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Kapitel 1

Einleitung

Die genaue Lokalisierung von sich bewegenden Objekten ist bereits seit vielen Jahren für Wissen-

schaft und Industrie ein bedeutsames Forschungsthema. Eine Reihe theoretischer und technischer

Innovationen ging daraus hervor. Im Zusammenhang mit Lokalisierung ist heutzutage jedoch nicht

nur die reine Ortsbestimmung von Personen, Fahrzeugen, Schiffen oder anderen Objekten gemeint.

Vielmehr gehen die Begriffe Lokalisierung/Ortung und Navigation einher. Unter Navigation wer-

den im Wesentlichen drei Teilbereiche zusammengefasst [TW04]. Neben der Bestimmung einer geo-

grafischen Position durch Ortsbestimmung nach unterschiedlichen Verfahren spielt die Berechnung

des optimalen Weges zu einem Ziel und das Führen z. B. eines Fahrzeuges zu genau diesem Ziel

eine wichtige Rolle. Um die damit verbundenen Probleme bewältigen zu können, werden in un-

terschiedlichen Bereichen wie der Seeschifffahrt oder der Luftfahrt und nicht zuletzt im Bereich

der Kraftfahrzeug (KFZ)-Technik unterschiedliche Messeinrichtungen und Hilfsmittel verwendet, die

sich im Laufe der Jahre immer weiterentwickelt haben.

Ein möglichst einwandfrei funktionierendes Navigationssystem ist im KFZ-Bereich schon seit

langem nicht mehr wegzudenken, und im Laufe der Zeit haben sich die Anforderungen an diese Sys-

teme immer weiter erhöht. Somit scheint die Forderung nach einem wenig fehleranfälligen System,

das auch bei einem beeinträchtigten Global Positioning System (GPS)-Empfang noch zuverlässige

Positionsangaben liefert, äußerst naheliegend. Zudem werden Navigationssysteme mehr und mehr

mit anderen Systemen kombiniert, was vor allem bei zukünftigen Verkehrsleitsystemen in Kombina-

tion mit einer Car-2-Car (C2C)-Kommunikationsinfrastruktur prognostiziert wird [Cvi].

In dieser Arbeit werden zwei Ansätze aufgegriffen, um die Navigationslösung eines Ortungs-

bzw. Navigationssystems von beispielsweise Fahrzeugen langfristig zu stabilisieren: die Stützung

des Systems mit Hilfe von verbesserten Höheninformationen sowie die Schätzung von Rauschpara-

metern inertialer Sensorsignale. Das als Ausgangsbasis verwendete Navigationsfilter ist bereits seit

mehreren Jahren etabliert und wird in der Praxis aufgrund seiner Robustheit gegenüber nicht vor-

hersagbarer Messungenauigkeiten eingesetzt [Wen07]. Dieses basiert auf dem Ansatz, nicht eine ab-

solute Navigationsgröße zu filtern, sondern deren Fehler, wobei hauptsächlich ein GPS-Empfänger

zur Stützung verwendet wird. Die eigentliche Navigationslösung wird außerhalb des Filters auf Ba-

sis inertialer Sensordaten berechnet, die in erster Linie von Drehraten- und Beschleunigungssensoren

geliefert werden.

Ein Schwachpunkt bei der Stützung eines Navigationsfilters durch bereits vorgefilterte GPS-Daten

ist die Höhenkoordinate, die einen hohen Messfehler aufweist [AP99]. In dieser Arbeit soll dieser

Fehler mit Hilfe eines Ansatzes auf Basis von Temperatur- und Luftdruckmessungen sowie karto-

grafischer Informationen vermindert werden. Des Weiteren wird hier ein Verfahren hergeleitet, das

eine sequenzielle Schätzung der Rauschparameter von Signalen einer inertialen Messeinheit (IME)

ermöglicht. Den Ausgangspunkt hierfür bildet der auf dem Gebiet der Parameterschätzung etablier-
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2 Kapitel 1. Einleitung

te iterative Expectation-Maximization (EM)-Algorithmus. Er geht ursprünglich von Beobachtungen

aus, die in Blöcken vorhanden sind [Moo96], [LK99]. Hier wird er jedoch so abgewandelt, dass eine

sequenzielle, abtastwertweise Verarbeitung ermöglicht wird.

In Kapitel (Kap.) 2 wird anhand etablierter und aktueller Arbeiten der Stand der Forschung und

der Stand aktueller Techniken dargestellt, um ein Fahrzeug zu orten und an einen bestimmten Zielort

navigieren zu können. Dabei wird ein kurzer allgemeiner Einblick in die Fahrzeugnavigation gegeben.

Im Anschluss werden die drei Hauptkomponenten, die in diesem Bereich momentan die größte Rolle

spielen, detailliert betrachtet: satellitenbasierte Systeme, kartenbasierte Systeme sowie Sensorsyste-

me. Es wird dabei u. a. ein Schwerpunkt auf die inertialen Sensoren und ihre Fehler gelegt. Außerdem

werden Verfahren vorgestellt, die dazu dienen, die Daten verschiedener Informationsquellen zu fusio-

nieren. In Bezug auf den Schwerpunkt dieser Arbeit wird darüber hinaus ein Überblick über aktuelle

Algorithmen gegeben, mit deren Hilfe unbekannte Parameter, welche die Navigationslösung beein-

trächtigen, geschätzt und kompensiert werden können. Dies schließt vor allem Verfahren ein, die eine

Nachführung von zeitveränderlichen Varianzen ermöglichen.

Auf dieser Basis werden in Kap. 3 die wissenschaftlichen Ziele dieser Arbeit im Detail dargelegt.

Im Anschluss daran werden in Kap. 4 die benötigten Grundlagen erläutert, die im Zusammenhang

mit der inertialen Navigation und für die weiteren Ausführungen eine Rolle spielen. Gegenstand von

Kap. 5 ist dann die Vorstellung des eingesetzten Navigationsfilters mit den dazugehörigen Kompo-

nenten. Im Mittelpunkt von Kap. 6 steht das barometrische Teilsystem, das für die Stützung des

Navigationsfilters mit Hilfe einer Höheninformation entwickelt wurde. Diese wird mit Hilfe der ba-

rometrischen Höhenformel gewonnen. Das vorgestellte Filter dient dazu, die Fehler, die sich aus der

barometrischen Messung ergeben, schätzen und nachfolgend kompensieren zu können. In Kap. 7 wird

schließlich das sequenzielle Parameterschätzverfahren präsentiert, das aus dem EM-Algorithmus her-

geleitet wird und eine Schätzung der Systemrauschvarianzen im Rahmen eines Fehlerfilters (FF) er-

möglicht. Im Mittelpunkt steht dabei die Verwendung des NEWTON-Verfahrens. Des Weiteren werden

einige Besonderheiten erörtert, die sich durch den Einsatz eines linearisierten KALMAN-Filters (LKF)

in Kombination mit dem Parameterschätzverfahren ergeben. Neben dem modifizierten EM-Algorith-

mus werden zwei weitere Schätzverfahren vorgestellt, wobei das so genannte Kovarianzmanagement

(KM) auf einer empirischen Mittelwert- und Varianzberechnung beruht und das Messwertdifferenzen-

Verfahren (MD) zeitliche Korrelationen auf Basis der Differenz aufeinanderfolgender Messungen re-

kursiv berechnet. Im nachfolgenden Kapitel werden dann einige Voruntersuchungen zu der verwende-

ten IME hinsichtlich ihrer charakteristischen Parameter präsentiert. Die Ergebnisse der Untersuchun-

gen zum barometrischen Höhenfilter als Bestandteil des gesamten Navigationssystems sowie zum

sequenziellen Expectation-Maximization-Algorithmus (SEM) im Vergleich zu den anderen Ansätzen

werden in Kap. 9 aufgeführt. Den Abschluss dieser Arbeit bildet eine Zusammenfassung, in der auch

ein Resümee gezogen sowie ein Ausblick auf weiterführende Arbeiten gegeben wird.



Kapitel 2

Stand der Forschung und Technik

In der Schifffahrt wurde, wie in [Tog04] beschrieben, bereits zu Zeiten von KOLUMBUS auf Basis ei-

ner Richtungs- und Geschwindigkeitsbestimmung anhand von Sternen als Fixpunkte navigiert. Auch

Seekarten und Seehandbücher wurden verwendet. Bis zum 8. Jahrhundert wurde nur mit einem Lot

und einer einfachen Koppelnavigation der Weg in der Seefahrt bestimmt. Dieses geschah aber immer

in Sichtweite zur Küste, da die Koppelnavigation allein, d. h. die Bestimmung eines Wegpunktes an-

hand einer Richtung und des zurückgelegten Weges, nicht ausreichte. Im 12. Jahrhundert wurde in

Europa zum ersten Mal auch der Kompass verwendet, der die magnetische Eigenschaft einer kleinen

Magnetit-Nadel ausnutzt, weil diese in Richtung eines magnetischen Pols zeigen kann [Fri06]. Ef-

fekte wie Deklination, die den Unterschied zwischen geografischem Pol und dem magnetischen Pol

beschreibt, Deviation, welche die Missweisungen eines Kompasses aufgrund von sich in der Nähe

befindender magnetischer Felder beschreibt, Inklination oder Kompassdrehfehler wurden dabei erst

einige Jahre später erkannt. Die geografische Breite konnte, wenn auch relativ ungenau, zum ersten

Mal im 14. Jahrhundert mit einem so genannten Jakobsstab bestimmt werden. Der ca. 200 Jahre spä-

ter entwickelte Quadrant bot mit einer Genauigkeit von bis zu 1° etwas mehr Zuverlässigkeit, denn

es konnten damit Himmelskörper angepeilt werden. Mit Hilfe eines Fadens, an dem ein Gewicht be-

festigt war, das von der Erdanziehungskraft nach unten gezogen wurde, konnte durch Anpeilen der

Sonne der Winkel zwischen Sonne und einem anderen Himmelskörper oder dem Horizont ermittelt

werden. Höhere Genauigkeiten erreichte man später mit einem Sextanten. Dieser war bis auf 0,1° ge-

nau. Das Chronometer machte es dann viele Jahre später möglich, auch den Längengrad zu messen.

Die mechanischen Gesetze von Sir ISAAC NEWTON waren der Grundstein für die inertiale Navigati-

on, wie wir sie heute kennen. Allerdings wurden erst 200 Jahre später die ersten inertialen Sensoren

entwickelt. Weitere bahnbrechende Navigationsmethoden entwickelten sich im Laufe des letzten Jahr-

hunderts. Dazu zählt vor allem die Satellitennavigation zu Beginn der 60er Jahre [FB99]. Das so ge-

nannte TRANSIT-Navy Navigation Satellite System (TRANSIT-NNSS) der United States (US)-Marine

war der Vorreiter zu den heute bekannten satellitenbasierten Systemen wie beispielsweise dem GPS.

Auch die terrestrische Seenavigation entwickelte sich erst später. Bei dieser Navigationsart werden

neben terrestrischen Standlinien (fest definierte Linien, auf denen sich ein Schiff zum Zeitpunkt ei-

ner Beobachtung befindet) so genannte Funkbaken eingesetzt, die zur Navigation von Schiffen in

Küstennähe dienen sollen.

Im Rahmen der vorliegenden Arbeit spielen jedoch zwei weitere Navigationsarten eine Rolle: die

Inertialnavigation und die integrierte Navigation. Bei der Inertial- oder auch Trägheitsnavigation wer-

den Kreisel und Beschleunigungsmesser als Basisinstrumente verwendet. Durch ein- bzw. zweifache

Integration über die Zeit erhält man die Geschwindigkeit und die dadurch resultierende Positionsän-

derung. Die integrierte Navigation stellt keine neue Navigationsart dar. Vielmehr werden hierbei die

Vorteile der Trägheitsnavigation und der Satellitennavigation in einem Verfahren kombiniert, so dass

3
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einerseits eine zuverlässigere Aussage über eine Position getroffen werden kann, andererseits aber

auch ein Qualitätsmaß für die Schätzung vorliegt (Integrität). Nachteilig bei der reinen Inertialnavi-

gation sind Abweichungen, die sich sogar quadratisch mit der Zeit kumulieren können. Daher wird

eine Stützung durch ein anderes Verfahren bevorzugt, um diesen Abweichungen entgegenzuwirken.

Häufig ist die Satellitennavigation dafür geeignet. Im Folgenden werden aufgrund des beschriebenen

Zusammenhangs die Begriffe „inertiale Navigation“ und „integrierte Navigation“ gleichbedeutend

verwendet und eine detailliertere Übersicht über den Stand der Forschung und Entwicklung dieses

Themenbereichs gegeben.

2.1 Navigation und Ortung von Fahrzeugen

Die heutzutage gängigste Art, ein Fahrzeug von einem Ziel zum anderen ohne Kenntnis einer spezi-

ellen Wegstrecke zu navigieren, geschieht mit Hilfe eines Navigationscomputers, der entweder in ein

Fahrzeug integriert ist oder nachgerüstet werden kann. Letztere können allerdings anfällig sein, wenn

sie ausschließlich satellitenbasierte Daten wie die eines GPS-Empfängers verwenden, denn diese sind

u. U. aufgrund von z. B. Abschattungseffekten nicht immer verfügbar. In Europa wurden in den letz-

ten Jahren mehrere Millionen dieser relativ kostengünstigen Geräte vertrieben und dabei technisch

immer weiter verbessert. Es wurden beispielsweise der Detailgrad der mitgelieferten Straßenkarten

weiter erhöht und immer mehr Interessenspunkte (engl. Points Of Interest (POI)) hinzugefügt. Diese

umfassen u. a. Positionsinformationen von z. B. Tankstellen, Hotels oder auch fest installierten Ra-

darfallen. Mit Hilfe der Karten soll der Fahrer eines Fahrzeugs in der Lage sein, seine Position und

die Umgebung laufend zu verfolgen. In einer Reihe von Fahrzeugen, z. B. Taxis oder Polizeiwagen,

sind solche Systeme seit Jahren unersetzlich.

Ein Fahrer soll außerdem in naher Zukunft mit modernen Verkehrsüberwachungssystemen bei

der Navigation unterstützt werden. Dies schließt z. B. die Fahrzeug-zu-Fahrzeug (engl. Car-2-Car

(C2C)) oder Fahrzeug-zu-Infrastruktur (engl. Car-2-Infrastructure (C2I))-Kommunikation mit ein

[Car]. Hierbei sollen neben anderen Fahrzeugen auch Kommunikationsbaken oder Verkehrsschil-

der mit dem Fahrzeug Informationen austauschen. Auf diese Weise sollen ein besserer Verkehrs-

fluss erreicht und Unfälle vermieden werden. Projekte, welche die C2C-Idee verfolgen, sind u. a.

PReVENTive and Active Safety Applications (PReVENT) [Pre] und Smart Vehicles on Smart Roads

(SAFESPOT), wobei die Entwicklung autonomer Fahrzeuge im Mittelpunkt steht [Saf]. Im

Cooperative Vehicle-Infrastructure Systems (CVIS)-Projekt werden Möglichkeiten für Fahrerassistenz-

systeme (engl. Advanced Driver Assistance Systems (ADAS)), elektronische Mauterhebung, Flotten-

management und Systeme zur Verkehrsüberwachung untersucht [Cvi]. Dabei spielt vorrangig die

Zuverlässigkeit der Informationen und der Übertragung eine Rolle. Dies wird auch in [SBBD08]

untersucht.

In den Forschungsarbeiten der letzten Jahre wurden im Wesentlichen die in Abbildung (Abb.) 2.1

aufgeführten Informationsquellen zur Navigation genutzt [SH09]. Während ein satellitenbasiertes

System (engl. Global Navigation System (GNS)) direkt die Ortsbestimmung eines Fahrzeugs durch-

führen kann, liefern die anderen Informationsquellen i. d. R. lediglich Hilfsdaten für den in rot dar-

gestellten Fusionsalgorithmus [JDW03]. Die Sensoren zur Bestimmung der Fahrdynamik können je-

doch direkt den Zustand eines Fahrzeugs bestimmen (z. B. die Lage in Bezug auf ein vorher definiertes

Koordinatensystem). Zusätzliches Kartenmaterial oder Bewegungsmodelle erlauben es, die durch die

anderen Informationen gewonnenen Schätzungen auf Konsistenz zu überprüfen. Bei der Auswertung

von Karteninformationen für die Navigation spricht man auch von Map Matching (MM). Dies wird
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Abbildung 2.1: Verfügbare Informationsquellen und Informationsfluss in einem Fahrzeugnavigati-

onssystem [SH09]

im Folgenden noch ausführlicher erläutert. Die visuellen Sensoren liefern keine direkten Daten zur

Position oder zum Zustand des eigenen Fahrzeugs, sondern vielmehr Beobachtungen von der Umge-

bung des Fahrzeugs. Sie spielen vorrangig eine Rolle bei Systemen zur Unfallvermeidung [HL04],

[MT06]. Moderne KFZ bieten die Möglichkeit, auf Basis solcher Sensoren eine Abstandsmessung zu

Fahrzeugen in der unmittelbaren Umgebung durchzuführen und im Falle der Unterschreitung einer

festgelegten Distanz Warnmeldungen an den Fahrzeugführer herauszugeben (Fahrerassistenzsyste-

me). Um eine weitere Verbesserung beim Navigieren zu erreichen, ist es außerdem denkbar, Infor-

mationen eines Verkehrsleitsystems zu verwenden. Diese können direkt mit den Systemen des Fahr-

zeugs verbunden werden, um z. B. dem integrierten Navigationssystem aufgrund von Verkehrsstaus

eine Routenänderung zu empfehlen.

Aus den erwähnten Informationsquellen gilt es, eine geeignete Auswahl oder Kombination zu

finden, die für die jeweilige Anwendung hinsichtlich Leistungsfähigkeit oder auch hinsichtlich Kom-

plexität und Kosten am besten geeignet ist. Um die Leistungsfähigkeit eines Systems beurteilen zu

können, spielen nach [Hei00] folgende Punkte eine Rolle:

• Verfügbarkeit/Abdeckung: Maßangabe, wie groß das Abdeckungsgebiet eines Navigations-

systems ist. Im Fall von GPS ist es die Verfügbarkeit aufgrund der möglichen Satellitenkonstel-

lationen unter Berücksichtigung von Abschattungen etc. Diese liegt momentan bei ca. 98%,

d. h. 98% der Orte auf der Erdoberfläche sind zu jedem Zeitpunkt durch so viele Satelliten

abgedeckt, dass eine Ortsbestimmung möglich ist.

• Zuverlässigkeit: Maßangabe, inwiefern man der beobachteten Größe, z. B. Pseudorange- oder

Deltarange-Messung, vertrauen kann. Aufgrund statistischer Annahmen bei der Filterung ist

die zu schätzende Größe auch nach der Filterung mit einem Restfehler behaftet. Die a posteriori-

Wahrscheinlichkeit ist ein Maß für die Zuverlässigkeit einer Beobachtung.

• Ausfallwahrscheinlichkeit: Die Ausfallwahrscheinlichkeit gibt die Wahrscheinlichkeit an, dass

das jeweilige System kontinuierlich Informationen an den Empfänger oder den Fusionsalgorith-

mus liefern kann.

• Genauigkeit: Die Genauigkeit ist ein Maß für die Qualität der jeweiligen Information, die

geliefert wird. Sie gibt den Abstand zwischen der gelieferten Beobachtung und der eigentlichen,

wahren Größe an.
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Wenn Signale von weniger als vier Satelliten empfangen werden, so ist eine Positionsschätzung

lediglich mit Hilfe geeigneter Filteralgorithmen möglich (z. B. KALMAN-Filterung) [MBH05]. Dabei

wird aber lediglich auf Basis eines Bewegungsmodells der Fahrzeugzustand prädiziert. Mit Karten-

daten kann die geschätzte Position zusätzlich auf Rationalität überprüft werden, denn ein Fahrzeug

wird sich i. d. R. nicht 5m neben einer Fahrspur auf einem Feld befinden. Neben einer unzureichen-

den Anzahl an empfangbaren Satelliten können weitere Effekte zu einer schlechten Navigationslö-

sung führen. Dazu zählen die Mehrwegeausbreitung und die Abschattung durch Gebäude und andere

Objekte. Erstere können vom Empfänger nicht registriert werden, wodurch die Zuverlässigkeit redu-

ziert wird. Mehrwegeausbreitungseffekte werden in [GTC07] und [LL07] untersucht. In [GTC07]

wird beispielsweise ein Ansatz vorgestellt, um die Mehrwegeausbreitung mit Hilfe von Partikel-

filtern zu kompensieren. Eine Empfängerstruktur, die diese Effekte konstruktiv ausnutzt, findet man

in [EMR05].

Aus den genannten Gründen wird z. B. in [BPHU09a] eine Komplementärfilterung mit verschie-

denen inertialen Sensoren vorgeschlagen. Hier wird eine Filterung der einzelnen Sensorkomponenten

und deren Fehler, aber auch der GPS-Daten in separaten KALMAN-Filtern durchgeführt. Auf diese

Weise entsteht eine mehrstufige Filterstruktur. Die einzelnen Schätzungen werden dabei durch einen

BAYES’schen Kombinierungsalgorithmus unter Berücksichtigung der individuellen Schätzfehlervari-

anzen zusammengeführt. Des Weiteren wird durch Rückkopplung erreicht, dass der geschätzte Sen-

sorfehler (z. B. Bias) direkt von der Sensormessung am Eingang abgezogen wird und sich dadurch

nicht kumuliert. In [OLS07] wird dagegen eine Kombination von odometrischen Daten und Informa-

tionen eines Gyroskops untersucht und in einem realen Fahrzeug getestet. Diese Kombination wird

ebenfalls als Koppelnavigation bezeichnet, weil ausgehend von einer initialen Position diese mit Hil-

fe der Sensordaten aufintegriert wird. Das Ergebnis wird anschließend mittels Zustandsmaschinen

einem Map Matching (MM)-Verfahren unterzogen. Beim MM wird eine aktuelle Positionsschätzung

laufend mit Einträgen einer Datenbank verglichen. Diese enthält Koordinaten von Straßenzügen oder

auch einzelnen Fahrbahnspuren. Aktuelle Navigationssysteme in einem Fahrzeug nutzen nicht nur

Informationen eines Satellitensystems wie GPS, sondern bilden diese zusätzlich per MM auf Straßen-

karten ab [OLS07], [BLN07]. In [GGB+02] wird das Resultat eines MM wiederum genutzt, um durch

Rückkopplung die Sensorfehler zu kompensieren und folglich die Schätzgenauigkeit zu erhöhen.

Ein Nachteil, der sich bei der ausschließlichen Verwendung eines Empfängers für Satellitenna-

vigation ergibt, ist dessen relativ geringe Messwertaktualisierungsrate von 1 1/s bis 4 1/s. Durch den

Einsatz inertialer Sensoren kann der Zeitraum zwischen den Aktualisierungszeitpunkten, in dem kei-

ne Satellitendaten verfügbar sind, überbrückt werden. Moderne, günstige Sensoren besitzen Datenra-

ten von bis zu 200 1/s. Eine für diese Arbeit verwendete inertiale Messeinheit (IME) der Fa. XSens,

Niederlande, arbeitet mit einer maximalen Frequenz von 120Hz [B.V09b].

Die Leistungsfähigkeit eines Fahrzeugnavigationssystems ist von vielen Faktoren abhängig. Zum

einen hängt sie im Falle von MM vom verwendeten Kartenmaterial ab. Zum anderen wird aber in

[AP99] festgestellt, dass hauptsächlich der satellitenbasierte Empfänger und die damit zusammen-

hängenden Fehler für die Genauigkeit des gesamten Navigationssystems verantwortlich sind. Wenn

ein GPS-Signalausfall auftritt, so sind die Fehlercharakteristika (Drift und Bias) der Komponenten

zur Koppelnavigation ausschlaggebend. Wichtig ist auch der Kalibrierungsprozess, der beim Aufbau

der Sensoren durchlaufen wurde.

Im Folgenden werden die fünf genannten Informationsquellen aus Abb. 2.1 im Detail betrachtet.

Dieses waren die satellitenbasierten Systeme, Straßenkarten, Fahrzeugsensoren, Bewegungsmodelle

und visuelle Sensoren. Des Weiteren sollen Fusionsverfahren beschrieben werden, um die Daten der
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einzelnen Quellen geeignet zu kombinieren.

2.1.1 Satellitenbasierte Systeme

Wenn man heutzutage von satellitenbasierter Navigation spricht, so denkt im amerikanischen und eu-

ropäischen Raum zunächst jeder an das GPS-System. Neben dem von den United States of America

(USA) entwickelten GPS existieren aber auch weitere Systeme, die jedoch vom Aufbau und von der

Funktionsweise her ähnlich sind. Das russische System trägt den Namen Globalnaja Nawigazionnaja

Sputnikowaja Sistema (GLONASS). Ein sich in der Entwicklung befindendes indisches System wird

mit Indian Regional Navigation Satellite System (IRNSS) bezeichnet, wobei ein Hilfssystem mit Na-

men Global Positioning System Aided Geo Augmented Navigation (GAGAN) bereits in Betrieb ist.

Das chinesische System heißt COMPASS. Die Basis der satellitenbasierten Ortung ist die Messung

von Signallaufzeiten und die daraus mögliche Schätzung der Distanzen zu den jeweiligen Satelliten.

Durch Triangulation kann schließlich die Position des Nutzers gefunden werden. Im Folgenden wird

nur auf das GPS und das europäische Galileo-System näher eingegangen.

2.1.1.1 GPS

Das GPS ist der Nachfolger des ersten satellitenbasierten Navigationssystems

TRANSIT-NNSS. Es nutzt die zwei Frequenzen 1227,6MHz und 1575,42MHz und insgesamt 24 Sa-

telliten [Wen07]. Des Weiteren ist eine dritte Frequenz in Planung, die bei 1176,45MHz liegt [TW04].

Diese soll dazu beitragen, die Empfangsqualität weiter zu verbessern. Mit einer Fertigstellung dieser

Erweiterung ist seit 2010 und mit einem Regelbetrieb ab 2013 zu rechnen. GPS ist so ausgelegt, dass

für mittlere Breitengrade eine gute Abdeckung vorhanden ist. Ursprünglich war GPS ausschließlich

für militärische Zwecke gedacht, wurde dann aber auch für die zivile Nutzung freigegeben. Hier

überzeugt es heute im Optimalfall durch Positionsgenauigkeiten von wenigen Metern. Wie auch die

anderen Systeme verwendet GPS kodierte Satellitensignale, mit denen ständig Positionen und die

genaue Uhrzeit ausgestrahlt werden. Theoretisch reichen zur Positionsbestimmung eines Nutzers Si-

gnale von drei Satelliten aus. Die Uhren in einem handelsüblichen Empfänger sind allerdings nicht

genau genug, um mit nur drei Satelliten eine genaue Laufzeitmessung zu erhalten. Daher sollten min-

destens vier Satelliten in Empfängerreichweite sein, so dass auch die genaue Uhrzeit im Empfänger

bestimmt werden kann. Die Lebensdauer eines GPS-Satelliten liegt mit ca. 7,5 Jahren deutlich über

der eines GLONASS-Satelliten mit ca. drei Jahren. Damit sich Ausfälle nicht negativ auf die System-

leistung auswirken, sind mehr als die genannten 24, insgesamt ca. 30 Satelliten vorhanden, wobei

einige als Ersatz dienen. Weitere Details zum GPS sind in [TW04] oder [Dix05] zu finden.

2.1.1.2 Galileo

Einen großen Mehrnutzen verspricht man sich in den nächsten Jahren von dem von der

European Space Agency (ESA) entwickelten Galileo-System, das noch in der Aufbauphase ist

[ESA07]. Momentan befinden sich drei Satelliten im Orbit. Bis zum Jahre 2013 soll jedoch die vol-

le Funktionalität gewährleistet sein und es sollen insgesamt 30 Satelliten für Galileo zur Verfügung

stehen. Galileo soll von Beginn an in erster Linie zivilen Bedürfnissen genügen. Die Ähnlichkeit

von GPS und Galileo führt so weit, dass eine Kompatibilität der Empfängerstrukturen beider Syste-

me möglich sein wird. Die GPS-Empfänger der Fa. Navilock mit u-blox-Komponenten [ubl] lassen

sich beispielsweise durch eine Software-Aktualisierung direkt als Galileo-Empfänger nutzen. Man

verspricht sich bei Galileo vor allem eine Zunahme an Genauigkeit, Zuverlässigkeit und Integrität
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gegenüber GPS. Für Galileo sind vier Trägerfrequenzen vorgesehen: 1176,45MHz, 1207,14MHz,

1278,75MHz und 1575,42MHz.

2.1.1.3 Stützung für satellitenbasierte Navigationssysteme

Neben den Hauptsystemen zur Satellitennavigation werden auch eine Reihe von so genannten Hilfs-

systemen (engl. Satellite Based Augmentation System (SBAS)) eingesetzt. Wie in [FB99] und [Dix05]

dargelegt, sind diese in erster Linie zur Reduzierung der systembedingten und nicht systembeding-

ten Fehler vorgesehen, wie sie in Kap. 4.4 im Rahmen von GPS noch näher beschrieben werden.

Dazu zählen z. B. Fehler, die durch die verschiedenen atmosphärischen Schichten bedingt sind. Die

Basis solcher Systeme sind Referenzstationen auf der Erde, deren Position annähernd perfekt be-

kannt ist. Durch Vergleich der idealen mit der gemessenen Position kann die wirkliche Laufzeit des

Satellitensignals an der Referenzstation bestimmt werden. Damit steht auch eine Information über

den daraus resultierenden Positionsfehler bzw. die Zuverlässigkeit der Messung für mobile Emp-

fänger in der Umgebung der Referenzstation zur Verfügung. Die Referenzstationen senden ihre Da-

ten in erster Linie an eine Basisstation, welche sie aufbereitet und weitersendet. Die Basisstation

kann zusätzlich Fehler berechnen, die aus Fehlern der einzelnen Satellitenuhren oder aus den va-

riierenden Satellitenbahnen (Ephemeridendaten) resultieren. Es existieren verschiedene Verfahren,

um dem Anwender die Korrektursignale zur Verfügung zu stellen. Die gängigen Empfänger können

Korrektursignale (Pseudorange oder Phasenlagenkorrektur) von speziell zur Korrektur vorgesehe-

nen geostationären Satelliten auf der L1-Frequenz 1575,42MHz empfangen. In Europa wird dieses

System als European Geostationary Navigation Overlay Service (EGNOS) bezeichnet. Das amerika-

nische Vergleichssystem ist das Wide Area Augmentation System (WAAS). Aber auch andere Länder

wie Japan haben sich dazu entschlossen, ein Hilfssystem in Betrieb zu nehmen [Dix05]. Das japani-

sche Multifunctional Satellite Augmentation System (MSAS) ist seit 2007 aktiv. Einige dieser Systeme

sind in der Lage, nicht nur GPS, sondern auch andere Hauptsysteme wie GLONASS oder Galileo zu

stützen und damit die Positionsschätzgenauigkeit zu erhöhen. Des Weiteren ist ein Informationsaus-

tausch möglich.

Neben der Unterstützung per Satellit existiert auch die Möglichkeit, über Internet, über Telefon

oder über Funk Korrektursignale von Referenzstationen zu erhalten. In Deutschland werden solche

bodengestützten Ergänzungssysteme (engl. Ground Based Augmentation System (GBAS)), bestehend

aus einer Telefonverbindung und einem hochgenauen Empfänger, z. B. in der Landesvermessung ein-

gesetzt. Ein Sender, über dessen Mittelwellenfrequenz die Korrekturdaten alle 3 s gesendet werden, ist

der Deutschlandfunk. Einige Empfänger sind allerdings auch in der Lage, die Signale der Bodensta-

tionen zu empfangen. In Untersuchungen wie [CL04] konnte gezeigt werden, dass bei Verwendung

von EGNOS oder WAAS eine Positionsgenauigkeit von annähernd 1m in der horizontalen Ebene

und bis zu 2m in vertikaler Richtung möglich ist. Diese kann noch weiter erhöht werden, indem

Zweifrequenz-Empfänger eingesetzt werden, welche allerdings relativ kostenaufwändig und damit

für kommerzielle Anwendungen weniger geeignet sind. Beispielsweise wird in [EM99] untersucht,

welche Genauigkeit mit diesen erreicht werden kann. Ist eine Echtzeitverarbeitung nicht notwendig,

so kann auch auf Nachverarbeitungsverfahren zurückgegriffen werden. Auch dies wird in der Lan-

desvermessung heutzutage noch praktiziert. Trotz dieser Stützsysteme bleiben allerdings noch Fehle-

reinflüsse bestehen. Dazu zählen z. B. die variierende Anzahl sichtbarer Satelliten durch ungünstige

Satellitenkonstellationen und die Mehrwegeausbreitung. Weitere Effekte werden im Anhang näher

erläutert.

Neben den Fehlern, die durch Hilfssysteme kompensierbar sind, existieren auch Fehler, die nicht
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eliminiert werden können, weil sie z. B. durch das Empfängerdesign, die Empfängerumgebung, Pro-

bleme mit der verwendeten Software etc. zustande kommen. Einige dieser Fehlerquellen werden in

[BO07] näher erläutert. Receiver Autonomous Integrity Monitoring (RAIM) ist eine Möglichkeit, die

Integrität eines GPS-Empfängers zu überprüfen. Sie wird in [Bro92] vorgestellt. RAIM dient dabei

nicht nur der Fehlerentdeckung, sondern auch der Fehlerkompensation. Allerdings müssten hierfür

mindestens sechs Satelliten beobachtbar sein. Für die Navigationslösung könnte eine Fehlerentde-

ckung bedeuten, dass eine bestimmte Informationsquelle für diesen Fehler ggf. verantwortlich ist und

deshalb nicht mehr für die momentane Lösung berücksichtigt werden sollte. Daraus würde eine Feh-

lerunterdrückung resultieren. Die notwendigen redundanten Daten können in Form eines SBAS oder

auch in Form von weiteren Sensoren einfließen. Im Falle eines fehlerhaften Satellitensignals könnte

z. B. die daraus resultierende fehlerhafte absolute Position durch eine Koppelnavigation ersetzt wer-

den, wobei auf die letzte gültige, fehlerfreie absolute Position lediglich Distanzen addiert werden, um

eine neue Positionsschätzung zu erhalten. Diese Distanzen könnten mit Hilfe von Geschwindigkeits-

sensoren erfasst werden. Wie in [BOF07] beschrieben, sollte man allerdings bedenken, dass ebenso

ein SBAS fehleranfällig sein kann, beispielsweise verursacht durch Interferenzen.

2.1.2 Kartenbasierte Navigation

Eine einfache Möglichkeit, dem Fahrer oder Anwender eine Positionsschätzung zur Verfügung zu

stellen, ist die Anzeige von Längen-, Breitengrad und Höhe als Koordinaten auf einem Display. Dies

ist für einen Autofahrer jedoch wenig hilfreich, da sich die Daten schlecht interpretieren lassen. Daher

wird bei heutigen Navigationsgeräten Kartenmaterial mitgeliefert, so dass sich der Fahrer auf seiner

aktuellen Route besser zurechtfinden und auf zukünftige Fahrmanöver rechtzeitig einstellen kann.

Das vorausschauende Fahren wird besser unterstützt, indem die aktuelle Position auf dem jeweils

aktuellen Kartenausschnitt abgebildet wird. Man spricht in diesem Zusammenhang von dem bereits

erwähnten MM, wobei in [QON07] eine Auflistung der gängigen Methoden zu finden ist. Weiterhin

ermöglicht eine digitale Karte, zusätzliche Informationen in die Navigationslösung mit einfließen

zu lassen. Es scheint z. B. unrealistisch, dass sich ein Fahrzeug parallel zur Fahrbahn auf einem Feld

bewegt oder dass sich auf einer Autobahn die Richtung schlagartig ändert. In [PH08] und [SBLCP09]

werden weitere Möglichkeiten vorgestellt, um solche Nebenbedingungen in der Navigationslösung

zu berücksichtigen. Untersuchungen zur Leistungsfähigkeit aktueller MM-Methoden werden auch in

[QNO09] präsentiert.

Die ersten digitalen Karten, die allerdings für die Fahrzeugnavigation ungeeignet sind, waren die

typischen Rasterkarten, die nur eine elektronische Abbildung von gedruckten Karten sind. Bei den

heutzutage verwendeten digitalen Raster- oder Vektorkarten sollte allerdings berücksichtigt werden,

dass es sich nicht um Abbilder von kartografischen Karten handelt. Vielmehr sind es Datenbanken,

bestehend aus Straßenkoordinaten und ausgewählten Zusatzinformationen, die für einen Fahrzeug-

führer interessant sind. Dies können Straßennamen, Postleitzahlen, vorgeschriebene Geschwindigkeit

oder Straßenart (Autobahn, Landstraße, etc.) sein [Tom07]. Es können aber auch sekundäre Details

als Points Of Interest (POI) in der Datenbank abgespeichert sein. Diese können z. B. fest installier-

te Radarfallen, Tankstellen oder Restaurants umfassen. Aber auch diese POI sind lediglich mittels

Koordinaten in der Datenbank hinterlegt. Details über den Aufbau digitaler Karten zur Navigation

sind in [Zha97] oder auch in [Whi93] zusammengefasst. In den meisten Fällen sind die Positionen als

planare Größen in einer Karte hinterlegt. Die Höheninformation wird zwar angezeigt, dabei handelt

es sich jedoch meist um die mittels GPS-Gerät erfasste Höhe. Die Kurven werden durch eine end-

liche Anzahl stückweise linearer Bogenelemente repräsentiert. Bei den Konturknoten laufen dabei
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mehrere Bögen und/oder gerade Strecken zusammen (Kreuzungen), während die stückweise geraden

Elemente durch Konturpunkte verbunden sind.

Um eine digitale Karte zu erstellen, müssen verschiedene Kenngrößen festgelegt werden. Dazu

zählen der Maßstab, die benötigte Auflösung, d. h. die Genauigkeit, mit der auch das MM erfol-

gen sollte, und die Aktualität der Karte. Es ist zu bedenken, dass sich jedes Jahr 10% bis 15% des

deutschen Straßennetzes ändern [Tom07]. Außerdem verbleiben durch die Digitalisierung Restfehler,

die z. B. durch die Topologie hervorgerufen werden [QON07]. Hinzu kommen geometrische Fehler

aufgrund falscher Annahmen bei den Straßenabmessungen (Abstände, Kurvenform, etc.), die zu-

sammengenommen auch zu einem fehlerhaften MM führen können. Daher ist es sinnvoll, auch eine

Information über die Zuverlässigkeit von Kartendaten in das MM mit einfließen zu lassen und laufend

das Ergebnis zu kontrollieren. In [CLYC05] und [QON07] werden Untersuchungen durchgeführt, bei

denen die Integrität des MM basierend auf den Fehlern der Fahrzeugsensoren oder des GPS analysiert

wird.

Die bisherigen Betrachtungen gingen davon aus, dass die Kartendaten die Schätzungen auf Ba-

sis der Fahrzeugsensoren oder des satellitenbasierten Systems verbessern. In [GGB+02] und [NB07]

wird gezeigt, wie die Karteninformationen wiederum genutzt werden können, um die Fehler der ver-

wendeten Sensoren zu kompensieren bzw. zu filtern. Die Karte dient dabei als weitere Beobachtung

im Rahmen einer Datenfusion.

Sobald eine Positionsschätzung auf Basis von Sensor- oder Satellitendaten vorliegt, wird das an-

schließende MM in drei Schritten durchgeführt: Zunächst sollte ein Kartenbereich ausgewählt wer-

den, in dem die geschätzte Position mit hoher Wahrscheinlichkeit (auf Basis vorheriger Schätzungen)

liegt. Dazu zählt auch eine Auswahl passender Konturelemente (Knoten und Zwischenpunkte). An-

schließend wird die bedingte Wahrscheinlichkeit (Likelihood) einer korrekten Positionsschätzung auf

Basis der in Frage kommenden Datenbankeinträge berechnet, wobei auch die letzten Positionen und

die Straßengeometrie berücksichtigt werden [Tom07]. Der jeweilige Pfad kann einschließlich der vor-

herigen Wegelemente mit den entsprechenden Kandidaten in der Karte korreliert werden. Der letzte

Schritt ist schließlich die Auswahl des Pfades mit der größten Likelihood.

Es werden auch topologische und geometrische Informationen berücksichtigt. Geometrische In-

formationen umfassen dabei u. a. die Differenzen von Richtungsdaten zwischen bestimmten Stra-

ßensegmenten und denen, die sich aus der Navigationslösung ergeben, oder einfach dem Abstand

zwischen einer geschätzten Position und einer in Frage kommenden Straße in nächster Nähe. In

[WHU08] wird mittels visueller Sensoren, einer digitalen Karte und unter Zuhilfenahme verschie-

dener Kurvenmodelle (parabolisches, clothoides und polynomiales Kurvenmodell) eine Schätzung

gerader Strecken und Kurven bis zu 40m vor einem Fahrzeug vorgenommen. Es wird gezeigt, dass

man durch die Separierung einer Kurve mit Hilfe verschiedener Modelle bessere Ergebnisse in der

Abschätzung der Kurvenabmessungen erzielt. Dies führt wiederum zu einer verbesserten Positions-

abschätzung im Vergleich zur Verwendung von konstanten Kurvenmodellen.

Ein topologisches Überprüfungskriterium hingegen ist die Wahrscheinlichkeit für das Auftreten

bestimmter aufeinanderfolgender Straßensegmente. Möglichkeiten, die genannten Kriterien mitein-

ander zu kombinieren, werden in [Zha97] und in [OSW+03] vorgestellt. Inwieweit Zustandsmaschi-

nen dafür eingesetzt werden können, wird z. B. in [OLS07] erläutert. Der beschriebene Algorithmus

setzt dabei zwei Zustandsautomaten ein. Der erste wird für Sensordaten des Fahrzeugs eingesetzt und

besteht aus vier Zuständen, die eine geradlinige Bewegung, Anfang, Durchlaufen oder Ende einer

Abbiegephase beschreiben. Die Zustandsübergänge sind dabei von gemessenen Winkelinkrementen

∆ψ und Streckeninkrementen ∆l abhängig. Der zweite Zustandsautomat ist ähnlich wie der erste
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aufgebaut, besteht aber aus nur drei Zuständen, da der Beginn einer Kurve durch die Karte selbst

definiert ist. Die Zustandsübergänge entsprechen denen des ersten Automaten, die Ausgänge beste-

hen aus den summierten Winkelinkrementen
∑

∆ψ bzw. Wegstrecken
∑

∆l. Diese werden auch als

„Merkmale“ (engl. Features) oder Eigenschaften bezeichnet. Mit Hilfe der Merkmale aus dem Auto-

maten zur Koppelnavigation (engl. Dead Reckoning (DR)) und derjenigen, die sich aus der Karte für

alle möglichen Folgetrajektorien ergeben, wird schließlich die Likelihood an signifikanten Wegstel-

len (z. B. Kreuzungen) berechnet. Durch Feldtests zeigen die Autoren, dass sich auf diese Weise eine

genaue Wegstreckenführung und Positionierung durchführen lässt.

2.1.3 Sensoren für die Fahrzeugnavigation

Neben den bisher angesprochenen Möglichkeiten zur Ortung existieren eine Reihe verschiedener Sen-

soren, die diese unterstützen und verbessern können. Durch die Drehratensensoren des

Antiblockiersystems (ABS) können z. B. Driftbewegungen des Fahrzeugs erfasst und notwendige

Bremsvorgänge eingeleitet werden. Eine genaue Übersicht über Sensoren, die sich in einem Fahrzeug

befinden, ist in [BCD02] zu finden. Eine physikalische Betrachtungsweise über den Aufbau von Sen-

soren gewährt [Sch04]. Bei der Verwendung von Fahrzeugsensoren muss eine Reihe verschiedener

Aspekte beachtet werden, die ausführlicher in Kap. 4 erörtert werden. Dazu zählen sowohl die unter-

schiedlichen Koordinatensysteme, die für die Kombination von Informationen verschiedener Quellen

berücksichtgt werden müssen, als auch die auftretenden Sensorfehler. Die Sensoren können direkt für

Navigationszwecke eingesetzt werden, können aber auch ausschließlich bei der Stabilisierung wie in

[Tab08] eine Rolle spielen.

Als typische Sensoren, die Teilbewegungen eines Fahrzeugs erfassen können, sind Beschleuni-

gungssensoren, odometrische Sensoren oder Drehratensensoren zu nennen. In Kombination mit ei-

nem GNS-Empfänger ist damit eine genauere absolute Positionsmessung möglich als es bei einem

System der Fall wäre, das lediglich den GNS-Empfänger verwendet. Außerdem können daraus Infor-

mationen zum Fahrzeugzustand (Orientierung oder Lage) gewonnen werden. Übliche Sensoren und

die von ihnen gelieferte Messwerte sind in Tabelle (Tab.) 2.1 aufgeführt. Es gibt zusätzliche Senso-

Sensor Messgröße

Odometrische Sensoren Zurückgelegte Strecke in [m]

Lenkwertgeber Ausrichtung der Räder der Frontachse in [°] oder [rad]

Geschwindigkeitsaufnehmer Laterale Geschwindigkeit in [m/s]

Drehratensensoren (Gyroskope) Winkelgeschwindigkeit/Drehrate in [°/s] oder [rad/s]

Beschleunigungssensoren Inertiale Beschleunigung in [m/s2]

Tabelle 2.1: Fahrzeugsensoren und deren Messwerte

ren, die aber weder üblich noch für eine Navigation zwingend erforderlich sind. Hierzu zählen das

Magnetometer und der barometrische Höhensensor (siehe Tab. 2.2).

Odometrische Sensoren Ein odometrischer Sensor wird auch Odometer genannt. Dieser wird ne-

ben anderen Sensoren in [ANLC03] untersucht. Er misst die Distanz, die ein Fahrzeug zwischen

zwei Zeitpunkten zurückgelegt hat. Dieses geschieht häufig über die Messung der Raddrehzahl und

der Kenntnis des Radumfangs. Die Drehzahl wird dabei über Impulsgeber gemessen. In [Gus09] wird

beispielsweise eine Übersicht gegeben, wie mit Hilfe von zwei Drehratensensoren eine Bestimmung
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Sensor Messgröße

Magnetfeldsensoren (Magnetometer) Magnetfelder in [G] oder [T]

Barometrische Sensoren Druck in [Pa] und Temperatur in [°C] oder [K]

Tabelle 2.2: Weitere Sensoren, welche die Navigation unterstützen können

der zurückgelegten Wegstrecke möglich ist. Dabei sind verschiedene Fehlereinflüsse zu beachten.

Der Reifendruck kann z. B. je nach Witterung, Beladung und Fahrsituation variieren, wodurch die

Schätzung der Wegstrecke mit relativ großen Fehlern behaftet sein kann.

Lenkwertgeber Ein Lenkwertgeber misst den Einschlagwinkel eines Lenkrades. Da der Lenkrad-

winkel proportional zur Stellung der Vorderräder ist, existiert unter Berücksichtigung einer ggf. vor-

handenen geschwindigkeitsabhängigen Lenkunterstützung ein Faktor, durch den auf die Bewegungs-

richtung geschlossen werden kann. Berücksichtigt man zusätzlich die Umdrehungen der Vorderräder,

so ist damit auch eine Angabe der Gierwinkelrate möglich wie [Gus09] zeigt.

Geschwindigkeitsaufnehmer Ein Geschwindigkeitsaufnehmer basiert prinzipiell auf den gleichen

Messungen wie die des Odometers. Anhand der Umdrehungen eines Rades und durch Kenntnis des

Umfangs kann eine Wegstrecke und damit die Geschwindigkeit berechnet werden. Durch Messung

der Drehraten von mehr als einem Rad kann ferner die Drehrate des Fahrzeugs um die Querachse

bestimmt werden. Dieses wird beim ABS ausgenutzt, um Driftbewegungen des Fahrzeugs, z. B. beim

Bremsen auf glatten Straßen, verhindern zu können [Wie09]. Untersuchungen dazu werden auch in

[CGP04] präsentiert. Durch Verwendung der ABS-Sensoren zu Navigationszwecken hat man zwar

den Vorteil, bereits vorhandene Sensoren verwenden zu können, allerdings muss man auch unge-

nauere Schätzergebnisse in Kauf nehmen, da die eingesetzten Sensoren häufig von geringerer Güte

sind.

2.1.3.1 Inertiale Sensoren

Drehratensensoren Im KFZ-Bereich wird ein Gyroskop derzeit überwiegend für das ABS zur Un-

fallvermeidung verwendet. Dabei sind durchaus weniger präzise Sensorelemente ausreichend, da le-

diglich detektiert werden muss, ob eine bestimmte Messwertschwelle überschritten wird. Eine Kate-

gorisierung der gebräuchlichsten Gyroskopelemente lässt sich nach [Sch04] wie folgt vornehmen:

• Elektrostatische Gyroskope (ESG)

• Drehratenwandler (z. B. magnethydromechanische Sensoren)

• Optische Gyroskope (z. B. Ringlasergyroskope (RLG) und fiberoptische Gyroskope (FOG))

• Mikrosysteme und elektromechanische Gyroskope.

Die ersten elektrostatischen Sensoren wurden in den 50er Jahren entwickelt. Diese Sensoren ba-

sieren auf einer Berilliumkugel, die sich in einem elektrostatischen Vakuumfeld befindet und fest

(bezogen auf den Inertialraum) ausgerichtet ist. Jede Bewegung des Systems wird mit einer hohen

Genauigkeit erfasst, wobei die Drift nur bei ca. 1 · 10−4°/h liegt. Problematisch bei dieser Sensorart

ist allerdings, dass auch bereits kleinste Vibrationen erfasst werden, die u. a. durch den Auslesevor-

gang selbst oder durch die Betriebsumgebung auftreten können. Hinzu kommen eine kostenintensive
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Herstellung und der aufwändige Betrieb des Systems, um eine Selbstzerstörung durch z. B. Span-

nungsabfall zu vermeiden. Auf Basis dieser Technik wurden hochgenaue Drehratensensoren entwi-

ckelt, die überwiegend in der Flugzeugnavigation eingesetzt werden.

Die Drehratenwandler wurden erst in den 60er Jahren entwickelt und weisen beträchtliche Lang-

zeitinstabilitäten auf, da deren Drift bei mehreren Hundert Grad pro Stunde liegen kann [DJ03].

Bestandteil eines typischen Drehratenwandlers ist eine Kugel, die aus schwerer Flüssigkeit (z. B.

Quecksilber) besteht und sich in einem Hohlkörper befindet. Wird durch äußeren Einfluss nun die-

se Flüssigkeit in Bewegung gesetzt, so wird das Drehmoment der Kugel von Messaufnehmern mit

piezoelektrischen Kristallen erfasst, die wiederum ein entsprechendes elektrisches Signal erzeugen.

Das beschleunigungsabhängige Bias dieser Sensoren liegt üblicherweise zwischen 0,294° ·m/(s · s2)
und 0,49° ·m/(s · s2), während der temperaturabhängige Anteil bei bis zu 0,5°/s liegen kann. Der nicht-

lineare Skalierungsfehler beträgt ca. 0,5% der maximalen Drehrate und der temperaturabhängige

Skalierungsfehler meist um die 5%. Die magnethydrodynamischen Sensoren dagegen bestehen nicht

aus einer gleitenden Masse, sondern aus einem Winkelbeschleunigungsmesser. Dieser erzeugt ein

elektrisches Signal, das proportional zur Drehrate ist.

Die optischen Drehratensensoren enthalten keine rotierenden Bauelemente. Vielmehr nutzen sie

den so genannten Sagnac-Effekt, wobei ein Lichtstrahl einen optischen kreisrunden Leiter in ent-

gegengesetzte Richtungen durchläuft. Im Falle einer Rotation des Leiters müsste der Lichtstrahl für

den einen Weg eine längere Strecke ∆l zurücklegen als für den anderen Weg, da sich dieser um ∆l

verkürzt.

Bei einem Ringlasergyroskop wird ein Laserstrahl durch einen Glaskörper in gegenläufige Rich-

tungen geschickt [Aro99]. Je nach Hersteller kann es sich hierbei um einen dreieckigen oder vier-

eckigen Körper handeln, an dessen Ecken sich Spiegel befinden, um die Lasertrahlen zu reflektieren.

Verstärkt wird der Laser durch ein Gasgemisch. Befindet sich die gesamte Anordnung nun nicht

mehr in Ruhe, sondern rotiert, so verändern sich auch die Frequenzen der Laserstrahlen, wobei ein

kürzerer Weg mit einer kürzeren Wellenlänge und damit einer höheren Frequenz einhergeht. Die Fre-

quenzdifferenz beider Laserstrahlen ist ein Maß für die Rotationsgeschwindigkeit. Um die Differenz

detektieren zu können, ist einer der Spiegel halb durchlässig. Hinter ihm befindet sich ein Detek-

tor, der das Interferenzmuster der Strahlen anhand zweier Photodioden auswertet. Die Richtung des

sich bewegenden Interferenzmusters gibt Aufschluss über die Drehrichtung. Der so genannte Lock-

in-Effekt stellt das größte Problem bei diesem Sensor dar, denn die Frequenz ändert sich erst ab einer

bestimmten Drehrate, wodurch niedrige Rotationsraten nicht erfasst werden können. Abhilfe schafft

ein Dither, der das System in festgelegte oszillatorische Rotationsbewegungen versetzt, damit der

Sensor auch in einem anderen Erfassungsbereich arbeiten kann.

Bei einem faseroptischen Kreisel wird ebenso die Phasendifferenz von zwei Lichtstrahlen gemes-

sen, die eine Induktionsspule in unterschiedliche Richtungen durchlaufen [Sch04]. Ein Photodetektor

registriert diese Phasendifferenz und erzeugt ein dazu proportionales elektrisches Signal. Die Phasen-

verschiebung der beiden Lichtstrahlen ist ein Maß für die Rotation des Sensors. Die Querschnittsflä-

che entspricht bei den faseroptischen Kreiseln genau der Fläche, die vom Laserstrahl eingeschlossen

wird. Die Anzahl der Windungen der Spule ist häufig sehr hoch, wodurch die Sensitivität und die

Genauigkeit des Sensors erhöht wird. Die Sensitivität ist damit auch proportional zur eingeschlosse-

nen Querschnittsfläche. Im Gegensatz zu anderen Sensoren sind die faseroptischen Kreisel äußerst

robust und zuverlässig. Daneben zeichnen sie sich durch vergleichsweise geringe Anschaffungskos-

ten und ihre Langlebigkeit aus. In Bezug auf Genauigkeit können sie allerdings nicht an die vorher

beschriebenen Ringlasergyroskope heranreichen.
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In die Klasse der Microelectromechanical System (MEMS)-Kreisel fallen mehrere unterschiedli-

che Varianten von Gyroskopen. Im Grundsatz werden mit MEMS jedoch kostengünstige Sensoren

bezeichnet, die eine sehr kleine Bauform haben und von geringerer Güte bezüglich ihrer Genauigkeit

und Fehleranfälligkeit sind [TW04]. Im Rahmen der vorliegenden Arbeit wurde auf eine inertiale

Sensoreinheit zurückgegriffen, die aus MEMS-Bauelementen besteht. Bei MEMS werden in einer

mikroskopisch kleinen Struktur sowohl mechanische Bauelemente als auch integrierte elektronische

Schaltkreise auf einem Substrat zusammengefasst. Der Aufbau eines MEMS-Gyroskops basiert meist

auf zwei polykristallinen Siliziumstrukturen, die einen Dither enthalten. Ähnlich wie beim Lock-

in-Effekt wird dieser Dither elektrostatisch in Resonanz versetzt, um zu erreichen, dass bereits bei

einer geringen Eigenbewegung ein Signal erzeugt wird. Durch die externe Drehbewegung wird eine

Corioliskraft erzeugt, die zu einer Beschleunigung des Dither führt. Die Dither-Bewegung kann an-

schließend kapazitiv gemessen werden, denn an dessen Enden befinden sich so genannte kapazitive

Pick-off -Strukturen (feste und bewegliche Kammstrukturen, die ineinandergreifen). Die Lageände-

rung bzw. Drehrate ω des MEMS-Sensors wird über die Kapazitätsänderung registriert. Über nachge-

schaltete Demodulations- und Verstärkerstufen wird schließlich ein elektrisches Signal geliefert.

Beschleunigungsmesser Im Vergleich zu einer Rotation ist ein Sensor, mit dem man translatorische

Bewegungen erfassen möchte, etwas einfacher zu realisieren. Im Grundsatz basieren alle Beschleu-

nigungsmesser auf dem ersten NEWTON’schen Axiom des Trägheitsprinzips, das besagt, dass ein

Körper in seinem Ruhezustand oder im Zustand einer geradlinigen gleichförmigen Bewegung ver-

bleibt, sofern keine äußere Kraft auf diesen einwirkt. Wird auf diesen Körper eine Kraft ausgeübt,

so wird er in die Richtung der Kraft bezüglich des Inertialraumes beschleunigt. Dies lässt sich durch

F = m · a ausdrücken, wobei F die Kraft, m die Masse des beschleunigten Körpers und a die Be-

schleunigung ist. Die Kraft verteilt sich dabei auf zwei wesentliche Anteile, wobei einer durch die

Gravitation der Erde verursacht wird, der andere durch die zusätzliche externe Kraft.

Bei den meisten Beschleunigungsmessern wird eine Testmasse verwendet, deren Trägheit genutzt

wird. Diese ist mittels einer Feder oder eines Pendels mit einem Gehäuse verbunden und wird auf die-

se Weise auch gedämpft. Die Auslenkung der Masse kann über ein dazu proportionales elektrisches

Signal mit Hilfe von kapazitiven oder induktiven Weggebern registriert und ausgelesen werden. Be-

schleunigungsmesser lassen sich wie folgt kategorisieren:

• Mechanische und halbmechanische Sensoren (z. B. Feder-Masse-, Pendel-, Servobeschleuni-

gungssensoren)

• Festkörper-Beschleunigungsmesser (engl. Solid-state, z. B. Vibrating-beam-Beschleunigungs-

sensoren, fiberoptische Sensoren)

• Inklinometer, piezoelektrische Sensoren etc.

Mechanische Sensoren beruhen im Wesentlichen auf dem im vorigen Absatz beschriebenen Aufbau.

Auch der so genannte Vibrating-beam-Beschleunigungssensor gehört zu dieser Gruppe. Bei diesem

befindet sich ebenfalls eine Testmasse an einem Pendel, das im Inneren eines Gehäuses aufgehängt

ist. Außerdem ist die Testmasse durch eine dehnbare Stahlschwingsaite mit einer der Seitenwände

verbunden [Sch04]. Unterliegt diese Masse nun einer Beschleunigung, so wird die Saite gespannt.

Ihre Eigenfrequenz ändert sich bei diesem Vorgang proportional zu der Beschleunigung, die von

außen einwirkt. Ein Servobeschleunigungsmesser verwendet stattdessen einen Rückstellmotor, um



2.1. Navigation und Ortung von Fahrzeugen 15

die Testmasse immer im Gleichgewicht zu halten. Die aufzubringende Rückstellkraft und die dazu

benötigte Stromstärke sind proportional zur Beschleunigung.

Andere Sensoren, die nach einem ähnlichen Prinzip wie die Vibrating-beam-Sensoren arbeiten,

beruhen auf dem Einsatz von Quarzen. Diese werden so angeordnet, dass unter Beschleunigung ein

Quarz gedehnt, ein anderer zusammengestaucht wird. Im unbeschleunigten Zustand schwingen die

Quarze mit einer bestimmten Eigenfrequenz, während sich die Eigenfrequenzen im beschleunigten

Zustand erhöhen bzw. verringern.

Bei Beschleunigungssensoren werden im Prinzip zwei verschiedene Arten unterschieden, je nach-

dem, wie der Abgriff des Sensorsignals erfolgt: das Open-loop- und das Closed-loop-Prinzip. Beim

Open-loop-Prinzip wird die Auslenkung des Testkörpers aus der Nullposition direkt gemessen. Über

die Kalibrierung der Federung kann dabei die Größe geliefert werden, die ein Maß für die einwirken-

de Kraft ist. Bei dem Closed-loop-Betrieb wird hingegen die Kraft gemessen, die nötig ist, um den

Testkörper in der Nullposition festhalten zu können. Dieses Prinzip wurde bereits bei den Servobe-

schleunigungsmessern erläutert.

MEMS-Beschleunigungssensoren lassen sich analog zu den bisher betrachteten Varianten in zwei

Klassen einteilen: pendelbasierte Typen, die eine Sensitivität bis zu 24,5 · 10−5 m/s2 aufweisen und

Resonanzsensoren, die sogar noch höhere Genauigkeiten erreichen können [TW04].

Magnetometer Messwertaufnehmer, welche die Stärke von Magnetfeldern bestimmen können, wer-

den als Magnetometer bezeichnet [Whi88]. Ein elektronischer Kompass, wie er heutzutage auch

schon in Mobiltelefonen zu finden ist, besteht aus solchen Magnetometern. Sie sind in der Lage,

die Ausrichtung eines Fahrzeugs in Bezug auf den magnetischen Nordpol zu bestimmen. Dazu wird

die Richtung des Erdmagnetfeldes bestimmt. Da sich magnetischer und geografischer Pol unterschei-

den, muss die positionsabhängige Differenz immer berücksichtigt werden. Aus [Wen07] geht hervor,

wie ein Magnetometer genutzt werden kann, um die Lage eines inertialen Navigationssystems (INS)

zu stützen. Da in der Annahme einer rein horizontalen Bewegung kaum Änderungen beim Roll- und

Nickwinkel auftreten, beschränkt man sich dabei häufig auf eine Stützung des Gierwinkels. In ei-

nem elektronischen Kompass ist ein Sensor zur Erfassung des Roll- und Nickwinkels bereits häufig

integriert.

In [YF03] wird ein Navigationssystem vorgestellt, welches Messungen einer IME (engl.

Inertial Measurement Unit (IMU)), GPS-Daten und die von zwei Magnetometern in einem Kom-

plementärfilter kombiniert. Die Magnetometer werden dazu genutzt, die horizontalen Distanzen zu

messen und dann in die Navigation mit einfließen zu lassen. Dieses ist möglich, indem Magnete

entlang von Straßenzügen positioniert und von den Magnetometern erfasst werden können. Dabei

wird gezeigt, dass durch Verwendung präziser Sensoren auch eine Positionsgenauigkeit von wenigen

Zentimetern erreicht werden kann. Die Magnetometer stützen die Navigationslösung vor allem zu

den Zeitpunkten, an denen es einem GPS-Empfänger aufgrund seiner geringeren Aktualisierungsrate

nicht möglich ist.

Da in den letzten Jahren der Bedarf an verschiedenen Sensoren im Bereich der Fahrzeugnavigati-

on, aber auch für Anwendungen innerhalb von Gebäuden stetig gewachsen ist, sind diverse Hersteller

dazu übergegangen, die Sensoren nicht nur einzeln zu verkaufen, sondern auch als kombinierte Ein-

heiten. Diese inertialen Sensoreinheiten umfassen i. d. R. drei Drehratensensoren, drei Beschleuni-

gungssensoren und drei Magnetometer für sechs Freiheitsgrade, so dass sie für Ortungsaufgaben in

drei Dimensionen verwendet werden können.



16 Kapitel 2. Stand der Forschung und Technik

2.1.3.2 Barometrische Sensoren

Das klassische Anwendungsgebiet für barometrische Sensoren oder Altimetern ist die Flugzeugnavi-

gation [Flü09]. Bei diesen Sensoren wird ausgenutzt, dass sich mit der Höhe über dem Meeresniveau

auch die Temperatur und der Luftdruck ändern. Diese Abhängigkeit wird vereinfacht in der interna-

tionalen barometrischen Höhenformel

P (h) = 1013,25 hPa

(
1− 0,0065K/m · h[m]

288,15K

)5,255

(2.1)

zusammengefasst [Us176]. Hierbei bezeichnet P (h) den Luftdruck in der Höhe h. Eine ausführliche

Beschreibung der Atmosphärenphysik ist in [Roe00] und [Sch04] zu finden.

Bei barometrischen Sensoren ist problematisch, dass lokale Luftdruckänderungen aufgrund von

Wetterbedingungen, Tiefdruck-, Hochdruckgebieten oder anderen Umgebungseinflüssen auftreten

können. Um diese Variationen ausgleichen zu können, wird eine Nullpunktmarke vom Nutzer be-

nötigt, die laufend aktualisiert werden muss. In Gleichung (Gl.) (2.1) wird davon ausgegangen, dass

dieser Referenzdruck bei 1013,25 hPa liegt. Dieser kann in der Realität jedoch variieren, weshalb für

hochgenaue Anwendungen die Konstanten in Gl. (2.1) als zeitvariante Variablen aufgefasst werden

sollten. Nach [Klo08] beschreibt der Wert −0,0065 den vertikalen (negativen) Temperaturgradien-

ten, der hier im Mittel zu −0,65K pro 100m bei einer angenommenen Temperatur von 15 °C oder

288,15K festgelegt ist. Der Exponent mit
κ0

κ0−1 = 5,255 entspricht dabei einem Isotropenkoeffizi-

enten von κ0 = 1,235. Aufgrund dieser Näherungen ist die internationale Höhenformel bis zu einer

Höhe von 11 km mit geringen Abweichungen verwendbar.

In [WR07] wird ein Drucksensor zur Verbesserung der Positionsschätzung eines Flugzeugs ein-

gesetzt, um neben der GPS-Höhe eine weitere Höheninformation zu erhalten. Diese wird verwendet,

um eine nachfolgende Stufe, bestehend aus einer IME, zu stützen. Aufgrund der beschriebenen Ab-

hängigkeiten wird hier der Drucksensor selbst durch ein weiteres Altimeter gestützt.

2.1.4 Sensorfehler

Jede Art von Messung unterliegt Störungen. Dies können Störungen sein, die sich durch äußere Ein-

flüsse ergeben oder die abhängig von der Bauart des gewählten Sensors sind. Bei den bisher beschrie-

benen Sensoren ist zu beachten, dass die Berechnungen von Gierwinkel, Geschwindigkeit oder Di-

stanz von Faktoren wie dem Reifendruck, dem Fahrbahnbelag, konstanten Wetterverhältnissen usw.

abhängen. Zur Umrechnung einer rotatorischen Größe in eine lineare Größe relativ zur zurückge-

legten Distanz müssen idealisierte Annahmen getroffen werden, die in der Realität nicht zutreffen,

denn die genannten Faktoren müssen in dem Fall berücksichtigt werden. Einige dieser Fehler wer-

den bei der Betrachtung eines Odometers in [AP99] als Skalierungsfaktor zusammengefasst. Die-

ser wird benötigt, um von der Anzahl der gemessenen Pulse, die von einer Radumdrehung initiiert

werden, auf eine Distanz schließen zu können. Dazu kommen noch Ungenauigkeiten bei den Rad-

abmessungen verschiedener Räder, ein zu geringes Auflösungsvermögen der Sensoren, so genannte

Quantisierungsfehler, sowie Schleuder- oder Driftbewegungen. Einige dieser Fehler lassen sich sys-

tematisch beschreiben und damit in der Navigationslösung berücksichtigen. Andere Faktoren wie der

temperatur- oder geschwindigkeitsabhängige Reifendruck lassen sich nur schwer in eine Gleichung

fassen, können aber als zusätzliche statistische Ungenauigkeit durch GAUSS-verteilte Zufallsvaria-

blen modelliert werden. Die Drift des Skalierungsfaktors und des Quantisierungsfehlers sind laut

[AP99] bei Verwendung von Odometern für die Navigationslösung ausschlaggebend. Die Fehler, die
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bei inertialen Sensoren auftreten, unterscheiden sich von denen eines Odometers. Die signifikantes-

ten Fehler sind nach [FB99] und [FWB05]: temperatur- und beschleunigungsabhängige Sensorbias

(g0- und g20-abhängig), Nichtorthogonalität der Teilsensoren (Asymmetrie), Nichtlinearitäten, inhä-

rentes Rauschen, Skalierungs-, Nullpunkt- und frequenzabhängige Fehler. Beschleunigungssensoren

und Gyroskope weisen prinzipiell die gleichen Fehlermerkmale auf. Die qualitativen Verläufe einiger

dieser Fehlertypen sind in Abb. 2.2 dargestellt. Dabei ist der reale Messwert x über dem Sensor-

x xxxx

yyy yy

(a) Skalierungsfehler (b) Nullpunktfehler (c) Asymmetrie (d) Nichtlinearität (e) Quantisierungsfehler

Abbildung 2.2: Typische Sensorfehler bei inertialen Sensoren

ausgang y aufgetragen. Der ideale Verlauf ist gestrichelt dargestellt. Die typischen Fehlerverläufe

werden durch eine durchgezogene Linie repräsentiert. Teilbild (a) zeigt den qualitativen Fehlerver-

lauf aufgrund eines fehlerhaften Skalierungsfaktors. Dieser bewirkt eine unterschiedliche Neigung

im Vergleich zu der idealen Kurve. Dabei werden die Ausgangsgrößen auf andere Wertebereiche als

die der wahren Größen abgebildet. In [AP99] wird deutlich, dass bei einem Gyroskop ein Skalie-

rungsfehler von ca. 1% nach einer Drehung um 90° zu einem Ausrichtungsfehler von 0,9° führt.

Die beschleunigungsabhängigen Bias sind im Vergleich zu einer Biasdrift oder inhärentem Rauschen

weniger ausschlaggebend. Gyroskope sind jedoch sensitiv gegenüber der Beschleunigung. Je nach

Frequenz und Betrag der Beschleunigung führt sie zu einem zusätzlichen Bias. Die Auswirkungen

eines Nullpunktfehlers sind in Teilbild (b) dargestellt. Ein Nullpunktfehler (engl. Offset) entspricht

einem konstanten Wert, der im gesamten Wertebereich eine gleichmäßige Abweichung verursacht.

Ein ab dem Einschaltvorgang des Sensors zeitlich konstanter Nullpunktfehler kann durch einfache

Subtraktion behoben werden. Ist der Nullpunktfehler hingegen zeitvariant, wird dieser auch als Drift

bezeichnet. In diesem Fall muss der Wert parallel zur Filterung geschätzt werden. Allerdings ist zu

beachten, dass sich auch der zeitlich konstante Nullpunktfehler von einem Einschaltvorgang zum

anderen unterscheiden kann. Eine Drift ergibt sich aus Umwelteinflüssen wie beispielsweise Tempe-

raturschwankungen oder aus den Materialeigenschaften der Sensoren. Die Folgen der Asymmetrie

und Nichtlinearität sind in den Teilbildern (c) und (d) dargestellt. Charakteristischerweise werden

bei beiden Fehlertypen die Abweichungen in einem hohen Messbereich größer. In einer Umgebung

um den Nullpunkt entspricht der Ausgabewert annähernd dem wahren Wert. Quantisierungsfehler

entstehen durch die endliche Darstellungsgenauigkeit in rechnergestützten Systemen. Der Verlauf ist

typischerweise treppenförmig, wobei jede Stufe einen diskreten Wert beschreibt. Da die Genauigkeit

aufgrund der Analog-Digital Umwandlung (ADU) beschränkt ist, können keine Werte zwischen den

Diskretisierungsstufen dargestellt werden. Der dazugehörige Verlauf ist in Teilbild (e) dargestellt.

Zudem kann die endliche Auflösung numerische Fehler verursachen.

In [ZPW90] werden die negativen Einflüsse, die auf ein Magnetometer im Rahmen einer An-

wendung im Fahrzeug einwirken können, genauer untersucht. Dies sind u. a. Fehler, die aus hoch-

frequenten Magnetfeldern resultieren, welche unter Umständen durch den Motor aufgebaut wer-

den. Statische Magnetfelder können durch eine Kalibrierung herausgerechnet werden. Treten je-

doch Wirbelfelder (z. B. durch das variierende Erdmagnetfeld oder bei Annäherung an große Metall-
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brücken) auf, so wird die Messung negativ beeinflusst. Das Messrauschen wird üblicherweise durch

ein additives weißes GAUSS’sches Rauschen (AWGR) modelliert, das dem wahren Wert überlagert

ist. In [Whi88] wird des Weiteren gezeigt, wie neigungsabhängige Fehler bei einem magnetischen

Kompass durch eine kardanische Aufhängung kompensiert werden können. In [AP99] wird verdeut-

licht, dass die Verwendung von Magnetometern bei der Bestimmung der Ausrichtung des Fahrzeugs

große Vorteile bringen kann, solange sich die Störeinflüsse in Grenzen halten. Allerdings können ma-

gnetische Störungen unvorhersehbar auftreten und damit die Navigation deutlich beeinflussen, wenn

keine Kompensation erfolgt. Weitere Untersuchungen zur Modellierung und Kompensation von Feh-

lern, die bei einer IME auftauchen können, werden in [XGE08] durchgeführt.

2.1.5 Systeme auf Basis von integrierten Sensoren

2.1.5.1 Inertiale Navigation

Wie bereits erwähnt, sind das Gyroskop und der Beschleunigungsmesser die klassischen Werkzeu-

ge der inertialen Navigation. Während Anfang des 19. Jahrhunderts das erste Festkörpergyroskop

entwickelt wurde, erschien im 20. Jahrhundert der erste Gyrokompass, der sensitiv auf Beschleu-

nigungen reagierte. Drehratenmessinstrumente, die bereits mit einem künstlichen Horizont für die

Flugzeugnavigation ausgestattet waren, wurden in den 20er Jahren eingeführt. Im ersten und zweiten

Weltkrieg wurde dann die Entwicklung durch den Bedarf an Lenkvorrichtungen für Waffen immer

weiter vorangebtrieben. Das erste Konzept für ein Strapdown-System, welches auch in der vorlie-

genden Arbeit behandelt wird, wurde 1949 vorgestellt [TW04], bevor in den frühen 50er Jahren die

erste stabilisierte Inertialplattform für Flugzeuge entwickelt wurde. Seitdem gehören solche Systeme

zur Standardausstattung eines jeden Schiffes, U-Bootes und Flugzeuges, und es wird kontinuierlich

versucht, ihre Anfälligkeit gegenüber äußeren Einflüssen hinsichtlich Robustheit und Genauigkeit

zu verbessern, aber auch ihre Baugröße zu verringern. Ein INS umfasst heutzutage zwei Einheiten:

die Inertialplattform oder IME und den Navigationscomputer, der die Berechnungen durchführt, um

die Messwerte in das gewünschte Koordinatensystem umzuwandeln. Dabei müssen Effekte wie Gra-

vitation oder Erddrehrate berücksichtigt werden. Um aus den Sensordaten letztendlich eine Lage,-

Geschwindigkeits- und Positionsschätzung zu erhalten, werden Integrationsverfahren angewendet,

wie in [Wen07] beschrieben. Ausführliche Beschreibungen sind ebenso in [FB99], [TW04], [GWA07]

wie auch in [Sav98a] und [Sav98b] zu finden. In diesem Zusammenhang spricht man auch von einem

Strapdown-Algorithmus, der in Kap. 4.3 näher beschrieben wird. Im Gegensatz zu einem Plattform-

system sind hierbei die Sensoren fest mit dem Navigationskörper, dem Fahrzeug, verbunden. Für den

Ansatz ist bezeichnend, dass hohe Frequenzen unterdrückt, tiefe Frequenzen jedoch verstärkt wer-

den können. Durch das Integrieren führt dieses schließlich zu Fehlern in der Geschwindigkeits- und

Positionsschätzung. Aus diesem Grund wird mit Hilfe von zusätzlichen Filteralgorithmen versucht,

die beschriebenen Sensorfehler zu kompensieren, denn Fehler, wie z. B. das Bias eines Beschleuni-

gungssensors, würden zu Fehlern in der Position führen, die quadratisch mit der Zeit ansteigen. Da

i. d. R. die Navigationslösung in einem anderen Koordinatensystem berechnet wird als dem, in wel-

chem die Messwerte von der IME geliefert werden, muss eine fortlaufende Aktualisierung der Lage

des körperbezogenen Systems in Relation zum Navigationssystem stattfinden. Des Weiteren muss be-

rücksichtigt werden, dass sich Größen wie die Gravitation mit dem Ort ändern können. Die Aufgabe

eines inertialen Messsystems lässt sich, in Anlehnung an die bisherigen Betrachtungen, somit nach

[FB99] wie folgt beschreiben:

• Bestimmung der translatorischen und rotatorischen Bewegungen des Fahrzeugs
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• Bestimmung des Einflusses des Gravitationsfeldes auf die Messsensoren innerhalb einer IME

• Konvertierung der aufgenommenen Daten in ein Referenzkoordinatensystem, in dem die ei-

gentliche Navigation stattfinden soll

• Integration der gefilterten Daten, um Geschwindigkeit und Position des Fahrzeugs zu erhalten.

2.1.5.2 Koppelnavigation

Koppelnavigation bezeichnet eine fortlaufende Ortsbestimmung eines bewegten Objekts durch Mes-

sen der Geschwindigkeit, der Bewegungsrichtung und der Zeit. Zwischen den Zeitintervallen wird

die Geschwindigkeit als konstant angenommen. Bei einfachen Navigationsaufgaben beschränkt man

sich häufig darauf, lediglich ein zweidimensionales Problem zu lösen. Das bedeutet, dass die Höhen-

komponente dabei vernachlässigt wird. In [OLS07] wird vorgestellt, wie ein Koppelnavigationsansatz

für einen zweidimensionalen Fall aussieht (siehe Abb. 2.3). Um die instantane Position (nk, ek) zu

ψ

n

e

nk

ek Fahrzeug

Abbildung 2.3: Zweidimensionale Koppelnavigation

einem Zeitpunkt k abschätzen zu können, werden mindestens zwei Größen benötigt: ein Inklino-

meter oder ein Gyroskop, auf dessen Basis anhand der Drehrate die Richtung ψ in Bezug auf ein

festes Referenzkoordinatensystem bestimmt werden kann, sowie ein Sensor, der die Wegstrecken-

inkremente z. B. anhand der Geschwindigkeit errechnen kann. Eine Alternative wäre die Bestim-

mung der Längs- und Querbeschleunigung durch zwei Beschleunigungsmesser. In dem vorgestellten

DR-Verfahren werden mit Hilfe dieser Informationen zwei Ansätze verglichen, um eine neue Posi-

tionsschätzung zu erhalten. Der einfache Ansatz basiert darauf, im Zeitdiskreten die Weginkremen-

te aufzusummieren. Für die Position in der als Fläche angenommenen Nord-Ost-Ebene gilt dabei:

nk = n0 +
∑k−1

j=0 ∆lj · cos(ψj) und ek = e0 +
∑k−1

j=0 ∆lj · sin(ψj). Wie in [OLS07] be-

schrieben wird, ist diese Art der Koppelnavigation allerdings von geringerer Güte, da auf diese Weise

noch vorhandene Restfehler ebenfalls aufsummiert werden und somit eine immer größer werdende

Abweichung zwischen idealer und geschätzter Position entsteht. Bei einer direkten Implementierung

der Gleichungen hat man zusätzlich das Problem, dass die zugehörigen Rauschterme im Zustandsmo-

dell nicht unkorreliert sind, weil beide Variablen n und e vom Weginkrement ∆l sowie dem Winkel

ψ abhängen. Des Weiteren wird hier nicht die eigentliche, gekrümmte Form der Erde berücksich-

tigt. Ein alternativer Ansatz basiert daher auf einer Transformation der planaren Koordinaten in das

World Geodetic System 1984 (WGS84)-Erdmodell [HWLW07]. Hierbei wird nicht von ebenen Po-

sitionen ausgegangen, sondern diese werden fortlaufend auf eine angenäherte Erdform angepasst.

Die eigentliche Lokalisierung wird in diesem Kontext von den Autoren von [OLS07] um eine Kom-

bination mit digitalen kartografischen Daten ergänzt, um die Güte zu steigern. Weitere Details zur

Koppelnavigation sind auch in [CGP04] zu finden.
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Wie bereits erwähnt, ist ein Koppelnavigationssystem vorrangig für planare Navigationsaufga-

ben geeignet. In [DSNDW01] wird allerdings gezeigt, dass die Navigationsgenauigkeit drastisch ab-

nimmt, wenn diese Voraussetzung nicht mehr gegeben ist. Dies wird sogar problematisch, wenn bei

der Kombination mit einem satellitenbasierten System dieses für mehrere Minuten ausfällt und die

Navigation ausschließlich auf einer zweidimensionalen DR-Berechnung beruht. Der Nachteil einer

planaren Bewegungsannahme wird mit der Verwendung einer IME umgangen, weil sie die Bewe-

gung des damit verbundenen Fahrzeugs in drei Dimensionen erfassen kann.

2.1.5.3 Berücksichtigung spezifischer Bewegungsmodelle

In den meisten Arbeiten zur Fahrzeugnavigation wird die vereinfachende Annahme getroffen, dass

sich ein Fahrzeug durch einen infinitesimal kleinen Punkt darstellen lässt. Driftbewegungen, durch-

drehende Reifen oder andere Nebeneffekte werden ebenfalls häufig außer Acht gelassen. Allerdings

können diese Annahmen auch dazu genutzt werden, die Navigationsberechnung zu stützen und Sen-

sorfehler zu kompensieren. Nebenbedingungen dieser Art werden u. a. in [DSNDW01] verwendet.

Diese typischen Nebenbedingungen können aber auch in verschiedenen Bewegungsmodellen für

ein Fahrzeug berücksichtigt werden. Solche Modelle sind dann hilfreich, wenn kurzzeitig keine Sen-

sorgrößen verfügbar sind und eine Vorhersage des Fahrzeugzustandes auf Basis des Modells durchge-

führt werden soll. Würden Sensoren allerdings keine Fehler aufweisen, so könnte man durch Bewe-

gungsmodelle keine weiteren Informationen gewinnen. Da dies vor allem bei kostengünstigen Sen-

soren nicht zutrifft, sind zusätzliche Bewegungsmodelle hilfreich.

In [LJ00] und [RLJ03] werden verschiedene dynamische Bewegungsmodelle im Rahmen von

Zielführungen und Observationen kleiner Objekte vorgestellt und klassifiziert. Dies schließt zwei-

und dreidimensionale Modellierungen ein. Es wird außerdem zwischen Modellen unterschieden, die

durch einen zusätzlichen Steuereingang beschrieben oder nicht beschrieben werden und bei denen die

Bewegungen in unterschiedlichen Koordinaten miteinander gekoppelt oder entkoppelt sind. Des Wei-

teren wird unterschieden, ob sich eine Beschleunigung ggf. als zufälliger Prozess (MARKOV-Prozess,

Weißer Prozess oder Semi-MARKOV-Prozess) beschreiben lässt oder als deterministische Eingangs-

größe. Im Dreidimensionalen sind die folgenden Modelle gängig: stückweise konstante Geschwin-

digkeit, stückweise konstante Beschleunigung, koordinierte oder stückweise konstante Drehung. Im

Rahmen der inertialen Navigation spielen vorrangig jedoch Differenzialgleichungen, wie in [TW04]

beschrieben, eine Rolle. Verschiedene Fahrsituationen werden bei den klassischen Gleichungen nicht

berücksichtigt.

Oftmals kann in einer Systembeschreibung nur eine Art der Bewegung berücksichtigt werden.

Eine Möglichkeit, die verschiedenen Bewegungsformen dennoch einfließen zu lassen, besteht in

dem „Schalten“ zwischen Bewegungsmodellen. Modelle, die dies erlauben, sind „schaltende dyna-

mische Modelle“ [BSLK01]. Algorithmen zum Schalten zwischen diesen Modellen werden z. B. in

[Frä05] beschrieben. Dabei wird der Zustandsraum neben dem eigentlichen Zustandsvektor noch um

eine so genannte Regimevariable r ergänzt. Diese bestimmt zu jedem Zeitpunkt das jeweils gülti-

ge Modell und legt damit die aktuelle Zustands- und Messgleichung fest. Da somit ein insgesamt

gemischt kontinuierliches und diskretes Schätzproblem vorliegt, ist das KALMAN-Filter (KF) nun

auch nicht mehr der optimale Schätzer. Eine gängige Praxis bei der Betrachtung von Mehrmodel-

lansätzen ist die Annahme eines MARKOV-Modells, wobei jeder Wert, den die Regimevariablen an-

nehmen kann, einem Zustand des Modells zugeordnet ist. Eine Übergangsmatrix Π mit den Einträ-

gen πi
′i′′ = P (rk = i′′|rk−1 = i′), i′, i′′ ∈ {1, R} charakterisiert die Wahrscheinlichkeiten für

den Übergang zwischen zwei Modellen zum Zeitpunkt k. Die initialen Auftrittswahrscheinlichkeiten
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πi
′
= P (r0 = i′) werden dabei als bekannt vorausgesetzt und können durch Messungen bestimmt

werden. Eine exakte Lösung im Minimum Mean Square Error (MMSE)-Sinn führt zu einem mit der

Zeit exponentiell steigenden Aufwand, weshalb auf eine Approximation zurückgegriffen wird, bei

der jedem Modell ein Filter (meist KF) zugeordnet ist. Zusätzlich werden die aus der Interaktion

der Modelle resultierenden Mischungsverteilungen jeweils durch eine Normalverteilung approxi-

miert. Die gesuchten Schätzwerte x̂k|k und Pk|k (Schätzung des Systemzustandsvektors und dessen

Schätzfehlerkovarianzmatrix) können nach der fortlaufenden Berechnung der Modellwahrscheinlich-

keiten πi
′
= P (rk = i′|z1:k), wobei z1:k die Beobachtungssequenz darstellt, über eine Kombination

von πi
′

und den Ausgangsgrößen der einzelnen Filter bestimmt werden. Die Schätzung mit Hilfe

von schaltenden Modellen ist durch die parallele Filterstruktur vergleichsweise aufwändig. Ist eine

Echtzeitverarbeitung der Daten nicht zwingend erforderlich, so kann das Schätzergebnis durch ei-

ne zeitlich rekursive Glättung mit Hilfe des RAUCH-TUNG-STRIEBEL-Algorithmus [RTS65] wie

er auch in [HBH95] und [LK07] verwendet wird, zusätzlich verbessert werden. Dabei existieren

vielfältige Möglichkeiten, die Glättung mit der Filterung auf Basis schaltender Modelle zu kom-

binieren. Diese Verfahren werden in [LK99] detailliert untersucht. In [HL05] werden diese Multi-

Modelle mit rekursiver Glättung für eine Fusion verschiedener Sensorquellen wie Kamera, Radar,

Inertialsensoren mit Hilfe eines erweiterten KALMAN-Filters (EKF) verwendet. In dem betrachte-

ten Szenario geht es in erster Linie um Fahrzeuge, die in einer Kolonne fahren und der Kurs von

vorausfahrenden Fahrzeugen durch die nachfolgenden bestimmt werden soll. In [NGG07] wird der

Interacting-Multiple-Model (IMM)-Ansatz mit verschiedenen Modellen getestet und mit einem klas-

sischen KF verglichen, das nur ein Modell verwendet. Dabei wird gezeigt, dass in bestimmten Fahrsi-

tuationen die Restunsicherheit in der Position auch bei der Verwendung von drei Modellen noch rela-

tiv hoch sein kann, da die damit verbundenen Modellwahrscheinlichkeiten in manchen Fahrsituatio-

nen ungenau geschätzt werden können. Ein weiteres Anwendungsfeld des IMM-Inferenzalgorithmus

wird in [TMZI09] vorgestellt. Die Autoren verwenden Modelle, die speziell die Straßenführungen

von mehrspurigen Schnellstraßen beschreiben. Es wird gezeigt, dass der Inferenzalgorithmus erfolg-

reich für die Detektion eines Spurwechsels eingesetzt werden kann. Dabei werden gute Ergebnisse für

den Fall erzielt, dass die Straßenführungen eine geringe Kurvenanzahl aufweisen. Für mehrkurvige

Szenarien werden dann gesonderte Modelle und erweiterte Zustandsvektoren eingesetzt, in die spezi-

elle Kurvenparameter einfließen. Bei beiden Konfigurationen tritt eine geringe Latenz von teilweise

weniger als 0,4 s zur Detektion einer Fahrspuränderung auf.

