
Local strategies for robot
formation problems

Dissertation
by

Barbara Kempkes

Faculty of Computer Science, Electrical Engineering and Mathematics
Department of Computer Science and Heinz Nixdorf Institute

University of Paderborn, Germany

March 2012

ii

Zusammenfassung
Wir betrachten eine Gruppe von mobilen, autonomen Robotern in einem ebenen
Gelände. Es gibt keine zentrale Steuerung und die Roboter müssen sich selbst ko-
ordinieren. Zentrale Herausforderung dabei ist, dass jeder Roboter nur seine un-
mittelbare Nachbarschaft sieht und auch nur mit Robotern in seiner unmittelbaren
Nachbarschaft kommunizieren kann. Daraus ergeben sich viele algorithmische Fra-
gestellungen. In dieser Arbeit wird untersucht, unter welchen Voraussetzungen die
Roboter sich auf einem Punkt versammeln bzw. eine Linie zwischen zwei festen Sta-
tionen bilden können. Dafür werden mehrere Roboter-Strategien in verschiedenen
Bewegungsmodellen vorgestellt. Diese Strategien werden auf ihre Effizienz hin un-
tersucht. Es werden obere und untere Schranken für die benötigte Anzahl Runden
und die Bewegungsdistanz gezeigt. In einigen Fällen wird außerdem die benötigte
Bewegungsdistanz mit derjenigen Bewegungsdistanz verglichen, die eine optimale
globale Strategie auf der gleichen Instanz benötigen würde. So werden kompetititve
Faktoren hergeleitet.

Reviewers:

• Prof. Dr. Friedhelm Meyer auf der Heide, University of Paderborn,
Germany

• Prof. Dr. Hans Kleine Büning, University of Paderborn, Germany

Acknowledgements
I would like to thank my supervisor Friedhelm Meyer auf der Heide for his great
support and for many motivating and fruitful discussions. Moreover, I would like
to thank my colleagues, especially Bastian Degener and Peter Pietrzyk. I enjoyed
working as well as spending time together. Last but not least, a big thank you goes
to my husband Jens Peter, to my family and to my friends for their overall support.
Paderborn, March 2012 Barbara Kempkes

Contents

1 Introduction 1
1.1 Related work . 4
1.2 Bibliography Note . 8

2 The Robot Chain Problem 11
2.1 Introduction . 11
2.2 Problem description and notation . 13
2.3 Strategies . 17

2.3.1 The Move-On-Bisector strategy 17
2.3.2 The Go-To-The-Middle strategy 19

2.4 Quality Measures . 20

3 The Robot Chain Problem: traveled distance 21
3.1 Validity of the Move-On-Bisector strategy 22
3.2 The O(l) upper bound . 24
3.3 The O((h+ d) log l) upper bound . 27

4 The Robot Chain Problem: both quality measures 33
4.1 The δ-bounded Go-To-The-Middle strategy 34

4.1.1 The worst-case number of rounds 36
4.1.2 Maximum distance traveled by a robot 46

4.2 The continuous Go-To-The-Middle strategy 52

5 The Gathering Problem 55
5.1 Introduction . 55
5.2 Problem description and notation . 56
5.3 Quality Measures . 59

iii

iv Contents

6 A first gathering algorithm 61
6.1 The algorithm MoveInCH . 61
6.2 Analysis of MoveInCH . 63
6.3 A local random activation model . 71
6.4 Conclusion . 72

7 An improved gathering algorithm 75
7.1 The algorithm Go-To-The-Center 75
7.2 The Lower Bound . 77
7.3 The Upper Bound . 78

7.3.1 Geometric Prerequisites . 80
7.3.2 Gathering Algorithm Analysis 83

8 Gathering regarding the traveled distance 89
8.1 The Gathering-Move-On-Bisector Strategy 90
8.2 Analysis of the strategy . 90

9 Conclusion and Outlook 99

Bibliography 103

C h a p t e r 1

Introduction

Envision a scenario, in which large teams of small and cheap mobile robots cooperate
in order to perform global tasks. In this thesis, the considered task is to build a
given formation out of an arbitrary configuration of initial positions. These kinds
of tasks are called robot formation problems. It is especially interesting to figure out
which sensor and actor capabilities are needed to build a given formation. Naturally,
the goal is to require as few capabilities as possible in order to be able to use robots
which are as cheap as possible. The focus of this thesis is especially on robots with a
limited viewing range: robots can only “see” other robots within a circle with a fixed
radius around their current positions. They have to decide where to move next only
based on this incomplete information about the configuration of the whole team of
robots. Nevertheless, the desired formation should be reached by the robots. This
restriction of a local view is a very natural restriction for teams of small robots in
large environments. Depending on the used technology, the viewing range of a robot
can be larger or smaller, but no small and simple robot can look arbitrarily far. It
is thus important to figure out which kinds of tasks can be solved by teams of such
robots.
The goal of this thesis is thus to investigate how efficient robot formation problems

can be solved by very simple robots with a local view: how far does the local view
restrict the coordination of the robots? The considered problems are all easy to
solve for robots with a global view and abilities as used in this thesis, but one single
robot with a local view often cannot even decide whether the desired formation has
already been reached. The challenge is therefore to coordinate the robots despite the
very limited information, such that the desired formation is nevertheless achieved
efficiently.
We introduce an approach to such formation problems that presents algorithms

on a sufficiently abstract level, so that correctness and efficiency proofs are possible.

1

2 Introduction

For this, we consider very simple models of robots and their environment: The
environment is a plane without obstacles. The robots are considered as points in
the plane, that is, they can neither block each other’s view nor path. Besides the
bounded viewing range, the robots have no common compass, and for many of our
algorithms, the robots are anonymous. That is, they do not need to distinguish
their neighbors. On the other hand, they can compute the exact relative positions
of their neighbors within their viewing range, i.e. the distances to and the angles
between the rays to these neighbors. Like most algorithms in the literature, we focus
on oblivious algorithms, that is, the robots do not use a memory to remember the
past. Moreover, most of our algorithms do not use communication. Thus a robot
has to base its decision where to move next solely on the currently observed relative
positions of its neighbors. If communication is used, the robots still cannot exchange
global information, since the oblivious robots forget the gained information. It can
only be used for local coordination.

The formation problems The formation problems considered in this thesis are the
robot chain problem and the gathering problem.
The robot chain problem is defined as follows: In addition to n mobile robots

v1, . . . , vn, two stationary robots v0 and vn+1 are given, which are called stations.
We assume that, in the beginning, vi−1 and vi+1 are in the viewing range of vi for
i = 1, ..., n. Moreover, the decisions of vi are only based on the relative positions
of its direct neighbors vi−1 and vi+1. Thus, the robots form a maybe winding chain
connecting the two stations. The goal is to let all robots move towards the straight
line between the two stations, the so-called target line.We will describe this problem
and the underlying models in detail in Section 2.2.
The gathering problem is to let the n mobile robots gather in one point. This

point is not prescribed, but the robots have to “agree” on a point based on their
movement. No fixed neighborhood is given, but the robots may use the positions
of all other robots within their viewing range, their neighbors, as basis for their
decisions. In order to achieve gathering, we only require that the neighborhood
graph, which has an edge between any pair of robots which are mutually visible, is
connected at the beginning. A formal problem and model description can be found
in Section 5.2.
These two problems capture two fundamentally different aspects of robot forma-

tion problems. Regarding the robot chain problem, the goal is to achieve a line as
formation, which is not trivial. On the other hand, explicit neighborhood informa-
tion is given to the robots, and the neighbors of a robot never change. This makes
the analysis easier. In contrast, the gathering problem is simpler in the sense that

3

the formation to be achieved is very simple, but then again, the neighbors of the
robots are not fixed and can change over time. This complicates the problem.

The model For each formation problem, we will present several algorithms or
strategies. All strategies adhere to the commonly used Look-Compute-Move (LCM)
model [CP04]. That is, when a robot is active, it first observes its environment
within its local viewing range (determines the relative positions of its neighbors),
then it uses this information for computing a point towards which it wants to move
(its target point) and finally it moves towards this previously computed target point.
The algorithm or strategy for a formation problem defines the Compute-Operation:
it takes the current positions of a robot’s neighbors as input and outputs the target
point.
The LCM model can be executed in several discrete and continuous, synchronous

and asynchronous time and execution models. The algorithms presented in this
thesis work in different of these time models. Therefore, the used time models will
be introduced in detail together with the algorithms for both formation problems
separately in the respective sections.
For a given strategy and a connected start configuration with n robots, we are

first interested in the correctness of the strategy, that is, whether the strategy keeps
the robot chain respectively the neighborhood graph connected. We are further
interested in the quality of our algorithms. Typically, the quality of algorithms for
robot formation problems is measured in terms of the number of rounds, where
a round captures the time until each robot has been active (at least) once. The
concrete definition depends on the time and execution model. We will also analyze
the quality of our algorithms with respect to this quality measure. Additionally, we
identify a second quality measure, which is the distance traveled by the robots. In
particular, we analyze the maximum of the total distances traveled by the robots
until the desired formation is reached, the maximum taken over the n robots. We will
refer to this quality measure as the (maximum) traveled distance or the movement
distance. This is a reasonable additional quality measure, since the distance traveled
by the robots can vary a lot from round to round. Intuitively, it is preferable to
keep the movement distance as small as possible. Moreover, energy is a major
limiting factor for mobile robots. In terms of energy, the number of rounds reflects
the number of neighborhood observations per robot. These can be expensive in
terms of energy depending on the used hardware, for example if the robots have to
stop moving before observing their surrounding. On the other hand, the movement
distance of a robot reflects the energy which is needed for moving the robot.

4 Introduction

Organization of the thesis After an overview over the related work, we will first
investigate the robot chain problem (Chapters 2 to 4). We start in Chapter 2
with an introduction and a formal problem description, and we describe the used
models and introduce our algorithms. Since the robot chain problem is well analyzed
with respect to the number of rounds, we focus on strategies which are designed
for reducing the maximum traveled distance (Chapter 3). For this, we introduce
a continuous time and movement model, where the robots need to observe their
neighborhood continuously and at all times. In this model, the notion of a round
does not exist, and we only analyze the maximum traveled distance. Therefore, in
Chapter 4, we combine both quality measures by using a discrete time model with a
bound on the distance the robots may travel per round. We present one strategy for
this scenario and analyze it with respect to both quality measures. We show that
for the described strategy, no trade-off is required, but both the number of rounds
and the maximum traveled distance can be minimized at the same time.
Chapters 5 to 8 are devoted to the gathering problem. We start again with an

introduction, problem and model description (Chapter 5). Since to the best of our
knowledge no analysis of the needed number of rounds is known for the gathering
problem except for the ones presented in this thesis, we lay our main focus on the
number of rounds. We present two algorithms, which both perform well regarding
the number of rounds. The first one, which is described and analyzed in Chapter 6,
constitutes a first algorithm with a known bound on the number of rounds needed.
This is to the drawback that the robots need to be rather powerful, though still
only local information is needed. The second algorithm (Chapter 7) compensates
this drawback. The algorithm was already introduced in [ASY95, AOSY99, MS08]
and it was shown that the robots gather, but so far no bounds on the time needed
for gathering were known. We deliver this analysis and present a tight runtime
bound. Finally, Chapter 8 considers gathering with respect to the maximum traveled
distance. Similar to Chapter 3 for the robot chain problem, we use a continuous time
model, and present an algorithm with very good bounds on the maximum traveled
distance.
Chapter 9 concludes this thesis and raises open questions.

1.1 Related work
Several robot formation problems are considered from different perspectives in the
literature. Examples for such problems, besides the robot chain problem and the
gathering problem, are the convergence problem [SY99, CP05, CLDF+11a, Kat11]
and the circle formation problem [DK02, CMN04]. The convergence problem is a

1.1 Related work 5

relaxed version of the gathering problem, with the difference that the robots do not
need to reach a common point in finite time, but that they only need to converge
to it. The goal of the circle formation problem is, as its name indicates, that the
robots form a circle. A lot of effort has been put into pinpointing sets of needed
robot capabilities in different time and movement models, such that the desired
formation can be achieved. In many cases, a theoretical analysis or simulations
are used to show that, with a specific algorithm and specific robot capabilities,
the formation is reached, but statements about the quality of an algorithm are
quite rare. Furthermore, there are several negative results, which show that some
sets of capabilities are not sufficient to reach the formation. At this point, we
want to highlight one publication which provides runtime bounds. Chazelle [Cha09]
investigates the flocking problem, where a group of robots moves in some direction.
Each robot realigns its movement direction and speed with those robots surrounding
it. This problem has been investigated in several publications, and several algorithms
and models have been proposed for this problem [JLM03, SWC05, Rey87], which
show that the robots converge to the same movement direction and speed. Chazelle
proves that, surprisingly, the convergence time is exponential for the most common
models. Thus, it is especially interesting to analyze the time needed for robot
formation problems in a local setting.

The robot capabilities which are needed to achieve a formation depend heavily on
the time and execution model. Several such models were proposed. We will shortly
describe the most common models here, but a detailed description of the models
which we use in this thesis can be found in the respective sections. The synchronous
model assumes that all robots are active and perform their algorithm concurrently
[ASY95, DKLM06]. A relaxation is the semi-synchronous model, which was for ex-
ample used in [DP09]. For this model, at a given point of time, a subset of the robots
is activated. These robots perform the algorithm synchronously. Then a new subset
of robots is activated. Asynchronous models are often used, if no runtime bounds
but only termination is considered. There exist several variants of asynchronous
execution models. A very general model (see for example [CP04, CFPS03]) assumes
that the internal clocks of the robots are completely independent from each other.
Robots may become active at any time, their algorithm executions may be split over
several activation periods. The only restriction is that, on an infinite time scale, ev-
ery robot is activated infinitely often. This fairness assumption is necessary, since if
some robots stop being activated at some point of time, the robots have no chance
of reaching the desired formation. Another asynchronous model activates the robots
one at a time, such that no two robots are active concurrently. It was for example
used in [MS08]. The execution of the algorithm cannot be split in several steps, but

6 Introduction

when a robot is active, it executes the complete algorithm. The order of activation
can be determined by an adversary or randomly. Time in such a setting is typically
defined in terms of rounds. A round finishes as soon as every robot was active at
least once. Such asynchronous models are often used to concentrate on the consid-
ered problem by excluding the issue of concurrency, and therefore maybe interfering
activations. This problem is often crucial with a synchronous time model. In this
case, symmetry breaking techniques have to be used in order to deal with neighbors
interfering in the execution of the algorithm.

Due to their simplicity, a focus of the literature is on the gathering and the con-
vergence problem. They have gained a lot of interest during the last 15 years. Many
authors have studied robots which have a global view of the positions of the other
robots [SY93, SY99]. Several articles have been published for the fully asynchronous
setting, where the robots do not have a common notion of time. Cohen and Peleg
showed that moving to the center of gravity of the robots leads to convergence,
even in highly asynchronous models [CP04, CP05]. They also showed several run-
time bounds which depend on the execution models. Some of these runtime bounds
have been improved in [CLDF+11a]. Furthermore, in [IIKO09] exponential lower
bounds for the convergence of a certain class of randomized algorithms are shown.
In [CFPS03], an algorithm was given that solves the gathering problem in a global
and asynchronous setting, if the robots are able to detect whether there is more
than one robot at a given point (multiplicity detection). Besides that, the robots
are oblivious, they have no identities and no common coordinate system. In [DP09],
it was shown that robots which are anonymous, do not have a common compass, are
oblivious and cannot communicate, but which have a global view, are able to gather
in the semi-synchronous model if and only if n is odd. In [SDY06] and [IKIW07],
the effect of compass models was studied under various aspects. [Pre07] investi-
gated situations in which the robots cannot gather. If at least one robot behaves
maliciously, gathering is not possible in an asynchronous setting with three robots
[AP04]. The authors also introduced an algorithm which gathers the robots in a
synchronous setting if n ≥ 3f + 1, where f denotes the number of faulty robots.
In [CGP09], the authors did not only restrict the robots by prohibiting communi-
cation, memory and a common coordinate system, but they also use robots which
have an extent. The challenge here is that the view of a robot can be blocked by
another robot. [CLDF+11b] also considered gathering of robots with an extent in a
synchronous execution model. Here, the robots are not allowed to collide. The goal
is to let the robots move as close together as possible. A runtime bound of O(nR)
is stated for a grid terrain, with n being the number of robots and R the diameter
of the start configuration. There is also work for gathering on graphs instead of

1.1 Related work 7

Euclidean spaces [DFKP06, KMP08, Mar09].

The gathering problem in the local setting was already tackled some time ago
by Ando, Suzuki and Yamashita [ASY95]. Their robots move to the center of the
smallest enclosing circle of their neighbors’ locations. This target point definition
guarantees that connectivity is maintained if no two robots are activated at the same
time. But it can be easily seen that connectivity is not necessarily maintained in the
synchronous setting. To overcome this problem, the authors restrict the distance
that a robot moves towards its target point in a clever way, such that connectivity is
guaranteed even under worst-case movement of the other robots performing the same
algorithm. Furthermore, Ando, Suzuki and Yamashita showed that their algorithm
allows the robots to gather in a finite number of rounds. Beyond this result, no
runtime bounds were given. A follow-up article [AOSY99] evaluated the quality of
their algorithm in a more realistic environment, where sensor data is not perfectly
accurate, and suggested that the algorithm is robust against measurement errors
of the sensors. The same algorithm, but in an asynchronous setting, was used by
Meyer auf der Heide and Schneider in [MS08]. Here, the robots only move one at a
time, and so the connectivity is maintained because the moving robots never moves
out of sight of its neighbors. It is shown that the robots also gather in this setting.
Furthermore, if some stationary nodes exist, the robots converge to the convex hull
of these nodes. But again, no runtime bounds are given. We will analyze the runtime
of the synchronous variant of this algorithm in Chapter 6.

Some further results exist for the gathering or convergence problem with a local
viewing range. Flocchini, Prencipe, Santoro and Widmayer [FPSW05] showed that
having a common orientation among the robots is sufficient to solve the gathering
problem with a bounded viewing range in finite time in the fully asynchronous
model. Katreniak [Kat11] also considered robots in the fully asynchronous setting
with one restriction: During one LCM round of one robot, each other robot may
start at most one of such rounds. That is, between two Look-Operations of one
robot, each other robot may perform at most one Look-Operation. Besides having
a limited viewing range, the robots are oblivious, do not have a common coordinate
system, no identities and no communication. The presented algorithm solves the
convergence problem in finite time. No runtime bounds are given.

The robot chain problem has also been considered before. In [DKLM06], Dynia,
Kutylowski, Lorek and Meyer auf der Heide presented an intuitive strategy for a
synchronous execution model: robots move synchronously to the old mid position
of their neighbors. With this strategy, the robots converge to the line between the
stations in Θ(n2 log n) rounds (see [DKLM06] for the upper and [KM11] for the
lower bound). A second strategy was introduced by Dynia, Kutylowski, Meyer auf

8 Introduction

der Heide and Schrieb in [DKMS07]. This strategy achieves a linear runtime, but
in exchange the robots need to know global coordinates as well as the position of
one station. In [KM09], Kutylowski and Meyer auf der Heide introduced the more
complicated and faster Hopper-strategy. The idea is to let the robots hop over the
midpoint between their two neighbors. Moreover, the strategy excludes robots from
the chain if they are not needed for connectivity. This can also be seen as fusing
two robots into one robot, a concept, which we will also use in this thesis.These
operations combined with Go-To-The-Middle-steps leads to a runtime of Θ(n)
rounds until the sum of the distances between the robots is at most

√
2 times the

distance between the stations. The strategy does not guarantee that the robots
converge to the line between the stations, but its runtime is asymptotically optimal.
For an overview of these strategies refer to the dissertation of Jaroslaw Kutylowski
[Kut07].
A similar problem has been considered experimentally [NPR+03, NPGF04, PNB07,

STM10]. While one robot enters a building or becomes shielded by intervening ter-
rain, a team of mobile relay robots maintains a communication chain to a base
station. Some strategies for the relay robots have been tested on real robots. In
[MS08], a local algorithm for a more general problem was considered: robots are
distributed in the plane and have to shorten a communication network between sev-
eral base stations. They have to base their decision on where to move in the next
round on the relative position of all robots currently within distance 1.

1.2 Bibliography Note

Many of the results presented in this thesis have already been published in a prelim-
inary version in conference proceedings. The analysis of the communication chain
problem with respect to the movement distance (Chapter 3) has been first presented
in
Bastian Degener, Barbara Kempkes, Peter Kling, and Friedhelm Meyer auf der
Heide. A continuous, local strategy for constructing a short chain of mobile robots.
In SIROCCO ’10: Proceedings of the 17th International Colloquium on Structural
Information and Communication Complexity, pages 168-182, 2010 [DKKM10].
Parts of the analysis for both quality measures (Chapter 4) were investigated in

Philipp Brandes, Bastian Degener, Barbara Kempkes, and Friedhelm Meyer auf der
Heide. Energy-efficient strategies for building short chains of mobile robots locally.
In SIROCCO ’11: Proceedings of the 18th International Colloquium on Structural
Information and Communication Complexity, pages 138-149, 2011 [BDKM11a].

1.2 Bibliography Note 9

An extended version of this paper has been invited for submission to a special issue
of the Theoretical Computer Science Journal [BDKM11b]. Regarding the gathering
problem, the algorithm presented in Chapter 6 was introduced and analyzed in
Bastian Degener, Barbara Kempkes, and Friedhelm Meyer auf der Heide. A local
O(n2) gathering algorithm. In SPAA ’10: Proceedings of the 22nd ACM symposium
on parallelism in algorithms and architectures, pages 217-223, 2010 [DKM10].
The analysis of the algorithm which is presented in Chapter 7 was published in

Bastian Degener, Barbara Kempkes, Tobias Langner, Friedhelm Meyer auf der Heide,
Peter Pietrzyk, and Roger Wattenhofer. A tight runtime bound for synchronous
gathering of autonomous robots with limited visibility. In SPAA ’11: Proceedings
of the 23rd annual ACM symposium on parallel algorithms and architectures, pages
139-147, 2011 [DKL+11].
The results presented in Chapter 8 have not been published yet.

C h a p t e r 2

The Robot Chain Problem

2.1 Introduction
We envision a scenario where two stationary devices (stations) and n mobile robots
are placed in the plane. Each mobile robot has two neighbors (mobile robot or
station) such that they form a chain between the stations, which can be arbitrarily
winding and may intersect itself. Each robot has a limited viewing range of 1, that
is, it can see its neighbors in the chain only if they are within distance 1 of itself.
We assume that this is guaranteed in the beginning: Each pair of robots, which are
neighbors in the chain, starts within distance 1 of each other. The goal is to design
and analyze strategies for the mobile robots in order to minimize the length of the
chain by moving the robots to the straight line between the stations (the target line),
while always keeping the robots within viewing range of their neighbors. Each robot
has to base its decision where to move solely on the current position of the neighbors
in the chain— no global view, communication or long term memory is provided.
So far, the robot chain problem was analyzed in a synchronous setting with respect

to the number of rounds needed until a straight line is almost achieved [DKLM06,
DKMS07, KM09, KM11]. All strategies act according to the synchronous LCM
computation model (Look-Compute-Move, see [CP04]). That is, for a given round t,
first all robots observe their environment (determine the positions of their neighbors)
at the same time, then they use this information for computing a point towards which
they want to move and then all robots move towards this previously computed point
at the same time. The robots only continue when all robots have finished their
movement.
The simplest strategy, Go-To-The-Middle, was presented in [DKLM06]. Here,

in each synchronous round, each robot moves to the middle between the old positions
of its neighbors. It was shown that the robots converge to equally distributed points

11

12 The Robot Chain Problem

on the line between the stations, while they need Θ(n2 log n) rounds in the worst
case until all robots are within distance 1 of the line (see [DKLM06] for the upper
and [KM11] for the lower bound). As it does not make sense for the robots with a
viewing range of 1 to move more than a distance of 1 per round, and as they can be
at most in distance n/2 from the target line due to the chain being connected (the
robots are in viewing range of each other), this strategy loses a factor of O(n log n)
rounds compared to an algorithm which knows the global situation.
Therefore, a second strategy, the Chase-Explorer-strategy, was presented in

[DKMS07]. It is shown that the robots can converge to the line between the stations
in linear time, if all robots know the position of the same station with respect to
their own local coordinate system. But this is a clearly non-local information.
To overcome this lack of locality, the Hopper-strategy was introduced in [KM09].

