality Anwendung entworfen und implementiert. Da MiReAS
auf der Programmiersprache C++ und der OpenSceneGraph-
Grafikbibliothek basiert, ist die Entwicklung von Mixed Reality
Anwendungen jedoch eher für Entwickler mit Programmierhin-
tergrund geeignet als für Designer.

Testbare Designrepräsentation: Angesichts der Tatsache, dass das
hier vorgestellte iterative MRiL-Entwurfsvorgehen nach jeder
Iteration einen lauffähigen Prototypen als Ergebnis liefert, sind
Benutzertests auch in frühen Entwicklungsphasen möglich. So
können Fehler in der frühen Entwicklungsphasen schnell er-
kannt und korrigiert werden. Weiterhin erlaubt die Aufteilung
in die MVCE Komponenten und die Wiederverwendung von Ak-
teure und deren Erweiterung durch Adapter gezielt entwickelte
Prototypen, die speziell eine Komponente für Benutzertests be-
reitstellen.

MRiL wurde an mehreren exemplarischen Beispielen angewendet,
wobei sowohl nur die Vorgehensweise als auch beide Werkzeuge ver-
wendet wurden. Das erste Beispiel, das im Kapitel 4.4128 beschrieben
wurde, basiert auf dem reinen Vorgehen und wurde ohne Zuhilfe-
nahme eines Werkzeuges entwickelt. Hier sollte das Entwurfsvor-
gehen angewendet und evaluiert werden, um zu erfahren, ob ein
sinnvoller Einsatz möglich ist. Die Werkzeugumgebung, die auf Vir-
tools basiert, wurde schon im Vorfeld bei mehreren Projekten und
Veröffentlichungen verwendet, die in Kapitel 4.5.1136 erwähnt wur-
den. Für die schnelle und einfache Entwicklung von Demonstratoren
von, in Programmiersprachen nicht versierten, Entwickler ist diese
Umgebung sehr gut geeignet, da die Programmierung der Anwendun-
gen visuell erfolgte. Leider deckte die auf 3DVIA Virtools basierende
Werkzeugumgebung nicht das komplette Entwurfsvorgehen abdeckt,
was es nötig machte, eine eigene Lösung zu entwickeln. Mit MiReAS,
vorgestellt in Kapitel 4.5.2148, erschien eine Werkzeugumgebung, die
alle Aspekte des MRiL-Entwurfsvorgehens beinhaltete. Mit MiReAS
wurde ein sehr umfangreicher Demonstrator erfolgreich realisiert, der
in Kapitel 5159 beschrieben wurde. Mit Hilfe der Entwicklung dieses
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Demonstrators war dann möglich, MRiL komplett von Entwicklern
zu evaluieren.

Das ”Mixed Reality in the Loop“-Entwurfsvorgehen bietet ein sinn-
volles Verfahren zur Entwicklung von Mixed Reality Anwendungen.
Durch die Werkzeugunterstützung mit MiReAS ist es nicht nur kon-
zeptionell möglich, eine MR Anwendung zu entwerfen, sondern auch
schnell Prototypen in einer sehr frühen Phase der Entwicklung zu
realisieren. Mit Hilfe des iterativen Prozesses können die einzelnen
Komponenten sehr feingranular verfeinert werden und durch kurze
Iterationszyklen erhält der Entwickler einen ständig testbaren Pro-
totypen, der für die Evaluation verwendet werden kann. Die vor-
gestellte Metrik bietet ein Maß sowohl für den Entwicklungstand
der einzelnen Komponenten als auch für die Benutzerfreundlichkeit
der Anwendung, wenn Benutzertests für die Controller-Komponente
durchgeführt wurden.