2.1.5.4 Kamerabasierte Systeme

Kameras, Radar oder andere optische Sensoren werden weniger für eine direkte Navigation verwen-

det. Vielmehr dienen sie als Unterstützung anderer Systeme oder um Positionen anderer Verkehrsteil-

nehmer relativ zur eigenen Position zu bestimmen. Eine vollständige Positionsschätzung des eigenen

Fahrzeugs ist allerdings mit ausschließlich solchen Sensoren weniger gewinnbringend.

2.2 Sensorfusionsverfahren

Das Ziel einer Fusion von Daten verschiedener Sensorquellen ist es, die Nachteile, welche die ein-

zelnen Sensoren aufweisen, gegenseitig zu kompensieren. Daraus resultiert in den meisten Fällen

ein verbessertes Ergebnis in der Kombinationsgröße. In [HL05] wird ein Verfahren zur Sensorfusi-

on auf Basis optischer und inertialer Sensoren, dynamischer Modelle und Kartendaten vorgestellt.

In [TW04], [Jek01] und [GWA07] wird zwischen zwei allgemeinen Strukturen unterschieden, eine
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Filterung und Kombination einzelner Sensorgrößen vorzunehmen: die zentralisierte und die dezentra-

lisierte Filterstruktur. Bei der zentralisierten Filterstruktur werden die Daten aller Sensoren in einem

Filter zusammengefasst und vollständig integriert. Alle Rohsignale (z. B. Spannungen) werden in ei-

ner einzigen integrierten Schaltung verarbeitet, die aus Verstärkern und den Filtern selbst besteht.

Der Vorteil eines zentralisierten Filters liegt im geringen Informationsverlust aufgrund von niedrigem

Rauschen, denn alle Informationen stehen dem Filter ohne Umwege direkt zur Verfügung. Außerdem

ist auf diese Weise eine hohe Platzersparnis möglich.

In [Wen07] werden die Ultra tight- und die Deep integration-Methode als Varianten für eine zen-

tralisierte Filterstruktur genannt. In [LW06] wird z. B. gezeigt, wie in der Delay-Locked Loop (DLL)

eines GPS-Empfängers die Codephasenfehler verringert werden können und sich dadurch verbesserte

Pseudorange-Messungen ergeben. Durch eine genaue Analyse der Korrelationen der Pseudorange-

Messfehler und der Schätzfehler der Integrationslösung ist es dabei möglich, ein Filter, das die auftre-

tenden Inphasen- und Quadraturkomponenten verarbeitet, direkt auf Signalebene einzusetzen. Daraus

würde eine höhere Stabilität und Qualität bezüglich auftretender Signalinterferenzen und letztendlich

auch eine bessere Navigationslösung resultieren, wenn auf diese Weise ein INS gestützt wird. Das

Problem bei diesen Verfahren ist jedoch, dass ein Zugriff auf die empfängerinternen Signale benö-

tigt wird. Dieser wird allerdings von den meisten Herstellern eines GPS-Gerätes nicht ermöglicht.

Die Deep integration-Methode zeichnet sich ferner dadurch aus, dass eine Signalverarbeitung in zwei

Richtungen vorgenommen wird, denn die Navigationslösung selbst wird wieder zur Stützung der

internen Verarbeitung des Satellitenempfängers verwendet, z. B. um die Berechnung der Dopplerver-

schiebung zu verbessern [SGVG08], [SH09].

Die eng gekoppelten Systeme (engl. Tightly coupled systems) fallen ebenso in diese Gattung.

Auch hier werden Signale eines satellitenbasierten Empfängers verarbeitet, die i. d. R. dem Nutzer

nicht zur Verfügung stehen [TW04]. Dabei handelt es sich um die Pseudorange- und Deltarange-

Messungen sowie ggf. auch um weitere Signale. Das System beschränkt sich nicht nur darauf, dass

ein INS durch Satellitensignale gestützt wird, sondern auch umgekehrt der GPS-Empfänger durch das

INS. Wenn die zweite Stützung nicht vorgenommen wird, so spricht man von einem direkt gekoppel-

ten System (engl. Closely coupled system). Wie beim Ultra tight system ist das Ziel, die Bandbreite

der so genannten Tracking-Schleife zu verringern, um eine höhere Präzision zu erlangen. Da eine

Pseudorange- und Deltarange-Messung auch mit weniger als vier Satelliten vorgenommen werden

kann, ist dieses bei schwierigeren Umgebungsbedingungen ein entscheidender Vorteil. Außerdem

können Satellitenuhrzeitfehler mit einem geeigneten Filteransatz, wie er in [Wen07] vorgestellt wird,

durch die zur Verfügung stehenden Rohsignale kompensiert werden. Aber auch für das eng gekop-

pelte System ist der Integrationsaufwand durch den notwendigen Zugriff auf die empfängerinterne

Struktur erhöht.

Das dezentralisierte Filter zeichnet sich im Gegensatz zum zentralisierten Filter dadurch aus, dass

mehrere Instanzen parallel arbeiten, wobei jede die Sensorinformation zunächst separat verarbeitet

[WS90], [SH09]. Auf diese Weise steht für die Einheit, welche die eigentliche Navigationslösung

liefern soll, von jedem Sensor quasi bereits eine geschätzte Navigationsgröße zur Verfügung. Der

Vorteil liegt darin, dass ein geringerer Aufwand in der Signalverarbeitung nötig und dass durch den

einfachen Aufbau eine Möglichkeit der Fehlerdetektion vorhanden ist. Dies erfolgt jedoch auf Kosten

der Genauigkeit der Navigationslösung. Des Weiteren können mehrstufige Filterstrukturen in einigen

Fällen zu Divergenzen führen, da bestimmte signalverarbeitungstechnische Voraussetzungen für die

nachfolgende Filterstruktur nicht mehr zwangsläufig gegeben sind. Dieses kann z. B. die nicht mehr

gültige Annahme sein, dass das Messrauschen eines KF zeitlich unkorreliert ist. Außerdem können
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räumliche Korrelationen und damit Kreuzkovarianzen in den Beobachtungsgrößen auftreten [FB99].

Eine typische dezentralisierte Struktur ist mit einem schwach gekoppelten System gegeben, wobei

von einem GPS-Empfänger mit Position und Geschwindigkeit bereits vorgefilterte Werte, die bei-

spielsweise direkt in den National Marine Electronics Association (NMEA)-Sätzen abgelesen werden

können, zur Stützung des INS verwendet werden. Da die Signalverarbeitung unidirektional ist, d. h.

es erfolgt keine Rückkopplung der Filterergebnisse zum GPS-Empfänger, kann dieses Filter relativ

einfach realisiert werden. Problematisch ist jedoch, dass für eine zuverlässige Lösung mindestens vier

Satelliten „sichtbar“ sein müssen. Durch die interne Filterung eines GPS-Empfängers ist jedoch auch

bei einer geringeren Satellitenanzahl eine Schätzung vorhanden. Diese kann jedoch zu Fehlern in der

nachfolgenden INS-Lösung führen, da keine unabhängigen Messungen mehr vorhanden sind. Es ist

deshalb sinnvoll, die Anzahl der beobachtbaren Satelliten anhand des NMEA-Datensatzes fortlaufend

zu überprüfen und ggf. die GPS-Stützung zu deaktivieren, so dass sich die Fehler durch das GPS

nicht auf die INS-Lösung auswirken. Eine andere Möglichkeit ist die Berücksichtigung der Schätz-

fehler des GPS-Filters, wie es mit dem in dieser Arbeit verwendeten Empfänger der Fa. Navilock

[ubl] möglich ist.

Die Entscheidung für ein zentralisiertes oder dezentralisiertes Filter hängt im Wesentlichen davon

ab, welche Signale als Beobachtungen zur Verfügung stehen und welche Modelle für die Fahrdynamik

eingesetzt werden. Außerdem spielt es eine Rolle, wie hoch der rechnerische Aufwand und wie robust

das gewählte Verfahren gegenüber Modellierungsfehlern sein darf [BSLK01].

Unabhängig davon, welche Filterstruktur für die eigentliche Problemlösung in Frage kommt,

muss man sich darüber im Klaren sein, dass die Navigationslösung unter idealen Bedingungen im

Wesentlichen von der Leistungsfähigkeit des GPS-Satellitensignals abhängt. In [AP99] werden Un-

tersuchungen auf Basis eines gekoppelten Navigationsansatzes vorgestellt, bestehend aus Odometer,

Gyroskop und GPS. Dabei wird gezeigt, dass bei Verfügbarkeit einer gültigen GPS-Position, der

Root Mean Square (RMS)-Fehler quer zur Bewegungsrichtung des Gesamtsystems von der Genauig-

keit des GPS-Signals dominiert wird. Verantwortlich dafür ist zu 90% das GPS-Bias, also der Fehler,

der auf zeitlich korrelierte Fehler in der GPS-Position zurückzuführen ist. Das unkorrelierte Rauschen

hingegen macht sich erst bemerkbar, wenn die Zuverlässigkeit und damit die Genauigkeit der GPS-

Position zunimmt. Das Navigationsfilter kann allerdings die korrelierten Fehler besser unterdrücken

als die zeitlich unkorrelierten, da in einem unkorrelierten Signal keine Information zur Prädiktion des

Systemzustandes vorhanden ist. Ähnliche Ergebnisse konnten die Autoren von [AP99] auch bei den

Fehlern feststellen, die sich auf die Positionen entlang der gefahrenen Strecke beziehen. Auch die Ver-

wendung von qualitativ besseren Inertialsensoren hat keine signifikanten Auswirkungen, wenn kein

zuverlässiges GPS-Signal zur Stützung vorliegt. Des Weiteren wird gezeigt, dass ein verbessertes

Sensorsignal für eine Komponente geringe Auswirkungen auf die Genauigkeit in einer anderen Kom-

ponente hat, obwohl es über die Richtungskosinusmatrix (RKM) (siehe Kap. 4) durchaus Kopplungen

gibt. Beispielsweise hat eine verbesserte Gyroskopmessung zur Bestimmung des Gierwinkels gerin-

gen Einfluss auf die Genauigkeit der Position in Bewegungsrichtung. Genauso kann ein gutes Odo-

meter nur zu einer geringen Leistungssteigerung bzgl. der Position in Längsrichtung führen. Selbst

bei einem GPS-Ausfall ist die Güte der Inertialsensoren nicht entscheidend. Vielmehr spielt eine Rol-

le, wie gut die Sensoren durch das GPS vor dem Ausfall gestützt und kalibriert wurden, denn davon

hängt ab, wie gut z. B. das Sensorbias oder das inhärente Rauschen vor dem Ausfall bestimmt werden

konnten und folglich dann auch während der Nichtverfügbarkeit des GPS-Signals die Navigations-

lösung beeinflussen. Würde das differenzielle GPS (Differential Global Positioning System (DGPS))

zur Verfügung stehen, so könnte auch die Kalibrierung verbessert werden. Das Problem bei einem Gy-
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roskop ist, wie bereits erwähnt, dass sich jeder Fehler durch das zweifache Integrieren verstärkt. Die

Odometerdaten müssen stattdessen nur einfach integriert werden und aus diesem Grund wirken sich

Odometerfehler geringfügiger aus als Gyroskopfehler, weshalb die Positionsfehler in Bewegungsrich-

tung auch geringer sind als die quer zur Bewegungsrichtung [AP99]. Eine gute Gyroskopfehlerkom-

pensation ist daher von entscheidender Bedeutung bei einem INS. Werden Beschleunigungssensoren

an Stelle von Odometern verwendet, so wirken sich deren Fehler wegen der ebenfalls zweifachen

Integration genauso stark aus wie bei Gyroskopen.

Als Filterverfahren für die beschriebenen Fusionsmöglichkeiten hat sich in den letzten Jahren

das bereits erwähnte KF durchgesetzt. Es existieren mittlerweile verschiedene Varianten dieses Fil-

ters, wobei deren Güte im Wesentlichen durch die Systembeschreibung und den Zusammenhang von

Messvektor und Systemzustand gegeben ist. Liegt eine rein lineare Beschreibung vor, so liefert das

klassische KF das im MMSE-Sinn beste Ergebnis [RAG04], [Frä05]. Bei nicht allzu ausgeprägten

Nichtlinearitäten bietet sich das erweiterte KALMAN-Filter (EKF) an, das auf einer Linearisierung

von System- und Messgleichung beruht [FB99], [RAG04]. Bei der Verwendung des EKF ist zu beden-

ken, dass kein erwartungstreuer Schätzer vorliegt, wie es beim linearen KF der Fall ist. Des Weiteren

können Divergenzen auftreten, da die Fehlerkovarianzmatrix kleiner geschätzt werden kann als sie

tatsächlich ist, womit die Schätzung nicht mehr konsistent ist. Bei stärkeren Nichtlinearitäten reicht

die Genauigkeit des EKF häufig nicht mehr aus. Daher wird für einige Anwendungen auf das Sigma-

Punkt KALMAN-Filter oder auch Unscented KALMAN Filter (UKF) zurückgegriffen [WVDM00],

[JU04], [SES07]. Dies beruht auf einer skalierten Unscented-Transformation, bei der 2D+ 1 Sigma-

Punkte berechnet werden (in dem hier betrachteten Fall ist D die Dimension des Zustandsvektors).

Ziel ist es, eine Reihe gewichteter Werte (Sigma-Punkte) so auszuwählen, dass Mittelwert und Ko-

varianz dieser Werte den tatsächlich statistischen Eigenschaften des aus Zustand und Messrauschen

zusammengesetzten Zufallsprozesses entsprechen. Die sequenziellen Monte-Carlo-Methoden (engl.

Importance sampling) bilden eine geeignete Basis für starke Nichtlinearitäten. Aus ihnen resultier-

te eine Reihe von so genannten Partikelfiltern [RAG04]. Trotz heutiger Rechnerleistungen ist auf-

grund ihrer hohen Komplexität das UKF oder das Partikelfilter (PF) ggf. unpraktikabel. Die Auto-

ren von [GNK10] verwenden das PF für eine Inertial Navigation System/Global Positioning System

(INS/GPS)-Lösung auf Basis einer reduzierten Anzahl von Sensoren. Dabei wird gezeigt, dass eine

dreidimensionale Lösung mit nur einem Gyroskop, zwei Beschleunigungsmessern, einem Odometer

und einem GPS-Empfänger selbst gegenüber Inertialsystemen mit sechs Freiheitsgraden bessere Po-

sitionsergebnisse liefern kann. Im Bereich der Navigation tritt allerdings noch eine weitere Variante

der KALMAN-Filterung auf: das linearisierte KALMAN-Filter (LKF). Dieses wird in Kap. 4.6 näher

betrachtet. Beim linearisierten Filter treten die zu schätzenden Navigationsgrößen nicht direkt als Zu-

standsvariablen auf, sondern sie werden außerhalb des Filters anhand von geschätzten Fehlertermen

korrigiert. Dieses führt vor allem bei einer dezentralen Struktur zu einer robusteren Signalverarbei-

tung, wie in [Cra01] festgestellt wird.

2.3 Verfahren zur Schätzung von unbekannten Parametern

Sensormodelle, Fehlermodelle oder Bewegungsmodelle enthalten häufig unbekannte Parameter, die

entweder vor der Filterung bestimmt oder im Rahmen der Filterung mitgeschätzt werden müssen.

Aufgrund der bereits beschriebenen verschiedenen Fehlereinflüsse wird nach Verfahren gesucht, die-

se zu schätzen und zu kompensieren. Nach [SH09] lassen sich solche Verfahren in zwei Klassen

einteilen: diejenigen, die blockweise arbeiten, d. h. Verfahren, die mehrere Datensätze auf einmal für



2.3. Verfahren zur Schätzung von unbekannten Parametern 25

die Parameterschätzung verwenden, und diejenigen, die rein sequenziell arbeiten, d. h. Datensatz für

Datensatz verarbeiten. Die Verfahren unterscheiden sich auch dadurch, ob der Parameter als feste,

unbekannte Größe oder als Zufallsvariable oder sogar als zeitveränderlicher Prozess aufgefasst wird.

In [Wen07] wird ein Lösungsansatz vorgestellt, bei dem die Rauschparameter direkt aus den

Messdaten ermittelt werden können. Dies geschieht auf Basis von Messwertdifferenzen, d. h. es wer-

den die zeitlichen Differenzen direkt aufeinanderfolgender Messwerte verwendet, um rekursiv Kor-

relationen für unterschiedliche zeitliche Verschiebungen dieser Differenzen bestimmen zu können.

Diese können wiederum dazu genutzt werden, um die Parameter eines vorgegebenen Modells für

zeitlich korreliertes Rauschen abschätzen zu können. Erschwerend bei diesem Ansatz ist, dass die

Fahrdynamik großen Einfluss auf die Messwerte hat und somit zu ungenauen Schätzwerten führen

kann. Eine explizite Berücksichtigung spezieller dynamischer Modelle ist in diesem Rahmen außer-

dem sehr schwierig.

Ein weiterer Ansatz setzt bei der direkten Analyse der Innovationssequenz eines KF an, da diese

Informationen über die statistischen Eigenschaften der Rauschprozesse beinhaltet. Wie in [Meh70]

gezeigt wird, lassen sich über die Autokorrelationsfunktion dieser Innovationssequenz die entspre-

chenden Kovarianzmatrizen berechnen. Eine Realisierung dieses Ansatzes in einem INS/GPS-Navi-

gationsfilter wird in [MS99] vorgestellt, wobei eindeutige Verbesserungen der Navigationslösung im

Vergleich zu einem nicht-adaptiven Filter aufgezeigt werden. Allerdings werden die Innovationsse-

quenzen in den genannten Arbeiten blockweise verarbeitet, was eine Zwischenspeicherung der Daten

erfordert und eine Verzögerung der aktuellen Lösung für die nachfolgenden Bearbeitungsschritte zur

Folge hat. Eine echtzeitfähige Verarbeitung ist daher nur mit einer entsprechenden Latenz möglich.

Die blockweise Verarbeitung spielt auch in [HL05] eine besondere Rolle, denn dort werden mit

Hilfe des blockweise arbeitenden EM-Algorithmus die Kovarianzmatrizen des Systemrauschens für

verschiedene Fahrsituationen im Rahmen eines IMM-Ansatzes geschätzt. Allerdings wird hier davon

ausgegangen, dass lediglich eine Messrauschkovarianzmatrix vorhanden ist, die ebenfalls geschätzt

werden kann. Um eine Schätzung durchführen zu können, werden gefensterte Datenblöcke betrach-

tet. Diese wird dann noch dadurch verbessert, dass neben der Filterung auch eine rekursive Glät-

tung durch eine zeitlich inverse Filterung der Daten und eine anschließende BAYES’sche Kombina-

tion beider Instanzen durchgeführt wird. Der EM-Algorithmus wird ebenfalls bei [EMRH09] sowie

[EFM10] eingesetzt, um die Rauschkovarianzmatrizen bzw. die Transitionsmatrix des Systemmo-

dells zu schätzen. In [EFM10] wird zunächst gezeigt, dass zu einem festen Zeitpunkt eine Maximum

Likelihood (ML)-Schätzung der Komponenten der Zustandsübergangsmatrix Φk des Systemmodells

xk = Φkxk−1 + Gknk über eine iterative Berechnungsvorschrift vorgenommmen werden kann.

Das Verfahren lässt sich mit Hilfe eines gleitenden Fensters in ein echtzeitfähiges Verfahren überfüh-

ren. Die alternative Variante auf Basis des EM-Algorithmus und unter der Annahme zeitinvarianter

Rauschkovarianzmatrizen liefert eine vergleichbare echtzeitfähige Vorschrift. Dabei wird in [EFM10]

gezeigt, dass die Schätzfehlerkovarianzmatrix des Systemzustandes monoton von der Schätzfeh-

lerkovarianzmatrix des Residuums abhängt, welches sich aus der Prädiktion des Systemzustandes

im E-Schritt ergibt. Ebenso wird gezeigt, dass die Kovarianzmatrix des Residuums im M-Schritt

von der Schätzfehlerkovarianzmatrix des Systemzustandes monoton abhängt und somit Bedingun-

gen für eine zuverlässige Berechnung von Φk aufgestellt werden können. Hierbei wird allerdings

eine Kenntnis des Systemrauschens vorausgesetzt. Ein ähnliches Konzept wird in [EMRH09] zur

Schätzung der Kovarianzmatrizen eines zeitlich unkorrelierten System- und Messrauschprozesses im

Rahmen einer inertialen Navigation angewendet. Die Ausgangslage bildet auch hier die RICCATI-

Differenzengleichung. Es wird gezeigt, dass sich bei einem vernachlässigbar kleinen Messrauschen
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die Schätzungen der Systemrauschkovarianzmatrix asymptotisch den wahren Varianzen annähern und

umgekehrt die Messrauschvarianzschätzungen gegen die wahren Werte konvergieren, wenn die Sys-

temrauschvarianzen vergleichsweise klein sind. Auch hier wird Echtzeitfähigkeit berwirkt, indem ein

gleitendes Fenster über die letzten Schätzungen des Systemzustandes und der Beobachtungen gelegt

wird.

Auch in der Sprachsignalverarbeitung spielt die Schätzung von Rauschkovarianzmatrizen ei-

ne wichtige Rolle. In [DDA01] und [DDA03] wird der EM-Algorithmus mit Hilfe des NEWTON-

Iterationsschemas in ein sequenzielles Schätzverfahren überführt, so dass z. B. eine echtzeitfähige

Schätzung der unbekannten Parameter erreicht wird, ohne eine gleitendes Fenster über die zurück-

liegenden Daten legen zu müssen. Dieser Ansatz wird in [WHU09] wieder aufgegriffen, um explizit

die Messrauschkovarianzmatrix im Rahmen einer KALMAN-Filterung zu schätzen, wobei die Be-

obachtungen einem verrauschten cepstralen Merkmalsvektor entsprechen und ein nichtlinearer Zu-

sammenhang zwischen dem Merkmalsvektor der unverrauschten Sprache und den Störungen besteht.

Zusätzlich wird dabei von mehreren linearen dynamischen Zustandsmodellen ausgegangen, zwischen

denen während des Filterprozesses wie beim IMM-Inferenzalgorithmus „geschaltet“ wird.

Die Autoren von [WN08] vergleichen eine schwach gekoppelte KF-Struktur mit der eines so ge-

nannten „kompakten“ KF. Bei diesem werden sämtliche unbekannte Parameter, Position, Geschwin-

digkeit sowie Winkel- und Beschleunigungsfehler, die sich aus den Vibrationen des Objekts erge-

ben, in einem einzigen Filter ohne Rückkopplung verarbeitet. Zur Stabilisierung der Berechnungen,

die sich ggf. auf ungenaue Annahmen hinsichtlich der statistischen Eigenschaften der beteiligten

Rauschprozesse stützen, wird ein zeitvarianter Parameter zur Prädiktion der Schätzfehlerkovarianz-

matrix eingesetzt. Dieser ist abhängig von der Innovationssequenz. Steigt diese an, führt dies zu einer

Verringerung der prädizierten Schätzfehlerkovarianzmatrix und damit zu einer Abnahme der KAL-

MAN-Gewichtungsmatrix. Die Gewichtungsmatrix stellt sich entsprechend den möglichen Änderun-

gen bei den beteiligten Rauschprozessen oder entsprechend der Modellungenauigkeiten adaptiv ein,

welches letztlich wiederum zu einer Verminderung der Positions- und Lageschätzfehler führt.

Zusammenfassung

Der Stand der Forschung und der Stand der Technik wurden in dem vorliegenden Kapitel behandelt.

Ein Schwerpunkt lag dabei auf den Möglichkeiten zur Navigation und Ortung von Fahrzeugen. In

diesem Kontext wurde eine Einführung in die verschiedenen Navigationsarten gegeben, was sowohl

die kartenbasierte als auch die satellitenbasierte Navigation einschließt. Es konnte des Weiteren ein

Einblick in die für eine inertiale Navigation benötigten Sensoren verschafft werden. Dieses betrifft in

erster Linie Drehraten- und Beschleunigungssensoren. Da Sensorfehler im Rahmen einer Filterung

der verschiedenen Sensorsignale eine bedeutende Rolle spielen, wurden diese hier ebenfalls behan-

delt. Außerdem wurde ein Überblick über die Navigationssysteme gegeben, die auf Messwerte von

integrierten Sensoren beruhen und deren Schätzergebnisse durch die Annahme spezieller Bewegungs-

modelle verbessert werden können. Weitere Schwerpunkte dieses Kapitels lagen auf der Betrachtung

von Verfahren zur Fusion verschiedener Sensorsignale, wobei das zentralisierte und dezentralisierte

Filter eine wesentliche Rolle spielen. Das Kapitel schließt mit einer kurzen Zusammenfassung aktuel-

ler Verfahren zur Schätzung von Modell- oder Sensorparametern ab, da diese teilweise als unbekannt

und fest, zeitvariant oder Zufallsvariablen aufzufassen sind und daher im Rahmen eines Filterprozes-

ses häufig nachgeführt werden müssen.



Kapitel 3

Wissenschaftliche Ziele

Dieses Kapitel verfolgt die Erläuterung der zwei wesentlichen Ziele: zum einen die Verbesserung der

vertikalen Positionsschätzung und zum anderen eine verbesserte Modellierung von Messungenauig-

keiten und eine daraus letztlich wieder resultierende zuverlässigere Berechnung der Navigationslö-

sung. Bei der Navigation ist zu beachten, dass in erster Linie die horizontale Positionsgenauigkeit

eine wichtige Rolle spielt, obwohl es auch Situationen gibt, in denen die vollständige dreidimensio-

nale Positionsschätzung von großem Vorteil sein kann. Die sensorabhängigen Messungenauigkeiten

betreffend wurde bereits in Kap. 2 erwähnt, dass eine Messung durch verschiedene zeitvariante Ef-

fekte beeinflusst wird. Dies können z. B. äußere Einflüsse wie das Vibrieren des Objekts sein, an oder

auf dem der Sensor befestigt ist. Auch der Sensor selbst kann Ursache dieser Ungenauigkeiten sein,

weil thermische Fluktuationen oder andere bauteilabhängige Effekte die Messungen beeinträchtigen.

Daher ist es von Interesse, die Ausgangssignale einer IME so zu entrauschen, dass für eine weitere

Verarbeitung möglichst fehlerfreie Signale zur Verfügung stehen. Im Folgenden wird die Motivation

zur Untersuchung dieser Problemfelder näher erläutert.

3.1 Verbesserung der Positionsschätzung

Lange Zeit stand die Positionsbestimmung in der horizontalen Ebene im Mittelpunkt, was für die

bisherigen Anwendungen auch häufig ausreichend war. Man stelle sich aber die Situation vor, in der

sich ein Fahrzeug in einem Parkhaus mit mehreren Ebenen befindet. Meist stehen dem Navigations-

system in diesem Fall keine Karteninformationen zur Verfügung, weshalb ein Kartenabgleich nicht

möglich ist. Eine zuverlässige Information über die Höhe, in der sich das Fahrzeug befindet, könnte

jedoch von einem Leitsystem verwendet werden, um das Fahrzeug zum nächsten freien Parkplatz zu

lotsen. Zuverlässige Höhenmessungen können außerdem dazu genutzt werden, die Lageschätzung in

einem INS zu verbessern. Die Höhe ist dabei als weitere Stützgröße anzusehen, welche die Leistungs-

fähigkeit des Navigationsfilters erhöht und damit Einfluss auf die Schätzgrößen nimmt, die mit der

Höhe korreliert sind. In Kap. 5 wird gezeigt, dass ein direkter Zusammenhang zwischen der Position

einer IME sowie der Schätzung deren Position über die Lage und dem Abstand zwischen der IME

und einem Positionsschätzer wie einem GPS-Empfänger besteht. Problematisch ist dabei, dass bei ei-

ner falschen Höhenbestimmung auch eine falsche Annahme hinsichtlich der Schwerebeschleunigung

in der Navigationslösung getroffen wird. Ist die Differenz zwischen geschätzter und wahrer Höhe

sehr hoch, so ist die daraus berechnete Schwerebeschleunigung in den meisten Fällen zu gering. Ein

Teil der Schwerebeschleunigung wird dann in der Navigationsberechnung ggf. nicht kompensiert,

was wiederum den Fehler weiter erhöht. Die so genannten SCHULER-Oszillationen beschreiben in

diesem Kontext das Problem, dass durch horizontale Positionsfehler die Schwerebeschleunigung feh-

lerhaft kompensiert wird und somit zu Höhenfehlern führt, denn die Schwerebeschleunigung hängt
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vom Breitengrad ab (siehe nachfolgendes Kap. 4) [FB99]. Ein wissenschaftliches Ziel dieser Ar-

beit ist es demnach, eine zuverlässige und robuste Möglichkeit zur vertikalen Positionsschätzung zu

entwickeln, die auf einer barometrischen Höhenschätzung beruht, und diese zu untersuchen. In der

industriellen Anwendung ist man meistens darauf bedacht, eine möglichst kostengünstige und flexible

Lösung für die genannten Probleme zu finden. Neben der Intention, dass das Verfahren zur Höhen-

schätzung auf bereits erprobte Ansätze aufbaut (z. B. indem Kartendaten verwendet werden) ist daher

ein weiteres Ziel, kostengünstige Hardware einzusetzen. Aus diesem Grund wurde ein barometrischer

MEMS-Sensor mit einer Universal Serial Bus (USB)-Schnittstelle der Fa. Toradex verwendet, der die

Temperatur und den Luftdruck misst. Da ein barometrischer Sensor auch dann noch zuverlässige In-

formationen liefern kann, wenn andere Stützgrößen (z. B. GPS-Ausfall aufgrund von Signalabschat-

tung) ausbleiben, kann die Stabilität der Navigationslösung vor allem in den Fällen erhöht werden, in

denen das INS autonom arbeiten muss [Wen07]. Da auch barometrische Sensoren Skalierungsfehlern

und Biasdriften unterworfen sind, war das Ziel, im Rahmen einer Filterstruktur diese Fehler möglichst

zuverlässig zu schätzen und anschließend zu kompensieren, um sie zur Stützung eines INS/GPS ver-

wenden zu können.

In der Literatur werden häufig Filterstrukturen untersucht, die einen Einsatz im realen Umfeld

aufgrund ihrer Komplexität nicht zulassen [TW04]. Aus diesem Grund stehen Filter wie z. B. das

Unscented KALMAN Filter (UKF) oder Partikelfilter (PF) hier nicht im Mittelpunkt und es wurde auf

einen Ansatz wie den IMM-Inferenzalgorithmus verzichtet [HL05]. Dagegen wird hier ein Fehlerfilter

(FF) zur Bestimmung des Navigationsfehlers eingesetzt, welches den eigentlichen Systemzustand, die

Position und Geschwindigkeit eines Fahrzeugs, außerhalb des Filters korrigiert. Diese Art der Filte-

rung wird im Bereich der Navigation seit einigen Jahren erfolgreich genutzt. Das hier verwendete

linearisierte KALMAN-Filter (LKF) lässt aufgrund seiner Struktur die einfache Berücksichtigung ei-

ner Bewegungsdifferenzialgleichung zu. Im Vergleich dazu bedeutet ein KF, welches direkt Position,

Geschwindigkeit und die Lage einer IME schätzen soll, einen Mehraufwand, da der Systemzustand

um weitere Komponenten wie z. B. die Beschleunigung erweitert werden muss. Dieses ist in erster Li-

nie auf die Differenzialgleichungen für den Orientierungsvektor σ und den Geschwindigkeitsvektor

v eines Fahrzeugs zurückzuführen, die in Kap. 4 näher behandelt werden.

3.2 Berücksichtigung von Messungenauigkeiten

Ein ebenso wichtiger Aspekt bei der Filterung inertialer Sensordaten sowie satellitenbasierter In-

formationen ist, dass die dabei auftretenden und zum Teil nicht vorhersagbaren Störungen für ei-

ne effiziente Navigationslösung genau modelliert werden müssen. Diese Effekte lassen sich verein-

fachend durch additive weiße GAUSS-verteilte Rauschprozesse repräsentieren, bei denen lediglich

Aussagen über die statischen Eigenschaften (erstes und zweites zentrales Moment) getroffen wer-

den müssen. Das Rauschen wird allerdings durch Vibrationen, die nicht mehr aufgelöst werden kön-

nen, oder durch eine unzureichend genaue Modellierung der Fahrdynamik induziert. Häufig han-

delt es sich bei den Vibrationen um Schwingungen mit einer bestimmten Eigenfrequenz, womit das

Leistungsdichtespektrum (LDS) nicht mehr konstant ist und man somit nicht mehr von einem weißen

Rauschprozess ausgehen kann. Es muss ebenfalls erwähnt werden, dass eine Differenzialgleichung,

die eine Fahrzeugbewegung beschreibt, in einem zeitdiskreten Filter durch eine Taylorreihenentwick-

lung und anschließenden Abbruch nach dem linearen Glied approximiert werden kann. Die damit

verbundene Unsicherheit durch die approximative Lösung kann sich letztendlich auch in dem Rau-

schen widerspiegeln.
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Zusammenfassend können temperaturabhängige, sensorinhärente oder vibrationsinduzierte Ef-

fekte durch zeitlich korrelierte Rauschprozesse angenähert werden. Dies muss bei der Filterung ex-

plizit berücksichtigt werden, da ein KF zunächst von weißen Störgrößen ausgeht. Eine Möglich-

keit, korrelierte System- oder Messrauschprozesse zu berücksichtigen, besteht darin, den System-

zustandsvektor um einen zeitkorrelierten Rauschvektor nk ∈ RD zu erweitern, der sich anhand von

nk = Dn ·nk−1+ηk mit p (η) = N (η;0D×1 ,Qη), ∀k beschreiben lässt. Dabei ist Qη := E
[
ηkη

T
k

]

die Rauschkovarianzmatrix des mittelwertfreien, weißen GAUSS-verteilten Rauschprozesses, der das

zeitkorrelierte Rauschen nk treibt.1 Da dies sowohl Beschleunigungs- und Drehraten- als auch ggf.

Magnetfeldsensordaten betrifft, würde eine solche Erweiterung des Filterzustandsvektors mit einem

höheren Berechnungsaufwand bei der Filterung einhergehen, was sich vor allem bei der Matrixinver-

sion im Aktualisierungsschritt eines KF bemerkbar machen würde. Dieses hätte u. U. auch Auswir-

kungen auf die Schätzgenauigkeit. Es existiert zudem die Möglichkeit, die Einträge einer zeitvarianten

Zustandsübergangsmatrix selbst im Rahmen der Filterung zu schätzen [EFM10].

Im Gegensatz zu den genannten Verfahren soll hier das Ziel verfolgt werden, zeitliche Korrela-

tionen ohne eine Erweiterung des Filters zu berücksichtigen. Dabei wird das Rauschen nk weiterhin

durch eine Gleichung wie oben beschrieben und zusätzlich eine als zeitvariant angenommene Ko-

varianzmatrix Qη,k
2 parallel zum Filterprozess geschätzt. Dazu soll ein Schätzverfahren hergeleitet

werden, das auf einem bereits etablierten Verfahren, dem so genannten EM-Algorithmus aufbaut, der

in seiner ursprünglichen Form jedoch nicht für eine echtzeitfähige Verarbeitung geeignet ist, sondern

die dafür notwendigen Beobachtungen blockweise erwartet. Das bedeutet, dass eine ausreichende

Anzahl an Beobachtungen zur Lösung des Schätzproblems erst vorhanden sein muss. Durch eine

angepasste Formulierung des Schätzproblems kann dieses Verfahren in einen sequenziellen Algorith-

mus überführt werden. In der vorliegenden Arbeit wird dies in Kap. 7 im Detail vorgestellt. Ein Vorteil

liegt darin, dass der präsentierte Ansatz annähernd echtzeitfähig ist. Zusätzlich kann eine fehlerhafte

Annahme der Varianzen oder eine falsche Initialisierung der Parameter auf diese Weise kompensiert

werden. Hierbei sei allerdings angemerkt, dass sich Vibrationen nicht ausschließlich in der Kovari-

anzmatrix des Messrauschens widerspiegeln müssen, sondern dass das gesamte Modell zur Beschrei-

bung der zeitlichen Korrelationen betrachtet werden sollte. Der Erwartungswert lässt sich zwar i. d. R.

durch einen empirischen Mittelwert annähern, dieser ändert sich jedoch in Abhängigkeit der Länge

des Beobachtungsintervalls und des Mittelwerts des zugrunde liegenden Rauschens ηk. Ebenso spielt

es eine Rolle, ob die Zustandsübergangsmatrix Dn als zeitvariant oder zeitinvariant angenommen

wird.

Zur Veranschaulichung der zeitlichen Korrelationen betrachten wir Abb. 3.1. In den Teilbildern (a)

und (c) sind die ungefilterten Ausgangssignale der Drehraten- und Beschleunigungssensortriade und

in den Abb. (b) und (d) die Verläufe von geschätzten Standardabweichungen angenommener

GAUSS-MARKOV-Prozesse (GMP) erster Ordnung einer Miniature Tracker inertial (MTi)-Sensorein-

heit über der diskreten Zeit tk := t(k) = k · ∆tIME aufgetragen, wobei ∆tIME das Abtastintervall

der IME ist. Zu dieser Sensoreinheit werden in Kap. 9 weitere Untersuchungsergebnisse präsentiert.

Es sind beispielhaft einzelne Phasen eingezeichnet, in denen das Fahrzeug während einer Messauf-

nahme entweder still gestanden hat (ohne und mit laufendem Motor, bezeichnet als Phase P̆O und

Phase P̆M ) oder in denen sich das Fahrzeug bewegt hat (Phase P̆B). Bei den übrigen Abschnitten

1In dieser Arbeit wird auf eine Unterscheidung zwischen der Zufallsvariablen und der Realisierung verzichtet, es sei

denn, aus dem Kontext ist nicht ersichtlich, um was es sich handelt. Dies gilt für die Berechnungen von Erwartungswerten

(notiert durch E [. . . ]), Varianzen (notiert durch V [. . . ]) und Verteilungsdichtefunktionen (notiert durch p (. . . )).
2Der zusätzliche Index k kennzeichnet die Zeitvarianz.
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traten mehrmalige Wechsel zwischen den Bewegungsphasen auf. Sie wurden aus Gründen der Über-

sichtlichkeit nicht kenntlich gemacht. Bei den dargestellten Signalausschnitten lag hauptsächlich eine

asphaltierte Straße vor, wodurch geringere Vibrationen hervorgerufen wurden als bei einer Fahrt über

Kopfsteinpflaster. Das Schätzverfahren, das hier eingesetzt wurde, basiert auf der Berechnung von
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(a) Ausgangssignale einer Drehratensensortriade
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(b) Parameterschätzungen einer Drehratensensor-
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(c) Ausgangssignale einer Beschleunigungssensor-

triade
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(d) Parameterschätzungen einer Beschleunigungssen-

sortriade

Abbildung 3.1: Typische Ausgangssignale einer MTi-Sensoreinheit und geschätzte Parameter zeitkor-

relierter Rauschprozesse

Differenzen aufeinanderfolgender Messwerte. Dies wird in Kap. 7 genauer erläutert [Wen07]. Die

Parameter d̂nω ,k und d̂na,k bezeichnen hier die Schätzungen der Diagonalkomponenten der als zeit-

variant angenommenen Matrix Dn,k, welche jeweils drei Komponenten des Beschleunigungs- und

Drehratensensormodells enthält. Die Parameter σ̂ηω ,k und σ̂ηa,k entsprechen der Wurzel der jeweili-

gen Diagonalkomponenten der geschätzten Kovarianzmatrix Q̂η,k.

Aufgrund einer nicht waagerechten Anfangsausrichtung der MTi-Sensoreinheit teilt sich die Schwe-

rebeschleunigung auf die x- und die z-Achse auf, woraus Nullpunktfehler resultieren, wie in

Abb. 3.1 (c) zu sehen ist. Diese werden später im Vorfeld der Signalverarbeitung kompensiert. Der

Übergang zwischen der Ruhephase P̆O und P̆M ist bei den Drehratensensorsignalen im Gegensatz

zum Übergang von P̆M nach P̆B kaum zu erkennen. Eine Ursache dafür ist eine zu den Beschleu-
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nigungsmessern vergleichsweise geringe Auflösung. Bei diesen ist der Unterschied zwischen P̆O

und P̆M jedoch in dem vergrößerten Ausschnitt zu erkennen. Auch die Schätzungen in der rech-

ten Abb. 3.1 (d) weist an dieser Stelle auf zusätzliche Vibrationen hin. In der Phase P̆B wird bei den

Drehratensensoren hauptsächlich die nach oben gerichtete z-Komponente beeinflusst, da diese die

eigentliche Drehbewegung des Fahrzeugs in der horizontalen Ebene beinhaltet. Starke Signalschwan-

kungen in dieser Komponente sind im Wesentlichen auf die Vibrationen der Karosserie aufgrund der

Straße und des Motors zurückzuführen. Gleiches gilt für die Messungen ãbib,x,k und ãbib,y,k.

Betrachtet man an dieser Stelle im Vorgriff auf die späteren Untersuchungsergebnisse die ge-

schätzten Parameter des GMP der MTi-Sensoreinheit in Abb. 3.1 (b), welche auf Basis der genann-

ten Messwertdifferenzen bestimmt wurden, so wird deutlich, dass diese einen zeitvarianten Verlauf

unter der Annahme einer zeitvarianten Zustandsübergangsmatrix Dn,k aufweisen. Die Parameter in

Phase P̆O stimmen dabei mit denen im Datenblatt des Sensors überein, während sie jedoch in den

Phasen P̆M und P̆B um ein Vielfaches ansteigen. In Phase P̆B fallen des Weiteren Signalausschnitte

auf, in denen die Parameter deutlich abfallen. Hierbei kam das Fahrzeug an einer Ampel zum Stehen,

womit eine Phase P̆M vorlag.

Motivierend für das im Rahmen dieser Arbeit entwickelte Verfahren zur Schätzung zeitvarianter

Varianzen war, den EM-Algorithmus, der in seiner ursprünglichen Form blockweise arbeitet, aber

aufgrund seiner durch die Literatur belegte Leistungsfähigkeit [HL05] zuverlässige Schätzergebnis-

se liefert, in ein sequenzielles Verfahren zu überführen. Dabei sollten die Parameter auf Basis des

eingesetzten System- bzw. Messmodells geschätzt werden, so dass sie letztendlich unabhängig von

einer möglichen Vorverarbeitung sind. Im Rahmen des in dieser Arbeit eingesetzten Filterverfahrens

soll auf diese Weise in erster Linie eine langfristige Stabilisierung des inertialen Navigationssystems

erreicht werden. In Kap. 8 wird gezeigt, dass systembedingt nicht sämtliche Effekte dabei berücksich-

tigt werden können, da ein schwach gekoppeltes Navigationssystem dies aufgrund der Abhängigkeit

von weiteren Sensorinformationen nur eingeschränkt zulässt. Das betrifft u. a. die abtastwertweise

Korrektur von sehr kurzzeitig auftretenden Störungen in der Navigationslösung.

In Kap. 8 werden außerdem weitere Analysewerkzeuge angegeben, mit denen sensorspezifische

Parameter, die seitens der Hersteller in Datenblättern vorgegeben sind, überprüft werden können.

In Kap. 7.2 wird auch ein weiteres sequenzielles Verfahren vorgestellt, das empirisch den Mittel-

wert und die Varianz eines ergodischen Prozesses schätzt. Es wird allerdings gezeigt, dass dieses nur

näherungsweise die für die Filterung benötigten Parameter schätzen kann, da das verwendete System-

modell bei diesem Ansatz unberücksichtigt bleibt.

Zusammenfassung

In diesem Kapitel wurden die wissenschaftlichen Ziele dieser Arbeit definiert. Dabei wurde einerseits

begründet, warum eine vertikale Positionsschätzung von Fahrzeugen ebenso wichtig sein kann wie

die horizontale Positionsschätzung. Außerdem wurde aufgezeigt, dass bestimmte Sensorparameter

in der Realität durch ein zeitinvariantes Modell nur approximativ beschrieben werden können, wo-

durch die Kompensation von Fehlern durch den Filteralgorithmus erschwert wird. Daher wurde neben

bisherigen Lösungsansätzen aus der Literatur ein Verfahren motiviert, das auf der Voraussetzung von

zeitvarianten Rauschkovarianzmatrizen beruht. Dieses kann zeitliche Korrelationen im Filterungspro-

zess berücksichtigen, ohne das Rauschen explizit schätzen zu müssen. Auf diese Weise bleibt einer-

seits die Kausalität bei der Signalverarbeitung gewahrt, andererseits reduziert sich der Filteraufwand

durch eine geringere Dimension des Zustandsvektors.
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Kapitel 4

Grundlagen der gekoppelten Navigation

Das vorliegende Kapitel behandelt die Grundlagen der inertialen Navigation. Dabei werden zunächst

die unterschiedlichen Koordinatensysteme vorgestellt, die für Navigationsaufgaben von entscheiden-

der Bedeutung sind. Dies schließt auch eine geeignete Modellierung der Erdform ein. Anschließend

werden verschiedene Höhenangaben definiert. Um Messwerte, die in unterschiedlichen Koordinaten-

systemen angegeben werden, auf eine gemeinsame Basis zu beziehen, wird ein detaillierter Überblick

zur Transformation solcher Daten gegeben. Dabei stehen die Eulerwinkel- und Quaternionenparame-

trisierung im Vordergrund. Es wird außerdem der Strapdown-Algorithmus vorgestellt, mit dessen Hil-

fe aus inertialen Sensordaten Position und Geschwindigkeit berechnet werden können. Hinzu kommt

eine genaue Betrachtung und Modellierung inertialer Sensorfehler. Die Kombination mit Daten eines

GPS-Empfängers bildet die Basis für das implementierte Fehlerfilter (FF), dessen Herleitung dieses

Kapitel abschließt.

4.1 Inertiale Messtechnik

Der Begriff „inertia“ in INS bedeutet „Trägheit“ und zeigt, dass hierbei das Prinzip der Massenträgheit

von Körpern gegenüber linearen und rotatorischen Bewegungen ausgenutzt wird. Wie beschrieben,

dienen sowohl Beschleunigungsmesser als auch Kreisel, die Richtungsinformationen liefern, als Sen-

soren. In der vorliegenden Arbeit werden jeweils drei Beschleunigungsmesser und drei Drehraten-

sensoren verwendet, um die nötigen Informationen in drei Freiheitsgraden zu liefern. In modernen

Kraftfahrzeugen (KFZ) sind bereits inertiale Sensoren zur Detektion von Driftbewegungen des Fahr-

zeugs vorhanden. Dabei handelt es sich um kostengünstige MEMS-Sensoren im ABS.

Wie in Kap. 2 bereits erörtert, unterscheidet man i. d. R. zwei Typenklassen, die den Aufbau und

die Funktionsweise eines INS charakterisieren:

• Plattformsystem: Die Sensoren befinden sich in einer raumfesten Lage bezüglich des Inertial-

raumes oder auch des erdorientierten Systems (siehe Kap. 4.1.1). Ihre Lage ist unabhängig von

der eigentlichen Fahrzeugbewegung, da sie durch eine kardanische Aufhängung vollständig von

dem Fahrzeug entkoppelt sind. Ein solches System ist aufgrund der notwendigen Mechanik und

der relativ hohen Anfälligkeit gegenüber Ausfällen mit hohen Kosten verbunden [Cra01].

• Trägerorientiertes System: Das trägerorientierte (engl. Strapdown) System ist im Gegensatz

zum Plattformsystem fest mit dem Trägersystem verbunden. Sämtliche Bewegungen des Fahr-

zeugs werden daher von der Messeinheit erfasst. Dies schließt auch unerwünschte Vibratio-

nen ein, welche dann in einer zum Teil aufwändigen Nachfilterung eliminiert werden müssen

[TW04].

33
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Die beiden genannten Systeme lassen sich zusätzlich dahingehend klassifizieren, ob es sich um eine

hochgenaue Anwendung handelt oder ob ein gewisses Fehlermaß tolerierbar ist. Von hochgenauen

Anwendungen spricht man i. d. R. , wenn der Fehler ohne externe Stützung bei weit unter 1 sm/h

(Seemeile pro Stunde) liegt, also unter 1852m/h. Bei Systemen mittlerer Genauigkeit liegt die Posi-

tionsabweichung bei ca. 1 sm/h und bei Systemen niedriger Genauigkeit bei bis zu mehreren Kilome-

tern pro Stunde. Tab. 4.1 führt die unterschiedlichen Klassen gemäß Positions- und Winkelerfassung

im Detail auf [Cra01]. In der hohen Genauigkeitsklasse sind fast ausschließlich Plattformsysteme

Zeitliches Niedrige Mittlere Hohe

Intervall Systemgenauigkeit Systemgenauigkeit Systemgenauigkeit

P
os

it
io

n 1 h 100 km . . . 300 km 1km . . . 3 km 300m . . . 500m

1min 30m . . . 50m 0,5m . . . 3m 0,3m . . . 0,5m

1 s 0,3m . . . 0,5m 0,02m . . . 0,1m 0,01m . . . 0,02m

N
ei

gu
ng 1 h 1° . . . 3° 0,01° . . . 0,05° 0,003° . . . 0,008°

1min 0,2° . . . 0,3° 0,004° . . . 0,005° 0,0003° . . . 0,0005°

1 s 0,01° . . . 0,03° 0,003° . . . 0,004° <0,0003°

Preis in C 1000 . . . 5000 10 000 . . . 100 000 100 000 . . . 1 000 000

Tabelle 4.1: Genauigkeitsklassen inertialer Navigationssysteme [Cra01]

zu finden, während für mittlere und niedrigere Genauigkeiten meist trägerorientierte Systeme ver-

wendet werden. Seit einigen Jahren geht der Trend aber auch in der oberen Klasse immer mehr zu

trägerorientierten Systemen, da sie günstiger zu realisieren sind und Bauformen geringeren Ausmaßes

aufweisen.

4.1.1 Koordinatensysteme

In einem INS werden Informationen aus unterschiedlichen Quellen gewonnen, die wiederum auf ver-

schiedene Koordinatensysteme bezogen sind. Daher ist es nötig, diese für eine kollektive Verarbeitung

in ein gemeinsames Koordinatensystem zu transformieren. Im Folgenden sollen die Koordinatensys-

teme vorgestellt werden, die im Bereich der Navigation eine wichtige Rolle spielen.

Eine Übersicht über die gängigsten vier Systeme wird in Abb. 4.1 gegeben. Das GPS beispiels-

weise benötigt keinen Bezugspunkt auf der Erdoberfläche. Es gibt die Position im so genannten

Earth-Centered Earth-Fixed (ECEF)-Koordinatensystem an. Dieses hat seinen Ursprung im Erdmit-

telpunkt bzw. dem Geozentrum. Ein Beschleunigungsmesser und ein Gyroskop allerdings messen

ihre Daten in ihrem körpereigenen System bezogen auf das inertiale Koordinatensystem. Auch dieses

hat seinen Ursprung in der Mitte der Erde. Um die verschiedenen Messdaten in Einklang zu bringen,

wird häufig das Navigationskoordinatensystem verwendet, welches seinen Ursprung an einem vorab

definierten Ort auf der Erdoberfläche hat:

• Inertiales Koordinatensystem (i-Rahmen): Das Zentrum des inertialen Koordinatensystems,

auch i-Rahmen genannt, liegt im Erdzentrum. Die Achsen des Systems sind jedoch nur in

Bezug auf die Sterne als fest anzusehen. Die Erde ist demnach ein Objekt, welches sich im

Koordinatenursprung dreht, das System selbst bewegt sich jedoch nicht mit.

• Erdbezogenes Koordinatensystem (e-Rahmen): Das erdbezogene ECEF-System, welches auch

als e-Rahmen bezeichnet wird, hat ebenso wie der i-Rahmen seinen Ursprung im Erdmittel-
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xi
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xe
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Abbildung 4.1: Koordinatensysteme: inertial (i-Rahmen), erdbezogen (e-Rahmen) und lokal (n-

Rahmen)

punkt. Seine x- und seine y-Achse drehen sich jedoch mit der Erde. Die x-Achse schneidet

dabei genau den Greenwich-Meridian und den Äquator. Das GPS-System ortet Objekte auf der

Erdoberfläche in diesem Koordinatensystem, weil die Satelliten in geostationären Umlaufbah-

nen um die Erde kreisen. Gegenüber dem i-Rahmen rotiert der e-Rahmen mit der Erddrehrate

Ω aus Tab. 4.2.

• Navigationskoordinatensystem (n-Rahmen): Das Navigationskoordinatensystem ist das Sys-

tem, in welches die Größen der Messinstrumente häufig umgerechnet werden, so dass eine

gemeinsame Ausgangsbasis für die weiteren Berechnungen vorhanden ist. Der Ursprung liegt

auf der Erdoberfläche und ist vorab definiert. Die Achsen weisen von dort aus in Nord- bzw.

Ostrichtung sowie zum Erdmittelpunkt. Aus diesem Grund wird auch vom lokalen

North-East-Down (NED)-Koordinatensystem gesprochen. Durch eine einfache Transformation

erhält man aus dem NED-Koordinatensystem das East-North-Up (ENU)-Koordinatensystem,

welches sich lediglich durch die in entgegengesetzte Richtung (entgegen der Schwerebeschleu-

nigung) definierte z-Achse (Aufwärtskomponente) unterscheidet.

• Körperbezogenes Koordinatensystem (b-Rahmen): Der Ursprung des körperbezogenen Sys-

tems ist, wie der Name schon sagt, durch den Körper (mit dem das Messintrument fest verbun-

den ist) selbst definiert. Die Achsen sind dementsprechend durch den Messsensor vorgegeben.

Die Ausrichtung der Achsen ändert sich durch die Gier-, Nick- und Rollbewegung des Körpers.

Eine IME misst Beschleunigungen und Drehraten des b-Rahmens bezüglich des i-Rahmens, da

u. a. auch die Erddrehrate erfasst wird. In der Praxis ist zu beachten, dass eine vollständige

Orthogonalität zwischen den Achsen nicht gewährleistet ist. Dies wird jedoch häufig vernach-

lässigt. Nur bei Anwendungen mit hohen Genauigkeitsanforderungen wird durch eine softwa-

rebasierte Nachbearbeitung versucht, die Orthogonalität zu verbessern.

Inertiale Sensoren erfassen ihre Messwerte im körperbezogenen System, dem b-Rahmen, bezogen auf
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das inertiale System i. Dies wird nachfolgend durch die beiden tiefgestellten Indizes ib einer skala-

ren Größe oder Vektorgröße symbolisiert. Der obere Index bezeichnet dabei das Koordinatensystem,

in dem die Größe angegeben ist. Ein von einem Sensor gemessener Beschleunigungsvektor könnte

beispielsweise durch aeib in Koordinaten des e-Rahmens angegeben werden.

Wie oben beschrieben, werden GPS-Koordinaten im e-Rahmen angegeben. Dieses geschieht je-

doch nicht direkt durch Angabe in xe-, ye- und ze-Koordinaten, sondern mittels des Längengrads λ,

des Breitengrads ϕ und der Höhe h über Normalnull (NN) bezüglich eines definierten Erdellipsoids.

Man spricht dabei auch von geodätischen Longitude-Latitude-Height (LLH)-Koordinaten. Die Höhe

wird dabei im Folgenden in Richtung Sterne als positiv angegeben. In der Literatur ist dies teilweise

auch in entgegengesetzter Richtung üblich.

Der gängigste Referenzellipsoid wurde im Jahre 1984 durch das geodätische Referenzsystem bzw.

dem WGS84 festgelegt [HWLW07]. Dieses besteht aus einer Bezugsoberfläche, die der Erdoberflä-

che grob angepasst ist: einem detaillierten Modell für die von der idealisierten Form abweichenden

Erdfigur (Geoid) und einem so genannten Referenzrahmen. Es handelt sich dabei um zwölf über der

Erde verteilte Fundamentalstationen, mit deren Hilfe der Bezug zwischen den genannten Modellen

und der Erdkruste durch Angabe von zeitabhängigen Koordinaten definiert wird. Tab. 4.2 enthält die

wichtigsten Parameter, über die das Referenzsystem bestimmt ist [Wen07]. Die Schwere- und die

Bezeichnung Symbol Wert

Halbachse des Ellipsoids (groß) a 6378,137 km

Halbachse des Ellipsoids (klein) b a(1− f0) = 6356,752 314 2 km

Abflachung des Ellipsoids f0 1− b
a = 298,257 223 563 · 10−1

Exzentrizität des Ellipsoids e0
√
f0(2− f0) = 8,181 919 084 26 · 10−2

Krümmungsradius (Nord-Süd) Rn a
1−e20

(1−e20 sin
2 ϕ)3/2

Krümmungsradius (Ost-West) Re
a√

1−e20 sin
2 ϕ

Durchschnittlicher Krümmungsradius R0

√
RnRe

Erddrehrate Ω 7,292 115 · 10−5 rad/s

Gravitationskonstanten g0 9,780 318m/s2

g1 5,3024 · 10−3

g2 5,9 · 10−6

Tabelle 4.2: Parameter des WGS84-Referenzsystems [Wen07]

Zentripetalbeschleunigung bleiben von der nun nicht mehr als kugelförmig angenommenen Erdform

im Wesentlichen unberührt. Lediglich die z-Komponente des Schwerebeschleunigungsvektors liefert

einen Beitrag ungleich Null:

gn(t) :=




0

0

g0
(
1 + g1 sin

2(ϕ(t)) + g2 sin
2(2ϕ(t))

) ( R0
R0−h(t)

)2


 . (4.1)

Man erkennt, dass die Gravitation ortsbezogen und zeitabhängig ist, da sie vom Breitengrad ϕ(t)

und von der Höhe h(t) abhängt. Es sollte jedoch bedacht werden, dass der lokale Schwerebeschleu-

nigungsvektor aufgrund der angenäherten Form der Erde nicht zwangsläufig zum Erdmittelpunkt
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weist. Im Falle eines vereinfachten Erdmodells, z. B. einer Kugelform, lässt sich die Gravitation in

z-Richtung auf die Konstante g0 reduzieren.

4.1.2 Höhendefinitionen

In den bisherigen Betrachtungen wurde davon ausgegangen, dass die Höhe eine fest definierte Größe

ist. Es existieren allerdings verschiedene Möglichkeiten, eine Höhe anzugeben, die sich im Wesent-

lichen durch den verwendeten Bezugspunkt unterscheiden. Abb. 4.2 zeigt den Vergleich zwischen

den unterschiedlichen Höhendefinitionen, die im Rahmen der vorliegenden Arbeit beachtet werden

müssen.

Erdoberfläche

Geoid

Ellipsoid

hellip hgeoid

Abbildung 4.2: Vergleich von ellipsoider und geoider Höhe

Höhe über dem Ellipsoid Im WGS84-Referenzmodell ist die Form der Erde durch ein Ellipsoid

approximiert, das einem idealen Meeresspiegel angepasst ist. Die Höhe über dem Ellipsoid hellip be-

zieht sich demnach auf die Höhe über dem idealen Meeresspiegel. Dieser ist dabei ausschließlich

durch die Gravitation und die Zentrifugalkraft der rotierenden Erde definiert. Allerdings wird der

Meeresspiegel auch durch eine ungleiche Massenverteilung auf der Erde beeinflusst, weshalb die An-

nahme ungenau ist. Daraus resultiert, dass die Höhe über dem Ellipsoid, wie sie meist auch von einem

GPS-Empfänger angegeben wird, i. Allg. nicht der wahren Höhe über dem Meeresspiegel entspricht.

Höhe über dem Geoid Es wird versucht, die genannte Problematik bei der Ellipsoidhöhe durch

das so genannte Geoidmodell auszugleichen [NAS96]. Hierbei werden die lokalen Abweichungen

des Meeresspiegels berücksichtigt, so dass eine genauere Angabe der realen Höhe ermöglicht werden

kann. Die Abweichungen zwischen einer ellipsoiden Höhe hellip und der Geoidhöhe hgeoid können da-

bei bis zu±110m betragen. Heutige GPS-Empfänger können intern mittlerweile auch die Geoidhöhe

annähernd berechnen, weil sie auf das entsprechende Modell zurückgreifen können. Da es eine Reihe

unterschiedlicher Modelle gibt, können diese Geoidhöhen allerdings von Empfänger zu Empfänger

abweichen.

Geopotentielle Höhe Die geopotentielle Höhe hgeop ist ein Sonderfall, der in Abb. 4.2 nicht auf-

geführt werden kann. Diese Höhe wird durch den Quotienten der Energie, die benötigt wird, um ein

Objekt von Meereshöhe auf eine geometrische Höhe hgeom zu heben, und einer Schwerebeschleuni-

gung g0 definiert, welche auf der jeweiligen Meereshöhe als konstant angenommen wird:

hgeop =
1

g0

hgeom∫

0

g(h) dh. (4.2)
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Durch diese Definition kann in der inertialen Navigation, statt mit der vereinfachten Annahme einer

konstanten Schwerebeschleunigung, mit ortsabhängigen Schwerebeschleunigungen gerechnet wer-

den, was wiederum zu höheren Genauigkeiten führt. Durch Auswertung von Gl. (4.2) folgt mit Be-

rücksichtigung des WGS84-Modells:

hgeop =
R0 · hgeom

R0 + hgeom
. (4.3)

4.2 Bezugssystemtransformation

Da in den vorangegangenen Abschnitten die nötigen Koordinatensysteme vorgestellt wurden, sollen

im Folgenden die Verfahren betrachtet werden, wie Informationen, die in einem System erfasst wur-

den, in ein anderes Koordinatensystem überführt werden können. Die Transformationsmatrix, die eine

Überführung von dem Bezugssystem Φ2 zu dem Bezugssystem Φ1 erlaubt, soll mit C
Φ1
Φ2

bezeichnet

werden und gehört zu der Gruppe der orthonormalen Matrizen [Dam99]: Eine quadratische und reell-

wertige Matrix C
Φ1
Φ2

von der Ordnung D ist dann orthonormal, wenn sie regulär ist und CT = C−1

gilt. Daraus resultiert, dass C ·CT = CT ·C = ID×D , wobei ID×D die Einheitsmatrix der Dimension

[D × D] ist.3 Dieses bedeutet, dass die Zeilen- und Spaltenvektoren ein Orthonormalsystem im RD

bilden. Betrachtet man in diesem Zusammenhang zwei orthonormale Matrizen C1 und C2, so sind

auch deren Inversen C−1
1 und C−1

2 und deren Produkt C1 ·C2 orthonormal. Des Weiteren gilt für jede

orthonormale Matrix nach (B.5) im Anhang, dass det{C} = ±1, denn det{CT ·C} = 1 [Wen07].

Für die Transformation eines Richtungsvektors sΦ2 von einem Koordinatensystem Φ2 in ein an-

deres Koordinatensystem Φ1 wird nun folgende Berechnung durchgeführt:

sΦ1 = C
Φ1
Φ2
· sΦ2 . (4.4)

Die Matrix C
Φ1
Φ2

wird auch als Richtungskosinusmatrix (RKM) bezeichnet, denn jedes Element der

Matrix lässt sich durch den Kosinus des jeweiligen Winkels zwischen den dazugehörigen Koordi-

natenachsen von Φ1 und Φ2 beschreiben [Jek01]. Es sei erwähnt, dass Vektoren und die damit zu-

sammenhängenden Vektoroperationen unabhängig vom Koordinatensystem sind, wenn diese über

Gl. (4.4) miteinander verknüpft sind.

4.2.1 Eulerwinkelparametrisierung

Im letzten Abschnitt wurde die Vektortransformation auf Basis einer orthonormalen Rotationsmatrix

erläutert. Diese besitzt i. d. R. neun Variablen, wovon allerdings aufgrund der Orthonormalität nur drei

unabhängig sind. Das Prinzip der Grundrotation, welches verwendet werden kann, um Transforma-

tionen zwischen zwei orthonormalen Koordinatensystemen mit drei Parametern durchzuführen, wird

daher im Folgenden betrachtet.

Die Grundrotation ermöglicht es, Rotationstransformationen von Vektoren zwischen zwei Koor-

dinatensystemen durchzuführen. Die drei folgenden orthogonalen Matrizen beschreiben jeweils eine

Rotation um eine Koordinatenachse, so dass spätestens nach Anwendung aller drei Grundrotationen

3Im Folgenden wird durch die Indizierung D×D eine Matrix der Größe [D×D] bzw. durch D×1 ein Vektor der Dimen-

sion [D × 1] bezeichnet. D sei dabei eine allgemeingültige Dimensionsgröße.
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um die Winkel φ, θ und ψ, ein Koordinatensystem in ein anderes überführt ist:

Cx(φ) :=



1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)




︸ ︷︷ ︸
Rotation um die x-Achse

, Cy(θ) :=



cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)




︸ ︷︷ ︸
Rotation um die y-Achse

Cz(ψ) :=




cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1




︸ ︷︷ ︸
Rotation um die z-Achse

. (4.5)

In der Literatur [Dam99] sind weitere Grundrotationen zu finden, die allerdings zum gleichen Er-

gebnis führen. Da die Matrixmultiplikation keine kommutative Operation ist, ist auch die Rotati-

onssequenz nicht kommutativ, d. h. dass z. B. für zwei beliebige Bezugssysteme Φ1 und Φ2 die Un-

gleichung C
Φ1
Φ2

= Cx(φ) · Cy(θ) 6= Cy(θ) · Cx(φ) gilt. Allerdings kann dieselbe Gesamtrotation

durch unterschiedliche Rotationssequenzen beschrieben werden, so dass C
Φ1
Φ2

= Cx(φ) · Cy(θ) =

Cy(θ
′) ·Cx(φ

′) gilt, wobei φ 6= φ′ und θ 6= θ′. Es existieren also keine einheitlichen Rotationswinkel.

Die Kenntnis der Rotationsreihenfolge ist daher von entscheidender Bedeutung.

Es soll nun die Grundrotation in Bezug auf die bereits eingeführten und in der Navigation üblichen

Koordinatensysteme betrachtet werden.

Transformation zwischen dem ECEF-Koordinatensystem und dem NED-Koordinatensystem

Es wird ein Vektor betrachtet, der in ECEF-Koordinaten bzw. im e-Koordinatensystem angegeben ist

und in das Navigationskoordinatensystem n transformiert werden soll. Dazu sind zwei Grundrotatio-

nen notwendig, wie auch anhand von Abb. 4.1 zu erkennen ist [FB99]. Die Rotation um die ze-Achse

ist nötig, um eine neue Ausrichtung der ye-Achse zu erreichen, welche jetzt mit ye
′

bezeichnet wird.

Sie ist gemäß Gl. (4.5) definiert durch

Cz(λ) =




cos(λ) sin(λ) 0

− sin(λ) cos(λ) 0

0 0 1


 , (4.6)

wobei λ wieder die geografische Länge des Koordinatenursprungs des Navigationskoordinatensys-

tems in [rad] ist. Anschließend wird eine Rotation um die neue ye
′
-Achse vorgenommen, um die

ze-Achse neu auszurichten. Diese wird nun mit ze
′′

bezeichnet. Die zweite Rotation ist definiert durch

Cy

(
−
(
ϕ+

π

2

))
=




cos
(
ϕ+ π

2

)
0 sin

(
ϕ+ π

2

)

0 1 0

− sin
(
ϕ+ π

2

)
0 cos

(
ϕ+ π

2

)


 =



− sin(ϕ) 0 cos(ϕ)

0 1 0

− cos(ϕ) 0 − sin(ϕ)


 ,

(4.7)

wobei ϕ die geografische Breite des Koordinatenursprungs vom n-Rahmen in [rad] ist. Für die Rota-

tionssequenz folgt schließlich:

Cn
e := Cy

(
−
(
ϕ+

π

2

))
·Cz(λ) =



− sin(ϕ) cos(λ) − sin(ϕ) sin(λ) cos(ϕ)

− sin(λ) cos(λ) 0

− cos(ϕ) cos(λ) − cos(ϕ) sin(λ) − sin(ϕ)


 . (4.8)
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Für die Transformation eines Geschwindigkeitsvektors ve
ib in das Navigationskoordinatensystem ist

demnach die Operation vn
ib = Cn

e · ve
ib nötig. Die Rücktransformation kann aufgrund der Orthonor-

malität der Matrix mit Ce
n = (Cn

e )
−1 = (Cn

e )
T vorgenommen werden.

Transformation zwischen dem körperbezogenen und dem NED-Koordinatensystem Im vor-

herigen Abschnitt wurden lediglich zwei Grundrotationen benötigt. Bei der Transformation eines

Vektors vom körperbezogenen Koordinatensystem in das NED-Koordinatensystem wird i. d. R. eine

Sequenz, bestehend aus allen drei Grundrotationsmatrizen, benötigt. Abb. 4.3 zeigt, wie ein kör-

perbezogenes Koordinatensystem mit Hilfe von drei Eulerwinkeln in das NED-Koordinatensystem

überführt werden kann. Die erste Drehung findet dabei in der xbyb-Ebene um den Winkel ψ mit

xb
yb

z′ = zb

x′′ = xn

yn

zn

x′

y′ = y′′

φ

ψ
ψ

θ

θ

Abbildung 4.3: Transformation mit Hilfe von Eulerwinkeln

Hilfe von Cz(ψ) statt. Dementsprechend wird im zweiten Schritt das daraus resultierende Koordi-

natensystem mit den neuen Achsen x′, y′ und z′ = zb mittels Cy(θ) transformiert, so dass man die

Achsen x′′ = xn, y′′ = y′ und z′′ erhält. Die Rotation beschreibt also eine Drehung in der x′z′-Ebene.

Schließlich fehlt noch die Drehung in der y′′z′′-Ebene durch Cx(φ). Es wird wiederum deutlich, dass

die Reihenfolge der Drehungen durch die umgekehrte Reihenfolge der Matrixmultiplikationen fest-

gelegt wird. Die Eulerwinkel φ, θ und ψ entsprechen in diesem Fall den so genannten Roll- (engl.

roll), Nick- (engl. pitch) und Gierwinkeln (engl. yaw). Der Gierwinkel wird häufig auch als Azimuth

bezeichnet und der Nickwinkel als Elevationswinkel. Für die Gesamtrotation zur Transformation des

Vektors vn
ib in den Vektor vb

ib und umgekehrt folgt demnach:

vb
ib = Cx(φ) ·Cy(θ) ·Cz(ψ) · vn

ib

= Cb
n · vn

ib, (4.9)

wobei

Cb
n =




c(θ)c(ψ) c(θ)s(ψ) −s(θ)
s(θ)s(φ)c(ψ)− c(φ)s(ψ) s(θ)s(φ)s(ψ) + c(φ)c(ψ) c(θ)s(φ)

s(θ)c(φ)c(ψ) + s(φ)s(ψ) s(θ)c(φ)s(ψ)− s(φ)c(ψ) c(θ)c(φ)


 (4.10)

mit den abkürzenden Schreibweisen c(ψ, θ, φ) := cos(ψ, θ, φ) und s(ψ, θ, φ) := sin(ψ, θ, φ) gilt.

Neben den bisherigen Vorschriften zur RKM sei angemerkt, dass sich Cb
n auch durch die Multi-

plikation von Ce
n mit der RKM Cb

e berechnen lässt, was häufig eine nützliche Eigenschaft in den

Navigationsberechnungen ist. Analoges gilt für andere Rotationsmatrizen. In der inertialen Navigati-

on ist vor allem die Matrix Cn
b zur Rücktransformation wichtig, für die Cn

b =
(
Cb

n

)−1
=
(
Cb

n

)T
gilt,

weil die Zeilen und Spalten von Cn
b jeweils orthogonal zueinander sind.
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Transformation zwischen dem inertialen und dem erdbezogenen Koordinatensystem Ein Son-

derfall ist die Transformation eines Vektors vom i-Koordinatensystem in das e-Koordinatensystem.

In der Regel lässt sich auch die RKM Ce
i durch drei Einzelmatrizen beschreiben. Wie bereits in

Kap. 4.1.1 angeführt, besitzen beide Systeme den gleichen Koordinatenursprung und unterscheiden

sich lediglich in einer Drehung um die zi-Achse (siehe Abb. 4.1). Es finden keine Rotationen um die

xi- und yi-Achse statt. Aus diesem Grund lässt sich die Matrix Ce
i auch ausschließlich durch Cz(ψ)

mit

Ce
i := Cz(ψ) =




cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1


 (4.11)

beschreiben.
Im Umkehrschluss können anhand der RKM die Eulerwinkel zurückgewonnen werden [TW04],

denn es gilt:

φ = arctan 2

(
sin(φ) cos(θ)

cos(φ) cos(θ)

)
= arctan 2

(
(Cn

b )
(3,2)

(
Cn
b

)(3,3)

)
(4.12)

θ = arcsin (sin(θ)) = − arcsin
(
(Cn

b )
(3,1)

)
(4.13)

ψ = arctan 2

(
cos(θ) sin(ψ)

cos(θ) cos(ψ)

)
= arctan 2

(
(Cn

b )
(2,1)

(
Cn
b

)(1,1)

)
. (4.14)

Dabei wird z. B. das Element in der dritten Zeile und ersten Spalte der RKM Cn
b durch (Cn

b )
(3,1)

gekennzeichnet. Diese Umrechnung spielt sowohl im Rahmen des Strapdown-Algorithmus als auch

in dem in Kap. 5 beschriebenen Filter eine Rolle, da die Eulerwinkel z. B. zur Berechnung der Schwe-

rebeschleunigung benötigt werden.

Die Bezugssysteme befinden sich in ständiger Bewegung zueinander, weshalb die Eulerwinkel

fortlaufend aktualisiert werden müssen. Relativ einfach ist dieses mit Hilfe der Ableitungen der Eu-

lerwinkel möglich, welche dann zum Aufintegrieren genutzt werden. Da als Messgrößen i. d. R. nur

die Winkelgeschwindigkeiten einer inertialen Sensoreinheit zur Verfügung stehen, muss ein geeigne-

ter Zusammenhang zwischen diesen Größen gefunden werden. Mit Hilfe der bereits beschriebenen

Grundrotationen kann zwischen den Eulerwinkelableitungen und den Winkelgeschwindigkeiten ω
b
nb

im körperbezogenen Koordinatensystem Gl. (4.15) aufgestellt werden [Dam99]:


φ̇(t)

θ̇(t)

ψ̇(t)


 =



1 sin(φ(t)) tan(θ(t)) cos(φ(t)) tan(θ(t))

0 cos(φ(t)) − sin(φ(t))

0 sin(φ(t))
cos(θ(t))

cos(φ(t))
cos(θ(t))


 ·



ωb
nb,x(t)

ωb
nb,y(t)

ωb
nb,z(t)


 . (4.15)

Mit (˙) wird hier die Ableitung einer skalaren Größe bzw. eines Vektors nach der Zeit t gekennzeich-

net, d. h. ∂
∂t . Die Terme ωb

nb,x, ωb
nb,y und ωb

nb,z bezeichnen die Winkelgeschwindigkeiten der x-, y-

und z-Achse der Drehratensensortriade. An dieser Stelle sei auf ein Problem hingewiesen, welches

in der Literatur als Gimbal-lock bezeichnet wird und die Möglichkeit des Auftretens einer Singu-

larität bei θ = ±90° in Gl. (4.15) beschreibt. Das Umgehen dieses Phänomens ist dabei durch die

Verwendung von Quaternionen möglich, die im folgenden Abschnitt näher betrachtet werden.

4.2.2 Quaternionenparametrisierung

Als Verallgemeinerung der komplexen Zahlen erlauben die Quaternionen häufig eine rechnerisch

elegante Beschreibung des dreidimensionalen Raumes, insbesondere im Kontext von Drehungen.
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Die Quaternionenparametrisierung ist in der Literatur auch als HAMILTON-Parametrisierung bekannt

[Syn37]. Bei Verwendung von Quaternionen an Stelle von Drehmatrizen werden weniger Rechen-

operationen benötigt, was vor allem bei mehreren Drehoperationen Vorteile in der Verarbeitungsge-

schwindigkeit mit sich bringt. Weitere Vorteile sind:

• Rotationen erfolgen direkt um die gewünschte Achse

• Das genannte Gimbal-lock-Problem tritt nicht auf.

Als vierdimensionale reelle Algebra bilden die Quaternionen einen vierdimensionalen reellen Vek-

torraum R4, weshalb jedes Quaternion durch vier reelle Komponenten q̆0, q̆1, q̆2 und q̆3 eindeutig

bestimmt ist. Die Basiselemente des Vektorraums bilden vier Elemente der Länge Eins, die orthogo-

nal zueinander sind: 1, i, j sowie k. Die Menge der komplexen Zahlen kann zwar auf verschiedene

Weisen in die Quaternionen eingebettet werden, die Quaternionen sind jedoch keine C-Algebra. Den-

noch spricht man hier auch von hyperkomplexen Zahlen [BSMM00]. Die Linearkombination der vier

Komponenten mit den Basisvektoren lautet:

q̆ := 1 · q̆0 + i · q̆1 + j · q̆2 + k · q̆3, (4.16)

wobei

i ◦ i = j ◦ j = k ◦ k = −1 (4.17)

i ◦ j = −j ◦ i = k (4.18)

j ◦ k = −k ◦ j = i (4.19)

k ◦ i = −i ◦ k = j (4.20)

gilt. Das ◦ kennzeichnet dabei die nicht kommutative Quaternionenmultiplikation. Diese lässt sich

vereinfacht für zwei Quaternionen q̆ und p̆ gemäß Gl. (4.21) auch durch eine Matrix-Vektor-Multi-

plikation ausdrücken:

q̆ ◦ p̆ =




q̆0 −q̆1 −q̆2 −q̆3
q̆1 q̆0 −q̆3 q̆2
q̆2 q̆3 q̆0 −q̆1
q̆3 −q̆2 q̆1 q̆0


 ·




p̆0
p̆1
p̆2
p̆3


 . (4.21)

Betrachtet man nun einen Vektor sΦ2 , der mit Hilfe von Quaternionen in das Koordinatensystem

Φ1 transformiert werden soll, so kann dies über die abbildende Gleichung
(

0

sΦ1

)
= q̆ ◦

(
0

sΦ2

)
◦ q̆∗ (4.22)

geschehen, wobei q̆∗ := (q̆0 − q̆1 − q̆2 − q̆3)T der konjugiert komplexe Quaternionenvektor ist.

Durch Ausmultiplizieren von (4.22) mit Hilfe von Gl. (4.21) erhält man den Zusammenhang

sΦ1 = C
Φ1
Φ2
· sΦ2 , (4.23)

wobei für die aus den Quaternionen abgeleitete Rotationsmatrix

C
Φ1
Φ2

=



q̆20 + q̆21 − q̆22 − q̆23 2(q̆1q̆2 − q̆0q̆3) 2(q̆1q̆3 + q̆0q̆2)

2(q̆1q̆2 + q̆0q̆3) q̆20 − q̆21 + q̆22 − q̆23 2(q̆2q̆3 − q̆0q̆1)
2(q̆1q̆3 − q̆0q̆2) 2(q̆2q̆3 + q̆0q̆1) q̆20 − q̆21 − q̆22 + q̆23


 (4.24)
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gilt. Wird nun die Quaternionenparametrisierung verwendet, um eine Vektortransformation vom kör-

perbezogenen b-System zum Navigationssystem n durchzuführen, so gilt mit Φ2 = b und Φ1 = n:

Cn
b = C

Φ1
Φ2

. Ebenso können die Eulerwinkel jetzt auch anhand der Quaternionen berechnet werden.

Durch direkten Vergleich der Matrixkomponenten aus Gl. (4.24) mit denen aus Gl. (4.10) resultiert:

φ = arctan 2

(
2(q̆2q̆3 + q̆0q̆1)

q̆20 + q̆23 − q̆21 − q̆22

)
(4.25)

θ = arcsin (2(q̆0q̆2 − q̆1q̆3)) (4.26)

ψ = arctan 2

(
2(q̆1q̆2 + q̆0q̆3)

q̆20 + q̆21 − q̆22 − q̆23

)
. (4.27)

Falls diese Gleichungen aufgrund der möglichen Singularitäten nicht lösbar sind, können andere Para-

metrisierungen angewendet werden, welche sich aus den verschieden möglichen Rotationssequenzen

ergeben.

Es existiert eine Reihe von Möglichkeiten, um schließlich noch ein Quaternion aus den Elementen

der RKM zu berechnen [Wen07]. Im Rahmen der vorliegenden Arbeit wurde jedoch lediglich auf die

folgende Umrechnung zurückgegriffen:

κ′ :=
1

2

√
1 +

(
Cn
b

)(1,1)
+
(
Cn
b

)(2,2)
+
(
Cn
b

)(3,3)
, (4.28)

wobei

q̆0 = κ′ (4.29)

q̆1 =
1

4κ′

(
(Cn

b )
(3,2) − (Cn

b )
(2,3)

)
(4.30)

q̆2 =
1

4κ′

(
(Cn

b )
(1,3) − (Cn

b )
(3,1)

)
(4.31)

q̆3 =
1

4κ′

(
(Cn

b )
(2,1) − (Cn

b )
(1,2)

)
(4.32)

gilt. Auf die weiteren Umrechnungsvarianten wird hier nicht näher eingegangen.

Im vorherigen Abschnitt wurde erläutert, dass die Lage von zwei Koordinatensystemen über drei

oder weniger Drehmatrizen beschrieben werden kann. Ebenso lässt sich diese Rotation auch mit le-

diglich einer Rechtsdrehung anhand eines einzelnen Orientierungsvektors σ :=
(
σx σy σz

)T
durch-

führen. Der Vektor gibt die Achse im Raum an, um die ein Koordinatensystem gedreht werden muss,

um in ein anderes System überführt zu werden. Der Betrag des Vektors entspricht dabei dem Betrag

des Winkels, um den das Koordinatensystem zu drehen ist. Es muss demnach ein Zusammenhang

zwischen RKM, Orientierungsvektor und Quaternion bestehen. Im Fall der Drehung zwischen dem

Navigationssystem n und dem Körpersystem b lautet der Zusammenhang zwischen dem auf die Län-

ge Eins normierten Quaternionenvektor q̆n
b und dem Orientierungsvektor σ

q̆n
b =




cos( |σ|
2 )

σx
|σ| sin(

|σ|
2 )

σy
|σ| sin(

|σ|
2 )

σz
|σ| sin(

|σ|
2 )



, (4.33)

wobei |.| hier die Vektornorm kennzeichnet. Wie bei der RKM lässt sich auch obiges Quaternion

durch eine geeignete Verkettung von weiteren Quaternionenvektoren mittels einer Quaternionenmul-

tiplikation ausdrücken, z. B. q̆n
b = q̆n

e ◦ q̆e
b.
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4.3 Strapdown-Berechnung

Der Strapdown-Algorithmus ist eine iterative Rechenvorschrift die beschreibt, wie man aus gemesse-

nen Winkeldrehraten und Beschleunigungen einer IME zu einer Navigationslösung gelangt, d. h. der

Angabe einer absoluten Position, Geschwindigkeit und der Lage der IME. Durch den Integrations-

prozess muss i. d. R. auch die Navigationslösung des vorherigen Zeitschrittes berücksichtigt werden

[TW04]. Abb. 4.4 zeigt ein Blockschaltbild des Strapdown-Algorithmus, wobei Daten in einem kör-

perbezogenen b-System aufgenommen und im Navigationskoordinatensystem n berechnet werden.

Da der tiefgestellte Index SD für „Strapdown“ erst in Kap. 5 aus Gründen der Übersichtlichkeit benö-

tigt wird, wird an dieser Stelle bei den Größen auf ihn verzichtet. Des Weiteren wird zunächst darauf

verzichtet, inertiale Messgrößen durch eine (˜) und Schätzgrößen durch ein (ˆ) zu kennzeichnen. Der

b-Rahmen

n-Rahmen
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Messeinheit

(IME)

V
or

ve
ra

rb
ei

tu
ng

∫∫

∫ω
b
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n
b

ω
n
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an
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Coriolis-
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eb

(

=: p̂n
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(
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(

=: v̂n
SD;eb

)

Abbildung 4.4: Strapdown-Algorithmus

Strapdown-Algorithmus umfasst die folgenden Schritte:

• Berechnung der Corioliskraft, Schwerebeschleunigung, Transportrate ωn
en und Erddrehrate ωn

ie

auf Basis aktueller Positions- und Geschwindigkeitsinformationen (pn
eb und vn

eb)

• Lageberechnung der IME mit Hilfe der gemessenen Drehraten ω
b
ib, der Transport- und Erd-

drehrate durch Aufintegrieren der Eulerwinkel oder durch eine Quaternionenaktualisierung

• Aktualisierung der Geschwindigkeit durch das Aufintegrieren der gemessenen Beschleunigun-

gen abib, der Schwerebeschleunigung und der durch die Corioliskraft verursachten Beschleuni-

gung

• Aktualisierung der Position durch das Aufintegrieren der Geschwindigkeiten.

Bei der Strapdown-Berechnung wird idealerweise davon ausgegangen, dass die beteiligten Messgrö-

ßen fehlerfrei sind. Eine Kompensation der Fehler, die auf die IME selbst zurückzuführen sind, d. h.

auf systematische Fehler, ist bei der Berechnung hier nicht vorgesehen. Wie beschrieben, werden je-

doch Einflüsse wie Gravitation und Corioliskraft berücksichtigt. Dieses wird im Folgenden genauer

erläutert. Die Kompensation der anderen Fehler wird in den nachfolgenden Kapiteln betrachtet.
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Berechnung der Lage Die Lage bzw. Orientierung der IME in Bezug auf das Navigationskoor-

dinatensystem ist von entscheidender Bedeutung für die Navigationslösung, da sie sich fortlaufend

ändert. Daher muss diese Orientierungsänderung in Abhängigkeit von den gemessenen Drehraten in

jedem Zeitschritt neu bestimmt werden. Da die Lage der IME durch die Eulerwinkel, einen Orientie-

rungsvektor oder durch Quaternionen beschrieben werden kann, existieren demnach auch mindestens

drei Möglichkeiten, um eine fortlaufende Lageberechnung durchzuführen.

Die BORTZ’sche Differenzialgleichung wird zur permanenten Aktualisierung der IME-Lage σ

verwendet [Bor71]. Sie beschreibt die Abhängigkeit der Lage von den Sensordrehraten in ω
b
nb und

lautet:

σ̇(t) = ω
b
nb(t) +

1

2
σ(t)× ω

b
nb(t) +

1

|σ(t)|2
(
1− |σ(t)| · sin(|σ(t)|)

2(1− cos(|σ(t)|))

)
σ(t)×

(
σ(t)× ω

b
nb(t)

)
.

(4.34)

Mit ( × ) wird hier das Kreuzprodukt zweier Vektoren bezeichnet. Um die Auswertung der auftre-

tenden trigonometrischen Funktionen zu vermeiden, kann unter der Annahme eines kurzen Aktuali-

sierungsintervalls und damit kleiner Drehungen in jedem Zeitintervall, der Klammerterm mit Hilfe

einer Reihenentwicklung (Exponentialreihe) als konstanter Faktor approximiert werden, so dass sich

Gl. (4.34) wie folgt vereinfachen lässt:

σ̇(t) ≈ ω
b
nb(t) +

1

2
σ(t)× ω

b
nb(t) +

1

12
σ(t)×

(
σ(t)× ω

b
nb(t)

)
. (4.35)

Dabei ist ωb
nb die Drehrate des Fahrzeugs im b-Rahmen ohne Einfluss der Erddrehrate ω

n
ie(t) oder

ω
n
en(t), was auch als Transportrate bezeichnet wird. Die Orientierung hängt auch direkt mit der Rei-

henfolge der Drehungen zusammen. Wie bereits erwähnt, ist die Rotationsreihenfolge nicht kom-

mutativ. Eine IME kann allerdings keine Angabe über eine bestimmte Rotationsreihenfolge liefern.

Der damit einhergehende Fehler wird durch die Annahme von kleinen Drehungen pro Zeitintervall

minimiert. Die Kreuzprodukt-Terme, die auch als Coning-Terme bezeichnet werden, müssen best-

möglich approximiert werden, wenn während einer Lageaktualisierung mehrere Abtastintervalle der

IME liegen. Dieses würde u. U. die Lagegenauigkeit erhöhen. Auf einen speziellen Kompensations-

algorithmus, wie er in [Jek01] oder [TW04] vorgestellt wird, wird hier allerdings verzichtet.

