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Abstract

We present the additive arithmetical semigroups and summarize the improvements
on prime number theorems and mean-value theorems on additive arithmetical semi-
groups. We start with definitions and examples, then compare the approaches,
which have been used to prove prime number theorems. Thereafter, we give a short
outline of the convolution theory and generating functions.

Then we proceed with complex-valued multiplicative functions on additive arith-
metical semigroups. First we summarize some results for multiplicative functions of
modulus ≤ 1, and more generally for uniformly summable multiplicative functions.
Afterwards, we prove new mean-value theorems for uniformly summable multiplica-
tive functions on additive arithmetical semigroups. These theorems are more general
than the previous results because our conditions on the additive arithmetical semi-
groups are weaker and we can prove our mean-value theorems for a larger class of
functions. In the proof we use some tauberian theorems by Indlekofer, and some
ideas of the proof of mean-value theorems for multiplicative functions in the classical
number theory.

Finally, we give an application of our results by proving a characterization of finitely
distributed functions on additive arithmetical functions and the Three-series theo-
rem on additive arithmetical semigroups.
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Zusammenfassung

Wir präsentieren die additiven arithmetischen Halbgruppen und fassen die wichtig-
sten Ergebnisse über Primzahl- und Mittelwertsätze auf additiven arithmetischen
Halbgruppen zusammen. Wir beginnen mit Definitionen und Beispielen, danach
vergleichen wir die Ansätze, die verwendet wurden, um Primzahlsätze zu beweisen.
Anschließend geben wir einen kurzen Überblick über Faltung und erzeugende Funk-
tionen.

Dann betrachten wir komplexwertige multiplikative Funktionen auf additiven arith-
metischen Halbgruppen. Zuerst fassen wir einige Ergebnisse für multiplikative Funk-
tionen vom Betrag ≤ 1 zusammen, dann allgemeiner für gleichgradig summierbare
multiplikative Funktionen. Danach beweisen wir neue Mittelwertsätze für gleich-
gradig summierbare multiplikative Funktionen auf additiven arithmetischen Halb-
gruppen. Diese Sätze sind allgemeiner als die bisherigen, weil unsere Bedingungen an
die additiven arithmetischen Halbgruppen schwächer sind und weil wir eine größere
Klasse von Funktionen behandeln.
In dem Beweis benutzen wir eine Methode über Taubersätze von Indlekofer, und
einige Ideen des Beweises der Mittelwertsätze für multiplikative Funktionen in der
klassischen Zahlentheorie.

Schließlich geben wir als eine Anwendung unserer Ergebnisse eine Charakterisierung
von endlich verteilten additiven Funktionen auf additiven arithmetischen Halbgrup-
pen und einen Beweis für den Drei-Reihen-Satz auf additiven arithmetischen Halb-
gruppen.
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Notations

We use the following conventions: N is the set of the natural numbers; and N does
not contain zero, while N ∪ {0} will be denoted by N0. The real- and imaginary
parts of a complex number z are written Re z and Im z. We use the the well-known
Landau symbols little-o and big-O in this thesis, as well as the following notations to
describe the limiting behaviour of a function: f(n)� g(n) (f(n)� g(n)) as n→∞
means, that there exists a positive constant C and a natural number n0 such that
|f(n)| ≤ Cg(n) (C|f(n)| ≥ g(n)) for all n ≥ n0. Summarizing the two assertions
f(n)� g(n) and f(n)� g(n) as n→∞, we write f(n) � g(n) as n→∞.
The places where frequently used symbols are defined are indicated in the following
table. Some symbols denote objects that depend on n, z, or a, where n represents
an integer, z and y represent complex numbers, and a represents an element of
an additive arithmetical semigroup. To emphasize the difference between functions
defined on complex numbers or on additive arithmetical semigroups we shall in
general use the extra ” ˜ ” sign over an alphabetic character (for example f̃) for
functions defined on an additive arithmetical semigroup.
We use the notation pk||a for pk divides exactly a when pk|a but pk+1 6 |a.
Numbers in brackets like (1.1) indicate equation numbers, while numbers without
brackets like 1.1 indicate numbers of definitions.

Symbol Definition page
∂(a) 1.1 4
G,G(n) 1.1 4
P 1.1 4
P (n) (1.1) 4

ẐG(z), Ẑ(z) (1.2) 5
q (1.3) 5
A 6

Ĥ(z) (1.8) 6
r(n) (1.12) 8

f̃(a) 11
∗ (1.24) 11
1B(a) (1.26) 12
µ̃(a) (1.27) 12
ω̃(a) (1.29) 12

Symbol Definition page

Λ̃(a) (1.30) 13

F̂ (z) (1.32) 13

P̂ (z) (1.35) 14
Λ(n) (1.37) 15
Λf (n) (2.4) 17

M(n, f̃),M(f̃) 2.1 17
Lα 2.7 21
L∗ 2.8 22
γ(n) 2.21 27
λ(n) (2.21) 27
F (y) 2.23 27
Z(y) (2.22) 27
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Introduction

Results from several different areas of mathematics have found a common gener-
alization in the theory of arithmetical semigroups. An arithmetical semigroup is
a free abelian semigroup generated by a countable set of prime elements with an
associated mapping: a multiplicative norm, that leads to multiplicative arithmetical
semigroups or an additive norm, that defines an additive arithmetical semigroup. In
the case of multiplicative arithmetical semigroups one has to investigate the behav-
ior of Dirichlet series, and for additive arithmetical semigroups we deal with power
series.
Some of the research has focused on specific questions: e.g. polynomials over finite
fields as composed of irreducibles or graphs as composed of connected components.
This research example was the first instance in which many theorems were proven,
and it also had a strong influence on the notation used in arithmetical semigroups.
Others, such as Knopfmacher in his first books [30] and [31], began with given
classical theorems and tried to prove them under the weakest possible conditions
on the number of elements below a given size. It is this approach we follow in this
thesis in the case of additive arithmetical semigroups.
There has been a considerable amount of research on the prime element theorem and
therefore, a need to summarize the latest developments in this field. We focus on
the other important question in the field, the mean-value theorems for multiplicative
functions. The results in this thesis are improvements of the fundus presented by
Knopfmacher and Zhang [32], the only recent book on the subject.

The idea of developing an arithmetical theory based mainly on the foundation of
the axiom referred to here as Axiom A# seems to have first been pointed out in
papers by Fogels [14] and [15]. However, in these papers, Fogels dealt only with
some very special consequences of Axiom A#, and referred only to polynomial rings
and algebraic function fields over finite fields in order to motivate the axiom. These
papers were followed by books written by J. Knopfmacher [30] and [31].

The zeta function of an additive arithmetical semigroup is the associated power
series, where the nth coefficient gives the total number of elements in the additive
arithmetical semigroup with degree n, which is by definition always finite. In the first
investigations on additive arithmetical semigroups, the zeta function was regarded
as having a pole on the boundary of its circle of convergence. Such an assumption is

1



INTRODUCTION

Axiom A# (see [30]), which is a requirement on the coefficients of the zeta function.
Knopfmacher stated that the zeta function has no zeros on its circle of convergence
(see [31]), but Indlekofer, Manstavičius and Warlimont ([26]) have given examples of
additive arithmetical semigroups satisfying Axiom A# with a zero on the boundary
of the circle of convergence. This is an improvement of the prime number theorem
on additive arithmetical semigroups. A major difference from the classical number
theory is that the zeta function in the classical number theory has no zeros on the
boundary; in the case of an additive arithmetical semigroup there can be one zero.
Further, if there is a zero on the boundary then there are no further zeros in the
circle of convergence. The third difference is that in contrast to the natural numbers
on additive arithmetical semigroups, the Chebyshev lower estimate does not hold in
general.

The argument has been developed in two different ways: some mathematicians, such
as Knopfmacher and Zhang, have used requirements on the coefficients of the zeta
function, where others, such as Indlekofer, have used the boundary behaviour of the
zeta function and Axiom Ā# introduced by Indlekofer [20]. If Axiom A# or Axiom
Ā# holds, then the zeta function is meromorphic on its circle of convergence with a
simple pole.

Following this, the investigations have continued with the restriction that the circle
of convergence is a natural boundary for the zeta function. Several mathemati-
cians have made improvements in this case, particularly Indlekofer, Knopfmacher,
Manstavičius, Warlimont and Zhang.

Another important area of investigation is complex-valued multiplicative functions
on an additive arithmetical semigroup and mean-value theorems.
First, mean-value theorems for multiplicative functions on additive arithmetical
semigroups were considered with functions of modulus ≤ 1. Several mathemati-
cians, such as Barát, Indlekofer, Manstavičius, Warlimont, Wehmeier and Zhang,
have contributed to this field. In this thesis we consider a larger class of functions,
uniformly summable multiplicative functions, instead of the restriction on the mod-
ulus of the function. On the other hand, our condition on the additive arithmetical
semigroup is more general.
The class of uniformly summable functions has been defined by Indlekofer (see [17])
for functions defined on N and correspond to integrable functions with respect to
the asymptotic density.
In this thesis, we proceed as follows: Chapter 1 presents, just for reference, some
well-known facts about the subject. We summarize the basic definitions and the
most important conditions on additive arithmetical semigroups. The remaining
part deals with multiplicative functions.
Chapter 2 contains the latest mean-value theorems for multiplicative functions on
additive arithmetical semigroups for multiplicative functions of modulus ≤ 1. Then,
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we formulate our new mean-value theorems for unifomly summable multiplicative
functions with nonzero mean-value. The necessary assumptions on the semigroup
are weaker than the conditions of the previous results. We proceed to give a char-
acterization of uniformly summable functions on additive arithmetical semigroups.
For the proof of our theorems we introduce the new method developed by Indlekofer
that compares the coefficients of power series. Later, we prove some lemmas and
give the proof of our theorems.
In Chapter 3 we give an application of our results by proving a characterization of
finitely distributed additive functions defined on an additive arithmetical semigroup.
Finally, we apply our results to prove the well-known Three-series theorem for ad-
ditive arithmetical semigroups, and give an outline of our work with Indlekofer and
Kaya on the more general Two-series theorem (see [3]) which was motivated among
others by our previous work with Indlekofer and Wagner on Stone-Cech compacti-
fications (see [4]).
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Chapter 1

Basic definitions and facts about
additive arithmetical semigroups

In this chapter, we introduce the additive arithmetical semigroups, and some func-
tions related to them, such as the zeta function; and collate the most used conditions
on additive arithmetical semigroups with the historical results on prime number the-
orems. We briefly expound the convolution on complex-valued functions on additive
arithmetical semigroups and define the generating functions.

1.1 Definition and examples

Definition 1.1. We call (G, ∂) an additive arithmetical semigroup, if G is a com-
mutative semigroup with identity element 1G, generated by a countable set P of
primes and ∂ is an integer valued degree mapping ∂ : G→ N0, which satisfies

(i) ∂(ab) = ∂(a) + ∂(b) for all a, b ∈ G,

(ii) the total number G(n) of elements of degree n in G is finite for each n ≥ 0.

Therefore, ∂(1G) = 0, ∂(p) > 0 for all p ∈ P , G(0) = 1 and G is countable.

In this work (unless otherwise stated), G denotes an additive arithmetical semigroup
related to an integer valued mapping ∂.
We write

(1.1) P (n) := #{p ∈ P : ∂(p) = n}.

In using these notations, we shall be particularly concerned with arithmetical con-
sequences of assumptions on the total number G(n) of elements of degree n in G, or
on the total number P (n) of primes of degree n in G.
J. Knopfmacher gave numerous natural examples (see [31]). We give here the most
natural one.
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CHAPTER 1. BASIC DEFINITIONS AND FACTS ABOUT ADDITIVE
ARITHMETICAL SEMIGROUPS

Example 1.2. Galois polynomial rings. Let Fq[X] denote a polynomial ring
in an indeterminate X over the finite Galois field Fq with q elements (q a prime
power). The subset Gq = G(q,X) consisting of all monic polynomials in Fq[X]
forms a semigroup under multiplication. In particular, Gq together with the usual
degree mapping on polynomials forms an additive arithmetical semigroup such that

Gq(n) = qn (n = 0, 1, 2, ...).

Example 1.3. Let (G, ∂) be an additive arithmetical semigroup such that there
exists exactly one prime element of degree n for each n ∈ N, i.e. P (n) = 1 for all
n ∈ N. In this case G(n) is the number of ways to partition the number n into a
sum of positive integers, so G(1) = 1, G(2) = 2, G(3) = 3, G(4) = 5, etc.

To investigate additive arithmetical semigroups, it is essential to work with the
(generating) power series

ẐG(z) := Ẑ(z) =
∞∑
n=0

G(n)zn(1.2)

=
∞∏
n=1

(1− zn)−P (n)

= exp

 ∞∑
n=1

1

n

∑
d|n

dP (d)zn


which we call the zeta function ẐG of G. In the case of the Galois polynomial rings
Gq = G(q,X) (q a prime power), we obtain

ẐGq(z) =
∞∑
n=0

Gq(n)zn =
∞∑
n=0

qnzn =
1

1− qz

that is convergent for |z| < q−1. For the additive arithmetical semigroup described
in Example 1.3, we obtain the fundamental identity (|z| < 1)

Ẑ(z) =
∞∑
n=0

G(n)zn =
∞∏
n=1

(1− zn)−1

the famous identity studied by Hardy and Ramanujan. Using their circle method in
complex analysis, they found an asymptotic expression for G(n), namely

G(n) ∼ eπ
√

2
3
n

4n
√

3
,

as well as efficient methods to actually compute G(n).
Here we restrict ourselves to additive arithmetical semigroups satisfying

(1.3) G(n)� qnn%

with some q > 1 and % ∈ R and generating zeta functions the circle of convergence
of which is equal to |z| < q−1 with radius q−1.
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CHAPTER 1. BASIC DEFINITIONS AND FACTS ABOUT ADDITIVE
ARITHMETICAL SEMIGROUPS

1.2 Special conditions and their consequences

To get more precise results on additive arithmetical semigroups we need an assump-
tion stronger than (1.3). Therefore Knopfmacher introduced the following condition.