7.2 Ausblick

Für die Zukunft könnte man sich einige Erweiterungen für MRiL
vorstellen, die die Entwicklung von Mixed Reality Anwendungen
weiter vereinfachen und verkürzen könnten. Vorstellbar wäre eine
grafische Notation für die modellbasierte Entwicklung mit MRiL. Um
die grafische Notation in der Entwicklung auch sinnvoll einsetzten
zu können, wäre eine Werkzeugunterstützung vorstellbar, in der der
Entwickler seine MR Anwendung entwirft. Hieraus würde sich dann
die dritte Erweiterung ergeben, die automatische Generierung von
ausführbaren Prototypen aus dem grafischen Modell. Beide Erweite-
rungen würden die Entwicklung von Mixed Reality Anwendungen
mit dem MRiL-Entwurfsvorgehen mehr in den modellbasierten Ent-
wurf heben, so dass sich der Entwickler nicht mehr um die technische
Implementierung der Anwendung Gedanken machen müsste. Es wäre
ein konsequenter Schritt in Richtung des schnellen Prototypings.

7.2.1 Visuelle Notation

MRiL hat zur Zeit keine grafische Repräsentation für das Modell der
Anwendung. Das liegt an der Entwicklungsgeschichte von MRiL. Da
die erste softwareseitige Realisierung auf 3DVIA Virtools basierte
und dieses Werkzeug eine visuelle Programmiersprache anbot, wur-
de auf eine grafische Notation verzichtet. Im späteren Verlauf bei
der Entwicklung von MiReAS wurde kein Fokus auf eine grafische
Notation gelegt, da die Entwicklung der einzelnen Akteure und Ad-
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apter und deren Schnittstellen auch textuell sehr gut funktionierten.
Das lag größtenteils an den Entwicklern, die ein tiefgehendes Hinter-
grundwissen in imperativen Programmiersprachen hatten und mit
der textuellen Darstellung einer Anwendung gut arbeiten konnten.
Den Entwicklern, die zuvor mit Hilfe von 3DVIA Virtools die An-
wendungen entwickelt hatten, fiel die Verwendung von der MiReAS
Werkzeugumgebung schwerer, da sie nicht das Hintergrundwissen
hatten. Um auch diese Entwickler zu unterstützten, wäre eine visuelle
Notation des Modells der Anwendung sinnvoll.

Vorstellen könnte man sich eine Notation in der Art von ASUR (siehe
Kapitel 375), um das Modell der Mixed Reality Anwendung zu definie-
ren. Hier konnten die Beziehungen zwischen den einzelnen Akteuren
und damit die Schnittstellen zwischen ihnen definiert werden. Um
das Prinzip der Adapter zu realisieren, könnte man sich eine hier-
archische Notation vorstellen, ähnlich dem Komponentendiagramm
in UML 2 [JRH+

07]. Da ein Akteur auch nach der Erweiterung mit
einem Adapter ein Akteur bleibt, ist es in der obersten Ebene eines
Modells unwichtig, ob und mit wie vielen Adaptern ein Akteur erwei-
tert wurde. Einzig die Art und die Anzahl der Schnittstellen können
sich per Erweiterung des Akteurs ändern.

Mit Hilfe der visuellen Notation könnte die Mixed Reality Anwen-
dung einfach beschrieben und konzeptionell aufgebaut werden. Dieser
Prozess könnte bei der Vorgehensweise aus Kapitel 4.2101 den zwei-
ten bis vierten Punkt visuell unterstützen und würde eine kompakte
visuelle Ansicht auf die zu entwickelnde Mixed Reality Anwendung
geben. Gerade bei einem Team von mehreren Entwicklern dürfte sich
hier die Definition der einzelnen Schnittstellen als einfacher erweisen.