Weil die IME normalerweise nur die Drehraten ω
b
ib liefert, wird sie von der Erddrehrate ω

n
ie und

der Transportrate ω
n
en beeinflusst. Dieser Einfluss soll beim Strapdown-Verfahren herausgerechnet

werden, um ω
b
nb zu erhalten. Der Zusammenhang zwischen ω

b
ib und ω

b
nb lautet:

ω
b
ib(t) = ω

b
nb(t) +Cb

n(t) (ω
n
ie(t) + ω

n
en(t)) , (4.36)

wobei für die Transportrate und die Erddrehrate gemäß [TW04]

ω
n
en(t) =




vneb,e(t)

Re+h(t)

− vneb,n(t)

Rn+h(t)

−vneb,e(t) ·tan(ϕ(t))
Re+h(t)


 , ω

n
ie(t) =




Ω · cos(ϕ(t))
0

−Ω · sin(ϕ(t))


 (4.37)

gilt, wenn die Höhe positiv (von der Erde wegweisend) gezählt wird. Dabei sind vneb,n und vneb,e die

Nord- und Ostkomponente des Geschwindigkeitsvektors vn
eb.

Auf Basis von Gl. (4.34) oder (4.35) ist es nun im Zeitdiskreten möglich, die Orientierung schritt-

weise zu aktualisieren. Dazu wird nach Gl. (4.33) ein Korrekturterm r̆ berechnet, der die im betrach-

teten Zeitintervall erfolgte Orientierungsänderung ∆σ :=
(
∆σx ∆σy ∆σz

)T
als Quaternion nach
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Gl. (4.38) darstellt:

r̆k =




cos(
|∆σk|

2 )
∆σx,k
|∆σk|

sin(
|∆σk|

2 )
∆σy,k
|∆σk|

sin(
|∆σk|

2 )
∆σz,k
|∆σk|

sin(
|∆σk|

2 )



. (4.38)

Das aktualisierte Quaternion, welches die aktuelle Lage auf Basis der Lage zum vorherigen Zeitschritt

und r̆k beschreibt, ist anschließend durch

q̆n
b,k = q̆n

b,k−1 ◦ r̆k (4.39)

gegeben. Mit Gl. (4.24) kann abschließend die aktualisierte RKM und damit die Lage gewonnen

werden.

Berechnung der Geschwindigkeit Der nächste Schritt im Strapdown-Algorithmus ist die Berech-

nung der Geschwindigkeit des Fahrzeugs im Navigationskoordinatensystem oder n-Rahmen. Hierzu

wird die gemessene Beschleunigung der IME benötigt, da sie die Änderung der Geschwindigkeit be-

schreibt. Da jedoch die Geschwindigkeit in einem raumfesten Koordinatensystem von Interesse ist,

muss die aktuelle Orientierung der IME und damit die des Fahrzeugs berücksichtigt werden. Neben

der fahrzeugeigenen Beschleunigung misst der Sensor auch die Schwerebeschleunigung, die gemäß

(4.1) in dem Vektor gn zusammengefasst ist und die Coriolisbeschleunigung, die durch die Erddre-

hung sowie die Drehung des Navigationskoordinatensystems bei der Bewegung über die gekrümmte

Erdoberfläche hervorgerufen wird. Die Differenzialgl. (4.40) aus [TW04] beschreibt die Zusammen-

hänge zwischen diesen Effekten und der Geschwindigkeit des Fahrzeugs:

v̇n
eb(t) = Cn

b(t)a
b
ib(t)− (2ωn

ie(t) + ω
n
en(t))× vn

eb(t) + gn(t). (4.40)

Die zugehörige Geschwindigkeitsänderung erhält man durch Integrieren der rechten Seite über ein

Zeitintervall. Der erste Term auf der rechten Seite kann dabei im Gegensatz zu den übrigen Termen

nicht durch eine Konstante angenähert werden. Für das Integral über das Produkt Cn
b(t) · abib(t) folgt

nach [Wen07] mit ∆t := tk − tk−1 und der Annahme, dass in diesem Zeitintervall annähernd kon-

stante Drehraten und Beschleunigungen vorliegen:

tk∫

tk−1

Cn
b(t) · abib(t) dt ≈ Cn

b,k−1

(
abib,k ·∆t+

1

2
∆σk × abib,k ·∆t

)
. (4.41)

Die absolute aktuelle Geschwindigkeit im Zeitdiskreten erhält man mit vn
eb,k = vn

eb,k−1 + ∆vn
eb,k,

wobei sich die gesuchte Änderung mit Gl. (4.41) zu

∆vn
eb,k =

(
Cn

b,k−1

(
abib,k +

1

2
∆σk × abib,k

)
−
((
2ωn

ie,k−1 + ω
n
en,k−1

)
× vn

eb,k−1 + gn
k−1

))
·∆t

(4.42)

ergibt.
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Berechnung der Position Der letzte Schritt ist die Positionsberechnung. Die Aktualisierung wird

dabei im zeitdiskreten Fall mittels pn
eb,k = pn

eb,k−1 + ∆pn
eb,k vorgenommen, wobei

∆pn
eb,k = vn

eb,k · ∆t gilt. Dabei ist ∆pn
eb :=

(
∆pneb,n ∆pneb,e ∆pneb,d

)T
die Positionsänderung

im Navigationskoordinatensystem. Für das Navigationsfilter in dieser Arbeit ist vor allem die absolu-

te Position im erdfesten Koordinatensystem (e-Rahmen) von Interesse. Des Weiteren ändert sich die

Orientierung des Navigationskoordinatensystems mit jedem Zeitschritt. Die Aktualisierung würde in

dem Fall

ϕk = ϕk−1 +
∆pneb,n,k
Rn + hk−1

(4.43)

λk = λk−1 +
∆pneb,e,k

(Re + hk−1) cos(ϕk−1)
(4.44)

hk = hk−1 −∆pneb,d,k (4.45)

lauten, wobei die Differenzialgleichungen

ϕ̇(t) =
vneb,n(t)

Rn + h(t)
(4.46)

λ̇(t) =
vneb,e(t)

(Re + h(t)) cos(ϕ(t))
(4.47)

ḣ(t) = −vneb,d(t) (4.48)

ausgenutzt wurden. Bei der Aktualisierung im zeitdiskreten Fall muss die Erdkrümmung explizit

berücksichtigt werden, da diese Gleichungen nur Näherungslösungen darstellen, bei denen die Nord-

Ost-Ebene des n-Rahmens mit der Tangentialebene an der Erdoberfläche übereinstimmt. Für Trajek-

torien von mehr als 2000 km, die hier allerdings nicht behandelt werden, würde diese Lösung daher

unzureichend sein.

Durch den Strapdown-Algorithmus können nun die Position, die Geschwindigkeit und die Lage

in jedem Zeitschritt mit Hilfe der inertialen Sensordaten aktualisiert werden. Da allerdings eine Reihe

weiterer Fehler wie sie auch in Kap. 2.1.4 beschrieben wurden, die Strapdown-Lösung beeinflussen,

wird auf ein zusätzliches KF zurückgegriffen. Dieses wird am Ende dieses Kapitels näher erläutert.

4.4 Das Global Positioning System

Einige Grundlagen zur satellitenbasierten Navigation wurden bereits in Kap. 2.1.1 erörtert. An dieser

Stelle soll nun kurz auf das Navstar (Navigation by satellite time and range) GPS und einige techni-

sche Details eingegangen werden. Ein großer Vorteil des GPS ist, dass die Nutzeranzahl unbegrenzt

ist und es somit kostengünstig einer Vielzahl von Anwendern zur Verfügung gestellt werden kann.

Obwohl das GPS bereits in den späten 60er Jahren entwickelt und für erste Tests Ende der 70er

Jahre in Betrieb genommen wurde, hat es sein volles Potenzial erst in den letzten Jahren erreicht. Es

wird durch modernere Satelliten stetig verbessert [KH05]. Aktuell sind bis zu 27 Satelliten in Be-

trieb, wobei jeder die zwei Trägerfrequenzen L1 = 1575,42MHz und L2 = 1227,6MHz verwendet.

Jede ist mit ein oder zwei Signalen mittels Code Division Multiple Access (CDMA) moduliert. Dabei

handelt es sich um Pseudozufallsfolgen, die jedem Satelliten eindeutig zugeordnet sind. Während die

Coarse/Aquisition (C/A)-Folge eine Chiprate von 1,023MHz hat und für den so genannten Standard-

lokalisierungsservice (engl. Standard Positioning Service (SPS)) verwendet wird, der jedem Nutzer
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frei zugänglich ist (Zivilnutzung), hat die P-Folge eine Frequenz von 10,23MHz und ist für den prä-

zisen Lokalisierungsservice (engl. Precise Positioning Service (PPS)) verantwortlich. Der PPS war

bis vor einigen Jahren ausschließlich dem Militär vorbehalten. Die P-Folge ist auf beide Trägerfre-

quenzen aufmoduliert, die C/A-Folge jedoch nur auf L1. Für eine Verschlüsselung der P-Folge wird

ein weiterer Code verwendet, der eine Chiprate von 511,5 kHz hat. Es werden auch weitere Naviga-

tionsdaten mit einer Bitrate von 50/s auf das Trägersignal über eine Phasenmodulation aufmoduliert.

Diese Daten enthalten Informationen über spezifische Fehler von Satelliten, deren interne Uhren nach

und nach mehr von der idealen Uhrzeit abweichen können. Diese Nachrichten können auch Bahnda-

ten enthalten, d. h. Informationen über die Umlaufbahn des jeweiligen Satelliten. Dieses sind zum

einen Almanachdaten, die grobe Bahninformationen beinhalten und dem Nutzer helfen sollen festzu-

stellen, welche Satelliten zur Navigation verwendet werden können. Die Ephemeridendaten dagegen

enthalten detaillierte Satellitenbahninformationen. Weitere Daten sind dafür vorgesehen, Fehler zu

kompensieren, die durch die Übertragung über verschiedene atmosphärische Schichten auftreten.

Fehlerquellen Man kann die Fehler in Non-Common-Mode- und Common-Mode-Fehler eintei-

len. Die Non-Common-Mode-Fehler hängen vom Empfangsgerät selbst (z. B. durch die integrierten

Schaltkreise) oder der jeweiligen Empfangssituation ab. Zu ihnen zählen vor allem empfängerseiti-

ge Zeitfehler, Empfängerrauschen sowie Fehler aufgrund der Mehrwegeausbreitung des Signals. Die

Common-Mode-Fehler sind typischerweise Uhrenfehler auf Seite der Satelliten, Verzögerungen, die

auf die Atmosphäre zwischen Erde und Satelliten zurückzuführen sind, Fehler aufgrund der Ephe-

meridendaten oder auch künstlich generierte Fehler. Letztere wurden in Krisenzeiten vom amerika-

nischen Militär eingesetzt, sind heute aber nur noch von geringer Bedeutung. Die Details zu den ver-

schiedenen Fehlerarten werden im Anhang A ausführlicher erläutert. Der detaillierte Systemaufbau

ist u. a. in [TW04] beschrieben.

Protokolle Üblicherweise verwenden die momentan am Markt verfügbaren GPS-Empfänger ein

einheitliches Protokoll, das von annähernd jeder Navigationssoftware interpretiert werden kann. Das

so genannte NMEA-0183 Protokoll ist ein Standard, der es erlaubt, die empfangenen Daten im

American Standard Code for Information Interchange (ASCII)-Format bereitzustellen. Die Ausgabe

erfolgt zeilenweise in Blöcken, wobei ein dem Block vorangestellter Bezeichner festlegt, welche

Daten in dem nachfolgenden Datensatz zu finden sind. Es kann sich dabei um Daten über die Satel-

litenkonstellation, die Anzahl der sichtbaren Satelliten, Positons- und Geschwindigkeitsschätzungen

sowie auch Informationen über die Restunsicherheit der Daten nach der empfängerinternen Filterung

handeln. Details zu den verschiedenen NMEA-Datensätzen können [NME] entnommen werden. Im

Rahmen der vorliegenden Arbeit wird auf die NMEA-Sätze GPGGA, GPGSA, GPGST und GPGBS

sowie auf zwei der proprietären ublox-Sätze PUBX zurückgegriffen. Diese sind der PUBX00- und

der PUBX04-Datensatz. Die Tab. A.1 (a) und A.1 (b) im Anhang zeigen Beispiele der jeweiligen

Datensätze. In der Tab. 4.3 sind außerdem die vom Hersteller Navilock angegebenen wichtigsten

technischen Daten des mit einem ublox-Chipsatz bestückten GPS-Empfängers zu finden.

4.5 Fehlermodelle für inertiale Sensoren

In Kap. 2.1.4 wurden bereits die typischen Fehler vorgestellt, die im Zusammenhang mit einer IME

auftreten können. An dieser Stelle soll eine mathematische Beschreibung folgen. Der Einfachheit
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Parameter Wert

Maximale Aktualisierungsfrequenz 4Hz

Maximale Anzahl verwendeter Kanäle 50

Horizontale Positionsgenauigkeit σGPS;p,n bzw. σGPS;p,e 2,1m

Vertikale Positionsgenauigkeit σGPS;p,d 4,0m

Geschwindigkeitsgenauigkeit σGPS;v 0,1m/s

Tabelle 4.3: Empfängereigenschaften des Navilock NL-402U

halber werden in der Literatur [TW04] vor allem das inhärente und thermische Rauschen, vibrations-

induziertes Rauschen oder die parasitären Biaseffekte durch stochastische Zufallsprozesse modelliert.

Wir nehmen an, dass n(t) ein reellwertiger, weißer GAUSS-verteilter Rauschvektor mit

n(t) ∈ RD ist. Damit gilt für die Wahrscheinlichkeitsdichtefunktion p(n(t)) mit dem Mittelwert-

vektor µn := E [n(t)] (erstes zentrales Moment nach dem zentralen Grenzwertsatz) und der Kovari-

anzmatrix Q
′
:= E

[
(n(t)− µn) · (n(t)− µn)

T
]

(zweites zentrales Moment):

p(n(t)) = N (n(t);µn,Q
′
) =

1√
(2π)D · det{Q′}

· e
(

− 1
2
(n(t)−µn)

T
(

Q
′
)−1

(n(t)−µn)

)

. (4.49)

Unter der Annahme, dass beide Momente über die Zeit konstant sind, ist n(t) stationär. In dieser

Arbeit steht jedoch die Annahme im Vordergrund, dass für bestimmte Prozesse das zweite zentrale

Moment zeitvariant ist, d. h. Q
′ → Q

′
(t), also n(t) instationär ist.

Nimmt man an, dass eine Orthogonalität der Sensorachsen durch Kalibrierungsmaßnahmen vor-

handen ist, so reduziert sich die Matrix mit den spektralen Leistungsdichten auf eine Diagonalmatrix,

denn die einzelnen Komponenten von n(t) können als voneinander statistisch unabhängig und gleich-

verteilt angesehen werden mit E
[
n(i

′)(t) · n(i′′)(t)
]
= 0 für i′ 6= i′′ und i′, i′′ = 1, ...,D. Die Kali-

brierungsfaktoren, die als annähernd statisch angenommen werden können, werden in [Wen07] und

[TW04] durch eine Skalierungsmatrix S berücksichtigt. Dies ist möglich, sofern man davon ausgeht,

dass die entsprechenden Faktoren weder temperaturabhängig sind noch durch die Anregung selbst

variieren können. Die Skalierungsmatrix hat i. d. R. folgende Form:

S =



sx s̄xy s̄xz
s̄yx sy s̄yz
s̄zx s̄zy sz


 . (4.50)

Sie besteht auf ihrer Hauptdiagonalen aus den Skalierungsfaktoren sx,y,z , die für jeden Freiheitsgrad

die Abweichung von der jeweiligen idealen Kennlinie beschreiben (siehe Abb. 2.2), und auf den

Nebendiagonalen aus den Fehlausrichtungsfaktoren, gekennzeichnet durch das zusätzliche (¯). Diese

bestimmen die Nichtorthogonalität, die z. B. vorhanden ist, wenn eine Drehung um die z-Achse in

die Sensorwerte einkoppelt, die eigentlich zur y-Achse gehören.

Kommen wir noch einmal zurück zur Modellierung des inhärenten Rauschens und nehmen für

die folgende Betrachtung im Zeitbereich an, dass die einzelnen Werte um den Nullpunkt streuen,

d. h. µn = 0D×1 (Nullvektor der Dimension [D × 1]) ist, und dass n(t) zunächst stationär ist.

Die Autokorrelationsfunktion (AKF) r
n(i′)n(i′)(τ) := E

[
n(i

′)(t1) · n(i
′)(t2)

]
der i′-ten Komponente
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hängt nur von der Zeitdifferenz τ := t2 − t1 ab. Unter der Annahme, dass n(t) ein weißer Prozess

ist, also für ein beliebig kleines Zeitintervall τ > 0 die Elemente n(i
′)(t) und n(i

′)(t + τ) unkorre-

liert und nicht selbstähnlich sind, folgt r
n(i′)n(i′)(τ) = q

′(i′) · δ(τ), wobei δ hier den Dirac-Impuls

kennzeichnet. Durch die FOURIER-Transformierte (FT) von r
n(i′)n(i′)(τ) ist dann das LDS gegeben:

R
n(i′)n(i′)(jω) :=

∞∫

−∞

r
n(i′)n(i′)(τ) · e−jωτdτ. (4.51)

Aus (4.51) resultiert die i′-te Komponente q
′(i′) der Leistungsdichte.

Für eine zeitdiskrete Beschreibung des Rauschens zum Zeitpunkt tk = t0 + k · ∆t mit dem

Abtastintervall ∆t und k ∈ Z gilt

n
(i′)
k := n(i

′)(tk) =
1

∆t

tk−1+∆t∫

tk−1

n(i
′)(τ)dτ (4.52)

und für die zugehörige Varianz

q(i
′) := E




1

∆t2

tk−1+∆t∫

tk−1

tk−1+∆t∫

tk−1

n(i
′)(τ1)n

(i′)(τ2)dτ1dτ2




=
1

∆t2

tk−1+∆t∫

tk−1

tk−1+∆t∫

tk−1

q
′(i′) · δ(τ2 − τ1)dτ1dτ2 =

1

∆t2

tk−1+∆t∫

tk−1

q
′(i′)dτ =

q
′(i′)

∆t
. (4.53)

Die Abhängigkeit der Varianz von der Abtastzeit führt dazu, dass zur Charakterisierung des inhä-

renten Sensorrauschens häufig die Wurzel der spektralen Leistungsdichte q
′(i′), welche unabhängig

von ∆t ist, in Datenblättern verwendet wird. Bei Beschleunigungssensoren spricht man dabei vom

Velocity Random Walk (V RW ), der üblicherweise in [m/(s2 ·
√
Hz)] angegeben wird. Bei Drehraten-

sensoren wird der Parameter als Angle Random Walk (ARW ) mit der Angabe in [°/(s ·
√
Hz)] = [°/

√
s]

bezeichnet.

Neben dem inhärenten Rauschen soll das weiße GAUSS-verteilte Rauschen auch verwendet wer-

den, um zeitveränderliche und temperaturabhängige Bias bzw. zeitvariante Drifte geeignet zu model-

lieren. In [Wen07] wird dafür ein GAUSS-MARKOV-Prozess (GMP) oder ein Zufallsbewegungspro-

zess (engl. Random Walk Process (RWP)) vorgeschlagen. Dabei gilt für das Bias die Differenzialglei-

chung

ḃ(t) :=
∂b(t)

∂t
= nb(t). (4.54)

Hierbei ist nb(t) :=
(
nb,x(t) nb,y(t) nb,z(t)

)T
additives mittelwertfreies, weißes GAUSS’sches

Rauschen, dessen Kovarianzmatrix mit Q
′

b bezeichnet werden soll. Gl. (4.54) ist das Modell eines

RWP. Während nb(t), das treibende weiße Rauschen, stationär ist, ist b(t) instationär [Neu05]. Seine

Varianz nimmt linear mit der Zeit zu.

Fassen wir nun die bisherigen Betrachtungen in einem Modell zusammen, so erhält man entspre-

chend [Wen07] durch Überlagerung der Prozesse für einen Drehratensensor die Gleichung

ω̃
b
ib(t) = Sω · ωb

ib(t) + bω(t) + nω(t) (4.55)
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mit nω(t) ∼ N (nω(t);03×1 ,Q
′

ω) und

ḃω(t) = nbω
(t) (4.56)

mit nbω
(t) ∼ N (nbω

(t);03×1 ,Q
′

bω
), wobei ωb

ib(t) :=
(
ωb
ib,x(t) ω

b
ib,y(t) ω

b
ib,z(t)

)T
die idealen

Winkelgeschwindigkeiten der x-, y- und z-Achse enthält und durch (˜) die Messgröße bezeichnet

wird. Da die Skalierungsmatrix Sω seitens des Sensorherstellers auch vorab bestimmt werden kann,

ist an Stelle von Gl. (4.55) für die korrigierten Sensorausgangssignale die Gleichung

ω̃
b
ib(t) = ω

b
ib(t) + bω(t) + nω(t) (4.57)

möglich. Die entsprechenden Modelle für die Beschleunigungssensortriade lauten

ãbib(t) = abib(t) + ba(t) + na(t) (4.58)

ḃa(t) = nba
(t) (4.59)

mit na(t) ∼ N (na(t);03×1 ,Q
′

a) und nba
(t) ∼ N (nba

(t);03×1 ,Q
′

ba
), wobei die idealen Beschleu-

nigungen im b-Rahmen in abib(t) :=
(
abib,x(t) a

b
ib,y(t) a

b
ib,z(t)

)T
zusammengefasst sind und ba(t)

der zugehörige Biasvektor ist.

Um aus den zeitkontinuierlichen Modellen nun zeitdiskrete Zusammenhänge abzuleiten, betrach-

ten wir wieder Gl. (4.54). Durch den Differenzenquotienten lässt sich die zeitliche Ableitung als

Grenzwert annähern:

nb(tk) = ḃ(t)
∣∣∣
t=tk

≈ bk − bk−1

∆t
, (4.60)

wobei durch Auflösen nach bk mit nb,k := nb(tk) und ∆t = tk − tk−1 der Zusammenhang

bk = bk−1 + ∆t · nb,k resultiert. Für den Rauschterm kann hierbei nb,k ∼ N (nb,k;03×1 ,Qb) mit

Qb =
Q

′

b
∆t verwendet werden.

Nach diesen Betrachtungen können nun, ausgehend von den o. g. vereinfachten Modellgleichun-

gen, die äquivalenten zeitdiskreten Gleichungen sowohl für die Drehratensensortriade als auch für die

Beschleunigungssensortriade angegeben werden:

ω̃
b
ib,k = ω

b
ib,k + bω,k + nω,k (4.61)

bω,k = bω,k−1 +∆t · nbω ,k
, (4.62)

wobei nω,k ∼ N (nω,k;03×1 ,Qω), nbω ,k
∼ N (nbω ,k

;03×1 ,Qbω
) und

ãbib,k = abib,k + ba,k + na,k (4.63)

ba,k = ba,k−1 +∆t · nba,k (4.64)

mit na,k ∼ N (na,k;03×1 ,Qa), nba,k
∼ N (nba,k

;03×1 ,Qba
) gilt. Dabei ist Qω = Q

′
ω

∆t , Qa = Q
′
a

∆t

sowie Qbω
=

Q
′

bω
∆t und Qba

=
Q

′

ba
∆t .

Wie bereits erwähnt, sind die bisherigen Ausführungen zu den Messmodellen in den Gl. (4.61)–

(4.64) unter der Annahme durchgeführt worden, dass das Messrauschen in nω und na jeweils ei-

ner Verteilung mit konstanter Kovarianzmatrix entstammt. In der Realität ist es jedoch schwierig,
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sämtliche Effekte, die die Messungen beeinflussen, in ein geschlossenes Gleichungssystem zu brin-

gen. Auch die herstellerseitige Kalibrierung kann nicht zu einer vollständigen Eliminierung von

Skalierungs- oder Fehlausrichtungsfehlern führen. Restfehler verbleiben und dadurch treten in den

meisten Fällen weiterhin Korrelationen zwischen den Messwerten einzelner Sensorachsen auf. Au-

ßerdem sind im Rahmen einer fahrzeugbasierten Anwendung die Inertialsensoren z. T. starken Vibra-

tionen ausgesetzt, die als zusätzliches Rauschen in den Messwerten auftauchen. Diese Vibrationen be-

sitzen teilweise eine bestimmte Eigenfrequenz (z. B. durch den Motor) und können somit nicht durch

einen weißen Rauschprozess mit konstantem LDS modelliert werden. Es treten zeitliche Korrelatio-

nen auf, die durch die Modellierung in Gl. (4.61) oder (4.63) häufig nicht ausreichend erfasst sind.

Ein gängiges Verfahren zur Berücksichtigung dieser Korrelationen ist die Modellierung des Rausch-

prozesses selbst durch einen RWP oder GMP. Das Sensorrauschen in (4.61) bzw. (4.63) würde im

zeitdiskreten Fall durch

nω,k = Dnω
· nω,k−1 + Γnω

· ηω,k (4.65)

na,k = Dna
· na,k−1 + Γna

· ηa,k (4.66)

modelliert werden können, wobei nun ηω und ηa als weißes GAUSS-verteiltes Rauschen mit

ηω,k ∼ N (ηω,k;03×1 ,Qηω
) und ηa,k ∼ N (ηa,k;03×1 ,Qηa

) angenommen wird. Die Matrizen Γnω
und Γna

würden hier aus Kombinationen von Einheits- und Nullmatrizen bestehen. Die Differenzial-

gleichung, aus der (4.65) und (4.66) hervorgehen, würde im Fall eines GMP erster Ordnung durch

ṅ†(t) = A† · n†(t) +B† · η†(t) (4.67)

mit † ∈ {ω, a} beschreibbar sein, wobei auf der Hautpdiagonalen der Matrix B† die Terme σ†

√
2
tc

mit tc als Korrelationszeit stehen [Wen07]. Für die Matrix A† gilt A† = − 1
tc
I3×3 . Die AKF ist

dabei r
η
(i′)

† η
(i′)

†

(τ) = 1 · δ(τ) für i′ ∈ {1, 2, 3} und σ† die Standardabweichung des GMP. Die

Elemente auf der Hauptdiagonalen von Dn†
würden in diesem Fall durch die Terme e

−∆t
tc gegeben

sein. Diese Modellierung ist auch bei einem zeitkorrelierten Rauschen hilfreich, wie es bei GPS-

Messungen auftritt. Auch dieses ist nach [TW04] durch ein Modell erster oder zweiter Ordnung meist

hinreichend beschrieben.

Geht man allerdings von einer bekannten Differenzialgleichung nach (4.67) aus, deren zeitdiskre-

tes Äquivalent sowie dessen Parameter bestimmt werden sollen, so gilt nach [Wen07] annähernd

Γn†
Qη†

ΓT
n†

= Γn†
E
[
η†,kη

T
†,k
]
ΓT
n†
≈ 1

4
∆t
(
I3×3 +Dn†

)
B†Q

′

η†
BT

†
(
I3×3 +Dn†

)T
(4.68)

≈ ∆tQ
′

η†
, (4.69)

wobei η†(t) ∼ N
(
η†(t);03×1 ,Q

′

η†

)
. Dabei enthält Q

′

η†
:= diag

(
q′
η†

)
die spektralen Leistungs-

dichten des Rauschvektors η†(t). Dieser Zusammenhang resultiert aus der Reihenentwicklung der

Matrixexponentialfunktion, wobei das Integral in (4.70) durch eine unendliche Reihe mit Abbruch

nach dem linearen Glied angenähert wird:

n†,k = eA†(tk−tk−1)

︸ ︷︷ ︸
Dn

†

n†,k−1 +

tk−1+∆t∫

tk−1

eA†(tk−τ)
B†η†(τ)dτ. (4.70)
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Mit Dn†
= eA†(tk−tk−1) ist dieses das zeitdiskrete Äquivalent zu Gl. (4.67). Dieser Zusammenhang

ist für die inertiale Fehlerfilterung in Kap. 5 von Bedeutung, um von den dort verwendeten Bewe-

gungsdifferenzialgleichungen auf die zeitdiskrete Modellierung im Rahmen der Filterung schließen

zu können. Den Zustandsvektor könnte man dabei um genau die Terme in Gl. (4.65) bzw. Gl. (4.66)

erweitern. Dies wäre allerdings mit einem erhöhten Rechenaufwand verbunden. Hinzu kommt, dass

u. U. numerische Probleme auftreten können und diese zusätzlichen Zustände durch die Messungen

auch häufig nicht beobachtbar sind, wie in [Wen07] beschrieben wird. Um eine Erweiterung des Vek-

tors zu vermeiden, existiert allerdings eine alternative Möglichkeit.

In Kap. 4.6 werden Filtergleichungen vorgestellt, die die zeitlichen Korrelationen ohne diese Er-

weiterung berücksichtigen können. Dabei müssen jedoch Kenntnisse über die Zustandsübergangsma-

trizen Dnω
und Dna

des Rauschprozesses vorhanden sein. Ist die Korrelationszeit tc nicht bekannt, ist

eine Schätzung dieser Matrizen möglich, indem man den Erwartungswert E
[
n†,kn

T
†,k−1

]
berechnet:

E
[
n†,kn

T
†,k−1

]
= Dn†

E
[
n†,k−1n

T
†,k−1

]
+ Γn†

E
[
η†,kn

T
†,k−1

]
. (4.71)

Da das zeitkorrelierte Rauschen n†,k−1 nicht mit dem weißen Rauschen η†,k korreliert ist, verschwin-

det der letzte Term in (4.71). Mit Hilfe von Stichproben aus K Messwerten resultiert nach [Upt08]

für den ML-Schätzwert mit BESSEL-Korrektur zur Gewährleistung der Erwartungstreue

1

K − 2

K∑

k=2

n†,kn
T
†,k−1 = Dn†

1

K − 2

K∑

k=2

n†,k−1n
T
†,k−1 (4.72)

und damit die Schätzung

D̂n†
=

(
K∑

k=2

n†,kn
T
†,k−1

)
·
(

K∑

k=2

n†,k−1n
T
†,k−1

)−1

. (4.73)

Auf die Wahl der entsprechenden Parameter bei Verwendung von Felddaten wird in Kap. 5 im Rah-

men der Fehlerfilterung nochmal eingegangen. Setzt man nun die Schätzung D̂n†
in (4.65) bzw. (4.66)

ein, so kann man auch die Kovarianzmatrizen Qηω
bzw. Qηa

abschätzen. Mit Hilfe der Modelle in

(4.65), (4.66) können jedoch zeitliche Veränderungen nur ungenau nachgebildet werden, vor allem

dann, wenn die Zustandsübergangsmatrizen als konstant (zeitinvariant) angenommen werden. Die-

se zeitlichen Abhängigkeiten könnten durch GMP höherer Ordnung mit Hilfe der YULE-WALKER-

Gleichungen beschrieben werden, haben aber auch den Nachteil, dass der daraus resultierende Zu-

standsvektor des autoregressiven Prozesses leicht eine sehr hohe Dimension erreichen würde [TW04].

Alternativ könnten für das hier verwendete Modell eine zeitvariante Zustandsübergangsmatrix und

eine konstante Kovarianzmatrix Qη†
angenommen werden. Um Dn†

zu schätzen, müsste das zeitkor-

relierte Rauschen n† dann jedoch zu jedem Zeitpunkt annähernd bekannt sein. Dieser Ansatz soll im

Rahmen des in dieser Arbeit vorgestellten Parameterschätzverfahrens jedoch nicht verfolgt werden.

Eine Möglichkeit, die Zeitvarianz in (4.65) oder (4.66) dennoch zu berücksichtigen, ist die Annah-

me von zeitvarianten Messrauschkovarianzmatrizen, d. h. man überführt Qηω
→ Qηω ,k

und Qηa
→

Qηa,k
. Dies könnte ebenso in (4.61) und (4.63), im Fall von zeitlich nicht korreliertem Rauschen,

angenommen werden: Qω → Qω,k und Qa → Qa,k. Sequenzielle Verfahren, die diese zeitvarianten

Kovarianzmatrizen schätzen, werden in Kap. 7 vorgestellt. Auf entsprechende Ansätze für biastrei-

bendes Rauschen wird verzichtet, da hier von sich zeitlich sehr langsam veränderlichen Prozessen
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ausgegangen wird. Es wird angenommen, dass sich diese durch RWP mit konstanten Kovarianzma-

trizen Qbω
bzw. Qba

ausreichend modellieren lassen. Des Weiteren führt die hier eingesetzte MTi-

Sensoreinheit eine Biaskorrektur im Rahmen einer internen Signalverarbeitung durch, wodurch das

jeweilige Bias bereits im Vorfeld reduziert wird.

4.6 Zustands- und Parameterschätzung

Nachdem bereits die wichtigsten Grundlagen der inertialen Navigation behandelt worden sind, sollen

nun die wesentlichen Punkte der KALMAN-Filterung vorgestellt werden, da dieses für die Datenfu-

sion eingesetzt wird. Wie bereits in Kap. 2 erwähnt, existieren verschiedene Formen des KF, wobei

hier nicht jede im Detail behandelt werden soll. Es ist aber von Bedeutung, dass sich die Wahl des

Filters nach dem Anwendungsfall und dem System- bzw. Messmodell richtet, welches jeweils li-

near oder nichtlinear sein kann. Das von RUDOLF E. KALMAN entwickelte zeitvariante Verfahren,

das die Schätzung des Zustandes eines dynamischen Systems erlaubt, wird in [Kal60], [KSH01] und

[RAG04] detailliert beschrieben. Hier spielt eine indirekte Variante der KALMAN-Filterung eine Rol-

le, die nicht den Systemzustand, sondern dessen Fehler schätzt. Mit diesem kann der eigentliche

Systemzustand dann korrigiert werden. Dieses wird in 4.6.2 näher betrachtet.

4.6.1 KALMAN-Filter

Beim KF-Algorithmus wird eine lineare oder nichtlineare Systembeschreibung, z. B. in der Form

einer Differenzialgleichung entsprechend

ẋ(t) = F(t) · x(t) + u(t) +G(t) · n(t) oder ẋ(t) = f (x(t),u(t)) +G(t) · n(t) (4.74)

benötigt, wobei die Vektoren x(t) und n(t) den Systemzustandsvektor und den Systemrauschvek-

tor beschreiben. Der Steuervektor u(t) kann ggf. entfallen. Die Vektoren sind über die System-

matrix F(t) sowie die Störmatrix G(t) miteinander verknüpft. Mit Hilfe geeigneter Initialwerte

lassen sich mit Gl. (4.74) sämtliche Folgezustände berechnen. Von der Störgröße ist der eigent-

liche Wert i. d. R. nicht bekannt. Allerdings können die statistischen Eigenschaften dieses Terms,

der die Modellunsicherheit beschreibt, unabhängig von den Betrachtungen im vorigen Kapitel über

beispielsweise Langzeitmessungen bestimmt werden. In vielen Fällen geht man davon aus, dass

n(t) ∼ p(n(t)) = N (n(t);0D×1 ,Q
′
) gilt, die Störgröße demnach weißes GAUSS-verteiltes Rau-

schen mit der Kovarianzmatrix Q
′

ist. Im Fall von zeitkorreliertem Rauschen kann wiederum ein

Ansatz nach Gl. (4.65), (4.66) verwendet werden.

Der Zusammenhang zwischen dem Systemzustand und einer vorliegenden Messung z(t) kann

über

z(t) = H(t) · x(t) +M(t) ·w(t) oder z(t) = h (x(t)) +M(t) ·w(t) (4.75)

beschrieben werden, wobei die Messmatrix H(t) den linearen Zusammenhang zwischen Messung

und Zustand widerspiegelt und h (x(t)) einen nichtlinearen Zusammenhang beschreibt. Die Matrix

M(t) sei hier die diejenige, die den Einfluss des Messrauschvektors auf den Messvektor beschreibt.

Das KF liefert neben einer Schätzung des Systemzustandes x̂(t|t) = E [x(t)| z(1), . . . , z(t)]
auch eine Angabe über die Zuverlässigkeit der Schätzung mit Hilfe der Schätzfehlerkovarianzma-

trix. Diese lautet P(t|t) := E
[
(x(t)− x̂(t))(x(t)− x̂(t))T

∣∣ z(1), . . . , z(t)
]
. Ist das Messrauschen
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zeitlich unkorreliert, so wird für die Wahrscheinlichkeitsdichte p(w(t)) = N (w(t);0D×1 ,R
′
) ange-

nommen. Im Falle von zeitkorreliertem Messrauschen ist wieder ein zu (4.65) oder (4.66) äquivalenter

Ansatz zu wählen.

Um ein zeitdiskretes Filter verwenden zu können, müssen die vorliegenden zeitkontinuierlichen

Gleichungen in den zeitdiskreten Bereich transformiert werden. Die Systemgl. (4.74) und die

Messgl. (4.75) gehen mit xk := x(tk) und zk := z(tk), tk = t0 + k ·∆t im linearen Fall in

xk = Φk · xk−1 +Gk · nk (4.76)

zk = Hk · xk +Mk ·wk (4.77)

über, wobei Q = Q
′

∆t hier die Rauschkovarianzmatrix des Vektors nk ist. Entsprechend kann man für

die Systemmatrix und die Störmatrix analog zu (4.68) und (4.70)

Φk = eF(tk)·(tk−tk−1) ≈ ID×D + F(tk) ∆t (4.78)

Gk =
1

2

(
ID×D +Φk

)
G(tk)∆t ≈ G(tk) ∆t (4.79)

folgern.

Die KF-Gleichungen basieren schließlich auf einer Betrachtung des Orthogonalitätsprinzips in

zwei Schritten: dem Propagationsschritt und dem Aktualisierungsschritt. Details zu den Gleichungen

sind in [RAG04], [Wen07], [Frä05] und [FB99] zu finden. Wenn nk in (4.76) und wk in (4.77) nicht

weiß sind und aufgrund zeitlicher Korrelationen durch die Gleichungen

nk = Dn · nk−1 + Γn · ηk (4.80)

wk = Dw ·wk−1 + Γw · νk (4.81)

dargestellt werden können, wobei ηk ∼ N (ηk;03×1 ,Qη,k) und νk ∼ N (νk;03×1 ,Rν) gilt, dann

lassen sich mit

x̌k :=
(
xT
k nT

k wT
k

)T
(4.82)

folgende erweiterte Zustands- und Messgleichungen angeben:

x̌k =




Φk Gk ·Dn 03×3

03×3 Dn 03×3

03×3 03×3 Dw




︸ ︷︷ ︸
Φ̌k

· x̌k−1 +



Gk · Γn 03×3

Γn 03×3

03×3 Γw




︸ ︷︷ ︸
Ǧk

· ňk (4.83)

zk =
(
Hk 03×3 Mk

)

︸ ︷︷ ︸
Ȟk

· x̌k. (4.84)

Die Matrizen Γn und Γw seien konstant und beschreiben den Zusammenhang zwischen dem trei-

benden Rauschen und dem jeweiligen zeitlich korrelierten Rauschen. Die ebenfalls als konstant an-

genommenen Matrizen Dn und Dw definieren den Zustandsübergang für die jeweiligen Rauschpro-

zesse zum Zeitpunkt k. Der additive Messrauschterm ist in dem Modell (4.83) nun Teil des System-

rauschvektors ňk =
(
η
T
k ν

T
k

)T
. Dieser ist weiß, so dass ein lineares KF als optimaler Schätzer der
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a posteriori-Verteilung p ( x̌k| z1, . . . , zk) verwendet werden kann. Die KF-Gleichungen lauten:4

ˆ̌xk|k−1 = Φ̌k
ˆ̌xk−1|k−1 (4.85)

P̌k|k−1 = Φ̌kP̌k−1|k−1Φ̌
T
k + ǦkQ̌kǦ

T
k (4.86)

Kk = P̌k|k−1Ȟ
T
k ·
(
ȞkP̌k|k−1Ȟ

T
k

)−1
(4.87)

ˆ̌xk|k = ˆ̌xk|k−1 +Kk

(
zk − Ȟk

ˆ̌xk|k−1

)
(4.88)

P̌k|k = P̌k|k−1 −KkȞkP̌k|k−1. (4.89)

Dabei ist Q̌k := E
[
ňkň

T
k

]
. Die Matrix P̌k−1|k−1 stellt hier die zu ˆ̌xk−1|k−1 gehörende Schätzfeh-

lerkovarianzmatrix des vorherigen Aktualisierungsschrittes dar, nachdem die zu dem Zeitpunkt vor-

handenen Messungen verarbeitet worden sind. Kk ist der KALMAN-Gewinn (engl. KALMAN-Gain).

Eine alternative Behandlung von zeitlich korreliertem System- und Messrauschen nach den

Gl. (4.76) und (4.77), die die Erweiterung des Zustandsvektors gemäß (4.82) und damit den erhöhten

Rechenaufwand weitgehend vermeidet, wurde in [Wen07] vorgestellt. Der Schätzer ist bezüglich des

mittleren quadratischen Fehlers ebenfalls optimal. Die zugehörigen Schätzgleichungen lauten:

x̂k|k−1 = Φkx̂k−1|k−1 (4.90)

Pk|k−1 = ΦkPk−1|k−1Φ
T
k +ΦkPxn,k−1|k−1D

T
nG

T
k +GkDnP

T
xn,k−1|k−1Φ

T
k

+GkDnPnn,k−1D
T
nG

T
k +GkΓnQη,kΓ

T
nG

T
k

= ΦkPk−1|k−1Φ
T
k +GkDnP

T
xn,k−1|k−1Φ

T
k +Pxn,k|k−1G

T
k (4.91)

Pxn,k|k−1 = ΦkPxn,k−1|k−1D
T
n +GkDnPnn,k−1D

T
n +GkΓnQη,kΓ

T
n (4.92)

Pxw,k|k−1 = ΦkPxw,k−1|k−1D
T
w (4.93)

Pnn,k = DnPnn,k−1D
T
n + ΓnQη,kΓ

T
n (4.94)

Pww,k = DwPww,k−1D
T
w + ΓwRνΓ

T
w (4.95)

Kk =
(
Pk|k−1H

T
k +Pxw,k|k−1M

T
k

)

·
(
HkPk|k−1H

T
k +HkPxw,k|k−1M

T
k +MkP

T
xw,k|k−1H

T
k +MkPww,kM

T
k

)−1

(4.96)

x̂k|k = x̂k|k−1 +Kk

(
zk −Hkx̂k|k−1

)
(4.97)

Pk|k = Pk|k−1 −KkHkPk|k−1 −KkMkP
T
xw,k|k−1 (4.98)

Pxn,k|k = Pxn,k|k−1 −KkHkPxn,k|k−1 (4.99)

Pxw,k|k = Pxw,k|k−1 −KkHkPxw,k|k−1 −KkMkPww,k. (4.100)

Der Berechnungsaufwand kann somit deutlich verringert werden, sofern ein Schätzwert für nk oder

wk nicht benötigt wird. Eine ausführliche Herleitung ist in Anhang B.2 aufgeführt. Durch den Ver-

zicht auf die Vektorerweiterung können die zeitkorrelierten Terme nicht bei der Prädiktion des Sys-

temzustandes xk in Gl. (4.90) sowie der Innovation in (4.97) berücksichtigt werden. Pk−1|k−1 stellt

4Durch (. . . )k|k−1 wird eine Größe kenntlich gemacht, die nach Verarbeitung der Messung zum Zeitpunkt k − 1 für

den aktuellen Zeitpunkt k prädiziert wird. Entsprechend ist (. . . )k|k eine Größe zum Zeitpunkt k, nachdem sämtliche

Beobachtungen bis zum aktuellen Zeitpunkt verarbeitet wurden.
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hier die zu x̂k−1|k−1 gehörende Schätzfehlerkovarianzmatrix des vorherigen Aktualisierungsschrittes

dar, nachdem die zu dem Zeitpunkt vorhandenen Messungen verarbeitet worden sind. Entsprechend

sind Pxn,k|k−1 und Pxw,k|k−1 die prädizierten Kovarianzmatrizen zwischen dem Systemzustandsfeh-

ler ∆xk|k−1 := xk− x̂k|k−1 und dem jeweiligen Rauschvektor und Pnn,k, Pww,k die Autokovarianz-

matrizen der zeitkorrelierten Rauschvektoren. An dieser Stelle gelte des Weiteren Qη,k := E
[
ηkη

T
k

]

und Rν := E
[
νkν

T
k

]
. Während Qη,k also als zeitvariant angenommen wird, soll die Kovarianzma-

trix Rν , die das Messrauschen treibt, zeitinvariant sein. Wenn Dn und Dw Nullmatrizen sind, also

kein zeitkorreliertes Rauschen vorliegt, gehen die Gl. (4.90) bis (4.100) wieder in die klassischen KF-

Gleichungen über. Neben dem klassischen KF wird hier das LKF verwendet, welches in Kap. 4.6.2

vorgestellt wird.

Betrachtet man die Herleitung des KF im Detail [RAG04], so lassen sich einige Eigenschaften

formulieren, die im Rahmen dieser Arbeit von großer Bedeutung sind. Wie bereits erwähnt, stellt das

klassische KF im BAYES’schen Sinne den optimalen MMSE-Schätzer für ein System dar, das sich

durch lineare Zustandsübergänge und eine lineare Messgleichung beschreiben lässt. Es handelt sich

um einen wirksamen und erwartungstreuen Schätzer. Im Mittel stimmen die geschätzen Größen mit

den tatsächlichen Zuständen überein und es wird eine Schätzung mit einer möglichst geringen Vari-

anz gewonnen. Das Filter liefert allerdings nicht nur einen Punktschätzwert, sondern die komplette

a posteriori-Verteilung des Zustandes zu einem bestimmten Zeitpunkt gegeben alle bisherigen Beob-

achtungen. Wenn man das Filter für t → ∞ beobachtet, so ist der notwendige Initialisierungsvektor

x̂0 sowie die Matrix P0 nicht mehr relevant für die Schätzung.

4.6.2 Fehlerfilter

In einem Fehlerfilter (FF) werden nicht physikalische Größen direkt, sondern deren Fehler als Zu-

standsgrößen des Filters verwendet. Hier wird ein FF auf Basis des linearisierten KALMAN-Filters

(LKF) betrachtet. Die eigentlich interessierende zu schätzende Größe liegt dabei außerhalb des Fil-

ters und wird durch Rückführung des Filterausgangs auf diese Größe korrigiert, weshalb man auch

von einer indirekten KALMAN-Filterung spricht (siehe Abb. 4.5). Im Folgenden wird bei der zu in-

teressierenden Größe auch vom „äußeren Systemzustand“ gesprochen, während der Ausgang ∆x des

LKF auch als „innerer Systemzustand“ bezeichnet wird. Dieser kann (aber muss nicht) auch Schät-

zungen von Fehlern zur Korrektur der Stützsensormessungen enthalten.

Inertiale

Navigationslösung

KALMAN-

Filter

Sensoren zur

Stützung

Prädiktion der Messungen

von den Stützsensoren

Inertialsensormessungen

Beobachtbarer
Messfehler ∆z

(Korrigierte) Stützsensormessung z

Korrigierte Navigationslösung

Geschätzte Fehler
der Stützsensormessungen

Geschätzte Fehler
der IME-Messungen

ẑ

∆x

Abbildung 4.5: Closed-loop-Fehlerfilter

Zunächst wird die nichtlineare, zeitkontinuierliche Systembeschreibung in (4.74) betrachtet. Nach
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Entwicklung in eine Taylorreihe um die Linearisierungspunkte x
′
(t) und u

′
(t), wobei nach dem

linearen Glied abgebrochen wird, lautet diese:

ẋ(t) ≈ f
(
x

′
(t),u

′
(t)
)
+
∂f(x(t),u(t))

∂x(t)

∣∣∣∣
x(t)=x

′
(t)

·
(
x(t)− x

′
(t)
)

+
∂f(x(t),u(t))

∂u(t)

∣∣∣∣
u(t)=u

′
(t)

·
(
u(t)− u

′
(t)
)
+G(t) · n(t). (4.101)

Hierbei ist u(t) eine deterministische Eingangsgröße. Berechnet man den bedingten Erwartungswert
ˆ̇x(t|t− 1) := E [ ẋ(t)| z(1), . . . , z(t− 1)] von Gl. (4.101), erhält man:

ˆ̇x(t|t− 1) ≈ f
(
x

′
(t),u

′
(t)
)
+
∂f(x(t),u(t))

∂x(t)

∣∣∣∣
x(t)=x

′
(t)

·
(
x̂(t|t− 1)− x

′
(t)
)

+
∂f(x(t),u(t))

∂u(t)

∣∣∣∣
u(t)=u

′
(t)

·
(
u(t)− u

′
(t)
)
. (4.102)

Nach Subtraktion beider Gleichungen erhält man

ẋ(t)− ˆ̇x(t|t− 1) =
∂f(x(t),u(t))

∂x(t)

∣∣∣∣
x(t)=x

′
(t)

· (x(t)− x̂(t|t− 1)) +G(t) · n(t). (4.103)

Wird nun der Schätzwert für den Systemzustand x̂(t|t − 1) selbst als Linearisierungspunkt gewählt,

so erhält man mit ∆x(t) := x(t)− x̂(t|t− 1):

∆ẋ(t) =
∂f(x(t),u(t))

∂x(t)

∣∣∣∣
x(t)=x̂(t|t−1)︸ ︷︷ ︸

F(t)

·∆x(t) +G(t) · n(t), (4.104)

wobei die Ableitung am Linearisierungspunkt durch die JACOBI-Matrix F(t) ausgedrückt werden

kann. Entsprechend erhält man für die zeitdiskrete Variante von Gl. (4.104):

∆xk = Φk ·∆xk−1 +Gk · nk, (4.105)

wobei Φk wie in Gl. (4.78) gewählt wird und für nk ∼ N (nk;0D×1 ,Q) gilt.

Analog zu obigen Gleichungen geht man auch bei den Messgleichungen vor. Dazu betrachtet man

direkt die nichtlineare, jedoch zeitdiskrete Form von (4.75):

zk = hk(xk) +Mk ·wk, (4.106)

wobei wk ∼ N (wk;0D×1 ,R). Diese wird ebenso in eine Taylorreihe um den Linearisierungspunkt

x
′

k mit Abbruch nach dem linearen Glied entwickelt:

zk ≈ hk(x
′

k) +
∂hk(xk)

∂xk

∣∣∣∣
xk=x

′
k

·
(
xk − x

′

k

)
+Mk ·wk. (4.107)

Durch die Erwartungswertbildung ẑk := E
[
zk| z1, . . . , zk−1

]
könnte für die geschätzte Messung

ẑk := hk

(
x̂k|k−1

)
dann ebenfalls

ẑk = hk(x
′

k) +
∂hk(xk)

∂xk

∣∣∣∣
xk=x

′
k

·
(
x̂k|k−1 − x

′

k

)
(4.108)
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geschrieben werden. Wenn man nun Gl. (4.108) von Gl. (4.107) subtrahiert, erhält man mit dem

Entwicklungspunkt x
′

k = x̂k|k−1 und ∆xk := xk − x̂k|k−1 die Messgleichung, die dem FF zugrunde

liegt:

∆zk := zk − ẑk =
∂hk(xk)

∂xk

∣∣∣∣
xk=x̂

k|k−1︸ ︷︷ ︸
Hk

·∆xk +Mk ·wk. (4.109)

Von besonderer Bedeutung ist dabei wieder der differenzielle Term, der für die Filterung durch die

JACOBI-Matrix Hk mit Hk :=
∂hk(xk)
∂xk

∣∣∣
xk=x̂

k|k−1

ausgedrückt werden kann.

Wie eingangs erwähnt, wird die eigentlich interessierende Größe nicht innerhalb des Filters be-

stimmt, sondern durch Rückführung des geschätzten Fehlers zur Korrektur von diesem. Es tritt au-

genscheinlich also eine Schleife auf, weshalb das Filter auch als Closed-loop-Fehlerfilter bezeichnet

wird. Nach der Korrektur muss allerdings darauf geachtet werden, dass der Zustandsvektor des Fil-

ters, also der Fehler, jedes Mal, nachdem ein Messwert verarbeitet wurde, auf Null gesetzt wird, d. h.

∆x̂k|k−1 = 0D×1 . Die Propagation des Filterzustandes ist daher unnötig. Im Gegensatz dazu wird

aber die Schätzfehlerkovarianzmatrix Pk mit Hilfe der JACOBI-Matrix F(t) bzw. der daraus resultie-

renden Transitionsmatrix Φk propagiert. Die geschätzte Messung ẑk, die man für den Messeingang

∆zk benötigt, wird ebenso außerhalb des Filters anhand der nichtlinearen Messgleichung bestimmt.

Die JACOBI-Matrix Hk wird hier lediglich für die Berechnung des KALMAN-Gewinns (wird auch als

KALMAN-Gewichtungsmatrix bezeichnet) und die Aktualisierung der Kovarianzmatrix des Schätz-

fehlers benötigt. Die Berechnung des Terms der Innovationssequenz, der von dem propagierten Sys-

temzustand des Filters abhängt, kann hier ebenfalls entfallen, da dieser einem Nullvektor entspricht.

Die Innovationssequenz entspricht hier somit dem Messeingangsvektor ∆zk. Die Hauptaufgabe des

FF liegt damit in der fortlaufenden Bestimmung der Schätzfehlerkovarianzmatrix und der Berech-

nung von Korrekturgrößen für eine „Zustandsgröße“ außerhalb des Filters. Dies zeigt aber auch, dass

die Leistungsfähigkeit des FF im Wesentlichen von der Qualität der Stützsensoren (Abb. 4.5) und der

Datenrate abhängt, mit der diese die Stützinformationen bereitstellen können.

Zusammenfassung

Zu Beginn dieses Kapitels wurden die Grundlagen der inertialen Navigation vorgestellt. Diese um-

fassen die Vorstellung der unterschiedlichen Koordinatensysteme, die bei den verschiedenen Berech-

nungsvorschriften eine wichtige Rolle spielen. Da die Filterung von Höheninformationen im weiteren

Verlauf der Arbeit näher betrachtet wird, wurden hier zunächst die unterschiedlichen Definitionen ge-

geben, die in diesem Kontext eine Rolle spielen. Die Sensorinformationen, die von verschiedenen

Quellen dem INS/GPS-Filter zur Verfügung stehen, müssen durch geeignete Transformationen zu-

sammengeführt werden. Daher wurden sowohl die Eulerwinkel- als auch die Quaternionenparametri-

sierung betrachtet. Die Strapdown-Berechnung ist der erste Schritt im Navigationsfilter, das in Kap. 5

vorgestellt wird. Die detaillierte Abfolge wurde daher in Kap. 4.3 behandelt. Da das GPS die Stütz-

informationen für das System liefert, diese allerdings auch mit einigen Fehlern behaftet sind, wurde

darauf in Abschnitt 4.4 ausführlich eingegangen. Von besonderer Bedeutung ist hier die Modellierung

von zeitkorrelierten Sensorfehlern, die in Kap. 4.5 beschrieben sind. Die Grundlagen des FF, das im

Rahmen dieser Arbeit angewendet wird und das auf einer KALMAN-Filterung beruht, wurden zum

Abschluss des vorliegenden Kapitels behandelt.
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Kapitel 5

Kombiniertes Navigationsfilter

Das Navigationsfilter bildet die zentrale Komponente des integrierten Navigationssystems, welches

die verschiedenen Sensorquellen zusammenführt und Ausgangspunkt für die Parameterschätzung ist,

die in Kap. 7 erörtert wird. Bevor die Navigationsfiltergleichungen dazu im Detail hergeleitet werden,

sollen zunächst die Vorteile einer INS/GPS-Integration genannt werden. Es handelt sich dabei um

ein schwach gekoppeltes KF. Das Filter wurde bereits in Kap. 4.6.2 eingeführt. Im Anschluss an die

Herleitung wird die Korrektur der Messgrößen erörtert. Abschließend wird ein Verfahren angeführt,

welches die hier verwendete Filterstruktur so ergänzt, dass Beobachtungen berücksichtigt werden

können, die erst zeitlich verzögert zur Verfügung stehen. Dieses ist bei GPS-Messungen der Fall.

5.1 Systemübersicht

In Kap. 4.5 wurde gezeigt, dass inertiale Messwerte fehlerbehaftet sind und wie sich diese Fehler

modellieren lassen. Diese Fehler können dazu führen, dass man durch die ausschließliche Anwen-

dung des Verfahrens in Kap. 4.3 zu einer ebenso fehlerhaften Navigationslösung gelangt, denn durch

die zweifache Integration der Sensorwerte für eine Positionsschätzung akkumulieren sich auch die in

den Messwerten noch vorhandenen Fehler. Typischerweise sind mit kostengünstigen IME Datenra-

ten zwischen 50Hz und 200Hz möglich. Die Lösung eines INS ist aus diesem Grund nur kurzzeitig

stabil. Im Gegensatz dazu bietet das GPS langzeitstabile Messungen. Die Schätzgrößen, die ein übli-

cher GPS-Empfänger mit einer Datenrate bis zu mehreren Hertz liefert, sind Geschwindigkeits- und

Positionswerte, die bereits gefiltert sind. Aber auch diese Schätzwerte können trotz Vorfilterung im

Empfänger weiterhin fehlerbehaftet sein (siehe Kap. 4.4).

Mit Hilfe der GPS-Messungen ist es möglich, die durch die IME anwachsenden Fehler so zu

korrigieren, dass sie sich nicht innerhalb der Navigationslösung akkumulieren. Da aber die GPS-

Messungen ebenso fehleranfällig und vorrangig für eine horizontale Positionsschätzung ausgelegt

sind, wird in dieser Arbeit zusätzlich ein barometrisches Sensorelement eingesetzt, um die vertikale

Positionsschätzung zu stützen. Abb. 5.1 zeigt das Filtersystem mit sämtlichen Teilkomponenten, die

im Folgenden im Detail vorgestellt werden.5 Die Parameterschätzung spielt in diesem Kapitel keine

Rolle und soll daher zunächst außer Acht gelassen werden. Der Ausgang der IME, d. h. die Messgrö-

ßen nach Gl. (4.61) und (4.63), sind zusammen mit den Messungen m̃b einer Magnetfeldsensortriade

in dem Vektor zIME :=
((

ãbib
)T (

ω̃
b
ib

)T (
m̃b
)T)T

zusammengefasst. Da die zur Stützung verwen-

deten GPS-Daten zeitlich verzögert auftreten, wird in Kap. 5.3.2 eine Möglichkeit vorgestellt, wie die

Schätzungen des satellitengestützten Teilsystems weiterhin effektiv berücksichtigt werden können.

5In der Abbildung ist der Zeitindex k der Einfachheit halber nicht aufgeführt. Schätzgrößen werden hier und im Fol-

genden durch (ˆ) und Messgrößen durch (˜) gekennzeichnet.
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m̃b

zIME

x̂FF

ĥBM

x̂GPS

x̂SD

x̂SD

xK

Q̂FF

Parameter-
schätzung

Barometrisches
Teilsystem

Teilsystem
Satellitengest.

Inertiale
Mess. (IME) Fehlerfilter

(FF)

Strapdown-
Algorithmus

Abbildung 5.1: Gesamtsystem mit Fehlerfilterung und Parameterschätzung

Bei dem eingesetzten GPS-Empfänger der Fa. Navilock konnte auf Basis von Langzeitmessungen

festgestellt werden, dass die durchschnittliche Verzögerungszeit der Daten bei 150ms bis 250ms

liegt und damit zusätzlich kompensiert werden muss.

Der Ausgang des Strapdown-Blocks, der auch gleichzeitig der Ausgang der Gesamtfilterstruk-

tur ist, sei nach Kap. 4.3 mit x̂SD gekennzeichnet, während die korrigierten Strapdown-Größen im

Folgenden mit xK bezeichnet werden sollen. Das barometrische Teilsystem, das aus weiteren Teil-

komponenten besteht und in Kap. 6 ausführlich vorgestellt wird, liefert hier die vertikale Positions-

komponente ĥBM. Auf die entsprechende Schätzgröße des satellitengestützen Teilsystems wird da-

her für die Fehlerfilterung verzichtet, in welche die verschiedenen Ausgangsgrößen einfließen. Den-

noch werden sowohl die horizontalen als auch die vertikale Geschwindigkeitskomponente des GPS-

Teilsystems aufgrund ihrer Genauigkeit als Stützgrößen x̂GPS verwendet. Die geschätzten Fehler in

x̂FF werden nach einer Rückkopplung zur Korrektur verwendet, so dass am Eingang jeweils die kor-

rigierten Positions-, Geschwindigkeits- und Lagekomponenten des vorherigen Zeitschritts anliegen.

Ein besonderer Algorithmus, der die Rauschkovarianzmatrix des zeitkorrelierten Sensorrauschens zur

Fehlerfilterung schätzen soll, wird im Rahmen dieses Kapitels nicht betrachtet, sondern erst in Kap. 7.

Dieser nutzt die Ausgangssignale des Fehlerfilters (FF). Zwei alternative Ansätze, die in Kap. 7 eben-

falls vorgestellt werden, basieren direkt auf den Beobachtungen zIME (hier durch den gestrichelten

Pfeil dargestellt).

Das in Abb. 5.1 aufgeführte satellitengestützte Teilsystem besteht im Wesentlichen aus einem KF,

welches die Pseudorange- und Deltarange-Messungen als Messgrößen verwendet und mit Hilfe der

Dilution of Precision (DOP)-Werte so filtert, dass absolute Positions- und Geschwindigkeitsschät-

zungen zur Verfügung stehen. Für Untersuchungen mit realen Messungen standen durch Verwen-

dung des GPS-Empfängers von Navilock mit ublox-Chipsatz [ubl] bereits die notwendigen Größen

in den PUBX-Datensätzen zur Verfügung (siehe auch Anhang A.2). Dazu zählen auch die Standardab-

weichungen der Positionsfehler im n-Rahmen, die im Folgenden in der Messrauschkovarianzmatrix

RGPS zusammengefasst werden. Auf eine genaue Betrachtung der internen Struktur des Teilsystems

wird hier verzichtet, da sie nicht Gegenstand der Untersuchungen war.
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5.2 Schwach gekoppelte Fehlerfilterung

Das Filter, das neben den Biasfehlern der Gyroskope und Beschleunigungssensoren auch die Fehler

in der Position, der Geschwindigkeit und der Lage der IME im Navigationsrahmen schätzt, ist ein

schwach gekoppeltes FF nach Kap. 4.6.2.

5.2.1 Filtergleichungen

Gegenüber den üblichen KF-Varianten wie z. B. einem erweiterten KALMAN-Filter (EKF) hat der

hier vorgestellte Ansatz einer Error-State-Space-Formulierung einige Vor- und Nachteile. Wie auch

bei einem EKF basiert das verwendete LKF als Realisierung eines FF auf einer Linearisierung der

System- und Messgleichungen, so dass eine Zustandsübergangsmatrix ΦFF;k und eine Messmatrix

HFF;k für die Berechnungen vorliegt. Allerdings wird nach jedem Aktualisierungsschritt der Sys-

temzustandsvektor auf einen Nullvektor gesetzt, da sich die eigentlich interessierende Größe außer-

halb des Filters befindet [May82]. Dieses führt in Kombination mit den Differenzen der korrigierten

Schätzungen des Strapdown-Algorithmus und des GPS-Filters als Messeingang zu einer robusten

Filterstruktur [TW04], [Wen07]. Starke Nichtlinearitäten, die beispielsweise mit einem UKF oder PF

berücksichtigt werden können, sind mit einem LKF nicht zu erfassen.

5.2.1.1 Systemmodell

Die Fehler, die das Filter schätzen soll, sind der Positionsfehler ∆pn
eb, der Geschwindigkeitsfehler

∆vn
eb, der Fehler in der Orientierung ∆Υ sowie die Biasfehler der Beschleunigungs- und Dreh-

ratensensortriade ∆ba und ∆bω. Der obere Index n zeigt an, dass es sich dabei um die Fehler im

Navigationskoordinatensystem handelt. Im Propagationsschritt werden die korrigierten Messwerte

der IME zusätzlich als deterministische Größen behandelt. Dieses bringt kaum Nachteile, da beim FF

der Propagationsschritt lediglich der Berechnung der Schätzfehlerkovarianzmatrix PFF;k|k−1 dient.

Die eigentliche Navigationsaufgabe obliegt dem Strapdown-Algorithmus. Die Navigationslösung ist

damit Teil von x̂SD. Für den Zustandsvektor des FF mit xFF ∈ R15 gilt:

xFF :=






∆pneb,n
∆pneb,e
∆pneb,d




T

︸ ︷︷ ︸
Positionsfehler

(∆pn
eb)

T



∆vneb,n
∆vneb,e
∆vneb,d




T

︸ ︷︷ ︸
Geschwindigkeits-

fehler (∆vn
eb)

T



∆φ

∆θ

∆ψ




T

︸ ︷︷ ︸
Lagefehler

(∆Υ)T



∆ba,x
∆ba,y
∆ba,z




T

︸ ︷︷ ︸
Biasfehler (∆ba)

T

der Beschleunigungs-

sensoren



∆bω,x
∆bω,y
∆bω,z




T

︸ ︷︷ ︸
Biasfehler (∆bω)

T

der Drehraten-

sensoren




T

.

(5.1)

Das Systemmodell berücksichtigt demnach nicht nur die deterministischen Sensorfehler, sondern

auch die Auswirkung der Fehler auf die Navigationslösung, um anschließend die notwendige Kor-

rektur durchführen zu können. Die Differenzialgl. (4.35), (4.40) und (4.46) bis (4.48) zeigen, dass

Nichtlinearitäten auftreten, die für das FF linearisiert und anschließend zeitlich diskretisiert werden

müssen. Die vollständige Herleitung der für das Systemodell benötigten Matrizen ist in Anhang B.3
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aufgeführt. Sie lauten mit Vernachlässigung des Zeitindex t

F
(1,1)
FF :=




0 0
vneb,n
Rn+h

vneb,e·tan(ϕ)
Rn+h 0

vneb,e
Re+h

0 0 0




∣∣∣∣∣∣∣∣pe
eb=p̂e

SD;eb

vn
eb=v̂n

SD;eb

(5.2)

F
(1,2)
FF := I3×3 (5.3)

F
(2,2)
FF :=




vneb,d
Rn+h −2Ω sinϕ− 2

vneb,e tanϕ

Re+h

vneb,n
Rn+h

2Ω sinϕ+
vneb,e tanϕ

Re+h

vneb,n tanϕ

Re+h +
vneb,d
Re+h 2Ω cosϕ+

vneb,e
Re+h

−2 vneb,n
Rn+h −2Ω cosϕ− 2

vneb,e
Re+h 0




∣∣∣∣∣∣∣∣pe
eb=p̂e

SD;eb

vn
eb=v̂n

SD;eb

(5.4)

F
(2,3)
FF := − [ânib×] = −

[
Ĉn

SD;b ãbib×
]

(5.5)

F
(2,4)
FF := −Ĉn

SD;b (5.6)

F
(3,1)
FF := −




−Ωsin(ϕ)
Rn+h 0

vneb,e
(Re+h)2

0 0 − vneb,n
(Rn+h)2

−Ωcos(ϕ)
Rn+h −

vneb,e
(Re+h)(Rn+h) cos2(ϕ)

0 −vneb,e tan(ϕ)

(Re+h)2




∣∣∣∣∣∣∣∣pe
eb=p̂e

SD;eb

vn
eb=v̂n

SD;eb

(5.7)

F
(3,2)
FF := −




0 1
Re+h 0

− 1
Rn+h 0 0

0 − tan(ϕ)
Re+h 0




∣∣∣∣∣∣∣pe
eb=p̂e

SD;eb

vn
eb=v̂n

SD;eb

(5.8)

F
(3,3)
FF := − [ωn

in×]|pe
eb=p̂e

SD;eb

vn
eb=v̂n

SD;eb

(5.9)

F
(3,5)
FF := −Ĉn

SD;b (5.10)

und bilden unter Einbeziehung von (4.56) und (4.59) das Differenzialgleichungssystem

ẋFF =




F
(1,1)
FF F

(1,2)
FF 03×3 03×3 03×3

03×3 F
(2,2)
FF F

(2,3)
FF F

(2,4)
FF 03×3

F
(3,1)
FF F

(3,2)
FF F

(3,3)
FF 03×3 F

(3,5)
FF

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3




︸ ︷︷ ︸
FFF

xFF +




03×3 03×3 03×3 03×3

−Ĉn
SD;b 03×3 03×3 03×3

03×3 −Ĉn
SD;b 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3




︸ ︷︷ ︸
GFF

nFF,

(5.11)

wobei nFF :=
(
nT
a nT

ω nT
ba

nT
bω

)T
ist.6 In Gl. (5.5) wurde davon ausgegangen, dass es sich bei ãbib

um Messwerte handelt, bei denen bereits im Rahmen der Rückkopplung eine Biaskorrektur durch-

geführt wurde. Die Bias werden mit Hilfe von (5.11) nicht direkt bestimmt. Wie bei den anderen

Zustandsgrößen werden hier lediglich deren Fehler berücksichtigt, welche die Größe außerhalb des

6Die Schreibweise [x ×] in den Gl. (5.5) und (5.9) bedeutet hier, dass es sich um eine schiefsymmetrische Matrix

handelt, die aus dem in den eckigen Klammern eingeschlossenen Vektor x gebildet wird (siehe auch Anhang B.1).
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Filters korrigieren. Geht man nun von der Differenzialgl. (5.11) in eine zeitdiskrete, äquivalente Dar-

stellung über, so folgt

xFF;k = ΦFF;k xFF;k−1 +GFF;k nFF;k, (5.12)

wobei ΦFF;k := eFFF ∆t ≈ I15×15 + FFF ∆t und GFF;k := 1
2

(
I15×15 +ΦFF;k

)
GFF ∆t ≈ GFF ∆t

mit ∆t = tk − tk−1 gilt (vereinfachte Annahme, dass FFF im Intervall [tk, tk−1) zeitinvariant).

Bisher wurden bezüglich des Systemrauschvektors nFF keine weiteren Einschränkungen getrof-

fen. Dieses ist jedoch für die spätere Parameterschätzung wichtig. In Kap. 4.6.1 wurden die Filter-

gleichungen so hergeleitet, dass ein zeitkorreliertes System- und Messrauschen angenommen werden

kann, ohne dass der Systemzustand um genau diese Komponenten erweitert werden muss. Vorausset-

zung dafür ist daher eine entsprechende Gleichung für nFF. Diese wird hier zu

nFF;k =




na

nω

nba

nbω




k

=




DFF;na
03×3 03×3 03×3

03×3 DFF;nω
03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3







na

nω

nba

nbω




k−1

+ ΓFF;n ηFF;k (5.13)

angenommen, wobei ΓFF;n := I12×12 und ηFF;k ∼ N (ηFF;k;012×1 ,QFF;k). In Gl. (5.13) wird das

biastreibende Rauschen als zeitlich unkorreliert angenommen. Zur Bestimmung von DFF;na
und

DFF;nω
mit Hilfe von Gl. (4.73) sei erwähnt, dass bei Verwendung von Trainingsdaten die „Trajek-

toriendynamik“ im Vorfeld nicht vollständig eliminiert werden kann (unter „Trajektoriendynamik“

werden hier die Positionen und Geschwindigkeiten bzw. Beschleunigungen und Winkelgeschwindig-

keiten zusammengefasst, die für die ideale Navigationslösung verantwortlich sind). Die Trainingsda-

ten sollten jedoch auch zeitlich korrelierte Messungen enthalten, weswegen vorrangig auf Messungen

einer ruhenden (mit Vibrationen durch einen Motor) IME zurückgegriffen wurde. Die IME wird in

Kap. 8 noch näher untersucht. Nach Auswertung der Daten folgte für die Zustandsübergangsmatrix

die Approximation DFF;na
= DFF;nω

≈ 0,7 · I3×3 . Aus dieser ergab sich mit fIME = 100Hz wieder-

um eine Korrelationszeit von tIME;c ≈ 2,8 · 10−2 s. Auf diese Werte wurde auch bei der Generierung

der simulierten Inertialsensordaten zurückgegriffen. Damit wird diese Zustandsübergangsmatrix als

konstant für den Filterprozess angenommen, was aufgrund der Qualität der Sensordaten der IME ge-

rechtfertigt ist. Die Rauschdynamik, die sich durch Modellierungsungenauigkeiten, Vibrationen oder

das inhärente Rauschen erhöht oder verringert, soll der als zeitvariant modellierten Rauschkovarianz-

matix QFF;k zugeschrieben werden. Dennoch sei an dieser Stelle der Vollständigkeit halber darauf

hingewiesen, dass hier sowohl zeitvariante Zustandsübergangsmatrizen als auch zeitkorrelierte Pro-

zesse höherer Ordnung möglich wären. Dies stand jedoch nicht im Fokus der vorliegenden Arbeit.

5.2.1.2 Messmodell

Der Zusammenhang zwischen den von einem GPS-Empfänger gelieferten Schätzwerten x̂GPS und

dem zu schätzenden Systemzustand xFF in Abb. 5.1, der die INS-Lösung korrigiert, ist nichtlinear. Um

das in Kap. 4.6.2 beschriebene Filter einsetzen zu können, muss auch die benötigte Messmatrix durch

Linearisierung gewonnen werden. Für die folgenden Herleitungen wird wieder auf eine Angabe des

Zeitindex t bzw. k verzichtet. Bei der Implementierung der folgenden Gleichungen müssen aufgrund

der unterschiedlichen Sensorabtastraten einige Details beachtet werden, die jedoch erst in Kap. 5.3
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diskutiert werden. Der Messvektor sei im Folgenden durch

zFF =
(
zTFF;p zTFF;v zTFF;m

)T
(5.14)

gegeben, wobei zFF;p Positionsmessungen, zFF;v Geschwindigkeitsmessungen und zFF;m Messungen

von Magnetometern enthält.

Positionsmessung Am Ausgang des GPS-Empfängers stehen Positionsschätzungen zur Verfügung,

die als Breiten- und Längengrad ϕ̂GPS, λ̂GPS sowie Höhe ĥGPS über dem Erdellipsoid angegeben sind.

Die Höhenmessung soll jedoch wahlweise auch durch die Schätzgröße ĥBM des in Kap. 6 beschriebe-

nen Teilsystems ersetzt werden können, so dass für die Differenzberechnung am Eingang des FF der

Vektor
(
ϕ̂GPS λ̂GPS ĥGB

)T
mit ĥGB ∈

{
ĥBM, ĥGPS

}
zur Verfügung steht. Aus numerischen Grün-

den wird der Differenzvektor zFF;p jedoch nicht im e-Rahmen angegeben, sondern im n-Rahmen:

zFF;p :=




(Rn + ĥSD) · (ϕ̂GPS − ϕ̂SD)

(Re + ĥSD) · cos(ϕ̂SD) · (λ̂GPS − λ̂SD)

−(ĥGB − ĥSD)


− l̂nGPS, (5.15)

wobei ϕ̂SD, λ̂SD und ĥSD die korrigierten Strapdown-Positionskomponenten sind und

l̂nGPS = Ĉn
SD;bl

b
GPS (5.16)

ist, wobei lbGPS der Richtungsvektor zwischen der IME und der GPS-Antenne ist. Um den Zusam-

menhang zwischen dem Differenzvektor in Gl. (5.15) und dem Systemzustandsvektor xFF zu erhal-

ten, wird hier und bei den folgenden Betrachtungen angenommen, dass sich die idealen Positionen

von Barometer und GPS-Antenne nicht unterscheiden und im n-Rahmen durch pn
GPS angegeben sind.

Zusätzlich sei pn
eb die Position der IME. Ausgehend von dem Zusammenhang

pn
GPS = pn

eb +Cn
bl

b
GPS (5.17)

lässt sich mit Hilfe von Gl. (B.27), (B.28) und (5.16) die Gleichung

pn
GPS = pn

eb + l̂nGPS −
[
l̂nGPS×

]
Υ (5.18)

herleiten, wobei hier der Zusammenhang Ψl̂nGPS = −
[
l̂nGPS×

]
Υ ausgenutzt wurde (siehe auch die

mathematischen Zusammenhänge in Anhang B.1). Durch (4.109) wird deutlich, dass nun in

zFF;p = p̂n
GPS − p̂n

SD;eb =
(
∂pn

GPS
∂pn

eb

∂pn
GPS

∂vn
eb

∂pn
GPS

∂Υ
∂pn

GPS
∂ba

∂pn
GPS

∂bω

)

︸ ︷︷ ︸
HFF;p

xFF +MFF;pwFF;p (5.19)

der Teil der gesamten JACOBI-Matrix HFF, der mit der Positionsmessung zusammenhängt (hier durch

HFF;p gekennzeichnet), durch die jeweiligen Differenziationen gewonnen wird. Der Vektor wFF;p sei

hier der entsprechende Anteil des zeitkorrelierten Messrauschvektors wFF und MFF;p := I3×3 . Für

HFF;p folgt

HFF;p =
(
I3×3 03×3 −

[
l̂nGPS×

]
03×3 03×3

)
. (5.20)

Bei den letzten Betrachtungen wurde davon ausgegangen, dass die Höhenmessungen eines barome-

trischen Sensors und des GPS-Empfängers gleichzeitig vorliegen.
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Geschwindigkeitsmessung Da sich der GPS-Empfänger und die IME üblicherweise nicht am sel-

ben Ort befinden, sondern mehrere Zentimeter voneinander entfernt sind, unterscheiden sich auch

die Geschwindigkeiten vn
eb und vn

GPS geringfügig voneinander. Mit der Annahme, dass die Erddreh-

rate im Vergleich zu den Drehbewegungen des Fahrzeugs vernachlässigbar klein ist, lässt sich die

Approximation

vn
GPS ≈ vn

eb +Cn
b(ω

b
ib × lbGPS) (5.21)

aufstellen. Als Differenzgeschwindigkeitsvektor lässt sich daher

zFF;v := v̂n
GPS − v̂n

SD;eb = HFF;vxFF +MFF;vwFF;v (5.22)

mit MFF;v := I3×3 schreiben. Des Weiteren ist für (5.21) durch Verwendung von (B.27), (B.28) und

unter Berücksichtigung von (4.57) mit wenigen Vereinfachungen die Näherung

vn
GPS ≈ vn

eb + Ĉn
SD;bω̃

b
ib × lbGPS + Ĉn

SD;b

[
lbGPS×

]
bω −

[
Ĉn

SD;bΩ̃
b
ibl

b
GPS×

]
Υ (5.23)

möglich, die ebenso nach den einzelnen Komponentenvektoren in xFF differenziert werden muss, um

den Teil HFF;v der JACOBI-Matrix zu erhalten, der von den Geschwindigkeitsmessungen abhängt.

Dabei wurde auch Ω̃b
ib =

[
ω̃

b
ib×
]

ausgenutzt. Für HFF;v erhält man schließlich

HFF;v =
(
∂vn

GPS
∂pn

eb

∂vn
GPS

∂vn
eb

∂vn
GPS

∂Υ
∂vn

GPS
∂ba

∂vn
GPS

∂bω

)

=
(
03×3 I3×3 −

[
Ĉn

SD;bΩ̃
b
ibl

b
GPS×

]
03×3 Ĉn

SD;b

[
lbGPS×

])
. (5.24)

Magnetfeldmessung Bei den bisherigen Betrachtungen zur JACOBI-Matrix, die durch

HFF =
(
HT

FF;p HT
FF;v

)T
gegeben ist, wenn lediglich GPS-Schätzungen oder barometrische Höhenin-

formationen ohne explizite Richtungsinformationen vorliegen, fällt auf, dass eine Abhängigkeit zwi-

schen diesen und der Lage nur dann besteht, wenn lbGPS 6= 03×1 gilt. Ansonsten würden die Messun-

gen der Position auch nur auf die entsprechenden Komponenten des Systemzustandsvektors Einfluss

haben. Gleiches gilt für die Geschwindigkeit. In dem Fall würde die Lage nur durch den in Gl. (5.11)

beschriebenen Zusammenhang indirekt beeinflusst werden.

Daher soll im Folgenden durch Verwendung von Erdmagnetfeldmessungen eine weitere Orien-

tierungsbestimmung betrachtet werden. Durch bauliche Einrichtungen wie z. B. Stahlbrücken können

Magnetfeldmessungen zwar negativ beeinflusst werden [YF03], die Auswirkungen auf die Naviga-

tionslösung hängen allerdings auch von der Güte der Sensoren ab. Selbst wenn durch Störungen ein

Gierwinkelfehler von bis zu 15° resultieren würde, so würde die Navigationslösung nur unwesent-

lich beeinträchtigt werden [Wen07]. Alternativ wäre eine Gierwinkelberechnung auch auf Basis der

Geschwindigkeitsdaten des GPS-Empfängers möglich, jedoch muss dazu die Ausrichtung der IME

perfekt bekannt sein. Des Weiteren könnten die Unterschiede beim Vorwärts- und Rückwärtsfahren

zu Ungenauigkeiten führen.

Der allgemeine Zusammenhang zwischen dem lokalen Magnetfeld in Koordinaten des b-Rahmens

und dem Feld in Koordinaten des n-Rahmens ist durch

mb = (Cn
b)

Tmn (5.25)

gegeben (siehe auch Gl. (F.10)). Unter der Voraussetzung, dass die RKM auf den Strapdown-Be-

rechnungen beruht, erhält man durch Einsetzen von (B.27) bei vorhandenen Magnetfeldmessungen
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m̃b die Gleichung

zFF,m = m̃b − (Ĉn
SD;b)

Tmn =
(

∂mb

∂pn
eb

∂mb

∂vn
eb

∂mb

∂Υ
∂mb

∂ba

∂mb

∂bω

)

︸ ︷︷ ︸
HFF;m

xFF +MFF;mwFF;m. (5.26)

Während hier ∂mb

∂Υ = (Ĉn
SD;b)

T [mn×] gilt, entsprechen die anderen Terme einer [3× 3]-Nullmatrix.

Außerdem sei Rm := E
[
wFF;mwT

FF;m

]
die Kovarianzmatrix des als mittelwertfrei angenommenen

weißen GAUSS-verteilten Rauschvektors wFF;m und MFF;m := I3×3 .

Das vollständige Messmodell lautet hier nun für den zeitdiskreten Fall zum Zeitpunkt k:

zFF;k = HFF;k xFF;k +MFF wFF;k, (5.27)

wobei HFF;k =




HFF;p,k

HFF;v,k

HFF;m,k


, MFF =



MFF;p 03×3 03×3

03×3 MFF;v 03×3

03×3 03×3 MFF;m


 und wFF;k =




wFF;p,k

wFF;v,k

wFF;m,k


 ist.

Die Matrix MFF sei also konstant.

Analog zum zeitkorrelierten Systemrauschen soll auch beim Modellieren des Messrauschens vor-

gegangen werden. Die Annahme zeitkorrelierten Messrauschens ist notwendig, da die GPS-Daten,

die zum Stützen des FF verwendet werden, selbst aus einem KF stammen. Selbst bei dem im Rahmen

dieser Arbeit verwendeten ublox-Empfänger stehen aber lediglich Informationen über den Positions-

schätzfehler des Empfängers in Form von Standardabweichungen für die horizontale Ebene und die

vertikale Komponente zur Verfügung. Deshalb müssen die übrigen Parameter anhand von Trainings-

daten und den Angaben des Herstellers abgeschätzt werden [u-b09]. Das Modell für das zeitkorrelierte

Messrauschen sei hier zu

wFF;k = DFF;w wFF;k−1 + ΓFF;w νFF;k (5.28)

gewählt, wobei νFF;k ∼ N (νFF;k;09×1 ,RFF) mit der Diagonalmatrix RFF und ΓFF;w := I9×9 ist.

Im Rahmen von Ruhemessungen über einen Zeitraum von 60 h konnten die in Tab. 5.1 angegebenen

Werte für die Standardabweichungen der Empfängerdaten ermittelt werden. In der Annahme, dass

σGPS;p (berechnet) σGPS;p (gemittelte Empfängerausgabe) σGPS;v (berechnet)

Horizontal 4,69m 4,55m 0,13m/s

Vertikal 7,34m 4,53m 0,12m/s

Tabelle 5.1: Standardabweichungen von GPS-Messungen

diese Werte den Standardabweichungen von wFF;p,k bzw. wFF;v,k entsprechen und damit Elemente

der Matrix RGPS sind, lässt sich über die ML-Schätzung

RFF = E
[
wFF;kw

T
FF;k

]
·
(
I9×9 −D2

FF;w

)
=

(
RGPS 06×3

03×6 Rm

)
·
(
I9×9 −D2

FF;w

)
(5.29)

die Kovarianzmatrix des treibenden Rauschens in (5.28) bestimmen. Dazu muss jedoch DFF;w be-

kannt sein. In [TW04] wird angegeben, dass die Korrelationszeit von Positionsmessungen eines

GPS-Empfängers bei ca. 10 s, die von Geschwindigkeitsmessungen üblicherweise bei ca. 1 s liegt
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(siehe Gl. (4.67)). Diese Werte sind auch in [u-b09] für den u-blox5-Chipsatz zu finden. Bei den

Magnetometermessungen wird hier von zeitlich unkorrelierten Daten ausgegangen. Die in Tab. 5.1

aufgeführten Standardabweichungen für die Positionsschätzungen liegen über den Angaben des Her-

stellers, dessen Wert für die horizontale Ebene nach Tab. 4.3 beispielsweise ca. 2m beträgt. Bei

anderen Empfängern mit geringerer Abtastrate treten durchaus höhere Standardabweichungen auf.

Ein Problem, das noch verbleibt, sind die unterschiedlichen Abtastraten der Messsysteme im Ver-

gleich zu der Rate, mit der das FF arbeitet. Auch wenn keine Messung vorhanden ist, soll das Filter

aufgrund der späteren Parameterschätzung zu diesen Zeitpunkten eine Prädiktion durchführen. Bei

Betrachtung von (4.93) in Kap. 4.6.1 fällt auf, dass die Berechnung von Pxw,k|k−1 mit der Matrix

DFF;w unter der Voraussetzung geführt wird, dass die Rate, mit der die GPS-Daten eintreffen, mit der

Datenrate des Filters übereinstimmt. Dies gilt hier nicht. Aus diesem Grund können die Gl. (B.10)

bis (B.25), die für das FF benötigt werden, nicht uneingeschränkt verwendet werden. Die IME-Daten

stehen mit 100Hz zur Verfügung, während die GPS-Signale mit 4Hz und die barometrischen Sen-

sorsignale mit 10Hz bereitgestellt werden. Wenn keine Stützung erfolgen kann, existiert also auch

keine Korrelation zwischen xFF und wFF. Sowohl Gl. (B.13) als auch (B.16) dürfen daher nur bei

Verfügung der entsprechenden Messwerte berechnet werden.

