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Abstract

Nowadays, mathematical optimization plays an important role in many
applications. Often not only one objective is desired to be optimized but
several aims have to be considered at the same time. For example, in ma-
nufacturing not only costs should be minimized but at the same time the
product should be of high quality. The development of theoretic and al-
gorithmic principles for the mathematical description of these problems is
the concern of multiobjective optimization. In the present thesis, different
multiobjective optimization problems from mechanical engineering are stud-
ied. Motivated by the example of the operating point assignment of a linear
drive, the focus of this thesis lies on the study of parametric multiobjective
optimization problems. Firstly, a new approach is presented which allows to
solve time-dependent multiobjective optimization problems by use of nume-
rical path following algorithms. Subsequently, the computation of solutions
which change as little as possible under variations of the external parameter
is another central topic of this thesis. For the numerical approximation of
these so-called robust Pareto points, in this work two new approaches are
presented. The first approach is based on the classical calculus of variations
while the second one makes use of numerical path following methods. Finally,
geometrical properties of the solution set of non-convex, parametric multi-
objective optimization problems are studied and connections to bifurcation
theory are pointed out.



iv

Zusammenfassung

Heutzutage spielt die mathematische Optimierung in vielen Anwendun-
gen eine wesentliche Rolle. Häufig ergibt sich der Wunsch, nicht nur ein ein-
ziges Ziel sondern mehrere Ziele gleichzeitig zu optimieren. So sollten bei-
spielsweise bei der Fertigung eines Produktes nicht nur die Kosten minimiert
werden, sondern gleichzeitig sollte auch ein qualitativ hochwertiges Produkt
entstehen. Die Entwicklung von theoretischen und algorithmischen Grundla-
gen für die mathematische Beschreibung und Lösung solcher Probleme bie-
tet die Mehrzieloptimierung. In der vorliegenden Arbeit werden verschiedene
Mehrzieloptimierungsprobleme aus dem ingenieurwissenschaftlichen Bereich
untersucht. Motiviert durch das Beispiel der Arbeitspunktsteuerung eines Li-
nearmotors liegt der Fokus dieser Arbeit auf der Studie parameterabhängiger
Mehrzieloptimierungsprobleme. Es wird zum einen ein neuer Ansatz vorge-
stellt, der mittels Verwendung von Algorithmen zur numerischen Pfadverfol-
gung die Lösung zeitabhängiger Mehrzieloptimierungsprobleme erlaubt. Zum
anderen ist die Bestimmung von Lösungen, die sich gegenüber Schwankungen
eines externen Parameters möglichst wenig verändern, ein weiteres zentrales
Thema dieser Arbeit. Für die numerische Approximation dieser sogenannten
robusten Paretopunkte werden in der vorliegenden Arbeit zwei neuartige An-
sätze präsentiert, die zum einen auf der Variationsrechnung und zum anderen
auf numerischer Pfadverfolgung basieren. Abschließend werden geometrische
Eigenschaften der Lösungsmenge nicht-konvexer, parametrischer Mehrzielop-
timierungsprobleme untersucht und Zusammenhänge zur Verzweigungstheo-
rie aufgezeigt.
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Chapter 1

Introduction

In almost any application optimization plays an important role. In a variety
of these not only one objective but several ones are desired to be optimal at
the same time. For instance, in manufacturing cost has to be minimized, but
at the same time also quality is desired to be maximal – at least to a certain
degree. The development of theory and algorithms for the determination
of solutions that are as good as possible with respect to all objectives is
the task of multiobjective optimization. Mathematically, a multiobjective
optimization problem is given as

min
x
{F (x) : x ∈ S ⊆ Rn},

where F is defined as the vector of the objective functions f1, . . . , fk, k ≥ 2,
which each map from Rn to R, and S denotes the feasible region. The exam-
ple mentioned above already illustrates that the several objectives typically
contradict each other and thus do not have identical optima. Consequently,
the solution of a multiobjective optimization problem is given by the set of
optimal compromises of the objectives, the so-called Pareto set. In the case
of minimization problems the Pareto set is given by the set of solutions in
which the value of any objective function can only be decreased at the cost
of increasing another one.

To obtain solutions that lie within the Pareto set many algorithms have
been developed. There are essentially two different types: algorithms that
allow for the computation of only one or a few Pareto points, and algorithms
that approximate the entire Pareto set. In the first case often a priori in-
formation, such as a specific weighting of the objectives or some kind of
ordering, is required. Examples for those methods are the ’weighted sums
method’, the ’ε-constraint-method’ and the ’lexicographic ordering’ (see [69],
[24]). Over the last years algorithms that are able to approximate the entire
Pareto set (restricted to a moderate number k of objectives) have been devel-
oped (see e. g. [14, 85, 15, 32, 12, 112]). For the computations of Pareto sets
in the examples given in this thesis set-oriented, numerical methods which
are implemented in the software package GAIO1 have been used (see [92]),

1Global Analysis of Invariant Objects, see www.math.upb.de/˜agdellnitz

1



2 Introduction

and Section 3.2.3 for more details).

For the development of modern, innovative mechatronic systems, the con-
cept of self-optimization has been introduced (cf. [1]). A technical system
is self-optimizing whenever three steps are repeated iteratively during ope-
ration: the analyis of the current situation (Step 1), the determination of
the system’s objectives (Step 2) and the adaptation of the system’s behavior
(Step 3). Thus, self-optimization goes beyond the classical adaptive control
in which the system’s objectives are not changing during runtime. Multiob-
jective optimization plays an important role in the self-optimization process.
One possibility to realize Step 3 – for a technical system which can be de-
scribed by a mathematical model – is to choose different solutions during
operation time from a previously approximated Pareto set. One technical
application that serves as an example to demonstrate self-optimization is the
RailCab system. The RailCab is a novel linear motor driven railway sys-
tem including the latest technologies and innovative prototypes, developed
by the project RailCab (“Neue Bahntechnik Paderborn” [73]). Many subsys-
tems contained in the RailCab provide great potential for self-optimization.
In this thesis, in particular three different subsystems of the RailCab have
been studied in close collaboration with the engineers developing these sys-
tems: the hybrid energy storage system, the guidance module and the linear
drive.

The hybrid energy storage system is intended to guarantee the availability
of energy without any interruption. It consists of batteries which are well-
suited for long term storage and double layer capacitors which perfectly fit
the purpose of short term storage. The mathematical challenge is computing
an operation strategy that distributes the power flows to the respective stor-
age devices in an optimal way during a drive of the vehicle. In this thesis the
simultaneous minimization of the normalized energy losses of the hybrid en-
ergy storage system and maximization of the power reserve has been studied
as a multiobjective optimization problem in close cooperation with the Chair
of Power Electronics and Electrical Drives, University of Paderborn. Making
use of a special numerical, image set oriented predictor-corrector method for
multiobjective optimization Pareto optimal operation strategies for a given
total power profile have been approximated. In Section 3.4.2 the results of
the multiobjective optimization of the hybrid energy storage system are given
for an example of a track section of one minute.

The guidance module allows to actively control the lateral displacement of
the RailCab vehicle within the rails. Thus, the RailCab can be steered along
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arbitrary reference trajectories within the maximum distance between the
flanges and the rail-heads, the so-called clearance. How to choose these refe-
rence trajectories has been considered in this thesis in close cooperation with
the Chair of Control Engineering and Mechatronics, University of Paderborn
(see Section 3.4.3). To obtain good trajectories four different objectives have
been taken into account: maximization of the passengers comfort measured
through the structure acceleration, minimization of the deviation from the
track centerline, minimization of the average energy consumption of the hy-
draulic actuators, and maximization of the steering angle reserve. As a start,
an optimal control problem of the form

min
x∈Rn,u∈Rm

J(x, u)

s. t. ẋ = f(x, u)

is formulated in which the differential equation is given by a linear model for
the lateral dynamics of the RailCab vehicle, and the functional J is vector-
valued. Linear systems ẋ = f(x, u) are differentially flat, which means that
the inputs and controls can be computed directly from the outputs. Thus,
the trajectory optimization of the guidance module can be reformulated into
a multiobjective optimization problem in which only the outputs are opti-
mized. By this approach we have shown how the work of Murray et al on
trajectory optimization for differentially flat systems (see [72, 104, 70, 31])
can be extended to the multiobjective case. In Section 3.4.3 the results of
the multiobjective optimization of the reference trajectories for an exemplary
track section are presented.

The RailCab vehicle is propelled by a doubly-fed linear drive which con-
sists of a primary motor part between the rails of the track and a secondary
part on the vehicle. The power transfer from the primary to the secondary
motor part depends on the operating point of the linear motor which is given
through the currents and frequencies in both motor parts. The operating
points are desired to maximize both the degree of efficiency of the linear
motor and the power factor. In this work, this multiobjective optimization
problem has been addressed in close cooperation with the Chair of Power
Electronics and Electrical Drives, University of Paderborn. The amount of
power that has to be transferred into the secondary motor part depends on
the maneuver the vehicle is intended to perform. Thus, the objective func-
tions depend on the planned maneuver which consists of the planned course of
velocities, thrusts and demanded powers. These dependencies can be reduced
to time-dependency, i. e. the objective functions depend on one external pa-
rameter. In a first study presented in Section 3.4.4 the approximation of
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Pareto sets for discretized points in time has been studied. A certain new
decision heuristic has been developed in this work that allows to choose one
Pareto point from the entire Pareto set depending on the actual situation.
Here, two different parameters that are not considered in the optimization
process come into play: the temperature of the secondary motor part and the
load value of a battery which is installed at the motor to guarantee constant
power supply even if the connection to the primary motor part is disrupted.
Also, the shape of the Pareto front is taken into account in the decision
heuristic such that no points in very flat or steep regions are chosen (under
the assumption that each objective is scaled adequately). To sum up, the
decision heuristic allows an automated, situation-dependent choice of Pareto
optimal solutions during operation time, and hereby is an important element
of the self-optimization of the linear motor.

In order to generate a satisfactory approximation of operating points for
a drive of the linear motor, the computation of Pareto sets would be neces-
sary for very many discretization points in time, approximately every one or
two milliseconds. This computation cannot be realized during runtime as the
computational effort is too high. An a priori approximation of the Pareto
sets, its storage and an application of the decision heuristic during runtime
on the stored data is not preferable because arbitrarily many different ma-
neuvers have to be considered.

Motivated hereby, in this thesis a new mathematical concept has been
developed which allows the treatment of time-dependent multiobjective opti-
mization problems. This concept allows the computation of Pareto optimal
solutions over time and can in the case of the linear drive be realized during
operation time. Mathematically speaking, a one-parametric multiobjective
optimization problem has to be solved which can be formulated as

min
x
{F (x, λ) : x ∈ Rn, λ ∈ [λstart, λend] ⊆ R}

with F : Rn × R→ Rk, F (x, λ) = (f1(x, λ), . . . , fk(x, λ)).

In the case of the linear drive, the external parameter λ is given by time.
The Pareto set of a parametric multiobjective optimization problem obviously
depends on the external parameter λ. A necessary condition for Pareto opti-
mality is given by the famous Kuhn-Tucker equations (see [63]) which indicate
that in each Pareto optimal point the gradients of the objective functions are
linearly dependent. In the case of parametric multiobjective optimization
problems this system of equations also depends on the external parameter λ
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and is given by

HKT(x, α, λ) =
k∑
i=1

αi∇xfi(x, λ) = 0,

where
∑k

i=1 αi = 1 and αi ≥ 0 ∀i = 1, . . . , k.
Solutions x which satisfy the Kuhn-Tucker equations are called substa-

tionary points. One of the main ideas presented in this thesis is to apply nu-
merical path following methods (cf. [22, 2, 75]) to the parameter-dependent
Kuhn-Tucker necessary condition. Numerical path following methods allow
the approximation of λ-dependent solution paths for systems of equations
with one more unknowns than equations. The solution paths are obtained
by iteratively repeating predictor and corrector steps. Starting from a known
point (x?, λ?) on the solution curve in the predictor step a point (xp, λp) with
λp = λ? +h is computed, where h is an adequate step size. This point serves
as an initial guess for the numerical solution of the system of equations with
a fixed value λ = λp which is performed in the so-called corrector step.

The Kuhn-Tucker equations do not only depend on the optimization pa-
rameter x and the external parameter λ but also on the weight vector α.
Different weight vectors lead to the computation of different substationary
points. Thus, the main challenge in applying numerical path following meth-
ods to the Kuhn-Tucker equations lies in the treatment of the weight vector
α. This vector characterizes the direction in which a solution path is“steered”
through the λ-dependent set of substationary points. Consequently, addition-
ally to the Kuhn-Tucker equations some more equations have to be derived
which fix the direction of the solution path. How to define such a direction
through additional equations depends on the application under consideration.

For time-dependent multiobjective optimization problems like in the case
of the linear drive it turns out to be a good idea to consider paths with fixed
weights over certain time periods. Here, first an initial Pareto set is approx-
imated. During operation time, a suitable point within this set is chosen
by the decision heuristic and the corresponding weight vector obtained by
solving the Kuhn-Tucker equations is set fixed. By use of classical predictor-
corrector path following methods a solution path over time is computed and
at the respective points in time the corresponding solutions are adjusted to
the motor. A recomputation of the entire Pareto set is only performed if
variables included in the decision heuristic change drastically, or if the op-
timization setup changes due to other technical reasons. Performing these
steps during operation of the linear drive the system becomes self-optimizing.
More detailed information about this application is given in Section 4.3.2.

Besides time, the parameter λ can describe the influence of any other param-
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eter to the objective functions. Imagine for instance the design process of a
car which is desired to be optimal with respect to comfort (first objective)
and safety (second objective). On the road, the car will be caught in a cross-
fire of influences, like side wind, wet roads, or changes in temperature. The
only information one might have is that these influences can be estimated to
lie within a certain interval, probably given by the weather forecast. For the
designer of this car subsets of Pareto points are especially desirable, for which
the Pareto points or their images under F change as little as possible while the
parameter varies. This fictitious example already inspires the development of
special robustness concepts for parametric multiobjective optimiza-
tion problems which is the main matter of this thesis. The study of the
robustness of solutions is a relatively young area of research in multiobjective
optimization, especially in evolutionary multiobjective optimization (cf. [16],
[29] for example). Following [10], multiobjective optimization problems can
be formulated as

min
x′,x′′

F (x′, x′′ + ε, λ)

where x′ ∈ Rn1 are deterministic optimization variables, x′′ + ε describes
some kind of stochastic optimization variables with x′′ ∈ Rn2 , n1 + n2 =
n, and λ ∈ Rp denotes external parameters. Different kinds of robustness
for multiobjective optimization problems are studied in the literature (see
Section 4.4.1 for an overview). This work restricts itself to the case of one
real, external parameter λ. None of the concepts developed in the literature
includes the condition that the solutions should stay Pareto optimal w. r. t.
the perturbed parameter values for the original objective functions. In this
thesis, two new robustness concepts have been developed which measure
how much a Pareto optimal solution (or, a solution on the Pareto front)
has to change when demanding Pareto optimality within a certain interval
[λstart, λend] of the external parameter. Loosely speaking, the more robust a
Pareto point for a fixed external parameter value is the less it changes to
other Pareto points for different values of the external parameter within a
given interval. The same considerations can be transferred to the study of
robustness on Pareto fronts. In both cases, the techniques used to obtain
robust solutions are completely different from the ones used in the literature.
The first concept is based on the calculus of variations whereas in the second
concept again numerical path following methods are employed for a certain
system of equations.
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More precisely, in the first concept the variational integral

min
x,α

∫ λend

λstart

‖x′(λ)‖2 dλ

s. t. HKT(x(λ), α(λ), λ) = 0

with the boundary conditions that x(λstart) and x(λend) are solutions of the
Kuhn-Tucker equations for the respective parameter values, is studied. This
means that the length of the curve of substationary points on the parameter-
dependent solution set of the Kuhn-Tucker equations is minimized. A curve
x(λ) which solves this variational problem is called a λ-robust substationary
point w. r. t. Concept I.

For the computation of solutions of this constrained variational problem
the multiplier rule (cf. [9]) is used and the Euler-Lagrange equations are de-
rived. They are given as a system of differential algebraic equations that pro-
vide a necessary condition for optimality of the variational integral. To allow
numerical computations of λ-robust substationary points the variational inte-
gral is discretized following the lines of [68] and the discrete Euler-Lagrange
equations are derived. One ends up with a nonlinear system of equations
which can be solved with Newton’s method, for example. In Section 4.4.2
the derivation of the discrete Euler-Lagrange equations for constrained vari-
ational problems is described in detail and numerical examples are given.

A second robustness concept is developed in Section 4.4.2. In contrast to
the variational approach of the first concept, here only local information is
taken into account: solution curves are computed that stay at the same point
constantly as long as this point is feasible under the variation of the external
parameter λ. If a point on the curve is not feasible for an increased value of λ,
then the solution path consists of those points that vary as little as necessary
compared to the previously computed point. The robustness of a Pareto
point against variations of the external parameter can be measured through
the length of these paths. In order to realize the numerical approximation of
solution paths, again numerical path following methods can come into play.
In order to force the path into the direction in which the Pareto point changes
as little as possible for increasing values of λ, the Kuhn-Tucker system has
to be expanded by certain equations.

To attack this problem, first the Pareto sets for two different values λ0 and
λ1 of the external parameter have been considered. A constrained nonlinear
optimization problem is formulated in which the distance of any point on
the set of substationary points for λ1 to the Pareto set for λ0 is minimized.
By using a classical necessary condition for optimality of this problem a
system of equations is obtained that characterizes the solution on the set of
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substationary points for λ = λ1 that is located as near as possible to the
Pareto set for λ0 in x-space.

When generating a path of solutions that step by step changes as little
as possible in x-space the same situation occurs repeatedly. A predictor-
corrector method is used to compute the solution path. In the predictor step
the value of λ is increased by an adequate step size h. In the corrector step
the system of equations consisting of the Kuhn-Tucker equations and the
distance minimization equations mentioned above is solved for the predicted
value of λ. For the predictor-corrector method it is required that the Jacobian
matrix of the system of equations is regular. In this thesis, the structure of
the Jacobian matrix for the new system of equations has been studied. It
is proven that the Jacobian is indeed regular if a second order sufficient
condition for the underlying minimization problem is satisfied.

The new concept is illustrated for several numerical examples. Finally, in
Section 4.4.3 an application of the second robustness concept in the design
of integrated circuits is given. Here, the robustness of Pareto points with
respect to changes in temperature and supply voltage has been computed.

In Section 4.4.2 the two robustness concept developed within this thesis
are compared. To make this possible the variational problem of Concept I is
reformulated for fixed starting points on the initial Pareto set. It it shown
that the length of solution paths with respect to Concept I is less or equal to
the length of paths obtained with Concept II.

In general, the computation of paths with respect to Concept II is less
computationally costly than by use of Concept I. However, the choice of the
‘right’ concept for the study of robustness of a technical application depends
highly on the application. The first concept delivers a substationary point
which changes as little as possible over an entire interval the external param-
eter is assumed to vary in. On the contrary, by use of the second concept
solution paths are obtained that locally, from one computed point to another,
vary as little as possible.

Motivated by the fact that in the case of nonconvex objective functions
it is not possible to compute all Pareto optimal solutions by the weighted
sums method, in this thesis also the occurrence of dents in Pareto fronts has
been studied. In [13], Das and Dennis give a trigonometric argument why –
in the case of two objectives – the weighted sums method cannot be used to
compute points in the nonconvex part, as they call the subset of the Pareto
front that contains no global optima of the weighted sum of the objectives for
every weight vector. It is an interesting question to find out if a Pareto front
contains nonconvex parts. If one assumes that the Pareto front is connected,
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then every nonconvex part contains a region in which the Pareto front ‘curves
inside the feasible region’. This part of the Pareto front will be called a dent.
In Section 3.3 a formal definition of a dent is given. It will be shown that
at the border of a dent (seen as a subset of the Pareto front) typically the
Hessian of the weighted sum of the objectives is singular. These points will
be called dent border points and the corresponding preimages on the Pareto
set will be called dent border preimages.

In the case of parametric multiobjective optimization problems naturally
the question comes up, how dents evolve under the variation of the external
parameter. This question is addressed in Section 4.5. Making use of results
from bifurcation theory it is proven that under certain assumptions dent
border preimages are turning points of the Kuhn-Tucker equations

Hα?

KT(x, λ) =
k∑
i=1

α?i∇xfi(x, λ) = 0,

where α? ist the weight vector corresponding to the dent border preimage.
Several examples of parametric multiobjective optimization problems in which
the Pareto front contains dents will be given at the end of Section 4.5.

The outline of this thesis is as follows: Chapter 2 contains a brief sum-
mary of the theoretical background needed within this thesis. Here, also
the notation is introduced. Chapter 3 deals with the theoretical background
and algorithmic approaches for multiobjective optimization. In this chapter,
three different engineering applications are presented that have been consid-
ered extensively in the context of this thesis. Chapter 3 also contains the
new ideas for the computation of dents in Pareto fronts.

Chapter 4 is the central chapter of this thesis. Here, especially the two
new robustness concepts are derived and a technical application is given.
Also, the design of a new algorithm that allows to compute Pareto optimal
solutions for a linear drive during operation time is presented. Furthermore,
in Chapter 4 the study of dents in parametric multiobjective optimization
problems is addressed. The thesis concludes with a short summary of the
results and a discussion of possible future directions and applications.





Chapter 2

Theoretical Background

In this chapter the theoretical background needed for theory and applications
developed in this thesis is summed up. After a short survey on basic defini-
tions and notations this work is based on, short introductions into the math-
ematical fields nonlinear optimization, the classical calculus of variations and
parametric optimization are given. Some of the technical applications con-
sidered in this thesis are so-called self-optimizing systems. The definition of
self-optimization is given in the last section of this chapter.

2.1 Preliminaries and Notation

As differentiable maps play an important role in this work, in the following
the basic understanding of differentiability, together with the notation used in
this work, is summed up. Everything introduced in this section is elementary
and can be found in the books [52, 61] and many, many others.

Definition 2.1 (Differentiability) A map f : U → Rm is called differentiable
in a point p ∈ U ⊆ Rn, if there exists a linear map L : Rn → Rm such that
the residuum R(h) given through

f(p+ h) = f(p) + L(h) +R(h)

satisfies the condition

lim
h→0

R(h)

‖h‖
= 0

in a certain neighborhood of 0 ∈ Rn. The linear map L is called the differen-
tial of f in p and is denoted by df(p).

The differential df(p) can be represented through a matrix which is called
the Jacobian (matrix) of f in p, denoted by f ′(p). It is given by the matrix
of all partial derivatives of f ,

f ′(p) =
∂f

∂x
(p) =


∂f1
∂x1

(p) . . . ∂f1
∂xn

(p)
...

...
∂fm
∂x1

(p) . . . ∂fm
∂xn

(p)

 ,

11
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where

∂fi
∂xj

(p) = lim
h→0

1

h
· (fi(x1, . . . , xj + h, . . . , xn)− fi(x1, . . . , xn))

for h ∈ R \ {0}.
If m = 1, i. e. the function f maps from Rn → R, then the Jacobian

matrix reduces to one row. We denote the the transpose of this row vector
as the gradient

∇f = ∇xf =


∂f
∂x1
...
∂f
∂xn

 .

If f depends on several variables one wants to distinguish, for example
f : Rna+nb → R with f(a, b) = y, then we denote the gradient with respect to
a as

∇af =


∂f
∂a1
...
∂f
∂ana


and the gradient with respect to b as

∇bf =


∂f
∂b1
...
∂f
∂bnb

 .

The matrix representation of the differential of second order (which is
defined as a symmetric, bilinear map) of f : Rn → R in a point p is given by
the Hessian matrix f ′′(p), which is defined as

f ′′(p) =
∂2f

∂x2
(p) =


∂2f

∂x1∂x1
(p) · · · ∂2f

∂xn∂x1
(p)

...
...

∂2f
∂x1∂xn

(p) · · · ∂2f
∂xn∂xn

(p)

 .

A map γ = (γ1, . . . , γm)T : I → Rm of an interval I ⊆ R, i. e. a
parametrized curve in Rm, is differentiable in a point T0 ∈ I if and only
if each of its components is differentiable in T0,

∂γ

∂T
(T0) = γ̇(T0) = (γ̇1(T0), . . . , ˙γm(T0))T .
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2.2 Nonlinear Optimization

Optimization plays an important role in various applications in almost any
research area. In this section, optimization problems are considered whose
objective function is nonlinear and possibly subject to equality constraints.
Here, only the mathematical problem definition and some necessary and suf-
ficient conditions for optimality that will be needed in the context of this
thesis are summed up. Comprehensive introductions into the field of non-
linear optimization, both theoretically and algorithmically oriented, can be
found in numerous textbooks like [67, 57, 54, 95].

2.2.1 Problem Formulation

In general, a constrained optimization problem is given by

min
x
{f(x) : x ∈ S ⊆ Rn}, (NLO)

where the feasible set S is given as

S = {x ∈ Rn : h(x) = 0, g(x) ≤ 0}

with h : Rn → Rm, m ≤ n and g : Rn → Rq and an objective function
f : S → R. Thus, solutions x? ∈ S are to be determined that satisfy

f(x?) ≤ f(x) ∀x ∈ S. (2.1)

In this case, x? is called a (global) minimizer of f (in S) and f(x?) is called the
(global) minimum. If there exists a neighborhood U of x? such that equation
2.1 is only valid for all x ∈ S ∩U , then x? is called a local minimizer of f (in
S) and f(x?) is called the local minimum. If the inequality in equation (2.1)
is strict, i. e. f(x?) < f(x) ∀x ∈ S or x ∈ U ∩S respectively, then x? is called
a strict (global) minimizer or a strict local minimizer respectively. Minima
are said to be isolated if they are unique within a certain neighborhood.

If no constraints have to be satisfied, which means S = Rn, then the opti-
mization problem (NLO) is called unconstrained. An optimization problem
is called nonlinear if the objective function (and possibly also the constraints)
are nonlinear.

Example 2.2 Consider the nonlinear objective function f : R→ R,

f(x) = − 1

40
x5 +

7

8
x4 − 59

6
x3 + 47x2 − 96x+ 65,
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Figure 2.1: Example for an unconstrained and a constrained nonlinear optimization
problem

which is wanted to be minimized for x ∈ [0, 7]. The graph of f for x ∈ [0, 7]
is plotted in Figure 2.1. As one can observe, the function f(x) attains its
global minimum in the point x1 = 2 and a local minimum at x2 = 6.

Now, the same objective function with an additional constraint is con-
sidered. The optimal solution is desired to lie in the upper semiplane of the
straight line G given by G(x) = −1

2
x + 2. This means that the inequality

condition −f(x) − x + 2 ≤ 0 has to be true. As one can easily see in the
right plot of Figure 2.1, in this case x2 = 6 is the global minimizer.

In an analogous way, maximization problems can be defined. As it is
possible to convert any maximization problem into a minimization problem,
within this work only minimization problems are considered.

2.2.2 Optimality Conditions

Solutions of optimization problems can under certain assumptions be char-
acterized by different necessary and/or sufficient conditions, which are sum-
marized in the following.

