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Résumé de la these en francais

Dans cette these, nous avons introduit, pour un feuilletage mesuré donné, les ” rho-invariants feuilleté ” pour
lesquels nous nous sommes attachés de prouver certaines de leurs propriétés de stabilité. En particulier,
nous avons démontré que le rho-invariant associé a 'opérateur de signature est indépendant de la métrique
considérée sur le feuilletage, ainsi que son invariance par rapport aux “ difféomorphismes de feuilletage ”, ce
que généralise un résultat classique de Cheeger et Gromov.

Nous avons également obtenu une généralisation du théorme du Gamma-indice d’Atiyah pour les feuilletages.
Ce résultat est déja connu des experts, mais une preuve détaillée n’est pas disponible dans la littérature. De
plus, nous avons étendu le formalisme des complexes de Hilbert-Poincaré (HP) aux cas des feuilletages, et
avons construit une équivalence d’homotopie explicite pour les HP-complexes sur des feuilletages équivalents
par homotopie feuilleté. Cela nous permet en particulier de donner une preuve directe d’un résultat déja
connu sur l'invariance par homotopie de la classe “ signature d’indice ” pour les feuilletages. Enfin, nous
indiquons, comme application de ce formalisme, comment prolonger partiellement la preuve de l'invariance
par homotopie sur les rho-invariants classiques de Cheeger et Gromov.

Zusammenfassung der Dissertation auf Deutsch

Wir fithren in dieser Dissertation die foliated rho-Invarianten auf measured Blatterungen ein und beweisen
einige Stabilittseigenschaften. Wir beweisen insbesondere, dass die “foliated rho-Invariante” metrisch un-
abhéngig und invariant unter Diffeomorphismen ist. Dies ist eine Erweiterung eines klassischen Resultats
von Cheeger und Gromov. Wir erreichen so eine Verallgemeinerung des Gamma-Index Theorems von Atiyah
fiir Foliations, die Experten bekannt, aber nicht in der Literatur zu finden war. Wir erweitern den Hilbert-
Poincar (HP) Komplex Formalismus fr den Fall von Blédtterungen und konstruieren eine explizite Homo-
topiedquivalenz von HP-Komplexen auf leafwise Homotopie dquivalenten Blatterungen. Das liefert einen
direkten Beweis des bereits bekannten Resultats iiber die Homotopieinvarianz der Signaturindexklasse fiir
Blatterungen. Wir geben zuletzt eine Anwendung dieses Formalismus, um den Beweis der Homotopieinvari-
anz der klassischen Cheeger-Gromov rho-Invarianten teilweise auf den foliated Fall zu erweitern.
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Chapter 1

Introduction

For a closed even-dimensional manifold M, the index theorem of Atiyah and Singer for Dirac operators on
compact manifolds |[AS:68] gave a deep connection between analysis, topology and geometry. The statement
of the Atiyah-Singer index theorem equates the analytical index Ind,, (D) of a Dirac operator D with the
topological index Ind¢op(D). The Atiyah-Singer theorem spurred mathematicians of the era to further explore
and understand the subject of index theory. One of the extensions of their results to study the index theory of
compact manifolds with boundary was the Atiyah-Patodi-Singer index theorem. It states that under suitable
global boundary conditions, for an even-dimensional compact manifold X with boundary 90X, there is an
extra term in the formula for the index:

Tndan(D) = / Ag 4 MDo) + 1
X 2

where D is a Dirac-type operator on X and Dy is the induced operator on 90X, AS is the Atiyah-Singer
characteristic class associated to the curvature form and the symbol of D, h is the dimension of Ker(Dy),
and n(Dy) is the n-invariant of Dy, which is given by the value at zero of the so-called eta function given by:

n(s) =Y _ sign(N)|A[™*,  Re(s) >>0
A#0

with A varying over the spectrum of Dy. In [APS3:79] Atiyah, Patodi and Singer proved that 7(s) has a
meromorphic continuation to the entire complex plane and it has a regular value at s = 0. Therefore the 7-
invariant turned out to be a well-defined spectral invariant on odd-dimensional manifolds. Using the spectral
theorem, one can express the n-invariant of Dy as

1

n(Dg) = T/3) /OOO =12 r(Dye P dt

where T'r denotes the trace of the operator. This quantity measures the ‘spectral asymmetry’ of the Dirac
operator, in the sense that if the spectrum is symmetric about the origin then the n-invariant vanishes. The
n-invariant then turned out to be an interesting secondary-invariant in its own right. In contrast to the index,
it displays nonlocal behaviour; in particular it cannot be expressed as an integral. Moreover, it is unstable
under perturbations of the operator. Atiyah, Patodi and Singer in their seminal paper [APS2:78] defined a
quantity that was much more stable: they called it the “Relative eta-invariant”, nowadays also called the
APS p-invariant. This is defined as follows. Let M be a closed odd-dimensional Riemannian manifold with
fundamental group I'; and let o and 3 be two finite-dimensional representations of I' of the same dimension.

