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1. Einleitung und Zielsetzung 

Apfel- und Orangensaft gehören in Deutschland zu den beliebtesten Fruchtsäften. Im Jahr 

2008 wurden in Deutschland circa 500 neue Getränke im alkoholfreien Sektor mit der Ge-

schmacksrichtungen Apfel auf den Markt gebracht. Die große Beliebtheit des Apfelsaftes 

resultiert aus dem erfrischenden, leicht säuerlichen Geschmack und den gesundheitsför-

dernden Eigenschaften, die ihm zugeschrieben werden1. Um auf dem stetig wachsenden 

Markt der alkoholfreien Getränke neben weiteren Getränken mit gesundheitlichem Mehr-

wert bestehen zu können, müssen Produzenten der sensorischen Qualität, dem Geruch 

und dem Geschmack, besondere Aufmerksamkeit schenken. Diese Eigenschaften variie-

ren, je nach Zusammensetzung aus den charakteristischen Inhaltsstoffen wie Zucker, 

Säuren und Aromastoffen. 

 

Während einem Apfeldirektsaft laut Fruchtsaftverordnung2 (FruchtsaftVO) kein Aroma 

zugesetzt werden darf, muss dem Apfelsaft aus Apfelsaftkonzentrat das während der 

Konzentrierung entzogene Aroma wieder zugeführt werden. Zur Beurteilung dieser 

Rearomatisierung gibt der Gesetzgeber zwei Kriterien vor - Sensorik und Analytik-, nach   

denen ein Fruchtsaft aus Konzentrat beurteilt werden soll: „Das auf diese Art gewonnene 

Erzeugnis muss im Vergleich zu einem durchschnittlichen […] Saft zumindest gleichartige 

organoleptische und analytische Eigenschaften aufweisen.“ 2 

 

Diese Gleichartigkeit wird durch die sensorische Prüfung von Farbe, Geruch und         

Geschmack sowie durch die analytische Kontrolle anhand der Richtwerte und Schwan-

kungsbreiten bestimmter Kennzahlen (RSK)3,4 bzw. European Fruit Juice Association 

(AIJN/Association of the Industry of Juices and Nectars from Fruit and Vegetables of the 

European Union)5- Richtwerte sichergestellt. Seit geraumer Zeit wird diese Gleichartigkeit 

auch anhand der Analytik der Aromastoffe überprüft. 

 

Ein industriell hergestelltes Produkt muss immer qualitativ einwandfrei sein, gleiches gilt 

dementsprechend für die eingesetzte Rohware und den Produktionsprozess, der hinsicht-

lich der Endqualität betrachtet werden muss. Dies ist auch in der FruchtsaftVO definiert: 

„Fruchtsaft ist das gärfähige, jedoch nicht gegorene, aus gesunden und reifen Früchten 

[…] gewonnene Erzeugnis, das die für den Saft dieser Frucht/Früchte charakteristische 

Farbe, das dafür charakteristische Aroma und den dafür charakteristischen Geschmack 

besitzt.“2 
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Kriterien für die Aromaqualität von aus Konzentrat hergestellten Säften bezüglich der ana-

lytischen Gleichartigkeit sind bisher nicht anerkannt. Bis vor wenigen Jahren wurde das 

Aroma zum größten Teil nur sensorisch bewertet. Durch die heutigen analytischen Tech-

niken wächst jedoch erneut der Wunsch nach objektiven Beurteilungskriterien.  

 

Die quantitative Bestimmung der für das Aroma verantwortlichen Substanzen in Frucht-

säften gewinnt an Bedeutung, da die Sensorik, trotz eines intensiv geschulten Panels, 

keine vollständige Objektivität gewährleisten kann. Wie wichtig dieser Aspekt ist, zeigt 

sich auch in der Überschrift „Das Aroma macht den Unterschied“, welche die Stiftung Wa-

rentest für ihren Apfelsaft-Test 2009 wählte6. Bereits in dem Bericht „Billig und schlecht“,, 

veröffentlicht in der Zeitschrift test 5/2007, wurde die schlechte Bewertung vieler Apfel-

fruchtsaftgetränke überwiegend mit der Aromaqualität begründet7. 

 

Es wurden bereits viele Untersuchungen über die Schlüsselaromastoffe des Apfels und 

des Apfelsaftes wie auch über die Veränderung des Aromas während der Produktion und 

der anschließenden Lagerung durchgeführt. Anerkannte Parameter, um die Rearomati-

sierung eines Apfelsaftes aus Konzentrat zu überprüfen, fehlen jedoch. In verschiedenen 

Gremien wurde die Reglementierung von Fruchtsaftaromen diskutiert. Die vorgeschla-

genen Summenparameter werden bislang kontrovers diskutiert. Generell ist bei allen  

Beurteilungskriterien wichtig, dass die verwendeten Parameter die Schwankungsbreiten, 

die ein Naturprodukt wie Fruchtsaft aufweist, berücksichtigt werden. 

 

Die Analytik von Apfelaromastoffen wird bislang häufig mittels Simultaner Destillation-

Extraktion (SDE) und anschließender Headspace-Gaschromatographie-Massenspektro-

metrie (HS-GC-MS) durchgeführt8. Die Durchführung der SDE dauert 3 Stunden je Probe, 

der Anwender muss über einige Erfahrung verfügen und es werden 80 mL Lösemittel  

eingesetzt. Im zweiten Schritt muss der erhaltene Extrakt noch eingeengt werden.  

 

Die Stir-Bar-Sorptive-Extraction (SBSE) ist eine einstufige Probenvorbereitungstechnik, 

die es erlaubt, 15 Proben innerhalb von drei Stunden aufzuarbeiten und nur 10 mL Löse-

mittel je Probe zur Reinigung des Stir Bars benötigt. Aus den methodischen Defiziten die 

die SDE-Methode aufweist, ergab sich die Zielsetzung dieser Arbeit. 
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Ziel dieser Arbeit: 

• Entwicklung einer Stir Bar Sorptive Extraction-Thermodesorption-Gaschromato-

graphie-Massenspektrometrie (SBSE-TD-GC-MS)-Methode zur Quantifizierung 

ausgewählter Apfelaromastoffe in Apfelsäften, Direktsäften und Säften aus Kon-

zentrat, sowie Apfelaromen 

• Anwendung der Methode in der Routineanalytik zur Qualitätskontrolle der produ-

zierten Säfte 

• Teilnahme an einer Laborvergleichsuntersuchung der GDCh zum Abgleich unter-

schiedlicher Methoden zur Quantifizierung von Aromen in Apfelsäften 

• Beitrag von Analysedaten von Apfeldirekt- und Konzentratsäften für den Datenbe-

stand der GDCh-Projektgruppe „Beurteilungskriterien für Apfelsaftaroma“ 

• Beitrag von Analysedaten für den Verband der deutschen Fruchtsaft-Industrie e.V. 

(VdF) 

• Vorschlag eines Grenzwertes zur Mindestaromatisierung von Apfelsäften aus 

Konzentrat 

• Identifizierung von Markersubstanzen zur Erkennung von rearomatisierten 

Konzentratsäften 

• Entwicklung eines chemometrischen Modells mit der Software Pirouette Lite   

Classify® zur Klassifizierung von Apfelsäften und zur Identifizierung von mit Aroma 

versetzten Apfeldirektsäften 

• Entwicklung einer Stir Bar Sorptive Extraction Thermodesorption-Gaschromato-

graphie-Massenspektrometrie (SBSE-TD-GC-MS)-Methode zur Quantifizierung 

von Ethylbutyrat in Orangensäften zur Kontrolle der eingesetzten Entgaser 

• Anwendung dieser Methode in der Routineanalytik zur Kontrolle bestimmter    

Produktionsschritte 

 

Der Verbraucher muss beim Kauf von Fruchtsäften die Gewissheit haben können, dass er 

ein in der Qualität gesetzeskonformes Produkt erwirbt. Die Ergebnisse dieser Arbeit sollen 

einen Beitrag zur Diskussion der Beurteilungsmodelle der Rearomatisierung in Apfel-

säften aus Konzentrat leisten, um daraus Grenzwerte abzuleiten, die  

• dem Verbraucherschutz ein Instrument an die Hand geben, um die im Verkauf 

stehenden Produkte zu beurteilen, 

• und die dem Produzenten ein objektives Mittel geben, um die Rechtskonformität 

seiner Produkte zu kontrollieren. 
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2. Früchte und Fruchtsäfte 

2.1 Fruchtsaftkonsum und Verbraucherverhalten 

Der „Durchschnittsdeutsche“ trinkt pro Jahr 291,4 L alkoholfreie Getränke9. Dieser       

Verbrauch setzt sich aus 117,0 L Erfrischungsgetränken (z. B. Limonaden, Fruchtsaft-

getränke, Tee- und Kaffeegetränke), 137,4 L Wässern sowie 37,0 L Fruchtsäften und 

Fruchtnektaren zusammen (siehe Abb. 1). Mit einem pro-Kopf-Verbrauch von 37,0 L   

lagen die Deutschen im Jahr 2009 mit einem Mehrverbrauch von 9 Litern gegenüber den 

USA und 13,6 L gegenüber dem EU-Durchschnitt an der Spitzenposition im internatio-

nalen Vergleich (siehe Abb. 2). 

 

Abb. 1: Entwicklung des pro-Kopf-Verbauchs von alkoholfreien Getränken nach Geträn-
kearten 2002-2009, Erfrischungsgetränke, Wässer und Fruchtsäfte und –nektare9 
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• Fruchtnektar 

Fruchtnektare enthalten zwischen 25% und 50% Fruchtanteil. Diese werden häufig 

aus besonders säurereichen Früchten, wie Sauerkirschen oder schwarzen  

Johannisbeeren, oder aus besonders fruchtfleischhaltigen Sorten, wie Bananen 

oder Mangos, hergestellt. Der entsprechende Fruchtgehalt ist auf der Packung  

deklariert. Bei Fruchtnektaren kann Zucker oder Honig bis zu einer Menge von 

20% des Gesamtgewichts des fertigen Erzeugnisses zugesetzt sein. 

Erfrischungsgetränke: 

• Fruchtsaftgetränk 

Fruchtsaftgetränke enthalten Fruchtsaft, Fruchtsaftkonzentrat, Fruchtmark, 

Fruchtmarkkonzentrat oder Mischungen daraus, Wasser und Aromaextrakte 

und/oder natürliche Aromastoffe. Der Fruchtgehalt liegt zwischen 6% und 30%.  

 

• Fruchtschorle 

Fruchtschorlen enthalten Fruchtsaft, Fruchtsaftkonzentrat, Fruchtmark, Frucht-

markkonzentrat oder Mischungen daraus, Wasser und Kohlensäure. Diese können 

mit Zucker gesüßt und mit natürlichen Aromen versetzt sein. Der Fruchtgehalt liegt 

bei mindestens 25 - 50%, je nach Unterscheidung, ob die jeweilige Frucht zum 

unmittelbaren Genuss geeignet ist. 

 

2.2 Apfel und Apfelsaft 

Die Gattung Apfel (lat. Malus) gehört zur Familie der Rosengewächse. Malus domestica 

bezeichnet den Gartenapfel als Sammelart für die Urform der europäischen Kultur-

sorten14. Schon vor ca. 60 Millionen Jahren (Beginn der Tertiärzeit) entwickelten sich  

primitive Vorformen des Apfels. Aus den tropischen Bergregionen Südostasiens breiteten 

sie sich fast über die gesamte Nordhalbkugel aus. Die ältesten fossilen Funde in Deutsch-

land stammen aus Ehringsdorf bei Weimar und ihr Alter wird auf 100 000 Jahre  

geschätzt15. Das Wissen, dass aus Früchten Säfte hergestellt werden können, reicht bis in 

die menschliche Frühzeit zurück. 
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Der Apfel ist mit momentan 5 500 Sorten das am häufigsten verzehrte Obst16. Mit einem 

Anteil von 19,0% liegt es noch weit vor Bananen (10,7%) und Orangen (3,2%)17.  

Die durchschnittliche Zusammensetzung eines Apfels und von Apfelsaft ist in Tab. 1  

zusammengefasst. Verschiedene Faktoren haben einen Einfluss auf die Zusammen-

setzung und auf das Aroma. Nicht nur zwischen den verschiedenen Sorten finden sich 

große Unterschiede in der Zusammensetzung, auch Anbaubedingungen, Klima, Witte-

rungsverlauf, Reifestadium und Lagerungsbedingungen verändern diese.  

 

Tab. 1: Durchschnittliche Zusammensetzung von Äpfeln, Grenzwerte und Mittelwerte 18 
und Zusammensetzung von Apfelsaft, Grenzwerte und Mittelwerte5,19,20 

  Apfel  Apfelsaft 

Wasser % 80-90 

g/100 mL 

88,8-90 

Roheiweiß 
g/100 g essbarer 

Anteil 
0,3 0,3 

Kalium 

mg/100 g essbarer 

Anteil 

90-150 

mg/L 

900-1500 

Calcium 3-12 30-120 

Magnesium 4-7,5 40-75 

Phosphor 7-17 40-75 

Eisen 0,1-0,25 5 

Vitamin B1 

µg/100 g essbarer 

Anteil 

15-60 0,06-0,4 

Vitamin B2 20-50 0,1-0,5 

Niacin 100-500 1-5 

Vitamin B6 100 0,96 

Pantothensäure 100 0,2-1 

Vitamin C 3-25 74 

Glucose 

% 

1,4-2,35 

g/L 

15-35 

Fructose 4,8-6,4 45-85 

Saccharose 0,54-2,78 5-30 

Sorbit 0,51 2,5-7 

Ballaststoffe 1,8-2,5 2,0 

Äpfelsäure mg/100 g essbarer 

Anteil 

270-790 min. 3,0 

Citronensäure 29,3 0,05-0,2 
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Der Schwerpunkt der Obstverarbeitung in Deutschland ist eindeutig beim Kernobst und 

zwar bei den Äpfeln zu sehen. Um einen Liter Apfelsaft zu gewinnen, braucht man etwa 

1,5 kg Äpfel. Durchschnittlich werden jährlich 800 000 Tonnen Äpfel zu Saft verarbeitet20. 

Die Deutsche Gesellschaft für Ernährung (DGE) ordnet Fruchtsäfte in der Lebensmittel-

pyramide in die Gruppe der pflanzlichen Lebensmittel ein und unterstützt die Empfehlung, 

dass Fruchtsäfte im Rahmen der „5 am Tag“-Kampagne eine von fünf Obstportionen  

ersetzen können21. Sie stellen durch ihre gesundheitsfördernde Wirkung eine wichtige 

Ergänzung zur täglichen Nährstoffzufuhr dar. Besonders hervorzuheben sind hier das 

Vitamin C und die Polyphenole. Die anderen in Fruchtsäften vorkommenden Vitamine 

spielen aufgrund ihrer geringen Konzentration eine untergeordnete Rolle21. 

Vitamin C: Die Wirkung von Vitamin C erkannte schon der Schiffsarzt Dr. James Lind. 

Daraufhin sorgte der Kapitän James Cook dafür, dass seine Mannschaft täglich Orangen 

und Zitronen zum Verzehr bekam. Die tödlich verlaufende Krankheit Skorbut konnte mit 

der regelmäßigen Zufuhr von Vitamin C eingedämmt werden. Heutzutage kann es durch 

Vitamin C-Mangel zu einer starken Anfälligkeit gegen Infektionen, Blutungsbereitschaft 

und Mattigkeit kommen. Als Antioxidans ist es in der Lage aktivierten Sauerstoff  

abzufangen und radikalische Kettenreaktionen abzubrechen und so zellschädigende  

Folgen zu verhindern21. 

Polyphenole: Je intensiver die Farbgebung der Fruchtsäfte, umso mehr Polyphenole  

enthalten sie. Bei Äpfeln wird die Konzentration von mehreren Faktoren beeinflusst, wie  

z. B. der Sorte, dem Reifegrad, der Sonneneinstrahlung, der Düngung und der Press-

technologie21. Apfelsäfte, besonders naturtrübe, sind eine reiche Quelle an natürlichen 

Antioxidantien, und Studien weisen auf einen vorbeugenden Effekt gegen degenerative 

Krankheiten beim Menschen hin22,23.  

2.3 Orange und Orangensaft 

Die Orange, welche auch Apfelsine genannt wird, gehört zur Familie der Rautengewächse 

(Rutaceae). Sie stammt aus den südchinesischen Provinzen Yunnan und Sichuan und 

wurde vor mehr als 4000 Jahren in Südchina in Kultur genommen. Ihren Weg nach Euro-

pa hat sie erst im frühen 16. Jahrhundert gefunden.  

Orangen werden heutzutage in den Ländern des „Zitrus-Gürtels“ (zwischen dem 40. Grad 

nördlicher und dem 35. Grad südlicher Breite) angebaut. Von den geschätzten 400 Sorten 

sind 30 wirtschaftlich von Bedeutung, sowohl als Frischobst als auch verarbeitet zu     

Säften, Marmeladen und anderen Konserven24.  



Früchte und Fruchtsäfte 
 

 
10 

Die Zitrusfrüchte, wobei Orangen mit 63% den größten Anteil darstellen, zählen neben 

Weintrauben und Bananen zu den weltweit am meisten angebauten Obstarten25.  

Orangen zeichnen sich durch ihren hohen Gehalt an den Vitaminen C, A und B aus. In 

Tab. 2 ist die durchschnittliche Zusammensetzung von Orangen und Orangensaft  

zusammengefasst. Doch nicht nur Vitamin C, auch Polyphenole (s. Kap. 2.2) machen den 

Orangensaft zu einem gesundheitsfördernden Getränk. Vitamin C erhöht zudem die  

Verfügbarkeit von Eisen in der Nahrung. Eine Empfehlung des Forschungsinstituts für 

Kinderernährung in Dortmund ist, die ersten Milch- und Gemüsebreie mit Fruchtsäften 

anzureichern, da Eisen besonders für Kleinkinder wichtig ist21. 

 

Tab. 2:  Durchschnittliche Zusammensetzung von Orangen, Grenzwerte und Mittelwerte 
und Zusammensetzung von Orangensaft, Grenzwerte und Mittelwerte 5,18,26 

  Orange  Orangensaft 

Wasser % 85,7-86,1  88,2-90,0 

Roheiweiß 
g/100 g essbarer 

Anteil 
1,0-1,1 g/100 mL 0,9 

Kalium 

mg/100 g essbarer 

Anteil 

150-206 g/L 1,3-2,5 

Calcium 33-58 

mg/L 

60-150 

Magnesium 11,18 70-160 

Phosphor 23 115-210 

Eisen 0,1-0,4 40 

Vitamin B1 

µg/100 g essbarer 

Anteil 

79-110 0,6 

Vitamin B2 40-42 0,1 

Niacin 300-400 2-3,0 

Vitamin B6 100-104 0,55-1,45 

Pantothensäure 270-340 0,2 

Vitamin C 
mg/100 g essbarer 

Anteil 
49,0-54,0 g/L 30,9 

Glucose 

g/100 g essbarer 

Anteil 

2,2-2,44 

g/L 

20-50 

Fructose 2,4-2,58 20-50 

Saccharose 3,23-3,9 10-50 

Ballaststoffe 1,4-1,9 0,95 

Äpfelsäure 0,04-0,19 0,8-3,0 

Citronensäure 0,6-1,88 6,3-17 
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2.4 Presstechnologie 

2.4.1 Apfel 

Äpfel stellen in Mitteleuropa die bedeutendste Fruchtart dar und werden dort am häufigs-

ten für die Fruchtsaftbereitung verwendet. Sie eignen sich wegen des ausgeglichen  

Säure/Zucker-Verhältnisses für die Saftherstellung besonders gut, da sie im Gegensatz 

zu säurereichen Säften, z. B. Sauerkirschsaft oder schwarzem Johannisbeersaft, ohne 

Zusatz von Zucker oder weiterer Verdünnung, konsumiert werden können16,52. Die einzel-

nen Schritte der Apfelsaftherstellung sind schematisch in Abb. 5 gezeigt16.  

Bevor die Äpfel in der Mühle zerkleinert werden erfolgt nach der Annahme zunächst die 

Reinigung mittels Schwemmbäder. Eine weitere Vorbehandlung wie Entsteinen oder 

Schälen ist beim Apfel nicht nötig. Zur Zerkleinerung von Kernobst werden häufig 

Rätzmühlen eingesetzt. Hier wird das Obst mit den Rotorblättern gegen die Wand des 

Mahlraums gedrückt und durch die eingelegten Messer zerkleinert. Je nach gewünschter  

Partikelgröße der Maische können unterschiedliche Messer eingesetzt werden. 

Nach dem Entsaften, unterscheiden sich die Herstellungswege von naturtrübem Apfel 

direktsaft und Apfelsaft aus Konzentrat.  

Der naturtrübe Direktsaft wird üblicherweise mittels Bucherpressen oder Dekantern  

hergestellt, separiert, kurzzeitig erhitzt und in sterilen Tanks eingelagert. Nur in Ausnah-

mefällen wird heute zur Herstellung von naturtrüben Direktsäften die Maische vorab  

enzymiert. Nach vorgegebener Lagerzeit wird der trübe Saft nach einer nochmaligen 

Kurzzeiterhitzung abgefüllt, für den Verkauf etikettiert und verpackt. Ein Apfeldirektsaft 

muss gemäß der EU-Fruchtsaft-Richtlinie eine relative Dichte (Quotient ρProbe und ρWasser) 

von mindestens 1,040 aufweisen.  

Die Bucherpresse ist eine hydraulische Horizontal-Korbpresse, welche diskontinuierlich 

presst. Sie ermöglicht eine hohe Pressausbeute mit hygienisch sauberem Betrieb ohne 

Saftverluste und kann auch unter Schutzgas betrieben werden. Der Dekanter presst  

kontinuierlich. Er trennt durch eine horizontale Schneckenzentrifuge den Saft von den 

Feststoffen. Mit Dekantern und Pressen können vergleichbare Ausbeuten erreicht  

werden.  

Bei der Herstellung von Saft aus Konzentrat wird die Apfelmaische üblicherweise mit  

pektolytischen Enzymen versetzt. Nach einer Haltezeit von 30 - 60 min bei 50 – 55 °C 

wird mittels Bucherpresse oder Dekanter der Saft gepresst. Der Trester wird nach dem 
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Zusatz von Trinkwasser und Enzymen nochmals abgepresst. Beide Presssäfte werden 

vereinigt und mit stärkeabbauenden Enzymen versetzt. Nach dieser Behandlung wird 

kurzzeiterhitzt, geschönt und filtriert. Der so gewonnene Saft wird aufkonzentriert, wobei 

das Apfelsaftkonzentrat und die Aromaphase gewonnen werden.  

Die Konzentratherstellung (ASK, Apfelsaftkonzentrat) durch Verdampfen im Vakuum ist 

das am häufigsten angewendete und wirtschaftlichste Verfahren. Weitere technologische 

Möglichkeiten sind Sublimation (Gefriertrocknen), Kristallisation (Gefrierkonzentrieren) 

und Diffusion (Umkehr-Osmose).  

Das Aroma (Apfelwasserphase 150- bis 2500-fach konzentriert) wird neben dem ASK als 

Konzentrat aus dem Saft gewonnen. Die Aromagewinnung erfolgt bei den meisten  

Verfahren zweistufig durch Abtrennung der Aromastoffe und anschließender Anreiche-

rung. Die Anreicherung aus der wässrigen Phase kann durch Extraktion oder Destillation 

geschehen. 0,5 - 2,0% der Frischsaftmenge fallen in einer Aromarückgewinnungsanlage 

als Aromawasserphase an, welches danach auf die gewünschte Konzentration destilliert 

werden kann. 

Nach der Konzentrierung werden Konzentrat und Aroma separat gelagert. Die Lagerung 

nach der Konzentrierung ist kostengünstiger und länger möglich als die Lagerung des 

Direktsaftes. Bei Vollkonzentraten (60 - 74% Trockensubstanz) verringert sich das Volu-

men um das sechs- bis siebenfache im Vergleich zum Direktsaft. Zur Abfüllung wird nun 

aus Konzentrat, Aroma und Wasser der Apfelsaft rekonstituiert. Es müssen gleiche An-

teile an Konzentrat, Aroma und Wasser zur Rekonstituierung genutzt werden, welche im 

Saft vor der Konzentratherstellung ursprünglich vorhanden waren. Nur unter diesen  

Bedingungen darf der Saft als 100%-Saft deklariert werden. Ein Apfelsaft aus Konzentrat 

muss laut EU-Fruchtsaft-Richtlinie eine relative Dichte von 1,045 aufweisen. 
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Abb. 5:  Schema der Verarbeitung von Äpfeln zu Apfelsaft, Direkt und aus Konzentrat (in
Anlehnung an Schobinger16) 
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2.4.2 Orange 

Da das Hauptanbaugebiet für Orangen im Zitrus-Gürtel liegt, werden die Früchte häufig 

dort zu Konzentrat und Aroma verarbeitet, welches so kostengünstiger gelagert und 

transportiert werden kann und auch länger haltbar ist. Die einzelnen Prozessschritte der 

Saftherstellung sind in Abb. 6 schematisch dargestellt.  

Bei der Herstellung von Orangensaftkonzentrat und -aroma fällt, im Gegensatz zur Her-

stellung von Apfelsaftkonzentrat und -aroma, nicht nur eine Aromawasserphase, sondern 

auch eine Ölphase (Essenzöl) an. Zusätzlich wird während des Pressvorganges 

Schalenöl abgetrennt. Dies erfordert andere Press- und Abtrennungstechniken, welche im  

Folgenden näher beschrieben werden16. 

Nach der Reinigung und Kontrolle der Orangen erfolgt vor der Saftextraktionsanlage eine 

Größensortierung, da jeder Extraktor eine bestimmte Fruchtgröße optimal presst. Dort 

wird Saft und Schalenöl gewonnen. Während des Pressvorgangs der Orange wird die 

Frucht mit Wasser besprüht, um so das Schalenöl aus dem Entsafter zu spülen. Bei fal-

scher Einstellung der Presse kann Schalenöl in den Saft gelangen, was einen zumeist 

unerwünschten Geschmack zur Folge hat, oder die Ausbeute verringert.  

Nach der Saftextraktion wird in der Passiermaschine der Saft von den restlichen Frucht-

bestandteilen abgetrennt. Dazu wird der Saft mit einer Schraube gegen ein Trennsieb 

gepresst. Der Saft fließt ab und die sogenannte Pulpe bleibt zurück. Das Zentrifugieren 

des Saftes ist eine weitere Möglichkeit der Pulpen-Abtrennung. Der Saft wird nach dem 

Pasteurisieren als Direktsaft abgefüllt. Beim Orangendirektsaft schreibt die EU-Fruchtsaft-

Richtlinie einen Mindestwert der relativen Dichte von 1,040 vor. 

Bei der Konzentrierung des Saftes zu Orangensaftkonzentrat (OSK) wird das Aroma, be-

stehend aus einer Wasser (WP)- und Öl-Phase (ÖP), gewonnen. Im Verdampfer wird das 

Orangensaftkonzentrat auf 65% Trockenmasse konzentriert. Am Abfüllort wird das  

Konzentrat rückverdünnt und die entsprechenden Anteile an Aroma-Wasserphase und 

Ölphase werden wieder zugesetzt, um einen Orangensaft aus Konzentrat herzustellen. 

Für einen Orangensaft mit Zellen aus Konzentrat wird zusätzlich noch Pulpe zugefügt. 

Nach dem Homogenisieren kann der Saft abgefüllt, pasteurisiert und etikettiert werden. 

Nur unter diesen Bedingungen darf der Saft als 100%-Saft deklariert werden. Ein  

Orangensaft aus Konzentrat muss laut der EU-Fruchtsaft-Verordnung eine relative Dichte 

von mindestens 1,045 aufweisen. Aus 10 000 kg Orangen werden durchschnittlich 

5 600 kg Saft, 4 400 kg Schale/Pulpe, 22 kg Schalenöl, 1-3 kg Ölphase und 10 kg  

Wasserphase gewonnen27. 
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zentrat (in Anlehnung an Schobinger16), WP: Wasserphase, ÖP: Ölphase 
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3. Aroma und Aromastoffe 

3.1 Was ist Aroma? 

Allen Lebewesen stehen verschiedene Sinne zur Wahrnehmung ihrer Umwelt zur Verfü-

gung. Menschen sehen, hören, fühlen, riechen und schmecken. In Verbindung mit  

Lebensmitteln spielen der Geruchssinn, die olfaktorische Wahrnehmung, und der  

Geschmackssinn, die gustatorische Wahrnehmung, die wichtigsten Rollen. Nur beide 

Sinne zusammen, als Oro-naso-fazial-Sinn bezeichnet, lassen uns Speisen vollständig 

wahrnehmen. Sie dienen auch als Warnsystem, z. B. beim Geruch von Feuer oder beim 

bitteren Geschmack von verdorbenen Lebensmitteln und giftigen Früchten. Der Gesamt-

eindruck aus Geschmack und Geruch wird als Aroma (engl. flavour) bezeichnet28,34.  

Der Geruchsschwellenwert (GSW) definiert die Konzentration in mg/L, ab der ein Geruch 

wahrnehmbar ist. Dieser wird zum einen durch den Siedepunkt bestimmt, je höher die 

Konzentration der Aromastoffe in der Gasphase ist, umso stärker ist der Geruchseindruck, 

und zum anderen durch den molekularen Aufbau des Aromastoffes. Das Vorhandensein 

von sowohl polaren als auch unpolaren Gruppen in einem Molekül ist Grundvoraus-

setzung für die geruchliche Wahrnehmung. Das Optimum der Polarität eines Moleküls ist 

z. B. bei einigen Estern zu finden, die daher einen besonders niedrigen GSW aufweisen28. 

Das maximale Molekulargewicht von flüchtigen Aromastoffen liegt bei circa 40029. Für den 

Geruchssinn zuständig sind die olfaktorischen Nervenfasern, welche hinter der Nasenbrü-

cke liegen (siehe Abb. 7).  

 

Abb. 7: Lage der olfaktorischen Nervenfasern (Nn. Olfactorii, gelb)30 
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Eine Geschmacksknospe besteht aus einem Bündel an Zellen, das im Epithel eingebettet 

liegt und über den Geschmacksporus (siehe Abb. 9) Anschluss an die Oberfläche  

bekommt31. Die Mikrovilli, mit denen die Geschmacksknospe über die Geschmackspore 

heraustritt, agieren als Chemosensoren und melden eine bestimmte Geschmacksqualität. 