Optimality Conditions for Unconstrained Optimization Problems

Consider the unconstrained optimization problem , given by

min
x
{f(x) : x ∈ Rn}. (uNLO)

Theorem 2.3 (First-order necessary condition [37]) Let X ⊆ Rn open and
f : X → R a continuously differentiable function. If x? ∈ X is a local
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minimum of f , then
∇f(x?) = 0.

x? is called a stationary point of f .

Proof: A proof of this theorem can for example be found in [37]. �

By use of this first-order necessary condition, the problem of finding local
solutions of (uNLO) can be traced back to solving a system of nonlinear
equations. The solution set of this system of equations contains not only
local minimizers but possibly also local maximizers and saddle points (cf.
Definition 2.5).

A sufficient condition for generating local minimizers can be formulated
by taking the definiteness of the Hessian matrix of the objective function into
account. In general, a matrix A ∈ Rn×n is called positive or negative definite,
if xTAx > 0 or xTAx < 0, respectively, for all x ∈ Rn with x 6= 0. If the
evaluation of xTAx for x ∈ Rn leads to both positive and negative values,
then the matrix A is called indefinite. It is well-known that a matrix A is
positive (negative) definite if and only if all its eigenvalues, i. e. values λ with
Ax = λx for a vector x ∈ Rn are positive (negative). The matrix is indefinite
if and only if both eigenvalues > 0 and < 0 exist.

Theorem 2.4 (Second-order sufficient condition [37]) Let X ⊆ Rn open and
f : X → R a twice continuously differentiable function. If

• ∇f(x?) = 0 and

• the Hessian of f , f ′′(x?), is positive definite,

then x? is a strict local minimizer of f (on X).

Proof: For the proof of this theorem the reader is referred to [37]. �

If the Hessian matrix is indefinite, then saddle points occur.

Definition 2.5 (saddle point) A point x̄ ∈ Rn is called a saddle point of the
function f : Rn → R if ∇f(x̄) = 0 and the Hessian f ′′(x̄) is indefinite.

Example 2.6 For Example 2.2 the necessary condition looks as follows:

∇f(x) = f ′(x) = −1

8
x4 +

7

2
x3 − 59

2
x2 + 94x− 96 = 0.

Polynomial long division with x1 = 2, x2 = 6 and x3 = 4 yields

f ′(x) = (x− 2)(x− 6)(x− 4)(−1

8
x+ 2) = 0.
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Thus, the stationary points are given by x1 = 2, x2 = 6, x3 = 4 and x4 =
16, which is outside the interval regarded here. One can easily check that
f ′′(2) = 14, f ′′(4) = −6 and f ′′(6) = 10. Thus, x1 = 2 and x2 = 6 are – as
already observed in Figure 2.1 – the two local minimizers. A comparison of
the objective values shows that x1 = 2 is the global optimizer.

Including inequality and/or equality conditions into an optimization prob-
lem makes the necessary and sufficient conditions for optimality a bit more
complicated. A combination of gradient and constraints has to become zero
and also some regularity conditions have to be satisfied.

Optimimality Conditions for Equality-constrained Optimization Problems

In this paragraph, the equality-constrained optimization problem

min
x
f(x)

subject to h(x) = 0 (NLO=)

with functions f : Rn → R and h : Rn → Rm is studied. The following
theorem gives a necessary condition for optimality.

Theorem 2.7 (First-order necessary condition [67]) Let x? be a local mini-
mum point of f subject to the constraints h(x) = 0. Assume further that x?

is a regular point of these constraints (i. e. the gradient vectors ∇h1(x?), . . . ,
∇hm(x?) are linearly independent). Then there exist Lagrangian multipliers
(µ1, . . . , µm)T = µ ∈ Rm such that

∇f(x?)−
m∑
i=1

µi∇hi(x?) = 0.

Proof: The proof of this theorem can be found in [67], for example. �

A sufficient condition for optimality can be given by taking the second
derivative of the Lagrangian function, which is defined as

L(x) = f(x)− µTh(x),

into account, where µ is the vector of Lagrangian multipliers (cf. Theorem
2.7).
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Theorem 2.8 (Second-order sufficiency condition [67]) Suppose there is a
point x? ∈ Rn satisfying h(x?) = 0, and a µ = (µ1, . . . , µm)T ∈ Rm such that

∇f(x?)−
m∑
i=1

µi∇hi(x?) = 0.

Suppose also that the matrix L′′(x?) = f ′′(x?) −
∑m

i=1 µih
′′
i (x

?) is positive
definite on M = {y ∈ Rn : (∇h1(x?) · · · ∇hm(x?))Ty = 0}, that is, for
0 6= y ∈M there holds yTL′′(x?)y > 0.
Then x? is a strict local minimum of f subject to h(x) = 0.

Example 2.9 Consider a paraboloid described by the objective function
f : R2 → R,

f(x1, x2) = x2
1 + x2

2.

Assume that this function has to be minimized under the constraint that the
solution lies on the intersection of the function values with a plane in R3

which is defined by

{(x1, x2, x3)|x3 + x1 − 2 = 0}.

Figure 2.2 shows the paraboloid and the plane. The optimization problem
can be posed as

min
x
f(x1, x2)

such that h(x1, x2) = x2
1 + x2

2 + x1 − 2 = 0.

Solving the equality condition for x1 yields x
{1,2}
1 = ±1

2

√
9− 4x2

2− 1
2
. Solving

the necessary condition

∇f(x1, x2)− µ1∇h(x1, x2) = 0

⇔
(

2x1

2x2

)
− µ1

(
2x1 + 1

2x2

)
= 0

(cf. Theorem 2.7) leads to

x2 = 0 and x1 =
µ1

2(1− µ1)
.

As an assumption for the sufficient condition (cf. Theorem 2.8) both condi-
tions have to be true. Solving

µ1

2(1− µ1)
= ±1

2

√
9− 4 · 0− 1

2
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Figure 2.2: In Example 2.9 a paraboloid is desired to be minimized on a plane

leads to two possible solution points p1 and p2 given by

p1 = (x
{1}
1 , x

{1}
2 , µ

{1}
1 ) = (1, 0,

2

3
)

p2 = (x
{2}
1 , x

{2}
2 , µ

{2}
1 ) = (−2, 0,

4

3
).

The Hessian of the Lagrangian function is given by

L′′(x1, x2) = f ′′(x1, x2)− µ1h
′′(x1, x2)

=

(
2 0
0 2

)
− µ1

(
2 0
0 2

)
=

(
2(1− µ1) 0

0 2(1− µ1)

)
Obviously, this matrix is positive definite for all µ1 < 1 (independently of x1

and x2) and thus also in the point p1. By use of Theorem 2.8 it follows that

the point (x
{2}
1 , x

{2}
2 ) = (1, 0) is a strict local minimizer.
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2.3 Calculus of Variations

In contrast to nonlinear optimization where the objective to be optimized
is given as a function f : Rn → R, the calculus of variations is concerned
with the optimization of a functional. The task is to find a continuously
differentiable curve γ : [λstart, λend] → Rn, γ(λ) = (γ1(λ), . . . , γn(λ))T that
minimizes a variational integral

J (γ) =

∫ λend

λstart

C(γ(λ), γ′(λ), λ) dλ (VP)

for a given sufficiently often differentiable function C that may depend on

the curve γ(λ), its derivative γ′(λ) = d
dλγ(λ) , and on the parameter λ itself.

Additionally, boundary conditions may be included.

The basics summed up in the following can be found in numerous text-
books and papers, for example [9], [41], [34] and [79]. In this thesis only
functionals depending on a one-dimensional real parameter λ are considered.
Also, only integrals that depend on γ(λ) and γ′(λ) are studied within this
work – a generalization to the case that C depends on derivatives of higher
order of γ with respect to λ can for example be found in [9].

The main motivation for the development of the calculus of variations
was given by Johann Bernoulli in 1696 by posing the ’Brachistochrone prob-
lem’: Given two points P0 and P1 in a vertical plane, a curve for a moving
point M is searched that begins in the point P0 with an initial velocity v0

and ends up in the point P1 in virtue of its own gravity in the shortest pos-
sible time (cf. [34]). Even much earlier, in the middle of the eighth century
before Christ, the so-called ’Dido’s Problem’ occured: Princess Dido had
to flee to the African coast and asked the local chief for a piece of land as
large as she could envelop with a cowhide. The chief agreed and Dido clev-
erly cut the cowhide into little stripes and in this way got a much larger
piece of land as the chief had in mind. Following the legend of the founda-
tion of Carthage, this coastal strip (the so-called ’Byrsa’) was the nucleus of
Carthage. Bernoulli called the mathematical problem behind it an ’isoperi-
metric problem’ (cf. [34]). The theoretical framework that allows to compute
solutions for both kinds of problems (and also several others) mainly goes
back to Leonhard Euler and Joseph Louis Lagrange.

Most of the classical problems like the two examples mentioned in the
last paragraph have in common that curves connecting two fixed end points
are to be computed. In this case, the problem can be formulated as follows:
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min
γ
J (γ) = min

γ

∫ λend

λstart

C(γ(λ), γ′(λ), λ) dλ (VC2p)

γ(λstart) = A, γ(λend) = B

with two specified vectors A,B ∈ Rn.

A minimizing curve γ? for (VC2p) with γ?(λstart) = A and γ?(λend) = B
has to satisfy the property that

J (γ?) ≤ J (γ)

for all continuous curves γ : [λstart, λend] → Rn with γ(λstart) = A and
γ(λend) = B.

Following [79] it is assumed that these curves are at least twice continu-
ously differentiable for the following derivation of a necessary condition for
optimality of (VC2p). However, the same results can also be proven by the
weaker assumption that γ(λ) is only once continuously differentiable by the
use of the ’Lemma of Du Bois-Reymond’ (cf. e. g. [77]).

Let η(λ) = (η1(λ), . . . , ηn(λ))T be a twice continuously differentiable curve
with η(λstart) = η(λend) = 0 and assume that γ(λ) is a minimizing curve of
(VC2p). δγ = η is called a variation of γ. Let ε ∈ R and consider the function
v : R→ R defined as

v(ε) =

∫ λend

λstart

C (γ(λ) + εη(λ), γ′(λ) + εη′(λ), λ) dλ (2.2)

Note, that in this case the variations ηi of the components γi are assumed to
be independent of each other. Because of the minimality of γ(λ) it follows
that

v(ε) ≥ v(0) ∀ε ∈ R.

Thus, v attains a minimum in the point ε = 0 and

v′(0) = 0. (2.3)

v′(0) is called the first variation of J and is denoted by δJ .

In the following, for simplicity, whenever C occurs the evaluation at the
point (γ1(λ), . . . , γn(λ), γ′1(λ), . . . , γ′n(λ), λ) is meant. Additionally, in the
following computations the partial derivative with respect to the j’th variable
is denoted by ∂j.
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d v

d ε
(0) =

∫ λend

λstart

(
n∑
j=1

∂jC ·
d (γj + εηj)

d ε
+

+
2n∑

k=n+1

∂kC ·
d (γ′k−n + εη′k−n)

d ε
+

+ ∂2n+1C ·
dλ

d ε

)
dλ
∣∣∣
ε=0

=

∫ λend

λstart

∂

∂γ
C · η +

∂

∂γ′
C · η′ dλ = 0. (2.4)

Integration by parts of the second summand yields∫ λend

λstart

∂

∂γ′
C · η′ dλ =

[
∂

∂γ′
C · η

]λend
λstart

−
∫ λend

λstart

d

dλ

(
∂

∂γ′
C

)
· η dλ. (2.5)

Insertion into equation (2.4) and the condition η(λstart) = η(λend) = 0 now
leads to ∫ λend

λstart

(
∂

∂γ
C − d

dλ

(
∂

∂γ′
C

))
· η dλ = 0.

As these equations have to be true for every arbitrary set of functions ηi,
i = 1, . . . , n, the integral becomes zero only if

∂

∂γ
C − d

dλ

(
∂

∂γ′
C

)
= 0.

The formal proof of this so-called ’Fundamental lemma of the calculus of
variations’ can for example be found in [41].

In short (and by multiplication with −1), it has been shown that

d

dλ

(
∂C

∂γ′

)
− ∂C

∂γ
= 0 (2.6)

is a necessary condition for optimality of (VC2p). These equations are called
the Euler-Lagrange equations.

A simple example for a variational problem is given in the following:

Example 2.10 Which is the shortest curve connecting the two points (1, 1)
and (2, 2) in the x1-x2-plane in R2 (cf. Figure 2.3)?
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Figure 2.3: Some possible curves connecting the points (1, 1) and (2, 2) in R2 (on the
left) and the connecting curve of minimal length (on the right)

One way to attack this problem is to consider the variational integral

min
x

∫ λend

λstart

1

2
‖x′(λ)‖2 dλ

with x(λ) =

(
x1(λ)
x2(λ)

)
and the boundary conditions

λstart = 0, x(0) =

(
1
1

)
λend = 1, x(1) =

(
2
2

)
.

The Euler-Lagrange equations for this example are given as

d

dλ

(
∂F

∂x′

)
− ∂F

∂x
=

d

dλ

(
x′1(t)
x′2(t)

)
− 0 =

(
x′′1(λ)
x′′2(λ)

)
!

= 0.

A solution for this ordinary differential equation obviously is given by(
x1(λ)
x2(λ)

)
=

(
c1λ+ d1

c2λ+ d2

)
with constants c1,2, d1,2 ∈ R.
Application of the boundary conditions yields c1 = c2 = 1 and d1 = d2 = 1.
Thus (

x1(λ)
x2(λ)

)
=

(
λ+ 1
λ+ 1

)
,

which – as expected – is a straight line connecting the two points.
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In practice, often constraints have to be satisfied by the solution of a vari-
ational problem. In this work, the case of m < n equality constraints given
by ϕ : Rn × R → Rm with ϕ(γ(λ), λ) = (ϕ1(γ(λ), λ), . . . , ϕm(γ(λ), λ))T = 0
occurs (so-called holonomic constraints, cf. [41]). In this case, the variational
problem can be formulated as follows:

min
γ
J (γ) = min

γ

∫ λend

λstart

C(γ(λ), γ′(λ), λ) dλ

subject to ϕ(γ(λ), λ) = 0 (VC2p-c)

γ(λstart) = A, γ(λend) = B

with two specified vectors A,B ∈ Rn. A necessary condition for optimality
is given in the following theorem, called the multiplier rule, which goes back
to Euler and Lagrange:

Theorem 2.11 (Multiplier rule [41]) If a twice continuously differentiable
curve γ is a solution of VC2p-c, then there exist functions µ1, . . . , µm, each
mapping from [λstart, λend] to R, such that γ is a solution of the unconstrained
variational problem

min
γ,µ

∫ λend

λstart

L(γ(λ), γ′(λ), µ(λ), λ) dλ (2.7)

γ(λstart) = A, γ(λend) = B

with the Lagrangian L defined as

L(γ(λ), γ′(λ), µ(λ), λ) = C(γ(λ), γ′(λ), λ) +
m∑
i=1

µi(λ) · ϕi(γ(λ), λ).

By this theorem, using the same derivation as before for the Lagrangian
L w. r. t. γ and µ the Euler-Lagrange equations for fixed boundaries read as

d

dλ

(
∂C

∂γ′

)
− ∂C

∂γ
−
(
µ(λ)T · ∂

∂γ
ϕ (γ(λ), λ)

)T
= 0 (2.8)

ϕ(γ(λ), λ) = 0, (2.9)

where equation (2.9) stems from taking variations with respect to µ(λ) =
(µ1, . . . , µm)T (λ).
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So far, the curves γ have been considered only between two fixed points
A and B. If these boundary values of the curve γ are not fixed but rather
constrained by

ϕ(γ(λstart), λstart) = ϕ(γ(λend), λend) = 0,

as it will be the case in the robustness formulation presented in Chapter 4,
the Euler-Lagrange equations have to be enlarged by the so-called transver-
sality conditions. They are derived in the following way:

Since ϕ(γ(λ), λ) = 0 has to be satisfied at the boundaries for all possible
varied curves, the variations ηi for each component of γ are not independent
any more. To derive conditions for admissible variations, let ε ∈ R and let
the function v̄ : R→ Rm be defined as

v̄(ε) := ϕ(γ(λ) + εη(λ), λ),

where for all ε only such variations are considered for which the constraints
are satisfied at the boundaries, i. e. v̄(ε) = 0 for all ε with λ = λstart and
λ = λend. Therefore, also the derivative w. r. t. ε has to be zero what for
ε = 0 results in

0 = v̄′(0) =
d

dε
ϕ(γ(λ) + εη(λ), λ)

∣∣∣
ε=0

=
∂

∂γ
ϕ(γ(λ), λ) · η(λ)

for λ = λstart and λ = λend. This directly imposes conditions for the variations
η(λ) at the boundaries as thus a variation η(λ) is feasible if and only if

η(λ) ∈ ker

(
∂

∂γ
ϕ(γ(λ), λ)

)
for λ = λstart and λ = λend. (2.10)

Furthermore, from integration by parts (cp. Equation (2.5)), the condition[
∂

∂γ′
C · η

]λend
λstart

= 0

has to be satisfied, which means that

∂

∂γ′
C ⊥ η for λ = λstart and λ = λend

for all feasible variations η(λ). Together with Equation (2.10) this results in

∂

∂γ′
C ⊥ ker

(
∂

∂γ
ϕ

)
for λ = λstart and λ = λend. (2.11)
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Equation (2.11) says that at the boundaries the partial derivative of C
w. r. t. γ′ has to be transversal to the tangent space of the hyperplane which
is implicitly defined by ϕ(γ(λstart), λstart) = 0 and ϕ(γ(λend), λend) = 0, re-
spectively. Together, Equations (2.8)-(2.9) and (2.11) form a boundary value
problem that has to be solved numerically.

2.4 Parametric Optimization

Optimization problems whose solutions may change under the influence of
some external parameters are called parametric optimization problems. Para-
meter-dependencies occur in many applications. For example, optimization
problems may depend on temperature, wind velocity or other physical values.
Also time-dependent optimization problems are very important, especially in
engineering.
Furthermore, the development of methods for parametric optimization prob-
lems can be very helpful for finding solutions of complicated nonlinear opti-
mization problems: In this case one tries to reduce the solution of the original
optimization problem to another optimization problem whose solution is al-
ready known or easy to compute. These two problems then are combined
with the help of a parameter λ ∈ R. Denote the original objective function
by f(x) and the objective function of the already solved problem by g(x).
Then the parameter-dependent problem minx(1− λ) · g(x) + λ · f(x) has to
be solved, varying λ from 0 to 1. Thus one starts with the already known
solution for g and ends up with the desired minimum of f . Approaches of
this kind are commonly known as homotopy methods.

In the literature, parametric optimization is also adressed as parametric
programming. There are various publications on this topic like for example
[44, 5, 46, 60, 2] and [102].

In this work only one-parametric, unconstrained optimization problems
are considered. This means that the objective function depends on an ad-
ditional parameter λ ∈ R. Additionally, it is assumed that the objective
function is at least twice continuously differentiable. In the following two
sections, some theoretical basics are summed up and a short introduction
into numerical path following methods that allow to compute solutions of
parametric optimization problems is given.
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2.4.1 Theoretical Basics for Unconstrained One-parametric Optimization
Problems

Consider a twice continuously differentiable function f : Rn × Λ → R with
Λ = [λstart, λend] ⊂ R. In an unconstrained parametric optimization problem
a solution curve x(λ) of

min
x
{f(x, λ) : x ∈ Rn} (uPOP )

is to be found for λ ∈ Λ. It is assumed that the initial solution x(λstart) is
known or can be computed easily.

As the solution curve x(λ) has to be optimal in each point λ ∈ Λ, a
necessary condition for the optimality of x(λ) is given by

H(x, λ) =
∂

∂x
f(x, λ) = 0 ∀λ ∈ Λ

(cf. Theorem 2.3). Here, H is a nonlinear system of equations with n equa-
tions and n + 1 (or, in the multi-parametric case n + p) variables. The
existence of solutions to this kind of problems within a neighborhood of an
already known solution is guaranteed by the implicit function theorem given
as follows:

Theorem 2.12 (Implicit Function Theorem [52, 27]) Let H : Rn×Rp → Rn

be a k-times continuously differentiable mapping. Suppose that the point
(x̄, ȳ) ∈ Rn × Rp satisfies H(x̄, ȳ) = 0 and that the Jacobian with respect to
x, ∂F

∂x
(x̄, ȳ), is regular.

Then there exists a neighborhood of ȳ, U(ȳ) ⊆ Rp and a unique, k-times
continuously differentiable function c : U(ȳ)→ Rn with

H(c(y), y) = 0 for all y ∈ U(ȳ)

and c(ȳ) = x̄. In this case, the function c is said to be implicitly defined by
the equation H(c(y), y) = 0.

Proof: A proof of this theorem is for example given in [52]. �

Applying the implicit function theorem to the necessary condition that
∂
∂x
f(x, λ) = 0 ∀λ ∈ Λ, the following theorem results directly:

Theorem 2.13 (Sensitivity analysis for an unconstrained parametric opti-
mization problem [27]) Let f(x, λ), f : Rn×Rp → R be a twice continuously
differentiable function in x. Let λ? ∈ Rp. Assume that x? is a strict local
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minimizer of the unconstrained optimization problem minx f(x, λ?), i. e. x?

satisfies the second order sufficient condition (see Theorem 2.4). Let ∂f
∂x

(x, λ)
be once continuously differentiable w. r. t. λ within a neighborhood of (x?, λ?).

Then, for λ near λ?, there exists a unique, once continuously differentiable
curve x(λ) with x(λ?) = x? which satisfies the second-order sufficient condi-
tion for f(x, λ). Hence, x(λ) is an isolated, locally unique local minimum of
f(x, λ).

Remark 2.14 In [27] also a more general formulation of Theorem 2.13 is
given that guarantees the local existence of solutions to parametric opti-
mization problems with equality and inequality constraints.

Example 2.15 Consider the objective function f : R× R→ R

f(x, λ) = λ(x− 2λ)2 + (1− λ)(−(x− 2λ)2) + 4λ

Let the parameter λ be varied from 0 to 1. By f(x, 0) a parabola that attains
its maximum at x = 0 (apex (0, 0)) is described. Due to the variation of λ
towards λ = 1 the parabola changes into another parabola that attains its
minimum at x = 2 (apex (2, 4)). To compute a solution curve x(λ) for
λ ∈ [0, 1] the necessary condition

∂

∂x
f(x, λ) = 0 (2.12)

⇔ (x− 2λ)(4λ− 2) = 0 (2.13)

is to be studied. One can observe that the change from a maximum to a
minimum occurs at λ = 0.5. In this point the Hessian of f given by

∂2f

∂x2
(x, λ) = 4λ− 2

becomes singular (here = 0). Thus, for λ = 0.5 the sufficient condition
of second order is not satisfied and Theorem 2.13 does not guarantee the
existence of a solution. As one can easily see, zeros of (2.12) are given by
x(λ) = 2λ. For λ ∈ ]0.5, 1] the Hessian is positive definite (here > 0) and
thus the unique existence of a minimal solution of (2.12) is guaranteed by
Theorem 2.13. For λ ∈ [0, 0.5[ the Hessian is negative definite (here simply
< 0) which means that f attains a maximum. Both theorems 2.4 and 2.13
can also be formulated for maximization problems in the same way. It would
result that x(λ) = 2λ is a unique maximal solution in this interval. In Figure
2.4 the graph of f is plotted for different values of λ. In the same plot, the
path of λ-dependent solutions of Equation (2.12) is visualized (black line).
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Figure 2.4: The graph of the function f defined in Example 2.15 for different values of
the parameter λ

Remark 2.16 The main theoretical challenge occurs when singularities oc-
cur and the implicit function theorem cannot be applied. In [44] necessary
conditions for constrained parametric optimization problems are studied and,
for the one-parametric case, the generic singularities are described. Numeri-
cal path following methods (see next section) are used to compute curves of
local minimizers.

2.4.2 Numerical Path Following

The computation of solutions of parametric optimization problems can be
reduced to the solution of parameter-dependent systems of equations as de-
scribed in the last section. This kind of equations can be solved by numerical
path following methods (also called continuation methods) as developed in
[2, 22] and [75] for example. Following the lines of [2], this section contains
a short outline how numerical path following methods work in principle.

Consider a smooth function H : RN × R → RN whose set of zeros is to
be found. This means, a system of equations of the form

H(y, λ) = 0 (2.14)

has to be solved, where y ∈ D ⊆ RN , D open. The purpose of a numerical
path following method is to generate a series of points (yi, λi) i = 0, 1, 2, . . .
that satisfies H(y, λ) = 0.
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Let u0 = (y0, λ0) be a solution of (2.14), i. e. H(u0) = 0. Suppose that the
Jacobian H ′(u0) has full rank. In this case the solution set H−1(0) can locally
be parametrized by one parameter s in the neighbourhood of u0. Thus, one
obtains a solution curve c(s) with

c(0) = u0 and H(c(s)) = 0.

Differentiating this last equality we obtain

H ′(c(s))c′(s) = 0.

Therefore c′(s) spans the one-dimensional kernel of H ′(c(s)). By choosing s
to be the arclength it follows that ‖c′(s)‖ = 1.
Moreover one can show that c(s) is the solution of the initial value problem

u̇ = t(H ′(u))

u(0) = u0.
(2.15)

Here t(A) denotes for a matrix A ∈ RN×(N+1) with rank(A) = N the unique
vector t satisfying the following conditions:

At = 0, ‖t‖ = 1 and det

(
A
tT

)
> 0.

The last condition allows us to fix the orientation of the tangent vector.

A numerical path following method generates a series of points in the
following way: Let u0 be an initial point satisfying H(u0) = 0. Then ui+1 is
generated inductively in two steps, a predictor and a corrector step (cf. also
Figure 2.5):

Predictor Step: Solve (2.15) numerically, e.g. by the explicit Euler method:

vi+1 = ui + h · t(H ′(ui)),

where h > 0 is a certain steplength.

Corrector Step: Here one uses the fact that c(s) solves H(c(s)) = 0.
Define wi+1 to be that point on the curve c which is nearest to vi+1, i.e. one
has to solve

min{‖vi+1 − w‖ : H(w) = 0}.
The solution of this problem – this is typically determined by Newton’s
method – defines the new point ui+1.
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Figure 2.5: Illustration of possible predictor and corrector steps in numerical path fol-
lowing methods

Remark 2.17 The assumption that the Jacobian has full rank induces that
possible branch points of solution curves cannot be computed. For the study
of problems with singular Jacobians and also an analysis of the step size
control for different possible predictors the reader is referred to [2].

Remark 2.18 There are several software packages available which contain
codes for numerical path following. A very popular one is AUTO20001 (see
[23]). In fact, this is also the software we used for part of the computations
within the numerical examples presented in Chapter 4, Section 4.3.

2.5 Self-Optimization

For the development of modern, innovative mechatronic systems, the con-
cept of self-optimization has been introduced2 over the last few years. This
concept is formulated in [1] as follows:

“Self-optimization describes the ability of a technical system to endoge-
nously adapt its objective regarding changing influences and thus an au-
tonomous adaption of the system’s behavior in accordance with the objectives.
The behavior adaption may be implemented by changing the parameters or
the structure of the system. Thus, self-optimization goes considerably beyond
the familiar rule-based and adaptive control strategies; self-optimization fa-
cilitates systems with inherent ‘intelligence’ that are able to take action and
react autonomously and flexibly to changing operating conditions.”