Axiom A# (see J. Knopfmacher [30]). There exist constants A > 0, q > 1 and ν
with 0 ≤ ν < 1 (all depending on G), such that

(1.4) G(n) = Aqn +O(qνn) as n→∞.

If Axiom A# holds, we get

(1.5) Ẑ(z) =
A

1− qz
+ Ĥ1(z),

where

(1.6) Ĥ1(z) =
∞∑
n=0

cnz
n

with

(1.7) cn = G(n)− Aqn = O(qνn).

Thus Ĥ1 is holomorphic for |z| < q−ν . Put

(1.8) Ĥ(z) := A+ (1− qz)Ĥ1(z).

Then the zeta function can be written as

(1.9) Ẑ(z) =
Ĥ(z)

1− qz
.

Obviously Ĥ(0) = 1 and Ĥ(q−1) = A, furthermore Ĥ is holomorphic for |z| < q−ν .

Whereas Axiom A# gives conditions for the power series coefficients cn of Ĥ1,
Indlekofer formulated in [20] an assumption on the boundary behaviour of Ĥ. This
reads as

Axiom Ā# (see Indlekofer [20]). There exist constants q > 1 and ν with 0 ≤ ν < 1
(all depending on G) such that

(i) the function Ĥ defined by (1.8) is holomorphic in the open disc |z| < q−ν , and
Ĥ(q−1) > 0,

6



CHAPTER 1. BASIC DEFINITIONS AND FACTS ABOUT ADDITIVE
ARITHMETICAL SEMIGROUPS

(ii) the function H̄ defined by H̄(y) := Ĥ(q−νy) is an element of the Nevanlinna
class N .

Remark 1.4. If Axiom A# or Axiom Ā# holds, then the zeta function Ẑ(z) is
meromorphic for |z| < q−ν with a simple pole at z = q−1 with residue A. Knopf-
macher stated that Ẑ(z) 6= 0 for |z| ≤ q−1 (see [31]), but the proof was not
correct for z = −q−1, since Indlekofer, Manstavičius and Warlimont ([26]) have
given examples of additive arithmetical semigroups G satisfying Axiom A# with
ν = 1/2 and Ẑ(−q−1) = 0. On the other hand, these authors have also shown in
[26] that, if G satisfies Axiom A# with ν < 1/2, then Ẑ(−q−1) 6= 0. Indlekofer,
Manstavičius and Warlimont also proved that if Ẑ(−q−1) = 0, then Ẑ(z) 6= 0 for
all |z| < q−ν , z 6= −q−1. As a result the authors showed the following prime number
theorem:
Let 0 < ε < 1 − ν, if Ẑ(−q−1) 6= 0, then there exist l = l(ε) ∈ N0, 0 < ε′ < ε and
complex numbers βi (i = 1, . . . , l) -the zeros of Ẑ(z) in the disc |z| ≤ q−ν−ε- such
that:

Λ̂(z) =
z

q−1 − z
− z

l∑
i=1

1

βi − z
+ zR(z)

where q−1 < min
i=1,...,l

|βi| ≤ max
i=1,...,l

|βi| ≤ q−ν−ε and R(z) is holomorphic for |z| ≤ q−ν−ε
′
,

furthermore

(1.10) P (n) =
qn

n
− 1

n

l∑
i=1

β−ni +Oε

(
qn(ν+ε′)

n

)
.

as n→∞. If Ẑ(−q−1) = 0, then

(1.11) P (n) =
(
1 + (−1)n+1

) qn
n

+Oε

(
qn(ν+ε)

n

)
for all 0 < ε < 1− ν as n→∞.

Axiom Ā# provides a better remainder term in the prime number theorem (see [20],
Theorem 2, Theorem 5 and Corollary 3). For instance, if Ẑ(−q−1) = 0, then Axiom
A# yields (1.11) for some (ε > 0), whereas Axiom Ā# implies

P (n) = (1− (−1)n)
qn

n
+ 2anq

nν

with

an =

∫ π

−π
e−intdm(t),

where m is the (real) measure occuring in the factorization of the Nevanlinna func-
tion H̄ (cf. [20], Proposition). Furthermore, Axiom Ā# follows from this asymptotic
formula for P (n) (cf. [20], Corollary 3).

7



CHAPTER 1. BASIC DEFINITIONS AND FACTS ABOUT ADDITIVE
ARITHMETICAL SEMIGROUPS

Subsequently, the investigations continued with the restriction that |z| = q−1 is a
natural boundary for the zeta function. Zhang required assumptions on the coeffi-
cients of the zeta function and introduced

Axiom A (see Zhang [32]). There exist constants A > 0, 1 < q < ∞ and a
real-valued function r such that

(1.12) G(n) = (A+ r(n))qn

with
∞∑
n=0

sup
m≥n
|r(m)| <∞.

Zhang and Warlimont proved the following prime number theorem (see [32], The-

orem 5.4.1): if

(1.13) G(n) = Aqn +O
(
qnn−γ

)
with A > 0, q > 1, and γ > 2, then either

(1.14) P (n) =
qn

n
+O

(
qnn−γ

)
or

(1.15) P (n) = (1− (−1)n)
qn

n
+O(qnn−γ+1).

Indlekofer assumed a boundary behaviour on Ĥ using the notation of (1.8) (see
[20]). This reads as

Axiom A1 (see Indlekofer [21]). There exists a constant q > 1 (depending on G),
such that

(i) the function Ĥ is holomorphic in the disc |z| < q−1, and continuous on |z| ≤
q−1 with A := Ĥ(q−1) > 0,

(ii) the derivative Ĥ ′ of Ĥ is bounded on |z| < q−1.

Indlekofer showed if Axiom A1 holds and if Ẑ(−q−1) 6= 0, then

(1.16) P (n) =
qn

n
+ o

(
qn

n

)
and if Ẑ(−q−1) = 0, then

(1.17)
nP (n)

qn
+

(n− 1)P (n− 1)

qn−1
= 2 + o (1) .

8



CHAPTER 1. BASIC DEFINITIONS AND FACTS ABOUT ADDITIVE
ARITHMETICAL SEMIGROUPS

Furthermore, the asymptotic formula

(1.18)
∑
m≤n

mP (m)q−m = n+ o(n1/2), n→∞

holds for the mean of the number of prime elements P (n).

A small change of Axiom A1 leads to the abstract prime number theorem and to the
asymptotic formula (1.18) with remainder term o(1). This modification is contained
in

Axiom A2 (see Indlekofer [21]). The conditions of Axiom A1 hold, and in addition,
the power series of Ĥ ′ converges absolutely for |z| ≤ q−1.

Axiom A2 yields the following prime number theorem (see [22], Theorem 1):

(1.19) P (n) =
qn

n
+O

(
qn max

n
4
≤m≤n

|h(m)|q−m
)

as n→∞

if Ẑ(−q−1) 6= 0, and

(1.20) P (n) = (1− (−1)n)
qn

n
+O

qn ∑
n
8
≤m

|h(m)|q−m
 as n→∞

if Ẑ(−q−1) = 0.
It may be observed, that if

∞∑
n=1

nk|h(n)|q−n <∞

then
max
n
4
≤m≤n

|h(m)|q−m = o(n−k)

and ∑
n≤m

|h(m)|q−m = o(n−k).

Remark 1.5. If the condition (1.13) holds with γ > 2, then (1.19) and (1.20) imply
(1.14) and (1.15), respectively.

For the investigation of the mean-value of a multiplicative function it is sufficient to
assume conditions weaker than the above assumptions, which were used to prove a
prime number theorem on additive arithmetical semigroups.
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CHAPTER 1. BASIC DEFINITIONS AND FACTS ABOUT ADDITIVE
ARITHMETICAL SEMIGROUPS

There are several approaches to weaken the assumption on the additive arithmetical
semigroup. Instead of (ii) in Axiom A1 Barát and Indlekofer assumed

(1.21)
∑
n≤N

∑
d|n

dP (d)qn

2

= O(N), asN →∞.

This estimate is an assumption about the mean behaviour of the prime coefficients
P (n), which does not yield the Chebyshev upper estimate

(1.22) P (n) = O

(
qn

n

)
.

It is natural to ask for the Chebyshev lower estimate:

qn

n
� P (n).

The asymptotic (1.11) or (1.20) show that the prime number theorem does not yield
the Chebyshev lower estimate. This indicates a major divergence of the theory of
additive arithmetical semigroups from the classical number theory. The question
arises: what can we say about an additive arithmetical semigroup if the Chebyshev
lower estimate is satisfied? Indlekofer investigated this case and considered additive
arithmetical semigroups with the following condition (see [23], Example 4)

(1.23) 0 < c1 ≤ nP (n)q−n ≤
∑
d|n

dP (d)q−n ≤ c2 <∞ (n ∈ N).

Beside (1.23) there are no further assumptions about the additive arithmetical semi-
group; nevertheless, we can prove an estimate for G(n). The zeta function can be
written as (see (1.2))

Ẑ(z) = exp

 ∞∑
n=1

1

n
(
∑
d|n

dP (d))zn

 .

Therefore

|Ẑ(z)| = Ẑ(|z|) exp

 ∞∑
n=1

1

n
(
∑
d|n

dP (d))qn|z|n(cos(nt)− 1)


≤ Ẑ(|z|) exp

(
c1

∞∑
n=1

|z|n

n
qn(cos(nt)− 1)

)

= Ẑ(|z|)
∣∣∣∣1− |qz|1− qz

∣∣∣∣c1 .
10
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In addition, elementary estimates immediately yield (cf. [23])

G(n) � qn

n
exp

∑
m≤n

∑
d|m

dP (d)q−m


where the constants involved in � only depend on c1 and c2.

1.3 Convolution

In this section, we begin the study of general arithmetical functions, complex-valued
functions on a given additive arithmetical semigroup G.

A complex-valued function f̃(a) defined for all a ∈ G is an arithmetical function
on G. The set of all arithmetical functions on G will be denoted by Dir(G). This
set can be made into a complex vector space (of infinite dimension) by means of the
point-wise operations

(f̃ + g̃)(a) = f̃(a) + g̃(a),

(λf̃)(a) = λf̃(a)

for f̃ , g̃ ∈ Dir(G), a ∈ G and λ ∈ C. Further, this vector space becomes an associa-

tive algebra, which is the Dirichlet-algebra of G, under the convolution operation ∗
defined by

(1.24) (f̃ ∗ g̃)(a) =
∑
d|a

f̃(d)g̃(a/d)

for f̃ , g̃ ∈ Dir(G) and a ∈ G. Unless otherwise stated f̃ denotes an arithmetical
function on a given additive arithmetical semigroup G. It is easy to see that the
convolution is commutative and associative. Also, the convolution and addition are
distributive in the sense that

(f̃ + g̃) ∗ h̃ = (f̃ ∗ h̃) + (g̃ ∗ h̃).

Moreover, for λ ∈ C,
λ(f̃ ∗ g̃) = (λf̃) ∗ g̃ = f̃ ∗ (λg̃).

The function

(1.25) ε̃(a) =

{
1 for a = 1G
0 otherwise

is the neutral element for the convolution, that is

ε̃ ∗ f̃ = f̃ ∗ ε = f̃

11



CHAPTER 1. BASIC DEFINITIONS AND FACTS ABOUT ADDITIVE
ARITHMETICAL SEMIGROUPS

for the complex-valued function f̃ on G. Therefore, the arithmetical functions un-
der the addition, scalar multiplication, and convolution form a commutative algebra.
Although we shall make no use of the fact, it may be interesting to point out that
Dir(G) is actually a unique factorization domain (see [29]).

If there exists an arithmetical function f̃−1 on G such that f̃ ∗ f̃−1 = f̃−1 ∗ f̃ = ε̃,
then f̃ is invertible and f̃−1 is the convolution inverse of f̃ . The equation f̃ ∗ f̃−1 = ε̃
is equivalent to the system of equations

1 = f̃(1G)f̃−1(1G),

0 =
∑
d|a

f̃(d)f̃−1(a/d), (a 6= 1G).

Hence f̃(1G) 6= 0 is necessary for the existence of an inverse f̃−1. This condition is
also sufficient. Actually, if f̃(1G) 6= 0, then the first equation of the above system
gives the value f̃−1(1G). First, we obtain f̃−1(p) = 1/f̃(p) for all p ∈ P , and there-
after we get the values for f̃−1(a) for all a ∈ G.
Therefore, an arithmetical function f̃ on G is invertible if and only if f̃(1G) 6= 0.

If B is a subset of G, then the characteristic function of B is given by

(1.26) 1B(a) =

{
1 for a ∈ B
0 otherwise

and the inverse of 1B exists if and only if 1G ∈ B. In particular, 1G is invertible and
this leads to

(1.27) µ̃ ∗ 1G = ε̃

where µ̃ is the Möbius function on G. This relation is sometimes also called the
Möbius inversion formula on G.

As for the natural numbers, the Möbius function on G satisfies

(1.28) µ̃(a) =

{
0 if p2|a for some p ∈ P
(−1)ω̃(a) otherwise

hereby ω̃(a) is

(1.29) ω̃(a) :=
∑
p|a

1

the prime divisor function on G.

12
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Besides the Möbius function on G the von Mangoldt’s function Λ̃ plays an important
role in the investigations of additive arithmetical semigroups. We define Λ̃ by

(1.30) Λ̃(a) =

{
∂(p), if a is a prime power pr 6= 1G,
0, otherwise.

Let a ∈ G has the prime factorization a = pα1
1 p

α2
2 . . . pαkk , (k ∈ N). Then the following

holds ∑
d|a

Λ̃(d) =
k∑
i=1

∑
d|pαii

Λ̃(d)

=
k∑
i=1

∂(pi)αi =
k∑
i=1

∂(pαii )

=∂(a).

Therefore the von Mangoldt’s function Λ̃ satisfies

(1.31) Λ̃ = µ̃ ∗ ∂.