 

 

Abb. 9: Querschnitt einer Geschmacksknospe36 

Über die Geschmacksknospen können fünf unterschiedliche Geschmäcke wahrge-

nommen werden: süß, sauer, bitter, salzig und umami. Als möglichen sechsten Sinn hat 

Keast die Wahrnehmung von Fett vorgeschlagen37.  

Die Ausbildung von Geruchs- und Geschmackspräferenzen beginnt nicht erst nach der 

Geburt, sondern kann schon pränatal geprägt werden. Der Geschmack der Nahrung,  

welche die Mutter während der Schwangerschaft zu sich nimmt, wird an das Baby weiter-

geleitet. Während der Entwicklung des Fötus kann die Vorliebe für bestimmte Gerüche 

und Geschmäcke bereits ausgebildet werden38.  

Der Geschmack kann laut Eskine et al.39 auch unsere moralische Einschätzung beein-

flussen. Testgruppen haben nach dem Verzehr eines bitteren, eines süßen und eines 

geschmacksneutralen Getränkes Fragestellungen nach dem persönlichen moralischen 

Empfinden eingestuft. Die Ergebnisse haben gezeigt, dass ein signifikanter Einfluss des 

Geschmacks auf das moralische Urteil vorhanden ist. Das Urteil beim Konsum des bitte-

ren Getränkes ist negativer ausgefallen als beim Konsum eines neutralen Getränkes und 

beim neutralen Getränk wiederum negativer als beim süßen Getränk. 

Aromastoffe sind flüchtige Verbindungen, die in einer bestimmten Konstellation und Kon-

zentration für ein Lebensmittel charakteristisch sind. Besonders Lebensmittel, die durch 

thermische Prozesse (z. B. Kaffee) oder Fermentation (z. B. Bier) hergestellt werden,  

weisen weit mehr als 800 flüchtige Verbindungen auf. Diese Vielfalt ist auch bei vielen 

Geschmackszellen 

Reizleitung zum Gehirn 

Geschmacksporus 
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Obst- und Gemüsesorten gegeben28. Von den Verbindungen sind jedoch nur diejenigen 

von Bedeutung, die in einer Konzentration über dem GSW vorhanden sind40.  

Manche Aromastoffe prägen das Aroma so stark, dass diese als „character impact    

compounds“ bezeichneten Verbindungen, auch als Einzelsubstanzen für ein Lebensmittel 

charakteristisch sind28. Zwei bekannte Beispiele dafür sind der bittermandelartige Benzal-

dehyd in Mandeln und Kirschen und das pilzartige (R)-1-Octen-3-ol in Champignons40.  

Chiralität, eine Form der Isomerie, bezeichnet stereoisomere Moleküle, die wie Bild und 

Spiegelbild zueinander stehen. Solche Enantiomere können als Nachweis der Genuität 

dienen41. Neben vielen Ähnlichkeiten, die ein Enantiomerenpaar untereinander aufweist, 

wie identische Bindungen, gleicher Energiegehalt, Schmelzpunkte, Siedepunkte und  

Dichte, ist der Unterschied anhand der optischen Aktivität erkennbar. Ein weiterer Unter-

schied, den manche chirale Aromastoffe aufweisen, ist der charakteristische Geruch42,43. 

Genuiner Nachweis: Die Enantiomerenverteilung bestimmter Analyten lässt Rückschlüsse 

auf die Echtheit der vorliegenden Probe zu. Bei der im Apfel vorkommenden Substanz  

2-Methylbutanol hat Schuhmacher ausschließlich die S-Form gefunden und konnte so 

bestätigen, dass der Nachweis eines Aromas hinsichtlich der Authentizität und der Echt-

heit über bestimmte Enantiomere geführt werden kann41. Die Echtheitskontrolle mittels 

chiraler stationärer Phasen wird in der Aromen- und Duftstoffindustrie zur Qualitäts-

sicherung eingesetzt44,45. 

Charakteristischer Geruch: Ein sehr bekanntes Beispiel ist das Limonen (Abb. 10), wel-

ches uns in Getränken, Putzmitteln und Kosmetika tagtäglich begegnet. In der (R)-Form 

riecht es nach Orange, in der (S)-Form jedoch nach Zitrone42,43.  

CH3

CH3

CH2
H

CH3

CH3

CH2
H

 

Abb. 10:  Das Enantiomerenpaar (S)-Limonen (links, Geruch nach Zitrone) und                
(R)-Limonen (rechts, Geruch nach Orange)42, 43 
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Dieser Unterschied ist auch beim Carvon (Abb. 11) sehr ausgeprägt. (S)-Carvon hat eine 

Kümmel-Note, während (R)-Carvon nach Krauseminze riecht42,43. 

CH3

O

H
CH3CH2

CH3

H
CH3CH2

O

 

Abb. 11:  Das Enantiomerenpaar (R)-Carvon (links, Geruch nach Krauseminze) und  
(S)-Carvon (rechts, Geruch nach Kümmel)42,43 

Die systematische Erschließung der Aromastoffe begann schon in der ersten Hälfte des 

19. Jahrhunderts. Nach der Isolierung und Strukturaufklärung war die Laborsynthese und 

spätere industrielle Herstellung möglich. Tab. 3 zeigt einige Stationen dieser Entwicklung 

im 19. Jahrhundert46. 

Tab. 3: Zeitliche Entwicklung der Isolierung und Synthese von Aromastoffen im  
19. Jahrhundert46 

1834 Isolierung von Zimtaldehyd aus Zimtöl (Dumas und Peligot) 

1837 Isolierung von Benzaldehyd aus Bittermandel (Liebig und Wöhler) 

1851 Herstellung verschiedener Fruchtester (Hoffmann) 

1856 Synthese von Zimtaldehyd (Chiozza) 

1863 Synthese von Benzaldehyd (Cahours) 

1872 Aufklärung der Bruttoformel des Vanillin (Carles) 

1872 Erste Synthese von Vanillin (Haarmann) 

1874 Erste industrielle Herstellung von Vanillin (Haarmann & Reimer) 

1886 Isolierung von Citral (Bertram, Dodge) 

1887 Synthese von Menthol (Beckmann und Pleisner) 

1893 Industrielle Herstellung von Zimtaldehyd (Schimmel) 

1895 Industrielle Herstellung von Citral (Haarmann & Reimer, Schimmel) 
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3.2 Klassifizierung der Aromen 

Aromen werden anhand der Art der Gewinnung, nach dem Vorkommen in der Natur und 

nach enthaltenen Gruppen und Stoffgruppen eingeteilt. Im Sinne der Aromaverordnung 

sind Aromen wie folgt definierte Erzeugnisse und deren Mischungen, die dazu bestimmt 

sind, Lebensmitteln einen besonderen Geruch oder Geschmack zu verleihen47: 

 

• „Natürliche Aromastoffe: 

chemisch definierte Stoffe mit Aromaeigenschaften, gewonnen durch geeignete physi-

kalische Verfahren (einschließlich Destillation und Extraktion mit Lösungsmitteln), durch 

enzymatische oder mikrobiologische Verfahren aus Ausgangsstoffen pflanzlicher oder 

tierischer Herkunft, die als solche verwendet oder mittels herkömmlicher Lebensmittel-

zubereitungsverfahren (einschließlich Trocknen, Rösten und Fermentieren) für den 

menschlichen Verzehr aufbereitet werden.“47 

• „Naturidentische Aromastoffe: 

chemisch definierte Stoffe mit Aromaeigenschaften, die durch chemische Synthese oder 

durch Isolierung mit chemischen Verfahren gewonnen werden und mit einem Stoff  

chemisch gleich sind, der in einem Ausgangsstoff pflanzlicher oder tierischer Herkunft […] 

natürlich vorkommt.“47 

• „Künstliche Aromastoffe: 

chemisch definierte Stoffe mit Aromaeigenschaften, die durch chemische Synthese ge-

wonnen werden, aber nicht mit einem Stoff chemisch gleich sind, der in einem Ausgangs-

stoff pflanzlicher oder tierischer Herkunft […] natürlich vorkommt.“47 

• „Aromaextrakte: 

nicht unter die Begriffsbestimmung der Nummer 1 fallende konzentrierte und nicht  

konzentrierte Erzeugnisse mit Aromaeigenschaften, gewonnen durch geeignete physikali-

sche Verfahren (einschließlich Destillation und Extraktion mit Lösungsmitteln), durch  

enzymatische oder mikrobiologische Verfahren aus Ausgangsstoffen pflanzlicher oder 

tierischer Herkunft, die als solche verwendet oder mittels herkömmlicher Lebensmittel-

zubereitungsverfahren (einschließlich Trocknen, Rösten und Fermentieren) für den 

menschlichen Verzehr aufbereitet werden.“47 
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• „Reaktionsaromen: 

Erzeugnisse, hergestellt unter Beachtung der nach redlichem Herstellerbrauch üblichen 

Verfahren durch Erhitzen einer Mischung von Ausgangserzeugnissen, von denen mindes-

tens eines Stickstoff (Aminogruppe) enthält und ein anderes ein reduzierender Zucker ist, 

während einer Zeit von höchstens 15 Minuten auf nicht mehr als 180 Grad C.“47 

• „Raucharomen: 

Zubereitungen aus Rauch, der bei den herkömmlichen Verfahren zum Räuchern von 

Lebensmitteln verwendet wird.“47 

 

3.3 Apfelaromen 

Das charakteristische Apfelaroma bildet sich in bestimmten Entwicklungsstadien, ebenso 

wie z. B. Zucker, Säuren und die Farbe der Schale. Die Bestimmung der einzelnen  

Entwicklungsstadien ist zudem wichtig, um mit anbautechnischen Maßnahmen die  

Entwicklung des Apfelbaumes optimal zu unterstützen.  

Der Baumschnitt zum Beispiel kann über einen längeren Zeitraum durchgeführt werden, 

während bei der Bekämpfung des Apfelschorfes der optimale Zeitpunkt sehr wichtig ist. 

Abb. 12 zeigt wichtige Entwicklungsstadien des Apfels. Die erste Ziffer bezeichnet das 

Makro-, die zweite das Mikrostadium. Die Entwicklungsphasen (Makrostadien) werden 

wie folgt unterteilt48: 

 

0 Austrieb 

1 Blattentwicklung 

3 Triebentwicklung 

4 Ausläufer und Jungpflanzenentwicklung 

5 Blütenknospenentwicklung 

6 Blüte 

7 Fruchtbildung 

8 Fruchtreife 

9 Abschluss der Vegetation  
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Zum Zeitpunkt der Ernte weisen die Blätter und Früchte noch ein sehr ähnliches Bild von 

flüchtigen Inhaltsstoffen auf. In Abb. 14 A und B ist zu erkennen, dass die Aromastoffe 

hauptsächlich während der Lagerung gebildet werden und nach ca. 70 Tagen Lagerung 

wieder sinken68. Song et al. haben ebenfalls eine starke Korrelation zwischen der Reife 

des Apfels und der Konzentration an Aromastoffen festgestellt53. Guadagni hat nach-

gewiesen, dass sich das Aroma in besonders großen Mengen in der Schale bzw. im  

äußeren Fruchtfleisch befindet. Den größten Aromabeitrag liefern die Ester Ethylbutyrat, 

Butylacetat, Ethyl-2-methylbutyrat und 2-Methylbutylacetat 54.  

 

 

 

Abb. 14: Veränderung der Aromastoffprofile während des Wachstum und der Lagerung 
bei Äpfeln der Sorte Cox Orange im Jahr 196554, rechte Skala: Essigsäure-
butylester, Hexylacetat, 1-Hexanol, linke Skala: Hexylbutyrat, Hexylhexanoat,  
3-Methylbutylacetat, 2-Methylbutanol. 
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Einen besonderen Einfluss auf das Aroma des Apfelsaftes haben die Aromastoffe trans-2-

Hexenal, trans-2-Hexenol und Hexanal (frischer Gras- bzw. Blättergeruch). Diese Stoffe 

entstehen erst nach Zerstörung der Fruchtzellen durch den enzymatischen Abbau der 

ungesättigten Fruchtsäuren und werden als sekundäre Aromastoffe bezeichnet, bereits in 

der intakten Frucht vorhandene Aromastoffe als primäre Aromastoffe.  

Tressl und Drawert haben sich intensiv mit dem Abbau zu sekundären Aromastoffen im 

Apfel beschäftigt56,55. Die C6-Alkohole und C6-Aldehyde haben sie in Presssäften nachge-

wiesen, in den intakten Früchten jedoch nicht. Der Begriff Apfelaroma wird synonym für 

das Aroma des intakten Apfel und für das Aroma von Apfelsäften verwendet. 

Die folgenden Substanzen bilden sich in unterschiedlichen Konzentrationen erst bei der 

Homogenisierung unter Luftzutritt: Hexanal, cis-3-Hexen-1-al, trans-3-Hexen-1-al,  

trans-2-Hexenal, Hexanol, cis-3-Hexen-1-ol und trans-2-Hexen-1-ol. Als Hauptkompo-

nenten wurden trans-2-Hexenal und Hexanal bestimmt. Hexanal, cis-3-Hexen-1-al, 

trans-3-Hexen-1-al, trans-2-Hexenal wurden als Produkte der Vorläufer Linolensäure und 

Linolsäure nachgewiesen. Durch Reduktion bilden sich aus trans-2-Hexenal und Hexanal 

die entsprechenden Alkohole trans-2-Hexenol und Hexanol (siehe Tab. 4).  

Tab. 4:  Vorläufer und daraus bei Zerstörung des Zellverbandes des Apfels entstehende 
Produkte 55,56 

Vorläufer Produkte 

Linolensäure cis-3-Hexen-1-al, trans-3-Hexen-1-al, trans-2-Hexenal 

Linolsäure Hexanal 

trans-2-Hexenal trans-2-Hexenol 

Hexanal Hexanol 

 

Des Weiteren laufen bei der Zerstörung des Zellverbandes enzymatische hydrolytische 

Prozesse ab. Die Fruchtester werden durch Esterasen in Alkohole und Säuren gespalten. 

Der stark unterschiedliche Geschmack der frischen Frucht und des Fruchtsaftes resultiert 

daher aus den neu gebildeten Substanzen wie trans-2-Hexenal und Hexanal und dem 

Abbau von Estern zu Alkoholen und Säuren durch zelleigene Enzyme55,56. 

Wie schon in Kap. 2.2 erwähnt weisen die verschiedenen Sorten ein unterschiedliches 

Aromenspektrum auf. Auch Faktoren wie Anbaubedingungen, Klima, Witterungsverlauf, 

Reifestadium und Lagerungsbedingen beeinflussen dieses57.  
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Die ersten Untersuchungen zum Apfelaroma wurden bereits 1920 durchgeführt58. Acet-

aldehyd sowie die Ester der Ameisen-, Essig- und Capronsäure wurden als Haupt-

bestandteile des Apfelaromas identifiziert. In den folgenden Jahren konnten immer mehr 

Aromen identifiziert werden. Eine Übersicht über den damaligen Stand der Forschung 

zum Thema „Aromaprofil des Apfels“ wurde von Dimick und Hoskins 198359 und Paillard 

199060 erstellt. Mehr als 300 flüchtige Komponenten wurden bereits im Apfel identi-

fiziert61, doch nicht alle tragen zum charakteristischen Aroma bei.  

Durch Kombination von instrumentell-analytischen und sensorischen Methoden konnten 

aus dieser Vielzahl von Aromen sogenannte Schlüsselverbindungen identifiziert werden62. 

Der Forschungskreis der Ernährungsindustrie e.V. (FEI) hat Säfte aus Äpfeln der Sorte 

Golden Delicious sensorisch als am apfelsafttypischsten bewertet und folgende Aroma-

stoffe als besonders aromaaktiv identifiziert63: 

Tab. 5: Vom FEI63 als besonders aromaaktiv identifizierte Aromasubstanzen von Äpfeln 
der Sorte Golden Delicious 

Aromastoff Geruchseindruck46,57,62,65 

β-Damascenon bratapfelartig 

Hexanal nach frisch geschnittenem Gras 

Dimethylsulfid spargelartig 

trans-2-Hexenal nach grünem Apfel, marzipanartig 

Ethyl-2-methylbutyrat fruchtig 

Diacetyl süß-butterartig 

Methional nach gekochten Kartoffeln 

Methyl-2-methylbutyrat fruchtig 

Ethylbutyrat grün, nach Apfel 

 

Steinhaus64 hat weitere Substanzen als Schlüsselaromastoffe für die Sorte Golden  

Delicious beschrieben:  

Tab. 6:  Zusätzlich von Steinhaus64 als Schlüsselaromen der Sorte Golden Delicious  
identifizierte Substanzen 

Aromastoff Geruchseindruck46,57,62,65 

1-Octen-3-on pilzartig 

Acetaldehyd frisch, fruchtig 

(Z)-3-Hexenal nach frisch geschnittenem Gras 
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Elß fügte dem Aromaprofil noch die in Tab. 7 beschriebenen Substanzen als für das  

Aromaprofil des Apfels charakteristisch hinzu: 

Tab. 7: Von Elß65 zusätzlich als charakteristische Aromakomponenten im Apfel identi-
fizierte Substanzen 

Aromastoff Geruchseindruck46,57,62,65 

Hexanol süßlich 

trans-2-Hexenol fruchtig 

cis-3-Hexenol pilzartig 

Butylacetat fruchtig 

Hexylacetat fruchtig, schwach fettig 

2-Methylbutylacetat käseartig 

1-Butanol stechend 

1,3-Octandiol - 

5-(Z)-Octen-1,3-diol - 

 

Während 2-Methylbutanol (fruchtig) und 2-Methylbutylacetat (käseartig) genuine Aroma-

stoffe des Apfels sind, werden 3- Methylbutanol (malzig) und 3-Methylbutylacetat (käse-

artig) als Gärungsindikatoren genutzt66,67. 

 
Apfelaromen lassen sich 2 Grundtypen einteilen, wobei sich die Aromastoffzusammen-

setzung verschiedener Sorten aus Alkoholen, Estern und Aldehyden nur quantitativ unter-

scheidet46,68: 

• Estertyp 

Bei diesem Typ sind die Hauptkomponenten Ethylacetat, Butylacetat, Amylacetat, Hexyl-

acetat, Butylbutyrat, Hexylbutyrat, Butylhexanoat, Hexyl-2-methylbutyrat, Hexylhexanoat, 

Oktylbutyrat und Oktansäurebutylester. In diese Kategorie kann man beispielsweise die 

Sorten Cox Orange, Jonathan und Golden Delicious einordnen. Äpfel dieses Typs ent-

halten meist größere Mengen an Aromastoffen und werden daher organoleptisch als  

aromatischer empfunden. Verstärkt wird dies durch die höhere Geschmacksintensität der 

Ester gegenüber den Alkoholen und den angenehmeren Gesamteindruck. 

• Alkoholtyp 

Die Hauptkomponenten beim Alkoholtyp sind Butanol, Iso-Pentanol, 2-Pentanol und  

Hexanol. Zu diesem Typ gehören unter anderem die Sorten Glockenapfel, Ontario,  

Bärlepsch, Goldparmäne und Champagner Renette. 
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3.4 Summenparameter zur analytischen Beurteilung von Apfelaromen 

Laut FruchtsaftVO muss Fruchtsaft aus Konzentrat „im Vergleich zu einem durch-

schnittlichen […] Saft zumindest gleichartige organoleptische und analytische Eigen-

schaften aufweisen.“2 Bis vor einigen Jahren wurde die ausreichende Aromatisierung ei-

nes Fruchtsaftes zum größten Teil nur sensorisch bewertet, doch durch die heutigen  

analytischen Möglichkeiten wächst der Wunsch nach objektiven Beurteilungskriterien  

wodurch die quantitative Bestimmung der Aromen in Fruchtsäften an Bedeutung gewinnt.  

Doch um die Aromatisierung eines Apfelsaftes im Sinne der Fruchtsaft-Verordnung be-

werten zu können, müssen zunächst Modelle zur Berechnung entsprechender Summen-

parameter und im weiteren Schritt Grenzwerte definiert werden. Diese Grenzwerte  

müssen die große Bandbreite an Apfelsorten, Anbaubedingungen, Klima- und Lager-

bedingungen berücksichtigen. 

Bereits 1958 haben Brunner und Senn die Aromazahl eingeführt69,70. Sie wurde ent-

wickelt, um eine einfache Methode zur Ermittlung der Aromakonzentration zur Hand zu 

haben. Sie entspricht der Gesamtoxidationszahl, vermindert um den Alkoholgehalt des 

Konzentrates. 

Im Verlauf der Diskussion über Parameter zur Beurteilung der Rearomatisierung wurden 

seit 2007 drei Modelle zu ihrer Berechnung für Apfelsaft aus Apfelsaftkonzentrat erarbei-

tet: die Estersumme71, die Summe der C6-Aldehyde und -Alkohole71 und der 

Aromaindex72. Der Maßstab für eine ausreichende Rearomatisierung ist gemäß 

FruchtsaftVO der Apfeldirektsaft. Die dort gefundenen Aromakomponenten bzw. die sich 

daraus ergebenden Summenparameter beschreiben den ausreichend aromatisierten Ap-

felsaft aus Apfelsaftkonzentrat. Die Konzentrationen von ausgewählten 

Aromakomponenten wurden in verschiedenen Handelssäften ermittelt. Tab. 8 zeigt die 

Zuordnung der Substanzen zu den einzelnen Modellen. 

• Estersumme71 

Zur Berechnung der Estersumme werden die Konzentrationen der Ester (Tab. 8) in µg/L 

addiert. Butylacetat wird in dieser Summe nicht mit eingerechnet, da die mengenmäßige 

Dominanz allein den Summenparameter bestimmen würde. Die Estersumme steigt, wie 

Abb. 14 zeigt, mit dem Reife-/Lagerungsgrad. Äpfel, die dem Alkoholtyp zugeordnet  

werden, enthalten weniger Ester als die des Estertyps.  
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• Summe der C6-Aldehyde und -Alkohole71 

Hier werden die Konzentrationen (in µg/L) der Aldehyde und Alkohole mit einem  

C6-Grundkörper summiert. Je höher die Summe, umso frischer erscheint der Apfel. Diese 

Aromen kommen im intakten Apfel nur in Spuren vor und werden erst bei der Zer-

kleinerung, wie z. B. bei der Saftpressung oder der Mazeration beim Verzehr des Apfels, 

gebildet. 

• Aromaindex72 

Zur Bestimmung des Aromaindex (dimensionslos) findet eine gewichtete Bewertung statt. 

Dazu wird die Konzentration von 10 apfeltypischen Estern und C6-Körpern mit einem 

Normierungsfaktor multipliziert und dann aufsummiert. Mit dieser Methode soll der  

Einfluss natürlicher Schwankungen, die z. B. aufgrund klimatischer und technologischer 

Unterschiede und verschiedener Sorten vorliegen, minimiert werden.  

Tab. 8:  Zuordnung der unterschiedlichen Aromen zur Estersumme, Summe der  
C6-Aldehyde und-Alkohole und dem Aromaindex mit zugehörigem Normierungs-
faktor,71,72 

 
Ester-

summe 

Summe der C6-

Aldehyde und 

Alkohole 

Aromaindex 

 
Normierungs-

faktor 

(S)-2-Methylbutylacetat X  X 0,250 

(S)-Ethyl-2-methylbutyrat X  X 2,00 

(S)-Methyl-2-methylbutyrat X    

1-Hexanol  X X 0,017 

2-Methylbutanol   X 0,033 

Butylacetat   X 0,100 

Ethylbutyrat X  X 0,500 

Ethylhexanoat X    

Ethylisobutyrat X    

Hexanal  X X 0,100 

Hexyl-2-methylbutyrat X    

Hexylacetat X  X 0,333 

Methylhexanoat X    

trans-2-Hexenal  X X 0,025 

trans-2-Hexenol  X X 0,050 
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Zum Einsatz der Summenparameter als Beurteilungskriterium zur Aromaqualität von  

Apfelsäften herrschen unterschiedliche Meinungen: 

• Heil und Ara (2007)71 betonen, dass eine Rechtssicherheit bei den Bewertungs-

kriterien wünschenswert wäre, insbesondere für die Unterscheidung zwischen aus-

reichend und nicht ausreichend aromatisierten Fruchtsäften. Da die Bewertung  

anhand von einzelnen Parametern, die aufgrund von Unterschieden im Aromaprofil 

wenig praktikabel erscheinen, befürworten sie die Bewertung über Summenpara-

meter. Sie haben 59 handelsübliche Direktsäfte und 139 Säfte aus Konzentrat, im 

Sinne der FruchtsaftVO als typisch, üblich oder durchschnittlich eingeordnet, mittels 

Simultaner Destillation-Extraktion-Gaschromatographie-Massenspektrometrie (SDE-

GC-MS) analysiert und quantifiziert. Bei der Estersumme haben sie bei 150 µg/L ei-

nen statistisch markanten Messwert festgestellt und hielten diese Summenbildung 

für ein anwendbares Kriterium. Bei der Summe der C6-Aldehyde und -Alkohole  

wurde kein Grenzwert diskutiert, da nicht genug Daten vorlagen.  

 

• Wolter, Gessler und Winterhalter (2008)72 haben Säfte aus Laborpressungen und 

auch einige, auf technischen Anlagen erzeugte, sortenreine Säfte mittels SDE-GC-

MS und Sensorik untersucht. Sie konnten keine Korrelation zwischen der 

Estersumme und der Summe der C6-Aldehyde und -Alkohole feststellen. Sie hielten 

die Beurteilung des Apfelsaftaromas anhand der Estersumme und der Summe der 

C6-Aldehyde und -Alkohole für nicht geeignet, um unzureichend aromatisierte Säfte 

mit ausreichender Sicherheit abzugrenzen. Zur Beschreibung der Aromatisierung  

stellten sie den Aromaindex vor, welcher durch die erweiterte Beurteilungsgrundlage 

Schwankungen in den Konzentrationen der Aromastoffe ausgleichen soll. Die  

Sensorik bleibt nach der Meinung von Wolter, Gessler und Winterhalter immer noch 

das am besten geeignete Instrument zur Kontrolle des Aromas und analytisch ermit-

telte Aromaprofile sollten lediglich zur Absicherung des sensorischen Ergebnisses 

dienen. 

 

• Quadt, Jülich und Tretzel (2008)73 haben mittels Flüssig-Flüssig-Extraktion-GC-MS 

29 Apfelwasserphasen untersucht und sensorisch beurteilt. Eine Korrelation  

zwischen analytischen Messdaten und Sensorik von Apfelsaftaromen konnte nicht 

festgestellt werden. Daher haben sie vorgeschlagen, die Rearomatisierung auch 

weiterhin organoleptisch zu beurteilen und die Authentizität und die Saftmatrix  

analytisch zu untersuchen. Die mögliche Bewertung der Rearomatisierung von  
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Apfelsäften anhand von analytischen Summenparametern sollte in weiteren Arbei-

ten untersucht werden. 

 

• Nikfardjam und Maier (2010)74,117 haben mittels Headspace-Trap-Technologie und 

sensorisch nach dem DLG-Score 68 Direktsäfte und 17 Säfte aus Konzentrat unter-

sucht und bewertet. Die Summe der Ester hat laut ihren Untersuchen keinen Ein-

fluss auf die Sensorik der Apfelsäfte. Sensorisch schlechter beurteilte Säfte wiesen 

tendenziell eine höhere Estersumme auf. Die Summe der C6-Aldehyde und  

-Alkohole erwies sich im negativen Sinne signifikant. Bei einem hohen Gehalt an  

C6-Verbindungen wurden die Säfte vom Panel schlecht bewertet.  

 
• Einen neuen Ansatz verfolgt ein Projekt des Forschungskreises der Ernährungs-

industrie e. V. (FEI)75,76 mit dem Thema „Aromawert-Index als Kriterium zur Bewer-

tung des Einflusses der Rearomatisierung und nicht-flüchtiger Geschmacksstoffe 

auf die Qualität von Apfelsäften aus Konzentrat“. Das Ziel dieses Projektes ist es, 

über die molekulare Sensorik zu klären, welche Aromastoffe einen Beitrag zum  

apfeltypischen Aroma haben. Auf Grundlage dieser Werte sollen Korrelationen er-

mittelt werden, die es ermöglichen, analytische Parameter für die Qualitäts-

bewertung von Apfelsaft aus Konzentrat zu definieren. 

Der Wert 150 für den Aromaindex wurde von den Fachgremien des Verbandes der 

Fruchtsaftindustrie als Mindestmaß einer ausreichenden Rearomatisierung festgelegt.  

Ein Saft mit einem Aromaindex größer 150 ist damit verkehrsfähig185. 

3.5 Orangenaroma 

Beim Orangenaroma müssen mehrere Fraktionen unterschieden werden. Hier wird, wie in 

Kapitel 2.4.2 beschrieben, nicht nur die Wasserphase extrahiert, sondern zusätzlich eine 

Ölphase und das Schalenöl77. Das Schalenöl besteht zu 94,5% aus Limonen, 1% 

Valencen, 0,8% Linalool und 0,7% Oktanal, Dekanal und Ethylbutyrat78. Der Anteil an 

Aroma-Ölphase beträgt in Orangensaft 0,005%79. Im Vergleich zum Schalenöl enthält die 

Ölphase einen 7 bis 18-fach höheren Gehalt an Estern und einen geringeren Gehalt an 

Aldehyden80. 

 

Die ersten Nachweise von Orangenaromabestandteilen wurden 1925 von Hall und Wilson 

dokumentiert. Sie konnten 8 Stoffe identifizieren und haben dafür ein Probenvolumen von 

2025 Litern eingesetzt. Ebenso wie bei der Aromaforschung beim Apfel hat auch hier die 

Entwicklung der Gaschromatographie und die spätere Einführung der massenselektiven 
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Detektoren einen großen Beitrag zur Identifizierung und Quantifizierung der Aromastoffe 

geleistet81,82.  

Bis heute konnten bereits mehr als 200 Aromastoffe in frischem Orangensaft identifiziert 

werden83. Ester, Kohlenwasserstoffe, Alkohole und Aldehyde zählen zu den Verbindungs-

klassen mit dem größten Anteil vom Gesamtaroma.  

 

Wichtige Aromakomponenten des in Deutschland hauptsächlich konsumierten Orangen-

saftes aus Konzentrat sind in Tab. 9 aufgeführt84. 