Self-optimization can be described as a process that consists of the fol-

1AUTO2000 is a software package developed by E. Doedel et al. that allows the contin-
uation and bifurcation analysis of ordinary differential equations and parameter-dependent
systems of equations.

2by the project CRC 614, see www.sfb614.de



2.5 Self-Optimization 31

lowing three steps (cf. also [1]):

Step 1: Analysis of the current situation

Step 2: Determination of the system’s objectives

Step 3: Adaptation of the system’s behavior

More precisely, in the first step the state of the system and observations of
the environment are analyzed. It is evaluated, whether the current objectives
of the system are appropriate for the current situation. If this is not the case,
the new objectives are determined in the second step. This can be performed
through the selection of an alternative from a given finite set of possible
objectives, through an adaptation of the current objectives by changing the
priorities, or even through the generation of new objectives independently
of the existing ones. The resulting objective adaptation leads directly to the
third step, in which the behavior adaptation is performed such that the new
objectives are optimized.

For further information about self-optimizing systems, the reader is re-
ferred to [33, 1, 19]. In Chapters 3 and 4 several applications will be described
for which the concept of self-optimization has been realized.





Chapter 3

Multiobjective Optimization

In industry and business a variety of applications occur, where several objec-
tive functions are desired to be optimized at the same time. For instance, in
manufactoring cost has to be minimized, but at the same time also quality
is wanted to be maximal. This example already illustrates that the several
objectives typically contradict each other and therefore do not have identical
optima. Thus, a set of optimal compromises has to be determined. This
set is called the Pareto optimal set or just Pareto set, named after the Ital-
ian engineer, sociologist and economist Vilfredo Pareto (1848 - 1923). In his
‘Manual of Political Economy’ [76], Pareto developed a theory which includes
the study of tastes of men and the value of goods for individuals. He coined
the term of ophelimity, which is the pleasure that certain quantities of a thing
afford an individual. In this way, Pareto optimality means that members of
a collectivity enjoy maximal ophelimity in a certain position. This especially
means that in a Pareto optimum no individuum can increase its ophelimity
without decreasing the ophelimity of another individuum.

The mathematical field of multiobjective optimization deals – besides the
theoretical study of such problems – with the computation of Pareto optimal
solutions.

In this chapter, first of all a formal definition of Pareto optimality and a
necessary condition are given. After that, geometrical properties of Pareto
sets are reflected and a summary of the most important methods for solving
multiobjective optimization problems with continuous variables and objec-
tive functions is given. Among these are set-oriented methods which have
been applied to several multiobjective optimization problems in engineering
applications also described in this chapter.

Having generated the entire Pareto set for a given multiobjective opti-
mization problem, often a decision which solution to choose for the under-
lying technical system has to be made. This leads to the topic of Decision
Making on which will be reported in direct connection to the applications
considered in the last section of this chapter.

33
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3.1 Problem Formulation and Pareto Optimality

A (constrained) multiobjective optimization problem (MOP) is given by

min
x
{F (x) : x ∈ S ⊆ Rn}, (MOP)

where F is defined as the vector of the objective functions f1, . . . , fk, k ≥ 2,
which each map from Rn to R, i. e.

F : Rn → Rk, F (x) = (f1(x), . . . , fk(x)).

The feasible set S is given as

S = {x ∈ Rn : h(x) = 0, g(x) ≤ 0}

with equality constraints h : Rn → Rm, m ≤ n and inequality constraints
g : Rn → Rq. The MOP is called unconstrained MOP, if S = Rn. In all
the following considerations it is assumed that F = (f1, . . . , fk) consists of at
least continuous objective functions.

It has to be explained what is meant by ’min’ in the problem (MOP), as
a vector-valued function has to be minimized. The following definition which
introduces an appropriate partial order on Rk allows comparisons of vectors
(cf. [20]).

Definition 3.1 Let u, v be two vectors in Rk. Then the vector u is less than
v if

ui < vi for all i ∈ {1, . . . , k},
denoted by u <p v. In an analogous way, the relation ≤p is defined. The
vector u is said to dominate the vector v if

u ≤p v and ui < vi for at least one i ∈ {1, . . . , k}.

Using the relation ≤p it can now be defined what is meant by a solution
of (MOP).

Definition 3.2 A point x? ∈ Rn is called globally Pareto optimal for (MOP)
(or a global Pareto point of (MOP)) if there exists no x ∈ S ⊆ Rn with

F (x) ≤p F (x?) and fj(x) < fj(x
?) for at least one j ∈ {1, . . . , k}.

If this property is only valid inside a neighborhood U(x?) ⊂ S ⊆ Rn, then x?

is called locally Pareto optimal (or a local Pareto point).
The set of all Pareto points is the Pareto set. Following [3], the set of the

function values of all Pareto points is called the Pareto front.
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In the literature, one can find several different names for Pareto optimal
solutions. Examples are ’efficient solutions’ [97, 25], ’noninferior solutions’
[3], ’nondominated points’ [59], ’vector minimum points’ [6], and ’admissible
points’ [45]. Especially the image of a Pareto optimal solution often is de-
noted as an efficient point.

An equivalent definition of Pareto optimality that is graphically more
intuitive, as illustrated in Figure 3.1, can be found e. g. in [25]:

Definition 3.3 A point x? is Pareto optimal, if there exists no
F (x) ∈ F (S) \ {F (x?)} such that

F (x) ∈ F (x?)− Rk
+,0.

Figure 3.1: Pareto points only intersect in the point F (x?) with the region F (x?)−Rk+,0

In the literature, many definitions related to Pareto optimality are con-
sidered. For example an expansion of the Pareto optimal set to the set that
evolves from omitting the condition that fj(x) < fj(x

?) for at least one
j ∈ {1, . . . , k} (cf. Definition 3.2) is denoted as the weakly Pareto optimal set
(cf. [69]). On the contrary, the properly Pareto optimal set is a restriction of
the Pareto set to the subset which does not contain points with unbounded
trade-offs, i. e. unbounded ratios of change, between the objectives. The main
idea is that only those points are properly Pareto optimal for which a decrease
of one objective value is only possible at the expense of some reasonable in-
crements in the other objective values. There are several definitions which
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reflect this intuitive idea (cf. [69]). One definition was given by Geoffrin in
1968:

Definition 3.4 (Geoffrin, 1968 [40]) A point x? ∈ S is called properly Pareto
optimal if it is Pareto optimal and if, additionally, there exists some M ∈ R
such that for each objective function fi and each x ∈ S with fi(x) < fi(x

?)
there is at least one fj such that

fj(x
?) < fj(x) and

fi(x
?)− fi(x)

fj(x)− fj(x?)
≤M.

In this definition, only the existence of the number M is required. As for
the decision maker Pareto points with a predefined bound for the trade-offs
may be interesting, this definition has been modified in such a way that the
value M is set explicitly:

Definition 3.5 (Shukla, Dutta, Deb, 2005 [93]) Given a positive number
M > 0 a point x? ∈ S is called M -properly Pareto optimal if it is Pareto
optimal and if for all i and x ∈ S satisfying fi(x) < fi(x

?), there exists at
least one index j such that

fj(x
?) < fj(x) and

fi(x
?)− fi(x)

fj(x)− fj(x?)
≤M.

For two objectives (i. e. k = 2) this definition means that any secant on
the Pareto front has a slope between −M and − 1

M
.

Example 3.6 Consider the following (very simple) multiobjective optimiza-
tion problem with two objectives f1 and f2 and one variable x ∈ R:

min
x∈R

F (x) = (f1(x), f2(x))

with f1(x) = (x− 1)2

and f2(x) = (x+ 1)2

Obviously, the Pareto set is given by all points x? ∈ [−1, 1]. All points except
the individual optima of f1 and f2 are properly Pareto optimal. Setting the
value M given in Definition 3.5 to 2, the set of M -properly Pareto optimal
points reduces to the inverval [−1

3
, 1

3
]. Figure 3.2 illustrates this example.

The following classical result which goes back to Kuhn and Tucker [63]
provides a necessary condition for Pareto optimality. The version of the
theorem written down here can be found in [53], which itself is a reformulated
version of the one given in [43].
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Figure 3.2: Pareto front and its restriction to 2-proper Pareto points for Example 3.6

Theorem 3.7 (Kuhn and Tucker, 1951 [63]) Let x? be a Pareto optimal
solution of (MOP). It is assumed that ∇hi(x?), i = 1, . . . ,m and ∇gj(x?) for
j ∈ {J : gJ(x?) = 0} (the active constraints) are linearly independent. Then
there exist vectors α ∈ Rk with αi ≥ 0 for i = 1, . . . , k and

∑k
i=1 αi = 1,

γ ∈ Rm and δ ∈ Rq with δj ≥ 0 for j = 1, . . . , q such that

k∑
i=1

αi∇fi(x?) +
m∑
j=1

γj∇hj(x?) +

q∑
l=1

δl∇gl(x?) = 0

δj · gj(x?) = 0, ∀j = 1, . . . , q.

(3.1)

Following [69], points x? ∈ Rn that satisfy the Kuhn-Tucker condition
(3.1) are called substationary points. Given a Pareto point x? the vector of
multipliers α is called the weight vector corresponding to x?.

Obviously the condition in the Kuhn-Tucker theorem is not sufficient for
Pareto optimality in general. In the case of convex1 objective functions,
convex inequality constraints and affine2 equality constraints, it is proven
that for α > 0 the Kuhn-Tucker conditions are also sufficient [43]. However,
numerical methods often make use of this criterion.

1A function f : Rn → R is convex, if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all
x, y ∈ Rn, 0 ≤ λ ≤ 1, see e. g. [106].

2A function f : Rn → R is affine, if f(λx + (1 − λ)y) = λf(x) + (1 − λ)f(y) for all
x, y ∈ Rn, 0 ≤ λ ≤ 1, see e. g. [106].
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3.2 Methods for the Computation of Pareto Points

In this section, first of all a short overview on methods for the computation of
Pareto optima is given. Then the ‘weighted sums method’ and some recently
developed set-oriented techniques for the computation of the entire Pareto
set will be explained in more detail, as they play an important role in parts
of this thesis.

3.2.1 Overview

There are many different approaches for solving multiobjective optimization
problems (cf. [69, 3] for example). They range from methods for the compu-
tation of single Pareto optimal points to interactive methods to methods for
the approximation of the entire global Pareto set.

In the case of the computation of one single Pareto optimum, often a
priori information, e. g. a special weighting of the objective functions or an
ordering of the objectives is required. Examples for methods of this kind are

• the ‘weighted sums method’ [36, 111] (which is described in more detail
in Section 3.2.2),

• the ‘ε-constraint method’ [48], in which part of the objective functions
are treated as constraints, which have to be greater than or equal to
some values εj specified in advance,

• different types of reference point methods, in which a distance of some
desired reference point to the Pareto front is minimized.

Over the last few years, many algorithms for the computation of the en-
tire Pareto set have been developed. Examples are the ‘Normal Boundary
Intersection’ [14], which especially works well in convex problems, a stochas-
tically motivated algorithm [85] and a technique based on numerical path
following [53].

A broad class of algorithms for the computation of entire global Pareto
sets is based on evolutionary algorithms. The books of Deb [15, 62], and
Coello Coello [12] give an overview on multiobjective evolutionary algorithms
(MOEAs).

The use of set-oriented techniques is a different approach, which is very
well-suited for multiobjective optimization (cf. [92]). Here, on the one hand
the permanent subdivision and selection in parameter space allows the nu-
merical approximation of Pareto sets (so-called subdivision techniques). On
the other hand, based on given solutions, algorithms which recover the Pareto
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set or Pareto front by evaluating points in the neighborhood, have been de-
veloped (so-called recovering techniques). The subdivision and recovering
techniques will be explained in detail in 3.2.3. These methods have been
used for the computation of Pareto sets in the applications described in this
work.

3.2.2 The Weighted Sums Method

The weighted sums method, also called the ‘weighting method’, goes back to
Gass and Saaty [36] and Zadeh [111]. It is a very popular approach which
makes use of the intuitive idea of converting the multiobjective optimization
problem into a single objective one. For this, the objective functions are
summed up, each multiplied with an individual weight. More precisely, k
weights αi are chosen such that αi ≥ 0 for i = 1, . . . , k and

∑k
i=1 αi = 1 and

the problem

min
x
gα(x)

s. t. x ∈ S ⊆ Rn,
(3.2)

with gα(x) =
∑k

i=1 αifi(x) is considered.

Varying the weights αi, different Pareto points can be obtained by solving
(3.2) – in the case of convex objective functions even all Pareto points can
be computed in this way. The reason for this is that the shape of the Pareto
front is also convex in such a situation. Moreover, the optimization of the
weighted sums results in different points on the Pareto front for different
weight vectors.

In contrast to this, for nonconvex objective functions the Pareto front can
contain nonconvex parts as illustrated in Figure 3.3 on the right. Here, the
nonconvex part is defined to be a subset of the Pareto front that contains no
global optima of the weighted sum of the objectives for every weight vector.
Pareto points, which are mapped into the nonconvex part of the Pareto front,
can have the same weight vector as other Pareto points whose weighted sum
has a smaller value (cf. Figure 3.4), as they are only local minima or saddle
points of gα(x). In [13], Das and Dennis give a trigonometric argument, why
– in the case of two objectives – the weighted sums method cannot be used
to compute points in the nonconvex part.

It is an interesting question to find out if a Pareto front contains non-
convex parts. If one assumes that the Pareto front is connected, then any
nonconvex part contains a region in which the Pareto front ‘curves inside
the image of the feasible region’. This part of the Pareto front will be called
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Figure 3.3: Typical shape of a Pareto front for a convex problem (left figure) and possible
shape in a nonconvex problem (right figure)

a ‘dent’. In Section 3.3 the formal definition of a dent is given and an ap-
proach which allows the numerical computation of dents in Pareto fronts is
presented.

Figure 3.4: Schematic illustration of the weighted sums approach

3.2.3 Set-oriented Methods

For the computation of the entire Pareto set, recently some set-oriented
methods have been developed (cf. [20, 87, 88, 90], and, for an overview,
[92]), which can be categorized into two main classes: the subdivision and
the recovering techniques. The subdivision techniques are of global nature
and can even deal with multiobjective optimization problems in which no
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analytical derivatives are available. The drawback is that the number of op-
timization variables which can be treated efficiently is restricted to moderate
dimensions. The recovering techniques are of local nature but also work well
for higher-dimensional problems (especially in the case of smooth objective
functions).

The principal approach of the subdivision techniques can be characterized
as follows: Based on a covering of the feasible parameter space (a box), the
Pareto set is approximated numerically through a successive refinement and
selection of boxes in parameter space. Figure 3.5 visualizes this approach.

Figure 3.5: Approximation of the Pareto set for the MOP“minx F = (f1, f2)T : R2 → R2”
with f1(x1, x2) = (x1 − 1)2 + (x2 − 1)4 and f2(x1, x2) = (x1 + 1)2 + (x2 + 1)2 using
the subdivision techniques with 10 (on the left) or 16 (on the right) subdivision steps
respectively

After subdividing the boxes into two smaller boxes in each subdivision
step, test points are generated in each box. One or a few steps of a descent
direction for the MOP are applied to each test point and only those boxes are
kept in which at least one of the iterated points has stayed. Many different
methods for the choice of test points and descent directions have been imple-
mented. More details about the algorithms, which are implemented in the
software tool GAIO3, and a proof of convergence can be found in [20, 88, 90]
and [87].

If one or a few Pareto optima are already known, then the recovering
techniques (cf. [87, 89]) allow the computation of the entire, connected com-
ponents of the Pareto set that contain these starting points. For this, little
boxes around the starting points are defined, and other Pareto optimal points
are generated by studying neighboring boxes. Here, one uses the fact that
– under certain smoothness and regularity assumptions – Pareto sets are lo-
cally (k − 1)-dimensional manifolds (cf. [53]). Thus, it is guaranteed that

3Global Analysis of Invariant Objects, see www.math.upb.de/∼agdellnitz
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in the neighborhood of Pareto optima other Pareto optimal points can be
found. To decide which neighboring boxes may contain Pareto optima, test
points are generated and iterated in the same way as in the above described
subdivision techniques. Figure 3.6 visualizes the principal functioning of the
recovering techniques.

Figure 3.6: Principal functioning of the recovering techniques, here using test points for
the generation of new Pareto points in neighboring boxes (the black curve illustrates the
unknown Pareto set) [96]

For high-dimensional problems (i. e. MOPs with many optimization vari-
ables), a special image set oriented recovering algorithm has been developed
in [18]. For a given initial, Pareto optimal solution a box on the Pareto front
is generated around the image of this solution. Step by step, all neighboring
boxes are inserted that contain points on the Pareto front. The insertion of
boxes is based on the idea to create vectors of desired values for the objec-
tives, so-called targets T , in the neighborhood of the given boxes. Then the
following distance minimization problem is solved:

min
x
‖F (x)− T‖.

Using this algorithm, the entire Pareto set can be covered for unconstrained
multiobjective optimization problems with convex objective functions, as –
under certain smoothness assumptions – Pareto sets are parts of (k − 1)-
dimensional manifolds [53] and, in the convex case, they are connected and
the map from the Pareto set to the Pareto front is bijective [69]. In Figure
3.7, a schematic representation of the image set oriented recovering technique
is given.

3.3 Dents in Pareto Fronts

In Figure 3.3 it has already been illustrated that the Pareto front may curve
inside the image of the feasible region in the case of nonconvex objective func-
tions. As already mentioned in Section 3.2.2 Pareto points whose images lie
in such a dent cannot be computed by using the weighted sums method. The
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f1f1 f1 f1

f2f2f2 f2

Figure 3.7: Principal functioning of the image set oriented recovering technique (the
black curve is the unknown Pareto front)

reason is that two or more Pareto points satisfy the Kuhn-Tucker equations
with the same weight vector α while the weighted sum

∑k
i=1 αifi(x) is not

minimal for all these solutions. The following definition gives a mathematical
description of a dent.

Definition 3.8 (Dent point, Dent preimage) Let P ⊆ S be the Pareto set
of a multiobjective optimization problem minx∈S F (x) with F : Rn → Rk,
F (x) = (f1(x), . . . , fk(x))T and fi at least twice continuously differentiable
∀ i = 1, . . . , k. Let

gα(x) =
k∑
i=1

αifi(x),

gα : Rn → R, and αi ∈ [0, 1],
∑k

i=1 αi = 1.

A point x? ∈ P is called a dent preimage if it is a saddle point of gα. The
corresponding point y? = F (x?) on the Pareto front is called a dent point.

Definition 3.9 (Dent, dent border, complete dent) Let P ⊆ S be the Pareto
set of an at least twice continuously differentiable multiobjective optimization
problem minx∈S F : Rn → Rk and let PF = F (P ) be the Pareto front. Let
y? ∈ PF be a dent point. Then, the connected component of dent points
which includes y? is called a dent corresponding to y?, denoted by Dy?:

Dy? = {y ∈ PF |∃δ ≥ 0 and ∃c : [0, δ]→ PF, c continuous, with c(0) = y?,

c(δ) = y, and c(s) is a dent point ∀ s ∈ [0, δ]} .

A dent Dy? is called complete, if

∂PF ∩Dy? = ∅,

where ∂PF is the boundary of the Pareto front PF as a subset of ∂F (S)
(with the induced topology from Rk).
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The boundary ∂Dy? of a complete dent Dy? (seen as a subset of PF ) is
called dent border and a boundary point yb ∈ ∂Dy? is called a dent border
point. A point xb ∈ P with F (xb) = yb is called a dent border preimage of
yb.

Remark 3.10 In [53] dents have been studied from a differential geometric
point of view. In this book it has been shown that – under certain geometrical
assumptions on the multiobjective optimization problem – saddle points of
gα occur if and only if the corresponding point on the Pareto front has at
least one negative principal curvature.

In [53] it has already been considered what happens during the transition
from a minimizer x1 of gα1 to a saddle point x2 of gα2 on a connected Pareto
front i. e. during the transition of non-dent preimages to dent preimages (α1

and α2 denote the weight vectors corresponding to x1 and x2, respectively):
Assume that the non-dent preimage x1 can be connected to the dent preim-

age x2 by a continuous curve γ : [0, 1] → P ⊆ S with γ(τ) = (x(τ), α(τ)),
γ(0) = (x1, α1) and γ(1) = (x2, α2). To each curve point γ(τ) the n-tuple
of eigenvalues of ∂2

∂x2
gα(x), denoted by (e1(τ), . . . , en(τ))T , is assigned, where

α again is the corresponding weight vector to x. This leads to another con-
tinuous curve γ̃ : τ 7→ (e1(τ), . . . , en(τ))T corresponding to γ. As x1 is a
minimizer of gα1 , γ̃(0) > 0. In the saddle point x2 of gα2 , there exists an
index i ∈ {1, . . . , n} such that ei(1) < 0. Because of the continuity of γ̃ there
must exist τ̄ ∈ [0, 1] with ei(τ̄) = 0.

To sum up, in dent border points a zero-eigenvalue of the Hessian of gα
occurs.

Definition 3.11 (Simple dent border point/preimage) Let P ⊆ S be the
Pareto set of an at least twice continuously differentiable multiobjective opti-
mization problem F : Rn → Rk and let PF = F (P ) be the Pareto front. Let
y?b ∈ PF be a dent border point and let x?b ∈ P be a dent border preimage of
y?b .

Then, y?b is called a simple dent border point if the zero eigenvalue of
the Hessian g′′α(x?b) is simple. In this case, x?b is called a simple dent border
preimage.

Example 3.12 (Computation of dents)
Consider the two objectives

f1(x, λ) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 + x1 − x2) + λ · e−(x1−x2)2

f2(x, λ) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 − x1 + x2) + λ · e−(x1−x2)2
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with a fixed value λ = 0.6 and x = (x1, x2). Then, the Pareto set can be
approximated e. g. by use of the set-oriented techniques described in Section
3.2.3.

Figure 3.8: Pareto front and dent points (black) for Example 3.12

The algorithm returns a set of boxes that covers the Pareto set. Within
these boxes, a number of test points is evaluated, the best of which are
in the following considered as the Pareto set. By solving the Kuhn-Tucker
equations of F = (f1, f2) for each of these points, the corresponding weight
vectors α ∈ Rk can be computed. Then, the eigenvalues of the Hessians of
the weighted sums of the objectives are determined. All points x, in which
both eigenvalues > 0 and eigenvalues < 0 exist, are dent preimages. The
Pareto front and the resulting dent points for this example are visualized in
Figure 3.8.

3.4 Treatment of Multiobjective Optimization Problems in sev-
eral Technical Applications

In close cooperation with engineers working within the CRC 614 ”Self-optimi-
zing systems and structures in mechanical engineering” 4 we have considered
several technical applications in which multiple objectives occur that are de-
sired to be optimized at the same time. The applications presented in this

4www.sfb614.de
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work are subsystems of the RailCab vehicle which is a novel linear motor
driven railway system including the latest technologies and innovative pro-
totypes, developed by the project RailCab (“Neue Bahntechnik Paderborn”,
cf. [73]). In particular, we have considered a hybrid energy storage system,
the guidance module and the doubly-fed linear drive. The new aspect of our
study of these applications is the numerical approximation of entire Pareto
sets. Based on the resulting global picture on the solution set, the engineers
were now able to choose suitable Pareto optimal solutions. In the case of the
linear drive we even developed a situation-dependent heuristic which allows
the automatic choice of suitable Pareto optimal solutions during operation
time. In the case of the guidance module certain reference trajectories are de-
sired to be optimized with respect to several objectives. This would directly
lead to an optimal control problem with multiple objectives. As the guidance
module is modeled as a differentially flat system, we were able to reformu-
late the optimal control problem into a nonlinear multiobjective optimization
problem. This type of reformulation has been introduced by Murray et al
(cf. [72, 104, 70, 31]) for the case of one single objective function. In this
work it is shown that the same idea works for the multiobjective case.

In the following, first a short introduction into the functionality of the
RailCab system is given. Afterwards, more detailed information about the
three subsystems considered in this work and our new results for the multi-
objective optimization of these subsystems are presented.

3.4.1 The RailCab System

The RailCab system is a novel rail-bound personal rapid transit (PRP), de-
veloped by the project RailCab (“Neue Bahntechnik Paderborn”) [73].

The idea is that the RailCab system acts like a “taxi cab on rails” which
on the one hand saves energy by using common track sections in a convoy
and on the other hand is very comfortable for the passengers, as the desired
destination is directly approached. In particular, thus it is not necessary to
change trains and the timetable is not relevant. The concept is also very
well-suited for light cargo transport.

RailCab vehicles travel autonomously and independently of other vehicles
on the common, existing rails, equipped with additional motor elements of
the linear drive between the rails and novel passive switches, which allow
the RailCabs to steer actively into the desired direction. The steering is
performed by the so-called guidance module for the front and rear axle. This
module can actively control the lateral displacement of the RailCab vehicle
on the rails. Within the clearance between the flanges and the rail-heads, the
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Figure 3.9: Picture of the RailCab test vehicles (source: Collaborative Research Center
614 (SFB614))

RailCab vehicle can be moved freely. This is a big advantage over traditional
railway systems, in which an uncontrolled periodic movement and at higher
speed even a striking of the rail-heads against the flanges occurs.

The RailCab is propelled by a doubly-fed linear drive that consists of a
primary motor part between the rails of the track and a secondary part on
the vehicle. Energy is transferred from the track to the vehicle by use of a
magnetic field and the thrust is generated on the secondary motor part (see
e. g. [110, 80]).

In order to guarantee the availability of energy without any interruption
the RailCab is equipped with an onboard energy storage. At present, the
energy storage consists of batteries. In the future, a hybrid energy storage
system consisting of batteries and double layer capacitors will be installed. So
far, a test plant for the new hybrid energy storage system has been built at the
Chair of Power Electronics and Electrical Drives, University of Paderborn,
Germany.

Furthermore, the RailCab vehicle contains an active suspension module
which gives the vehicle the possibility to improve the passenger comfort [51].

Within the RailCab project, two RailCab vehicles and a test track in
the scale of 1:2.5 have been built next to the campus of the University of
Paderborn. Figure 3.9 shows a picture of the test vehicles. The test track
is an oval of about 530 m track length which contains an artificial hill with
an altitude difference of about 2.5 m and gradients up to 5.3% and a novel
passive switch. More detailed information about the RailCab system can for
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example be found in [1].

3.4.2 Multiobjective Optimization of the Hybrid Energy Storage System5

The hybrid energy storage system (HES) contains two different types of en-
ergy storages: batteries and double layer capacitors (DLC). Batteries are
well-suited for long term storage as they have a high energy density. The
drawback is that batteries have a poor power density and a small number of
full load cycles. On the contrary, double layer capacitors perfectly fit for short
term storage as they can be cycled many times without degradation and offer
a high power densitiy but only a low energy density. By the combination of
the two energy storages the individual advantages are utilized.