This strategy does not let the robots converge to the target line, but it guarantees
that the length of the chain (and the number of robots) is linear in the length of the
target line after a linear number of rounds. For this, robots must have the ability to
fuse with neighboring robots. This means that a robot moves to the position of one
of its neighbors, and the two robots act like one robot from then on. The strategy is
executed in sequential runs started at one station. A robot moves in the round after
its predecessor has moved. These runs can be pipelined and are started in every
third round. The idea of the strategy is to fuse a robot with one of its neighbors if
its neighbors are within visibility range of each other, or otherwise to either move
to or hop over the middle between its neighbors.
All of these strategies were analyzed with respect to the number of rounds. But,

as described in the introduction, the movement distance is also a reasonable quality
measure. To the best of our knowledge, the robot chain problem has not been
considered with respect to the movement distance yet. The goal of this chapter is to
tackle the robot chain problem integrating both quality measures. That is, we want
to have strategies which keep both the number of rounds as well as the traveled
distance small.
As Hopper does not let the robots converge to the target line, Go-To-The-

Middle and Hopper are not comparable: There are configurations which cannot
be improved by Hopper, but which still need Ω(n2) rounds with Go-To-The-
Middle until all robots are in distance 1 of the point to which they converge. In
this thesis, we concentrate on strategies which are very simple with respect to the
needed robot abilities, and which let the robots converge to the target line.

Outline As all known strategies were designed to minimize the number of rounds,
our first question is what happens if we do it the other way round: We ignore

2.2 Problem description and notation 13

the number of rounds by using a continuous time model and allowing the robots
to observe their environment and the positions of their neighbors continuously and
all the time. For this model, we design a strategy called Move-On-Bisector
which we analyze thoroughly with respect to the movement distance (Chapter 3).
As noted above, robots can be at most in distance n/2 from the target line. In
the worst-case, strategies can therefore never be better than linear in n. We show
that Move-On-Bisector reaches this bound, but we go even further: We show
that Move-On-Bisector is better for configurations in which the robots already
start close to the target line. In particular, we show that the maximum movement
distance over all robots is upper bounded by O(min{n, (OPT + d) log(n)}), where
OPT describes the maximum distance to be covered by robots with global view,
and d the distance between the stations.
Then we turn towards the Go-To-The-Middle-strategy and the discrete and

synchronous LCM model. The analysis for Go-To-The-Middle [DKLM06] al-
ready shows an upper bound of O(n2 log n) for the number of rounds. Moreover,
as the robots move at most a distance of 1 per round, the maximum movement
distance is also upper bounded by O(n2 log n). The strategy typically starts with
large step sizes per round, while the step sizes become very small when the robots
are close to the target line. We show that the maximum movement distance can
nevertheless be Ω(n2) and therefore a lot worse than that of Move-On-Bisector.
But the movement distance can be improved if we change the strategy by bounding
the step size of each robot by δ. We show that the movement distance decreases
to O(n) when using the continuous time model, but the main result is that for this
strategy, we do not have to trade between the quality measures: By setting δ to
Θ(1/n), the number of rounds worsens only by constant factors compared to the
original strategy and stays at Θ(n2 log n), while the movement distance reduces to
O(n).
Before we start with the analyses of the algorithms in Chapters 3 and 4, we now

give details about the underlying model and the notation (Section 2.2), introduce
the strategies (Section 2.3) and describe our quality measures in detail (Section 2.4).

2.2 Problem description and notation
We consider a set of n + 2 robots v0, v1, . . . , vn+1 in the two-dimensional Euclidean
plane R2. The robots v0 and vn+1 are stationary and will be referred to as base
stations or simply stations, while we can control the movement of the remaining n
robots v1, v2, . . . , vn. In the beginning, the robots form a chain, where each robot
vi is neighbor of the robots vi−1 (its left neighbor) and vi+1 (its right neighbor).

14 The Robot Chain Problem

The chain may be arbitrarily winding in the beginning. The goal is to optimize
the length of the robot chain in a distributed way, where the length refers to the
sum of the distances between neighboring robots. That is, we want to let the robots
move to or converge to the line between the stations (the target line), such that each
robot is positioned between its left and its right neighbor. We are constrained in
that the robots have a limited viewing range, which we set to 1. The robot chain is
therefore connected if and only if for each two neighbors in the chain, the distance
between them is less than or equal to 1. We assume that the chain is connected in
the beginning. We say that a strategy for the robots is valid if it keeps the chain
connected.
We want the robots to be as simple as possible in the sense that they do not

need to have many abilities. In particular, our robots use only information from
the current point of time (they are oblivious), share no common sense of direction
and communicate only by observing the positions of their two neighbors. These
observations are bounded to a local viewing range with radius 1 around the posi-
tion of a robot. However, we require that the robots are able to distinguish their
neighbors from the remaining robots in the robot chain (it is not necessary to dis-
tinguish the two neighbors from each other). On the other hand, we abstract from
technical issues. In particular, we assume the robots to be able to measure positions
of neighbors relative to their own position accurately, they can compute geometric
properties and they can occupy the same position as other robots.

Time and movement models All our time models are based on the discrete LCM
model as described in the introduction (Section 2.1). The classical model (see for
example [CP04]) is as follows. During one round, all robots first observe the positions
of their two neighbors relative to their own position (Look-Operation). Then they
compute a target point (Compute-Operation), where the algorithm which determines
the target point only gets the current positions of the two neighbors as input. Finally,
all robots move to their previously computed target point (Move-Operation). The
round ends as soon as all robots have reached their target point.
In order to reduce the movement distance, the idea of our strategies is to increase

the number of Look-Operations and therefore the number of rounds. In order to do
so, in Chapter 4 we restrict the robots performing Go-To-The-Middle to move
at most a distance of δ during one round. If a target point is in distance more than δ
from the robot, it moves a distance of exactly δ towards its target point. Otherwise,
the robot stops its movement as soon as it has reached its target point.
In Chapter 3, we introduce a strategy for which the robots need to observe their

neighbors continuously at all times. The underlying model can be viewed as the

2.2 Problem description and notation 15

LCM model with a movement restriction to δ per round with δ → 0 and a speed
limit of 1, yielding a continuous time model. That is, time passes in a continuous
way and is not modeled by discrete time steps. Robots continuously observe the
positions of their neighbors and adjust their trajectory and speed accordingly. As the
robots only move in direction of their target point, the target point can be exchanged
by a target direction. That is, at a fixed time t, a robot observes the positions of
its neighbors and computes a direction in which it wants to move. Both operations
need zero time. Then it moves in the computed direction. As a result, robots
can move in curves and (by the definition of the time model) could even change
the movement direction in a non-continuous way. We will see that this is not the
case for the Move-On-Bisector-strategy. Here, the movement direction changes
continuously, although speed adjustment can also occur in a non-continuous way.
For this continuous time model, we can analyze the traveled distance, but rounds
do not exist in this model. When seeing it as LCM model with δ → 0, one can also
interpret each point in time as one round. From this point of view, the number of
rounds in this model is infinite.

Notation Given a time t ≥ 0 or a round t ∈ N0, the position of robot vi at this
time is denoted by vi(t) ∈ R2. If not stated otherwise, we will assume v0(0) = (0, 0)
and vn+1(0) = (d, 0), d ∈ R≥0 denoting the distance between the two base stations.
To refer to the x- or y- coordinate of robot vi at the end of a specific round or at
a specific time t, we will use xi(t) and yi(t) respectively. We say that a robot vi
is in k hops from a robot vj if |i − j| = k. A fixed placement of the robots (their
positions at the end of round t) is called a configuration. In the discrete model,
robots move during one round. While the configuration at time 0 is called the start
configuration, robots move for the first time in the first round. The configuration at
time 1 is therefore the configuration after the first movement. We call di(t), t ∈ N≥1,
the distance vi travels in round t.
The vector connecting two neighboring robots vi−1 and vi will be denoted by

wi(t) := vi(t)− vi−1(t) for i = 1, 2, . . . , n+ 1. Moreover, let αi(t) ≥ 0 be the smaller
of the two angles formed by the vectors −wi(t) and wi+1(t). We will furthermore
denote the scalar product of two vectors a and b simply by a · b and the length of a
vector a by ||a||.
Furthermore, we define two properties for a given configuration:

Definition 2.1 (height). The height h(t) of a configuration at time t is the maxi-
mum distance between a robot in time t and the target line between the stations.

Definition 2.2 (length). The length l(t) of a configuration at time t is defined as
the sum of the distances between neighboring robots: l(t) := ∑n+1

i=1 ||wi(t)||.

16 The Robot Chain Problem

v0 = (0, 0)

v1

v2

v3 vn+1 = (d, 0)

vn

α1

α3

w1

w3
w

2

α2

v4

Figure 2.1: Notation for the robot chain problem. For clarity we omitted the time
parameter t.

h(t)

h(t)
v0 vn+1d

Figure 2.2: Illustration of the height h(t) of a configuration.

Let l := l(0) and h := h(0). Clearly, the starting height h is a lower bound for the
distance to be covered by an optimal global algorithm. The length of a configuration
is also a natural quantity to measure its quality: a winding chain is relatively long
compared to a straight line. Since the distance between two robots may be at most
1, it holds that h ≤ l

2 and l ≤ n+1. See Figure 2.1 and Figure 2.2 for an illustration
of the notions defined in this section.

For the discrete model, we define di(t) := ||vi(t) − vi(t − 1)|| to be the distance
covered by robot vi in the t-th round. Furthermore we set di := ∑∞

t=1 di(t) to the
overall distance traveled by robot vi.

2.3 Strategies 17

2.3 Strategies
Now we have all preliminaries to describe all strategies formally. We start with
the Move-On-Bisector strategy, which works in the continuous time model and
will be analyzed in Chapter 3. Then we introduce variants of the Go-To-The-
Middle strategy, which will be used to improve the movement distance of Go-To-
The-Middle in Chapter 4.

2.3.1 The Move-On-Bisector strategy
The Move-On-Bisector strategy works in the continuous time model. That is,
for each point of time t and a robot vi, the strategy determines a movement direction
and speed, given as the velocity vector of robot vi. The goal is to see how far we can
reduce the maximum traveled distance when we allow the robots to observe their
neighborhood continuously and all the time.

(a) Start configuration

(b) End configuration and movement path

Figure 2.3: Example for Move-On-Bisector with one robot

The strategy works as follows. First consider those robots that have not yet
reached the straight line between their two neighbors. We say that those robots
are in phase 1. They move with maximum speed 1 in direction of the bisector of
the angle αi formed by the vectors pointing towards their two neighbors. As soon
as a robot reaches the line between its neighbors, it adapts its velocity to stay on
this (moving) line keeping the ratio between the distances to its neighbors constant
(we say that the robot is in phase 2). Since the neighbors are also restricted to the
maximum speed of 1, this is always possible: a robot will not have to move faster

18 The Robot Chain Problem

(a) Start configuration (b) Intermediate configuration and movement
paths

(c) End configuration and movement paths

Figure 2.4: Example for Move-On-Bisector with several robots which start in
equal distances from their neighbors

than with speed 1 to stay on this line and to keep the ratio. Note that a robot never
leaves the line between its neighbors again, it will therefore stay in phase 2 forever.
Note further that with this strategy, the robots actually reach the line between their
neighbors. Equally, they reach a point on the target line between the stations and
do not only converge to it. Once all robots have reached such a point, they stop
moving. We call this point the end position of a robot vi. Moreover, we call the
time when the last robot reaches its end position the finishing time.
One special situation can occur: If two neighboring robots vi and vj are at the

same position at the same time, both take the other neighbor of vj or vi respectively
as their new neighbor. Then, both robots have the same neighbors and will stay
together from now on. This can be seen as two robots fusing into one robot, a
concept, which we will use for the analysis of our gathering algorithms in Chapters 6
and 7. For the sake of clarity, we will ignore such situations in the analysis of Move-

2.3.2 The Go-To-The-Middle strategy 19

On-Bisector.
Since robots which have reached the second phase stay in this phase until the end,

all robots have reached the final line between the two stations as soon as all robots
are in the second phase. Thus, the last robot reaching the second phase always
moves with maximum speed 1. It follows that the maximum distance traveled by a
robot is equal to the time until all robots have reached the target line.

2.3.2 The Go-To-The-Middle strategy

Now we describe the three variants of the Go-To-The-Middle-strategy ([DKLM06]),
which we will analyze in Chapter 4. 1-GTM is the original Go-To-The-Middle-
strategy, which moves all robots close to the target line in a reasonable number of
rounds. On the other hand, we will show that the traveled distance is rather high.
Continuous-GTM, a continuous variant of Go-To-The-Middle, is the other ex-
treme: the number of rounds is not defined, but we will show that the traveled
distance is small. δ-GTM, finally, is to take into account both quality measures: the
traveled distance and the number of rounds.

δ-GTM We use the synchronous LCM model with rounds t ∈ N0. In each round,
each robot computes the midpoint between its two neighbors. We will call
this point the robot’s target point. The robot moves towards its target point.
However, we bound the distance the robots cover in one round to δ ∈ (0, 1].
This implies that a robot vi will reach its target point only if it is within
distance δ of its own position. If this is not the case, the robot will move
exactly a distance of δ towards it.

1-GTM This strategy is the original GTM-strategy from [DKLM06] and a special
case of δ-GTM with δ = 1. The robots always reach their target points. This
strategy has already been intensively studied with respect to the number of
rounds (for an overview, see [Kut07]), but the traveled distance has not been
investigated before.

Continuous-GTM This strategy works in the continuous time model. As long as
a robot vi has not yet reached its target point, which is again the midpoint
between its neighbors, it moves towards it with velocity 1. Once it has reached
its target point, it adapts its velocity vector to stay in the middle between its
two neighbors. This strategy can be viewed as arising from δ-GTM when
δ → 0 with a speed limit of 1.

20 The Robot Chain Problem

We will show that with all of the considered strategies, the robots converge towards
or even reach a stable configuration with all robots being positioned on the line
between the two base stations. This position a robot converges to or reaches will be
called its end position.

2.4 Quality Measures
We want to measure the quality of the algorithms in terms of the number of rounds
as well as the traveled distance.
When using the discrete time model and (variants of) Go-To-The-Middle, the

robots only converge to their end positions, and the number of rounds is unbounded.
Instead, we will measure the number of rounds until all robots are in distance 1 of
their end positions. For all strategies in the continuous time model, the number of
rounds is not defined. We thus only analyze the maximum movement distance for
these strategies, using this model to show how far the movement distance can be
reduced when letting the number of rounds go to infinity.
Regarding the movement distance, we upper bound the maximum of the total

distances traveled by the robots, the maximum taken over all robots. For the con-
tinuous strategies, the maximum traveled distance is a fixed value for a fixed start
configuration, since the robots reach their end positions. When using δ-GTM or
1-GTM, the robots only converge to their end positions. But this means that the
distance traveled by the robots also converges to a fixed value, and therefore we
can upper bound it. In order to have comparable measures, we will lower bound
the maximum traveled distance until all robots are in distance at most 1 from their
end position. We will see that the upper and lower bounds for the traveled distance
match asymptotically. That is, the distance traveled by the robots when they are
already close to their end position can be neglected.

C h a p t e r 3

The Robot Chain Problem: traveled
distance

In this chapter we want to tackle the question how far the movement distance can be
reduced, when the number of rounds is ignored. On the one hand, this shows how
far we can hope to reduce the movement distance when considering both quality
measures. On the other hand, this also makes sense if a robot type is used for which
the movement distance is the major factor which determines the energy consumption
of the robot, and which is able to continuously observe its environment. For the sake
of analyzing the movement distance, we have introduced the Move-On-Bisector
strategy in Section 2.3.1, which works in the continuous time model. We will first
prove that it is valid in terms of connectedness: If neighbors are originally in distance
at most 1, they will remain in distance at most 1 when performing the Move-On-
Bisector-strategy. Then we show bounds on the maximum distance a robot can
travel. Since the robots move with velocity 1 as long as they have not yet reached
the line between their neighbors, this distance is equal to the time needed until all
robots are on the straight line between the stations (the finishing time).
Unlike most strategies considered for similar problems, we use a continuous time

model. Therefore, we are not given a classical round model, but rather all robots
can perpetually and at the same time measure and adjust their movement paths,
leading to curves as trajectories for the robots. Although this model fits to real
applications [NPR+03] and has also interesting and important theoretical aspects,
surprisingly, to our knowledge, it has only once been considered theoretically for a
formation problem [GWB04]. The authors give an algorithm which gathers robots
in one point in finite time, but they do not give any further runtime bounds. One
reason for not using a continuous time model might be that completely different
techniques of analysis have to be applied than for usual discrete models. We are

21

22 The Robot Chain Problem: traveled distance

optimistic that the techniques for analysis which we develop in this thesis have the
potential to be applied to other continuous formation problems. In Chapter 8 we
show that they can be directly applied to the gathering problem.
This chapter is divided into three major parts: in Section 3.1 we show that the

Move-On-Bisector-strategy maintains a valid chain, such that the robots stay
in viewing range of their neighbors. Then we analyze the time and equally the
maximum traveled distance needed until all robots are positioned on the line between
the two stations: First we show an upper bound for the maximum traveled distance
of O(l). This bound is tight for configurations in which some robots are far away
from their final destination, that is, the height is only by a constant factor smaller
than the length of the chain (Section 3.2). Clearly, a global algorithm also needs
long to optimize those chains. Moreover, since l ≤ n, an upper bound of O(n)
follows. Remember that h is a lower bound for the time needed by an optimal
global algorithm. Since there are configurations with h ∈ Ω(n), this bound shows
that Move-On-Bisector is asymptotically optimal for worst-case configurations.
In Section 3.3 we proceed to the main result. We show that configurations that
are solved fast by an optimal global algorithm are also handled fast by Move-On-
Bisector. In particular, we show an upper bound of O((h+ d) log l). This bound
shows that Move-On-Bisector is O(log n) competitive compared to an optimal
global algorithm, if d is sufficiently small.

3.1 Validity of the Move-On-Bisector strategy
Let us first consider two robots vi and vj with j > i at a time when neither vi nor
vj have reached the line between their neighbors, but every robot vk with i < k < j

has. That is, the robots vk form a straight line between vi and vj. We will show
that the distance between vi and vj decreases with non-negative speed. Given that
all robots vk between vi and vj maintain the ratio between the distances to their
corresponding neighbors, this implies that the distance between any two neighboring
robots is monotonically decreasing, and thus the chain stays connected and the
Move-On-Bisector-strategy is valid. We start by considering the case that both,
vi and vj, are mobile (not stations).

Lemma 3.1. Given two robots vi and vj as described above at an arbitrary time t0,
their distance decreases with speed cos αi(t0)

2 + cos αj(t0)
2 ≥ 0.

Proof. We define D : R≥0 → R2, t 7→ vj − vi and d : R≥0 → R≥0, t 7→ ||D(t)||.
That is, D(t) is the vector from vi to vj and d(t) the distance between vi and vj at
time t. We want to show that d′(t0) = −

(
cos αi(t0)

2 + cos αj(t0)
2

)
for an arbitrary but

3.1 Validity of the Move-On-Bisector strategy 23

vi

vj
D(t)

1

vi−1

vi+1
αi/2

v�i

vj+1

αj/2

v�j

vj−1

Figure 3.1: Illustration of vi’s and vj’s velocity vectors v′i and v′j.

fixed point of time t0. We will refer to the x- and y-component of D(t) ∈ R2 in the
following by Dx(t) and Dy(t) respectively.
By translating and rotating the coordinate system, we can w.l.o.g. assume vi(t0) =

(0, 0) and vj(t0) = (d(t0), 0). Due to the definition of the Move-On-Bisector
strategy, the velocity vectors of vi and vj at time t0 are given by:

v′i(t0) =
(
+ cos αi(t0)

2 ,± sin αi(t0)
2

)
v′j(t0) =

(
− cos αj(t0)

2 ,± sin αj(t0)
2

)
See Fig. 3.1 for an illustration.
Basic analysis now gives us the following equation for the first derivation of d at

a time t ∈ R≥0
1:

d′(t) =
(
Dx(t)
d(t)

Dy(t)
d(t)

)
·
(
D′x(t)
D′y(t)

)
Using that we have Dy(t0) = 0 and Dx(t0) = d(t0) we finally get

d′(t0) = D′x(t0) = (vj − vi)′(t0) = v′j(t0)− v′i(t0)
= −

(
cos αi(t0)

2 + cos αj(t0)
2

)
.

Therefore, the distance between vi and vj changes at time t with speed cos(αi(t0)
2) +

cos(αj(t0)
2). Furthermore, since we have αi(t) ∈ [0, π] for any t ∈ R≥0 and i ∈

{1, . . . , n}, this speed is indeed positive and the distance decreases.

A similar result holds if either vi or vj is a station. Since this can be proven
completely analogously to Lemma 3.1, we will omit the proof and merely state the
corresponding result.
1 Remember that we assume d(t) 6= 0 (see the description of the Move-On-Bisector-strategy
in Section 2.3.1).

24 The Robot Chain Problem: traveled distance

Lemma 3.2. Consider two robots vi and vj at an arbitrary time t0, one of them
being a station and the other a robot not yet having reached the line between its
neighbors. Then their distance decreases with speed cos αj(t0)

2 ≥ 0.

Now, we have the preliminaries to state the validity of the Move-On-Bisector
strategy.

Theorem 3.3. The Move-On-Bisector strategy is valid. That is, if the robot
chain is connected at time t and all robots perform the Move-On-Bisector strat-
egy, the robot chain remains connected for any time t′ ≥ t.

Proof. As described above, the statement follows immediately from Lemma 3.1 and
3.2 together with the fact that any robot that has already reached the line between
its neighbors will move such that it maintains the ratio between the distances to its
two neighbors.

3.2 The O(l) upper bound

We continue by analyzing how long it will take for all robots to reach the straight
line between the two stations. We will derive a time bound of O(l), l denoting
the length of the robots’ initial configuration. Because h ≤ l/2 and l = O(n)
(the distance of neighboring robots is bounded by 1), this immediately implies a
linear bound O(n) on the time until the optimal configuration is reached. Since
there are start configurations with a height of Ω(n) and h is a lower bound even
for the time needed by an optimal global algorithm, the Move-On-Bisector-
strategy is asymptotically optimal for worst case start configurations. The next
section will show a tighter bound for configurations, where the height is relatively
small compared to the length of the configuration.
In the following, we will show that either the length l or the height h of the robot

chain decreases with constant speed. Since both are furthermore monotonically
decreasing and bounded from below, this implies that the optimum configuration
will be reached in time O(h + l) = O(l). We begin with the monotonicity of the
height.

Lemma 3.4. The height of the robot chain is monotonically decreasing and bounded
from below by 0.

3.2 The O(l) upper bound 25

Proof. The lower bound is trivial, it follows directly from the definition of the
robot chain’s height. For the monotonicity, fix a time t ∈ R≥0 and consider the
height h(t) of the configuration at time t. Let B denote the line segment connecting
both stations and note that all robots are contained in the convex set H := {x ∈
R2 | dist(x,B) ≤ h(t)} of points having a distance of at most h(t) to B (see Fig. 2.2).
Let us consider an arbitrary robot vk and its neighbors vk−1 and vk+1. Since H is
convex and all three robots lie in H, so does the bisector along which vk moves.
That is, vk cannot leave H. Since this argument applies to any robot, none of the
robots can increase their distance to B beyond h(t). This implies the monotonicity
of the robot chain’s height.
Lemma 3.5. The length of the robot chain decreases with speed 2∑n

i=1 cos αi(t)
2 and

is bounded from below by d.

Proof. Since both stations do not move, the length obviously cannot fall below
their distance d. Using the function l : R≥0 → R≥0, t 7→ l(t) to refer to the chain’s
length at time t, it remains to show that l′(t) = −2∑n

i=1 cos αi(t)
2 .

Fix a time t ∈ R≥0 and consider the robots vi1 , vi2 , . . . , vir (for an r ∈ N and
is < is+1∀s = 1, . . . , r−1) that have not yet reached the line between their neighbors.
We make two observations:
• For any robot vj of the remaining robots, it holds that αj(t) = π and therefore

cos αj(t)
2 = 0.

• Any of the remaining robots either lies on the line between some vis and vis+1

or on the line between one of the stations and vi1 or vir . That is, setting
l0(t) := ||v0(t) − vi1(t)||, lk(t) := ||vik(t) − vik+1(t)|| (k = 1, . . . , r − 1) and
lr(t) := ||vir(t)− vn+1(t)||, the length l(t) of the chain is given by:

l(t) =
r∑

k=0
lk(t)

Now, Lemma 3.1 and Lemma 3.2 give us the derivations of these lk, and therefore
we have:

l′(t) = l′0(t) +
r−1∑
k=1

l′k(t) + l′r(t)

= − cos αi1(t)
2 +

r−1∑
k=1

(− cos αik(t)2 − cos
αik+1(t)

2)− cos αir(t)2

= −2
r∑

k=1
cos αik(t)2 = −2

n∑
i=1

cos αi(t)2 .

26 The Robot Chain Problem: traveled distance

Now we can prove an upper bound for the traveled distance in dependency of h
and l, implying also a worst case upper bound.

Theorem 3.6. When the Move-On-Bisector strategy in the continuous model is
performed, the maximum distance traveled by a robot is upper bounded by

√
2h+ 1√

2 l.