Tab. 9:  Wichtige Aromastoffe in einem frisch rekonstituierten Orangensaft aus Konzen-
trat84,85,85 

Aromastoff Geruchseindruck 

Ethylbutyrat fruchtig 

Linalool blumig 

Myrcen geranien-ähnlich 

(S)-Ethyl-2-methylbutyrat fruchtig 

Acetaldehyd scharf, stechend 

Dekanal süß, blumig, orangenähnlich 

(R)-α-Pinen etherisch, nach Pinienbaum 

(R)-Limonen  terpentinartig 

β-Damascenon bratapfelartig 

Oktanal grün, citrusartig 

Dimethylsulfid schwefelartig 

(R)-Carvon minzig 

Hexanal grün, grasartig 

 

Der größte Unterschied zwischen einem frischen und einem Orangensaft aus Konzentrat 

liegt beim Gehalt der Aromastoffe Linalool, Oktanal, Dekanal, (R)-Limonen, (R)-α-Pinen 

und Myrcen. Sie wurden beim rekonstituierten Saft in größeren Mengen gefunden. Signifi-

kant reduziert waren die Aromen Acetaldehyd, (S)-Ethyl-2-methylbutyrat, Ethylbutyrat und 

(Z)-3-Hexenal. β-Damascenon, Dimethylsulfid und (R)-Carvon konnten in frischem Oran-

gensaft nicht nachgewiesen werden86. Bei der Lagerung des Saftes ist eine Abnahme der 

Komponenten Oktanal, Dekanal, (R)-α-Pinen, Linalool und β-Damascenon zu beob-

achten87.  

Zur routinemäßigen Qualitätskontrolle der produzierten Orangensäfte aus Konzentrat und 

zur Kontrolle bestimmter Produktionsstufen wurde Ethylbutyrat als Kontrollparameter  

ausgewählt. 
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4. Analytik von Aromastoffen 

4.1 Aromaanalytik 

Die Analyse von Aromastoffen wird in den unterschiedlichsten Bereichen durchgeführt88. 

Das wohl bekannteste Einsatzgebiet ist die Analyse von Aromastoffen in Lebensmitteln 

wie bei exotischen Früchten aus Brasilien89, Acerola, Sternfrucht, Jackfrucht und weiteren, 

getrockneten Vanilleschoten90, Käse91, Wein92 usw. Doch nicht nur die charakteristischen 

Aromen werden überprüft, sondern auch Fehlaromen, die z. B. von Salmonellen in 

Fleischprodukten erzeugt werden93 oder durch Lagerung entstandene Substanzen bei 

Sardinen94. Ebenso werden auch Fehlaromen, die als Abbauprodukte durch Oxidation in 

Speiseölen entstanden sind95 und bei der Gärung von Eisbergsalat entstehen96, analy-

siert. Diese Untersuchungen werden mittels Simultaner Destillation/Extraktion (SDE)/ 

Headspace (HS)/ Solid Phase Micro Extraction (SPME)-GC-MS/FID durchgeführt. 

Während der Lagerung von Zwiebeln können sich Krankheiten ausbreiten, die den gela-

gerten Bestand gefährden und damit einen großen Verlust darstellen. Das Profil der flüch-

tigen Stoffe, aufgenommen mit Elektronischen Nasen, wurde mittels Hauptkomponenten-

analyse ausgewertet und es erfolgte eine Zuordnung zu den gesunden Zwiebeln oder zu 

der entsprechenden Krankheit97. 

Auch Veränderungen in der Zusammensetzung des Schweißes bei Verzehr bestimmter 

Lebensmittel werden über die Aromaanalyse beobachtet. Mebazaa hat diese Änderung 

am Beispiel von Männerschweiß beim Konsum von Bockshornklee nachgewiesen. Die 

Extraktion und Anreicherung erfolgte über HS-SPME mit anschließender Trennung per 

GC und verschiedenen Detektoren wie MS, FID und olfaktorisch. Von 44 Substanzen 

konnten 8 auf den Verzehr des Bockshornklees zurückgeführt werden, welche einen 

Ahornsirup ähnlichen Duft haben98. 

Auch Schimmelpilze wie Neurospora sp. produzieren Duftstoffe. Pastore hat bei den in 

Maranhao Brasilien isolierten Stämmen einen fruchtigen Duft mittels HS-GC nachweisen 

können. Bei Stämmen, die in Sao Paulo isoliert wurden, konnten die Analyten die für den 

fruchtigen Geruch zuständig sind, wie Ethylhexanoat, 3-Methylbutanol, 1-Okten-3-ol, 

Ethylacetat und Ethanol, nicht nachgewiesen werden99. 

In der Kosmetikindustrie liegt ein Augenmerk auf der Analyse von potentiell Allergie aus-

lösenden Duftstoffen. In der Kosmetikdirektive der Europäischen Union sind 26 Substan-

zen gelistet die mittels GC-MS nachgewiesen werden können100. 
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4.2 Historische Entwicklung der Apfelanalytik 

Zur Analyse von Aromen in Lebensmitteln müssen diese zunächst extrahiert und ange-

reichert werden, bevor sie chromatographisch getrennt und detektiert werden können. Im 

Folgenden werden die Techniken zur Aufbereitung und Analyse von Apfelaromen, die 

1920 ihre Anfänge fanden, beschrieben. 

Die ersten Untersuchungen des Apfelaromas wurden von Power und Chestnut 1920 

durchgeführt58. Sie haben als Hauptbestandteile des Apfelaromas Acetaldehyd und die 

Ester der Ameisen-, Essig- und Capronsäure identifiziert. Bis zur Einführung der Gas-

chromatographie erfolgte die Trennung und Identifizierung der Aromasubstanzen zum 

Beispiel, wie von Henze 1954 publiziert, über Säulenchromatographie und anschließender 

Identifizierung mittels UV/VIS-Spektroskopie101. Meigh leitete 1956 einen Gasstrom, wel-

cher zuvor über den Apfel geleitet wurde, durch Kältefallen und konnte anschließend mit-

tels Papier- und Säulenchromatographie unterschiedliche Apfelsorten vergleichen102.  

Der Durchbruch in der Erforschung der Apfelaromen kam mit der Verwendung der Gas-

chromatographie. Koch und Schiller103 konnten 1964 30 Substanzen identifizieren, die in 

diesem Umfang bis dahin nicht gefunden wurden. Die veröffentlichten Erkenntnisse 

stimmten jedoch nicht überein und es bestand auch keine Einigung darüber, welche  

Aromastoffe maßgeblich am Apfelaroma beteiligt sind. Der Einsatz der olfaktorischen  

Detektion (Sniffing Port, 1966) machte es möglich, Analyten in Geruchsaktive und-  

inaktive Komponenten zu trennen104. 1967 hat Flath als einer der ersten die Gaschroma-

tographie mit der Massenspektrometrie (GC-MS) als Detektor in diesem Forschungsfeld 

kombiniert und konnte nun zusätzliche Peaks identifizieren, auch wenn es noch an Ver-

gleichsspektren mangelte105. 

In Verbindung mit der GC-MS wurden verschiedene Probenvorbereitungstechniken ein-

gesetzt, wie zum Beispiel Headspace-Technik106, Flüssig-Flüssig-Extraktion73,107, Destilla-

tion und Extraktion mit Ether108,109,110, Solvent Assisted Flavour Evaporation (SAFE) 63,111 

und Dynamische Headspace67,74,112,113. Song hat 1997 die zeit- und lösemittelsparendere 

Methode der Solid Phase Microextraction (SPME) eingesetzt114 wie auch später u.a. Ka-

to115 und Tienpont116. Am häufigsten wird derzeit für die Analytik der Apfelaromen die 

SDE-HS-GC-MS Technik verwendet62,66,67,71,72. Neben Detektoren wie dem Massen-

spektrometer und dem FID werden die Analyten, nach der chromatographischen Tren-

nung durch die GC, olfaktometrisch bestimmt117,118,119,120. 

Bei der Analyse von Apfelaromen ist heutzutage die SDE-HS-GC-MS-Technik etabliert, 

wie sie von Schumacher67, im Projekt des Forschungskreises der Ernährungsindustrie 62, 
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Heil66,71 und Wolter,72 angewendet wird, und ist als Methode 00.00.106 in der Amtlichen 

Sammlung von Untersuchungsverfahren nach §64 Abs.1 LFGB (Lebens- und Futtermit-

telgesetz), Band 1 (Lebensmittel)163 aufgeführt. Ebenso ist es die gebräuchlichste 

Methode der Handelslabore. Die Anwendung der SBSE (Stir Bar Sorptive Extraction)-

Technik zur Analyse von Aromastoffen im Apfelsaft wurde bislang nur von der Firma 

Gerstel in der Literatur beschrieben121. 

 

4.2.1 Polydimethylsiloxan als Sorbens 

Die Extraktion mit Polydimethylsiloxan (PDMS) als Sorbens wurde bereits Mitte der 

1980er Jahre beschrieben122. Die dort verwendeten offenen Röhren, die Open Tubular 

Trap (OTT), waren auf der Innenseite mit einer PDMS-Phase beschichtet 

(1,12 m x 0.32 mm x 3 µm und 1,12 m x 0.32 mm x 12 µm). Zur Sorption der Analyten 

wurde die Probe durch die Kapillare geleitet und anschließend konnten diese thermisch 

oder flüssig desorbiert werden. Die Kapazität der Phase war durch das Durchbruchs-

volumen begrenzt.  

13 Jahre später haben Arthur und Pawliszyn die SPME-Technik vorgestellt123. Auf der 

Nadel-Außenseite ist eine dünne PDMS-Schicht aufgebracht, welche die Analyten aus 

dem Dampfraum oder der flüssigen Probe extrahiert. Diese werden später ebenfalls ther-

misch oder flüssig desorbiert. Als die primären Vorteile der Technik stellen Arthur und 

Pawliszyn den geringen Verbrauch an hochreinen Lösemitteln, die geringen Laborkosten 

und den verminderten Lösemittelabfall dar.  

1997 haben Baltussen et al. die Extraktion anhand einer mit PDMS Partikeln gefüllten 

Kartusche, der sorptive extraction-thermal desorption (SE-TD), beschrieben. Diese Kartu-

sche kann im Gegensatz zur OTT- Technik direkt thermisch desorbiert werden und es 

müssen keine Lösemittel eingesetzt werden124. Die SE-TD kann vollautomatisch betrieben 

werden125. Eine weitere Möglichkeit, PDMS als Sorbens einzusetzen, haben Reichen-

berg et al. beschrieben. Glasfläschchen wurden mit einer Schicht von 3-12 µm PDMS 

ausgekleidet. Während des Rührens der Probe in den Gefäßen werden die Analyten 

sorbiert und anschließen flüssig extrahiert126. 

Der nächste technische Entwicklungsschritt in der Anwendung von PDMS-Phasen zur 

Anreicherung von Analyten war die SBSE. 
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• Die Analyten können nach der Anreicherung thermisch und flüssig desorbiert  

werden. Die Flüssig-Extraktion ist eine Alternative zur thermischen Desorption bei 

Analyse des Extrakts mittels Flüssigchromatographie oder bei thermisch labilen 

Analyten136. 

• Die SBSE-Technik ist im Gegensatz zur SPME-Technik nicht vollständig auto-

matisiert137. 

 

Wie aus der Aufzählung der Charakteristika ersichtlich, vereint die SBSE-Technik viele 

Vorteile, da keine Lösemittel beim Extraktions- und Desorptionsvorgang benötigt werden, 

lediglich zur Reinigung des Stir Bars wird eine geringe Menge Methanol eingesetzt, kann 

die SBSE-Technik der sogenannten „Grünen Analytischen Chemie“ zugeordnet  

werden138,139. Der Begriff „Green Analytical Chemistry“ entstand aus der Definition der 

„Grünen Chemie“.  

Die ersten Ansätze zur Grünen Chemie hat Malissa 1987 in Paris präsentiert. Anastas hat 

darauf die Grüne Chemie 1999 wie folgt beschrieben: Die Grüne Chemie ist eine Chemie, 

welche Techniken und Methoden anwendet, welche den Gebrauch oder die Produktion 

von Rohmaterial, Produkten, Nebenprodukten, Lösemitteln, Reagenzien usw. reduziert 

oder eliminiert, wenn diese gefährlich für die Gesundheit des Menschen oder für die  

Umwelt sind140,141. 

 

Einsatz der SBSE-Technik 

Im Lebensmittel- und Flavour-Bereich wird die SBSE in unterschiedlichen Matrices und 

bei verschiedenen Substanzklassen eingesetzt, beispielsweise zur Untersuchung von 

Aromakomponenten, off-flavours142, Migration aus Lebensmittelverpackungen143,144, Pesti-

ziden149,145,146 in Matrices, wie Himbeeren147, Trauben148, Salat149, Tomaten149, Wein150, 

Essig151, sowie weiteren Getränken und Lebensmitteln. Auch im Bereich der Umwelt-

analytik wird die SBSE immer häufiger verwendet. Hier findet sie Anwendung bei der  

Analyse von Pharmaka in der Umwelt152, Endokrin-aktiven Stoffen153, wie Herbiziden,  

Organochlor und Organophosphor Pestiziden, Polyzyklischen Aromatischen Kohlen-

wasserstoffen, Bioziden, Phthalaten in z. B. Wasser152 und Sedimenten154. Des Weiteren 

wird die SBSE-Technik bei biologische Proben wie Urin155, Plasma156 und Muttermilch157 

angewendet. 

Bei der Analyse von flüchtigen Komponenten in Sherry wurden von Delgado et al.  

Reproduzierbarkeiten von 4,97 - 17,88% zwischen unterschiedlichen Twistern ermittelt. 
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Die Methode wurde für 36 Analyten validiert. Die Arbeitsbereiche von 29 Analyten lagen 

im µg/L Bereich von weiteren 7 im mg/L Bereich. Die Wiederfindungen variierten von 

84,1-112%158.  

 

4.2.2.2 Theoretische Grundlagen der Extraktion mit dem Twister (SBSE) 

Extraktionsmaterialien aus polymerem Material werden oberhalb ihrer Glasübergangs-

temperatur eingesetzt. In dem Bereich verhalten sich Polymere wie Flüssigkeiten und die 

Analyten (unpolar bis semipolar) werden in der PDMS-Phase angereichert159. Als An-

näherung kann der Übergangs-Koeffizient PDMS-Phase/Wasser (KPDMS/W) proportional 

dem Oktanol/Wasser-Koeffizient (KO/W) gesetzt werden: 

ை/ௐܭ  ൎ ௉஽ெௌ/ௐܭ ൌ ஼ೄಳೄಶ
஼ೈ

ൌ ௠ೄಳೄಶ
௠ೈ

כ ௏ೈ
௏ೄಳೄಶ

 (1) 

CSBSE , CW =Konzentration des Analyten in der PDMS­Phase und in der wässrigen Probe,  
mSBSE , mW = Masse des Analyten in der PDMS­ Phase und in der wässrigen Probe 
VW und VSBSE = Volumen der Probenlösung und der PDMS­Phase 
 

Nach Ersetzen von VW/VSBSE durch das Phasenverhältnis β ergibt sich: 

 ௄ೀ/ೈ

ఉ
ൌ ௠ೄಳೄಶ

௠ೈ
ൌ ௠ೄಳೄಶ

௠బି௠ೄಳೄಶ
 (2) 

mo = Masse an Analyten in der zu untersuchenden Probe 
β = VW/VSBSE 
 

Nach dem Umstellen der Gleichung 2 nach dem Verhältnis der Masse an Analyten in der 

Phase zur ursprünglich in der Probenlösung vorhandenen Masse an Analyt ergibt sich: 

 ௠ೄಳೄಶ
௠బ

ൌ
൬

಼ೀ/ೈ
ഁ ൰

ଵା൬
಼ೀ/ೈ

ഁ ൰
ൌ WF (3) 

Hier ist zu erkennen, dass der einzige Parameter, welcher die Wiederfindung (WF) des 

Analyten aus der Probe beeinflusst, das Phasenverhältnis zwischen dem Volumen der 

PDMS-Phase und der Probe ist. 
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Abb. 19: Abspülen des Twisters mit  
               VE-Wasser 

Abb. 20: Abtupfen mit einem fusselfreien 
Tuch 

  

Abb. 21: Einsetzen des Twister in den 
Desorptionsliner 

Abb. 22: Aufsetzen des Transportadapters 

 

 

Abb. 23: Positionieren im Tray  

Abb. 19 - Abb. 23: Ablauf der Probenvorbereitung mit der SBSE- Technik 
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4.2.3 Simultane Destillation-Extraktion (SDE) 

Die bislang häufigste Methode zur Extraktion und Anreicherung von Aromen aus Säften 

stellt die 1964 von Likens und Nickerson entwickelte SDE mit anschließender Einengung 

des Extraktes und Quantifizierung mittels HS-GC-MS dar 8,65,163. 

Diese Ein-Schritt-Isolation-Konzentration von Aromabestandteilen brachte eine große 

Zeitersparnis gegenüber den einzelnen Schritten, der Aufkonzentrierung der Aromastoffe 

und anschließender Extraktion, und aufgrund der kontinuierlichen Wiederverwendung des 

Lösemittels konnte die eingesetzte Menge verringert werden im Vergleich zur Extraktion 

mittels Ausschütteln8. 

Abb. 24 zeigt den Aufbau einer SDE. Zu Beginn wird die Probe (z. B. 200 - 300 g Apfel-

saft163) unter Rühren zum Sieden gebracht. Die flüchtigen Substanzen werden mit Hilfe 

des Wasserdampfes aus der Probe durch den rechten Arm dampfdestilliert, während 

gleichzeitig Lösemittel (z. B. Pentan/Diethylether-Mischung163) auf der linken Seite zum 

Sieden erhitzt wird. Die Dämpfe kondensieren am Kühlfinger. Die Analyten werden bei 

dem kontinuierlichen Betrieb extrahiert und reichern sich in der organischen Phase an. 

Die wässrige Probe und das Lösemittel, gesammelt und getrennt im Separationsteil,  

fließen zurück in die Kolben, das Lösemittel durch den linken Seitenarm und die Probe 

durch den rechten Seitenarm.  

Der Probenextrakt, welcher sich nach Beendigung des Destillations-Extraktionsvorgang 

im linken Kolben auf der Lösemittelseite vorliegt, wird im nächsten Schritt getrocknet (z. B. 

mit Natriumsulfat163) und eingeengt. Die Trennung und Quantifizierung kann anschließend 

mittels HS-GC-MS durchgeführt werden161. Die erarbeitete Arbeitsanweisung ist im  

Anhang im Kap. F aufgeführt. Die SDE kann unter Normaldruck und unter Vakuum durch-

geführt werden162. 
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Auch beim Lösemittelverbrauch ist die SBSE die Methode der Wahl, da dort 10 mL Löse-

mittel (Methanol) zur Reinigung des Twister benötigt werden. In der Methode 00.00.106 

der Amtliche Sammlung von Untersuchungsverfahren nach §64 Abs.1 LFG163 werden 

80 mL Lösemittel (Diethylether/Pentan) zur Probenaufarbeitung eingesetzt.  

Ein wichtiger Faktor für den Routinebetrieb ist, Mitarbeiter schnell einarbeiten zu können. 

Die SBSE ist einfacher zu bedienen und es ist weniger Anwendererfahrung nötig als bei 

der SDE. Des Weiteren nimmt die Rührplatte weniger Platz in Anspruch als die SDE mit  

je 2 Rührplatten und einer weiteren Rührplatte für die anschließende Einengung. Die be-

schrieben methodischen Vorteile sind in Tab. 11 zusammengefasst. 

Tab. 11: Vergleich der SBSE (Daten aus eigenen Erfahrungen) und SDE 

 SBSE SDE 

Zeitaufwand, 1 Probe [h] 2,25 3163 

Zeitaufwand, 15 Proben [h] 3 47163 

Lösemittelverbrauch [mL] 10 80163 

Anwendererfahrung geringer höher 

Platzanforderung [cm] Rührplatte 24x42 
SDE-Anlage 34x30, 
Umlaufkühler 20x40, 

Einengen am Rückfluss 17x30 
 

Neben den erwähnten Vorteilen der SBSE-Technik gegenüber der SDE stellen Caven-

Cantrill164 im direkten Vergleich anhand von Traubensaft noch die erhöhte Empfindlichkeit 

heraus. Mit Einsatz der SDE konnten 98 Aromakomponenten identifiziert werden. Durch 

den Einsatz der SBSE konnte die Anzahl der identifizierten Analyten auf 126 Kompo-

nenten erhöht werden.  

Ridgway et al.165 haben 2010 den Vergleich zwischen der SBSE und der SDE bei der 

Analyse von Fehlaromen gezogen. Sie haben die Reproduzierbarkeiten anhand von  

gespikten Softdrinks ermittelt. Auch hier zeigte die SBSE-Technik eine höhere Empfind-

lichkeit, wie sie Caven-Cantrill164 schon publiziert hatten. Die Reproduzierbarkeit der 

SBSE Methode lag zwischen 3,5 und 23,7%. Die Aufarbeitung der Probe mittels SDE 

ermöglichte Reproduzierbarkeiten zwischen 5,3 und 31,1%. 

Dieser Vergleich zeigt die grundsätzlichen Vorteile der SBSE-Methode, die in den eigenen 

Untersuchungen eingesetzt wurde. 
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5. Untersuchungsmethodik 

Um Aromastoffe in Fruchtsäften nachzuweisen, werden diese mit der SBSE-Technik  

extrahiert, angereichert und anschließend chromatographisch getrennt und detektiert. Das 

verwendete Thermodesorptions-Gaschromatographie-Massenspektrometrie (TD-GC-MS)-

System ist in Abb. 26 gezeigt. 

Nach Optimierung der Probenvorbereitung und der chromatographischen sowie massen-

spektrometrischen Bedingungen, wurde die Methode für die in Tab. 12 aufgeführten  

Analyten validiert und stand für den Einsatz in der Routineanalytik, zur Analyse der  

produzierten Apfel- und Orangensäften, zur Verfügung. Weitere Daten, wie der log KO/W, 

der Siedepunkt, die CAS-Nummer und die Molekülmasse sind im Anhang in Kap. A auf-

geführt.  

Nach der Entwicklung der Apfelmethode wurde diese für verschiedene Anwendungen 

eingesetzt. Im Verlauf der Arbeit wurden im Rahmen von Ringversuchen der GDCh mehr-

fach Handelsproben analysiert. Im ersten Schritt wurde die Vergleichbarkeit der ange-

wendeten Analysemethoden verschiedener Labore gesichert (Laborvergleichsuntersu-

chung, LVU), um in weiteren Schritten einen aktuellen Datenbestand zusammenzustellen, 

anhand dessen ein Parameter zur ausreichenden Rearomatisierung von Konzentratsäften 

ermittelt werden sollte. 

Zum möglichen Nachweis von aromatisierten Apfeldirektsäften wurden Apfeldirektsäfte 

und Säfte aus Konzentrat auf charakteristische Markersubstanzen analysiert. Abschlie-

ßend wurde anhand der Chemometrie Software Pirouette Lite Classify® ein Klassifizie-

rungsmodell erstellt, welches eine Einteilung von Apfeldirekt- und Konzentratsäften  

erlaubt und erste Hinweise zu aromatisierten Direktsäften liefert. Der Untersuchungs-

ablauf ist in Abb. 25 schematisch gezeigt. 
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Tab. 12: Liste der Analyten mit Summenformel und Struktur, auf welche die Methoden 
zur Quantifizierung optimiert wurden 

Analyt/ 
Summenformel 

Struktur 
Analyt/ 

Summenformel 
Struktur 

Ethylisobutyrat 

C6H12O2 
O

O  

trans-2-Hexenal 

C6H10O 
O  

Methyl-2- 

Methylbutyrat 

C6H12O2 

O

O

 

Amylacetat 

C7H14O2 O

O

 

Ethylbutyrat 

C6H12O2 O

O

 

Methylhexanoat 

C7H14O2 

O

O  

Butylacetat 

C6H12O2 O

O Ethylhexanoat 

C8H16O2 

O

O

Hexanal 

C6H12O 
O

Benzaldehyd 

C7H6O O  

Ethyl-2-
Methylbutyrat 

C7H14O2 
O

O
Hexylacetat 

C8H16O2 O

O

Ethylisovalerat 

C7H14O2 

O

O

trans-2- 

Hexenylacetat 

C8H14O2 
O

O

 

3-
Methylbutylacetat 

C7H14O2 

O

O

Hexyl-2-methylbutyrat

C11H22O2 

O

O

 

2-
Methylbutylacetat 

C7H14O2 

O

O
Damascenon 

C13H18O 

O

 

Isobutylisobutyrat 

(IS)/ C8H16O2 
O

O
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Abb. 25: Schematischer Ablauf der eigenen Untersuchungen 
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Tab. 13: Auflistung der einzelnen Bestandteile des SBSE-TD-GC-MS-Systems 

# Typ Hersteller 

1 6890N Network GC System Agilent Technologies 

2 5975B inert XL MSD (Massenspektrometer) Agilent Technologies 

3 TwisterDesorptionUnit TDU Gerstel 

4 MultiPurposeSampler MPS2 XL-Twister Gerstel 

5 Cryostatic Cooling Device Gerstel 

7 TubeConditioner TC 2 Gerstel 

8 Rührplatte Poly 15 “Twister” H+P Labortechnik AG 

 

 

      

Abb. 26:  a) GC-MS System mit MPS,  
b) TubeConditioner TC 2,  
c) Rührplatte Poly 15 "Twister" 
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6. Ergebnisse und Diskussion 

6.1 Methodenentwicklung Stir Bar Sorptive Extraction-Thermo 
Desorption-GC-MS 

In diesem Kapitel werden die Optimierung der Arbeitsschritte Probenvorbereitung, Ther-

modesorption-Gaschromatographie-Massenspektrometrie (TD-GC-MS), des internen 

Standards (IS) und der Lagerung der beladenen Twister für die Aromastoffe in den Matri-

zes Apfel- und Orangensaft, sowie Matrix-Modelllösungen für die Apfelaromastoffe be-

schrieben. 

 

6.1.1 „Apfelmethode“ 

6.1.1.1 Ausgangssituation 

Es bestand zu Beginn dieser Arbeit bereits eine Methode zur Quantifizierung von 

Apfelaromastoffen. Diese sollte an dem, von der Faethe Labor GmbH zur Verfügung ge-

stellten, SBSE-TD-GC-MS-System auf weitere aromarelevante Substanzen ausgeweitet 

werden. Desweiteren sollte neben der Aromaanalytik von Apfel- und Orangensäften ein 

Projekt zur Bestimmung von Weichmachern und Antioxidantien in Getränken am gleichen 

Gerät durchgeführt werden. Dies erforderte eine Anpassung des Systems an beide Anfor-

derungsprofile mit anschließender Methodenentwicklung und Validierung. 

 

6.1.1.2 Probenvorbereitung 

Reinigung 

Um Verschleppungen zu vermeiden, ist es sehr wichtig den Twister nach jeder Analyse 

sorgfältig zu reinigen.  

Die Optimierung wurde in zwei Schritten durchgeführt. Zunächst wurde ein Lösemittel 

gewählt, welches den Twister reinigt und bei darauf folgenden Analyse keine störenden 

Peaks im Chromatogramm zeigt.  
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Folgende Lösemittel wurden getestet: 

• Methanol  

• Dichlormethan  

• Acetonitril  

• Methanol:Dichlormethan 50:50 (v/v) 

• Methanol:Acetonitril 50:50 (v/v) 

Um den Reinigungseffekt zu untersuchen, wurden die Twister in einem 1 mg/L-

Multistandard für 45 min bei 1000 Upm gerührt und anschließend zur Analyse eingesetzt. 

Die Reinigungslösungen wurden in Schraubverschlussgläschen vorgelegt, und jeweils 

drei Twister wurden für 24 h darin aufbewahrt. Nach Entnahme aus dem Lösemittel  

wurden die Twister im Desorber zunächst 0,5 Stunden unter Heliumfluss bei Raum-

temperatur und anschließend 1 Stunde bei 300 °C desorbiert und unter Heliumfluss abge-

kühlt. 

Nach der Behandlung mit Dichlormethan zeigte die Polymerphase des Twister eine starke 

Volumenzunahme und eine milchige Trübung, so dass eine Überführung in die Desorp-

tionsglasröhrchen nicht möglich war. Nach fünf-minütiger Lagerung in Methanol war das 

Phasenvolumen ausreichend zurückgegangen. Bei einer Mischung aus Methanol und 

Dichlormethan erkannte man eine leichte Quellung und schwache weiße Trübung. Nach 

dem Einlegen in Methanol, Acetonitril und einer Methanol/Acetonitril-Mischung war dies 

nicht zu beobachten. 

Danach wurden die Twister desorbiert um die Effektivität der Reinigungslösungen anhand 

von möglichen Analytrückständen zu überprüfen. 

Sowohl nach der Reinigung mit Acetonitril als auch mit Dichlormethan sowie in der  

Mischung mit Methanol waren intensive Lösemittelpeaks im Chromatogramm zu sehen. 

Diese sind nach der Reinigung mit reinem Methanol nicht aufgetreten. Da alle Lösungs-

mittel ein ähnliches Reinigungsverhalten gezeigt haben, wurde für die weitere Arbeit  

Methanol verwendet, um mögliche Störungen durch Lösemittelpeaks mit anderen  

Substanzen im Chromatogramm zu vermeiden. 

Im nächsten Schritt wurde getestet, welche Unterschiede sich bei der Reinigung ergaben, 

wenn die Twister in Methanol eingelegt werden oder kontinuierlich bei 1000 Upm gerührt 

werden. Die Behandlung durch 24-stündiges Rühren zeigte einen stärkeren Reinigungs-

effekt. 
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Fazit: Die Twister werden durch 24-stündiges Rühren in Methanol und anschließende 

Desorption für 0,5 Stunden bei Raumtemperatur und 1 Stunde bei 300 °C im Tube 

Conditioner TC2, gereinigt. Zum Abkühlen verbleiben die Twister im Heliumstrom. 

 

Probenvolumen 

Das Ziel der Probenvorbereitung war, möglichst effektiv und reproduzierbar die Analyten 

in der PDMS-Phase anzureichern. Neben der PDMS-Phasenmenge ist das Proben-

volumen ein weiterer Faktor, welcher bei der Anreicherung betrachtet werden muss. 