Figure 3.10 shows a picture of the test rig for the hybrid energy storage
system that has been built at the Chair of Power Electronics and Electrical
Drives, University of Paderborn, Germany.

From the mathematical point of view, the challenge in this application is
to find an operation strategy that distributes the power flows to the respective
storage devices in an optimal way during a drive of the vehicle. Here, several
aims come into play. In the study described in [83] two objectives are con-
sidered: the minimization of the normalized energy losses elosses of the HES
and the maximization of the power reserve (expressed by the minimization
of the function pres).

To facilitate the calculation of the operating strategy the planned drive
of the vehicle is divided into several sections of one to five minutes. A mul-
tiobjective optimization with respect to the above-mentioned objectives is
executed for each of these sections. For technical reasons, the sum of the
powers of both energy storages and the losses is equal to the total on-board
power of the vehicle which is given as a profile for the planned drive. Thus,
only the battery current has to be optimized over time. The resulting pro-
files of the battery power, the state of charge of the battery, the DLC power
and the state of charge of the DLC can be computed directly from the opti-
mized profile for the battery current. The optimization variables stem from a
discretization of values for the battery current over time. The discretization
points are chosen at those points in time where either the total power changes
significantly or a certain energy has been produced. The final trajectory is
set together by piecewise constant values of the battery currents.

In Figure 3.11 one possible profile for the total power of the HES is given.
In this profile, the total power changes drastically at six different points in

5in cooperation with the Chair of Power Electronics and Electrical Drives, University
of Paderborn, Germany, cf. [66, 83]
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Figure 3.10: Photograph of the test rig of the hybrid energy storage system [83]

time T0, · · · , T5 (cf. Figure 3.11). The values of the battery current at these
points in time are optimized with respect to the minimization of elosses and
pres. The battery and the DLC are supposed to have a medium state of
charge at the beginning (T = T0 = 0) in this example. Figure 3.12 shows an
approximation of the Pareto front. It has been computed by use of a special
image set oriented predictor-corrector method for the generation of Pareto
points. This algorithm uses basic ideas of the image set oriented method and
has been especially tailored to multiobjective optimization problems with two
objectives in which no analytic derivatives of the objectives are computable
and evenly spread solutions on the Pareto front are desired (cf. [83] for
more details). Each point within this Pareto front is related to an optimized
operating strategy. The three marked points (cf. Figure 3.12) have been
chosen to demonstrate the results. The corresponding trajectories of the
battery current are plotted in Figure 3.13. Figure 3.14 gives the resulting
states of charge of both the battery and the DLC. One can observe that in
Point 1, where the energy losses are minimal, the values of the battery current
are near zero and the state of charge of the battery is almost constant. As
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Figure 3.11: Profile of the total on-board power of the hybrid energy storage system for
a section of one minute

Figure 3.12: Approximation of the Pareto front for the HES assuming the total power
profile given in Figure 3.11

Figure 3.13: Resulting trajectories of the battery current IBat based on the total power
profile given in Figure 3.11
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Figure 3.14: Results for the state of charge of the battery (on the left) and the state of
charge of the DLC (on the right) based on the total power profile given in Figure 3.11

a consequence, the state of charge of the DLC fluctuates much more in this
point. On the contrary, in Point 3 in which pres is minimal and thus the
power reserve is maximal, the state of charge of the battery changes more
significantly and the state of charge of the DLC is varied only within a small
range around the medium value SOCmed. Point 2 is one example for an
optimal compromise.

3.4.3 Self-optimization of the Guidance Module6

As mentioned above, the guidance module allows to actively control the la-
teral displacement of the RailCab vehicle in the rails. Within a given clear-
ance, the RailCab can be moved freely. This is very important, because track
laying does not result in ideally straight rails and flange strikes, i. e. bumpings
of the rail-heads against the flanges, have to be avoided because they cause
noise as well as wear on the wheels and rails. Figure 3.15 shows a typical rail
and a sketch of the clearance, which is the maximum distance between the
flanges and the rail-heads.

Within the clearance, the RailCab can be steered along arbitrary reference
trajectories. The challenge was to compute (Pareto-) optimal trajectories
that meet several aims:

1. minimize the deviation of the vehicle from the track centerline, i. e.
maximize “safety”

2. maximize the passenger comfort

3. minimize the average energy consumption of the hydraulic actuators

6in cooperation with the Chair of Control Engineering and Mechatronics, University of
Paderborn, Germany, cf. [38, 39]



52 Multiobjective Optimization

Figure 3.15: Photograph of a rail (on the left) and sketch of the clearance (on the right)
[38]

4. maximize the steering angle reserve

Based on a linear model of fourth order for the lateral dynamics of the
RailCab vehicle (see e. g. [38] for more details), an optimal control prob-
lem with the above mentioned objectives is formulated. In this model, the
controlled outputs are (differentially) flat, i. e. the inputs and states can be
represented as a function of these flat outputs and a finite number of their
derivatives w. r. t. time (cf. [31]).

Definition 3.13 ((Differential) Flatness [31, 72]) A system

ẋ = f(x, u)

with states x ∈ Rn and controls u ∈ Rm is called differentially flat or just flat
if there exists a fictitious output y ∈ Rm with

y = h(x, u, u̇, ü, . . . , u(p))

such that

x = α(y, ẏ, ÿ, . . . , y(q))

u = β(y, ẏ, ÿ, . . . , y(q)).

(3.3)

Here, h, α and β denote real-analytic functions7 and p, q ∈ N. y is called a
flat output.

7Functions that locally can be developed into a Taylor series are called real-analytic
functions (see e. g. [61]).
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Differentially flat system can especially be utilized in trajectory optimiza-
tion (cf. [104]). The big advantage is that in this case the trajectories can be
optimized in the space of the outputs y and afterwards, the corresponding
inputs and states can be computed.

Thus, an optimal control problem of the form

min
x∈Rn,u∈Rm

J(x, u) (3.4)

s. t. ẋ = f(x, u)

with a flat system ẋ = f(x, u) can be transformed into an optimization
problem of the form

min
y∈Rm

f(y), (3.5)

where y denotes the flat output (cf. e. g. [104, 78] and [70]).
This concept can be easily extended to the case of several objectives as

required in the trajectory optimization of the guidance module. Then, the
optimal control problem is transformed into a conventional multiobjective
optimization problem of the form

min
y∈Rm

F (y), (3.6)

where F maps from Rm to Rk and y denotes the flat output.
In the case of the guidance module, it is assumed that the measured

position of the rails (the track centerline), is known a priori. The desired
reference trajectories of length sh for both the front and the rear axle are
approximated by piecewise polynomials, so-called splines. Many different
types of splines can be found in the literature – most common are cubic
splines and B-splines. In [70] B-splines have been used for the trajectory
optimization. In the case of the optimization of the guidance module, the
use of B-splines has no additional benefits and thus cubic splines which have
a more intuitive parametrization have been applied. Using cubic splines,
the trajectory is described by a finite number np of parameters yj, which
are interpolation values at given knot points xj (track positions) and which
have to be optimized. Additional boundary conditions are defined for the
cubic spline that keep the transition between two sequenced trajectory parts
continuously differentiable. The computational advantage that might arise
from using B-splines is negliblible in the scenario considered here, as only
25 collocation points have to be evaluated. A detailed description of cubic
splines can be found in [82]. More details about the special setting of the
spline for the application considered (choice of knot points etc.) are given in
[39].



54 Multiobjective Optimization

For the computation of Pareto optimal trajectories, the image set oriented
recovering algorithm described in Section 3.2.3 has been used. The fact that
the RailCab has to stay within the clearance leads to a hard constraint in
the multiobjective optimization problem given by

|y − ytr| < rcl,

where rcl is half the clearance, ytr the track centerline positioned in the middle
of the clearance and y the current position of the axle center. This constraint
can be easily included by setting the center of the initial boxes (defined in
preimage space) to ytr and the radius to ytr + rcl in each knot point.

In a first study described in [38] the trajectories of the guidance module
have been optimized with respect to the first three objectives given on page
51. The exact formulas for these objectives are given in [38]. Figure 3.16
shows an approximation of the Pareto front. To each point within this Pareto
front corresponds a Pareto optimal trajectory on which the RailCab vehicle
can be steered.

Figure 3.17 gives two projections of the Pareto front. In this plot it
becomes clear that energy and comfort are correlated. An improvement of
safety causes a deterioration in both comfort and energy. This is due to the
fact that a smooth, comfortable trajectory also requires less steering and thus
less energy consumption of the hydraulic actuators.

Two points within the Pareto front have been chosen (marked by a circle
and a square) to demonstrate the results. The circle is an example for a more
safe trajectory and the square for a more comfortable one. In Figure 3.18
the corresponding trajectories and the trajectories which stem from single
objective optimizations for each of the three objectives are given. (Here,
only the optimized interpolation values at the knot points, connected with
lines, are plotted.) The black line is the (shifted) track centerline and the
gray lines describe the clearance around it.

One can observe that the trajectory which is more safe (line with cir-
cles) stays close to the centerline whereas the more comfortable trajectory
(line with squares) “cuts the corners” and is smoother. As expected, the en-
ergy optimal (dashed) and comfort optimal (dash-dot) trajectories lie close
together.

In [39] the fourth objective mentioned on page 51, the steering angle re-
serve, has been additionally considered. The exact formula for this objective
is given in [39]. Figure 3.19 shows two projections of the three-dimensional
Pareto front which has also been approximated by the image set oriented
recovering algorithm.
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Figure 3.16: Numerically approximated Pareto front for the multiobjective optimization
of the guidance module

The guidance module becomes a self-optimizing system by continuously
running through the following three steps (cf. Section 2.5):

Step 1: Analysis of the current situation:
The values of the velocity and power allocation of the RailCab vehicle
and control errors are measured. Track irregularities have been esti-
mated offline in advance and are selected from a database.

Step 2: Determination of the system’s objectives:
The Pareto set has a priori been approximated offline by use of the
image set oriented recovering algorithm described in Section 3.2.3. To
save disk space, only the points of the Pareto front and the weights that
would lead to the same Pareto point when optimizing a weighted sum
of the objectives are stored in a database (the objectives are convex).
Within this set, a point that fits for the current situation is chosen
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Figure 3.17: Two projections of the Pareto front for the multiobjective optimization of
the guidance module

by requiring that the power allocation is adequate and the number of
flange strikes is minimal.

Step 3: Adaptation of the system’s behavior:
During runtime, the trajectory is optimized with respect to the weighted
sum of the objectives using the weight determined in Step 2. Thus, the
Pareto optimal trajectory can be reconstructed during runtime by using
for example the methodology described in [104].

3.4.4 Multiobjective Optimization of the Linear Drive8

As mentioned above, the RailCab contains a doubly-fed linear drive that
consists of a primary motor part between the rails and a secondary motor
part on the vehicle. If both components of the motor are energized, then a
magnetic traveling wave emerges in the motor. This magnetic field generates
the thrust (cf. [49]). Figure 3.20 visualizes the working principle of the
doubly-fed linear drive.

During operation time, power is transferred from the primary to the sec-
ondary motor part. The absolute value of this transferred power depends on
the operating point of the linear motor given through the currents and fre-
quencies in both motor parts. In [50] a mathematical model of the doubly-fed

8in cooperation with the Chair of Power Electronics and Electrical Drives, University
of Paderborn, Germany, cf. [81, 108, 86]
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Figure 3.18: Examples of Pareto optimal trajectories for the RailCab vehicle

Figure 3.19: Two projections of the approximated Paretofront for the guidance module
with four objectives

linear drive has been developed. For a given target position of the RailCab,
the reference values of the current position x?M and the speed v?M are assigned
by a jerk limited profile generator. This generated profile is also called a ma-
neuver. The reference thrust F ?

M is determined as well as the demanded
electrical power P ?

B that has to be transferred into the vehicle. Taking into
account these two values and the measured speed vM of the RailCab, refer-
ence values for the currents and the frequencies of both motor parts can be
determined by the operating point assignment.

The operating point is desired to meet two objectives at the same time (cf.
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Figure 3.20: Working principle of the doubly-fed linear drive [49]

[81]). On the one hand, the degree of efficiency ηLM has to be maximized and
on the other hand the power factor ηSN that takes the ratio of real output
power to the apparent power of the linear motor into account, has to be
maximized, too. This leads to the multiobjective optimization problem

min
x

(
f1(x)
f2(x)

)
= min

iSd

(
−ηLM(iSd)
−ηSN(iSd)

)
in which the current iSd ∈ R is the optimization variable. These objectives
are both convex.

By use of set-oriented multiobjective optimization techniques (see Section
3.2.3), an approximation of the Pareto optimal operating points was obtained.
This optimization is performed for discretized values of the maneuver and
for each point in time a Pareto set has been computed. One of the resulting
Pareto fronts is plotted in Figure 3.23 on the left.

In more detail, here a simulated drive of the RailCab around the test
track has been considered (cf. [81]). Figure 3.21 shows the velocity profile
for the RailCab. Additionally, in this figure assumed values for the state of
charge of the battery and the temperature of the secondary motor part are
plotted. Based on these values, the decision which point within the Pareto
set, i. e. which value for the current iSd is adjusted to the motor, is made.

More precisely, a so-called decision heuristic that realized the choice of
one Pareto point has been developed. The first step of this decision heuristic
is based on the following technical properties:
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Figure 3.21: Profiles of the velocity of the RailCab, the state of charge of the battery
and the temperature of the primary motor part which form the basis for the optimization

• If the temperature in the secondary motor part rises, then an optimiza-
tion of the power factor should be preferred.

• If the energy storage of the RailCab is discharging and the state of
charge of the battery is low, then the optimization of the degree of
efficiency becomes more important (the reason is that in this case the
reactive power oscillation between the secondary motor part and the
battery, the so-called flicker-effect, generates an extra load to the bat-
tery).

• If the battery is being charged, then only the temperature θ affects the
choice of the Pareto point.

These properties are put into formulas in such a way that the upper point
on the Pareto front, which corresponds to the maximum with respect to
ηSN, is chosen, if the state of charge and the temperature are high and the
lower point on the Pareto front, which corresponds to the maximum of ηLM,
is chosen if both the load value and the temperature are low. In between,
points are chosen by a linear interpolation between the individual optima
depending on the load and temperature values.

Figure 3.22 depicts how the decision heuristic works in this specific exam-
ple in more detail: First, the extremal points PP1 (the minimum of f2) and
PP2 (the minimum of f1) of the Pareto set are determined. For this specific
linear motor scenario, PP1 is selected if the state of charge is at least 90%
and the temperature is at least 80◦ C. Conversely, PP2 is selected if the state
of charge is at most 20% and the temperature is at most 20◦ C. In the case
of parameter values between these extremal points a Pareto point is chosen
by using linear interpolation.
Consider for example the state of charge. Let qcur be the current state of
charge, qmin = 0.2 the lowest possible value for qcur and qrange = 0.7 the
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Figure 3.22: Working principle of the first step of the decision heuristic for the operating
point assignment of a doubly-fed linear motor [86]

greatest amount by which qcur can vary. Then qscale and Tq are defined as

qscale =
qcur − qmin

qrange

and
Sq = qscale · PP2 + (1− qscale) · PP1.

The procedure for Sθ works analogously with θmin = 20◦ C and θmax = 80◦

C. Since the temperature and the state of charge can vary independently,
linear interpolation only works for each parameter individually. The optimal
Pareto point PP from the Pareto front with respect to the decision variables
is chosen by minimizing the following formula

w · (Sq − PP ) + (1− w) · (Tθ − PP )

with some weight w ∈ [0, 1] which in this application has been set to 0.5.
After this decision based on external parameters, the decision heuristic

always contains a second step in which the curvature of the Pareto front in
the chosen point is studied. If the Pareto front is “flat” or “steep” around the
chosen point, then a slight movement to another point on the Pareto point
causes great benefits in one objective and only little losses in the other one.
Thus, in this second step, the tangent to the Pareto front is approximated
numerically, and the solution is possibly moved to another point on the Pareto
front in which the tangent has a (predefined) minimal or maximal slope M .
Using the definition of M -properly Pareto optimal points (see Definition 3.5
on page 36) one can say that in the second step that M -proper Pareto point
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is chosen whose objective value is as near as possible to the objective value
of the point determined in the first step. In Figure 3.23 on the right this
second step is visualized.

Figure 3.23: Results of the multiobjective optimization for the linear drive: On the left,
the Pareto front corresponding to t = 20s is plotted. In the right plot, the black box from
the left is zoomed in more detail and a sketch of the working principle of the decision
heuristic is given.

The values for the charging state of the battery and the temperature
of the secondary motor part are not consistent with measured values which
change very slowly over time. To demonstrate the working principle of the
decision heuristic, here values that change considerably have been chosen.

Figure 3.24 shows the results of the multiobjective optimization for a
round trip of the RailCab on the test track with the given profiles of velocity
(and also some given profiles of the force and power), states of charge of the
battery and temperatures of the secondary motor part. In the left plot, the
maximum possible values of ηLM and ηSN which result from a single objective
optimization are drawn over time. As the objectives are conflicting, it is
not possible that both values are reached at the same time. The dashed
lines are the values of ηSN (lower dashed line) and ηLM (upper dashed line)
that are achieved with the multiobjective optimization together with the
decision heuristic as described above. The right plot of Figure 3.24 shows
the corresponding values of the optimization variable iSd that lies as expected
between the values of iSd for the individual maxima of the objectives.

In this figure, one can also observe the effect of the decision heuristic: for
example in the time interval from 50 to 60 seconds, where the values of the
charging state of the battery and the temperature of the secondary motor
part become higher and higher, Pareto points are chosen that more and more
move towards the maximum of ηSN.

The computation of Pareto sets for many discretized points of time, as
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Figure 3.24: Results of the multiobjective optimization for the linear drive illustrated
between the maxima of each individually optimized objective. On the left, the values of the
objectives are plotted whereas on the right, the corresponding values of the optimization
variable, the current iSd, are shown.

performed in the operating point assignment here, is computationally costly
and cannot be executed during operation time. To allow a multiobjective
optimization during operation time, the same problem has been considered
as a time-dependent multiobjective optimization problem. For this kind of
problem a numerical algorithm has been used that allows the efficient compu-
tation of Pareto optimal paths over time. This algorithm and its application
to the doubly-fed linear drive are described in Section 4.3.



Chapter 4

Parametric Multiobjective Optimization

In this chapter, multiobjective optimization problems that additionally de-
pend on an external parameter λ ∈ R are studied. First, in Section 4.1 the
problem is stated formally, the Kuhn-Tucker theorem is reformulated for this
context and a motivating example is given.

Parametric multiobjective optimization problems occur in many real world
applications.

On the one hand, time-dependencies are included in many applications.
These often can be modeled by use of such an external parameter λ. By the
combination of techniques from multiobjective optimization and numerical
path following methods, Pareto optimal paths over time can be computed.
Numerical path following (cf. Section 2.4.2) allows to compute the solutions
of parameter-dependent systems of equations. Multiobjective optimization
and numerical path following can be linked together by means of the Kuhn-
Tucker necessary condition (3.1) (see page 37) which characterizes Pareto
optimal points as solutions of a certain system of equations. This approach
will be explained in more detail in Section 4.3. How this new concept has
been applied to the optimization of the operating point assignment for a
doubly-fed linear drive is described in Section 4.3.2. Part of the contents of
this section have already been published in [108] and [86].

On the other hand, the external parameter λ may describe the influence
of any other parameter to the objective functions. Imagine for instance the
design process of a car which is desired to be optimal with respect to comfort
(first objective) and safety (second objective). On the road, the car will be
caught in a cross-fire of influences, like side wind, wet roads, or changes in
temperature. The only information one has is that these influences can be
estimated to lie in a certain interval, probably given by the weather forecast.
Mathematically, this leads in the simplest case to the parametric multiob-
jective optimization problem minx F (x, λ) with F : Rn ×R→ Rk – thus the
solution (the Pareto set) also depends on the parameter λ. For the designer
of a car those Pareto points are desirable, where the Pareto points or their
images under F change as little as possible while the parameter varies.

63
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After a short summary of the state-of-the-art of robustness concepts in
multiobjective optimization in Section 4.4.1, two new concepts that describe
how to compute these robust Pareto points are introduced in Section 4.4.2.

In Section 3.3 dents in Pareto fronts have been studied. The considera-
tion of dents is extended to parametric multiobjective optimization problems
in Section 4.5 of this chapter. Here, the connection between results from
bifurcation theory and the computation of points in which dents originate or
vanish under the variation of the external parameter λ is pointed out.

4.1 Problem setting

An unconstrained (one-) parametric multiobjective optimization problem is
given as

min
x
{F (x, λ) : x ∈ Rn, λ ∈ [λstart, λend] ⊆ R}, (ParMOP)

where F is defined as the vector of the objective functions, i. e.

F : Rn × [λstart, λend]→ Rk, F (x, λ) = (f1(x, λ), . . . , fk(x, λ)).

The solution set of (ParMOP) is a λ-dependent family of Pareto sets.
Every point in this family satisfies the necessary condition of Kuhn and
Tucker with respect to the x-variables. As (ParMOP) is an unconstrained
multiobjective optimization problem, Theorem 3.7 reduces to the fact that
there exist multipliers α1, . . . , αk ∈ R+,0 such that

HKT(x, α, λ) =

( ∑k
i=1 αi∇xfi(x, λ)∑k

i=1 αi − 1

)
= 0, (4.1)

where (x, λ) is a solution of (ParMOP).
For the numerical solution of (4.1), the non-negativity requirement for αi

might present a problem. This problem is avoided if one uses an equivalent1

formulation saying that there exist multipliers t1, . . . , tk ∈ R such that

HKT(x, t, λ) =

( ∑k
i=1 t

2
i∇xfi(x, λ)∑k
i=1 t

2
i − 1

)
= 0, (4.2)

where (x, λ) is a solution of (ParMOP). In the following, both αi and t2i will
be used synonymously.

1Equivalence is meant here in the sense that the same set of substationary points (x, λ)
is described.
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Definition 4.1 If x ∈ Rn satisfies the Kuhn-Tucker condition (4.2) for a
specific value of λ, then it is called – as in the non-parametric case – a
substationary point. The set of all substationary points for the respective
value of λ is denoted by Sλ.

Example 4.2 Two objective functions f1,2 : R2 × R→ R defined as

f1(x, λ) = λ((x1 − 2)2 + (x2 − 2)2) + (1− λ)((x1 − 2)4 + (x2 − 2)8)

f2(x, λ) = (x1 + 2λ)2 + (x2 + 2λ)2.

in which the parameter λ is varies from 0 to 1 are considered. To provide
insight into the behavior of the Pareto sets for different values of λ in this
problem, numerical approximations of the Pareto sets for some specific values
of λ are shown in Figure 4.1 on the left. The right plot shows an approxima-
tion of the entire Pareto sets for λ ∈ [0, 1] in x1-x2-λ-space.

Figure 4.1: Pareto sets for some specified values of λ (on the left) and numerical approx-
imation of the entire, λ-dependent Pareto set in x1-x2-λ-space (on the right) for Example
4.2.

4.2 Numerical Path Following and Multiobjective Optimization

In Chapter 2, Section 2.4.2, numerical path following methods have been
introduced. These methods allow to compute solutions to a parameter-
dependent system of equations

H(y, λ) = 0.

In the case of multiobjective optimization such a system of equations is given
by the necessary condition of Kuhn and Tucker (cf. Equation (4.2)). It can be
used to analyze the behavior of parameter-dependent sets of substationary
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points with respect to variations of the parameter λ. The Kuhn-Tucker
equations consist of n+ 1 equations in n+k+ 1 unknowns (given by x ∈ Rn,
t ∈ [0, 1]k, λ ∈ R). Numerical path following methods can be applied to
systems of equations which contain only one more unknowns (given through
λ) than equations. Thus, additionally to the Kuhn-Tucker equations some
more equations have to be derived. These equations define the direction of
the path between the λ-dependent sets of substationary points.

In Figure 4.2 the principal idea of computing paths between λ-dependent
sets of substationary points is visualized.

Figure 4.2: Application of numerical path following methods to parameter-dependent
sets of substationary points.

How to choose the direction of the path depends on the application one
considers. In the following, additional equations for time-dependent applica-
tions and for paths that allow the study of robustness against λ-variations
are described. The initial solutions, i. e. starting points for λ = λstart, stem
from a numerical approximation of the Pareto set for λ = λstart.

Numerical path following methods have already been used in the con-
text of multiobjective optimization (see e. g. [53] and [26]), but only for the
generation of Pareto sets itself and not for varying external parameters in
parametric multiobjective optimization problems.

4.3 Time-dependent Multiobjective Optimization Problems

In this section, the parameter λ is identified with the time T , i. e. the Pareto
set of the multiobjective optimization problems considered here changes over
time. In engineering problems it is often required that Pareto optimal solu-
tions over time can be computed very efficiently, preferably during runtime.
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As numerical path following methods allow the fast generation of solutions
under the variation of the parameter, in this case time, they perfectly fit for
the solution of these problems. How the solution paths are computed is
described in more detail in Section 4.3.1. In Section 4.3.2 the application of
the new concept for the optimization of the operating point assignment of a
doubly-fed linear motor is described. The contents of this section can also
be found in [108].

4.3.1 Computation of Solution Paths

As mentioned above, the parameter-dependent Kuhn-Tucker system (4.2)
consists of n + 1 equations and n + k + 1 variables. If the weights αi = t2i
are fixed to values t̄2i , then the Kuhn-Tucker system reduces to n equations
and n+ 1 variables. The values t̄i can be computed for every starting point
x on the initial Pareto set by solving the Kuhn-Tucker equations for λ =
λstart. The system H(y, λ) = H(x, t̄, λ) is then simply given by the Kuhn-
Tucker equations with fixed values of t. It is assumed that the Jacobian of
HKT(x, t, λ) w. r. t. (x, t, λ) is regular. By this, one can apply the numerical
path following methods as described in Section 2.4.2 directly and follow the
curve which is generated when varying λ ∈ [λstart, λend] .

The result is a series of points that lie on the solution curve starting in
xstart ∈ Sλstart and approximately ending in a point xend ∈ Sλend . For every
starting point in the initial Pareto set for λ = λstart one obtains such a path,
i. e. a series

{u0 = (xstart, t̄, λstart), u1, · · · , uN = (xend, t̄, λend)},

where N denotes the corresponding number of predictor steps in the path
following algorithm, i. e. the solution curve conists of N + 1 points.

Example 4.3 Consider again (as in Example 4.2) the two objective functions
f1,2 : R2 × R→ R defined as

f1(x, λ) = λ((x1 − 2)2 + (x2 − 2)2) + (1− λ)((x1 − 2)4 + (x2 − 2)8)

f2(x, λ) = (x1 + 2λ)2 + (x2 + 2λ)2.

in which the parameter λ is varied from 0 to 1.
An approximation of the entire Pareto set for λ = 0 has been computed

using the set-oriented subdivision technique described in Section 3.2.3. By
inserting every point x contained in this Pareto set into the Kuhn-Tucker
system and setting λ = 0, the corresponding α = ᾱ was computed by simply
solving these linear equations. For every starting point x in the computed
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Pareto set α is fixed to the computed value and paths for each starting point
are computed by use of the software package AUTO2000 [23]. In Figure 4.3
some of the resulting paths are illustrated.