Proof. We will prove that in time
√

2h + 1√
2 l all robots have reached their corre-

sponding end positions. Given that the robots move with a maximum velocity of
1, this proves the theorem. To do so, we show that at any time, either the height
function h : R≥0 → R≥0 or the length function l : R≥0 → R≥0 are strictly decreasing
by a constant factor. Together with Lemma 3.4 and Lemma 3.5 (the monotonicity
and non-negativity of l and h) this proves the theorem.
So, let us consider an arbitrary time t ∈ R≥0. We distinguish two cases:

Case 1: ∃i ∈ {1, . . . , n} : αi(t) ≤ π/2
In this case, Lemma 3.5 states that:

l′(t) = −2
n∑
k=1

cos αk(t)2 ≤ −2 cos αi(t)2 ≤ −2 cos π4 = −
√

2

That is, the length of the robot chain decreases with a constant speed of at
least

√
2. Since the length cannot drop below d, after time at most 1√

2 l with
an angle αi(t) ≤ π/2 the length of the chain is d and all robots must have
stopped moving.

Case 2: ∀i ∈ {1, . . . , n} : αi(t) > π/2
Using the terms from the proof of Lemma 3.4, consider a robot vk with distance
h(t) to the line segment B connecting both stations. Align the coordinate
system such that the line L through vk(t) having distance h(t) to B corresponds
to the x axis and vk(t) to the origin. Fig. 3.2 illustrates the situation.
We know that both neighbors of vi must lie on the same side of L as B,
w.l.o.g. let it be the lower side. Furthermore, because we have αk(t) > π/2,
one neighbor must lie to the lower left and the other to the lower right of vk.
This implies that vk’s velocity vector is directed downwards, forming an angle
of less than π/4 with the y-axis. Therefore, vk moves with a speed of more
than cos π

4 downwards.
Since this holds for any extremal robot, we get h′(t) < − cos π

4 = − 1√
2 . That

is, the height of the robot chain decreases with a constant speed of at least 1√
2

and after time
√

2h with αi(t) > π/2 for all robots i the height has decreased
to 0.

3.3 The O((h+ d) log l) upper bound 27

vk

π/4

v�k

vn+1v0

L

B

Figure 3.2: If all angles αi are larger than π/2, then the velocity vector of a
“highest” robot vk lies within the gray area. It therefore moves downwards with a
speed of at least cosπ/4.

Since h ∈ O(l), Theorem 3.6 gives an upper bound of O(l) for arbitrary start
configurations. This result directly shows that the Move-On-Bisector-strategy
is asymptotically optimal for worst-case instances (Corollary 3.7), the measure which
is usually used in the literature. Still, this bound can be arbitrarily worse than an
optimal algorithm on specific instances. We will investigate these instances in the
next section.

Corollary 3.7. When the Move-On-Bisector-strategy in the continuous model
is performed, the maximum distance traveled by a robot is Θ(n) for a worst-case
start configuration.

Proof. Obviously it holds that h ≤ l
2 ≤

n+1
2 . For the lower bound, we can use

a start configuration in which the stations share the position (0, 0) and vi(0) =
vn+1−i(0) = (0, i). Thus, the robot in the middle of the chain is in distance ≈ n

2 of
its end position and Move-On-Bisector (as well as any global algorithm) needs
at least this time until all robots have reached the line between the stations.

3.3 The O((h + d) log l) upper bound
Assume we are given a configuration whose height is - relative to the length of the
robot chain - very small. In this case, the upper bound of O(l) for our strategy
can be arbitrarily larger than the time needed by an optimal strategy, which can

28 The Robot Chain Problem: traveled distance

α1
α2 vb

v0

w1
w2

w3

w1

β1,1

w2

β2,2

(a)

w3

w1

β1,2

(b)

Figure 3.3: Note that the angles βi,j are signed, e.g.: β1,1 > 0, β2,2 < 0, β1,2 =
β1,2 + β2,3 > 0.

be as small as h. But intuitively, given a long chain with a small height, the chain
must be quite winding, yielding many relatively small angles αi. The result is that
the chain length does not only decrease at one robot, as we can only guarantee for
arbitrary configurations, but there are many robots which reduce the length of the
chain (Lemma 3.5).
For the proof of this upper bound, we will divide the chain into parts of length

Θ(h+ d) and show that each part must contain some curves. In particular, in each
part, the sum of the angles αi(t) must be by a constant smaller than in a straight
line (Lemma 3.8). Lemma 3.9 transfers this result for each part to the sum of the
angles of the whole chain. Having that the sum of the angles in the whole chain
cannot be arbitrarily large, Lemma 3.10 yields the speed by which the length of the
chain decreases. Since the number of parts is dependent on the length of the chain,
the speed is also dependent on it. Theorem 3.11 finally gives the upper bound of
O((d+ h) log l).

Lemma 3.8. Let B denote an arbitrary rectangular box containing the robots va−1, va,
va+1, . . . , vb (for a, b ∈ {1, . . . , n + 1}, a < b) at a given time t ∈ R>0 and let S be
the diagonal length of the box. Then we have:

b∑
k=a
||wk(t)|| ≥

√
2 · S ⇒

b−1∑
k=a

αk(t) ≤ (b− a)π − π

3

Proof. For the sake of clarity, we will omit the time parameter t in the following.
That is we write αk, vk and wk instead of αk(t), vk(t) and wk(t). Furthermore, we
assume w.l.o.g. a = 1. Thus, we have to show ∑b

k=1 ||wk|| ≥
√

2 · S ⇒ ∑b−1
k=1 αk ≤

(b− 1)π − π
3

Consider the function ∠ : R2 × R2 →] − π, π] that maps two vectors (wi, wj) to
the signed angle of absolute value ≤ π formed by them (it is not important which

3.3 The O((h+ d) log l) upper bound 29

direction is used as positive angle, as long as it is equal for all pairs of vectors
(wi, wj)). Note that we have αk = π − |∠(wk, wk+1)| for all k = 1, . . . , b − 1. Let
us define βi,j := ∑j

k=i∠(wk, wk+1) and observe that ∠(wi, wj) ≡ βi,j mod]− π, π].
See Fig. 3.3 for an illustration.
Let us now assume ∑b

k=1 ||wk(t)|| ≥
√

2 · S and consider the following two cases:

Case 1: ∃i, j, 1 ≤ i < j ≤ b : |βi,j| ≥ π
3

Intuitively, if the angle between two vectors in the chain is large, the sum of
the inner angles αk of the robots in between cannot be arbitrarily large. More
formally,

b−1∑
k=1

αk ≤ (i− 1)π +
j∑
k=i

αk + (b− 1− j)π

= (b+ i− j − 2)π +
j∑
k=i

(π − |∠(wk, wk+1)|) = (b− 1)π −
j∑
k=i
|∠(wk, wk+1)|

≤ (b− 1)π −

∣∣∣∣∣∣
j∑
k=i

∠(wk, wk+1)

∣∣∣∣∣∣ = (b− 1)π − |βi,j| ≤ (b− 1)π − π

3

Thus, the lemma holds in this case.

Case 2: ∀i, j, 1 ≤ i < j ≤ b : |βi,j| < π
3

We will show that this case cannot occur by showing that the vector connecting
v0 and vb, which is equal to ∑b

k=1wk, would have to be longer than S, which
is a contradiction to v0 and vb both lying in B.

We have ∠(wi, wj) = βi,j and |βi,j| < π
3 for all 1 ≤ i < j ≤ b. In the following,

we will use that the squared length of a vector is equal to its scalar product
with itself. Therefore:∣∣∣∣∣
∣∣∣∣∣
b∑

k=1
wk

∣∣∣∣∣
∣∣∣∣∣
2

=
(

b∑
k=1

wk

)
·
(

b∑
k=1

wk

)
=

∑
1≤i,j≤b

wi · wj =
∑

1≤i,j≤b
||wi|| · ||wj|| · cos(βi,j)

>
∑

1≤i,j≤b
||wi|| · ||wj|| · cos(π3) = cos(π3)

∑
1≤i,j≤b

||wi|| · ||wj||

= 1
2

(
b∑

k=1
||wk||

)2

≥ 1
2 · (
√

2S)2 = S2

This implies ||∑b
k=1wk|| > S, leading to the desired contradiction.

30 The Robot Chain Problem: traveled distance

Dividing the chain in parts of length at least
√

2 times the diagonal of the height
box, Lemma 3.8 shows that each of the parts must contain some "small" angles.
The robots at these angles therefore shorten the length of the chain. The following
lemma shows that using the technique of dividing the chain into parts yields an
upper bound on the sum of the angles αi of the chain.

Lemma 3.9. Let S denote the diagonal length of the robots’ height-box at a given
time t. Then we have:

n∑
k=1

αk(t) ≤ nπ − π

3

⌊
l(t)

2
√

2S

⌋

Proof. As in the proof for Lemma 3.8, we will omit the time parameter t in the
following.
First note that we have ||wk|| ≤ S, because all robots lie inside the height-box.

This allows us to recursively define indices 1 = a0 < a1 < . . . < am ≤ n + 1 by
demanding ai ∈ N to be minimal with ∑ai

k=ai−1
||wk|| ∈ [

√
2S, (
√

2 + 1)S[. That is,
we divide the chain at time t in m parts, where vai−1 and vai bound part i. vai is the
first robot in the chain such that the length of part i is at least

√
2S. Furthermore,

since ||wai || ≤ S, the length of part i is at most
√

2S + S ≤ 2
√

2S, which implies
m ≥

⌊
l

2
√

2S

⌋
. Since we have ∑ai

k=ai−1
||wk|| ≥

√
2S for all i = 1, . . . ,m, by Lemma 3.8

we get ∑ai−1
k=ai−1

αk ≤ (ai − ai−1)π − π
3 . We now compute:

am−1∑
k=1

αk =
m∑
i=1

ai−1∑
k=ai−1

αk ≤
m∑
i=1

(
(ai − ai−1)π − π

3

)

= π
m∑
i=1

(ai − ai−1)− π

3m = (am − a0)π − π

3m

= (am − 1)π − π

3m

This implies ∑n
k=1 αk ≤ nπ − π

3m ≤ nπ − π
3

⌊
l

2
√

2S

⌋
, as the lemma states.

Using that the sum of the angles αi is bounded, we can now give a lower bound for
the speed by which the chain length decreases, which is linear in the current number
of parts and therefore the length of the chain. Instead of the current number of
parts, which cannot be determined exactly only knowing the length of the chain, we
use a lower bound for the number of parts.

Lemma 3.10. The length of the robot chain decreases at least with speed 2
3

⌊
l(t)

2
√

2S

⌋
.

3.3 The O((h+ d) log l) upper bound 31

Proof. Fix a time t ∈ R≥0. By Lemma 3.5, the chain length decreases with a speed
of 2∑n

k=1 cos αk(t)
2 . Using that cos(x) is lower bounded by 1− 2

π
x for all x ∈ [0, π/2]

and by Lemma 3.9 we get:

l′(t) = −2
n∑
k=1

cos αk(t)2 ≤ −2
n∑
k=1

(
1− αk(t)

π

)
= −2n+ 2

π

n∑
k=1

αk(t)

≤ −2n+ 2
π

(
nπ − π

3

⌊
l(t)

2
√

2S

⌋)
= −2

3

⌊
l(t)

2
√

2S

⌋
.

Now we can finally state our main result.

Theorem 3.11. When the Move-On-Bisector strategy in the continuous model
is performed, the maximum distance traveled by a robot is O((h + d) log(l)), where
h is the height and l the length of the robot chain in the start configuration.

Proof. Set m∗ :=
⌊

l
2
√

2S

⌋
and let us define m∗ time-phases pi := [ti−1, ti] for i =

1 . . . ,m∗ by setting t0 := 0 and ti for i > 0 to the time when we have l(ti) =
(m∗ − i + 1) · 2

√
2S. That is, during one phase pi, the chain length is reduced by

exactly 2
√

2S and thus in phase i, the chain must consist of at least m∗ parts as
defined in Lemma 3.9. Note that these ti are well-defined, because by Lemma 3.10, in
phase pi the chain length decreases with a speed of at least 2

3

⌊
l(ti)

2
√

2S

⌋
= 2

3 ·(m
∗−i+1)

(which is a constant for fixed i). Furthermore, Lemma 3.10 gives us an upper bound
on the length of each single phase pi:

ti − ti−1 ≤
l(ti−1)− l(ti)
2
3(m∗ − i+ 1) ≤

2
√

2S
2
3(m∗ − i+ 1) .

This allows us to give an upper bound to the time when the last phase ends:

tm∗ =
m∗∑
i=1

(ti − ti−1) ≤ 3
√

2S
m∗∑
i=1

1
m∗ − i+ 1

= 3
√

2S
m∗∑
i=1

i−1 < 3
√

2S · (lnm∗ + 1).

Now consider the situation after time t ≥ tm∗ . We have l(tm∗) = (m∗ − m∗ +
1)2
√

2S = 2
√

2S. By Theorem 3.6, from now on it takes time at most
√

2h(tm∗) +
1√
2 l(tm∗) ≤

√
2h + 2S for the robots to reach the optimal configuration. Together

with the bound on tm∗ and with S = O(h + d), this yields a maximum time (and

32 The Robot Chain Problem: traveled distance

therefore traveled distance) of

3
√

2 · S · (lnm∗ + 1) +
√

2h+ 2S

≤3
√

2 · S ·
(

ln
(

l

2
√

2S

)
+ 1

)
+
√

2h+ 2S

=3
√

2 · S · (ln l − ln(2
√

2S) + 1) +
√

2h+ 2S
=O(S · ln l) +

√
2h+ 2S = O((h+ d) ln l)

until the optimal configuration is reached.

Corollary 3.12. Using Move-On-Bisector, the maximum distance traveled by
the robots is O(min{n, (OPT + d) log n}).

A consequence of this result is that, for d ∈ O(h), our local algorithm is by at
most a logarithmic factor slower than an optimal global algorithm.

C h a p t e r 4

The Robot Chain Problem: both
quality measures

In Chapter 3 we have seen that the distance traveled when using a local algorithm can
be relatively close to the distance which needs to be traveled when using an optimal
global algorithm, when the robots may observe their environment continuously and
the number of rounds and Look-Operations is infinite. Now we want to combine
both quality measures. The first obvious question is what distance the robots travel
when using the original Go-To-The-Middle strategy 1-GTM. We will see that it
is Θ(n2) for worst case instances and therefore a lot worse than that of Move-On-
Bisector. Therefore, we reduce the step size of Go-To-The-Middle to δ ∈ (0, 1]
and analyze the movement distance as well as the number of rounds of the resulting
δ-GTM strategy. We will see that this technique helps indeed to improve the quality
of the algorithm. When choosing δ ∈ Θ(1/n), the movement distance is reduced to
O(n) and therefore asymptotically optimal for worst case instances, while the needed
number of rounds is still O(n2 log n) as for 1-GTM. Thus, no trade-off between the
two quality measures is required. For an overview of the results confer to Table 4.1.

Table 4.1: Results overview
1-bounded

GTM
δ-bounded

GTM
continuous

GTM
number of
time steps Θ(n2 logn) [Kut07, KM11]

Ω(n2+n
δ

) Thm. 4.12

O(n2 logn+ n
δ

) Thm. 4.12
—

maximum
distance Θ(n2) Cor. 4.23 Θ(δn2 + n) Thm. 4.22 Θ(n) Thm. 4.26

Section 4.1 is devoted to the δ-GTM strategy, with 1-GTM being a special case. It
gives lower and upper bounds for the worst-case number of rounds as well as for the
maximum distance traveled by a robot. In Section 4.2 we analyze Continuous-GTM

33

34 The Robot Chain Problem: both quality measures

in the continuous time model. We will see that similar to Move-On-Bisector,
Continuous-GTM achieves a maximum traveled distance of O(n) for worst case start
configurations.

4.1 The δ-bounded Go-To-The-Middle strategy
In this section, we consider the 1-bounded Go-To-The-Middle strategy and the
δ-bounded Go-To-The-Middle strategy. With 1-GTM being a special case of the
δ-GTM for δ = 1, we will limit the analysis to δ-GTM, whose results can be easily
adapted.
In δ-GTM, robots only move up to a distance of δ per round. Thus, they are not
always able to reach their target point within one round.
A major observation for the sake of analysis is the fact that for δ-GTM, we can

divide the movement of the robots into two phases. In the first phase at least one
of the robots is not able to reach its target point. In the second phase, the target
point of every robot lies within a δ distance of its current position. Thus, every
robot reaches its target point, while the target point moves a distance of at most δ.
Therefore every robot is still able to reach it in the next round. Thus we stay in the
second phase once we have reached it. Since every robot reaches its target point,
the second phase is indistinguishable from the 1-bounded Go-To-The-Middle
strategy and therefore the validity follows from [Kut07]. But we still need to show
that the first phase also keeps the chain connected. The proof is a straightforward
adaption of the proof of validity of 1-GTM in [Kut07], which covers the special case
for δ = 1.
Theorem 4.1. δ-GTM is a valid strategy. That is, if the chain is connected in
round 0, then, when applying δ-GTM, the chain is connected after every round.

Proof. We will show that the chain is always connected by induction on the rounds
t. It is connected in round 0 by assumption. So now assume that the chain is
connected at the end of round t: |vi(t)− vi+1(t)| ≤ 1 for all i = 0, ..., n. We
will show that the movement of the robots during round t + 1 does not break the
connectivity and thus, |vi(t+ 1)− vi+1(t+ 1)| ≤ 1 for all i = 0, ..., n.
Fix two arbitrary neighboring robots vi and vi+1 and call e the line segment

between vi(t) and vi+1(t). Translate and rotate the coordinate system such that e
is completely on the x-axis and that the origin is in the middle of e (see Fig. 4.1).
Let a := |e| /2.
We draw a circle with radius 1/2 around the origin of the coordinate system. We

will show that after applying δ-GTM, both vi(t+ 1) and vi+1(t+ 1) are within this
circle, and so the distance between them is at most 1.

4.1 The δ-bounded Go-To-The-Middle strategy 35

Figure 4.1: Illustration to the proof of Theorem 4.1

Define ti+1(t) = (x, y) to be the coordinates of vi+1’s target point in round t and
b := |vi(t)− ti+1(t)| to be the distance between vi in round t and vi+1’s target point.
From the Pythagorean theorem we have b =

√
(x+ a)2 + y2.

Since ti+1(t) is the target point of vi+1 in round t, it is in the middle between vi(t)
and vi+2(t). It follows that vi+2(t) = (2x+ a; 2y).
Now assume for the sake of contradiction that ti+1(t) = (x, y) lies outside the

circle. Then x2 + y2 > (1/2)2. We now compute the distance |vi+1(t)− vi+2(t)|. We
have

|vi+1(t)− vi+2(t)| =
√

(2x+ a− a)2 + (2y − 0)2 =
√

4 · (x2 + y2)

>

√
4 · 1

4 = 1.

This contradicts the assumption that the chain is connected in round t. Thus, vi+1’s
target point is positioned in the circle. Since the circle is convex, it follows that all
points on the line between vi+1 and its target point are also inside the circle, and so
is the point vi+1(t+ 1) to which vi+1 moves in round t+ 1.
The same reasoning can be applied to determine the position of vi(t + 1). Thus,

we have proven that both vi(t + 1) and vi+1(t + 1) are in distance at most 1 from
each other.

We will now start by analyzing the number of rounds and then investigate the
maximum traveled distance.

36 The Robot Chain Problem: both quality measures

4.1.1 The worst-case number of rounds

In this subsection we analyze the number of rounds, before analyzing the maximum
distance traveled by a robot in the next subsection. The number of rounds can
be divided into the number of rounds of the two phases. Thus, we first analyze
the first phase. We start with a lower bound, before presenting a matching upper
bound. The lower bound only holds for δ ≤ 1

n
, while the upper bound only holds

for δ ≥ 1
n
. We will see that only in this case the number of rounds is dominated by

the respective phase.
First, we define two types of configurations.

Definition 4.2. A configuration C at time t is in a triangular-like shape, if the
following conditions hold. The two stations are positioned in distance d on the x-
axis, such that v0(t) = (0, 0), vn+1(t) = (d, 0). The positions of the n mobile robots,
n uneven, are as follows. Concerning the x-coordinate, each robot is positioned in the
middle between its neighbors. Regarding the y-coordinate, the middle robot vn+1

2
has

the largest distance to the target line. In particular, yn+1
2

(t) ≥ yn−1
2

(t) ≥ yn−3
2

(t) ≥
... ≥ y1(t) ≥ 0. Moreover, the configuration is symmetric: y1(t) = yn(t), y2(t) =
yn−1(t), ..., yn+1

2 −1(t) = yn+1
2 +1(t).

See Fig. 4.3 and Fig. 4.4 for examples of configurations in a triangular-like shape.
Note that d can be chosen arbitrarily small.

Definition 4.3. A configuration in a triangular shape is a configuration in a triangular-
like shape, where the robots v1, ..., vn+1

2 −1 and vn+1
2 +1, ..., vn are positioned in the

middle between their neighbors, such that they form a triangle.

Figure 4.3 is an example for a configuration in a triangular shape.

The first phase: Lower bound

We will need the following lemma in order to show a lower bound for the number of
rounds for worst-case configurations until all robots are in distance at most δ from
their target point and therefore until we reach the second phase.

Lemma 4.4. Consider a configuration in a triangular-like shape with all robots
being in the second phase, and a robot vk in k hops from the middle robot vn+1

2
.

Then the y-distance between vk and vn+1
2

is at most k2 · δ.

4.1.1 The worst-case number of rounds 37

a+ 2δ

vi

mi

a

Figure 4.2: The y-distances to the neighbors can differ by at most 2δ

Proof. This proof is divided into two parts. First we will show that a robot with k
hops to vn+1

2
has a distance of at most (2 · k − 1) · δ to its neighbors. In the second

part we will use this to prove the proposition.
Proof by induction: Base case i = 1. Because the robots are in a triangular-like

shaped configuration, vn+1
2

has the same y-distance to both its neighbors. Therefore
it has the same y-distance to its target point, which is in the middle between its
neighbors. Since moreover vn+1

2
may be at most in distance δ from its target point,

the y-distance of vn+1
2

and its neighbors can be at most δ.
Induction step: Let vi be a robot in i hops from vn+1

2
. Its neighbor vi−1, which is

in i − 1 hops from vn+1
2
, is in y-distance at most a := (2i− 3) δ from vn+1

2
. Now

consider Fig. 4.2. Since vi’s target point must be within a δ distance of vi, robot vi
can be in y-distance most a+ 2δ = (2i− 1) δ from vn+1

2
.

Now we can simply add the values to obtain the maximum distance of vk to vn+1
2
.

k∑
i=1

(2i− 1) · δ = δ ·
k−1∑
i=0

(2i+ 1) = 2δ
k−1∑
i=0

i+ δ ·
k−1∑
i=0

1 = 2δ · k · (k − 1)
2 + δk

= δk2 − δk + δk = δk2

Lemma 4.5. There is a start configuration for which the number of rounds in the
first phase of δ-GTM is Ω(n

δ
) for δ ≤ 1

n
.

Proof. Consider a a triangular shaped start configuration with robot vn+1
2

at the
top (see Fig. 4.3). We will show that after 1

16 ·
n
δ
rounds at least one robot still has

38 The Robot Chain Problem: both quality measures

0 x

y

m

∆x

vn+1
2

v0 vn+1

Figure 4.3: Start configuration in a triangular shape

a distance which is greater than δ to its target point. We will do so by showing
that the distance of vn+1

2
to its end position (called its height from now on) after

1
16 ·

n
δ
rounds is greater than its height if the target point of every robot is within

a δ distance from the robot itself. First we will calculate its height in the start
configuration: m · n+1

2 = 7
8 ·

n+1
2 where m := 7

8 is the constant y-distance between
two neighbors. Note that we can choose m ≤ 1 arbitrarily, since we can choose the
x-distance between two neighbors arbitrarily small. After 1

16 ·
n
δ
rounds with step

size δ its remaining height is at least 7
8 ·

n+1
2 −

1
16 · n ≥

7
16 · n−

1
16 · n = 3

8n.
Now consider the maximum height vn+1

2
can have if every robot is within a δ

distance of its target point. Note that the robots are still in a triangular-like shaped
configuration. Due to Lemma 4.4, a robot with k hops to vn+1

2
can have a maximum

y-distance from vn+1
2

of δ · k2. Since the stations are in n+1
2 hops from vn+1

2
, vn+1

2

can have a height of at most
(
n+1

2

)2
· δ = n2

4 δ + n
2 δ + 1

4δ.
But since n2

4 δ + n
2 δ + 1

4δ ≤
n
4 + 1

2 + 1
4n <

1
4n + 1

8n = 3
8n with δ ≤ 1

n
and n ≥ 5,

there must be at least one robot which has a distance greater than δ from its target
point.

The first phase: Upper bound

After having shown a lower bound of Ω
(
n
d

)
for δ ≤ 1

n
, we will now prove an upper

bound of O
(
n
d

)
and thus Θ

(
n
d

)
for the first phase. We start with a technical

lemma. Let yi := yi(0) be the y-coordinate of robot vi in the start configuration,
and ∆i = yi−1+yi+1

2 −yi be the positive or negative y-distance of robot vi to its target
point in the start configuration.