7.2.2 Entwicklungswerkzeug für die visuelle Notation

Aufgesetzt auf MiReAS wäre ein Entwicklungswerkzeug denkbar,
das es erlaubt, mit Hilfe der grafischen Notation die Mixed Reality
Anwendung zu entwerfen. Die Entwicklung von MR Anwendungen
würde sich von der Programmierung zur Modellierung verschieben.
Iteriert würde nur noch im visuellen Modell der Anwendung. Das
Entwicklungswerkzeug müsste eine Möglichkeit bieten, aus dem Mo-
dell entweder Konfigurationsdateien für MiReAS, Quelltext oder, wie
in nächsten Abschnitt vorgeschlagen, einen ausführbaren Prototypen
zu generieren. Die Austauschbarkeit der Komponenten mit älteren
Versionen im visuellen Modell, die dem der Softwarekomponenten
in MiReAS entsprechen, könnte über eine Versionierung realisiert
werden. Bei einer Verfeinerung eines Akteurs (beispielsweise durch
das Anfügen eines Adapters), könnte der Akteur eine neue Versi-
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onsnummer erhalten. Im späteren Verlauf der Entwicklung hätte der
Anwender nun die Möglichkeit im grafischen Modell anzugeben, wel-
che Version er für die einzelnen Akteure verwenden möchte. Dabei
ist zu beachten, dass sich die Schnittstellen bei den aktuellen Versio-
nen zu den älteren Versionen des Akteurs geändert haben können.
Dadurch entstandene Probleme müssten entweder durch den Ent-
wickler manuell entfernt werden, wobei das Entwicklungswerkzeug
Lösungsvorschläge bieten könnte. Auch eine automatische Auflösung
von inkompatiblen Schnittstellen wäre denkbar, da alle Informatio-
nen sowohl über die neuen als auch über die alten Schnittstellen
vorhanden sind. Für das Entwicklungswerkzeug könnten noch wei-
tergehende Techniken aus dem modellbasierten Entwurf integriert
werden, wie beispielsweise automatische Optimierungsverfahren oder
Fehlererkennungen.

7.2.3 Automatische Generierung von ausführbaren Prototypen

Eine konsequente Erweiterung zum in Abschnitt 7.2.2211 vorgestellten
Entwicklungswerkzeug für die visuelle Notation ist die automatische
Generierung von ausführbaren Prototypen, wie sie beispielsweise bei
der Arbeit von Cuppens et al. (Kapitel 366) und bei NiMMiT von De
Boeck et al. (Kapitel 371) der Fall ist. Anstatt Konfigurationdateien für
MiReAS oder Quelltext zu generieren, könnte sofort ein lauffähiger
Prototyp aus dem Modell erzeugt werden, der für die Evaluation
verwendet werden kann. Wäre ein Entwicklungswerkzeug für die
visuelle Notation vorhanden, würde die automatische Generierung
grundsätzlich unkompliziert zu realisieren sein. Im ersten Schritt
würden die Akteure und Adapter in MiReAS realisiert und daraus
Quelltext erzeugt. Nachfolgend könnte man die MR Anwendung mit
Hilfe der normalen C/C++ Kompilier übersetzten und würde ein
ausführbares Programm erhalten.

Akteure, die neue Hardware kapseln, müssten sowohl im Entwick-
lungswerkzeug also auch in MiReAS implementiert werden. Ähnlich
wie bei AMIRE (siehe Kapitel 388) würde mehrere Arten von Ent-
wicklern existieren, zum einen der Anwenderentwickler, der für die
Realisierung der MR Anwendung zuständig ist, zum anderen der
Systementwickler, der die erforderlichen Komponenten in das Ent-
wicklungssystem integriert. Dabei würde der Anwendungsentwickler
mit Hilfe der visuellen Notation entwickeln, der Systementwickler
allerdings mit einer imperativen Programmiersprache (bei MiReAS
wäre das C++).
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7.3 Zusammenfassung

In diesem Kapitel habe ich die Ergebnisse meiner Arbeit zusammen-
gefasst und noch einmal die wichtigsten Punkte des ”Mixed Reality
in the Loop“-Entwurfsvorgehens aufgezeigt. Im zweiten Teil habe ich
einen Ausblick gegeben, welche forschungsrelevanten Weiterentwick-
lungen bei MRiL möglich sind. Dabei handelte es sich einerseits um
Arbeiten im theoretischen Umfeld, wie die Entwicklung einer visuel-
len Notation für MRiL, und andererseits im praktischen Umfeld, wie
die Entwicklung eines Werkzeuges für die Verwendung der visuellen
Notation.

Abschließend ist zu erwähnen, dass das MRiL-Entwurfsvorgehen die
Entwicklung von Prototypen und die daraus resultierende Möglich-
keit, schon in frühen Phasen der Entwicklung eine testbare Desi-
gnrepräsentation zu erhalten und durch Benutzertest zu überprüfen,
durchaus erleichtert und zu besser benutzbaren MR Anwendungen
führen kann.
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