5.2.2 Korrektur des externen Systemzustandes

Sind gemäß der vorigen Betrachtungen die Fehler in der Navigationslösung bestimmt worden, so

werden die Ausgangsgrößen des Strapdown-Algorithmus x̂SD mit x̂FF zu xK korrigiert. Für die kor-

rigierte Position in erdfesten Koordinaten resultiert

ϕK;k = ϕ̂SD;k +
∆p̂neb,n,k

Rn(ϕ̂SD;k) + ĥSD;k

(5.30)

λK;k = λ̂SD;k +
∆p̂neb,e,k(

Re(ϕ̂SD;k) + ĥSD;k

)
cos(ϕ̂SD;k)

(5.31)

hK;k = ĥSD;k −∆p̂neb,d,k. (5.32)

Für die Korrektur der Position und der Geschwindigkeit im n-Rahmen folgt

pn
K;eb,k = p̂n

SD;eb,k +∆p̂n
eb,k (5.33)

vn
K;eb,k = v̂n

SD;eb,k +∆v̂n
eb,k. (5.34)

Aus den Orientierungsfehlern muss zunächst ein Korrekturquaternionenvektor r̆k wie in (4.38) er-

rechnet werden, allerdings mit Hilfe von ∆Υ̂k an Stelle von ∆σk. Erst dann kann die Quaternionen-

multiplikation

q̆n
K;b,k = r̆k ◦ ˆ̆qn

SD;b,k (5.35)

durchgeführt werden. Die Berechnung in (5.35) ist äquivalent zu dem Zusammenhang in

Gl. (B.27), wenn diese entsprechend Cn
K;b = (I3×3 + Ψ)Ĉn

SD;b umgestellt wird. Dabei wird die

Schätzung Ĉn
SD;b mittels I3×3 +Ψ korrigiert. Das entsprechende Korrekturquaternion auf der rechten

Seite in (5.35) ist aus diesem Grund vorangestellt und damit umgekehrt wie in (B.27). Damit die kor-

rigierten Terme im nächsten Schritt der Strapdown-Berechnung zur Verfügung stehen, müssen nach



70 Kapitel 5. Kombiniertes Navigationsfilter

Anwendung von (5.30) – (5.35) die folgenden Zuweisungen erfolgen:

ϕSD;k ← ϕK;k (5.36)

λSD;k ← λK;k (5.37)

hSD;k ← hK;k (5.38)

pn
SD;eb,k ← pn

K;eb,k (5.39)

vn
SD;eb,k ← vn

K;eb,k (5.40)

q̆n
SD;b,k ← q̆n

K;b,k. (5.41)

Die Korrektur der Inertialsensorbias durch

bK;a,k = bK;a,k−1 +∆b̂a,k (5.42)

bK;ω,k = bK;ω,k−1 +∆b̂ω,k (5.43)

ist wichtig, um dem Strapdown-Algorithmus im nächsten Zeitschritt annähernd biasfreie Messwerte

zur Verfügung stellen zu können, so dass im Vorfeld der nächsten Strapdown-Berechnung die Zuwei-

sung ãbib,k+1 ← ãbib,k+1−bK;a,k und ω̃
b
ib,k+1 ← ω̃

b
ib,k+1−bK;ω,k vorgenommen werden kann. Auch

hier wurde der Einfachheit halber angenommen, dass eine Korrektur zu jedem Zeitpunkt k durch eine

vorhandene Stützung möglich ist. Dies hängt jedoch von den Abtastraten der einzelnen Sensoren ab.

5.3 Implementierungsaspekte

5.3.1 Ablauf der Filterung

Aufgrund der unterschiedlichen Abtastraten müssen einige Details bei der Realisierung des Filteral-

gorithmus beachtet werden. Der grobe Ablauf der Filterung ist nochmals in Abb. 5.2 skizziert. Da

die Sensoren zwar mit einer festen Abtastfrequenz, aber nicht vollständig synchron arbeiten, kann

auch das barometrische Teilsystem nicht synchron zum restlichen System arbeiten: Das zeitliche In-

tervall zwischen barometrischen Messwerten und denen eines GPS-Empfängers variiert fortlaufend.

Aus diesem Grund wurde das Filtersystem so entworfen, dass der Strapdown-Algorithmus mit der

IME-Datenrate von fIME = 100Hz arbeitet. Das nachgeschaltete FF arbeitet ebenso mit der IME-

Datenrate, welches die maximale Datenrate in dem System ist. Sobald eine GPS-Messung zur Stüt-

zung eintrifft, wird ein Prädiktions- sowie Messschritt durchgeführt. Andernfalls wird nur der Prädik-

tionsschritt des FF durchgeführt. Die maximale Rate, mit der Messdaten verarbeitet werden, ist die

GPS-Datenrate. Hier wird angenommen, dass fIME = k1 · fBM = k2 · fGPS gilt, wobei k1, k2 ∈ N.

Dabei ist fGPS die Frequenz, mit der die GPS-Daten vom Empfänger zur Verfügung gestellt werden

und fBM die Abtastfrequenz eines barometrischen Sensors.

Nach den Strapdown-Berechnungen wird zunächst die Verfügbarkeit der GPS-Daten überprüft.

Anschließend wird geprüft, ob barometrische Stützinformationen vorliegen. Das FF verarbeitet die

vorhandenen Informationen und korrigiert damit die Berechnungen im Strapdown-Block sowie die

Inertialbias am Eingang. Liegen ausschließlich GPS-Daten vor, so wird zusätzlich die letzte gülti-

ge Höhenschätzung des barometrischen Teilsystems genutzt, damit Gl. (5.19) weiterhin ohne Mo-

difikation verwendet werden kann. Eine alternative Stützung durch die Höheninformation des GPS-

Empfängers würde ansonsten eine fortlaufende Anpassung der Messrauschkovarianzmatrix erfordern.

Da ĥBM mit einer ausreichend hohen Datenrate zur Verfügung steht, ist die genannte approximative
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Abbildung 5.2: Ablauf der Filterung im Navigationssystem

Lösung hinreichend und es wurde auf weitere Modifikationen verzichtet. Die Magnetfeldsensorda-

ten werden ebenfalls nur dann verwendet, wenn GPS-Daten zur Stützung vorliegen. Eine alleinige

Lagestützung ohne entsprechende Positions- und Geschwindigkeitsinformationen findet damit nicht

statt.

5.3.2 Zeitlich verzögerte Satellitenmessungen

Ein grundlegendes Problem, das auftritt, wenn reale GPS-Daten verwendet werden, ist, dass der Zeit-

punkt, an dem die Daten dem Nutzer bzw. dem Navigationssystem zur Verfügung stehen, und der

Zeitpunkt, zu dem die Positionsschätzung durchgeführt wurde, nicht übereinstimmen (siehe Abb. 5.3).

Diese Verzögerungen können wenige Nanosekunden bis zu mehrere Millisekunden betragen. Die

Dauer richtet sich im Wesentlichen nach den Fehlerquellen, die das GPS-Signal beeinflussen können

und bereits in Kap. 4.4 erörtert wurden. Ist die Verzögerung sehr groß, kann das zu ungenauen Er-

gebnissen in der Filterung führen, denn das FF liefert ebenso fehlerhafte Schätzwerte für die Bias-,

Lage- und Positionskorrektur. Das Filter würde zeitlich nicht zueinander passende Inertialsensorda-

ten und GPS-Daten verarbeiten. Die Kompensation der zeitlichen Differenz der Sensorsignale kann

durch Anpassung der KALMAN-Filtergleichungen durchgeführt werden. Eine Möglichkeit wäre die

Erweiterung des Systemmodells, so dass eine Filtergleichung zwischen der aktuellen Messung und



72 Kapitel 5. Kombiniertes Navigationsfilter

tk [s]

Filterschritt des FF

Verfügbarkeit der GPS-MessungGültigkeit der GPS-Messung

Abbildung 5.3: Verzögert verfügbare GPS-Messungen [Wen07]

dem Systemzustand hergestellt werden kann. Dies hat allerdings den Nachteil, dass sich dadurch die

Dimension des Zustandsvektors erhöht, was einen erhöhten Rechenaufwand bedeutet. Diese Lösung

wird daher in der Praxis meist vermieden [Wen07]. Alternativ soll hier die Methode aus [LARP98]

eingesetzt werden, bei welcher der übliche Ablauf der Filterung nicht verändert werden muss. Es

können sogar während des Verzögerungszeitraumes einer GPS-Messung weiterhin Prädiktions- und

Messschritte durchgeführt werden. Das Konzept zum Verfahren aus [LARP98] wird hier jedoch für

den Fall von zeitlich korreliertem Messrauschen erweitert. Die vollständige Herleitung der benötigten

Gleichungen kann dem Anhang C entnommen werden.

Das Konzept in [LARP98] basiert auf der Berechnung eines extrapolierten Messvektors

z∗FF :=
(
zTFF;p zTFF;v zTFF;m

)T∗
, der zu einem Residuum ε

∗
k führt:

ε
∗
k := z∗FF;k −HFF;kx̂FF;k|k−1. (5.44)

Dieses entspricht dem Vektor, der berechnet werden könnte, wenn die Messung zum Gültigkeitszeit-

punkt hätte verarbeitet werden können. Ist zk−i′

FF;k der Messvektor, der zum Zeitpunkt k− i′ gültig war,

aber erst zum Zeitpunkt k verfügbar ist, so führt dieser jedoch zu einem Residuum

εk−i′ := zk−i′

FF;k −HFF;k−i′ x̂FF;k−i′|k−i′−1. (5.45)

Dabei wird mit

wFF;k−i′ = DFF;wwFF;k−i′−1 + ΓFF;wνFF;k−i′ (5.46)

und νFF;k−i′ ∼ N (νFF;k−i′ ;09×1 ,RFF) von dem Zusammenhang

zk−i′

FF;k = HFF;k−i′xFF;k−i′ +MFFwFF;k−i′ (5.47)

ausgegangen. Nach Gleichsetzen der Residuen (5.44) und (5.45) und einigen Umrechnungen (siehe

Anhang C) stellt man fest, dass das Messrauschen w∗
FF;k des extrapolierten Messwertes

z∗FF;k = HFF;kxFF;k +w∗
FF;k (5.48)

mit den verzögerten und nicht verzögerten Zustandsvektoren korreliert ist. Nach einigen Anpassun-

gen, die im Detail in Anhang C beschrieben werden, erhält man für die modifizierten KALMAN-

Filtergleichungen

x̂FF;k|k = x̂FF;k|k−1 +K∗
k

(
zk−i′

FF;k −HFF;k−i′ x̂FF;k−i′|k−i′−1

)
(5.49)

PFF;k|k = PFF;k|k−1 −K∗
kHFF;k−i′P

T
FF;k,k−i′|k−1, (5.50)
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wobei

K∗
k = PFF;k,k−i′|k−1H

T
FF;k−i′

(
HFF;k−i′PFF;k−i′|k−i′−1H

T
FF;k−i′ +HFF;k−i′PFF;xw,k−i′|k−i′−1M

T
FF

+ MFFP
T
FF;xw,k−i′|k−i′−1H

T
FF;k−i′ +MFFPFF;ww,k−i′M

T
FF

)−1
(5.51)

das modifizierte KALMAN-Gewicht ist. Die Gleichungen unterscheiden sich bisher nicht von denen

eines üblichen KF unter Berücksichtigung zeitlich korrelierter Rauschprozesse. Der eigentliche Un-

terschied liegt in der Berechnung des Erwartungswertes des Produktes aus dem aktuell prädizierten

Fehler des Systemzustandes und der Prädiktion des Fehlers zum Zeitpunkt k − i′, d. h.

PFF;k,k−i′|k−1 = E

[(
xFF;k − x̂FF;k|k−1

)(
xFF;k−i′ − x̂FF;k−i′|k−i′−1

)T ∣∣∣∣ zFF;1:k−1

]
. (5.52)

Nach einigen Umrechnungen wird deutlich, dass zu jedem Zeitpunkt zwischen Gültigkeit und Verfüg-

barkeit der jeweiligen Messungen bestimmte Matrizen der KALMAN-Filterung zwischengespeichert

werden müssen, damit diese zum Zeitpunkt k für die Berechnung von Gl. (5.53) zur Verfügung ste-

hen:

PFF;k,k−i′|k−1 =

(
i′∏

m′=1

ΦFF;k−m′+1

(
I15×15 −Kk−m′HFF;k−m′

))
PFF;k−i′|k−i′−1

−
(

i′−1∏

m′=1

ΦFF;k−m′+1

(
I15×15 −Kk−m′HFF;k−m′

))
ΦFF;k−i′+1Kk−i′MFF;k−i′P

T
FF;xw,k−i′|k−i′−1.

(5.53)

Da nicht berücksichtigt werden kann, wie sich ein GPS-Messvektor, wenn er auch zum Zeitpunkt

k − i′ verfügbar gewesen wäre, auf die Kovarianzmatrix des Schätzfehlers zu eben diesem Zeitpunkt

auswirkt, handelt es sich hierbei um ein suboptimales Verfahren. Andernfalls hätte dies zu einer Än-

derung des KALMAN-Gewichts geführt, die wiederum die nachfolgenden Berechnungen beeinflus-

sen würde. Da der Verzögerungszeitraum allerdings hier im ungünstigsten Fall weniger als 250ms

beträgt, wird dies vernachlässigt.

Zusammenfassung

In diesem Kapitel wurden die zentralen Filterkomponenten vorgestellt, die benötigt werden, um die

durch den Strapdown-Algorithmus berechnete Navigationslösung aufgrund der Sensorfehler korrigie-

ren zu können. Dazu wurden die Filtergleichungen auf Basis der bekannten Differenzialgleichungen

so hergeleitet, dass Daten eines GPS-Empfängers, eines Magnetfeldsensors und eines barometrischen

Sensors als Messgrößen für das FF verwendet werden können. Zum Abschluss wurde gezeigt, wie

der eigentliche Systemzustand (bestehend aus Position, Geschwindigkeit und Lage), der sich außer-

halb des Filters befindet, korrigiert wird und mögliche Verzögerungen im GPS-Signal im Rahmen des

Filterprozesses berücksichtigt werden.
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Kapitel 6

Barometrisches Höhenfilter und topografische Datenbank

In diesem Kapitel wird eine Höhenschätzung auf Basis barometrischer Daten und einer topografi-

schen Datenbank vorgestellt, die im Vergleich zu einer allein auf dem GPS basierenden Höhenschät-

zung eine genauere Positionsbestimmung in vertikaler Richtung zulassen und eine genauere Bestim-

mung der Schwerebeschleunigung ermöglichen soll. Im Folgenden wird zunächst die Beschreibung

eines Systems zur Lokalisierung gegeben, wobei die Modellierung der bei barometrischen Messun-

gen typischen Fehler im Fokus steht. Anschließend wird ein Verfahren zum Abgleich der Messungen

mit einer topografischen Datenbank erläutert. Ausgehend von der barometrischen Höhenformel, de-

ren Herleitung in Anhang D zu finden ist, wird ein Fehlerfilter sowie die damit mögliche Korrektur

der Messgrößen betrachtet. Abgeschlossen wird das Kapitel mit Testergebnissen, die mit Hilfe von

künstlich generierten Sensordaten gewonnen wurden. Der hier präsentierte Ansatz wurde vom Autor

bereits im Rahmen eines internationalen Seminars veröffentlicht [BWPHU10], wird in dieser Arbeit

dennoch im Detail hergeleitet und analysiert.

Zuverlässige Höheninformationen können z. B. in neuartigen Verkehrsleitsystemen eine wichtige

Rolle spielen, wenn diese dazu eingesetzt werden sollen, Fahrzeuge zu einer freien Parkposition in

einem Parkhaus zu leiten. Wie ebenso noch gezeigt wird, kann sich eine verbesserte Höhenschätzung

auch positiv auf die Positionsschätzung in der Ebene auswirken, da über die RKM in Kap. 5.2.1.2

eine Kopplung zwischen den verschiedenen Komponenten besteht, sofern l̂nGPS 6= 03×1 , woraus wie-

derum eine bessere Lageschätzung resultiert. Außerdem wird das in Kap. 3.1 angesprochene Problem

der SCHULER-Oszillationen reduziert [TW04]. Obwohl aus einer Höhendifferenz von 20m ledig-

lich eine Änderung von ca. 1,0 · 10−4 m/s2 in der z-Komponente des Schwerebeschleunigungsvektors

gn(t) resultiert, sollen in dieser Arbeit die Auswirkungen einer falschen Höhenberechnung auf die

Gesamtlage- und Positionsschätzung untersucht werden.

Bei barometrischen Sensoren besteht allerdings das Problem, dass sich bei der Berechnung die

damit verbundenen Fehler wie bei einer IME akkumulieren können. Die Ursache liegt in der benötig-

ten Kenntnis von Referenzwerten für den Luftdruck und die Temperatur auf einer fest vorgegebenen

Referenzhöhe h0. In der Literatur wird zur Vereinfachung häufig angenommen, dass diese Referenz-

werte konstant sind [Tip99]. In einer realen Umgebung können diese Werte (z. B. die Temperatur auf

NN-Niveau, d. h. Meereshöhe) jedoch variieren, was wiederum eine fehlerhafte Höhenberechnung zur

Folge hat. Daher sollten idealerweise auch die Änderungen dieser Referenzwerte in der Berechnung

berücksichtigt werden. In den folgenden Abschnitten wird vorgestellt, wie die Fehler, die aus der Hö-

henberechnung mit Hilfe eines barometrischen Sensors resultieren, durch ein KF kompensiert werden

können. Dieses Verfahren ist ähnlich zu dem in [WR07], hier wird jedoch kein zweiter barometrischer

Sensor zur Fehlerkompensation eingesetzt. Im Rahmen dieser Arbeit wird zusätzlich ein topografi-

scher Kartenabgleich genutzt, wobei das Vorhandensein einer entsprechenden Datenbank vorausge-

setzt wird. Die Idee ist, dass an bestimmten Positionen eine Referenzhöhe aus einer topografischen

75
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Datenbank bekannt ist und diese genutzt wird, um die Abweichung zur momentan gemessenen baro-

metrischen Höhe zu bestimmen. Dies ist hilfreich, um wiederum die Sensorfehler zu berechnen und in

den aktuellen sowie den zukünftigen Messungen zu berücksichtigen, bei denen keine Referenzdaten

zur Verfügung stehen. Auf diese Weise steht eine zuverlässige Schätzung der Fehler für die jewei-

lige Höhe zur Verfügung, denn i. d. R. liefern topografische Karten bzw. Datenbanken sehr präzise

Höheninformationen [Whi93]. Dies ist möglich, da diese meist durch hochgenaue Profilmodelle der

Erdoberfläche berechnet oder manuell mit Hilfe des Differential Global Positioning System (DGPS)

und Katasterkarten durch das Landesamt für Kartographie bestimmt werden. Hierdurch sind die Hö-

henangaben auf bis zu 0,5m genau.

Der Vorteil der hier vorgestellten barometrischen Höhenmessung mit Fehlerkompensation ist,

dass eine Kalibrierung des Sensors bzw. eine Temperaturkompensation wie es in der Geodäsie oder

Luftfahrt häufig notwendig ist, um z. B. Genauigkeiten im Dezimeterbereich zu erhalten, nicht mehr

vorgenommen werden muss. In der Luftfahrt muss ein Pilot vor dem Start für eine genaue Anzeige

der Flughöhe seinen Höhenmesser manuell auf den aktuellen meteorologischen Luftdruck kalibrie-

ren bzw. die bekannte Höhe berücksichtigen, auf der sich der Flughafen befindet. Betrachtet man die

Situation, in der sich ein KFZ auf offener Straße bewegt und sich der Umgebungsluftdruck nur auf-

grund der Höhe ändert, so ist die barometrische Höhenberechnung ein äußerst zuverlässiges Mittel

zur vertikalen Positionsbestimmung. Allerdings kann sich die Situation z. B. bei der Einfahrt in ein

Parkhaus aufgrund der baulichen Gegebenheiten drastisch ändern, da die Luftdruckänderung nicht

mehr ausschließlich auf die Höhenänderung zurückzuführen ist. Dies ist allerdings dann unproble-

matisch, wenn auch für diese Gegebenheiten Referenzwerte vorliegen. Solche Situationen bleiben im

Rahmen dieser Arbeit unberücksichtigt. Der Vorteil eines Barometers ist, dass es in jeder Situation

Messwerte liefern kann, hingegen vergleichbare GPS-Messungen gerade in geschlossenen Räumlich-

keiten meistens nicht verfügbar sind.

Im Rahmen der Fahrzeugnavigation ist häufig ein Kartenabgleich auf Basis der üblicherweise ein-

gesetzten Navigationskarten ausreichend, die z. T. ebenfalls Höheninformationen gespeichert haben.

Letztendlich spielt nicht unbedingt die Höhe eines Fahrzeugs über Normalnull (NN) die entscheiden-

de Rolle, sondern lediglich die absolute Position des Fahrzeugs bezogen auf die eingesetzte Karte (es

handelt sich dabei nicht unbedingt um hochgenaue topografische Karten). Eine genaue Berechnung

der Schwerebeschleunigung im Rahmen einer Inertialnavigation mit sechs Freiheitsgraden – selbst

wenn dadurch nur eine geringfügig höhere Genauigkeit zu erwarten ist – kann jedoch durch das hier

beschriebene Verfahren erreicht werden, da das Höhenniveau über NN explizit berücksichtigt wird.

6.1 Systemübersicht

In Abb. 5.1 wurde bereits das Gesamtsystem vorgestellt, das für die Schätzung der inertialen Sensor-

fehler verwendet wird. Das barometrische Teilsystem kann im Detail in Abb. 6.1 betrachtet werden.

Das dargestellte barometrische Fehlerfilter (BF) ist kein Fehlerfilter wie es für die Filterung der in-

ertialen Sensorfehler verwendet wird. Für das barometrische Teilsystem wird stattdessen ein lineares

KF eingesetzt. Hier wird jedoch die Linearisierung der Messgleichung nicht nur zur Berechnung

der Schätzfehlerkovarianzmatrix durchgeführt, sondern auch zur Zustandsschätzung. Auf eine Be-

rücksichtigung zeitlicher Korrelationen des System- bzw. Messrauschens wird verzichtet. Das für die

Untersuchungen eingesetzte Barometer ist ein USB-Sensor der Fa. Toradex, der die Temperatur und

den Luftdruck misst.



6.1. Systemübersicht 77

h̃BM
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Abbildung 6.1: Systemübersicht des Teilsystems mit Barometer

Die Funktionsweise des Teilsystems kann wie folgt zusammengefasst werden: Der barometri-

sche Sensor liefert Messwerte (Temperatur T̃ und Luftdruck P̃ ), die für eine Höhenschätzung h̃BM

vewendet werden können. Um die damit zusammenhängenden Fehler zu kompensieren, werden die

aktuellen, bereits korrigierten horizontalen Positionsdaten in x̂SD laufend mit Einträgen einer Daten-

bank verglichen. Ist der euklidische Abstand zwischen den korrigierten horizontalen Positionsdaten

und denen in der Datenbank unterhalb eines bestimmten Schwellenwertes dmax, so wird statt der

barometrisch berechneten Höhe die Höhe aus der Datenbank als Hilfsgröße zur Fehlerfilterung ver-

wendet. Die im BF geschätzten Fehler dienen im nachfolgenden Schritt lediglich der Korrektur der

Höhe h̃BM. Diese wird demnach außerhalb des Filters durchgeführt. Die korrigierte barometrische

Höhe ĥBM wird wiederum als Stützinformation für das Gesamtsystem in Kap. 5.1 verwendet.

6.1.1 Fehlermodellierung für barometrische Sensoren

In [Us176] und weiterer einschlägiger Literatur wird die barometrische Höhenformel

hBM(P, P0, T0) = h0 +



(
P0

P

) ℓ γ0
M g0 − 1


 · T0

γ0
(6.1)

als Mittel angegeben, um aus einem LuftdruckP auf eine Höhe hBM(P, P0, T0) über NN zu schließen,

die bei passendem Referenzdruck P0 := P (h0) der Höhe über dem Geoid entspricht. Die Konstan-

ten in (6.1) sind in Tab. 6.1 zusammengefasst. Die detaillierte Herleitung von (6.1) ist in Anhang D

Bezeichnung Symbol Wert

Molare Masse (Luft) M 2,896 44 · 10−2 kg/mol

Universelle Gaskonstante nach [Us176] ℓ 8,314 32N ·m/(mol ·K)

Temperaturgradient (negativ) γ0 −6,5 · 10−3 K/m

Schwerebeschleunigung auf Referenzhöhe (z. B. Meereshöhe) g0 ≈ 9,81m/s2

Tabelle 6.1: Konstanten und Variablen für die barometrische Höhenberechnung

zu finden. Zur Auswertung wird demnach auch eine Referenzhöhe sowie eine Temperatur und ein
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Druck auf dieser Referenzhöhe benötigt. Eine entsprechende Referenzhöhe festzulegen ist unproble-

matisch, da sich diese i. d. R. nicht ändern wird. Allerdings können sich naturgegeben die Temperatur

T0 := T (h0) und der Druck P0 für diesen Ort mit der Zeit ändern, je nachdem, welche Tageszeit

oder welche Wetterumstände vorliegen. Ebenfalls ändert sich mit der Zeit der Momentandruck P am

Messort. Dies hat zum einen die selben Gründe wie bei P0, liegt zum anderen aber auch an der Ortsab-

hängigkeit, da sich das Fahrzeug bewegt. Die Abb. 6.2 (a) und (b) zeigen typische Verläufe über einen

Zeitraum von ca. 40 h für die zeitveränderlichen Parameter an einer fest installierten Wetterstation.
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Abbildung 6.2: Messwerte für Temperatur und Druck

Eine zeitdiskrete Beschreibung der Referenzparameter würde mittels RWP-Modellen wie folgt

lauten:

T0,k = T0,k−1 +∆tBM · nT0,k
(6.2)

P0,k = P0,k−1 +∆tBM · nP0,k
, (6.3)

wobei nT0,k
∼ N (nT0,k

; 0, σ2T0
) und nP0,k

∼ N (nP0,k
; 0, σ2P0

) seien. Die Variable ∆tBM := 1
fBM

bezeichnet hier das Abtastintervall des barometrischen Sensors. Die Multiplikation mit ∆tBM führt

dazu, dass die Verläufe für fest vorgegebene Varianzen unabhängig vom Abtastintervall sind.

Für die Berechnung der notwendigen Standardabweichungen des jeweiligen treibenden Rau-

schens in (6.2) und (6.3) wurden neben den Messungen in Abb. 6.2 auch Messungen an einem festen

Ort über einen Zeitraum von sieben Tagen durchgeführt, wobei innerhalb von zwölf Stunden Druck-

und Temperaturschwankungen von bis zu 12 hPa bzw. 17K auftraten. Durch Auswertung der Daten

konnten die in Tab. 6.2 angegebenen Werte für die Standardabweichungen der treibenden Rausch-

prozesse näherungsweise ermittelt werden. Es wird davon ausgegangen, dass die Messungen an dem

Parameter Standardabweichung

T0 4 · 10−3K/
√
s (bei fBM = 10Hz)→ σP0

= 1,265 · 10−2 K/s

P0 0,4Pa/
√
s (bei fBM = 10Hz)→ σT0

= 1,265 Pa/s

Tabelle 6.2: Messtechnisch ermittelte Standardabweichungen für die Referenztemperatur T0 und den

Referenzluftdruck P0



6.1. Systemübersicht 79

hier gewählten Ort trotz der geringen Datenbasis auch auf andere Positionen übertragbar sind und

mögliche Unterschiede ausreichend durch den jeweiligen RWP berücksichtigt werden können.

Neben zeitvarianten Referenzwerten wird angenommen, dass die Messwerte von Druck und Tem-

peratur jeweils von GAUSS-verteiltem Rauschen, entsprechend Gl. (6.4) und (6.5), überlagert sind:

T̃k = Tk + nT,k (6.4)

P̃k = Pk + nP,k. (6.5)

Dabei ist n†,k ∼ N (n†,k; 0, σ
2
† ) mit † ∈ {T, P} eine GAUSS-verteilte Zufallsvariable mit Mittelwert

Null und der Varianz σ2† .

6.1.2 Barometrische Höhenmessung

Wir betrachten nun wieder Gl. (6.1). An dieser Stelle sollen die Gleichungen hergeleitet werden, die

für die Bestimmung der barometrischen Fehler mit Hilfe des BF benötigt werden. Der Zeitindex k

wird dabei zunächst wieder außer Acht gelassen. Es sei noch darauf hingewiesen, dass die barome-

trische Höhenformel auch direkt als Messgleichung eines KF eingesetzt werden kann. Allerdings soll

hier eine alternative Möglichkeit vorgestellt werden, die es darüber hinaus erlaubt, externe Größen

aus einer Datenbank als zusätzliche Stützinformationen auszunutzen und damit die Sensorfehler zu

schätzen.

Es wird zunächst eine Taylorreihenentwicklung um die Entwicklungspunkte T0 := T
′

0−∆T0 und

P0 := P
′

0 − ∆P0 mit Abbruch nach dem linearen Glied vorgenommen, um die Auswirkungen der

Referenzwerte zu bestimmen:7

hBM(P, T
′

0, P
′

0) ≈ hBM(P, T0, P0) +
∂hBM(P, P

′

0, T
′

0)

∂T
′

0

∣∣∣∣∣T ′

0=T0

P
′

0=P0

∆T0 +
∂hBM(P, P

′

0, T
′

0)

∂P
′

0

∣∣∣∣∣T ′

0=T0

P
′

0=P0

∆P0.

(6.6)

Für die Ableitungen auf der rechten Seite von Gl. (6.6) gilt dann:

∂hBM(P, P
′

0, T
′

0)

∂T
′

0

∣∣∣∣∣T ′

0=T0

P
′

0=P0

=



(
P0

P

) ℓγ0
Mg0 − 1


 · 1

γ0

=
hBM(P, P0, T0)− h0

T0
(6.7)

und

∂hBM(P, P
′

0, T
′

0)

∂P
′

0

∣∣∣∣∣T ′

0=T0

P
′

0=P0

=
T0ℓγ0
γ0Mg0

(
1

P

) ℓγ0
Mg0 · P

ℓγ0
Mg0

−1

0

=
T0ℓ

Mg0P0

(
P0

P

) ℓγ0
Mg0

. (6.8)

7Im Vergleich zu früher wird hier mit (
′

) nicht der Linearisierungspunkt bezeichnet, sondern der Punkt, für den man

die Nichtlinearität approximieren will.
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Für die erste Ableitung wurde wieder (6.1) ausgenutzt. Setzt man (6.7) und (6.8) in (6.6) ein, so ergibt

sich:

hBM(P, T
′

0, P
′

0) ≈ hBM(P, T0, P0) + (hBM(P, T0, P0)− h0)
(
∆T0
T0

)

︸ ︷︷ ︸
sh

+
T0ℓ

Mg0

(
∆P0

P0

)(
P0

P

) ℓγ0
Mg0

︸ ︷︷ ︸
bh

.

(6.9)

Mit der Annahme, dass
(
P0
P

) ℓγ0
Mg0 ≈ 1 und den in Gl. (6.9) verwendeten Faktoren sh und bh kann

nun ein einfacher Ausdruck für ein Fehlermodell zur barometrischen Höhenberechnung angegeben

werden. Zusätzlich wird vorausgesetzt, dass hier hBM(P, T0, P0) der korrekten Höhe h entspricht und

damit die fehlerhafte Höhe h̃BM durch

h̃BM = h+ sh · (h− h0) + bh (6.10)

ausgedrückt werden kann. Die Höhe h̃BM setzt sich demnach aus der korrekten Höhe, einem Bias

bh und einer durch einen Skalierungsfaktor sh beeinflussten Höhendifferenz aus korrekter Höhe und

Referenzhöhe h0 zusammen. Während der Skalierungsfaktor von der Referenztemperaturänderung

∆T0 und der initialen Temperatur T0 auf Referenzhöhe abhängt, ist das Bias eine Funktion des ent-

sprechenden Luftdrucks P0 und der Druckänderung ∆P0.

Der Skalierungsfaktor und das Bias sollen später fortlaufend mit Hilfe eines KF geschätzt werden.

Mit der festgelegten Referenzhöhe h0 = 0m lässt sich die benötigte Messgl. (6.10) unter Berück-

sichtigung des Zeitindex k wie folgt ergänzen:

h̃BM;k = (1 + sh,k) · hk + bh,k + nh,k, (6.11)

wobei nh,k ∼ N (nh,k; 0, σ
2
h) einen zusätzlichen zufälligen Fehler in der Höhenberechnung be-

schreibt, der durch Sensorrauschen verursacht wird (siehe Gl. (6.4) und (6.5)). Da die momentane

Temperatur Tk nicht in die barometrische Höhenformel (6.1) eingeht, ist auch die Standardabwei-

chung σh unabhängig von σT . Im Folgenden verwenden wir die Näherung σh ≈ σP · 0,1m/Pa. Diese

gibt an, dass eine Druckänderung von 1Pa einer Höhenänderung von 0,1m entspricht. Im Allgemei-

nen wird die Höhenänderung, die aus einer Druckänderung von 1 hPa resultiert, als barometrische

Höhenstufe bezeichnet, welche etwa 10m entspricht [Tip99].

6.2 Topografischer Kartenabgleich

Wie eingangs erwähnt, soll die Filterung durch Daten aus einer topografischen Datenbank unter-

stützt werden. Voraussetzung ist dabei, dass die in der Datenbank abgelegten Referenzhöhen hTopo

mit ausreichender Genauigkeit vorliegen. Die im Rahmen dieser Arbeit verwendeten Datenbank-

werte entstammen der Deutschen Grundkarte (DGK), welche die Höhe über NN angibt. Dieses ist

eine topografische Karte, die neben anderen Informationen auch Höhenlinien (auch Isohypsen ge-

nannt) enthält und diese je nach Auflösung im Abstand von 0,5m bis 5m darstellt. Ein Beispiel ist

in Abb. 6.3 zu sehen. Die Erstellung solcher Karten basiert häufig auf so genannten Flurplänen. Dies

sind topografische Karten, die Positionsangaben in GAUSS-KRÜGER-Koordinaten enthalten und auf

Vermessungen und orthographischen Fotos seitens der Landesämter beruhen. Man kann daher davon

ausgehen, dass die Höheninformationen – je nach verwendeter Karte und deren Abbildung in einer
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Abbildung 6.3: Topografische Karte von GARMIN (© GARMIN 2010, MAPSOURCE 2010, BKG

2010)

Datenbank – mit einer ausreichend hohen Auflösung zur Verfügung stehen. Des Weiteren kann da-

von ausgegangen werden, dass die Angaben, auch wenn die Höhenlinien z. T. auf mathematischen

Interpolationen beruhen, im Vergleich zu einer GPS-basierten Höhenschätzung sehr genau sind.

Wir gehen im Folgenden dennoch davon aus, dass die entsprechenden topografischen Daten mit

einer geringen Auflösung zur Verfügung stehen, denn Referenzmessungen von Höhen im Zentime-

terbereich, sind meist nur in unregelmäßigen Abständen von bis zu mehreren Kilometern vorhanden.

Dieses können Messungen sein, die z. B. für Baumaßnahmen, Bahnhöfe oder andere öffentliche Ge-

bäude mit der entsprechenden Ausrüstung vorgenommen wurden. Das hier vorgestellte Verfahren ist

allerdings so ausgelegt, dass eine Fehlerbestimmung im Abstand von mehreren Minuten kein Problem

darstellt.

Die Verwendung von topografischen Höhendaten an Stelle der GPS-Höhe entspricht einem Kar-

tenabgleich. Dabei wird fortlaufend die Position in der horizontalen Ebene (Breitengrad ϕ und Län-

gengrad λ) mit den entsprechenden Daten aus der topografischen Datenbank verglichen. Befindet

sich der Nutzer, d. h. das Fahrzeug, innerhalb eines bestimmten vordefinierten Radius zu einem Da-

tenbankeintrag, so kann die zugehörige Referenzhöhe zur Stützung des Filters genutzt werden. Um

festzustellen, ob ein passender Datenbankeintrag verwendet werden kann, sollen die folgenden Schrit-

te durchgeführt werden:

1. Zunächst muss der minimale euklidische Abstand zwischen der aktuellen horizontalen Positi-

on, bestehend aus Breiten- und Längengrad, mit sämtlichen zu den Referenzhöhen korrespon-

dierenden Positionen aus der Datenbank verglichen werden. Die Abstandsbestimmung wird

analog zu (5.15) für jeden Zeitschritt k mit

∆p
n,(i′)
eb,n,k := R0 ·

(
ϕ̂SD;k − ϕ

(i′)
Topo

)
(6.12)

∆p
n,(i′)
eb,e,k := R0 · cos(ϕ̂SD;k) ·

(
λ̂SD;k − λ

(i′)
Topo

)
(6.13)

durchgeführt, wobei R0 ≈ 6371 km der mittlere Erdradius (Krümmungsradius) aus Tab. 4.2 ist

und ϕ̂SD;k und λ̂SD;k die Positionsschätzungen am Ausgang des Strapdown-Algorithmus zum

Zeitpunkt k sind. Diese werden demnach mit sämtlichen Einträgen ϕ
(i′)
Topo, λ

(i′)
Topo mit i′ ∈ [1, I ′]
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einer Datenbank der Länge I ′ verglichen. Dazu wird der minimale Abstand gemäß

dmin;k := min
i′

(√(
∆p

n,(i′)
eb,n,k

)2
+
(
∆p

n,(i′)
eb,e,k

)2
)

(6.14)

berechnet.

2. Liegt dieser minimale Abstand unterhalb eines festgelegten Schwellenwertes, d. h. ist

dmin;k < dmax, so erfolgt die Zuweisung h̃TD;k ← h
(i′)
Topo, wobei h

(i′)
Topo die zu ϕ

(i′)
Topo und λ

(i′)
Topo

korrespondierende Höhe ist. Ist diese Bedingung nicht erfüllt, wird keine Referenzhöhe h̃TD;k

verwendet. Hier wird der Schwellenwert dmax = 5m gewählt.

Für die noch genauer zu definierende Fehlerfilterung wird angenommen, dass die topografischen Hö-

hen und damit h̃TD;k äußerst genau sind. Es wird davon ausgegangen, dass die Referenzdaten ebenfalls

durch ein Modell entsprechend

h̃TD;k = hk + nTD;k (6.15)

mit nTD;k ∼ N (nTD;k; 0, σ
2
TD) beschrieben werden können, wobei σTD die Standardabweichung von

nTD;k ist und damit die Genauigkeit der Datenbankeinträge angibt. Zur Vereinfachung wird später

zwar σTD = 0m festgelegt (eine solche Annahme ist u. a. deshalb gerechtfertigt, weil der Abstand

zwischen wirklicher Höhe und der entsprechenden Höhe h
(i′)
Topo bei dmax = 5m i. Allg. vernachlässigt

werden kann), dennoch soll zunächst der allgemeine Fall mit σTD 6= 0m betrachtet werden.

6.3 Aufbau des barometrischen Fehlerfilters

6.3.1 Systemmodell

Der Skalierungsfaktor sh und das Bias bh hängen direkt von der Referenztemperatur- bzw. der Re-

ferenzdruckänderung ab. Wie in (6.2) bzw. (6.3) sollen auch die Faktoren hier durch RWP-Modelle

nachgebildet werden. Daher gilt

sh,k = sh,k−1 +∆tBM · nsh,k (6.16)

mit nsh,k
∼ N

(
nsh,k

; 0, σ2sh

)
und

bh,k = bh,k−1 +∆tBM · nbh,k (6.17)

mit nbh,k
∼ N

(
nbh,k

; 0, σ2bh

)
, wobei σ2sh =

(σT0
T0

)2
und σ2bh

=
(

ℓ T0
Mg0P0

σP0

)2
ist. Dabei stellen σP0

und σT0
die Standardabweichungen der Referenzwerte dar, und es wird für die Referenztemperatur

auf NN T0 ≈ 270K angenommen. Die Gl. (6.16) und (6.17) bilden damit bereits das vollständige

Systemmodell des BF.

6.3.2 Messmodell

Das zugehörige Messmodell sei wie folgt definiert:
(
z∆h

zsh

)

k

=

(
h̃TD;k 1

1 0

)(
sh
bh

)

k

+

(
nz∆h
nzs

)

k

. (6.18)
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Um Gl. (6.18) herzuleiten, bilden wir zunächst die Differenz aus (6.11) und der topografischen Refe-

renzhöhe nach (6.15):

h̃BM;k − h̃TD;k = sh,khk + bh,k + nh,k − nTD;k. (6.19)

Löst man Gl. (6.15) nach hk auf und setzt dieses in (6.19) ein, so folgt:

h̃BM;k − h̃TD;k = sh,kh̃TD;k + bh,k + nh,k − (1 + sh,k)nTD;k

⇒ z∆h,k = sh,kh̃TD;k + bh,k + nz∆h,k
, (6.20)

wobei z∆h,k := h̃BM;k− h̃TD;k und nz∆h,k
∼ N (nz∆h,k

; 0, σ2z∆h,k
) ist. Unter der Annahme, dass nh,k

und nTD;k unkorreliert sind, sei hier außerdem σ2z∆h,k
:= σ2h +

(
1 + sh,k

)2
σ2TD festgelegt.

Zusätzlich zur Referenzhöhe aus der Datenbank kann die gemessene Temperatur zur Unterstüt-

zung des BF verwendet werden. Dazu wird in die Temperaturmessgl. (6.4) zunächst (D.8) aus dem

Anhang eingesetzt, wobei h0 = 0m angenommen wird:

T̃k = T0,k + γ0 · hk + nT,k. (6.21)

Nun subtrahiert man von beiden Seiten in (6.21) den Term T0,0 und normiert anschließend, woraus

unter Verwendung von (6.15)

T̃k − T0,0
T0,0

=
T0,k + γ0 · hk − T0,0

T0,0
+
nT,k
T0,0

⇒
T̃k − γ0 · h̃TD;k − T0,0

T0,0︸ ︷︷ ︸
zs
h
,k

=
T0,k − T0,0

T0,0︸ ︷︷ ︸
sh,k

+
nT,k − γ0 · nTD;k

T0,0︸ ︷︷ ︸
nzs,k

(6.22)

resultiert. Da die Addition von zwei mittelwertfreien GAUSS-verteilten Zufallsvariablen ebenfalls

mittelwertfrei und GAUSS-verteilt ist, gilt für nzs,k in (6.22) nzs,k ∼ N
(
nzs,k; 0,

σ2
T+γ2

0 ·σ2
TD

T 2
0,0

)
. Somit

steht ein vollständiges Gleichungssystem zur Verfügung, um aus Temperatur- und Druckmessungen

den Skalierungsfaktor und das Bias für eine barometrische Höhenschätzung bestimmen zu können.

6.3.3 Korrektur der Höhenmessung

Sind alle Fehlerparameter bekannt, so kann für eine nach (6.1) berechnete Höhe h̃BM;k, welche aus-

schließlich auf barometrischen Messungen beruht, eine korrigierte Höhe angegeben werden. Dazu

wird Gl. (6.11) nach hk umgestellt. Für die korrigierte Höhe ĥBM folgt dann:

ĥBM;k =
h̃BM;k − b̂h,k
1 + ŝh,k

. (6.23)

Neben dem korrigierten Höhenwert wird für das FF in Abb. 5.1 allerdings auch eine entsprechende

Schätzfehlervarianz benötigt. Diese kann mit der hier beschriebenen Filterstruktur zur Bestimmung
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des Skalierungsfaktors und des Bias nicht berechnet, sondern muss gesondert betrachtet werden. Zu-

nächst wird dazu Gl. (6.11) in (6.23) eingesetzt und die Differenz zu hk berechnet:

ĥBM;k − hk =

(
1 + sh,k

)
hk + bh,k + nh,k − b̂h,k
1 + ŝh,k

− hk

=
hk

(
sh,k − ŝh,k

)
+
(
bh,k − b̂h,k

)
+ nh,k

1 + ŝh,k
. (6.24)

Setzt man ∆sh,k := sh,k − ŝh,k und ∆bh := bh − b̂h in Gl. (6.24) ein, so folgt:

ĥBM;k − hk =
hk∆sh,k +∆bh,k + nh,k

1 + sh,k −∆sh,k
. (6.25)

Wenn man nun den Erwartungswert E

[(
hk − ĥBM;k

)(
hk − ĥBM;k

)T ∣∣∣∣ z∆h, zsh

]
auf Basis von

Gl. (6.25) berechnen möchte, so erkennt man nach einigen Schritten, dass es sich hierbei um eine

CAUCHY-Verteilung handelt, da ein Quotient aus zwei GAUSS-verteilten Zufallsvariablen vorliegt.

Eine CAUCHY-Verteilung besitzt nach [HU07] weder einen Mittelwert noch eine Varianz. Daher kann

auch in diesem Fall keine eindeutige Schätzfehlervarianz bestimmt werden. Zur Vereinfachung wird

daher im Folgenden angenommen, dass für den Nenner in (6.25) 1+ sh,k−∆sh,k ≈ 1 gilt. Des Wei-

teren werden die Kreuzkorrelationen zwischen dem Skalierungsfehler und dem Bias vernachlässigt.

Aus diesen Annahmen folgt für die Schätzfehlervarianz:

E

[(
hk − ĥBM;k

)(
hk − ĥBM;k

)T ∣∣∣∣ z∆h, zsh

]
≈ ĥ2BM;k−1 · E

[(
∆sh,k

)2]
+ E

[(
∆bh,k

)2]
+ σ2h,k.

(6.26)

Hier wurde zusätzlich davon ausgegangen, dass die Höhenänderung zweier aufeinanderfolgender Hö-

henschätzwerte relativ klein ist, so dass ĥk = ĥBM;k−1 gesetzt werden kann. Wie mit den anschlie-

ßenden Untersuchungen gezeigt wird, hat diese Approximation keinen signifikanten Einfluss auf das

Schätzergebnis.

6.4 Ergebnisse

Um die Funktionsfähigkeit des Filters zu verdeutlichen, sollen im Folgenden einige Simulationser-

gebnisse auf Basis künstlich generierter Daten sowie realer Felddaten präsentiert werden. Die künst-

lichen Daten wurden dabei mit Hilfe der Matlab-Softwarepakete SatNav 3.0 und INS 3.0 generiert.

Eine detaillierte Beschreibung ist in Anhang F zu finden.

Zunächst wird ein bekanntes reales Höhenprofil aus einem Datensatz verwendet, der bei einer

Testfahrt im Umkreis von Paderborn mit dem barometrischen USB-Sensor Toradex Pressure & Tem-

perature 1.2 aufgenommen wurde. Bei diesem Profil wird davon ausgegangen, dass es sich um unver-

fälschte, hochgenaue Referenzhöhen handelt, bei denen keine Messungenauigkeiten vorhanden sind.

Mit der Annahme geeigneter Referenzwerte P0, T0, σ
2
T0

und σ2P0
für die Höhe h0, können nun Profile

für den Temperatur- und Luftdruckverlauf entsprechend der barometrischen Höhenformel berechnet

werden (siehe Anhang F). Die Messwerte für Temperatur und Druck wurden dabei nach den Werten

in Tab. 6.2 erzeugt, wobei die Standardabweichungen jedoch um einen Faktor 10 erhöht wurden, so
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dass die Änderungen für die folgenden Untersuchungen sichtbarer sind. Außerdem wurden für die

Standardabweichungen in Gl. (6.4) und (6.5) σT = 0,1K und σP = 10Pa gewählt.

Die Abb. 6.4 (a) zeigt das Referenzhöhenprofil (schwarz) und ein daraus generiertes verrauschtes

barometrisches Höhenprofil (grün). Zudem ist das durch das Filter korrigierte Profil (rot) zu sehen.

Für das Kartenabgleichverfahren wurde eine Datenbank angelegt, wobei die Datenbankeinträge h
(i′)
Topo

für i′ ∈ [1, I ′] den idealen Höhen in einem zeitlichen Abstand von 60 s entsprechen. Es ist zu er-

kennen, dass die korrigierten Höhen nach der barometrischen Filterung nur unwesentlich von den

idealen Daten abweichen. Das BF ist in der Lage, den Skalierungsfehler und das barometrische Bias

zu kompensieren, ohne ein Messrauschen explizit zu berücksichtigen.
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(b) Absoluter Höhenfehler ǫBM;h

Abbildung 6.4: Höhenprofil nach barometrischer Höhenformel ohne und mit Korrektur

In Abb. 6.4 (b) ist der Höhenfehler ǫ
BM;h̃

:=
∣∣∣h̃BM − hideal

∣∣∣ ohne Korrektur (grün) bzw.

ǫ
BM;ĥ

:=
∣∣∣ĥBM − hideal

∣∣∣ mit Korrektur (rot) abgebildet. Wird nicht alle 60 s eine Korrektur durch-

geführt, so ist deutlich zu erkennen, dass der Fehler mit fortlaufender Zeit aufgrund des zeitvarianten

Bias zunimmt und bei ca. 15min die größte Abweichung aufweist. Diese Abweichung wird nachfol-

gend zwar geringer, dennoch ist die Schätzfehlervarianz deutlich höher. Durch die Korrektur an den

Referenzpunkten kann dieser Fehler deutlich reduziert werden, so dass ein mittlerer Höhenfehler von

ca. 3m verbleibt. Da übliche GPS-Messungen (bzw. -Schätzungen) teilweise deutliche Unterschiede

zu den realen Höhen aufweisen können (bis zu 15m) und hier des Weiteren relativ hohe Rauschvari-

anzen angenommen wurden, ist der hier ermittelte mittlere Fehler vergleichsweise gering.

Um die Zuverlässigkeit der Parameterschätzung zu bestätigen, sollen die Abb. 6.5 (a) und (b)

betrachtet werden. Dabei können die theoretisch korrekten Werte mit den Filterausgangsgrößen des

BF verglichen werden. Um die theoretischen Werte zu erhalten, wurden in Gl. (6.9) die Werte für sh
und bh mit Hilfe der generierten Referenzdaten für die Temperatur bzw. den Luftdruck ausgewertet.

Sowohl das Ergebnis für den Skalierungsfaktor als auch das für das Bias zeigt, dass die Abweichun-

gen zwischen den theoretischen Parameterwerten (schwarz) und den entsprechenden Schätzungen

(rot) gering sind. Es fällt zusätzlich auf, dass der Skalierungsfaktor nach einer Stunde maximal 2%

beträgt. Die Rauschparameter des dafür verantwortlichen RWP sind in Anlehnung an reale Werte

gewählt worden. Bei den im rechten Teilbild dargestellten Schätzwerten ergeben sich größere Abwei-

chungen, die auf die Linearisierung zurückzuführen sind. Des Weiteren ist zu erkennen, dass zwischen
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Abbildung 6.5: Theoretischer und geschätzter Skalierungsfaktor sowie Bias

den Verfügbarkeitszeitpunkten von Referenzhöhen die Schätzwerte konstant sind. Da davon ausge-

gangen wird, dass die Referenzdaten in einem relativ geringen zeitlichen Abstand zur Verfügung

stehen, hat dieses allerdings keinen signifikanten Einfluss auf das Schätzergebnis. Diese Annahme

ist auch deshalb erlaubt, da die Höhenschätzung weiterhin mit der Abtastfrequenz fBM des barome-

trischen Sensors aktualisiert und korrigiert wird. Im ungünstigsten Fall würde lediglich eine geringe

konstante Abweichung aus der Schätzung resultieren, die allerdings im Fall einer unkorrigierten,

ungefilterten Messung auch vorhanden wäre. In Abb. 6.5 (b) liegt aufgrund der nicht vorhandenen

Aktualisierung anhand von Messdaten die maximale Abweichung des geschätzten Bias zum idealen

Wert bei ca. 8m. Eine Prädiktion zwischen den Messwertaktualisierungen könnte den Fehler bei der

Berechnung durch das BF verringern. Neben den genannten Gründen wird dieses jedoch vermieden,

um den Berechnungsaufwand gering zu halten. Wie bereits erwähnt, wurden hier für die Parameter

aus Tab. 6.2 zehnmal höhere Werte als angegeben gewählt. Es kann daher davon ausgegangen werden,

dass in einem realen System geringere Abweichungen aus den Schätzergebnissen resultieren würden.

Zusammenfassung

Zu Beginn von Kap. 6 wurden die Grundlagen der barometrischen Höhenmessung erläutert, gefolgt

von einer Systemübersicht der Struktur des Teilsystems, das verwendet wird, um barometrische Daten

aufzubereiten. Als Teil des gesamten Navigationsfilters basiert dieses System auf einem KF und einer

topografischen Datenbank. Das Filter wurde so entworfen, dass Skalierungsfehler und Bias der baro-

metrischen Sensormessungen mit Hilfe topografischer Daten geschätzt werden können. Des Weiteren

wurde beschrieben, wie die fehlerhaften Messungen korrigiert und dem INS zur Verfügung gestellt

werden können. Zum Abschluss wurden Ergebnisse vorgestellt, die auf realen Höhenmessungen be-

ruhen und mit simulierten Daten aufbereitet und gefiltert wurden. Die Ergebnisse zeigten, dass bei

einer ausreichenden Anzahl topografischer Informationen die Fehler durch das BF mit hoher Ge-

nauigkeit geschätzt werden können und dadurch auch die Höhenschätzungen nur noch eine geringe

Fehlervarianz aufweisen, wodurch unkorrigierte barometrische Messungen übertroffen werden.



Kapitel 7

Sequenzielle Parameterschätzung

In diesem Kapitel sollen die Verfahren zum Schätzen der statistischen Eigenschaften des Rauschens

hergeleitet werden, welches das zeitkorrelierte Sensorrauschen treibt (siehe Abb. 5.1). Dazu wird u. a.

ein in [TSM85] vorgestelltes und in [KM93], [DDA01] sowie [DDA03] für die Sprachsignalverarbei-

tung weiterentwickeltes Verfahren zur Rauschparameterschätzung für den Einsatz im Rahmen einer

Fahrzeugortung modifiziert. Im Gegensatz zu [DDA03] und [WHU09], wo die Rauschkovarianzma-

trix eines Messmodells geschätzt wird, soll hier die eines Systemmodells bestimmt werden. Um das

Verfahren in Kombination mit dem hier verwendeten Fehlerfilter (FF) einsetzen zu können, müssen

einige zusätzliche Filterschritte durchgeführt werden. Als Vergleichsansätze werden außerdem ein

Verfahren auf Basis von Messwertdifferenzen sowie eines zur rekursiven Schätzung des Mittelwertes

und der Varianz einer Verteilung vorgestellt.

7.1 Sequenzieller Expectation-Maximization-Algorithmus

Die gesuchten Rauschparameter befinden sich, wie in Kap. 5.2.1 bereits gezeigt wurde, auf der

Hautpdiagonalen der Systemrauschkovarianzmatrix QFF;k := E
[
nFF;kn

T
FF;k

]
, die das inhärente Mess-

rauschen der Inertialsensoren sowie das vibrationsinduzierte Rauschen nach Gl. (5.13) treibt. Um die

Filterung mittels FF durchführen zu können, müssen sämtliche Parameter vollständig bekannt sein

oder zumindest Schätzgrößen vorliegen. Systemtheoretisch ist die Schätzung der Modellparameter,

welche nicht Teil des Zustandsvektors xFF sind, mit Hilfe des so genannten Expectation-Maximization

(EM)-Algorithmus möglich [Moo96], [Bil98], [HL05]. Im ersten Schritt berechnet dieser den Erwar-

tungswert der Zielfunktion, die im Falle der ML-Schätzung die Log-Likelihood Function (LLF) der

kompletten Daten ist. Diese bestehen dabei aus einem beobachtbaren Anteil, den Messungen z, und

einem nicht-beobachtbaren Anteil, der im Folgenden durch den Zustandsvektor des KF gegeben ist.

Im zweiten Schritt werden dann die Modellparameter so gewählt, dass dieser Erwartungswert ma-

ximiert wird. In der Literatur wird der EM-Algorithmus zu einer „blockorientierten“ Verarbeitung

eingesetzt: Wenn eine ausreichende Anzahl an Beobachtungen z vorliegt (ein „Block“), dann wer-

den auf diesem Block iterativ die gesuchten Parameter geschätzt. Bei dieser Vorgehensweise wird

vorausgesetzt, dass sich die Parameter über die Dauer des Blocks nicht ändern.

In [WHU09] wird der EM-Algorithmus so hergeleitet, dass die Schätzung der Diagonalelemente

einer Messrauschkovarianzmatrix nicht mehr blockweise, sondern abtastwertweise erfolgen kann.

Hier soll das Verfahren in abgewandelter Form für das Navigationsfilter eingesetzt werden, wobei

jedoch die Kovarianzmatrix eines Rauschprozesses geschätzt werden soll, der Teil des Systemmodells

und nicht Teil des Messmodells ist.

87
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7.1.1 Herleitung der Gleichungen

In diesem Abschnitt soll zunächst allgemein die ML-Schätzung einer als zeitvariant angenommenen

Kovarianzmatrix Qη,k des Vektors ηk ∈ RD und ηk ∼ N (ηk;0D×1,Qη,k) betrachtet werden, der

das zeitlich korrelierte Systemrauschen nk ∈ RD mit

nk = Dn · nk−1 + Γn · ηk (7.1)

treibt. Anstelle eines Fehlerzustandsvektors, wie er beim FF vorhanden ist, wird hier zunächst ein

allgemeiner Zustandsvektor xk ∈ RH betrachtet, der dem Systemmodell

xk = Φk · xk−1 +Gk · nk (7.2)

unterliegt.8 Im Falle des blockweise arbeitenden EM-Algorithmus lautet die LLF der kompletten

Daten log
(
p
(
x1:K , z1:K ;Qη

))
, wobei K die Länge des Intervalls mit der Beobachtungssequenz

z1:K := z1, . . . , zK ist und Qη innerhalb dieses Intervalls als konstant angenommen wird. Entspre-

chend ist x1:K eine Sequenz aus Zustandsvektoren. Die zwei Schritte des iterativen (blockweisen)

EM-Algorithmus sind mit I als Iterationsindex:

L̃K

(
Qη, Q̂

{I−1}
η

)
:= E

[
log
(
p
(
x1:K , z1:K ;Qη

))∣∣ z1:K ; Q̂{I−1}
η

]
(E-Schritt) (7.3)

Q̂{I}
η = argmax

Qη

{
L̃K

(
Qη, Q̂

{I−1}
η

)}
(M-Schritt). (7.4)

Statt das Problem (7.3), (7.4) zu lösen, gehen wir unmittelbar auf eine abtastwertweise Schätzung

über. Dies hat den Vorteil, dass keine Latenz aufgrund der blockweisen Verarbeitung entsteht und

dass sich der Schätzwert für Qη von Abtastwert zu Abtastwert ändern kann, so dass einer Zeitvarianz

von Qη besser Rechnung getragen werden kann (die Zeitvarianz von Qη wird im Folgenden wieder

durch den zusätzlichen tiefgestellten Index k kenntlich gemacht, so dass Qη,k gilt).

Aufstellung der Zielfunktion Zunächst wird eine neue Zielfunktion L̃k analog zu der in (7.3) de-

finiert, wobei z1:k die Sequenz der Beobachtungsvektoren vom Zeitpunkt k = 1 bis zum aktuellen

Zeitpunkt k ist und Q̂η,1:k−1 der Parameterschätzwert, basierend auf z1:k−1. Da die Systemrauschko-

varianzmatrix Qη,k als Diagonalmatrix angenommen wird, kann der Berechnungsaufwand reduziert

werden. Daher betrachten wir nachfolgend den Vektor qη,k ∈ RD, für den diag
(
qη,k

)
=: Qη,k gilt.

Hier bezeichnet diag (·) die Konvertierung eines Vektors in eine quadratische Diagonalmatrix, wobei

der Vektor deren Hauptdiagonale bildet. Für die neue Zielfunktion gilt nun:

L̃k

(
qη, q̂η,1:k−1

)
:= E

[
log
(
p
(
x1:k, z1:k;qη

))∣∣ z1:k; q̂η,1:k−1

]
. (7.5)

Vergleicht man Gl. (7.5) mit (7.3), so fällt auf, dass der Iterationsindex I durch den Zeitindex k ersetzt

wurde. Die Funktion L̃k

(
qη, q̂η,1:k−1

)
kann durch Anwendung von (E.9) geschrieben werden als

8Neben D bezeichnet hier auch H eine allgemeine Dimension (hier die Dimension des Zustandsvektors xk).



7.1. Sequenzieller Expectation-Maximization-Algorithmus 89

L̃k

(
qη, q̂η,1:k−1

)
= c+

k∑

κ=2

E
[
log
(
p
(
xκ|xκ−1;qη

))∣∣ z1:k; q̂η,k−1

]

≈ c+
k−1∑

κ=2

E
[
log
(
p
(
xκ|xκ−1;qη

))∣∣ z1:κ; q̂η,κ−1

]

+ E
[
log
(
p
(
xk|xk−1;qη

))∣∣ z1:k; q̂η,k−1

]

= L̃k−1

(
qη, q̂η,1:k−2

)
+ W̃k

(
qη, q̂η,k−1

)
, (7.6)

wobei W̃k

(
qη, q̂η,k−1

)
:= E

[
log
(
p
(
xk|xk−1;qη

))∣∣ z1:k; q̂η,k−1

]
der Anteil der Zielfunktion ist,

der mit Hinzunahme der aktuellen Beobachtungen und des zum vorherigen Zeitpunkt geschätzten

Varianzvektors q̂η,k−1 in L̃k

(
qη, q̂η,1:k−1

)
einfließt. Hier wurde ausgenutzt, dass die Wahrschein-

lichkeitsdichten p (z1:k|x1:k) und p (x1) unabhängig von qη und deren Erwartungswerte daher kon-

stant gegenüber dem gesuchten Parameter sind. Ihr Beitrag zur Zielfunktion ist in der Konstanten

c zusammengefasst (siehe auch Anhang E.1). Die Approximation im zweiten Schritt von (7.6) liegt

darin, dass zur abtastwertweisen Verarbeitung der jeweilige bedingte Erwartungswert in der Sum-

me aus Kausalitätsgründen nur auf Basis der Beobachtungssequenz z1:κ und der Schätzung q̂η,κ−1

berechnet werden kann (die Beobachtung zk kann zum Zeitpunkt k − 1 nicht vorhanden sein). Um

dem aktuellen Beitrag zur Zielfunktion höheres Gewicht verleihen zu können, wird ein zusätzlicher

heuristischer Faktor γ mit 0 < γ < 1 verwendet. Dieses führt zu folgender Rekursionsgleichung:

L̃k

(
qη, q̂η,1:k−1

)
= γ · L̃k−1

(
qη, q̂η,1:k−2

)
+ W̃k

(
qη, q̂η,k−1

)
. (7.7)

Das sequenzielle Schätzproblem lautet nun

q̂η,k = argmax
qη

{
L̃k

(
qη, q̂η,1:k−1

)}
= argmin

qη

{
−L̃k

(
qη, q̂η,1:k−1

)}
, (7.8)

d. h. der Schätzwert für den Systemrauschvarianzvektor qη ergibt sich als derjenige Wert, der die

Zielfunktion L̃k

(
qη, q̂η,1:k−1

)
maximiert.

Als nächstes soll der aktuelle Beitrag W̃k

(
qη, q̂η,k−1

)
zur Zielfunktion näher betrachtet werden,

um schließlich eine rekursive Schätzvorschrift zu gewinnen. Wir kombinieren zunächst die beiden

Systemgleichungen (7.1) und (7.2), wodurch man

xk = Φk · xk−1 +GkDn · nk−1 +GkΓn · ηk︸ ︷︷ ︸
Gknk

(7.9)

erhält. Würde man nk−1 kennen, so würde an dieser Stelle

W̃k

(
qη, q̂η,k−1

)
= E

[
log
(
p
(
xk|xk−1,nk−1;qη

))∣∣ z1:k; q̂η,k−1

]
(7.10)

mit p
(
xk|xk−1,nk−1;qη

)
= N

(
xk;Φkxk−1 +GkDnnk−1,GkΓndiag

(
qη

)
ΓT
nG

T
k

)
gelten. Da

nk−1 jedoch unbekannt ist, muss die Likelihood

p
(
xk|xk−1;qη

)
= N

(
xk;Φkxk−1,Uk

(
qη

))
(7.11)

mit

Uk

(
qη

)
:= GkPnn,kG

T
k

= Gk

(
DnPnn,k−1D

T
n + Γndiag

(
qη

)
ΓT
n

)
GT

k (7.12)
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und Pnn,k−1 := E
[
nk−1n

T
k−1

]
berechnet werden. Mit der Abkürzung ∆xk := xk −Φkxk−1 kann

W̃k

(
qη, q̂η,k−1

)
durch

W̃k

(
qη, q̂η,k−1

)
= E

[
log
(
p
(
xk|xk−1;qη

))
|z1:k; q̂η,k−1

]

= − H
2
log (2π)− 1

2
log
(
det
{
Uk

(
qη

)})∣∣
qη=q̂η,k−1

− 1

2
E
[
∆xT

k

(
Uk

(
qη

))−1
∆xk

∣∣∣ z1:k; q̂η,k−1

]
(7.13)

ausgedrückt werden, wobei xk ∈ RH sei. Da mit Gl. (E.2)

∆xT
k

(
Uk

(
qη

))−1
∆xk = spur

{(
Uk

(
qη

))−1
∆xk∆xT

k

}
(7.14)

gilt, kann (7.13) zu

W̃k

(
qη, q̂η,k−1

)
= − H

2
log (2π)− 1

2
log
(
det
{
Uk

(
qη

)})∣∣
qη=q̂η,k−1

− 1

2
spur

{(
Uk

(
qη

))−1
∣∣∣
qη=q̂η,k−1

· E
[
∆xk∆xT

k

∣∣ z1:k; q̂η,k−1

]}
(7.15)

vereinfacht werden. Damit eine übersichtlichere Betrachtung der folgenden Gleichungen möglich

ist, werden wir im Folgenden die Abkürzung Ek := E
[
∆xk∆xT

k |z1:k; q̂η,k−1

]
verwenden. Zur

Maximierung von Gl. (7.7) soll nun das NEWTON-Verfahren verwendet werden [WHU09]:

q̂η,k = q̂η,k−1 −
(
Vk(q̂η,k−1)− αk · ID×D

)−1
sk(q̂η,k−1), (7.16)

wobei der Gradientenvektor durch

sk(q̂η,k−1) :=
∂W̃k

(
qη, q̂η,k−1

)

∂qη

∣∣∣∣∣∣
qη=q̂η,k−1

(7.17)

und die HESSE-Matrix durch

Vk(q̂η,k−1) :=
∂2L̃k

(
qη, q̂η,k−1

)

∂qη∂q
T
η

∣∣∣∣∣∣
qη=q̂η,k−1

(7.18)

gegeben sind. Bei der Anwendung des NEWTON-Verfahrens kann es zu numerischen Instabilitäten

kommen [KSDA10]. Diese können auftreten, wenn die HESSE-Matrix annähernd singulär wird und

damit deren Inverse möglicherweise falsch berechnet wird. Um sicherzustellen, dass Gl. (7.16) wei-

terhin zum lokalen Maximum konvergiert, muss die HESSE-Matrix negativ definit sein. Dieses wird

erreicht, indem eine mit dem Faktor αk gewichtete Einheitsmatrix von der aktuellen HESSE-Matrix

subtrahiert wird, so dass negative Definitheit der zu invertierenden Matrix sichergestellt ist. Der Fak-

tor αk wird dabei in Abhängigkeit des maximalen Eigenwertes von Vk(q̂η,k−1) gewählt:

αk =

{
max

{
eig
(
Vk(q̂η,k−1)

)}
+ 1 · 10−4, falls max

{
eig
(
Vk(q̂η,k−1)

)}
≥ 0

0, sonst.
(7.19)
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Um auch die HESSE-Matrix mittels einer rekursiven Vorschrift berechnen zu können, wird die

zweite Ableitung von (7.7) gebildet:

Vk(q̂η,k−1) = γ ·Vk−1(q̂η,k−2) + Jk(q̂η,k−1), (7.20)

wobei

Jk(q̂η,k−1) :=
∂2W̃k

(
qη, q̂η,k−1

)

∂qη∂q
T
η

∣∣∣∣∣∣
qη=q̂η,k−1

=
∂sk(qη,k−1)

∂qT
η

∣∣∣∣∣
qη=q̂η,k−1

. (7.21)

Durch die Anwendung des NEWTON-Verfahrens ist jedoch noch nicht gewährleistet, dass die spä-

ter geschätzten Varianzen im Vektor q̂η positiv sind. Des Weiteren können numerische Instabilitäten

bei der Berechnung der HESSE-Matrix auftreten. Aus diesem Grund werden die Berechnungen in

(7.16) und (7.20) mit q̃η := log
(
qη

)
durchgeführt [KSDA10]. Nach der Schätzung des Logarithmus

des gesuchten Varianzvektors wird eine Rücktransformation mit q̂η = e
ˆ̃qη vorgenommen. Für die

modifizierten Rekursionsgleichungen folgt dann mit Hinzunahme eines zeitvarianten Schrittweiten-

faktors ̟k:

ˆ̃qη,k = ˆ̃qη,k−1 −̟k

(
Vk

(
ˆ̃qη,k−1

)
− αk · ID×D

)−1
sk

(
ˆ̃qη,k−1

)
(7.22)

Vk

(
ˆ̃qη,k−1

)
= γ ·Vk−1

(
ˆ̃qη,k−2

)
+ Jk

(
ˆ̃qη,k−1

)
, (7.23)

wobei

sk

(
ˆ̃qη,k−1

)
:=

∂W̃k

(
qη, q̂η,k−1

)

∂q̃η

∣∣∣∣∣∣
qη=e

ˆ̃q
η,k−1

(7.24)

und

Jk

(
ˆ̃qη,k−1

)
:=

∂2W̃k

(
qη, q̂η,k−1

)

∂q̃η∂q̃
T
η

∣∣∣∣∣∣
qη=e

ˆ̃q
η,k−1

=
∂sk

(
ˆ̃qη,k−1

)

∂q̃T
η

∣∣∣∣∣∣
qη=e

ˆ̃q
η,k−1

. (7.25)

Während αk vom maximalen Eigenwert von Vk

(
ˆ̃qη,k−1

)
abhängt, wird eine effiziente Schrittweite

̟ anhand der ARMIJO-Regel gewählt [Fro04]:

̟k=max
{
βlA

∣∣∣ W̃k

(
qη + βlA dA, q̂η,k−1

)
≤ W̃k

(
qη, q̂η,k−1

)
+ σAβ

l
As

T
k

(
ˆ̃qη,k−1

)
dA, l ∈ N0

}
,

(7.26)

wobei dA :=
(
Vk

(
ˆ̃qη,k−1

)
− αk · ID×D

)−1
sk

(
ˆ̃qη,k−1

)
und βlA, σA ∈ [0, 1] ist. In der Literatur

werden diese Werte häufig zu βlA = 0,7, σA = 0,1 gewählt, siehe z. B. [BB10]. Dies führt dazu, dass

die Konvergenzgeschwindigkeit bei Bedarf reduziert und damit das NEWTON-Verfahren stabilisiert

wird.

Wegen (7.12) und da für den Gradientenvektor sk ∈ RD gilt, ist die totale Ableitung von

W̃k

(
qη, q̂η,k−1

)
bezüglich der j′-ten Komponente q̃

(j′)
η = log

(
q
(j′)
η

)
nach Anwendung der Ket-

tenregel u. a. abhängig von der partiellen Ableitung der einzelnen Komponenten von Uk

(
qη

)
. Dabei
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sei U
(m′,f ′)
k (qη) die Komponente in der m′-ten Reihe und f ′-ten Spalte von Uk(qη):

∂W̃k

(
qη, q̂η,k−1

)

∂q̃
(j′)
η

=
H∑

m′=1

H∑

f ′≥m′

D∑

c′=1

∂W̃k

(
qη, q̂η,k−1

)

∂U
(m′,f ′)
k (qη)

·
∂U

(m′,f ′)
k (qη)

∂q
(c′)
η

· ∂q
(c′)
η

∂q̃
(j′)
η

∣∣∣∣∣∣
qη=e

ˆ̃q
η,k−1

.

(7.27)

Hierbei fällt auf, dass die zweite Summe lediglich über die Komponenten der oberen Dreiecksmatrix

von Uk(qη) angewendet wird. Man nutzt an dieser Stelle bereits die Symmetrie der Matrix Uk(qη)

aus [PP08]. Allerdings muss die Symmetrie von Uk(qη) auch bei den partiellen Ableitungen berück-

sichtigt werden, wie die folgenden Gleichungen zeigen. Die dritte Summe in Gl. (7.27) kann entfallen,

da
∂q

(c′)
η

∂q̃
(j′)
η

6= 0 lediglich für c′ = j′ ist. Auch dieses wird im Folgenden näher erläutert.

Mit (7.15) lautet der erste Term auf der rechten Seite von (7.27)

∂W̃k

(
qη, q̂η,k−1

)

∂U
(m′,f ′)
k (qη)

= − 1

2

∂ log
(
det
{
Uk

(
qη

)})

∂U
(m′,f ′)
k (qη)

− 1

2

∂spur
{(

Uk

(
qη

))−1
Ek

}

∂U
(m′,f ′)
k (qη)

∣∣∣∣∣∣
qη=e

ˆ̃q
η,k−1

.

(7.28)

Da neben Uk

(
qη

)
auch Ek eine symmetrische Matrix ist, gilt mit (E.4) bis (E.6) nach [Fuk90]:

∂ log
(
det
{
Uk

(
qη

)})

∂U
(m′,f ′)
k (qη)

=
(
2− δm′f ′

)
aTm′

(
Uk

(
qη

))−1
af ′ (7.29)

∂spur
{(

Uk

(
qη

))−1
Ek

}

∂U
(m′,f ′)
k (qη)

= −
(
2− δm′f ′

)
aTm′

(
Uk

(
qη

))−1
Ek

(
Uk

(
qη

))−1
af ′ , (7.30)

wobei am′ = (0 . . . 0 1 0 . . . 0)T einen Vektor darstellt, der aus Nullen besteht, bis auf die m′-te
Stelle, an der eine Eins steht. Der Term δm′f ′ ist hier das so genannte KRONECKER-Delta, wobei

δm′f ′ = 1 fürm′ = f ′ und sonst δm′f ′ = 0 gilt. Damit können jetzt die Gl. (7.29) und (7.30) in (7.28)

eingesetzt werden:

∂W̃k

(
qη, q̂η,k−1

)

∂U
(m′,f ′)
k (qη)

=−1
2

(
2− δm′f ′

)
aTm′

(
Uk

(
qη

))−1
af ′

+
1

2

(
2− δm′f ′

)
aTm′

(
Uk

(
qη

))−1
Ek

(
Uk

(
qη

))−1
af ′

∣∣∣∣
qη=e

ˆ̃q
η,k−1

=− 1

2

(
2− δm′f ′

)
aTm′

(
Uk

(
qη

))−1(
Uk

(
qη

)
−Ek

)(
Uk

(
qη

))−1
af ′

∣∣∣∣
qη=e

ˆ̃q
η,k−1

.

(7.31)

Der zweite Ausdruck auf der rechten Seite in (7.27) ist mit j′ = c′ wie folgt gegeben:

∂U
(m′,f ′)
k (qη)

∂q
(j′)
η

=
∂U

(f ′,m′)
k (qη)

∂q
(j′)
η

= G̃
(m′,j′)
k G̃

(f ′,j′)
k , (7.32)
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wobei G̃
(m′,j′)
k in der Matrix G̃k := Gk · Γn das Element in der m′-ten Reihe und j′-ten Spalte ist.

Für den letzten Ausdruck gilt:

∂q
(j′)
η

∂q̃
(j′)
η

= e q̃
(j′)
η = q(j

′)
η . (7.33)

Mit (7.31) bis (7.33) resultiert nun für die j′-te Komponente von sk

(
ˆ̃qη,k−1

)
:

s
(j′)
k

(
ˆ̃qη,k−1

)
=
∂W̃k

(
qη, q̂η,k−1

)

∂q̃
(j′)
η

∣∣∣∣∣∣
qη=e

ˆ̃q
η,k−1

= −1

2
q(j

′)
η

H∑

m′=1

H∑

f ′≥m′

(
2− δm′f ′

)
G̃

(m′,j′)
k G̃

(f ′,j′)
k aTm′

(
Uk

(
qη

))−1

·
(
Uk

(
qη

)
−Ek

) (
Uk

(
qη

))−1
af ′

∣∣∣
qη=e

ˆ̃q
η,k−1

= −1

2
q(j

′)
H∑

m′=1

H∑

f ′=1

G̃
(m′,j′)
k G̃

(f ′,j′)
k aTm′

(
Uk

(
qη

))−1 (
Uk

(
qη

)
−Ek

) (
Uk

(
qη

))−1
af ′

∣∣∣∣∣∣
qη=e

ˆ̃q
η,k−1

.

(7.34)

Zur Bestimmung der HESSE-Matrix wird auch noch die zweite Ableitung von W̃k

(
qη, q̂η,k−1

)

benötigt. Für die einzelnen Einträge des aktuellen Anteils Jk

(
ˆ̃qη,k−1

)
an der HESSE-Matrix erhält

man unter Verwendung der Produktregel und
∂q

(j′)
η

∂q̃
(r′)
η

= 0 für j′ 6= r′ mit r′ = 1, . . . ,D:

J
(j′,r′)
k

(
ˆ̃qη,k−1

)
=
∂2W̃k

(
qη, q̂η,k−1

)

∂q̃
(j′)
η ∂

(
q̃
(r′)
η

)T

∣∣∣∣∣∣∣
qη=e

ˆ̃q
η,k−1

= −1

2

H∑

m′=1

H∑

f ′=1

G̃
(m′,j′)
k G̃

(f ′,j′)
k aTm′

(
∂q

(j′)
η

∂q̃
(r′)
η

((
Uk

(
qη

))−1 −
(
Uk

(
qη

))−1
Ek

(
Uk

(
qη

))−1
)

+q(j
′)

η

∂
((

Uk

(
qη

))−1 −
(
Uk

(
qη

))−1
Ek

(
Uk

(
qη

))−1
)

∂q̃
(r′)
η


af ′

∣∣∣∣∣∣
qη=e

ˆ̃q
η,k−1

= −1

2
q(j

′)
η δj′r′

H∑

m′=1

H∑

f ′=1

G̃
(m′,j′)
k G̃

(f ′,j′)
k aTm′

(
Uk

(
qη

))−1 (
Uk

(
qη

)
−Ek

) (
Uk

(
qη

))−1
af ′

− 1

2
q(j

′)
η

H∑

m′=1

H∑

f ′=1

G̃
(m′,j′)
k G̃

(f ′,j′)
k aTm′

H∑

o′=1

H∑

s′≥o′

∂
((

Uk

(
qη

))−1−
(
Uk

(
qη

))−1
Ek

(
Uk

(
qη

))−1
)

∂U
(o′,s′)
k (qη)

·
∂U

(o′,s′)
k (qη)

∂q
(r′)
η

· ∂q
(r′)
η

∂q̃
(r′)
η

af ′

∣∣∣∣∣
qη=e

ˆ̃q
η,k−1

. (7.35)
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Um Gl. (7.35) zu lösen, wird wieder die Produktregel angewendet:

∂
(
Uk

(
qη

))−1
Ek

(
Uk

(
qη

))−1

∂U
(o′,s′)
k (qη)

=
∂
(
Uk

(
qη

))−1

∂U
(o′,s′)
k (qη)

Ek

(
Uk

(
qη

))−1

+
(
Uk

(
qη

))−1
Ek

∂
(
Uk

(
qη

))−1

∂U
(o′,s′)
k (qη)

. (7.36)

In (7.36) sowie in dem verbleibenden Term in (7.35) wird schließlich noch der Zusammenhang

∂
(
Uk

(
qη

))−1

∂U
(o′,s′)
k (qη)

= − (2− δo′s′)
(
Uk

(
qη

))−1
ao′a

T
s′
(
Uk

(
qη

))−1
(7.37)

benötigt. Mit einigen Vereinfachungen und der Tatsache, dass die erste Zeile von (7.35) dem Gradi-

enten s
(j′)
k

(
ˆ̃qη,k−1

)
für j′ = r′ entspricht, erhalten wir letztlich

J
(j′,r′)
k

(
ˆ̃qη,k−1

)
= δj′r′s

(j′)
k

(
ˆ̃qη,k−1

)
− 1

2
q(j

′)
η q(r

′)
η

H∑

m′=1

H∑

f ′=1

H∑

o′=1

H∑

s′=1

G̃
(m′,j′)
k G̃

(f ′,j′)
k G̃

(o′,r′)
k G̃

(s′,r′)
k

· aTm′

(
Uk

(
qη

))−1
(
ao′a

T
s′
(
Uk

(
qη

))−1
Ek +Ek

(
Uk

(
qη

))−1
ao′a

T
s′ − ao′a

T
s′

)

·
(
Uk

(
qη

))−1
af ′

∣∣∣
qη=e

ˆ̃q
η,k−1

. (7.38)

Neben den bereits genannten Modifikationen sollen abschließend noch durch

ˆ̃qη,k ← min
{
max

{
ˆ̃qη,k,

ˆ̃qη,k−1 − β
}
, ˆ̃qη,k−1 + β

}
(7.39)

die Änderungen der Varianzen in einem Aktualisierungsintervall begrenzt werden, um weitere Sta-

bilität bei der Berechnung zu gewährleisten. Dabei ist β ein heuristischer Faktor, der im Rahmen

dieser Arbeit zu β = 0,01 gewählt ist. Dieser führt dazu, dass die Schätzungen um höchstens 1% von

Iteration zu Iteration schwanken.

Erwartungswertberechnung Bei den bisherigen Berechnungsschritten wurde die Matrix Ek nicht

näher betrachtet. Da ∆xk = xk −Φkxk−1 gilt, erhält man

Ek = E
[
∆xk∆xT

k |z1:k; q̂η,k−1

]
=: E

[
∆xk∆xT

k | . . .
]

= E
[
xkx

T
k | . . .

]
−ΦkE

[
xk−1x

T
k | . . .

]
− E

[
xkx

T
k−1| . . .

]
ΦT

k +ΦkE
[
xk−1x

T
k−1| . . .

]
ΦT

k .

(7.40)

In Anhang E.1 wird gezeigt, dass

E
[
xkx

T
k | . . .

]
= x̂k|kx̂

T
k|k + P̂k|k (7.41)

E
[
xk−1x

T
k−1| . . .

]
= x̂k−1|kx̂

T
k−1|k + P̂k−1|k (7.42)

E
[
xkx

T
k−1| . . .

]
=
(
E
[
xk−1x

T
k | . . .

])T
= x̂k|kx̂

T
k−1|k + P̂k,k−1|k (7.43)

gilt. Die in (7.43) aufgeführte Matrix

P̂k,k−1|k := E

[(
xk − x̂k|k

)(
xk−1 − x̂k−1|k

)T ∣∣∣∣ z1:k; q̂η,k−1

]
(7.44)



7.1. Sequenzieller Expectation-Maximization-Algorithmus 95

wird auch als Lag-One-Kovarianzmatrix des Schätzfehlers bezeichnet, in welcher die Korrelationen

zwischen xk und xk−1 berücksichtigt werden. Die Berechnung von (7.41) bis (7.44) ist möglich,

indem man die Systemgleichung und die Messgleichung erweitert. Die Kovarianzmatrizen P̂k|k,

P̂k−1|k und P̂k,k−1|k sind dabei Teil der Schätzfehlerkovarianzmatrix, die sich aus der Filterung er-

gibt. Dies führt allerdings zu einigen Besonderheiten, die nachfolgend näher erläutert werden.

7.1.2 Details zur Umsetzung

Vereinfachte Berechnung von Gradientenvektor und HESSE-Matrix Die Umsetzung der se-

quenziellen Parameterschätzung nach den Gl. (7.34) und (7.38) ist aufgrund der Summanden äußerst

rechenintensiv. Da nach [PP08] für (7.27) auch

∂W̃k

(
qη, q̂η,k−1

)

∂q̃
(j′)
η

= spur







∂W̃k

(
qη, q̂η,k−1

)

∂Uk(qη)




T

·
∂Uk(qη)

∂q̃
(j′)
η





∣∣∣∣∣∣∣
qη=e

ˆ̃q
η,k−1

(7.45)

geschrieben werden kann, lässt sich die Berechnung des Gradientenvektors und die des aktuellen

Anteils an der HESSE-Matrix vereinfachen. Mit (7.45) würde nach einigen Umrechnungen für die

j′-te Komponente des Gradientenvektors

s
(j′)
k

(
ˆ̃qη,k−1

)
= − 1

2
q(j

′)
η aTj′G̃

T
k

((
Uk

(
qη

))−1−
(
Uk

(
qη

))−1
Ek

(
Uk

(
qη

))−1
)
G̃kaj′

∣∣∣∣
qη=e

ˆ̃q
η,k−1

(7.46)

und damit für den gesamten Gradientenvektor

sk

(
ˆ̃qη,k−1

)
=− 1

2
diag−1

(
G̃T

k

((
Uk

(
qη

))−1

−
(
Uk

(
qη

))−1
Ek

(
Uk

(
qη

))−1
)
G̃k

)
⊗ qη

∣∣∣
qη=e

ˆ̃q
η,k−1

(7.47)

folgen, wobei ⊗ hier eine elementweise Multiplikation darstellt und diag−1 (. . . ) die Konvertierung

der Diagonalelemente einer Matrix in einen Spaltenvektor beschreibt. Entsprechend erhält man durch

Umformung von (7.38) für den Anteil der HESSE-Matrix, der zum Zeitpunkt k hinzukommt:

Jk

(
ˆ̃qη,k−1

)
=

1

2
Θk + diag

(
sk

(
ˆ̃qη,k−1

))
, (7.48)

wobei der letzte Summand eine Diagonalmatrix ist, die aus den Elementen des Gradientenvektors

gebildet wird. Außerdem ist die j′-te Zeile der Matrix Θk ∈ RD×D mit j′ ∈ [1,D] und der Abkürzung

G̃
(1:H,j′)
k := G̃kaj′ durch

Θ
(j′,1:D)
k = diag−T

(
G̃T

k

(
Uk

(
qη

))−1
(
G̃

(1:H,j′)
k

(
G̃

(1:H,j′)
k

)T
−Ek

(
Uk

(
qη

))−1
G̃

(1:H,j′)
k

(
G̃

(1:H,j′)
k

)T

−G̃(1:H,j′)
k

(
G̃

(1:H,j′)
k

)T (
Uk

(
qη

))−1
Ek

)(
Uk

(
qη

))−1
G̃k q

(j′)
η

)
⊗ qT

η

∣∣∣∣
qη=e

ˆ̃q
η,k−1

(7.49)

gegeben. diag−T (. . . ) bezeichnet dabei die Konvertierung der Diagonalelemente einer Matrix in

einen Zeilenvektor.
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Iterativer sequenzieller Expectation-Maximization-Algorithmus In Anlehnung an die Gl. (7.3)

und (7.4) lässt sich, ähnlich wie in [DDA03], auch hier die Leistungsfähigkeit durch zusätzliches

Iterieren innerhalb eines Zeitschrittes erhöhen, weil dadurch eine schnellere Konvergenz zum lokalen

Maximum erreicht werden kann. In Algorithmus (Alg.) 1 sind nochmals, unter Berücksichtigung

eines zusätzlichen Iterationsindex, die notwendigen Schritte des Verfahrens zusammengefasst. Dabei

sei Imax die maximale Iterationsanzahl und ι eine vorab definierte Schranke.

Algorithmus 1: Verarbeitungsschritte des sequenziellen EM-Algorithmus

1 wiederhole

2 wenn I = 1 dann

3 q̂η ← q̂
{Imax}
η,k−1

4 ˆ̃qη ← ˆ̃q
{Imax}
η,k−1

5 sonst

6 q̂η ← q̂
{I}
η,k

7 ˆ̃qη ← ˆ̃q
{I−1}
η,k

8 Berechnung von Uk

(
q̂η

)
mit Gl. (7.12)

9 Berechnung von Ek mit Gl. (7.40) unter Verwendung von q̂η

10 Berechnung des Gradientenvektors s
{I}
k

(
ˆ̃qη

)
anhand von (7.47)

11 Berechnung von J
{I}
k

(
ˆ̃qη

)
unter Verwendung von Gl. (7.48)

12 Berechnung der HESSE-Matrix V
{I}
k

(
ˆ̃qη

)
mit (7.23)

13 Bestimmung der optimalen Schrittweite ̟ anhand der ARMIJO-Regel (7.26)

14 Berechnung von ˆ̃q
{I}
η,k = ˆ̃qη −̟k

(
V

{I}
k

(
ˆ̃qη − αk · ID×D

))−1
s
{I}
k

(
ˆ̃qη

)
mit (7.22)

15 Minimierung von starken Schwankungen in der Varianzschätzung mittels (7.39)

16 wenn I ≤ Imax dann

17 wenn

∣∣∣ˆ̃q{I}
η,k

∣∣∣ /
∣∣∣ˆ̃q{I−1}

η,k

∣∣∣ > ι dann

18 I ← I + 1

19 sonst

20 ˆ̃q
{Imax}
η,k ← ˆ̃q

{I}
η,k

21 k ← k + 1

22 I ← 1

23 bis Abbruchbedingung erfüllt

7.1.3 Erweitertes Zustandsmodell

Während in Kap. 7.1.1 und 7.1.2 zum besseren Verständnis von einem allgemeinen Zustandsmo-

dell (7.1) und (7.2) ausgegangen wurde, wird jetzt das komplexere Fehlerfilter (FF) betrachtet, in

das der sequenzielle Schätzalgorithmus eingebettet werden soll. Die vorangegangenen Gleichun-

gen lassen sich relativ einfach auf das FF überführen, wobei u. a. an Stelle von qη,k der Vektor

qFF;k := diag−1
(
QFF;k

)
verwendet werden muss. Allerdings müssen zunächst weitere Aspekte

berücksichtigt werden.
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Wird der Systemzustandsvektor des FF so erweitert, dass die Erwartungswerte in (7.40) berechnet

werden können, d. h. wird die Systemgleichung

(
xFF;k

xFF;k−1

)
=

(
ΦFF;k 015×15

I15×15 015×15

)
·
(
xFF;k−1

xFF;k−2

)
+

(
GFF;k 015×12

015×12 015×12

)
·
(
nFF;k

012×1

)
(7.50)

eines vektorautoregressiven Prozesses verwendet, so wird deutlich, dass daraus ein erhöhter Rechen-

aufwand resultiert, denn die Schätzfehlerkovarianzmatrix

Ξ̂k|k =

(
P̂FF;k|k P̂FF;k,k−1|k

P̂T
FF;k,k−1|k P̂FF;k−1|k

)
(7.51)

sowie die Systemmatrix haben durch die Erweiterung die Dimension [30 × 30]. Dies soll hier mög-

lichst vermieden werden.