4.1.1 The worst-case number of rounds 39

Lemma 4.6. −1 ≤ ∑k
i=j ∆i ≤ 1 holds for for arbitrary 1 ≤ j ≤ k ≤ n.

Proof. The distance is defined as

∆i = yi−1 + yi+1

2 − yi

Thus for the sum we obtain:∣∣∣∣∣∣
k∑
i=j

∆i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k∑
i=j

(
yi−1 + yi+1

2 − yi
)∣∣∣∣∣∣

=

∣∣∣∣∣∣12
k∑
i=j

yi−1 + 1
2

k∑
i=j

yi+1 −
k∑
i=j

yi

∣∣∣∣∣∣ =

∣∣∣∣∣∣12
k−1∑
i=j−1

yi + 1
2

k+1∑
i=j+1

yi −
k∑
i=j

yi

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k−1∑
i=j+1

yi −
k∑
i=j

yi + 1
2 (yj−1 + yj + yk + yk+1)

∣∣∣∣∣∣
= 1

2 |(yj−1 − yj + yk+1 − yk)| ≤
1
2 |(yj−1 − yj)|+

1
2 |(yk+1 − yk)|

≤ 1

Lemma 4.7. The number of rounds in the first phase of δ-GTM is O(n
δ
).

Proof. Assume for the sake of contradiction that there is a robot vi which moves
9 · n

δ
rounds with step size δ without reaching its target point. We will show that

this would require the robots which have a station as one of their neighbors to move
more than they are able to. We first show that the maximum distance traveled by
robot v1 and vn respectively is limited. This can be done because the target points of
those robots move at most with step size δ

2 . Because of that v1 and vn will only move
with step size δ

2 after having reached their target point for the first time. Moreover,
before having reached their target point for the first time, the distance between v1

and vn and their target point decreases by at least δ
2 in each round. Thus, after 2

δ

rounds and a traveled distance of 2, they have definitely reached their target points.
This results in an upper bound for the traveled distance of v1 and vn after t rounds
of 2 + t · δ2 .

Now we will show that the distance v1 or vn need to travel, if vi does not reach its
target point after 9 · n

δ
rounds, is larger than that (for n ≥ 8). If vi does not reach

its target point, it travels a distance of 9n. W.l.o.g. assume that vn is closer to vi
than v1 (or in equal distance). Now let sj be the distance traveled by the robot vi+j,
which is in j hops from vi, in the first 9 · n

δ
rounds. That is, as vi travels a total

distance of s0 = 9n. Let there be k robots with a larger index than vi, meaning that
vn travels a distance of sk.

40 The Robot Chain Problem: both quality measures

Proposition 4.8. Let ∇l,∆l be the x-distance respectively the y-distance of robot
vi+l to its target point in the start configuration. Then

sk ≥ 9n− 2 ·∑k−1
l=0 (k − l) ·∆l − 2 ·∑k−1

l=0 (k − l) · ∇l.

The proof of this proposition follows after the proof of this lemma. As vn is closer
to vi than v1, we know that k ≤ n

2 . Plugging this in, we get

sk ≥ 9n− 2 ·
n
2−1∑
l=0

(n2 − l) ·∆l − 2 ·
n
2−1∑
l=0

(n2 − l) · ∇l

= 9n− n
n
2−1∑
l=0

∆l + 2
n
2−1∑
l=0

l ·∆l − n
n
2−1∑
l=0
∇l + 2

n
2−1∑
l=0

l · ∇l

We now use one further structural property of the robot chain, saying that −1 ≤∑k
i=j ∆i ≤ 1 and −1 ≤ ∑k

i=j∇i ≤ 1 for arbitrary 1 ≤ j ≤ k ≤ n (Lemma 4.6):

sk ≥ 9n− n
n
2−1∑
l=0

∆l + 2
n
2−1∑
l=0

l ·∆l − n
n
2−1∑
l=0
∇l + 2

n
2−1∑
l=0

l · ∇l

≥ 9n− n+ 2
n
2−1∑
l=1

n
2−1∑
i=l

∆i − n+ 2
n
2−1∑
l=1

n
2−1∑
i=l
∇i

≥ 7n+ 2
n
2−1∑
l=1
−1 + 2

n
2−1∑
l=1
−1 ≥ 5n.

We are now able to put the pieces together. Either v1 or vn must move a distance
of 5n to allow vi to move a distance of 9n. At the same time, the distance v1 and vn
can move is upper bounded by 2 + t · δ2 = 2 + 9n

δ
· δ2 = 2 + 9

2n. This is a contradiction
for n ≥ 8. Therefore no robot can move 9 · n

δ
rounds without reaching its target

point and this means that the number of rounds in the first phase is bounded by
O
(
n
δ

)
.

Proof of Proposition 4.8. The idea of the proof is that if vi moves a distance
of 9n without reaching its target point, the target point must move a distance of
at least 9n − ∆0 − ∇0. But the movement of vi’s target point results from the
movement of vi’s neighbors, such that their movement can be lower bounded. This
kind of argumentation propagates through the complete chain.
We start the proof at robot vi+k and determine its movement distance depending

on the distance its left neighbor moves. In particular, we show by induction for
1 ≤ j ≤ k − 1 that

sk ≥ (j + 1)sk−j − j · sk−(j+1) − 2 ·
j∑
l=1

l ·∆k−l − 2 ·
j∑
l=1

l · ∇k−l. (4.1)

4.1.1 The worst-case number of rounds 41

Base case j = 1: We need to show that sk ≥ 2 · sk−1− sk−2− 2 ·∆k−1− 2 ·∇k−1. For
this, consider the movement of vi+k’s left neighbor. It can move at most the distance
its target point moves, which is upper bounded by 1

2sk + 1
2sk−2, plus its distance to

its target point in the start configuration. Thus, sk−1 ≤ 1
2sk + 1

2sk−2 + ∆k−1 +∇k−1.
This gives that sk ≥ 2sk−1 − sk−2 − 2∆k−1 − 2∇k−1.
For the inductive step, we know by the induction hypothesis that

sk ≥ (j + 1)sk−j − j · sk−(j+1) − 2 ·
j∑
l=1

l ·∆k−l − 2 ·
j∑
l=1

l · ∇k−l. (4.2)

Moreover, we can again use the movement of vi+(k−j−1) and its target point to
reformulate sk−j. Like in the base case, sk−j−1 ≤ 1

2sk−j+ 1
2sk−j−2 +∆k−j−1 +∇k−j−1,

giving that sk−j ≥ 2sk−j−1−sk−j−2−2∆k−j−1−2∇k−j−1. Plugging this in into (4.2),
we get

sk ≥ (j + 1) (2sk−j−1 − sk−j−2 − 2∆k−j−1 − 2∇k−j−1)− j · sk−(j+1)

−2 ·
j∑
l=1

l ·∆k−l − 2 ·
j∑
l=1

l · ∇k−l

= (j + 2)sk−(j+1) − (j + 1) · sk−(j+2) − 2 ·
j+1∑
l=1

l ·∆k−l − 2 ·
j+1∑
l=1

l · ∇k−l,

yielding the inductive step.
Now we can express the movement of sk using s0 and s1: Set j = k − 1. Then,

according to (4.1), sk ≥ k · s1 − (k − 1) · s0 − 2 ·∑k−1
l=1 l ·∆k−l − 2 ·∑k−1

l=1 l · ∇k−l.
Finally, we show a lower bound for the movement of vi+1. Consider the movement

of vi: If vi moves a distance of s0 = 9n without reaching its target point, its target
point has to move a distance of at least the distance which vi moves minus ∆0 +∇0,
an upper bound on initial distance between vi and its target point. The movement of
vi’s target point results from a movement of its neighbors: 9n−∆0−∇0 ≤ 1

2s−1+ 1
2s1.

s−1 denotes the distance vi−1 moves and can be upper bounded by 9n (9n
δ
rounds

with a distance of at most δ. Thus, s1 ≥ 9n− 2∆0 − 2∇0.
Plugging this in, we get

sk ≥ k · (9n− 2∆0 − 2∇0)− (k − 1) · 9n− 2 ·
k−1∑
l=1

l ·∆k−l − 2 ·
k−1∑
l=1

l · ∇k−l

= −2∆0k − 2∇0k + 9n− 2 ·
k−1∑
l=1

l ·∆k−l − 2 ·
k−1∑
l=1

l · ∇k−l

= 9n− 2 ·
k∑
l=1

l ·∆k−l − 2 ·
k∑
l=1

l · ∇k−l

= 9n− 2 ·
k−1∑
l=0

(k − l) ·∆l − 2 ·
k−1∑
l=0

(k − l) · ∇l,

42 The Robot Chain Problem: both quality measures

yielding the proposition.

The second phase

We have now analyzed the number of rounds of the first phase. In order to state the
overall number of rounds, we now analyze the second phase as well. We will see that
the second phase can only take longer for δ ≥ 1/n. We can therefore simplify the
analysis of the second phase by assuming δ ≥ 1/n. For this, as a progress measure
we use the sum of the y-distances yi(t) from the robots to the target line, define it
to be Y (t). We construct a configuration for which Y (0) is Ω(n2), and we use that
it decreases by at most 1 in each round [Kut07]. It follows that Ω(n2) rounds are
required until the sum is at most n, which is a necessary condition for the robots
being in distance at most 1 from their end position.
We start with showing that Y (t) decreases by at most 1 per round.

Lemma 4.9 ([Kut07]). If all robots are on the same side of the target line,

Y (t)− Y (t+ 1) = |y1(t)|+ |yn(t)|
2 .

Proof. Since all robots are on the same side of the target line, we have |yi(t)| = yi(t).
Then we get

Y (t+ 1) =
n∑
i=1

yi(t+ 1) =
n∑
i=1

1
2(yi−1(t) + yi+1(t))

=
n−1∑
i=0

1
2yi(t) +

n+1∑
i=2

1
2yi(t)

=
n∑
i=1

yi(t)−
1
2y1(t)− 1

2yn(t) = Y (t)− 1
2y1(t)− 1

2yn(t)

The lemma follows.

Corollary 4.10. If all robots are on the same side of the target line, Y (t) decreases
by at most 1 per round.

Now we can show the lower bound for the number of rounds.

Lemma 4.11. There is a start configuration such that when δ-GTM is used and
δ ≥ 1

n
, the number of rounds in the second phase until each robot is in distance at

most 1 from its end position is Ω(n2).

4.1.1 The worst-case number of rounds 43

Figure 4.4: The upper part of the start configuration for Lemma 4.11

Proof. Consider a triangular-like shaped start configuration consisting of two parts.
The middle robot and those robots which can be reached from the middle robot in
1
2δ − 1 hops form the upper part, whereas the remaining robots form the lower part.
The y-coordinates of the robots in the upper part are as follows: The robot in j

hops from the middle robot has a y-distance of (2j − 1)δ to the robot in j − 1 hops
from the middle robot and a y-distance of (2j + 1)δ to the robot in j + 1 hops from
the middle robot. See Fig. 4.4 for a visualization of the upper part. For each robot
i of the lower part holds yi = yi−1 + 1 (vi is left of the middle robot) or yi = yi+1 + 1
(vi is right of the middle robot) and thus these robots form a line. See Fig. 4.5
for an illustration of the complete configuration. The distance d between the two
stations must be 0 here for the robots in the lower part to be connected. For better
illustration, it is drawn to be greater than 0 in the figure.
The robots in the upper part are in distance at most δ from their target point.

Except for the robots vn−1
2 −

1
2δ

and vn−1
2 + 1

2δ
, which are positioned at the border of

the upper and lower part, the robots in the lower part are already positioned at
their target point. Robot vn−1

2 −
1

2δ
is in distance 1 of its left neighbor and in distance

(2(1
2δ − 1) + 1)δ = 1− δ of its right neighbor. Therefore, the distance between robot

vn−1
2 −

1
2δ

and its target point is δ
2 . The same holds for robot vn−1

2 + 1
2δ
. Accordingly,

the robots are already in the second phase of δ-GTM.
As yi(t) is positive for all robots, Y (t) := ∑n

i=1 yi(t). We show that Y (0) ∈ Ω(n2)
and we use that Y (t) decreases by at most 1 in every round. We will follow that
Ω(n2) rounds are required until each robot is in distance at most 1 from its end
position.
To compute Y (0) for our start configuration, we first introduce the notion of a

row. Let i be the number of hops from a robot vk to the middle robot, where vk is

44 The Robot Chain Problem: both quality measures

Figure 4.5: Complete start configuration for Lemma 4.11

positioned left of the middle robot. rowi := (yk−yk−1)·(2i+1) is then the y-distance
between vk and vk−1 times the number of robots which have a y-coordinate of at
least yk. Like this, we can rewrite Y (0) = ∑n−1

2
i=0 rowi. This sum can now be splitted

in the upper and the lower part: ∑n−1
2

i=0 rowi = ∑ 1
2δ−1
i=0 rowi + ∑n−1

2
i= 1

2δ
rowi. We now

compute these sums independently, starting with the upper part. We have 2i + 1
robots in row i, and the height of the row is (2i+ 1) · δ.

1
2δ−1∑
i=0

rowi =
1

2δ−1∑
i=0

(2i+ 1)2δ = δ

1
2δ−1∑
i=0

(4i2 + 4i+ 1) = δ(1
2δ + 4

1
2δ−1∑
i=0

i2 + 4
1

2δ−1∑
i=0

i)

= 1
2 + 4δ

(1
2δ − 1) 1

2δ (
1
δ
− 1)

6 + 4δ
(1

2δ − 1) 1
2δ

2
= 1

2 + 2
3δ(

1
4δ2 −

1
2δ)(1

δ
− 1) + 1

2δ − 1

= 1
2 + (1

6δ −
1
3)(1

δ
− 1) + 1

2δ − 1

= 1
2 + 1

6δ2 −
1
6δ −

1
3δ + 1

3 + 1
2δ − 1 = 1

6δ2 −
1
6

The sum for the lower part can be computed as follows. Here, the first inequality

4.1.1 The worst-case number of rounds 45

follows from having 2i+ 1 robots in row i, where each row has height 1.
n−1

2∑
i= 1

2δ

rowi =
n−1

2∑
i= 1

2δ

(2i+ 1) ≥
n−1

2∑
i= 1

2δ

2i = 2 ·
n−1

2∑
i=0

i− 2 ·
1

2δ−1∑
i=0

i

= 2
n−1

2
n+1

2
2 − 2 ·

(1
2δ − 1) 1

2δ
2 = n2 − 1

4 − 1
4δ2 + 1

2δ

≥ n2

4 −
1
4 −

1
4δ2

Now we can combine the upper and lower part to get a lower bound for Y (0), using
that δ ≥ 1/n.

Y (0) ≥ 1
6δ2 −

1
6 + n2

4 −
1
4 −

1
4δ2 = n2

4 −
5
12 −

1
12δ2 ≥

n2

4 −
n2

12 −
5
12 = n2

6 −
5
12 .

Now we have a lower bound for the start value of our progress measure Y (t). Due
to Corollary 4.10 we know that Y (t) decreases by at most 1 per round, and therefore
after t rounds we have Y (t) ≥ Y (0)− t ≥ n2

6 −
5
12 − t.

Moreover, it follows that there exists a robot vi with yi(t) ≥ 1
n
· (n2

6 −
5
12 − t).

Thus, for yi(t) to be less than or equal to 1, it must hold

1 ≥ 1
n
· (n

2

6 −
5
12 − t)⇔ t ≥ n2

6 − n−
5
12 ,

and thus t ∈ Ω(n2).

Conclusion

We can now conclude the results about the worst case number of rounds used by
δ-GTM.

Theorem 4.12. For a worst-case start configuration, the number of rounds for δ-
GTM until each robot is in distance at most 1 from its end position is Ω(n2 + n

δ
)

and O(n2 log n+ n
δ
).

Proof. According to Lemma 4.5, the number of rounds in the first phase when
starting in a worst-case configuration is Ω(n

δ
), if δ ≤ 1

n
. Moreover, Lemma 4.11

gives a lower bound for the second phase of Ω(n2), if δ ≥ 1
n
. Combined, we get a

lower bound of max{Ω(n2), Ω(n
δ
)} = Ω(n2 + n

δ
), because n

δ
≥ n2 if and only if δ ≤ 1

n
.

The upper bound also consists of the first phase, which takes O(n
δ
) rounds accord-

ing to Lemma 4.7, and the second phase. Since in the second phase δ-GTM does
not differ from 1-GTM, the upper bound of O(n2 log n) from [Kut07] holds here as
well. Thus we get an upper bound of O(n2 log n+ n

δ
).

46 The Robot Chain Problem: both quality measures

Interpreting this result, we can see that the second phase takes longer if δ ∈
o(1

n logn) and the first phase if δ ∈ ω(1
n
). For δ ∈ Ω(1

n logn) and δ ∈ O(1
n
), it is still

unclear which phase takes longer. For the triangle configuration in Fig. 4.3, even
an optimal global strategy needs Θ(n

δ
) rounds and thus for δ ∈ O(1

n logn), δ-GTM is
asymptotically optimal compared to an optimal global algorithm. To minimize the
number of rounds, δ ∈ Ω(1

n logn) should be chosen, resulting in a number of rounds
of O(n2 log n).
We will now see that similar results hold for the maximum traveled distance.

4.1.2 Maximum distance traveled by a robot
In the last subsection we have analyzed the strategy with respect to the number of
rounds. Now we analyze the the worst-case distance a robot has to travel. We start
with an upper bound for the distance traveled in the second phase in an infinite
number of rounds, before showing a lower bound for the maximum distance traveled
in the second phase until all robots are at most in distance 1 from their end positions.
We will see that these bounds match asymptotically.

Upper bound

Lemma 4.13. In an infinite number of rounds in the second phase, a robot can
move at most distance 1

4δn
2 + 1

2δn+ 1
4δ when using δ-GTM.

Proof. Let di(t) be the distance traveled by robot vi in round t and let di =∑∞
t=1 di(t). For all i, 1 ≤ i ≤ n, di(t) ≤ 1

2di−1(t − 1) + 1
2di+1(t − 1) and there-

fore
∞∑
t=2

di(t) ≤
1
2

∞∑
t=1

di−1(t) + 1
2

∞∑
t=1

di+1(t)

= 1
2di−1 + 1

2di+1.

Since di(1) ≤ δ, we get that

di ≤ δ + 1
2di−1 + 1

2di+1 (4.3)

Moreover, both stations do not move and thus d0 = dn+1 = 0. Plugging this into
(4.3), we get that d1 ≤ δ + 1

2d2. We can continue this for d2, ..., dn and get the
following proposition for odd n:

4.1.2 Maximum distance traveled by a robot 47

Proposition 4.14. 1. For 1 ≤ i < n
2 , di ≤ δi+ i

i+1di+1

2. ddn2 e ≤ δ + ddn2 e−1

3. For n
2 + 1 < i ≤ n, di ≤ δ(n− i) + n−i

n−i+1di−1.

Proof. Proof of case 1: Proof by induction.
Base case: i = 1. Because of (4.3) in the proof of Lemma 4.13, d1 ≤
δ + 1

2d0 + 1
2d2 = δ + 1

2d2.
For the inductive step, we know that

di+1 ≤ δ + 1
2di + 1

2di+2

≤ δ + i

2δ + i

2(i+ 1)di+1 + 1
2di+2

⇔ (1− i

2(i+ 1))di+1 ≤
i+ 2

2 δ + 1
2di+2

⇔ di+1 ≤ (i+ 1)δ + i+ 1
i+ 2di+2,

where the first inequality follows from inequality (4.3) and the second
from the induction hypothesis.
Case 2 deals with the middle robot: Because of the symmetry, the upper
bound for the movement distance of its neighbors is equal. Case 3 is
symmetric to case 1. Here, the second station is closer to the robots
than the first one. So the proposition follows.

It follows that the middle robot vdn2 e can move the furthest. With Proposition 4.14
we can upper bound ddn2 e:

Proposition 4.15. If n is odd, ddn2 e ≤
δ
4n

2 + δ
2n+ δ

4 .

Proof. Because of Proposition 4.14 we know that ddn2 e ≤ δ+ddn2 e−1 and
ddn2 e−1 ≤ δ(dn2 e− 1) + dn2 e−1

dn2 e
ddn2 e. Moreover, since n is odd, dn2 e = n

2 + 1
2 .

This gives

ddn2 e ≤ δ + δ(dn2 e − 1) +
dn2 e − 1
dn2 e

ddn2 e

⇔ 1
dn2 e

ddn2 e ≤ δdn2 e

⇔ ddn2 e ≤ δdn2 e
2 = δ(n2 + 1

2)2 = δ

4n
2 + δ

2n+ δ

4

48 The Robot Chain Problem: both quality measures

v0 vn+1

vn/2

6
n ≤ 6

7δ

1
7δ

Figure 4.6: Example configuration of a tower

If n is even, we have two middle robots, which changes some details. Completely
equivalently to Proposition 4.14 and Proposition 4.15, an upper bound for the move-
ment distance of these robots can be computed, giving that dn

2
≤ δ

4n
2 + δ

2n for even
n. Thus, no robot can move further than a distance of δ

4n
2 + δ

2n+ δ
4 .

Lower bound

For the lower bound on the maximum traveled distance, consider the following start
configuration, which we call a tower (see Fig. 4.6). The two stations are d apart.
The n robots, where n is even, are placed alternatingly above the stations with an
increase in height of 6

n
for the first n/2 and a decrease of 6

n
in height for the last n/2

robots, such that each robot has a y-distance of 6
n
to one or both of its neighbors.

For convenience’s sake, we assume that v0 is positioned at (0, 0) and vn+1 at (d, 0).
Let δ ≥ 7

n
. Now we can define d as δ

7 (which is at least 1
n
). Apparently, every robot

can reach its target point and so we are in the second phase.
Now let di(t) denote the distance traveled in x-direction from robot i in round t.

Lemma 4.16. For the tower start configuration, di(t) = 1
2di−1(t− 1) + 1

2di+1(t− 1)
for all rounds t and for all 1 ≤ i ≤ n.

Proof. Note that in odd rounds, all robots with an odd index move in negative x-
direction and robots with an even index in positive x-direction. In even rounds, the
robots move in the respective other direction. This is obvious for the first round (all
robots positioned above v0 move above vn+1 and the other way round). Moreover, if
for a robot vi both neighbors moved in the same direction (or did not move at all)
in round t, vi’s target point also moved in this direction in round t and thus vi will
equally move in this direction in round t + 1. So for each robot vi, both neighbors

4.1.2 Maximum distance traveled by a robot 49

always move in the same direction. Therefore,

di(t) =
∣∣∣∣12vi−1(t) + 1

2vi+1(t)− (1
2vi−1(t− 1) + 1

2vi+1(t− 1))
∣∣∣∣

=
∣∣∣∣12vi−1(t)− 1

2vi−1(t− 1) + 1
2vi+1(t)− 1

2vi+1(t− 1)
∣∣∣∣

=
∣∣∣∣12vi−1(t)− 1

2vi−1(t− 1)
∣∣∣∣+ ∣∣∣∣12vi+1(t)− 1

2vi+1(t− 1)
∣∣∣∣

= 1
2di−1(t) + 1

2di+1(t).

The third equality holds, because both neighbors of each robot always move in the
same direction.

Two further lemmas are necessary before we can show the lower bound on the
traveled distance. The first one is a technical lemma which will be helpful later.

Lemma 4.17. For the tower start configuration, the x-distance traveled by each
robot is monotonically decreasing with time.

Proof. We prove di(t) ≤ di(t− 1) for all robots vi and all t ∈ N by induction over
t.
Base case: Each robot travels a x-distance of d in the first round. Due to the
construction of the configuration, no robot can ever move further than a x-distance
of d, and so in the second round, each robot travels at most as far in x-direction as
in the first round.
Inductive step: Consider an arbitrary robot vi in round t.

di(t) = 1
2di−1(t− 1) + 1

2di+1(t− 1)

≤ 1
2di−1(t− 2) + 1

2di+1(t− 2)

= di(t− 1)

The inequality holds because of the induction hypothesis.

The next lemma forms the basis of the lower bound on the traveled distance, since
this is only possible if the number of rounds is also large.

Lemma 4.18. For the tower start configuration, k = Ω(n2) rounds are necessary
until every robot has a y-distance of at most 1 from its end position.

50 The Robot Chain Problem: both quality measures

Proof. We use Y (t) = ∑n
i=1 |Yi(t)| again as our progress measure, where Yi(t) is the

y-distance of robot vi to its end position in round t. For the tower start configuration,
Y (0) = 2∑n/2

i=1
6
n
· i = 3

2n + 3 ≥ 3
2n. According to Lemma 4.9, Y (t) decreases by at

most 6/n per round and thus, after t rounds

Y (t) ≥ Y (0)− t · 6
n
≥ 3

2n− t ·
6
n
.

So there is one robot i for which

|Yi(t)| ≥
3/2 · n− 6/n · t

n
= 3

2 − t ·
6
n2 .

Therefore |Yi(t)| ≤ 1 only for t ∈ Ω(n2).