Die Probenvorbereitung wurde mit 10, 20, 30 und 40 mL eines Realstandards (Daten im 

Anhang, Kap. B) getestet. Nach 1-stündigem Rühren bei 1000 Upm wurden die extra-

hierten Analyten desorbiert und analysiert. In Abb. 27 sind die ermittelten Flächen der 

jeweiligen Analytpeaks gegen das eingesetzte Probenvolumen aufgetragen. Beim Einsatz 

von 40 mL Probe wurden die Aromen am effektivsten extrahiert. Es hat sich jedoch  

gezeigt, dass ein kontinuierliches Rühren des Twisters in 40 mL Orangensaft mit Frucht-

fleisch nicht möglich war. Es zeigt sich außerdem eine Steigerung der Standard-

abweichung bei erhöhten Probenvolumina. Exemplarisch ist dies in Abb. 28 für Ethyl-

butyrat und Damascenon gezeigt.  

Bei geringen Probenvolumina und gleicher Extraktionszeit, wurde eine geringere  

Standardabweichung zwischen den Messwerten ermittelt, da sich unter diesen Bedingun-

gen das Extraktionsgleichgewicht schneller einstellt. Beim Ethylbutyrat vergrößert sich die 

Standardabweichung um 7,7% von 2,8 auf 10,5% bei Verdopplung des Volumens von 

20 auf 40 mL, beim Damascenon um 2,3% von 3,1 auf 5,4%.  

Fazit: Als Kompromiss zwischen Extraktionsausbeute und Reproduzierbarkeit der Mess-

werte wurde das eingesetzte Probenvolumen für die Analyse von Aromastoffen in Apfel-

säften auf 20 mL festgelegt. 
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Abb. 27:  Einfluss des Probenvolumens auf die Peakflächen eines Realstandards  
(1h Rühren bei 1000 Upm) 

 

 

 

Abb. 28:  Einfluss des Probenvolumens auf die Standardabweichung (N=3) eines 
100 µg/L-Multistandards (1h Rühren bei 1000 Upm) 

 

 

 

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

Fl
äc

he
10  mL 20 mL 30 mL 40 mL

4.0E+06

6.0E+06

8.0E+06

1.0E+07

0 20 40 60

Fl
äc

he

Probenvolumen [mL]

Ethylbutyrat

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

0 20 40 60

Fl
äc

he

Probenvolumen [mL]

Dasmascenon



Ergebnisse und Diskussion 
 

 
54 

Extraktionszeit 

Der Einfluss der Extraktionszeit auf die Anreicherung der Analyten auf dem Twister wurde 

anhand von vier Zeitintervallen getestet: 30, 60, 90 und 120 Minuten. Die Twister wurden 

mit 1000 Upm in 40 mL eines 100 µg/L Multistandards gerührt. In Abb. 29 sind die Peak-

flächen der Substanzen bei verschiedenen Extraktionszeiten abgebildet. Von 30 bis 

90 Minuten Extraktionszeit steigen die Peakflächen bei allen Analyten an, bei einer  

Extraktionszeit von 120 Minuten stellt sich bei vielen Aromastoffen ein Maximum ein.  

 

Fazit: Eine Extraktionszeit von 120 Minuten wurde für die weiteren Probenaufarbeitungen 

als optimal angesehen. 

 

Abb. 29:  Einfluss der Extraktionszeit auf die Peakflächen der Aromen eines 100 µg/L 
Standards (N=3), Probenvolumen 40 mL 
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6.1.1.3 TD-GC-MS 

Thermodesorption und Kryofokkussierung 

In der pneumatisch gasdicht verschlossenen Thermodesorptionseinheit (TDU) werden die 

Analyten desorbiert und im Kaltaufgabesystem (KAS) kryofokussiert. Die Pneumatik wird 

über Stickstoff betrieben und als Trägergas wird Helium eingesetzt. Die Desorptions-

temperatur darf max. 300 °C betragen, um die Twister nicht zu beschädigen. Nach der 

Desorption der Analyten vom Twister werden sie direkt auf Tenax TA kryofokussiert. Die 

minimale Betriebstemperatur des Kaltaufgabesystems beträgt -40 °C.  

Die Thermodesorptionseinheit beginnt mit einer Starttemperatur von 20 °C und heizt mit 

720 °C/min auf 290 °C auf. Diese Temperatur wird zur vollständigen Ausheizung der  

Analyten 6 min gehalten. 

Desorptionsparameter der Thermodesorptionseinheit 

Starttemperatur 

[°C] 

Heizrate  

[°C/s] 

Endtemperatur 

[°C] 

Halten 

[min] 

20 720 290 6 

 

Die Analyten werden bei -35 °C kryofokussiert. Mit einer Heizrate von 10 °C/s werden die 

Analyten vom Tenax TA desorbiert und auf die Säule gebracht. Anschließend wird das 

Sorbens 5 min bei 300 °C zur Reinigung ausgeheizt. 

Parameter des Kaltaufgabesystems 

Starttemperatur 

[°C] 

Heizrate  

[°C/s] 

Endtemperatur 

[°C] 

Halten 

[min] 

-35 10 300 5 
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Auswahl der GC-Säule 

Um zeitgleich die Anforderungen der Aromaanalytik, wie auch der Phthalat-Analytik die in 

einem Begleitprojekt durchgeführt wurde, an einem GC-MS-System zu erfüllen, musste 

bei der Auswahl der GC-Säule das breite Spektrum an physikalischen und chemischen 

Eigenschaften der Analyten beachtet werden. Die Phthalate sind hochsiedende und un-

polare Analyten, für die eine DB-5 Säule geeignet ist166,167,168. Die Aromastoffe bilden eine 

polarere und niedrigsiedendere Stoffgruppe im Vergleich zu den Phthalaten, welche  

häufig auf einer WAX-Säule getrennt werden62,108,169,170,171.  

Die zu Beginn der Phthalat-Analytik eingebaute TR-Wax-Säule zeigte aufgrund der hohen 

Betriebstemperaturen bei den höhersiedenden Phthalaten einen Abbau der stationären 

Phase der sich in einer starken Verschiebung der Retentionszeiten bemerkbar machte. 

Daraufhin wurde nach einer Alternative zur TR-Wax-Säule gesucht. In der Literatur 62,63 

werden bei der Aromaanalytik auch DB-5 Säulen verwendet, dort wurden jedoch weniger 

Substanzen in einem chromatographischen Lauf analysiert.  

Der Vorteil der DB-5-Säulen liegt in der Stabilität der Phase, welche einen dauerhaften 

Betrieb bei höheren Temperaturen erlaubt, ein geringeres Säulenbluten zeigt und dadurch 

ein geringeres Rauschen. Bei einem breiten Spektrum an Analyten, wie es in dieser Arbeit 

geplant war, war es nicht möglich, mit der DB-5-Säule eine zufriedenstellende Trennung 

zu erreichen. Mit der Rtx-1701 Säule (30 m x 0,25 mm x 0,5 µm) wurde eine Säule aus-

gewählt, welche für die Aroma- und die Phthalat-Analytik geeignet ist. Die Trennung ist 

bei der Detektion im SIM-Modus ausreichend für die Aromen und bei dauerhaftem Betrieb 

von 270 °C ausreichend stabil zur Trennung der Phthalate. 

 

Die stationäre Phase besteht aus 14%-Cyanopropylphenyl/ 86%-Dimethylpolysiloxan 

(Abb. 30). Da bei Verwendung der TDU ein Sauerstoffeintrag in das GC-System nicht 

vermeidbar ist, eignet sich diese Säule besser, da sie unempfindlicher ist, als die Poly-

ethylenglycol-Phase der Wax-Säule. 

 

 



Ergebnisse und Diskussion 
 

 
57 

(CH3)2
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CH3

 14% 86%  

Abb. 30: Struktur der Cyanopropylphenyl- und Dimethylpolysiloxangruppen der statio- 
nären Phase der Rtx-1701-Säule 

GC-Ofen Temperaturprogramm 

Nach Auswahl der analytischen Säule wurde ein entsprechendes Temperaturprogramm 

entwickelt, welches die Analyten möglichst zur Basislinie trennt, aber dennoch keine lange 

Laufzeit benötigt. Des Weiteren müssen die maximale Heizrate der Säule und die maxi-

male Betriebstemperatur beachtet werden. Zusätzlich sollte die Starttemperatur auch bei 

erhöhten Raumtemperaturen möglichst schnell zu erreichen sein. Folgendes Temperatur-

programm (siehe Tab. 14) wurde für die Trennung der Apfelaromastoffe auf der  

Rtx-1701-Säule entwickelt: 

 

Tab. 14:  Temperaturprogramm zur gaschromatographischen Trennung von 
Apfelaromastoffen mit einer Rtx-1701 Säule 

Starttemperatur 

[°C] 

Haltezeit 

[min] 

Heizrate 

[°C/min] 

Haltetemperatur 

[°C] 

Halten 

[min] 

38 °C 35 min 10 130 0 

- - 20 270 10 
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Quantifizierung und Qualifizierung 

Die Identifizierung und Quantifizierung der Substanzen erfolgte mit einem Quadrupol-

Massenspektrometer der Firma Agilent. Das Chromatogramm wurde im TIC (Total-Ion-

Current)- und im SIM (Selected-Ion-Monitoring)-Modus aufgezeichnet. Nach Auswahl der 

Quantifizierungs- und Qualifizierungs-Ionen wurden die Scanevents entsprechend der 

erwarteten Analyten erstellt und eine Lösemittelausblendung bis zur 8. Minute program-

miert. Für den SIM-Modus werden pro Substanz je ein Quantifizierungs (Quant)-Ion und 

zwei bzw. drei Qualifizierungs (Qual)-Ionen aufgenommen. 

Tab. 15: Quantifizierungs- und Qualifizierungsionen 

 
Quant-Ion Qual-Ion 1 Qual-Ion 2 Qual-Ion 3 

Ethylisobutyrat 71 43 116 88 

Methyl-2-methylbutyrat 57 88 41 101 

Ethylbutyrat 71 43 88 101 

Butylacetat 71 73 55 - 

Hexanal 82 72 57 - 

Ethyl-2-methylbutyrat 57 102 85 115 

Ethylisovalerat 88 85 57 130 

3-Methylbutylacetat 43 70 55 87 

2-Methylbutylacetat 43 70 55 73 

trans-2-Hexenal 55 98 69 83 

Amylacetat 43 70 55 61 

Methylhexanoat 74 87 43 99 

Ethylhexanoat 88 99 101 144 

Benzaldehyd 106 105 77 51 

Hexylacetat 43 56 84 61 

trans-2-Hexenylacetat 43 67 82 100 

Hexyl-2-methylbutyrat 57 41 103 85 

Damascenon 69 121 190 - 
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6.1.1.4 Interner Standard und Lagerung 

Der interne Standard (IS) wird als qualitätssicherndes Mittel eingesetzt, um die Reprodu-

zierbarkeit zu erhöhen. Als IS für die Analyse der Apfelaromen wurde Isobutylisobutyrat 

eingesetzt (Abb. 31). Diese Substanz zeigt eine gute strukturelle Übereinstimmung mit 

vielen zu quantifizierbaren Aromen, liegt im mittleren Bereich der log KO/W-Werte und der 

Siedepunkte und eluiert im mittleren Retentionszeitenbereich. 

O

O

 

Abb. 31: Struktur des internen Standards für die Apfelaromenanalyse: Isobutylisobutyrat  

Nach der Extraktion der Analyten werden die Twister bis zur Analyse im Tray gelagert. 

Dieser ist über einen Umlaufkühler auf circa 15-16 °C gekühlt, um schwankende Umge-

bungstemperaturen auszugleichen und um die Desorption der Analyten vom Twister vor 

der Analyse zu minimieren.  

Der Einsatz eines internen Standards ist besonders bei der Analyse von Aromastoffen 

wichtig, da es sich um flüchtige Substanzen handelt, welche leicht desorbieren und so 

nach kurzer Zeit ein Verlust an Analyten eintritt. 

 

 

Abb. 32:  Einfluss des internen Standards auf die Standardabweichung innerhalb einer 
Messreihe (N=10) eines 100 µg/L Multistandards in Apfelsaftmatrix 
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Da bei längeren Messsequenzen oder nach unerwarteten Messunterbrechungen die vor-

bereiteten Twister länger im Tray verbleiben, ist es wichtig, mögliche Konzentrations-

änderungen des Analyten auf dem Twister anhand des internen Standards zu erkennen 

und auszugleichen. Die Analyse von beladenen Twistern direkt nach der Beladung (null) 

und nach bis zu fünf Tagen Lagerung im Tray zeigt die Abnahme der Konzentration der 

Analyten mit steigender Lagerungsdauer. Hierzu wurden 12 Twister mit einer 100 µg/L-

Multistandard-Lösung beladen und pro Tag jeweils 3 Twister analysiert und der Mittelwert 

gebildet.  

Beim Analyten Ethylbutyrat hat sich innerhalb eines Tages, bei Lagerung im Tray, die 

quantifizierte Fläche um 9,5% verringert (Abb. 33). Bei Einberechnung des IS beträgt 

 diese Verringerung nur 2,1%. Der beladene Twister sollte jedoch in der Routine immer 

nur so kurz wie nötig gelagert werden. 

 

Abb. 33:  Abnahme der Flächen von Ethylisobutyrat während der Lagerung eines 
Twisters über 5 Tage mit und ohne Berücksichtigung des internen Standards 

6.1.1.5 Matrixinterferenzen und Modelllösungen 

Apfelsaft besteht zum großen Teil, wie in Tab. 1 gezeigt, aus verschiedenen Mineral-

stoffen, Vitaminen, Zuckern und Säuren. Beim Vergleich der Kalibrationsgeraden eines 

Multistandards in Wasser und in rückverdünntem Apfelsaftkonzentrat (ASK) zeigten sich 

beim Standard im ASK verringerte Signalintensitäten. Diese Verringerung, welche bei 

allen untersuchten Analyten auftrat, führt zu Kalibriergeraden mit verringerter Steigung 

und ist in Abb. 34 exemplarisch für Ethylisobutyrat gezeigt.  
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Abb. 34: Kalibriergeraden von Ethylisobutyrat in Wasser und rückverdünntem Apfelsaft-
konzentrat 

Um den Einfluss einiger Matrix-Bestandteile auf die Signalintensität zu ermitteln, wurden 

Modelllösungen mit ausgesuchten Matrixbestandteilen angefertigt. Dazu wurden Konzen-

trationsreihen mit 10, 40, 160 und 200 µg/L eines Multistandards in Wasser, in rückver-

dünntem ASK, in einer Wasser/Zucker-, Wasser/Zucker/Säure- und Wasser/Zucker/Säu-

re/Mineralstoff- Lösung angesetzt (siehe Tab. 16) und mit dem SBSE-GC-MS-System 

aufgearbeitet und analysiert. Die Lösungen beinhalten die Matrixbestandteile in folgenden 

Konzentrationen:  

Zucker: 

• 25 g/L Glucose 

• 80 g/L Fructose 

• 15 g/L Saccharose 

 

Säuren: 

• 0,2 g/L Citronensäure 

• 6,0 g/L Äpfelsäure 

 

Mineralstoffe: 

• 1000 mg/L Kalium 

•     80 mg/L Calcium 

•     20 mg/L Natrium 

•     50 mg/L Magnesium 
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Tab. 16: Zusammensetzung der Modelllösungen zum Testen des Einflusses einzelner 
Apfelsaftmatrix-Bestandteile 

 Multistandard ASK Zucker Säuren Mineralstoffe 

Lösung 1 X     

Lösung 2 X X    

Lösung 3 X  X   

Lösung 4 X  X X  

Lösung 5 X  X X X 

 

 

Abb. 35: Kalibriergeraden der Modelllösungen 1 bis 5 (s. Tab. 16) am Beispiel des    
Hexyl-2-methylbutyrats zur Ermittlung des Matrix- Einflusses 

 

Bei keiner der verwendeten Modell-Lösungen ließ sich die zuvor beobachtete Signal-

suppression, welche beim Standard in rückverdünntem Apfelsaft-Konzentrat auftrat,  

erkennen. Da keine Matrix nachgebildet werden konnte, die eine vergleichbare Signal-

verringerung hervorruft, wurde zur Kalibration und zum Ansetzten der Restaurations-

aromen für die Analyse weiterhin Apfelsaftkonzentrat verwendet. 
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6.1.1.6 Zusammenfassung der „Apfelmethode“ 
Nach der Optimierung der einzelnen Arbeitsschritte ist folgende schematisch dargestellte 

Arbeitsvorschrift für die Aufarbeitung und Analyse der Apfelaromastoffe anzuwenden: 

 

IS (Isobutylisobutyrat) ansetzen, 
59,3 µL der 8,45 g/L Lösung in 25 mL Kolben geben, 

auffüllen mit VE-Wasser

20 mL Probe + 50 µL IS

Gereinigten Twister hineingeben

120 min bei 900 Upm extrahieren

Abspülen & Abtupfen des Twisters und im 
Desorptionsröhrchen im Tray positionieren

Gaschromatographische Trennung 
(detaillierte Methode im Anhang)

Massenspektrometrische Detektion

Den Twister nach der Desorption für 24 h in ca. 10 mL Methanol rühren, 
anschließende Desorption für 0,5 h bei Raumtemperatur und 1 Stunde bei 300 °C im 

Tube Conditioner. Abkühlen im Helium-Strom
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Abb. 36:  SIM-Chromatogramm eines Apfelsaftes mit den angegebenen SBSE-TD-GC-
MS-Bedingungen aus Kap. 6.1.1.5,  

1 Ethylisobutyrat 10 trans-2-Hexenal 

2 Methyl-2-methylbutyrat 11 Amylacetat 

3 Ethylbutyrat 12 Methylhexanoat 

4 Butylacetat 13 Ethylhexanoat 

5 Hexanal 14 Benzaldehyd 

6 Ethyl-2-methylbutyrat 15 Hexylacetat 

7 Ethylisovalerat 16 trans-2-Hexenylacetat 

8 3-Methylbutylacetat 17 Hexyl-2-methylbutyrat 

9 2-Methylbutylacetat 18 Damascenon 
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6.1.2 „Orangenmethode“ 

Zur Kontrolle der in der Produktion eingesetzten Entgaser sollte der Gehalt an Ethyl-

butyrat im Orangensaft im Routinebetrieb ermittelt werden. Auf Basis der bereits vorlie-

genden Analysenmethode zur Quantifizierung von Aromastoffen in Apfelsaft wurde die 

Methode zur Quantifizierung von Ethylbutyrat in Orangensaft entwickelt. 

6.1.2.1 Probenvorbereitung 

Bei der Analyse von unverdünntem Orangensaft trat Tailing beim Ethylbutyrat auf  

(s. Abb. 37, A), welches durch das im Orangensaft vorhandene Limonen (s. Abb. 37, 

Komponente B) verursacht wird.  

Abb. 37:  Chromatogramm eines unverdünnten Orangensaftes (A: Ethylbutyrat,             

B: Limonen) 

 

 

Abb. 38: Vergrößerte Ansicht von Peak A aus Abb. 37 

 

A 
B 
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Dieser Effekt wurde bei Multivitaminsäften nicht beobachtet. Bei der Analyse von  

Nektaren, die einen Fruchtgehalt von 50% haben, war das Tailing geringer ausgeprägt. Im 

nächsten Schritt wurde getestet, ob durch einen geringeren Orangensaftanteil in der  

Probe, wie es bei Multivitaminsäften und Nektaren der Fall ist, das Tailing verringert  

werden kann. 

Der Orangensaft wurde hierzu in einer Verdünnung mit dem Faktor 6 (5 mL Probe + 

25 mL dest. Wasser) eingesetzt. Abb. 39 zeigt das entsprechende Chromatogramm. 

 

Abb. 39:  Chromatogramm eines 1:5 (v/v) verdünnten Orangensaftes (A Ethylbutyrat,                
C Ethylisobutyrat) 

 

TD-GC-MS 

Die Parameter zur Thermodesorption und zur Kryofokkussierung wurden aus den bereits 

optimierten Einstellungen der Apfelaromen-Methode übernommen. Ebenso die Quantifi-

zierungs- und Qualifizierungs-Ionen für Ethylbutyrat: 

Quant-Ion Qual-Ion 1 Qual-Ion 2 Qual-Ion 3 

71 43 88 101 

 

 

C 
 A 
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6.1.2.2 Interner Standard und Lagerung der beladenen Twister 
Bei der Quantifizierung von Ethylbutyrat wurde, wie auch bei der Apfelaromaanalyse, ein 

interner Standard als qualitätssicherndes Mittel eingesetzt. Ethylisobutyrat (Abb. 40) zeigt 

eine gute strukturelle Übereinstimmung mit dem zu quantifizierbaren Ethylbutyrat, einen 

ähnlichen log KO/W-Wert und Siedepunkt. Der IS eluiert früher als das Ethylbutyrat und 

wird weniger stark vom Limonen beeinflusst. 

O

O  

Abb. 40: Struktur des internen Standards Ethylisobutyrat für die Analyse von Ethylbutyrat 
in Orangensäften 

 

 

Abb. 41:  Einfluss des internen Standards auf die Standardabweichung innerhalb einer 
Messreihe (N=10) eines 100 µg/L Ethylbutyratstandards in Orangensaftmatrix 

 

Die Verwendung des internen Standards innerhalb einer Messreihe eines 100 µg/L- 

Ethylbutyratstandards in rückverdünntem Orangensaftkonzentrat zeigt einen deutlichen 

Einfluss auf die Standardabweichung der Messwerte (siehe Abb. 41). Die relative  

Standardabweichung konnte von 6,9 auf 2,9% reduziert werden, wie die Berechnung des 

Quotienten aus Fläche des Analyten und der Fläche des internen Standards zeigt. 
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Lagerung des beladenen Twisters 

Bei der Lagerung des beladenen Twisters können die flüchtigen Aromastoffe aus der 

PDMS-Phase in die Gasphase diffundieren und sind demnach nicht mehr nachweisbar. 

Geringer Verlust an Analyten kann durch die Quantifizierung mit dem internen Standard 

rechnerisch ausgeglichen werden, da auch die Menge des IS mit der Lagerungsdauer 

abnimmt.  

Die Abnahme der Peakflächen und des Flächenquotienten ist in Abb. 42 graphisch darge-

stellt. Die Abnahme der Konzentration des Ethylbutyrats nach einem Tag Lagerung  

beträgt 15%. Bei Einsatz des internen Standards beträgt der Verlust nur noch 9%. Der 

beladene Twister sollte jedoch in der Routine immer nur so kurz wie nötig gelagert  

werden. 

 

 

Abb. 42:  Vergleich der Abnahme der Peakflächen während der Lagerung der belade-
nen Twister mit und ohne Korrektur durch den internen Standard über drei 
Tage 
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6.1.2.3 Zusammenfassung der „Orangenmethode“ 

Nach der Optimierung der einzelnen Arbeitsschritte ist folgende schematisch dargestellte 

Arbeitsvorschrift für die Aufarbeitung und Analyse der Orangensäfte anzuwenden: 

IS (Ethylisobutyrat) ansetzen, 
130,8 µL der 8,603 g/L Lösung in 25 mL Kolben 

geben, auffüllen mit VE-Wasser

5 mL Probe + 25 mL VE-Wasser+ 
1000 µL IS

Gereinigten Twister hineingeben

120 min bei 900 Upm extrahieren

Abspülen & Abtupfen des Twisters und im 
Desorptionsröhrchen im Tray positionieren

Gaschromatographische Trennung 
(detaillierte Methode im Anhang)

Massenspektrometrische Detektion

Den Twister nach der Desorption für 24 h in ca. 10 mL Methanol rühren, 
anschließende Desorption für 0,5 h bei Raumtemperatur und 1 Stunde bei 300 °C im 

Tube Conditioner. Abkühlen im Helium-Strom
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6.2 Validierung 

Die Validierung ist gemäß ISO/IEC 17025 „die Bestätigung durch Untersuchung und Be-

reitstellung eines Nachweises, dass die besonderen Anforderungen für einen speziellen 

beabsichtigten Gebrauch erfüllt werden. Die Validierung muss in dem Umfang durchge-

führt werden, der zur Erfüllung der Erfordernisse der beabsichtigten Anwendung oder des 

betreffenden Anwendungsgebiets notwendig ist“. Die ISO/IEC 17025 kann als wichtiger 

Bezugspunkt für Analytische Prüflaboratorien angesehen werden, da diese aus dem ISO 

Guide 25 und der EN 45001 als neue internationale Norm geschaffen wurde. Sie ist 1999 

in Kraft getreten und definiert die allgemeinen Anforderungen an die Kompetenz von Prüf- 

und Kalibrierlaboratorien. 

Die Validierung der SBSE-TD-GC-MS-Methode wurde anhand folgender Richtlinien, 

Normen und Fachliteratur durchgeführt: 

• DIN ISO/IEC 17025172 

• S. Kromidas; Handbuch der Validierung in der Analytik173 

• DIN 38402-51174 

• W. Funk, V. Dammann, G. Donnevert; Qualitätssicherung in der Analytischen 

Chemie175 

• DIN 32645176 

• G. Wächter, J. Kleiner; Forderung nach Varianzhomogenität- ein Ärgernis?177 

• DIN ISO 11843-2178 

• DIN ISO 11843-1179 

• J. N. Miller, J. C. Miller; Statistics and Chemometrics for Analytical Chemistry180 

• Entscheidung der Kommission (2002/657/EG) vom 12.August 2002 zur Umset-

zung der Richtlinie 96/23/EG betreffend die Durchführung von Analysemethoden 

und die Auswertung von Ergebnissen181 

 

 

Für die Bestimmung von Aromastoffen in den Matrizes Apfelsaft und Orangensaft wurden 

die folgenden Parameter im Rahmen dieser Validierung ermittelt und beurteilt, bevor die 

entwickelte Methode für die Routineanalytik einsatzfähig war. 
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• Arbeitsbereich 

• Linearität 

• Varianzhomogenität 

• Erkennungs-, Bestimmungs- und Erfassungsgrenze und Erfassungsvermögen 

• Verfahrenskenndaten 

• Präzision 

• Richtigkeit 

• Spezifität, Selektivität 

Die Validierung wird am Beispiel des Analyten Ethylisobutyrat in Apfelsaft gezeigt. Die 

Daten der aufgelisteten Analyten in Apfelsaft sowie Ethylbutyrat in Orangensaft sind im 

Anhang (Kap. G) aufgeführt. Ebenso die Berechnungsformeln, anhand derer die Validie-

rungsdaten ermittelt wurden. 

 

Methyl-2-methylbutyrat Ethylbutyrat Butylacetat 

Hexanal Ethyl-2-methylbutyrat Ethylisovalerat 

3-Methylbutylacetat 2-Methylbutylacetat trans-2-Hexenal 

Amylacetat Methylhexanoat Ethylhexanoat 

Benzaldehyd Hexylacetat trans-2-Hexenylacetat 

Hexyl-2-methylbutyrat Damascenon  

 

6.2.1 Ausreißer-Tests 

Bevor die Messwerte zur Ermittlung der Validierungsparameter eingesetzt wurden,  

mussten diese auf Ausreißer geprüft werden. 

Bei Mehrfachmessung einer Probe oder einer Lösung einer bestimmten Konzentration 

schwanken die Messwerte unterschiedlich stark. Durch einen Ausreißertest lässt sich 

herauszufinden, ob die Schwankung rein zufällig ist oder ob ein echter Ausreißer vorliegt. 

Im Fall eines Ausreißers muss der Wert gestrichen werden und durch einen oder mehrere 

neue Messwerte ersetzt werden. Dazu, wie bei Streichung vorzugehen ist, liegt jedoch 

keine einheitliche Meinung vor.  

Zu den bekanntesten Tests gehören der Dixon- und der Grubbs-Test. Für den Dixon-Test 

werden nur der ausreißerverdächtige Wert, der Nachbarwert und der größte bzw. kleinste 

Wert der Serie benötigt. Er wurde zur Ausreißerbestimmung der Messwerte der einzelnen 

Kalibrationsstufen angewendet. Hier wurden jeweils dreifach Bestimmungen durchgeführt. 

Der Grubbs-Test berücksichtigt alle Werte und eignet sich für Messreihen mit mehr als 
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6 Werten. Dieser Test wird für die Messwerte der oberen und unteren Arbeitsgrenze an-

gewendet. Hier wurden jeweils zehnfach Messungen durchgeführt. Bei einem Ausreißer 

wurde dieser Messwert aus dem Datenkollektiv entfernt und durch einen neuen ersetzt 

und erneut überprüft. Die weiteren Validierungsschritte wurden mit ausreißerfreien Mess-

reihen durchgeführt. Ausführliche Berechnungen sind im Anhang in Kap. G.1 aufgeführt. 

 

6.2.2 Normalverteilung 

Um aus den gewonnenen Messdaten anhand statistischer Methoden Kenndaten zu  

ermitteln, muss von einer repräsentativen Probe ausgegangen werden. Zur Anwendung 

von Berechnungen, die eine Zuordnung der Wahrscheinlichkeit zur Standardabweichung 

beinhalten, müssen die Werte auf Normalverteilung überprüft werden. Für Messreihen 

von 3 bzw. 10 Messwerten eignet sich der Schnelltest auf Normalverteilung nach David.  

Nach der Prüfung stand fest, dass die Messreihen normalverteilt sind und zur weiteren 

Validierung genutzt werden konnten. Ausführliche Berechnungen sind im Anhang in 

Kap. G.2 aufgeführt. 

 

6.2.3 Arbeitsbereich 

Der Arbeitsbereich wird nach folgenden Kriterien festgelegt: 

• Der Arbeitsbereich sollte den Konzentrationsbereich umfassen, welcher für den 

jeweiligen Analyten in einer Probe (einem durchschnittlichen Saft) zu erwarten ist 

(praxisbezogenes Anwendungsziel). 

• Gesetzlich festgelegte Mindestleistungsgrenzen müssen beachtet werden. 

• Ein akzeptables Maß an Präzision, Richtigkeit und Linearität muss erreicht sein. 

• Die untere Arbeitsbereichsgrenze muss gleich oder größer der Nachweisgrenze 

sein. 