Es kann noch ein weiteres Problem bei der Berechnung von (7.40) im Rahmen des hier vorgestell-

ten sequenziellen Expectation-Maximization-Algorithmus (SEM) auftreten. Betrachtet man die Nor-

malverteilung N
(
xFF;k;ΦFF;kxFF;k−1,Uk

(
qFF;k

))
, so wird deutlich, dass durch die Nullzeile in

GFF;k gemäß Gl. (5.11) eine singuläre Kovarianzmatrix Uk

(
qFF;k

)
resultiert, d. h.

det
{
Uk

(
qFF;k

)}
= 0 ist. Eine Berechnung des Gradientenvektors sowie der HESSE-Matrix wä-

re damit alternativ zwar über die MOORE-PENROSE-Pseudoinverse möglich (z. B. zur Berechnung

von Gl. (7.29) oder Gl. (7.37)), die Lösung wäre jedoch nicht optimal und könnte somit zu einer

Divergenz bei der KALMAN-Filterung führen.

Alternativ dazu könnte statt des NEWTON-Verfahrens das GAUSS-NEWTON-Verfahren eingesetzt

werden. Dieses ist ein numerisches Verfahren zur Lösung nichtlinearer Optimierungsprobleme, wel-

ches die zu minimierende oder maximierende Funktion durch eine quadratische Näherung ersetzt

[Deu04]. Hierbei kann zwar auf die Berechnung einer HESSE-Matrix und damit auf die Berechnung

der zweiten Ableitung der Zielfunktion verzichtet werden, dennoch ist die CHOLESKY-Zerlegung

einer JACOBI-Matrix notwendig. Zudem werden i. d. R. mehr Iterationsschritte zur Lösung des Pro-

blems benötigt als mit dem hier eingesetzten NEWTON-Verfahren. Dieser Ansatz wurde in dieser

Arbeit jedoch nicht untersucht, sondern stattdessen ein Sekundärfilter (SF) mit reduziertem System-

zustandsvektor verwendet.

Abschließend sei noch erwähnt, dass wir hier ausschließlich an den Rauschvarianzen interessiert

sind, die mit dem zeitlich korrelierten Systemrauschen zusammenhängen und als zeitvariant ange-

nommen werden. Dies schließt lediglich einen Teilvektor von qFF;k ein.

7.1.4 Sekundärfilterung

Es soll daher gemäß Abb. 7.1 ein zusätzliches Filter eingesetzt werden, das zum einen das Ergeb-

nis des FF nutzt, zum anderen aber auch einen im Vergleich zum FF reduzierten Zustandsvektor

enthält. Dies hängt jedoch von Steuereingangsgrößen ab, die in dem Vektor uSF zusammengefasst

sind. Der Zustandsvektor dieses Filters wird im Folgenden mit xSF bezeichnet. Das FF kann in seiner

ursprünglichen Form eingesetzt werden. Die Hauptaufgabe des SF ist es, die Erwartungswerte ge-

mäß Gl. (7.40) zu berechnen. Singuläre Kovarianzmatrizen werden so vermieden. Die für das Filter
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x̂FF, zFF

FFF,GFF,HFF,RFF

Q̂
#
FF

x̂SD

Parameter-
schätzer (SEM)

Fehlerfilter
(FF)

Sekundärfilter
(SF)

x̂SF, P̂SF

Teilsystem zur Parameterschätzung

Abbildung 7.1: Sekundärfilterung mit sequenziellem EM-Algorithmus

benötigte Differenzialgleichung lautet (ohne Berücksichtigung des Zeitindex t):

(
∆v̇n

eb

∆Υ̇

)

︸ ︷︷ ︸
ẋSF

=

(
F
(2,2)
FF F

(2,3)
FF

F
(3,2)
FF F

(3,3)
FF

)

︸ ︷︷ ︸
FSF

·
(
∆vn

eb

∆Υ

)

︸ ︷︷ ︸
xSF

+

(
03×3 F

(2,4)
FF 03×3

F
(3,1)
FF 03×3 F

(3,5)
FF

)

︸ ︷︷ ︸
BSF

·



∆pn

eb

∆ba

∆bω




︸ ︷︷ ︸
uSF=f(xFF)

+

(
−Ĉn

SD;b 03×3

03×3 −Ĉn
SD;b

)

︸ ︷︷ ︸
GSF

·
(
na

nω

)

︸ ︷︷ ︸
nSF

(7.52)

Da für die folgenden Betrachtungen lediglich die zeitlich korrelierten Rauschkomponenten von In-

teresse sind, bilden nur na und nω den Vektor nSF. Die Matrix GSF enthält die entsprechenden Vor-

faktoren der Matrix GFF aus Gl. (5.11) in Kap. 5.2.1.1. Ebenso wurde BSF aus den zugehörigen

Teilmatrizen von FFF in (5.11) gebildet. Auf Basis dieser Gleichung wird nach der Diskretisierung

eine Erweiterung des Zustandsmodells wie in (7.50) vorgenommen. Trotz der doppelten Filterung des

Geschwindigkeits- und Lagefehlers und der dennoch notwendigen Zustandsvektorerweiterung, resul-

tiert durch die Verwendung dieses zusätzlichen Filters eine Reduzierung des Berechnungsaufwandes,

da keine [30 × 30]-Matrix invertiert werden muss, sondern eine [12 × 12]-Matrix. Zudem werden

singuläre Matrizen vermieden. Des Weiteren konnte durch Vergleich der Schätzfehlerkovarianzmatri-

zen des FF und des SF in informellen Untersuchungen festgestellt werden, dass diese lediglich eine

relative Abweichung von weniger als 1,4% voneinander aufweisen.

Die Messgleichung des SF ist analog zu der des FF aufgebaut. Da hier die GPS-Geschwindigkeits-

messungen den signifikanten Beitrag zur Geschwindigkeitsfehlerschätzung liefern und die Magneto-

metermessungen den größten Einfluss auf die Lagefehlerschätzung haben, die wiederum direkt mit

na bzw. nω zusammenhängen, wird nur ein Teil des Messvektors zFF benötigt. Dabei stellt der Dif-

ferenzmessvektor aus Gl. (5.22) auch den Messvektor des SF dar. Die Komponenten in (5.23), die in

direktem Zusammenhang mit dem Drehratenbiasfehler ∆bω und dem Lagefehler ∆Υ stehen, bilden

mit der vorangestellten Matrix ΣSF wiederum den deterministischen Eingangsvektor. So lässt sich

mit H
(1,3)
FF;v =

[
Ĉn

SD;bΩ̃
b
ibl

b
GPS×

]
, H

(1,5)
FF;v = Ĉn

SD;b

[
lbGPS×

]
und H

(1,3)
FF;m = (Ĉn

SD;b)
T [mn×] aus (5.24)
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und (5.26) die Matrix

HSF;k :=

(
I3×3 H

(1,3)
FF;v,k

03×3 H
(1,3)
FF;m,k

)
(7.53)

und schließlich
(
zFF;v,k

zFF;m,k

)

︸ ︷︷ ︸
zSF;k

=
(
HSF;k 06×6

)
·
(

xSF;k

xSF;k−1

)
+

(
03×3 03×3 H

(1,5)
FF;v,k

03×3 03×3 03×3

)

︸ ︷︷ ︸
ΣSF;k

·uSF;k +MSF ·wSF;k

(7.54)

aufstellen, wobei wSF;k := wFF;k das zeitlich korrelierte Messrauschen darstellt. Durch diese Maß-

nahme ändert sich die Berechnung der Prädiktion des Systemzustandes nach Gl. (4.90) sowie die

Innovation nach Gl. (4.97):

xSF;k|k−1 = ΦSF;k · xSF;k−1|k−1 +BSF;k · uSF;k (7.55)

εSF;k := zSF;k −HSF;k · xSF;k|k−1 −ΣSF;k · uSF;k. (7.56)

Dabei sind ΦSF;k ≈ I6×6 +FSF(tk) ∆t und BSF;k ≈ BSF(tk) ∆t. Der Steuereingangsvektor in (7.55)

und (7.56) beeinflusst ebenso die LLF, die wiederum von der Verteilung

p
(
xSF;k|xSF;k−1;q

#
FF

)
= N

(
xSF;k;ΦSF;k−1xSF;k−1 +BSF;k−1uSF;k−1,Uk

(
q
#
FF;k

))
(7.57)

abhängt. Für die Matrix Uk

(
q
#
FF;k

)
mit q#

FF;k :=
(
qT

FF;a,k qT
FF;ω,k

)T
, wobei qFF;a,k und qFF;ω,k die

ersten sechs Diagonalelemente der Matrix QFF;k enthalten (siehe auch Gl. (5.13)), gilt dabei:

Uk

(
q
#
FF;k

)
:= GSF;k

(
DSF;nPSF;nn,k−1D

T
SF;n + ΓSF;ndiag(q

#
FF;k)Γ

T
SF;n

)
GT

SF;k. (7.58)

Die Matrizen DSF;n und ΓSF;n sind hier die zu DFF;n und ΓFF;n korrespondierenden Matrizen, die im

Rahmen des SF verwendet werden. Die obigen Gleichungen führen dazu, dass der Erwartungswert in

(7.40) auch von dem Steuereingangsvektor abhängt:

Ek = E
[(
xSF;k −ΦSF;kxSF;k−1 −BSF;kuSF;k

)

·
(
xSF;k −ΦSF;kxSF;k−1 −BSF;kuSF;k

)T ∣∣∣ zSF;1:k; q̂
#
FF;k−1

]
. (7.59)

Neben den Komponenten in (7.41) bis (7.43) mit Verwendung von xSF;k und PSF;k müssen nach

Auflösung von Gl. (7.59) noch weitere additive Terme aufgrund des Steuereingangsvektors uSF;k in

der Matrix Ek berücksichtigt werden. Diese lauten wie folgt:

BSF;k · E
[
uSF;ku

T
SF;k

∣∣ zSF;1:k; q̂
#
FF;k−1

]

︸ ︷︷ ︸
uSF;ku

T
SF;k

· BT
SF;k − E

[
xSF;ku

T
SF;k

∣∣ zSF;1:k; q̂
#
FF;k−1

]

︸ ︷︷ ︸
x̂

SF;k|k
uTSF;k

· BT
SF;k

− BSF;k · E
[
uSF;kx

T
SF;k

∣∣ zSF;1:k; q̂
#
FF;k−1

]

︸ ︷︷ ︸
uSF;kx̂

T
SF;k|k

+ ΦSF;k · E
[
xSF;k−1u

T
SF;k

∣∣ zSF;1:k; q̂
#
FF;k−1

]

︸ ︷︷ ︸
x̂

SF;k−1|k
uTSF;k

· BT
SF;k

+ BSF;k · E
[
uSF;kx

T
SF;k−1

∣∣ zSF;1:k; q̂
#
FF;k−1

]

︸ ︷︷ ︸
uSF;kx̂

T
SF;k−1|k

· ΦT
SF;k, (7.60)
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wobeiE
[
xSF;k

∣∣∣ zSF;1:k; q̂
#
FF;k−1

]
=: x̂SF;k|k undE

[
xSF;k−1

∣∣∣ zSF;1:k; q̂
#
FF;k−1

]
=: x̂SF;k−1|k verwen-

det wurden. Da mit dieser Sekundärfilterung neben den genannten Schätzgrößen ebenfalls noch nicht

PSF;k,k−1|k berechnet werden kann, muss das Filter ebenso mittels eines vektorautoregressiven Pro-

zesses erweitert werden, wie es in Kap. 7.1.3 beschrieben wurde. Da hier xSF ∈ R6 gilt, ist diese

Erweiterung mit einem vergleichsweise geringen rechnerischen Mehraufwand verbunden als die in

7.1.3 beschriebene Variante. Außerdem liegen hier reguläre Matrizen vor.

Durch das Zurücksetzen des Zustandsvektors ist dieser im Gegensatz zur Schätzfehlerkovarianz-

matrix des FF ungeglättet. In [RAG04] wird zur Glättung eine zeitlich inverse Filterung vorgeschla-

gen. Da dies ein nichtkausaler Vorgang ist, wird hier eine Alternative angewendet. Man separiert Ek

in zwei Funktionen fE1

(
x̂SF;k|k, x̂SF;k−1|k,uSF;k

)
, die vom System- sowie Steuereingangsvektor ab-

hängt, und fE2

(
P̂SF;k|k, P̂SF;k−1|k, P̂SF;k,k−1|k

)
, die ausschließlich von den Schätzfehlerkovarianz-

matrizen abhängt. Der Erwartungswert in (7.59) lässt sich somit zusätzlich glätten, indem stattdessen

Ek = f̄E,k + fE2

(
P̂SF;k|k, P̂SF;k−1|k, P̂SF;k,k−1|k

)
(7.61)

verwendet wird. Dabei wird f̄E,k mittels

f̄E,k = (1− ζE) f̄E,k−1 + ζE fE1

(
x̂SF;k|k, x̂SF;k−1|k,uSF;k

)
(7.62)

bestimmt, wobei 0 ≤ ζE < 1 ein heuristischer Faktor ist. Auf eine geeignete Wahl von ζE wird in

Kap. 9.2 noch näher eingegangen.

7.2 Empirische Parameterschätzung

In [Bal09] wurde zur echtzeitfähigen Schätzung von Rauschparametern im Rahmen einer aktiven

Schalldämpfung in Röhrensystemen das so genannte Kovarianzmanagement (KM) vorgestellt. Die-

se Methode soll hier näher betrachtet und später mit dem SEM verglichen werden. Das KM basiert

auf einer rekursiven Berechnung des empirischen Mittelwertes sowie der Varianz einer ergodischen

Größe. Weitere Varianten dieser rekursiven Berechnungsvorschrift werden zusätzlich im Anhang be-

trachtet. Da sich die Ausgangsbasis der KM-Methode von der der sequenziellen Parameterschätzung

in Kap. 7.1 unterscheidet, soll nach der Herleitung der Gleichungen das Verfahren hinsichtlich seiner

Fähigkeiten diskutiert und so modifiziert werden, dass es auch für das hier vorliegende Schätzproblem

zufrieden stellende Ergebnisse liefert.

7.2.1 Ausgangsbasis

Bevor der in [Bal09] behandelte Schätzalgorithmus betrachtet wird, soll gezeigt werden, wie die ge-

suchten Parameter bestimmt werden können, wenn diese zeitinvariant sind, d. h. wenn die Messdaten

einer ruhenden IME zum Teil oder vollständig vorliegen. Die hier vorgestellten Gleichungen dienen

anschließend als Grundlage für das KM.

Wir gehen zunächst davon aus, dass das Sensorsignal eines ruhenden Sensors der Länge

K := TK · fIME vorliegt, wobei fIME die Abtastfrequenz des Sensors und TK die Gesamtdauer des

Signals ist. Teilt man nun TK in L gleich lange Signalausschnitte auf, dann lässt sich die Zeitachse
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durch k = l · ∆K + p′ mit l = 0, . . . , L − 1, l ∈ N und p′ = 0, . . . ,∆K − 1, p′ ∈ N definie-

ren, wobei ∆K die Anzahl der Abtastwerte in einem Signalausschnitt der Länge L
fIME

ist. Ist ∆Tl die

Signalausschnittslänge in [s], resultiert daraus zudem ∆K = ∆Tl · fIME. Während hier l die Signal-

ausschnitte zählt, werden mit p′ die Werte innerhalb eines Ausschnittes gezählt. Geht man davon aus,

dass der Nullpunktfehler vorab eliminiert werden konnte bzw. dieser als Teil des initialen Bias bω,0
aufgefasst werden kann, so folgt entsprechend Gl. (4.62) für das Ausgangssignal am Beispiel einer

Drehratensensortriade mit nω,k ∼ N (nω,k;03×1 , diag(qω)):

ω̃
b
ib,k = bω,k + nω,k. (7.63)

Hierbei wird davon ausgegangen, dass das Auflösungsvermögen des Sensors zu gering ist, um die

Erddrehung zu erfassen. Außerdem wurden keine Skalierungs- sowie Orthogonalitätsfehler aufge-

führt, da angenommen wird, dass sie bereits im Vorfeld eliminiert wurden. Neben dem sensorinhä-

renten Rauschen weist das Ausgangssignal also lediglich eine unbekannte Biaskomponente auf, die

sich zeitlich langsam verändert und somit eine niederfrequente Störung darstellt.

Aufgrund der Voraussetzung, dass die Biasdrift bω,k sich nur langsam mit der Zeit ändert, kann

auch angenommen werden, dass diese innerhalb eines hinreichend kurzen Signalausschnitts

l ∈ [0, L− 1] konstant ist, d. h. bω,k = konst. für k ∈ [l∆K, (l + 1)∆K − 1]. Somit kann die

Biasdrift für den jeweiligen Signalausschnitt durch den Scharmittelwert angenähert werden:

b̂ω,l ≈
1

∆K

(l+1)∆K−1∑

k=l∆K

ω̃
b
ib,k, l ∈ [0, L− 1] . (7.64)

Setzt man b̂ω,k = b̂ω,l für k ∈ [l∆K, (l + 1)∆K − 1] und subtrahiert die berechnete Biasdrift

anschließend von ω̃
b
ib,k, so kann man das als mittelwertfrei angenommene inhärente Rauschen für

jeden Ausschnitt l abschätzen:

n̂ω,k = ω̃
b
ib,k − b̂ω,k. (7.65)

Die Varianz des ergodischen Rauschprozesses lässt sich dann über die erwartungstreue Schätzung

q̂ω =
1

K − 1

K∑

k=1

n̂2
ω,k (7.66)

approximieren. Mit ÂRW :=
√

q̂ω
fIME

erhält man auch eine Schätzung der Angle Random Walk

(ARW )-Parameter für die Komponenten der Sensortriade.

Die Biasdrift selbst wird hier gemäß (4.62) durch einen zeitdiskreten RWP modelliert, der von

einem AWGR nbω ,k
getrieben wird. Da hier pro Signalausschnitt nur eine Schätzung für das Bias

vorliegt, kann somit auch nur für jedes l ein Wert für nbω ,l
abgeschätzt werden:

n̂bω ,l
=

b̂ω,l+1 − b̂ω,l

∆Tl
, l ∈ [0, L− 2] . (7.67)

Dessen Varianz kann ebenso wie in (7.66) über die erwartungstreue Stichprobe ermittelt werden:

q̂bω
=

1

L− 2

L−2∑

l=0

n̂2
bω ,l

. (7.68)
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Es muss beachtet werden, dass die beiden letzten Gleichungen hier eigentlich nur eine sehr approxi-

mative und ungenaue Lösung darstellen, die lediglich für sehr kurze Signalausschnitte gilt, denn hier

wird angenommen, dass sich bω von Signalausschnitt zu Signalausschnitt ändert, jedoch innerhalb

eines Signalausschnitts konstant ist. Dieses ist gerade bei sich langsam veränderlichen Prozessen wie

bei einem Bias problematisch. Es sollte daher versucht werden, ∆Tl möglichst gering zu halten, so

dass
∆Tl
∆t ≈ 1, wenn ∆t = 1

fIME
. Dieses würde jedoch der Annahme widersprechen, die für (7.64) ge-

troffen wurde. Zur Berechnung der statistischen Eigenschaften des Bias bieten sich daher alternative

Varianten an, die in Kap. 8 erörtert werden.

Ähnlich der Vorgehensweise bei den Drehratensensoren kann man auch bei den Beschleunigungs-

messern einer IME vorgehen. Bei den Beschleunigungssensoren ist allerdings zu beachten, dass diese

in vertikaler Richtung zusätzlich noch die Erdbeschleunigung messen. Die im Rahmen dieser Arbeit

verwendeten Messeinheiten haben Beschleunigungssensoren eingebaut, die ein höheres Auflösungs-

vermögen aufweisen als die Drehratensensoren. Erfährt der Sensor keine äußere Beschleunigung, so

lässt sich mit (4.63) und (4.1) die folgende Gleichung aufstellen:

ãbib,k = gn
k + ba,k + na,k. (7.69)

7.2.2 Kovarianzmanagement

Das KM kann im Prinzip als sequenzielle Variante des Verfahrens aus dem vorangegangenen Ab-

schnitt angesehen werden, wobei hier für den Vektor z† ∈ {ãbib, ω̃b
ib} gelten soll. Für die Filterung in

Kap. 5 wurde von mittelwertfreien, weißen Rauschprozessen ausgegangen, die ein zeitlich korrelier-

tes Rauschen treiben. Wie im Folgenden deutlich wird, lassen sich diese Korrelationen mit dem KM

nicht schätzen. Daher gehen wir nun von zeitlich unkorreliertem Rauschen aus, bei dem wir im We-

sentlichen nur an den zugehörigen Varianzen interessiert sind. Im Zuge der Varianzschätzung müssen

dabei auch die Mittelwerte geschätzt werden.

Es sei nun z† die Realisierung eines reellen, mehrdimensionalen Zufallsprozesses, dessen Mit-

telwert und Varianz bestimmt werden sollen. Nach [Bal09] und [OS99] sei der zugrunde liegende

Prozess (z. B. nach Gl. (7.63)) ergodisch und der Mittelwert konstant in einem begrenzten Intervall.

Für den Mittelwert µ† und die korrespondierende Kovarianzmatrix Q† := diag(q†), wobei † ∈ {ω, a}
sei, gilt nach den Gl. (E.17) bis (E.24) in Anhang E.2:

µ†,k =

(
1− 1

k

)
µ†,k−1 +

1

k
z†,k. (7.70)

In (7.70) werden bereits sämtliche Vektoren z†,1, . . . , z†,k−1 berücksichtigt. Um eine rekursive Form

für die Berechnung der Kovarianzmatrix zu erhalten, kann nun (E.24) in Gl. (E.23) eingesetzt werden:

q†,k =

(
1− 1

k

)
q†,k−1 +

(
1− 1

k

)
1

k

(
z†,k − µ†,k−1

)2
, (7.71)

wobei µ†,k−1 = 1
k−1

∑k−1
f=1 xf gilt. Man muss allerdings bedenken, dass die letzte Gleichung nur

verwendet werden kann, wenn die Approximationen in (E.17) – (E.19) gültig sind. Dieses ist jedoch

nur dann der Fall, wenn das Beobachtungsintervall sehr groß ist, so dass der Erwartungswert durch

den empirischen Mittelwert ersetzt werden kann. Hier nehmen wir des Weiteren an, dass der initiale

Varianzvektor ein Nullvektor ist, d. h. q†,0 = 0D×1 gilt. Ist die Schätzung jedoch lediglich unterbro-

chen, z. B. durch eine Standphase des Fahrzeugs, so existieren nach dieser Phase initiale Werte für
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Mittelwerte oder Varianzen auf Basis der letzten Werte in der Phase, bevor das Fahrzeug stand. Es

liegt demnach a priori-Wissen vor, das berücksichtigt werden muss.

Auf ähnliche Weise lassen sich auch zwei weitere Varianten zur rekursiven Parameterschätzung

mit individuellen Vor- und Nachteilen aufstellen, die allerdings hier nicht weiter beachtet werden

sollen. Diese entstammen [Tys92] und [Oth03] und sind in Anhang E.2 aufgeführt.

7.2.3 Modifiziertes Kovarianzmanagement

Bei der Verwendung des KM muss beachtet werden, dass in den Signalen sowohl Bias als auch Tra-

jektoriendynamik auftauchen. Diese können das Ergebnis verfälschen. Die Trajektoriendynamik ist

in einem niederfrequenten Bereich zu finden, wie in Kap. 8 noch gezeigt wird. Neben Bias und Be-

wegungstrajektorie sind in dem Sensorsignalvektor ãbib bzw. ω̃b
ib noch die inhärenten und zeitlich

korrelierten Rauschanteile zu finden. Diese seien dem Rauschen na bzw. nω zugeordnet. Da ohne

eine explizite Filterung, z. B. durch das FF, die Biasdrift und die Trajektoriendynamik nicht vonein-

ander separiert werden, sollen beide Komponenten zusammen durch eine dynamische Schätzung des

Mittelwertes µ†,k berücksichtigt werden. Obwohl die Herleitung auf der Annahme eines konstanten

Mittelwertes beruht, ist im Folgenden der Mittelwert also eine zeitvariante Größe.

Mit ζ := 1
p′+p′0

, wobei p′ wieder der Laufindex ist und durch p′0 ∈ R hier die „Zeitveränderlich-

keit“ eingestellt werden kann, folgt für Gl. (E.24):

µ†,k = (1− ζ)µ†,k−1 + ζ z†,k. (7.72)

Durch die Wahl p′ > 0 wird die Mittelwertschätzung zu Beginn eines Ausschnittes l so beeinflusst,

dass der Mittelwert aus dem Ausschnitt l − 1, d. h. das a priori-Wissen durch µ†,k−1 wenig, und die

aktuelle Messung z†,k stärker gewichtet ist. Je größer dann noch p′0 gewählt wird, desto träger ist

der Verlauf von µ†,k und desto mehr Gewicht erhält das a priori-Wissen des vorherigen Signalaus-

schnitts. Hier wurde p′0 = 20 gewählt, da sich dieser Wert in informellen Tests als guter Kompromiss

herausgestellt hat.

Wir gehen nun wieder davon aus, dass ein Sensorsignal der Länge K mit K = TK ·fIME vorliegt.

Für das Ausgangssignal würde am Beispiel einer Drehratensensortriade die Gl. (4.62) gelten. Um al-

lerdings die zeitvarianten Varianzen des zeitkorrelierten Rauschprozesses abschätzen zu können, muss

die Dynamik in die Mittelwertschätzung einfließen. Dieses kann einerseits durch den heuristischen

Faktor ζ in Gl. (7.72), andererseits durch eine geringe Fensterbreite ∆Tl erreicht werden. Da aber

auch die Varianzen eine Zeitveränderlichkeit als Folge der nicht modellierten zeitlichen Korrelationen

aufweisen, muss diese auch bei deren Schätzung berücksichtigt werden. Die Dynamik sollte jedoch

geringer sein als bei der Mittelwertschätzung, um eine zu starke Streuung der Werte zu vermeiden.

Daher soll die abgewandelte Berechnungsvorschrift von (7.71) für eine rekursive Varianzschätzung

bei vorhandener Fahrdynamik

q†,k =
(
1− ζ̃

)
q†,k−1 + ζ̃

(
z†,k − µ†,k−1

)2
(7.73)

lauten, wobei ζ̃ := 1
p′+p̃′0

= 1
1
ζ
+p̃′0−p′0

mit p̃′0 ∈ N und p̃′0 ≫ p′0 gilt. Das Verfahren ist vollständig in

Alg. 2 zusammengefasst. Die Fensterlänge wurde hier zu ∆Tl = 0,25 s und der zusätzliche Faktor

zu p̃′0 = 500 gewählt. Auch diese Werte stellten sich anhand informeller Tests als optimal heraus. Es

fällt auf, dass bei dem modifizierten Verfahren zur rekursiven Berechnung eines empirischen Mittel-

wertes und einer empirischen Varianz ein Fenster über die letzten Beobachtungen gelegt wird und die
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Algorithmus 2: Algorithmus zur echtzeitfähigen Schätzung der Rauschparameter mit modifi-

ziertem Kovarianzmanagement bei vorhandener Trajektoriendynamik

1 wiederhole

2 Berechnung des Mittelwertvektors µ†,k, † ∈ {ω, a} mit (7.72)

3 Berechnung des Rauschvarianzvektors q†,k, † ∈ {ω, a} nach (7.73)

4 wenn k = l ·∆K dann

5 l← l + 1

6 k ← k + 1

7 bis Abbruchbedingung erfüllt

gefensterten Daten mit einer Exponentialfunktion gewichtet werden, um die Dynamik in den gesuch-

ten Parametern zu berücksichtigen. Die Abb. 7.2 verdeutlicht, wie das modifizierte KM im Rahmen

der Filterung nach Kap. 5 eingesetzt wird. Hierbei gilt Q†,k := diag
(
q†,k

)
mit † ∈ {ω, a}, wobei

x̂FF

Q̂a, Q̂ω

x̂SD

ãb
ib, ω̃b

ibParameter-
schätzer (KM)

Fehlerfilter
(FF)

Abbildung 7.2: Parameterschätzung durch modifiziertes Kovarianzmanagement

nun nicht mehr von einem zeitlich korrelierten Rauschprozess wie in Gl. (5.13) ausgegangen, sondern

jeweils n†,k ∼ N (n†,k;03×1 ,Q†,k) angenommen wird.

Die Abb. 7.3 (a) und (b) zeigen die geschätzten Mittelwerte und Standardabweichungen des

Rauschprozesses für die x-Achse der im Rahmen dieser Arbeit eingesetzten MTi-Inertialsensoreinheit.

Dabei wurden während einer Stadtfahrt einerseits verschiedene Straßenbeläge befahren (Bewegungs-

phasen P̆B), andererseits traten auch Standphasen mit laufendem Motor auf (Phase P̆M ), wobei die

Abbildungen Ausschnitte von einigen dieser Phasen zeigen. In Abb. 7.3 (a) ist zu sehen, dass die

Mittelwertschätzung µ̂a,x,k der Fahrdynamik der Messung ãbib,x,k gut folgen kann, was Grundvoraus-

setzung für eine zuverlässige Parameterschätzung ist. Es fällt auf, dass das Befahren einer gepflaster-

ten Straße im Vergleich zu einer asphaltierten Straße von einer besonders hohen Bewegungsdynamik

gekennzeichnet ist. Dies wirkt sich entsprechend auf die Schätzwerte der Rauschprozessparameter

aus, die ebenfalls ansteigen. Die Tab. 7.1 (a) und (b) zeigen abschließend die ungefähren Wertebe-

reiche für die drei Achsen der MTi-Sensoreinheit, in denen sich die Schätzungen der Standardab-

weichungen für die verschiedenen Bewegungsphasen bewegen. Hierbei gilt σ2a,†,k := E
[
n2a,†,k

]
und

σ2ω,†,k := E
[
n2ω,†,k

]
mit † ∈ {x, y, z}. In der Literatur wird die Standardabweichung auch häufig in

der Einheit [m/(s2 ·
√
Hz)] bzw. [°/(s ·

√
Hz)] angegeben. Diese ist auch in den nachfolgenden Kapiteln

von Bedeutung. Dabei handelt es sich um die Wurzel der Rauschleistungsdichte des entsprechenden

zeitkontinuierlichen Rauschprozesses, die abtastzeitunabhängig ist. Sie wird durch die Skalierung

der Varianz σ2a,† bzw. σ2ω,† auf die Abtastfrequenz gewonnen und als Velocity Random Walk (V RW )-
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ã
b ib
,x
,k

/

µ̂
a
,x
,k

[m
/s

2
]

tk [min]

(a) Empirisch geschätzte Mittelwerte

 

 

13 14 15 16
0

0,5

1

1,5

2

P̆M

P̆B (Asphalt)

P̆B (Pflaster)

σ̂
a
,x
,k

[m
/s

2
]

tk [min]

(b) Empirisch geschätzte Rauschprozessparameter ei-

nes Beschleunigungssensors

Abbildung 7.3: Empirische Mittelwertschätzung und Parameterschätzung mit Kovarianzmanagement

auf Basis ungefilterter Inertialsensordaten

bzw. Angle Random Walk (ARW )-Parameter bezeichnet:

V RW† [
m/(s2 ·

√
Hz)] :=

√
σ2a,† [(m/s

2)2]

fIME [Hz]
(7.74)

ARW† [
°/(s ·

√
Hz)] :=

√
σ2ω,† [(°/s)

2]

fIME [Hz]
, (7.75)

Der Vorteil liegt darin, dass eine explizite Angabe der Abtastrate (in dieser Arbeit ist das 1
fIME

mit

fIME = 100Hz, sofern nicht anders angegeben) nicht mehr erfolgen muss. 9

Die Wertebereiche, in denen sich die Schätzungen σ̂a bewegen, sind bei den drei Sensorachsen re-

lativ ähnlich. Lediglich in der z-Komponente steigen sie etwas an. Dieses ist auf die nicht vollständig

mögliche Dämpfung des Fahrzeugs zurückzuführen. Bei den Parametern der Drehratensensortriade

hingegen wird deutlich, dass sich die Wertebereiche der einzelnen Phasen zum Teil deutlich überlap-

pen. In der z-Komponente sind zwischen Phase P̆M und Phase P̆B im Falle einer asphaltierten Straße

kaum Unterschiede zu erkennen.

7.3 Parameterschätzung durch Auswertung von Messwertdifferenzen

Eine weitere Methode ist die Parameterschätzung mit Hilfe von Messwertdifferenzen wie sie im De-

tail in Anhang E.3 aufgeführt ist und aus [Wen07] stammt. Dieses wird im Folgenden als Messwert-

differenzen-Verfahren (MD) bezeichnet. Dabei werden auf Basis der Differenz aufeinanderfolgender

Messwerte z†,k (z. B. der skalaren Größe ω̃b
ib,y,k oder ãbib,z,k) die zeitlichen Korrelationen r

(i′)
∆n†∆n†,k

rekursiv berechnet, wobei † ∈ {ω, a} ist. Der Abgriff der Sensormessdaten erfolgt wie in Abb. 7.2,

wobei der KM-Block durch einen Block mit dem MD ersetzt werden muss.

9Während es üblich ist, die RWP-Parameter eines zeitlich nicht korrelierten Rauschprozesses mit V RW bzw. ARW

anzugeben, wird i. d. R. bei einem zeitlich korrelierten Rauschen darauf verzichtet.
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(a) Geschätzte Standardabweichungen σ̂a

σ̂a [
m/s2] / V̂ RW [1 · 10−1 m/(s2 ·

√
Hz)]

Phase \ Achse x y z

P̆M 2,4 · 10−2 . . . 5,5 · 10−2 2,4 · 10−2 . . . 5,5 · 10−2 2,4 · 10−2 . . . 5,5 · 10−2

P̆B (Asphalt) 5,5 · 10−2 . . . 7,5 · 10−1 5,5 · 10−2 . . . 7,5 · 10−1 5,7 · 10−2 . . . 1,0

P̆B (Pflaster) 7,5 · 10−1 . . . 1,9 7,5 · 10−1 . . . 1,9 1,0 . . . 2,2

(b) Geschätzte Standardabweichungen σ̂ω

σ̂ω [°/s] / ÂRW [1 · 10−1°/(s ·
√
Hz)]

Phase \ Achse x y z

P̆M 4,0 · 10−3 . . . 7,0 · 10−3 4,5 · 10−3 . . . 7,0 · 10−3 4,0 · 10−3 . . . 6,0 · 10−3

P̆B (Asphalt) 7,0 · 10−3 . . . 3,8 · 10−2 7,2 · 10−3 . . . 8,0 · 10−2 4,5 · 10−3 . . . 4,2 · 10−2

P̆B (Pflaster) 3,0 · 10−2 . . . 8,5 · 10−2 5,0 · 10−2 . . . 1,2 · 10−1 3,8 · 10−2 . . . 8,0 · 10−2

Tabelle 7.1: Wertebereiche der mittels KM geschätzten Rauschprozessparameter ungefilterter In-

ertialsensorsignale

Hier wird ein autoregressiver Prozess erster Ordnung betrachtet. Für die Korrelationen gilt

Gl. (E.35). Sie lautet:

r
(i′)
∆n†∆n†,k

=
(
1− ζ ′

)
r
(i′)
∆n†∆n†,k−1 + ζ

′
∆n†,k ∆n†,k−i′ . (7.76)

Dabei stellt ∆n†,k−i′ := n†,k−i′ − n†,k−i′−1 mit i′ ∈ {0, 1} die zeitliche Differenz des zeitlich

korrelierten Rauschens dar, das bei einem sich langsam ändernden Bias und einer geringen Trajekto-

riendynamik annähernd der Differenz der Messwerte entspricht. ζ
′

ist ein heuristischer Parameter mit

0 < ζ
′
< 1, der hier zu ζ

′
= 0,01 gewählt ist. Je kleiner ζ

′
gewählt wird, desto weniger schwanken

die geschätzten Korrelationen [Wen07]. Durch Verwendung der Gleichung

n†,k = dnn†,k−1 + η†,k (7.77)

an Stelle von (E.31), wobei hier η†,k ∼ N
(
η†,k; 0, σ

2
η†

)
mittelwertfreies, weißes GAUSS-verteiltes

Rauschen mit der Varianz σ2η†
ist, und anschließender Schätzung der Erwartungswerte

E
[
∆n†,k∆n†,k−i′

∣∣∣ z†,1:k
]

für i′ ∈ {0, 1} und einer gegebenen Sequenz aus Beobachtungen z†,1:k,

resultieren nach einigen Umrechnungen die Gl. (E.47) und (E.48):

dn =
r
(0)
∆n†∆n†,k

+ 2 r
(1)
∆n†∆n†,k

r
(0)
∆n†∆n†,k

(7.78)

σ2η = r
(0)
∆n†∆n†,k

+ r
(1)
∆n†∆n†,k

. (7.79)

Durch die Annahme zeitvarianter Prozessparameter (dn → dn,k und σ2η† → σ2η†,k
) lassen diese Glei-

chungen also auch eine sequenzielle Berechnung der Varianz des treibenden Rauschens zu. Ein Cha-

rakteristikum dieses Verfahrens ist, dass neben der Erfassung der Vibrationen des Fahrzeugs auch die

Trajektoriendynamik mit berücksichtigt wird, denn diese wird durch die Berechnung der Differenz

zeitlich aufeinanderfolgender Messungen nicht vollständig eliminiert. Dieses muss allerdings nicht
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zwangsläufig ein Nachteil sein, da Modellungenauigkeiten aufgrund einer vereinfachten Zustands-

übergangsmatrix wie hier, dem Rauschen zugeordnet werden können. Ein besonderer Vorteil liegt

hier allerdings in der Unabhängigkeit von weiteren Filtergrößen und der Möglichkeit, die Parameter

mit der IME-Datenrate zu schätzen.

Ausgehend von (7.77) lässt sich nun die Varianz σ2†,k := E
[
n†,kn

T
†,k

∣∣∣ z†,1:k
]

über

σ2†,k =
σ2η†,k

1− d2n,k
(7.80)

berechnen. Es muss in diesem Fall jedoch berücksichtigt werden, dass die Bedingung dn,k < 1 erfüllt

bleibt, damit keine Singularitäten in Gl. (7.80) auftreten. Andernfalls wäre σ2†,k → ∞ bzw. σ2†,k < 0

die Folge.

Zusammenfassung

In diesem Kapitel wurden drei Verfahren vorgestellt, um die als zeitvariant angenommenen Varian-

zen bzw. Kovarianzmatrizen eines Rauschprozesses zu schätzen. Während das Kovarianzmanage-

ment aus [Bal09] lediglich eingesetzt werden kann, um die Systemrauschkovarianzmatrix eines zeit-

lich unkorrelierten Rauschprozesses zu schätzen, lässt sich das auf Basis von Messwertdifferenzen

aus [Wen07] und das hier im Detail hergeleitete sequenzielle Schätzverfahren unter Verwendung des

EM-Algorithmus und dem NEWTON-Verfahren für ein zeitlich korreliertes Systemrauschen anwen-

den. Beim SEM werden einige spezielle Eigenschaften der HESSE-Matrix und der Kovarianzmatrix

ausgenutzt, um möglichst robuste und zuverlässigere Parameterschätzungen zu erhalten. Die Ergeb-

nisse, die in Verbindung mit den hier vorgestellten Schätzverfahren gewonnen wurden, werden in

Kap. 9 vorgestellt.
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Kapitel 8

Analyse der inertialen Sensoreinheit

Im Rahmen des vorliegenden Kapitels sollen Ergebnisse zu Voruntersuchungen der verwendeten

IME, der MTi-Sensoreinheit der Fa. Xsens Technologies B. V., Niederlande, präsentiert werden. Für

einige Analysen befand sich die IME in einem ruhenden Zustand P̆O, während für andere Analysen

Felddaten aufgezeichnet wurden, bei denen unterschiedliche Fahrsituationen, wie z. B. Kurvenfahr-

ten, und damit eine Bewegungsdynamik vorlag. Zunächst wird ein Verfahren vorgestellt, mit dem die

typischen und hier wichtigen Sensorparameter abgeschätzt werden können. Im Anschluss daran wird

die verwendete IME auf ihre sensorspezifischen Eigenschaften hin untersucht, um u. a. die in den Da-

tenblättern angegeben Werte zu bestätigen und die zu erwartenden Rauschvarianzschätzungen beim

Einsatz der IME in einem Fahrzeug besser einschätzen zu können.

8.1 ALLAN-Varianz

Die Berechnung der ALLAN-Varianz ist, neben der in Anhang G beschriebenen Möglichkeit, eine

Methode, um Sensorsignale im Zeitbereich näher analysieren zu können [Woo07]. Es handelt sich

dabei um eine Varianz, die aus der Mittelung über mehrere Signalausschnitte resultiert. Sie wurde

ursprünglich entwickelt, um die Frequenzstabilität von Oszillatoren untersuchen zu können.

An dieser Stelle wird angenommen, dass sich der Sensor in einem Ruhezustand befindet und somit

kein „äußerer Einfluss“ durch eine Bewegungsdynamik vorhanden ist, siehe Gl. (7.63) und (7.69):

ω̃
b
ib,k = bω,k + nω,k (8.1)

ãbib,k = gn
k + ba,k + na,k. (8.2)

Demnach wird ein RWP von einem weißen Zufallsprozess überlagert (in Gl. (8.2) tritt zusätzlich ein

deterministischer Anteil in Form des Schwerebeschleunigungsvektors auf). Für die Berechnung wird

wie folgt vorgegangen:

1. Aufteilung einer möglichst langen Sequenz von Sensorsignalen xk mit

xk ∈
{
ãbib,x,k, ã

b
ib,y,k, ã

b
ib,z,k, ω̃

b
ib,x,k, ω̃

b
ib,y,k, ω̃

b
ib,z,k

}
in L gleich lange, nicht überlappende Si-

gnalausschnitte der Länge ∆Tl (es sollten ausreichend Daten für mindestens L = 9 Signalaus-

schnitte vorhanden sein [Woo07]).

2. Mittelung der Daten in den jeweiligen Signalausschnitten für verschiedene Ausschnittslängen

∆Tl =
∆K
fIME

(siehe Kap. 7.2.1 bzgl. der Einteilung der Zeitachse):

µl,∆K :=
1

∆K

∆K−1∑

p′=0

xl∆K+p′ , für l = 0, . . . , L− 1 und ∆K > 10, (8.3)
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so dass mit µ0:L−1,∆K := µ0,∆K , . . . , µl,∆K , . . . , µL−1,∆K eine Sequenz gemittelter Daten für

verschiedene ∆K vorliegt.

3. Berechnung der ALLAN-Varianz anhand

σ2AD;∆K :=
1

2 · (L− 1)

L−1∑

l=1

(
µl,∆K − µl−1,∆K

)2
. (8.4)

Erläuterung: Eine mathematisch korrekt definierte Varianz erfordert unendlich viele Stichpro-

ben bzw. die Mittelung über eine unendlich lange Ausschnittslänge (∆Tl → ∞). Um hier der

realen Messsituation Rechnung zu tragen, wird auf eine Varianz zurückgegriffen, die auf zwei

Stichproben beruht:

E


 1

2− 1

2∑

n′=1


µn′,∆K −

1

2

2∑

m′=1

µm′,∆K




2
 =

1

2
E
[(
µ2,∆K − µ1,∆K

)2]
. (8.5)

Aufgrund der Begrenzung der Mittelung auf L Werte ist es wichtig, wiederum die endliche

Anzahl von Messpunkten zu berücksichtigen, weshalb Gl. (8.5) durch Gl. (8.4) angenähert

wird.

Aus der ALLAN-Varianz (8.4) kann schließlich mit

σAD;∆K =
√
σ2AD;∆K (8.6)

die ALLAN-Standardabweichung bestimmt werden, die auch häufig als logarithmische Funktion über

∆Tl dargestellt wird. In dieser Darstellung (z. B. zeigt die Abb. 8.2 (a) die berechneten Werte der

ALLAN-Standardabweichungen der Drehratensensortriade der MTi) lassen sich relativ einfach die

verschiedenen Rauschprozesse, die auf das jeweilige Signal einwirken, identifizieren und deren cha-

rakteristische Parameter bestimmen. Die in dieser Arbeit wichtigen Parameter sind wie folgt ablesbar

[IEE03]:

• Weißes GAUSS-verteiltes Rauschen erscheint in der Darstellung als Gefälle mit einer Steigung

von −0,5. Die Parameter des zugehörigen RWP können bestimmt werden, indem eine Gerade

durch das Gefälle gelegt und der Wert bei ∆Tl = 1 s abgelesen wird. Für einen Drehratensensor

würde daraus der ARW -Parameter, für einen Beschleunigungssensor der V RW -Parameter

resultieren (allerdings jeweils bezogen auf 1/
√
s), denn in [Sei04] wird gezeigt, dass die ALLAN-

Varianz durch

σ2AD;∆K =
RW 2

∆Tl
+ b2

2

π
ln(2) + f(∆Tl, . . . ) (8.7)

angenähert werden kann, wobei hier b das Bias und RW den RWP-Koeffizienten (ARW oder

V RW ) darstellen. Die Funktion f(∆Tl, . . . ) beschreibt weitere Abhängigkeiten von Rausch-

prozessen, die im Rahmen dieser Arbeit nicht berücksichtigt werden (z. B. Quantisierungsrau-

schen). Aus (8.7) resultieren die charakteristischen Parameter wie die RWP-Koeffizienten oder

die so genannte Biasstabilität.

Des Weiteren gilt: Je kleiner ∆Tl, desto eher stimmen die empirisch bestimmten Mittelwerte

zweier aufeinanderfolgender Signalabschnitte für einen RWP überein. Für die x-Komponente
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von ba gilt dann z. B. :

∆K−1∑

p′=0

ba,x,(l−1)∆K+p′ ≈
∆K−1∑

p′=0

ba,x,l∆K+p′ . (8.8)

Der empirisch berechnete Mittelwert nähert sich allerdings erst mit steigender Intervalllänge

dem Erwartungswert des weißen Rauschprozesses an. Der Einfluss des weißen Rauschpro-

zesses auf die ALLAN-Varianz überwiegt demnach bei kleinen Intervalllängen. Aufgrund der

Tatsache, dass ein RWP ein instationärer Prozess ist, gilt für ansteigende Ausschnittslängen

∆Tl die Approximation in Gl. (8.8) nicht mehr. Der Einfluss des RWP nimmt zu.

• Die so genannte Biasstabilität σ̄ba,∆K bzw. σ̄bω ,∆K , d. h. der zugehörige numerische Wert, kann

im absoluten Minimum abgelesen werden. Dabei handelt es sich um die Änderung des Bias im

Zeitraum ∆Tl,min, wobei ∆Tl,min das ∆Tl ist, für welches die ALLAN-Varianz minimal ist.

Weitere Details zu den Parametern, die mit Hilfe der ALLAN-Varianz bestimmt werden können, sind

in [IEE03] aufgeführt und werden an dieser Stelle nicht näher erörtert.

8.2 Miniature Tracking inertial-Sensoreinheit

Wie übliche IME besteht auch die MTi-Sensoreinheit aus einer Kombination mehrerer Sensorele-

mente in MEMS-Technologie: Drehratensensoren, Beschleunigungssensoren sowie Magnetfeldsen-

soren für drei Raumrichtungen. Dabei kann die Ausgabe der räumlichen Orientierung mit Hilfe eines

digitalen Signalprozessors (DSP) wahlweise mit oder ohne direkte Unterstützung durch Magneto-

meterdaten erfolgen. Durch eine integrierte Vorfilterung wird die Biasdrift reduziert, wodurch eine

Nachfilterung weniger aufwändig ist. Außerdem kann die MTi-Sensoreinheit durch einen zusätzli-

chen Sensor die Temperatur messen. Das Datenblatt der MTi-Sensoreinheit [B.V09a] gibt die Para-

meter der Einheit mitARW = 5 · 10−2°/(s ·
√
Hz) und V RW = 2 · 10−3 m/(s2 ·

√
Hz) an. Des Weiteren

beträgt die Biasstabilität 1°/s bzw. 2 · 10−2 m/s2. Die Magnetfeldsensoren haben eine Biasstabilität von

0,1mG und weisen ein Messrauschen von 0,5mG auf. Die Skalenfaktorstabilität beträgt hingegen

0,03% für die Beschleunigungssensortriade bzw. 0,5% für die Magnetfeldsensoren. Entsprechende

Daten für die Drehratensensortriade sind nicht verfügbar. Die maximale Abtastfrequenz des Sensors

beträgt zwar 120Hz, im Folgenden wurde jedoch fIME = 100Hz gewählt.

Ein ausgeprägter Biasverlauf, d. h. eine niederfrequente Störung, ist durch die interne Vorfilterung

der MTi-Sensoreinheit nur geringfügig vorhanden, wie Abb. 8.1 (a) zeigt. Hierzu wurde eine Lang-

zeitmessung der Dauer von 60 h mit annähernd konstanter Raumtemperatur durchgeführt, wobei die

IME ruhte. Auftretende „Rest-Bias“ sind daher nur unwesentlich von der Temperatur abhängig. In

der Abbildung sind die Periodogramme der Signale von den Sensorkomponenten zu sehen, welche

die Drehraten in der MTi-Sensoreinheit messen. Für diese gilt hier:

Rω(fk′) =
1

fIMEN
′

∣∣∣∣∣

N ′∑

n′=1

ω̃b
ib,n′e

−j
2πf

k′
fIME

n′

∣∣∣∣∣

2

. (8.9)

Dazu wurde eine N ′ = 48k-Schnelle FOURIER-Transformation (FFT) angewendet. Das inhärente

Rauschen erstreckt sich von Natur aus gleichmäßig über den gesamten Frequenzbereich. Lediglich

im unteren Bereich bis zu einer Frequenz von ca. f = 25 · 10−4Hz ist ein ausgeprägtes Grund-

rauschen zu finden. Nach [Neu05] ist dort das zeitlich (annähernd) konstante Bias zu finden. In
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Abbildung 8.1: Leistungsdichtespektrum und Spektrogramm der Signale einer ruhenden Drehraten-

sensortriade

den höheren Frequenzbereichen sind keine Auffälligkeiten auszumachen, weshalb hier nur Frequen-

zen bis 0,05Hz aufgeführt sind. Im Gegensatz zur MTi-Sensoreinheit weist die MotionNode (MN)-

Sensoreinheit der Fa. GLI Interactive LLC, USA, eine IME, die hier zu Vergleichszwecken herange-

führt wurde [LLC08], unerwünschte Effekte im Ruhesignal auf, wie

Abb. 8.1 (b) zeigt. Es ist im unteren Frequenzbereich des Spektrogramms ein Grundrauschen zu

erkennen, das bis zu einer Grenzfrequenz von ca. 0,2Hz reicht. Dieses ist in der Abbildung nochmals

vergrößert dargestellt. Da kein äußerer Einfluss bei der Messung vorhanden war, handelt es sich nach

Gl. (7.63) bei den Signalanteilen, die zwischen 0Hz und 0,2Hz liegen, um ein Bias. Es zeigt sich

aber auch in anderen Frequenzbereichen ein zeitvariantes Rauschen. Bei ca. 10Hz und bei 20Hz ist

zu erkennen, dass Rauschanteile auftreten, die sich mit der Zeit geringfügig ändern. Dies kann auf

thermisches oder bauteilabhängiges Sensorrauschen zurückgeführt werden.10

Im Folgenden sollen die logarithmischen Verläufe der ALLAN-Standardabweichungen für die

Drehraten- und Beschleunigungssensortriade in den Abb. 8.2 (a) und (b) betrachtet werden. Anhand

der dargestellten Verläufe können für die angenommenen RWP zunächst die Werte in Tab. 8.1 ab-

gelesen werden. Im rechten Teilbild fällt auf, dass sich die Minima der einzelnen Sensorachsen in

unterschiedlichen Bereichen befinden. Der Grund dafür ist zum einen eine nicht vollständig orthogo-

nale Anordnung der Beschleunigungssensoren sowie ihre unterschiedliche Güte, zum anderen aber

auch ein nicht ausreichend langes Beobachtungsintervall. Die V RW - undARW -Parameter sind ver-

gleichbar mit den Ergebnissen, die mit dem in Anhang G aufgeführten Verfahren gewonnen wurden.

Die Werte für die Biasstabilität sind dagegen deutlich geringer als die im Datenblatt angegebenen

Werte [B.V09a]. Dies ist auf die Tatsache zurückzuführen, dass in Datenblättern häufig die maxi-

malen Werte angegeben sind, die sich aus Untersuchungen mehrerer Sensorklassen ergeben haben,

wobei die Ergebnisse gemittelt wurden. Auch die Umgebungstemperatur spielt hierbei eine wich-

tige Rolle. Die Temperaturbereiche, in denen die MTi-Sensoreinheit vom Hersteller getestet wurde

[B.V09a], wurden bei den Untersuchungen im Rahmen dieser Arbeit nicht durchlaufen.

10Da die MN-Sensoreinheit, mit Ausnahme der internen Biaskompensation, in der gleichen Kategorie wie die MTi-

Sensoreinheit einzuordnen ist, wurde im Rahmen dieser Arbeit auf weitere Untersuchungen unter Verwendung der MN-

Sensoreinheit verzichtet.
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Abbildung 8.2: ALLAN-Standardabweichungen der MTi-Sensoreinheit

Achse ÂRW [°/(s ·
√
Hz)] ˆ̄σbω ,∆K [°/s] ∆Tl,min [s]

x-Achse y-Achse 3,5 · 10−2 3,9 · 10−2 7,2 · 10−3 5,9 · 10−3 205,3 294,1

z-Achse 2,9 · 10−2 5,1 · 10−3 274,4

V̂ RW [m/(s2 ·
√
Hz)] ˆ̄σba,∆K [m/s2] ∆Tl,min [s]

x-Achse y-Achse 8,5 · 10−4 8,9 · 10−4 3,5 · 10−4 2,4 · 10−4 14,2 66,0

z-Achse 9,0 · 10−4 3,1 · 10−4 732,6

Tabelle 8.1: Anhand der ALLAN-Standardabweichung ermittelte Parameter für sensorinhärentes Rau-

schen und Biasstabilität der MTi-Sensoreinheit

Vergleicht man z. B. die geschätzten V RW -Parameter der ruhenden MTi-Sensoreinheit mit den

Werten, die in Kap. 7.2.3 aus einer empirischen Berechnung resultierten, so fällt auf, dass die V RW -

Schätzungen hier höhere Werte aufweisen als die minimalen Werte in der Phase P̆M , die im Rahmen

des KM gemessen wurden. Dieses ist auf die Tatsache zurückzuführen, dass das Rauschen, das in

7.2.3 mittels KM geschätzt wird, nicht ausschließlich dem inhärenten Rauschen entspricht, sondern

von Vibrationen und der Trajektoriendynamik überlagert wurde. Dieses ist bei den hier verwendeten

Daten nicht der Fall. Außerdem wird in Kap. 7.2.3 die Varianz einer Variablen berechnet, die laufend

um einen zeitvarianten Mittelwert bereinigt wird.

Auf Basis der Ergebnisse zur Biasstabilität in Tab. 8.1 und unter Berücksichtigung von Gl. (8.4)

wurden außerdem über
σ̂bω√
∆Tl,min

bzw.
σ̂ba√
∆Tl,min

die Standardabweichungen des biastreibenden Rau-

schens in Tab. 8.2 ermittelt. Dabei sei angemerkt, dass sich in beiden Tabellen die Werte auf
√
Hz be-

Achse σ̂bω [°/(s2 ·
√
Hz)] σ̂ba [

m/(s3 ·
√
Hz)]

x-Achse y-Achse 5,1 · 10−4 3,5 · 10−4 9,2 · 10−5 2,9 · 10−5

z-Achse 3,1 · 10−4 1,1 · 10−5

Tabelle 8.2: Anhand der Biasstabilität geschätzte Standardabweichungen des biastreibenden Rau-

schens der MTi-Sensoreinheit
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ziehen. Für die Komponente der x-Achse würde daher beispielhaft σ̂ba,x = 9,2 · 10−5 m/(s3 ·
√
Hz)→

σ̂ba,x = 9,2 · 10−4 m/s3 (bei fIME = 100Hz) gelten.

Zur Erzeugung der simulierten Daten nach Anhang F.1 wurden die Werte in Tab. 8.1 und Tab. 8.2

gemittelt, so dass für die Standardabweichungen des Biasrauschens die Werte in Tab. F.1 resultierten.

Obwohl hier nur die ARW - und V RW -Parameter bestimmt wurden, werden diese Werte aufgrund

der relativ geringen Korrelationszeit tIME;c auch für die Standardabweichungen bzw. Varianzen ver-

wendet, die das simulierte zeitkorrelierte Inertialsensorrauschen treiben. In Kap. 9.2 wird gezeigt,

dass zwischen diesen lediglich ein Faktor von jeweils

(
1− e

− 2
fIME·tIME;c

)−1/2

≈ 1,4 liegt.

8.3 Einfluss von Trajektoriendynamik

Bei den bisherigen Untersuchungen wurde die MTi-Sensoreinheit im ruhenden Zustand betrachtet.

Das inhärente Rauschen konnte dabei als annähernd zeitinvariant angenommen werden, da Effekte

wie z. B. Vibrationen nicht auftraten. Lediglich die Bias wurden als zeitvariant angenommen. In die-

sem Abschnitt soll eine Messfahrt (Fahrt durch die Innenstadt von Paderborn) dazu genutzt werden,

um zu bestätigen, dass die übrigen Sensorparameter bei vorhandener Trajektoriendynamik ebenfalls

als zeitvariant modelliert werden können. Während der Fahrt wurden verschiedene Straßenbeläge be-

fahren sowie starke Abbrems- und Beschleunigungsvorgänge vorgenommen. Des Weiteren sind in

dem Datensatz Standphasen P̆O an Ampeln vorhanden. Abb. 8.3 (a) zeigt die Ausgangssignale der

MTi-Beschleunigungssensoren, die in den ersten 10min der Messfahrt aufgenommen wurden. Durch

eine nicht vollständig waagerechte Anfangsausrichtung tritt eine deutliche Nullpunktabweichung der

x-Komponente auf. Dadurch wird die Schwerebeschleunigung nicht nur von der Sensorkomponente

in z-Richtung, sondern auch von der in x-Richtung gemessen. Unter der Annahme einer konstanten

Schwerebeschleunigung lässt dieses auf einen initialen Nickwinkel von ca. 15° gegenüber der Fahr-

zeuglängsachse schließen (siehe auch [Wen07]). Ebenso wird auch die Fahrzeugbewegung in Längs-
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Abbildung 8.3: Ausgangssignale und Spektrum der Beschleunigungssensoren der MTi-Sensoreinheit

richtung von den Sensorelementen der x- und z-Achse erfasst. Durch eine manuelle Kalibrierung wird

die initiale Lage des Sensors jedoch nachfolgend kompensiert, so dass sich diese in den anschließen-

den Filterschritten nicht bemerkbar macht. Während zwischen der Phase P̆O und der Standphase mit

laufendem Motor P̆M kaum ein Unterschied bei den Beschleunigungssensorsignalen zu erkennen ist,
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wird in der Bewegungsphase P̆B die Trajektorie sehr deutlich von vibrationsinduziertem Rauschen

überlagert. Ein Rückschluss auf die vorhandene Trajektoriendynamik scheint nur schwer möglich.

In Kap. 8.2 wurde gezeigt, dass die Leistungsdichte für höhere Frequenzen annähernd konstant

ist, wie es für eine ruhende Sensoreinheit zu erwarten ist. Die Vibrationen, die allerdings in der Phase

einer Bewegung (z. B. aufgrund der Straßenverhältnisse oder an einer Ampel durch den Motor) zu-

sätzlich in den Sensordaten auftreten, sind im Spektrogramm in Abb. 8.3 (b) zu erkennen. Während

der Fahrtdauer von ca. 40min wurden verschiedene Straßenbeläge wie Pflaster und Teer befahren.

In der Ruhephase P̆O sind, außer einem Ausrichtungsfehler, keine störenden Rauschanteile zu beob-

achten. In der Phase P̆M , in der lediglich der Motor läuft, werden die Frequenzen 13Hz, 28Hz und

45Hz beeinflusst. Dies weist auf Eigenfrequenzen hin, die zu Vibrationen der Karosserie durch den

Motor führen und damit direkt auf die IME wirken. Auch bei 10Hz ist eine erhöhte Leistungsdichte

zu erkennen. In der Bewegungsphase P̆B fällt auf, dass neben der Trajektoriendynamik zusätzliche

Vibrationen hervorgerufen werden, die sich über den gesamten Frequenzbereich erstrecken.

Die Abb. 8.4 zeigt ergänzend die Periodogramme der Beschleunigungssensortriade für die in

Abb. 8.3 (a) dargestellte Phase P̆B . Es wird deutlich, dass die x- und z-Komponenten bei ca. 40Hz

eine etwas höhere Leistungsdichte aufweisen als die y-Signalkomponente. Das Rauschen lässt sich

also nicht mehr über einen weißen, mittelwertfreien Rauschprozess beschreiben. Im vorliegenden

Fall unterscheidet sich der Verlauf des LDS der y-Komponente etwas von den Verläufen des LDS

der anderen Komponenten. Dies ist darauf zurückzuführen, dass sich z. B. durch die Fliehkräfte die

Fahrdynamik bei Kurvenfahrten hauptsächlich auf die y-Achse der Sensortriade auswirkt, während

sich lineare Beschleunigungsvorgänge und stärkere Vibrationen eher in der x- und z-Komponente

bemerkbar machen.
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Abbildung 8.4: Periodogramme der Beschleunigungssensortriade der MTi-Sensoreinheit

Diese Ergebnisse zeigen, dass der gesamte Spektralbereich beeinflusst wird. Durch einen

GAUSS-MARKOV-Prozess (GMP) lassen sich diese Effekte bereits sehr gut approximieren. Sehr star-

ke hochfrequente Störungen (z. B. durch Schlaglöcher verursacht) werden durch einen GMP zwar

nicht vollständig berücksichtigt, allerdings treten diese i. Allg. auch nur sporadisch auf und könnten

durch eine entsprechende Tiefpassfilterung eliminiert werden (in [Neu05] wird erläutert, dass sich

die Trajektoriendynamik bei normaler Fahrweise hauptsächlich in einem Frequenzbereich unterhalb

von ca. 5Hz – 10Hz befindet). Allerdings muss man bei einer Tiefpassfilterung bedenken, dass zu-
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sätzliche Korrelationen auftreten können. Durch diese verändern sich die statistischen Eigenschaften

des zeitlich korrelierten Rauschprozesses, was in Kombination mit einem Filteransatz wie hier in

geeigneter Form berücksichtigt werden sollte.

Auf eine Tiefpassfilterung wird aber in Verbindung mit einem INS/GPS-Navigationsfilter auch

aus anderen Gründen häufig verzichtet. In [Tab08] wird erläutert, dass vor allem die niederfrequen-

ten Störungen im Rahmen der Strapdown-Berechnungen für die Positions- und Geschwindigkeitsab-

weichungen verantwortlich sind, da diese die Trajektorie überlagern. Hochfrequente, mittelwertfreie

Störungen treten zwar als kurzfristige Störungen in der Navigationslösung auf, mitteln sich durch das

Aufintegrieren jedoch langfristig heraus. Für die Langzeitstabilität der Navigationslösung spielen sie

daher eine untergeordnete Rolle. Zudem beruht die Herleitung der Strapdown-Gleichungen (vor al-

lem die Lageberechnung) auf Approximationen, die nur gültig sind, wenn die IME-Informationsrate

hoch ist [Wen07]. Drehungen sind nicht kommutativ (siehe Kap. 4). Liegen tiefpassgefilterte und da-

mit geglättete Drehraten ω̃
b
ib,k vor, so könnten daraus andere Lageberechnungen resultieren als es bei

nicht tiefpassgefilterten Daten der Fall ist. Die daraus ggf. resultierenden Fehler können sich binnen

kurzer Zeit akkumulieren und letztendlich die gesamte Navigationslösung negativ beeinflussen.

In diesem Zusammenhang muss aber auch die Navigationsfilterstruktur selbst nochmals betrach-

tet werden. Bei einem schwach gekoppelten INS/GPS-System ist die Eliminierung kurzzeitiger Stö-

rungen im Rahmen der Fehlerfilterung generell nur in begrenztem Umfang möglich [SBS99]. Wie

in Kap. 5 erläutert wurde, liegt am Messeingang des eingesetzten LKF effektiv nur dann ein Signal

an, wenn entsprechende Stützgrößen vorhanden sind (es handelt sich dabei also um ein unterabge-

tastetes Signal). Die Korrektur der Größen des äußeren Systemzustandes erfolgt daher ebenso nur

mit einer entsprechenden Datenrate. Die Bandbreite der Störungen, die vom Navigationsfilter direkt

beobachtbar und korrigierbar sind, hängt ohne Tiefpassfilterung somit von den Stützsensoren ab, die

eingesetzt werden. Es handelt sich dabei also größtenteils um Störungen, die langfristig und in dem

Frequenzbereich auftreten, in dem auch die eigentliche Trajektoriendynamik (die Bewegungsinfor-

mation) liegt. Dies können aber auch Ungenauigkeiten sein, die auf Approximationen bei der Be-

wegungsmodellierung zurückzuführen sind, Skalierungsfehler, die sich langfristig einstellen würden

(z. B. durch Temperaturänderungen) oder hochfrequente Anregungen, die durch Aliaseffekte als vi-

brationsinduziertes Rauschen im Frequenzbereich der Trajektoriendynamik wiederzufinden sind. Die

Navigationslösung am Strapdown-Ausgang kann zwar nicht abtastwertweise korrigiert werden, diese

Unsicherheiten können jedoch durch eine zeitvariante Systemrauschkovarianzmatrix und einem Para-

meterschätzverfahren wie dem SEM berücksichtigt werden. Dies ist sinnvoll, da sich Fehler zwischen

zwei Messwertaktualisierungen eines LKF trotzdem akkumulieren können. Dies wird im folgenden

Kapitel zusammen mit den Untersuchungsergebnissen ausführlich erläutert.

Zusammenfassung

Mit Hilfe der ALLAN-Varianz war es möglich, die MTi-Sensoreinheit auf Basis von Ruhe- und Feld-

messungen, bei denen die IME einer Trajektoriendynamik unterlag, zu untersuchen und die Rausch-

prozessparameter zu ermitteln, die für das Systemmodell des Fehlerfilters benötigt werden. Es wurden

ebenfalls die Varianzen des biastreibenden Rauschens bestimmt. Des Weiteren wurde erläutert, dass

sich bei dem hier betrachteten Szenario die fahrdynamischen Signalanteile in einem niedrigen Fre-

quenzbereich befinden, während sich die vibrationsinduzierten und inhärenten Störungen über den

gesamten Frequenzbereich des Sensorsignals erstrecken. In diesem Zusammenhang wurde jedoch

ebenso erörtert, dass nicht sämtliche Fehler im Rahmen eines schwach gekoppelten Navigations-

systems gefiltert und korrigiert werden können.



Kapitel 9

Untersuchungsergebnisse

Die nachfolgenden Abschnitte beinhalten Untersuchungsergebnisse, die sich auf das in Kap. 5 vor-

gestellte inertiale Navigationsfilter und das in Kap. 6 behandelte barometrische Teilsystem beziehen.

Auf eine sequenzielle Parameterschätzung mittels KM, MD oder SEM wird dabei zunächst verzich-

tet. Zum einen wird auf künstlich generierte inertiale Sensor- und Stützdaten zurückgegriffen, zum

anderen werden auch Daten eingesetzt, die im Rahmen von Messfahrten aufgenommen wurden. Im

zweiten Teil dieses Kapitels werden dann die Parameterschätzverfahren miteinander verglichen, wo-

bei die vollständige Filterstruktur einschließlich der sequenziellen Parameterschätzung zum Einsatz

kommt.

9.1 Kombination des barometrischen Teilsystems und des Fehlerfilters

In diesem Abschnitt sollen die Auswertungen zur Gesamtfilterstruktur inklusive des barometrischen

Teilsystems vorgestellt werden, wie es in Abb. 9.1 dargestellt ist. Ein Verfahren zur sequenziellen

zIME

x̂FF

ĥBM

x̂GPS

x̂SD

x̂SD

xK

Barometrisches
Teilsystem

Teilsystem
Satellitengest.

Inertiale
Mess. (IME) Fehlerfilter

(FF)

Strapdown-
Algorithmus

GPS

BM±K

SD-BM

SD+BM

Abbildung 9.1: Filterstruktur ohne Magnetsensormessungen zur Untersuchung des barometrischen

Teilsystems und des inertialen Fehlerfilters unter der Annahme einer zeitinvarianten

Systemrauschkovarianzmatrix (verschiedene, farblich markierte Teilkonfigurationen

sind eingegrenzt)

Parameterschätzung wird hier nicht eingesetzt. Stattdessen werden konstante Rauschvarianzen ange-

nommen, die den entsprechenden Datenblättern der IME entnommen werden konnten [B.V09a]. Von

einer Zeitvarianz der Kovarianzmatrix, die das zeitlich korrelierte Rauschen im Systemmodell des

117
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FF treibt, wird daher nicht ausgegangen. Die verschiedenen Teilkonfigurationen, die hier untersucht

werden sollen, sind in vorstehender Abbildung farblich eingegrenzt.

9.1.1 Simulationsergebnisse

Die folgenden Ergebnisse beziehen sich vorerst ausschließlich auf künstliche Daten, die anhand des

in Anhang F vorgestellten Systems generiert wurden. Hierbei wurden die in Tab. F.1 angegebenen

Parameter verwendet. Es wurden verschiedene Trajektorien mit unterschiedlicher Bewegungsdyna-

mik, aber gleichen Rauschparametern erstellt. Da es sich um künstliche Daten handelt, musste bei

den GPS-Messungen keine verzögerte Verfügbarkeit nach Kap. 5.3.2 berücksichtigt werden.

9.1.1.1 Vergleich der Höhenschätzungen

In Abb. 9.2 (a) ist der Betrag der Höhenfehler für einen typischen Trajektorienausschnitt der Länge

5min dargestellt, der aus der Verwendung der verschiedenen Teilkomponenten bzw. deren Kombina-

tion resultiert. Der Betrag ist hier durch

ǫKonfig;h,k = |ĥk − hideal,k| (9.1)

definiert, wobei ĥk die auszuwertende Schätzgröße darstellt. Nach Abb. 9.1 stellt die Abkürzung

ǫGPS;h (Konfiguration GPS) den absoluten (betragsmäßigen) Höhenfehler der GPS-Höhenkomponente

dar, während ǫSD-BM;h die betragsmäßige Abweichung der Ausgangshöhe ĥSD des Strapdown-Al-

gorithmus ist, wenn das inertiale Fehlerfilter (FF) nicht durch eine barometrische Höhenmessung ge-

stützt wird, sondern ausschließlich durch die Schätzungen im Vektor x̂GPS. Dieses schließt auch die

GPS-Höhe ĥGPS ein. Die Tab. 9.1 veranschaulicht, welche Teilkomponenten bei den verschiedenen

Konfigurationen verwendet wurden. Für ǫBM-K;h und ǫBM+K;h wurde lediglich das barometrische Teil-

Systemkomponenten Auszu-

Konfiguration Satellitengestützes Barometrisches Strapdown-Berechnung wertende

Teilsystem Teilsystem mit Fehlerfilterung Größe

GPS × ĥGPS

BM-K × h̃BM

BM+K × ĥBM

SD-BM × × ĥSD

SD+BM × × × ĥSD

Tabelle 9.1: Testkonfigurationen (Erläuterung: GPS (Satellitenbasierte Stützung), BM (Barometri-

sche Stützung), SD (Strapdown), K (Korrektur))

system betrachtet, wobei entweder die nicht korrigierte Höhe h̃BM, die auf Basis der barometrischen

Höhenformel (6.1) berechnet wurde, oder die biasfreie und um den Skalierungsfehler korrigierte Höhe

ĥBM ausgewertet wurde. Schließlich wurde zur Bestimmung von ǫSD+BM;h das gesamte Navigations-

filtersystem inklusive des barometrischen Teilsystems eingesetzt, das zusammen mit den horizontalen

GPS-Positions- sowie den GPS-Geschwindigkeitskomponenten das FF stützt. Auch hier ist die aus-

gewertete Größe ĥSD, die ein Element des Ausgangsvektors x̂SD ist, der wiederum nach Abb. 9.1

durch die Rückkopplung des Fehlervektors x̂FF auf korrigierten inertialen Messungen beruht.

In Abb. 9.2 (a) ist zu erkennen, dass die betragsmäßige Abweichung ǫSD-BM;h bei der Konfigu-

ration SD-BM im Vergleich zum Fehler ǫGPS;h (ĥGPS ist die Höhe, die in dem satellitengestützten
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Teilsystem berechnet wird), trotz der ausschließlichen Stützung anhand von GPS-Daten geringer ist.

Dies kann damit begründet werden, dass die eigentliche Höheninformation durch die IME geliefert

wird, die eine höhere Datenrate erlaubt. Des Weiteren besteht durch die SCHULER-Kompensation

und die Lagekopplung ein enger Zusammenhang zwischen den horizontalen Positionskomponenten

und der Höhe ĥSD, die vom INS/GPS-Navigationssystem berechnet wird. Dies führt zu einer besseren

Kompensation der Höhenfehler.

In der Abbildung zeigt sich außerdem die vergleichsweise hohe Streuung der simulierten GPS-

Höhe ĥGPS, die wiederum zu starken Schwankungen der Werte von ĥSD und damit der hohen be-

tragsmäßigen Abweichung ǫSD-BM;h führt. Die nach Gl. (6.1) berechnete Höhe h̃BM weist bereits zu

Beginn des Datensignals (hier nicht dargestellt) ein deutliches zeitvariantes Bias auf. Dieser Effekt

ist auf die Änderung der Referenzwerte T0,k und P0,k bei der Datengenerierung sowie auf das über-

lagerte Messrauschen nP,k in Gl. (6.5) zurückzuführen. Diese z. T. ausgeprägten Abweichungen wer-

den durch die Schätzung von sh und bh und die anschließende Korrektur in der Ausgangshöhe ĥBM

jedoch deutlich verringert, wie ǫBM+K;h zeigt. Da im Korrekturblock in Abb. 6.1 die Bias- und Ska-

lierungsfaktorkorrektur durchgeführt wird, verbleibt nur noch ein Restfehler in der Größenordnung

der Standardabweichung σh = σP · 0,1m/Pa = 1m, der jedoch im Verhältnis zur Höhe als gering zu

bewerten ist, wie die nachfolgenden Ergebnisse zeigen. Die Streuung ist in der Abb. 9.2 (a) deutlich

zu erkennen. Abschließend zeigt ǫSD+BM;h, dass die Stützung des FF durch die korrigierte Höhe ĥBM

in Kombination mit den übrigen GPS-Daten das beste Resultat liefert. Der mittlere betragsmäßige

Höhenfehler von ĥSD liegt weit unterhalb von 1m.

Die Abb. 9.2 (b) führt zusätzlich die kumulative (empirische) Verteilung der Höhenfehler für die

oben beschriebenen Varianten auf.11 Für die Verteilungs-/Summenhäufigkeitsfunktion gilt hierbei:

P (ǫh < ǫ̃h) =
|M(ǫh)|
K

mit M(ǫh) :=
{
ǫh,k
∣∣ ǫh,k < ǫ̃h, k ∈ {1, . . . ,K}

}
, (9.2)

wobei K die Anzahl der Messwerte ist. Diese Verteilung gibt demnach an, wieviel Prozent der vor-

liegenden Stichprobe unterhalb einer vorgegebenen Fehlerschranke ǫ̃h liegen. Je „weiter links“ eine

11Die kumulative Verteilungsfunktion entspricht hier einer durch Stichproben gewonnenen empirischen Verteilungsfunk-

tion, die auch als (relative) Summenhäufigkeitsverteilungsfunktion bezeichnet wird [PKB05].
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Summenhäufigkeitsfunktion in der Abbildung liegt, desto geringer ist der Positionsfehler und umso

besser damit die vertikale Positionsschätzung. Hierbei fällt zunächst auf, dass lediglich ca. 20% der

nicht korrigierten, auf der barometrischen Höhenformel (6.1) beruhenden Höhe h̃BM eine geringere

Abweichung als 10m aufweisen, wie die grüne Kurve belegt. Des Weiteren wird der Unterschied

zwischen den Verfahren deutlich, bei denen der Ausgang ĥSD des Strapdown-Algorithmus entschei-

dend ist, die jedoch auf unterschiedlichen Stützgrößen beruhen: Bei ǫSD-BM;h weisen ca. 80% der

Schätzungen einen um etwa 3m geringeren betragsmäßigen Höhenfehler auf als es bei ǫGPS;h der

Fall ist. Eine noch deutlichere Verbesserung ist jedoch zu beobachten, wenn die GPS-Höhe ĥGPS im

Vektor zFF durch ĥBM ersetzt wird. Der Betrag des Höhenfehlers reduziert sich mit Betrachtung von

ǫSD+BM;h dabei im Wesentlichen auf Werte unter 2m, was aus der vorangegangenen Korrektur von

h̃BM resultiert.

In Tab. 9.2 sind als weitere Referenz die mittleren betragsmäßigen Höhenfehler µǫh , die Mediane

der betragsmäßigen Höhenfehler ξǫh sowie die Standardabweichungen σǫh der Höhenschätzfehler für

die verschiedenen Testvarianten angegeben. Dabei muss zwischen den Verfahren unterschieden wer-

den, bei denen im FF berücksichtigt wird, dass es sich um zeitlich korrelierte GPS-Signale handelt,

und solchen, bei denen diese Korrelationen im Filter nicht berücksichtigt werden. Im ersten Fall gilt

gemäß Gl. (5.28)

wFF;k = DFF;w wFF;k−1 + ΓFF;w νFF;k, (9.3)

wobei νFF;k ∼ N (νFF;k;09×1 ,RFF). Für den zweiten Fall wurde DFF;w = 09×9 gewählt, wodurch

von einem mittelwertfreien, weißen GAUSS-verteilten Messrauschen wFF;k ausgegangen wird. Die

Auswirkungen dieser (falschen) Annahme bei einem zugrunde liegenden zeitlich korrelierten Rausch-

prozess sollen im Folgenden am Beispiel der Konfiguration SD-BM analysiert werden.

Der mittlere betragsmäßige Schätzfehler µǫ† , der Median des betragsmäßigen Schätzfehlers ξǫ†
und die Standardabweichung des Schätzfehlers σǫ† sind hier gemäß [HU05] für die einzelnen Po-

sitions- und Geschwindigkeitskomponenten mit † ∈ {p, n ; p, e ; h ; v, e ; v, n ; v, d} wie folgt

definiert:

µǫ†
=

1

K

K∑

k=1

ǫ†,k =
1

K

K∑

k=1

∣∣∣†̂k − †ideal;k

∣∣∣ (9.4)

ξǫ†
= inf

{
∀ǫ†,k ∈ R : P (ǫ†) ≥

1

2
, k ∈ {1, . . . ,K}

}
(9.5)

σǫ†
=

√√√√ 1

K − 1

K∑

k=1

((
†̂k − †ideal;k

)
−
(

1

K

K∑

k=1

†̂k − †ideal;k

))2

. (9.6)

Im Rahmen dieser Arbeit wird neben dem mittleren betragsmäßigen Schätzfehler auch die Wurzel des

mittleren quadratischen Schätzfehlers (engl. Root Mean Square Error (RMSE)) als Fehlermaß ver-

wendet. Diese entspricht der Standardabweichung des Schätzfehlers, wenn der Mittelwert in Gl. (9.6)

Null ist. Bei der Korrektur der auf der barometrischen Höhenformel basierenden Höhenschätzung

durch die topografischen Referenzhöhen sei an dieser Stelle noch darauf hingewiesen, dass ein Da-

tenbankeintrag nicht nur dann verwendet wird, wenn der horizontale Abstand zwischen der aktuell

geschätzten Position p̂n
eb,k nach der Korrektur und einem Datenbankeintrag minimal ist, sondern im-

mer dann, wenn die euklidische Distanz geringer als dmax = 5m ist. Dies kann aufgrund der Datenrate

von 100 1/s, mit der die korrigierten Daten der IME zur Verfügung stehen und auf dessen Basis die



9.1. Kombination des barometrischen Teilsystems und des Fehlerfilters 121

Differenzberechnung zu den Datenbankeinträgen durchgeführt wird, mehrmals hintereinander auf-

treten. Da man jedoch davon ausgehen kann, dass in dem Zeitraum, in dem dmin;k < dmax erfüllt ist

(siehe Kap. 6.2), sich die Höhe nur unwesentlich ändert, ist dieser Aspekt unerheblich.

Berücksichtigung der Keine Berücksichtigung der

zeitlichen Korrelationen in den zeitlichen Korrelationen in den

GPS-Daten im Messmodell des FF GPS-Daten im Messmodell des FF

ĥGPS ĥSD-BM h̃BM ĥBM ĥSD+BM ĥSD-BM

µǫh
[m] 14,154 12,409 10,753 0,776 0,378 14,165

ξǫh
[m] 11,931 10,604 8,755 0,647 0,269 11,926

σǫh
[m] 17,544 15,468 0,954 0,92 0,386 17,545

Tabelle 9.2: Mittlere betragsmäßige Höhenschätzfehler, Mediane der betragsmäßigen Höhenschätz-

fehler und Standardabweichungen der Höhenschätzfehler für künstliche Daten mit und

ohne Berücksichtigung der zeitlichen Korrelationen in den GPS-Daten im Messmodell

des Fehlerfilters

Betrachtet man zunächst die Ergebnisse auf der linken Seite, bei denen die zeitlichen Korrelatio-

nen im FF berücksichtigt wurden, so fällt auf, dass das barometrische Teilsystem unter den gegebenen

Voraussetzungen gegenüber den nicht korrigierten Werten für eine höhere mittlere Genauigkeit von

ca. 10m verantwortlich ist. Mit besserer Stützung des FF steigt auch die Genauigkeit der Höhenschät-

zung im Rahmen der Strapdown-Berechnung. Der Median, der den mittleren Wert einer geordneten

Stichprobe angibt und damit robuster gegenüber Ausreißern ist, liefert geringere Werte. Ein Vergleich

der Werte der individuellen Testvarianten zeigt jedoch die gleichen Abstände zueinander auf wie bei

der mittleren betragsmäßigen Abweichung. Die Standardabweichung des Schätzfehlers sinkt eben-

falls mit besserer Stützung und liegt, mit Hinzunahme des barometrischen Teilsystems, bei 0,386m.

Die rechte Spalte der Tab. 9.2 zeigt am Beispiel der Konfiguration SD-BM die Auswirkungen

auf die Höhenschätzung des Gesamtsystems, für den Fall, dass die zeitlichen Korrelationen in den

GPS-Daten bei der Nachfilterung im FF nicht berücksichtigt werden. Durch die fehlerhafte Stützung

führt die gesamte Navigationsfilterung ohne barometrisches Teilsystem, im Vergleich zu ĥGPS, zu

keiner höheren Genauigkeit in der Positionsschätzung. Die Werte entsprechen hier im Wesentlichen

denen, die auf Basis des satellitengestützten Teilsystems allein berechnet werden konnten. Die Mess-

rauschkovarianzmatrix wird hier zu klein angenommen, wodurch die KALMAN-Gewichtungsmatrix

ebenfalls falsch berechnet wird.

9.1.1.2 Gesamtnavigationslösung

Als nächstes sollen die Folgen der Höhenstützung auf die gesamte Navigationslösung untersucht wer-

den. Neben den mittleren betragsmäßigen Positionsabweichungen und den Standardabweichungen

der zugehörigen Schätzfehler sind in Tab. 9.3 die entsprechenden Werte für die einzelnen Geschwin-

digkeitskomponenten aufgeführt. Diese beruhen auf Auswertungen der unterschiedlichen Trajektori-

en. Die Gesamtfehler sind hervorgehoben, wobei sich der Betrag des Fehlers zu einem bestimmten

Zeitpunkt am Beispiel des Strapdown-Ausgangs zu

ǫ†,k =

√∣∣∣†̂nSD;eb,n,k − †nSD;eb,n,k

∣∣∣
2
+
∣∣∣†̂nSD;eb,e,k − †nSD;eb,e,k

∣∣∣
2
+
∣∣∣†̂nSD;eb,d,k − †nSD;eb,d,k

∣∣∣
2

(9.7)
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mit † ∈ {p, v} berechnet. Dabei stellen µǫp und µǫv den mittleren betragsmäßigen Gesamtpositions-

und den Gesamtgeschwindigkeitsfehler dar (Berechnung mittels Gl. (9.4), (9.7)). Zusätzlich sind die

Mediane der betragsmäßigen Positions- und Geschwindigkeitsschätzfehler ξǫp und ξǫv aufgeführt.

Für die Auswertung der Standardabweichungen σǫp und σǫv wurde statt (. . . )2 in Gl. (9.6) die eukli-

dische Norm des jeweiligen Vektors berechnet. Nach der Tabelle ist eine verbesserte Positionsschät-

Berücksichtigung der Keine Berücksichtigung der zeit-

zeitlichen Korrelationen in den lichen Korrelationen in den GPS-

GPS-Daten im Messmodell des FF Daten im Messmodell des FF

GPS SD-BM SD+BM SD-BM

M
it

tl
er

e
be

tr
ag

sm
äß

ig
e

S
ch

ät
zf

eh
le

r

µǫp [m] 20,532 17,868 10,965 20,551

µǫp,n [m] 7,86 6,846 6,841 7,862

µǫp,e [m] 7,987 6,845 6,801 8,011

µǫh
[m] 14,154 12,409 0,378 14,165

µǫv [m/s] 1,094 0,481 0,46 1,733

µǫv,n [m/s] 0,399 0,3 0,298 0,506

µǫv,e [m/s] 0,389 0,29 0,285 0,489

µǫv,d
[m/s] 0,799 0,092 0,018 1,429

M
e-

di
an

e ξǫp [m] 19,074 16,252 10,368 19,112

ξǫv [m/s] 1,020 0,452 0,429 1,547

S
ta

nd
ar

da
bw

ei
ch

un
ge

n

de
r

S
ch

ät
zf

eh
le

r

σǫp [m] 22,477 19,651 12,147 22,488

σǫp,n [m] 9,963 8,624 8,612 9,959

σǫp,e [m] 9,91 8,557 8,519 9,936

σǫh
[m] 17,544 15,468 0,386 17,545

σǫv [m/s] 1,212 0,534 0,515 1,582

σǫv,n [m/s] 0,502 0,373 0,37 0,643

σǫv,e [m/s] 0,485 0,364 0,358 0,623

σǫv,d
[m/s] 0,991 0,113 0,023 1,305

Tabelle 9.3: Mittlere betragsmäßige Positions- und Geschwindigkeitsschätzfehler, Mediane der be-

tragsmäßigen Positions- und Geschwindigkeitsschätzfehler und Standardabweichungen

der Positions- und Geschwindigkeitsschätzfehler für künstliche Daten mit und ohne Be-

rücksichtigung der zeitlichen Korrelationen bei GPS-Daten im Messmodell des Fehler-

filters

zung nicht ausschließlich in der vertikalen Komponente zu beobachten, sondern geringfügig auch

in den horizontalen Komponenten, wenn man beispielsweise die Werte für µǫp,n = 6,846m (SD-

BM) und µǫp,n = 6,841m (SD+BM) miteinander vergleicht. Auch die entsprechenden Medianwerte

und Standardabweichungen der Schätzfehler belegen dies. Gegenüber der GPS-Position ist die Schät-

zung der horizontalen Positionskomponenten am Strapdown-Ausgang um ca. 1m genauer. Insgesamt

führt dies bei der Konfiguration SD-BM zu einer Verbesserung von fast 3m. Die vertikale Kompo-

nente ĥBM ist gegenüber den GPS-Messungen allerdings in erster Linie für den um 10m geringeren

mittleren betragsmäßigen Schätzfehler bei der Konfiguration SD+BM verantwortlich. Bei den Me-

dianwerten ist dies ähnlich. Die Schwerebeschleunigung spielt hier ebenfalls eine Rolle. Sie macht
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sich zum einen bei der Berechnung der Transportrate nach Gl. (4.37) und der Geschwindigkeit vn
SD;eb

(äußerer Systemzustand) bemerkbar. Die Transportrate beeinflusst wiederum die Schätzung der Lage

und damit auch die nachfolgend berechneten absoluten Größen (Geschwindigkeit und Position). Zum

anderen sei aber auch auf Gl. (5.15) verwiesen. Diese beweist die Abhängigkeit aller Positionsfehler-

komponenten des inneren Systemzustandes von der Höhenschätzung ĥSD (äußerer Systemzustand).