Now we can finally show that there is a robot which has to travel a distance of
Ω(n2) when starting in a tower configuration.

Lemma 4.19. Consider the tower start configuration. If δ ≥ 7
n
, there is a robot r

such that the distance traveled by r until all robots are at most in distance 1 from
their end positions is at least δ

56n
2 + δ

28n.

Proof. Let k be the last round before all robots are in distance at most 1 from their
end position, and define di := ∑k

t=1 di(t). According to Lemma 4.16, ∑k
t=2 di(t) =

1
2
∑k−1
t=1 di−1(t) + 1

2
∑k−1
t=1 di+1(t). Since in the first round every robot travels in x-

direction a distance of d, ∑k
t=1 di(t) = d+∑k

t=2 di(t).
If there is a robot in round k which moves a distance of at least d

2 , since the
distance traveled is monotonically decreasing (Lemma 4.17), it is obvious that this
robot moves a distance of at least d

2 · n
2 = δ

14n
2 ≥ δ

56n
2 + δ

28n and we are done. So
assume that in the last round every robot moves at most d

2 . This yields
∑k
t=1 di(t) ≤

d
2 +∑k−1

t=1 di(t). We can combine this to obtain

di =
k∑
t=1

di(t) = d+
k∑
t=2

di(t) = d+ 1
2

k−1∑
t=1

di−1(t) + 1
2

k−1∑
t=1

di+1(t) (4.4)

≥ d+ 1
2

k∑
t=1

di−1(t)− d

4 + 1
2

k∑
t=1

di+1(t)− d

4 (4.5)

= d

2 + 1
2di−1 + 1

2di+1. (4.6)

Similar to Proposition 4.14, we can use this to obtain lower bounds for the movement
of each robot which only depends on the neighbor which is further apart from a
station:

4.1.2 Maximum distance traveled by a robot 51

Proposition 4.20. 1. For 1 ≤ i < n
2 , di ≥

d
2 i+ i

i+1di+1

2. For n
2 + 1 < i ≤ n, di ≥ d

2 + n−i
n−i+1di−1.

Proof. We will show for 1 ≤ i < n
2 : di ≥ δ

2i + i
i+1di+1 via induction.

The base case is true, since we know di ≥ d
2 + 1

2d0 + 1
2d2 and d0 = 0. For

the inductive step, it holds that

di+1 ≥
d

2 + 1
2di + 1

2di+2

≥ d

2 + d

4 i+ i

2 (i+ 1)di+1 + 1
2di+2.

⇔
(

1− i

2 (i+ 1)

)
di+1 ≥

i+ 2
4 d+ 1

2di+2

⇔ di+1 ≥
i+ 1

2 d+ i+ 1
i+ 2di+2.

The first inequality follows from (4.6) in Lemma 4.19 and the second
from the induction hypothesis. Additionally, because of the symmetry,
we know that for n

2 + 1 < i ≤ n : di ≥ d
2(n− i) + n−i

n−i+1di−1.

Now fix one of the robots at the top: we show that this robot has to travel a long
distance, plugging in the results from Proposition 4.20. The proof is similar to the
proof of Proposition 4.15:

Proposition 4.21. dn
2
≥ dn2

8 + dn
4

Proof. Using our previous results, we may write

dn
2
≥ d

2 + 1
2d

n
2−1 + 1

2d
n
2 +1 = d

2 + 1
2d

n
2−1 + 1

2d
n
2

⇔ 1
2d

n
2
≥ d

2 + 1
2d

n
2−1

⇔ dn
2
≥ d+

(
n

2 − 1
)
d

2 +
n
2 − 1
n
2

dn
2
≥ n

4d+ d

2 + n− 2
n

dn
2

⇔ 2
n
dn

2
≥ n

4d+ d

2

⇔ dn
2
≥ n2

8 d+ dn

4 ,

which in turn yields the proposition.

Since d = δ
7 , this yields the lemma.

52 The Robot Chain Problem: both quality measures

Conclusion

We can now combine the obtained lemmas to prove the claim of the total distance
traveled for the discrete strategies.

Theorem 4.22. For a worst-case start configuration, the maximum distance traveled
by a robot is Θ(δn2 + n), when using δ-GTM.

Proof. According to Lemma 4.5 and Lemma 4.7, the first phase takes Θ(n
δ
) rounds.

Due to the definition of the first phase, there exists a robot which moves a distance
of δ in each round of the first phase, while all other robots travel at most a distance
of δ in each round. Thus, this robot travels a distance of Θ(n), all others of O(n).
Since the distance traveled in the second phase is Θ(δn2) according to Lemma 4.13
and Lemma 4.19 for δ ≥ 7

n
, we get an overall traveled distance D of max{Θ(n),

Θ(δn2)} ≤ D ≤ O(δn2 + n) and therefore D ∈ Θ(δn2 + n) (note that the distance
traveled in the second phase is longer only if δ ≥ 7

n
).

Corollary 4.23. For a worst-case start configuration, when using 1-GTM, the max-
imum distance traveled by a robot is Θ(n2).

To interpret the results, we can see that similar to the number of rounds, the
traveled distance is longer in the first phase if δ ∈ O(1

n
). If δ ∈ Ω(1

n
), the traveled

distance in the second phase phase is longer. Again, for worst case instances no
optimal global strategy can be better than Θ(n) and thus for δ ∈ O(1

n
), the trav-

eled distance is asymptotically optimal compared to a global strategy. While the
number of rounds are minimized for δ ∈ Ω(1

n logn), the maximum traveled distance
is minimized for δ ∈ O(1

n
). So the next theorem follows.

Theorem 4.24. For δ ∈ Θ(1
n
), the number of rounds is O(n2 log n) and the traveled

distance is O(n). Thus both quality measures are minimized for this strategy.

4.2 The continuous Go-To-The-Middle strategy
We have seen in the last section that choosing δ ∈ Θ(1/n) minimizes the movement
distance as well as the number of rounds. Nevertheless, δ can not always be chosen
freely, but sometimes robots are able to sense the positions of their neighbors con-
tinuously, while it costs a lot of energy to move the robots over some distance. In
this scenario, the continuous time model is close to practical applications [NPR+03].
Therefore this section is dedicated to the continuous Go-To-The-Middle strat-
egy. We will show that similar to Move-On-Bisector, the distance moved by
robots using Continuous-GTM and therefore also the time needed until all robots
are on the target line is asymptotically optimal for worst-case instances.

4.2 The continuous Go-To-The-Middle strategy 53

For bounding the maximum traveled distance, we start with the easy observation
that no strategy can be faster than Ω(n) in the worst case.

Lemma 4.25. There are start configurations for which the maximum distance trav-
eled by a robot is Ω(n) using an optimal algorithm.

Proof. When starting with a configuration in a triangular shape, such that each
robots is in a constant y-distance from each neighbor (see Fig. 4.3), the middle robot
is in distance Ω(n) of the line between the two stations, and thus it must travel at
least this distance to reach its end position.

The following theorem shows that Continuous-GTM reaches this bound: it is
asymptotically optimal compared to a global algorithm.

Theorem 4.26. When using Continuous-GTM, the maximum distance traveled by
a robot is Θ(n) for a worst-case start configuration.

Proof. The lower bound follows from Lemma 4.25. So we need to show that when
using Continuous-GTM, no robot moves more than for a distance ofO(n). According
to Lemma 4.7, in the discrete setting the first phase takes c · n

δ
rounds for some

constant c. Since in each round the robots move at most a distance of δ, the
distance traveled in the first phase is bounded by cn

δ
· δ ≤ cn = O(n). Let us now

consider the limit δ → 0, yielding Continuous-GTM. Since the upper bound on the
traveled distance in the first phase is independent of δ, it remains valid. On the
other hand, Continuous-GTM does not have a second phase, since the robots reach
their end positions exactly when the last robot reaches its target point. Therefore,
the overall distance traveled by the robots is O(n).

According to Lemma 4.25 and Theorem 4.26, Continuous-GTM is asymptotically
optimal regarding the traveled distance.
We have seen in Chapters 3 and 4 that the robot chain problem can be solved effi-

ciently in terms of the number of rounds as well as the maximum traveled distance by
local algorithms and very simple robots. If only considering the movement distance,
Move-On-Bisector is optimal for worst-case instances and log n-competitive for
any kind of instances with a small d when compared to an optimal global algorithm.
Combining both quality measures, δ-GTM shows that when choosing δ correctly,
the number of rounds of the original Go-To-The-Middle-strategy can be pre-
served while the movement distance is reduced to O(n), which is again optimal for
worst-case instances.

54 The Robot Chain Problem: both quality measures

The analyses for the robot chain problem rely heavily on one structural property of
the problem: That each robot has exactly two neighbors, which do not change during
the execution of the algorithm. This is not possible for the gathering problem, which
we will tackle now in Chapters 5 to 8. Here, each robot can have arbitrarily many
neighbors, and the neighbors can change. We will therefore have to use different
techniques for the analysis.

C h a p t e r 5

The Gathering Problem

5.1 Introduction
As a second robot formation problem, we study a classic mobile network problem,
the robot-gathering problem, under locality. In the beginning, n robots with a
limited viewing range are placed in the plane, such that their visibility graph is
connected. The goal is to gather them in a not predefined point. It is known for 16
years that this is possible in finite time in the synchronous LCM model, which we
also used for the robot chain problem. In their seminal paper, Ando, Suzuki, and
Yamashita [ASY95, AOSY99] presented an algorithm that gathers the robots. In
each round, every robot simply moves to the center of the smallest enclosing circle of
the robots in its viewing range, only constrained by the condition that robots must
not lose visibility to their neighboring robots. As Ando, Suzuki and Yamashita
proved, this approach works, and the robots eventually meet. Since then it has
been an open question how many rounds are required to achieve such a gathering.
Chazelle [Cha09] showed that similar processes may have an exponential behavior.
Therefore, our main focus are efficient algorithms for the gathering problem with
respect to the number of rounds.

Outline Chapters 6 and 7 are devoted to two runtime analyses of two different
gathering algorithms. The first one, called MoveInCH, is the first known local
algorithm with a proven runtime bound. It is designed for its analysis and is there-
fore rather complicated. It works in a standard asynchronous time model, in which
no two neighboring robots are active at the same time, and achieves gathering in
expected O(n2) asynchronous rounds, if the order of activation is at random (see
Section 5.2 for a detailed model description). A round in this asynchronous setting
ends as soon as all robots have been active at least once. The idea of the algorithm

55

56 The Gathering Problem

is that each robot tries to reduce the area of the convex hull of the robot positions.
To achieve this, the robots need the ability to not only determine a target point
for themselves, but also for their neighbors. The LCM model therefore needs to
be adapted: Between the Compute- and the Move-Operation, a Communication-
Operation is introduced. In this Communication-Operation, a robot can commu-
nicate the computed target points to its neighbors, such that all robots can move
to their target point in the following Move-Operation. Note that since the robots
are oblivious, the Communication-Operation does not give the robots the ability to
gather global information. We will describe this algorithm in detail in Chapter 6.

MoveInCH is a local algorithm and achieves gathering very quickly. Neverthe-
less, it is desirable to have an efficient and simple algorithm which works in the
synchronous model and does not need the Communication-Operation. In Chapter 7
we show that this is indeed possible. In particular, we show that the algorithm by
Ando, Suzuki and Yamashita gathers the robots in Θ(n2) synchronous rounds.
Knowing that gathering the robots is possible in only Θ(n2) rounds, we then turn

towards the movement distance which is needed for gathering. In Chapter 8, we in-
troduce a variant of the Move-On-Bisector strategy (see Section 2.3.1 and Chap-
ter 3) and use techniques similar to those from Chapter 3 to analyze the maximum
traveled distance. Like for Move-On-Bisector, we will see that the maximum
traveled distance is small even compared to an optimal global algorithm.
We will now proceed with a formal problem description, give details about the

models and the notation and describe our quality measures. The algorithms will be
described in the respective chapters.

5.2 Problem description and notation
Given a set R of n robots v1, . . . , vn in the Euclidean plane, the goal is to gather
all robots in one point, which is not determined in advance. Contrary to the robot
chain problem, we can now control the movement of all robots. We are again con-
strained by a limited viewing range, which is constant but depends on the algorithm.
Moreover, two robots are connected, if they are within distance 1 of each other. We
call this distance the connection range. The notion of the connection range induces
a unit disk graph, the connection graph Gt = (R, Et), where (vi, vj) ∈ Et iff vi and
vj are mutually connected at time t, i.e. they are within distance 1 of each other.
In order to be able to achieve a gathering of the robots, we need to assume G0 to
be connected. Our algorithms will keep Gt connected at all times in order to make
sure that the robots do not split into several groups. The algorithm MoveInCH,
which is introduced and analyzed in Chapter 6, uses a viewing range of 2, such that

5.2 Problem description and notation 57

the robots can see twice as far as the connection range. The algorithm by Ando,
Suzuki and Yamashita, which is analyzed in Chapter 7, only needs a viewing range
of 1.
Additionally, our robots are oblivious, which means that they do not have a mem-

ory, they do not use a common coordinate system, and they do not have IDs. For
the algorithm by Ando, Suzuki and Yamashita they also do not need to communi-
cate. MoveInCH uses a little bit of communication: robots compute target points
for their neighbors and need to tell them about it. Note that this does not allow
the robots to compute a global solution, since the robots are oblivious and forget
everything they have learned when they are active next.
Again we abstract from technical issues. That is, robots can observe their neigh-

borhood accurately, they can compute geometric properties and they can share a
position with other robots.
Note that if the robots had full visibility, the problem would be trivial in the syn-

chronous LCM model as all robots could compute the unique center of the smallest
enclosing circle (SEC) of all robots, and then concurrently move there, finishing in
one single round. Similarly, unique IDs or a common coordinate system would make
the problem much easier, since the robots could agree to meet at the position of the
robot with the smallest ID or which is positioned in the lower left corner.

Time and movement models

As for the robot chain problem, our time models are based on the discrete LCM
model. For the gathering problem, we distinguish two different types of LCMmodels.
The algorithm by Ando, Suzuki and Yamashita operates in the classical syn-

chronous LCM model as used in Chapter 4, such that all robots perform their LCM
cycle at the same time. We will investigate this algorithm in Chapter 7.

MoveInCH uses a standard asynchronous variant of the LCM model. Only one
robot is active at a time, and when active, the robot performs a complete LCM
cycle. We call this a time step. A round ends as soon as each robot has been active
at least once. This model assumes that robots are never active concurrently, so no
conflicts among these actions of active robots have to be handled. This allows to
abstract from symmetry breaking issues. Usually, the analysis of robotic strategies
in this model is done assuming activation of robots in worst case order in each round.
In this thesis we assume weaker models for activation: In the random order model,

we assume that, in each time step, a randomly, uniformly chosen robot becomes
active. The choices in different time steps are independent.
In the random permutation model, we assume a permutation of the robots to be

chosen independently, uniformly at random for each round. This permutation then

58 The Gathering Problem

prescribes the order of activation for this round. Note that each round takes exactly
n steps in this model.
These time models are used for the analysis of MoveInCH. Implementations

should be distributed and should allow parallel activations of robots. For example,
a slight variant of the random order model can be implemented as follows: We
assume synchronized time steps. In each step, each robot wakes up with some given
probability p. An awaken robot becomes active, if no other robot in its connection
range is awaken. Note that several robots may now be active concurrently. But as
their connection ranges are disjoint, no interference between the actions initiated by
the active robots will appear. Choosing p = 1/n leads to a round model which is
very close to the random activation model (up to a slightly non-uniform probability
distribution, because a robot with few neighbors has a slightly larger probability for
becoming active than one with many neighbors).
In Section 6.3, we will present a variant of this model which uses a probability for

wake-up which is dependent on the number of neighbors in Gt (the local activation
model). It employs a distributed protocol for handling interferences which is tailored
to MoveInCH. We will prove a O(n2) bound for the expected number of time steps
instead of rounds in this model.
If we refer to a time t, we refer to either the end of a time step in the asynchronous

model or the end of a round in the synchronous model. In the synchronous model,
we use the notion of a round interchangeably with a time step.

Notation

Given a time step or a round t ∈ N0, the position of robot vi at this time is denoted
by vi(t) ∈ R2. As for the robot chain problem, we call the positions v1(t), . . . , vn(t)
of the robots at the end of round t the configuration at time t. The configuration at
time 0 is called start configuration. When clear from the context, we will sometimes
also refer to a robot vi’s position by vi. d(vi(t), vj(t)) describes the Euclidean distance
between the two robots vi and vj. If the round or time step is clear from the context,
we will sometimes denote this distance by d(vi, vj).
Two robots vi and vj can see each other, if d(vi, vj) ≤ C, where we call vi and

vj neighbors and the distance C the viewing range of the robots. C depends on the
algorithm. The set of all neighbors of a robot vi – its neighborhood – at time t is
denoted as Nt(vi) or just N(vi) when the time is clear from the context.
Part of the analysis is based on the convex hull of the robot positions, to which we

will also refer by the convex hull of these robots. We distinguish the global convex
hull CH(t) at time t, which describes the convex hull of all robot positions at time

5.3 Quality Measures 59

t, and the local convex hull Ci(t) of a robot vi at time t. The local convex hull is
the convex hull of all robots which are within viewing range of vi at time t.
As soon as two robots share the same position, our algorithms will keep the robots

together. So we say that two robots fuse when they share the same position for the
first time. Concerning the asynchronous random round models, they now act as
one robot, that is, their probability to be activated in a time step t is equal to the
probability of one single robot.

5.3 Quality Measures
While the robot chain problem was already analyzed well regarding the number
of rounds needed to solve the problem, this is not the case for gathering. Thus,
our main focus in the next chapters is on the number of rounds until the robots
have gathered. Chapter 8 deals with the maximum movement distance needed for
gathering.
For the synchronous time models which we used so far, the number of rounds can

be interpreted as the number of neighborhood observations per robot, which can
be relevant in terms of energy. This is also the case in the asynchronous random
permutation model, since each robot is activated exactly once per round. That
is, for the asynchronous random permutation model, the number of neighborhood
observations is O(n2) for both presented algorithms. But for the random order
model, this can be different: Some robots may be active several times before a round
ends. Here, a round will in expectation take O(n log n) time steps (coupon collector
problem), and a fixed robot will be active O(log n) times in expectation. Thus, if an
algorithm takes X rounds in the random order model, a fixed robot will be active
X log n times in expectation. For the algorithm MoveInCH, which we analyze
in this model, this results in an expected number of neighborhood observations
of O(n2 log n) per robot. Concerning the local activation model, since we prove
a runtime of O(n2) time steps here, the number of neighborhood observations is
bounded by O(n2).
For the movement distance, which is analyzed for a variant of Move-On-Bisector

in Chapter 8, we again bound the maximum traveled distance, the maximum taken
over all robots. As the robots gather in one point and the algorithm is deterministic,
this distance is fixed for a fixed start configuration.

C h a p t e r 6

A first gathering algorithm

This chapter presents the first algorithm for gathering with known runtime bounds.
In order to achieve an analysis, the algorithm is rather complicated and the robots
need additional capabilities compared to those needed for Go-To-The-Middle or
the algorithm which is presented in Chapter 7. In particular, the robots have a
viewing range of 2 instead of 1, while the Unit Disk Graph of the robots is still
connected with respect to the connection range, which is 1. Thus, the robots can
look twice as far. Moreover, the robots do not only compute target points for
themselves, but also for their neighbors. As described in Section 5.1, they need a
Communication-Operation between the Compute- and the Move-Operation of the
LCM model in order to communicate the computed target point to their neighbors.
But because the robots are still oblivious, this does not allow them to compute a
global solution.
We will now first describe the algorithm in Section 6.1, then we analyze it in

Section 6.2. In Section 6.3 we present the local activation model, and show that
O(n2) time steps suffice in this model to achieve the gathering with MoveInCH.
This shows that a global activation of the robot is not necessary. Finally we give a
short conclusion in Section 6.4.

6.1 The algorithm MoveInCH
The main idea of the algorithm is as follows. Each robot that is a vertex of the
convex hull of the robot positions within its local viewing range tries to decrease
the area that is covered by the robots as much as possible, under the constraint
that the unit disk graph of the robots remains connected. In addition, if there are
too many robots in a given area, the complexity of the problem will be reduced by
fusing robots. As soon as all robots are close together, they can gather in one final

61

62 A first gathering algorithm

step. Note that robots assuming to be a vertex of the global convex hull of robots
but which are only a vertex of their local convex hull do not do any harm, because
they never leave the global convex hull of robots. Note further that since the robots
have a limited viewing range, we must guarantee that the robots do not split into
several groups which will never find each other again.

We can now formally describe the algorithm MoveInCH. It is executed by robot
vi at the time t in which it is active (Algorithm 1). See Fig. 6.1 for an illustration of

Algorithm 1 MoveInCH: The algorithm for robot vi at time t:
1: Compute the sets Ai and Bi of the robots within the viewing resp. connection

range of vi. Let Ci denote the convex hull of Ai.
2: (Termination) If Ai = Bi (i.e. no robots from Ai have distance between 1 and 2

to vi), then move all robots from Bi to the position vi(t).
3: Else (Bi is a proper subset of Ai)

3.a: (Fuse) If the positions in Bi can be rearranged such that the resulting new
set A′i is still contained in Ci, is still connected, and at least two robots share
the same position (are fused), perform this rearrangement. Fused robots will
alway have the same position from now on.
3.b: (Reduction) If a fusion is not possible and vi lies on the boundary of Ci,
then do the following:

1. Compute the two first intersections of the boundary of Ci with the bound-
ary of vi’s connection range if started from vi(t) in clockwise/ counter-
clockwise direction. (Note that these are the intersections which are in
maximum distance to each other.)

2. Compute the line segment l between these intersections.

3. Move all robots on vi’s side of l to their respective closest point on l.

Step 3b of the algorithm. Note that the algorithm is deterministic. We will bound
the expected value for the number of rounds until all robots have gathered in one
point in the next section; the only randomness used is the stochastic round model.
In particular, the algorithm can also be executed in an asynchronous worst case
round model, the only difference is that we cannot guarantee the runtime in this
case.

6.2 Analysis of MoveInCH 63

Figure 6.1: Illustration of step 3b of the algorithm and its correctness

6.2 Analysis of MoveInCH
This section is dedicated to the analysis of the correctness and runtime of the al-
gorithm MoveInCH. We will first show some preliminaries and then analyze the
runtime, measured in the number of rounds needed until the robots have gathered.
This number will be shown to be O(n2) in expectation, where the randomness comes
only from the stochastic round model, while the algorithm itself is deterministic.

Preliminaries In order to prove that the robots gather in one point, we first show
that Gt stays connected at all times and thus that the robots do not split into several
groups. We prove this in the following lemma.

Lemma 6.1. If the network is connected before a robot vi executes the algorithm, it
is still connected afterwards.

Proof. If the action in step 2 of the algorithm is executed, all robots which are
in the viewing range of vi, are also in its connection range. Therefore, the robots
which are moved to pr(t) were only connected to robots which are moved to the
same point, keeping the connection. If vi executes the action in step 3a of the
algorithm, the robots in vi’s viewing range stay connected by definition. Moreover,
since only robots within vi’s connection range are moved, edges of the unit disk
graph Gt ending outside vi’s viewing range are not affected.

64 A first gathering algorithm

Now let vi be a robot executing the action in step 3b of the algorithm in time
step t. Since again only robots within vi’s connection range are moved, we only
need to prove that all robots in the local convex hull Ci(t) stay connected. For these
robots (we now denote them by R), the straight line s which contains l separates R
in two disjoint subsets R1 and R2 (let R1 contain the robots on l). See Fig. 6.1 for
an illustration. Let R1 be the subset which contains vi, and let v be an arbitrary
robot from R1. According to the algorithm, all robots from R1 are moved to their
projection on l, if it exists, and otherwise to their closest point on l (which is the
closer end of l). It follows that the distance of v to its neighbors in R1 can only
decrease. If v is moved to its projection on l, by the definition of a projection its
distance to the robots in R2 can also not increase. If no projection of v on l exists,
the movement of v can be split in two: If v was moved to its projection v′ on s, the
distance to its neighbors in R2 would also not grow. From v′, v can be moved to
its target point by projecting it to another straight line s′: s′ is orthogonal to l and
intersects l in v’s target point (and thus in the end of l which is closer to v). Again,
all robots from R2 are positioned on the other side of s′ from v’s point of view, and
thus its distance to the robots from R2 can again not increase.

Corollary 6.2. If Step 2 of the algorithm (termination) is executed, the algorithm
has gathered all robots in one position.

Note that in rounds without a fusion, if two robots were in each others connection
range before the round, they still are afterwards.
In order to compute the number of rounds until the robots have gathered, we

use two progress measures. Since fused robots never part again, fusing robots is
progress. The other measure is the area of the convex hull which is truncated in
one round. We will prove that we have progress concerning at least one of the
two measures in each round: Either two robots are fused or the area decreases in
expectation by a constant. Since fused robots never part again, the first measure is
monotonically decreasing. We now show that this also holds for the second one.