Figure 4.3: Three examples for paths with a fixed weight vector α in x1-x2-λ-space,
visualized on the λ-dependent Pareto set, for Example 4.3.

In the case of time-dependent multiobjective optimization problems in
which solutions are required to be generated during runtime (online) it is not
possible to compute entire Pareto sets at each point in time (or a fine dis-
cretization of time). By keeping the weighting of the objectives constant
for certain intervals within which the solution is adapted to the current
point in time by the numerical path following method, solutions to the time-
dependent multiobjective optimization problem can be obtained efficiently.
The following three steps reflect this idea:

Step 1: Compute the entire Pareto set for the given problem at an
initial point in time. Based on a certain decision heuristic (i. e. a calcu-
lation rule for the choice of one point from the Pareto set that is based
on external variables which change situationally) the most preferred
adjustment for the system at this initial point in time is calculated.
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Step 2: The corresponding ratio of the objectives (weight vector α)
is set fixed. Using path following techniques, the solution curve corre-
sponding to this α is computed over time.

Step 3: After a certain time, the entire actual Pareto set is recom-
puted, the decision heuristic is applied again, and the adjustment of
the system is updated. Then proceed with Step 2.

Figure 4.4 sketches Step 1 and Step 2 in objective space.

Figure 4.4: Visualization of Step 1 and Step 2 in the proposed treatment of time-
dependent multiobjective optimization problems

There are different ways how to decide that the new entire Pareto set for
the current point in time has to be computed in Step 3. The first trivial idea
is to compute the Pareto set at fixed points in time, e. g. every minute (as-
suming that the dimension of the problem is low enough). This computation
can be performed in parallel to the computation of the path of solutions so
that the assignment of the optimal solutions never has to be interrupted. The
computation of the entire Pareto set can also be started anew in reaction to
external influences. As an example in the case of the doubly-fed linear motor
(cf. Section 4.3.2) some precomputed velocity profiles are contained in the
optimization. If these profiles cannot be realized any more, e. g. because the
vehicle has to brake unexpectedly, then a recomputation of the entire Pareto
set and the corresponding path (based on the new profiles) is necessary.
Including such criteria, the system performs the self-optimizing scheme de-
scribed in Section 2.5.



70 Parametric Multiobjective Optimization

4.3.2 Application: Online Optimization of the Operating Point Assignment
of a Linear Motor2

In Section 3.4.4 the multiobjective optimization of the operating point as-
signment of a doubly-fed linear motor has been described. Whereas in that
section a simulated drive on the test track for the RailCab has been studied,
in this section the scenarios considered are driven on a test bed of the linear
motor. Figure 4.5 shows a picture of the test bed.

Figure 4.5: Photograph of the linear motor test bed of the Chair of Power Electronic
and Electrical Drives, University of Paderborn [86]

In this application, the optimization results depend on the current veloc-
ity, thrust and power of the vehicle which all can be represented as depending
on time. In the approach described in Section 3.4.4 Pareto sets for discretized
points in time have been approximated. This cannot be realized during run-
time as the computational effort is too high. By use of the algorithm for
the treatment of time-dependent multiobjective optimization algorithms de-
scribed in the last section, Pareto optimal paths of solutions can be generated
‘online’, i. e. during runtime. For this, the three steps given on page 68 have
been employed and adapted for this special application.

2in cooperation with the Chair of Power Electronics and Electrical Drives, University
of Paderborn, Germany, cf. [108, 86]
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Step 1: Computation of Pareto sets and decision heuristic

As already described in Section 3.4.4 the Pareto set is approximated
by using a set-oriented subdivision technique contained in the software
tool GAIO (cf. Section 3.2.3). After the computation of the entire
Pareto set for an initial point in time, e. g. T = Tstart = 0, it is sensible
to choose one point in this set as the most preferred adjustment of the
system. The decision heuristic for the application considered here has
also already been described in Section 3.4.4.

Step 2: Numerical path following

As the objective functions in the case considered are convex all Pareto
optimal points are solutions of the Kuhn-Tucker equations. Thus, given
a Pareto optimal point that has been chosen in Step 1, the correspond-
ing weight vector α can be computed by solving the Kuhn-Tucker sys-
tem for the fixed point in time. Then α is set fixed to the computed
value and a standard predictor-corrector method with a tangential pre-
dictor and a Newton corrector (cf. Section 2.4.2) is applied. The re-
sulting solution curve is stored in a buffer for the reference values and
fed to the controller of the linear motor at the corresponding positions
of the vehicle.

Step 3: Recomputation of the Pareto set

In the case of the doubly-fed linear motor two different scenarios have
been derived that require a recomputation of the Pareto set:

1. motor parameters that are modeled as fixed values have changed,
i. e. for example the air gap has changed, or

2. the decision variables, i. e. the state of charge of the battery and/or
the temperature of the secondary motor part, have changed dras-
tically, or,

3. the absolute value of the thrust is (almost) zero.

The repeated evaluation of Step 1 to Step 3 mirrors the idea of self-
optimization (cf. Section 2.5): The analysis of the current situation is per-
formed through the evaluation of the profiles for the maneuver, the values of
the decision variables and the motor parameters for certain points in time.
The determination of the system’s objectives is realized by the computation
of the Pareto set and the application of the decision heuristic, and the behav-
ior of the system is adapted by assigning the optimized values of the currents
resulting from the numerical path following to the motor during runtime.
The optimization algorithm is running on a PC that communicates with the
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linear motor test bed via LAN.

The implementation of the algorithm is supported by the concept of the
Operator-Controller-Module (OCM) (see Figure 4.6 for the OCM of the linear
motor and [33] for a more detailed description of the general OCM-concept).

At the lowest level the controllers perform the current- and speed-control
under hard real-time conditions. The reflective operator links the hard real-
time of the controller with the soft real-time of the optimization algorithm in
the cognitive operator. It buffers the calculated path from the cognitive op-
erator and feeds reference values to the controller. It also supports possible
emergency response in cases like unexpected change of these requirements
or changing parameters in the linear drive. Until a new optimization is per-
formed and a new path is available, the current optimization value is replaced
by a sub-optimal value from a look-up table. In this case, a new strategy for
following selected operating points influenced by changing conditions or pa-
rameters is required. This is realized through the application of the decision
heuristic to the new Pareto set and the subsequent numerical path following
process.

The main advantage of this very fast algorithm is that it prevents the
time-consuming calculation of a new Pareto set in every time step and allows
to use a multiobjective optimization approach for this complex application.

The results for one of the tested scenarios are described in the following.
A time-interval of 6 seconds is considered in which the motor accelerates up
to 2 m/s and then brakes down, cf. left plot of Figure 4.7. In the same figure
on the right the profile for the desired thrust F ?

M is plotted over time. While
the vehicle accelerates, the thrust is positive whereas it becomes negative
when the vehicle brakes. If the absolute value of the thrust is small, then the
required transferred power (which in this study has been set to a constant
value of ≈ 111 W) cannot be assigned. Thus, no optimization is reasonable in
these points. In such a case the Pareto set and the path has to be recomputed
at a certain point after this zero.

As mentioned before, the temperature of the secondary motor part and
the charging state of the batteries depend on the operating point. Here, it is
assumed that both values can be measured during the drive.

Figure 4.8 and Figure 4.9 show the results of the time-dependent multi-
objective optimization of the operating point assignment. In Figure 4.8 the
Pareto optimal values of the current are plotted over time. Here, the vertical
grey lines are the Pareto sets that have been computed at T = 0.3 s and at
T = 3.3 s. One point on these sets has been chosen by use of the decision
heuristic taking into account the measured values of the state of charge of the
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Figure 4.6: Operator-Controller-Module of the operating point assignment of the doubly-
fed linear motor [8]
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Figure 4.7: Profiles for the velocity and force of the vehicle in the scenario considered

Figure 4.8: Pareto optimal paths for a maneuver of the linear motor

battery and the temperature of the secondary motor part. The black stars
are the results of the numerical path following of this solution. The recom-
putation of the entire Pareto set for T = 3.3 s has been necessary because
the thrust is near zero in the time interval (2.7, 3.3). Figure 4.9 visualizes
the same paths in objective space, i. e. the values of the objective functions
are plotted versus time.
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Figure 4.9: Pareto fronts and Pareto optimal paths in objective space for a maneuver of
the linear motor

In another study of the doubly-fed linear drive two different objective
functions (minimization of total losses, maximization of transferred power)
and their changes over time have been considered. For more details, the
reader is referred to [86].

4.4 Robust Pareto Points

In this section, parametric multiobjective optimization problems are consid-
ered that are desired to be robust with respect to changes of the external
parameter. After an overview on existing robustness concepts in multiobjec-
tive optimization (not restricted to the parameter-dependent case) two new
concepts for robustness will be introduced.

The first one is based on the idea of finding curves of minimum length on
the set of substationary points. The mathematical formulation of this task
is based on the calculus of variations (cf. Section 2.3).

For the second robustness concept solution paths are computed that step-
wise vary as little as possible between the Pareto sets for discretized param-
eter values. This approach is less computationally costly and very intuitive.
Here, again techniques from multiobjective optimization and numerical path
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following have been combined. One special challenge in the context of this
robustness concept was the derivation of equations that steer a path on the
shortest possible, feasible way from one Pareto set to another. Based on these
new equations combined with the Kuhn-Tucker equations specific predictor-
corrector methods have been applied and related regularity conditions have
been proven which are also described in Section 4.4.2.

The last part of Section 4.4.2 is devoted to the comparison of the two
new robustness concepts. To make the concepts comparable the variational
problem arising in Concept I is reformulated for the case of fixed starting
points on a given initial Pareto set. It will turn out that the length of solution
paths w. r. t. Concept I is less or equal to the length of paths obtained with
Concept II. If a λ-robust Pareto point exists whose corresponding path has
length zero, then it is a solution to both robustness concepts.

Finally, in Section 4.4.3 an application in the design of integrated circuits
is given. Here, the robustness of Pareto points with respect to changes in
temperature and supply voltage has been computed making use of Concept
II.

4.4.1 Existing Robustness Definitions in Multiobjective Optimization

In multiobjective optimization, the study of robustness of solutions is a rela-
tively young area of research (cf. [16], [29] for example), especially in evolu-
tionary multiobjective optimization. Different kinds of robustness are studied
in the literature mainly motivated by engineering applications. On the one
hand uncertainty in the optimization variables can occur. Practically, this
can mean that the parameters for a Pareto optimal design of some system
cannot be manufactured with the desired accuracy or can only be modeled
inaccurately. On the other hand, external (also called environmental) pa-
rameters may influence the behavior of the system under consideration. In
practice, external parameters could characterize the influence on the system
under consideration through changing temperatures, wind velocity, air pres-
sure, etc. To put it in a nutshell, the multiobjective optimization problem
can be formulated depending on different kinds of parameters (cf. [10]):

min
x′,x′′

F (x′, x′′ + ε, λ) (4.3)

where x′ ∈ Rn1 are deterministic optimization variables, x′′ + ε describes
uncertain optimization variables with x′′ ∈ Rn2 , n1 + n2 = n, and λ ∈ Rp

denotes external parameters.
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Figure 4.10: Point A is more robust than point B with respect to perturbations of
x = (x1, x2, x3) [17]

In [17] two robustness definitions are given. They both treat the case of
uncertain optimization parameters only. The first one is based on using mean
effective objective functions instead of the original ones. Here, robustness is
understood in the sense that perturbations of the optimization parameters
lead to small changes in the objective values as illustrated in Figure 4.10.

Definition 4.4 (Multiobjective Robust Solution of Type I, Deb 2006 [17])
Consider a multiobjective optimization problem

min
x∈S

F (x), F (x) = (f1(x), . . . , fk(x)) .

A point x? is called a multiobjective robust solution of type I if it is
a global, feasible Pareto optimal solution of the multiobjective optimization
problem

min
x∈S

Feff(x) with Feff(x) =
(
f eff

1 (x), . . . , f eff
k (x)

)
and f eff

j (x) =
1

|Uδ(x)|

∫
s∈Uδ(x)

fj(s)ds,

where Uδ(x) ⊆ S is a δ-neighborhood of x and S denotes the feasible region.

In this definition, the neighborhood to be studied in parameter space is
set fixed through the parameter δ.

Remark 4.5 The definition of multiobjective robust solution of type I has
been inspired by a robustness concept for single objective optimization de-
scribed in [11] and [103], for example. The main idea of this single objective
optimization robustness concept is, that minima which are sharp peaks of
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Figure 4.11: Illustration of the fact that a local minimum point (A) can be more robust
with respect to perturbations of x than the global minimum point (B) in single objective
optimization problems (cf. [17])

the objective functions are not robust (cf. Figure 4.11 for an intuitive un-
derstanding). To avoid the computation of these peaks, a mean effective
objective function is minimized instead of the original objective. This mean
objective function f eff(x), as given in Definition 4.4, flattens sharp peaks by
taking the average values of the original objective function within certain
neighborhoods.

The second definition for robustness given in [17] (so-called robust solu-
tions of type II, cf. Definition 4.6) incorporates properties of the solution in
objective space. Here, the normalized difference between the objective values
of the perturbed function and the original function values is desired to be
less than a user-defined value. This inequality is included as a constraint to
the original multiobjective optimization problem in order to compute robust
solutions of type II.

Definition 4.6 (Multiobjective Robust Solution of Type II, Deb 2006 [17])
Consider a multiobjective optimization problem

min
x∈S

F (x), F (x) = (f1(x), . . . , fk(x)) .

A point x? is called a multiobjective robust solution of type II if it is
a global, feasible Pareto optimal solution of the multiobjective optimization
problem

min
x∈S

F (x)

subject to
‖F p(x)− F (x)‖
‖F (x)‖

≤ η
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where the limiting parameter η can be chosen as an arbitrary constant value,
F p(x) denotes the function values of the perturbed point (e. g. F p(x) = Feff(x)
can be used) and ‖.‖ is a suitable vector norm.

In [17] possible scenarios of the correspondence between the original Pareto
optimal solution (minimization of F ) and Pareto optima of the mean effec-
tive objective function Feff is discussed. Moreover, the computation of robust
solutions with respect to these two robustness types for several test problems
has been considered in the same paper.

In [35] different fitness functions for multiobjective evolutionary algo-
rithms are given that lead to robust solutions. The authors distinguish be-
tween expectation measures and variance measures. Expectation measures
estimate the value of the objective function assuming a certain probability
distribution of disturbances of the optimization parameters within a neigh-
borhood. The main idea of variance measures is to formulate new objectives
that describe the mean and the variance of the original objective functions.

In [47] objective functions are studied that may depend on all kinds of
parameters mentioned in (4.3). Here, similar to Definition 4.6, a region
around the point on the Pareto front to be analyzed is set fixed in objective
space. The region in the space of the uncertain and external parameters
that leads to these objective values is determined, the so-called sensitivity
region. Here, the parameters are assumed to vary within known intervals.
The larger the sensitity region the more robust is the corresponding Pareto
optimal solution. As the sensitivity region may be assymetric, in [47] the
worst case sensitivity region is introduced which is given by a ball whose
radius equals the shortest distance to the boundary of the sensitivity region.
Figure 4.12 visualizes the principal idea of this robustness concept. For the
computation of robust Pareto sets, in [47] the condition that the radius of
the worst case sensitivity region is bigger than a user-defined value is handled
as a constraint to the original multiobjective optimization problem. In [65]
this concept is extended to the computation of the objective sensitivity region.
Among others things, in that work the effect of parameter variation within an
interval on the objective values is analyzed. Here, the ratio of the objective
sensitivity region to the user-defined acceptable objective variation is used
for the definition of a robustness measure, the so-called objective robustness
index.

In [109] robustness with respect to changes in external parameters is stud-
ied. It is assumed that the parameters change in a stochastic manner. In
this work, probabilistic robustness objectives are defined. In order to obtain
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Figure 4.12: Visualization of the sensitivity region and the worst case sensitivity region
as defined in [47]

so-called multiobjective probabilistic acceptable solutions the original multi-
objective optimization problem is reformulated by use of some violation prob-
ability of each objective. In this case, the violation probability is given by
the integral over the product of an indicator function that gives back if the
function values are acceptable or not, and the probability density function
over the expected external parameter space.

A lot of papers investigate multiobjective optimization problems with
fuzzy data. Here, the possible ranges of uncertain parameters are modelled
by fuzzy sets (cf. for example [56, 30]). A comparison of fuzzy approaches
to stochastic approaches is given in [94].

A different approach is to include robustness directly into the definition
of dominance (cf. Definition 3.1). In order to obtain a Pareto set that
is robust either with respect to uncertainty of the optimization variables
or noisy objective functions different concepts like probabilistic dominance
[100], ε-dominance [91] and many others (e. g. in [55, 28, 99, 84]) have been
developed.

4.4.2 New Concepts for Robustness against Variations of an External Pa-
rameter

In the following subsections, two new concepts are given which allow the com-
putation of substationary points that are robust with respect to changes of an
external parameter in one-parametric multiobjective optimization problems.
In contrast to the approaches for robustness that already have been devel-
oped in multiobjective optimization (as summarized in the last section), the
change of the Pareto sets themselves with respect to different values of the
external parameter is studied. Here, the objective functions stay the same
as in the original problem and no additional constraints are added.
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In Example 4.2 one can observe that the Pareto sets for different values
of the parameter λ intersect in some points and differ significantly in other
regions. In this section, algorithms and the theoretical background are de-
veloped that allow to compute how ‘robust’ a Pareto point is with respect
to changes of the parameter λ within a given interval [λstart, λend]. Loosely
speaking, the more robust a Pareto point for a fixed external parameter
value is the less it changes to other Pareto points for different values of the
external parameter within a given interval. The same considerations can be
transferred to the study of robustness on Pareto fronts. In both cases, the
techniques used to obtain robust solutions are completely different from the
ones used in the approaches described above. The first concept, which we
have published in [107], is based on the calculus of variations whereas in the
second concept numerical path following methods are employed for a certain
system of equations (see also [21]).

Concept I: Robustness formulated via the classical calculus of variations

The classical calculus of variations allows, in the case of at least twice con-
tinuously differentiable objective functions, the computation of a substation-
ary point that varies as little as possible with respect to changes of the exter-
nal parameter λ. To be more precise, the aim is to determine a continuously
differentiable curve γ(λ) = (x(λ), t(λ))T of minimal length from an arbitrary
starting point on the set of substationary points Sλstart to an arbitrary end
point on Sλend that lies within the λ-dependent set of substationary points.
This problem can be formulated as a variational problem by

min
γ

∫ λend

λstart

‖x′(λ)‖2 dλ (4.4)

s. t. HKT(γ(λ), λ) = 0

with the boundary conditions x(λstart) ∈ Sλstart and x(λend) ∈ Sλend . Here,
the functional in (4.4) corresponds to the length of the curve x(λ) that
has to be minimized, and HKT(γ(λ), λ) describes the Kuhn-Tucker equa-
tions as given in Equation 4.2. Note, that due to the equality constraint
HKT (x(λ), t(λ), λ) = 0 the path is enforced to lie on the set of substationary
points, i. e. x(λ) ∈ Sλ ∀λ ∈ [λstart, λend].

For the following considerations it is assumed that the curve x(λ) is reg-
ular, i. e. ‖x′(λ)‖ 6= 0 for all λ ∈ [λstart, λend].
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Definition 4.7 (Robustness w. r. t. Concept I)
Let γ?(λ) = (x?(λ), t?(λ))T be a solution of Problem (4.4) with the free bound-
ary conditions as stated above. Then x?(λ) is called a λ-robust solution path
of Concept I with respect to the interval [λstart, λend]. The point x?(λstart)
is called a λ-robust substationary point of Concept I w. r. t. the interval
[λstart, λend]. If the objective functions are convex and t?(λstart) 6= 0, i. e. the
substationary point x?(λstart) is indeed a Pareto point, then x?(λstart) is called
a λ-robust Pareto point of Concept I with respect to the interval [λstart, λend].

Remark 4.8 The intuition behind Definition 4.7 is to study the influence on
a Pareto set when increasing the value of the external parameter. Instead,
using the same methodology as described in the following, one could consider
variations of the external parameter λ in both directions. Starting with
the Pareto set for a fixed value λ = λ? one would consider the change of
λ ∈ [λ?−ε, λ?+ε] for a fixed value ε ∈ R. In this case, λ-robust substationary
points with respect to the interval [λ?−ε, λ?+ε] would be defined as solutions
of the variational problem

min
γ

∫ λ?+ε

λ?−ε
‖x′(λ)‖2 dλ

s. t. HKT (x(λ), t(λ), λ) = 0.

The multiplier rule (Theorem 2.11) states that a necessary condition for
optimiality of this problem is given by the Euler-Lagrange equations for the
functional

L(γ(λ), γ′(λ), µ(λ), λ) =

∫ λend

λstart

‖x′(λ)‖2 + (µ(λ))T ·HKT(γ(λ), λ)dλ, (4.5)

where µ : [λstart, λend]→ Rn+1, µ(λ) = (µ1(λ), · · · , µn+1(λ))T (cf. Chapter 2,
Section 2.3). Defining

L(γ(λ), γ′(λ), µ(λ), λ) = ‖x′(λ)‖2 + (µ(λ))T ·HKT(γ(λ), λ), (4.6)

the Euler-Lagrange equations for (4.4) are given by

d

dλ

(
∂L

∂γ′

)
−
(
∂L

∂γ

)
= 0 (4.7)

HKT(γ(λ), λ) = 0 (4.8)
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(the Kuhn-Tucker equations (4.8) stem from the derivative of L with respect
to µ). The single terms of this equation are given by(

∂L

∂γ′

)
=

∂

∂γ′
(
‖x′(λ)‖2 + µ(λ)T ·HKT(γ(λ), λ)

)
=

1

‖x′(λ)‖2

· (x′1(λ), · · · , x′n(λ), 0)

d

dλ

(
∂L

∂γ′

)
=


x′′1 (λ)

‖x′(λ)‖2 −
x′1(λ)

‖x′(λ)‖32
· (
∑n

i=1 x
′
i(λ) · x′′i (λ))

...
x′′n(λ)
‖x′(λ)‖2 −

x′n(λ)

‖x′(λ)‖32
· (
∑n

i=1 x
′
i(λ) · x′′i (λ))


T

and

∂L

∂γ
=



(µ1(λ), · · · , µn+1(λ)) ·


∂
∂x1

H1(x(λ), t(λ), λ)
...

∂
∂x1

Hn(x(λ), t(λ), λ)

0


...

(µ1(λ), · · · , µn+1(λ)) ·


∂
∂xn

H1(x(λ), t(λ), λ)
...

∂
∂xn

Hn(x(λ), t(λ), λ)

0


(µ1(λ), · · · , µn+1(λ)) ·


∂
∂t1
H1(x(λ), t(λ), λ)

...
∂
∂t1
Hn+1(x(λ), t(λ), λ)


...

(µ1(λ), · · · , µn+1(λ)) ·


∂
∂tk

H1(x(λ), t(λ), λ)
...

∂
∂tk

Hn+1(x(λ), t(λ), λ)





T

.

Altogether, this leads to the Euler-Lagrange equations

x′′(λ)

‖x′(λ)‖2
−

x′(λ)

‖x′(λ)‖32

(
n∑
i=1

x′i(λ) · x′′i (λ)

)
−

µ(λ)T ·
∂

∂x

H
1
KT
...

Hn
KT

 (γ(λ), λ)


T

= 0 (4.9)

−µ(λ)T ·
∂

∂t


H1

KT
...

Hn+1
KT

 (γ(λ), λ)


T

= 0 (4.10)


H1

KT
...

Hn
KT

Hn+1
KT

 (γ(λ), λ) =

(∑k
i=1(ti(λ))2∇xfi(x, λ)∑k

i=1(ti(λ))2 − 1

)
= 0. (4.11)
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The free boundary conditions (cf. Section 2.3) lead to the additional
conditions

∂L

∂x′

∣∣∣
λ=λstart

⊥ ker

(
∂

∂x
HKT(γ(λstart), λstart)

)
⇔ 1

‖x′(λstart)‖2
· x′(λstart) ⊥ ker

(
∂

∂x
HKT(γ(λstart), λstart)

)
(4.12)

and

∂L

∂x′

∣∣∣
λ=λend

⊥ ker

(
∂

∂x
HKT(γ(λend), λend)

)
⇔ 1

‖x′(λend)‖2
· x′(λend) ⊥ ker

(
∂

∂x
HKT(γ(λend), λend)

)
. (4.13)

In order to compute a λ-robust solution numerically, the variational prob-
lem is discretized following the idea of the construction of variational integra-
tors [68]. Rather than discretizing the system of equations which consists of
the Euler-Lagrange equations and optionally additional constraints, the vari-
ational integral is discretized directly and a discrete version of the calculus
of variations is applied to derive the set of equations known as the discrete
Euler-Lagrange equations and discretized constraints. In the following, we
consider a discretization of the problem

min
γ,µ

∫ λend

λstart

L (γ(λ), γ′(λ), µ(λ), λ) dλ (4.14)

with free boundary conditions that satisfy the constraints

ϕ(x(λstart), λstart) = ϕ(x(λend), λend) = 0.

Note that, as before, L is the Lagrangian given by

L (γ(λ), γ′(λ), µ(λ), λ) = C (γ(λ), γ′(λ), λ) + µ(λ)T · ϕ (γ(λ), λ) .

To this aim the parameter λ is assumed to grow with a fixed step size
h ∈ R and we define

λd = {λstart + jh}Nj=0

with λN = λend. The hitherto continuous curves γ(λ) and µ(λ) are now
replaced by discrete curves

γd : λd → Rn, γd = {γj}Nj=0, where γj = γd(λj),

µd : λd → Rm, µd = {µj}Nj=0, where µj= µd(λj).
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Based on these discrete objects, the integral of the Lagrangian along a short
interval is approximated by a discrete Lagrangian Ld as∫ λj+1

λj

L(γ(λ), γ′(λ), µ(λ), λ) dλ ≈ Ld(γj, µj, λj, γj+1, µj+1, λj+1) (4.15)

which depends on two neighboring points (γj, µj) and (γj+1, µj+1) and on
two external parameter values λj and λj+1. Finally, the discrete variational
integral is defined as

Ld(γd, µd) =
N−1∑
j=0

Ld(γj, µj, λj, γj+1, µj+1, λj+1).

Figure 4.13 visualizes the approximation of the integral by this finite sum.

Figure 4.13: Discretization of an integral by a finite sum as used in (4.16)

Different quadrature rules can be chosen for the approximation in (4.15)
(cf. [68]). For a second order approximation, typically the difference quotient

γj+1 − γj
h

is used for the approximation of derivatives of γ at each discretization point.
Furthermore, following [68, 64], a midpoint evaluation for the function C and
a trapezoidal rule for the constraints lead to the discrete variational integral

Ld(γd, µd) =
N−1∑
j=0

Ld(γj , µj , λj , γj+1, µj+1, λj+1)

=

N−1∑
j=0

h ·
(
C

(
γj + γj+1

2
,
γj+1 − γj

h
,
λj + λj+1

2

)
+ (4.16)

1

2

(
µTj · ϕ(γj , λj)

)
+

1

2

(
µTj+1 · ϕ(γj+1, λj+1)

))
.
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In the following, the first index corresponds to the dimension and the
second index corresponds to the discretization point on the respective dis-
cretized curves. The points on the discretized curves are given as

γj =

γ1,j
...
γn,j

 , µj =

µ1,j
...