Im Hinblick auf den SCHULER-Effekt, der in [Wen07] beschrieben wird, zeigt zudem Gl. (4.40), dass

durch das Kreuzprodukt ein enger Zusammenhang zwischen der Beschleunigung des Fahrzeugs in

z-Richtung und den Geschwindigkeitskomponenten in vn
eb besteht. Dies wirkt sich durch Integration

der Geschwindigkeiten auf sämtliche nachfolgende Schätzungen aus.

Werden die zeitlichen Korrelationen nicht im Filter berücksichtigt, ist bei ausschließlicher Stüt-

zung des FF durch einen GPS-Empfänger (hier wieder am Beispiel der Konfiguration SD-BM) kaum

ein Unterschied zu den GPS-Daten in der linken Spalte zu beobachten. Das Messrauschmodell, das

im KALMAN-Filter verwendet wird, stimmt nicht mit dem wahren Rauschprozess überein. Es wird

zuviel Gewicht auf die künstlich erzeugten GPS-Beobachtungen gelegt. Die Singulärwerte der KAL-

MAN-Gewichtungsmatrix Kk werden größer, wodurch sie einen größeren Einfluss auf den Aktuali-

sierungsschritt nimmt. Auch die Lageschätzung spielt eine Rolle. Sie beruht, ohne die Verwendung

der Magnetfeldsensormessungen, bei Betrachtung der Gleichungen in Abschnitt 5.2.1 vorrangig auf

den Geschwindigkeitsmessungen. Eine fehlerhafte Korrektur der Strapdown-Größen ist die Folge.

9.1.2 Ergebnisse unter Verwendung von Felddaten

Nachdem die einzelnen Komponenten und die gesamte Filterstruktur anhand von künstlich erstellten

Inertial- und Satellitendaten untersucht wurden, sollen in diesem Abschnitt Feldmessungen als Da-

tenbasis dienen. In der Karte in Abb. 9.3 ist die vollständige Trajektorie mit Anfangs- und Endpunkt

einer Messdatenaufnahme eingezeichnet. Neben einigen Ausfällen des GPS-Signals sind diese Daten

Abbildung 9.3: Messfahrt in der Innenstadt von Paderborn (Daten von OpenStreetMap, veröffentlicht

unter Lizenz CC–BY–SA 2.0)

dadurch gekennzeichnet, dass während der Messfahrt auch verschiedene Straßenbeläge befahren wur-

den. Außerdem weist die Teststrecke ausgeprägte Höhenunterschiede und Kurvenfahrten auf. Sie ent-

hält durch Wartezeiten an Ampeln ebenfalls Standphasen P̆M . Die relative Lage des GPS-Empfängers

zur MTi-Sensoreinheit betrug lbGPS = (0m, 0m, 0,7m)T . Zur Aufzeichnung der Daten wurde ein ei-
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gens entwickeltes Softwarewerkzeug verwendet, das die Daten der unterschiedlichen Sensoren auf

wenige Millisekunden synchron zueinander aufzeichnet. Dies war nötig, um die zeitlichen Abwei-

chungen der Sensorsignale zueinander und die Komplexität des nachgeschalteten Filters so gering

wie möglich zu halten. Auf eine aufwändige, hardwarebasierte Lösung oder eine komplexe Multira-

tenfilterstruktur wurde dabei verzichtet. Die Daten der Magnetfeldsensortriade wurden bei den Unter-

suchungen in diesem Abschnitt nicht verwendet. Die Höhen sowie die horizontalen Referenzpunkte

zum Aufbau der topografischen Datenbank wurden der DGK entnommen [Tim]. Die Aufzeichnung

der IME-Daten wurde mit 100 1/s vorgenommen, die des barometrischen Sensors mit 10 1/s und die

GPS-Daten mit 4 1/s. Die initialen Rauschparameter entsprachen dabei denen in Tab. F.1. Für die Kor-

relationszeiten der GPS-Empfängersignale wurde tGPS;c,v = 1 s bzw. tGPS;c,p = 10 s angenommen,

während für die der IME tIME;c = 2,8 · 10−2 s eingesetzt wurde.

9.1.2.1 Höhenprofil

Die Abb. 9.4 zeigt einen Ausschnitt aus dem Höhenprofil der Teststrecke. Es ist zu beachten, dass hier
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Abbildung 9.4: Höhenschätzung des kombinierten Navigationssystems SD+BM im Vergleich zu den

Schätzungen der einzelnen Teilsysteme

die Höhe über dem Ellipsoid abgebildet ist, wobei der Unterschied zwischen dieser und Normalnull

(NN) konstant 45,5m beträgt. Die schwarzen Punkte markieren die Stützstellen, an denen topo-

grafische Referenzpunkte vorliegen und dmin;k < 5m ist. Da ein ideales Höhenprofil für diese

Daten nicht vorliegt, können allerdings die topografischen Stützstellen als Vergleichsbasis dienen,

um die einzelnen Schätzverfahren bewerten zu können. Es ist zu erkennen, dass h̃BM von ĥBM ab-

weicht. Dies ist durch die geänderten Referenzparameter T0 und P0 zu erklären, die sich durch das

barometrische Fehlerfilter (BF) einstellen. Das barometrische Teilsystem ist demnach in der Lage,

die daraus resultierenden Fehler ausreichend zu kompensieren. Beide Schätzungen weisen jedoch

vergleichsweise hohe Streuungen auf (aus Gründen der Übersichtlichkeit wurde für h̃BM und ĥBM

eine Darstellungsform mit nicht verbundenen Datenpunkten gewählt. Dies hängt mit der Abtastrate

und den relativ hohen Standardabweichungen zusammen).

Es ist außerdem ein signifikanter Unterschied zwischen den Konfigurationen zu erkennen, die

sich auf die barometrischen Höheninformationen stützen und denen, die ausschließlich GPS-Daten
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verwenden. Da die GPS-Höhenschätzung eine hohe Fehlervarianz aufweist, ist auch die Stützung bei

der Konfiguration SD-BM von vergleichsweise geringem Nutzen. Dennoch liegt ĥSD-BM im Mittel

1m bis 2m unterhalb von ĥGPS.

Der Unterschied zum Gesamtsystem, das mit korrigierten barometrischen Höhen gestützt wird

(SD+BM), liegt hier bei bis zu 10m. Ohne Beweis sei der Vollständigkeit halber erwähnt, dass die

Schätzungen von bh hier zwischen ±2m variieren. Diese Schwankungen sind auf die Referenzhö-

hen in der dafür angelegten Datenbank zurückzuführen, die aufgrund von dmax = 5m und den nicht

vollständig unterdrückten Synchronisationsfehlern bei den Sensorsignalen mehrmals hintereinander

zur Stützung eingesetzt wurden. Die Höhenwerte ĥSD+BM weisen zudem geringere Schwankungen

auf als es z. B. bei der Konfiguration SD-BM der Fall ist. Die Differenz zu ĥSD-BM liegt zu Beginn

des Ausschnitts bei bis zu 14m. Orientiert man sich an den topografischen Stützstellen, so weist zu-

sammenfassend ĥSD+BM die besten Höhenschätzwerte auf. Auch in den Zeiträumen, in denen keine

Stützstellen vorhanden sind, zeigt das Verfahren eine relativ geringe Dynamik in den Schätzwerten.

Schnelle Änderungen in den Schätzwerten in einem vergleichweise kurzen Zeitraum (wie es bei-

spielsweise bei ĥSD-BM der Fall ist) erscheinen unrealistisch.

9.1.2.2 GPS-Signalabbrüche

Ein Hauptziel beim Einsatz einer IME ist die Überbrückung möglicher Ausfälle des GPS-Satelliten-

signals über kürzere oder längere Perioden. Es soll daher im Folgenden untersucht werden, ob sich

die hier vorgestellte Kombination aus Sensoren und Filterverfahren eignet, um einen Signalausfall

zu kompensieren. Die durch das barometrische Teilsystem verfügbare Höheninformation ist dabei

vom Signalausfall unbeeinflusst und steht weiterhin mit einer Rate von 4 1/s zur Verfügung (eine

Messwertaktualisierung im FF erfolgt nach Kap. 5.3.1 mit der GPS-Datenrate). In der entsprechenden

Messgl. (5.27) reduziert sich damit der Messvektor auf die Höhe ĥBM.

Ein handelsüblicher GPS-Empfänger führt eine interne Filterung durch, um trotz Signalausfäl-

len die absoluten Positionen und Geschwindigkeiten prädizieren zu können. Dies kann bei längeren

Ausfällen dennoch zu starken Abweichungen von der idealen Trajektorie führen, da hier lediglich

ein bestimmtes, vordefiniertes Bewegungsmodell berücksichtigt wird und z. B. Richtungsänderungen

vom internen Filter nicht „bemerkt“ werden. Im Rahmen dieser Untersuchungen wurde ein GPS-

Signalausfall durch das Weglassen der entsprechenden Stützgrößen in zFF;p und zFF;v simuliert. Es

traten auch tatsächliche Signalausfälle während der Messfahrt auf, diese waren allerdings lediglich

von einer Dauer von maximal 3 s.

Die Abb. 9.5 (a) – (d) zeigen für einen Trajektorienausschnitt die Auswirkungen des Ausfalls

unter Verwendung verschiedener Systemkonfigurationen. Die simulierte Ausfalldauer betrug ca. 20 s,

wie Abb. 9.5 (b) zeigt, wobei die Bewegungsrichtung von Norden nach Süden durch den Pfeil kennt-

lich gemacht ist. Die Abb. 9.5 (a) zeigt die mit dem ublox-GPS-Empfänger ermittelten Positionen in

der Trajektorie. Hierbei fällt auf, dass diese vor der Rechtskurve in der Bildmitte an der eingekreis-

ten Stelle einen leichten Sprung aufweisen, was auf ein Bias in den Schätzungen durch Empfänger-

uhrenfehler und damit auch auf die Signalverarbeitung im GPS-Empfänger zurückzuführen ist. An

dieser Stelle sei darauf hingewiesen, dass die gelben und weißen Referenzlinien in der Karte die rea-

len Straßenverläufe lediglich approximativ widerspiegeln und keine Rückschlüsse auf die eigentliche

Fahrbahnbreite zulassen. Gewöhnlich stimmen diese Linien jedoch mit der Fahrbahnmitte überein,

wie mit entsprechendem Bildmaterial (z. B. Google Maps) gezeigt werden kann.

Teilbild (c) beweist, dass das INS, ohne Verwendung des barometrischen Teilsystems, kurzzei-
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(a) Horizontale Trajektorie
(

p̂nGPS;eb,n p̂nGPS;eb,e

)T
oh-

ne Signalausfall

(b) Horizontale Trajektorie
(

p̂nGPS;eb,n p̂nGPS;eb,e

)T
mit

einem Signalausfall von ca. 20 s Dauer

(c) Horizontale Trajektorie
(

p̂nSD;eb,n p̂nSD;eb,e

)T
mit

einem Signalausfall von ca. 20 s Dauer (Konfigu-

ration SD-BM)

(d) Horizontale Trajektorie
(

p̂nSD;eb,n p̂nSD;eb,e

)T
mit

einem Signalausfall von ca. 20 s Dauer (Konfigu-

ration SD+BM)

Abbildung 9.5: Auswirkungen eines GPS-Signalausfalls auf das vollständige Navigationsfilter (Bild-

daten von OpenStreetMap, veröffentlicht unter Lizenz CC–BY–SA 2.0)

tig in der Lage ist, diesen Signalausfall und den „Sprung“ zu kompensieren. Die Trajektorie folgt

weiterhin dem eingezeichneten Straßenverlauf. Die Abweichung steigt allerdings mit der Zeit an, da

die Positionen lediglich durch Integration im Strapdown-Block berechnet werden und Fehler (xFF)

während dieser Zeit, aufgrund der fehlenden Stützinformationen, nur unzureichend kompensiert wer-

den können. Lediglich die auf den Eingang des Strapdown-Blocks zurückgekoppelten Bias bK;a und

bK;ω, die jedoch konstant sind, da ∆b̂a = ∆b̂ω = 03×1 , werden weiterhin vom jeweiligen Sensorsi-

gnal subtrahiert, siehe Gl. (5.42) und (5.43). Die Qualität der verwendeten IME und die Synchronität

der aufgezeichneten Daten spielen hierbei ebenfalls eine bedeutende Rolle (siehe auch Tab. 4.1).

In Abb. 9.5 (d) sind die Positionsschätzungen auf Basis des Gesamtsystems (SD+BM) abgebil-

det. Obwohl auch hier ein leichter Sprung während des Signalausfalls zu erkennen ist, wird deutlich,

dass sich die Trajektorie zu Beginn näher am abgebildeten Straßenverlauf orientiert. Es ist ersichtlich,

dass die vorhandene Höhenstützung durch die zuverlässigere Lagestützung (siehe Gl. (5.20)) und die

davon ebenfalls betroffene Schwerebeschleunigungsschätzung auch Einfluss auf die horizontalen Po-

sitionsschätzungen hat. Dieses resultiert aus dem Zusammenhang in Gl. (4.40), denn die korrigierte

RKM beeinflusst die prädizierte Geschwindigkeit und dadurch auch die Position. Ansonsten wirkt

sich die Höhenschätzung beim Filter lediglich auf die Komponente ∆pneb,d des Systemzustandsvek-
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tors direkt aus. Dadurch ist der Fehler geringer als in Teilbild (c). Ein ähnliches Verhalten war auch bei

den geschätzten Geschwindigkeiten zu beobachten, denn die Lageschätzung im Rahmen der Strap-

down-Berechnungen wirkt sich indirekt auch auf diese Größen aus.

9.2 Sequenzielle Parameterschätzung mit Fehlerfilterung

Nachdem in Kap. 8 einige Voruntersuchungen zur MTi-Sensoreinheit und in dem vorherigen Ab-

schnitt bereits Ergebnisse unter Zuhilfenahme des barometrischen Teilsystems präsentiert wurden,

sollen nun die Untersuchungsergebnisse vorgestellt werden, die mit der zusätzlichen Integration der

in Kap. 7 hergeleiteten Parameterschätzverfahren gewonnen wurden. Der SEM steht dabei im Vor-

dergrund. Es soll untersucht werden, inwieweit sich die Schätzungen der Varianzen auf die Naviga-

tionslösung des schwach gekoppelten INS/GPS-Navigationsfilters auswirken, in dem die Messdaten

fusioniert werden. Neben künstlich generierten Datensätzen, die nach den Tabellen in Anhang F er-

stellt wurden, wurde wiederum auf Daten zurückgegriffen, die im Rahmen von Messfahrten aufge-

zeichnet wurden. Bei der Analyse der Felddaten wurde der Schwerpunkt auf die Rauschparameter

der Beschleunigungssensortriade gelegt, da sich gezeigt hat, dass der SEM unter den gegebenen Vor-

aussetzungen nur eingeschränkt in der Lage ist, die entsprechenden Rauschvarianzen in qFF;ω zu

schätzen. In Abschnitt 9.2.3 wird auf diesen Aspekt näher eingegangen.

Vor Betrachtung der Ergebnisse sei noch erwähnt, dass ein vollständiger und fairer Vergleich

der Schätzverfahren aus Kap. 7 aufgrund der unterschiedlichen Voraussetzungen und Annahmen, die

getroffen wurden, hier nur eingeschränkt erfolgen kann. Während das MD und der SEM beispiels-

weise auf a priori-Wissen in Form eines Rauschmodells zurückgreifen können, ist dies beim KM

nicht möglich. Für den SEM besteht dagegen der Nachteil, dass ihm in einem festen Intervall weniger

Beobachtungen zur Verfügung stehen als den anderen Verfahren, da bei der Fehlerfilterung nicht in

jedem Zeitschritt eine Messwertaktualisierung erfolgen kann. Dies wird z. B. in Kap. 9.2.1.4 näher

erläutert.

9.2.1 Simulationsergebnisse

Für die nachfolgenden Untersuchungsergebnisse wurde auf verschiedene, künstlich generierte Testda-

tensätze einer Gesamtstreckenlänge von ca. 270 km zurückgegriffen, die jeweils nach Tab. F.2 erstellt

worden sind. Die Messrauschvarianzen des GPS-Empfängers entsprechen im Mittel den Parametern

des ublox-GPS-Empfängers, der zur Aufnahme der Felddaten eingesetzt wurde (siehe Tab. 4.3).

Für die Untersuchungen in diesem Teilkapitel wurde auf eine Tiefpassfilterung der Inertialsens-

ordaten verzichtet. In Kap. 9.2.2 sind Ergebnisse aufgeführt, die mit Einsatz eines Tiefpassfilters

gewonnen wurden.

Da im Folgenden nur der Teil der Matrix QFF;k eine Rolle spielt, der vom Inertialsensorrauschen

abhängt und die Varianzen der biastreibenden Rauschterme als konstant angenommen werden, gelte

hier (wie in Kap. 7.1.4): Q#
FF;k := diag

(
q
#
FF;k

)
, wobei q#

FF;k =
(
qT

FF;a,k qT
FF;ω,k

)T
mit

qFF;a,k =



σ2FF;a,x

σ2FF;a,y

σ2FF;a,z




k

und qFF;ω,k =



σ2FF;ω,x

σ2FF;ω,y

σ2FF;ω,z




k

. (9.8)
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9.2.1.1 Wahl der heuristischen Parameter

Um für den SEM die optimalen heuristischen Faktoren einstellen zu können, wurden die Daten so

erzeugt, dass die Rauschvarianzen der Terme, die das zeitkorrelierte Inertialsensorrauschen treiben,

zwischen den minimalen und maximalen Werten nach Tab. F.2 variierten. Es wurde sowohl von sich

zeitlich langsam als auch schnell ändernden Parametern ausgegangen. Es wurde zudem von einer

idealisierten Trajektoriendynamik ohne starke Brems- oder Beschleunigungsvorgänge oder fahrer-

spezifische Lenkbewegungen (typisch für Bewegungen innerhalb einer Fahrspur) ausgegangen. Die

heuristischen Faktoren ζE zum „Glätten“ der Matrix Ek in Gl. (7.62) und γ (zur rekursiven Schätzung

der Rauschvarianzen und zur Berechnung der HESSE-Matrix im Rahmen des NEWTON-Verfahrens)

haben dabei Werte zwischen 0 und 0,5 bzw. 0,8 und 1 angenommen. Die maximale Iterationsanzahl

wurde zu Imax = 50 gewählt.

Die Tab. (9.4) zeigt für einen ausgewählten Datensatz die Wurzel aus der mittleren quadratischen

Abweichung (engl. RMSE)

RMSEǫσFF;a
=

√√√√ 1

K

K∑

k=1

ǫ2σFF;a,k
(9.9)

für die verschiedenen Parameterkonstellationen, wobei

ǫσFF;a,k
=

√√√√
∑

†∈{x,y,z}

(
σ̂FF;a,†,k − σFF;a,†,k

)2
(9.10)

ist. Es fällt auf, dass für ζE = 0 der RMSE im Vergleich zu ζE > 0 deutlich höher ist und somit

RMSEǫσFF;a
[1 · 10−1 m/s2] ζE

0 0,1 0,2 0,3 0,4 0,5

γ

0,8 9,96 5,94 5,47 5,26 5,42 5,62

0,85 9,96 5,32 4,93 4,93 5,23 5,31

0,9 9,93 3,56 4,01 4,44 4,79 5,07

0,95 9,93 2,53 3,36 3,94 4,36 4,66

0,98 9,89 2,38 2,84 3,25 3,57 3,82

0,99 9,78 2,31 2,55 2,76 2,92 3,07

1 8,49 7,55 7,48 7,44 7,41 7,39

Tabelle 9.4: RMSE der Schätzungen der Komponenten in qFF;a bei Verwendung des SEM für ver-

schiedene heuristische Faktoren

eine Glättung der Anteile an der Matrix Ek, die von den Zustandsschätzungen x̂SF;k|k, x̂SF;k−1|k−1

sowie dem Steuereingangsvektor uSF;k abhängen, sinnvoll ist (siehe Gl. (7.62)). Die a posteriori-

Schätzungen des LKF werden somit stärker geglättet, was beispielsweise in [RAG04] durch eine

zusätzliche zeitlich inverse Filterung erreicht wird (eine zeitlich inverse Filterung führt allerdings zu

einer höheren Latenz, was hier vermieden werden sollte). Durch das fortlaufende Zurücksetzen des

inneren Systemzustandsvektors auf einen Nullvektor sind diese im Gegensatz zur Schätzfehlerkovari-

anzmatrix zeitlich ansonsten nur geringfügig geglättet. Der heuristische Faktor γ sollte dagegen nahe

bei 1 liegen, wodurch zu schnelle Änderungen bei der Berechnung der HESSE-Matrix V
{I}
k

(
ˆ̃q#

FF;k

)
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und der Varianzen in ˆ̃q
#{I}
FF;k verhindert werden. Für γ = 1 ist der Fehler dagegen relativ hoch. Die

Schätzungen σ̂FF;a,†,k variieren in dem Fall kaum und bleiben in der Nähe der initialen Werte, wie

informelle Untersuchungen zeigten. Auf die Qualität der Schätzungen wird in den folgenden Ab-

schnitten noch näher eingegangen.

Die Tab. 9.4 zeigt, dass für den vorliegenden Datensatz der RMSE für γ = 0,99 und ζE = 0,1

minimal ist, weshalb diese heuristischen Faktoren auch für die nachfolgend beschriebenen Untersu-

chungen des SEM verwendet wurden.

Da sich vergleichbare Ergebnisse auch bei den entsprechenden Rauschparametern der Drehraten-

sensortriade ergaben, sind diese hier nicht aufgeführt. Es hat sich (ohne einen expliziten Beweis an-

zuführen) gezeigt, dass zu starke Schwankungen in den Schätzungen wiederum zu größeren Ab-

weichungen in der eigentlichen Navigationslösung führen. Dies ist u. a. damit zu begründen, dass

die Abweichungen zwischen den im Laufe des Filterprozesses berechneten Gierwinkeln ψ̂SD;k und

den Richtungswinkeln, die anhand der GPS-Geschwindigkeiten über ψ̂GPS;k = arctan 2
(
v̂nGPS;n,k

v̂nGPS;e,k

)

bestimmt werden können (die GPS-Geschwindigkeiten dienen ja als Stützinformationen), mit abfal-

lendem γ und größer werdendem ζE ebenfalls ansteigen.

Konvergenzverhalten Um das Konvergenzverhalten des SEM hinsichtlich der gewählten heuristi-

schen Faktoren noch besser beurteilen zu können, wurde ein zusätzlicher informeller Test durchge-

führt. Dabei wurden die Quelldaten allerdings mit einer zeitinvarianten (konstanten) Rauschkovari-

anzmatrix Q
#
FF mit σFF;a = 0,225m/s2 und σFF;ω = 0,4°/s erstellt. Die anderen Parameter wurden ge-

mäß Tab. F.2 gewählt. Der so erzeugte Datensatz wurde mehrmals hintereinander durchlaufen, wobei

sowohl die Fehlerfilterung als auch der SEM mit Imax = 50 zum Einsatz kamen. Die Initialisierung

der Rauschkovarianzmatrix erfolgte mit Werten, die 25-fach über den Idealwerten lag. Die am Ende

eines Durchlaufs geschätzten Rauschvarianzen bzw. Standardabweichungen wurden für den jeweils

nachfolgenden Durchlauf als Initialisierungswerte verwendet. Zusammenfassend zeigte sich:

• Für γ = 1 und ̟k = 0 werden Änderungen in den Schätzungen von q
#
FF;k mit fortschreitender

Zeit immer geringer, da die Singulärwerte der HESSE-Matrix, deren Inverse zur Gewichtung

des Gradienten dient, aufgrund von Gl. (7.22) immer größer werden.

• Bei Verwendung von γ = 1 werden mehrere Durchläufe benötigt, damit die Schätzung q̂
#
FF;k

gegen den korrekten Varianzvektor konvergiert.

• Ein Wert von γ < 1 führt zu einer deutlich schnelleren Konvergenz von q̂
#
FF;k gegen den wah-

ren Varianzvektor, was jedoch auch eine höhere Streuung der Schätzungen zur Folge hat. Mit

γ = 0,99 wurde im genannten Fall bereits nach wenigen Zeitschritten Konvergenz erreicht.

Durch die ARMIJO-Schrittweitenregel sowie durch geeignete Wahl von ζE konnte dies noch-

mals optimiert werden.

• Je kleiner ζE gewählt wird, desto „zeitinvarianter“ ist die Schätzung des gesuchten Parameters

und damit desto geringer die Schätzfehlervarianz, wenn der Parameter konstant ist.

Die Abb. 9.6 (a) zeigt einen Ausschnitt der Schätzergebnisse für σFF;a,y = 0,225m/s2, wobei ζE = 0,1

und unterschiedliche γ gewählt wurden. Auf den Einsatz der Schrittweitenregel wurde an dieser Stelle

verzichtet.
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Parameterwahl beim Kovarianzmanagement und Messwertdifferenzen-Verfahren Für die em-

pirische Varianzberechnung mit Hilfe des modifizierten KM wurden die entsprechenden Parameter

bei einer Ausschnittslänge von ∆Tl = 0,25 s nachfolgend zu p′0 = 20 und p̃′0 = 500 gewählt. Beim

MD wird lediglich ein heuristischer Faktor zur Glättung benötigt, der im Folgenden ζ
′
= 0,01 sei.

Dieser stellte bei Tests zum einen den besten Kompromiss zwischen den Änderungen in der Zeit-

korrelationsstruktur und den Rauschvarianzabweichungen dar, sorgte zum anderen für ein stabiles

Systemverhalten in Kombination mit dem Gesamtsystem. Die Abb. 9.6 (b) zeigt die Auswirkungen

unterschiedlich gewählter Werte für den heuristischen Faktor ζ
′

auf die Schätzungen der Rauschpara-

meter σFF;a,x,k. Hier sind zwei Bewegungsphasen von einer Standphase unterbrochen. Man erkennt,

dass die Streuung um den Mittelwert mit abfallendem ζ
′
ebenfalls abnimmt, jedoch auch eine deutlich

langsamere Konvergenz resultiert.
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Abbildung 9.6: Geschätzte Rauschparameter eines Beschleunigungssensors für unterschiedliche heu-

ristische Faktoren unter Verwendung künstlich generierter Daten

9.2.1.2 Einfluss bekannter Korrelationen auf das Kovarianzmanagement

Als nächstes soll gezeigt werden, welche Parameterschätzungen durch den SEM für das zugrunde

liegende Systemmodell unter idealisierten und realistischen Bedingungen erfolgen. Bevor jedoch die

entsprechenden Ergebnisse betrachtet werden, soll noch ein Aspekt diskutiert werden, der im Zusam-

menhang mit dem KM steht.

Obwohl das modifizierte KM nicht die gleichen Varianzen schätzt, die von den anderen Verfah-

ren bestimmt werden, sondern Schätzungen für die Varianzvektoren qa,k bzw. qω,k liefert, ist es im

Folgenden mit aufgeführt (vergleiche Gl. (7.22), (7.73) und (7.79)). Bei dessen Herleitung wurde

von einem stationären, mittelwertbehafteten Rauschprozess ausgegangen. Dennoch werden die ge-

schätzten Varianzen im Rahmen der Navigationsfilterung unter der Annahme verwendet, dass ein

instationärer, mittelwertfreier Prozess vorliegt. Während das MD und der SEM den Varianzvektor

q
#
FF;k =

(
qT

FF;a,k qT
FF;ω,k

)T
unter der Annahme eines weißen, mittelwertfreien Rauschprozesses

ηFF;k schätzen, wird für die Zustandsübergangsmatrix DFF;n in Gl. (5.13)

nFF;k = DFF;nnFF;k−1 + ΓFF;n ηFF;k (9.11)
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beim KM die Annahme getroffen, dass DFF;n = 012×12 ist. In dem Fall gilt mit ΓFF;n := I12×12 :

qFF;a,k = qa,k und qFF;ω,k = qω,k. (9.12)

Da jedoch DFF;n eine konstante Diagonalmatrix ist, liegt nach Gl. (7.80) der Unterschied in den

jeweiligen Schätzparametern lediglich in einer Skalierungsmatrix I12×12 −D2
FF;n, sofern

• nFF;k−1 und ηFF;k unkorreliert sind und

• qa und qω zu zwei aufeinanderfolgenden Zeitpunkten annähernd konstant bleiben.

Somit müssen die Schätzungen der Systemrauschkovarianzmatrix mittels KM im Mittel auch um

ca.
(
I12×12 −D2

FF;n

)−1
höher sein als die Schätzungen mittels MD, wodurch ohne Berücksichtigung

der Biasterme in (5.13) der Zusammenhang

(
q̂a

q̂ω

)

k

=

(
I3×3 −D2

FF;na
03×3

03×3 I3×3 −D2
FF;nω

)−1

·
(
q̂FF;a

q̂FF;ω

)

k

(9.13)

folgt. Da die Diagonalelemente von DFF;na
und DFF;nω

jeweils dem Wert e
− ∆t
tIME;c entsprechen, sind

im Idealfall die Varianzschätzungen im Mittel ungefähr doppelt bzw. die Standardabweichungen

ca. 1,4-mal so hoch, wenn e
− ∆t
tIME;c ≈ 0,7 gilt. Dies muss bei den folgenden Ergebnissen berück-

sichtigt werden.

9.2.1.3 Schätzungen der Rauschparameter

Idealisierte Trajektoriendynamik und vollständig bekannte Korrelationen Es soll zunächst ein

Anhaltspunkt dafür gegeben werden, welche Parameterschätzungen durch die einzelnen Verfahren

für das zugrunde liegende Systemmodell unter idealisierten Bedingungen erfolgen. Dazu wurde die

Annahme getroffen, dass die zeitlichen Korrelationen entsprechend den GAUSS-MARKOV-Prozessen

(GMP) (F.4), (F.7) den Schätzverfahren a priori bekannt sind, d. h. es kann jeweils von einem Prozess

erster Ordnung mit vollständig bekannten Modellparametern ausgegangen werden. Weitere, nicht

vorhersagbare Einflüsse, die sich z. B. durch ein zusätzliches AWGR modellieren lassen, treten hier

nicht auf. Die Daten wurden dennoch mit zeitvarianten Rauschvarianzen des Rauschprozesses erstellt,

der den GMP treibt. Auf eine Tiefpassfilterung der Inertialsensordaten wurde ebenfalls verzichtet.

Die Tab. 9.5 zeigt die RMSE für die einzelnen Sensorrauschparameter sowie für die Vektornorm

(siehe Gl. (9.9) und (9.10)). Es liegen annähernd erwartungstreue Schätzungen vor. Bei den Werten

des KM wurde der Skalierungsfaktor zwischen σFF;a,k und σa,k bzw. σFF;ω,k und σω,k bereits berück-

sichtigt (siehe 9.2.1.2). Dennoch resultieren höhere Abweichungen als bei den Schätzungen des MD

und des SEM. Für diesen vereinfachten Fall weisen MD und SEM nur geringe Unterschiede in den

Schätzgenauigkeiten auf. Allerdings macht sich hier der Nachteil für den SEM kaum bemerkbar, dass

dem FF in einem festen Intervall weniger Beobachtungen zur Verfügung stehen als dem MD (das

FF führt 4-mal pro Sekunde eine Messwertaktualisierung durch). Die unterschiedlichen Ergebnisse

für σFF;ω,z sind u. a. darauf zurückzuführen, dass die Schätzung des Gierwinkelfehlers indirekt von

den beobachtbaren Beschleunigungen in der horizontalen Ebene abhängt. Da hier idealisierte Daten

vorliegen, bei denen auch Abschnitte ohne Beschleunigungsvorgänge vorhanden sind, wirkt sich dies

entsprechend auf die Schätzung von σFF;ω,z durch den SEM aus. Dieser Sachverhalt wird auch im

folgenden Abschnitt diskutiert.
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(a) Abweichungen der Parameterschätzungen (Beschleunigungssensortriade)

σa / σFF;a
INS/GPS-Variante

KM MD SEM

RMSEǫσa
/ RMSEǫσFF;a

x-Achse 0,982 0,654 0,644

y-Achse 0,78 0,639 0,638

[1 · 10−1 m/s2]
z-Achse 0,752 0,629 0,702

Gesamt 1,462 1,111 1,146

(b) Abweichungen der Parameterschätzungen (Drehratensensortriade)

σω / σFF;ω
INS/GPS-Variante

KM MD SEM

RMSEǫσω
/ RMSEǫσFF;ω

x-Achse 2,166 1,895 2,026

y-Achse 2,277 1,869 1,989

[1 · 10−1°/s]
z-Achse 2,187 1,876 4,82

Gesamt 3,829 3,256 5,65

Tabelle 9.5: RMSE der Parameterschätzungen und Standardabweichungen der Parameterschätzfehler

bei künstlich generierten Daten unter idealisierten Bedingungen (Beschleunigungs- und

Drehratensensortriade)

Realistische Trajektoriendynamik und unbekannte Störungen Nach Abb. 8.3 (b) ist das LDS

eines realen Sensorsignals nicht konstant. Durch nicht ideale Fahrzeugbewegungen, die dennoch der

Trajektoriendynamik zugeordnet werden können (z. B. abrupte Lenkbewegungen, Beschleunigungs-

vorgänge, Spurwechsel), und Vibrationen ist die Leistungsdichte bei einigen Frequenzen höher als

bei anderen. Um ein möglichst realistisches Frequenzspektrum zu erhalten, das nicht nur Störungen

oder eine Trajektoriendynamik nach einem bestimmten Modell aufweist, wurden die entsprechenden

Sensorsignale (Komponenten der Vektoren abib bzw. ãbib und ω
b
ib bzw. ω̃b

ib) nach Anhang F so erzeugt,

dass diese bei einigen Frequenzen (hier z. B. bei den Mittenfrequenzen 15Hz und 25Hz) eine höhere

Leistungsdichte aufweisen.

Das Kurzzeit-Periodogramm eines typischen IME-Ausgangssignals ãbib,x der Beschleunigungs-

sensortriade ist in Abb. 9.7 (a) dargestellt (zum Vergleich siehe auch die Abb. 8.4, die Periodogramme

realer Sensorsignale zeigt). Im Folgenden soll untersucht werden, wie sich unvorhersagbare Einflüsse

auf die Parameterschätzungen in einem schwach gekoppelten System auswirken, wenn keine explizite

Tiefpassfilterung der IME-Daten vorgenommen wird.

Die zeitlichen Korrelationen, die in dem für die Filterung ausschlaggebenen Frequenzbereich

(< 10Hz) auftreten, werden hier durch den GMP berücksichtigt. Bei diesem wird für verschiedene

Trajektorienabschnitte zusätzlich von unterschiedlichen und damit zeitvarianten Rauschvarianzen des

treibenden Rauschprozesses ausgegangen. Trotz des veränderten Frequenzspektrums ändern sich die

statistischen Eigenschaften des beobachtbaren GMP, der in dem vom FF korrigierbaren Bereich domi-

niert, kaum. Daher wird im FF weiterhin von den bekannten Zustandsübergangsparametern dna ≈ 0,7

und dnω ≈ 0,7 ausgegangen. Die zur Erzeugung des ursprünglichen GMP verwendeten Standardab-

weichungen des treibenden Rauschprozesses dienen deshalb im Folgenden als Referenzwerte.

Die Abb. 9.7 (b) zeigt für drei unterschiedliche Trajektorienabschnitte P̆
(1)
B , P̆

(2)
B und P̆

(3)
B , die

von zwei Standphasen P̆M unterbrochen sind, den idealen, zeitvarianten Verlauf für die Standardab-

weichung σFF;a,x,k, der für das treibende Rauschen des GMP festgelegt wurde (schwarze Kurve).
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Abbildung 9.7: Periodogramm eines Ausschnitts des erstellten Beschleunigungssensoraus-

gangssignals ãbib,x und geschätzte Rauschparameter eines zeitlich korrelierten

Beschleunigungssensorrauschens unter Verwendung künstlich generierter Daten

Wie erwähnt muss berücksichtigt werden, dass das MD und das KM unterschiedliche Rausch-

varianzen schätzen. Die Schätzwerte des KM liegen hier nach Gl. (9.13) um den Faktor
√

1
1−d2na

höher als die des MD, da das KM selbst nicht in der Lage ist, die Parameter eines zeitlich korrelier-

ten Rauschprozesses zu schätzen. Daher gilt in der Abbildung ∆ ≈ 2,2m/s2 ·
(√

1
1−d2na

− 1

)
. Die

Schätzungen beider Verfahren weisen z. B. in Phase P̆
(2)
B eine im Mittel konstante Abweichung ge-

genüber den Schätzungen des SEM auf. Diese systematischen Fehler resultieren aus der Leistung des

ungefilterten Sensorsignals. Sowohl das KM als auch das MD können nicht eindeutig zwischen der

Trajektoriendynamik und den Rauschanteilen unterscheiden (siehe Kap. 7.2 und 7.3). Niederfrequen-

te Signalanteile, die zur Trajektoriendynamik gehören oder dem Bias zugeschrieben werden können,

werden vom MD und KM ebenfalls als Rauschen interpretiert, das den GMP treibt. Diese Signal-

anteile werden ebenfalls im Rahmen der Strapdown-Berechnungen berücksichtigt. Der Strapdown-

Algorithmus glättet Rausch- und Trajektorienanteile jedoch teilweise, da die Daten 2-fach integriert

und zusätzlich korrigiert werden. Dies wird in Abschnitt 9.2.1.4 noch näher erläutert. Zunächst sollen

die Schätzergebnisse betrachtet werden.

Die Ergebnisse zeigen, dass das modifizierte KM und das MD den jeweiligen zeitvarianten Pa-

rameter systematisch höher schätzen als der Parameter, der dem treibenden Rauschen des GMP im

Zustandsmodell zugrunde liegt. Dies ist darauf zurückzuführen, dass die Parameterschätzung bei die-

sen Verfahren auf ungefilterten Sensordaten zIME beruht. Es kann nicht vollständig zwischen Tra-

jektoriendynamik und zeitlich korreliertem Rauschen oder anderen Störungen unterschieden werden.

Die daraus resultierenden systematischen Überschätzungen führen dazu, dass eine Über- oder Un-

terkorrektur der Fehler in der Navigationslösung vorgenommen wird, da höheres Gewicht auf die

Beobachtungen der Stützsensoren gelegt wird als notwendig ist.

Sowohl die RMSE-Werte der einzelnen Komponenten (x-, y- und z-Achse) als auch die zuge-

hörigen Standardabweichungen der Parameterschätzfehler wurden in Tab. 9.6 (a) für die einzelnen

Verfahren eingetragen. Die Berechnung der Werte erfolgte wie bei den Gl. (9.6) und (9.9). Für die



134 Kapitel 9. Untersuchungsergebnisse

Berechnung der jeweiligen Gesamtabweichung wurde nicht über die Werte der einzelnen Komponen-

ten gemittelt, sondern die euklidische Vektornorm verwendet.

Die Daten zeigen, dass sowohl das auf der Berechnung von Korrelationen basierende MD als auch

das KM größere Abweichungen aufweisen. Je höher der systematische Fehler ist, desto höher sind

auch die Standardabweichungen der Schätzfehler. Hinzu kommt, dass das KM die Varianzen nur em-

pirisch nachführen kann, da seine Herleitung auf der Annahme von zeitinvarianten Parametern beruht

(siehe Anhang E.2). Dementsprechend resultieren hier höhere Abweichungen bei den Schätzungen

als bei den anderen Verfahren. Vergleichbare Beobachtungen können auch bei den zur Drehratensen-

sortriade korrespondierenden Werte in Tab. 9.6 (b) gemacht werden.

(a) Abweichungen der Parameterschätzungen (Beschleunigungssensortriade)

σa / σFF;a
INS/GPS-Variante

KM MD SEM

RMSEǫσa
/ RMSEǫσFF;a

x-Achse 8,706 7,787 1,124

y-Achse 8,732 7,916 1,111

[1 · 10−1 m/s2]
z-Achse 8,574 7,615 1,259

Gesamt 15,018 13,465 2,021

σǫσa
/ σǫσFF;a

x-Achse 5,263 4,878 1,099

y-Achse 5,319 4,982 1,104

[1 · 10−1 m/s2]
z-Achse 5,193 4,707 1,256

Gesamt 9,108 8,302 2,001

(b) Abweichungen der Parameterschätzungen (Drehratensensortriade)

σω / σFF;ω
INS/GPS-Variante

KM MD SEM

RMSEǫσω
/ RMSEǫσFF;ω

x-Achse 23,01 20,536 2,313

y-Achse 23,229 20,822 2,295

[1 · 10−1°/s]
z-Achse 22,837 20,538 5,596

Gesamt 39,878 35,737 6,476

σǫσω
/ σǫσFF;ω

x-Achse 9,342 8,912 2,268

y-Achse 9,427 8,992 2,285

[1 · 10−1°/s]
z-Achse 9,312 8,889 3,538

Gesamt 16,212 15,469 4,783

Tabelle 9.6: RMSE der Parameterschätzungen und Standardabweichungen der Parameterschätzfeh-

ler bei künstlich generierten Daten ohne Berücksichtigung des systematischen Fehlers

(Beschleunigungs- und Drehratensensortriade)

Die RMSE, die bei Verwendung des MD zu 13,465 · 10−1 m/s2 bzw. 35,737 · 10−1°/s bestimmt

wurden, weisen gegenüber den entsprechenden Fehlern beim KM mit 15,018 · 10−1 m/s2 bzw.

39,878 · 10−1°/s eine Verbesserung in der Schätzfehlerabweichung um ca. 10,34% bzw. 10,38% auf.

Ähnliches gilt für Standardabweichungen der Schätzfehler.

Der SEM (dessen Ergebnisse in Abb. 9.7 (b) durch die rote Kurve dargestellt sind) weist sowohl

bei den Rauschparametern der Drehraten- als auch der Beschleunigungssensortriade die geringsten

Abweichungen zu den wahren Standardabweichungen des treibenden Rauschprozesses auf. Die Wer-
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te, die im Mittel vom SEM geschätzt werden, entsprechen denen, die bei der Erzeugung der Simulati-

onsdaten verwendet wurden. Durch die vorhandene Stützung mit künstlichen Magnetfeldsensordaten

einerseits und den GPS- sowie barometrischen Daten andererseits, ist der SEM durch das SF in der

Lage, die zeitvarianten Rauschvarianzen abtastwertweise nachzuführen. Dabei muss allerdings be-

rücksichtigt werden, dass eine Messwertaktualisierung mit einer geringeren Rate durchgeführt wird

als bei den beiden anderen Verfahren, denn die Beobachtungen werden im FF bzw. SF mit 4 1/s

(GPS-Datenrate) verarbeitet. Die Parameterschätzung erfolgt dennoch mit 100 1/s, da z. B. Gl. (7.61)

fortlaufend berechnet wird.

Die Verbesserung in der Genauigkeit, die mit dem SEM gegenüber dem KM im Mittel erreicht

wird, liegt mit Werten von 2,021 · 10−1 m/s2 und 6,476 · 10−1°/s bei 86,54% bzw. 83,76%. Die

Standardabweichungen der Gesamtschätzfehler von 2,001 · 10−1 m/s2 bzw. 4,783 · 10−1°/s belegen

die zuverlässigen Schätzungen. Des Weiteren zeigt sich, dass die Genauigkeit bei den horizontalen

Komponenten höher ist als bei den vertikalen Komponenten. Die barometrische Höhenstützung ist

für die sequenzielle Parameterschätzung nicht gewinnbringend, da zwischen der Beobachtung einer

Position und dem entsprechenden zeitkorrelierten Rauschen einer Beschleunigungssensortriade nur

eine indirekte Kopplung durch die Filtergleichungen besteht. Deshalb wurde auch darauf verzichtet,

Positionsmessungen als Beobachtungen für das SF zu verwenden (siehe Gl. (7.54)). Die Tatsache,

dass die vertikale Geschwindigkeitskomponente der GPS-Schätzungen, die hier zur Stützung ein-

gesetzt wird, von geringerer Güte als die horizontalen Komponenten ist, spiegelt sich auch in den

Parameterschätzungen wider.

Eine Besonderheit stellt hier die z-Komponente σFF;ω,z dar. Der Fehler von 5,596 · 10−1°/s ist

darauf zurückzuführen, dass zwar eine Kopplung aufgrund der GPS-Geschwindigkeits- und Magnet-

feldsensordaten zwischen dieser Komponente und einer Beobachtung besteht, die Kopplung ist bei

der x- und y-Komponente jedoch wesentlich stärker. Dazu trägt indirekt auch die Beschleunigung

bei. Die Beobachtbarkeit des Gierwinkelfehlers und damit die Schätzung von σFF;ω,z hängt davon

ab, ob Beschleunigungen in den horizontalen Komponenten auftreten (ein GPS-Empfänger könnte

beispielsweise nicht auf die Richtung bei einem stehenden Fahrzeug schließen ohne die Kenntnis der

vorherigen Trajektorie).

Bevor eine Aussage über die Auswirkungen und die Qualität der Navigationslösung getroffen

wird, sollte bedacht werden, dass die Genauigkeiten der Parameterschätzungen nicht ausschließlich

ausschlaggebend sind. Der SEM hat den Vorteil, sich indirekt auf das Navigationsfilter einstellen zu

können. Er bestimmt die Rauschkovarianzmatrix, die bei der aktuellen KALMAN-Schätzung die Lö-

sung mit dem größten Erwartungswert der Likelihood darstellt. Es findet ein Abgleich zwischen den

ML-Schätzungen des SEM und den a posteriori-Schätzungen des FF bzw. SF statt. Die Abb. 9.8 und

9.9 sollen hier den Unterschied zwischen dem MD und dem SEM verdeutlichen. Es zeigt sich, dass

die MD-Schätzungen vollständig unabhängig von der vom FF geschätzten a posteriori-Verteilung

durchgeführt werden. Mögliche Ungenauigkeiten in den Modellannahmen werden nicht berücksich-

tigt. Hinzu kommt, dass das MD lediglich die Korrelationen an zwei Verschiebungspunkten auswertet

und ausgehend davon über eine Exponentialglättung auf die AKF schließt. Im Gegensatz dazu zeigt

Abb. 9.9, dass die a posteriori-Schätzungen des FF bzw. SF von der Likelihood des SEM und dessen

Schätzung umgekehrt in Abhängigkeit von den KALMAN-Filterausgangsgrößen durchgeführt wird.

Es wird daher immer der annähernd optimale Schätzwert unter den gegebenen Bedingungen, d. h.

mit Kenntnis der jeweils aktuellen Ausgangsgrößen des anderen Schätzers bestimmt. Für den SEM

folgt dadurch eine Abhängigkeit von allen zur Verfügung stehenden Messungen, wohingegen das MD

lediglich von den Inertialsensormessdaten zIME abhängt. Hier zeigt sich, dass die Filterstruktur Unge-
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MD:
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Abbildung 9.8: Abhängigkeit der a posteriori-Verteilung, die im FF geschätzt wird, von den Korrela-

tionen in den IME-Messungen zIME

SEM:
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q
#
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{
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[
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p(xSF;k|xSF;k−1;q
#
FF)

)
∣

∣

∣
zIME;1:k, zGPS;1:k; q̂

#
FF;k−1

]

+
∑k−1
κ=2 . . .

}

FF:

p
(

xSF;k+1

∣

∣ zIME;1:k+1, zGPS;1:k+1; q̂
#
FF;k

)

k := k + 1

Abbildung 9.9: Zusammenhang zwischen der a posteriori-Verteilung, die im FF geschätzt wird, und

dem Erwartungswert der Log-Likelihood Function, der mittels SEM maximiert wird

(hier für den vereinfachten Fall Imax = 1 dargestellt)

nauigkeiten in den Parameterschätzungen des SEM eher verzeihen kann als es bei den Schätzungen

der anderen Verfahren der Fall ist. Das FF und das SF stellen sich auf mögliche Abweichungen ein.

9.2.1.4 Eigenschaften der Filterstruktur

Wie zuvor erwähnt spielen einige Eigenschaften der Filterstruktur ebenfalls eine wichtige Rolle. In

diesem Zusammenhang soll Abb. 9.10 (a) betrachtet werden. Diese zeigt einen Ausschnitt des Aus-

gangssignals v̂nSD;eb,n (Nordkomponente des Geschwindigkeitsvektors). Bei der blauen Kurve handelt

es sich um die eigentliche Navigationslösung, die mit einer Datenrate von 100 1/s bereitgestellt wird.

Es ist deutlich zu erkennen, dass in der Navigationslösung einige zusätzliche Signalanteile vorhanden

sind. Dies sind nicht nur Anteile aufgrund des Rauschens, sondern ebenso welche, die zur Trajektori-

endynamik gehören. Durch die Integration und die Korrekturen reduzieren sich die Rauschanteile im

Rahmen der Strapdown-Berechnungen bereits beträchtlich, so dass sie in den Positionsschätzungen

nur noch geringfügig auftreten.

Die grüne Kurve ist das Signal (hier aus Gründen der Darstellung um einen konstanten Wert

von 1m/s angehoben, so dass die Kurven nicht übereinander liegen), das effektiv im Rahmen der

Fehler- und der Sekundärfilterung am jeweiligen Messeingang anliegt. Da die GPS-Beobachtungen

die Hauptkomponenten darstellen, mit denen das Navigationsfilter gestützt wird und die entsprechen-

den Informationen lediglich mit 4 1/s zur Verfügung stehen, wird für das Fehlerfilter (FF) letztlich

auch nicht jeder Wert der Navigationslösung als Messung genutzt. Als Beobachtungsvektor dient

dem FF schließlich die Differenz von zwei Messvektoren, wie in Kap. 4.6.2 herausgestellt wurde.

Die Abbildung macht deutlich, dass am Eingang beider Filter, dem FF, aber auch dem

Sekundärfilter (SF), das für die sequenzielle Parameterschätzung mittels SEM eingesetzt wird, so-
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Abbildung 9.10: Vergleich des Strapdown-Ausgangssignals mit dem Messeingangssignal des Fehler-

filters/Sekundärfilters und Betrag der normierten Autokorrelationsfunktion des vom

Messwertdifferenzen-Verfahren angenommenen und des wahren GAUSS-MARKOV-

Prozesses

mit ein unterabgetastetes Signal anliegt, dass von der eigentlichen Trajektoriendynamik und dem

GMP dominiert wird. Während jedoch die Messwertaktualisierungen des FF und des SF mit 4 1/s

durchgeführt werden, wird der jeweilige Prädiktionsschritt mit 100 1/s durchgeführt. Dies ist aus ver-

schiedenen Gründen sinnvoll:

• Die Zustandsmatrizen nach den Gl. (5.2) – (5.10) sowie die Messmatrix HFF sind JACOBI-

Matrizen, die von der aktuellen Navigationslösung x̂SD;k abhängen. Wie erwähnt wird diese

mit 100Hz berechnet. Würde die Prädiktion im FF bzw. SF mit einer geringeren Datenrate als

100 1/s durchgeführt werden, so könnten bei der Berechnung der Schätzfehlerkovarianzmatri-

zen nicht die Navigationslösungen berücksichtigt werden, die zwischen den Messwertaktuali-

sierungen am Messeingang bestimmt wurden.

• Die Parameter des GAUSS-MARKOV-Prozesses (GMP) (z. B. Korrelationszeit) wurden anhand

von Signalen bestimmt, die mit 100Hz bereitgestellt wurden. Eine Skalierung der Parameter

ist nur approximativ möglich, da es sich bei einem GMP formal um einen instationären Prozess

handelt. Für ein ausreichend langes Beobachtungsintervall ist ein GMP allerdings annähernd

stationär.

Obwohl im vorliegenden Fall ein effektiver Korrekturvektor x̂FF;k|k nur 4-mal pro Sekunde zur

Verfügung steht, wird die Schätzfehlerkovarianzmatrix 100-mal pro Sekunde auf Basis des System-

rauschmodells nach Gl. (5.13) prädiziert. Die Ausgangsgrößen und die laufend aktualisierten JACO-

BI-Matrizen des FF dienen dem SF, um neben x̂SF;k|k, x̂SF;k−1|k−1, P̂SF;k|k und P̂SF;k−1|k−1 dennoch

auch die Lag-One-Schätzfehlerkovarianzmatrix P̂SF;k,k−1|k bestimmen zu können (siehe Kap. 7.1.4).

Demnach erfolgt auch die Berechnung der Matrix Ek in Gl. (7.61) anhand von aufeinanderfolgenden

a posteriori-Schätzungen, zwischen denen eine zeitliche Differenz von tk − tk−1 = 0,01 s liegt und
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nicht eine Differenz von tk − tk−1 = 0,25 s. Somit basiert eine Schätzung des SEM dennoch auf der

Zielfunktion (7.5) mit der Annahme, dass zwischen den a posteriori-Schätzwerten des erweiterten

Sekundärfilters (SF) ein Intervall von tk − tk−1 = 0,01 s liegt. Eine Skalierung der Schätzung q̂
#
FF;k

wird somit umgangen.

Die Beträge der normierten Kurzzeit-Autokorrelationsfunktionen (AKF) in Abb. 9.10 (b) zeigen

beispielhaft den Unterschied zwischen dem GMP, der im Systemmodell des FF berücksichtigt wer-

den muss (grüne Kurve) und dem vom MD angenommenen GMP (blaue Kurve), wenn keine explizite

Tiefpassfilterung der Sensordaten vorgenommen wird. Es zeigt sich, dass durch die nicht vollständig

unterdrückbare Trajektoriendynamik und den Umstand, dass die AKF lediglich auf der Berechnung

von zwei spezifischen Werten r
(0)
∆n∆n,k und r

(1)
∆n∆n,k (Gl. (7.78) und (7.79)) resultiert, das MD eben-

falls andere Korrelationszeiten und Rauschvarianzen als die schätzt, die dem Prozess in Wirklichkeit

zugrunde liegen. Somit würde auch eine Unterabtastung des Signals beim MD/KM dieses Ergebnis

nicht beeinflussen.

Man kann somit Folgendes zusammenfassen:

• Die Varianzschätzungen des MD und die des KM können einen systematischen Fehler aufwei-

sen, da nicht vollständig zwischen verschiedenen Rauschprozessen und Trajektoriendynamik

unterschieden werden kann. Dies kann eine Überschätzung der eigentlich relevanten Parame-

ter zur Folge haben, d. h. die Schätzungen entsprechen nicht den Varianzen des dominierenden

GMP, der im Zustandsmodell des Filters berücksichtigt wird.

• Es treten durch das Integrieren der Beschleunigungen und Geschwindigkeiten im Strapdown-

Block und durch die vorangegangene Korrektur der Navigationsgrößen weitere zeitliche Kor-

relationen auf, die berücksichtigt werden müssen. Da nach Abb. 9.8 allerdings die Parameter-

schätzung unabhängig von den a posteriori-Schätzwerten erfolgt, werden dort diese Korrelatio-

nen nicht berücksichtigt. Im Gegensatz dazu basiert die Schätzung des SEM auf dem bedingten

Erwartungswert der LLF unter Berücksichtigung aller Beobachtungen am Messeingang des

FF/SF.

• Unbekannte mittelwertfreie Rauschanteile mitteln sich im Rahmen der Integration im Strap-

down-Algorithmus z. T. heraus. Für die Fehlerfilterung ist die Langzeitcharakteristik des zeit-

lich korrelierten Rauschens entscheidend, denn die Korrektur erfolgt nur mit der Datenrate, mit

der auch die Beobachtungen am Messeingang des FF vorliegen.

• Mit höherer GPS-Datenrate kann die Fehlerkorrektur weiter verbessert werden, da die Abta-

strate am Messeingang und die Datenrate, mit der Korrekturterme am Ausgang des FF bereit-

gestellt werden, erhöht wird. Aliaseffekte werden reduziert. Kostengünstige GPS-Empfänger

mit einer Aktualisierungsrate von mehr als fGPS = 10Hz sind in der Praxis allerdings selten

erhältlich.

Abschließend sei noch angemerkt, dass eine Anpassung der Filterstruktur zwar möglich wäre

(z. B. Verminderung der Prädiktionsrate oder Tiefpassfilterung der Inertialsensordaten), der Informa-

tionsgewinn durch die IME-Messungen würde allerdings reduziert werden. Auch eine Reduzierung

der Rate, mit der die Strapdown-Lösung berechnet wird, ist nicht sinnvoll, da viele Vorteile einer

INS/GPS-Integration verloren gehen würden. Dagegen spricht außerdem, dass Approximationen, die

im Zusammenhang mit der Lageberechnung im Strapdown-Block gemacht wurden, nicht mehr gül-

tig wären, denn es wird bei der Herleitung der Gleichungen von einer entsprechend hohen Datenrate
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ausgegangen (siehe die Gl. (4.34) und (4.35)). Durch Einsatz des SEM werden diese Probleme um-

gangen.

9.2.1.5 Auswirkung der Parameterschätzung auf die Navigationslösung

Der folgende Abschnitt soll Aufschluss darüber geben, wie sich die Verbesserungen in der Parame-

terschätzung für den realistischen Fall in Abschnitt 9.2.1.3 durch Einsatz des SEM oder der anderen

Verfahren in den Positions- und Geschwindigkeitsschätzungen des Strapdown-Algorithmus, d. h. des

„äußeren“ Systemzustandes, unter den hier getroffenen Annahmen bemerkbar machen. Zusätzlich

wird untersucht, wie sich die Annahme konstanter Systemrauschvarianzen auswirkt. Dazu wurden die

folgenden Standardabweichungen für das Zustandsmodell des FF verwendet: σFF;a = 9 · 10−3 m/s2

bzw. σFF;ω = 4 · 10−1°/s. Diese Wahl entspricht den Werten, die sich aus der Ruhemessung ergeben

haben (siehe Kap. 8).

Anhand Tab. 9.7 lassen sich die RMSE der Eulerwinkel am Ausgang des Strapdown-Blocks mit

und ohne Parameterschätzung miteinander vergleichen. Es zeigt sich, dass durch den SEM die bes-

Winkelschätzfehler (RMSE)

Methode (Prozentuale Verbesserung gegenüber GPS/Konst.)

RMSEǫφ
RMSEǫθ

RMSEǫψ
RMSEǫΥ

[1 · 10−1°] [1 · 10−1°] [1 · 10−1°] [1 · 10−1°]

GPS – – 36,36 –

IN
S
/G

P
S

-

V
ar

ia
nt

e Konst. 4,37 4,31 12,03 (66,14%) 13,5

KM 4,25 (2,78%) 4,21 (2,35%) 11,45 (68,51%) 12,92 (4,37%)

MD 4,22 (3,44%) 4,2 (2,6%) 12,31 (66,14%) 13,67 (−1,25%)

SEM 4,08 (6,64%) 4,12 (4,31%) 12,18 (66,5%) 13,2 (2,22%)

Tabelle 9.7: Winkelschätzfehler und prozentuale Verbesserungen der Lageschätzungen bei der Navi-

gationsfilterung mit sequenzieller Parameterschätzung gegenüber einer konstant gewähl-

ten Kovarianzmatrix bzw. gegenüber dem mittels GPS-Geschwindigkeiten berechneten

Gierwinkel

ten Ergebnisse, vor allem beim Roll- und Nickwinkel (φ, θ), erreicht werden. Betrachtet man die

prozentualen Verbesserungen bei den Gierwinkelschätzungen (Verbesserungen gegenüber dem her-

vorgehobenen Wert in der jeweiligen Spalte), so wird deutlich, dass durch die INS/GPS-Varianten

jeweils eine Verbesserung von ca. 66% gegenüber dem Gierwinkel erreicht wird, der sich über

ψ̂GPS;k = arctan 2
(
v̂nGPS;n,k

v̂nGPS;e,k

)
anhand der horizontalen GPS-Geschwindigkeitsinformationen berech-

nen lässt. Allerdings muss beachtet werden, dass die mittleren quadratischen Abweichungen (RMSE-

Werte) deutlich höher ausfallen (ca. das Drei- bis Vierfache) als bei den Roll- und Nickwinkelschät-

zungen. Da der Gierwinkel eine der drei Komponenten ist, die neben den horizontalen Beschleu-

nigungskomponenten für die Genauigkeit der Navigationslösung ausschlaggebend ist, stellt dieses

Resultat ein generelles Problem dar. Dies tritt allerdings bei allen Verfahren gleichermaßen auf. Die

Ursache liegt in der Stützung der entsprechenden Lagekomponente im INS/GPS-Navigationsfilter. Ei-

nerseits liefert das satellitengestützte Teilsystem durch die horizontalen Geschwindigkeitskomponen-

ten v̂nGPS;n und v̂nGPS;e einen vergleichsweise unzuverlässigen und auch nur indirekten Beitrag zur

Schätzung des Gierwinkels, andererseits besteht durch den Vektor lbGPS (Vektor, der den Abstand zwi-
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schen der IME und dem GPS-Empfänger beschreibt) nur eine schwache Kopplung zwischen diesem

und den Lagefehlerkomponenten im Systemzustandsvektor. Außerdem konnten bei der Generierung

der Daten nicht sämtliche Effekte wie z. B. Fliehkräfte berücksichtigt werden (horizontale Beschleu-

nigungen machen den Gierwinkel beobachtbar). Eine Stützung wird hier zwar ebenfalls durch die

nachgebildeten Magnetfeldsensormessungen vorgenommen, die Messrauschvarianzen sind allerdings

verhältnismäßig hoch. Trotz der geringen Unterschiede beim Gierwinkel sind die Verbesserungen bei

den Roll- und Nickwinkelschätzungen durch den SEM hervorzuheben. Dieser führt zu einer prozen-

tualen Verbesserung in der Winkelschätzgenauigkeit von 6,64% bzw. 4,31%, das MD hingegen zu

Verbesserungen von 3,44% bzw. 2,6%. Hier liegt also eine Verdoppelung in der Genauigkeit gegen-

über dem Ergebnis des MD vor.

Die Unterschiede machen sich deutlicher in den Geschwindigkeitsschätzungen bemerkbar, wie

Tab. 9.8 zeigt. Bei den Geschwindigkeitskomponenten kommen nicht nur die geschätzten System-

Geschwindigkeitsschätzfehler (RMSE)

Methode (Prozentuale Verbesserung gegenüber GPS)

RMSEǫv,n
RMSEǫv,e

RMSEǫv,d
RMSEǫv

[1 · 10−1 m/s] [1 · 10−1 m/s] [1 · 10−1 m/s] [1 · 10−1 m/s]

GPS 1,25 1,22 2,2 2,87

IN
S
/G

P
S

-

V
ar

ia
nt

e Konst. 3,07 (−145,6%) 1,54 (−26,23%) 6,95 (−215,9%) 7,75 (−170,3%)

KM 1,22 (2,4%) 1,28 (−4,92%) 1,83 (16,82%) 2,54 (11,5%)

MD 1,2 (4%) 1,25 (−2,46%) 1,97 (10,45%) 2,62 (8,71%)

SEM 1,14 (8,8%) 1,21 (0,8%) 1,74 (20,91%) 2,41 (16,3%)

Tabelle 9.8: Geschwindigkeitsschätzfehler und prozentuale Verbesserungen der Geschwindigkeits-

schätzungen bei der Navigationsfilterung mit sequenzieller Parameterschätzung gegen-

über den GPS-Schätzungen

rauschvarianzen in q̂FF;ω,k zum Tragen, die mit der Drehratensensortriade durch die berechnete

Richtungskosinusmatrix (RKM) Ĉn
SD;b korrelieren, sondern auch die Varianzschätzungen, die durch

das Aufintegrieren im Rahmen der Strapdown-Berechnung im Zusammenhang mit der Beschleuni-

gungssensortriade stehen. Aus diesem Grund ist bei der Wahl konstanter Rauschvarianzen eine deut-

liche Verschlechterung der Geschwindigkeitsschätzung mit RMSEǫv
= 7,75 · 10−1 m/s zu beobach-

ten, wie die zweite Zeile in Tab. 9.8 verdeutlicht. Hauptverantwortlich für das schlechte Abschneiden

gegenüber den GPS-Schätzungen sind die n- und die d-Komponente mit

RMSEǫv,n
= 3,07 · 10−1 m/s bzw. RMSEǫv,d

= 6,95 · 10−1 m/s. Neben den RMSE-Werten sind

auch hier die prozentualen Verbesserungen bzw. Verschlechterungen (markiert durch ein vorange-

stelltes „–“) gegenüber den GPS-Schätzungen in der ersten Zeile in rot eingetragen. Die Verschlech-

terung in der Geschwindigkeitsschätzung liegt somit bei 170%. Hierbei spielen die gewählten Werte

für die konstanten Parameter eine entscheidende Rolle. Im vorliegenden Fall wurden diese niedriger

gewählt als die wahren Werte. Dies führt dazu, dass den Beobachtungen, die zur Stützung verwendet

werden (GPS-Messungen, Höheninformationen durch das barometrische Teilsystem), weniger ver-

traut wird als den Inertialsensormessungen. Da die Inertialsensormessungen jedoch nicht langzeitig

stabil sind, kann auch das FF die Abweichungen nur noch unzureichend nachführen. Die daraus resul-

tierende fehlerhafte Korrektur und damit ebenfalls fehlerhaften Größen im Vektor xK führen wieder-

um zu höheren Geschwindigkeitsfehlern. Ein fortwährender Abgleich zwischen einem a posteriori-

Schätzwert, gegeben eine ML-Schätzung der zeitvarianten Systemrauschkovarianzmatrix einerseits,
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und einem ML-Schätzwert, der auf der a posteriori-Schätzung des FF beruht andererseits (wie beim

SEM), findet hier nicht statt. Man könnte hier zwar durchaus höhere konstante Rauschvarianzen an-

nehmen, allerdings würden diese nicht mehr mit den entsprechenden Datenblättern übereinstimmen.

Des Weiteren kann man durch die nicht vollständig unterdrückbare Trajektoriendynamik sowie durch

auftretende Vibrationen nicht zwingend erwarten, dass die wahren Werteverläufe unterhalb der hier

als konstant gewählten Parameter liegen, wie auch schon in Kap. 7.2.3 herausgestellt werden konnte.

Generell kann man jedoch zusammenfassen, dass eine Überschätzung der gesuchten Rauschvarianzen

wesentlich vorteilhafter ist als eine Unterschätzung.

Im Gegensatz dazu führt hier eine abtastwertweise Schätzung der zeitvarianten Parameter zu einer

Steigerung in der Schätzgenauigkeit der Geschwindigkeiten. Während diese beim modifizierten KM

ca. 11,5% (RMSEǫv
= 2,54 · 10−1 m/s) beträgt, ist sie mit 8,71% (RMSEǫv

= 2,62 · 10−1 m/s)

beim MD etwas geringer. Die Ursache liegt, bei Vergleich mit der ersten Zeile, hauptsächlich in der

d-Komponente. Für das MD und den SEM sind auch in den horizontalen Komponenten Verbesse-

rungen zu beobachten. Die Werte in der letzten Zeile (SEM) sind sogar 5% – 10% besser als die in

der vorletzten Zeile (MD). Dieser Sprung spiegelt sich in einer besseren Reduktion des Gesamtfeh-

lers wider, der mit 2,41 · 10−1 m/s annähernd 69% über dem liegt, der unter Verwendung konstanter

Rauschvarianzen (Konst.) erreicht wird und ca. 8% über dem Ergebnis des MD bzw. 5% über dem

des KM liegt.

Obwohl sich die barometrische Höhenstützung nicht direkt auf die Schätzung des Geschwindig-

keitsfehlers im INS/GPS-Filter auswirkt und auch im Sekundärfilter (SF) keine Rolle für die Parame-

terschätzung spielt, wirkt sie sich durch die Stabilisierung des Höhenkanals dennoch positiv auf die

absolute Geschwindigkeit am Strapdown-Ausgang aus. Sie ist trotzdem nicht allein für die verbesser-

ten Schätzungen der vertikalen Geschwindigkeitskomponente verantwortlich, da sie bei sämtlichen

Schätzvarianten eingesetzt wurde. Zusammenfassend zeigt sich jedoch, dass eine konsistente Genau-

igkeitssteigerung in den Geschwindigkeitsschätzungen durch den SEM zu erkennen ist.

Zum Abschluss dieses Abschnitts werden, zusammen mit den Summenhäufigkeitsfunktionen in

Abb. 9.11, die Ergebnisse in Tab. 9.9 (RMSE der Positionskomponenten) betrachtet. In der Abb. 9.11
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Abbildung 9.11: Kumulative Verteilung der betragsmäßigen Positionsschätzfehler bei künstlich ge-

nerierten Daten

wurden zusätzliche Hilfslinien für die charakteristischen Werte P (ǫp < ǫ̃p) = 0,5,
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P (ǫp < ǫ̃p) = 0,67 sowie P (ǫp < ǫ̃p) = 0,9 eingefügt. Die Variable ǫ̃p ist hier eine vorgegebene

Schranke für den mittleren betragsmäßigen Fehler in der Position (euklidische Vektornorm der drei

Positionskomponenten). Es zeigt sich, dass auch hier die Wahl einer konstanten Kovarianzmatrix Q
#
FF

zu einer geringeren Genauigkeit in der Navigationslösung führt als beim Einsatz eines Verfahrens, das

eine als zeitvariant angenommene Systemrauschkovarianzmatrix Q
#
FF;k schätzt. Im Vergleich zu den

Positionsschätzfehler (RMSE)

Methode (Prozentuale Verbesserung gegenüber GPS)

RMSEǫp,n
[m] RMSEǫp,e

[m] RMSEǫh
[m] RMSEǫp

[m]

GPS 1,99 2,03 4,01 4,91

IN
S
/G

P
S

-

V
ar

ia
nt

e Konst. 2,35 (−18,24%) 1,88 (6,82%) 4,63 (−15,6%) 5,53 (−12,56%)

KM 1,95 (1,8%) 1,89 (6,66%) 0,653 (83,68%) 2,79 (43,05%)

MD 1,78 (10,4%) 1,78 (12,2%) 0,538 (86,56%) 2,57 (47,56%)

SEM 1,76 (11,02%) 1,7 (15,7%) 0,532 (86,7%) 2,514 (48,75%)

Tabelle 9.9: Positionsschätzfehler und prozentuale Verbesserungen der Positionsschätzungen bei

der Navigationsfilterung mit sequenzieller Parameterschätzung gegenüber den GPS-

Schätzungen

GPS-Schätzungen tritt nach der Tabelle bei den Wurzeln der mittleren quadratischen Schätzfehler

(RMSE) auch hier eine geringfügige Verschlechterung von 12,56% auf. Dies ist vorrangig auf die

Schätzung der n- und d-Komponente zurückzuführen. In der e-Komponente hingegen sind Verbes-

serungen um 7% zu beobachten. Der Abb. 9.11 ist zu entnehmen, dass die kumulativen Verteilungs-

funktionen der auf Basis der GPS-Daten bestimmten Positionsschätzfehler und denen, die bei der

Wahl konstanter Rauschvarianzen resultiert, einen ähnlichen Verlauf

haben und sich sogar bei ǫ̃p ≈ 5,8m schneiden. An der charakteristischen Stelle

P (ǫKonst;p < 4,805m) = P (ǫGPS;p < 5,049m) = 0,67 liegt nur eine geringe Verbesserung ge-

genüber den Positionsschätzungen vor, die allein durch das satellitengestützte Teilsystem gewonnen

wurden.12 Die Ergebnisse aus dem letzten Abschnitt (Geschwindigkeitsfehler) spiegeln sich hier nicht

vollständig wider, was auf den Einfluss der barometrischen Stützhöhen zurückzuführen ist. Diese wir-

ken den ungünstigen Annahmen entgegen, die für die Rauschvarianzen getroffen wurde, und führen

dazu, dass die Auswirkungen auf die vertikale Positionskomponente gering bleiben.

Die Ergebnisse zum KM zeigen dagegen erneut die Überlegenheit eines Verfahrens, das die Zeit-

varianz – wenn auch nur indirekt – berücksichtigt. In 67% aller Fälle liegt der betragsmäßige Fehler

ǫKM;p unterhalb von 2,962m, wobei der RMSE der Position 2,79m beträgt und damit ca. 43% über

der Genauigkeit der GPS-Schätzungen liegt.13 Die Höhenstützung durch das barometrische Teilsys-

tem spielt hier ebenfalls eine wichtige Rolle. Durch diese wird eine Verbesserung in der Vertikalkom-

ponente von ca. 83% erreicht. Die Verbesserungen bei den Horizontalkomponenten liegen ebenfalls

bei bis zu 6,66% gegenüber den GPS-Positionsschätzfehlern.

Die Unterschiede in den Verbesserungen durch das MD und den SEM sind zwar gering, dennoch

ist der SEM im Mittel besser. Beide weisen eine höhere Schätzgenauigkeit als das KM auf und liegen

mit ca. 47,56% und 48,75% Verbesserung jeweils 5% – 6% über der, die durch das KM erreicht

12ǫGPS;p und ǫKonst;p bezeichnen hier die betragsmäßige Abweichung in der Position unter Verwendung der satellitenba-

sierten Teilsystems allein bzw. unter Verwendung des INS/GPS-Navigationssystems, wobei die Systemrauschkovarianzma-

trix konstant gewählte Parameter enthält.
13ǫKM;p bezeichnet hier die betragsmäßige Abweichung in der Position unter Verwendung des KM.
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wird. Die Summenhäufigkeitsfunktionen spiegeln dieses Resultat ebenfalls wider. Für den charakte-

ristischen Wert von P (ǫSEM;p < ǫ̃p = 2,672m) = 0,67 ist herauszustellen, dass 67% aller Schät-

zungen einen um ca. 10 cm geringeren betragsmäßigen Fehler gegenüber P (ǫMD;p < ǫ̃p = 2,731m)

aufweisen.14 Des Weiteren treten in der n- und e-Komponente deutlich geringere Positionsschätzfeh-

ler bei diesen beiden Ansätzen auf als es beim KM der Fall ist. Bei der e-Komponente sticht der SEM

hervor, da er hier sogar eine Verbesserung um mehr als 4,5% gegenüber dem MD aufweist, was hier

einer relativen Genauigkeitssteigerung von ca. 8 cm entspricht.

Insgesamt bestätigen die Ergebnisse dieses Abschnitts, dass eine Schätzung der Rauschvarianzen

sinnvoll ist. Für die Geschwindigkeits- und Positionsschätzungen konnten deutliche Verbesserungen

gegenüber der Annahme konstanter Systemrauschvarianzen festgestellt werden. Obwohl die Verbes-

serungen im Vergleich zum KM und dem MD hier im Zentimeter-Bereich liegen, hat sich der SEM

dabei als das Verfahren herausgestellt, das zu den größten Genauigkeiten in der Parameterschätzung

und der Navigationslösung führt.

9.2.2 Tiefpassfilterung der Inertialsensordaten

Die bisherigen Erkenntnisse wurden gewonnen, indem auf eine Tiefpassfilterung der Inertialsensor-

daten verzichtet wurde. In diesem Teilkapitel werden Ergebnisse präsentiert, bei denen die Daten

der IME im Vektor zIME einer zusätzlichen Tiefpassfilterung mit der Grenzfrequenz 5Hz unterzogen

wurden. Als Tiefpassfilter wurde hier auf ein Finite Impulse Response (FIR)-Filter zurückgegriffen,

wobei eine BLACKMAN-Fensterfunktion

0, 42 + 0, 5 · cos
(
2kπ

K

)
+ 0, 08 · cos

(
4kπ

K

)
(9.14)

zum Einsatz kam, bei der 0 ≤ k ≤ K der Signalindex des K langen Eingangssignals ist. Diese

zeichnet sich durch eine sehr hohe Flankensteilheit beim Übergang in den Dämpfungsbereich aus

[SS00]. Der Fokus liegt in diesem Abschnitt vorrangig auf dem MD und dem SEM.

In Tab. 9.10 (a) und (b) sind die RMSE der geschätzten Parameter des Inertialsensorrauschens der

Beschleunigungs- und Drehratensensortriade sowie die Standardabweichungen der Schätzfehler ein-

getragen. Da die Inertialsensordaten tiefpassgefiltert wurden, wurde für das KM und MD im Vorfeld

eine entsprechende Unterabtastung vorgenommen. Aus diesem Grund mussten deren Schätzungen

vor der Übernahme in das KALMAN-Filter auch entsprechend der NYQUIST-Frequenz 10Hz skaliert

werden. Idealerweise sollten das MD und der SEM die gleichen Rauschvarianzen schätzen. Durch

die verringerte Signalleistung und die geringe Korrelationszeit des GMP weisen die Schätzungen al-

lerdings Abweichungen auf. Als Referenzwerte wurden in den Tabellen dennoch die Werte des GMP

herangezogen, die zur Datengenerierung verwendet wurden.

Während das KM die entsprechenden Parameter weiterhin sehr hoch schätzt (selbst mit Berück-

sichtigung des entsprechenden Skalierungsfaktors), weisen die durch das MD geschätzten Parameter

nur noch eine geringe Abweichung von den Referenzgrößen des ursprünglichen GMP auf, wie der

Ausschnitt in Abb. 9.12 zeigt. Dennoch ist das MD nicht in der Lage vollständig zwischen der Tra-

jektoriendynamik und den verbleibenden Rauschanteilen zu differenzieren. Bis auf die Werte für die

z-Komponente σFF;ω,z weist die Tabelle daher deutlich geringere Unterschiede zwischen den Abwei-

chungen beim MD und denen des SEM auf als es bei den nicht tiefpassgefilterten Sensordaten der

Fall war.
14ǫSEM;p und ǫMD;p bezeichnen hier die betragsmäßige Abweichung in der Position unter Verwendung des SEM bzw.

unter Verwendung des MD.
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(a) Abweichungen der Parameterschätzungen (Be-

schleunigungssensortriade)

σFF;a
INS/GPS-Variante

MD SEM

RMSEǫσFF;a

x-Achse 1,59 0,616

y-Achse 1,532 0,695

[1 · 10−1 m/s2]
z-Achse 1,598 0,809

Gesamt 2,726 1,232

σǫσFF;a

x-Achse 1,091 0,581

y-Achse 0,999 0,655

[1 · 10−1 m/s2]
z-Achse 1,016 0,787

Gesamt 1,795 1,177

(b) Abweichungen der Parameterschätzungen (Dreh-

ratensensortriade)

σFF;ω
INS/GPS-Variante

MD SEM

RMSEǫσFF;ω

x-Achse 4,727 2,027

y-Achse 4,928 2,013

[1 · 10−1°/s]
z-Achse 4,795 4,797

Gesamt 8,344 5,583

σǫσFF;ω

x-Achse 2,025 1,805

y-Achse 2,162 1,697

[1 · 10−1°/s]
z-Achse 2,165 2,88

Gesamt 3,669 3,799

Tabelle 9.10: RMSE der Parameterschätzungen und Standardabweichungen der Parameter-

schätzfehler bezüglich der Rauschparameter des zur Datengenerierung angenommenen

GAUSS-MARKOV-Prozesses bei tiefpassgefilterten Inertialsensordaten
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Abbildung 9.12: Geschätzte Rauschparameter eines zeitlich korrelierten Beschleunigungssensor-

rauschens unter Verwendung künstlich generierter Daten (mit Tiefpassfilterung)

Eine zuverlässigere Aussage über die Qualität der Schätzungen der einzelnen Verfahren bei vorab

tiefpassgefilterten Sensordaten soll im Folgenden mit Betrachtung der Navigationslösung erfolgen.

Die Tab. 9.11 weist deutliche Unterschiede zu Tab. 9.8 auf. Im Mittel ist eine Verbesserung in den

Geschwindigkeitsschätzungen von 22% zu beobachten, was im Wesentlichen auf die Tiefpassfilte-

rung zurückzuführen ist. Die Unterschiede zwischen den einzelnen Verfahren sind ebenfalls deutlich

reduziert. Die Gesamtverbesserung, die durch den SEM gegenüber dem MD erreicht wird, liegt nur

noch bei knapp 1%, allerdings über 23% gegenüber den GPS-Geschwindigkeiten.

Während die Unterschiede bei den Geschwindigkeitsschätzungen gering sind, zeigt sich eine si-

gnifikante Differenz bei den Positionsschätzungen (siehe Tab. 9.11). Das KM und das MD weisen

ähnliche Werte bei den RMSE der Positionsschätzungen auf. Das MD führt sogar bei allen Kompo-
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Geschwindigkeitsschätzfehler (RMSE)

Methode (Prozentuale Verbesserung gegenüber GPS)

RMSEǫv,n
RMSEǫv,e

RMSEǫv,d
RMSEǫv

[1 · 10−1 m/s] [1 · 10−1 m/s] [1 · 10−1 m/s] [1 · 10−1 m/s]

GPS 1,21 1,25 2,13 2,85

IN
S
/G

P
S

-

V
ar

ia
nt

e Konst. 2,55 (−110,4%) 1,35 (−8%) 5,19 (−143,2%) 5,94 (−108,42%)

KM 1,08 (10,74%) 1,18 (5,6%) 1,54 (28%) 2,22 (22,11%)

MD 1,09 (9,92%) 1,17 (6,4%) 1,52 (28,7%) 2,21 (22,46%)

SEM 1,07 (11,57%) 1,15 (8%) 1,53 (28,3%) 2,19 (23,16%)

Tabelle 9.11: Geschwindigkeitsschätzfehler und prozentuale Verbesserungen der Geschwindigkeits-

schätzungen bei der Navigationsfilterung mit sequenzieller Parameterschätzung gegen-

über den GPS-Schätzungen

Positionsschätzfehler (RMSE)

Methode (Prozentuale Verbesserung gegenüber GPS)

RMSEǫp,n
[m] RMSEǫp,e

[m] RMSEǫh
[m] RMSEǫp

[m]

GPS 1,91 2,03 3,996 4,87

IN
S
/G

P
S

-

V
ar

ia
nt

e Konst. 1,98 (−3,6%) 1,87 (7,9%) 3,49 (12,67%) 4,42 (9,16%)

KM 1,656 (13,18%) 1,802 (11,11%) 0,451 (88,7%) 2,49 (48,9%)

MD 1,661 (12,92%) 1,808 (10,78%) 0,45 (88,6%) 2,49 (48,8%)

SEM 1,584 (16,95%) 1,73 (14,39%) 0,45 (88,7%) 2,39 (50,85%)

Tabelle 9.12: Postitionsschätzfehler und prozentuale Verbesserungen der Postitionsschätzungen bei

der Navigationsfilterung mit sequenzieller Parameterschätzung gegenüber den GPS-

Schätzungen

nenten zu etwas schlechteren Ergebnissen als bei Verwendung des KM. Beim MD wird den Stützgrö-

ßen nun zuwenig vertraut, wodurch im Mittel die Werte der Schätzfehlervarianzen auch nicht mehr

mit denen der wahren Schätzfehler übereinstimmen. Das SEM hingegen ist den anderen Verfahren

aufgrund der Genauigkeiten in der n- und e-Komponente deutlich überlegen, denn es steht a priori-

Wissen in Form des Systemmodells zur Verfügung. Im Mittel führt es zu einer Verbesserung in der

Positionsgenauigkeit von ca. 12 cm gegenüber dem Fall, in dem keine Tiefpassfilterung durchgeführt

wird. Mit Tiefpassfilterung liegt der Unterschied zwischen den Schätzungen durch das MD und denen

des SEM ebenfalls bei ca. 10 cm.

9.2.3 Ergebnisse unter Verwendung von Felddaten

Die Verfügbarkeit annähernd fehlerfreier Referenzdaten stellt vor allem in einer KFZ-Umgebung ein

Problem dar (z. B. durch eine von Vibrationen entkoppelte Sensorumgebung, ideale Positions- und

Geschwindigkeitsinformationen sowie Kartendaten). Diese könnten bestenfalls mit einer kostenin-

tensiven Ausrüstung bestimmt werden. Obwohl diese nicht zur Verfügung stand, sollen die Parame-

terschätzverfahren dennoch einmal in einem realen Umfeld betrachtet werden. Dazu wurde wieder

auf die im Feld aufgenommenen Sensormessungen zurückgegriffen, aus denen die Trajektorie nach

Abb. 9.3 resultierte. Wie zuvor kam die vollständige INS/GPS-Filterstruktur mit Tiefpassfilterung der
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IME-Ausgangsgrößen zum Einsatz.

Aufgrund der bisherigen Ergebnisse ist zu erwarten, dass die realisierten Verfahren zu einer Ver-

besserung der INS/GPS-Navigationslösung führen. Wegen fehlender Referenzdaten kann bei den

Felddaten nicht überprüft werden, ob die geschätzten Geschwindigkeiten den wahren Werten ent-

sprechen. Die Position soll an dieser Stelle anhand des vorliegenden Kartenmaterials überprüft wer-

den. Die eigentlichen Vorteile der INS/GPS-Integration liegen vor allem in der Robustheit gegenüber

GPS-Signalstörungen und -ausfällen, wie sie bereits in Kap. 9.1 untersucht worden sind. Bisher wurde

allerdings zur Stützung des SEM immer auf vorhandene GPS- und Magnetfeldsensormessungen zu-

rückgegriffen. Die damit zusammenhängenden Probleme wurden bereits in Kap. 7.1.3 behandelt. Bei

den Felddaten hat sich im vorliegenden Fall jedoch gezeigt, dass die Magnetfeldsensoren trotz der im

Vorfeld vorgenommenen Kalibrierung unzuverlässige Sensordaten liefert. Durch starke Schwankun-

gen des magnetischen Feldes aufgrund des Motors, der Karosserie und baulichen Einrichtungen am

Fahrbahnrand, konnten keine zuverlässigen Stützinformationen für die Fehlerfilterung anhand dieser

Daten gewonnen werden. Eine direkte Stützung der Lagekomponenten des Zustandsvektors war so-

mit nicht möglich. Aus diesem Grund wurde in dem folgenden Abschnitt auch auf eine Schätzung

des Vektors qFF;ω,k durch den SEM verzichtet und stattdessen eine Kombination der zwei Verfahren

(SEM und MD) eingesetzt.

GPS-Fehler Neben Signalausfällen treten häufig auch Probleme auf, welche auf die in Anhang A.1

beschriebenen Common-Mode- oder Non-Common-Mode-Fehler, wie z. B. eine fehlerhafte Synchro-

nisation, zurückzuführen sind und im GPS-Empfänger selbst nicht ausreichend kompensiert wer-

den. Für diesen Fall ist ein weiteres Beispiel aus der Trajektorie in Abb. 9.3 in dem Kartenaus-
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Abbildung 9.13: Positionsschätzgenauigkeit des GPS-Empfängers zum Zeitpunkt eines Common-

Mode- oder Non-Common-Mode-Fehlers

schnitt 9.14 (a) dargestellt. Dieser zeigt einen Teil der auf den GPS-Positionen basierenden Tra-

jektorie der Messfahrt. Obwohl hier aus darstellungstechnischen Gründen eine durchgängige Linie

eingezeichnet ist, sei darauf hingewiesen, dass die GPS-Daten mit einer Rate von 4 1/s vorlagen. Die

Abb. 9.13 illustriert die vom GPS-Empfänger ausgegebenen prognostizierten Schätzfehler der einzel-

nen Positionskomponenten für den Kartenausschnitt. Diese Werte, die auch als Standardabweichung-

en des Messrauschens im Messmodell dienten, zeigen vor allem in der Nord- und Vertikalkomponente
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eine deutlichen Anstieg. Besonders die Genauigkeit in der Nordkomponente nimmt hier zwischen-

zeitlich um den Faktor Drei ab.