Lemma 6.3. For all t and t′ with t′ > t it holds: CH(t′) ⊆ CH(t).

Proof. If robots are rearranged while two robots fuse, a robot leaves neither the
local convex hull nor the global convex hull of robots. If a vertex vi of the convex
hull moves itself and neighboring robots to the line segment l, l is completely inside
the local convex hull of vi and therefore again no robot leaves the global convex
hull.

The next Lemma states another helpful fact and shows that a simple implemen-
tation of Step 3a of the algorithm is sufficient.

6.2 Analysis of MoveInCH 65

Lemma 6.4. If |Bi| > 16 for a robot vi, then Step 3a of the algorithm (Fusion) is
always possible.

Proof. Insert a grid with step width 1 into the intersection of vi’s viewing range
and Ci(t). It is always possible to insert such a grid which has at most 16 points. If
there are more robots in vi’s connection range than points on the grid, moving the
robots to the grid points guarantees that the unit disk graph of the robots in vi’s
viewing range stays connected and that no robot leaves Ci(t).

Progress in rounds without fusion Since we start with n robots, there can be at
most n− 1 rounds in which robots fuse. It remains to bound the number of rounds
without a fusion. In order to achieve this, we will prove that the area of the convex
hull is decreased in expectation by a constant in such rounds (Lemma 6.8). The
idea of the proof is to bound the area which is truncated by a single robot which
is a vertex of the global convex hull of robots (Proposition 6.6). This area directly
depends on the internal angle of the global convex hull at the robot position at the
moment the robot turns active. We show a relation between the internal angle at
this moment and at the beginning of the round, so that we are able to sum up the
progress of all robots by using the sum of the internal angles of the global convex
hull at the beginning of the round.
Before we start with the proofs, we need to introduce some notation. In this

subsection we will always consider a fixed round without a fusion. Moreover,

• m denotes the number of vertex robots, that is robots which are a vertex of the
global convex hull CH at the beginning of the round. For ease of description,
we renumber the vertex robots to v1, ..., vm.

• β∗i is the internal angle of the global convex hull at vertex robot vi at the
beginning of the round.

Now consider a vertex robot vi which is still a vertex of the global convex hull CH(t)
in the first time step t in which it is active in this round.

• Let p1 and p2 denote the first intersections of the global convex hull CH(t)
with the boundary of vi’s connection range if started from vi(t) in clockwise/
counterclockwise direction (the intersections which are in maximal distance to
each other). Let T denote the triangle with the vertices vi(t), p1 and p2. Then
βi is the internal angle of T in vertex vi(t).

66 A first gathering algorithm

• Let p′1 and p′2 denote the intersections of the local convex hull Ci and the
boundary of vi’s connection range if started from vi(t) in clockwise/ counter-
clockwise direction (the intersections which are in maximal distance to each
other). Let T ∗ denote the triangle with the vertices vi(t), p′1 and p′2. Then αi
is the internal angle of T ∗ in vertex vi(t).

Figure 6.2 illustrates the described angles. Note that αi ≤ βi, since the global convex
hull contains the local convex hull at the beginning of time step t.

Figure 6.2: Angles used in this subsection. CH indicates the global convex hull at
the beginning of the round. βi and αi are internal angles of the triangles T and T ∗
at the first time step in which vi turns active in the round, β∗i is the internal angle
of the global convex hull at the beginning of the round.

In order to bound the area which is truncated by a single robot, we start by
showing that the internal angle of the local convex hull of this robot cannot be
small, since otherwise robots can be fused.

Proposition 6.5. Consider a fixed round in which no robots are fused. Then αi is
greater than π

3 for all robots vi which are a vertex of the global convex hull in the
moment they turn active.

6.2 Analysis of MoveInCH 67

Proof. If αi ≤ π
3 for a robot vi, there exists one position p from which all robots

are in distance at most 1 which were within viewing, but not connection range of
pvi(t). See Fig. 6.3 for an illustration. vi can be moved to the point inside the local
convex hull closest to the point shown as p in Fig. 6.3. Moreover, because Gt is
always connected, there must have been at least one robot in the connection range
of vi. All these robots can now fuse with vi. Afterwards, no robots remain in the
old connection range of vi and thus the robots from Ci(t) are connected.

Figure 6.3: Illustration of a position from which all neighbors are in connection
range. The indicated sector of the circle must contain the local convex hull, if αi ≤ π

3 .

Proposition 6.6. Consider a fixed round in which no robots are fused, and a robot
vi which is a vertex of the global convex hull in the time step t in which it turns
active. The area of the global convex hull is reduced by at least 1

2 cos(βi2) in this time
step.
Proof. Consider the triangle T as defined above. Since the global convex hull CH(t)
contains the local convex hull Ci(t), no point of l or the circular segment defined
by l and the connection range of vi can lie strictly inside of T (see Fig. 6.4 for an
illustration). As robot vi moves all robots in its viewing range to this segment, the
triangle T cannot contain any robots at the end of time step t. Since T is completely
contained in the global convex hull, the area of the global convex hull is reduced by
at least the area of T , which is sin(βi2) ·cos(βi2) ≥ sin(αi2) ·cos(βi2) ≥ 1

2 ·cos(βi2), where
the first inequality follows from βi ≥ αi and the second follows from Proposition
6.5: According to this proposition, αi is at least π

3 , giving that sin(αi2) ≥ 1
2 .

The next lemma will be helpful when showing that the convex hull is reduced
in expectation by a constant 1

c
. The constant c is the maximum number of robots

that can be within the viewing range of a robot without fusing at least two of them.
Lemma 6.4 states an upper bound for c of 16.

68 A first gathering algorithm

Figure 6.4: Illustration of the proof of Proposition 6.6

Lemma 6.7. The probability that a vertex robot vi is not moved by the activation
of another robot prior to its own activation during the same round is at least 1

c+1 .

Proof. At the moment t in which it is active, a robot vi can have at most c neighbors
(in its connection range), since otherwise robots could be fused. Let c′ ≤ c be this
number of neighbors. Then the robot vi can also have at most c′ neighbors in all time
steps of the current round before t, because once neighbors, robots stay connected
at least until the next fusion. If during the round, vi becomes active before its c′
neighbors at time t, it cannot have been moved by the activation of another robot
prior to its own activation. Therefore, we lower bound the probability that this
event occurs. In the random order model, it is at least

∞∑
t=0

1
n

(1− c′ + 1
n

)t = 1
n

1
1− (1− c′+1

n
)

= 1
c′ + 1 ≥

1
c+ 1 .

In the random permutation model, let C ′ be the set of the robots vi and its c′
neighbors when vi is active, |C ′| = 1

c′+1 . Then the probability that vi is the first
robot out of C ′ in the random permutation that determines the order of activation
of this round is 1

c′+1 ≥
1
c+1 .

Lemma 6.8. Consider a fixed round in which no robots are fused. The expected
value for the area by which the global convex hull is reduced in this round is at least

1
c+1 .

6.2 Analysis of MoveInCH 69

Proof. Let vi denote a robot which is a vertex of the global convex hull CH at the
beginning of the round. Remember that β∗i is the internal angle of CH of robot vi.
Since CH is a convex polygon, the sum of its internal angles is ∑m

i=1 β
∗
i = π ·(m−2).

We want to use this sum of internal angles to determine the area by which the global
convex hull is truncated in this round. Since robot vi truncates the global convex
hull by 1

2 cos(βi2) (Proposition 6.6), we need a relation between the internal angle of
CH in robot vi in the beginning of the round (β∗i) and βi, the internal angle in robot
vi of the triangle T at the beginning of the first time step t in which vi is active.

Note that vi may have neighbors which were moved by other robots before. Con-
sider the case that vi is active before any other robot in its connection range. This
means that vi’s position cannot have changed in this round before time step t. If
other robots have moved before time step t in this round, they have not left the
global convex hull and thus it can only have shrunk. This means that the internal
angle of the global convex hull in robot vi can only have decreased: At the beginning
of time step t it is smaller than or equal to β∗i . Finally, the triangle T is completely
contained in the global convex hull at time step t. It follows that βi is not larger
than the internal angle of the global convex hull at vi at the beginning of time step
t, and thus β∗i ≥ βi, if vi is the first vertex of the convex hull which becomes active
in its neighborhood.

Now we compute a lower bound for the expected area by which vi truncates the
global convex hull in the time step t in which it is first active, depending only on
its internal angle of the global convex hull at the beginning of the round. For this,
let ai denote the random variable which describes the area truncated by robot vi in
the round.

E[ai] ≥ Pr[vi is the first activated robot in its connection
range] · (area truncated in this case)

= 1
c+ 1 ·

1
2 cos(βi2)

≥ 1
2(c+ 1) cos(β

∗
i

2)

The equality follows from Lemma 6.7. Finally, lower bounding the cosine in the
interval [0; π2] by the straight line g with g(x) = 1 − 2

π
x, we can use the sum of all

internal angles of the global convex hull (∑m
i=1 β

∗
i = π · (m − 2)) to estimate the

70 A first gathering algorithm

expected truncated area in the round:

E

[
m∑
i=1

ai

]
=

m∑
i=1

E[ai]

≥
m∑
i=1

1
2(c+ 1) cos(β

∗
i

2)

≥ 1
2(c+ 1)

(
m∑
i=1
− 2
π
· β
∗
i

2 + 1
)

= 1
2(c+ 1)

(
m− 1

π

m∑
i=1

β∗i

)

= 1
2(c+ 1)

(
m− 1

π
· π · (m− 2)

)
= 1

2(c+ 1)(m−m+ 2)

= 1
c+ 1

Note that we only use the first time a robot turns active in a round. If it turns
active again, it may reduce the size of the convex hull further, but it will never
increase the convex hull (Lemma 6.3). It follows that activating robots more than
once in a round can only improve our result.

Runtime of the algorithm We can now put together the results to bound the
number of rounds until the robots have gathered.

Theorem 6.9. Our local gathering algorithm needs expected O(n2) rounds in the
random order and the random permutation model.

Proof. In each round, each robot vi performs exactly one of the following three
operations:

1. it moves all robots in its viewing range to its own position

2. it fuses two robots

3. if it is a vertex of the convex hull of its neighboring robots, it truncates a part
of this local convex hull, otherwise it does nothing.

According to Corollary 6.2, after executing the first operation, the gathering has
been achieved. Consequently, there is only one round in which this operation is
performed.

6.3 A local random activation model 71

The second operation can be performed at most n − 1 times, since fused robots
never part again and after at most n− 1 robot fusions, all robots have fused to one
robot.
The global convex hull of the start configuration can have an area of at most n2,

because we assume the Gt to be connected. Since according to Lemma 6.8 the area
of the convex hull is truncated in expectation by a constant in a round without a
fusion and since the area of the global convex hull never increases (Lemma 6.3),
there can be at most O(n2) rounds in expectation without a fusion. Summing up
the number of rounds for each operation leads to the desired bound.

6.3 A local random activation model
So far, we have formulated our round models in a global fashion. Now we show that
a variant also exists which can be implemented in a distributed synchronous setting.
Consider the following local activation protocol: In a time step, each robot vi first

computes the size bi of Bi, the set of robots within its connection range. Then it
wakes up with probability 1

max(c,bi) , where c is the maximum number of neighbors a
robot can have without fusing robots. It becomes active if no other robot vj in Bi

with a smaller bj woke up. If vi is active, it performs our local gathering algorithm.
Note that the parallel executions never interfere. Note further that such a time

step needs a computation of Bi, followed by just one step for parallel executions of
our local gathering algorithm.

Theorem 6.10. Our local gathering algorithm needs expected O(n2) time steps in
the local activation model.

Proof. Consider a time step.
If no robot fusion is possible, each robot vi wakes up with probability 1

c
, and

becomes active with probability p ≥ 1
c
(1 − 1

c
)c−1. As p is constant, Lemma 6.8

yields that, in such a time step, an expected constant size part of the convex hull is
truncated. Thus, expected O(n2) time steps without a robot fusion suffice.
If a fusion is possible, bi > c holds for some robot vi. vi becomes active with

probability

Pi = 1
bi
· Prob(none of vi’s neighbors wake up) = 1

bi
·
bi∏
j=1

(1− 1
max{c, bj}

).

Now consider the neighbors of vi. They are all inside the circle C with radius 1
around vi. This area can be covered with a constant number of circles Cj with
radius 1/2. All robots in one circle can all mutually see each other. Let |Cj| be the

72 A first gathering algorithm

number of robots in circle Cj. Let furthermore c′ be the number of circles which
contain exactly one robot and c′′ the number of circles which contain at least two
robots.
First consider those robots which are alone in their circle. Since the unit disk

graph of the robots is connected, each of those robots has at least one neighbor and
thus their probability to wake up is at most 1/2. Each other robot has at least as
many neighbors as there are robots in its circle, and thus for such a robot vk in circle
Cj, its probability not to wake up is at least 1− 1

|Cj | . We can use this to rewrite the
probability that vi becomes active:

Pi ≥
1
bi
·
(1

2

)c′
·
c′′∏
j=1

(1− 1
|Cj|

)|Cj |.

Note that robots may be counted several times, as they can be in more than one
circle, but this only reduces the computed probability. Finally we use that bi ≤ n

and (1− 1
|Cj |)

|Cj | ≥ 1
4 for |Cj| ≥ 2:

Pi ≥
1
n
·
(1

2

)c′
·
(1

4

)c′′
Thus expected O(n2) time steps in which a fusion is possible suffice to perform all
at most n− 1 many fusions.

6.4 Conclusion
We have shown that using the MoveInCH algorithm with one of the described
random round models, O(n2) rounds respectively time steps are required in expec-
tation to achieve gathering. Regarding the number of neighborhood observations, it
is in expectation O(n2) per robot in the random permutation model and the local
activation model, where each robot is active at most once per round or time step.
In the random activation model, a robot is active O(log n) times in expectation in
each round. This results in an expected number of neighborhood observations of
O(n2 log n) per robot. Note that these bounds do not directly give an upper bound
for the movement distance, since when using the MoveInCH algorithm, robots
may also move when not active.
This algorithm shows that it is possible to efficiently gather the robots in one

point using only local information. Its drawback is that it is rather complicated,
that it cannot be executed in a strictly synchronous time model, that the robots
need to compute target points for their neighbors and that a randomized round
model is needed for the runtime bound. We will show in the next chapter that this

6.4 Conclusion 73

is not inherent to the problem: Local gathering is also possible efficiently with very
simple robots in a synchronous model.

C h a p t e r 7

An improved gathering algorithm

In Chapter 6 we have seen a first local algorithm for the gathering problem with
runtime bounds. In this chapter we focus on a very simple and intuitive algorithm.
The idea of the algorithm, which was originally presented by Ando, Suzuki and
Yamashita [ASY95, AOSY99], is to move all robots towards the center of the smallest
enclosing circle (SEC) of their neighbors, stopping them as soon as they might lose
connectivity to one of their neighbors. The smallest enclosing circle is the point
which minimizes the maximum distance to its neighbors. This algorithm is executed
synchronously, and contrary to MoveInCH, no communication is needed. Ando,
Suzuki and Yamashita showed that this simple algorithm gathers the robots in finite
time, but so far runtime bounds were unknown. We show that O(n2) synchronous
rounds suffice to gather the robots in one point. This algorithm is therefore as fast
as MoveInCH, but overcomes its drawbacks.
Next, we give a formal description of the algorithm (Section 7.1). In Section 7.2,

we show that there is a configuration for which Ω(n2) rounds are necessary to gather
the robots, before we proceed to the main result in Section 7.3: Gathering is achieved
in O(n2) rounds.

7.1 The algorithm Go-To-The-Center
The algorithm is based on the smallest enclosing circle (SEC) of a point set P
(which are robot positions in our context). Its center is the point that minimizes
the maximum distance to any point in P .
The GTC-algorithm, which was first introduced in [ASY95], works as follows.

First, vi computes its target point ci(t), which is the center of the smallest enclosing
circle around itself and its neighbors. Because the connectivity of the unit disk
graph could break if all robots would move to their target point, a second phase

75

76 An improved gathering algorithm

Algorithm 2 Go-To-The-Center: The algorithm for robot vi in round t
1: {compute target point}
2: Ri(t) := {all robots visible from vi including vi itself}
3: Ci(t) := smallest enclosing circle of Ri(t)
4: ci(t) := center of Ci(t)
5: {keep connectivity}
6: ∀vj ∈ Ri(t) : mj := the midpoint between vi(t) and vj(t)
7: ∀vj ∈ Ri(t) : Dj := the circle with radius 1

2 around mj, called limit circle
8: seg := the line segment vi(t), ci(t)
9: A := ⋂

vj∈RDj ∩ seg
10: x := the point in A that minimizes d(x, ci(t))
11: {Note that A 6= ∅, since vi(t) ∈ A}
12: vi(t+ 1) := x

is used to compute a point x on the line segment between vi(t) and ci(t) to which
vi finally moves. For each neighbor vj, vi computes the midpoint mj between their
positions, and the limit circle Dj with center mj and radius 1/2. As long as both vi
and vj do not leave this circle, they will be in distance 1 of each other and therefore
neighbors at the beginning of the next round. Finally, x is the point on the line
segment between vi(t) and ci(t) that maximizes the distance that vi moves under the
constraint that vi does not leave the circle Dj for any neighbor vj. Since all robots
execute this algorithm, this procedure makes sure that two neighboring robots never
lose their connection.

Lemma 7.1 (Ando, Suzuki and Yamashita [ASY95, AOSY99]). If two robots are
neighbors in Gt at time t, then they are still neighbors in Gt+1. In particular, if G0

is connected, then Gt is connected for all t ≥ 0.

Because of the procedure to keep connectivity, it is possible that a robot does
not move far in direction towards its target point. We say that a robot vj hinders
another robot vi from reaching some point p on the line segment between vi(t) and
ci(t), if vi would leave Dj when moving to p. If in any round, two robots move to
the exact same point, they will stay at a common point for the rest of the execution
of the algorithm, because they see the same neighborhood and hence behave exactly
the same. Like in Chapter 6, we say that such robots have fused.
In [ASY95, AOSY99], the authors have already shown that this algorithm gathers

the robots in one point within finite time, but so far no runtime bounds were known.
We will now first show a lower bound Ω(n2), and then our main result, namely the
upper runtime bound of O(n2) rounds.

7.2 The Lower Bound 77

7.2 The Lower Bound
For a lower bound on the number of rounds until gathering when using Go-To-
The-Center, consider a configuration with the robots positioned on the boundary
of a circle, such that each robot has only two neighbors and the distance between
two neighbors on the circle is the same for all robots. In this configuration, all robots
have the same local view and so all robots do the same. The robots will therefore
still be positioned on the boundary of a circle in the next round. We will use this
observation to prove the following result.

Theorem 7.2. There is a start configuration such that the algorithm takes Ω(n2)
rounds to gather the robots in one point.

Proof. Let the robots be positioned on a circle with an initial distance of 1 between
two neighboring robots (see Figure 7.1 for an illustration). This means that the
initial circumference of the circle is ≈ n, and its radius is ≈ n

2π . We will show that
it takes Ω(n2) rounds until the circumference of the circle is reduced to 2

3n.
If the circumference of the circle is greater than 2

3n, each robot r has only two
neighbors, which are in equal distance d, 1

2 < d ≤ 1, from r. The center of the
SEC of r’s neighborhood is the midpoint between its neighbors. We can therefore
compute the distance that r moves as the height h of the equilateral triangle formed
by r and its two neighbors. To compute h, let α be the internal angle of the triangle
at robot r. Due to the definition of the cosine, h = cos(α2)·d. In the interval between
0 and π

2 , the cosine can be upper bounded by cos(x) ≤ −x + π
2 . As 0 < α

2 < π
2 ,

we can apply this bound and thus cos(α2) ≤ −α
2 + π

2 , resulting in h ≤
(
−α

2 + π
2

)
· d.

Moreover, since the robots form a regular polygon with n vertices and the sum of
the internal angles of such a polygon is πn − 2π, we get that α = π − 2π

n
for all

robots. Thus,

h ≤
(
−α2 + π

2

)
· d

≤
(
−
(
π

2 −
π

n

)
+ π

2

)
· d

= π

n
· d ≤ π

n

and the robots move at most a distance of π
n
in each round. Therefore, it takes at

least 1
3πn

2 rounds until the radius is decreased by at least 1
3n. As the circumference

is 2π times the radius of a circle, decreasing the radius by 1
3n also decreases the

circumference by 1
3n. Thus, it takes at least

1
3πn

2 rounds until the circumference is
decreased to 2

3n.

78 An improved gathering algorithm

d
α

h

Figure 7.1: A robot configuration on the vertices of a regular convex polygon yields
a worst-case running time of the algorithm.

7.3 The Upper Bound
In this section we will show that the robots gather in O(n2) rounds. But before
we start with the analysis, we state some well-known facts about smallest enclosing
circles, on which our analysis will rely heavily.

Proposition 7.3 (Chrystal [Chr85]). Let C be the smallest enclosing circle (SEC)
of a point set S. Then either

1. there are two points P,Q ∈ S on the circumference of C such that the line
segment PQ is a diameter of C, or

2. there are three points P,Q,R ∈ S on the circumference of C such that the
center c of C is inside 4PQR, which means that 4PQR is acute-angled.

Furthermore, the SEC of a set of points is unique.

From this proposition follows directly that the SEC of a point set P is always
within the convex hull of P .
The following definition is illustrated in Figure 7.2.

Definition 7.4. Let C be the SEC of a set of points S. An arc of C that contains
no points is called a point-free arc. The length of this arc is defined as the central
angle of the arc.

7.3 The Upper Bound 79

C

α

a

B

A

Figure 7.2: The central angle α of an arc a of the circle C is the angle subtended
at the center of C by the two points A and B delimiting the arc.

Note that the central angle of an arc is greater than π if the arc extends over more
than half the circumference of the circle.

Proposition 7.5 (Chrystal [Chr85]). Let C be the SEC of a set of n ≥ 2 points.
Then there is no point-free arc with length greater than π.

With these basics, we can now define how we measure progress. Like for the
analysis of MoveInCH, we will use two progress measures.

• As a first progress measure, we will again count the number of rounds in which
robots fuse. As we have n robots in the beginning, there can be at most n− 1
such rounds.

• Since the algorithm is deterministic and it was already proven in Ando, Suzuki
and Yamashita’s original paper [ASY95] that the robots gather in finite time,
we know that, for a given start configuration, the point where the robots gather
is fixed. We will call this point the gathering point M. We define a circle Nt
with center M and radius Rt for a round t, such that Nt contains all robots in
round t and its radius is minimal. Due to the definition of the algorithm and
because the center of the SEC of a point set is always within the convex hull
of the point set, the robots never leave the convex hull of their neighbors as
well as the global convex hull. Rt can therefore only decrease. We will use Rt

as a second progress measure.

As the robots gather at a point inside the convex hull of the robot positions
in any round t, M is inside the convex hull of the robot positions of the start
configuration. Moreover, since G0 is connected, the diameter of the convex hull
of the robots in round 0 can be at most n− 1 and therefore also R0 ≤ n− 1.
The idea of the proof is to show that in a constant number of rounds in which
no robots fuse, Rt decreases by at least Ω(1

n
).

80 An improved gathering algorithm

l2

l1

S1
P

M

1
8

NR

S2

α

Figure 7.3: The segments S1 and S1 ∪ S2 of the global SEC are later used to
measure the progress of the algorithm.

Using these two progress measures, with R0 ≤ n − 1 and at most n − 1 rounds in
which robots fuse, it follows directly that the robots gather in O(n2) rounds.
From now on, we will consider an arbitrary but fixed round t0. Let N := Nt0

and R := Rt0 . For this round, we introduce some further notions (see Figure 7.3):
first, fix an arbitrary point P on the boundary of N and draw a line between P and
M. A line l2 that is perpendicular to this line defines a circular segment of N . The
intersection points of l2 and the circle N are in distance 1

8 from P. Observe that
the length of l2 is upper bounded by 1

4 . We call S1 the circular segment with half
the height of the segment defined by l2, such that a line l1 that is parallel to l2 is
its chord. Moreover, we define S2 to be the area of the segment defined by l2 minus
the area of S1. The main idea of the analysis is to show that in round t0 and t0 + 1,
either two robots fuse or all robots leave S1. We will conclude that this leads to the
desired number of rounds.
The following analysis is divided into geometric prerequisites regarding S1 and S2

(Section 7.3.1) and the actual analysis of the algorithm (Section 7.3.2).

7.3.1 Geometric Prerequisites
In this section we want to give prerequisites regarding S1 and S2 and smallest en-
closing circles with centers in these segments. These will be used later to make a
statement about which robots can compute target points inside one of the segments.

Lemma 7.6. Let x be the length of a chord defining a circular segment S of N .
Then any circle C with its center c in S and radius r > x has an arc outside of N
with a central angle larger than π and thus cannot be the SEC of points only from
N .

7.3.1 Geometric Prerequisites 81

N
> x

c

C

I1

I2

S

x

Figure 7.4: A circle with center in S and a radius exceeding the chord length of S
intersects with N outside of S.