1.4 Generating functions

For each function f̃ , we associate a power series F̂ , the generating function F̂ of f̃ .
We define F̂ by

(1.32) F̂ (z) =
∑
a∈G

f̃(a)z∂(a) =
∞∑
n=0

 ∑
a∈G
∂(a)=n

f̃(a)

 zn

for z ∈ C.
In particular, the generating function of 1G, is just the zeta function ẐG of G, since

(1.33) ẐG(z) := Ẑ(z) =
∞∑
n=0

 ∑
a∈G
∂(a)=n

1G(a)

 zn =
∞∑
n=0

G(n)zn.

For the special functions ε̃, ∂ and 1P that we defined in the previous sections, we
can give the associate generating functions as follows:

Ê(z) :=
∞∑
n=0

 ∑
a∈G
∂(a)=n

ε̃(a)

 zn = 1,

13
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(1.34) D̂(z) :=
∞∑
n=0

 ∑
a∈G
∂(a)=n

∂(a)

 zn =
∞∑
n=0

nG(n)zn = zẐ ′(z)

and the prime generating function of G is

(1.35) P̂ (z) :=
∞∑
n=0

 ∑
a∈G
∂(a)=n

1P (a)

 zn =
∞∑
n=0

P (n)zn.

Since we assume G(n)� qnn% with some real constants δ and q, q > 1, the functions
Ẑ, Ê, D̂ and P̂ are holomorphic for |z| < q−1.

The generating function of the convolution of the functions f̃ and g̃

∞∑
n=0

 ∑
a∈G
∂(a)=n

(f̃ ∗ g̃)(a)

 zn =
∞∑
n=0

∑
a∈G
∂(a)=n

∑
d|a

f̃(d)g̃(a/d)

 zn

=
∞∑
n=0

 ∑
b,d∈G,

∂(b)+∂(d)=n

f̃(d)g̃(b)

 zn

=
∞∑
n=0

 n∑
k=0

∑
d∈G
∂(d)=k

f̃(d)
∑
b∈G

∂(b)=n−k

g̃(b)

 zn

=

 ∞∑
n=0

 ∑
a∈G
∂(a)=n

f̃(a)

 zn


 ∞∑

n=0

 ∑
a∈G
∂(a)=n

g̃(a)

 zn


is the pointwise product of their generating functions. If the inverse function f̃−1 of
f̃ exists then its generating function satisfies

F̂ (z)F̂−1(z) = 1,

which implies

F̂−1(z) =
1

F̂ (z)
.
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For instance, the generating function M̂ of the Möbius function of G has the follow-
ing form

(1.36) M̂(z) =
∞∑
n=0

 ∑
a∈G
∂(a)=n

µ̃(a)

 zn =
1

Ẑ(z)
.

For the von Mangoldt’s function Λ̃ = µ̃ ∗ ∂, we obtain

Λ̂(z) :=
∞∑
n=0

Λ(n)zn =
∞∑
n=0

 ∑
a∈G
∂(a)=n

Λ̃(a)

 zn(1.37)

=
∞∑
n=0

 ∑
a∈G
∂(a)=n

(µG ∗ ∂)(a)

 zn

=
zẐ ′(z)

Ẑ(z)
,

where the coefficients Λ(n) of the power series Λ̂(z) are the von Mangoldt’s coeffi-
cients.

We can write the zeta function of an additive arithmetical semigroup in several
forms. We will summarize the most important ones, as we shall be making use
of these representations in our proofs. The zeta function has an Euler product
representation (cf. (1.2))

(1.38) Ẑ(z) =
∞∏
n=1

(1− zn)−P (n) ,

in the disc {z : |z| < q−1}, using (1.2) and (1.37) that can be written in the form

(1.39) Ẑ(z) = exp

 ∞∑
n=1

1

n

∑
d|n

dP (d)zn

 = exp

(
∞∑
n=1

Λ(n)

n
zn

)
.

In particular, Ẑ(z) 6= 0 for |z| < 1/q.
Using (1.39) we obtain that the coefficients Λ(n) and P (n) are related by

Λ(n) =
∑
d|n

dP (d)

and by the Möbius inversion formula on the positive integers N

(1.40) nP (n) =
∑
d|n

Λ(d)µ
(n
d

)
.
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Chapter 2

Investigation of arithmetical
functions

This chapter contains some basic definitions followed by the latest mean-value theo-
rems for multiplicative functions on additive arithmetical semigroups. We begin by
summarizing mean-value theorems for multiplicative functions of modulus ≤ 1, and
proceed to introduce our new mean-value theorems for unifomly summable mul-
tiplicative functions with nonzero mean-value. The necessary assumptions in our
mean-value theorems on the semigroup are weaker than the conditions of the previ-
ous results. Afterwards, we give a characterization of uniformly summable functions
on additive arithmetical semigroups. For the proof of our theorems we introduce
the new method developed by Indlekofer, that compares the coefficients of power
series. Later, we prove some lemmas and give the proof of our theorems.

Let us start with some basic definitions in this topic. An arithmetical function f̃ on
G is additive if

(2.1) f̃(ab) = f̃(a) + f̃(b) for all coprime a, b ∈ G.

An arithmetical function f̃ on G is multiplicative if

(2.2) f̃(ab) = f̃(a)f̃(b) for all coprime a, b ∈ G.

An arithmetical function f̃ on G is completely multiplicative if

(2.3) f̃(ab) = f̃(a)f̃(b) for all a, b ∈ G.

If f̃ is a multiplicative function on G, then
∑
a∈G
∂(a)=0

f̃(a) = 1 ( 6= 0), therefore its

16
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generating function F̂ satisfies

F̂ (z) =
∞∑
n=0

 ∑
a∈G
∂(a)=n

f̃(a)

 zn(2.4)

=
∏
p

(
1 +

∞∑
k=1

f̃(pk)zk∂(p)

)

=: exp

(
∞∑
m=1

Λf (m)

m
zm

)
.

In this thesis we investigate the mean-value of an arithmetical function on G.

Definition 2.1. Let f̃ : G 7→ C. We define the average value of f̃ on elements of
degree n by

M(n, f̃) :=


1

G(n)

∑
a∈G
∂(a)=n

f̃(a), if G(n) 6= 0,

0, if G(n) = 0.

If lim
n→∞

M(n, f̃) exists, it is called the mean-value of f̃ and is denoted by M(f̃).

The mean-value M(1S) of a characteristic function 1B of a set B ⊆ G is called the
asymptotic density of S.

2.1 Mean-value theorems for multiplicative func-

tions of modulus ≤ 1

The first mean-value theorems for multiplicative functions on additive arithmetical
semigroups considered functions f̃ of modulus ≤ 1 (i.e. with |f̃ | ≤ 1). Several
mathematicians, such as Barát, Indlekofer, Manstavičius, Warlimont, Wehmeier
and Zhang, made contributions to this subject. In the results of Indlekofer and
Manstavičius (see [24] and [25]) the authors required Axiom A# and proved ana-
logues of the results of Delange, Wirsing and Halász on N, which describe the mean-
value of a multiplicative function of modulus ≤ 1 (cf. chapter 6 in [9]).
In this section, we compare two typical mean-value theorems for multiplicative func-
tions of modulus ≤ 1 on additive arithmetical semigroups, where the circle of con-
vergence of the zeta function is a natural boundary. The first result is a theorem by
Zhang and the second theorem was proven by Barát and Indlekofer. These results
are typical in the sense that Zhang made assumption on the coefficients G(n) of the
zeta function, whereas Barát and Indlekofer used analytical conditions on the zeta
function.
Zhang proved the following result for additive arithmetical semigroups satisfying
Axiom A (see [32], Theorem 6.3.1).
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Proposition 2.2. Suppose that either

(i) G is an additive arithmetical semigroup satisfying the Chebyshev upper esti-
mate and

∞∑
n=1

|G(n)q−n − A| <∞

or

(ii)
∞∑
n=1

sup
n≤m
|G(m)q−m − A| <∞,

holds.

Let f̃ be a multiplicative function with |f̃(a)| ≤ 1 for all a ∈ G. If there exists a real
number τ0 such that the series

(2.5)
∑
p∈P

q−∂(p)
(

1−Re(f̃(p)e−iτ∂(p))
)

converges for τ = τ0, then

M(n, f̃) = Aqn(1+iτ0)
∏

∂(p)≤n

(
1− q−∂(p)

)(
1 +

∞∑
k=1

q−k∂(p)(1+iτ0)f̃(pk)

)
+ o(1)

as n→∞. On the other hand, if there exists no such τ , then

M(n, f̃) = o(1).

Remark 2.3. We note, from Theorem 3.2.1 in [32], that an additive arithmetical
semigroup satisfying condition (ii) of Proposition 2.2 satisfies the Chebyshev upper
estimate.

Barát and Indlekofer formulated conditions on Ĥ which leads to a proof of the results
in [24] (see Theorem 2 in [2]). These conditions essentially imply the estimate

(2.6)
∑
n≤N

(
Λ(n)q−n

)2
= O(N) as N →∞

which is weaker than the Chebyshev upper estimate Λ(n)q−n = O(1) as n→∞.
Putting z = q−1y in (1.8) we define Z(y) := Ẑ(q−1y) and H(y) := Ĥ(q−1y) and
obtain

(2.7) Z(y) =
H(y)

1− y
for |y| < 1,
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and assume that H(y) is bounded in the disc |y| < 1 satisfying

(2.8) lim
y→1−

H(y) = A > 0.

Put H(y) =
∞∑
n=0

h(n)yn. Then the following holds (see [2], Theorem 1).

Theorem 2.4. Let H(y) be continuous for |y| ≤ 1 and satisfy (2.8). If

(2.9)
∞∑
n=1

n2h2(n)r2n = O

(
1

1− r

)
as 0 < r < 1, r → 1

then (2.6) holds.

The main result of Barát and Indlekofer ([2], Theorem 2) is the following mean-value
theorem

Theorem 2.5. Let G be an additive arithmetical semigroup satisfying (2.6) and let
H ∈ H∞ (i.e. H is bounded in |y| < 1) satisfy (2.8). Further, let f̃ be a completely
multiplicative function, |f̃ | ≤ 1. Then the following two assertions hold.

(i) If the series (2.5) diverges for each τ ∈ (−π, π], then

M(n, f̃) = o(1)

as n→∞.

(ii) If the series (2.5) converges for some τ = τ0 ∈ (−π, π], then

M(n, f̃) =Aqn(1+iτ0)
∏

∂(p)≤n

(
1− q−∂(p)

)(
1 +

∞∑
k=1

q−k∂(p)(1+iτ0)f̃(pk)

)
+ o(1)

=cL(n) + o(1)

as n → ∞, where c is an appropriate real constant, and L(y) is a slowly
oscillating function.

Theorem 2.5 supersedes Proposition 2.2, the corresponding result of Zhang. His
assumption

(2.10)
∞∑
n=1

∣∣G(n)q−n − A
∣∣ <∞

implies, since h(n) = G(n)q−n −G(n− 1)q−n+1 the absolute convergence

∞∑
n=0

|h(n)| <∞,
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and thus H is continuous on the closed disc D̄ = {y : |y| ≤ 1}. Similarly, the
condition (ii) of Proposition 2.2

∞∑
n=0

sup
n≤m
|G(m)q−m − A| <∞

yields

(2.11)
∞∑
n=0

|h(n)| <∞

and h(n) = o(n−1). This can easily be seen from (1.8) in section 1.2. From our
Remark 1.2 we obtain also, that (ii) of Proposition 2.2 yields the Chebyshev upper
estimate.
In Theorem 2.5, we have assumed only H ∈ H∞ and (2.6), that follow from the
condition (2.11) and the Chebyshev upper estimate, but conversely H ∈ H∞ and
(2.6) do not yield (2.11) and the Chebyshev upper estimate in general.

In [2], Barát and Indlekofer also gave an example (Example 1), which satisfies the
assumption (2.6) but does not satisfy the Chebyshev upper estimate Λ(N)� qN .

The mean-value theorems so far assumed that the zeta function has the form Ẑ(z) =
Ĥ(z)(1− qz)−δ with δ ≥ 1 (see for example [44]). In this thesis we deal with a more
general case:

(2.12) Ẑ(z) = Ĥ(z)(1− qz)−δ

with δ > 0. We use a method different from the one that have been used to prove
the results which we have described in this section.
In his recent work Indlekofer also formulated a general mean-value theorem for
multiplicative functions of modulus ≤ 1 on additive arithmetical semigroups under
the above mentioned general condition (2.12) (see Theorem 4, [23]).

Proposition 2.6. Let (G, ∂) be an additive arithmetical semigroup such that

Ẑ(z) =
∞∑
n=0

G(n)zn = exp

(
∞∑
m=1

Λ̄(m)

m
zm

)
=

Ĥ(z)

(1− qz)δ

where Ĥ(z) = O(1) for |z| < q−1, lim
z→ 1

q

− Ĥ(z) = A > 0 and δ > 0. Assume that

Λ̄(m) = O(qm) and G(n) � qnnδ−1. Suppose |f̃(g)| ≤ 1 for all g ∈ G and either

(i) f̃ is a completely multiplicative function on G, or

(ii) f̃ is a multiplicative function such that f̃(pk) = 0 for each prime power pk with
∂(p) ≤ log 2

log q
.
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If there exists a real number a such that the series (2.5) converges for τ = a, then

∑
g∈G
∂(g)=n

f̃(g) = qina
∏

∂(p)≤n

(1− q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)(1+ia)

)
G(n) + o(G(n)).

If (2.5) diverges for all τ ∈ R then∑
g∈G
∂(g)=n

f̃(g) = o(G(n)).

2.2 New mean-value theorems for uniformly

summable multiplicative functions

We begin by introducing some definitions, and so on to present our main theorems
about mean-values of uniformly summmable multiplicative functions on additive
arithmetical semigroups.
The class of uniformly summable multiplicative functions has been defined by In-
dlekofer (see [17]) for functions defined on N. Indlekofer proved mean-value theorems
for the class of functions Lα and for uniformly summable functions.
In the case of additive arithmetical semigroups, the main contributions, to date,
are by Wehmeier (see [39]) and Zhang (see for example [44]). Therefore we restrict
ourselves to comparing their most recent results with our new results. Our new
mean-value theorems are more general than the ones proposed before. We prove our
results for a larger class of functions and under a weaker condition on the additive
arithmetical semigroups.