Die Arbeitsbereiche für die Aromaanalytik in Apfel- und Orangensaft sind in Tab. 17 auf-

geführt. Die Forderung nach Mindestleistungsgrenzen liegt für die Bestimmung von  

Aromastoffen in Apfel- und Orangensäften nicht vor. 
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Tab. 17: Arbeitsbereiche der Aromen in Apfel- und Orangensaft  

 Arbeitsbereiche [µg/L] 

Ethylisobutyrat 0,5 - 100 

Methyl-2-methylbutyrat 0,5 - 100 

Ethylbutyrat (in Apfelsaft) 10 - 500 

Ethylbutyrat (in Orangensaft) 90 - 600 

Butylacetat 10 - 1000 

Hexanal 10 - 1000 

Ethyl-2-methylbutyrat 10 - 250 

Ethylisovalerat 0,5 - 100 

3-Methylbutylacetat 0,5 - 100 

2-Methylbutylacetat 10 - 750 

trans-2-Hexenal 10 - 1000 

Amylacetat 0,5 - 500 

Methylhexanoat 0,5 - 10 

Ethylhexanoat 0,5 - 100 

Benzaldehyd 0,5 - 250 

Hexylacetat 10 - 500 

trans-2-Hexenylacetat 0,5 - 500 

Hexyl-2-methylbutyrat 0,5 - 100 

Damascenon 0,5 - 100 
 

Als Datengrundlage zur Bestimmung der durchschnittlichen Konzentration lagen 

650 Analysen von Apfeldirektsäften, Apfelsäften aus Konzentrat und Apfelschorlen sowie 

500 Analysen von Orangendirektsäften, Orangensäften aus Konzentrat und Orangen-

nektaren vor. 
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6.2.4 Linearität 

Eine zentrale Forderung der Validierung ist die Überprüfung der Linearität. Zur Prüfung 

auf Linearität gibt es folgende Möglichkeiten: 

• Visueller Linearitätstest 

• Vergleich der Reststandardabweichungen der Funktionen 1. und 2. Grades 

Funktion 1. Grades ݕ ൌ ܽ ൅  (4) ݔܾ

Funktion 2. Grades ݕ ൌ ܽ ൅ ݔܾ ൅  ଶ (5)ݔܿ

Aus den Kalibrierdatenpaaren (xi und yi) können der Ordinatenabschnitt (a) und die     

Steigung (b) der Kalibriergeraden, die Konstante der quadratischen Funktion (c) und die 

Reststandardabweichung (sy) für eine ungewichtete Funktion berechnet werden. 

• Rechnerische Überprüfung:  Anpassungstest nach Mandel  

Residualanalyse 

Anpassungstest nach Mandel  

Dieser Test passt eine Funktion 1. Grades (linear) und eine Funktion 2. Grades (ge-

krümmt) an die Messdaten der Kalibration an, berechnet jeweils die Restvarianzen 

(sy1
2, sy2

2), aus welchen im nächsten Schritt die Differenz der Abweichungsquadratsumme 

(DS2) ermittelt werden. 

Bei der Berechnung für Ethylisobutyrat ergab sich ein Prüfwert von 2,8. Dieser ist kleiner 

als der F-Wert von 7,82. Damit konnte die Funktion als linear angesehen werden. 

Residualanalyse 

Bei der Residualanalyse trägt man die vertikalen Abstände der Messwerte von der  

Regressionskurve auf (Residuen, di). Die Residuen zeigen eine Normalverteilung um das 

Nullniveau, wenn das richtige mathematische Modell gewählt wurde. Bei erkennbarem 

Trend der Residuenverteilung ist das angewendete Regressionsmodell zu prüfen. 

Abb. 43 zeigt ist die graphische Darstellung der Abweichung der Messpunkte von der 

Regressionsgeraden. Am Beispiel des Ethylbutyrats war kein Trend im Verlauf zu erken-

nen. Damit wurde, wie auch beim Test nach Mandel, die Anwendung des Linearen  

Modells gerechtfertigt. 
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Abb. 43:  Graphische Darstellung der Residuen in Abhängigkeit von der Konzentration für 

die Bestimmung von Ethylisobutyrat in Apfelsaft 

Ausführliche Berechnungen sind im Anhang in Kap. G.3 aufgeführt. 

 

6.2.5 Varianzhomogenität 

Der Reststandardabweichung kommt eine Schlüsselrolle unter den Verfahrenskenndaten 

zu. Wenn die daraus berechneten Varianzen am oberen und unteren Ende des Arbeits-

bereiches keinen signifikanten Unterschied, zeigen liegt Varianzhomogenität vor. 

Zur Überprüfung wurden jeweils die Messwerte der niedrigsten und der höchsten Kon-

zentration eines Arbeitsbereiches zehnfach ermittelt und daraus die Varianzen (s1
2, s2

2) 

berechnet. Die Anzahl der Messpunkte pro Messreihe muss nicht gleich groß sein.  

Die Berechnung der Varianzhomogenität für den Arbeitsbereich von 0,5 - 100 µg/L für 

Ethylbutyrat zeigte Inhomogenität. Auch bei einer, vom Aufwand her vertretbaren  

Verkleinerung des Arbeitsbereiches, herrschte keine Varianzhomogenität. Diese konnte 

erst bei Arbeitsbereichen erreicht werden, die in der Größe einer Zehnerpotenz lagen. 

Diese Vorgehensweise ist jedoch bei einem Naturprodukt wie Fruchtsäften nicht umsetz-

bar, da die Analyten große Konzentrationsunterschiede, je nach Sorte, Lagerung, Ver-

arbeitung, usw. aufweisen. Die Varianzhomogenität ist bei allen Analyten unterschiedlich 

stark ausgeprägt.  
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In diesem Fall wäre der nächste Schritt die Bereiche soweit zu verkleinern bis Varianz-

homogenität erreicht ist. Wenn dies nicht durchgeführt wird, müssen andere Modelle als 

die ungewichtete lineare Regressionsrechnung angewendet werden.  

Dazu gehören z. B. die gewichtete Regression und Regressionsfunktionen höheren 

Grades. Im folgenden Verlauf wird das Modell der gewichteten Regression angewendet. 

Ausführliche Berechnungen sind im Anhang in Kap. G.4 aufgeführt. 

 

6.2.6 Erkennungs-, Bestimmung-/ Erfassungsgrenze und Erfassungsver-
mögen 

Folgende Anforderungen müssen erfüllt werden, um die lineare Regressionsrechnung zur 

Ermittlung der Nachweis-, Erfassungs- und Bestimmungsgrenze nach DIN 32645 anwen-

den zu dürfen: 

• Im gewählten Arbeitsbereich muss Varianzhomogenität vorliegen. 

• Zwischen der Konzentration und dem Messwert muss ein linearer Zusammenhang 

vorliegen. 

• Alle Messwerte können als normalverteilt angenommen werden. 

Je größer der gewählte Arbeitsbereich ist, umso wahrscheinlicher ist es, dass sich die 

Varianzen signifikant unterschieden. Dies ist auch in der Praxis häufig der Fall. Um 

Varianzhomogenität zu erreichen, muss der Arbeitsbereich soweit verkleinert werden, bis 

sich die Varianzen nicht mehr signifikant unterscheiden.  

Zur Ermittlung der Erkennungs-, Erfassungs- und Bestimmungsgrenze, sowie dem  

Erfassungsvermögen, wurde ein anderes Regressionsmodell gewählt, die gewichtete  

lineare Regression, welche angewendet werden kann, wenn keine Varianzhomogenität 

vorliegt. Die Rechenvorlagen für das Modell der gewichteten linearen Regression liefert 

die DIN 11843-2. Diese beachtet die Werte mit größeren Varianzen weniger stark als 

Messwerte mit kleineren Varianzen, im Gegensatz zur linearen Regression, welche alle 

gleich bewertet, d.h. gleiche Varianzen über den Arbeitsbereich voraussetzt.  

Es müssen keine gesetzlichen Mindestgrenzen erreicht werden, aber die Methode sollte 

die jeweiligen Analyten in dem Bereich erfassen können in dem sie in einem durch- 

schnittlichen Apfelsaft vorkommen. 
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Die Berechnung des Achsenabschnitts a und der Steigung b am Beispiel des Analyten 

Ethylisobutyrat ergaben: 

Achsenabschnitt a Steigung b 

0,00072 0,00478 

 

 

Abb. 44:  Kalibrierfunktion nach gewichteter linearer Regression für die Bestimmung von 
Ethylisobutyrat in Apfelsaft 

Erkennungsgrenze yC 

Die Definition der Erkennungsgrenze nach DIN 11843 lautet: „Wert der Messgröße,     

dessen Überschreitung für eine festgelegte Wahrscheinlichkeit eines Fehlers 1. Art α zum 

Schluss führt, dass das betrachtete System nicht in seinem Grundzustand ist.“ 

Die Erkennungsgrenze entspricht nach DIN 32645 dem kritischen Wert der Messgröße. 

Erfassungsgrenze xC 

Die Definition nach DIN 11843 lautet: „Wert der Zustandsgrößendifferenz, dessen Über-

schreitung für eine festgelegte Wahrscheinlichkeit eines Fehlers 1. Art α zum Schluss 

führt, dass das betrachtete System nicht in seinem Grundzustand ist.“ Die Erfassungs-

grenze ist der Wert der Zustandsgrößendifferenz, der dem kritischen Wert der Messgröße 

durch Anwendung der geschätzten Kalibrierfunktion zugeordnet wird. Einheit: µg/L 

Die Erfassungsgrenze entspricht nach DIN 32645 der Nachweisgrenze. 
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Erfassungsvermögen xD 

Die Definition nach DIN 11843 lautet: „Wert der Zustandsgrößendifferenz beim Ist-

Zustand, der mit einer Wahrscheinlichkeit (1-β) zum Schluss führt, dass sich das System 

nicht im Grundzustand befindet.“ Einheit: µg/L 

Das Erfassungsvermögen entspricht nach DIN 32645 der Erfassungsgrenze. 

Bestimmungsgrenze xBG 

Definition nach DIN 32645: „Die Bestimmungsgrenze dient als a-priori-Entscheidungs-

kriterium zur Auswahl eines Verfahrens zur quantitativen Bestimmung eines Analyten 

bzw. Stoffes. Sie repräsentiert den kleinsten Gehalt des Analyten, der „quantitativ be-

stimmt“ werden kann.“ 

Folgende Werte wurden für die Erkennungs-, Bestimmungs- und Erfassungsgrenze,   

sowie Erfassungsvermögen von Ethylisobutyrat in Apfelsaft anhand der gewichteten    

linearen Regression ermittelt: 

 

Ausführliche Berechnungen wie die Erklärung des angewandten Regressionsmodells sind 

im Anhang in Kap. G.5 aufgeführt. 

 

6.2.7 Verfahrenskenndaten 

Die Verfahrensstandardabweichung (sx0) ist ein Maß für die Leistungsfähigkeit eines    

analytischen Verfahrens. Je größer die Steigung der Kalibriergeraden (b) und je kleiner 

die Reststandardabweichung (sy) ist, umso leistungsfähiger ist eine Methode. Nach der 

Division der Verfahrensstandardabweichung durch den Mittelwert der Kalibrier-

konzentrationen (ݔҧ), zur Normierung, erhält man die relative Verfahrensstandard-

abweichung (Vx0). Die entsprechenden Formeln sind im Anhang in Kap. G.6 aufgeführt. 

 

Erkennungs-

grenze  

yC 

Erfassungsgrenze 

[µg/L] 

xC 

Erfassungsvermögen 

[µg/L] 
xD 

Bestimmungsgrenze 

[µg/L] 

xBG 

0,001 0,09 0,14 0,26 
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Hierdurch ist ein Vergleich unterschiedlicher Verfahren in gleichen Konzentrations-

bereichen möglich. Nach Miller und Miller180 wird die gewichtete lineare Regression zur 

Bestimmung eines einzelnen Analyten angewendet und nicht für den Vergleich von zwei 

separaten Methoden. Daher können mit dem Modell der gewichteten linearen Regression 

keine Verfahrenskenndaten bestimmt werden.  

 

6.2.8 Präzision 

Die Präzision beschreibt die Streuung von Analysenergebnissen bei mehrfacher Anwen-

dung eines festgelegten Analysenverfahrens unter vorgegebenen Bedingungen. Als 

Streuungsmaß wird die Standardabweichung si, die relative Standardabweichung srel 

(gleich dem Variationskoeffizienten Vk) und die Varianz si
2 berechnet. Die Formeln zur 

Berechnung der Präzision sind im Anhang in Kap. G.7 aufgeführt. 

Folgende Präzisionsarten können unterschieden werden:  

• Wiederholpräzision 

Zur Ermittlung der Wiederholpräzision werden Mehrfachmessungen in kurzen Zeit-

abständen, mit demselben Verfahren, an identischem Material, in demselben Labor, durch 

denselben Bearbeiter und dieselbe Geräteausrüstung durchgeführt.  

Zur Bestimmung der Wiederholpräzision wurde ein 100 µg/L-Multistandard nach der    

Apfelmethode und ein 100 µg/L Ethylbutyratstandard nach der Orangenmethode zehnfach 

aufgearbeitet und analysiert. Anhand der Peakflächen wurde die relative Standardabwei-

chung bestimmt. Die Wiederholpräzision für die zu validierenden Apfel- und Orangen-

aromastoffe liegt zwischen 4,5 und 11,3%. 

• Präzision von Tag zu Tag 

Zur Ermittlung der Tag-zu-Tag-Präzision werden Mehrfachmessungen an unter-

schiedlichen Tagen, mit demselben Verfahren, an identischem Material, in demselben 

Labor, durch denselben Bearbeiter und derselben Geräteausrüstung durchgeführt.  

Zur Bestimmung der Tag-zu-Tag-Präzision wurden über 3 Tage, jeweils N=3, Analysen 

eines 100 µg/L-Multistandards nach der Apfelmethode und eines 100 µg/L Ethylbutyrat-

standards nach der Orangenmethode durchgeführt. Die Tag-zu-Tag Präzision liegt      

zwischen 4,2 und 8,8%. 
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• Vergleichspräzision 

Zur Ermittlung der Vergleichspräzision werden Messungen mit demselben Verfahren an 

identischem Material aber in unterschiedlichen Laboren, durch verschiedene Bearbeiter 

und verschiedene Geräteausrüstung durchgeführt. Die Vergleichspräzision kann von der 

Validierung abgekoppelt werden, da mit dieser Methode nicht in verschiedenen Laboren 

gearbeitet wird. 

• Laborpräzision 

Zur Ermittlung dieser Präzisionsart werden Messreihen innerhalb eines Labors bei 

bewusster Änderung eines Parameters, wie z. B. dem Gerät oder dem Bearbeiter, durch-

geführt. Die Laborpräzision wurde nicht ermittelt, da für den Routinebetrieb nur ein Gerät 

und keine wechselnden Mitarbeiter eingeteilt waren.  

 

6.2.9 Richtigkeit 

Das Maß der Übereinstimmung zwischen dem ermittelten Wert und einem als Richtig  

angesehen Wert, ist die Richtigkeit. Eine Möglichkeit der Bestimmung ist die Überprüfung 

mit zertifiziertem Referenzmaterial oder über Wiederfindungsexperimente. 

Wiederfindung 

Das Verhältnis des Mittelwertes (ݔҧሻ zum richtigen Wert des Analyten (xR) in der Probe 

wird als Wiederfindung, bzw. Wiederfindungsrate (WF) bezeichnet (siehe Kap. F.8 im  

Anhang). Bei minimalen Verlusten während der einzelnen Schritte, die eine Probe durch-

laufen muss, liegt eine hohe Wiederfindungsrate vor. Liegt eine Wiederfindungsrate von 

100% vor, ist das geprüfte Verfahren frei von konstant- und/oder proportional-

systematischen Fehlern.  

Bei Verwendung der SBSE-TD-Technik erfolgt die Überführung der Analyten in den    

Gaschromatographen ausschließlich über die Beladung des Twisters und der an-

schließenden thermischen Desorption. Daher kann die Wiederfindung nicht über die Injek-

tion eines Standards bestimmt werden, welcher nicht die Probenvorbereitung durchlaufen 

hat.  
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Eine rechnerische Abschätzung der Wiederfindung mit dem SBSE-System kann über den 

log KO/W- Wert und die eingesetzte Probenmenge mit der Software „Twister Recovery 

Calculator“ von Gerstel gemacht werden (siehe Kap.4.2.2.2, Gleichung 3). Die berechnete 

Wiederfindung für Ethylisobutyrat (log KO/W 1,77; Probenvolumen 20 mL) beträgt 27,1%.  

Da das SBSE-TD-GC-MS-System mit dem Einsatz des Twisters kalibriert wird stellt die 

Wiederfindung keinen Wert dar, welcher die Differenz zwischen dem Messwert und dem 

richtigen Wert beschreibt. Die Kalibrierstandards werden analog den Proben aufge-

arbeitet. Eine Berücksichtigung der berechneten Wiederfindung ist daher nicht nötig. 

 

6.2.10 Selektivität und Spezifität  

Eine selektive Methode kann verschiedene, nebeneinander zu bestimmenden Kom-

ponenten ohne gegenseitige Störung erfassen und sie somit eindeutig identifizieren. Eine 

spezifische Methode kann eine Substanz oder eine Substanzklasse in allen relevanten 

Formen erfassen, wobei andere Bestandteile der Probe das Ergebnis nicht beeinflussen. 

Die Spezifität wird daher auch als ultimative Selektivität bezeichnet182.  

Durch den Einsatz eines massenselektiven Detektors können die detektierten Signale 

nicht nur durch den Vergleich der Retentionszeit zugeordnet werden, sondern auch 

anhand der charakteristischen Ionen. Stimmt das Spektrum des Signals mit dem der  

Vergleichssubstanz überein, kann von derselben Substanz ausgegangen werden. Nach 

der EU-Richtlinie 96/23/EG werden Signale anhand der Retentionszeit mit einem zuvor 

analysierten Substanzstandard verglichen und dürfen eine Toleranz von 0,5% nicht über-

schreiten.  

Die Retentionszeit des Ethylisobutyrat weist zwischen der Analyse in Wasser und in Ap-

felsaft eine Differenz von 0,2% auf: 

tR in Wasser [min] tR in Apfelsaft [min] Abweichung [%] 

9,86 9,84 0,2 

 

Zum Vergleich der detektierten Ionen werden jeweils ein Quantifizierungs (Quant)- und 

zwei Qualifizierungs-Ionen (Qual-Ionen) detektiert, welche eine maximale Abweichung der 

Intensitäten von 50% aufweisen dürfen. Bei den Intensitäten der Qualifizierungs- und 

Quantifizierungs-Ionen wurde eine maximale Abweichung von 35% ermittelt (s. Tab. 18).  
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Die Abweichungen liegen damit innerhalb der geforderten Grenzen. Dies konnte auch für 

alle weiteren Analyten bestätigt werden. Eine ausreichende Identifizierung ist somit ge-

sichert. 

Tab. 18:  Signalintensitäten von Ethylisobutyrat in einem 100 µg/L-Multistandard in Was-

ser und rückverdünntem Apfelsaft 

 

Quant-Ion 

[m/z] 

Qual-Ion 1 

[m/z] 

Qual -Ion 2 

[m/z] 

Qual -Ion 3 

[m/z] 

Ethylisobutyrat 71 43 116 88 

Ionen-Intensität in Wasser [%] 100 205 37 19 

Ionen-Intensität in Matrix [%] 100 172 24 22 

Abweichung [%] 0 17 35 13 

 

Die Daten der Retentionszeiten sowie der Ionen-Intensitäten sind im Anhang für alle  

validierten Analyten aufgeführt. Exemplarisch werden beide Vorgehensweisen am  

Beispiel des Ethylisobutyrats gezeigt.  

 

Zusammenfassung der Validierungsergebnisse: 

Die SBSE-TD-GC-MS-Methode zur Quantifizierung von Methyl-2-methylbutyrat, Ethyl-

butyrat, Butylacetat, Hexanal, Ethyl-2-methylbutyrat, Ethylisovalerat, 3-Methylbutylacetat, 

2-Methylbutylacetat, trans-2-Hexenal, Amylacetat, Methylhexanoat, Ethylhexanoat, Benz-

aldehyd, Hexylacetat, trans-2-Hexenylacetat, Hexyl-2-methylbutyrat und Damascenon in 

Apfelsäften und Ethylbutyrat in Orangensäften validiert. Dazu wurde der jeweilige Arbeits-

bereich definiert und Linearität im geforderten Bereich nachgewiesen. Die Bestimmungs-

grenzen lagen im Bereich von 0,1 µg/L und 27,7 µg/L. Da keine Varianzhomogenität 

gegeben war, wurde die Bestimmung der Erkennungs-, Bestimmungs- und Erfassungs-

grenze und des Erfassungsvermögens anhand einer gewichteten Regression durch-

geführt. Die rechnerische Wiederfindung liegt zwischen 19 und 99%, die Präzision, inner-

halb eines Tages und zwischen verschiedenen Tagen, liegt zwischen 2,9 und 11,3 %. Alle 

ermittelten Daten sind im Anhang (Kap. G) aufgeführt.  
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6.3 Ringversuch 

Neben internen qualitätssichernden Maßnahmen, wie dem Einsatz einer validierten  

Methode an kalibrierten Messgeräten mit qualitativ entsprechenden Arbeitsmaterialien 

durch geschulte Mitarbeiter, die zur Absicherung, dass ein Verfahren bei zuverlässiger 

Anwendung vergleichbare Ergebnisse liefert ergriffen werden müssen, können zusätzlich 

externe Maßnahmen eingesetzt werden. Dazu zählen Audits und Ringversuche die zur 

Überprüfung der Analysenqualität durchgeführt werden können175. 

Ein Audit beinhaltet eine systematische und unabhängige Evaluation durch einen 

externen Auditor. Dies kann zur Zertifizierung der Qualitätssicherung nach ISO- oder EN-

Normen durchgeführt werden oder zur Akkreditierung eines Verfahrens oder der gesam-

ten Arbeit, um zum Beispiel im gesetzlich geregelten Bereich arbeiten zu dürfen.  

Die zweite externe Maßnahme, der Ringversuch, kann zu verschiedenen Bewertungs-

zwecken eingesetzt werden. Zum einen zur Bewertung von Analysenverfahren wie in 

Kap. 6.3.1 beschrieben, und zum anderen zur Bewertung der Leistungsfähigkeit eines 

Labors.  

6.3.1 Laborvergleichsuntersuchung anhand von Apfeldirektsäften 

Im Januar 2008 hat die Faethe Labor GmbH an einer Laborvergleichsuntersuchung (LVU) 

teilgenommen. Diese wurde von der Projektgruppe „Beurteilungskriterien für Apfelsaft-

aromen“ initiiert. Diese Gruppe wurde von Sachverständigen aus den Arbeitsgruppen 

„Fruchtsaft und fruchtsafthaltige Getränke“ sowie „Aromastoffe“ gebildet. Die Aufgabe 

bestand darin, 3 naturtrübe Apfelsäfte auf die Gehalte der aufgelisteten Komponenten zu 

analysieren. Die Substanzen in der linken und mittleren Spalte wurden mit der Twister-

Methode quantifiziert:  

trans-2-Hexenylacetat Methyl-2-methylbutyrat cis-3-Hexenylacetat 

Ethyl-2-methylbutyrat Ethyl-3-methylbutyrat 1-Butanol 

3-Methylbutylacetat Hexyl-2-methylbutyrat 2-Methylbutanol 

Ethylhexanoat 2-Methylbutylacetat cis-2-Hexen-1-ol 

Ethylbutyrat trans-2-Hexenal cis-3-Hexen-1-ol 

Butylacetat Damascenon 3-Methylbutanol 

Hexanal Benzaldehyd trans-2-Hexen-1-ol 

Hexylacetat  trans-3-Hexen-1-ol 

Ethylisobutyrat  1-Hexanol 
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Die Wahl der Probenvorbereitungstechnik wurde freigestellt. Die chromatographische 

Trennung und Detektion sollte mittels GC-MS erfolgen. Weiterhin festgelegt war, dass 

eine ausreißerfreie Fünffache-Bestimmung mit getrennter Probenaufarbeitung durchge-

führt werden soll. Von den teilnehmenden Laboratorien wurden verschiedene Proben-

aufarbeitungstechniken eingesetzt: 

• SDE (6 mal eingesetzt) 

• Headspace (2 mal eingesetzt) 

• SBSE (1 mal eingesetzt) 

• zweistufige Isolierung (1 mal eingesetzt) 

Das Ziel dieses Teils des Ringversuches war es, eine Vergleichbarkeit der unterschied-

lichen Methoden die in den einzelnen Laboratorien angewendet werden, sicherzustellen. 

Fazit der LVU: Der Vergleich der Ergebnisse zeigte, dass die unterschiedlichen Metho-

den vergleichbare Ergebnisse liefern und die Untersuchungen der Direktsäfte mit ver-

schiedenen Methoden fortgesetzt werden konnten. 

 

6.3.2 Untersuchung von handelsüblichen Apfelsäften 

Nach bestätigter Vergleichbarkeit der eingesetzten Methoden zur Quantifizierung der 

Aromastoffe in Apfelsäften wurde mit der Untersuchung fortgefahren. Die Ziele des 

Versuchs waren:  

• Bestandsaufnahme, wie das Apfelsaftaroma (ausschließlich Direktsäfte) üblicher-

weise beschaffen ist 

• Ableitung von Bewertungskriterien für Apfelsaftaroma 

• Aufstellung einer möglichst umfangreichen Datensammlung 

• Statistische Auswertung der Datensammlung 

Nach der LVU hat die Gruppe beschlossen den Untersuchungsumfang auf folgende   

Aromen zu beschränken: 

Ethyl-2-methylbutyrat 2-Methylbutylacetat 2-Methylbutanol 

Ethylbutyrat trans-2-Hexenal trans-2-Hexen-1-ol 

Butylacetat Hexylacetat 1-Hexanol 

Hexanal   
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Untersuchung von handelsüblichen Apfeldirektsäften: 

20 Apfeldirektsäfte aus dem deutschen Handel wurden analysiert. Die Proben wurden wie 

bei der Laborvergleichsuntersuchung mit der Twister-Technik aufgearbeitet und mit  

GC-MS quantifiziert. Es wurden Zweifach-Bestimmungen durchgeführt. Die Daten aller 

teilnehmenden Laboratorien wurden zusammengetragen, um eine möglichst aussagekräf-

tige Datensammlung zu erstellen, welche eine Aussage über den Aromengehalt der Apfel-

direktsäfte erlaubt. Aufgrund dieser Daten soll ein Beurteilungswert für die ausreichende 

Rearomatisierung von Apfelsäften aus Konzentrat abgeleitet werden. 

Untersuchung von handelsüblichen Apfelsäften aus Konzentrat: 

Im letzten Schritt wurden 19 Apfelsäfte aus Konzentrat, wie auch die Direktsäfte, mittels 

SBSE-GC-MS und Doppelbestimmung quantifiziert. Nach dem Zusammentragen der Da-

ten aller teilnehmenden Laboratorien konnte ein umfassendes Bild der Rearomatisierung 

der zu dem Zeitpunkt auf dem Markt erhältlichen Säfte aus Konzentrat erstellt werden. 

6.3.3 Fazit des Ringversuches 

Durch die Laborvergleichsuntersuchung wurde für die Aufarbeitung und Quantifizierung 

mit dem Twister-GC-MS-System die Vergleichbarkeit mit der, momentan am häufigsten 

angewendeten, SDE- und der HS-GC-MS bestätigt.  

Die im Rahmen dieser Untersuchungen gewonnen Daten wurden von der Arbeitsgruppe 

„Aromastoffe“ und der Arbeitsgruppe „Fruchtsaft und fruchtsafthaltige Getränke“ der    

Lebensmittelchemischen Gesellschaft der GDCh im Oktober 2011 veröffentlicht worden 

und sollen zur Unterstützung weiterer Diskussionen über Beurteilungskriterien genutzt 

werden183. 
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6.4 Erkennung von aromatisierten Direktsäften 

Markersubstanzen im Apfelsaft 

Bei der Herstellung eines Direktsaftes wird dem Frischsaft kein Aroma entzogen, daher 

darf laut Fruchtsaftverordnung auch kein Aroma zugesetzt werden2. Wenn Apfeldirekt-

säfte mit wenig Aroma (zum Beispiel bei Saft aus überlagerten Äpfeln) durch den Zusatz 

von Aromawasserphase oder durch den Zusatz von Apfelsaft aus Konzentrat aufgewertet 

werden, würde dies einen Verstoß gegen die Fruchtsaftverordnung darstellen, und ein 

solcher Saft wäre nicht verkehrsfähig. Um diese Vorgehensweise nachzuweisen, wurden 

Apfeldirekt- und Konzentratsäfte auf, für Konzentratsäfte/Aromen charakteristische     

Komponenten, sog. Markersubstanzen analysiert. 

Dazu wurde eine Analysenmethode entwickelt („Markermethode“, siehe Anhang Kap. G), 

um mögliche Aromen und andere Komponenten zu identifizieren, die charakteristisch für 

Konzentratsäfte sind.  

Mit dieser Methode wurden 40 Apfeldirektsäfte, 49 Apfelschorlen, 26 Apfelsäfte aus     

Apfelsaftkonzentrat und 2 Apfelnektare, analysiert. Abb. 45 zeigt zwei gemittelte 

Chromatogramme (TIC) von jeweils drei Konzentratsäften und drei naturtrüben Apfelsäf-

ten, die zum Vergleich übereinandergelegt wurden.  

Bei der Auswertung konnten keine charakteristischen Komponenten identifiziert werden, 

die nur im Konzentratsaft, jedoch nicht im Direktsaft vorhanden sind. Die Substanzen der 

Konzentratsäfte sind in unterschiedlicher Konzentration auch im Direktsaft enthalten (z. B. 

Damascenon in Abb. 45 B). In Direktsäften aber sind Komponenten vorhanden, die nicht 

im Konzentratsaft zu finden sind (z. B. Komponenten 1 und 2 Abb. 45 C). Daher kann 

durch diese Methode keine Aussage darüber getroffen werden, ob ein Direktsaft mit     

Konzentrat versetzt wurde. 
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Abb. 45:  Chromatogramme (TIC) eines Konzentratsaftes und eines naturtrüben Saftes 
(N=3) 

A 0 - 20 min, B 20 - 40 min, C 40 - 57 min, markierte Peaks 1, 2: Komponen-
ten, die nur im Direktsaft, jedoch nicht im Konzentratsaft vorkommen, Mess-
methode: Markermethode 
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Ermittlung von Verhältniszahlen von Aromakomponenten in Apfeldirekt- und 
Konzentratsäften 

Eine weitere Möglichkeit zur Charakterisierung von Direkt- und Konzentratsäften wurde 

anhand der Berechnung von Verhältnissen der Peakflächen der jeweiligen Aromen über-

prüft. Über die ermittelten Konzentrationen der Aromastoffe kann bei einem Naturprodukt 

wie dem Apfelsaft keine genaue Aussage über die Unterscheidung getroffen werden, da 

diese, abhängig von der Sorte, den Anbaubedingungen, dem Klima, dem Witterungs-

verlauf, dem Reifestadium und den Lagerungsbedingen, stark schwanken. Dazu wurde 

aus den Peakflächen der bekannten Aromen der Quotient Q Aroma bestimmt. 