Die Abb. 9.14 (b) zeigt den gleichen Trajektorienabschnitt, wobei die Filterung unter Zuhilfe-

nahme des KM-Parameterschätzverfahren durchgeführt wurde. Die Aktualisierungsrate der Naviga-

tionslösung lag bei 100 1/s. Gleiches galt beim MD, wobei die resultierenden Positionsschätzungen in

Abb. 9.14 (c) dargestellt sind. In Teilbild (d) ist schließlich noch das Ergebnis abgebildet, das mit Hilfe

des SEM in Kombination mit dem MD gewonnen wurde (der SEM wurde zur Schätzung von qFF;a,k

und das MD zur Schätzung von qFF;ω,k eingesetzt). Es ist deutlich zu erkennen, dass die Verfahren

(a) Horizontale Trajektorie
(

p̂nGPS;eb,n p̂nGPS;eb,e

)T

basierend auf den GPS-Schätzungen

(b) Horizontale Trajektorie
(

p̂nSD;eb,n p̂nSD;eb,e

)T
bei

Einsatz des Kovarianzmanagements

(c) Horizontale Trajektorie
(

p̂nSD;eb,n p̂nSD;eb,e

)T
bei

Einsatz des Messwertdifferenzen-Verfahrens

(d) Horizontale Trajektorie
(

p̂nSD;eb,n p̂nSD;eb,e

)T
bei

Einsatz des sequenziellen EM-Algorithmus kom-

biniert mit Messwertdifferenzen-Verfahren

Abbildung 9.14: Auswirkungen eines GPS-Signalfehlers auf die Navigationslösung unter Verwen-

dung von Felddaten (Bilddaten von OpenStreetMap, veröffentlicht unter Lizenz CC–

BY–SA 2.0)

zu einer unterschiedlichen Kompensation des Fehlers in den Stützdaten führen. Die sprunghafte Ab-

weichung von ca. 2m von der Referenzlinie wird bei der Kombination SEM+MD besser kompensiert

als es beim KM der Fall ist. Die Abbildungen verdeutlichen, dass die Unterschiede in den Positi-

onsschätzungen bis zu 60 cm betragen. Der rote Pfeil in den beiden unteren Abbildungen weist auf

eine markante Stelle im Trajektorienverlauf hin, die in der rechten Abbildung deutlich näher an dem

Referenzverlauf der Karte liegt als es in der linken Abbildung der Fall ist.

Bei der dargestellten Linkskurve im jeweils rechten Teil der Abb. 9.14 (a) – (d) fällt ebenfalls
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auf, dass die Trajektorie mit Hilfe des kombinierten Verfahrens näher an der weißen Referenzlinie

verläuft als es bei den anderen Trajektorien der Fall ist. Ein Vergleich mit entsprechenden Satelliten-

bildern (z. B. GoogleMaps) belegt, dass die Trajektorie bei Teilbild (d) direkt auf der rechten Fahrbahn

liegt.15 Die Zuverlässigkeit der Rauschvarianzschätzungen q̂FF;a,k durch den SEM einerseits und die

des MD zur Bestimmung von q̂FF;ω,k andererseits führen hier zu einem gegenüber Messfehlern ro-

busten Verhalten und einer höheren Positionsschätzgenauigkeit als bei ausschließlicher Verwendung

der GPS-Informationen des eingesetzten ublox-Empfängers.

Vibrationseinflüsse Die Abb. 9.15 (a) zeigt abschließend einen ausgewählten Trajektorienausschnitt,

in dem aufgrund des Straßenbelags (Schlaglöcher und Rollsplit) stärkere Vibrationen in den IME-

Sensorsignalen auftraten (eingekreiste Stelle) als es bei einem Fahrbahnbelag aus Teer der Fall ist.

Vergleicht man zunächst den Verlauf der Trajektorie oberhalb des eingekreisten Teilstücks, so

sind kaum Unterschiede zwischen der linken und rechten Abbildung zu erkennen. Die Fehler in der

Navigationslösung scheinen gleichermaßen kompensiert zu werden. Treten allerdings zusätzliche Stö-

(a) Horizontale Trajektorie
(

p̂nSD;eb,n p̂nSD;eb,e

)T
un-

ter der Annahme einer konstanten Systemrausch-

kovarianzmatrix

(b) Horizontale Trajektorie
(

p̂nSD;eb,n p̂nSD;eb,e

)T
bei

Einsatz des sequenziellen EM-Algorithmus kom-

biniert mit Messwertdifferenzen-Verfahren

Abbildung 9.15: Auswirkungen von Vibrationen auf die Navigationslösung unter Verwendung von

Felddaten (Bilddaten von OpenStreetMap, veröffentlicht unter Lizenz CC–BY–SA

2.0)

rungen auf, so zeigt Abb. 9.15 (a) deutlich, dass die Annahme einer konstanten Systemrauschkovari-

anzmatrix nachteilig für die Positionsschätzungen des Strapdown-Algorithmus sein kann. Die starken

Schwankungen werden durch das kombinierte Verfahren besser kompensiert und die Trajektorie ver-

läuft etwas näher an der weißen Referenzlinie der Karte. An der mit dem Pfeil markierten Stelle liegt

zwischen dem Verlauf in der linken und der rechten Abbildung laut Kartenmaterial eine Differenz

von ca. 20 cm (Ostpositionskomponente).

9.2.4 Gegenüberstellung der sequenziellen Schätzverfahren

9.2.4.1 Vor- und Nachteile

Die drei hier vorgestellten Verfahren zur sequenziellen Varianzschätzung von Zufallsprozessen haben

individuelle Vor- und Nachteile aufgezeigt, die abschließend noch einmal erörtert und anhand der

15Aus lizenzrechtlichen Gründen kann dies hier nicht dargestellt werden.
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vorliegenden Ergebnisse analysiert werden sollen.

Kovarianzmanagement Das KM ist ein rekursiver Mittelwert- und Varianzschätzer unter der An-

nahme stationärer (ergodischer) Prozesse, der unabhängig von Bewegungsmodellen oder Differenzi-

algleichungen, abtastwertweise zuverlässige Schätzwerte liefert, sofern die in Kap. 7.2.3 erläuterten

Modifikationen berücksichtigt werden. Dazu zählt vor allem das sporadische Zurücksetzen der heu-

ristischen Parameter ζ und ζ̃ in den Gl. (7.72) und (7.73). Die simple Struktur des Schätzers erlaubt

eine mit sehr geringem Mehraufwand verbundene Integration in das vorhandene Navigationsfilter.

Die Ergebnisse haben hier zwar deutlich gemacht, dass die zeitvarianten Größen zu hoch geschätzt

werden, wenn unvorhergesehene Störungen auftreten, die Auswirkungen auf die Navigationslösung

halten sich jedoch in Grenzen.

Ein bedeutender Nachteil des Verfahrens ist, dass das Modell eines zeitlich korrelierten Rausch-

prozesses (hier eines GMP) nicht explizit berücksichtigt werden kann. Bias und Skalierungsfehler

wirken sich direkt auf das Schätzergebnis aus. Das Verfahren kann nicht vollständig zwischen Tra-

jektoriendynamik und Rauschprozessen unterscheiden. Eine Filterstruktur wie im vorliegenden Fall,

bei der sämtliche Zufallsprozesse nicht parallel verarbeitet werden können, basiert i. d. R. auf mo-

dellabhängige Varianzen. Werden Varianzschätzungen, die den zugrunde liegenden Modellen oder

Messungen nicht entsprechen, dennoch für das Zustandsmodell eines zeitvarianten Filters verwen-

det, können sie sich auch negativ auf die vom LKF geschätzte a posteriori-Verteilung und damit auf

die gesamte Navigationslösung auswirken. Durch die Rückkopplung des Zustandsvektors des FF zur

Korrektur der Strapdown-Berechnungen werden falsche Annahmen bzgl. der Verteilung der beteilig-

ten Zufallsvariablen getroffen, was zur Folge haben kann, dass sich die dadurch entstehenden Fehler

auf alle nachfolgenden Lösungen auswirken.

Messwertdifferenzen-Verfahren Das zustandsmodellbasierte MD kann hingegen die unbekann-

ten Parameter eines zeitlich korrelierten Rauschprozesses bestimmen. Das Zustandsmodell, das auch

für das FF verwendet wird, wird zwar explizit berücksichtigt, dennoch können sich in der Schät-

zung weitere Einflüsse bemerkbar machen. Wie die Ergebnisse in diesem Kapitel zeigen, werden die

gesuchten Rauschvarianzen ebenfalls zu hoch geschätzt, wenn auf eine Tiefpassfilterung verzichtet

wird. Die Trajektoriendynamik, d. h. der reine Bewegungsanteil, kann nicht vollständig zur Berech-

nung der Korrelationen r
(i′)
∆n†∆n†,k

, i ∈ {0, 1} in Gl. (7.76) eliminiert werden. Des Weiteren wird

nicht berücksichtigt, dass am Eingang des LKF „unterabgetastete“ Differenzmesswerte anliegen und

daher auch die Korrektur nur mit entsprechender Rate erfolgt. Andererseits zeigt sich, dass hier die

Überschätzung der Varianzen im Gegensatz zu einer Unterschätzung (wie bei der Annahme einer

konstanten Kovarianzmatrix) weniger problematisch ist.

Ein Vorteil ist die einfache Struktur des Verfahrens, die zu einem sehr geringen Mehraufwand in

der INS/GPS-Navigationsfilterung führt.

Sequenzieller Expectation-Maximization-Algorithmus Der SEM ist ebenfalls zustandsmodellba-

siert und hat als BAYES’scher Schätzer den Vorteil, dass er genau die Parameter schätzen kann, die

für den Filterprozess benötigt werden. Der Algorithmus stellt sich auf das Navigationsfilter ein und

liefert die optimalen Schätzwerte, da er auf dessen a posteriori-Schätzungen beruht.

Ein Problem des SEM hat sich bei den Felddaten gezeigt: Sind durch unzuverlässige Messwerte

die Messrauschvarianzen im Vergleich zu den Systemrauschvarianzen sehr hoch, ist der SEM nicht

mehr in der Lage, die Systemrauschvarianzen zu schätzen. Dies tritt im vorliegenden Fall bei Ver-
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wendung der Magnetfeldsensordaten auf. Bei den GPS-Schätzungen stellt dies hingegen kein Pro-

blem dar, da die Messrauschvarianzen durch eine hohe Empfängerqualität relativ niedrig sind. Wie in

[EMRH09] anhand der RICCATI-Differenzengleichung festgestellt wurde, nähern sich die Schätzun-

gen der Rauschkovarianzmatrizen der Systemgleichung genau dann den wahren Werten an, wenn die

Messrauschvarianzen zu vernachlässigen sind.

9.2.4.2 Komplexität

Im Folgenden sollen die durchschnittlichen Prozesslaufzeiten der einzelnen Parameterschätzverfah-

ren sowie der anderen Filterkomponenten gegenüber gestellt werden, wobei die vollständige Imple-

mentierung der Filterstruktur in Matlab erfolgte. Dies soll als Anhaltspunkt dienen, um die Echt-

zeitfähigkeit des Systems beurteilen zu können. Die Abb. 9.16 (a) zeigt ein Kreisdiagramm mit den

prozentualen Anteilen der wichtigsten Filterkomponenten aus Abb. 5.1 gemessen an der Gesamtdau-

er eines Filterzyklus (Zyklus zur Verarbeitung eines vollständigen IME-Messvektors bestehend aus

Beschleunigungs-, Drehraten- und Magnetfeldsensordaten). Das satellitengestützte Teilsystem wurde
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Abbildung 9.16: Prozentuale Verteilung des Verarbeitungsaufwandes einzelner Filterkomponenten

und Verarbeitungsdauer der Parameterschätzverfahren für einen Filterzyklus

hier nicht berücksichtigt. Die Messwertaktualisierung erfolgte beim FF und beim SF mit 4/s. Es zeigt

sich, dass das barometrische Teilsystem lediglich 1% des gesamten Berechnungsaufwandes erfordert.

Dies hängt allerdings von der Größe der topografischen Datenbank ab, die hier nur einige 100 Einträ-

ge umfasst. Man könnte den Aufwand für diese Komponente jedoch weiterhin gering halten, indem

die Datenbank in Kategorien (z. B. nach Gemeinden) aufgeteilt wird und nur die Datensätze verwen-

det werden, die der aktuellen Position am wahrscheinlichsten zuzuordnen sind. Dieses Verfahren wird

auch beim MM mit Straßenkarten angewendet.

Die Strapdown-Berechnungen liegen mit 9% bei einem Drittel des Aufwandes, der für das FF

nötig ist. Ausschlaggebend beim FF ist dabei die Berechnung der Inversen der Autokovarianzmatrix

in Gl. (B.18).

Durch den SEM und das SF, das zwar gegenüber dem FF einen reduzierten Systemzustands-

vektor aufweist, aber wie in Kap. 7.1.3 beschrieben zur Berechnung der Lag-One-Kovarianzmatrix
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erweitert werden musste, fallen ca. 64% des gesamten Verarbeitungsaufwandes auf diese Komponen-

ten. Beim SEM spielt die Konvergenzgeschwindigkeit und damit der Aufwand zur Berechnung der

ARMIJO-Schrittweite die entscheidende Rolle, da die optimale Schrittweite in jedem Iterationsschritt

wiederum auf der wiederholten Berechnung der Zielfunktion beruht [Fro04]. Trotz der Modifikatio-

nen nach Kap. 7.1.2 führt auch die Berechnung der Inversen in (7.47) und die CHOLESKY-Zerlegung

zur Eigenwertberechnung der HESSE-Matrix zu einer hohen Komplexität.

Die Abb. 9.16 (b) stellt die benötigte Verarbeitungsdauer der Parameterschätzverfahren gegen-

über. Es sind die Zeiten angegeben, die benötigt wurden, um 100 IME-Messungen (entspricht ei-

nem Datenblock von 1 s Länge) zu verarbeiten. Während das KM und das MD vom Aufwand her

vergleichbar sind, hebt sich die Sekundärfilterung mit dem SEM deutlich ab. Die Berechnungen be-

nötigen mit 53,15ms im Mittel mehr als dreimal so lange wie die beiden anderen Verfahren. Den-

noch zeigt sich, dass unter Berücksichtigung der gesamten Filterstruktur selbst der SEM mit einer

Verarbeitungszeit von weitaus weniger als 1 s selbst unter Matlab noch echtzeitfähig bleibt. Höhere

IME-Datenraten oder auch eine Erweiterung des KALMAN-Filters, um beispielsweise Non-Common-

Mode-Fehler des GPS-Empfängers besser kompensieren zu können, würden selbst in Kombination

mit diesem Verfahren keine Einschränkung hinsichtlich der Echtzeitfähigkeit bedeuten.

9.2.4.3 Fazit

Mit Betrachtung der Komplexität und der Verbesserungen, die in der Navigationslösung mit dem

SEM gegenüber den anderen Verfahren gewonnen wurden, kann man zusammenfassen, dass sich

dessen Einsatz im Rahmen einer schwach gekoppelten Navigationsfilterstruktur unter bestimmten

Voraussetzungen lohnt:

• Der Anwendungsfall erfordert relative Verbesserungen in der Positionsgenauigkeit, die im

Zentimeter-Bereich liegen.

• Es ist a priori-Wissen auf Basis von Feldmessungen vorhanden.

• Die Zustandsübergangsparameter des Systemmodells, das zur Rauschprozessmodellierung ein-

gesetzt wird, sind nur annähernd bekannt.

• Die Rechenkomplexität spielt eine untergeordnete Rolle, da ausreichende Kapazität vorhanden

ist.

Soll dagegen ein einfach aufgebautes und wenig rechenintensives Verfahren eingesetzt werden, so

weist der SEM trotz seiner konsistenten Verbesserungen bei der Parameterschätzung nur geringfügige

Vorteile gegenüber dem MD oder dem modifizierten KM auf.

An dieser Stelle kann dennoch hervorgehoben werden, dass es unabhängig von der Komplexität

und der Qualität der Parameterschätzung im Rahmen dieser Arbeit gelungen ist, den ursprünglich

blockweise arbeitenden EM-Algorithmus so zu modifizieren, dass auch eine sequenzielle Schätzung

von Systemrauschvarianzen möglich ist. Zudem stellt das schwach gekoppelte Navigationsfilter im

Vergleich zu einem geschlossenen Filteransatz eine komplexe Struktur dar, da nicht absolute Na-

vigationsgrößen, sondern deren Fehler gefiltert werden und geeignete Stützgrößen nicht zu jedem

Zeitpunkt zur Verfügung stehen. Damit basieren ebenso die Parameterschätzungen des SEM nicht

auf absolute Filtergrößen, sondern auf deren Fehlern. Eine zusätzliche Herausforderung stellt für den

SEM zudem das sporadische Zurücksetzen des Systemzustandsvektors auf einen Nullvektor dar.
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Zusammenfassung

Die Ergebnisse, die in diesem Kapitel präsentiert wurden, basieren auf künstlich erstellten Datensät-

zen sowie auf Messungen, die im Rahmen von Messfahrten in der Stadt Paderborn aufgenommen

wurden. Im ersten Teil wurde das vollständige Navigationsfilter ohne eine explizite Schätzung der

zeitvarianten Kovarianzmatrix des Inertialsensorrauschens untersucht. Dabei konnte herausgestellt

werden, dass durch die Berücksichtigung barometrischer Sensordaten, mit denen anhand der baro-

metrischen Höhenformel eine zuverlässige Geoidhöhe bestimmt werden kann, ebenfalls die Naviga-

tionslösung des INS/GPS verbessert wird. Außerdem konnte belegt werden, dass durch eine separate

Filterung des temperaturabhängigen Skalierungsfehlers und luftdruckabhängigen Bias sowie die da-

durch mögliche Korrektur der barometrischen Höhe, die Genauigkeit der Höhe über NN und die

Zuverlässigkeit der Navigationslösung erhöht werden kann. Dies hat sich hier ebenfalls positiv auf

Phasen ausgewirkt, in denen Ausfälle des GPS-Signals vorlagen.

Im zweiten Teil des Kapitels lag der Schwerpunkt der Untersuchungen auf der Schätzung der als

zeitvariant angenommenen Kovarianzmatrix des Rauschprozesses, der das zeitlich korrelierte Inertial-

sensorrauschen treibt. Vor allem auf Basis der Simulationsdaten konnte verifiziert werden, dass der

SEM sehr gute Schätzwerte für die gesuchten Varianzen liefert, da diese auf den getroffenen Modell-

annahmen beruhen. Es werden genau die Schätzwerte geliefert, die bei der Fehlerfilterung benötigt

werden, während die Vergleichsverfahren einen systematischen Schätzfehler aufweisen können. Es

konnte gezeigt werden, dass das NEWTON-Verfahren in der Lage ist, auch im Rahmen einer Fehlerfil-

terung die sich fortlaufend ändernden Parameter nachzuführen. Die Auswirkungen auf die eigentliche

Navigationslösung war bei den hier eingesetzten Verfahren geringer als erwartet. Durch den Einsatz

des SEM konnten jedoch unter realistischen Bedingungen konsistente Verbesserungen erreicht wer-

den. Bei den Felddaten haben sich die Magnetfeldsensordaten als unzuverlässige Stützgrößen heraus-

gestellt, weshalb der SEM allein nicht in der Lage war, die zeitlich korrelierten Rauschvarianzen des

jeweiligen Drehratensensorrauschens zu schätzen. Trotzdem konnte gezeigt werden, dass fehlerhafte

GPS-Messungen durch den SEM in Kombination mit dem MD besser kompensiert werden können

als durch das MD allein.



Kapitel 10

Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurden Verfahren zur Lösung von zwei grundlegenden Problemen ent-

wickelt, die die Lokalisation in einem mobilen Umfeld (z. B. eines KFZ) betreffen. Hierbei stand

die Fusion von Daten einer inertialen Messeinheit (IME) mit weiteren Sensorinformationen in einer

schwach gekoppelten Filterstruktur im Vordergrund. Dies schloss die Entwicklung eines Verfahrens

ein, das mit Hilfe von Temperatur- und Luftdruckmessungen zuverlässige Höheninformationen lie-

fert, wobei auftretende Bias- und Skalierungsfehler auf Basis topografischer Informationen korrigiert

werden. Dadurch wird eine verbesserte Stützung eines inertialen Fehlerfilters (FF) erreicht, was wie-

derum zu einer zuverlässigeren Gesamtnavigationslösung führt. Das Verfahren wurde in ein Lokali-

sierungssystem integriert, das für die Untersuchungen im Rahmen dieser Arbeit entworfen wurde und

die Verarbeitung sowohl künstlich generierter als auch realer Felddaten erlaubt. Das System umfasst

neben der Berechnung der vollständigen Navigationslösung durch die Strapdown-Gleichungen ein

linearisiertes KALMAN-Filter (LKF) zur Schätzung der Fehler der Navigationslösung, wobei GPS-,

Magnetfeldsensor- und die durch den entwickelten Algorithmus gelieferten Höhendaten als Stütz-

informationen dienen. Des Weiteren wurde ein sequenzieller Algorithmus zur Schätzung unbekann-

ter bzw. als zeitvariant angenommener Inertialsensorrauschparameter auf Basis des EM-Algorithmus

hergeleitet. Es konnte gezeigt werden, dass sich dieser sequenzielle EM-Algorithmus (SEM) durch

eine geringe Latenz auszeichnet, und die für den Filterprozess erforderlichen Systemrauschvarianzen

zuverlässig geschätzt und nachgeführt werden können. Die Parameterschätzungen weisen zudem eine

geringe Schätzfehlervarianz auf.

Nach einer kurzen Einführung in den hier behandelten Themenkomplex wurde zunächst auf den

aktuellen Stand der Forschung und Technik im Bereich der inertialen Navigation eingegangen. Aus-

gehend davon wurden die wissenschaftlichen Ziele dieser Arbeit definiert. In diesem Zusammenhang

wurde auf das zeitliche Verhalten von Sensorparametern eingegangen und gezeigt, dass eine vollstän-

dige, genaue Modellierung bestimmter Parameter nur eingeschränkt möglich ist. Durch die Annahme

zeitvarianter Rauschvarianzen wurde eine flexiblere Modellierung begründet. Dabei konnte heraus-

gestellt werden, dass sich u. a. aufgrund von Vibrationen, denen eine IME ausgesetzt ist, zeitliche

Korrelationen ergeben, die im Rahmen des Filterprozesses entsprechend berücksichtigt werden müs-

sen. Diese Korrelationen können durch ein Systemmodell (einem GAUSS-MARKOV-Prozess (GMP))

beschrieben werden, wobei die Rauschvarianzen des treibenden Rauschprozesses als zeitvariant an-

genommen werden. Die Annahme zeitvarianter Rauschparameter resultierte u. a. aus der Motivation

heraus, Modellierungsungenauigkeiten des Inertialsensorrauschens oder Aliaseffekte ausgleichen zu

können und eine verbesserte Positions- und Geschwindigkeitsschätzung im Rahmen der Navigations-

lösung durch den Strapdown-Algorithmus erreichen zu können.

Nach der Betrachtung der grundlegenden Komponenten einer schwach gekoppelten Navigations-

filterstruktur, wurde das LKF vorgestellt, das eine indirekte Filterung in der Weise vornimmt, dass

153
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nicht eine absolute Position, Geschwindigkeit oder Lage einer IME geschätzt wird, sondern die aus

der Navigationslösung resultierenden Fehler. Zeitlich korreliertes Sensorrauschen lässt sich bei der

Filterung berücksichtigen, indem der LKF-Zustandsvektor entsprechend erweitert wird. Um dies je-

doch zu vermeiden, wurde eine Modifizierung der gängigen Filtergleichungen vorgenommen. Auf

diese Weise konnte weiterhin der Einfluss eines zeitkorrelierten Rauschprozesses auf den eigentlichen

Systemzustand berücksichtigt werden, ohne eine explizite Berechnung der Rauschgrößen vornehmen

zu müssen. Die Herleitung des Filters schloss auch die Berücksichtigung von Magnetfeldmessungen

ein, die u. a. dem SEM als Stützinformationen dienen.

Im Anschluss wurde der Ansatz präsentiert, der es erlaubt, die auf Temperatur- und Luftdruck-

informationen beruhende Höhenschätzung mit Hilfe von topografischen Kartendaten zu korrigieren.

Die barometrische Höhenformel geht ursprünglich von konstanten Referenzparametern für Luftdruck

und Temperatur aus. Es wurde jedoch erörtert, dass sich diese am jeweiligen Referenzort ebenfalls

ändern können und daraus Skalierungs- und Biasfehler in der Schätzung resultieren. Ein Vergleich

zwischen der direkt berechneten und der mit Hilfe der geschätzten Fehler korrigierten Höhe zeigte

Unterschiede, die mehrere Meter betrugen. Es wurde deutlich, dass bei Verfügbarkeit entsprechender

topografischer Daten die optimierte Höhenschätzung trotz augenscheinlich geringer Auswirkungen

auf die Schwerebeschleunigung zu einer stabileren Navigationslösung des Gesamtsystems führt, da

eine zuverlässigere Stützung des INS/GPS-Navigationsfilters im Rahmen der Fehlerfilterung und der

Strapdown-Berechnungen erfolgen kann. Der positive Einfluss der korrigierten barometrischen Mes-

sungen konnte bei der Verwendung realer Sensorsignale ebenfalls herausgestellt werden. Zudem wur-

de gezeigt, dass sich dies auch bei auftretenden GPS-Signalabschattungen bemerkbar macht. Weitere

Untersuchungen bezogen sich in diesem Kontext auf die Auswirkungen fehlerhafter Modellannahmen

in der Messgleichung des FF, wobei anhand künstlich erzeugter Messsignale belegt werden konnte,

dass nicht berücksichtigte Korrelationen in den GPS-Positions- und Geschwindigkeitsschätzungen zu

deutlichen Einbußen in der Genauigkeit der Gesamtlösung führen.

Ein weiterer zentraler Punkt dieser Arbeit lag in der Entwicklung eines Verfahrens zur Schätzung

zeitvarianter Systemrauschvarianzen. Dieses beruht auf dem EM-Algorithmus, der in ein Verfahren

überführt wurde, das die Beobachtungen nicht blockweise, sondern abtastwertweise verarbeitet. Da-

bei wurde die Zielfunktion, der bedingte Erwartungswert der Log-Likelihood der kompletten Daten,

in eine rekursive Beschreibung überführt. Das Optimierungsproblem wurde gelöst, indem nach Be-

rechnung der Zielfunktion diese mit Hilfe des NEWTON-Verfahrens in jedem Zeitschritt in mehreren

Iterationsschritten maximiert wird. Um sicherzustellen, dass die HESSE-Matrix negativ definit bleibt,

wurde ein zeitvarianter Parameter eingeführt, der von dem maximalen Eigenwert der Matrix abhängt.

Des Weiteren wurde eine Transformation des gesuchten Parameters vorgenommen, um numerischen

Instabilitäten entgegenzuwirken und zu gewährleisten, dass die geschätzten Varianzen positiv sind.

Auf diese Weise liegt ein Algorithmus vor, der nur eine geringe Latenz aufweist und somit annähernd

echtzeitfähig ist. Nach der ausführlichen Herleitung des SEM wurde die zusätzliche Verwendung ei-

nes Sekundärfilters (SF) erörtert, das mögliche Singularitäten bei den Berechnungen aufgrund des

verwendeten Zustandsmodells vermeidet.

Als Vergleichsverfahren wurden zwei weitere Ansätze zur sequenziellen Parameterschätzung vor-

gestellt. Dies war zum einen ein Algorithmus, der die Korrelationen eines autoregressiven Prozesses

auf Basis der Differenz aufeinanderfolgender Messwerte rekursiv berechnet. Mit diesem

Messwertdifferenzen-Verfahren (MD) lassen sich zeitvariante Rauschprozessparameter zeitlich kor-

relierter Rauschprozesse schätzen, die Trajektoriendynamik kann dabei jedoch nicht vollständig un-

terdrückt werden. Zum anderen wurde mit dem Kovarianzmanagement (KM) ein Verfahren ange-
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führt, das auf einer empirischen Mittelwert- und Varianzberechnung ergodischer Prozesse beruht.

Dieses wurde so modifiziert, dass ein zeitvarianter Mittelwert und eine zeitvariante Varianz rekursiv

berechnet werden können.

Bevor die Ergebnisse zum SEM präsentiert werden konnten, wurden Analysen der eingesetz-

ten IME auf Basis der ALLAN-Varianz vorgenommen. Neben der detaillierten Untersuchung einer

ruhenden MTi-Sensoreinheit wurde darauf eingegangen, welche Sensorausgangssignale und Sensor-

parameter bei einer sich bewegenden Sensoreinheit zu erwarten sind.

Als Datenbasis zur Untersuchung des SEM dienten anschließend sowohl künstlich generierte Da-

ten als auch Messaufnahmen, die bei Fahrten mit einem KFZ aufgenommen wurden, welches mit

einer IME, einem GPS-Empfänger sowie einem barometrischen Sensor ausgestattet war. Es wurde

deutlich, dass bei den Schätzungen, die auf künstlich generierten Daten ohne explizite Tiefpassfil-

terung beruhten, der SEM sehr gute Schätzergebnisse liefert, sofern Stützinformationen durch einen

satellitenbasierten Empfänger und Magnetfeldsensoren vorliegen. Während der SEM die a posteriori-

Schätzungen des FF bzw. SF nutzt, wurden für die anderen Verfahren die Messvektoren direkt ausge-

wertet. Der Root Mean Square Error (RMSE) der geschätzten Rauschvarianzen der Beschleunigungs-

sensortriade wies im Rahmen der Untersuchungsergebnisse (ohne Tiefpassfilterung der Inertialsens-

ordaten) beim SEM mit 2,021 · 10−1 m/s2 eine um ca. 87% bessere Schätzung gegenüber dem KM auf

als es beim MD mit einem Fehler von 13,465 · 10−1 m/s2 der Fall war. Die Schätzgenauigkeit war da-

bei um ca. 10,3% höher als beim KM, das einen RMSE von 15,018 · 10−1 m/s2 aufwies. Diese Werte

sind auf systematische Schätzfehler zurückzuführen, die daraus resultieren, dass die Trajektoriendy-

namik und das Rauschen nicht vollständig voneinander separiert werden können. Für den RMSE der

Rauschvarianzen der Drehratensensortriade wurde durch den SEM im Mittel eine Verbesserung von

82% gegenüber dem MD bzw. 83,8% gegenüber dem KM bestimmt. Dieses Ergebnis führte auch zu

zuverlässigeren Schätzungen der Navigationslösung (Position und Geschwindigkeit). Während diese

gegenüber dem KM und dem MD wenige Zentimeter in der absoluten Position betrugen, konnten

vor allem signifikante Verbesserungen gegenüber einem Ansatz erzielt werden, der auf der Annahme

konstanter Systemrauschvarianzen beruht. Bei Betrachtung der Geschwindigkeitsfehler hob sich der

SEM etwas deutlicher von den anderen Verfahren ab, denn in der Gesamtlösung zeigte es gegenüber

dem KM eine um 4,5% höhere Genauigkeit.

Durch eine Tiefpassfilterung der Inertialsensordaten konnte im Rahmen ergänzender Untersu-

chungen ein Großteil des inhärenten und vibrationsinduzierten Rauschens eliminiert werden. Den-

noch stellte sich auch in dem Fall der SEM als das Verfahren heraus, das zu den signifikantesten

Verbesserungen in den Positionsschätzungen führte, da es sich indirekt auf Ungenauigkeiten in den

Modellannahmen einstellen kann. Es berücksichtigt nicht nur die Messungen der Inertialsensoren,

sondern ebenfalls die a posteriori-Schätzungen des FF.

Insgesamt hatte die verbesserte Parameterschätzung durch den SEM geringere Auswirkungen auf

die Geschwindigkeits- und Positionsschätzung als zunächst angenommen. Dies kann damit begründet

werden, dass im Rahmen der Filterung keine absoluten Navigationsgrößen, sondern deren Fehler

geschätzt werden, wobei die Datenrate und die Qualität der Stützinformationen eine bedeutende Rolle

spielen. Die Herleitung der Gleichungen, die im Rahmen der schwach gekoppelten Filterstruktur

verwendet werden, beruht zudem auf einigen Approximationen. Dadurch fallen Abweichungen in

den Schätzungen der Systemrauschvarianzen des FF weniger ins Gewicht. Ein deutlicher Unterschied

macht sich jedoch dann bemerkbar, wenn die Rauschvarianzen konstant und außerdem zu niedrig

gewählt und die zeitlichen Korrelationen nicht berücksichtigt werden. Bei der Analyse der Verfahren

auf Basis von Felddaten konnte gezeigt werden, dass der SEM Vorteile gegenüber den beiden anderen
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Verfahren (MD und KM) aufweist, da die Abweichungen bei aufgetretenen GPS-Signalfehlern hier

objektiv geringer ausgefallen sind. Da sich die realen Magnetfeldsensordaten als unzuverlässiger als

die anderen Sensormessungen herausstellten, wurde der SEM mit dem MD kombiniert, so dass auf

diese Beobachtungen verzichtet werden konnte.

Ausblick Die Ergebnisse, die im Rahmen dieser Arbeit erzielt wurden, lassen darauf schließen,

dass mit dem hier vorgestellten System eine robuste und zuverlässige Methode entwickelt wurde,

um Inertialsensorfehler, aber auch Fehler und Signalausfälle, die durch die Stützung anhand von

Global Navigation System (GNS)-Empfängerdaten auftreten können, in gewissem Umfang kompen-

sieren zu können. Der SEM lieferte i. d. R. zuverlässige Resultate.

Folgende Punkte lassen in diesem Zusammenhang dennoch Raum für weiterführende Untersu-

chungen: Die Zustandsübergangsmatrix des FF ist zwar trotz der Linearisierung zeitvariant, dennoch

basiert die gesamte Filterstruktur auf mehreren Approximationen. Eine Verbesserung kann in der Na-

vigationslösung ggf. erzielt werden, indem auf eine Strapdown-Berechnung in Kombination mit ei-

nem LKF verzichtet und stattdessen ein nichtlinearer geschlossener Ansatz unter Verwendung eines

Unscented KALMAN Filter (UKF) oder Partikelfilters (PF) gewählt wird. Dabei müssen allerdings

weitere Modellannahmen getroffen werden wie z. B. für die zeitliche Beschreibung der Beschleuni-

gung. Außerdem sind die genannten Filtervarianten i. d. R. mit einer sehr viel höheren Rechenkom-

plexität verbunden, was in der Praxis, vor allem in einem KFZ-Umfeld, häufig vermieden werden soll.

Ein Vorteil würde allerdings darin liegen, dass eine Messwertaktualisierung nicht von der Datenrate

des GPS-Empfängers abhängt, sondern von der Datenrate der IME. Die damit verbundene dauerhafte

Beobachtbarkeit von Drehraten- und Beschleunigungssensormessungen am Filtereingang würde sich

vorteilhaft auf die Berechnung der a posteriori-Verteilung und damit den SEM auswirken.

Da das hier eingesetzte Navigationsfilter auf Stützinformationen basiert, ist die Genauigkeit in

der Navigationslösung auch von der Qualität der Stützinformationen abhängig. Die Fehler, die bei

den satellitenbasierten Daten auftreten, bestimmen die Leistungsfähigkeit des nachgeschalteten Na-

vigationsfilters. Hinzu kommt, dass die eingesetzte IME einer niedrigen Genauigkeitsklasse zuzu-

ordnen ist und die Sensorinformationen nur kurzzeitig stabil sind, während die GPS-Informationen

hingegen langzeitstabil sind. An Stelle einer schwach gekoppelten Filterstruktur könnte eine eng ge-

koppelte oder direkt gekoppelte Struktur verwendet werden. Ein dabei notwendiger Zugriff auf die

satellitenempfängerinternen Rohsignale ist jedoch bei den meisten Geräten nicht möglich.

Die Zustandsübergangsmatrizen der zeitlich korrelierten Rauschprozesse erster Ordnung wurden

hier durch die Korrelationszeiten festgelegt. Ein alternativer Ansatz mit zusätzlich zeitvarianten Zu-

standsübergangsmatrizen DFF;n,k, DFF;w,k könnte möglicherweise dazu führen, dass die zeitlichen

Korrelationen noch besser nachgeführt werden als es durch die Annahme einer ausschließlich zeitva-

rianten Rauschkovarianzmatrix der Fall ist. Dabei muss allerdings darauf geachtet werden, dass dies

nicht zu einem instabilen Systemverhalten führt.

Inertiale Sensoren sind das klassische Werkzeug einer Innenraumnavigation, bei der oftmals kei-

ne satellitengestützten Informationen verfügbar sind. Auch hier besteht häufig das Problem, dass eine

IME nicht in der Weise durch vibrationsdämpfende Maßnahmen von dem zu navigierenden Roboter

oder der Person entkoppelt werden kann, dass die Sensordaten ausschließlich die reine Trajektorien-

dynamik aufweisen. In Kombination mit weiteren Stützinformationen, z. B. durch einen Laserscanner

oder einem Radarsensor, könnte der SEM eine Fusion der verfügbaren Daten im Rahmen der Nach-

filterung unterstützen.



Anhang A

Ergänzungen zum Global Positioning System

A.1 Fehlerquellen

Bei der GPS-Übertragung spielen die unterschiedlichen Fehlerquellen eine wichtige Rolle, da sie

sowohl die Positionsbestimmung als auch die Geschwindigkeitsschätzung beeinträchtigen. Die Feh-

ler lassen sich in Common-Mode-Fehler und Non-Common-Mode-Fehler einteilen. Common-Mode-

Fehler bezeichnen Systemfehler, die sich auf die Empfänger auswirken (z. B. durch Satellitenuh-

renfehler), während bei Non-Common-Mode-Fehlern die Empfangsgeräte oder die spezifische Emp-

fangssituation die Fehlerquelle darstellen.

Non-Common-Mode-Fehler Zu den typischen Non-Common-Mode-Fehlern zählen:

• Empfängerseitiger Zeit- oder Uhrenfehler: Der empfängerseitige Zeitfehler, der auch als

„Zeitbias“ bezeichnet wird, ist eine zeitvariante Fehlerquelle. Da die Positionsbestimmung

aufgrund von Signallaufzeitdifferenzen berechnet wird, ist es für die Genauigkeit der Mes-

sung wichtig, dass die Uhren von Empfängern und Satelliten synchronisiert sind. Ansonsten

resultiert ein Bias, das für alle Pseudorange-Messungen gleich ist. Im Falle eines Bias von

1 · 10−6 s würde sich ein Entfernungsfehler von ca. 100m ergeben. Durch eine Fehlermodel-

lierung und Filterung nach [Wen07] kann das zeitliche Bias nachträglich kompensiert werden,

wodurch dann auch der Einfluss auf die Positionsschätzung verringert wird. Durch die statis-

tischen Messgrößen bleibt jedoch eine geringe Restunsicherheit in der Schätzung vorhanden.

Dieses Problem macht sich allerdings häufig nur bei drei Satelliten bemerkbar, da schon bei

vier sichtbaren Satelliten das empfängerseitige Bias errechnet werden kann [TW04].

• Empfängerrauschen: Das Empfängerrauschen resultiert aus Faktoren, die sich ausschließlich

aus dem Aufbau des GPS-Empfängers ergeben. Dazu zählen die verwendeten Bauelemente und

die verwendeten Antennen. Diese Komponenten führen aufgrund von thermischem Rauschen

zu Messfehlern. Außerdem können Nichtlinearitäten auftreten, die zusammen mit dem thermi-

schen Rauschen zum Empfängerrauschen zusammengefasst werden. Die Fehlerordnung ist von

der verwendeten Technologie (z. B. MEMS) abhängig. Bei aktuellen Empfängern führen solche

Fehler bei Pseudorange-Messungen zu Abweichungen von wenigen Zentimetern. Im Falle von

Trägerphasenmessungen betragen sie sogar nur einige Millimeter. Der Fehler wird häufig durch

ein unkorreliertes AWGR mit Mittelwert Null modelliert.

• Mehrwegeausbreitung: Wie bei jeder Übertragung per Funk können durch Reflexionen an

Gebäuden oder anderen größeren Objekten, die sich in unmittelbarer Umgebung des Empfän-

gers befinden, Mehrwegeausbreitungen entstehen. Die Mehrwegekomponenten führen bei der
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Signalauswertung zu Fehlern, die von verschiedenen Faktoren abhängen. Im Falle von Pseu-

dorange-Messungen kann dieses bei zu hohen Leistungen der Mehrwegekomponenten zu Posi-

tionsschätzfehlern von bis zu 70m führen. Zur Kompensation wird im Empfänger eine Korrela-

tion mit einem Referenzsignal durchgeführt, um die Verschiebung des Maximums zu erhalten.

Ist die Leistung der Mehrwegekomponenten jedoch gering, so resultiert daraus lediglich ein

Positionsfehler von maximal 3m. Dieser ist allerdings für heutige Anwendungen immer noch

sehr hoch, weshalb z. T. bessere Korrelatoren und Chipsätze eingesetzt werden. Weitere Aspek-

te sind in [FB99] und [DH04] zu finden.

Common-Mode-Fehler Zu den typischen Common-Mode-Fehlern zählen:

• Satellitenuhrenfehler: Jeder Satellit besitzt eine interne Uhr, die unabhängig von den ande-

ren Satelliten läuft. Die Satellitenzeiten driften nach und nach von der eigentlichen GPS-Zeit

ab. Der Fehler ist durch die Basisstationen beobachtbar und durch die Kenntnis der Atom-

uhrzeit kompensierbar. Die Korrekturen werden an die Satelliten mittels der Navigationsdaten

gesendet. Da die Korrektur nicht fortlaufend vorgenommen wird, bleibt ein zeitliches Bias bzw.

Satellitenuhrenfehler. Der Fehler ist unabhängig von dem Aufenthaltsort eines GPS-Nutzers.

• Atmosphärenfehler: Die atmosphärischen Fehler sind bedingt durch zwei atmosphärische

Schichten: Troposphäre und Ionosphäre. Die troposphärische Schicht reicht von der Erdober-

fläche bis zu einer Höhe von ca. 10 km. In der Troposphäre ändern sich wetterbedingt sowohl

die Temperatur als auch Luftdruck und Luftfeuchte. Diese Änderungen haben Auswirkungen

auf die Ausbreitungsgeschwindigkeit der Signale und führen zu Laufzeitverzögerungen. Die

Frequenz des Signals ist davon unabhängig. Des Weiteren ist der Elevationswinkel (der Winkel

des Satelliten über dem Horizont) von Bedeutung, denn dieser beeinflusst direkt die Entfer-

nung zwischen Empfänger und Satellit. Die Ionosphäre dagegen erstreckt sich ab einer Höhe

von ca. 45 km und besteht aus ionisierter Luft. Änderungen der Ionisierungsrate bewirken eben-

falls unterschiedliche Laufzeiten des GPS-Signals. Dies hängt allerdings von der Frequenz des

Satellitensignals ab. Die ionosphärischen Störungen sind zudem tagesabhängig, weil sie nach

[Wen07] von der Sonneneinstrahlung abhängen. Günstige Empfänger, die lediglich auf Basis

einer Trägerfrequenz arbeiten, sind nicht im Stande, die Ionosphärenfehler zu kompensieren.

Dies ist jedoch mit kostspieligen, hochqualitativen Empfängern möglich, die beide Trägerfre-

quenzen L1 und L2 auswerten können. Diese wurden im Rahmen dieser Arbeit jedoch nicht

verwendet. Weitere Verbesserungen sind durch das in Kap. 2.1.1 beschriebene DGPS möglich.

• Fehler aufgrund von Ephemeridendaten: Die Ephemeridendaten enthalten Informationen

über die Satellitenlaufbahnen, die von den Kontrollstationen laufend vermessen werden. Die

Daten werden ein- bis zweimal pro Tag an die Satelliten zurückgesendet, die diese dem Nutzer

dann als Navigationsdaten zur Verfügung stellen. Anhand der Koordinaten von mehreren Sa-

telliten und der errechneten Entfernung kann eine Positionsbestimmung durchgeführt werden.

Zwischen den Aktualisierungszeitpunkten der Ephemeridendaten wird die Satellitenposition

anhand eines Bahnmodells interpoliert. Dadurch entsteht ein zeitvarianter Fehler gegenüber

der tatsächlichen Umlaufbahn, aus dem ein Positionsschätzfehler von bis zu 1m resultiert.

• Künstliche Fehler: Die künstlichen Fehler treten heutzutage eigentlich nicht mehr auf. Unter

Selective Availability (SA) wird ein künstlicher Störeinfluss verstanden, der vom amerikani-

schen Militär aus Sicherheitsgründen in Krisenzeiten eingesetzt wurde. Dieser Dienst wurde
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jedoch im Mai 2000 abgeschaltet. Der Effekt, der durch SA erreicht wird, ist eine ungenaue

Positionsbestimmung, wobei die Standardabweichung nicht selten bis zu zehnmal größer sein

kann als ohne SA.

A.2 Proprietäre PUBX-Datensätze

Bei den proprietären PUBX-Datensätzen handelt es sich um keine bekannten Formate. In Tab. A.1 (a)

und Tab. A.1 (b) sind zwei Beispiele zu diesen Datensätzen aufgeführt, die im Rahmen dieser Arbeit

verwendet wurden. Weitere Details zu PUBX-Datensätzen können [u-b09] entnommen werden.

(a) PUBX00-Datensatz

$PUBX Protokollkopf

00 Identifizierungsfeld

101011.75 Messzeitpunkt als Universal Time Coordinated (UTC)-Zeit im Format [hhmmss.ss]
5142.88865,N Geografische Breite (engl. Latitude) in [Grad + Minuten] und Nord/Süd-Indikator
00845.89310,E Geografische Länge (engl. Longitude) in [Grad + Minuten] und Ost/West-Indikator
185.532 Höhe über dem WGS84-Erdellipsoid in m

G3 Navigationsmodus (hier dreidimensionale Lösung)
3.5 Horizontale Genauigkeit in [m]
3.2 Vertikale Genauigkeit in [m]
42.628 Geschwindigkeit über Grund in [km/h]
123.54 Kurs über Grund in [°]
-0.265 Vertikale Geschwindigkeit in [m/s] in Richtung Erdmittelpunkt

Alter der DGPS-Korrekturen in [s] (leeres Feld, wenn nicht vefügbar)
0.78 Horizontaler Genauigkeitsindex (engl. Horizontal Dilution of Precision (HDOP))
1.22 Vertikaler Genauigkeitsindex (engl. Vertical Dilution of Precision (VDOP))
0.65 Zeitlicher Genauigkeitsindex (engl. Time Dilution of Precision (TDOP))
10 Anzahl der GPS-Satelliten, die für die Auswertung verwendet wurden
0 Anzahl der GLONASS-Satelliten, die für die Auswertung verwendet wurden
0 Angabe, ob DR verwendet wurde (0/1)
*45 Prüfsumme

(b) PUBX04-Datensatz

$PUBX Protokollkopf
04 Identifizierungsfeld
101011.75 Messzeitpunkt als UTC-Zeit im Format [hhmmss.ss] (Stunde, Minute, Sekunde)
250210 UTC-Zeit im Format [ddmmyy] (Tag, Monat, Jahr)
382211.75 UTC-Wochenzeit in [s]
1572 UTC-Wochennummer
382211.75 Reserviert für spätere Erweiterung, momentan UTC-Wochenzeit
201107 Empfängeruhrenfehler (Bias) in [ns]
-338.294 Empfängeruhrenfehler (Drift) in [ns/s]
10 Quantisierungsfehler des zeitlichen Pulses (externer Anschluss) in [ns]
*1E Prüfsumme

Tabelle A.1: Beispiele und Erläuterungen zu den PUBX-Datensätzen



160 Anhang A. Ergänzungen zum Global Positioning System



Anhang B

Ergänzungen zum Navigationsfilter

B.1 Mathematische Zusammenhänge

Gegeben sei der Vektor ω =
(
ωx ωy ωz

)T
. Die kreuzproduktbildende Matrix ω = [ω×] ist dann

definiert als

Ω = [ω×] =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 . (B.1)

Für kreuzproduktbildende Matrizen von Drehraten gelten nach [Wen07] die folgenden Rechenregeln

am Beispiel von ω
n
eb:

Ωn
eb = [ωn

eb×] (B.2)

ω
n
eb = −ωn

be (B.3)

ω
n
eb = ω

n
ei + ω

n
ib. (B.4)

Eine Richtungskosinusmatrix (RKM) ist eine orthonormale Matrix. Folglich ist ihre Inverse gleich

der Transponierten. Beispielsweise gilt für Cn
b:

Cn
b =

(
Cb

n

)−1
=
(
Cb

n

)T
. (B.5)

B.2 Herleitung der Navigationsfiltergleichungen

Im Folgenden sollen die verwendeten Navigationsfiltergleichungen auf Basis der Gl. (5.12), (5.27)

und (5.28) hergeleitet werden. Der Index FF entfällt hier der Übersichtlichkeit wegen. Anstelle von

(5.13) wird hier eine verallgemeinerte Gleichung betrachtet. Für die Systemgl. (B.6) bis (B.8) und

Messgl. (B.9) folgt damit:

xk = Φk · xk−1 +Gk · nk (B.6)

nk = Dn · nk−1 + Γn · ηk (B.7)

wk = Dw ·wk−1 + Γw · νk (B.8)

zk = Hk · xk +Mk ·wk, (B.9)

wobei ηk ∼ N (ηk;0D×1 ,Qk) mit Qk := E
[
ηkη

T
k

]
und νk ∼ N (νk;0D×1 ,R) mit R := E

[
νkν

T
k

]

gilt. Γn und Γw sollen hier konstante Matrizen sein, die den Einfluss des treibenden Rauschens be-

schreiben. Mit der Beobachtungssequenz z1:k−1 := z1, . . . , zk−1 gilt für die Filtergleichungen:
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Prädiktion Im Folgenden ist zu beachten, dass nk und wk keine Schätzgrößen sind. Außerdem

sind Pnn,k := E
[
nkn

T
k

]
und Pww,k := E

[
wkw

T
k

]
unabhängig von einer Beobachtung und können

deshalb vollständig vor der Filterung berechnet werden.

x̂k|k−1 = Φkx̂k−1|k−1 (B.10)

Pk|k−1 := E

[(
xk − x̂k|k−1

)(
xk − x̂k|k−1

)T ∣∣∣∣ z1:k−1

]

= E
[(

Φk

(
xk−1 − x̂k−1|k−1

)
+Gknk

)

·
(
Φk

(
xk−1 − x̂k−1|k−1

)
+Gknk

)T ∣∣∣∣ z1:k−1

]

= E
[(

Φk

(
xk−1 − x̂k−1|k−1

)
+GkDnnk−1 +GkΓnηk

)

·
(
Φk

(
xk−1 − x̂k−1|k−1

)
+GkDnnk−1 +GkΓnηk

)T ∣∣∣∣ z1:k−1

]

= ΦkPk−1|k−1Φ
T
k +ΦkPxn,k−1|k−1D

T
nG

T
k +GkDnP

T
xn,k−1|k−1Φ

T
k

+GkDnPnn,k−1D
T
nG

T
k +GkΓnQkΓ

T
nG

T
k (B.11)

Pxn,k|k−1 := E
[(

xk − x̂k|k−1

)
nT
k

∣∣∣ z1:k−1

]

= E
[(

Φk

(
xk−1 − x̂k−1|k−1

)
+Gknk

)
nT
k

∣∣∣ z1:k−1

]

= E
[(

Φk

(
xk−1 − x̂k−1|k−1

)
+GkDnnk−1 +GkΓnηk

)

·
(
Dnnk−1 + Γnηk

)T ∣∣∣ z1:k−1

]

= ΦkPxn,k−1|k−1D
T
n +GkDnPnn,k−1D

T
n +GkΓnQkΓ

T
n (B.12)

Pxw,k|k−1 := E
[(

xk − x̂k|k−1

)
wT

k

∣∣∣ z1:k−1

]

= E
[(

Φk

(
xk−1 − x̂k−1|k−1

)
+Gknk

)
wT

k

∣∣∣ z1:k−1

]

= E
[(

Φk

(
xk−1 − x̂k−1|k−1

)
+Gknk

) (
Dwwk−1 + Γwνk

)T ∣∣∣ z1:k−1

]

= ΦkPxw,k−1|k−1D
T
w. (B.13)

Einsetzen von (B.12) in (B.11) liefert:

Pk|k−1 = ΦkPk−1|k−1Φ
T
k +GkDnP

T
xn,k−1|k−1Φ

T
k +Pxn,k|k−1G

T
k . (B.14)

Für die Kovarianzmatrizen der zeitlich korrelierten Rauschprozesse gilt jeweils:

Pnn,k := E
[
nkn

T
k

]

= E

[(
Dnnk−1 + Γnηk

)(
Dnnk−1 + Γnηk

)T]

= DnPnn,k−1D
T
n + ΓnQkΓ

T
n (B.15)

Pww,k := E
[
wkw

T
k

]

= E

[(
Dwwk−1 + Γwνk

)(
Dwwk−1 + Γwνk

)T]

= DwPww,k−1D
T
w + ΓwRΓT

w. (B.16)
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Aktualisierung

Pxz,k := E
[(

xk − x̂k|k−1

)
(zk − ẑk)

T
∣∣∣ z1:k

]

= E

[(
xk − x̂k|k−1

)(
Hk

(
xk − x̂k|k−1

)
+Mkwk

)T ∣∣∣∣ z1:k
]

= Pk|k−1H
T
k +Pxw,k|k−1M

T
k (B.17)

Pzz,k := E
[
(zk − ẑk) (zk − ẑk)

T
∣∣∣ z1:k

]

= E

[(
Hk

(
xk − x̂k|k−1

)
+Mkwk

)(
Hk

(
xk − x̂k|k−1

)
+Mkwk

)T ∣∣∣∣ z1:k
]

= HkPk|k−1H
T
k +HkPxw,k|k−1M

T
k +MkP

T
xw,k|k−1H

T
k +MkPww,kM

T
k (B.18)

Kk := Pxz,kP
−1
zz,k

=
(
Pk|k−1H

T
k +Pxw,k|k−1M

T
k

)

·
(
HkPk|k−1H

T
k +HkPxw,k|k−1M

T
k +MkP

T
xw,k|k−1H

T
k +MkPww,kM

T
k

)−1
(B.19)

x̂k|k = x̂k|k−1 +Kk

(
zk −Hkx̂k|k−1

)
. (B.20)

Da nk hier keine Schätzgröße des Systemzustandsvektors ist, wirkt sich dies auch auf (B.20) aus. Mit

nk als Element des Zustandsvektors würde

x̂k|k = Φkx̂k−1|k−1 +Gkn̂k|k +Kk

(
zk −Hk

(
Φkx̂k−1|k−1 +Gkn̂k|k

))
(B.21)

gelten. Hier ist jedoch x̂k|k = Φkx̂k−1|k−1 + Kk

(
zk −HkΦkx̂k−1|k−1

)
, woraus schließlich die

a posteriori-Zustandsschätzung (B.20) resultiert. Mit dieser erhält man schließlich:

Pk|k := E

[(
xk − x̂k|k

)(
xk − x̂k|k

)T ∣∣∣∣ z1:k
]

= E
[((

ID×D −KkHk

)(
xk − x̂k|k−1

)
−KkMkwk

)

·
((

ID×D −KkHk

)(
xk − x̂k|k−1

)
−KkMkwk

)T ∣∣∣∣ z1:k
]

= E

[(
ID×D −KkHk

)(
xk − x̂k|k−1

)(
xk − x̂k|k−1

)T (
ID×D −KkHk

)T

−KkMkwk

(
xk − x̂k|k−1

)T (
ID×D −KkHk

)T

−
(
ID×D −KkHk

) (
xk − x̂k|k−1

)
wT

k M
T
kK

T
k +KkMkwkw

T
k M

T
kK

T
k

∣∣∣ z1:k
]

=
(
ID×D −KkHk

)
Pk|k−1 −Pk|k−1H

T
kK

T
k +Kk

(
HkPk|k−1H

T
k +MkPww,kM

T
k

)
KT

k

+Kk

(
MkP

T
xw,k|k−1H

T
k +HkPxw,k|k−1M

T
k

)
KT

k −KkMkP
T
xw,k|k−1

−Pxw,k|k−1M
T
kK

T
k

=
(
ID×D −KkHk

)
Pk|k−1 −Pk|k−1H

T
kK

T
k

+Kk

(
HkPk|k−1H

T
k +MkP

T
xw,k|k−1H

T
k +HkPxw,k|k−1M

T
k +MkPww,kM

T
k

)
KT

k

−KkMkP
T
xw,k|k−1 −Pxw,k|k−1M

T
kK

T
k . (B.22)
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Die letzte Gleichung ist auch als so genannte JOSEPH-Form bekannt. Nach Einsetzen von (B.19) in

(B.22) folgt noch:

Pk|k =
(
ID×D −KkHk

)
Pk|k−1 −Pk|k−1H

T
kK

T
k +

(
Pk|k−1H

T
k +Pxw,k|k−1M

T
k

)
KT

k

−KkMkP
T
xw,k|k−1 −Pxw,k|k−1M

T
kK

T
k

=
(
ID×D −KkHk

)
Pk|k−1 −KkMkP

T
xw,k|k−1 (B.23)

Pxn,k|k := E
[(

xk − x̂k|k

)
nT
k

∣∣∣ z1:k
]

= E
[(

xk − x̂k|k−1 −Kk

(
zk −Hkx̂k|k−1

))
nT
k

∣∣∣ z1:k
]

= E
[((

xk − x̂k|k−1

)
−Kk

(
Hk

(
xk − x̂k|k−1

)
+Mkwk

))
nT
k

∣∣∣ z1:k
]

=
(
ID×D −KkHk

)
Pxn,k|k−1 (B.24)

Pxw,k|k := E
[(

xk − x̂k|k

)
wT

k

∣∣∣ z1:k
]

= E
[(

xk − x̂k|k−1 −Kk

(
zk −Hkx̂k|k−1

))
wT

k

∣∣∣ z1:k
]

= E
[((

xk − x̂k|k−1

)
−Kk

(
Hk

(
xk − x̂k|k−1

)
+Mkwk

))
wT

k

∣∣∣ z1:k
]

=
(
ID×D −KkHk

)
Pxw,k|k−1 −KkMkPww,k. (B.25)

B.3 Herleitung der Systemgleichung des Fehlerfilters

Im Folgenden werden die für das Systemmodell des Fehlerfilters (FF) aus Kap. 5 benötigten Matrizen

hergeleitet. Der Zeitindex t wird der Übersichtlichkeit wegen dabei weggelassen. Für den Zustands-

vektor des FF mit xFF ∈ R15 gilt:

xFF =






∆pneb,n
∆pneb,e
∆pneb,d




T

︸ ︷︷ ︸
Positionsfehler

(∆pn
eb)

T



∆vneb,n
∆vneb,e
∆vneb,d




T

︸ ︷︷ ︸
Geschwindigkeits-

fehler (∆vn
eb)

T



∆φ

∆θ

∆ψ




T

︸ ︷︷ ︸
Lagefehler

(∆Υ)T



∆ba,x
∆ba,y
∆ba,z




T

︸ ︷︷ ︸
Biasfehler (∆ba)

T

der Beschleunigungs-

sensoren



∆bω,x
∆bω,y
∆bω,z




T

︸ ︷︷ ︸
Biasfehler (∆bω)

T

der Drehraten-

sensoren




T

.

(B.26)

Lagefehlerdifferenzialgleichung Können z. B. Biasfehler nicht vollständig kompensiert werden,

wirken sie sich auch auf eine fehlerhafte Orientierungsberechnung aus. Ebenso führen Ungenauig-

keiten hinsichtlich der Transport- oder Erddrehrate zu Problemen in der Orientierungsbestimmung.

Unter der Voraussetzung, dass die ideale RKM Cn
b nicht bekannt ist, aber zwischen dieser und der

geschätzten Matrix Ĉn
b ein Zusammenhang durch die Orientierungsfehlermatrix Ψ besteht, kann an-

genommen werden, dass

Ĉn
b = (I3×3 −Ψ)Cn

b (B.27)
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gilt, wobei I3×3 ∈ R3×3 eine Einheitsmatrix und

Ψ := [Υ×] =




0 −∆ψ′
∆θ

′

∆ψ
′

0 −∆φ′

−∆θ′ ∆φ
′

0


 (B.28)

nach (B.1) ist. D. h. Ψ ist die kreuzproduktbildende Matrix des Vektors Υ := (∆φ
′
∆θ

′
∆ψ

′
)T ,

der die Fehler der Eulerwinkel enthält. Nach dieser Notation würde der Vektor ∆Υ in Gl. (B.26)

eigentlich den Fehler einer Lagefehlerschätzung bezeichnen. Allerdings wird nach jedem Aktualisie-

rungsschritt der Filterzustand des FF auf einen Nullvektor gesetzt, da vorher eine Korrektur mit den

Fehlergrößen durchgeführt werden konnte [Wen07]. Aus diesem Grund gilt vor einem Propagations-

schritt Υ = ∆Υ, d. h. der Fehler in der Schätzung des Orientierungsfehlers entspricht dem absoluten

Fehler und damit ∆φ
′
= ∆φ,∆θ

′
= ∆θ,∆ψ

′
= ∆ψ. Berücksichtigt man, dass Cn

b(C
n
b)

T = I3×3

gilt, so lässt sich nun Gl. (B.27) umstellen:

Ψ = −Ĉn
b(C

n
b)

T + I3×3 . (B.29)

Dies führt zu der zeitlichen Ableitung

Ψ̇ = − ˙̂
Cn

b(C
n
b)

T − Ĉn
b(Ċ

n
b)

T , (B.30)

wobei

Ċn
b = Cn

b

[
ω

b
nb×

]
= Cn

bΩ
b
nb = Cn

b

(
Ωb

ni +Ωb
ib

)
(B.31)

gilt. Hier kennzeichnet Ωb
nb die Matrix, die durch

[
ω

b
nb×

]
gebildet wurde. Mit der Erweiterung des

rechten Terms in (B.31) um (Cn
b)

T
Cn

b und der Beziehung Ωn
ni = −Ωn

in nach (B.3) erhält man für die

Ableitung und analog für die zugehörige Schätzung der RKM

Ċn
b = Cn

bΩ
b
ib −Ωn

inC
n
b und ˙̂

Cn
b = Ĉn

bΩ̂
b
ib − Ω̂n

inĈ
n
b. (B.32)

Setzt man nun Gl. (B.32) in (B.30) ein und berücksichtigt noch den Zusammenhang in (B.27), so

erhält man nach einigen Umrechnungen

Ψ̇ = Ω̂n
in

(
I3×3 −Ψ

)
−
(
I3×3 −Ψ

)
Ωn

in +
(
I3×3 −Ψ

)
Cn

b

(
Ωb

ib − Ω̂b
ib

)
(Cn

b)
T

= Cn
b∆Ωb

ib(C
n
b)

T −ΨCn
b∆Ωb

ib(C
n
b)

T −∆Ωn
in − Ω̂n

inΨ+ΨΩn
in, (B.33)

wobei ∆Ωb
ib := Ωb

ib − Ω̂b
ib und ∆Ωn

in := Ωn
in − Ω̂n

in gilt. Für die vektorielle Form von Gl. (B.33)

folgt mit (B.27) und dem Zusammenhang − [Ωn
inΥ×] = ΨΩn

in − Ω̂n
inΨ für Ωn

in ≈ Ω̂n
in (siehe auch

Gl. (B.28)) somit

Υ̇ = −ωn
in ×Υ−∆ω

n
in +Cn

b∆ω
b
ib −ΨCn

b∆ω
b
ib

= −ωn
in ×Υ−∆ω

n
in + (I3×3 −Ψ)Cn

b∆ω
b
ib. (B.34)

Wie beschrieben, wird nach jedem Aktualisierungsschritt der Filterzustand auf einen Nullvektor ge-

setzt [Wen07]. Da aus dem späteren Korrekturschritt Υ = ∆Υ folgt, erhält man durch Taylorreihen-

entwicklung bezüglich der gesuchten Größen und Gleichsetzen mit (B.34)

∆Υ̇ =
∂Υ̇

∂pn
eb

∆pn
eb +

∂Υ̇

∂vn
eb

∆vn
eb +

∂Υ̇

∂Υ
∆Υ+

∂Υ̇

∂bω

∆bω (B.35)

!
= −ωn

in ×∆Υ−∆ω
n
in + Ĉn

b∆ω
b
ib, (B.36)
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wobei auch ∂Υ̇
∂ba

∆ba = 0 ist. Des Weiteren ist ∆pn
eb := pn

eb−p̂n
eb, ∆vn

eb := vn
eb−v̂n

eb, ∆Υ := Υ−Υ̂
und ∆bω := bω − b̂ω. Anhand von Gl. (4.36) und (4.37) wird deutlich, dass in (B.36) lediglich ω

n
in

bzw. ∆ω
n
in von der Position und der Geschwindigkeit abhängt:

ω
n
in = ω

n
ie + ω

n
en =




vneb,e
Re+h +Ω · cos(ϕ)

− vneb,n
Rn+h

−vneb,e·tan(ϕ)
Re+h − Ω · sin(ϕ)


 . (B.37)

Um nun in Gl. (B.35) die ersten beiden Summanden auf der rechten Seite zu erhalten, muss unter der

Annahme konstanter Erdkrümmungsradien die Gl. (B.38) gelöst werden:

∆ω
n
in =

∂ωn
in

∂(ϕ, λ, h)



∆ϕ

∆λ

∆h


+

∂ωn
in

∂vn
eb

∆vn
eb

=
∂ωn

in

∂(ϕ, λ, h)




∆xn
eb,n

Rn+h
∆xn

eb,e

(Re+h) cos(ϕ)

−∆xneb,d


+

∂ωn
in

∂vn
eb

∆vn
eb

=




−Ωsin(ϕ)
Rn+h 0

vneb,e
(Re+h)2

0 0 − vneb,n
(Rn+h)2

−Ωcos(ϕ)
Rn+h −

vneb,e
(Re+h)(Rn+h) cos2(ϕ)

0 −vneb,e tan(ϕ)

(Re+h)2




︸ ︷︷ ︸
−F

(3,1)
FF

∆pn
eb +




0 1
Re+h 0

− 1
Rn+h 0 0

0 − tan(ϕ)
Re+h 0




︸ ︷︷ ︸
−F

(3,2)
FF

∆vn
eb,

(B.38)

wobei ∆pn
eb und ∆vn

eb wie in (B.26) definiert sind. In der letzten Gleichung muss berücksichtigt

werden, dass die Matrizen F
(3,1)
FF und F

(3,2)
FF an den zuvor geschätzten Positionen p̂n

eb und Geschwin-

digkeiten v̂n
eb ausgewertet werden müssen, die sich durch die Strapdown-Berechnungen ergeben.16

Den dritten Summanden in Gl. (B.35) erhält man durch Vergleich mit (B.36):

F
(3,3)
FF :=

∂Υ̇

∂Υ
= −[ωn

in×]
∣∣∣∣∣pe

eb=p̂e
eb

vn
eb=v̂n

eb

. (B.39)

Schließlich betrachtet man noch Gl. (4.57), um ∆ω
b
ib zu bestimmen. Wegen ∆Ωb

ib = Ωb
ib− Ω̂b

ib folgt

äquivalent:

∆ω
b
ib = ω

b
ib − ω̃

b
ib = −bω − nω. (B.40)

Durch Ableitung von (B.40) nach bω folgt ∆ω
b
ib = −∆bω − nω, woraus letztendlich

F
(3,5)
FF :=

∂Υ̇

∂bω

= −Ĉn
b (B.41)

resultiert. Somit stehen sämtliche Größen für das Aufstellen der Lagefehlerdifferenzialgleichung

(B.35) zur Verfügung.

16Auf den Bezeichner SD sei bei den Schätzgrößen in diesem Teil des Anhangs der Übersichtlichkeit wegen verzichtet.
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Geschwindigkeitsfehlerdifferenzialgleichung Die bisherige Vorgehensweise lässt sich auch für

die Geschwindigkeitsfehlerdifferenzialgleichung (4.40) übernehmen. Betrachtet man die Gleichung

im Detail, so fällt auf, dass eine Änderung des Geschwindigkeitsfehlers im Wesentlichen von den

Orientierungsfehlern, Fehlern in den Beschleunigungsberechnungen und den Geschwindigkeitsfeh-

lern selbst abhängt. Setzt man Gl. (4.58) und Gl. (B.27) in (4.40), so erhält man unter Verwendung

von (I3×3 −Ψ)−1 = I3×3 +Ψ:

v̇n
eb = (I3×3 +Ψ)Ĉn

b(â
b
ib − ba)− (2ωn

ie + ω
n
en)× vn

eb + gn − (I3×3 +Ψ)Ĉn
bna

≈ (I3×3 +Ψ)Ĉn
b(â

b
ib − ba)− (2ωn

ie + ω
n
en)× vn

eb + gn − Ĉn
bna. (B.42)

Um die nötigen Terme der Zustandsübergangsmatrix des FF zu erhalten, muss die Geschwindigkeits-

differenzialgleichung durch eine Taylorreihe approximiert werden:

∆v̇n
eb =

∂v̇n
eb

∂vn
eb

∆vn
eb +

∂v̇n
eb

∂Υ
∆Υ+

∂v̇n
eb

∂ba

∆ba. (B.43)

Durch Vergleich von (B.42) mit (B.43) fällt auf, dass lediglich das Kreuzprodukt von der Geschwin-

digkeit abhängt. Nach Auswerten dieses Terms und Ableiten nach der Geschwindigkeit erhält man

∂v̇n
eb

∂vn
eb

=




vneb,d
Rn+h −2Ω sinϕ− 2

vneb,e tanϕ

Re+h

vneb,n
Rn+h

2Ω sinϕ+
vneb,e tanϕ

Re+h

vneb,n tanϕ

Re+h +
vneb,d
Re+h 2Ω cosϕ+

vneb,e
Re+h

−2 vneb,n
Rn+h −2Ω cosϕ− 2

vneb,e
Re+h 0




︸ ︷︷ ︸
F

(2,2)
FF

. (B.44)

Auch F
(2,2)
FF muss später an den zuvor geschätzten Positionen p̂e

eb und Geschwindigkeiten v̂n
eb ausge-

wertet werden. Entsprechend resultiert für die Ableitungen nach den Orientierungs- und Biasfehlern:

∂v̇n
eb

∂Υ
= − ∂

∂Υ

([
Ĉn

b(ã
b
ib − ba)×

]
Υ
)
= − [ânib×] =: F

(2,3)
FF (B.45)

∂v̇n
eb

∂ba

=
∂

∂ba

(
(I3×3 +Ψ)Ĉn

b(−ba)
)
≈ −Ĉn

b =: F
(2,4)
FF , (B.46)

wobei ânib = Ĉn
b

(
ãbib − ba

)∣∣∣
ba=b̂a

die gemessene Beschleunigung des Körpers bezüglich des i-Rah-

mens in Koordinaten des n-Rahmens ist, verringert um das geschätzte Bias der jeweiligen Beschleuni-

gungssensoren. Bei Gl. (B.46) wurde zur Vereinfachung angenommen, dass das Produkt aus Bias und

kreuzproduktbildender Matrix sehr klein ist.

Positionsfehlerdifferenzialgleichung Im Folgenden sollen nun noch die entsprechenden Terme der

Zustandsübergangsmatrix hergeleitet werden, die für die Berechnung der Positionskomponenten des

Folgezustandes verantwortlich sind. Dazu müssen die Differenzialgleichungen

∆ϕ̇ =
∂ϕ̇

∂h
∆h+

∂ϕ̇

∂vneb,n
∆vneb,n (B.47)

∆λ̇ =
∂λ̇

∂ϕ
∆ϕ+

∂λ̇

∂h
∆h+

∂ϕ̇

∂vneb,e
∆vneb,e (B.48)

∆ḣ =
∂ḣ

∂vneb,d
∆vneb,d (B.49)
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unter Berücksichtigung der Gl. (4.46) bis (4.48) gelöst werden. Durch Einsetzen der Differenzen, die

sich in Anlehnung an die Gl. (4.43) bis (4.45) ergeben, kann der Zusammenhang

∆ṗn
eb =




0 0
vneb,n
Rn+h

vneb,e·tan(ϕ)
Rn+h 0

vneb,e
Re+h

0 0 0




︸ ︷︷ ︸
F

(1,1)
FF

∆pn
eb +



1 0 0

0 1 0

0 0 1




︸ ︷︷ ︸
I3×3=F

(1,2)
FF

∆vn
eb (B.50)

gewonnen werden, wobei F
(1,1)
FF für die Vektoren pe

eb = p̂e
eb und vn

eb = v̂n
eb ausgewertet wird, die

sich aus den Strapdown-Berechnungen ergeben.



Anhang C

Herleitung der Filtergleichungen zur Berücksichtigung

zeitverzögerter Messungen

In diesem Abschnitt sollen die in Kap. 5.3.2 verwendeten Gleichungen hergeleitet werden, die eine

Berücksichtigung von Messwerten ermöglichen, welche bereits vor ihrer Beobachtung gültig waren

und nur verzögert bereitgestellt werden können. Wir gehen im Folgenden von einem zum Zeitpunkt

k − i′ gültigen, jedoch erst zum Zeitpunkt k verfügbaren Messvektor zk−i′

k aus, so dass

zk−i′

k = Hk−i′xk−i′ +Mk−i′wk−i′ (C.1)

wk−i′ = Dwwk−i′−1 + Γwνk−i′ (C.2)

gilt, wobei νk−i′ ∼ N (νk−i′ ;0D×1 ,Rk−i′) weiß und GAUSS-verteilt mit Mittelwertvektor 0D×1 und

Kovarianzmatrix Rk−i′ ist. Anders als in [LARP98] wird hier der Fall betrachtet, dass das Messrau-

schen zeitlich mit dem Systemzustandsvektor korreliert ist. Das Residuum lautet dann

εk−i′ := zk−i′

k −Hk−i′ x̂k−i′|k−i′−1. (C.3)

Dabei ist x̂k−i′|k−i′−1 die propagierte Schätzung des Systemzustandes zum Zeitpunkt k− i′, gegeben

die Messungen bis einschließlich k − i′ − 1, und Hk−i′ die entsprechende Messmatrix. Im nächsten

Schritt wird ein Residuum auf Basis eines extrapolierten Messwertes zk∗k berechnet, welches aufgetre-

ten wäre, wenn es keine Verzögerung zwischen Messzeitpunkt und Verfügbarkeitszeitpunkt gegeben

hätte. Dieses Residuum ist

ε
∗
k := zk∗k −Hkx̂k|k−1. (C.4)

Setzt man beide Residuen (C.3) und (C.4) nun gleich, so erhält man

zk∗k = zk−i′

k +Hkx̂k|k−1 −Hk−i′ x̂k−i′|k−i′−1. (C.5)

Durch Einsetzen von (C.1) folgt mit den Abkürzungen ∆xk|k−1 := xk − x̂k|k−1 und

∆xk−i′|k−i′−1 := xk−i′ − x̂k−i′|k−i′−1:

zk∗k = Hkxk−Hk∆xk|k−1 +Hk−i′∆xk−i′|k−i′−1 +Mk−i′wk−i′︸ ︷︷ ︸
w∗
k

, (C.6)

wobei w∗
k das zum Messvektor zk∗k zugehörige extrapolierte Messrauschen darstellt, das mit dem

Systemzustand korreliert ist. Es müssen daher neue KALMAN-Filtergleichungen gefunden werden,

welche die Korrelation mit dem Messrauschen und dem Systemzustand xk sowie xk−i′ berücksich-

tigen. Bei den Gleichungen in Kap. 4.6.1 mussten nur die Korrelationen zum aktuellen Zeitpunkt k

169
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einbezogen werden, die sich durch Rauschprozesse höherer Ordnung ergeben haben. An dieser Stelle

werden jedoch Korrelationen aufgrund von zeitlichen Verzögerungen berücksichtigt, die vom Zeit-

punkt k − i′ abhängen, wobei i′ > r′′ und r′′ die Ordnung des Rauschprozesses ist. Dieses motiviert

eine neue Herleitung zur Berechnung der Schätzfehlerkovarianzmatrix.

Zunächst wird eine Innovationssequenz zur Bestimmung der a posteriori-Schätzung des System-

zustandes festgelegt. In Anlehnung an (4.97) wird daher

x̂k|k = x̂k|k−1 +K∗
k

(
zk∗k −Hkx̂k|k−1

)
(C.7)

aufgestellt, die sich durch Einsetzen von (C.6) zu

x̂k|k = x̂k|k−1 +K∗
k

(
Hkxk +w∗

k −Hkx̂k|k−1

)
(C.8)

= x̂k|k−1 +K∗
k

(
zk−i′

k −Hk−i′ x̂k−i′|k−i′−1

)
(C.9)

vereinfacht. Durch Subtraktion beider Seiten von dem Vektor xk und der Abkürzung

∆xk|k := xk − x̂k|k erhält man

∆xk|k =
(
ID×D −K∗

kHk

)
∆xk|k−1 −K∗

kw
∗
k. (C.10)

Durch Bildung von Pk|k := E
[
∆xk|k∆xT

k|k

∣∣∣ z1:k
]

folgt für die Fehlerkovarianzmatrix des

a posteriori-Schätzwertes

Pk|k =
(
ID×D −K∗

kHk

)
Pk|k−1

(
ID×D −K∗

kHk

)T
−
(
ID×D −K∗

kHk

)
Pxw∗,k|k−1 (K

∗
k)

T

−K∗
kP

T
xw∗,k|k−1

(
ID×D −K∗

kHk

)T
+K∗

kPw∗w∗,k|k−1 (K
∗
k)

T . (C.11)

Für die Kovarianzmatrix Pxw∗,k|k−1 gilt dabei unter Berücksichtigung des extrapolierten Messrau-

schens w∗
k aus Gl. (C.6):

Pxw∗,k|k−1 := E
[
∆xk|k−1 (w

∗
k)

T
∣∣∣ z1:k−1

]

= −Pk|k−1H
T
k +Pk,k−i′|k−1H

T
k−i′ +Mk−i′Pxw,k,k−i′|k−1, (C.12)

wobei

Pk,k−i′|k−1 := E
[
∆xk|k−1∆xT

k−i′|k−i′−1

∣∣∣ z1:k−1

]
, (C.13)

Pxw,k,k−i′|k−1 := E
[
∆xk|k−1w

T
k−i′

∣∣∣ z1:k−1

]
. (C.14)

Da wir annehmen, dass der Fehler zum Zeitpunkt k nicht mit dem Messrauschen zum Zeitpunkt k−i′
korreliert ist, gilt Pxw,k,k−i′|k−1 = 0D×H , wobei wk−i′ ∈ RH sei. Es müssen demnach nur noch zwei

Kovarianzmatrizen bestimmt werden, um die Lösung für Pk|k zu erhalten, da

Pw∗x,k|k−1 = PT
xw∗,k|k−1 gilt. Durch Einsetzen von (C.6) in Pw∗w∗,k|k−1 := E

[
w∗

k (w
∗
k)

T
∣∣∣ z1:k−1

]

erhält man:

Pw∗w∗,k|k−1 = HkPk|k−1H
T
k −HkPk,k−i′|k−1H

T
k−i′ −Hk−i′P

T
k,k−i′|k−1H

T
k

+Hk−i′Pk−i′|k−i′−1H
T
k−i′ +Hk−i′Pxw,k−i′|k−i′−1M

T
k−i′

+Mk−i′P
T
xw,k−i′|k−i′−1H

T
k−i′ +Mk−i′Pww,k−i′M

T
k−i′ . (C.15)
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Setzt man (C.12) und (C.15) in (C.11) ein, so erhält man nach einigen Umrechnungen:

Pk|k = Pk|k−1 −Pk,k−i′|k−1H
T
k−i′ (K

∗
k)

T −K∗
kHk−i′P

T
k,k−i′|k−1

+K∗
k

(
Hk−i′Pk−i′|k−i′−1H

T
k−i′ +Hk−i′Pxw,k−i′|k−i′−1M

T
k−i′

+ Mk−i′P
T
xw,k−i′|k−i′−1H

T
k−i′ +Mk−i′Pww,k−i′M

T
k−i′

)
(K∗

k)
T . (C.16)

Für die Berechnung der Kovarianzmatrix Pk,k−i′|k−1 muss zunächst eine Formulierung für die

Änderung des Schätzfehlers ∆xk|k−1 gefunden werden. Diese erhält man durch Subtraktion der Glei-

chung für den prädizierten Systemzustand (4.90) von der Systemmodellgl. (4.76), woraus

∆xk|k−1 = Φk∆xk−1|k−1 +Gknk (C.17)

resultiert. Um nun den noch unbekannten Vektor ∆xk−1|k−1 ersetzen zu können, müssen auch die

Messungen berücksichtigt werden, die zwischen dem Gültigkeits- und Verfügbarkeitszeitpunkt der

verzögerten Messungen liegen, denn diese können in der üblichen Weise verarbeitet werden. Analog

zu (C.17) kann für diese

∆xk|k =
(
ID×D −KkHk

)
∆xk|k−1 −KkMkwk (C.18)

aufgestellt werden, wobei Kk wie in Gl. (4.96) berechnet wird und wk wieder das zeitkorrelierte

Rauschen darstellt. Ersetzt man nun in (C.17) ∆xk−1|k−1 mit Hilfe von (C.18), so führt dies zu

∆xk|k−1 = Φk

((
ID×D −Kk−1Hk−1

)
∆xk−1|k−2 −Kk−1Mk−1wk−1

)
+Gknk. (C.19)

Durch mehrmaliges sukzessives Einsetzen von (C.17), (C.18) in (C.19) bis zu dem Zeitpunkt k − i′,
an dem der verzögerte Messvektor gültig war, erhält man nach einigen Umrechnungen

∆xk|k−1 =

(
i′∏

m′=1

Φk−m′+1

(
ID×D −Kk−m′Hk−m′

))
∆xk−i′|k−i′−1

−
(

i′−1∏

m′=1

Φk−m′+1

(
ID×D −Kk−m′Hk−m′

))
Φk−i′+1Kk−i′Mk−i′wk−i′

+ f(nk, . . . ,nk−i′+1)− f(wk−1, . . . ,wk−i′+1), (C.20)

wobei mit f(. . .) Funktionen bezeichnet werden, welche von den System- bzw. Messrauschvektoren

abhängen, die wiederum nicht korreliert sind. Diese sind ebenfalls nicht mit dem Vektor ∆xk−i′|k−i′−1

korreliert. Die Berechnung von Pk,k−i′|k−1 führt daher zu

Pk,k−i′|k−1 =

(
i′∏

m′=1

Φk−m′+1

(
ID×D −Kk−m′Hk−m′

))
Pk−i′|k−i′−1

−
(

i′−1∏

m′=1

Φk−m′+1

(
ID×D −Kk−m′Hk−m′

))
Φk−i′+1Kk−i′Mk−i′P

T
xw,k−i′|k−i′−1.

(C.21)
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Die letzte Unbekannte ist die Gewichtungsmatrix K∗
k in Gl. (C.11). Diese kann durch Nullsetzen der

Ableitung der Spur der aktualisierten Schätzfehlerkovarianzmatrix in (C.16) nach der Gewichtungs-

matrix berechnet werden:

∂spur
(
Pk|k

)

∂K∗
k

= − 2Pk,k−i′|k−1H
T
k−i′

+ 2K∗
k

(
Hk−i′Pk−i′|k−i′−1H

T
k−i′ +Hk−i′Pxw,k−i′|k−i′−1M

T
k−i′

+ Mk−i′P
T
xw,k−i′|k−i′−1H

T
k−i′ +Mk−i′Pww,k−i′M

T
k−i′

)
(C.22)

!
= 0D×D , (C.23)

woraus

K∗
k = Pk,k−i′|k−1H

T
k−i′

(
Hk−i′Pk−i′|k−i′−1H

T
k−i′ +Hk−i′Pxw,k−i′|k−i′−1M

T
k−i′

+ Mk−i′P
T
xw,k−i′|k−i′−1H

T
k−i′ +Mk−i′Pww,k−i′M

T
k−i′

)−1
(C.24)

resultiert. Setzt man dieses Ergebnis wiederum in (C.16) ein, so vereinfacht sich die Aktualisierung

der Schätzfehlerkovarianzmatrix zu

Pk|k = Pk|k−1 −K∗
kHk−i′P

T
k,k−i′|k−1. (C.25)

Mit (C.8), (C.21), (C.24) und (C.25) stehen sämtliche Gleichungen zur Verfügung, um zwar sub-

optimal, aber effizient die verzögert verfügbaren Messungen berücksichtigen zu können. Die Aktua-

lisierung des Systemzustandes kann dabei durch Gl. (C.9) erfolgen. Für die Berechnung der Kreuz-

kovarianzmatrizen Pxn,k|k und Pxw,k|k spielt ebenso (C.9) eine wichtige Rolle, sofern verzögerte

Messungen vorliegen:

Pxn,k|k := E
[
∆xk|kn

T
k

∣∣∣ zk−i′

1:k

]

= E
[(

xk − x̂k|k−1 −K∗
k

(
zk−i′

k −Hk−i′ x̂k−i′|k−i′−1

))
nT
k

∣∣∣ zk−i′

1:k

]

= E
[((

xk − x̂k|k−1

)
−K∗

k

(
Hk−i′

(
xk−i′ − x̂k−i′|k−i′−1

)
+Mk−i′wk−i′

))
nT
k

∣∣∣ zk−i′

1:k

]

= Pxn,k|k−1 (C.26)

Pxw,k|k := E
[
∆xk|kw

T
k

∣∣∣ zk−i′

1:k

]

= E
[(

xk − x̂k|k−1 −K∗
k

(
zk−i′

k −Hk−i′ x̂k−i′|k−i′−1

))
wT

k

∣∣∣ zk−i′

1:k

]

= E
[((

xk − x̂k|k−1

)
−K∗

k

(
Hk−i′

(
xk−i′ − x̂k−i′|k−i′−1

)
+Mk−i′wk−i′

))
wT

k

∣∣∣ zk−i′

1:k

]

= Pxw,k|k−1. (C.27)



Anhang D

Herleitung der barometrischen Höhenformel

In diesem Abschnitt soll gezeigt werden, wie aus einem gemessenen Luftdruck und Temperaturin-

formationen eine Höhe bestimmt werden kann. Dabei spielt die hydrostatische Grundgleichung nach

[Us176] die entscheidende Rolle. Diese beschreibt die Änderung von Druck und Dichte in Abhän-

gigkeit von der Höhe. Zur Herleitung der hydrostatischen Grundgleichung betrachtet man ein qua-

derförmiges Volumenelement dV mit der infinitesimalen Höhe dh und der Grundfläche dA. Von

unten wirkt auf die Fläche dA nur eine durch den von der Höhe abhängigen Atmosphärendruck P (h)

verursachte Kraft

Fu := P (h) · dA. (D.1)

Von oben wirkt auf die Fläche ein um den Betrag dP verschiedener Druck und damit die Kraft

Fo := (P (h) + dP ) · dA. (D.2)

Zusätzlich hierzu wirkt von oben die Gewichtskraft Fg der in dem Volumen dV = dA·dh enthaltenen

Luftmasse dm mit der Dichte ρ:

Fg = dm · g(h)
= ρ(h) · dV · g(h)
= ρ(h) · dh · dA · g(h). (D.3)

Hier bezeichnet g(h) die von der Höhe abhängige Schwerebeschleunigung. Die Summe aller Kräfte

muss im Gleichgewicht Null ergeben, d. h. Fu − Fo − Fg = 0. Einsetzen von (D.1), (D.2) und (D.3)

liefert dann

P (h) · dA− (P (h) + dP ) · dA− ρ(h) · dh · dA · g(h) = 0

−ρ(h) · dh · g(h)− dP = 0

dP

dh
= −ρ(h)g(h). (D.4)

Aus der idealen Gasgleichung in [Tip99] ergibt sich außerdem für die Dichte ρ(h) der Luft unter

Berücksichtigung der Konstanten in Tab. 6.1:

ρ(h) =
P (h) ·M
ℓ · T (h) . (D.5)

Auch wenn die ideale Gasgleichung nicht die Luftfeuchtigkeit berücksichtigt, kann sie hier als aus-

reichende Näherung verwendet werden. Einsetzen von Gl. (D.5) in Gl. (D.4) liefert die Ausgangs-

gleichung zur Herleitung der barometrischen Höhenformel:

dP

dh
= −P (h) · g(h) ·M

ℓ · T (h) . (D.6)
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Für die weitere Berechnung ist es nötig, einige Annahmen zur Vereinfachung zu treffen. In der Regel

sind die molare Masse M der Luft und die universelle Gaskonstante ℓ unabhängig von der Höhe.