In the previous results in this field the class of arithmetical functions Lα was of of
great interest. We introduce this class of functions as follows

Definition 2.7. Let f̃ : G 7→ C. If 1 ≤ α <∞, then f̃ is said to be in Lα if

||f̃ ||α := (lim sup
n→∞

M(n, |f̃ |α))1/α

is finite.

After the classes Lα for 1 ≤ α < ∞ the development continued and motivated by
Indlekofer’s results in the classical number theory (see [17]), the class of uniformly
summable functions became very important for additive arithmetical semigroups.
Wehmeier initiated the investigations in this direction for additive arithmetical semi-
groups. In our thesis we extend the previous results. Therefore we introduce the
following:
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Definition 2.8. Let f̃ : G 7→ C. Let K ∈ R; then we define f̃K by

f̃K(a) =

{
f̃(a), if |f̃(a)| ≥ K,
0, otherwise.

f̃ is called uniformly summable if

lim
K→∞

sup
n≥1

M(n, |f̃K |) = 0.

We denote the set of all uniformly summable functions by L∗.

Remark 2.9. To emphasize the importance of the class L∗ we remark, that for
α > 1

Lα $ L∗ $ L1

holds.

Now, we introduce our results. Let f̃ be a multiplicative function on G. The idea is
to use Indlekofer’s latest approach which we summarize in section 2.4. His method
differs from the methods used before since he does not prove an asymptotic formula
for

∑
a∈G
∂(a)=n

f̃(a)n via Cauchy’s theorem

n
∑
a∈G
∂(a)=n

f̃(a) =
1

2π

∫
|z|=r<q−1

F̂ ′(z)

zn+1
dz

but compare
∑

a∈G,∂(a)=n

f̃(a)n with nG(n)

|n
∑
a∈G
∂(a)=n

f̃(a)− AnnG(n)| =
∣∣∣∑
m≤n

Λf (m){
∑
a∈G

∂(a)=n−m

f̃(a)− AnG(n−m)}

+ An
∑
m≤n

(Λf (m)− Λ(m))G(n−m)
∣∣∣(2.13)

�
∑
m≤n

|
∑

a∈G,∂(a)=m

f̃(a)− AnG(m)|(2.14)

+|An|
∑
m≤n

|Λf (m)− Λ(m)|G(n−m)

This leads via Parseval’s equality to an estimate of the distance between
∑
a∈G
∂(a)=n

f̃(a)n

and AnnG(n), a procedure which is also effective for quantitative investigations of
occuring remainder terms.

Motivated by the above mentioned method and the corresponding papers of In-
dlekofer about mean-value theorems for multiplicative functions defined on N (see
Indlekofer [17], [18] and [19]) we formulate our main theorems.
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Theorem 2.10. Let (G, ∂) be an additive arithmetical semigroup such that

Ẑ(z) =
∞∑
m=0

G(m)zm = exp

(
∞∑
n=1

Λ(n)

n
zn

)
=

Ĥ(z)

(1− qz)δ

where Ĥ(z) = O(1) for |z| < q−1, lim
z→ 1

q

−
Ĥ(z) = A > 0 and δ > 0. Assume that

Λ(m) = O(qm). Let f̃ be a multiplicative function and α ≥ 1. If G(n) � qnnδ−1 and
f̃ ∈ L∗ ∩ Lα and if M(f̃) exists and is nonzero, then the following series

(2.15)
∑
p∈P

f̃(p)− 1

q∂(p)

(2.16)
∑
p∈P

|f̃(p)|≤3/2

|f̃(p)− 1|2

q∂(p)

(2.17)
∑

p∈P ;n≥2

|f̃(pn)|λ

(q∂(p))n
.

(2.18)
∑
p∈P

||f̃(p)|−1|>1/2

|f̃(p)|λ

q∂(p)

converge for 1 ≤ λ ≤ α, and for each prime p

(2.19)
∞∑
n=1

f̃(pn)

qn∂(p)
+ 1 6= 0.

In the converse direction we have two cases: 1 ≤ δ and 0 < δ < 1. If the above
mentioned series of Theorem 2.10 converge, then we can prove the following:

Theorem 2.11. Let an additive arithmetical semigroup fulfill the conditions of The-
orem 2.10, with G(n) � qnnδ−1 for 1 ≤ δ. Further we assume that G(n−1)

G(n)
=

q−1 + o(1) as n→∞.
Let f̃ be a multiplicative function and α ≥ 1. If the series (2.15)-(2.18) converge,
then M(f̃) exists, f̃ ∈ L∗ ∩ Lα and M(|f̃ |λ) exists for 1 ≤ λ ≤ α. If in addition
(2.19) holds then M(f̃) 6= 0 and M(|f̃ |λ) 6= 0 for 1 ≤ λ ≤ α.

For 0 < δ < 1 we need a further assumption on our multiplicative function f̃ in
order to prove the existence of the mean-value of f̃ .
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Theorem 2.12. Let an additive arithmetical semigroup fulfill the conditions of
Theorem 2.10, with G(n) � qnnδ−1 for 0 < δ < 1. Let f̃ be a multiplicative function

and α ≥ 1. Further we assume that G(n−1)
G(n)

= q−1 + o(1) as n→∞ and

(2.20) ∀ε > 0 : ∃K > 0 : ∀n ∈ N : ∀S ⊆ G :

S = {a ∈ G : pk||a, p ∈ P ; |f̃(pk)|α > K} ⇒M(n,1S|f̃ |α) < ε

holds. If the series (2.15)-(2.17) converge, then M(f̃) exists, f̃ ∈ L∗ ∩ Lα and
M(|f̃ |λ) exists for 1 ≤ λ ≤ α. If in addition (2.19) holds then M(f̃) 6= 0 and
M(|f̃ |λ) 6= 0 for 1 ≤ λ ≤ α.

The class of uniformly summable functions was defined by Indlekofer (see [17])
for functions defined on N, and he has proved mean-value theorems for uniformly
summable multiplicative functions.
In the case of additive arithmetical semigroups, as mentioned before, it was mainly
Wehmeier (see [39]) and Zhang (see for example [44]) who have made contributions
to this subject before this thesis. Zhang’s most recent results in this topic appeared
in 2008 [44]. In his paper he has presented mean-value theorems for functions of the
class Lα (α > 1) and for the case 1 ≤ δ applying the methods which have been used
in the proofs in the classical case also.
Wehmeier’s most recent results in this field appeared in his PhD thesis in 2005
(see [39], chapter 6). Wehmeier has proven his mean-value theorems for uniformly
summable multiplicative functions applying the methods of Indlekofer’s proof for
the natural numbers N but only for the case δ = 1 .
In this thesis we prove our mean-value theorems in the case 0 < δ and for L∗ ∩ Lα
(α ≥ 1), which is a larger class of functions using other methods.

2.3 Characterization of uniformly summable func-

tions

In this section we give a characterization of uniformly summable functions on G. We
summarize the equivalent properties of L∗ in the following lemma, that corresponds
to Lemma 1 in [17]. For additive arithmetical semigroups Wehmeier also proved the
equivalence of the assertions 1.-3. of the subsequent lemma (see Lemma 6.4 in [39]).
We shall apply in particular the first property of this lemma in our proof.

Lemma 2.13. The following statements are equivalent:

1. f̃ ∈ L1 and

∀ε > 0 : ∃γ > 0 : ∀n ∈ N : ∀S ⊆ G : (M(n,1S) < γ ⇒M(n,1S|f̃ |) < ε);

2. f̃ ∈ L∗;
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3.
∀ε > 0∃α ∈ R : (||(|f̃ | − α)+||1 < ε)

where (|f̃ | − α)+ = max((|f̃ | − α), 0) is the positive part of |f̃ | − α.

4. There exists a monotonic function ϕ : R 7→ R such that
(i) ϕ ≥ 0,
(ii) ϕ(t)/t→∞ as t→∞,
(iii) ϕ ◦ f̃ ∈ L1.

Proof. 1. ⇒ 2.: Let ε > 0. To prove that f̃ ∈ L∗, we have to find K0 such that
M(n, |f̃K |) < ε for all K ≥ K0, n ∈ N.
Apply the assumption 1. to obtain γ such that M(n,1S|f̃ |) < ε if M(n,1S) < γ.
Choose K0 := 2||f̃ ||1/γ. Since f̃ ∈ L1 we know that M(n, |f̃ |) < 2||f̃ ||1 <∞ for all
n ∈ N. Let

S := {a ∈ G; |f̃(a)| ≥ K},

then f̃K = 1S f̃ . For K ≥ K0 it yields

M(n,1S) ≤M(n,1S|f̃ |)/K ≤
M(n, |f̃ |)

K0

≤ γM(n, |f̃ |)
2||f̃ ||1

< γ.

Hence M(n,1S|f̃ |) = M(n, |f̃K |) < ε for all K ≥ K0, n ∈ N.

2. ⇒ 3.: Let ε > 0. There exists K such that ||f̃K ||1 < ε. Since max(|f̃ | − α, 0) <
|f̃ |α it suffices to set α := K.

3. ⇒ 4.: There exist real numbers nk ↗∞ such that

sup
n≥1

1

G(n)

∑
∂(a)=n

(|f̃(a)| − nk)+ < 2−k.

Define ϕ : R 7→ R by ϕ(t) :=
∞∑
k=1

(m − nk)+ if m ≤ t < m + 1 where m ∈ Z. Then

ϕ ≥ 0 and ϕ is monotonic. Further, ϕ(m)/m =
∞∑
k=1

(1 − nk/m)+ → ∞ as m → ∞
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and therefore (ii) of 4. holds. Now,

1

G(n)

∑
∂(a)=n

ϕ(|f̃(a)|) =
1

G(n)

∑
m∈Z

∞∑
k=1

(m− nk)+
∑
∂(a)=n

m≤|f̃(a)|<m+1

1

=
1

G(n)

∞∑
k=1

∑
m∈Z

(m− nk)+
∑
∂(a)=n

m≤|f̃(a)|<m+1

1

≤ 1

G(n)

∞∑
k=1

∑
∂(a)=n

|f̃(a)|≥nk

(m− nk)

≤ 1

G(n)

∞∑
k=1

∑
∂(a)=n

(|f̃(a)| − nk)+

≤ 1.

Therefore ϕ ◦ f̃ ∈ L1, which shows the assertion 4.

4. ⇒ 3.: Let ε > 0 and put c := sup
n≥1

1
G(n)

∑
∂(a)=n

ϕ(|f̃(a)|). Choosing α > 0 such that

ϕ(t)/t ≥ c/ε for all t ≥ α we have

1

G(n)

∑
∂(a)=n

(|f̃(a)| − α)+ ≤ 1

G(n)

∑
∂(a)=n

|f̃(a)|>α

|f̃(a)|

≤ ε

c

1

G(n)

∑
∂(a)=n

|f̃(a)|>α

ϕ(|f̃(a)|)

≤ ε.

3. ⇒ 1.: For ε > 0 the assumption 3. yields that there exists a real number α1

such that
||f̃ ||1 = ||(|f̃ | − α1) + α1||1 ≤ ε+ 2α1

since ||f̃ | − α1|(a) ≤ max((|f̃ | − α1)+(a), α1). Hence f̃ ∈ L1.
Apply now the assumption 3. to ε/2. It yields that there are α2 ∈ R and N ∈ N
such that

n ≥ N ⇒M(n, (|f̃ | − α2)+) < ε/2.

Choose γ so small that G(n) > 1/γ implies n ≥ N , and that γ < ε
2α2

.
Let S ⊆ G and n ∈ N such that M(n,1S) < γ. We have to show that

M(n,1S|f̃ |) < ε.
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If Gn ∩ S = ∅, then M(n,1S|f̃ |) = 0. Otherwise it follows that n ≥ N . The
inequality |f̃(a)| ≤ (|f̃ | − α2)+(a) + α2 holds for all a ∈ G. Hence

M(n,1S|f̃ |) ≤M(n, (|f̃ | − α2)+) +M(n,1Sα2) ≤ ε/2 + α2γ < ε.

This ends the proof of our lemma.

2.4 Indlekofer’s method

In this section we summarize the ideas and main results of [23].
To ease notational difficulties we make a variable transformation and put

(2.21) y = qz, λ(m) = q−mΛ(m) and γ(n) = q−nG(n)

which leads to

(2.22) Z(y) := Ẑ(yq−1) =
∞∑
n=0

γ(n)yn = exp

(
∞∑
m=1

λ(m)

m
ym

)
.

Then Z(y) is holomorphic for |y| < 1.
The same transformation yields for the generating function F̂ of an arithmetical
function f̃ the following

(2.23) F (y) := F̂ (yq−1) =
∞∑
n=0

 ∑
a∈G
∂(a)=n

f̃(a)

 q−nyn.

For an arithmetical function f̃ on G we define f : N0 7→ C by

(2.24) f(n) := q−n
∑
a∈G
∂(a)=n

f̃(a)

and call it the summatory function of f̃ .
It may be observed, that

M(n, f̃) =

∑
a∈G
∂(a)=n

f̃(a)

G(n)
=
f(n)

γ(n)
.

For example, the investigation of the mean-value of f̃ = Λ̃ leads to defining the
asymptotic behaviour of Λ(n)

γ(n)
, which corresponds to the prime number theorem. In

this section we consider functions f : N0 → C with f(0) = 1 and γ(n) ≥ 0 for n ∈ N
and γ(0) = 1.

27



CHAPTER 2. INVESTIGATION OF ARITHMETICAL FUNCTIONS

The transformed generating function F of an arithmetical function f̃ with summa-
tory function f satisfying f(0) = 1 can be written as

(2.25) F (y) :=
∞∑
n=0

f(n)yn = exp

(
∞∑
m=1

λf (m)

m
ym

)
.