Beispiel: 

Für den Konzentratsaft ASK1 ergab die Auswertung für 2-Hexenal eine Peakfläche von 

29,74*107 und für Hexanal eine Peakfläche von 50,89*106. 

ܳ஺௥௢௠௔ ൌ
ä݄݈ܿܨ  ݁ሺଶିு௘௫௘௡௔௟ሻ

 ä݄ܿ݁ሺு௘௫௔௡௔௟ሻ݈ܨ
ൌ

 29,74 כ 10଻

50,89 כ 10଺ ൌ 5,943 

Die Ergebnisse von drei weiteren Säften aus Konzentrat und drei Direktsäften sind in  

Tab. 19 aufgeführt. 

Tab. 19: Die Peakflächen von Hexanal und 2-Hexenal für drei Säfte aus Konzentrat 

(ASK 1 - 3) und drei Direktsäfte (ASD1 - 3) und die entsprechenden Werte      

für Q Aroma 

 ASK1 ASK2 ASK3 ASD1 ASD2 ASD3 

Hexanal 50.897.795 43.318.996 40.986.395 102.718.015 22.641.375 46.647.024 

2-Hexenal 297.406.957 521.091.638 353.317.624 291.450.842 146.936.850 224.866.782 

Q Aroma 5,94 12,03 8,62 2,84 6,49 4,82 

 

Anhand dieser sechs Säfte lässt sich erkennen, dass sich während der Konzentrat-

herstellung das Verhältnis der Konzentrationen von 2-Hexenal und Hexenal ändert. Bei 

dem Vergleich der Verhältniszahlen aller Analyten von 40 Apfeldirektsäften, 49 Apfel-

schorlen und 26 Apfelsäften aus Apfelsaftkonzentrat wurden keine Aromasubstanzen  

gefunden, die einen signifikanten Unterschied zwischen Direkt- und Konzentratsäften  

erkennen ließen.  
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6.5 Vorschlag zur Mindestaromatisierung  

Analog zur Vorgehensweise der Projekt-Gruppe „Beurteilungskriterien für Apfelsaft-

aromen“ wurde der Median der Estersumme von 110 authentischen Apfeldirektsäften aus 

industrieller Pressung ermittelt und dieser zur weiteren Betrachtung eines möglichen 

Grenzwertes herangezogen. Die zur Bestimmung eines Grenzwertes analysierten Säfte 

mussten folgende Kriterien erfüllen:  

- aus industrieller Herstellung 

- keine Halbprodukte oder Zwischenprodukte, nur das abgefüllte Endprodukt 

- keine Verfälschung durch unerlaubten Aromenzusatz 

- keine sortenreinen Apfelsäfte 

Die Häufigkeitsverteilung der Estersumme der Apfelsäfte ist in Abb. 46 graphisch  

dargestellt. Das Maximum liegt in der Gruppe 401 - 600 µg/L Estersumme, welcher 29,1% 

der Säfte zugeordnet werden, mit einem Median von 520 µg/L Estersumme.  

• Minimum:      29 µg/L 

• Maximum: 1496 µg/L 

• Median:   520 µg/L 

 

Abb. 46:  Häufigkeitsverteilung der Summer der Ester von 110 authentischen Apfeldirekt-
säften aus industrieller Pressung mit prozentualer Angabe 
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Bei der Analyse von 31 Apfeldirektsäften aus dem Handel wurde ein ähnliches Bild ermit-

telt: 

• Minimum:      56 µg/L 

• Maximum:  1215 µg/L 

• Median:    519 µg/L 

 

Abb. 47: Häufigkeitsverteilung der Summer der Ester von 31 industriell hergestellten   
Apfeldirektsäften (Handelsproben) mit prozentualer Angabe 

Auch hier liegt der Median mit einem Wert von 519 µg/L in der Gruppe 401 - 600 µg/L in 

der sich 32,3% der Säfte befinden. Bei den Handelssäften wurde auf frische Qualität  

geachtet, um mögliche Aromastoffverluste durch die Lagerung auszuschließen.  

Die ermittelten Werte zeigen, dass die Estersumme der Handelssäfte mit der von authen-

tischen industriell hergestellten Apfeldirektsäften vergleichbar ist und die ermittelten Werte 

auf den Markt übertragen werden können. 

Die Stiftung Warentest hat im Rahmen ihrer Studie für den Bericht „Das Aroma macht den 

Unterschied“, veröffentlicht in test 09/2009, 18 Direktsäfte hinsichtlich der Aromaqualität 

untersucht. Im Durchschnitt wurde eine Summe der Ester von 550 µg/L nach Extraktion-

Anreicherung-GC-MS-Analyse ermittelt6. Wolter hat anhand von 122 Analysen einen   

Mittelwert der Estersumme von 457 µg/L im Direktsaft ermittelt184. 

Diese Werte bestätigen die Ergebnisse der eigenen Untersuchungen von Handelsproben 

und authentisch hergestellten Apfeldirektsäften. 
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Wolter beschrieb 2010 zu welchem Zeitpunkt der Herstellung und Lagerung von Apfelsäf-

ten Aromen (Summe der Ester, Summe C6-Alkohole/Aldehyde und Aromaindex) verloren 

gehen bzw. abgebaut werden185. 

• Verluste bei der Aromarückgewinnung während des Konzentrierprozesses185 

Summe der Ester   28% 

Summe C6-Alkohole/Aldehyde   6% 

Aromaindex    19% 

 

• Verluste bei Mischung, Entgasung und Abfüllung185 

Summe der Ester   10% 

Summe C6-Alkohole/Aldehyde keine Angabe 

Aromaindex    keine Angabe 

 

• Verlust während der Lagerung der Fertigware185 

Zehn-monatige Lagerung bei 20 °C in TetraPak 

Summe der Ester   60% 

Summe C6-Alkohole/Aldehyde 10% 

Aromaindex     30% 

 

Neun-monatige Lagerung bei 40 °C in TetraPak185 

Summe der Ester   84% 

Summe C6-Alkohole/Aldehyde 20% 

Aromaindex     50% 

 

Der Verlust an Aromastoffen, der während der Aromakonzentratherstellung beobachtet 

wurde, sollte bei der Rearomatisierung durch die Dosierung wieder ausgeglichen werden 

und spielt bei der Festlegung der Mindestaromatisierung keine Rolle.  

Auch die Verluste, die bei Mischung, Entgasung und Abfüllung des Saftes ermittelt     

wurden, werden bei der Festlegung nicht beachtet, da der Saft aus Konzentrat, wie auch 

der Direktsaft, diese Prozessschritte durchlaufen.  

Das bedeutet, dass nur der Verlust, der während der Lagerung des abgefüllten Fertig-

produktes auftritt, bei der Grenzwertbetrachtung mit einbezogen werden muss. Hier     

werden die Ergebnisse der Abbaustudie in Tetra Pak bei 20 °C betrachtet, da dies eher 

der tatsächlichen Lagerung beim Verbraucher entspricht. Bei der Lagerung in den  

Verpackungsarten Glas und PET wurde ein geringerer Abbau beobachtet. 
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In Tab. 20 ist die von Wolter185 ermittelte Abbaurate auf den Median der Estersumme   

angewendet worden, um somit die Estersumme nach zehn-monatiger Lagerung zu     

bestimmen. 

 

Tab. 20:  Anwendung der Abbaurate der Lagerung des Fertigproduktes auf den Median 
der Estersumme der authentischen, industriell hergestellten Apfeldirektsäfte 

 Estersumme [µg/L] 

Median [µg/L] 520 

Verlust von 60% [µg/L] 312 

Nach Abzug des Verlustes [µg/L] 208 
 

Aufgrund des ermittelten Medianes, aus den Analysen dieses Projektes, der Estersumme 

der authentischen Säfte aus industrieller Pressung wird für die Mindestaromatisierung 

unter Berücksichtigung möglicher Verluste während der Lagerung von Apfelsäften aus 

Konzentrat ein Gehalt 200 µg/L Estersumme vorgeschlagen. 
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6.6 Chemometrische Datenanalyse zur Klassifizierung von Apfel-
säften 

Bei großen Datenmengen oder komplexen Zusammenhängen ist es dem Anwender nicht 

immer möglich, den Blick für die wesentlichen Merkmale zu schärfen. Ein Hilfsmittel stellt 

in diesem Fall die multivariate Datenanalyse dar. Sie systematisiert Merkmale und kann 

die betrachteten Proben daraufhin klassifizieren. Eine Einteilung ist häufig nicht anhand 

einzelner Merkmale oder Kennzahlen zu ermitteln sondern ist erst nach Vergleich vieler 

markanter Punkte ersichtlich186. Mit chemometrischer Software kann die multivariate  

Datenanalyse durchgeführt werden. Ein Beispiel für eine solche Software ist das  

Programm Pirouette Lite Classify ® der Firma Infometrix, welche für die Erstellung des 

Modells zur Klassifizierung von Apfeldirekt- und Konzentratsäften genutzt wurde.  

Basierend auf einer Definition von Kowalski187,188, welche auch von der International 

Chemometrics Society offiziell verwendet wird, kann man die Chemometrie wie folgt    

beschreiben189. 

„Die Chemometrie ist eine chemische Teildisziplin, die mathematische und statistische 

Methoden nutzt, um chemische Verfahren und Experimente optimal zu planen, durchzu-

führen und auszuwerten, um so ein Maximum an chemisch relevanten, problembezoge-

nen Informationen aus den experimentellen Messdaten zu gewinnen.“ Die Bezeichnung 

„Chemometrics“ wurde 1971 von Wold etabliert189. 

Die erste Formulierung der Hauptkomponentenanalyse (PCA) geschah durch Pearson190. 

Malinowski hat die PCA 1960 in der Chemie bekannt gemacht191. Einige der frühen  

Anwendungen haben sich mit der Herkunftsbestimmung von Olivenöl192, Brandy193, 

Wein194 und Mineralwasser195 beschäftigt.  

Ebenso kann die Chemometrie bei der Aufklärung von komplexen Wechselwirkungen 

zwischen Antibiotika und DNA196, zur Differenzierung von Substanzgemischen verschie-

dener Hersteller197, bei der Herkunftsbestimmung von Honigen198, zur Vorhersage von 

Aromaeigenschaften von Wein199 usw. eingesetzt werden. 

Bei Früchten wird die Chemometrie zum Beispiel zur Bestimmung der Herkunft von  

Orangensaft (Florida oder Brasilien)200, der Reife von Äpfeln201, der Apfelsorte202 und der    

Hitzebehandlung von Apfelsäften203 angewendet. 
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Allgemeine Vorangehensweise bei der Erstellung und Anwendung eines chemo-

metrischen Modells204,205: 

• Daten sichten 

• Preprocessing wie benötigt 

• Berechnen des Modells  

• Sichten der Ergebnisse/Validierung des Modells 

• Einsatz des Modells für Vorhersagen 

• Validierung der Vorhersagen 

 

Für folgende Fragestellungen/Aufgaben sollte ein chemometrisches Modell erstellt  

werden: 

• Routinemäßige Prozesskontrolle ohne Einzelauswertung 

• Beurteilung von Handelsproben 

• Nachweis von Aromenzusätzen zu Direktsäften 

Häufig werden zur Erstellung eines chemometrischen Modells, bei Einsatz eines Massen-

selektiven Detektors (MSD), die Scan-Nummer, das m/z- Verhältnis und die jeweilige  

Intensität verwendet. Bei der Analyse von Apfelaromastoffen lassen die MSD-Daten keine 

aussagekräftige Klassifizierung zu, da die detektierten Fragmente aufgrund der struktu-

rellen Ähnlichkeit der Aromastoffe untereinander nicht charakteristisch für einen Analyten 

sind. Als Datengrundlage (Rohdaten) wurden die ermittelten Konzentrationen (in µg/L) 

folgender Aromastoffe von 49 Apfeldirektsäfte (ASD) und 119 Apfelsäfte aus Konzentrat 

(ASK) genutzt: 

• Ethylisobutyrat (1) • Methyl-2-methylbutyrat(2) 

• Ethylbutyrat (3) • Butylacetat (4) 

• Hexanal (5) • Ethyl-2-methylbutyrat (6) 

• 3-Methylbutylacetat (7) • 2-Methylbutylacetat (8) 

• trans-2-Hexenal (9) • Amylacetat (10) 

• Methylhexanoat (11) • Ethylhexanoat (12) 

• Benzaldehyd (13) • Hexylacetat (14) 

• trans-2-Hexenylacetat (15) • Hexyl-2-methylbutyrat (16) 

• Damascenon (17)  
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Ergebnis der Hauptkomponentenanalyse 

Abb. 51 zeigt die einzelnen Ergebnisfenster der PCA der Pirouette Software.  

1: Factor Select - Das erste Ergebnisfenster zeigt an, dass bei Einbeziehung 

von 4 Hauptkomponenten bereits 71,85% der Varianz be-

rücksichtigt wird. 

2: Scores - Das Feld „Scores“ (Vergrößerung siehe Abb. 52) zeigt    

graphisch die Gruppenbildung. Die Direktsäfte (rot) bilden 

eine Gruppe, ebenso die Konzentratsäfte (blau). Die Proben 

sind im neuen Koordinatensystem abgebildet.  

3: Loading - Die „Loadings“ zeigen an, welche Variable am wichtigsten ist 

und zu jeder Hauptkomponente beiträgt. 

4: Outlier Diagnostics - „Outlier Diagnostics“ zeigt an, wie gut jede Probe anhand der 

Faktoren Sample Residuals, Mahalanobis Abstand und 

Wahrscheinlichkeit beschrieben wird. 

5: X Residuals - „Residuals“ zeigt den Unterschied der transformierten Daten. 

6: X Reconstructed - Das “X Reconstructed”-Fenster (vergrößert Abb. 50) zeigt 

die transformierten Daten jeder Probe über alle Variablen. 

7: Modeling Power - Bei der „Modeling Power“ wird der Einfluss jeder Variablen 

auf die Modellierung dargestellt und ist ein Maß für die Wich-

tigkeit. Bei Variablen mit niedrigen Werten kann geprüft wer-

den, ob eine Ausschließung sinnvoll ist. 

8: Notes „Notes“ stellt die Auflistung einiger Kenndaten der durchge-

führten PCA dar. 
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SIMCA entwickelt eine Hauptkomponentenanalyse für jede Gruppe. Die unbekannte    

Probe wird jeder Hauptkomponente angepasst und anschließend der Gruppe zugeordnet, 

welche die beste Übereinstimmung aufzeigt. Wenn keine Übereinstimmung zu finden ist, 

wird die Probe nicht der nächsten Gruppe zugeordnet, sondern als keiner Gruppe zu-

gehörig definiert. 

Ergebnisfenster der SIMCA Analyse (Abb. 53) 

1: Class Projections - Die „Class Projections“ sind eine graphische Darstellung der 

gebildeten Klassen (CS 1, ASK und CS 2, ASD), vergrößerte 

Darstellung in Abb. 54. 

2: Class Distances  - Bei der Vorhersage einer Probe wird diese jeder Klasse  

angepasst. Die dabei berechneten Abstände werden in dem 

Class Distances Objekt angehäuft.  

3: Class Predicted  - Bei „Class Predicted“ werden die Proben und ihre zugeord-

neten Klassen und nächstpassende Klasse aufgelistet. 

4: Interclass Residuals     - Anhand der „Interclass Residuals“ kann die Trennung der 

Klassen untereinander verglichen werden. Das Residuum 

innerhalb einer Klasse muss dabei geringer sein als das der 

anderen Elemente. 

5: Interclass Distances - Das Fenster „Interclass Distances“ gibt den Unterschied der 

Klassen an. Ab einem Wert von 5 sind die Klassen ausrei-

chend getrennt. Für die Gruppen ASD und ASK beträgt der 

Unterschied 12,5. 

6: Discriminating Power  - Die „Discriminating Power“ gibt an, wie stark jede Variable 

Unterschiede beeinflusst. 

7: Total Modeling Power  - „Total Modeling Power“ zeigt die Wichtigkeit einer Variable 

an (siehe Modeling Power PCA) 

8: CS 1  - „CS 1“ zeigt die PCA der Klasse 1 

9: CS 2  - „CS 2“ zeigt die PCA der Klasse 2 

10: Notes -  „Notes“ stellt die Auflistung einiger Kenndaten der durchge-

führten SIMCA dar. 
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Mit Ausnahme von drei Säften (1 ASD, 2 ASK, markiert in Abb. 55), wurden die Säfte  

entsprechend der Deklaration eingeordnet. Die graphische Darstellung ist in Abb. 55  

gezeigt, die Ausnahmen sind markiert. Die drei Ausnahmen wurden nicht der „falschen“ 

Klasse zugeordnet, sondern keiner Klasse. Damit konnte gezeigt werden, dass das  

Modell auch auf handelsübliche Apfelsäfte anwendbar ist. Auch bei den hier gefundenen 

Ausreißern müssen weitere Untersuchungen durchgeführt werden, um die Gründe für die 

Klassifizierung zu verstehen. 

 

Verfälschung 

Ein aromatisierter Direktsaft ist nach derzeitiger FruchtsaftVO als nicht verkehrsfähig    

einzustufen. Um eine solche Aromatisierung, von z. B. Saft aus überlagerten Äpfeln, 

nachzuweisen wurde ein chemometrisches Modell verwendet (Kap.6.6.2). 

Zur Prüfung der Anwendbarkeit des Modells auf die Aromatisierung eines Direktsaftes 

wurden damit unterschiedlich stark aromatisierte Direktsäfte klassifiziert. Die Daten dieser 

Direktsäfte wurden rechnerisch ermittelt. Die Konzentrationen der Aromastoff-

komponenten und die Estersumme eines Apfeldirektsaftes wurden mittel SBSE-GC-MS 

bestimmt. Die Konzentrationen wurden auf 50 - 95% reduziert, und anschließend wurde 

mit einer 150- und 2500-fachen Apfelwasserphase der Saft rechnerisch rearomatisiert, bis 

der Wert der Estersumme des ursprünglichen Direktsaftes erreicht war.  

Ein Rechenbeispiel ist in Tab. 21 gezeigt. Die Summe wurde von jedem einzelnen     

Aromastoff vom verdünnten Apfeldirektsaft und der Wasserphase gebildet. Dieses Kon-

zentrationsmuster wurde in die Software eingeben und klassifiziert. 

Die in Tab. 22 aufgelisteten Mischungen wurden zur Klassifizierung eingesetzt. Die     

jeweils zugesetzten Wasserphasen sind mit x gekennzeichnet. Zur Kontrolle des Systems 

wurden der unverdünnte Direktsaft sowie die beiden Aromen einzeln klassifiziert. 
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Tab. 21: Beispiel zur Berechnung einer Apfeldirektsaft/Apfelwasserphase-Mischung zur 
Klassifizierung anhand eines chemometrischen Modells, Angaben in µg/L 

Angaben in µg/L Estersumme Ethyliso-
butyrat 

Methyl-2-
methylbutyrat

Ethyl-
butyrat 

Butyl-
acetat 

ADS 517 0,0 0,9 69,7 1077,0 

50% verdünnter ADS 256 0,0 0,6 34,9 538,0 

Aroma-WP (150fach) 261 1,7 1,6 62,6 430,5 

Mischung (Summe der 
Aromastoffe) 517 1,7 2,0 97,5 968,5 

 

 

Hexanal Ethyl-2-
methylbutyrat 

3-Methyl-
butylacetat 

2-Methyl-
butylacetat

trans-2-
Hexenal 

Amyl-
acetat 

Methyl-
hexanoat

246,9 12,0 0,0 221,5 168,4 58,1 0,0 

123,0 6,1 0,0 110,7 84,2 29,0 0,0 

177,8 25,9 0,6 96,6 377,3 21,7 0,6 

300,8 31,9 0,6 206,6 461,5 50,7 0,6 
 

 

Ethyl-
hexanoat 

Benz-
aldehyd Hexylacetat trans-2-

Hexenylacetat 
Hexyl-2-

methylbutyrat 
Damasceno

n 

1,5 1,8 210,3 64,5 5,1 9,4 

0,8 0,9 105,0 32,0 2,5 4,7 

7,5 3,9 65,3 31,3 2,4 1,7 

8,2 4,8 170,3 63,3 4,9 6,4 
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Tab. 22:  Mischungen aus Apfeldirektsaft und Apfelwasserphase zur Klassifizierung   
anhand des chemometrischen Modells 

Gehalt an Apfeldirektsaft 
[%] 

Verwendete 
Abkürzung 

Apfel-
Wasserphase 

150-fach 

Apfel-
Wasserphase 

2500-fach 

0 Aroma150 x - 

0 Aroma2500 - x 

50 Vf1 x - 

50 Vf2 - x 

50 Vf3 x x 

70 Vf4 x - 

70 Vf5 - x 

70 Vf6 x x 

90 Vf7 x - 

90 Vf8 - x 

90 Vf9 x x 

95 Vf10 x - 

95 Vf11 - x 

95 Vf12 x x 

100 VfASD - - 
 

Das chemometrische Modell hat die beschrieben Säfte/Saftmischungen wie folgt einge-

ordnet: 

Direktsaft: Der Direktsaft wurde der Gruppe der Direktsäfte zugeordnet. Dieser konnte 

daher für die weiteren Berechnungen verwendet werden.  

Aromawasserphase: Das 150-fache Aroma wurde der Konzentratsaftgruppe zugeordnet. 

Diese Zuordnung wurde erwartet, da diese Wasserphase üblicherweise verwendet wird, 

um Apfelsaft aus Apfelsaftkonzentrat zu rekonstituieren. Die 2500-fache Apfelaroma-

wasserphase konnte keiner Gruppe zugeordnet werden. Dies kann möglicherweise im 

Unterschied beim Herstellungsverfahren begründet liegen. Mittels physikalischer Verfah-

ren können bestimmte Aromafraktionen angereichert werden, um damit das Aroma im 

Endprodukt in eine bestimmte Richtung zu beeinflussen208. 
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7. Zusammenfassung und Ausblick 

Die Fruchtsaft-Verordnung sagt über einen Saft aus Konzentrat: „Das auf diese Art  

gewonnene Erzeugnis muss im Vergleich zu einem durchschnittlichen […] Saft zumindest 

gleichartige organoleptische und analytische Eigenschaften aufweisen“2. Um dies zu  

gewährleisten, bedarf es einer gleichberechtigten analytischen und sensorischen Begut-

achtung. Eine aussagekräftige Aroma-Analytik mit nachvollziehbaren Mindestwerten und 

einer sensorischen Bewertung nach anerkannten Prüfmethoden ist wichtig, um dem  

Verbraucher ein qualitativ hochwertiges Produkt anbieten zu können. 

Die bislang am häufigsten angewendete Methode zur Quantifizierung von Aromastoffen in 

Apfelsäften ist die Simultane Destillation-Extraktion-Headspace-Gaschromatographie-

Massenspektrometrie (SDE-HS-GC-MS). Diese ist jedoch sehr zeit- und Lösemittel-

aufwendig und braucht einen erfahrenen Anwender zur Durchführung8,163. 

Eine Methode der Probenaufarbeitung, die weniger Zeit und Lösemittel benötigt, und auch 

von Mitarbeitern mit weniger Erfahrung anwendbar ist, ist die Stir-Bar-Sorptive-Extraction-

Gaschromatographie-Massenspektrometrie (SBSE-GC-MS).  

Nach der Entwicklung und Optimierung der Probenvorbereitung mit dem Twister®, der 

chromatographischen Trennung und der Detektion wurden die Methoden zur Quantifi-

zierung von Aromastoffen in Apfeldirektsäften, Apfelsäften aus Konzentrat und Apfel-

aromawasserphasen und zur Quantifizierung von Ethylbutyrat in Orangensäften validiert 

und in der Routineanalytik angewendet. Alle Analyten zeigten in den jeweiligen Arbeits-

bereichen Linearität mit Bestimmungsgrenzen der Aromastoffe zwischen 0,1 - 27,7 µg/L 

und entsprechen den Anforderungen der gewählten Arbeitsbereiche. Die Präzision, inner-

halb eines Tages und nach mehreren Tagen, liegt zwischen 2,9 und 11,3%. Im Vergleich 

zu anderen SBSE Methoden zeigen die hier entwickelten Methoden zur Aromastoff-

quantifizierung in Apfel- und Orangensäften gute Reproduzierbarkeiten158. Literaturdaten 

zum direkten Vergleich der Anwendungen des Twister bei Apfelsäften liegen bislang nicht 

vor. 

Die Vergleichbarkeit der SBSE-Methode zur SDE- und HS-Methode wurde anhand der 

Teilnahme an einer Laborvergleichsuntersuchung (LVU) bestätigt. Diese LVU mit an-

schließender Analyse von Apfeldirekt- und Konzentratsäften wurde von der Projektgruppe 

„Beurteilungskriterien für Apfelsaftaromen“ initiiert. Die gewonnen Daten sollten einen 

Beitrag zur Diskussion über mögliche Beurteilungskriterien und Summenparameter  

leisten. Die Ergebnisse wurden im Flüssigen Obst 2011 veröffentlicht183. 



Zusammenfassung und Ausblick 
 

 
110 

Anhand der gewonnen Daten aus eigenen Analysen von authentisch gepressten Apfel-

direktsäften wurde ein Mindestwert der Estersumme von 200 µg/L für die Rearomati-

sierung eines Apfelsaftes aus Konzentrat vorgeschlagen. Dieser wurde aus dem Median 

der Estersumme von 520 µg/L (aus 110 Analysen) unter Berücksichtigung des Abbaus 

von Aromastoffen während der Lagerung ermittelt. Der Median der authentischen,  

industriell gepressten Säfte wurde durch die Analyse von 41 Handelssäften (Direktsäfte, 

Median der Estersumme 519 µg/L) und durch die Testergebnisse der Stiftung Warentest 

(Summe der Ester im Durchschnitt 550 µg/L) bestätigt6. 

Durch die Festlegung eines Wertes zur Mindestaromatisierung von Apfelsaft soll nicht nur 

der Produzent bei der Herstellung gesetzeskonformer Produkte mehr Sicherheit erhalten, 

auch der Verbraucherschutz hat damit die Möglichkeit die in Verkehr gebrachten Apfel-

säfte objektiv nach ihrer Aromaqualität zu beurteilen. 

Die Fruchtsaftverordnung definiert das einem Direktsaft nur Bestandteile wieder zugefügt 

werden dürfen die bei der Verarbeitung abgetrennt wurden, wie aus dem Saft stammen-

des Aroma, Fruchtfleisch und Zellen. Um eine, demnach verbotene, Aromatisierung eines 

Apfeldirektsaftes nachzuweisen, wurden Apfeldirektsäfte und Säfte aus Konzentrat auf 

Markersubstanzen analysiert. In Säften aus Konzentrat konnten unter Einsatz der SBSE-

TD-GC-MS-Technik keine charakteristischen Substanzen (Markersubstanzen) identifiziert 

werden, die auf eine Rearomatisierung hingewiesen haben. Auch beim Vergleich von 

Verhältniszahlen (Quotienten) verschiedener Aromastoffe untereinander konnten keine 

charakteristischen Unterschiede festgestellt werden. 

 

Im nächsten Schritt wurde für diese Fragestellung mit der chemometrischen Software 

Pirouette® ein Modell auf Grundlage von authentischen, industriell gepressten Direkt-

säften und Konzentratsäften erstellt. Dieses Modell kann auch auf unbekannte Handels-

proben angewendet werden. Bei der Klassifizierung eines mit Aroma versetzten Direkt-

saftes konnte anhand des chemometrischen Modells eine Veränderung festgestellt     

werden. Bei starker Rearomatisierung zeigte dieser Saft eine große Ähnlichkeit zu 

Konzentratsäften und wurde der Gruppe der Konzentratsäfte zugeordnet, bei geringerer 

Rearomatisierung konnte das Modell erkennen, dass weder mit der Gruppe der 

Konzentratsäfte noch mit der Gruppe der authentischen, industriell gepressten Direktsäfte  

ausreichende Übereinstimmung besteht. 
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Dieses chemometrische Modell sollte durch die Erhebung weiterer Daten, wie z. B. dem 

Methanolgehalt, und weitere Analysen von Säften aussagekräftiger gemacht werden. Die 

Aromatisierung der Direktsäfte sollte in der Praxis erprobt werden um die Klassifizierung 

des Modells zu überprüfen.  