Proof. See Figure 7.4 for an illustration of the setting described by the lemma.
Since r is larger than the length of the maximum distance between two points in S,
both intersection points I1 and I2 of the circle N with any circle with center in S

and radius r > x lie outside of S. Because the center c lies in S, it follows that the
(longer) arc of C from I1 to I2 outside of N has a central angle larger than π (the
dashed part of the circumference in Figure 7.4).

Since the chord length of S1 ∪ S2 is bounded by 1
4 , the following corollary is

immediate.

Corollary 7.7. The radius of a SEC of a point set S ⊆ N with its center in S1∪S2

is at most 1
4 .

In the following, we will show two geometrical lemmas for the position of the center
of a SEC, if the configuration of the underlying points adheres to a few restrictions.
The first lemma follows from Corollary 7.7 and will be used to show that if a robot
can see a robot that is far away from S1∪S2, it cannot compute a target point inside
this circular segment.

82 An improved gathering algorithm

Lemma 7.8. Let S ⊆ N be a set of points. Now let A be a point in S1 ∪ S2 and
B ∈ S be a point in distance at least 1 from A. Then the center of the SEC of S
cannot lie in the segment S1 ∪ S2.

Note that A does not need to be in S.

Proof. Assume that the SEC C has its center c inside S1 ∪ S2. We know from
Corollary 7.7 that C can have at most radius 1

4 . Since the maximum distance of two
points in S1 ∪S2 is bounded by 1

4 , B must have a distance of at least 3
4 from S1 ∪S2

in order to be in distance at least 1 from A. Hence, B cannot lie in C.

The next lemma is similar to the last one in the sense that it makes a statement
about configurations, for which robots cannot compute a target point in S1. In
particular, it will be used for robots that can only see one single robot in S1 ∪ S2.
These robots cannot compute a target point in S1.

Lemma 7.9. The center of the SEC of a non-empty point set S ⊆ N \ (S1 ∪ S2)
and a point A ∈ S1 ∪ S2 cannot lie in the segment S1.

Proof. Assume that the SEC C has its center c inside S1. We distinguish two cases
as given by Proposition 1.

1. C is defined by two points P1 and P2. A must be one of these points, say P2,
otherwise c cannot lie in S1. Since P1 cannot lie in S1 or S2 by assumption
and because the height of S1 is equal to the height of S2, the midpoint c of
AP1 cannot lie in S1.

2. C is defined by three points P1, P1 and P3. A must be one of these points, say
P3, otherwise c cannot lie in S1. Since C is the circumcircle of 4P1P2A, it lies
on the intersection of the perpendicular bisectors of AP1 and AP2. The centers
of these two segments lie outside S1 and since the perpendicular bisectors
intersect in the interior of 4P1P2A and this triangle is acute, their intersection
point also cannot lie in S1.

This completes the proof.

Finally, as the main idea of the analysis is to show that if no robots fuse, S1 is
empty after two rounds, we will need the height of S1 to compute the progress with
respect to Rt within two rounds.

Lemma 7.10. The segment S1 has a height h of at least 1
128π·R ∈ Ω

(
1
n

)
.

7.3.2 Gathering Algorithm Analysis 83

Proof. We start by computing the angle α (see Figure 7.3 for a definition of α).
The circumference of N is 2πR. Thus, we can position at most 16πR points on the
boundary of N that are in distance 1

8 from the points closest to them and that form
a regular convex polygon. The internal angle of each of the points of this polygon is
equal to 2α. To compute such an internal angle, we use that the sum of the internal
angles of a convex polygon is (m− 2) · π, where m is the number of vertices of the
polygon. In our case, this is at most (16πR− 2) · π. It follows that each angle is at
most (16πR−2)·π

16πR = π − 1
8R , and thus α ≤ π

2 −
1

16R .
Now we can use α and the fact that cos(x) ≥ − 2

π
x + 1 in the interval x ∈ [0, π2]

to compute the height h of S1:

h = cosα
16 ≥

cos
(
π
2 −

1
16R

)
16

≥ 1
16 ·

(
− 2
π
·
(
π

2 −
1

16R

)
+ 1

)
= 1

128πR

Because R ≤ n, we have shown h ∈ Ω(1
n
).

7.3.2 Gathering Algorithm Analysis
Now we can proceed to the actual analysis of the algorithm. We can use the lemmas
from Section 7.3.1 to determine robots that cannot compute a target point in S1 or
S1 ∪ S2. Nevertheless, according to the algorithm, robots do not always reach their
target point; it is also possible that they are hindered by other robots. So knowing
that a target point is outside S1 or S1∪S2 does not necessarily mean that the robot
actually leaves the respective segment. The following two lemmas show that robots
always reach their target point, if it is in S1 ∪S2, and that they cannot be hindered
from leaving S1 and S2.

Lemma 7.11. Robots that compute a target point in S1 ∪ S2 cannot be hindered
from reaching it by the limit circle of any other robot.

Proof. Let vi be a robot that computes a target point c (which is the center of the
SEC C) inside S1 ∪ S2. Then, according to Corollary 7.7, the radius of C cannot
exceed 1

4 and thus the distance between vi and c is also upper bounded by 1
4 . Now

assume that there is a robot ve that hinders vi from reaching c. Since ve must be
a neighbor of vi, it must also be included in C and therefore, ve can have at most
distance 1

2 from vi. Now let me be the midpoint between vi and ve and therefore
the center of the limit circle that hinders vi from reaching c. me can be at most

84 An improved gathering algorithm

in distance 1
4 from vi. But that means that vi can move freely in any direction a

distance of 1
2 −

1
4 = 1

4 and hence it can reach its target point without being hindered
by ve.

Lemma 7.12. Robots cannot be hindered from leaving S1 ∪ S2 by the limit circle of
any other robot.

Proof. Let vi be a robot that computes a target point outside S1 ∪ S2 in round t0.
Now assume for the sake of contradiction that there is one robot vj that hinders
vi from leaving S1 ∪ S2. This is only possible if vj is a neighbor of vi and thus vj
must be within distance 1 of vi (see the circle C1 in Figure 7.5 with center vi and
radius 1: vj must be in C1). Now let m be the point where vi would leave S1 ∪ S2

if moving to its target point. According to the algorithm it is only possible that vi
is hindered by vj to leave S1 ∪ S2, if m is not within distance 1

2 from the midpoint
mj between vi and vj (line 6 – 10 of the algorithm). It follows that mj cannot be
inside the circle C2 (Figure 7.5) with center m and radius 1

2 . Based on C2 we can
define a circle C3 which may not contain vj, if mj is not in C2 and mj is the midpoint
between vi and vj: C3’s center is p′i, which is vi reflected with respect to the point
m, and its radius is 1 (see Figure 7.5). Summing up, vj must be inside of C1, but
outside of C3. Moreover, the smallest enclosing circle computed by the algorithm
has at most radius 1, and so vi’s target point is at most in distance 1 of vj. It follows
that vi’s target point must be on the line between m and p′i, because each point on
the straight line through vi and m beyond p′i is in distance more than 1 from any
point that is in C1, but not in C3.
Case 1 : vj is in S1 ∪ S2. Then, because the chord length of S1 ∪ S2 is at most 1

4 ,
the distance between vi and vj is also at most 1

4 . But that means that vi is at most
in distance 1

8 from the midpoint between vi and vj and thus it can move at least
distance 1

2 −
1
8 = 3

8 >
1
4 freely in any direction without being hindered by vj. But

after vi has moved a distance of 1
4 , it has left S1 ∪ S2 leading to a contradiction.

Case 2 : vj is not in S1 ∪ S2. Since a SEC is defined by two or three points with
at least one point on each half of the boundary of the SEC (Proposition 7.5), there
must be a robot vk that is in S1 ∪ S2 and on the boundary of the SEC defining vi’s
target point. It follows that vk can be at most in distance 1

4 from m. As vi is also
at most in distance 1

4 from m, so is p′i and also vi’s target point, which is between m
and p′i (see above). Thus, vk is at most in distance 1

2 from vi’s target point. Since
vk is on the boundary of the SEC that defines vi’s target point, it follows that the
SEC can have at most a radius of 1

2 . Now, since vj is outside of C3 and because
the distance between m and p′i is at most 1

4 (see above), vj must be in distance
greater than 1

2 from vi’s target point. Thus, vj cannot be in the SEC that defines

7.3.2 Gathering Algorithm Analysis 85

︸ ︷︷ ︸
≤ 1

4

m

pi

p′i

C1

C3

C2
N

S1 ∪ S2

Figure 7.5: Illustration of the proof of Lemma 7.12. The circles indicate where vj
can be positioned: C1 is a circle with center vi and radius 1 and must contain vj. C2

has center m and radius 1
2 , and C3’s center is p′i with radius 1. vj must not be in C3.

vi’s target point, which is a contradiction to vi and vj being neighbors. It follows
that vj cannot hinder vi from leaving S1 ∪ S2.

With all these prerequisites, we can now show that if no robots fuse, S1 is empty
after two rounds. We first analyze the behavior of some robots in round t0 in Lemma
7.13, before we plug things together in Lemma 7.14.

Lemma 7.13. Let S be a set of robots in round t0 that are all positioned in or
compute a target point in S1∪S2 and that all have a pairwise different neighborhood.
Then at most one of those robots is in S1 ∪ S2 at the beginning of the next round.

Proof. Since all robots from S have different neighbors, there exists a robot vi ∈ S
for which no robot from S has a set of neighbors that is a subset of the neighbors
of vi. Thus, all robots vj ∈ S \ {vi} have a neighbor that is not visible from vi
and therefore in distance more than 1 from vi. If vi is positioned in S1 ∪ S2, all
robots vj ∈ S \ {vi} see a point B in N (namely the position of the neighbor that vi
cannot see) that is in distance 1 from a point A in S1 ∪ S2 (namely the position of
vi). Lemma 7.8 therefore guarantees that all neighbors of vi compute a target point
outside of S1 ∪ S2. According to Lemma 7.12, no robot is hindered from leaving
S1 ∪ S2. Thus, only vi can stay in S1 ∪ S2.

86 An improved gathering algorithm

If vi is positioned outside S1∪S2, it has its target point in S1∪S2 according to the
definition of S. Corollary 7.7 now gives that the radius of vi’s SEC cannot exceed 1

4
and thus vi is in distance at most 1

4 from S1 ∪ S2. Using that the distance between
two points in S1 ∪ S2 is at most 1

4 , it follows that all points within S1 ∪ S2 are in
distance at most 1

2 from vi. Now consider a robot vj ∈ S \ {vi} and a neighbor vk of
vj that is in distance more than 1 from vi. This robot vk must then be in distance
more than 1

2 from S1 ∪ S2. Since vk is vj’s neighbor, we know from Corollary 7.7,
that the center of vj’s SEC – its target point – cannot be in S1∪S2 and according to
Lemma 7.12 vj is not hindered from leaving S1 ∪ S2. Since this holds for all robots
vj ∈ S \ {vi}, vi is the only robot that can be in S1 ∪ S2 in round t+ 1.

Lemma 7.14. If Rt ≥ 1
2 , either there are robots that fuse in round t or after two

rounds, the segment S1 does not contain any robots.

Proof. We consider all robots that are positioned in S1 ∪ S2 or compute a target
point in S1∪S2 in round t. We divide this set of robots into two subsets and analyze
them separately.

• First, we consider all robots that have a neighbor with the same neighborhood.
Thus, for all these robots there is another robot that computes the same target
point. Then there are two possibilities: Either one of these target points is
in S1 ∪ S2. According to Lemma 7.11, the robots with this target point are
not hindered from reaching it and therefore they fuse. If all target points are
outside S1 ∪ S2, Lemma 7.12 guarantees that all these robots leave S1 ∪ S2.

• Now consider the robots that have a pairwise different neighborhood. Accord-
ing to Lemma 7.13, at most one of those robots, call it vi, stays in S1 ∪ S2

during this round.

Thus, if vi is positioned outside S1 at the end of round t, we are done. Otherwise,
since apart from vi no robot is still in S1∪S2, we know from Lemma 7.9, that neither
vi nor a neighbor of vi can compute a target point in S1 in round t + 1. Thus, vi
leaves S1 in round t+ 1 (Lemma 7.12) and none of its neighbors enters S1. All other
robots that are not neighbors of vi do not see a robot in S1 and thus they cannot
enter S1.

Lemma 7.14 will be used to show that if no robots fuse, Rt decreases by Ω
(

1
n

)
every two rounds. According to the following Lemma, this procedure stops as soon
as Rt <

1
2 .

Lemma 7.15 (Ando, Suzuki and Yamashita [ASY95, AOSY99]). If Rt <
1
2 , the

robots have gathered at one point in round t+ 1.

7.3.2 Gathering Algorithm Analysis 87

This lemma holds because if Rt <
1
2 , all robots can see each other and thus all

robots compute the same target point. It is shown Ando, Suzuki and Yamashita’s
original work [ASY95, AOSY99] that the robots do not hinder each other from
reaching this point.
Putting everything together, we are now able to prove the final result.

Theorem 7.16. The robots gather within O(n2) rounds.

Proof. Fix an arbitrary round t0 ≥ 0. Since Lemma 7.14 holds for any point on the
boundary of Nt0 , after two rounds either two robots have fused or all robots must
be in distance greater than the height of S1 from the boundary of Nt0 . According
to Lemma 7.10, the height of S1 is at least 1

128·Rt and thus if the robots do not fuse,
the radius decreases by at least 1

128·Rt , giving that Rt+2 ≤ Rt − 1
128·Rt ≤ Rt − 1

128·R0
.

It follows that after 2 · 128 · (R0)2 = 256 · (R0)2 rounds without fusing robots, the
radius must be less than 1

2 . Now it takes one round to gather the robots (Lemma
7.15). Moreover, since G0 is connected, R0 ≤ n. There are at most n− 1 rounds in
which robots fuse. The total number of rounds is therefore at most 256 · n2 + n.

With this runtime bound, we have seen that solving the gathering problem is
possible efficiently in a completely local setting and by a very intuitive algorithm.
Since each robot is active once and moves at most a distance of 1 in each syn-
chronous round, it follows that the number of neighborhood observations as well
as the traveled distance per robot are upper bounded by O(n2). In the next chap-
ter, we investigate whether the traveled distance can be reduced if the robots may
permanently observe their neighborhood.

C h a p t e r 8

Gathering regarding the traveled
distance

We have seen in the previous two chapters that the gathering problem can be solved
efficiently in terms of the number of rounds by completely local algorithms. But as
for the robot chain problem, we also want to tackle the question how far the robots
need to travel for gathering. Therefore, we again let the robots observe their environ-
ment continuously and analyze an algorithm which is designed to reduce the traveled
distance. This algorithm was introduced in [GWB04] and the authors showed that it
gathers the robots in finite time, but no runtime bounds were shown. The algorithm
uses the continuous time model as presented in Section 2.2 and used in Chapter 3.
It is similar to Move-On-Bisector, and we will therefore call it Gathering-
Move-On-Bisector. We will show that the maximum distance traveled when
using Gathering-Move-On-Bisector is upper bounded by O(min{OPT 2, n}).
Like for the robot chain problem, OPT indicates a lower bound for the distance an
optimal global algorithm would have to overcome. That is, Gathering-Move-On-
Bisector is asymptotically optimal for worst-case instances, for which any global
algorithm also needs to cover a distance of Ω(n). Moreover, for instances which can
be solved very quickly by an optimal global algorithm, Gathering-Move-On-
Bisector is OPT -competitive.
The analysis of Gathering-Move-On-Bisector is closely related to the anal-

ysis of Move-On-Bisector, but it uses also techniques from the analysis of Go-
To-The-Center. Therefore, Gathering-Move-On-Bisector is an example
for that the techniques which were developed for Move-On-Bisector can be used
for further robot formation problems. This raises the hope that they can be trans-
ferred to further robot formation problems as well.
Before we start with the analysis and introduce our progress measures, we start

89

90 Gathering regarding the traveled distance

with a description of the algorithm.

8.1 The Gathering-Move-On-Bisector Strategy
The Gathering-Move-On-Bisector Strategy [GWB04], which is similar to the
Move-On-Bisector strategy for the robot chain problem, is as follows. At each
point of time, each robot vi observes all robot positions of those robots within
distance 1 (the viewing range) of itself. It then computes the convex hull of these
positions (CHi(t)) and performs one of the following actions.

• If vi is strictly inside this convex hull, it does not move.

• If it is on a line of the border of the convex hull, it moves with this line, keeping
the ratio of distances between its two neighbors on the border the same.

• If it is a vertex of CHi(t), it moves with maximum speed 1 on the angle bisector
of the smaller one of the two angles defined by itself and its neighboring two
vertices of CHi(t). We call this angle αi(t). In the case that vi has only one
neighbor, αi(t) = 0 and vi moves with maximum speed 1 towards its neighbor.

See Figure 8.1 for an example configuration.
Note that the movement of robots is continuous, but the direction in which a robot

moves may change in a non-continuous way, when two robots come into viewing
range of each other and one is a new neighbor in the local convex hull of the other.
But since the number of changes of the unit disk graph is finite, this only occurs at
a finite number of points of time.

8.2 Analysis of the strategy
As already said, we want to analyze the strategy with respect to the maximum
traveled distance. Since the robots move with a maximum speed of 1 (and there is
at least one robot which always moves with this speed), this distance is equal to the
finishing time.
For the analysis of the strategy, we only need one progress measure, which we will

call the length l(t) of a configuration at time t and which is similar to the length of a
robot chain. Contrary to the analysis of the robot chain problem, we will not need
the height h(t) of a configuration as a progress measure. We will nevertheless define
the height of a configuration and state the maximum distance traveled in terms
of the height instead of the length of a start configuration, using that l(t) ≤ h(t)2

8.2 Analysis of the strategy 91

Figure 8.1: Example configuration for Gathering-Move-On-Bisector

92 Gathering regarding the traveled distance

(Lemma 8.6), because the height is a more intuitive property of a start configuration
than the length. Moreover, through the height we can compare our algorithm with
an optimal global algorithm.
For the definition of the height, note that the Gathering-Move-On-Bisector-

strategy is deterministic. As used in the analysis of Go-To-The-Center, it thus
exists a gathering point M in which the robots will eventually gather (if gathering
is reached, which is still to show).

Definition 8.1 (height). The height h(t) of a configuration at time t is the maxi-
mum distance between a robot and M at time t.

Similarly to the Move-On-Bisector-strategy, we define the height-circle Ch(t)

to be the circle around M with radius h(t), which contains all robots. Note that
since there is a robot in the start configuration which is in distance h(0) from M ,
and since the gathering point M is inside the convex hull of the robots (the robots
never leave the convex hull), even an optimal global algorithm must cover a distance
of at least h(0)/2.
For the definition of the length of a configuration, let Gt again denote the unit

disk graph of the robots at time t. Gt has a well-defined outer border, which has
the form of a polygon, a line or in parts a polygon and in parts a line (see Fig. 8.1).
Nevertheless, we can see the complete outer border as a polygon by using the edges
of lines twice. For example, in Fig. 8.1, the vertices of the polygon are formed by the
robots on the outer border in the order v1, v2, . . . , v21, v22, v21, v1. The outer border
of the unit disk graph is indicated by the solid line, edges of the unit disk graph
which are not part of the outer border are indicated by dashed lines. We will call
this polygon P (t) from now on.
We will denote the vertices of P (t) by BG(t) and call them outer nodes. Note

that one robot can define several vertices and therefore outer nodes, as v21 in the
example. Moreover, there can be robots on the outer border of the unit disk graph,
which are on the line between their neighbors and therefore do not define a vertex
of P (t) (for example v17). Finally, if several robots are at the same position, they
define only one outer node. Let m(t) := |BG(t)| be the number of outer nodes at
time t, and let EB(t) ⊆ BG(t)× BG(t) be the set of edges between the outer nodes
forming the polygon. We can number the outer nodes from n1 to nm(t) by starting
at one vertex and numbering the nodes counter-clockwise. This way we get that ni
is a neighboring vertex of ni+1 in the polygon defined by the outer border. In our
example, if starting in the vertex of robot v1, we get that n1 is defined by v1, n2 by
v2, ..., n16 by v16, n17 by v18, ..., n20 by v21, n21 by v22 and n22 again by v21.
Now we can define the length of a configuration.

8.2 Analysis of the strategy 93

Definition 8.2 (length). The length l(t) of a configuration at a fixed time t is
defined as the sum of the distances between neighboring nodes of the polygon P (t):
l(t) := d(n1, nm(t)−1) +∑m(t)

i=1 d(ni(t), ni+1(t)).

We now want to classify the outer nodes further and define an angle γi(t) for each
outer node, which will be used instead of αi(t) for bounding the speed with which
the length decreases. Consider an outer node ni which is defined by a robot vk.
According to the algorithm, for each such outer node ni at time t, exactly one of
the following properties is true.

• The robot vk which defines ni is a vertex of CHvk(t). That is, vk moves on the
angle bisector of αk(t). See for example robot v2 or v3 in Figure Fig. 8.1. In
this case, we define the angle γi(t) for the outer node ni as γi(t) := αk(t) < π.

• vk is not a vertex of CHk(t) (for example robot v4 or v21) and thus it does not
move. Here we define γi(t) := π. Note that for robot v21, this means that the
angles γ of both outer nodes defined by it (γ21(t) and γ23(t)) are set to π.

Note that it is not possible that an outer node is on the straight line between its
neighbors on the border of its local convex hull, since we have excluded that such
robots define an outer node.
Now we can show that the length decreases depending on the γi(t)’s.

Lemma 8.3. Given two neighboring outer nodes ni and nj at an arbitrary time t0,
in which the unit disk graph does not change. Then the distance between ni and nj
decreases with speed at least cos γi(t0)

2 + cos γj(t0)
2 ≥ 0.

Proof. The proof is similar to the one for Move-On-Bisector in Section 3.1. We
define D : R≥0 → R2, t 7→ nj − ni and d : R≥0 → R≥0, t 7→ ||D(t)||. That is, D(t)
is the vector from ni to nj and d(t) the distance between ni and nj at time t. We
want to show that d′(t0) = −

(
cos γi(t0)

2 + cos γj(t0)
2

)
for an arbitrary but fixed point

of time t0. We will refer to the x- and y-component of D(t) ∈ R2 in the following by
Dx(t) and Dy(t) respectively. Similarly, we denote the x-coordinate of the position
of outer node ni at time t by ni,x(t) and its derivation by n′i,x(t).
By translating and rotating the coordinate system, we can w.l.o.g. assume ni(t0) =

(0, 0) and nj(t0) = (d(t0), 0). As the proof is similar to the one for Move-On-
Bisector in Section 3.1, Fig. 3.1 can be used as an illustration for the following
computations.
First consider ni, which is defined by robot vk. We will show that n′i,x(t0) =

cos γi(t0)
2 . Due to the classification of the outer nodes, we can distinguish the follow-

ing cases:

94 Gathering regarding the traveled distance

1. The robot vk which defines ni is a vertex of CHk(t). Then vk and therefore also
ni moves in direction of the angle bisector of αk(t0), and the velocity vector of
ni at time t0 is given by

n′i(t0) =
(

+ cos αk(t0)
2 ,± sin αk(t0)

2

)
=
(

+ cos γi(t0)
2 ,± sin γi(t0)

2

)
.

2. vk is not a vertex of CHk(t). Then vk does not move, and the movement vector
of ni is n′i(t0) = (0, 0). Thus, n′i,x(t0) = 0 = cos γj(t0)

2 .

Analogously it can be shown that n′j,x(t0) = − cos γj(t0)
2 .

Basic analysis now gives us the following equation for the first derivation of d at
a time t ∈ R≥0

1

d′(t) =
(
Dx(t)
d(t)

Dy(t)
d(t)

)
·
(
D′x(t)
D′y(t)

)

Using that we have Dy(t0) = 0 and Dx(t0) = d(t0) we finally get

d′(t0) = D′x(t0) = (vj − vi)′x(t0) =
(
n′j,x(t0)− n′i,x(t0)

)
= −

(
cos γi(t0)

2 + cos γj(t0)
2

)
.

Therefore, the distance between ni and nj reduces at time t with speed at least
cos(γi(t0)

2)+cos(γj(t0)
2). Furthermore, since we have γi(t) ∈ [0, π] for any t ∈ R≥0 and

i ∈ {1, . . . ,m(t)}, this speed is not negative.

Thus, as for the Move-On-Bisector strategy for the robot chain problem, we
can give the speed with which the length decreases as the sum over all edges of the
polygon: the length decreases with speed ∑m(t)

i=1 cos(γi(t)2)+cos(γi+1(t)
2). But contrary

to the chain, we can bound the sum of the angles γi(t), since the outer nodes forms
a polygon. If m(t) is the number of vertices of the polygon P (t), the sum of its inner
angles is (m(t) − 2)π. Now γi(t) is not always an inner angle of ni of the polygon
P (t). Let us see when this can happen. If ni forms a convex angle of P (t), the inner
angle of P (t) at ni is αi(t) = γi(t). If ni forms a reflex angle of P (t), the inner angle
of P (t) at ni is at least π > γi(t). The same is true if ni is no vertex of its local
convex hull at all: The inner angle of P (t) is at least π, which is greater than or
equal to γi(t) = π. Thus, we know that ∑m(t)

i=1 γi ≤ (m− 2)π.