The basic conditions in this section will be

(2.26) 0 ≤ λ(m) = O(1) (m ∈ N)

and

(2.27) |Z(y)| � Z(|y|)
∣∣∣∣1− |y|1− y

∣∣∣∣ε (|y| < 1)

for some ε > 0. Then we assume that

(2.28) nγ(n) � exp

(∑
m≤n

λ(m)

m

)

and

(2.29) exp

(∑
k≤m

λ(k)

k

)
= o

(
exp

(∑
k≤n

λ(k)

k

))
if m = o(n) (n→∞).

Definition 2.14. We say that the function Z given in (2.22) belongs to the exp− log
class F in case (2.26)-(2.29) hold.

We notice that the definition of the functions Z ∈ F does not require any analytic
continuation of Z(y) over the boundary |y| = 1.
We assume that λf splits into

(2.30) λf = λf,1 + λf,2

such that

(2.31) |λf,1(m)| ≤ λ(m) (m ≤ n) and
∞∑
m=1

|λf,2(m)|
m

= c1 <∞.

We may assume that λf,1(m) = 0 if m > n since these values do not influence f(n).
We can formulate the following (Theorem 2 in [23])

Theorem 2.15. Let Z be an element of the exp-log class F and let F (y) in (2.25)
satisfy (2.30) and (2.31) with

λf (m) = O(1), |λf,1(m)| ≤ λ(m) for all m ∈ N
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and
∞∑
m=1

|λf,2(m)|
m

<∞.

If
F (y) = FI(y)FII(y)

where

FI(y) := exp

(
∞∑
m=1

λf,1(m)

m
ym

)
, FII(y) := exp

(
∞∑
m=1

λf,2(m)

m
ym

)
for |y| < 1, then the following two assertions hold.

(i) Let

(2.32)
∞∑
m=1

λ(m)−Reλf,1(m)eima

m

converge for some a ∈ R. Put

An = exp

(
−ina+

∑
m≤n

λf,1(m)eima − λ(m)

m

)
FII(1).

It yields

f(n) = Anγ(n) + o(γ(n)) as n→∞.

(ii) Let (2.32) diverge for all a ∈ R. Then

(2.33) f(n) = o(γ(n)) as n→∞.

It may be observed, that we do not require analytic continuation of the generating
functions outside the disk of convergence.

2.5 Lemmata

We prove some lemmata that we shall use in the proofs of our theorems. The proof
of the first lemma follows the lines of Elliott [9], the second and the third lemma
were proven by Indlekofer in [23], therefore we omit their proofs here. Afterwards,
we present a mean-value theorem for multiplicative functions which are bounded
on the prime powers. Thereafter, we prove the fifth lemma, that is a tauberian
theorem, of which the first part was a problem proposed by Schur ([37]).
We shall use the following definition for our results. Put Gn := {a ∈ G : ∂(a) = n}
then
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Definition 2.16. A function h̃ : G 7→ R is called finitely distributed if there exists
a sequence of integers (n1, n2, ...) and a subset H ⊆ G such that for every nl,
#(H ∩ Gnl) ≥ cG(nl) and |h̃(a1) − h̃(a2)| < C for all a1, a2 ∈ H ∩ Gnl with some
parameters c > 0, C > 0.

We can describe a finitely distributed additive function on G as follows

Lemma 2.17. If an additive function g̃ on G is finitely distributed, then there is an
additive function h̃ on G and a constant c, c ∈ R so that

g̃(a) = c∂(a) + h̃(a)

where both the series

(2.34)
∑
p

|h̃(p)|>1

1

q∂(p)

∑
p

|h̃(p)|<1

h̃(p)2

q∂(p)

converge.

Proof. Since g̃ on G is an additive function, therefore the function exp(itg̃) is a
multiplicative function of modulus 1 on G for any real number t. Define the real-
valued function l as follows

l(t) = lim
n→∞

1

G(n)

∣∣∣∣∣∣
∑
∂(a)=n

exp(itg̃(a))

∣∣∣∣∣∣ .
The function l is well-defined, since the existence of this limit is guaranteed by
Proposition 2.6.
Further, we define the function

D(Θ) =

{ (
sinπΘ
πΘ

)2
, if Θ 6= 0,

1, if Θ = 0.

Then, for each real number y,∫ ∞
−∞

e2πiΘyD(Θ) dΘ =

{
1− |y|, if |y| ≤ 1,
0, otherwise.

Interchanging summation and integration shows that for a positive α

∫ ∞
−∞

α

∣∣∣∣∣∣
∑
∂(a)=n

exp(itg̃(a))

∣∣∣∣∣∣
2

D(αt)dt =
∑

a1,a2∈Gn
|g̃(a1)−g̃(a2)|≤α

(1− α−1|g̃(a1)− g̃(a2)|).
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We divide by G(n), and let n → ∞, and apply Lebesgue’s theorem on dominated
convergence. Since g̃ is a finitely distributed additive function and if α is sufficiently
large, then ∫ ∞

−∞
αl(t)2D(αt)dt > 0.

To put it more precisely, if g̃ satisfies the condition given in the definition of a finitely
distributed additive function, and if α ≥ 2C, then the value of this integral is at
least as large as c2/2.
As a consequence, there is a set E, of positive Lebesgue measure, on which l(t) > 0.
If, for some value of t, we have l(t) > 0, then according to Indlekofer’s theorem (see
Proposition 2.6) on the multiplicative function exp(itg̃) of modulus 1 it yields that
there is a unique real number τ = τ(t), so that the series

(2.35)
∑
p∈P

q−∂(p)(1−Re eitg̃(p)q−iτ∂(p))

converges. The convergence of this series is equivalent to that of the series

L(t, τ) =
∑
p∈P

q−∂(p) sin2

(
1

2
tg̃(p)− 1

2
τ∂(p)

)
.

Such a number τ may be found for each member t of E. Indeed, there is a number
K, and a subset F of E, of positive measure, so that whenever t belongs to F the
inequality

(2.36) L(t, τ) ≤ K

is satisfied. Steinhaus proved the following: The differences generated by a set of
a real numbers of positive Lebesgue measure, cover an open interval around the
origin (for the proof see [9]). Therefore there is a proper interval around the origin,
(−2δ, 2δ) say, each point w of which has a representation w = t1 − t2, with both t1
and t2 belonging to the set F . In view of the inequality

sin2(x± y) ≤ 2 sin2 x+ 2 sin2 y,

which is valid for all real numbers x and y, by (2.36) we see that

L(w, τ(t1)− τ(t2)) ≤ 2L(t1, τ(t1)) + 2L(t2, τ(t2)) ≤ 4K.

In particular, τ(w) exists and has the value

τ(w) = τ(t1 − t2) = τ(t1)− τ(t2).

A simple extension of this argument shows that L(t, τ) is defined (and finite) for
every real number t, and that for every rational number r, the relation τ(rt) = rτ(t)
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holds. For w = j
k
δ (k ∈ N, j = 1, . . . , k) it yields τ(w) = τ( j

k
δ) = j

k
τ(δ). Since

j
k
δ ∈ (−2δ, 2δ) we also get the inequality

L

(
j

k
δ, τ

(
j

k
δ

))
≤ 4K

which holds uniformly for each positive integer k and j = 1, 2, ..., k.
For our next step we shall need the inequality

(2.37)
1

k

k∑
j=1

(1− cos jy) ≥ 1

2
,

that is certainly valid when k is an integer, k ≥ 2, and y is a real number in the
range π/k ≤ |y| ≤ π. This inequality may be deduced from the identity

1

k

k∑
j=1

(1− cos jy) = 1 +
1

2k
− sin((2k + 1)y/2)

2k sin(y/2)
,

by means of the inequality

|2k sin(y/2)| ≥ 2k|y|/π.

We set c := τ(δ)/δ, define h̃(p) = g̃(p) − c∂(p), and deduce that for the argument
of the sinus function in the series L

(
j
k
δ, τ
(
j
k
δ
))

yields

1

2

j

k
δg̃(p)− 1

2
τ

(
j

k
δ

)
∂(p) =

jδ

k
(g̃(p)− c∂(p)) =

jδ

k
h̃(p).

Using the cosinus addition formula it follows

2sin2

(
1

2

j

k
δg̃(p)− 1

2
τ

(
j

k
δ

)
∂(p)

)
= 1− cos (jδh(p)/k))

By the inequality (2.36) we get

(2.38)
′∑
p

q−∂(p)(1− cos(jδh̃(p)/k)) ≤ 8K

where ’ indicates that the summation runs over those primes for which

πδ−1 ≤ |h̃(p)| ≤ πkδ−1.
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Utilising the inequality (2.37) and (2.38) we deduce that

′∑
p

1

q∂(p)
≤ 2

′∑
p

1

q∂(p)

1

k

k∑
j=1

(1− cos(jδh̃(p)/k))

≤ 2
1

k

k∑
j=1

′∑
p

1

q∂(p)
(1− cos(jδh̃(p)/k))

≤ 2

k

k∑
j=1

8K

≤ 16K,

and, since k may be chosen arbitrarily large,∑
|h̃(p)|≥πδ−1

1

q∂(p)
≤ 16K.

It yields the convergence of the first series in (2.34). Also,

δ2

π2

∑
|h̃(p)|≤πδ−1

q−∂(p)h̃2(p) ≤
∑

|h̃(p)|≤πδ−1

q−∂(p) sin2(δh̃(p)/2)

≤L(δ, τ(δ)) ≤ 4K.

This completes the proof of Lemma 2.17.

Indlekofer’s method can be used to deal with multiplicative functions which are
bounded on prime powers. For this let f̃ : G 7→ C be multiplicative such that, for
some constant c > 1,

(2.39) |f̃(pk)| ≤ c for all prime powers pk.

Referring to the proof in [23] we recall

Lemma 2.18. Let (G, ∂) be an additive arithmetical semigroup satisfying G(n) �
nρqn where q > 1 and ρ ∈ R. If f̃ is multiplicative satisfying (2.39), then there
exists m0 ∈ N such that

Π(y) =
∏
p

∂(p)≥m0

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)yk∂(p)

)

= exp

(
∞∑

m=m0

λf (m)

m
ym

)
(|y| < 1)

where
λf (m)

m
=
∑
p

∂(p)=m

f̃(p)q−m +O
(
q−

m
4

)
as m→∞.
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Motivated by the results for multiplicative functions on N (see [17]) we shall assume
that

(2.40)
∑
p

(|f̃(p)| − 1)2

q∂(p)
<∞

and f̃ ∈ L1, i.e.

(2.41) M(n, |f̃ |)� 1.

We define the multiplicative function f̃1 by

(2.42) f̃1(pk) =

{
f̃(pk), if ∂(p) ≥ m0,
0, if ∂(p) < m0.

Clearly M(n, |f̃1|) ≤M(n, |f̃ |), and (2.41) implies

∞∑
n=0

∑
g∈G
∂(g)=n

|f̃1(g)|q−n|y|n � Z(|y|)

Since P (d) ≤ G(d)� qddδ−1,
(2.43)

Λ(m) = mP (m) +O

(
mG

(m
2

)∑
r≤m

1

r

)
= mP (m) +O

(
mq

m
2

(m
2

)δ−1

logm

)
.

By Lemma 2.18 we get

(2.44)
∑
p

|f̃(p)| − 1

q∂(p)
r∂(p) ≤ c1 with some c1 > 0

uniformly as r → 1−.
Under these conditions the following holds

Lemma 2.19. Let (G, ∂) be an additive arithmetical semigroup such that

Ẑ(z) =
∞∑
n=0

G(n)zn = exp

(
∞∑
m=1

Λ(m)

m
zm

)
=

Ĥ(z)

(1− qz)δ

where Ĥ(z) = O(1) for |z| < q−1, lim
z→ 1

q

− Ĥ(z) = A > 0 and δ > 0. Assume that

Λ(m) = O(qm) and G(n) � qnnδ−1. Let f̃ be multiplicative and assume (2.40) and
(2.41). If f̃1 satisfy (2.42) and (2.44), then, as n→∞,

M(n, |f̃1|) = c2 exp

 ∑
m0≤∂(p)≤n

|f̃(p)| − 1

q∂(p)

+ o(1)

with some positive constant c2.
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Proof. For further details see Theorem 6 in [23].

Our next lemma can be proven similarly as Proposition 2.6 (cf. Theorem 4 in [23]).

Lemma 2.20. Let (G, ∂) be an additive arithmetical semigroup such that

Ẑ(z) =
∞∑
n=0

G(n)zn = exp

(
∞∑
m=1

Λ̄(m)

m
zm

)
=

Ĥ(z)

(1− qz)δ

where Ĥ(z) = O(1) for |z| < q−1, lim
z→ 1

q

− Ĥ(z) = A > 0 and δ > 0. Assume

that Λ̄(m) = O(qm) and G(n) � qnnδ−1. Suppose f̃ is a multiplicative function
such that |f̃(pk)| < K for each prime power pk with ∂(p) ≤ log 2

log q
, and the series∑

p∈P
(|f̃(p)| − 1)q−∂(p) converges. If there exists a real number a such that the series

(2.5) converges for τ = a, then

∑
g∈G
∂(g)=n

f̃(g) = qina
∏

∂(p)≤n

(1− q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)(1+ia)

)
G(n) + o(G(n)).

If (2.5) diverges for all τ ∈ R then∑
g∈G
∂(g)=n

f̃(g) = o(G(n)).

In the proof of our mean-value theorems we often compute the coefficients of power
series, that can be written as a product of two other power series. Under certain
conditions we can compute the required coefficients. We describe our result in the
following lemma.

Lemma 2.21. Let C(z) = A(z)B(z) where the power series are defined as A(z) =∑∞
n=1 anz

n, B(z) =
∑∞

n=1 bnz
n, C(z) =

∑∞
n=1 cnz

n. Assume that for a real number ρ
the relation bn−1/bn = ρ+o(1) holds as n→∞ and assume that

∑∞
n=1 |an||ρ|n <∞.