µm,j


for j = 0, . . . , N .
Let

ηd : λd → Rn+m, ηd = {ηj}Nj=0, with ηj = ηd(λj),

be the discretization of a twice continuously differentiable curve.
Assume that

zd =

(
γd
µd

)
with zj = zd(λj), j = 0, . . . , N

is the discretization of a minimizing curve of the variational problem (4.14).
In analogue to the continuous case, δzd = ηd is called a variation of zd. More
detailed, we have

ηj =

 η1,j
...

ηn+m,j

 =

(
δγj
δµj

)
=



δγ1,j
...

δγn,j
δµ1,j

...
δµm,j


for j = 0, . . . , N .

Let ε ∈ R. Similar to the derivation of the Euler-Lagrange equations for
the continuous case [41], the first variation δ of Ld is defined as v′(0), where
v : R→ R,

v(ε) =
N−1∑
j=0

Ld (zj + εηj, λj, zj+1 + εηj+1, λj+1) .

The vanishing of the first variation of Ld(γd, µd) leads to the following
computations:

δ

N−1∑
j=0

h ·
(
C

(
γj + γj+1

2
,
γj+1 − γj

h
,
λj + λj+1

2

)
+

1

2

(
µTj ϕ(γj , λj)

)
+

1

2

(
µTj+1ϕ(xj+1, λj+1)

)))
= 0.
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It follows that

N−1∑
j=0

h ·
(

∂

∂γj

(
C

(
γj + γj+1

2
,
γj+1 − γj

h
,
λj + λj+1

2

)
+

1

2
µTj · ϕ(γj , λj)

)
δγj+

∂

∂γj+1

(
C

(
γj + γj+1

2
,
γj+1 − γj

h
,
λj + λj+1

2

)
+

1

2
µTj+1 · ϕ(γj+1, λj+1)

)
δγj+1+

∂

∂µj

(
1

2
µTj · ϕ(γj , λj)

)
δµj +

∂

∂µj+1

(
µTj+1 · ϕ(γj+1, λj+1)

)
δµj+1

)
= 0

⇔ h ·
(

∂

∂γ0

(
C

(
γ0 + γ1

2
,
γ1 − γ0

h
,
λ0 + λ1

2

)
+

1

2
µ0 · ϕ(γ0, λstart)

)
δγ0+

∂

∂γN

(
C

(
γN−1 + γN

2
,
γN − γN−1

h
,
λN−1 + λN

2

)
+

1

2
µTN · ϕ(γN , λend)

)
δγN+

N−1∑
j=1

∂

∂γj

(
C

(
γj + γj+1

2
,
γj+1 − γj

h
,
λj + λj+1

2

)
+

C

(
γj−1 + γj

2
,
γj − γj−1

h
,
λj−1 + λj

2

)
+ µTj · ϕ(γj , λj)

)
δγj+

∂

∂µ0

(
1

2
µT0 · ϕ(γ0, λstart)

)
δµ0+

∂

∂µN

(
1

2
µTN · ϕ(γN , λend)

)
δµN+

N−1∑
j=1

∂

∂µj

(
µTj · ϕ(γj , λj)

)
δµj

 = 0.

As the variations δγj and δµj are arbitrary for j = 0, . . . , N each term mul-
tiplied with them has to equal zero. It follows that for all j = 1, . . . , N − 1

h · ∂

∂γj

(
C

(
γj + γj+1

2
,
γj+1 − γj

h
,
λj + λj+1

2

)
+

C

(
γj−1 + γj

2
,
γj − γj−1

h
,
λj−1 + λj

2

)
+ µTj ϕ(γj , λj)

)
= 0

ϕ(γj , λj) = 0.

At the free ends, the variations δγ0, δγN , δµ0 and δµN can be arbitrarily
chosen as well and thus it turns out that the following terms have to vanish:
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h ·
∂

∂γ0

(
C

(
γ0 + γ1

2
,
γ1 − γ0

h
,
λ0 + λ1

2

))
+

1

2
h ·
(
µT0

∂

∂γ0
ϕ(γ0, λstart)

)T
= 0

ϕ(γ0, λstart) = 0

h ·
∂

∂γN

(
C

(
γN−1 + γN

2
,
γN − γN−1

h
,
λN−1 + λN

2

))
+

1

2
h ·
(
µTN

∂

∂γN
ϕ(γN , λend)

)T
= 0

ϕ(γN , λend) = 0.

To put it in a nutshell, one ends up with the system of equations

∀ j = 0, . . . , N : ϕ(γj , λj) = 0

∀ j = 1, . . . , N − 1 :

h ·
∂

∂γj

(
C

(
γj + γj+1

2
,
γj+1 − γj

h
,
λj + λj+1

2

)
+

C

(
γj−1 + γj

2
,
γj − γj−1

h
,
λj−1 + λj

2

)
+ µTj ϕ(γj , λj)

)
= 0

h ·
∂

∂γ0

(
C

(
γ0 + γ1

2
,
γ1 − γ0

h
,
λ0 + λ1

2

))
+

1

2
h ·
(
µT0

∂

∂γ0
ϕ(γ0, λstart)

)T
= 0

h ·
∂

∂γN

(
C

(
γN−1 + γN

2
,
γN − γN−1

h
,
λN−1 + λN

2

))
+

1

2
h ·
(
µTN

∂

∂γN
ϕ(γN , λend)

)T
= 0

ϕ(γN , λend) = 0.

The solution of this system of equations provides a numerical approxi-
mation of the solution of the boundary value problem given by the Euler-
Lagrange equations (2.8)-(2.9) and the transversality condition (2.11) (see
pages 23/24). This can in particular be seen if we consider the special case of
computing λ-robust substationary points w. r. t. Concept I, where the func-
tions

C (γ(λ), γ′(λ), λ) = ‖x′(λ)‖2 and ϕ(γ(λ), λ) = HKT(γ(λ), λ)

are considered (remember that γ(λ) = (x(λ), t(λ))T ). For this special case,
one ends up with the system of equations

∀ j = 0, . . . , N :

(
µTj ·

∂

∂tj
HKT(xj, tj, λj)

)T
= 0

∀ j = 0, . . . , N : HKT(xj, tj, λj) = 0

∀ j = 1, . . . , N − 1 :

1

h
·
(

xj+1 − xj
‖xj+1 − xj‖

− xj − xj−1

‖xj − xj−1‖

)
−
(
µTj ·

∂

∂xj
HKT(xj, tj, λj)

)T
= 0

1

h
· x1 − x0

‖x1 − x0‖
− 1

2

(
µT0 ·

∂

∂x0

HKT(x0, t0, λstart)

)T
= 0

1

h
· xN − xN−1

‖xN − xN−1‖
+

1

2

(
µTN ·

∂

∂xN
HKT(xN , tN , λend)

)T
= 0.
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The solution of this system of equations approximates the solution of the
Euler-Lagrange equations (4.9)-(4.13). This is obvious for the first two equa-
tions. To understand why the first part of the third equation also gives an
approximation of the first two terms in equation (4.9) one has to remember

that the term stems from the λ-derivative of x′(λ)
‖x′(λ)‖2

. In the third equation,

this derivative is approximated by a difference quotient. The last two equa-
tions approximate the transversality conditions (4.12) and (4.13) since for a
matrix A it holds (ker(A))⊥ = im (AT )).

Remark 4.9 By solving this system of equations only one (local) solution
will be obtained. Which solution is found, highly depends on the initial values
of the parameters. If the same variational problem is formulated with fixed
starting point (x0, λstart) on the initial Pareto set, the function value of the

variational integral
∫ λend
λstart
‖x′(λ)‖2 dλ can be seen as a measure for robustness

of the starting point (x0, λstart).

Example 4.10 Consider the parametric multiobjective optimization prob-
lem minx F : R2 × R→ R2, F = (f1, f2),

f1(x, λ) = (x1 − sin(λ))2 + (x2 − cos(λ))2

f2(x, λ) = (x1 − 2 sin(λ))2 + (x2 − 2 cos(λ))2

in which the parameter λ is varied from 0 to 2π.
The Pareto set of these objectives is given by a straight line of length one

that λ-dependently circles around the origin with a distance of one to two.
The discretization of the Euler-Lagrange equations as described above and
the solution of the resulting nonlinear system of equations with the MATLAB
routine fsolve (cf. [101]) leads to the results given in Figures 4.14 and 4.15.
Here, N = 32 discretization points have been used. As one could expect, the
solution curve of smallest length on the set of substationary points lies on
the ‘inner circle’.

Hitherto it has been assumed that ‖x′(λ)‖ 6= 0 holds. This assumption
can be cancelled if one considers the minimization of energy instead of length
of the curve x(λ). Here, energy is defined by the variational integral∫ λend

λstart

1

2
‖x′(λ)‖2

2 dλ. (4.17)

As the Kuhn-Tucker constraints of the variational problem (4.4) depend on
λ explicitly, the minimization of energy instead of length does not lead to
the same optimal solution (cf. [74]).
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Figure 4.14: Visualization of the λ-robust solution path (black) and λ-dependent Pareto
set

However, if a solution curve of length zero exists, i. e. there exists a point
in which the set of substationary points does not change in the x-space under
the variation of λ, this solution will be both obtained by minimizing length
and energy. Thus, if a λ-robust substationary point that stays constant under
the variation of λ in x-space is to be computed, the following variational
problem can be considered instead of (4.4):

min
γ

∫ λend

λstart

1

2
‖x′(λ)‖2

2 dλ (4.18)

s. t. HKT(γ(λ), λ) = 0

with the boundary conditions x(λstart) ∈ Sλstart and x(λend) ∈ Sλend .
In analogue to the computations for (4.4) this leads to the Euler-Lagrange
equations

(
x′′(λ)

0

)
−

µ(λ)T · ∂

∂(x, t)

H1
KT
...

Hn+1
KT

 (x(λ), t(λ), λ)


T

= 0 (4.19)


H1

KT
...

Hn
KT

Hn+1
KT

 (x(λ), t(λ), λ) =

(∑k
i=1(ti(λ))2∇xfi(x, λ)∑k

i=1(ti(λ))2 − 1

)
= 0 (4.20)
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Figure 4.15: Projection of the solution visualized in Figure 4.14 onto the x1-x2-plane

with boundary conditions

x′(λstart) ⊥ ker

(
∂

∂x
HKT(γ(λstart), λstart)

)
(4.21)

x′(λend) ⊥ ker

(
∂

∂x
HKT(γ(λend), λend)

)
, (4.22)

and the discretized Euler-Lagrange equations

HKT(xj , tj , λj) = 0 ∀ j = 0, . . . , N(
µTj ·

∂

∂tj
HKT(xj , tj , λj)

)T
= 0 ∀ j = 0, . . . , N(

xj+1 − 2xj + xj−1

h2

)
−
(
µTj ·

∂

∂xj
HKT(xj , tj , λj)

)T
= 0 ∀ j = 1, . . . , N − 1(

x1 − x0

h2

)
− 1

2

(
µT0 ·

∂

∂x0
HKT(x0, t0, λstart)

)T
= 0

−
(
xN − xN−1

h2

)
− 1

2

(
µTN ·

∂

∂xN
HKT(xN , tN , λend)

)T
= 0
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Example 4.11 Consider again the parametric multiobjective optimization
problem minx F : R2 × R→ R2, F = (f1, f2),

f1(x, λ) = λ
(
(x1 − 2)2 + (x2 − 2)2

)
+ (1− λ)

(
(x1 − 2)4 + (x2 − 2)8

)
f2(x, λ) = (x1 + 2λ)2 + (x2 + 2λ)2

in which each objective function depends on the parameter λ ∈ [0, 1], i. e.
λstart = 0 and λend = 1.

To find out if one Pareto point exists for which all λ-dependent Pareto
sets intersect, Problem (4.18) has been considered. The discretized Euler-
Lagrange equations for energy minimization of this example have been solved
with the MATLAB routine fsolve (cf. [101]) using N = 20 discretization
points. The left plot in Figure 4.16 shows the solution path (green with
black dots) of the λ-robust Pareto point (red) in the x1-x2-λ-space. In this
plot, also some Pareto sets (gray curves) for different values of λ are plotted.
In the right plot of Figure 4.16 a projection of the same data to the x1-x2-
plane is shown – one can observe that the λ-robust Pareto point (red) indeed
does not change under the variation of λ.

Figure 4.16: λ-robust solution path and some Pareto sets (on the left) and the projection
onto the x1-x2-plane (on the right)

Concept II: Locally robust Pareto points

In contrast to the robustness concept proposed in the last section now a local
strategy is considered. The following results have already been published in
a like manner in [21]. Again, it is assumed that the parameter λ is varied
within a given interval [λstart, λend] ⊂ R. For each point of a discrete covering
of the initial Pareto set, λ-dependent solution paths are approximated that
satisfy the Kuhn-Tucker equations and do locally change as little as possible
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under the variation of λ. Thus, as long as a starting point is feasible for
increasing values of λ the solution path is given by this constant value. If a
point on the path is not feasible for an increased value of λ, then the solution
path consists of those points that vary as little as necessary compared to
the previously computed point. The robustness of a Pareto point against
variations of the external parameter can be measured through the length of
these paths.

In order to realize the numerical approximation of these solution paths,
again numerical path following methods can come into play. In order to
force the path into that direction in which the Pareto point changes as little
as possible for increasing values of λ the Kuhn-Tucker system has to be
expanded by certain equations.

Approaching this problem, first only a given point y0 ∈ Sλ0 and a set of
substationary points Sλ1 are considered. The aim is to compute a point on
Sλ1 which has minimal distance to y0. This leads to a minimization problem
with equality constraints as described in Section 2.2 (pages 16 ff.).

The following proposition gives a necessary condition for a point on Sλ1
to have minimal distance to the point y0.

Proposition 4.12 Let λ0,λ1 ∈ [λstart, λend] be two nonequal fixed values of
the continuation parameter λ. Let y0 ∈ Sλ0 be fixed, let x ∈ Sλ1 and F =
(f1, . . . , fk)

T . Let

∇(x,t)H
1
KT(x, t, λ1), . . . ,∇(x,t)H

n+1
KT (x, t, λ1)

be linearly independent. If

a) x has the minimal Euclidean distance to y0 or

b) F (x, λ1) has the minimal Euclidean distance to F (y0, λ0),

then there exist multipliers t ∈ Rk and (µ1, . . . , µn+1)T = µ ∈ Rn+1, such that


H1

KT
...

Hn
KT

Hn+1
KT

 (x, t, λ1) =


k∑
i=1

t2i∇xfi(x, λ1)

k∑
i=1

t2i − 1

 = 0

 H1
L

...

Hn+k
L

 (x, t, µ, λ1) =

(
d(x)

0

)
−

µT · ∂
∂(x,t)

H1
KT
...

Hn+1
KT

 (x, t, λ1)


T

= 0,

(4.23)

where – in the corresponding cases – d : Rn → Rn is given as
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a) d(x) = d(x; y0, λ0, λ1) = 2(x− y0) or

b) d(x) = d(x; y0, λ0, λ1) = 2
(∑k

i=1(fi(x, λ1)− fi(y0, λ0))∇xfi(x, λ1)
)

.

Here, d is called a decision function.

Proof:

a) A point x with minimal Euclidean distance to y0 is given by the solution
of the optimization problem

min
x
‖x− y0‖2

2

subject to x ∈ Sλ1 .
The set Sλ1 is described by the n Kuhn-Tucker equations, and thus this
minimization problem leads to an optimization problem with equality
constraints:

min
x
‖x− y0‖2

2

subject to

H1
KT
...

Hn+1
KT

 (x, t, λ1) =


k∑
i=1

t2i∇xfi(x, λ1)∑k
i=1 t

2
i − 1

 = 0.

If the point (x, t) is an extremum, then there exist Lagrangian multi-
pliers µ1, · · · , µn+1 ∈ R, so that

∇(x,t)‖x− y0‖2
2 − µ1∇(x,t)H

1
KT(x, t, λ1)− · · ·

· · · − µn+1∇(x,t)H
n+1
KT (x, t, λ1) = 0

⇔
(

2(x− y0)
0

)
− µ1∇(x,t)H

1
KT(x, t, λ1)− · · ·

· · · − µn+1∇(x,t)H
n+1
KT (x, t, λ1) = 0

(by use of Theorem 2.7). Combining these n + k equations with the
equality constraints one obtains a system of equations as stated in the
proposition.

b) The same idea works in objective space. Here, the norm of the differ-
ence of the function values of x and y0 has to be minimized:

min
x

∥∥∥∥∥∥∥
f1(x, λ1)

...
fk(x, λ1)

−
f1(y0, λ0)

...
fk(y0, λ0)


∥∥∥∥∥∥∥

2

2

subject to x ∈ Sλ1 .
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The gradient w. r. t. x of the objective function of this minimization
problem is given as

∇x


∥∥∥∥∥∥∥
f1(x, λ1)

...
fk(x, λ1)

−
f1(y0, λ0)

...
fk(y0, λ0)


∥∥∥∥∥∥∥
2

2

 =

=


2(f1(x, λ1)− f1(y0, λ0))∂f1(x,λ1)

∂x1
+ · · ·+ 2(fk(x, λ1)− fk(y0, λ0))∂fk(x,λ1)

∂x1

...

2(f1(x, λ1)− f1(y0, λ0))∂f1(x,λ1)
∂xn

+ · · ·+ 2(fk(x, λ1)− fk(y0, λ0))∂fk(x,λ1)
∂xn


= 2

(∑k
i=1(fi(x, λ1)− fi(y0, λ0))∇xfi(x, λ1)

)

Additionally,

∇t


∥∥∥∥∥∥∥
f1(x, λ1)

...
fk(x, λ1)

−
f1(y0, λ0)

...
fk(y0, λ0)


∥∥∥∥∥∥∥

2

2

 = 0.

Combining this with the Lagrangian multipliers which stem from the
First-Order Necessary Condition given in Theorem 2.7, the desired re-
sult follows. �

Solutions of the system of equations given in (4.23) are isolated if the
corresponding Jacobian matrix is regular. This is in particular important
for the numerical computations described below, because the full rank of the
Jacobian is needed as an assumption for the numerical path following used
therein. In the following, it is proven that this Jacobian matrix is indeed
regular if the Second-order Sufficiency Condition (cf. Theorem 2.8) for the
underlying mimization problem described in the proof of Proposition 4.12
is satisfied. In Proposition 4.13 first the condition for the regularity of the
Jacobian J is reformulated in a geometrical way and afterwards this condition
is derived from the Second-order Sufficiency Condition in Corrolary 4.14.

Proposition 4.13 Let

X =

(∑k
i=1 t

2
i
∂2

∂x2
fi 2t1∇xf1 · · · 2tk∇xfk

0 2t1 · · · 2tk

)
∈ R(n+1)×(n+k)

and

Y =

(
∂
∂x

(d−mx) −( ∂
∂x
mt)

T

− ∂
∂x
mt − ∂

∂t
(mt)

)
∈ R(n+k)×(n+k)
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with

mt = (µ1∇tH
1
KT + . . .+ µn+1∇tH

n+1
KT ),

mx = (µ1∇xH
1
KT + . . .+ µn∇xH

n
KT).

Let t? and µ? denote the corresponding multipliers from the Kuhn-Tucker-
and the Lagrangian equations.

The Jacobian J of the left hand side in (4.23) is regular in the point
(x?, t?, µ?; y0, λ0, λ1) if and only if

imY
∣∣∣
kerX
∩ (kerX)⊥ = {0}. (4.24)

Proof: First of all, the structure of the Jacobian of the system of equations
as stated in Proposition 4.23 is examined.

Claim: The Jacobian is given as J =

(
X 0
Y −XT

)
∈ R(2n+k+1)×(2n+k+1).

Proof: The Jacobian matrix consists of the following entries:

J =


∂H1,...,n

KT

∂x

∂H1,...,n
KT

∂t

∂H1,...,n
KT

∂µ
∂Hn+1

KT

∂x

∂Hn+1
KT

∂t

∂Hn+1
KT

∂µ
∂H1,...,n

L

∂x

∂H1,...,n
L

∂t

∂H1,...,n
L

∂µ
∂Hn+1,...,n+k

L

∂x

∂Hn+1,...,n+k
L

∂t

∂Hn+1,...,n+k
L

∂µ



=


K C 0
0 v 0
B H G
A L F

 ∈ R(2n+k+1)×(2n+k+1)
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where

K =
k∑
i=1

t2i
∂2

∂x2
fi ∈ Rn×n

B =
∂

∂x
(d−mx) ∈ Rn×n

with mx = (µ1∇xH
1
KT + . . .+ µn∇xH

n
KT)

A = − ∂

∂x
mt ∈ Rk×n

with mt = (µ1∇tH
1
KT + . . .+ µn+1∇tH

n+1
KT )

C =
(
2t1∇xf1 · · · 2tk∇xfk

)
∈ Rn×k

H = − ∂

∂t
mx ∈ Rn×k

L = − ∂

∂t
mt ∈ Rk×k

G =
(
−∇xH

1
KT · · · − ∇xH

n
KT 0

)
∈ Rn×n+1

F =
(
−∇tH

1
KT · · · − ∇tH

n+1
KT

)
∈ Rk×n+1

v =
(
2t1 · · · 2tk

)
∈ Rk.

One can easily see that

H = − ∂

∂t
mx

=
∂

∂t

(
−µ1∇xH

1
KT − . . .− µn+1∇xH

n+1
KT

)
=

∂

∂t

(
∇x(−µ1H

1
KT − . . .− µnHn+1

KT

)
=

(
∂
∂x

(∇t(−µ1H
1
KT − . . .− µnHn+1

KT )
)T

= AT .
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Setting K̃ =

(
K
0

)
∈ R(n+1)×n it follows that

G =
(
−∇xH

1
KT · · · −∇xH

n
KT 0

)
=


−∂H1

KT

∂x1
· · · −∂Hn

KT

∂x1
0

...
...

...

−∂H1
KT

∂xn
· · · −∂Hn

KT

∂xn
0


=

(
−
∑k

i=1 t
2
i
∂2

∂x2
fi 0

)
= −K̃T .

Defining C̃ =

(
C
v

)
one gets

C̃ =

(
2t1∇xf1 · · · 2tk∇xfk

2t1 · · · 2tk

)

=


∂H1

KT

∂t1
· · · ∂H1

KT

∂tk
...

...
∂Hn

KT

∂t1
· · · ∂Hn

KT

∂tk
∂Hn+1

KT

∂t1
· · · ∂Hn+1

KT

∂tk


=

 (∇tH
1
KT)T

...
(∇tH

n+1
KT )T


=

(
∇tH

1
KT · · · ∇tH

n+1
KT

)T
= −F T .

Thus, including this structure the Jacobian is given as

J =

K̃ C̃ 0

B AT −K̃T

A L −C̃T

 =

(
X 0
Y −XT

)
∈ R(2n+k+1)×(2n+k+1)

with X =
(
K̃ C̃

)
∈ R(n+1)×(n+k) and Y =

(
B AT

A L

)
∈ R(n+k)×(n+k).

The entries of these matrices are exactly as assumed in the proposition
and thus the claim is proven.
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The Jacobian J is regular if and only if for vectors a ∈ Rn+k and b ∈ Rn+1(
X 0
Y −XT

)
·
(
a
b

)
= 0⇔

(
a
b

)
= 0, (4.25)

i. e. if the system of equations

Xa = 0

Y a−XT b = 0

implies a = 0 and b = 0. Therefore, J is regular if for 0 6= a ∈ kerX and any
0 6= b ∈ Rn+1, Y a 6= XT b, that is, Y a /∈ imXT ∀0 6= a ∈ kerX, which means

imY
∣∣∣
kerX
∩ imXT = {0}.

As im (XT ) = (kerX)⊥ (cf. e. g. [98]), this is equivalent to

imY
∣∣∣
kerX
∩ (kerX)⊥ = {0}.

�

Corollary 4.14 Let D : Rn → R be a function with ∇xD = d. Assume there
is a point x? ∈ Rn that satisfies the Second-order Sufficiency Condition given
in Theorem 2.8 for the problem

min
x
D(x; y0, λ0, λ1)

subject to x ∈ Sλ1 .
(4.26)

Let t? and µ? denote the corresponding multipliers from the Kuhn-Tucker-
and the Lagrangian equations.

Then the Jacobian of the left hand side in (4.23) is regular in the point
(x?, t?, µ?; y0, λ0, λ1).

Proof: Solutions of (4.23) satisfy the equality constraints of the optimization
problem and also have the property that the gradient of the Lagrangian
function equals zero. Thus, the important assumption in Theorem 2.8 is the
positivity property of the Hessian matrix L′′(x?, t?). Observe that, as the
Lagrangian function is given as

L(x, t;µ, y0, λ0, λ1) = D(x; y0, λ0, λ1)− µT ·

H1
KT
...

Hn+1
KT

 (x, t;λ1),
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it holds
L′′(x?, t?;µ?) = Y (x?, t?)

∣∣∣
µ=µ?

.

Furthermore, the matrix X is the Jacobian of the equality constraints in
problem 4.26 and thus, the set M defined in Theorem 2.8 equals kerX.

In the following, it is proven by contradiction that, if Y is positive definite

on kerX, then imY
∣∣∣
kerX
∩ (kerX)⊥ = {0}:

Let 0 6= s ∈ imY
∣∣∣
kerX
∩ (kerX)⊥. Then there exists

0 6= a ∈ kerX with Y a = s and s ∈ (kerX)⊥

and thus aTY a = aT s = 0, as a and s are orthogonal. This is a contradiction
to the assumption that Y is positive definite.

In particular, it now follows from Proposition 4.13 that the Jacobian J is
regular if the Second-order Sufficiency Condition is satisfied for the underly-
ing optimization problem. �

Condition (4.24) can be interpreted geometrically. It indicates that the
set of points satisfying the Kuhn-Tucker equations may not approach a level
set of the function D with more than first order. As D gives the distance
between Sλ1 and y0 this especially means that Sλ1 is not allowed to be (partly)
circular around y0.

(x⋆, t⋆)

D(x) = c

HKT (x, t, λ1) = 0

y0

x1

x2

t

Figure 4.17: Condition (4.24) is not satisfied in such a case

More precisely, consider a point (x?, t?) on the set STλ1 , where

STλ1 = {(x, t) ∈ Rn × Rk | HKT(x, t, λ1) = 0},

and let µ? be the corresponding Lagrangian multiplier from Theorem 2.7.
In the following, the restriction of the Lagrangian L to the set STλ1 and a
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fixed value µ = µ? will be considered defining L̃ : STλ1 → R by L̃(x, t) =
L(x, t;µ?). As on STλ1 the function HKT is identically zero, L̃ coincides with

D
∣∣∣
STλ1

. For the sake of brevity, in the following computation u = (x, t) and

u? = (x?, t?) are used. The Taylor expansion of L̃ around the point (x?, t?)
yields

L̃(u) = L(u?;µ?) +∇uL(u?;µ?)(u− u?) + · · ·

+
1

2
(u− u?)TL′′(u?;µ?)(u− u?) + h. o. t.