Lemma 8.4. At an arbitrary time t, in which the unit disk graph does not change,
l(t) decreases with speed 4.
1 Note that d(t) 6= 0, since several robots at one position define only one outer node.

8.2 Analysis of the strategy 95

Proof. Each edge (ni, ni+1) of the polygon P (t) decreases with speed cos(γi2) +
cos(γi+1

2) (Lemma 8.3). Using that cos(x) ≥ −2/π ·x+1 for 0 ≤ x ≤ π/2, the length
decreases with total speed

m(t)∑
i=1

2 cos(γi2) ≥ 2
m(t)∑
i=1
− 2
π

γi
2 + 1

= 2m(t)− 2
π

m(t)∑
i=1

γi

≥ 2m(t)− 2
π
π(m(t)− 2)

= 4.

The Lemmas 8.3 and 8.4 show that the length decreases with speed 4 as long as
the unit disk graph does not change. The next lemma shows that at these (finite)
points in time, the length does not increase.

Lemma 8.5. The length l(t) decreases monotonically.

Proof. We have already seen in Lemma 8.3, that the length of the chain decreases at
all times when the unit disk graph does not change. So let us now see how the border
of the unit disk graph and therefore the polygon P (t) can change topologically and
what influence this has on the length. For this, note first that due to the definition
of the algorithm, a robot which does not define an outer node in the beginning may
move on a line of the border, which does not change the length, but it can never
become a vertex of the border of the unit disk graph and therefore define an outer
node. That is, there are only two possibilities how the border of the unit disk graph
can change topologically:

• Robots can move in a way that they stop to define an outer node: when a
robot vk, which defines an outer node ni, reaches the line between its two
neighboring outer nodes. In this case, the distance between its neighbors ni−1

and ni+1 (which will then be ni−1 and ni) is set to d(ni−1, ni) + d(ni, ni+1).
Thus, the length does not change.

• Edges of the unit disk graph can never be deleted. But edges on the border
can be replaced by another edge, when two robots on the border come into
viewing range of each other (e.g. n8 and n11 in Fig. 8.1). The robots in between
(v9, v10) stop to define outer nodes, and the length l(t) is decreased.

Thus, in both cases, the length is not increased.

96 Gathering regarding the traveled distance

Finally, before we can bound the time it takes for gathering, we need to have a
relationship between l(t) and h(t) (Lemma 8.6) and we show that a robot can define
only a constant number of outer nodes (Lemma 8.7).

Lemma 8.6. l(t) ∈ O(h(t)2).

Proof. Consider the polygon P (t). Since it is formed by the outer border of the
unit disk graph of the robots, no robot can see any other robot outside P (t). Thus,
we can define an area A(t) around P (t), which contains all points outside P (t) in
distance at most 1

4 from P (t). This area cannot contain any robot, since it would
be seen by at least one robot on the border of the unit disk graph. See Fig. 8.2 as
an example. Moreover, A(t) never intersects with itself, and thus for a length l(t),
A(t) defines an area of size at least 1

4 l(t) which does not contain any robots.

Figure 8.2: The area A(t) is indicated for the example configuration

Now since the robots are all contained in the height-circle Ch(t) (the circle around
M with radius h(t)), the area of A(t) is completely inside the circle Ch(t)+ 1

4
around

M with radius h(t) + 1/4. This implies that the area of this circle must be at least
the area of A(t), which is at least 1

4 l(t). Thus, we get

1
4 l(t) ≤ π

(
h(t) + 1

4

)2
= π

(
h(t)2 + 1

2h(t) + 1
16

)

8.2 Analysis of the strategy 97

Figure 8.3: Illustration to the proof of Lemma 8.7

and l(t) ∈ O(h(t)2).

Lemma 8.7. Each robot vk can define at most 6 outer nodes.

Proof. First note that if vk defines x outer nodes, each of the outer nodes has a left
and a right neighbor on the border of the polygon. These neighbors are either outer
nodes themselves, or they are robots which are on the straight line between two
outer nodes. Moreover, the x right neighbors of the x outer nodes are all distinct.
Now let ni be an outer node defined by vk, and ni+1 its right neighbor (w.l.o.g.

let it also be an outer node, this simplifies the notation) which is defined by vl. Let
the the outer of the polygon lie in clockwise direction of vl when looking from vk
(see Fig. 8.3).
We will show that no robot can be in clockwise direction from vl which is visible

by both vk and vl. For the sake of contradiction, assume that there is such a robot vj
(see Fig. 8.3). Then the unit disk graph contains the edges (vk, vj) and (vj, vl). But
then the edge (vk, vl) cannot define the outer border of P (t) in clockwise direction.
So we have found an area which cannot contain any robot. Consider the sector S

of the visibility circle of vk which is defined by two points A and B, where A is the
point closest to vl on the circle defining the visibility range of vk, and B is the point
on the circle defining vk’s visibility range in distance 1 in clockwise direction from
A (see again Fig. 8.3).This sector is completely contained in the area which cannot

98 Gathering regarding the traveled distance

contain any robot. The inner angle of the sector at vk is π/3. Thus, vl defines a
sector with inner angle π/3 which cannot contain any robots.
Now consider another outer node defined by vk, and its right neighbor. Call it

vs. Then the sectors defined by vs and vl cannot intersect, since otherwise vs would
be in vl’s sector or the other way round. Thus, all right neighbors of outer nodes
defined by vk define a sector of the visibility range of vk which are mutually distinct.
Since the inner angle of these sectors is π/3, there can be at most 6 such sectors
and therefore also at most 6 right neighbors. It follows that vk can define at most 6
outer nodes.

Now we have all prerequisites for our runtime bound.

Theorem 8.8. After time O(l) ⊆ O(min{OPT 2, n}), the robots have gathered in
one point.

Proof. Except for a finite number of points in time, which in sum take time 0 and
in which the length does not incease (Lemma 8.5), the length decreases with speed
4 (Lemma 8.4). That is, after time 1/4 · l the robots have gathered. For the upper
bound of n, we use that each robot can define at most 6 outer nodes (Lemma 8.7).
Thus, the polygon P (0) can have at most 6n edges, each with a length of at most 1
(if there is an edge which is longer than 1, a robot must be on this line). That is,
l(t) ≤ 6n, resulting in an upper bound of O(n). For the upper bound of OPT 2, we
use that l(t) ∈ O(h(t)2) (Lemma 8.6) and OPT ≥ h(t)/2. The theorem follows.

Summing up, the Gathering-Move-On-Bisector strategy is very efficient in
terms of the maximum traveled distance. For worst case instances, for example
robots positioned on a line, it is optimal (a traveled distance of O(n) is needed
by Gathering-Move-On-Bisector as well as by any optimal global algorithm),
and for instances which can be solved with a shorter traveled distance by an optimal
global algorithm, it is OPT -competitive. This result combined with the runtime
of Go-To-The-Center raises the hope that there is also an algorithm which is
efficient in terms of both quality measures.
Technically, the Gathering-Move-On-Bisector strategy shows a strength of

the Move-On-Bisector strategy: the techniques used for its analysis can be
adapted to further robot formation problems.

C h a p t e r 9

Conclusion and Outlook

The goal of this thesis was to investigate how efficient robot formation problems
can be solved by very simple robots with a local view. The question behind was
how far the local view restricts the coordination of the robots. While the considered
problems are easy to solve for robots with a global view and the same abilities as
used in this thesis, one single robot with a local view sometimes cannot even decide
whether the desired formation has been achieved. The challenge therefore lies in
the coordination of robots with very limited information, such that globally the
formation is nevertheless achieved. Moreover, it should be achieved efficiently.
We have investigated two robot formation problems with respect to two quality

measures of such robotic systems: the number of rounds and the movement distance.
The formation problems were chosen in such a way that they capture two completely
different aspects. While the gathering problem is about the simplest formation one
can think of, a point, it captures the difficulty of changing neighborhoods. On the
other hand, the robot chain problem uses fixed neighborhoods, but its goal is to
achieve the non-trivial formation of a line.
In order to analyze the number of rounds, we used existing time and movement

models based on the Look-Compute-Move model, which are commonly used in the
literature. On the other hand, a continuous movement model was used to investigate
the movement distance. Although it is close to some practical applications, this
model is uncommon for robot formation problems. To the best of our knowledge,
we are the first to analyze the movement distance and finishing time of algorithms
for robot formation problems in this model. The techniques used for the analysis of
Move-On-Bisector seem to be transferable to further formation problems. We
have shown in this thesis that this is possible for gathering. Finally, by restricting
the movement distance per time step in the discrete Look-Compute-Move model,
we achieved a possibility to investigate the spectrum between the classical discrete

99

100 Conclusion and Outlook

model and the continuous model. This way we were able to design strategies which
are efficient in terms of both quality measures.
In the literature, the efficiency of robot formation problems is normally analyzed

with respect to worst case instances, such that the considered algorithm performs
bad under the used quality measure (which is mostly the number of rounds). Like
this, upper bounds for the efficiency of the algorithm are achieved. We also did this,
but for the movement distance we could go even further: we compared the quality of
the algorithm for each fixed instance with that of an optimal global algorithm. We
could give competitive factors for our algorithm, like it is usual for approximation
and online algorithms.
Several ideas for future work can be derived directly from this conclusion. We

were able to give competitive factors for the movement distance in the continuous
model, but so far, to the best of our knowledge, no competitive factors are known
for further robot formation problems or with respect to the number of rounds. But
the analysis of competitiveness would be of great interest: it captures explicitly
what prize we have to pay for a local view. Competitive factors for further robot
formation problems and for all types of quality measures would therefore be of high
interest.
We have analyzed the movement distance in the continuous time and movement

model for the robot chain problem, and shown that the techniques can be used for the
gathering problem as well. But the movement distance is also an important quality
measure for further robot formation problems. Can the techniques directly be ap-
plied to further problems, or do new techniques have to be developed? And are there
algorithms that are better than Move-On-Bisector? Moreover, it remains open
so far whether our bounds on the movement distance of O(min{n, (OPT +d) log n})
for the robot chain problem and O(min{n,OPT 2}) for the gathering problem can
be improved.
Similarly, we have combined both quality measures for the robot chain problem,

but this is still open for the gathering problem. Is there an algorithm which preserves
a good number of rounds, but reduces the traveled distance? In particular, is there
an algorithm which needs O(n2) number of rounds for gathering and a traveled
distance only linear in the number of robots? And if not, what trade-off between
the two quality measures can be found? Similar questions can be asked for further
robot formation problems.
Concerning the gathering problem, it is an open question whether there exist local

algorithms which need fewer rounds. Are there strategies which need considerably
less than a quadratic number of rounds? The Hopper-strategy for the robot chain
problem ([KM09]) indicates that it might help if the robots leave the local convex

101

hull of their neighbors.
On the other hand there are no nontrivial lower bounds known for classes of local

algorithms for gathering, the robot chain problem or other formation problems. One
would need a clean definition of asynchronous or synchronous local strategies. A
crucial property restricting such strategies is that connectivity has to be maintained.
Just looking at the start configuration of the lower bound instance from Section 7.2
for the gathering problem, for example, and only demanding connectivity for this
specific start configuration is not sufficient: consider the synchronous algorithm in
which each point moves in the direction of the target point of our algorithm, but goes
beyond this point until the distance to its neighbors is 1. This algorithm maintains
connectivity for our specific start configuration, but needs only a linear number
of rounds, if the start configuration positions neighboring robots in distance 2

3 on
the cycle. Similar results can be shown for asynchronous strategies with specific
activation policies. Such examples demonstrate that the connectivity constraint has
to be reflected much more severely in lower-bound models for local strategies.
Generally, it is an interesting problem to investigate to which extend our strate-

gies or further strategies are robust under inaccuracies of sensors and actors. For
example, the positions of neighboring robots normally cannot be determined accu-
rately. Similarly, robots normally do not have a fixed viewing range, but this range
can vary depending on the surrounding conditions. How to formally model such
inaccuracies? For which input instances are the strategies robust? Do we have to
modify existing strategies? We certainly have to assume that input instances have
the property that neighboring robots have distance at most 1− γ, where γ ∈ (0, 1)
is chosen dependent on parameters describing the accuracy.
Finally, the dynamics which occur in this thesis can all be controlled by our al-

gorithms. But what happens if we add external dynamics to the problem, which
cannot be controlled by us? Under which circumstances is it still possible to main-
tain the connectivity, and which goals can be achieved? For example, consider four
externally controlled robots forming a square, with our mobile robots being posi-
tioned on the points of a grid inside the square. If the four externally controlled
robots move according to the same trajectory, such that the form of the square is
maintained, can our mobile robots stay inside the square and keep the connectivity?
And what if the form of the square is changed to a rectangle with the same area? A
lot of different scenarios like this can be imagined when adding external dynamics.

Bibliography

[AOSY99] Hideki Ando, Yoshinobu Oasa, Ichiro Suzuki, and Masafumi Ya-
mashita. Distributed memoryless point convergence algorithm for mo-
bile robots with limited visibility. IEEE Transactions on Robotics and
Automation, 15(5):818–828, 1999.

[AP04] Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for
autonomous mobile robots. In SODA ’04: Proceedings of the fifteenth
annual ACM-SIAM Symposium on Discrete algorithms, pages 1070–
1078, Philadelphia, PA, USA, 2004. Society for Industrial and Applied
Mathematics.

[ASY95] Hideki Ando, Yoshinobu Suzuki, and Masafumi Yamashita. Formation
and agreement problems for synchronous mobile robots with limited
visibility. In Proceedings of the 1995 IEEE International Symposium
on Intelligent Control, ISIC 1995, pages 453–460, August 1995.

[BDKM11a] Philipp Brandes, Bastian Degener, Barbara Kempkes, and Friedhelm
Meyer auf der Heide. Energy-efficient strategies for building short
chains of mobile robots locally. In SIROCCO ’11: Proceedings of the
18th International Colloquium on Structural Information and Com-
munication Complexity, pages 138–149, 2011.

[BDKM11b] Philipp Brandes, Bastian Degener, Barbara Kempkes, and Friedhelm
Meyer auf der Heide. Energy-efficient strategies for building short
chains of mobile robots locally. Invited for submission to a Special
Issue of Theoretical Computer Science, 2011.

[CFPS03] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola San-
toro. Solving the Robots Gathering Problem. In Automata, Languages

103

104 Bibliography

and Programming: 30th International Colloquium, ICALP 2003, pages
1181–1196, 2003.

[CGP09] Jurek Czyzowicz, Leszek Gasieniec, and Andrzej Pelc. Gathering few
fat mobile robots in the plane. Theoretical Computer Science, 410(6-
7):481–499, 2009.

[Cha09] Bernard Chazelle. Natural algorithms. In Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009,
pages 422–431, 2009.

[Chr85] George Chrystal. On the problem to construct the minimum circle
enclosing n given points in a plane. In Proceedings of the Edinburgh
Mathematical Society, Third Meeting, pages 30–35, 1885.

[CLDF+11a] Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer, Mar-
tina Hüllmann, Barbara Kempkes, Alexander Klaas, Peter Kling, Sven
Kurras, Marcus Märtens, Friedhelm Meyer auf der Heide, Christoph
Raupach, Kamil Swierkot, Daniel Warner, Christoph Weddemann,
and Daniel Wonisch. A New Approach for Analyzing Convergence
Algorithms for Mobile Robots. In Automata, Languages and Program-
ming - 38th International Colloquium, ICALP 2011, Proceedings, Part
II, pages 650–661, 2011.

[CLDF+11b] Andreas Cord-Landwehr, Bastian Degener, Matthias Fischer, Mar-
tina Hüllmann, Barbara Kempkes, Alexander Klaas, Peter Kling, Sven
Kurras, Marcus Märtens, Friedhelm Meyer auf der Heide, Christoph
Raupach, Kamil Swierkot, Daniel Warner, Christoph Weddemann,
and Daniel Wonisch. Collisionless Gathering of Robots with an Extent.
In SOFSEM 2011: Theory and Practice of Computer Science - 37th
Conference on Current Trends in Theory and Practice of Computer
Science, pages 178–189, 2011.

[CMN04] Ioannis Chatzigiannakis, Michael Markou, and Sotiris Nikoletseas.
Distributed circle formation for anonymous oblivious robots. In Ex-
perimental and Efficient Algorithms, Third International Workshop,
WEA 2004, pages 159–174, 2004.

[CP04] Reuven Cohen and David Peleg. Robot Convergence via Center-of-
Gravity Algorithms. In SIROCCO ’04: Proceedings of the 11th Inter-
national Colloquium on Structural Information and Communication

Bibliography 105

Complexity, volume 3104 of Lecture Notes in Computer Science, pages
79–88. Springer Berlin / Heidelberg, 2004.

[CP05] Reuven Cohen and David Peleg. Convergence Properties of the Grav-
itational Algorithm in Asynchronous Robot Systems. SIAM Journal
on Computing, 34(6):1516–1528, 2005.

[DFKP06] Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and An-
drzej Pelc. Deterministic Rendezvous in Graphs. Algorithmica,
46(1):69–96, 2006.

[DK02] Xavier Défago and Akihiko Konagaya. Circle formation for oblivious
anonymous mobile robots with no common sense of orientation. In
Proceedings of the 2002 Workshop on Principles of Mobile Computing,
POMC 2002, pages 97–104, 2002.

[DKKM10] Bastian Degener, Barbara Kempkes, Peter Kling, and Friedhelm
Meyer auf der Heide. A continuous, local strategy for constructing
a short chain of mobile robots. In SIROCCO ’10: Proceedings of the
17th International Colloquium on Structural Information and Com-
munication Complexity, pages 168–182, 2010.

[DKL+11] Bastian Degener, Barbara Kempkes, Tobias Langner, Friedhelm Meyer
auf der Heide, Peter Pietrzyk, and Roger Wattenhofer. A tight runtime
bound for synchronous gathering of autonomous robots with limited
visibility. In SPAA ’11: Proceedings of the 23rd annual ACM sympo-
sium on parallel algorithms and architectures, pages 139–147, 2011.

[DKLM06] Miroslaw Dynia, Jaroslaw Kutylowski, Pawel Lorek, and Friedhelm
Meyer auf der Heide. Maintaining Communication Between an Ex-
plorer and a Base Station. In IFIP 19th World Computer Congress,
TC10: 1st IFIP International Conference on Biologically Inspired
Computing (BICC ’06), pages 137–146, 2006.

[DKM10] Bastian Degener, Barbara Kempkes, and Friedhelm Meyer auf der
Heide. A local O(nˆ2) gathering algorithm. In SPAA ’10: Proceed-
ings of the 22nd ACM symposium on parallelism in algorithms and
architectures, pages 217–223, 2010.

106 Bibliography

[DKMS07] Miroslaw Dynia, Jaroslaw Kutylowski, Friedhelm Meyer auf der Heide,
and Jonas Schrieb. Local Strategies for Maintaining a Chain of Relay
Stations between an Explorer and a Base Station. In SPAA ’07: Pro-
ceedings of the 19th annual ACM symposium on Parallel algorithms
and architectures, pages 260–269, New York, USA, 2007. ACM Press.

[DP09] Yoann Dieudonné and Franck Petit. Self-stabilizing Deterministic
Gathering. In Algorithmic Aspects of Wireless Sensor Networks, 5th
International Workshop, ALGOSENSORS 2009, pages 230–241, 2009.

[FPSW05] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Wid-
mayer. Gathering of asynchronous robots with limited visibility. The-
oretical Computer Science, 337(1-3):147–168, 2005.

[GWB04] Noam Gordon, Israel A. Wagner, and Alfred M. Bruckstein. Gather-
ing Multiple Robotic A(ge)nts with Limited Sensing Capabilities. In
Ant Colony Optimization and Swarm Intelligence, 4th International
Workshop, ANTS 2004, pages 142–153, 2004.

[IIKO09] Taisuke Izumi, Tomoko Izumi, Sayaka Kamei, and Fukuhito Ooshita.
Randomized Gathering of Mobile Robots with Local-Multiplicity De-
tection. In Proceedings of the 11th International Symposium on Stabi-
lization, Safety, and Security of Distributed Systems (SSS 2009), pages
384–398, 2009.

[IKIW07] Taisuke Izumi, Yoshiaki Katayama, Nobuhiro Inuzuka, and Koichi
Wada. Gathering Autonomous Mobile Robots with Dynamic Com-
passes: An Optimal Result. In Distributed Computing, 21st Interna-
tional Symposium, DISC 2007, pages 298–312, 2007.

[JLM03] Ali Jadbabaie, Jie Lin, and A. Stephen Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48:988–1001, 2003.

[Kat11] Branislav Katreniak. Convergence with Limited Visibility by Asyn-
chronous Mobile Robots. In Adrian Kosowski and Masafumi Ya-
mashita, editors, SIROCCO ’11: Proceedings of the 18th International
Colloquium on Structural Information and Communication Complex-
ity, pages 125–137. LNCS 6796, 2011.

Bibliography 107

[KM09] Jaroslaw Kutylowski and Friedhelm Meyer auf der Heide. Optimal
strategies for maintaining a chain of relays between an explorer and a
base camp. Theoretical Computer Science, 410(36):3391–3405, 2009.

[KM11] Peter Kling and Friedhelm Meyer auf der Heide. Convergence of Lo-
cal Communication Chain Strategies via Linear Transformations. In
SPAA ’11: Proceedings of the 23rd ACM symposium on parallelism in
algorithms and architectures, pages 159–166, 2011.

[KMP08] Ralf Klasing, Euripides Markou, and Andrzej Pelc. Gathering asyn-
chronous oblivious mobile robots in a ring. Theoretical Computer Sci-
ence, 390(1):27–39, 2008.

[Kut07] Jaroslaw Kutylowski. Using Mobile Relays for Ensuring Connectivity
in Sparse Networks. Dissertation, International Graduate School of
Dynamic Intelligent Systems, 2007.

[Mar09] Sonia Martînez. Practical multiagent rendezvous through modified
circumcenter algorithms. Automatica, 45(9):2010–2017, 2009.

[MS08] Friedhelm Meyer auf der Heide and Barbara Schneider. Local Strate-
gies for connecting stations by small robotic networks. In IFIP 20th
World Computer Congress, TC10: 2nd IFIP International Conference
on Biologically Inspired Computing (BICC ’08), pages 95–104, 2008.

[NPGF04] Hoa G. Nguyen, Narek Pezeshkian, Anoop Gupta, and Nathan Far-
rington. Maintaining Communication Link for a Robot Operating in
a Hazardous Environment. In Proceedings of the 10th International
Conference on Robotics and Remote Systems for Hazardous Environ-
ments. American Nuclear Society, 2004.

[NPR+03] Hoa G. Nguyen, Narek Pezeshkian, Scott M. Raymond, Anoop Gupta,
and Jonathan Michael Spector. Autonomous communication relays
for tactical robots. In Proceedings of ICAR 2003: The International
Conference on Advanced Robotics, pages 35–40, 2003.

[PNB07] Narek Pezeshkian, Hoa G. Nguyen, and Aaron Burmeister. Unmanned
ground vehicle radio relay deployment system for non-line-of-sight op-
erations. In RA ’07 Proceedings of the 13th IASTED International
Conference on Robotics and Applications, pages 501–506, 2007.

[Pre07] Giuseppe Prencipe. Impossibility of gathering by a set of autonomous
mobile robots. Theoretical Computer Science, 384(2-3):222–231, 2007.

108 Bibliography

[Rey87] Craig W. Reynolds. Flocks, Herds, and Schools: A Distributed Be-
havioral Model. In Computer Graphics, volume 21 (4), pages 25–34,
1987.

[SDY06] Samia Souissi, Xavier Défago, and Masafumi Yamashita. Gathering
Asynchronous Mobile Robots with Inaccurate Compasses. In Princi-
ples of Distributed Systems, 10th International Conference, OPODIS
2006, pages 333–349, 2006.

[STM10] Hisayoshi. Sugiyama, Tetsuo Tsujioka, and Masashi Murata. Inte-
grated operations of multi-robot rescue system with ad hoc network-
ing. In IEEE International Workshop on Safety Security and Rescue
Robotics (SSRR ’10), pages 1–6, 2010.

[SWC05] Hong Shi, Long Wang, and Tianguang Chu. Coordination of multiple
dynamic agents with asymmetric interactions. In Proceedings of the
International Symposium on Intelligent Control, pages 1423 – 1428,
2005.

[SY93] Ichiro Suzuki and Masafumi Yamashita. Formation and agreement
problems for anonymous mobile robots. In Proceedings of the 31st
Annual Allerton Conference on Communication, Control, and Com-
puting, pages 93–102, September 1993.

[SY99] Ichiro Suzuki and Masafumi Yamashita. Distributed Anonymous Mo-
bile Robots: Formation of Geometric Patterns. SIAM Journal on
Computing, 28(4):1347–1363, 1999.