Zusammenfassend lässt sich sagen, dass die SBSE-TD-GC-MS-Methoden zur Quantifi-

zierung von Aromastoffen in Apfel- und Orangensäften erfolgreich optimiert, validiert und 

in der Routine eingesetzt wurden. Das chemometrische Modell hat eine Möglichkeit zur 

Erkennung von aromatisierten, und damit nicht verkehrsfähigen, Direktsäften gezeigt. Ein 

Wert von 200 µg/L wurde für die Mindestaromatisierung von Apfelsaft aus Konzentrat auf 

Grundlage von Analysen von authentischen Direktsäften vorgeschlagen. 
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I 

Anhang 

A. Analyten 

Tab. i:  Liste der quantifizierten Aromastoffe und des internen Standards mit Angabe der Sum-
menformel, Struktur, dem log KO/W-Wert, dem Siedepunkt, der CAS-Nummer und der 
Molekülmasse 

Analyt/ 

Summenformel 
Struktur 

log KO/W

berechnet 
mit 

KOWWIN 
v.1.67 

Siede- 

punkt  

[°C] 

CAS- 

Nummer 

Molekül-
masse 

aus NIST Mass 

Spektral Search 

Programm v2.0d 

Ethylisobutyrat 

C6H12O2 

O

O  

1,77 112-113 97-62-1 116 

Methyl-2-

Methylbutyrat 

C6H12O2 

O

O

 

1,77 113-115 868-57-5 116 

Ethylbutyrat 

C6H12O2 O

O

 
1,85 120 105-54-4 116 

Butylacetat 

C6H12O2 O

O

 
1,85 126-127 123-86-4 116 

Hexanal 

C6H12O 
O  1,80 119-124 66-25-1 101 

Ethyl-2-

Methylbutyrat 

C7H14O2 

O

O

 

2,26 132-133 
53956-13-

1 
130 
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II 

 

Analyt/ 

Summenformel 
Struktur 

log KO/W

berechnet 
mit 

KOWWIN 
v.1.67 

Siede- 

punkt  

[°C] 

CAS- 

Nummer 

Molekül-
masse 

aus NIST Mass 

Spektral Search 

Programm v2.0d 

Ethylisovalerat 

C7H14O2 

O

O  
2,26 132-134 108-64-5 130 

3-Methylbutylacetat 

C7H14O2 

O

O  
2,26 

142 bei 

756 mmHg
123-92-2 130 

2-Methylbutylacetat 

C7H14O2 

O

O

 

2,26 140 624-41-9 130 

trans-2-Hexen-1-al 

C6H10O 
O  

1,58 146-149 6728-26-3 199 

Amylacetat 

C7H14O2 O

O

 
2,34 142 628-63-7 130 

Methylhexanoat 

C7H14O2 

O

O  
2,34 149-151 106-70-7 130 

Ethylhexanoat 

C8H16O2 

O

O  
2,83 166 123-66-0 144 

Benzaldehyd 

C7H6O O  
1,71 178-179 100-52-7 106 



Anhang 
 

 
III 

Analyt/ 

Summenformel 
Struktur 

log KO/W

berechnet 
mit 

KOWWIN 
v.1.67 

Siede- 

punkt  

[°C] 

CAS- 

Nummer 

Molekül-
masse 

aus NIST Mass 

Spektral Search 

Programm v2.0d 

Hexylacetat 

C8H16O2 O

O

 
2,83 173-174 142-92-7 144 

trans-2-

Hexenylacetat 

C8H14O2 
O

O

 
2,61 165-166 2497-18-9 142 

Hexyl-2-

methylbutyrat 

C11H22O2 

O

O

 

4,23 203-204 
10032-15-

2 
186 

Damascenon 

C13H18O 

O

 

4,21 

274-275 

bei 760.00 

mm Hg 

23726-93-

4 
190 

Isobutylisobutyrat 

C8H16O2 
O

O

 

2,68 145-152 97-85-8 144 
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IV 

 

B. Experimenteller Teil 
Chemikalien und Verbrauchsmaterialien 

Die im Rahmen der durchgeführten Untersuchungen eingesetzten Chemikalien sind nachfolgend 

alphabetisch geordnet aufgeführt. 

Amylacetat, Aldrich 

Benzaldehyd, Merck 

Butylacetat, Fluka 

Damascenon, Firmenich 

Diethylether; Merck 

Ethanol, Merck 

Ethylbutyrat, Merck  

Ethylhexanoat, Fluka  

Ethylisobutyrat, Aldrich 

Ethylisovalerat, Aldrich  

Ethyl-2-methylbutyrat, Aldrich 

Hexanal, Fluka 

Hexylacetat, Fluka  

Hexyl-2-methylbutyrat, SAFC 

Isobutylisobutyrat; Aldrich 

Methanol, Merck 

2-Methylbutylacetat, Aldrich 

3-Methylbutylacetat, Aldrich 

Methylhexanoat, Fluka  

Methyl-2-methylbutyrat, Fluka 

Pentan, Merck 

trans-2-Hexenal, Fluka 

trans-2-Hexenylacetat, Aldrich 

Natriumsulfat wasserfrei, Merck 
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Geräte 

SBSE: 
TDU, Gerstel, Mühlheim a. d. Ruhr 

KAS 4, Gerstel, Mühlheim a. d. Ruhr 

Rührplatte 15-fach, Poly 15 "Twister" 

Thermodesorber, Gerstel, Mühlheim a. d. Ruhr 

Twister 20 * 1 mm, Gerstel, Mühlheim a. d. Ruhr 

Transportadapter für Twister, Gerstel, Mühlheim a. d. Ruhr 

Glasröhrchen für Twister, Gerstel, Mühlheim a. d. Ruhr 

 

GC-MS-System: 
6890N Network GC Station, Agilent 

5975B inert XL MSD, Agilent 

MPS 2 XL Twister, Gerstel, Mühlheim a. d. Ruhr 

Cryostatic Cooling Device, Gerstel, Mühlheim a. d. Ruhr 

Helium 5.0 

Stickstoff 5.0 

TR-WaxMS (30m x 0,25 mm x 0,25 µm) Säule, Thermo Scientific 

HP-5MS (30 m x 0,25 mm x 0,25µm) , Agilent  

Rtx-1701 (30m x 0,25 mm x 0,5µm), Restek 

 

SDE: 
SDE-Anlage,  

Magnetrührer, IKA RH basic 2 

Kühlung 

Vigreuxkolonne 

 

Sonstige Laborgeräte: 
pH-Meter, Knick pH-Meter 766 Calimatic; Knick 

Waage, Kern& Söhne GmbH ABJ 

Ultraschallbad, Bandelin Sonorex 
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Lösungen 

Stammlösungen 

Zur Herstellung der jeweiligen Stammlösungen werden in 50 mL Messkolben 40 mL Methanol 

vorgelegt, 500 µL des entsprechenden Aromas pipettiert und dann mit Methanol bis zur Marke 

aufgefüllt. Daraus ergeben sich folgende Konzentrationen (siehe Tab. 2):  

Tab. 2: Konzentration der Stammlösungen (500 µL Standard mit Methanol auf 50 mL auf-
gefüllt) 

Analyt Konzentration [mg/L] 

Ethylisobutyrat 8603 
Methyl-2-methylbutyrat 8673 

Ethylbutyrat 8763 
Butylacetat 8722 

Hexanal 7896 
Ethyl-2-methylbutyrat 8603 

Ethylisovalerat 8467 
3-Methylbutylacetat 8623 
2-Methylbutylacetat 8234 

trans-2-Hexenal 8206 
Amylacetat 8672 

Methylhexanoat 8752 
Ethylhexanoat 8585 
Benzaldehyd 10500 
Hexylacetat 8704 

trans-2-Hexenylacetat 8800 
Hexyl-2-methylbutyrat 8151 

Damascenon 9490 
 

10 mg/L Multistandard 

In einem 100 mL Kolben werden ca. 50 mL Apfelsaftkonzentrat (verdünnt auf 11 °Brix, relative 

Dichte entsprich einer 11%-igen Saccharose Lösung) vorgelegt, die in Tab. 3 aufgeführten Men-

gen der Analyt-Stammlösungen zupipettiert und mit Apfelsaftkonzentrat (verdünnt auf 11 °Brix) 

auf 100 mL aufgefüllt. 
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Tab. 3: Volumina der Analyten-Stammlösung zur Herstellung eines 10 mg/L Multistandards in 
einem 100 mL Kolben 

Analyt Volumen [µL] 

Ethyl-isobutyrat 116,2 
Methyl-2-methylbutyrat 115,3 

Ethylbutyrat 114,2 
Butylacetat 114,6 

Hexanal 126,6 
(Z)-3-Hexenal 205,0 

Ethyl-2-methylbutyrat 116,2 
Ethyl-isovalerate 118,1 

3-Methylbutylacetat 116,0 
2-Methylbutylacetat 121,4 
trans-2-Hexen-1-al 121,8 

Amylacetat 115,4 
Methylhexanoat 114,2 
Ethylhexanoat 116,4 
1-Octen-3-on 121,6 
Benzaldehyd 95,2 
Hexylacetat 114,8 

trans-2-Hexenylacetat 113,6 
Hexyl-2-methylbutyrat 122,6 

Damascenon 105,4 
 

Isobutylisobutyrat (IS Apfel) 

Stammlösung 8,45 g/L: 1000 µL Isobutylbutyrat in einen 100 mL Messkolben pipettieren und mit 

Methanol zur Markierung auffüllen. 

59,3 mL der Isobutylisobutyrat- Stammlösung wird in einen 25 mL Messkolben pipettieren, der 

zuvor mit ca. 20 mL VE-Wasser gefüllt wurde. Danach auffüllen mit VE Wasser bis zur Markie-

rung (20 mg/L). 

 

Ethylisobutyrat (IS Orange) 

Stammlösung 8,603 g/L: 1000 µL Ethylisobutyrat in einen 100 mL Messkolben pipettieren und mit 

Methanol zur Eichstrich auffüllen. 130,8 µL der Ethylisobutyrat-Stammlösung werden in einen 

25 mL Messkolben pipettieren und mit VE-Wasser aufgefüllt bis zur Markierung (45 mg/L). 
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C. Konzentration der Aromen im Realstandard 
Um die Apfelmethode auf reale, im Apfelsaft vorkommende Konzentrationen zu optimieren, wur-

de ein Multi-Standard mit Analyt-Konzentrationen, wie sie in einem durchschnittlichen Direktsaft 

vorkommen, durch geführt. Dieser setzt sich, wie in Tab. iv aufgeführt, zusammen. 

Tab. iv: Konzentration der Aromen in einem durchschnittlichen Direktsaft 

Aromen 
Konzentration der Aromen in handels-

üblichem Direktsaft [µg/L] 

Damascenon 10 

2-Methylbutylacetat 166 

Ethyl-2-methylbutyrat 37 

3-Methylbutylacetat 1 

Ethylhexanoat 5 

Amylacetat 7 

Benzaldehyd 16 

Hexanal 143 

Butylacetat 455 

Hexyl-2-methylbutyrat 2 

Hexylacetat 103 

trans-2-Hexenal 720 

trans-2-Hexenylacetat 19 

Methyl-2-methylbutyrat 3 

Ethylbutyrat 111 

Ethylisobutyrat 3 

Ethylisovalerat 0,3 
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D. Messmethode zur Aromenanalyse in Apfelsäften 
------- ----------- 

Sample Inlet      :  GC 

Injection Source  :  External Device 

Injection Location:  Rear 

Mass Spectrometer :  Enabled 

OVEN 

   Initial temp:  38 'C (On)               Maximum temp:  300 'C 

   Initial time:  35.00 min                Equilibration time:  3.00 min 

   Ramps: 

      #  Rate  Final temp  Final time 

      1 10.00      130        0.00 

      2 20.00      270       10.00 

      3   0.0(Off) 

   Post temp:  0 'C 

   Post time:  0.00 min 

   Run time:  61.20 min 

FRONT INLET (SPLIT/SPLITLESS)            BACK INLET (CIS3) 

   Mode:  Split                              Mode:  Solvent Vent 

   Initial temp:  50 'C (Off)               Initial temp:  250 'C (Off) 

   Pressure:  0.0 kPa (Off)                  Pressure:  48.5 kPa (On) 

   Total flow:  0.1 mL/min                   Vent time:  0.01 min 

   Gas saver:  Off                           Vent flow:  40.0 mL/min 

   Gas type:  Helium                        Vent Pressure:  48 kPa 

                                             Purge flow:  18.6 mL/min 

                                             Purge time:  0.40 min 

                                             Total flow:  22.9 mL/min 

                                             Gas saver:  On 

                                             Saver flow:  40.0 mL/min 

                                             Saver time:  48.33 min 

                                             Gas type:  Helium 

COLUMN 1                                  COLUMN 2 

   (not installed)                            Capillary Column 

                                             Model Number:  Restek  

                                              RTX-1701 

                                             Max temperature:  300 'C 

                                             Nominal length:  30.0 m 

                                              Nominal diameter:  250.00 um 

                                              Nominal film thickness:  0.50 um 

                                            Mode:  constant pressure 
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                                              Pressure:  48.5 kPa 

                                             Nominal initial flow:  1.0 mL/min 

                                             Average velocity:  36 cm/sec 

                                              Inlet:  Back Inlet 

                                              Outlet:  MSD 

                                              Outlet pressure:  vacuum 

FRONT DETECTOR (NO DET)                  BACK DETECTOR (NO DET) 

SIGNAL 1                                   SIGNAL 2 

   Data rate:  20 Hz                         Data rate:  20 Hz 

   Type:  oven temperature                   Type:  col 2 head pressure 

   Save Data:  Off                           Save Data:  Off 

   Zero:  0.0 (Off)                           Zero:  0.0 (Off) 

   Range:  0                                  Range:  0 

   Fast Peaks:  Off                          Fast Peaks:  Off 

   Attenuation:  0                           Attenuation:  0 

COLUMN COMP 1                             COLUMN COMP 2 

   (No Detectors Installed)                  (No Detectors Installed) 

THERMAL AUX 2 

   Use:  MSD Transfer Line Heater 

   Description:  TransferLine 

   Initial temp:  270 'C (On) 

   Initial time:  0.00 min 

 

                            GERSTEL MAESTRO 

SYSTEM SETTINGS 

   Maestro Runtime          : 61.20 min 

   GC Cool Down Time       : 15.00 min 

   Cryo Timeout              : 20.00 min 

 

                               GERSTEL CIS 

CRYO COOLING 

   Cryo Cooling             : used 

TEMPERATURE PROGRAM 

   Initial Temperature       : -35 'C 

   Equilibration Time       : 0.50 min 

   Initial Time             : 0.00 min 

   Ramp 1                  

       Rate                 : 10.0 'C/s 

       End Temp             : 300 'C 

       Hold Time            : 5.00 min 
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   Ramp 2                  

       Rate                 : 0.0 'C/s 

 

                               GERSTEL TDU 

TEMPERATURE PROGRAM 

   Initial Temperature       : 20 'C 

   Delay Time               : 0.40 min 

   Initial Time             : 0.00 min 

   Ramp 1                  

       Rate 1               : 720.0 'C/min 

       End Temp 1           : 290 'C 

       Hold Time 1          : 6.00 min 

   Ramp 2                  

       Rate 2                : 0.0 'C/min 

TDU SETTINGS 

   Desorption Mode          : Splitless 

   Sample Mode              : Sample Remove 

 

                                MS ACQUISITION PARAMETERS 

General Information 

------- ----------- 

Tune File                  : atune.u 

Acquistion Mode            : Scan/SIM 

MS Information 

-- ----------- 

Solvent Delay              : 8.00 min 

EM Absolute                : False 

EM Offset                 : 0 

Resulting EM Voltage      : 1600.0 

[Raw Scan Parameters] 

Low Mass                   : 15.0 

High Mass                  : 250.0 

Threshold                  : 150 

Sample #                  : 2       A/D Samples    4  

[MSZones] 

MS Quad                  : 150 C    maximum 200 C 

MS Source                : 230 C    maximum 250 C 
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E. Messmethode zur Bestimmung von Ethylbutyrat in Orangensaft 
 

Sample Inlet      :  GC 

Injection Source  :  External Device 

Injection Location:  Rear 

Mass Spectrometer :  Enabled 

OVEN 

   Initial temp:  38 'C (On)               Maximum temp:  300 'C 

   Initial time:  15.00 min                Equilibration time:  3.00 min 

   Ramps: 

      #  Rate  Final temp  Final time 

      1 20.00      270       15.00 

      2   0.0(Off) 

   Post temp:  0 'C 

   Post time:  0.00 min 

   Run time:  41.60 min 

FRONT INLET (SPLIT/SPLITLESS)           BACK INLET (CIS3) 

   Mode:  Split                            Mode:  Solvent Vent 

   Initial temp:  50 'C (Off)              Initial temp:  250 'C (Off) 

   Pressure:  0.0 kPa (Off)                Pressure:  48.5 kPa (On) 

   Total flow:  0.1 mL/min                 Vent time:  0.01 min 

   Gas saver:  Off                         Vent flow:  40.0 mL/min 

   Gas type:  Helium                       Vent Pressure:  48 kPa 

                                           Purge flow:  18.6 mL/min 

                                           Purge time:  0.50 min 

                                           Total flow:  22.9 mL/min 

                                           Gas saver:  On 

                                           Saver flow:  40.0 mL/min 

                                           Saver time:  48.33 min 

                                           Gas type:  Helium 

COLUMN 1                                COLUMN 2 

   (not installed)                         Capillary Column 

                                           Model Number:  Restek 

                                           RTX-1701 

                                           Max temperature:  300 'C 

                                           Nominal length:  30.0 m 

                                           Nominal diameter:  250.00 um 

                                           Nominal film thickness:  0.50 um 

                                           Mode:  constant pressure 

                                           Pressure:  48.5 kPa 
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                                           Nominal initial flow:  1.0 mL/min 

                                           Average velocity:  36 cm/sec 

                                           Inlet:  Back Inlet 

                                           Outlet:  MSD 

                                           Outlet pressure:  vacuum 

FRONT DETECTOR (NO DET)                 BACK DETECTOR (NO DET) 

SIGNAL 1                                SIGNAL 2 

   Data rate:  20 Hz                       Data rate:  20 Hz 

   Type:  oven temperature                 Type:  col 2 head pressure 

   Save Data:  Off                         Save Data:  Off 

   Zero:  0.0 (Off)                        Zero:  0.0 (Off) 

   Range:  0                               Range:  0 

   Fast Peaks:  Off                        Fast Peaks:  Off 

   Attenuation:  0                         Attenuation:  0 

COLUMN COMP 1                           COLUMN COMP 2 

   (No Detectors Installed)                (No Detectors Installed) 

THERMAL AUX 2 

   Use:  MSD Transfer Line Heater 

   Description:  TransferLine 

   Initial temp:  260 'C (On) 

GERSTEL MAESTRO 

SYSTEM SETTINGS 

   Maestro Runtime         : 76.90 min 

   GC Cool Down Time       : 10.00 min 

   Cryo Timeout            : 20.00 min 

 

GERSTEL CIS 

TEMPERATURE PROGRAM 

   Initial Temperature     : -35 'C 

   Equilibration Time      : 0.50 min 

   Initial Time            : 0.00 min 

   Ramp 1                  

       Rate                : 10.0 'C/s 

       End Temp            : 300 'C 

       Hold Time           : 5.00 min 

   Ramp 2                  

       Rate                : 0.0 'C/s 

CRYO COOLING 

   Cryo Cooling            : used 
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GERSTEL TDU 

TEMPERATURE PROGRAM 

   Initial Temperature     : 20 'C 

   Delay Time              : 0.40 min 

   Initial Time            : 0.00 min 

   Ramp 1                  

       Rate 1              : 720.0 'C/min 

       End Temp 1          : 290 'C 

       Hold Time 1         : 6.00 min 

   Ramp 2                  

       Rate 2              : 0.0 'C/min 

TDU SETTINGS 

   Transfer Temp           : 320 'C 

   Desorption Mode         : Splitless 

   Sample Mode             : Sample Remove 

                                MS ACQUISITION PARAMETERS 

MS Information 

Solvent Delay            : 0.00 min 

EM Absolute              : False 

EM Offset                : 0 

Resulting EM Voltage     : 2200.0 

[Scan Parameters] 

Low Mass                 : 33.0 

High Mass                : 400.0 

Threshold                : 150 

Sample #                 : 2       A/D Samples    4 

[MSZones] 

MS Quad                  : 150 C   maximum 200 C 

MS Source                : 230 C   maximum 250 C 
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F. Messmethode zur Bestimmung von Markersubstanzen in Apfelsaft 
OVEN 

   Initial temp:  40 'C (On)               Maximum temp:  300 'C 

   Initial time:  8.00 min                 Equilibration time:  3.00 min 

   Ramps: 

      #  Rate  Final temp  Final time 

      1  5.00      200        0.00 

      2 10.00      270       10.00 

      3   0.0(Off) 

   Post temp:  0 'C 

   Post time:  0.00 min 

   Run time:  57.00 min 

FRONT INLET (SPLIT/SPLITLESS)           BACK INLET (CIS3) 

   Mode:  Split                                 Mode:  Solvent Vent 

   Initial temp:  50 'C (Off)                 Initial temp:  250 'C (Off) 

   Pressure:  0.0 kPa (Off)                Pressure:  49.3 kPa (On) 

   Total flow:  0.1 mL/min                 Vent time:  0.08 min 

   Gas saver:  Off                            Vent flow:  80.0 mL/min 

   Gas type:  Helium                        Vent Pressure:  57 kPa 

                                               Purge flow:  80.0 mL/min 

                                             Purge time:  5.00 min 

                                              Total flow:  84.3 mL/min 

                                            Gas saver:  On 

                                          Saver flow:  40.0 mL/min 

                                           Saver time:  60.00 min 

                                            Gas type:  Helium 

COLUMN 1                          COLUMN 2 

   (not installed)                    Capillary Column 

                                           Model Number:  Restek  

                                           RTX-1701 

                                           Max temperature:  300 'C 

                                           Nominal length:  30.0 m 

                                           Nominal diameter:  250.00 um 

                                           Nominal film thickness:  0.50 um 

                                           Mode:  constant flow 

                                           Initial flow:  1.0 mL/min 

                                           Nominal init pressure:  49.3 kPa 

                                           Average velocity:  36 cm/sec 

                                           Inlet:  Back Inlet 

                                           Outlet:  MSD 
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                                           Outlet pressure:  vacuum 

FRONT DETECTOR (NO DET)                 BACK DETECTOR (NO DET) 

SIGNAL 1                                SIGNAL 2 

   Data rate:  20 Hz                       Data rate:  20 Hz 

   Type:  oven temperature                 Type:  col 2 head pressure 

   Save Data:  Off                         Save Data:  Off 

   Zero:  0.0 (Off)                        Zero:  0.0 (Off) 

   Range:  0                               Range:  0 

   Fast Peaks:  Off                        Fast Peaks:  Off 

   Attenuation:  0                         Attenuation:  0 

COLUMN COMP 1                           COLUMN COMP 2 

   (No Detectors Installed)                (No Detectors Installed) 

THERMAL AUX 2 

   Use:  MSD Transfer Line Heater 

   Description:  TransferLine 

   Initial temp:  270 'C (On) 

   Initial time:  0.00 min 

      #  Rate  Final temp  Final time 

      1   0.0(Off) 

                                        POST RUN 

                                           Post Time: 0.00 min 

TIME TABLE 

   Time       Specifier                     Parameter & Setpoint 

                               GC Injector 

     Front Injector: 

No parameters specified 

     Back Injector: 

No parameters specified 

 Column 1 Inventory Number : AB008 

 Column 2 Inventory Number : AB008 

                            GERSTEL MAESTRO 

SYSTEM SETTINGS 

   Maestro Runtime         : 57.00 min 

   GC Cool Down Time       : 15.00 min 

   Cryo Timeout            : 30.00 min 

                               GERSTEL CIS 

CRYO COOLING 

   Cryo Cooling            : used 

TEMPERATURE PROGRAM 

   Initial Temperature     : -35 'C 
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Equilibration Time      : 0.50 min 

Initial Time            : 0.00 min 

Ramp 1                  

Rate                : 8.0 'C/s 

End Temp            : 300 'C 

Hold Time           : 5.00 min 

Ramp 2                  

Rate                : 0.0 'C/s 

                               GERSTEL TDU 

TEMPERATURE PROGRAM 

Initial Temperature     : 20 'C 

Delay Time              : 0.40 min 

Initial Time            : 0.00 min 

Ramp 1                  

Rate 1              : 720.0 'C/min 

End Temp 1          : 290 'C 

Hold Time 1         : 6.00 min 

Ramp 2                  

Rate 2              : 0.0 'C/min 

TDU SETTINGS 

Desorption Mode         : Splitless 

Sample Mode             : Sample Remove 

                                MS ACQUISITION PARAMETERS 

Solvent Delay            : 1.00 min 

EM Absolute              : False 

EM Offset                : 0 

Resulting EM Voltage     : 2482.4 

[Scan Parameters] 

Low Mass                 : 10.0 

High Mass                : 500.0 

Threshold                : 150 

Sample #                 : 2       A/D Samples    4 

[MSZones] 

MS Quad                  : 150 C   maximum 200 C 

MS Source                : 230 C   maximum 250 C 
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G. Validierung 

G.1 Ausreißer-Tests 
Dixon-Test 

Beim Dixon-Test berechnet man die Prüfgröße Q aus der Differenz zwischen dem 

ausreißerverdächtigen Wert (x1) und dem benachbarten Wert (x2) und dividiert durch die Spann-

weite (R) der Messwerte. 

 ܳ ൌ |௫భି௫మ|
ோ

 (i) 

Die Prüfgröße Q wurde mit dem Dixon-Tabellenwert für ein Signifikanzniveau von P = 99% vergli-

chen. 

• Wenn Q < Tabellenwert, dann ist der Messwert zu 99% kein Ausreißer 

• Wenn Q > Tabellenwert, dann ist der Messwert als Ausreißer zu betrachten 

Grubbs-Test 

Im ersten Schritt wurde der Mittelwert der Messreihe (ݔҧ), Gl. (ii), und die Standardabweichung (s), 

Gl. (iii), bestimmt, mit xi = Messwert und N = Anzahl der Messungen: 

ҧݔ  ൌ ଵ
ே

כ ∑ ௜ݔ
ே
௜ୀଵ  (ii) 

ݏ  ൌ ට∑ሺ௫೔ି௫ҧሻమ

ሺேିଵሻ  (iii) 

Für den Messwert, welcher nun die größte Differenz zum Mittelwert aufweist, wurde durch Ein-

setzen in Gleichung (iv) die Prüfgröße (Q) ermittelt. 

 ܳ ൌ |௫೔ି௫ҧ|
௦

  (iv) 

Diese Prüfgröße wurde mit dem Grubbs- Tabellenwert (N = f, P: 99%) verglichen.  

• Wenn Q < Tabellenwert, dann ist der Messwert zu 99% kein Ausreißer 

• Wenn Q > Tabellenwert, dann ist der Messwert als Ausreißer zu betrachten 

Bei einem Ausreißer wurde dieser Wert gestrichen und durch einen neuen Messwert ersetzt und 

erneut überprüft. Die weiteren Valildierungsschritte wurden mit ausreißerfreien Messreihen 

durchgeführt. 
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Bei statistischen Tests sollten nur signifikante (99%) und nicht lediglich wahrscheinliche (95%) 

Unterschiede berücksichtigt werden. 

G.2 Normalverteilung 

Beim Test nach David bildet man die Prüfgröße (PG, Gl. (v)) aus dem Quotienten aus der 

Spannweite (R) und der Standardabweichung (s) und prüft ob dieser innerhalb der oberen (go) 

und unteren (gu) Schranke der Werte der Tabelle nach David liegen (kleinster Messwert: xmin, 

größter Messwert: xmax). 

ܩܲ  ൌ ௫೘ೌೣି௫೘೔೙
௦

ൌ ோ
௦
 (v) 

In der David-Tabelle wurden für die entsprechende Anzahl an Messungen (N=3, N=10) und dem 

Signifikanzniveau (P=95%) die Grenzen nachgeschlagen und mit der Prüfgröße verglichen: 

• Liegt die Prüfgröße innerhalb der Grenzen, kann eine Normalverteilung der Werte ange-

nommen werden. 

• Ist die Prüfgröße größer als go oder kleiner als gu, ist die Verteilung signifikant unterschied-

lich zu einer Normalverteilung. 

Nach der Prüfung stand fest, dass die Messreihen normalverteilt sind und zur weiteren Validie-

rung genutzt werden konnten.  

 

G.3 Linearität 

Anpassungstest nach Mandel  

Dieser Test passt eine Funktion 1. Grades (linear) und eine Funktion 2. Grades (gekrümmt) an 

die Messdaten der Kalibration an, berechnet jeweils die Restvarianzen (sy1
2, sy2

2), aus welchen im 

nächsten Schritt die Differenz der Abweichungsquadratsumme (DS2, Gl. (vi)) ermittelt werden. 

ଶܵܦ  ൌ ሺܰ െ 2ሻ כ ௬ଵݏ
ଶ െ ሺܰ െ 3ሻ כ ௬ଶݏ

ଶ  (vi) 

  ܹܲ ൌ ஽ௌమ

௦೤మ
మ  (vii) 

Der anhand der Gleichung (vii) ermittelte Prüfwert PW wurde mit dem Wert aus der F-Tabelle für 

f1=1, f3=N-3 und einem Signifikanzniveau von 99% verglichen.  
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• Wenn PW < Tabellenwert, dann kann die Funktion in dem untersuchten Arbeitsbereich als 

linear angesehen werden, da kein signifikanter Unterschied zwischen der Differenz der 

Abweichungsquadratsumme und der Restvarianz sy2
2 zu erkennen ist. 

• Wenn PW > Tabellenwert, dann liegt ein signifikanter Unterschied vor und die Funktion ist 

in dem Arbeitsbereich nicht linear. In diesem Fall muss der Arbeitsbereich soweit einge-

grenzt werden bis der Prüfwert unter dem Tabellenwert liegt und die Funktion linear ist, 

oder es müssen Regressionsmodelle höherer Ordnung angewendet werden. 

Residualanalyse 

  ݀௜ ൌ ௜ݕ െ  ො௜ (viii)ݕ

௜ݕ ൌ Messwert der Peakfläche 
ො௜ݕ ൌ zu ݕ௜ gehöriger Schätzwert aus der Regressionsgeraden 
 

 

G.4 Varianzhomogenität 

Die Messwerte der niedrigsten und der höchsten Konzentration eines Arbeitsbereiches wurden 

zehnfach ermittelt und daraus die Varianzen (s1
2, s2

2) nach Gleichung (ix) berechnet.  

௜ݏ  
ଶ ൌ

∑ ൫௫೔ೕି௫ҧ೔൯మభబ
ೕసభ

௡೔ିଵ
 (ix) 

  ௜௝= j­ter Messwert für die Konzentrationݔ

 

Aus dem Quotienten der Varianzen konnte anschließend die Prüfgröße F, wie in Gleichung (x) 

beschrieben, gebildet werden, wobei s1
 > s2 ist. 

ܨ   ൌ ௦భ
మ

௦మ
మ (x) 

Diese Prüfgröße wurde mit dem Tabellenwert F (P, f1, f2) verglichen.  

• Wenn F < Tabellenwert (99%, 9, 9), dann ist zwischen den Varianzen kein signifikanter 

Unterschied zu erkennen und es herrscht Varianzhomogenität zwischen beiden Messrei-

hen. 