Thm. 2.7
= L(u?;µ?) +

1

2
(u− u?)TY (u?)

∣∣∣
µ=µ?

(u− u?) + h. o. t.

From this it follows that condition (4.24) is satisfied if the Taylor expansion
of L̃ has a positive definite term of second order. As D equals L̃ on STλ1 ,
this is not the case in particular if STλ1 approaches a level set of D with
more than first order, i. e. if the curvature of STλ1 in (x?, t?) is equal to the
curvature of the level set of D. Figure 4.17 visualizes this forbidden case.

Algorithmic implementation

The aim is to detect those points x ∈ Sλstart that vary hardly under
the variation of the parameter λ – in preimage space or in objective space
respectively. Therefore, certain paths that contain substationary points for
different values of λ varying from λstart to λend are computed. These paths
are calculated in such a way that the distance from the previously computed
point to the next point – which has to lie on the set of substationary points
for the new λ-value – is minimal in every step. In this case, the situation
described in Proposition 4.12 arises in every step of a certain path following
method which is going to be described in the following.

As explained in Section 2.4.2 numerical path following can be performed
by predictor-corrector methods. The previously described predictor-corrector
methods are adapted for this special context: Starting on the Pareto set for
a special value of λ, first a solution for a higher value of λ is predicted with
a fixed vector α and then the solution for the new fixed λ is corrected to the
one with minimal distance to the preceding Pareto set or set of substation-
ary points respectively. These steps are repeated iteratively until λ equals or
exceeds the desired value λend.
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Sλ S
λ̃

(x, t, λ)

(x, t, λ̃)

Figure 4.18: Schematic illustration of the predictor step

Generation of starting points:

First of all, an approximation of the Pareto set for λ = λstart (e. g. using
the algorithms described in Section 3.2.3) is computed. This yields a set of
points which are in particular substationary points. For every point x0 within
this set the corresponding vector t0 (or α0 respectively) can be computed by
solving the Kuhn-Tucker equations for x = x0, λ = λstart.

Initially, µ0 = 0, (xold, λold) = (x0, λstart) and u = (x0, t0, λstart, µ0) are set.

Predictor step:

In this step, the value of λ for fixed values of (x, t, µ) (or (x, α, µ) respec-
tively) is simply increased, i. e.

uPred = u+


0
0
h
0

 =


x
t

λ̃
µ



where h is an adequately controlled stepsize.

Corrector step:

Now λ = λ̃ is set fixed and x, t and µ are varied until the point with
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Figure 4.19: Schematic illustration of the corrector step

minimal distance to the preceding set Sλ is determined. Therefore, the system

HCorr(x, t, µ) =



∑k
i=1 t

2
i∇xfi(x, λ̃)∑k
i=1 t

2
i − 1(

d(x;xold, λold, λ̃)
0

)
− µ1∇(x,t)H

1
KT(x, t, λ̃)− · · ·

· · · − µn∇(x,t)H
n
KT(x, t, λ̃)− µn+1


0

2t1
...

2tk




= 0

(4.27)

is considered and solved numerically with Newton’s method by using the pre-
dictor as an initial guess.

Let (xCorr, tCorr, µCorr) be a solution of HCorr(x, t, µ) = 0 and set
(xold, λold) = (xCorr, λ̃) and u = (xCorr, tCorr, λ̃, µCorr).

The predictor and corrector steps are repeated until λ̃ ≥ λu is reached.

This algorithm comes up with different paths for different starting points
u0 = (x0, t0, λstart, µ0). To measure the length of every path, the Euclidean
distances of the points xi on that path are simply summed up in case a).
That means, if the path consists of N + 1 points, its length is computed by

Path-II-Length(x0) = ‖x1 − x0‖+ ‖x2 − x1‖+ . . .+ ‖xN − xN−1‖ (4.28)

for every starting point x0 on the Pareto set for λ = λstart. In case b), i. e.
paths of minimal length in objective space, the Euclidean distances of the
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objective values for the computed paths are summed up. More precisely,
again assuming that N + 1 points on this path have been computed,

Path-II-Length(F (x0)) =

‖F (x1, λ1)− F (x0, λstart)‖+ . . .+ ‖F (xN , λN)− F (xN−1, λN−1)‖.
The aim is to determine the points in the Pareto set for λ = λstart that

hardly vary under the variation of λ. With the following definition it is
obvious how to compute these points.

Definition 4.15 (Robustness w. r. t. Concept II (cf. [21])) Starting points x0

whose corresponding paths have minimal Path-II-Length in preimage or ob-
jective space are called λ-robust Pareto points w. r. t. Concept II in preimage
or objective space respectively.

Example 4.16 Consider again the parametric multiobjective optimization
problem minx F : R2 × R→ R2, F = (f1, f2),

f1(x, λ) = λ
(
(x1 − 2)2 + (x2 − 2)2

)
+ (1− λ)

(
(x1 − 2)4 + (x2 − 2)8

)
f2(x, λ) = (x1 + 2λ)2 + (x2 + 2λ)2

for which each objective function depends on the parameter λ ∈ [0, 1], i. e.
λstart = 0 and λend = 1. The Kuhn-Tucker equations for this multiobjective
optimization problem are given as

t21
(
2λ(x1 − 2) + 4(1− λ)(x1 − 2)3

)
+ 2t22 (x1 + 2λ) = 0

t21
(
2λ(x2 − 2) + 8(1− λ)(x2 − 2)7

)
+ 2t22 (x2 + 2λ) = 0

t21 + t22 − 1 = 0

(4.29)

a) Robust Pareto points in parameter space:

Expanding the Kuhn-Tucker systems as stated in Proposition 4.12 re-
sults in the following system of nonlinear equations for the corrector
step:

t21(2λ̃(x1 − 2) + 4(1− λ̃)(x1 − 2)3) + 2t22(x1 + 2λ̃) = 0

t21(2λ̃(x2 − 2) + 8(1− λ̃)(x2 − 2)7) + 2t22(x2 + 2λ̃) = 0

t21 + t22 − 1 = 0

2(x1 − xold1 )− µ1(t21(2λ̃+ 12(1− λ̃)(x1 − 2)2) + 2t22) = 0

2(x2 − xold2 )− µ2(t21(2λ̃+ 56(1− λ̃)(x2 − 2)6) + 2t22) = 0

−µ1(2λ̃(x1 − 2) + 4(1− λ̃)(x1 − 2)3 − (x1 + 2λ̃)) . . .

. . .− µ2(2λ̃(x2 − 2) + 8(1− λ̃)(x2 − 2)7 − (x2 + 2λ̃)) = 0
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Making use of the numerical path following methods described in Sec-
tion 2.4.2 points on the solution curves varying λ ∈ [0, 1] for every
starting point on the Pareto set for λ = 0 were computed. Some ex-
amples of these paths are shown in Figure 4.20 on the left. Having
generated these paths, the length of each path is computed by simply
summing up the squared Euclidean distances as mentioned above. The
result is shown on the right hand side of Figure 4.20. The length of each
path is plotted versus the ith starting point, where i traverses the set
of Pareto points for λ = 0. In this case the starting points are ordered
in the following way: they wander from below (point x1 = x2 = 0)
towards the upper points of the Pareto set (x1 = x2 = 2). One can
observe that the lengths of the paths decrease up to the 112th starting
point. This point is in fact (an approximation of) the one for which
the Pareto sets for every λ ∈ [0, 1] coincide, i. e. one of the demanded
robust Pareto points. As one can see, the point x1 = x2 = 2 has
length zero, too, so it can also be detected as a robust Pareto point al-
though the Jacobian is not regular in this point. It can be determined
in this special case because x1 = x2 = 2 is a solution for every value
of λ ∈ [0, 1]. Therefore, in our path following algorithm only predictor
steps are performed wherein the Jacobian is not required.

Figure 4.20: Some examples for the computed paths in parameter space (on the left)
and the length of each computed path (on the right)

b) Robust Pareto points in objective space:

As stated in the proposition the same ideas are working when consid-
ering the distances of the images of substationary points. This ansatz
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does in general not result in the same robust Pareto points as in pa-
rameter space, because the function values do not only depend on the
points in parameter space itself but also on the values of λ. For ex-
ample, in the previous case xs ≈ (1.1621, 1.1621) is a robust Pareto
point in parameter space, but the function value for λ = 0 which is
(f1, f2)(xs, 0) ≈ (0.7359, 2.7010) is far away from the one for λ = 1
which is (f1, f2)(xs, 1) = (1.4042, 19.9978).

For the computation of robust Pareto points in objective space, the
following equations have to be considered in addition to the Kuhn-
Tucker system in the corrector step:

2(f1(x, λ̃)− f old1 (x, λ̃))
∂f1

∂x1

+ 2(f2(x, λ̃)− f old2 (x, λ̃))
∂f2

∂x1

+ · · ·

−µ1(t21(2λ̃+ 12(1− λ̃)(x− 2)2) + 2t22) = 0

2(f1(x, λ̃)− f old1 (x, λ̃))
∂f1

∂x2

+ 2(f2(x, λ̃)− f old2 (x, λ̃))
∂f2

∂x2

+ · · ·

−µ2(t21(2λ̃+ 56(1− λ̃)(x2 − 2)6) + 2t22) = 0

−2µ1t1(2λ̃(x1 − 2) + 4(1− λ̃)(x1 − 2)3)

−2µ2t1(2λ̃(x2 − 2) + · · ·
+8(1− λ̃)(x2 − 2)7)− 2µ3t1 = 0

−4µ1t2(x1 + 2λ̃)− 4µ2t2(x2 + 2λ̃)− 2µ3t2 = 0

Some examples for resulting paths in objective space are shown in Fig-
ure 4.21. Comparing the distances in objective space, one finds that
the left blue path is the desired path of robust Pareto points. The
corresponding starting point is x ≈ (2, 2). So this point varies as little
as possible both in objective and preimage space.

Figure 4.21 also shows the image of paths which have been optimized
with respect to the variation in preimage space for the same starting
points. As one can easily see these paths are not at all the same.

Example 4.17 Consider the multiobjective optimization problem

min
x
F (x), F : R3 × R→ R3, F = (f1, f2, f3)

with the objective functions

f1(x, λ) = (x− 4)2 + (y − 4)2 + (z − 4 + λ)2

f2(x, λ) = (x+ 4)2 + (y + 4)2 + (z + 4 + λ)2

f3(x, λ) = (x+ 4)2 + (y − 4)2 + (z + 4 + λ)2.
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Figure 4.21: Examples of paths with minimum lengths in objective space (blue) and
preimage space (green) between the Pareto sets for λ = 0 (black) and λ = 1 (yellow),
visualized both in (f1, f2, λ)-space

The Pareto set is given by triangles in R3 which move in the z-direction
when varying the parameter λ. The triangles lie in the plane E given by

E :

xy
z

 =

 4
4

4 + λ

+ t1 ·

1
1
1

+ t2 ·

1
0
1



for t1, t2 ∈ R. The vector v =

 1
0
−1

 is orthogonal to this plane.

Figure 4.22 shows some examples for paths computed with the previously
described algorithm. As one can observe these paths in fact follow the short-
est possible distance between the Pareto sets for λ = −1 and λ = 1. For
example, the black path exactly describes a translation by v of the starting
point on S−1 to S1. At the boundary of the Pareto set, where an orthogo-
nal translation is not feasible, one can observe that indeed the shortest path
within the Pareto sets for fixed values of λ is computed.

Comparison of Concept I and II

This section deals with the comparison of the two new concepts for robustness
defined above. To make the two approaches comparable, first of all the
variational approach is formulated in such a way that solutions from a fixed
starting point on the Pareto set for λ = λstart to an arbitrary end point on
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Figure 4.22: Some examples for computed paths between the Pareto sets for λ = −1
and λ = 1 in the 3d-example

Sλend can be computed which lie within the λ-dependent set of substationary
points. Thus, the starting point that so far has been free in Concept I has
to be fixed instead. This leads to the variational integral

min
γ

∫ λend

λstart

‖x′(λ)‖2dλ (4.30)

s. t. HKT(x(λ), t(λ), λ) = 0

with the boundary conditions x(λstart) = x0, t(λstart) = t0 and the free end
condition x(λend) ∈ Sλend .

The same Euler-Lagrange equations as before result with the only differ-
ence that one only obtains equations from the transversality condition for
one free end. Therefore, in this case Equation (4.12) does not apply. To sum
up, in the case of a fixed starting point the Euler-Lagragrange equations are
given as:

x′′(λ)

‖x′(λ)‖2
−

x′(λ)

‖x′(λ)‖32

(
n∑
i=1

x′i(λ) · x′′i (λ)

)
−

µ(λ)T ·
∂

∂x

H
1
KT
...

Hn
KT

 (γ(λ), λ)


T

= 0 (4.31)

−

µ(λ)T ·
∂

∂t


H1

KT
...

Hn+1
KT

 (γ(λ), λ)


T

= 0 (4.32)


H1

KT
...

Hn
KT

Hn+1
KT

 (γ(λ), λ) =

(∑k
i=1(ti(λ))2∇xfi(x, λ)∑k

i=1(ti(λ))2 − 1

)
= 0, (4.33)
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and the end condition

1

‖x′(λend)‖2
· x′(λend) ⊥ ker

(
∂

∂x
HKT(γ(λend), λend)

)
. (4.34)

For numerical computations we again use the discretization of the varia-
tional problem, which in this case leads to the system of equations

1

h

(
xj − xj−1

‖xj − xj−1‖
− xj+1 − xj
‖xj+1 − xj‖

)
+

(
µTj

∂

∂xj
HKT(xj , tj , λj)

)T
= 0(4.35)(

µTj ·
∂

∂tj
HKT(xj , tj , λj)

)T
= 0(4.36)

HKT(xj , tj , λj) = 0(4.37)

for all j = 1, . . . , N − 1, and

1

h
·
(
− xN − xN−1

‖xN − xN−1‖

)
+

1

2

(
µTN

∂

∂xN
HKT(xN , tN , λend)

)T
= 0 (4.38)(

µTN ·
∂

∂tN
HKT(xN , tN , λend)

)T
= 0 (4.39)

HKT(xN , tN , λend) = 0. (4.40)

Let pI = (x?0, . . . , x
?
N) with x?0 = x0 be a solution path3 which – together

with the corresponding multipliers – solves Equations (4.35) – (4.40). The
length of this solution path can be computed as follows:

Path-I-length(x?0) = ‖x?1 − x?0‖+ ‖x?2 − x?1‖+ . . .+ ‖x?N − x?N−1‖

In the following example, solution paths of the discretized Euler-Lagrange
equations (4.35) – (4.40) are compared with the solution paths from the nu-
merical path following approach for determining λ-robust Pareto points (Con-
cept II). To allow a fair comparison, the external parameter λ is discretized
with the same fixed step size both in the discretization of the variational
integral (4.30) and in the predictor step of the numerical path following algo-
rithm (see page 102). We consider λ-robust Pareto points in preimage space,
i. e. the decision function for Concept II is given as d(x;xold, λold, λold + h) =
2(x− xold).

3In the results presented here, the MATLAB solver fsolve [101] has been used to solve
Equations (4.35) – (4.40) numerically.
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Example 4.18 Consider again (as in Example ) the parametric multiobjec-
tive optimization problem minx F : R2 × R→ R2, F = (f1, f2),

f1(x, λ) = (x1 − sin(λ))2 + (x2 − cos(λ))2

f2(x, λ) = (x1 − 2 sin(λ))2 + (x2 − 2 cos(λ))2

in which the parameter λ is varied from 0 to 2π.
In the following, λ-robust solutions w. r. t. Concept I (using the discretized

variational problem with fixed starting points) and w. r. t. Concept II (mak-
ing use of the numerical path following method) will be compared for this
example. To illustrate the difference between the two approaches, five start-
ing points at the initial Pareto set for λ = 0 have been considered. Figure
4.23 visualizes the results for robust solution paths w. r. t. both concepts.
One can observe that the computations that are based on the starting point

Figure 4.23: Results of the computation of λ-robust solution paths using the variational
approach (on the left) and the numerical path following algorithm (on the right) for Ex-
ample 4.18

(0, 2) lead to the ‘outer circle’ which is the global maximum of both the
variational problem and each subproblem occurring in the numerical path
following method. As the concepts both only make use of necessary con-
ditions, these maximal solutions are also feasible results. Moreover it can
be seen that all other solution paths spiral towards the inner circle for both
concepts. The paths computed by the Concept I (plot on the left) approach
the inner circle faster than the paths generated with Concept II (plot on
the right). To illustrate this effect, in Figure 4.24 the two solution paths
presented in Figure 4.23 that both correspond to the same starting point
x?0 = (0, 1.75)T are plotted. On the right of Figure 4.24 the lengths of all
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the paths that have been visualized in Figure 4.23 are compared. Here one
also can observe that the minimization of the respective variational integral
indeed leads to shorter paths than the numerical path following approach.

Figure 4.24: Comparison of the two concepts for one fixed starting point, and comparison
of the lengths of the four exemplary paths that were considered in Example 4.18

The result that the paths w. r. t. Concept I are shorter than those w. r. t.
Concept II in Example 4.18 is not amazing. If one neglects the numerical
error that occurs from the discretization of the variational integral (4.30)
and assumes that the computed solution indeed minimizes the variational
integral, one can argue that the path w. r. t. Concept I is the shortest possible
path connecting the fixed starting point with a free end point at Sλend . On
the contrary, paths w. r. t. Concept II are computed by a local, step-wise
greedy strategy. Thus, it can be expected that

Path-I-Length(x) ≤ Path-II-Length(x)

for all x ∈ Pdiscrete, where Pdiscrete = {xstarti }i=1,...,M is a set of M starting
points within the Pareto set for λ = λstart.

As mentioned on page 89, the computation of constant solution paths is
only possible by minimizing energy instead of length of the curve x(λ). In
this case, the consideration of fixed starting points leads to the variational
integral

min
γ

∫ λend

λstart

1

2
‖x′(λ)‖2

2 dλ (4.41)

s. t. HKT(γ(λ), λ) = 0
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with the boundary conditions x(λstart) = x0, t(λstart) = t0 and the free end
condition x(λend) ∈ Sλend .
If so, the discretization of the Euler-Lagrange equations is given as

(
µTj ·

∂

∂tj
HKT(xj , tj , λj)

)T
= 0 ∀ j = 1, . . . , N (4.42)

HKT(xj , tj , λj) = 0 ∀ j = 1, . . . , N (4.43)(
xj+1 − 2xj + xj−1

h2

)
−
(
µTj ·

∂

∂xj
HKT(xj , tj , λj)

)T
= 0 ∀ j = 1, . . . , N−1 (4.44)

−
(
xN − xN−1

h2

)
−

1

2

(
µTN ·

∂

∂xN
HKT(xN , tN , λend)

)T
= 0. (4.45)

In the following, it is again assumed that Pdiscrete = {xstarti }i=1,...,M is a set
of M starting points within the Pareto set for λ = λstart, and that the step
sizes in the computations w. r. t. Concept I and Concept II are chosen in the
same way. As before, for Concept II the preimage space decision function is
considered.

Assume that x?0 ∈ Pdiscrete. Assume further that for x?j ∈ Rn there exist
multipliers t?j ∈ Rk and µ?j ∈ Rn+1 such that equations (4.42) – (4.45) are
true for each discretization point λj.

Let the length of the corresponding solution path pIenergy = (x?0, x
?
1, . . . , x

?
N)

be defined as

Path-Ienergy-Length(x?0) = ‖x?1 − x?0‖+ ‖x?2 − x?1‖+ . . .+ ‖x?N − x?N−1‖

(in analogue to the definition of the length of a λ-robust solution path w. r. t.
Concept II in (4.28) on page 103).

Proposition 4.19 Let x?0 ∈ Pdiscrete. Then,

Path-Ienergy-Length(x?0) = 0 ⇔ Path-II-Length(x?0) = 0.

Proof:

”⇒” Let pIenergy = (x?0, x
?
1, . . . , x

?
N) be a solution path that – together with

the corresponding multipliers – solves equations (4.42) – (4.45) and has
Path-Ienergy-Length(x?0) = 0.

Path-Ienergy-Length(x?0) = 0

⇔ ‖x?1 − x?0‖+ ‖x?2 − x?1‖+ . . .+ ‖x?N − x?N−1‖ = 0

⇔ x?0 = x?1 = . . . = x?N

Thus, any path which has Path-Ienergy-Length zero is a path of constant
values, pIenergy = (x?0, x

?
0, . . . , x

?
0).
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By (4.43), there exist weight vectors t?j , j = 1, . . . , N such that x?0 solves
the Kuhn-Tucker equations at each discretization point λj. Thus, after
each predictor step of the numerical path following used in Concept II
the Kuhn-Tucker equations are still satisfied. Moreover, the Euclidean
distance between two successive points on the path pIenergy equals zero,
and thus is minimal. Thus, no corrector steps of the numerical path
following used in Concept II are performed.

⇒ The predictor-corrector algorithm used in Concept II (cf. page
102) generates the same path pII = (x?0, x

?
0, . . . , x

?
0).

⇒ Path-II-Length(x?0) = 0.

”⇐” Let pII = (x?0, x
?
1, . . . , x

?
N) be a path that has been generated by the

numerical path following algorithm of Concept II and assume that
Path-II-Length(x?0) = 0. In this case,

Path-II-Length(x?0) = 0

⇔ ‖x?1 − x?0‖+ ‖x?2 − x?1‖+ . . .+ ‖x?N − x?N−1‖ = 0

⇔ x?0 = x?1 = . . . = x?N ,

and thus pII = (x?0, x
?
0, . . . , x

?
0).

As pII is a solution path w. r. t. Concept II, the necessary conditions
(4.23) (cf. Proposition 4.12) are satisfied in each point on the path. As
in this special case d(x?) = 2(x? − x?) = 0, equation (4.23) says that
there exist multipliers t?j ∈ Rk and µ?j ∈ Rn+1, such that

−
(
µ?j
)T · ∂

∂(x?j , t
?
j)
HKT (x?j , t

?
j , λj) = 0 ∀j = 0, . . . , N,

and that additionally the Kuhn-Tucker equations are satisfied in each
point of pII.

⇒ Equations (4.42) and (4.43) are satisfied. As x?−2x?+x?

h
= 0 and

x?−x?
h2

= 0, Equations (4.44) und (4.45) are also satisfied.

⇒ pII is a solution path which – together with the corresponding
multipliers – solves the discretized Euler-Lagrange equations and
has Path-Ienergy-Length(x?) = 0.
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4.4.3 Application: Robust Pareto Points in the Design of Integrated Cir-
cuits4

Integrated circuits are composed of a couple of standard cells that are multi-
ply combined and repeated. Thus, one expects that an optimization of these
standard cells causes a remarkable improvement of the entire integrated cir-
cuit. In [7] three different standard cells were considered: inverters, NAND-
gates and NOR-gates (both in 65nm and 90nm technology).

These standard cells are a combination of the most basic elements, the
transistors, that deliver the desired functionality. In Figure 4.25 the principal
functioning of a metal-oxide semiconductor field-effect transistor (MOSFET)
is sketched. One distinguishes between pMOS and nMOS transistors. In
CMOS (complementary metal oxide semiconductor) technology, transistors
of these two types are combined to reach the desired functionality (see [4] for
an extensive introduction). The task of an inverter is to invert the incoming

Figure 4.25: Schematic illustration of a metal-oxide semiconductor field-effect transistor
(MOSFET) (cp. [4])

signal (1 is converted into 0 and vice versa). This can be reached by the
combination of two transistors. The CMOS NOR-gate is composed of four
transistors as shown in Figure 4.26. Its output is the negated value of the
boolean function OR of two inputs. Similarly, the CMOS NAND-gate delivers
the negated output of the boolean function AND of two inputs.

In [7, 96] it has been studied how to choose the width W of each transistor
contained in inverters, NAND- and NOR-gates in order to guarantee a good

4in cooperation with the Department of System and Circuit Technology, Prof. Dr.-Ing.
U. Rückert, Paderborn, especially Matthias Blesken, and in cooperation with Dominik
Steenken, cf. [96, 7]
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performance of these standard cells. Here, the length L is assumed to be as
small as technically realizable.

Three different objectives are taken into account:

• maximization of the noise margin NM , defined as the maximal possible
deviation of the input signal from the nominal value such that the input
signal is still interpreted correctly,

• minimization of the propagation delay tpd, defined as the time it takes
that a change in the input signal is reflected in the output,

• and minimization of the dynamic energy consumption Ein+Edyn which
sums up any energy losses that occur when the input signal changes.

These objective functions not only depend on the optimization variables
given by the widths of the transistors but also on several process parameters
(like doping) and runtime parameters (like temperature and supply voltage).
In [96] different robustness concepts have been studied and applied to the
case of varying temperatures and supply voltages. In this thesis only the
results for the 65nm CMOS NOR-gate are summarized.

Figure 4.26: Net list of a CMOS NOR-gate (cp. [4])

A NOR-gate consists of two nMOS and two pMOS transistors (see Fig-
ure 4.26). In order to make the results comparable to values proposed by a
commercial standard cell library, the widths of transistors of the same kind
are supposed to be the same (in [96] also a multiobjective optimization was
performed that allows different width of the pMOS transistors). Thus, two
different widths denoted by Wp (width of each pMOS transistor) and Wn

(width of each nMOS transistor) have to be optimized. The evaluation of
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the three objective functions mentioned above is very time-consuming as it is
performed using the circuit simulator HSPICE5. In order to reduce the com-
puting time, in [96] the set-oriented subdivision and recovering techniques
for the approximation of the Pareto set (cf. Section 3.2.3) have been paral-
lelized. A compute server has been developed that allows the distribution of
function evaluations to different clients. In Figure 4.27 the Pareto set of the
NOR-gate with respect to the three objectives mentioned above is plotted
both in parameter and objective space. Also in this figure the values pro-
posed by the standard cell library are given both in parameter and objective
space (black crosses). As one can observe they lie outside the Pareto front.
Thus, the performance of this gate (and also several other gates as reported
in [7, 96]) can be significantly improved by the multiobjective optimization
approach.

Figure 4.27: Results of the multiobjective optimization of the NOR-gate: the Pareto set
(on the left) and the Pareto front (on the right) and the reference values from the standard
cell library (black crosses) [96]

A study of the robustness of the Pareto optimal solutions with respect
to changes in the external parameters temperature and supply voltage can
help to support the decision which point to choose from the Pareto set for
transistor fabrication. The numerical path following method for computing
paths of mimimal length in preimage space described in Section 4.4.2 has
been applied to this problem. In order to make the computation possible the
three objective functions have been approximated by smoothing splines (cf.
[96] for more details). In Figures 4.28 and 4.29 the results are visualized.
Here, dark blue regions refer to Pareto points with small path lengths. The
technical interpretation of the results is actually still an object of research.