Zusätzlich wird nun die Schwerebeschleunigung unabhängig von der Höhe auf den Wert g0 (auf NN)

gesetzt. Diese Vereinfachung erlaubt es später, einfacher über die Höhe zu integrieren.

Die hiermit bestimmte Höhe wird als geopotentielle Höhe hgeop bezeichnet. Die Umrechnung in

eine geometrische Höhe hgeom ist durch Umstellen von Gl. (4.3) möglich [Us176]:

hgeom =

(
R0 · hgeop

R0 − hgeop

)
. (D.7)

Bis zu einer Höhe von 3 km liegt der Unterschied zwischen hgeom und hgeop für die in dieser Arbeit

eingesetzten Sensoren im Bereich einer Messgenauigkeit von 1m. Zudem ist die Änderung dieser

Abweichung in Abhängigkeit von der Höhe so gering, dass diese, im Vergleich zu anderen Fehlern,

kaum einen Einfluss hat und durch die Fehlerfilterung korrigiert werden kann. Aus diesem Grund

wird auf die Umrechnung verzichtet und h := hgeop = hgeom gesetzt.

Schließlich ist es noch nötig, für die Temperatur T passende Annahmen zu treffen, so dass sich

diese in Abhängigkeit von der Höhe beschreiben lässt. Eine gute Näherung für den Temperaturverlauf

ist dabei eine lineare Abhängigkeit von der Höhe. Dieser wird auch in vielen Modellen für eine

Standardatmosphäre angenommen. In [Us176] wird dabei folgender Zusammenhang angegeben:

T (h) = T (h0) + γ0 · (h− h0), (D.8)

wobei der (negative) Temperaturgradient γ0 eine mit der Höhe abnehmende Temperatur in
[
K/m

]

beschreibt. Diese Annahme gilt für den Bereich von 0 km bis 11 km Höhe über NN. T (h0) ist dabei

die Temperatur auf Referenzhöhe h0, welche für den hier betrachteten Bereich von 0 km bis 11 km

auf 0m gesetzt wird. Oberhalb von 11 km (bis zu einer Höhe von 85 km) existieren Bereiche für

die andere Temperaturgradienten und Referenzhöhen definiert sind. Diese sollen jedoch nicht weiter

betrachtet werden.

Setzt man nun die o. g. Annahmen in Gl. (D.6) ein, ergibt sich:

dP

dh
= − P (h) · g0 ·M

ℓ · (T (h0) + γ0 · (h− h0))

⇒
P (h1)∫

P (h0)

dP

P (h)
= −

h1∫

h0

g0 ·M
ℓ · (T (h0) + γ0 · (h− h0))

dh. (D.9)

Mit dem allgemeinen Zusammenhang

∫
1

(ax+ b)(cx+ d)
dx =

1

bc− ad ln

∣∣∣∣
cx+ d

ax+ b

∣∣∣∣ , (D.10)

wobei c 6= 0 [BSMM00], folgt nach Verwendung von h = h1 und P (h) = P (h1):

ln

(
P (h)

P (h0)

)
= −M · g0

ℓ
· 1
γ0

ln

(
T (h0) + γ0 · (h− h0)

T (h0)

)
. (D.11)

Das Anwenden der Exponentialfunktion auf beiden Seiten der Gl. (D.11) und das Umstellen nach

P (h) führt nun zur barometrischen Höhenformel, die den Luftdruck P in Abhängigkeit von der Höhe
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h beschreibt:

P := P (h) = P0

(
T0

T0 + γ0 · (h− h0)

)M·g0
ℓ·γ0

= P0

(
T0 + γ0 · (h− h0)

T0

)−M·g0
ℓ·γ0

(D.12)

mit P0 = P (h0) und T0 = T (h0). Gl. (D.12) lässt sich leicht nach h auflösen und man erhält einen

Ausdruck, der die Höhe h in Abhängigkeit vom Luftdruck P beschreibt. Es folgt:

h(P, P0, T0) = h0 +



(
P0

P

) ℓ·γ0
M·g0 − 1


 · T0

γ0
. (D.13)

Mit den Gl. (D.8), (D.12) und (D.13) hat man nun zwei Möglichkeiten:

• Berechnung von T (h) und P (h): Sind Werte für T0, h0, P0 und h gegeben, ist es mit den

Gl. (D.8) und (D.12) möglich, ein Temperaturprofil T (h) und das dazugehörende Druckprofil

P (h) für die gegebenen Höhen h zu erzeugen.

• Berechnung von h(P, P0, T0): Sind Werte für h0, T0, P0 und P bekannt, ist es mit der

Gl. (D.13) möglich, aus dem Druck die Höhe h zu berechnen.
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Anhang E

Ergänzungen zu den Parameterschätzverfahren

E.1 Sequenzieller EM-Algorithmus

Im Folgenden werden einige Herleitungen und Ergänzungen zu Kap. 7 gegeben.

Mathematische Zusammenhänge Es sei im Folgenden C ∈ RD×D eine quadratische Matrix, die

aus den Komponenten C(m′,f ′) besteht, und S eine symmetrische Matrix. Des Weiteren seien zwei

Vektoren e und b gegeben. Der Vektor am′ := (0 . . . 0 1 0 . . . 0)T ist ein Nullvektor mit einer Eins

an der m′-ten Position. Des Weiteren sei

δm′f ′ :=

{
1 für m′ = f ′

0 für m′ 6= f ′
(E.1)

das KRONECKER-Delta. Nach [Fuk90] gilt:

eTC−1b = spur
{
eTC−1b

}
= spur

{
C−1beT

}
. (E.2)

Sei nun weiterhin P := C−1SC−1, wobei P (m′,f ′) die Komponenten der Matrix P bezeichnen, so

gilt nach [Fuk90]:

∂spur
{
C−1S

}

∂C(m′,f ′)
= −

(
P (m′,f ′) + P (f ′,m′) − δm′f ′P (m′,f ′)

)

= −aTm′Paf ′ − aTf ′Pam′ + δm′f ′a
T
m′Paf ′ . (E.3)

Ist die Matrix C jetzt außerdem symmetrisch, so folgt mit A∗
m′f ′ als Nullmatrix, die aber an den

Positionen (m′, f ′) und (f ′,m′) eine Eins aufweist:

aTf ′Pam′ = aTm′Paf ′ ⇒
∂spur

{
C−1S

}

∂C(m′,f ′)
= −(2− δm′f ′)aTm′Paf ′ (E.4)

∂ log (det {C})
∂C

=
(
2C−1 − diag−1

(
C−1

))

⇒ ∂ log (det {C})
∂C(m′,f ′)

=
(
2− δm′f ′

)
aTm′C

−1af ′ (E.5)

∂C−1

∂C(m′,f ′)
= −C−1A∗

m′f ′C
−1

= −C−1
(
am′a

T
f ′ + aTf ′am′ − δm′f ′am′a

T
f ′

)
C−1

= −(2− δm′f ′)C−1am′a
T
f ′C

−1. (E.6)
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Zielfunktion Der Logarithmus einer Verbundverteilung aus einer Sequenz von Zufallsvektoren x1:k

(als Realisierungen der gleichnamigen Zufallsvariablen x1:k), einer Sequenz z1:k von Beobachtungs-

vektoren (als Realisierungen der gleichnamigen Zufallsvariablen z1:k) vom Zeitpunkt k = 1 bis zum

aktuellen Zeitpunkt k sowie der unbekannten, diagonalen Kovarianzmatrix Qη = diag(qη), kann mit

Hilfe der BAYES’schen Regel für bedingte Wahrscheinlichkeiten wie folgt vereinfacht werden:

log
(
p
(
x1:k, z1:k;qη

))
= log

(
p (z1:k|x1:k) · p

(
x1:k;qη

))

= log (p (z1:k|x1:k)) + log
(
p
(
x1:k;qη

))
. (E.7)

Da für ein autoregressives Modell erster Ordnung (wenn xk unabhängig von xk−2, etc.)

log
(
p
(
x1:k;qη

))
= log

(
p (x1)

k∏

κ=2

p
(
xκ|xκ−1;qη

)
)

= log (p (x1)) +
k∑

κ=2

log
(
p
(
xκ|xκ−1;qη

))
(E.8)

gilt, folgt:

log
(
p
(
x1:k, z1:k;qη

))
= log (p (x1)) + log (p (z1:k|x1:k)) +

k∑

κ=2

log
(
p
(
xκ|xκ−1;qη

))
, (E.9)

wobei p (x1) = N
(
x1;0H×1 ,P1

)
und P1 die Kovarianzmatrix der Zufallsvariablen x1 ist.

Erwartungswertberechnung Im Folgenden soll gezeigt werden, wie die Matrix Ek in Gl. (7.40)

geschätzt werden kann. Für die Matrix gilt:

Ek := E
[
(xk −Φkxk−1)(xk −Φkxk−1)

T
∣∣ . . .

]

= E
[
(xk −Φkxk−1)(xk −Φkxk−1)

T
∣∣ z1:k; q̂η,k−1

]
. (E.10)

Durch Ausmultiplizieren folgt:

Ek = E
[
xkx

T
k

∣∣ . . .
]
−ΦkE

[
xk−1x

T
k

∣∣ . . .
]
− E

[
xkx

T
k−1

∣∣ . . .
]
ΦT

k +ΦkE
[
xk−1x

T
k−1

∣∣ . . .
]
ΦT

k .

(E.11)

Zunächst werde die Schätzfehlerkovarianzmatrix betrachtet. Es gilt:

Pk|k := E

[(
xk − x̂k|k

)(
xk − x̂k|k

)T ∣∣∣∣ . . .
]

= E
[
xk x

T
k

∣∣∣ . . .
]
− E

[
x̂k|kx

T
k

∣∣∣ . . .
]
− E

[
xkx̂

T
k|k

∣∣∣ . . .
]
+ E

[
x̂k|kx̂

T
k|k

∣∣∣ . . .
]
. (E.12)

Da x̂k|k := E
[
xk| z1:k; q̂η,k−1

]
folgt für (E.12) und damit für den ersten Summanden in (E.11):

Pk|k = E
[
xkx

T
k

∣∣ . . .
]
− x̂k|kE

[
xT
k

∣∣ . . .
]
− E [xk| . . . ] x̂T

k|k + x̂k|kx̂
T
k|k

= E
[
xk xT

k

∣∣ . . .
]
− x̂k|kx̂

T
k|k − x̂k|kx̂

T
k|k + x̂k|kx̂

T
k|k

= E
[
xkx

T
k

∣∣ . . .
]
− x̂k|kx̂

T
k|k

⇒ E
[
xkx

T
k

∣∣ z1:k; q̂η,k−1

]
= Pk|k + x̂k|kx̂

T
k|k. (E.13)
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Analog erhält man für den letzten Summanden in (E.11) mit x̂k−1|k := E
[
xk−1

∣∣ z1:k; q̂η,k−1

]
:

E
[
xk−1x

T
k−1

∣∣ z1:k; q̂η,k−1

]
= Pk−1|k + x̂k−1|kx̂

T
k−1|k (E.14)

Die beiden mittleren Summanden in (E.11) müssen gesondert betrachtet werden. Es sei Pk,k−1|k
die so genannte Lag-One-Schätzfehlerkovarianzmatrix [RAG04]:

Pk,k−1|k := E

[(
xk − x̂k|k

)(
xk−1 − x̂k−1|k

)T ∣∣∣∣ z1:k; q̂η,k−1

]

= E
[
xk x

T
k−1

∣∣∣ . . .
]
− E

[
x̂k|kx

T
k−1

∣∣∣ . . .
]
− E

[
xkx̂

T
k−1|k

∣∣∣ . . .
]
+ E

[
x̂k|kx̂

T
k−1|k

∣∣∣ . . .
]

= E
[
xk x

T
k−1

∣∣∣ . . .
]
− x̂k|kE

[
x
T
k−1

∣∣∣ . . .
]
− E

[
xk

∣∣∣ . . .
]
x̂T
k−1|k

+ E
[
x̂k|k

∣∣∣ . . .
]
E
[
x̂T
k−1|k

∣∣∣ . . .
]
. (E.15)

Da außerdem E
[
x̂k|k

∣∣∣ . . .
]
= x̂k|k und E

[
x̂T
k−1|k

∣∣∣ . . .
]
= x̂T

k−1|k gilt, folgt:

Pk,k−1|k = E
[
xkx

T
k−1

∣∣ . . .
]
− x̂k|kE

[
xT
k−1

∣∣ . . .
]
. (E.16)

Bei genauer Betrachtung von (E.14) und (E.16) fällt auf, dass E
[
xT
k−1

∣∣ z1:k; q̂η,k−1

]
= x̂T

k−1|k 6=
x̂T
k−1|k−1 ist, denn dieser Erwartungswert muss in Abhängigkeit von der aktuellen Beobachtung zk

und der Schätzung q̂η,k−1 bestimmt werden. Aus diesem Grund muss eine Erweiterung des System-

zustandvektors entsprechend xT
k →

(
xT
k xT

k−1

)
vorgenommen werden.

E.2 Empirische Parameterschätzung

Im Folgenden sei Z† ein Vektor, bestehend aus reellen Zufallsvariablen, und z†,f ′ ∈ RD mit

1 < f ′ < k und f ′ ∈ N dessen Realisierungen. Nach [Bal09] und [OS99] sei Z† ergodisch und

die Realisierungen seien konstant in dem begrenzten Intervall 1 < f ′ < k. Der Mittelwert µ† und die

korrespondierende [D ×D]-Kovarianzmatrix Q† = diag
(
q†

)
sind zum Zeitpunkt k gegeben durch

µ†,k := E
[
Z†
]
≈ 1

k

k∑

f ′=1

z†,f ′ (E.17)

m2
†,k := E

[
Z2
†
]
≈ 1

k

k∑

f ′=1

z2†,f ′ (E.18)

q†,k := E
[(
Z† − µ†,k

)2]
, (E.19)

wobei m2
†,k der Erwartungswert des quadrierten Vektors Z† ist, der durch den empirischen Mittelwert

der quadrierten Realisierungen z†,f ′ zum Zeitpunkt k angenähert wird. Für eine rekursive Beschrei-

bung des empirischen Mittelwertes setzen wir zuerst (E.18) in (E.19) ein. Damit gilt:

q†,k = m2
†,k − µ

2
†,k. (E.20)

Andererseits kann für den empirischen Mittelwert der quadrierten Realisierungen auch

m2
†,k ≈

1

k


z2†,k +

k−1∑

f ′=1

z2†,f ′


 (E.21)
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geschrieben werden. Mit m2
†,k−1 ≈ 1

k−1

∑k−1
f ′=1 z

2
†,f ′ erhalten wir eine rekursive Beschreibung:

m2
†,k ≈

1

k

(
(k − 1) m2

†,k−1 + z2†,k
)
. (E.22)

Ersetzen wir nun m2
†,k in Gl. (E.20) durch (E.22), so folgt:

q†,k =

(
1− 1

k

)
m2

†,k−1 +
1

k
z2†,k − µ

2
†,k. (E.23)

Analog zu Gl. (E.21) erhalten wir damit ebenso eine rekursive Formel für den Mittelwertvektor in

(E.17) mit

µ†,k =

(
1− 1

k

)
µ†,k−1 +

1

k
z†,k. (E.24)

In (E.24) werden bereits sämtliche Beobachtungen z†,1, . . . , z†,k−1 berücksichtigt. Falls bereits eine

a priori-Information über den Mittelwert vorliegt, so sollte k > 1 gewählt werden, um dieses Wissen

zu berücksichtigen. Um nun eine rekursive Form für die Berechnung der Kovarianzmatrix zu erhalten,

kann (E.24) in Gl. (E.23) eingesetzt werden:

q†,k =

(
1− 1

k

)
m2

†,k−1 +
1

k
z2†,k −

((
1− 1

k

)
µ†,k−1 +

1

k
z†,k

)2

=

(
1− 1

k

)(
m2

†,k−1 − µ
2
†,k−1 +

1

k

(
z†,k − µ†,k−1

)2
)

=

(
1− 1

k

)
q†,k−1 +

(
1− 1

k

)
1

k

(
z†,k − µ†,k−1

)2
, (E.25)

wobei µ†,k−1 =
1

k−1

∑k−1
f ′=1 z†,f ′ gilt. Mit diesen Gleichungen wird somit ein exponentiell gewichte-

tes Fenster über das jeweilige Datenintervall gelegt.

Alternative 1 Da sich die Definition für die Stichprobenvarianz von der in Gl. (E.19) unterscheidet,

hat dies auch Auswirkungen auf die nachfolgenden Herleitungen. Geht man nach [Oth03] von einem

erwartungstreuen ML-Schätzwert

q†,k =
1

k − 1

k∑

f ′=1

(
z†,f ′ − µ†,k

)2
(E.26)

aus und wird auch hier der letzte Summand von der Summe getrennt, so können nach Einsetzen von

Gl. (E.26), wobei k − 1 an Stelle von k verwendet wird, die Diagonalemente der aktuellen Kovari-

anzmatrix durch die rekursive Berechnungsvorschrift

q†,k =
k − 2

k − 1︸ ︷︷ ︸
1−ζ

q†,k−1 +
1

k − 1︸ ︷︷ ︸
ζ

(
z†,k − µ†,k

)2
(E.27)

gewonnen werden. Wie oben muss auch hier auf eine entsprechende Initialisierung geachtet werden.

Soll a priori-Wissen einfließen, so muss der Startindex im Gegensatz zu Gl. (E.25) um Eins inkremen-

tiert werden. Für k = 3 werden beide Summanden gleich gewichtet. Bis auf eine leicht veränderte

Gewichtung der Einzelsummanden und der Verwendung des aktuell gültigen Mittelwertvektors µ†,k,

ist prinzipiell kein Unterschied zu (E.25) vorhanden. Mit dieser Variante wird jedoch erreicht, dass

die aktuelle Kovarianzschätzung auch vom aktuellen Mittelwertvektor abhängt. In der Literatur wird

diese Art Rekursion häufig für ein konstantes ζ mit 0 < ζ < 1 gewählt: ein heuristischer Faktor, der

dafür sorgt, dass die zurückliegenden Messungen stärker oder schwächer berücksichtigt werden.
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Alternative 2 Wäre es möglich, vor der Berechnung der Varianzen bereits eine vollständige Aus-

sage über die Mittelwerte zum Zeitpunkt k = K zu treffen und die Berechnung nicht parallel zur

Varianzberechnung durchführen zu müssen, könnten nach [Tys92] bessere Ergebnisse für (E.27) er-

reicht werden. Wir betrachten daher die modifizierte Gl. (E.26), wobei bereits der k-te Summand

extrahiert wurde:

q†,k =
1

k − 1

k−1∑

f ′=1

(
z†,f ′ − µ†,k

)2
+

1

k − 1

(
z†,k − µ†,k

)2
. (E.28)

Wird nun der erste Term mit ±2z†,f ′µ†,k−1 sowie ±µ2
†,k−1 erweitert, erhält man:

1

k − 1

k−1∑

f ′=1

(
z†,f ′ − µ†,k

)2
=

=
1

k − 1

k−1∑

f ′=1

z2†,f ′ + µ
2
†,k − 2z†,f ′µ†,k + 2z†,f ′µ†,k−1 − 2z†,f ′µ†,k−1 + µ

2
†,k−1 − µ

2
†,k−1

=
1

k − 1

k−1∑

f ′=1

(
z†,f ′ − µ†,k−1

)2
+ 2

(
µ†,k−1 − µ†,k

) 1

k − 1

k−1∑

f ′=1

z†,f ′ + µ
2
†,k − µ

2
†,k−1

=
1

k − 1

k−1∑

f ′=1

(
z†,f ′ − µ†,k−1

)2
+ 2

(
µ†,k−1 − µ†,k

)
µ†,k−1 + µ

2
†,k − µ

2
†,k−1

=
1

k − 1

k−1∑

f ′=1

(
z†,f ′ − µ†,k−1

)2
+ µ

2
†,k−1 − 2µ†,kµ†,k−1 + µ

2
†,k

=
1

k − 1

k−1∑

f ′=1

(
z†,f ′ − µ†,k−1

)2
+
(
µ†,k − µ†,k−1

)2
. (E.29)

Durch Einsetzen von (E.29) und Verwendung von q†,k−1 =
1

k−2

∑k−1
f ′=1

(
z†,f ′ − µ†,k−1

)2
in (E.28)

erhält man schließlich:

q†,k =
k − 2

k − 1︸ ︷︷ ︸
1−ζ

q†,k−1 +
1

k − 1︸ ︷︷ ︸
ζ

(
z†,k − µ†,k

)2
+
(
µ†,k − µ†,k−1

)2
. (E.30)

Der Unterschied zu Gl. (E.27) ist der letzte Summand in (E.30). Dieser berücksichtigt die Aktualisie-

rung des Mittelwertvektors, wodurch der Varianzvektor größer als in (E.27) geschätzt wird.

E.3 Auswertung von Messwertdifferenzen

Autoregressiver Rauschprozess zweiter Ordnung Im Folgenden soll das in [Wen07] aufgeführte

Verfahren beschrieben werden, welches die Bestimmung der reellen Parameter eines zeitlich kor-

relierten (autoregressiven) Rauschprozesses zweiter Ordnung erlaubt. Dieser Prozess sei in skalarer

Form mit † ∈ {ω, a} durch

n†,k = d(1)n n†,k−1 + d(2)n n†,k−2 + η†,k (E.31)
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beschrieben, wobei η†,k ∼ N
(
η†,k; 0, σ

2
η†

)
mit σ2η† = E

[
η2†,k

]
ist. Des Weiteren sei mit

z†,k = x†,k + b†,k + n†,k (E.32)

eine Messgleichung gegeben, die durch das zeitlich korrelierte Rauschen n†,k beeinflusst wird. x†,k
ist hier die ideale Zustandsgröße und b†,k das zeitvariante Bias. Geht man von einer geringen Trajek-

toriendynamik (ideale Bewegung) und einem sich langsam ändernden Bias aus, d. h. x†,k ≈ x†,k−1

und b†,k ≈ b†,k−1, so folgt

z†,k − z†,k−1 = n†,k − n†,k−1 =: ∆n†,k (E.33)

⇒ E
[
∆n†,k∆n†,k−i′

∣∣ z†,1:k
]
=: r

(i′)
∆n†∆n†

(E.34)

für i′ ∈ {0, 1, 2}. Durch eine rekursive Berechnung mit Hilfe des heuristischen Parameters 0 < ζ
′

erhält man für die Korrelation zum Zeitpunkt k:

r
(i′)
∆n†∆n†,k

=
(
1− ζ ′

)
r
(i′)
∆n†∆n†,k−1 + ζ

′
∆n†,k ∆n†,k−i′ . (E.35)

Je kleiner ζ
′

hier gewählt wird, desto rauschärmer ist die Schätzung von r
(i′)
∆n†∆n†,k

. Setzt man nun

Gl. (E.31) sowie die entsprechende Gleichung für n†,k−1 in (E.33) ein, so erhält man:

∆n†,k = d(1)n ∆n†,k−1 + d(2)n ∆n†,k−2 + η†,k − η†,k−1. (E.36)

Berechnet man den Erwartungswert E
[
∆n†,kη†,k

∣∣∣ z†,1:k
]
, so erhält man nach Einsetzen von (E.36):

E
[(
d(1)n ∆n†,k−1 + d(2)n ∆n†,k−2 + η†,k − η†,k−1

)
η†,k

∣∣∣ z†,1:k
]
= σ2η†

. (E.37)

Entsprechend folgt E
[
∆n†,kη†,k−1

∣∣∣ z†,1:k
]
=
(
d
(1)
n − 1

)
σ2η†

. Des Weiteren findet man durch Ein-

setzen von (E.36):

E
[
∆n†,k∆n†,k

∣∣ z†,1:k
]
= r

(0)
∆n†∆n†,k

= d(1)n r
(1)
∆n†∆n†,k

+ d(2)n r
(2)
∆n†∆n†,k

+
(
2− d(1)n

)
σ2η†
(E.38)

E
[
∆n†,k∆n†,k−1

∣∣ z†,1:k
]
= r

(1)
∆n†∆n†,k

= d(1)n r
(0)
∆n†∆n†,k

+ d(2)n r
(1)
∆n†∆n†,k

− σ2η† (E.39)

E
[
∆n†,k∆n†,k−2

∣∣ z†,1:k
]
= r

(2)
∆n†∆n†,k

= d(1)n r
(1)
∆n†∆n†,k

+ d(2)n r
(0)
∆n†∆n†,k

. (E.40)

Setzt man (E.38) bis (E.40) nun ineinander ein, so erhält man für die drei unbekannten Parameter

jeweils zwei Lösungen, wobei jedoch nur die Zusämmenhänge

d(1)n =
r
(0)
∆n†∆n†,k

+ 2 r
(1)
∆n†∆n†,k

+ r
(2)
∆n†∆n†,k

r
(0)
∆n†∆n†,k

+ r
(1)
∆n†∆n†,k

(E.41)

d(2)n =
r
(0)
∆n†∆n†,k

r
(2)
∆n†∆n†,k

− r(0)∆n†∆n†,k
r
(1)
∆n†∆n†,k

− 2
(
r
(1)
∆n†∆n†,k

)2

r
(0)
∆n†∆n†,k

(
r
(0)
∆n†∆n†,k

+ r
(1)
∆n†∆n†,k

) (E.42)

σ2η†
=

(
r
(0)
∆n†∆n†,k

)2
+ r

(0)
∆n†∆n†,k

r
(2)
∆n†∆n†,k

− 2
(
r
(1)
∆n†∆n†,k

)2

r
(0)
∆n†∆n†,k

(E.43)
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zu einem sinnvollen Ergebnis führen. Um eine Divergenz der Varianz des zeitlich korrelierten Rau-

schens n†,k zu vermeiden, muss darauf geachtet werden, dass die Ungleichungen d
(2)
n 6= −1 sowie

d
(2)
n 6= ±

(
d
(1)
n + 1

)
erfüllt bleiben [Wen07]. Mit den Übergängen d

(1)
n → d

(1)
n,k, d

(2)
n → d

(2)
n,k und

σ2η†
→ σ2η†,k

wird in den Gl. (E.41) bis (E.43) angenommen, dass die Parameter zeitvariant sind.

Autoregressiver Rauschprozess erster Ordnung Mit Vernachlässigung des Parameters d
(2)
n in

Gl. (E.31) folgt für einen Prozess erster Ordnung entsprechend:

∆n†,k = dn ∆n†,k−1 + η†,k − η†,k−1. (E.44)

Daraus resultiert

E
[
∆n†,k∆n†,k

∣∣ z†,1:k
]
= r

(0)
∆n†∆n†,k

= dn r
(1)
∆n†∆n†,k

+ (2− dn) σ2η† (E.45)

E
[
∆n†,k∆n†,k−1

∣∣ z†,1:k
]
= r

(1)
∆n†∆n†,k

= dn r
(0)
∆n†∆n†,k

− σ2η† (E.46)

und schließlich

dn =
r
(0)
∆n†∆n†,k

+ 2 r
(1)
∆n†∆n†,k

r
(0)
∆n†∆n†,k

(E.47)

σ2η = r
(0)
∆n†∆n†,k

+ r
(1)
∆n†∆n†,k

. (E.48)
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Anhang F

Erzeugung künstlicher Daten

Um eine vereinfachte Untersuchung der hier vorgestellten Algorithmen zu ermöglichen, sind entspre-

chend ideale Referenzdaten notwendig. Da eine ausreichende Anzahl an Felddaten nur mit großem

Aufwand aufzunehmen ist und diese meist fehlerbehaftet sind, war es notwendig, auch auf künstlich

generierte Sensor- und Referenzdaten zurückzugreifen. Ein Vorteil der Generierung künstlicher Da-

ten ist, dass sowohl Daten zur Verfügung stehen, die den realen Felddaten annähernd entsprechen als

auch die zugehörigen (erforderlichen) ungestörten Daten vorhanden sind, um eine vereinfachte Aus-

wertung der Algorithmen durchführen zu können Für reale Daten sind entsprechende Informationen

lediglich mit sehr teuren und aufwendigen Referenzmessungen möglich. Die Schwierigkeit bei der

Generierung künstlicher Daten ist die Einhaltung physikalischer Gegebenheiten wie z. B. die Berück-

sichtigung der Erdrotation bei der Simulation von Drehratensensordaten. Im Folgenden soll die Ge-

nerierung künstlicher Daten mit Hilfe der Matlab-Zusatzsoftware der Fa. GPSoft LLC. (INS-Toolbox

3.0 und SatNav-Toolbox 3.0) im Detail erläutert werden. Die Abb. F.1 zeigt das Blockschaltbild mit

den verwendeten Komponenten zur Generierung der verschiedenen Referenz- und Sensordaten.
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Positions-, Geschwindigkeits- und Orientierungsdaten Die zwei genannten Softwarepakete bil-

den die Grundlage für die Simulationsumgebung sowohl zur Generierung der Daten als auch zur Un-

terstützung der Filteralgorithmen. Die dreidimensionalen Positionsdaten werden zunächst auf Basis

von drei verschiedenen Bewegungsmodellen generiert. Die Koordinaten werden dabei im n-Rahmen

sowie im e-Rahmen erzeugt. Startwerte für die Position, Geschwindigkeit und Orientierung des Fahr-

zeugs müssen dabei festgelegt werden. Das fahrdynamische Profil kann dabei aus folgenden Segmen-

ten variabler Dauer bestehen:

• Geradlinige Bewegung mit stückweise konstanter Geschwindigkeit, wobei die Höhe ebenfalls

konstant sein kann, aber auch gleichmäßig absteigen oder zunehmen kann.

• Geradlinige Bewegung mit stückweise konstanter Beschleunigung, wobei die Höhe konstant

sein kann, gleichmäßig absteigen oder auch zunehmen kann.

• Drehbewegung, d. h. Kurvenfahrt mit konstantem Radius und konstanter Höhe.

• Standphasen, die einem Halt an einer Ampel oder an einer Kreuzung entsprechen.

• Zwischensegmente, so dass ein möglichst sanfter Übergang zwischen den o. g. Segmenten

vorhanden ist. Dazu zählen Roll- und Neigungsbewegungen.

Parallel zur Erzeugung der Positionsdaten werden ebenfalls zugehörige Geschwindigkeitsdaten sowie

die RKM Cn
b und Cn

e bestimmt, die zur späteren Berechnung der Erddrehrate etc. benötigt werden.

Bei der Generierung der Daten im Rahmen dieser Arbeit wurde ein konstantes Datenintervall von

∆tIME = 0,01 s verwendet. Die Abb. F.2 (a) und (b) zeigen eine typische Trajektorie (horizontal)

sowie ein typisches Geschwindigkeitsprofil, die mit dem System nach Abb. F.1 erstellt wurden.
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(b) Künstlich erstelltes Geschwindigkeitsprofil

Abbildung F.2: Künstlich erstellte Trajektorie und Geschwindigkeitsprofil

Inertiale Daten Für die Strapdown-Berechnung im Vorfeld der Navigationsfilterung werden Mess-

werte für die Beschleunigungen sowie Winkelgeschwindigkeiten im b-Rahmen benötigt. Da i. d. R.

von einer IME auch andere als die körpereigenen Bewegungen erfasst werden (z. B. Erddrehung),
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müssen diese Effekte dementsprechend nachgebildet werden. Dazu werden, ausgehend von den fest-

gelegten Radien bei Kurvenfahrten und den Bewegungsmodellen, die jeweiligen Geschwindigkeits-

änderungen ∆vb
nb,k und Winkelinkremente ∆Σb

nb,k pro Zeitschritt generiert, wobei

abnb,k =
∆vb

nb,k

∆tIME

und ω
b
nb,k =

∆Σb
nb,k

∆tIME

(F.1)

gilt. Die Drehraten und Beschleunigungen in (F.1) setzen sich dabei aus einer Summe weiterer Kom-

ponenten zusammen, die in Koordinaten des b-Rahmen vorhanden sein müssen. Für die Drehrate sind

dieses:

• Die tatsächliche Drehrate ω
b
nb: Bezüglich des n-Rahmens gibt diese die relevante Drehung der

IME bzw. des Fahrzeugs an.

• Die Transportrate ω
b
en: Diese gibt die Drehung des n-Rahmens bezüglich des e-Rahmens an.

Sie beschreibt die Drehrate, die durch die Krümmung der Erde auftritt, so dass der n-Rahmen

bei der Bewegung über die gekrümmte Erdoberfläche immer tangential zu dieser ausgerichtet

bleibt.

• Die Erddrehrate ω
b
ie: Sie gibt die Drehung des e-Rahmens bezüglich des i-Rahmens an. Die

Erddrehrate beschreibt damit die gemessene Erdrotation.

Diese drei Komponenten werden einzeln mit Hilfe der genannten Matlab-Softwarepakete generiert

und anschließend mit

ω
b
ib,k = ω

b
nb,k + ω

b
en,k + ω

b
ie,k (F.2)

zusammengefasst. Da in (F.2) noch keine Rauschkomponenten berücksichtigt sind, wird in einem

zusätzlichen Schritt das inhärente Sensorrauschen generiert und hinzuaddiert, so dass

ω̃
b
ib,k =

(
I3×3 + Sω

)
· ωb

ib,k + bω,k + nω,k, (F.3)

nω,k = Dnω
· nω,k−1 + Γnω

· ηω,k (F.4)

gilt, wobei ηω,k ∼ N (ηω,k;03×1 ,Qηω ,k
) mittelwertfreie, weiße GAUSS-verteilte und Rauschkom-

ponenten umfasst und die Kovarianzmatrix Qηω ,k
zeitvariant ist. Auf der Hauptdiagonalen der Ma-

trix Sω befinden sich dabei die Skalierungsfehler für die einzelnen Koordinaten sowie im Vektor

bω die Bias. Auf der Hauptdiagonalen von Dnω
sind dagegen die Terme e

−∆tIME
tIME;c zu finden, wobei

tIME;c = 2,8 · 10−2 s.

Analog zu Gl. (F.2) setzt sich auch die als ideal angenommene Beschleunigung bei der Datenge-

nerierung aus drei Hauptkomponenten zusammen, so dass

abib,k = abnb,k + abC,k + gb
k (F.5)

gilt. Die Komponenten auf der rechten Seite von (F.5) sind:

• Die tatsächliche Beschleunigung abnb,k im b-Rahmen bezüglich des n-Rahmens, angegeben

in Koordinaten des b-Rahmens. Diese Beschleunigung gibt die relevante Beschleunigung des

Fahrzeugs an. Für die Simulationen wird ∆vb
nb,k = abnb,k ·∆tIME erzeugt.



188 Anhang F. Erzeugung künstlicher Daten

• Die Corioliskraft, die einen zusätzlichen Anteil erzeugt, der hier mit dem Vektor abC bezeichnet

werden soll. Sie setzt sich aus zwei Komponenten zusammen: dem Teil, der durch die Rotation

der Erde verursacht wird und einem Anteil aufgrund der Bewegung im n-Rahmen.

• Die Schwerebeschleunigung, die von einem inertialen Sensor ebenfalls erfasst wird und eigent-

lich orts- und zeitabhängig ist. Diese ist mit gb
k Teil von Gl. (F.5).

Wie bei einem Drehratensensor würden die Fehler in Gl. (F.3) auch bei Beschleunigungsmessern

auftreten. Daher werden für eine annähernd vollständige Beschreibung diese Fehler in

ãbib,k =
(
I3×3 + Sa

)
· abib,k + ba,k + na,k, (F.6)

na,k = Dna
· na,k−1 + Γna

· ηa,k (F.7)

berücksichtigt mit ηa,k ∼ N (ηa,k;03×1 ,Qηa,k
), dem Biasvektor ba,k und der diagonalen Skalie-

rungsmatrix Sa. Der Einfachheit halber wurden die Skalierungsfaktoren in den Matrizen Sa und

Sω hier zu Null gewählt. Auch die Nebendiagonalelemente, die auf eine Missweisung der Senso-

ren schließen lassen, wurden hier nicht berücksichtigt. Bei der realen IME werden dieses Skalie-

rungsfaktoren ebenfalls durch eine interne Signalvorverarbeitung annähernd kompensiert. Auf der

Hauptdiagonalen von Dna
sind wieder die Terme e

−∆tIME
tIME;c zu finden.

Für die Biasvektoren ba,k und bω,k in den Gl. (F.3) und (F.6) wird angenommen, dass sie durch

einen Zufallsprozess getrieben werden. Dies bedeutet, dass sie mittels

ba,k = ba,k−1 +∆tIME · nba,k
, (F.8)

bω,k = bω,k−1 +∆tIME · nbω ,k
(F.9)

erzeugt wurden. Die Vektoren nba,k
,nbω ,k

sind mittelwertfreie, weiße GAUSS-verteilte Rauschvekto-

ren mit den zeitinvarianten Kovarianzmatrizen Qba
und Qbω

. Ihre Werte sind in Tab. F.1 zu finden.

Magnetfeldsensordaten Für die Erzeugung von Magnetfeldsensordaten wird hier davon ausge-

gangen, dass das magnetische Feld für die gesamte Dauer einer künstlich generierten Trajektorie mit

mn := (mn
n mn

e mn
d)

T = (19 148,7 nT, 418,0 nT, 45 077,9 nT)T konstant ist. Dies sind übliche

Werte für die Umgebung von Paderborn. Da die von einem Magnetometer aufgenommenen Daten

von der Lage des Fahrzeugs gegenüber dem Erdmagnetfeld und von weiteren inhärenten Effekten

abhängen, werden diese durch

m̃b
k = Cb

n,k ·mn +wm,k (F.10)

berücksichtigt. Hierbei ist der Rauschvektor wm,k mittelwertfreies, weißes GAUSS-verteiltes Rau-

schen mit der zeitinvarianten Rauschkovarianzmatrix Qm=diag
(
(100 nT)2, (100 nT)2, (100 nT)2

)
.

GPS-Daten Da die Erzeugung von GPS-Messdaten möglichst realistisch sein soll, wurde das Sat-

Nav-Softwarepaket verwendet, um aus den generierten Positionsdaten mit Hilfe von vordefinierten

Satellitenkonstellationen sowohl Deltarange- als auch Pseudorange-Messwerte zu generieren. Auf

eine ausführlichere Beschreibung sei aufgrund der Komplexität an dieser Stelle verzichtet. Die Mess-

werte werden im Rahmen einer Fehlerfilterung verwendet, um Schätzwerte für Positionen in LLH-

Koordinaten, Geschwindigkeiten und Beschleunigungen im Navigationsrahmen n mit den dazuge-

hörigen Schätzfehlerkovarianzmatrizen ermitteln zu können. Bei der Erzeugung der Deltarange- und
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Pseudorange-Messwerte werden folgende Fehlerquellen berücksichtigt, welche auch bei realen Mes-

sungen vorkommen und diese verfälschen können:

• Korrelationszeit, die hier für die Geschwindigkeitskomponenten zu 1 s und für die Positionsda-

ten zu 10 s gesetzt wurde.

• Skalierungsfehler durch thermische Rauscheffekte, die hier zu 0,05 gewählt wurden.

• Skalierungsfehler aufgrund troposphärischer Einflüsse. Diese haben jeweils den Wert 0,1.

• Skalierungsfehler durch die Mehrwegeausbreitung der Satellitensignale, die hier zu 0,05 ge-

setzt wurden.

• Skalierungsfehler, die die ionosphärischen Fehler berücksichtigen und zu 0,02 gewählt wurden.

Neben den genannten Effekten wird zusätzlich eine Empfängeruhrendrift von 100 ns/s bei einem in-

italen Nullpunktfehler von 10ms berücksichtigt. Mit einer angenommenen Abtastfrequenz von 4Hz

stehen schließlich die Vektoren pn
GPS bzw. pe

GPS, vn
GPS sowie die Schätzfehlerkovarianzmatrix PGPS

zur Verfügung.

Barometrische Sensordaten Die Erzeugung von Sensordaten, die von einem möglichen barome-

trischen Sensor aufgenommen werden, ist aufgrund der bereits in Kap. 6 erläuterten Zusammenhänge

zwischen der zu bestimmenden Höhe und den eigentlichen Messdaten wie Temperatur und Luftdruck,

etwas komplizierter. Es muss zum einen der nichtlineare Zusammenhang zwischen der Höhe und den

Messdaten berücksichtigt werden, zum anderen müssen auch die typischen Sensormessfehler mit ein-

bezogen werden. Dabei muss außerdem beachtet werden, dass die barometrische Höhenformel (6.1)

selbst nur eine Approximation darstellt [Us176], [Klo08].

In einer ersten Instanz werden Parameter für die Temperatur und den Luftdruck auf der Referenz-

höhe, die hier zu h0 = 0m gewählt wurde, erzeugt:

T0,k = T0,k−1 +∆tBM · nT0,k
(F.11)

P0,k = P0,k−1 +∆tBM · nP0,k
(F.12)

mit nP0,k
∼ N

(
nP0,k

; 0, σ2P0

)
und nT0,k

∼ N
(
nT0,k

; 0, σ2T0

)
, wobei σ2P0

und σ2T0
die Varianzen

der normalverteilten, mittelwertfreien, weißen Rauschterme nP0,k
und nT0,k

sind und ∆tBM = 0,1 s

ist. Dies entspricht den Gl. (6.2) und (6.3). Es sei darauf hingewiesen, dass in der genannten Litera-

tur in diesem Zusammenhang häufig von konstanten Werten für die Referenzvariablen ausgegangen

wird. Diese Annahmen sind in der Realität jedoch nur Näherungen und werden hier daher durch

Zufallsprozesse beschrieben.

Durch die Gl. (F.11) und (F.12) sind bisher lediglich die Variationen von Temperatur bzw. Luft-

druck auf der Referenzhöhe modelliert. Ein Modell für die Temperatur an dem Ort, an dem sich das

Fahrzeug befindet, ist damit noch nicht vorhanden. Nach [Tip99] kann die höhenabhängige Tempera-

tur durch die lineare Beschreibung

Tk = T0,k + γ0 (hk − h0) (F.13)

angegeben werden, wobei γ0 = −0,0065K/m der atmosphärische Temperaturgradient ist, der angibt,

um wieviel Kelvin die Lufttemperatur pro Meter Höhenunterschied abnimmt. Die Variable hk ist da-

bei die ideale Höhe, die zuvor bereits generiert wurde. Bevor nun Messwerte für den Luftdruck auf
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Basis weiterer RWP erzeugt werden können, muss zunächst ein Profil für den Luftdruck erstellt wer-

den. Dazu wird die barometrische Höhenformel nach [Us176] verwendet. Umgestellt nach dem Luft-

druck folgt für diese: Pk = P0,k

(
1− γ0·∆hk

T0,k

)M·g0
ℓ·γ0 , wobei ∆hk := hk−h0 undM = 0,028 96 kg/mol

die molare Masse, g0 die Gravitationsvariable und ℓ = 8,314 J/(K ·mol) die universelle Gaskonstante

sind. Die Messwerte für Luftdruck und Temperatur können nun wie in (6.4) und (6.5) durch

T̃k = Tk + nT,k (F.14)

P̃k = Pk + nP,k (F.15)

erzeugt werden. Der Zusammenhang zwischen den Messungen und der daraus resultierenden baro-

metrischen Höhe ist nun über

P̃k = P0,k=0

(
1−

γ0 · h̃BM,k

T0,k=0

)M·g0
ℓ·γ0

(F.16)

gegeben.
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F.1 Datensatz 1

Erläuterung/Parameter Wert

Streckenlänge [km] 18,459

GPS-Empfänger

fGPS [Hz] 4

Verzögerung der Verfügbarkeit [ms] 150

lbGPS [cm] 20 / 20 / 20

σGPS;p [m] 10 / 10 / 20

tGPS;cp
[s] 10

σGPS;v [m/s] 5 · 10−1 / 5 · 10−1 / 1

tGPS;cv
[s] 1

Inertiale Sensoreinheit

fIME [Hz] 100

ba,0 [m/s2] 0 / 0 / 0

bω,0 [°/s] 0 / 0 / 0

σηa [m/s2] 9 · 10−3 / 9 · 10−3 / 9 · 10−3

σba [m/s3] 4,5 · 10−4 / 4,5 · 10−4 / 4,5 · 10−4

tIME;c [s] 2,8 · 10−2

σηω [°/s] 4 · 10−1 / 4 · 10−1 / 4 · 10−1

σbω [°/s2] 3,9 · 10−3 / 3,9 · 10−3 / 3,9 · 10−3

σm [nT] 100 / 100 / 100

Barometrischer Sensor

fBM [Hz] 10

σP [Pa] 10

σP0
[Pa/s] 1,265

σT [K] 1 · 10−1

σT0
[K/s] 1,265 · 10−2

Tabelle F.1: Parameter zur Erzeugung künstlicher Daten (Datensatz 1)

Hier gilt: σ2ηa := σ2ηa,x = σ2ηa,y = σ2ηa,z und σ2ηω := σ2ηω ,x = σ2ηω ,y = σ2ηω ,z , wobei

qηa
=



σ2ηa,x
σ2ηa,y
σ2ηa,z


 und qηω

=



σ2ηω ,x
σ2ηω ,y
σ2ηω ,z


 (F.17)

und

Qη =


diag

(
qηa

)
03×3

03×3 diag
(
qηω

)

 . (F.18)
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F.2 Datensatz 2

Erläuterung/Parameter Wert

Streckenlänge [km] 18,459

GPS-Empfänger

fGPS [Hz] 4

Verzögerung der Verfügbarkeit [ms] 150

lbGPS [cm] 20 / 20 / 20

σGPS;p [m] 2 / 2 / 4

tGPS;cp
[s] 10

σGPS;v [m/s] 1,2 · 10−1 / 1,2 · 10−1 / 2,2 · 10−1

tGPS;cv
[s] 1

Inertiale Sensoreinheit

fIME [Hz] 100

ba,0 [m/s2] 0 / 0 / 0

bω,0 [°/s] 0 / 0 / 0

σηa,k [m/s2] Zeitvariant im Bereich 9 · 10−3 . . . 9 · 10−1

σba [m/s3] 4,5 · 10−4 / 4,5 · 10−4 / 4,5 · 10−4

tIME;c [s] 2,8 · 10−2

σηω ,k [°/s] Zeitvariant im Bereich 4 · 10−1 . . . 2,0

σbω [°/s2] 3,9 · 10−3 / 3,9 · 10−3 / 3,9 · 10−3

σm [nT] 100 / 100 / 100

Barometrischer Sensor

fBM [Hz] 10

σP [Pa] 10

σP0
[Pa/s] 1,265

σT [K] 1 · 10−1

σT0
[K/s] 1,265 · 10−2

Tabelle F.2: Parameter zur Erzeugung künstlicher Daten (Datensatz 2)



Anhang G

Ergänzung zur Analyse einer inertialen Sensoreinheit

Neben der Berechnung der ALLAN-Varianz gibt es eine weitere Möglichkeit, die einzelnen Signal-

komponenten in einem Messsignal näher charakterisieren zu können. Diese führt über eine Stichpro-

benanalyse nach [Chi10]. Ausgehend von Gl. (7.63) wird angenommen, dass sich der Sensor in Ruhe

befindet und somit kein äußerer Einfluss (z. B. durch Vibrationen) vorhanden ist. Unter der Voraus-

setzung, dass die skalare Biasdrift bk bekannt ist und sich durch einen Random Walk Process (RWP)

modellieren lässt, kann man anhand der Betrachtungen in [Neu05] auf die Standardabweichung des

inhärenten Rauschens schließen.

Mit Hilfe eines RWP wird die Biasdrift durch einen nichtstationären Prozess dargestellt. Mit

(4.62) kann das Bias einer beliebigen Signalkomponente durch

bk = bk−1 +∆t · nb,k = b0 +∆t · nb,1 + · · ·+∆t · nb,k = b0 +∆t ·
k∑

i′=1

nb,i′ (G.1)

ausgedrückt werden, wobei ∆t das Abtastintervall darstellt und p(nb) = N
(
nb; 0, σ

2
b

)
gilt. Für den

Erwartungswert des korrespondierenden Zufallsprozesses mit i′ ∈ [1, k], i′ ∈ N gilt damit

E [bk] = E

[
b0 +∆t ·

k∑

i′=1

nb,i′

]
= b0, (G.2)

da E
[
nb,i′

]
= 0. Entscheidend ist folglich der Startwert b0 des Bias. Somit lässt sich die Varianz σ̄2b

des Bias durch die Varianz der Differenz von bk und b0 bestimmen:

V [bk − b0] = V

[
k∑

i′=1

∆t · nb,i′
]
=

k∑

i′=1

V
[
∆t · nb,i′

]
= k · σ̄2b . (G.3)

Hier wurde ausgenutzt, dass nb weiß ist. Andererseits kann für ein endliches Intervall mit k = ∆K

die Varianz bei J ′ vorhandenen Realisierungen b
(j′)
∆K mit j′ ∈ [1, J ′] über die Stichprobenvarianz (mit

BESSEL-Korrektur zur Gewährleistung der Erwartungstreue) abgeschätzt werden:

ˆ̄σ2b,∆K ≈
1

J ′ − 1

J ′∑

j′=1

(
b
(j′)
∆K − b

(j′)
0

)2
. (G.4)

Dabei stellt b
(j′)
∆K die j′-te Realisierung der Biasdrift und ˆ̄σ2b,∆K die Schätzung der Varianz unter

Berücksichtigung einer Sequenz aus ∆K Werten dar. Für eine zuverlässige Aussage werden i. d. R.

J ′ = 10 Realisierungen benötigt [HU07]. Mit Gl. (G.3) kann die Varianz schließlich wie folgt be-

stimmt werden:

ˆ̄σ2b =
ˆ̄σ2b,∆K

∆K
. (G.5)
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Um aus Gl. (G.5) die Varianz σ2b des biastreibenden Rauschens nach dem Modell in (4.62) bestimmen

zu können, muss noch eine Skalierung vorgenommen werden:

σ̂2b =
ˆ̄σ2b

(∆t)2
=

ˆ̄σ2b,∆K

∆K · (∆t)2 =
ˆ̄σ2b,∆K

∆Tl ·∆t
, (G.6)

wobei ∆Tl der Länge des Beobachtungsintervalls (in Sekunden) einer Realisierung entspricht.

Miniature Tracking inertial-Sensoreinheit Die nach den Gl. (7.64) bis (7.66) ermittelten Para-

meter sind in Tab. G.1 angegeben. Die zugrunde liegenden Daten wurden während einer Aufnahme

gewonnen, die 60 h dauerte.

Achse ÂRW [°/(s ·
√
Hz)] σ̂ω [°/s]

x-Achse y-Achse 3,2 · 10−2 3,6 · 10−2 3,15 · 10−1 3,61 · 10−1

z-Achse 2,7 · 10−2 2,67 · 10−1

V̂ RW [m/(s2 ·
√
Hz)] σ̂a [m/s2]

x-Achse y-Achse 7,6 · 10−4 7,9 · 10−4 7,6 · 10−3 7,9 · 10−3

z-Achse 7,7 · 10−4 7,7 · 10−3

Tabelle G.1: Messtechnisch ermittelte Parameter des sensorinhärenten Rauschens der MTi-

Sensoreinheit für ∆Tl = 60 s
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Abb. Abbildung

ABS Antiblockiersystem

ADAS Advanced Driver Assistance System

ADU Analog-Digital Umwandlung

AGPS Assisted Global Positioning System

AKF Autokorrelationsfunktion

Alg. Algorithmus

ARW Angle Random Walk

ASCII American Standard Code for Information Interchange

AWGR Additives weißes GAUSS’sches Rauschen

BF Barometrisches Fehlerfilter

C2C Car-2-Car

C2I Car-2-Infrastructure

C/A Coarse/Aquisition

CCD Charge-Coupled Device

CDMA Code Division Multiple Access

CNC Computerized Numerical Control

CVIS Cooperative Vehicle-Infrastructure Systems

DGK Deutsche Grundkarte

DGPS Differential Global Positioning System

DLL Delay-Locked Loop
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DR Dead Reckoning

DSP Digitaler Signalprozessor

ECEF Earth-Centered Earth-Fixed
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EKF Erweitertes KALMAN-Filter

EM Expectation-Maximization
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FDMA Frequency Division Multiple Access

FF Fehlerfilter
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FT FOURIER-Transformierte

GAGAN Global Positioning System Aided Geo Augmented Navigation

GBAS Ground Based Augmentation System
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GLONASS Globalnaja Nawigazionnaja Sputnikowaja Sistema
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GMP GAUSS-MARKOV-Prozess

GNS Global Navigation System

GPS Global Positioning System

HDOP Horizontal Dilution of Precision

IME Inertiale Messeinheit

IMM Interacting-Multiple-Model

IMU Inertial Measurement Unit

INS Inertiales Navigationssystem

INS/GPS Inertial Navigation System/Global Positioning System

IRNSS Indian Regional Navigation Satellite System

Kap. Kapitel

KF KALMAN-Filter

KFZ Kraftfahrzeug

KM Kovarianzmanagement

LDS Leistungsdichtespektrum

LKF Linearisiertes KALMAN-Filter

LLF Log-Likelihood Function
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MAP Maximum a posteriori

MCS Master Control Station

MD Messwertdifferenzen-Verfahren

MEMS Microelectromechanical System

ML Maximum Likelihood

MM Map Matching

MMSE Minimum Mean Square Error

MN MotionNode

MSAS Multifunctional Satellite Augmentation System

MTi Miniature Tracker inertial

NED North-East-Down

NMEA National Marine Electronics Association

NN Normalnull

PDOP Position Dilution of Precision

PF Partikelfilter

PKW Personenkraftwagen

POI Point of Interest

PPS Precise Positioning Service

PReVENT PReVENTive and Active Safety Applications

PSD Position Sensitive Device

RAIM Receiver Autonomous Integrity Monitoring

RKM Richtungskosinusmatrix
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RLS Recursive Least Squares
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RMSE Root Mean Square Error
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SA Selective Availability

SAFESPOT Smart Vehicles on Smart Roads

SBAS Satellite Based Augmentation System

SEM Sequenzieller Expectation-Maximization-Algorithmus

SF Sekundärfilter

SPS Standard Positioning Service

Tab. Tabelle

TDOP Time Dilution of Precision

TRANSIT-NNSS TRANSIT-Navy Navigation Satellite System

UKF Unscented KALMAN Filter

US United States

USA United States of America

USB Universal Serial Bus

UTC Universal Time Coordinated

VDOP Vertical Dilution of Precision

V RW Velocity Random Walk

WAAS Wide Area Augmentation System

WGS84 World Geodetic System 1984
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Allgemeines

x Vektoren werden durch (kleine) fettgedruckte Buchstaben dargestellt (z. B. x =

(x1, . . . , xn)
T )

X Matrizen werden durch (große) fettgedruckte Buchstaben dargestellt (z. B. X oder

Φ)

⊗ Elementweise Multiplikation

∂(. . . ) Partielle Ableitung einer Größe

τ Zeitdifferenz

∆(. . . ) Differenz oder Inkrement einer Größe

diag (. . . ) Konvertierung eines Zeilenvektors in eine Diagonalmatrix

diag−1 (. . . ) Konvertierung der Diagonalelemente einer Matrix in einen Spaltenvektor

diag−T (. . . ) Konvertierung der Diagonalelemente einer Matrix in einen Zeilenvektor

k Zeitdiskreter Index (tiefgestellt)

p (. . . ) Verteilungsdichte/Wahrscheinlichkeitsdichte einer Zufallsvariablen

t Zeit (kontinuierlich)

E [. . . ] Erwartungswert einer Zufallsvariablen

N (. . . ) Normalverteilung einer Zufallsvariablen

P (. . . ) Wahrscheinlichkeit einer Zufallsvariablen

V [. . . ] Varianz einer Zufallsvariablen

(. . . )k−i′

k Zeitdiskrete Größe, die zum Zeitpunkt k verfügbar, aber bereits zum Zeitpunkt

k − i′ gültig war
ˆ(. . . ) Schätzung einer Größe
˜(. . . ) Messung einer Größe
˙(. . . ) Zeitliche Ableitung einer Größe

[(. . . ) ×] Schiefsymmetrische Matrix, gebildet aus dem von den eckigen Klammern einge-

schlossenen Vektor

(. . . )(i
′,j′) Element in der i′-ten Zeile und j′-ten Spalte einer Matrix

(. . . )neb Ein hochgestellter Index b, e, i oder n in Kombination mit entsprechend tiefgestell-

ten Doppelindizes kennzeichnet hier beispielhaft einen Vektor oder eine Matrix im

Koordinatensystem b bezogen auf das Koordinatensystem e, angegeben in Koordi-

naten des Systems n

(. . . )BEZ.;var Groß geschriebene Bezeichner und Variablen werden durch ein Semikolon getrennt

(z. B. xFF;k)

(. . . )T Transponiert (hochgestellt)

(. . . ){I} Iterationsindex (hochgestellt und in geschweiften Klammern)
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Kapitel 2

GRIECHISCH (SKALARE GRÖSSEN)

κ0 Isotropenkoeffizient

ψ Gierwinkel (Eulerwinkel)

πi
′

Auftrittswahrscheinlichkeit

πi
′i′′ Übergangswahrscheinlichkeit

∆ψ Winkelinkrement

∆l Streckeninkrement

RÖMISCH (SKALARE GRÖSSEN)

a Beschleunigung eines Körpers

ch Kanalnummer eines Satellitensignals

e Position (Osten); tritt ansonsten nur als tiefgestellter Index auf (z. B. vneb,e)

g0 Schwerebeschleunigung

h Höhe

m Masse eines beschleunigten Körpers

n Position (Norden); tritt ansonsten nur als tiefgestellter Index auf (z. B. vneb,n)

r Regimevariable

F Kraft

L1, L2 Trägerfrequenzen eines Satellitensignals

P (h) Luftdruck in der Höhe h

GRIECHISCH (VEKTORIELLE GRÖSSEN)

Π Übergangswahrscheinlichkeitsmatrix

Kapitel 3

GRIECHISCH (SKALARE GRÖSSEN)

σ2ηa Diagonalelement der Kovarianzmatrix Qη, das mit einer Beschleunigung korre-

spondiert

σ2ηω Diagonalelement der Kovarianzmatrix Qη, das mit einer Drehrate korrespondiert

ωb
ib Winkelgeschwindigkeit, Drehrate (gemessen im Koordinatensystem b, bezogen

auf System i, angegeben in Koordinaten des Systems b)

∆tIME Abtastintervall einer inertialen Messeinheit

RÖMISCH (SKALARE GRÖSSEN)

abib Beschleunigung (gemessen im Koordinatensystem b, bezogen auf System i, ange-

geben in Koordinaten des Systems b)

dnω Diagonalelement der Zustandübergangsmatrix Dn, das mit einer Drehrate korre-

spondiert

dna Diagonalelement der Zustandübergangsmatrix Dn, das mit einer Beschleunigung

korrespondiert

P̆B Bewegungsphase

P̆M Stillstandphase mit laufendem Motor

P̆O Stillstandphase ohne laufenden Motor
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GRIECHISCH (VEKTORIELLE GRÖSSEN)

η Mittelwertfreier, weißer GAUSS-verteilter Rauschvektor, der den zeitkorrelierten

Rauschprozess treibt

RÖMISCH (VEKTORIELLE GRÖSSEN)

n Zeitlich korrelierter Rauschvektor

v Geschwindigkeitsvektor (z. B. ve
ib: Geschwindigkeit im körperbezogenen System

b bezogen auf das inertiale Koordinatensystem i, angegeben in Koordinaten des

erdfesten Koordinatensystems e)

Dn Zustandsübergangsmatrix des zeitlich korrelierten Rauschprozesses mit Vektor n

Qη Rauschkovarianzmatrix des Vektors η

Kapitel 4

GRIECHISCH (SKALARE GRÖSSEN)

δ Dirac-Impuls

θ Nickwinkel (Eulerwinkel)

λ Längengrad

ϕ Breitengrad

σa, σω Standardabweichungen des zeitlich korrelierten Messrauschens na, nω
σGPS Standardabweichung einer GPS-Signalmessung

φ Rollwinkel (Eulerwinkel)

∆t Abtastintervall

RÖMISCH (SKALARE GRÖSSEN)

Ω Erddrehrate

a Halbachse des Erdellipsoids (groß)

b Halbachse des Erdellipsoids (klein)

e0 Exzentrizität des Erdellipsoids

f0 Abflachung des Erdellipsoids

g1, g2 Gravitationsfaktoren

hellip Höhe über dem Erdellipsoid

hgeoid Höhe über dem Geoid

hgeom Geometrische Höhe

hgeop Geopotentielle Höhe

q(i
′) Varianz (i′-te Komponente des Vektors q)

q
′(i′) Spektrale Leistungsdichte (i′-te Komponente des Vektors q′)
r
n(i′)n(i′) Autokorrelationsfunktion von n(i

′)(t)

sx,y,z Skalierungsfaktoren

s̄xy,xz,... Fehlausrichtungsfaktoren

tc Korrelationszeit

xb, yb, zb Achsen des körperbezogenen Koordinatensystems b

xe, ye, ze Achsen des erdfesten Koordinatensystems e

xi, yi, zi Achsen des inertialen Koordinatensystems i

xn, yn, zn Achsen des Navigationskoordinatensystems n

R0 Durchschnittlicher Krümmungsradius der Erde

Rn, Re Krümmungsradius der Erde (Nord-Süd, Ost-West)
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R
n(i′)n(i′) Leistungsdichtespektrum (Diskrete FOURIER-Transformierte) von n(i

′)(t)

GRIECHISCH (VEKTORIELLE GRÖSSEN)

ηω, ηa Mittelwertfreier, weißer GAUSS-verteilter Rauschvektor, der den zeitkorrelier-

ten Rauschprozess bei einer Drehratensensortriade, Beschleunigungssensortriade

treibt

µn Mittelwertvektor des Vektors n(t)

ν Mittelwertfreier, weißer GAUSS-verteilter Rauschvektor, der den zeitlich korrelier-

ten Messrauschvektor treibt

σ Orientierungsvektor

ω Winkelgeschwindigkeits- bzw. Drehratenvektor (z. B. ωb
nb: Winkelgeschwindig-

keit im körperbezogenen System b bezogen auf das Navigationskoordinatensystem

n angegeben in Koordinaten des Koordinatensystems b)

ω
n
en Transportratenvektor (in Koordinaten des Navigationskoordinatensystems)

ω
n
ei Erddrehratenvektor (in Koordinaten des Navigationskoordinatensystems)

Γn Matrix, welche die Abhängigkeit des zeitlich korrelierten Systemrauschvektors

vom treibenden Rauschvektor beschreibt

Γnω
, Γna

Matrix, welche die Abhängigkeit des zeitlich korrelierten Systemrauschvektors

vom treibenden Rauschvektor bei einer Drehratensensortriade, Beschleunigungs-

sensortriade beschreibt

Γw Matrix, welche die Abhängigkeit des zeitlich korrelierten Messrauschvektors vom

treibenden Rauschvektor beschreibt

Φ, Φ̌ Transitionsmatrix

RÖMISCH (VEKTORIELLE GRÖSSEN)

a Beschleunigungsvektor (z. B. aeib: Beschleunigung im körperbezogenen System

b bezogen auf das inertiale Koordinatensystem i, angegeben in Koordinaten des

erdfesten Koordinatensystems e)

b Biasvektor

bω, ba Biasvektor der Drehratensensortriade, Beschleunigungssensortriade

gn Schwerebeschleunigungsvektor

nb Mittelwertfreier, weißer GAUSS-verteilter Rauschvektor, der die Bias treibt

nbω
, nba

Mittelwertfreier, weißer GAUSS-verteilter Rauschvektor, der die Bias der Dreh-

ratensensortriade, Beschleunigungssensortriade treibt

nω, na Mittelwertfreier, weißer GAUSS-verteilter Rauschvektor der Drehratensensor-

triade, Beschleunigungssensortriade

p Positionsvektor (z. B. pn
eb: Position im körperbezogenen System b bezogen auf das

erdfeste Koordinatensystem e, angegeben in Koordinaten des Navigationskoordi-

natensystems n)

q′
η†

Vektor, gebildet aus den Diagonalelementen der Matrix Q
′

η†

q̆, p̆ Quaternionenvektoren (z. B. q̆n
b: Quaternionenvektor zur Transformation vom kör-

perbezogenen Koordinatensystem b in das Navigationskoordinatensystem n)

r̆ Quaternionenvektor zur Korrektur

sΦ1 Richtungsvektor im Koordinatensystem Φ1

u Steuereingangsvektor

u
′

Linearisierungspunkt eines Steuereingangsvektors

w Messrauschvektor
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x, x̌ Systemzustandsvektor

x
′

Linearisierungspunkt eines Systemzustandsvektors

z Messvektor

0D×D Nullmatrix der Dimension [D ×D]

C
Φ1
Φ2

Richtungskosinusmatrix zur Transformation zwischen Koordinatensystem Φ1 und

Φ2 (z. B. Cn
e : Transformation vom erdfesten Koordinatensystem e zum Navigati-

onskoordinatensystem n)

Cx(y) Grundrotationsmatrix (Drehung um Achse x um Winkel y, z. B. Cz(λ))

Dnω
, Dna

Zustandsübergangsmatrix des zeitlich korrelierten Rauschprozesses mit Vektor nω

der Drehratensensortriade bzw. na der Beschleunigungssensortriade

Dw Zustandsübergangsmatrix des zeitlich korrelierten Messrauschvektors

F Zustandsmatrix, Jacobimatrix

G, Ǧ Matrix, welche die Abhängigkeit des Systemzustandsvektors vom Systemrausch-

vektor beschreibt

H, Ȟ Messmatrix, Jacobimatrix

ID×D Einheitsmatrix der Dimension [D ×D]

K Gewichtungsmatrix eines KALMAN-Filters

M Matrix, welche die Abhängigkeit des Messvektors vom Messrauschvektor be-

schreibt

P, P̌ Schätzfehlerkovarianzmatrix eines KALMAN-Filters

Pnn Autokovarianzmatrix des zeitlich korrelierten Systemrauschvektors nk

Pww Autokovarianzmatrix des zeitlich korrelierten Messrauschvektors wk

Pxn Kovarianzmatrix zwischen Fehler des Systemzustandsvektors ∆xk und zeitlich

korreliertem Systemrauschvektor nk

Pxw Kovarianzmatrix zwischen Fehler des Systemzustandsvektors ∆xk und zeitlich

korreliertem Messrauschvektor wk

Q̌ Systemrauschkovarianzmatrix

Qηω
, Qηa

Zeitinvariante Rauschkovarianzmatrix des Vektors ηω,k, ηa,k

Qηω ,k
, Qηa,k

Zeitvariante Rauschkovarianzmatrix des Vektors ηω,k, ηa,k

Qω, Qa Zeitinvariante Rauschkovarianzmatrix des Vektors nω,k, na,k

Qb Zeitinvariante Rauschkovarianzmatrix des biastreibenden Rauschvektors nb,k

Qbω
, Qba

Zeitinvariante Rauschkovarianzmatrix des Vektors nbω ,k
, nba,k

Q
′

Kovarianzmatrix des Vektors n(t)

Q
′

ηω
, Q

′

ηa
Rauschkovarianzmatrix des Vektors ηω(t), ηa(t)

Q
′

ω, Q
′

a Zeitinvariante Rauschkovarianzmatrix des Vektors nω(t), na(t)

Q
′

b Zeitinvariante Rauschkovarianzmatrix des biastreibenden Rauschvektors nb(t)

Q
′

bω
, Q

′

ba
Zeitinvariante Rauschkovarianzmatrix des Vektors nbω

(t), nba
(t)

R Zeitinvariante Kovarianzmatrix des Messrauschvektors wk

Rν Zeitinvariante Kovarianzmatrix des Rauschvektors νk, der den zeitlich korrelierten

Messrauschprozess treibt

R
′

Zeitinvariante Kovarianzmatrix des Messrauschvektors w(t)

S Skalierungsmatrix

Sω, Sa Skalierungsmatrix der Drehratensensortriade, Beschleunigungssensortriade
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Kapitel 5

GRIECHISCH (SKALARE GRÖSSEN)

λK Korrigierter Strapdown-Längengrad

λSD Längengrad am Ausgang des Strapdown-Blocks

ϕK Korrigierter Strapdown-Breitengrad

ϕSD Breitengrad am Ausgang des Strapdown-Blocks

∆θ Nickwinkelfehler (inkrementell)

∆ϕ Fehler des Breitengrads

∆φ Rollwinkelfehler (inkrementell)

∆ψ Gierwinkelfehler (inkrementell)

∆θ
′

Nickwinkelfehler (absolut)

∆φ
′

Rollwinkelfehler (absolut)

∆ψ
′

Gierwinkelfehler (absolut)

∆h Höhenfehler

∆vneb,d Fehler der zum Erdmittelpunkt gerichteten Komponente (Lot) des Vektors vn
eb

∆vneb,e Fehler der Ostkomponente des Vektors vn
eb

∆vneb,n Fehler der Nordkomponente des Vektors vn
eb

RÖMISCH (SKALARE GRÖSSEN)

fBM Abtastfrequenz des barometrischen Sensors

fGPS Abtastfrequenz des GPS-Empfängers

fIME Abtastfrequenz der inertialen Messeinheit

ĥBM Ausgangssignal (Höhe) des barometrischen Messsystems

hK Korrigierte Strapdown-Höhe

hSD Höhe am Ausgang des Strapdown-Blocks

tIME;c Korrelationszeit des zeitlich korrelierten Rauschens einer inertialen Messeinheit

GRIECHISCH (VEKTORIELLE GRÖSSEN)

ε, ε∗ Residuenvektoren des Fehlerfilters

ηFF Treibender Rauschvektor des Systemrauschprozesses des Fehlerfilters

νFF Treibender Rauschvektor des Messrauschprozesses des Fehlerfilters

ΓFF;n Matrix des Fehlerfilters, welche die Abhängigkeit des zeitlich korrelierten System-

rauschvektors vom treibenden Rauschvektor beschreibt

ΓFF;w Matrix des Fehlerfilters, welche die Abhängigkeit des zeitlich korrelierten Mess-

rauschvektors vom treibenden Rauschvektor beschreibt

∆ω
b
ib Fehler zwischen wahrem und geschätztem Vektor ωb

ib

∆ω
n
in Fehler zwischen wahrem und geschätztem Vektor ωn

in

∆Υ Fehlervektor der Lageschätzung

∆Ωn
in Fehler zwischen wahrer und geschätzter Matrix Ωn

in

∆Ωb
ib Fehler zwischen wahrer und geschätzter Matrix Ωb

ib

∆bω Biasvektor der Drehratensensortriade

∆ba Biasvektor der Beschleunigungssensortriade

∆pn
eb Fehlervektor der Positionsschätzung p̂n

eb

∆vn
eb Fehlervektor der Geschwindigkeitsschätzung v̂n

eb

ΦFF Transitionsmatrix des Fehlerfilters
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Ψ Orientierungsfehlermatrix

Ωb
ib Schiefsymmetrische Drehratenmatrix (gebildet aus ωb

ib)

Ωn
in Schiefsymmetrische Drehratenmatrix (gebildet aus ωn

in)

Ωb
nb Schiefsymmetrische Drehratenmatrix (gebildet aus ωb

nb)

Ωn
ni Schiefsymmetrische Drehratenmatrix (gebildet aus ωn

ni)

RÖMISCH (VEKTORIELLE GRÖSSEN)

bK;ω Vektor der korrigierten Drehratensensorbias

bK;a Vektor der korrigierten Beschleunigungssensorbias

lbGPS Vektor zwischen inertialer Messeinheit und GPS-Antenne im körperbezogenen Ko-

ordinatensystem der inertialen Messeinheit

lnGPS Vektor zwischen inertialer Messeinheit und GPS-Antenne im Navigationskoordi-

natensystem der inertialen Messeinheit

m Magnetometerdatenvektor

nFF Systemrauschvektor des Fehlerfilters

pn
GPS Positionsvektor des GPS-Empfängers im Navigationskoordinatensystem

pn
K;eb Korrigierter Strapdown-Positionsvektor

pn
SD;eb Positionsvektor am Ausgang des Strapdown-Blocks

qn
K;b Korrigierter Quaternionenvektor

qn
SD;b Quaternionenvektor am Ausgang des Strapdown-Blocks

vn
GPS Geschwindigkeitsvektor des GPS-Empfängers im Navigationskoordinatensystem

vn
K;eb Korrigierter Strapdown-Geschwindigkeitsvektor

vn
SD;eb Geschwindigkeitsvektor am Ausgang des Strapdown-Blocks

wFF Messrauschvektor des Fehlerfilters

w∗
FF Messrauschen des extrapolierten Messvektors des Fehlerfilters

xK Korrigierter Strapdown-Vektor

x̂SD Ausgangsvektor des Strapdown-Algorithmus

x̂FF Systemzustandsvektor des Fehlerfilters

x̂GPS Ausgangsvektor des satellitengestützten Teilsystems

x̂SF Ausgangsvektor des Sekundärfilters

zFF Messvektor des Fehlerfilters

zIME Ausgangssignalvektor der inertialen Messeinheit

z∗FF Extrapolierter Messvektor des Fehlerfilters

DFF;n Zustandsübergangsmatrix des zeitlich korrelierten Systemrauschprozesses des

Fehlerfilters

DFF;w Zustandsübergangsmatrix des zeitlich korrelierten Messrauschprozesses des Feh-

lerfilters

FFF Zustandsübergangsmatrix des Fehlerfilters

GFF Matrix des Fehlerfilters, welche die Abhängigkeit des Systemzustandsvektors vom

Systemrauschvektor beschreibt

HFF Messmatrix des Fehlerfilters

K∗ KALMAN-Gewichtungsmatrix bei einem extrapolierten Messvektor

MFF Matrix des Fehlerfilters, welche die Abhängigkeit des Messvektors vom zeitkorre-

lierten Messrauschvektors beschreibt

PFF Schätzfehlerkovarianzmatrix des Fehlerfilters
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Q̂FF Schätzung der Rauschkovarianzmatrix des Vektors des Fehlerfilters, der den zeit-

lich korrelierten Systemrauschprozess treibt

RFF Zeitinvariante Kovarianzmatrix des Rauschvektors νFF, der den zeitlich korrelier-

ten Messrauschprozess treibt

RGPS Schätzfehlerkovarianzmatrix der GPS-Messungen

Kapitel 6

GRIECHISCH (SKALARE GRÖSSEN)

ǫBM Betrag einer Höhenfehlerschätzung

γ0 Temperaturgradient

λ
(i′)
Topo Zu h

(i′)
Topo gehörender Längengrad aus einer topografischen Datenbank

σbh
Standardabweichung von nbh

σh Standardabweichung von nh
σsh

Standardabweichung von nsh
σz∆h

Standardabweichung von nz∆h
σzs Standardabweichung von nzs
σP Standardabweichung von nP
σP0

Standardabweichung von nP0

σT Standardabweichung von nT
σT0

Standardabweichung von nT0

σTD Standardabweichung der Höhe aus einer topografischen Datenbank

ϕ
(i′)
Topo Zu h

(i′)
Topo gehörender Breitengrad aus einer topografischen Datenbank

∆bh Schätzfehler des Bias (barometrisch)

∆pneb,e Abweichung zwischen aktueller Positionsschätzung und topografischem Daten-

bankeintrag (Ost)

∆pneb,n Abweichung zwischen aktueller Positionsschätzung und topografischem Daten-

bankeintrag (Nord)

∆sh Schätzfehler des Skalierungsfaktors (barometrisch)

∆tBM Abtastintervall des barometrischen Sensors

∆P0 Differenz zwischen aktueller Schätzung von P0 und dessen Schätzung zum Zeit-

punkt k = 0

∆T0 Differenz zwischen aktueller Schätzung von T0 und dessen Schätzung zum Zeit-

punkt k = 0

RÖMISCH (SKALARE GRÖSSEN)

bh Bias (barometrisch)

dmax Schwellenwert für Positionsabweichung zwischen Einträgen in einer topografi-

schen Datenbank und aktueller Schätzung

dmin Minimale Positionsdifferenz zwischen Einträgen in einer topografischen Daten-

bank und aktueller Schätzung

h0 Referenzhöhe

h
(i′)
Topo Höhe aus einer topografischen Datenbank (Eintrag i′)

h̃BM Anhand der barometrischen Höhenformel bestimmte Höhe

ĥBM Korrigierte Höhenschätzung am Ausgang des barometrischen Teilsystems
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h̃TD Höhe aus einer topografischen Datenbank

ℓ Universelle Gaskonstante

nbh
Systemrauschen des Bias (barometrisch)

nh Messrauschen der barometrischen Höhe

nsh
Systemrauschen des Skalierungsfaktors (barometrisch)

nz∆h
Mittelwertfreies, weißes GAUSS-verteiltes Rauschen zu z∆h

nzs Mittelwertfreies, weißes GAUSS-verteiltes Rauschen zu zsh
nP Mittelwertfreies, weißes GAUSS-verteiltes Messrauschen einer Luftdruckmessung

nP0
Mittelwertfreies, weißes GAUSS-verteiltes Systemrauschen des Luftdrucks auf Re-

ferenzhöhe

nT Mittelwertfreies, weißes GAUSS-verteiltes Messrauschen einer Temperaturmes-

sung

nT0
Mittelwertfreies, weißes GAUSS-verteiltes Systemrauschen der Temperatur auf Re-

ferenzhöhe)

nTD Mittelwertfreies, weißes GAUSS-verteiltes Rauschen eines Eintrages aus einer to-

pografischen Datenbank

sh Skalierungsfaktor (barometrisch)

z∆h Differenzmesseingang (Höhe) des barometrischen Filters

zsh
Messeingang (Skalierungsfaktor) des barometrischen Filters

M Molare Masse (Luft)

P Luftdruck

P0 Druck auf Referenzhöhe

T Temperatur

T0 Temperatur auf Referenzhöhe

T0,0 Initialer Temperaturwert auf Referenzhöhe h0

Kapitel 7

GRIECHISCH (SKALARE GRÖSSEN)

α Gewichtungsfaktor

β Heuristischer Faktor zur Verhinderung von starken Schwankungen bei der Varianz-

schätzung

βA Gewichtungsfaktor

γ Heuristischer Faktor

δm′f ′ KRONECKER-Delta

ζ, ζ̃, ζ
′

Heuristische Faktoren

ζE Heuristischer Faktor

ι Schranke im Rahmen des sequenziellen EM-Algorithmus

σA Gewichtungsfaktor

̟ ARMIJO-Schrittweite

∆K Anzahl der Abtastwerte in einem Signalausschnitt

∆TK Signallänge

∆Tl Signalausschnittslänge

RÖMISCH (SKALARE GRÖSSEN)

fE1
, fE2

, f̄E Funktionen des Sekundärfilters
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I Iterationsindex

Imax Maximale Iterationsanzahl

p′0, p̃′0 Heuristische Faktoren

r
(i′)
∆n†∆n†,k

Geglättete Autokorrelationsfunktion des Vektors ∆n† an der Stelle k − i′

ARW Angle Random Walk-Parameter

L̃k Zielfunktion (Erwartungswert der Log-Likelihood Function)

V RW Velocity Random Walk-Parameter

W̃k Aktueller Anteil an der Zielfunktion L̃k

GRIECHISCH (VEKTORIELLE GRÖSSEN)

εSF Residuenvektor des Sekundärfilters

µ† Mittelwert eines Messvektors

ΓSF;n Matrix, welche die Abhängigkeit des zeitlich korrelierten Systemrauschens vom

treibenden Rauschen beschreibt

∆xk Differenz von xk und Φkxk−1

Θ Hilfsmatrix

Ξ Schätzfehlerkovarianzmatrix eines Filters mit erweitertem Zustandsvektor

ΦSF Zustandsübergangsmatrix des Sekundärfilters

RÖMISCH (VEKTORIELLE GRÖSSEN)

am′ Nullvektor, der an der m′-ten Stelle eine Eins aufweist

n1:k Sequenz aus zeitlich korrelierten Rauschvektoren bis zum Zeitpunkt k

nSF Zeitlich korrelierter Rauschvektor des Sekundärfilters

q† Vektor aus den Hauptdiagonalelementen der Matrix Q†
qη Vektor aus den Hauptdiagonalelementen der Matrix Qη

qη,1:k Sequenz der Vektoren qη,1 bis qη,k

q̃η Logarithmus von qη

q
#
FF Teilvektor von qFF

qFF;a Teilvektor von qFF, der mit dem Sensorrauschen der Beschleunigungssensortriade

zusammenhängt

qFF;ω Teilvektor von qFF, der mit dem Sensorrauschen der Drehratensensortriade zusam-

menhängt

s Gradientenvektor

uSF Steuereingangsvektor des Sekundärfilters

wSF Zeitlich korrelierter Messrauschvektor des Sekundärfilters

x1:k Sequenz aus Zustandsvektoren bis zum Zeitpunkt k

z† Beobachtungsvektor

z1:k Sequenz aus Beobachtungsvektoren bis zum Zeitpunkt k

zSF Messvektor des Sekundärfilters

BSF Steuereingangsmatrix des Sekundärfilters (Systemmodell)

ΣSF Steuereingangsmatrix des Sekundärfilters (Messmodell)

DSF;n Zustandsübergangsmatrix des zeitkorrelierten Systemrauschens des Sekundärfil-

ters

E Erwartungswert E
[
∆xk∆xT

k

∣∣ z1:k, q̂η,k−1

]

MSF Messrauschmatrix des Sekundärfilters

FSF Zustandsmatrix des Sekundärfilters
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GSF Systemrauschmatrix des Sekundärfilters

G̃ Matrixprodukt aus G und Γn

HSF Messmatrix des Sekundärfilters

J Aktueller Anteil an der HESSE-Matrix

U Kovarianzmatrix der Normalverteilung N
(
xk;Φkxk−1,Uk(Q)

)

V HESSE-Matrix

Kapitel 8

GRIECHISCH (SKALARE GRÖSSEN)

µl,∆K Mittelung von Sensordaten eines Signalausschnittes l der Länge ∆K

σAD;∆K ALLAN-Standardabweichung eines Signalausschnittes der Länge ∆K

σ Standardabweichung des inhärenten AWGR einer Signalkomponente MTi-

Sensoreinheit

σb Standardabweichung des biastreibenden AWGR einer Signalkomponente MTi-

Sensoreinheit

σ̄2b Varianz des Bias

σ̄2b,∆K Stichprobenvarianz des Bias

∆Tl,min Minimum der Signalausschnittslänge bei der ALLAN-Standardabweichung

RÖMISCH (SKALARE GRÖSSEN)

b Skalare Biasdrift

b
(j′)
∆K j′-te Realisierung einer Biasdrift

nb Rauschanteil eines skalaren Bias

ARW Angle Random Walk-Parameter der MTi-Sensoreinheit

R(e jω∆t) Leistungsdichtespektrum einer Signalkomponente der MTi-Sensoreinheit

Rω(fk′) Periodogramm eines Drehratensensorsignals

RW Allgemeiner Random Walk-Parameter

V RW Velocity Random Walk-Parameter der MTi-Sensoreinheit

Kapitel 9

GRIECHISCH (SKALARE GRÖSSEN)

ǫh, ǫKonfig;h Betrag des Fehlers in der Höhe (für eine bestimmte Konfiguration: GPS, BM-K,

BM+K, SD-BM, SD+BM)

ǫ̃h Schranke für einen Höhenfehler

ǫp, ǫVerf;p Betrag des Fehlers in der Position (für ein bestimmtes Schätzverfahren: GPS,

Konst, KM, MD, SEM)

ǫ̃p Schranke für einen Positionsfehler

ǫv, ǫVerf;v Betrag des Fehlers in der Geschwindigkeit (für ein bestimmtes Schätzverfahren:

GPS, Konst, KM, MD, SEM)

ǫ̃v Schranke für einen Geschwindigkeitsfehler

ǫσFF;a
Betragsmäßiger Fehler der Schätzung der Elemente von qFF;a

ǫσFF;ω
Betragsmäßiger Fehler der Schätzung der Elemente von qFF;ω

µǫh
Mittlerer betragsmäßiger Höhenfehler

µǫp Mittlerer betragsmäßiger Positionsfehler
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µǫp,e Mittlerer betragsmäßiger Positionsfehler (Ostkomponente)

µǫp,n Mittlerer betragsmäßiger Positionsfehler (Nordkomponente)

µǫv Mittlerer betragsmäßiger Geschwindigkeitsfehler

µǫv,d
Mittlerer betragsmäßiger Geschwindigkeitsfehler (zum Erdmittelpunkt gerichteten

Komponente)

µǫv,e Mittlerer betragsmäßiger Geschwindigkeitsfehler (Ostkomponente)

µǫv,n Mittlerer betragsmäßiger Geschwindigkeitsfehler (Nordkomponente)

ξǫh
Median des betragsmäßigen Höhenfehlers

ξǫp Median des betragsmäßigen Positionsfehlers

ξǫv Median des betragsmäßigen Geschwindigkeitsfehlers

σǫσFF;ω
Standardabweichung des Schätzfehlers der Größe σFF;ω

σǫσFF;a
Standardabweichung des Schätzfehlers der Größe σFF;a

σǫh
Standardabweichung des Höhenfehlers

σǫp Standardabweichung des Positionsfehlers

σǫp,e Standardabweichung des Positionsfehlers (Ostkomponente)

σǫp,n Standardabweichung des Positionsfehlers (Nordkomponente)

σǫv Standardabweichung des Geschwindigkeitsfehlers

σǫv,d
Standardabweichung des Geschwindigkeitsfehlers (zum Erdmittelpunkt gerichtete

Komponente)

σǫv,e Standardabweichung des Geschwindigkeitsfehlers (Ostkomponente)

σǫv,n Standardabweichung des Geschwindigkeitsfehlers (Nordkomponente)

σm Standardabweichung eines Magnetsensormessrauschens

σm,x Standardabweichung des Magnetsensormessrauschvektors (x-Komponente)

σm,y Standardabweichung des Magnetsensormessrauschvektors (y-Komponente)

σm,z Standardabweichung des Magnetsensormessrauschvektors (z-Komponente)

σFF;a Standardabweichung einer beliebigen Komponente des Vektors qFF;a

σFF;a,x Standardabweichung der x-Komponente des Vektors qFF;a

σFF;a,y Standardabweichung der y-Komponente des Vektors qFF;a

σFF;a,z Standardabweichung der z-Komponente des Vektors qFF;a

σFF;ω Standardabweichung einer beliebigen Komponente des Vektors qFF;ω

σFF;ω,x Standardabweichung der x-Komponente des Vektors qFF;ω

σFF;ω,y Standardabweichung der y-Komponente des Vektors qFF;ω

σFF;ω,z Standardabweichung der z-Komponente des Vektors qFF;ω

ψGPS GPS-Gierwinkel

RÖMISCH (SKALARE GRÖSSEN)

vnGPS;e GPS-Geschwindigkeitskomponente (Ost)

vnGPS;n GPS-Geschwindigkeitskomponente (Nord)

RMSEǫσFF;ω
RMSE der Schätzung von σFF;ω

RMSEǫσFF;a
RMSE der Schätzung von σFF;a

RÖMISCH (VEKTORIELLE GRÖSSEN)

Q
#
FF Diagonale Kovarianzmatrix, die aus dem Vektor qFF gebildet wird
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