• Wenn F > Tabellenwert (99%, 9, 9), gilt der Unterschied der Varianzen als bestätigt und 

die untersuchten Messreihen weisen Varianzinhomogenität auf.  
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G.5 Erkennungs-, Bestimmungs und Erfassungsgrenze und Erfassungsvermögen 

Erklärung des Regressionsmodells 

Da alle Bezugszustände, eingeschlossen dem Grundzustand (cAnalyt = 0), nie als Werte der Zu-

standsgröße selbst bekannt sind, sondern nur als Differenz zum Grundzustand, wird die lineare 

Regression in der DIN 11843-2 über Iterationsverfahren durchgeführt. Um mit den ermittelten 

Werten in der Praxis arbeiten zu können, wird der Wert der Zustandsgröße im Grundzustand auf 

Null gesetzt. 

Bei der gewichteten linearen Regression lässt sich die lineare Kalibrierfunktion wie folgt beschrei-

ben: 

 ௜ܻ௝ ൌ ܽ ൅ ௜ݔܾ ൅  ௜௝ (xi)ߝ

a  =  Achsenabschnit 
b  =  Steigung 
x  =  Einzelwert der Zustandsgrößendifferenz 
௜௝ߝ  =  Komponente der Messgröße, welche die Zufallsvariable der Abweichungen darstellt 

i  =  Identifizierungsvariable für die Bezugszustände (1…,I) 
j  =  Identifizierungsvariable für Vorbereitungen für den Bezugszustand und den Grundzustand 

(1…,J) 
 
Die Reststandardabweichung (ߪ, Gl. (xii)) hängt linear von x (Einzelwert der Zustandsgrößendiffe-

renz) ab: 

௜ሻݔሺߪ  ൌ ܿ ൅  ௜ (xii)ݔ݀

c  =   Achsenabschnitt im Ausdruck für die Reststandardabweichung 

d  =  Steigungsfaktor im Ausdruck für die Reststandardabweichung 
 

Schätzung der linearen Beziehung zwischen der Reststandardabweichung und der Zu-
standsgrößendifferenz 

Die Standardabweichungen (si), welche zur Schätzung der Parameter c und d eingesetzt wurden, 

lassen sich nach folgender Gleichung berechnen: 

௜ݏ  ൌ ට ଵ
௃ିଵ

∑ ൫ݕ௜,௝ െ ത௜൯ଶ௃ݕ
௝ୀଵ  (xiii) 

Die gewichtete lineare Regression wurde mit der in Gleichung (xiv) beschriebenen Wichtung (ݓ௜) 

durchgeführt: 
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௜ݓ  ൌ ଵ
ఙమሺ௫೔ሻ ൌ ଵ

ሺ௖ାௗ௫೔ሻమ  (xiv) 

Um die unbekannten Parameter c und d für die Wichtung zu schätzen wurde ein Iterationsverfah-

ren mit folgender Wichtung (ݓෝ௤௜) durchgeführt: 

ෝ௤௜ݓ   ൌ ଵ

൫ఙෝ೜೔൯మ (xv) 

q  =  Anzahl der Iterationsschritte 
 ොߪ =  Schätzwert der Reststandardabweichung 

 

Für den ersten Iterationsschritt (q=0) gilt ߪො଴௜ୀ௦೔. Die Werte von si sind die empirischen Standard-

abweichungen. Für die weiteren Iterationsschritte q=1,2,… gilt: 

ො௤௜ߪ  ൌ ܿ̂௤ ൅ መ݀௤ݔ௜ (xvi) 

ܿ̂  =  Schätzwert für den Achsenabschnitt c 
መ݀   =  Schätzwert für den Steigungsfaktor d 

 

Folgende Hilfswerte werden zur Berechnung eingesetzt: 

 ௤ܶାଵ,ଵ ൌ ∑ ෝ௤௜ݓ
ூ
௜ୀଵ  (xvii) 

 ௤ܶାଵ,ଶ ൌ ∑ ෝ௤௜ݓ
ூ
௜ୀଵ  ௜ (xviii)ݔ

 ௤ܶାଵ,ଷ ൌ ∑ ෝ௤௜ݓ
ூ
௜ୀଵ ௜ݔ

ଶ (xix) 

 ௤ܶାଵ,ସ ൌ ∑ ෝ௤௜ݓ
ூ
௜ୀଵ  ௜ (xx)ݏ

 ௤ܶାଵ,ହ ൌ ∑ ෝ௤௜ݓ
ூ
௜ୀଵ  ௜ (xxi)ݏ௜ݔ

 ܿ̂௤ାଵ ൌ ೜்శభ,య ೜்శభ,రష ೜்శభ,మ ೜்శభ,ఱ

೜்శభ,భ ೜்శభ,యష ೜்శభ,మ
మ  (xxii) 

 መ݀௤ାଵ ൌ ೜்శభ,భ ೜்శభ,ఱష ೜்శభ,మ ೜்శభ,ర

೜்శభ,భ ೜்శభ,యష ೜்శభ,మ
మ  (xxiii) 

s  =  empirische Standardabweichung 
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Dass das Ergebnisse für q=3 konnte als Schlussergebnis betrachtet werden. 

ොଷߪ  ൌ ܿ̂ଷ ൅ መ݀ଷݔ (xxiv) 

mit ߪොଷ ൌ ܿ̂ሺݔሻ   (xxv) 

 ܿ̂ଷ ൌ  ො଴   (xxvi)ߪ

 ݀ଷ ൌ መ݀  (xxvii) 

ሻݔො௫ሺߪ  ൌ ො଴ߪ ൅ መ݀ݔ (xxviii) 

 

Schätzung der Kalibrierfunktion 

Im nächsten Schritt wurden die Parameter a und b mit der Gewichtung ݓ௜ ൌ ଵ
ఙෝమሺ௫೔ሻ geschätzt. Fol-

gende Hilfswerte werden zur Schätzung berechnet: ଵܶ ൌ ܬ ∑ ௜ݓ
ூ
௜ୀଵ  (xxix) 

 ଶܶ ൌ ܬ ∑ ௜ݓ
ூ
௜ୀଵ  ௜ (xxx)ݔ

 ଷܶ ൌ ܬ ∑ ௜ݓ
ூ
௜ୀଵ ௜ݔ

ଶ (xxxi) 

 ସܶ ൌ ∑ ∑ ௜ݓ
௃
௝ୀଵ ത௜௝ݕ

ூ
௜ୀଵ  (xxxii) 

 ହܶ ൌ ∑ ∑ ௜ݓ
௃
௝ୀଵ ത௜௝ݕ௜ݔ

ூ
௜ୀଵ  (xxxiii) 

 ത௜௝= Mittelwert der Messwerte der j­ten Vorbereitung des i­ten Bezugszustandesݕ

 
Mit den Gleichungen (xxxiv) und (xxxv) wurden die Schätzwerte für a und b ermittelt: 

 ොܽ ൌ య் ర்ି మ் ఱ்

భ் య்ି మ்
మ  (xxxiv) 

 ෠ܾ ൌ భ் ఱ்ି మ் ర்

భ் య்ି మ்
మ  (xxxv) 
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Erkennungsgrenze yC 

Die Erkennungsgrenze wird anhand der Gleichung (xxxvi) berechnet: 

௖ݕ  ൌ ොܽ ൅ ሻටఙෝబݒ଴,ଽହሺݐ
మ

௄
൅ ቀ ଵ

భ்
൅ ௫ҧೢమ

௦ೣೣೢ
ቁ  ොଶ (xxxvi)ߪ

 

mit: ݔҧ௪ ൌ మ்

భ்
  (xxxvii) 

௫௫௪ݏ  ൌ య்ି మ்
మ

భ்
  (xxxviii) 

ොଶߪ  ൌ ଵ
ூכ௃ିଶ

∑ ∑ ௜ݓ
௃
௝ୀଵ

ூ
௜ୀଵ ൫ݕത௜௝ െ ොܽ െ ෠ܾݔ௜൯

ଶ
  (xxxix) 

 I*J­2 Freiheitsgrade=ݒ ሻ= 95%­Quantil der t­Verteilung mitݒ଴,ଽହሺݐ
K= 1, Anzahl der Vorbereitungen der Probe 
I= Anzahl der Kalibrierstufen 
J=3, Anzahl der Vorbereitungen der jeweiligen Kalibrierstufe 

 

Erfassungsgrenze xC 

Die Erfassungsgrenze nach DIN 11843 entspricht der Nachweisgrenze nach DIN 32645 und wird 

nach folgender Gleichung bestimmt: 

௖ݔ  ൌ ௧బ,వఱሺ௩ሻ
௕෠

ටఙෝబ
మ

௄
൅ ቀ ଵ

భ்
൅ ௫ҧೢమ

௦ೣೣೢ
ቁ  ොଶ  (xl)ߪ

mit: ݔҧ௪ ൌ మ்

భ்
  (xli) 

௫௫௪ݏ  ൌ య்ି మ்
మ

భ்
  (xlii) 

ොଶߪ  ൌ ଵ
ூכ௃ିଶ

∑ ∑ ௜ݓ
௃
௝ୀଵ

ூ
௜ୀଵ ൫ݕത௜௝ െ ොܽ െ ෠ܾݔ௜൯

ଶ
  (xliii) 
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Erfassungsvermögen xD 

Das Erfassungsvermögen wird nach Gleichung (xliv) bestimmt: 

ௗݔ  ൌ ఋ
௕෠

ටఙෝమሺ௫೏ሻ
௄

൅ ቀ ଵ

భ்
൅ ௫ҧೢమ

௦ೣೣೢ
ቁ  ොଶ (xliv)ߪ

ߜ ൌ ,ݒሺߜ ,ߙ  ሻ der Wert des Nichtzentralitätsparametersߚ
 I*J­2 =ݒ
 Wahrscheinlichkeit eines Fehlers 1. Art =ߙ
 Wahrscheinlichkeit eines Fehlers 2. Art =ߚ
 

 :ௗሻ hängt von xd ab, welcher noch iterativ zu berechnen war. Der Beginn der Iteration lautetݔොଶሺߪ

ௗሻ଴ݔොሺߪ ൌ  .ො଴ und führt zum Ergebnis xd0ߪ

Für den nächsten Iterationsschritt zur Berechnung von xd1 wurde ߪොሺݔௗሻଵ ൌ  ௗ଴ሻ errechnet undݔොሺߪ

in der Gleichung (xliv) verwendet. Nach dem dritten Iterationsschritt wurde von einem akzeptab-

len Wert von xd ausgegangen. 

 

Bestimmungsgrenze xBG 

In der DIN 11843 ist keine Berechnung der Bestimmungsgrenze gegeben. Laut DIN 32645 wird 

eine Schnellabschätzung der Bestimmungsgrenze durch Multiplizieren der Nachweisgrenze mit 

dem Faktor 3 erhalten. Wenn dieses Verfahren auf die ermittelten Werte aus der DIN 11843 an-

gewendet wird ergibt sich folgende Formel: 

஼ݔ  כ 3 ൌ ஻ீݔ  (xlv) 

Abb. 1 veranschaulicht die in der DIN 11843-2 verwendeten und berechneten Kenngrößen. 

Z= Zustandsgröße  xD= Erfassungsvermögen
X0= Wert der Zustandsgröße im Grundzustand Y= Messgröße
X= Zustandsgrößendifferenz  yC= Erkennungsgrenze
xC= Erfassungsgrenze  β= Wahrscheinlichkeit eines Fehlers 2. Art für X=xD 
α= Wahrscheinlichkeit eines Fehlers 1. Art  1= Kalibrierfunktion
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Abb. 1: Kalibrierfunktion, Erkennungsgrenze, Erfassungsgrenze und Erfassungsvermögen 

G.6 Verfahrenskenndaten 

௫଴ݏ  ൌ ௦೤

௕
 (xlvi) 

 ௫ܸ଴ ൌ ௦ೣబ
௫ҧ

כ 100 (xlvii) 

G.7 Präzision 

Die Präzision beschreibt die Streuung von Analysenergebnissen bei mehrfacher Anwendung ei-

nes festgelegten Analysenverfahrens unter vorgegebenen Bedingungen. Als Streuungsmaß wird 

die Standardabweichung si (Gl. (xlviii)), die relative Standardabweichung srel (gleich dem Variati-

onskoeffizienten Vk, Gl (xlix)) und die Varianz si
2 (Gl. (l)) berechnet. 
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௜ݏ  ൌ ඨ∑ ൫୷౟ౠି୷ഥ౟൯మభబ
ౠసభ

୬౟ିଵ
 (xlviii) 

 ௞ܸ ൌ ௦
௫ҧ

כ 100% (xlix) 

 s୧
ଶ ൌ

∑ ൫୷౟ౠି୷ഥ౟൯మభబ
ౠసభ

୬౟ିଵ
 (l) 

 

G.8 Richtigkeit 

Wiederfindung 

 ܹ ൌ ௫ҧ
௫ೃ

כ 100% (li) 
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Tab. v: Validierungsdaten für die Linearität nach Mandel, der anhand der gewichteten Linearen 
Regression ermittelte Achsenabschnitt und Steigung für die Apfelaromastoffe in rück-
verdünntem Apfelsaftkonzentrat und für Ethylbutyrat in rückverdünntem Orangensaft-
konzentrat 

 
Linearität nach Mandel Achsenabschnitt Steigung 

F-Wert Prüfwert a b 

Matrix: Apfelsaftkonzentrat 

Ethylisobutyrat 7,82 2,800 0,0007 0,0048 

Methyl-2-methylbutyrat 7,82 2,080 0,0004 0,0059 

Ethylbutyrat (in Apfelsaft) 8,68 1,030 0,0326 0,0045 

Butylacetat 8,01 7,300 0,0285 0,0013 

Hexanal 8,01 0,020 0,0040 0,0004 

Ethyl-2-methylbutyrat 9,33 4,580 0,0075 0,0105 

Ethylisovalerat 8,68 0,003 0,0000 0,0076 

3-Methylbutylacetat 7,82 2,850 -0,0004 0,0144 

2-Methylbutylacetat 8,28 0,490 0,1157 0,0322 

trans-2-Hexen-1-al 8,68 5,210 -0,0044 0,0027 

Amylacetat 7,67 6,980 0,0003 0,0015 

Methylhexanoat 8,68 3,570 -0,0016 0,0133 

Ethylhexanoat 7,82 0,330 -0,0002 0,0030 

Benzaldehyd 7,82 6,660 0,0065 0,0040 

Hexylacetat 8,68 0,003 0,0040 0,0100 

trans-2-Hexenylacetat 7,56 4,850 -0,0006 0,0079 

Hexyl-2-methylbutyrat 7,82 0,150 -0,0010 0,0134 

Damascenon 8,68 0,700 0,0372 0,0208 

Matrix:Orangensaftkonzentrat 

Ethylbutyrat (in Orangensaft) 8,68 0,009 0,0058 0,0007 
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Tab. vi: Validierungsdaten für die Erkennungs-, Erfassungs- und Bestimmungsgrenze und das 
Erfassungsvermögen für die Apfelaromastoffe in rückverdünntem Apfelsaftkonzentrat 
und für Ethylbutyrat in rückverdünntem Orangensaftkonzentrat 

Erkennungs-
grenze 

Erfassungs-
grenze 

Erfassungs-
vermögen 

Bestimmungs-
grenze 

yC xC [µg/L] xD [µg/L] xBG [µg/L] 

Matrix: Apfelsaftkonzentrat 

Ethylisobutyrat 0,0010 0,09 0,14 0,26 

Methyl-2-methylbutyrat 0,0007 0,07 0,11 0,21 

Ethylbutyrat (in Apfelsaft) 0,0700 7,59 17,02 22,76 

Butylacetat 0,0400 9,25 20,84 27,73 

Hexanal 0,0100 5,44 12,53 11,38 

Ethyl-2-methylbutyrat 0,0200 0,89 1,78 2,67 

Ethylisovalerat 0,0002 0,04 0,07 0,11 

3-Methylbutylacetat 0,0001 0,04 0,07 0,12 

2-Methylbutylacetat 0,1800 2,15 4,48 6,27 

trans-2-Hexen-1-al 0,00005 1,69 3,76 5,13 

Amylacetat 0,0005 0,14 0,32 0,42 

Methylhexanoat 0,0003 0,15 0,33 0,44 

Ethylhexanoat 0,00008 0,07 0,16 0,25 

Benzaldehyd 0,0100 0,48 1,43 1,45 

Hexylacetat 0,0300 2,74 6,71 8,22 

trans-2-Hexenylacetat 0,00004 0,09 0,23 0,26 

Hexyl-2-methylbutyrat 0,00006 0,08 0,16 0,24 

Damascenon 0,040 0,19 0,43 0,57 

Matrix: Orangensaftkonzentrat 

Ethylbutyrat (in Orangensaft) 0,0100 7,46 13,53 22,3 
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Tab. vii:  Wiederholpräzision (10 µg/L-Apfelaroma-Multistandard, 90 µg/L-Ethylbutyratstandard), 
Tag zu Tag-Präzision und Wiederfindung (20 mL Probenvolumen) der Analyten in 
rückverdünntem Apfelsaftkonzentrat und von Ethylbutyrat in rückverdünntem Orangen-
saftkonzentrat 

 
Wiederhol-
präzision 

Tag zu Tag 
Präzision Wiederfindung 

s rel [%] s rel [%] [%] 

Matrix: Apfelsaftkonzentrat  

Ethylisobutyrat 9,7 7,3 27,1 

Methyl-2-methylbutyrat 8,5 7,5 27,1 

Ethylbutyrat (in Apfelsaft) 5,5 8,4 30,8 

Butylacetat 6,6 8,2 30,8 

Hexanal 6,0 7,9 28,4 

Ethyl-2-methylbutyrat 5,8 6,8 53,4 

Ethylisovalerat 5,7 6,8 53,4 

3-Methylbutylacetat 7,8 6,7 53,4 

2-Methylbutylacetat 7,3 7,3 53,4 

trans-2-Hexen-1-al 11,3 8,8 19,3 

Amylacetat 6,8 7,6 58,0 

Methylhexanoat 6,0 6,6 58,0 

Ethylhexanoat 4,4 4,4 81,0 

Benzaldehyd 9,6 4,2 24,4 

Hexylacetat 4,5 5,0 81,0 

trans-2-Hexenylacetat 6,7 4,3 72,0 

Hexyl-2-methylbutyrat 8,4 7,5 99,1 

Damascenon 4,2 6,5 99,0 

Matrix:Orangensaftkonzentrat  

Ethylbutyrat (in Orangensaft) 2,9 8,2 30,8 
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Kalibrierfunktionen: 

 

Abb. ii:  Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von Methyl-2-
methylbutyrat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. iii: Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von 2-
Methylbutylacetat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. iv:  Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von Hexyl-2-
methylbutyrat in rückverdünntem Apfelsaftkonzentrat 
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Abb. v:  Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von trans-2-
hexenylacetat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. vi:  Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von 
Hexylacetat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. vii:  Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von 
Ethylhexanoat in rückverdünntem Apfelsaftkonzentrat 
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Abb. viii:  Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von 
Methylhexanoat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. ix:  Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von trans-2-
Hexenal in rückverdünntem Apfelsaftkonzentrat 

 

Abb. x: Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von 3-
Methylbutylacetat in rückverdünntem Apfelsaftkonzentrat 
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Abb. xi: Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von 
Damascenon in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xii: Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von Benzalde-
hyd in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xiii: Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von Amylacetat 
in rückverdünntem Apfelsaftkonzentrat 
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Abb. xiv: Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von 
Ethylbutyrat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xv:  Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von Butylacetat 
in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xvi:  Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von Hexanal in 
rückverdünntem Apfelsaftkonzentrat 
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Abb. xvii:  Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von Ethyl-
2-methylbutyrat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xviii:  Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von 
Ethylisovalerat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xix: Kalibrierfunktion nach gewichteter linearer Regression zur Bestimmung von 

Ethylbutyrat in rückverdünntem Orangensaftkonzentrat 
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Residualanalyse: 

 

Abb. xx: Residualanalyse: Methyl-2-methylbutyrat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxi: Residualanalyse: 2-Methylbutylacetat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxii: Residualanalyse: Hexyl-2-methylbutyrat in rückverdünntem Apfelsaftkonzentrat 
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Abb. xxiii: Residualanalyse: trans-2-hexenylacetat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxiv: Residualanalyse: Hexylacetat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxv: Residualanalyse: Ethylhexanoat in rückverdünntem Apfelsaftkonzentrat 
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Abb. xxvi: Residualanalyse: Methylhexanoat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxvii: Residualanalyse: trans-2-Hexenal in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxviii: Residualanalyse: 3-Methylbutylacetat in rückverdünntem Apfelsaftkonzentrat 
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Abb. xxix: Residualanalyse: Damascenon in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxx: Residualanalyse: Benzaldehyd in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxxi: Residualanalyse: Amylacetat in rückverdünntem Apfelsaftkonzentrat 
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Abb. xxxii: Residualanalyse: Ethylbutyrat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxxiii: Residualanalyse: Butylacetat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxxiv: Residualanalyse: Hexanal in rückverdünntem Apfelsaftkonzentrat 
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Abb. xxxv: Residualanalyse: Ethyl-2-methylbutyrat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxxvi: Residualanalyse: Ethylisovalerat in rückverdünntem Apfelsaftkonzentrat 

 

Abb. xxxvii: Residualanalyse: Ethylbutyrat in rückverdünntem Orangesaftkonzentrat 
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Signalintensitäten: 

Signalintensitäten eines 100 µg/L-Multistandards in Wasser und rückverdünntem Apfelsaftkon-

zentrat und eines 100 µg/L-Ethylbutyrat-Standards in rückverdünntem Orangensaftkonzentrat 

 Quant-Ion Qual-Ion 1 Qual-Ion 2 Qual-Ion 3 

Isobutylisobutyrat 71 56 57 89 

Ionen-Intensität in Wasser [%] 100 42 33 26 

Ionen-Intensität in Matrix [%] 100 42 33 26 

Ethylisobutyrat 71 43 116 88 

Ionen-Intensität in Wasser [%] 100 205 40 19 

Ionen-Intensität in Matrix [%] 100 172 23 22 

Methyl-2-methylbutyrat 57 88 41 101 

Ionen-Intensität in Wasser [%] 100 110 54 25 

Ionen-Intensität in Matrix [%] 100 108 55 25 

Ethylbutyrat (Apfelsaft) 71 43 88 101 

Ionen-Intensität in Wasser [%] 100 81 54 8 

Ionen-Intensität in Matrix [%] 100 83 54 8 

Ethylbutyrat (Orangensaft) 71 43 88 101 

Ionen-Intensität in Wasser [%] 100 95 55 8 

Ionen-Intensität in Matrix [%] 100 96 58 9 

Butylacetat 71 73 55 - 

Ionen-Intensität in Wasser [%] 100 114 35 - 

Ionen-Intensität in Matrix [%] 100 113 39 - 

Hexanal 82 72 57 - 

Ionen-Intensität in Wasser [%] 100 154 436 - 

Ionen-Intensität in Matrix [%] 100 154 437 - 

Ethyl-2-methylbutyrat 57 102 85 115 



Anhang 
 

 
XLIV 

 

Ionen-Intensität in Wasser [%] 100 64 38 8 

Ionen-Intensität in Matrix [%] 100 64 38 8 

Ethylisovalerat 88 85 57 130 

Ionen-Intensität in Wasser [%] 100 72 63 1 

Ionen-Intensität in Matrix [%] 100 72 63 1 

3-Methylbutylacetat 43 70 55 87 

Ionen-Intensität in Wasser [%] 100 49 42 12 

Ionen-Intensität in Matrix [%] 100 48 41 11 

2-Methylbutylacetat 43 70 55 73 

Ionen-Intensität in Wasser [%] 100 39 16 18 

Ionen-Intensität in Matrix [%] 100 38 16 17 

trans-2-Hexen-1-al 55 98 69 83 

Ionen-Intensität in Wasser [%] 100 13 80 79 

Ionen-Intensität in Matrix [%] 100 22 84 81 

Amylacetat 43 70 55 61 

Ionen-Intensität in Wasser [%] 100 38 22 25 

Ionen-Intensität in Matrix [%] 100 37 21 25 

Methylhexanoat 74 87 43 99 

Ionen-Intensität in Wasser [%] 100 32 49 19 

Ionen-Intensität in Matrix [%] 100 32 48 18 

Ethylhexanoat 88 99 101 144 

Ionen-Intensität in Wasser [%] 100 50 27 2 

Ionen-Intensität in Matrix [%] 100 50 27 2 

Benzaldehyd 106 105 77 - 

Ionen-Intensität in Wasser [%] 100 97 98 - 

Ionen-Intensität in Matrix [%] 100 99 97 - 
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Hexylacetat 43 56 84 61 

Ionen-Intensität in Wasser [%] 100 45 17 29 

Ionen-Intensität in Matrix [%] 100 44 17 30 

trans-2-Hexenylacetat 43 67 82 100 

Ionen-Intensität in Wasser [%] 100 46 39 11 

Ionen-Intensität in Matrix [%] 100 45 38 10 

Hexyl-2-methylbutyrat 57 41 103 85 

Ionen-Intensität in Wasser [%] 100 53 116 55 

Ionen-Intensität in Matrix [%] 100 54 113 60 

Damascenon 69 121 190 - 

Ionen-Intensität in Wasser [%] 100 52 12 - 

Ionen-Intensität in Matrix [%] 100 51 12 - 
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Retentionszeiten: 

Tab viii: Retentionszeiten eines 100 µg/L-Multistandards in Wasser und rückverdünntem Apfel-
saftkonzentrat und eines 100 µg/L-Ethylbutyratstandards in Wasser und rückverdünntem Oran-
gensaftkonzentrat 

 

tR in Wasser 

[min] 

tR in Apfelsaftmatrix/ 
Orangensaftmatrix 

[min] 

Abweichung 

[%] 

Isobutylisobutyrat 34,13 34,12 0,03 

Ethylisobutyrat 9,86 9,84 0,2 

Methyl-2-methylbutyrat 11,24 11,23 0,09 

Ethylbutyrat (Apfelsaft) 13,90 13,89 0,07 

Ethylbutyrat (Orangensaft) 13,91 13,98 0,5 

Butylacetat 16,17 16,15 0,12 

Hexanal 16,34 16,32 0,12 

Ethyl-2-methylbutyrat 19,84 19,84 0,0 

Ethylisovalerat 20,84 20,83 0,05 

3-Methylbutylacetat 26,83 26,82 0,04 

2-Methylbutylacetat 27,43 27,42 0,04 

trans-2-Hexen-1-al 31,44 31,32 0,4 

Amylacetat 36,86 36,85 0,03 

Methylhexanoat 37,67 37,66 0,03 

Ethylhexanoat 41,85 41,85 0,0 

Benzaldehyd 42,57 42,59 0,0 

Hexylacetat 42,52 42,52 0,0 

trans-2-Hexenylacetat 42,77 42,77 0,0 

Hexyl-2-methylbutyrat 46,83 46,84 0,02 

Damascenon 49,03 49,03 0,0 
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H. Arbeitsanweisung SDE zur Bestimmung von Aromastoffen in Apfelsaft 
Geräte:  

2 Laborboys, 2 Magnetrührer, Kontaktthermometer, Heizpilz, Kochtopf, Mikro-SDE-Anlage mit 

Kryostatenkühlung, drei 5mL Pipetten, Probenrundkolben, Lösemittelrundkolben, Spitzkolben, 

Vigreuxkolonne 

Chemikalien: 

Pentan, Diethylether, dest. Wasser, Natriumsulfat wasserfrei 

Durchführung: 

Der Kryostat muss frühzeitig eingeschaltet und auf die minimal mögliche Kühltemperatur gestellt 

werden. Nach ca. 60 min ist eine Temperatur von -8 °C erreicht. Tiefere Temperaturen können 

nicht erreicht werden. Nach dem Einschalten der lösemittelseitigen Heizplatte muss die Soll-

Temperatur am Kontaktthermometer auf 44 °C eingestellt werden.  

Der Apfelsaft (100 mL) wird in den Kolben pipettiert. Ein Rührfisch und der interne Standard wer-

den hinzugegeben. Während der Montage sollte der Kryostat ausgeschaltet sein, da bei einem 

Bruch des Kühlfingers Ethylenglykol auslaufen würde. Nach dem Anschließen des Probenkol-

bens und der Befüllung des Separationsteils mit ca. 5 mL dest. Wasser werden in den Lösemit-

telkolben die Pentan/Diethylether-Mischung und ein Rührfisch gegeben und anmontiert. Nun 

kann der Kühlfinger montiert und der Kryostat wieder eingeschaltet werden. Alle Schliffverbin-

dungen müssen auf Dichtigkeit überprüft werden. Das mit einem Rührfisch versehene Wasserbad 

heizt den Lösemittelkolben und der Heizpilz den Probenkolben. Zu Beginn der Destillation sind 

folgende Einstellungen zu beachten:  

Tab ix: Geräteeinstellungen für die SDE 

Saftseite Lösemittelseite Kryostat 

Mot (Motor): 2 Mot am Lösemittelkolben: 2 Drehknopf nach links auf 

minimale Einstellung Heizpilz: Stufe 3 Temp am Magnetrührer: 6 

Temp am Magnetrührer: 0 Soll-Temp Kontaktthermometer: 

44 °C Energieregler: Stufe 10  

nach 10 min auf 8 
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Nach dem Anheizen (ca. 10 min) muss der Energieregler auf Stufe 8 zurückgestellt werden, um 

ein „Überkochen“ zu verhindern. Der Destillationsbogen wird auf der Saftseite mit Alufolie zur 

Isolation umwickelt und die Destillation bis zum gleichmäßigen Sieden beobachtet.  

Zum Ende der Destillation werden der Heizpilz und das Wasserbad entfernt. Nach dem Abkühlen 

der Etherseite wird die Saftseite entfernt und die Apparatur zur Etherseite gedreht, um die 

Etherphase im Abscheider in den Kolben zu dekantieren. Anschließend wird die organische Pha-

se über Natriumsulfat getrocknet. Zum Einengen auf 1 mL wird der Inhalt in einen Spitzkolben mit 

einer Marke bei 1 mL über einen Trichter dekantiert und an die Vigreuxkolonne angeschlossen. 

Das Wasserbad wird auf 50°C eingestellt. Wenn das Extrakt abkühlt, läuft wieder etwas Flüssig-

keit aus der Kolonne zurück, daher ist bis kurz unter die 1 mL-Marke einzuengen. Das Extrakt 

wird anschließend in ein GC-Headspace-Vial überführt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Dissgenehmigt.pdf
	AnhangDissgenehmigt.pdf