9



10 CHAPTER 1. INTRODUCTION

Let D be a Dirac-type operator on M. Then one can define the twisted Dirac operators D, and Dg obtained
by twisting the operator D by the canonical flat bundles corresponding to the representations o and (3,
respectively. Then the APS p-invariant is defined as

Pla—p) (D) = n(Da) — n(Dpg)
It has the following remarkable properties:

1. Let D = D*9" be the signature operator on M. Then pj,_g(D**9") does not depend on the metric that
is used to define D*%9". |[APS2:7§]

2. If M is spin and D = ) is the spin Dirac operator then pp,_g)(f) is constant on the path connected
components of the space of metrics of positive scalar curvature on M. [APS2:7§]

3. (a) If T is torsion-free and the maximal Baum-Connes assembly map
tmaz : K (BT) — K, (C*T)

is an 1som0rphlsnﬂ then pp,_ m(DS“?") only depends on the oriented I-homotopy type of (M, f : M — BT).
(see [Ne:79], [Ma:92], [We:88], [KeL:00])

(b) under the same assumptions as in 3(a), for the spin Dirac operator J) on a spin manifold with a metric
of positive scalar curvature, po—g)(#) vanishes. [APS2:7§]

The APS p-invariant was generalized by Cheeger and Gromov in [ChGr:85] to the case of coverings MM ,
using the L2-trace defined by Atiyah in |At:76] to prove the famous L2-index theorem. An equivalent theorem
was proved by Singer [Si:77]. Atiyah used the von Neumann algebra of I-invariant operators on L*(M) which
carries a semifinite faithful normal trace T'rr, to define the index of the lifted Dirac operator on L2(M). Using
this trace instead of the usual one in the integral formula for the n-invariant one obtains the L?-n-invariant

for the lifted operator D:
- 1

N2y (D) = )/ 2 pp(De 0% dt

r(1/2

Notice that the spectrum of D is not discrete in general and hence the convergence of the integral at zero
is a non-trivial matter, which follows from a deep estimate of Bismut and Freed (see |BiFr:86]). Then the
Cheeger-Gromov p-invariant is defined as

p(2)(D) = n2)(D) — n(D)

The Cheeger-Gromov p-invariant again turned out to be a nice invariant with many stability properties. Let
us list a few of them. Let D**9" denote the signature operator on M and D#i9™ its lift to M. We have

L. p2)(D*™) does not depend on the metric on M used to define D*9" |[ChGr:85|.

2. If T' is torsion-free and satisfies the maximal Baum-Connes conjecture, then p(s) (D*%") depends only on
the oriented homotopy type of M ( [Ke:00], [PiSch1:07]).

3. Let M be a compact oriented Riemannian manifold of dimension 4k + 3,k > 0. If w1 (M) has torsion, then
there are infinitely many manifolds that are homotopy equivalent to M but not diffeomorphic to it: they are
distinguished by p(2)(D*9"). (see |ChWe:03])

4. For a spin manifold M and D = J) the spin Dirac operator we have the following properties:

(a) p(J) is constant on the path connected components of the space of metrics of positive scalar curvature
RT(M) on M. [PiSch2:01]

lhere BT is the classyfying space for I' and C*T" is the maximal C*-algebra of I", the left side of the arrow is K-homology
for spaces while the right side is the K-theory for C*-algebras
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(b) If M is of dimension 4k + 3, R*(M) is nonempty and I' has torsion, then M has infinitely many
different I'-bordism classes of metrics with positive scalar curvature, the different classes are distinguished
by p(P).|[PiSch2:07]

(c) If T is a torsion-free group satisfying the maximal Baum-Connes conjecture then for a spin manifold with
metric of positive scalar curvature g, p(P,) = 0.[PiSch1:07]

In the 1970’s Alain Connes founded the subject of noncommutative geometry and one of its successful
applications was in the theory of foliations. In [Co:79], he generalized the Atiyah-Singer index theorem to
Dirac operators acting tangentially on the leaves of a measured foliation, proving the so called measured index
theorem. Ramachandran |[Ra:93] extended this work by proving an index theorem on foliated manifolds with
boundary and defined the foliated n-invariant associated with the leafwise Dirac operator on the foliation. He
showed that, like in the classical case, the foliated n-invariant appears as the error term in the formula for the
index given by Connes. Independently, Peric [Pe:92] has defined the n-invariant of the Dirac operator lifted
to the holonomy groupoid. As we shall see, the techniques of Peric and Ramachandran extend immediately
to define the foliated n-invariant on the monodromy groupoid G of a foliation. Thus, we have a definition of
the foliated p-invariant as the difference of two n-invariants on the monodromy groupoid of the foliation and
on the leaves of the foliation.