Let the radius r of converge of A(z) satisfy r ≥ |ρ|. If

(i) |ρ| < r, or

(ii) |ρ| = r and bm = O(|bn||ρ|n−m) for all m ≤ n

then
cn ∼ A(ρ)bn (n→∞).

Proof. Let ε > 0 be so small that |ρ| + ε < r. Then there exists a constant A
independent of n and ν such that∣∣∣∣bn−νbn

∣∣∣∣ =

∣∣∣∣ bn−νbn−ν+1

∣∣∣∣ · . . . · ∣∣∣∣bn−1

bn

∣∣∣∣ < A(|ρ|+ ε)ν , ν = 0, 1, . . . , n; n = 0, 1, 2, . . .
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For n > m we obtain

(2.45)
cn
bn
−A(ρ) =

m∑
ν=0

aν

(
bn−ν
bn
− ρν

)
+

n∑
ν=m+1

aν
bn−ν
bn
−

∞∑
ν=m+1

aνρ
ν =: Σ1+Σ2−Σ3.

In the case (i) there exists a positive integer m0 such that

Σ2 �
∞∑

ν=m+1

|aν |(|ρ|+ ε)ν ≤ ε

for m ≥ m0, and

Σ3 ≤
∞∑

ν=m+1

|aν ||ρ|ν ≤ ε

for m ≥ m0.
In the case (ii), we obtain

Σ2 �
n∑

ν=m+1

|aν ||ρ|ν ≤ ε

since |bn−ν ||bn| = O(|ρ|ν) holds by our assumption in (ii). Further, we know that

Σ3 ≤
∞∑

ν=m+1

|aν ||ρ|ν ≤ ε.

Thus in both cases the sum Σ2 and Σ3 are absolutely smaller than ε for m ≥ m0.
Choose m so large that these two terms are smaller than ε. For a fixed m we
can choose n in both cases (i) and (ii) so that the first sum Σ1 in (2.45) becomes
absolutely smaller than ε. It yields

cn ∼ A(ρ)bn

as (n→∞). This ends the proof of Lemma 2.21.

2.6 Proof of the new mean-value theorems

First we prove Theorem 2.10.

Proof. We assume that M(f̃) 6= 0 and f̃ ∈ L1. Then there exists a natural number
n0 and constants 0 < c1, c2 <∞ such that

(2.46) 0 < c1 ≤
1

G(n)

∑
a∈G
∂(a)=n

|f̃(a)| ≤ c2 <∞
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for all n ≥ n0. Then, for ε > 0 that is small enough,

1

G(n)

∑
a∈G,∂(a)=n

|f̃(a)|≤ε

|f̃(a)| ≤ c1

4

and with suitable K > 0,

1

G(n)

∑
a∈G,∂(a)=n

|f̃(a)|>K

|f̃(a)| ≤ c1

4

because f̃ is uniformly summable. Thus

c2 ≥
1

G(n)

∑
a∈G,∂(a)=n

ε<|f̃(a)|≤K

|f̃(a)| ≥ c1 −
c1

4
− c1

4
=
c1

2
> 0.

It follows also, that
c2

ε
≥ 1

G(n)

∑
a∈G,∂(a)=n

ε<|f̃(a)|≤K

1 ≥ c1

2K
> 0,

i.e.
1

G(n)

∑
a∈G,∂(a)=n

ε<|f̃(a)|≤K

1 � 1.

We define an additive function g̃ by

g̃(pk) =

{
log |f̃(pk)|, if f̃(pk) 6= 0,
1, otherwise.

It yields

(2.47)
1

G(n)

∑
a∈G,∂(a)=n

log ε<g̃(a)≤logK

1 � 1,

therefore g̃ is finitely distributed. Then by Lemma 2.17 we deduce

(2.48) g̃(a) = c∂(a) + h̃(a)

where h̃ satisfies (2.34).
Our next step is to prove c = 0. With (2.48) we derive

(2.49) 0 6= |f̃(p)| = ec∂(p)eh̃(p).
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By Lemma 2.17

(2.50)
∑
p∈P

|h̃(p)|>C

1

q∂(p)
<∞.

for all C > 0. If |eh̃(p)−1| > η1 for some η1, 0 < η1 < 3/4, then |h̃(p)| ≥ min{log(1+
η1),− log(1− η1), 1} hence with (2.50)

(2.51)
∑
p∈P

|eh̃(p)−1|>η1

1

q∂(p)
<∞.

We define

(2.52) P1 := {p ∈ P ; eh̃(p) < 1− η1}

and

(2.53) P2 := {p ∈ P ; eh̃(p) > 1 + η1}

with 0 < η1 < 3/4. Let

S1 := {a ∈ G;∃p ∈ P1 ∪ P2 : p|a, ∂(p) ≥ n0}

S2 := {a ∈ G; ∃p ∈ P : p2|a, ∂(p) ≥ n0}

and
S3 := {a ∈ G;∃p ∈ P : pk|a, k ≥ k0, ∂(p) ≤ n0}.

Put
S := S1 ∪ S2 ∪ S3.

We apply Proposition 2.6 on the multiplicative function 1G\S. Therefore we can
choose n0 and k0 such that for all n0 ≤ n

(2.54) M(n,1S) < γ.

Then S has a density less than γ, hence lim sup
n→∞

M(n,1S f̃) < ε and therefore

lim inf
n→∞

M(n,1G\S f̃) > ε,

by our choice of ε.
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Since G(n)� qnnδ−1, we have∑
∂(a)=n

ω̃(a) =
∑
p

∂(p)=n

1 +
∑
p

∂(p)≤n−1

G(n− ∂(p))

� P (n) +
∑
p

∂(p)≤n−1

qn−∂(p)(n− ∂(p))δ−1

� qn

n
+ qn

n−1∑
m=1

q−mP (m)(n−m)δ−1

=
qn

n
+ qn

∑
n
2
≤m≤n−1

q−mP (m)(n−m)δ−1 + qn
∑

1≤m<n
2

q−mP (m)(n−m)δ−1

� qn

n
+
qn

n

∑
1≤m≤n

mδ−1 + qnnδ−1
∑

1≤m≤n
2

1

m

� qn

n
+
qn

n
nδ + qnnδ−1 log n

and therefore

(2.55) M(n, ω̃) = O(log n).

By our assumption log(|f̃(a)|) = c∂(a) + h̃(a). Hence

|f̃(a)| = ec∂(a)eh̃(a).

Since f̃ ∈ L∗

(2.56) 1 �M(n, |f̃ |1G\S) = ecn
1

G(n)

∑
a∈G\S
∂(a)=n

eh̃(a).

We show that c has to be zero. For this we estimate

1

G(n)

∑
a∈G
∂(a)=n

eh̃(a).

By the definition of the set S we have

(2.57) a ∈ G \ S, p|a⇒ h̃(pk) = O(1),

and it yields

(2.58) |h̃(a)| ≤ Cω̃(a) for a ∈ G \ S.
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Therefore

(2.59)
1

G(n)

∑
a∈G\S
∂(a)=n

eh̃(a) ≤ 1

G(n)

∑
a∈G\S
∂(a)=n

e|h̃(a)|.

Put

(2.60) g̃h̃(a) := e|h̃(a)|.

Then g̃h̃(a) is a multiplicative function with e|h̃(pk)| = O(1) by (2.57). Thus, there
exists a real constant c3 such that

(2.61)
∞∑
n=0

gh̃(n)zn � exp

(
∞∑
m=1

c3Λ(m)

m
zm

)
.

It yields for 0 < |z| = r < q−1 there exist positive constants c4 and c5 so that

(2.62)
gh̃(n)rn

qn
� exp

(∑
m≤n

c4Λ(m)

m
rm

)
� exp(c5 log n).

Hence there exists a constant c6 with

(2.63)
gh̃(n)

qnnδ−1
� exp(c6 log n),

it means

(2.64)
1

G(n)

∑
a∈G\S
∂(a)=n

eh̃(a) � exp(c6 log n).

On the other hand, the equations (2.55) and (2.58) with the Jensen-inequality (see
[36]) yields

1

G(n)

∑
a∈G\S
∂(a)=n

eh̃(a) ≥ 1

G(n)

∑
a∈G\S
∂(a)=n

e−|h̃(a)|

≥ 1

G(n)

∑
a∈G\S
∂(a)=n

e−Cω̃(a)

� exp

− c4

G(n)

∑
a∈G\S
∂(a)=n

ω̃(a)


� exp(−c3 log n)
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Collating our last results we arrive at the conclusion that there exists a real constant
c7 such that

(2.65) 1 �M(n, |f̃ |1G\S) � ecne±c7 logn as n→∞.

Hence c must be zero, and it follows that |f̃(a)| = eh̃(a), for all a ∈ G, for which
|f̃(a)| 6= 0.
By Lemma 2.17 the series

(2.66)
∑
p∈P
|g̃(p)|<1

(g̃(p))2

q∂(p)
and

∑
p∈P
|g̃(p)|>1

1

q∂(p)

converge. If ||f̃(p)| − 1| ≤ η1, then the series expansion of the logarithm yields

log |f̃(p)| = log(1 + (|f̃(p)| − 1)) = |f̃(p)| − 1 +O((|f̃(p)| − 1)2)

so that for η1 = 1/2

||f̃(p)| − 1| ≤ 2| log |f̃(p)|| = 2|g̃(p)|

and
|g̃(p)| ≤ 2||f̃(p)| − 1| ≤ 1.

Therefore ∑
p∈P

|f̃(p)|<1/2

(|f̃(p)| − 1)2

q∂(p)
�

∑
p∈P

|g̃(p)|>log(1/2)

1

q∂(p)
<∞

and ∑
p∈P

1/2≤|f̃(p)|≤3/2

(|f̃(p)| − 1)2

q∂(p)
�

∑
p∈P
|q̃(p)|≤1

(g̃(p))2

q∂(p)
<∞.

Thus the series ∑
p∈P

|f̃(p)|≤3/2

(|f̃(p)| − 1)2

q∂(p)

converges. Furthermore

(2.67) |f̃(p)− 1|2 = (|f̃(p)| − 1)2 + 2(|f̃(p)| − 1)− 2(Re (f̃(p))− 1)

where the series over the first term on the right hand side converges (see above).
Choose K > 0 large enough and let k0, n0 be the parameters, which we have chosen
such that M(n,1S) < γ holds.
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We show that the series over the second term on the right hand side of (2.67) is
bounded. Let the multiplicative function f̃ ∗ be defined as

(2.68) f̃ ∗ := f̃1G\S.

Then the function f̃ ∗ is bounded on the set of the prime powers. Since M(f̃) exists
and is nonzero there exists a natural number n1, n1 ≥ n0 such that

(2.69) |M(n, f̃)| � 1 for alln ≥ n1.

Our assumption f̃ ∈ L1 yields

(2.70) M(n, |f̃ |) � 1 for alln ≥ n1.

Since f̃ ∈ L∗ we obtain also

(2.71) |M(n, |f̃ ∗|)| � 1 for alln ≥ n1.

For the moment put 0 < |z| = tq−1 < 1 with 0 < t < 1. The assertion (2.71) and
the definition of f̃ ∗ yield

(2.72) 1 �

∞∑
n=1

∑
a∈G
∂(a)=n

|f̃ ∗(a)|tnq−n

Ẑ(tq−1)
� exp

∑
n≥n0

∑
p

∂(p)=n

|f̃ ∗(p)| − 1

q∂(p)
t∂(p)

 .

Put

an =
∑
p

n0≤∂(p)=n

|f̃ ∗(p)| − 1

qn
.

From our assumption Λ(n) = O(qn) follows P (n) = O( q
n

n
), therefore we obtain

an = O

(
1

n

)
.

We have
∞∑
n=0

ant
n = O(1) for t→ 1.

We show that

(2.73)
∑
n≤N

an = O(1).
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If we put t = 1− 1
N

, then∣∣∣∣∣
∞∑
n=0

ant
n −

∑
n≤N

an

∣∣∣∣∣ ≤
∣∣∣∣∣∑
n≤N

an(tn − 1)

∣∣∣∣∣+

∣∣∣∣∣∑
n>N

ant
n

∣∣∣∣∣
≤
∑
n≤N

|an|
∣∣∣∣exp

(
n log

(
1− 1

N

))
− 1

∣∣∣∣+O

(
1

N

) ∞∑
n=0

tn

≤
∑
n≤N

O

(
1

n

)
O
( n
N

)
+O

(
1

N

)
N

= O(1).

Hence (2.73) is satisfied and thus∑
n≤N

∑
p

n0≤∂(p)=n

|f̃ ∗(p)| − 1

qn
= O(1).

There exist only finitely many terms with ∂(p) < n0, therefore

(2.74)
∑
n≤N

∑
p,∂(p)=n

|f̃(p)|≤K

|f̃(p)| − 1

q∂(p)
= O(1).

Next, we prove that the sum over the third term on the right hand side of (2.67) is
bounded, and with this we find that (2.16) converges, as has been claimed.

Let ε be an arbitrary positive number. By the definition of f̃ ∗ and the formula
(2.68) we deduce

AG(n) ∼ G(n)M(n, f̃) = G(n)M(n, f̃ ∗) +G(n)ϑε (as n→∞)

with 0 ≤ |ϑ| ≤ 1. Therefore

AẐ(z) ∼ F̂ (z) = F̂ ∗(z) + ϑεẐ(z)

where F̂ ∗ denotes the generating function of f̃ ∗. Dividing by Ẑ(z) and utilising the
formula (2.69) it follows ∣∣∣∣∣ F̂ ∗(z)

Ẑ(z)

∣∣∣∣∣ � 1.

Using here, further, the notation 0 < |z| = tq−1 < 1 with 0 < t < 1, we obtain as
by (2.72) that

1 � exp

∑
n≥n0

∑
p

∂(p)=n

Re f̃ ∗(p)− 1

q∂(p)
r∂(p)

 .
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Then with analogue tauberian arguments as above we obtain

∑
n≤N

∑
p∈P

∂(p)≥n0,|f̃(p)|≤3/2

Re (f̃(p))− 1

q∂(p)
= O(1),

i.e that the partial sums of the series over the third term on the right hand side of
(2.67) are bounded. Putting our results together in (2.67) we obtain the convergence
of the series ∑

p∈P
|f̃(p)|≤3/2

|f̃(p)− 1|2

q∂(p)
,

i.e the convergence of (2.16).
Next we prove the convergence of the series (2.18). Let

S4 := {a ∈ G;∃p ∈ P : p|a; ||f̃(p)| − 1| > 1/2, ∂(p) ≥ n0}.