5HSPICE is a commercial software tool for circuit simulation developed by Synopsys
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Figure 4.28: Visualization of the degree of robustness with respect to temperature
changes from 10◦ C to 75◦ C [96]

Figure 4.29: Visualization of the degree of robustness with respect to changes in the
supply voltage within the inverval from 0.6 V to 1.8 V [96]

4.5 Origin of Dents in Parameter-dependent Pareto Fronts

In Section 3.3 dents in Pareto fronts have been defined motivated by the fact
that these points cannot be computed by the weighted sums method. Also,
dent border points have been defined. When considering parametric mul-
tiobjective optimization problems, naturally the question arises, how dents
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and especially dent border points evolve. The Kuhn-Tucker equations (4.2)
provide a necessary condition for Pareto optimality. Within this section this
parametric system of equations will be analyzed in order to obtain results
about the local behavior of the parameter-dependent Pareto fronts.

Solutions of parametric systems of equations have already been widely
studied in bifurcation theory. The first paragraph of this section deals with
the study of properties of dent border points. After summarizing some basics
from bifurcation theory it will be proven that under certain assumptions dent
border preimages are turning points of the Kuhn-Tucker equations. In the
second part of this section, several new numerical examples for parametric
multiobjective optimization problems in which dents occur are given.

Within this section it is assumed that the objective functions are at least
twice continuously differentiable. Only points x ∈ Pλ are considered for
which the corresponding weight vector α is an element of (0, 1)k. Define
Hα

KT : Rn × R→ Rn by

Hα
KT(x, λ) =

k∑
i=1

αi∇xfi(x, λ).

4.5.1 Properties of Dent Border Points

First, it will be shown that dent border preimages can be characterized as
certain turning points of the Kuhn-Tucker equations. It has been shown
in Section 3.3 that in a dent border point a zero eigenvalue of the Hessian
of gα occurs, where gα(x, λ) =

∑k
i=1 αifi(x, λ). The Hessian of gα equals

∂
∂x
Hα

KT, as Hα
KT(x, λ) = ∇xgα(x, λ). Thus, the implicit function theorem is

not applicable to the Kuhn-Tucker equations (with respect to x) in a dent
border point. The study of the behavior of solutions in such cases is the main
topic of bifurcation theory. Whenever the Jacobian with respect to x of a
parametric system of equations is singular, the structure of the solution set
may change. One possibility is that the system of equations has no solution
before the singularity occurs, and two solutions afterwards (here, ”before”
and ”afterwards” have to be understood in terms of the values of λ). In this
case, the solution curve ”turns” at the point (x?, λ?), where the Jacobian
with respect to x is singular. More formally, such a turning point – which
sometimes is also called saddle-node bifurcation or fold in the literature – is
defined as follows:

Definition 4.20 (Turning point (see [71])) Consider the solutions of a non-
linear system of equations H(x, λ) = 0, where H : RN × R → RN . Assume
that (x?, λ?) is such a solution which satisfies
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(i) there exists φ? ∈ RN\{0} with ker
(
∂
∂x
H(x?, λ?)

)
= span{φ?},

(ii) ∂
∂λ
H(x?, λ?) /∈ im ∂

∂x
H(x?, λ?).

Then, (x?, λ?) is called a turning point.

Let ψ? be a left eigenvector of the zero eigenvalue of ∂
∂x
H(x?, λ?), i. e.

ψ?
∂

∂x
H(x?, λ?) = 0.

If in addition to (i) and (ii) ψ?
(
∂2

∂x2
H(x?, λ?)φ?φ?

)
6= 0, then the point

(x?, λ?) is called a simple turning point.

In Figure 4.30 an example of an equation whose solution curve includes
a turning point is sketched. As one can observe, the solution curve turns in
the point (0, 0).

Figure 4.30: For the equation H(x, λ) = x2 − λ = 0, H : R × R → R, a turning point
occurs in the point (0, 0)

Proposition 4.21 Let Pλ ⊆ Sλ be the Pareto set of a parametric multiob-
jective optimization problem minF : Rn × R→ Rk with
F (x, λ) = (f1(x, λ), . . . , fk(x, λ))T . Let x? ∈ Pλ? be a simple dent border
preimage. Let α? denote the weight vector corresponding to x? and assume
that the Jacobian Hα?

KT
′
(x, λ) has full rank.

Then, (x?, λ?) is a turning point of Hα?

KT(x, λ) with respect to λ.
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Proof: It has been shown in [53] (see also Section 3.3) that dent border
preimages x? are solutions of the Kuhn-Tucker equations Hα?

KT(x?, λ?) = 0
in which ∂2

∂x2
gα?(x

?, λ?) is singular. Thus, there exists an eigenvector φ? of
∂2

∂x2
gα?(x

?, λ?) with (
∂2

∂x2
gα?(x

?, λ?)

)
φ? = 0. (4.46)

From the assumption that the dent border preimage is simple, i. e. exactly
one eigenvalue of ∂2

∂x2
gα?(x

?, λ?) equals zero (cf. Definition 3.11), it directly
follows that

dim ker

(
∂2

∂x2
gα?(x

?, λ?)

)
= 1. (4.47)

As Hα
KT(x, λ) = ∇xgα(x, λ), and thus

∂

∂x
Hα

KT(x, λ) =
∂

∂x
(∇xgα(x, λ)) =

∂2

∂x2
gα(x, λ),

(4.46) is equivalent to
∂

∂x
Hα?

KT(x?, λ?)ϕ? = 0

and (4.47) is the same as

dim ker

(
∂

∂x
Hα?

KT(x?, λ?)

)
= 1.

Thus, property (i) of Definition 4.20 is proven for H(x, λ) = Hα?

KT(x, λ).

Property (ii) of Definition 4.20 directly follows from the assumption that
the Jacobian Hα?

KT
′
(x, λ) has full rank, i. e. rank n: if the vector ∂

∂λ
Hα?

KT(x?, λ?)
were in the image of the n × n-matrix ∂

∂x
Hα?

KT(x?, λ?), then the rank of the

Jacobian Hα?

KT
′
(x, λ) were n − 1, in contradiction to the assumption. Thus,

it has to be true that
(
∂
∂λ
Hα?

KT(x?, λ?)
)
/∈ im ∂

∂x
Hα?

KT(x?, λ?).

To sum up, both properties given in Definition 4.20 are satisfied, and thus
(x?, λ?) is a turning point of Hα?

KT(x, λ) with respect to λ.

Remark 4.22 Using the notation of the proof of Proposition 4.21 one ob-
serves that the matrix ∂

∂x
Hα?

KT is symmetric, as it is the Hessian of the

weighted sums function gα. Thus, ψ? = (φ?)T is a left eigenvector of
∂
∂x
Hα?

KT(x?, λ?). It follows that, if additionally to (i) and (ii) of Definition 4.20

(φ?)T
(
∂2

∂x2
Hα?

KT(x?, λ?)

)
φ?φ? 6= 0,
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then (x?, λ?) is a simple turning point of Hα?

KT(x, λ) with respect to λ.

To sum up, a dent border preimage can be obtained by solving the system
of equations

Hα?

KT(x, λ) = 0

∂

∂x
Hα?

KT(x, λ) · φ = 0 (4.48)

lTφ− 1 = 0

with an arbitrary but fixed vector l ∈ Rn which satisfies lTφ? 6= 0 and has
non-zero entries, and x, φ ∈ Rn, λ ∈ R. In the literature, this system of
equations is also called the extended system of Hα?

KT(x, λ) (cf. [71]).

Remark 4.23 A family of dent border preimages can be obtained by solving

∇xgα(x, λ) = 0
k∑
i=1

αi − 1 = 0

∂2

∂x2
gα(x, λ) · φ = 0 (4.49)

lTφ− 1 = 0

with an arbitrary fixed vector l ∈ Rn which satisfies lTφ? 6= 0 and has non-
zero entries, x, φ ∈ Rn, λ ∈ R and α ∈ Rk with αi > 0 ∀i = 1, . . . , k.

4.5.2 Examples for Parametric Multiobjective Optimization Problems with
Dents

In the following, several new examples for parametric multiobjective opti-
mization problems are presented. They all have in common that the cor-
responding Pareto fronts contain dents for specific values of the external
parameter λ. Moreover, under the variation of λ, dents originate or vanish
(cf. Examples 4.24 and 4.26), or dents double or merge (cf. Example 4.25).

Example 4.24 Consider the two objectives

f1(x1, x2, λ) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 + x1 − x2) + λ · e−(x1−x2)
2

f2(x1, x2, λ) =
1

2
(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 − x1 + x2) + λ · e−(x1−x2)
2

.
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Figure 4.31: Visualization of some Pareto sets and the solution curve of Hα?

KT(x, λ) = 0
(black) for the dent border preimage x? (red) for Example 4.24

In Figure 4.31 the Pareto sets of these two objectives for (x1, x2) ∈
[−1.3, 1.3]2 are plotted for different values of the external parameter λ: for
λ = 0 (green), λ = 0.2 (gray), λ = 0.4 (light blue), λ = 0.6 (cyan), and for
λ = 0.8 (magenta).

In the same figure, an example for a λ-dependent solution path of the
Kuhn-Tucker equations with a fixed weight vector α? ≈ (0.25, 0.75) which
corresponds to the dent border preimage (x?1, x

?
2) ≈ (−0.28, 0.28) of the dent

border point (y?1, y
?
2) ≈ (1.23, 1.79), located on the Pareto front for λ? = 0.6,

is visualized for λ ∈ [0, 1] (black paths). The paths have been computed with
the help of the software package AUTO2000 [23]. As one can observe, y? is
indeed a simple turning point of Hα?

KT(x, λ) with respect to λ. Figure 4.32
shows the same results in objective space.

In Figure 4.33 the entire curve of dent border points in objective space
is plotted. To compute this λ-dependent solution curve (red), again the
software package AUTO2000 has been used. One can observe that the point
(y?1, y

?
2, λ

?) = (1.25, 1.25, 0.25) (with the corresponding weight vector α? =
(0.5, 0.5)), marked by a black dot, is specific: in this point a dent originates,
i. e. for λ < λ? the Pareto front contains no dent whereas for λ > λ? a dent
is contained in the Pareto front.

In Figure 4.34 the solutions of Hα?

KT(x, λ) = 0 with α? = (0.5, 0.5), i. e.
the λ-dependent path containing the specific point in which a non-dent point
changes into a dent point, are visualized for λ ∈ [0, 1]. One can observe that
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Figure 4.32: Visualization of some Pareto fronts and the image of the solution curve of

Hα?

KT(x, λ) = 0 (black) for a dent border point y? (red) for Example 4.24

Figure 4.33: Some Pareto fronts, the curve of dent border points (red) and the point in
which the dent originates (black dot) for Example 4.24

a pitchfork bifurcation6 occurs in this point. Figure 4.35 shows the same
results in objective space.

6The definition and statements about properties of pitchfork bifurcations can be found
in [42] and [105], for example.
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Figure 4.34: Visualization of some Pareto sets and the λ-dependent solution curve of

Hα?

KT(x, λ) = 0 with α? = (0.5, 0.5) (black) for Example 4.24

Figure 4.35: Visualization of some Pareto fronts and the image of the solution curve of

Hα?

KT(x, λ) = 0 with α? = (0.5, 0.5) (black) for Example 4.24
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Example 4.25 Consider the two objectives

f1(x1, x2, λ) =
√

1 + x2
1 +

√
1 + x2

2 + e−(x2−λ)2 + e−(x2+λ)2 − x2

f2(x1, x2, λ) =
√

1 + x2
1 +

√
1 + x2

2 + e−(x2−λ)2 + e−(x2+λ)2 + x2.

In Figure 4.36 the Pareto fronts which result from the minimization of
these two objectives are plotted for different values of λ. As one can observe
the Pareto front contains one dent for λ = 0.4, for example. Under the
variation of λ it changes into two dents (cp. for instance λ = 0.8). In
between, there is a specific point in which the dent splits up into two dents,
which is given by (x1, x2, λ) ≈ (0, 0, 0.5716) with the corresponding weight
vector α? = (0.5, 0.5). In Figure 4.37 the solutions of the Kuhn-Tucker
equations for the fixed weight vector α? = (0.5, 0.5) are sketched. One can
observe that in the point where the dent splits up into two dents a pitchfork
bifurcation occurs.

Figure 4.36: Pareto fronts for the multiobjective optimization problem given in Example
4.25 for different values of λ
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Figure 4.37: Pareto fronts and solutions of the Kuhn-Tucker equations for α? = (0.5, 0.5)
in (f1, f2, λ)-space for Example 4.25

Example 4.26 Consider the three objectives

f1(x1, x2, x3, λ) =
√

1 + x21 +
√

1 + x22 +
√

1 + x23 + λ · e−(x
2
2+x

2
3) +
√

2x2

f2(x1, x2, x3, λ) =
√

1 + x21 +
√

1 + x22 +
√

1 + x23 + λ · e−(x
2
2+x

2
3) −

√
2

2
x2 +

√
3

2
x3

f3(x1, x2, x3, λ) =
√

1 + x21 +
√

1 + x22 +
√

1 + x23 + λ · e−(x
2
2+x

2
3) −

√
2

2
x2 −

√
3

2
x3.

Figure 4.38 shows the Pareto fronts which result when minimizing these
three objectives for x ∈ [−2, 2]3 for different values of λ. One can observe
that under the variation of λ a dent originates.

Remark 4.27 It has been observed in Examples 4.24 and 4.25 that pitch-
fork bifurcations occur in those points where – under the variation of λ – a
dent originates in the Pareto front PFλ, or a dent splits up into two dents,
respectively. Pitchfork bifurcations typically occur if the system of equations
H(x, λ) = 0, in our case Hα?

KT(x, λ) = 0, includes a symmetry of the form

H(Sx, λ) = SH(x, λ), (Z2)

where S is a suitable symmetry matrix with S 6= 1 and S2 = 1 (cf. [105]).
In the examples mentioned above, indeed symmetries occur. The Kuhn-

Tucker equations of the objective functions given in Example 4.24 have a
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Figure 4.38: Pareto fronts for the multiobjective optimization problem given in Example
4.26 for different values of the parameter λ

Z2-symmetry for α? = (0.5, 0.5). In this case, possible symmetry matrices
are given as

S1 =

(
0 1
1 0

)
and S2 =

(
−1 0
0 −1

)
.

The Kuhn-Tucker equations of the objective functions given in Example
4.25 satisfy the symmetry condition (Z2) with

S1 =

(
1 0
0 −1

)
if α? = (0.5, 0.5), and
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S2 =

(
−1 0
0 1

)
independent of the weight vector α.

The Kuhn-Tucker equations for the objective functions given in Example
4.26 also satisfy the symmetry condition (Z2) with

S =

−1 0 0
0 1 0
0 0 1


for arbitrary weight vectors α?.



Chapter 5

Conclusion and Outlook

In this thesis, four main areas have been addressed:

1. Robustness concepts for parametric multiobjective optimiza-
tion problems

The main issue of this thesis was the study of parametric optimiza-
tion problems. Two new robustness concepts have been developed that
allow to find out how Pareto optimal points evolve under the varia-
tion of an external, real parameter. In contrast to hitherto existing
approaches, it is requested that the solutions should stay Pareto op-
timal for the original objective functions w. r. t. the perturbed para-
meter values. Especially for technical systems in which the parameter
configuration can be adjusted during operation time and the external
parameter can be measured, the new robustness concepts offer big ad-
vantages. For instance, assume that there exists a point on a Pareto
front which stays constant under variations of the external parameter.
This robust Pareto point can be computed by the robustness concepts
proposed in this thesis. During operation time it would be possible to
switch parameter-dependently between solutions of the computed path
such that the values of the objective functions stay constant.

In the first concept presented in this thesis, robustness is defined by
use of the classical calculus of variations. A variational integral is mi-
nimized which computes the length of the solution curve under the
constraint that the curve lives on the parameter-dependent solution
set of the Kuhn-Tucker equations. To allow numerical computations, a
discrete version of the Euler-Lagrange equations, which give a necessary
condition for optimality of variational integrals, is derived. By this
approach a nonlinear system of equations is obtained whose solution
gives a discrete approximation of the λ-robust solution curve.

The second concept is of local nature. Here, the length of a solution
path is not required to be minimal over the entire interval the external
parameter is assumed to live in. Instead, the path consists of points

129
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that locally change as little as possible in x-space under the variation
of the external parameter λ. Alternatively, solution paths that change
as little as possible in objective space can be described by a similar ap-
proach. To compute these paths, numerical path following methods are
used. They allow to approximate solution curves of nonlinear systems
of equations that depend on one external parameter. The Kuhn-Tucker
equations do not only depend on the optimization parameters and the
external parameter but also on the weight vector. The main challenge in
applying numerical path following methods to the Kuhn-Tucker equa-
tions lies in the treatment of this weight vector. It characterizes the
direction into which a solution path moves under the variation of the
external parameter. In this thesis, additional equations that define
suitable directions have been derived. In order to attack this prob-
lem, firstly two fixed Pareto sets Pλ0 and Pλ1 have been considered. A
constrained nonlinear optimization problem has been formulated whose
solution is a point on Pλ1 which has minimal Euclidean distance to a
fixed Pareto point on Pλ0 . Analogously, a constrained nonlinear opti-
mization problem has been formulated which minimizes the distance
between the Pareto fronts. In order to obtain numerical results, again
a necessary condition is used which also leads to a nonlinear system of
equations.
For the numerical approximation of an entire solution path a predictor-
corrector method is used. Here, the new equations that define the path
direction are used in combination with the Kuhn-Tucker equations in
each corrector step. It is required for the predictor-corrector method
that the Jacobian matrix of this combined system of equations is regu-
lar. In this work, the structure of this special Jacobian has been stud-
ied. It has been proven that the Jacobian is indeed regular if a standard
assumption for the underlying minimization problem is satisfied. The
new robustness concept has been illustrated for several numerical ex-
amples and a technical application arising in the design of integrated
circuits.

To make both new robustness concepts comparable, the variational
problem of Concept I has been reformulated for fixed starting points
on the initial Pareto set. A comparison of both concepts shows that
typically the length of solution paths w. r. t. Concept I is less or equal
to the length of paths obtained with Concept II. It has been shown that
if there exists a substationary point x? which does not change under
the variation of the external parameter λ, λ ∈ [λstart, λend] ⊂ R (i. e.
the solution path x(λ) is constant), this path is a solution with respect
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to both the variational approach using energy minimization and the
numerical path following approach for the determination of λ-robust
substationary points. However, in general it highly depends on the ap-
plication under consideration which concept to choose for the study of
robustness of Pareto optimal solutions.

There are various engineering applications including dependencies on
external parameters in which robustness with respect to parameter
changes in a multiobjective sense is required. Within the Collaborative
Research Centre 614 “Self-optimizing concepts and structures in me-
chanical engineering” especially one application has turned out to be of
great interest, for which robust solutions will be studied in the future.
It concerns an X-by-wire vehicle called “Chamäleon”.1 In this vehicle
any of the four wheels can be steered individually. As the vehicle is not
very heavy, the mass of the driver has a noticeable influence on the be-
havior of the system. The distribution of the forces acting on the wheels
has to be optimized with respect to several objectives. In addition, it
is desired to obtain solutions that are robust with respect to changes
of the drivers’ masses. Another value that influences the system is the
friction coefficient. It is worth investigating robustness against this pa-
rameter, too. In both cases, a parametric multiobjective optimization
problem arises that depends on additional equality constraints which
stem from the fact that the sum of forces and momenta has to equal a
constant value. Inspired by this example, in the future the robustness
techniques developed in this thesis will also be extended to the case of
constrained parametric multiobjective optimization problems.

2. Time-dependent multiobjective optimization problems

Motivated by the multiobjective optimization of a linear drive, the
special case of time-dependent multiobjective optimization problems
has also been studied. In order to follow solutions over time again
numerical path following methods have been used. The optimization
procedure proposed in this thesis consists of several recurring steps.
First, the initial Pareto set is computed, one solution is chosen and the
corresponding weight vector is set fixed. The decision which solution
to choose is based on the current situation, i. e. for example on pa-

1This vehicle is developed at the Chair of Control Engineering and Mechatronics, Uni-
versity of Paderborn
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rameters which are not modeled as optimization parameters but have
an influence on the properties of the technical system. Secondly, a
solution path over time consisting of substationary points is computed
by solving the Kuhn-Tucker equations for this fixed weight vector with
a classical predictor-corrector method. Depending on the situation,
during operation time it is decided if the computation of a new, entire
Pareto set is necessary, and the steps are repeated.

This new approach developed within this thesis allows to use a multi-
objective optimization approach for the generation of solution trajec-
tories during operation time (for appropriate applications). It has been
applied to the operating point assignment of a linear drive and was im-
plemented and tested at the test plant. For future considerations it is
interesting to study the influence of additional external parameters like
a changing air gap on the time-dependent solution trajectories. It is
worth investigating whether the robustness concepts mentioned above
can be extended to the treatment of solution trajectories.

3. Dents in Pareto fronts

In this thesis also the occurrence of dents in Pareto fronts has been stu-
died. A formal definition of a dent has been given. Points at the border
of a (complete) dent have a significant property. In these points a zero
eigenvalue of the Hessian of the weighted sum of the objectives occurs.
Thus, dent border points are solutions of a certain system of equations.
Given a sufficiently smooth multiobjective optimization problem it is
possible to find out if dent border points, and thus also possibly dents,
occur in the Pareto front by solving this system of equations. Con-
sequently, information about the geometry of the Pareto front can be
obtained without computing the entire Pareto set. This information
can for example serve as a criterion for the choice of the algorithm one
wants to use for solving the multiobjective optimization problem.

Based on theoretical results from bifurcation theory, parameter-depen-
dencies in multiobjective optimization problems have been studied in
this thesis. It has been proven that dent border points are turning
points of the Kuhn-Tucker equations with a fixed weight vector cor-
responding to the dent border point. Several examples for parametric
multiobjective optimization problems have been constructed in which
dents occur. In the future, the question will be addressed what hap-
pens if a dent originates or vanishes under the variation of the external
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parameter. The examples given at the end of Section 4.5 lead to the
conjecture that in this case pitchfork bifurcations of the Kuhn-Tucker
equations occur. However, the theoretical analysis of this statement
will be addressed in future work.

4. Applications from mechatronics including multiobjective op-
timization problems

In the third chapter of this thesis, in addition to the introduction into
multiobjective optimization also several engineering applications are
presented which have been studied in cooperation with the respective
chairs. These applications are related to the RailCab system which
serves as a demonstrator for the self-optimizing concepts developed
within the CRC 614. Besides the basic study of a model for the oper-
ating point assignment of the linear drive which was the motivation for
developing the concepts for time-dependent multiobjective optimiza-
tion described above, two more applications have been considered.

The first one concerns a multiobjective optimization of the hybrid en-
ergy storage. From the mathematical point of view, the challenge in
this application was to compute an operation strategy that distributes
the power flows to the respective storage devices in an optimal way du-
ring a drive of the vehicle. In the approach presented in this work the
time interval under consideration has been discretized, and the battery
currents at the corresponding points were optimized with respect to
two objectives. Alternatively, it is possible to attack the same problem
with optimal control algorithms like DMOC2. The advantage would be
that a Pareto optimal profile for the battery current can be computed
also over longer time intervals with a fine discretization. The disadvan-
tage is that only single Pareto optimal trajectories can be computed by
optimizing a weighted sum of the objectives. In the future, the combi-
nation of DMOC with concepts for multiobjective optimization will be
investigated.

The second application dealt with the generation of Pareto optimal
reference trajectories for the guidance of the RailCab, i. e. an optimal
control problem occurred. The mathematical model of the guidance
module considered in this work was differentially flat, which means that
the inputs and states of the system can be represented as a function
of the outputs and a finite number of their derivatives w. r. t. time.

2Discrete Mechanics and Optimal Control, see [58]
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It has been shown in this work how the multiobjective optimal control
problem can be transformed into a classical multiobjective optimization
problem which can be solved with existing algorithms. Furthermore, it
has been described how self-optimization of the guidance module can
be performed during operation time.

So far, several subsystems of the RailCab system have been studied
independently from each other. Within the total system these subsys-
tems partly depend on the same parameters. For example, the energy
supply provided by the hybrid energy storage system is important for
the operating point assignment of the linear drive (how much energy
has to be transferred into the hybrid energy storage system to enable
the system to drive?) and the guidance module (how much energy may
the hydraulic actuators use?). Thus, at present a model that includes
the connections between the subsystems within the RailCab is investi-
gated within the CRC 614. Based on this model, it will be of interest to
integrate the concepts for the treatment of multiobjective optimization
problems with parameter-dependencies into a hierarchical framework.

To sum up, this thesis mainly contributes to the field of parametric mul-
tiobjective optimization by defining new robustness concepts, by studying
bifurcation phenomena in parametric Pareto fronts, and by providing an
algorithm that allows the computation of time-dependent Pareto optimal so-
lutions possibly even during operation time. Moreover, several engineering
applications in which multiobjective optimization problems arise have been
presented.
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mig, and W. Schäfer, eds., Paderborn, 2008, HNI-Verlagsschriftenreihe,
pp. 85–100. [51, 53, 54]

[40] A. M. Geoffrion, Proper efficiency and the theory of vector maximization,
Journal of Mathematical Analysis and Applications 22 (3) (1968), pp. 618–
630. [36]

[41] M. Giaquinta and S. Hildebrandt, Calculus of Variations I, Springer-
Verlag, 1996. [19, 21, 23, 86]

[42] M. Golubitsky and D. G. Schaeffer, Singularities and groups in bi-
furcation theory. Vol. I, Applied Mathematical Sciences 51, Springer-Verlag,
New York, 1985. [123]
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J. Böcker, Energy transfer via linear doubly-fed motor in different operating
modes, in Proceedings of the International Electric Machines and Drives
Conference, May 3-6, 2009, Miami, Florida, USA. [56, 60, 63, 70, 75]

[87] O. Schütze, Set Oriented Methods for Global Optimization, PhD thesis,
University of Paderborn, Germany, 2004. [40, 41]

[88] O. Schütze, A new data structure for the nondominance problem in multi-
objective optimization, in Evolutionary Multi-Criterion Optimization (EMO
03), C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, eds.,
Springer 2, 2003, pp. 509–518. [40, 41]

[89] O. Schütze, A. Dell’Aere, and M. Dellnitz, On continuation methods
for the numerical treatment of multi-objective optimization problems, in Prac-
tical Approaches to Multi-Objective Optimization, J. Branke, K. Deb, K. Mi-
ettinen, and Steuer, R. E. (eds.), eds., no. 04461 in Dagstuhl Seminar Pro-
ceedings, Dagstuhl, 2005, Internationales Begegnungs- und Forschungszen-
trum (IBFI), Schloss Dagstuhl, Germany. [41]

[90] O. Schütze, S. Mostaghim, M. Dellnitz, and J. Teich, Covering
Pareto sets by multilevel evolutionary subdivision techniques, in Evolution-
ary Multi-Criterion Optimization, C. M. Fonseca, P. J. Fleming, E. Zit-
zler, K. Deb, and L. Thiele, eds., Lecture Notes in Computer Science, 2003,
pp. 118–132. [40, 41]

[91] O. Schütze, M. Vasile, and C. A. Coello Coello, Approximate so-
lutions in space mission design, Lecture Notes in Computer Science 5199
(2008), pp. 805–814. [80]



Bibliography 143

[92] O. Schütze, K. Witting, S. Ober-Blöbaum, and M. Dellnitz, Set
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