Since M(f̃) exists and is nonzero and f̃ ∈ L1 there exists a natural number n1,
n1 ≥ n0 such that (2.69) and (2.70) hold. By our assumption f̃ ∈ L∗, thus

(2.75) M(n, |f̃ |1G\S4) � 1 for all n ≥ n1.

Put in what follows 1 < λ ≤ α and β ∈ R with 1
λ

+ 1
β

= 1.
Then Hölder’s inequality yields

1� 1

G(n)

∑
a∈G
∂(a)=n

|f̃(a)| ≤ 1

G(n)

 ∑
a∈G
∂(a)=n

|f̃(a)|λ


1
λ

G(n)
1
β

=
G(n)1− 1

λ

G(n)

 ∑
a∈G
∂(a)=n

|f̃(a)|λ


1
λ

=

 1

G(n)

∑
a∈G
∂(a)=n

|f̃(a)|λ


1
λ

= M(n, |f̃ |λ)
1
λ

� 1

since f̃ ∈ Lα. Hence
M(n, |f̃ |λ) � 1 for all n ≥ n1.
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By the formula (2.75) we obtain similarly

M(n, |f̃ |λ1G\S4) � 1 for all n ≥ n1.

For 0 < r = |z| < 1/q we obtain

1 �

Ẑ(r)
∞∑
n=0

 ∑
a∈G\S4

∂(a)=n

|f̃(a)|λ

 rn

Ẑ(r)
∞∑
n=0

 ∑
a∈G
∂(a)=n

|f̃(a)|λ

 rn

=
∏

p∈P,∂(p)≥n0

||f̃(p)|−1|>1/2

(
1 +

∞∑
k=1

|f̃(pk)|λrk∂(p)

)−1

.(2.76)

Remark 2.22. Consider an infinite product
∞∏
n=1

(1 + bn), where bn ≥ 0 is satisfied.

Then
∞∏
n=1

(1 + bn) = lim
N→∞

∏
n≤N

(1 + bn) ≤ lim
N→∞

exp

(∑
n≤N

bn

)
,

where we have made use of the inequality 1 + x ≤ exp(x), which is valid for x ≥ 0.
On the other hand, we know

lim
N→∞

∑
n≤N

bn ≤ lim
N→∞

∏
n≤N

(1 + bn).

Thus the product
∞∏
n=1

(1 + bn) is convergent if and only if
∞∑
n=1

bn is convergent.

The last product in (2.76) has the form
∞∏
n=1

(1+bn), where bn ≥ 0. Therefore Remark

2.22 yields that there exists a real constant c8 such that for all r ∈ R∑
p;||f̃(p)|−1|>1/2

|f̃(p)|λr∂(p) ≤ c8 <∞.

Thus for r → 1/q ∑
p;||f̃(p)|−1|>1/2

|f̃(p)|λ

q∂(p)
<∞.

which yields the convergence of the series (2.18) for all 1 ≤ λ ≤ α.

Next, we prove the convergence of the series (2.17). Put

S5 := {a ∈ G; ∃p ∈ P : pk|a; k ≥ 2, ∂(p) ≥ n0}.
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Then, analogous to what we have seen above, there exists n1 ∈ N such that for
n ≥ n1

M(n, |f̃ |λ) � 1 and M(n, |f̃ |λ1G\S5) � 1.

For 0 < r = |z| < 1/q the following holds

1 �

∞∑
n=0

 ∑
a∈G\S5

∂(a)=n

|f̃(a)|λ

 rn

∞∑
n=0

 ∑
a∈G
∂(a)=n

|f̃(a)|λ

 rn

=
∏

p∈P,k≥2
∂(p)≥n0

(
1 +

∞∑
k=1

|f̃(pk)|λrk∂(p)

)−1

.

Using Remark 2.22 it follows that there exists a real constant c9 such that for all
r ∈ R ∑

p∈P,k≥2
∂(p)≥n0

|f̃(pk)|λrk∂(p) ≤ c9 <∞.

Thus for r → 1/q ∑
p∈P ;k≥2

|f̃(pk)|λ

qk∂(p)
<∞.

holds, and therefore the series (2.17) converges for all 1 ≤ λ ≤ α.
Next, we show the validity of (2.19) for every p ∈ P . By the convergence of the
series (2.16) and (2.18) for |z| = r < q−1 we have∣∣∣∣∣∣

∏
p;∂(p)≥n0

(
1 +

∞∑
k=1

f̃(pk)zk∂(p)

)∣∣∣∣∣∣ ≤
∏

p;∂(p)≥n0

(
1 +

∣∣∣∣∣
∞∑
k=1

f̃(pk)zk∂(p)

∣∣∣∣∣
)

� exp

 ∑
p;∂(p)≥n0

(|f̃(p)| − 1)rk∂(p)

 Ẑ(r)

� Ẑ(r).

Suppose now, that for some p1 with ∂(p1) < n0 we have

1 +
∞∑
k=1

f̃(pk)q−k∂(p) = 0.

Hence 1 +
∞∑
k=1

f̃(pk1)zk∂(p1) = o(1) as r → q−1. Thus, as r → q−1

∏
p∈P

(
1 +

∞∑
k=1

f̃(pk)zk∂(p)

)
= o(1)O(Ẑ(r)) = o(Ẑ(r))
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and we achieve a contradiction to F̂ (z) ∼ cẐ(z) for z → q−1 with c 6= 0.

1 +
∞∑
k=1

f̃(pk)q−∂(p) 6= 0,

which is then true for all primes p ∈ P .
Finally, we prove the convergence of the series (2.15). By the convergence of (2.18)
and the condition (2.19), there exists some number m0 sufficiently large such that
|f̃(p)q−∂(p)| < 1

4
and

(2.77)

∣∣∣∣∣1 +
∞∑
k=1

f̃(pk)(q−1eiΘ)k∂(p)

∣∣∣∣∣ > 1

2

for all p with ∂(p) ≥ m0 and all real Θ with |Θ| ≤ π. We write

F̂ (r)

Ẑ(r)
=

∏
p,∂(p)<m0

(1− r∂(p))

(
1 +

∞∑
k=1

f̃(pk)rk∂(p)

) ∏
p,∂(p)≥m0

(1− r∂(p))

(
1 +

∞∑
k=1

f̃(pk)rk∂(p)

)
=: Π1(r)Π2(r),

where the first product Π1(r) is continuous by (2.18). We now estimate the second
product Π2(r):

Π2(r) =
∏

p,∂(p)≥m0

(1− r∂(p))

(
1 +

∞∑
k=1

f̃(pk)rk∂(p)

)

=
∏

p,∂(p)≥m0

(
1 + (f̃(p)− 1)r∂(p) +

∞∑
k=2

(f̃(pk)− f̃(pk−1))rk∂(p)

)

=
∏

p,∂(p)≥m0

|f̃(p)−1|≤ 1
2

(1− r∂(p))

(
1 +

∞∑
k=1

f̃(pk)rk∂(p)

) ∏
p,∂(p)≥m0

|f̃(p)−1|> 1
2

(1− r∂(p))

(
1 +

∞∑
k=1

f̃(pk)rk∂(p)

)

=:Π3(r)Π4(r).

By the convergence of the serie (2.18) the product Π4(r) of the last line is continuous
for r ≤ q−1.
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We can write the first product Π3(r) of the last line as follows

Π3(r) =
∏

p,∂(p)≥m0

|f̃(p)−1|≤ 1
2

(1− r∂(p))

(
1 +

∞∑
k=1

f̃(pk)rk∂(p)

) ∏
p,∂(p)≥m0

|f̃(p)−1|≤ 1
2

1− f̃(p)r∂(p)

1− f̃(p)r∂(p)

=
∏

p,∂(p)≥m0

|f̃(p)−1|≤ 1
2

(1− f̃(p)r∂(p))−1

×
∏

p,∂(p)≥m0

|f̃(p)−1|≤ 1
2

(1− r∂(p))

(
1 +

∞∑
k=1

f̃(pk)rk∂(p)

)
(1− f̃(p)r∂(p))

=
∏

p,∂(p)≥m0

|f̃(p)−1|≤ 1
2

(1− f̃(p)r∂(p))−1 ×
∏

p,∂(p)≥m0

|f̃(p)−1|≤ 1
2

(
1− r∂(p) − (f̃(p)r∂(p))2 + f̃(p)r2∂(p)

+
∞∑
k=2

(f̃(pk)− f̃(pk−1))rk∂(p)(1− f̃(p)r∂(p))

)
=:Π5(r)Π6(r).

The convergence of the series (2.16) yields that the second product Π6(r) of the
above line is continuous for r ≤ q−1. Also

Π5(r) = exp

 ∑
p,∂(p)≥m0

|f̃(p)−1|≤ 1
2

log(1− (f̃(p)− 1)r∂(p))

 .

After the power series expansion of the logarithm we can summarize our last results
and write

(2.78)
F̂ (r)

Ẑ(r)
= F1(r) exp

− ∑
∂(p)≥m0

|f̃(p)−1|≤ 1
2

(1− f̃(p))r∂(p)

 .

Here F1(r) is continuous for r ≤ q−1. If now the condition (2.19) is satisfied, then
F1(q−1) 6= 0. It follows from (2.78) that

lim
r→q−1

∑
∂(p)≥m0

|f̃(p)−1|≤ 1
2

(1− f̃(p))r∂(p)
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exists. Appealing directly to our condition P (m) = O( q
m

m
) and to the well-known

tauberian theorem of Ingham (see Theorem 106 in [16]),∑
m≥m0

q−m
∑

p,∂(p)=m

|f̃(p)−1|≤ 1
2

(1− f̃(p))

converges and then the series ∑
p∈P

f̃(p)− 1

q∂(p)

converges, too. Hence (2.15) converges, as it has been claimed. This ends the proof
of Theorem 2.10.

Next, we prove Theorem 2.11

Proof. First we prove that M(f̃) exists. By the convergence of (2.18) and the condi-
tion (2.19), there exists some number m0 sufficiently large such that |f̃(p)q−∂(p)| < 1

4

and (2.77) holds for all p with ∂(p) ≥ m0 and all real Θ with |Θ| ≤ π. We write

F̂ (z) =
∏

p,∂(p)<m0

(
1 +

∞∑
k=1

f̃(pk)zk∂(p)

) ∏
p,∂(p)≥m0

|f̃(p)|<K

(
1 +

∞∑
k=1

f̃(pk)zk∂(p)

)

×
∏

p,∂(p)≥m0

|f̃(p)|≥K

(
1 +

∞∑
k=1

f̃(pk)zk∂(p)

)

=: Π1(z)Π2(z)Π3(z),

where the first product Π1(z) is absolutely convergent for |z| ≤ q−1, since each factor
of the finite product Π1(z) is convergent by (2.18). The third product Π3(z) is also
absolutely convergent for |z| ≤ q−1. We now estimate the second product Π2(z):

Π2(z) =
∏

p,∂(p)≥m0

|f̃(p)|<K

(
1 +

∞∑
k=2

f̃(pk)zk∂(p)

)
1− f̃(p)z∂(p)

1− f̃(p)z∂(p)

=
∏

p,∂(p)≥m0

|f̃(p)|<K

(1− f̃(p)z∂(p))−1
∏

p,∂(p)≥m0

|f̃(p)|<K

(
1 +

∞∑
k=2

f̃(p)(f̃(pk)− f̃(pk−1))zk∂(p)

)

=:Π4(z)Π5(z).

By the convergence of the series (2.18) the second product Π5(z) of the last line is ab-
solutely convergent for |z| ≤ q−1. We apply Lemma 2.20 to the product Π4(z), that is
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a generating function of a completely multiplicative function f̃1, where f̃1(p) = f̃(p)
for ∂(p) ≥ m0 and |f̃(p)| < K, and f̃1(p) = 0 otherwise. We obtain∑

a∈G,∂(a)=n

f̃1(a) =
∏
p∈P

(1− q∂(p))(1− f̃(p)q−∂(p))−1G(n) + o(G(n)).

Thus we can write

(2.79) F̂ (z) = Π4(z)(Π1(z)Π5(z)Π3(z)) =: Π4(z)A(z)

where A(z) is absolutely convergent for |z| = q−1. Applying Lemma 2.21 it follows

M(f̃) = M(f̃1)A(q−1).

Hence M(f̃) exists and has the above form. If in addition (2.19) holds, then
M(f̃) 6= 0 as it has been claimed.

If α > 1 and ||f̃(p)| − 1| < 1/2, then

|f̃(p)|α − 1 = α(|f̃(p)| − 1) +O((|f̃(p)| − 1)2)

and
(|f̃(p)|α − 1)2 = O((|f̃(p)| − 1)2) = O(|f̃(p)− 1|2),

and the corresponding series converge (cf (2.67)).
Therefore, in the same way as above we deduce that M(|f̃ |λ) exists for 1 ≤ λ ≤ α
and f̃ ∈ Lα. If in addition (2.19) holds, then M(|f̃ |λ) 6= 0 for 1 ≤ λ ≤ α as it has
been claimed.

Next, we prove that f̃ ∈ L∗. Using the equation (2.79) we can write the multiplica-
tive function f̃ as the convolution

(2.80) f̃ = f̃1 ∗ f̃2,

where f̃1 is the completely multiplicative function defined above; and f̃2 is a mul-
tiplicative function, such that its generating function A(z) is absolutely convergent
for |z| ≤ q−1. It yields

(2.81) Σ∗ :=
∑
m∈N

∑
b∈G,∂(b)=m

|f̃2(b)|q−∂(b) <∞.

Hence for an arbitrary ε∗ there exists a natural number m0 such that∑
m≥m0

∑
b∈G,∂(b)=m

|f̃2(b)|q−∂(b) <
ε∗
2
.
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Using the convergence of the series (2.15)-(2.18) we deduce by Lemma 2.19 that
M(|f̃1|) and M(|f̃1|2) exist.
Let ε > 0 be arbitrary and fixed. We prove that there exists K0 such that∑

a∈G,∂(a)=n

|f̃K0(a)| < εG(n)

holds for all n ∈ N.∑
a∈G,∂(a)=n

|f̃K0(a)| =
∑
a,b∈G

|f̃1(a)||f̃2(b)|≥K0

∂(a)+∂(b)=n

|f̃1(a)||f̃2(b)|

=
∑
a,b∈G

|f̃1(a)||f̃2(b)|≥K0

|f̃2(b)|≥K1,∂(a)+∂(b)=n

|f̃1(a)||f̃2(b)|+
∑
a,b∈G

|f̃1(a)||f̃2(b)|≥K0

|f̃2(b)|<K1,∂(a)+∂(b)=n

|f̃1(a)||f̃2(b)|

=:Σ1 + Σ2,

where the parameter K1 is chosen such that ∂(b) ≥ m0 as |f̃2(b)| ≥ K1. Let us now
estimate Σ1. By our assumption G(n) � qnnδ−1 (1 ≤ δ) we obtain

Σ1 =
∑
b∈G

|f̃2(b)|≥K1

∂(b)≤n

|f̃2(b)|
∑
a∈G

∂(a)=n−∂(b)

|f̃1(a)|

≤
∑
b∈G

m0≤∂(b)≤n

|f̃2(b)|
∑
a∈G

∂(a)=n−∂(b)

|f̃1(a)| �
∑
b∈G

m0≤∂(b)≤n

|f̃2(b)|q−∂(b)G(n)

<
ε

2
G(n),

whereby we have used the following

G(n− ∂(b)) � qn−∂(b)(n− ∂(b))δ−1 = qnnδ−1(1− ∂(b)/n)δ−1q−∂(b) � q−∂(b)G(n).
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Afterwards, we estimate Σ2. We use (2.81) and our assumption G(n) � qnnδ−1 to
obtain the following

Σ2 =
∑
a,b∈G

|f̃2(b)|<K1

|f̃1(a)||f̃2(b)|≥K0,∂(a)+∂(b)=n

|f̃1(a)||f̃2(b)|

=
∑

b∈G,|f̃2(b)|<K1

∑
a∈G

|f̃1(a)||f̃2(b)|≥K0

∂(a)=n−∂(b)

|f̃1(a)|2

|f̃1(a)|

≤
∑

b∈G,|f̃2(b)|<K1

|f̃2(b)| |f̃2(b)|
K0

∑
a∈G

∂(a)=n−∂(b)

|f̃1(a)|2

�K1

K0

∑
b∈G

|f̃2(b)|G(n− ∂(b)) ≤ ε

2
G(n),

since M(|f̃1|2) exists.
Therefore f̃ ∈ L∗. This ends the proof of Theorem 2.11.

Now we prove Theorem 2.12

Proof. Let ε > 0 be arbitrary and fixed. Then by (2.20) there exists K > 0 with

S = {a ∈ G : pk|a, p ∈ P, k ≥ 1, |f̃(pk)| > K}

such that
M(n, |f̃ |1S) < ε.

Let such a K be fixed. It yields∣∣∣∣∣∣∣∣
1

G(n)

∑
a∈G
∂(a)=n

f̃(a)− 1

G(n)

∑
a∈G\S
∂(a)=n

f̃(a)

∣∣∣∣∣∣∣∣ < ε.

By Lemma 2.20 we obtain

1

G(n)

∑
a∈G\S
∂(a)=n

f̃(a)→M(1G\S f̃) =
∏
p∈P

|f̃(pk)|≤K

(1− q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
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as n→∞. Therefore

M(1G\S f̃) =
∏
p∈P

|f̃(p)|≤K2

|f̃(pk)|≤K,K=2,3,...

(1− q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)

×
∏
p∈P

K≥|f̃(p)|>K2

|f̃(pk)|≤K

(1− q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)

=:Π1,KΠ2,K .

The product Π2,K is absolutely convergent for |z| ≤ q−1 and

lim
K→∞

Π2,K =
∏
p∈P

|f̃(p)|>K2

(1− q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
.

Estimating the product Π1,K we deduce

Π1,K =
∏
p∈P

|f̃(p)|≤K2

(1− q−∂(p))(1 + f̃(p)q−∂(p))
∏
p∈P

|f̃(p)|≤K2

|f̃(pk)|≤K

(1 + f̃(p)q−∂(p))−1

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)

=:Π1Π3,K .

We derive

Π1,K =
∏

p∈P,∂(p)≤m0

|f̃(p)|≤K2

|f̃(pk)|≤K

(1− q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)

×
∏

p,∂(p)>m0

|f̃(p)|≤K2

(1− q−∂(p))(1 + f̃(p)q−∂(p))
∏

p∈P,∂(p)>m0

|f̃(p)|≤K2

|f̃(pk)|≤K

(1 + f̃(p)q−∂(p))−1

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)

=:Π4,KΠ5Π6,K .

Therefore

lim
K→∞

Π4,K =
∏

p∈P,∂(p)≤m0

|f̃(p)|≤K2

(1− q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
,
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since Π4,K is a finite product. Since

(1− q−∂(p))(1 + f̃(p)q−∂(p)) = 1− q−∂(p) + f̃(p)q−∂(p) − f̃(p)q−2∂(p)

the product Π5 is convergent because of the convergence of the series (2.15) and
(2.16). Hence for a given positive real number ε1 there exists a natural number n0

such that ∣∣∣∣∣∣∣∣
1

G(n)

∑
a∈G\S
∂(a)=n

f̃(a)−M(1G\S f̃)

∣∣∣∣∣∣∣∣ < ε1

holds for all n ≥ n0. Thus

(2.82) lim sup
n→∞

∣∣∣∣∣∣ 1

G(n)

∑
a∈G,∂(a)=n

f̃(a)−M(1G\S f̃)

∣∣∣∣∣∣ < ε+ ε1.

Considering the limit for K →∞ we obtain

lim
K→∞

M(1G\S f̃) =
∏

∂(p)∈P

(1− q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
.

where the last product does not depend on K. Therefore (2.82) yields

M(f̃) =
∏

∂(p)∈P

(1− q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
.

It means that the mean-value M(f̃) exists and has the above form. If (2.19) holds,
we obtain also, that M(f̃) is nonzero.

The existence of the mean-value M(|f̃ |λ) for 1 ≤ λ ≤ α follows in the same way,
since the series corresponding to (2.15)-(2.18) for |f̃ |λ are convergent, then f̃ ∈ Lα
holds.

Finally, we prove that f̃ ∈ L∗. For a real number K, K > 0 it yields

(2.83)
∑
a∈G

|f̃(a)|>K
∂(a)=n

|f̃(a)| =
∑
a∈G\S
|f̃(a)|>K
∂(a)=n

|f̃(a)|+
∑
a∈S

|f̃(a)|>K
∂(a)=n

|f̃(a)|

where the second sum on the right hand side is < ε/2 and tends to zero as K →∞.
Put f̃3 = f̃1G\S. Then f̃3 is a multiplicative function with |f̃3(pk)| ≤ K and Lemma
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2.18 yields M(n, f̃3) = O(1). Therefore

∑
a∈G\S
|f̃(a)|>K
∂(a)=n

|f̃(a)| ≤
∑
a∈G\S
|f̃(a)|>K
∂(a)=n

|f̃(a)| |f̃(a)|
K

=
1

K

∑
a∈G

|f̃3(a)|>K
∂(a)=n

|f̃3(a)|2 < G(n)ε/2

if K is large enough. By (2.83) it follows that f̃ ∈ L∗.
This ends the proof of Theorem 2.12.
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Applications

In this chapter we give two probabilistic applications of our main results. Let now
g̃ : G→ R be a (real-valued) additive function defined on G. Then, by the continuity
theorem of Lévy, the distribution functions

(3.1) Gn(x) :=
1

G(n)
#{a ∈ G : ∂(a) = n, g̃(a) ≤ x}

tend to a limit distribution G(x),

(3.2) Gn ⇒ G,

if and only if there exists a function ϕ(t) which is continuous at t = 0 such that

1

G(n)

∑
a∈G
∂(a)=n

eitg̃(a) → ϕ(t)

as n→∞ for t ∈ R. Moreover, ϕ(t) is the characteristic function of G(x). We note
that the function f̃(a) := eitg̃(a) is multiplicative and |f̃(a)| = 1 since g̃ is real-valued
and additive.

3.1 Finitely distributed additive functions

In this section we characterize all additive functions g̃ on G which, after a suitable
translation, possess a limiting distribution. In order that there exists a sequence
{α(n)}, n ∈ N, for which the frequencies

1

G(n)
#{a ∈ G, ∂(a) = n : g̃(a)− α(n) ≤ x}

converge to a weak limit as n→∞ we give here the necessary and sufficient condi-
tions.
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Theorem 3.1. Suppose that an additive arithmetical semigroup (G, ∂) fulfills the
assumptions of Theorem 2.11. Let g̃ be a real-valued additive function on G. Then
the following assertions hold

(i) If, for some α(n) the frequencies

1

G(n)
#{a ∈ G, ∂(a) = n : g̃(a)− α(n) ≤ x}

converge to a weak limit as n→∞, then g̃ is finitely distributed.

(ii) If g̃ is finitely distributed, then it has a decomposition g̃(a) = c∂(a)+ h̃(a) with
a real constant c and an additive function h̃ where both the series

(3.3)
∑
p

|h̃(p)|>1

1

q∂(p)

∑
p

|h̃(p)|<1

h̃(p)2

q∂(p)

converge.

(iii) If g̃ has a representation c∂ + h̃, where the series (3.3) both converge, and if
we define

α(n) = cn+
∑

∂(p)≤n,|h̃(p)|≤1

h̃(p)

q∂(p)
(n ≥ 1),

then the frequencies

1

G(n)
#{a ∈ G, ∂(a) = n : g̃(a)− α(n) ≤ x}

converge to a weak limit as n→∞.

Proof of (i). If the number w is chosen sufficiently large, and such that ±w are
continuity points of the limiting distribution of g̃(a)− α(n), then

(3.4) lim
n→∞

1

G(n)
#{a ∈ G, ∂(a) = n : g̃(a)− α(n) ≤ w} > 1

2
.

Moreover, if a1 and a2 are any two elements in G which are counted in a typical
frequency,

(3.5) |g̃(a1)− g̃(a2)| ≤ |g̃(a1)− α(n)|+ |α(n)− g̃(a2)| ≤ 2w,

from which it is clear that g̃ is finitely distributed.
The assertion (ii) is contained in Lemma 2.17.
Proof of (iii). Consider the characteristic function

ψ(n, t) =
1

G(n)
exp(−itα(n))

∑
a∈G,∂(a)=n

exp(itg̃(a)).
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In the same way as above, we can show, that ψ(n, t) converges for n → ∞ using

Proposition 2.6 and taking in account the property G(n−1)
G(n)

= q−1 + o(1) as n→∞.
Therefore the frequencies

1

G(n)
#{a ∈ G, ∂(a) = n : g̃(a)− α(n) ≤ x}

converge to a weak limit as n→∞.
This ends the proof of Theorem 3.1.

3.2 Three-series theorem

In this section we present our version of the well-known Three-series theorem under
weak conditions about the additive arithmetical semigroups. We remark here, that
in a paper of Barát, Indlekofer and Kaya (see [3]), the authors prove the Two-
series theorem in additive arithmetical semigroups and pull together the properties
of finitely distributed functions and the characterisation of essentially convergent
series in the Stone-Cech compactification of G. Some ideas of the construction of
the described Stone-Cech compactification in [3] were motivated by the construction
described by Barát and Indlekofer (see [2]).

Theorem 3.2. (Three-series theorem).
Suppose that an additive arithmetical semigroup (G, ∂) fulfills the assumptions of
Theorem 2.11. A real-valued additive function g̃ on G has a limit distribution func-
tion G(x) if and only if the three series

(3.6)
∑
|g̃(p)|≥1

q−∂(p),
∑
|g̃(p)|<1

g̃(p)q−∂(p),
∑
|g̃(p)|<1

g̃2(p)q−∂(p)

all converge. Moreover, the limit distribution function G(x) has the characteristic
function

(3.7) φ(t) =
∏
p

(
1− q−∂(p)

)(
1 +

∞∑
k=1

q−k∂(p)eitg̃(p
k)

)
,

where the infinite product is taken over all p ∈ P in ascending order of ∂(p).

Proof. Assume that real-valued additive function g̃ on G has a limit distribution
function G(x). Assertions (i) and (ii) of Theorem 3.1 yields that the first and the
third series of (3.6) ∑

|g̃(p)|≥1

q−∂(p),
∑
|g̃(p)|<1

g̃(p)q−∂(p)
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converge. By our assumption g̃ has a limit distribution function G(x), on the other
hand, (iii) yields that 1

G(n)
#{a ∈ G, ∂(a) = n : ã−α(n) ≤ x} tends to a weak limit,

too. Then:

α(n) = cn+
∑

∂(p)≤n,|g̃(p)|≤1

g̃(p)

q∂(p)

converges and, since ∑
∂(p)≤n,|g̃(p)|≤1

g̃(p)

q∂(p)
= O(log n)

c must be zero, which implies the convergence of∑
p,|g̃(p)|<1

g̃(p)q−∂(p).

Put

α(n) =
∑

∂(p)≤n,|g̃(p)|≤1

g̃(p)

q∂(p)
.

Then (iii) of Theorem 3.1 yields, that the frequencies

1

G(n)
#{a ∈ G, ∂(a) = n : g̃(a)− α(n) ≤ x}

has a limit distribution D(x) as n → ∞; and lim
n→∞

α(n) = α exists, then g̃ also has

a limit distribution D(x− α).
This ends the proof of Theorem 3.2
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