In this thesis we have studied the n-invariant on the leaves of an oriented foliationd endowed with a holonomy-
invariant transverse measure A, and on its monodromy groupoid G. The p-invariant is then defined as the
difference of these two quantities and we study in this thesis its stability properties extending the ones known
for the classical cases, i.e. for the Atiyah-Patodi-Singer invariant and for the Cheeger-Gromov p-invariant.
We now describe more precisely the results obtained in this thesis.

1.1 Part I: Foliated Atiyah’s theorem and the Baum-Connes map

Using the pseudodifferential calculi developed by A. Connes [Co:79], and extended by Nistor-Weistein-Xu
INWX:99], and Monthubert-Pierrot [MoPi:97] to almost smooth groupoids, we have given a proof for a
generalization of Atiyah’s L2-index theorem to foliations. More precisely, we prove the equality of different
functionals, induced by traces, on the image of the Baum-Connes map. This latter equality is crucial in the
proof of the homotopy invariance of the p-invariant. Although this theorem is known to experts, we couldn’t
find any published proof in the literature.

By using semifinite, faithful normal traces, 7* and 7';}-, associated to the invariant measure A on the cor-
responding groupoid von Neumann algebras with coeflicients in a longitudinally smooth continuous vector
bundle E, denoted by W*(G, E) and W*(M,F, E) [Co:79], one defines the measured indices Inds (D) and
IndA(ﬁ) of the Dirac operator acting on the leaves and of its lift on the monodromy groupoid, respectively.
These are defined as follows

Indy (DY) = 72(7%) — 72(77) and Indp(DV) = 72(x ") — 72(x7)
here D = 0 D~ and D = 0 D- ith respect to the Zs-grading, and where 7+ are the
wher ={ p+ o n =l p+ o with resp o-grading, and where 7=~ ar
projections onto the L2-kernels of D*, and similarly for D. The ‘Foliated Atiyah’s theorem’ then states the

equality of these two indices.

Theorem 1.1.1 (Foliated Atiyah’s theorem). Inda (D) = Inda (D)

In the process, we also reprove the analogue of Calderon’s formula in our geometric setting. To see the relation
between this theorem and the Baum-Connes map for foliations, recall the now classical maximal Hilbert C*-
module &,, associated to a foliation (M,F) (cf. [HiSk:84], |[CoSk:84],|C0:94],|BePi:08]). The lifted Dirac

2in the sequel all foliated manifolds are assumed to be oriented
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operator D on the monodromy groupoid induces a self-adjoint, unbounded, regular Fredholm operator D,,
on &, whose K-theoretic index class Ind(D,,) lies in the K-theory of the C*-algebra of compact operators
on the Hilbert C*-module K(&,,). By the Hilsum-Skandalis stability theorem, this index class corresponds
to a class ind(D,,) in the K-theory of the C*-algebra of the monodromy groupoid C*(G). Then we have,

Proposition 1.1.2. We have the following equalities:
72 0 77 (ind(Dyn)) = Ind*(D) and 72 , o 72" (ind(Dy)) = Ind*(D)

where w79 and ©° are the regular and average representations of C*(G) in the two groupoid von Neumann
algebras (see section[2.3 for the definitions).

Therefore, when the groupoid is torsion-free, we can reformulate our theorem as follows.

Theorem 1.1.3. The functionals induced by the reqular and average representations coincide on the image
of the mazimal Baum-Connes map

Mmaz - KO(Bg) — KO(C*(Q))

1.2 Part II: Stability properties of the foliated p-invariant

Using the traces on the von Neumann algebras W*(G, E) and W*(M, F, E), the foliated n-invariants are
defined as:

A 2792 272
ngz(D) / A (D exp(—t*D?))dt and n / Dexp —t“D*))dt

That the integrals are well-defined follows from the following proposition which is a consequence of a foliated
Bismut-Freed estimate.

Proposition 1.2.1. The functions t — 72(Dexp(—t>D?)) and t +— 78(Dexp(—t?D?)) are Lebesgue
integrable on (0, 00).

Therefore the foliated n-invariants are well-defined.

Definition The foliated p-invariant associated to the longitudinal Dirac operator D on the foliated manifold
(M, F) is defined as }
MD; M, F) = (D) - (D) (12.1)

Notice that we use the monodromy groupoid and hence p(D;M,F) will not be trivial in general. For
a foliation of maximal dimension, i.e. with one closed leaf M, the foliated p-invariant coincides with the
Cheeger-Gromov p-invariant [ChGr:85]. For a fibration of closed manifolds M — B with typical fiber F, the
foliated p-invariant with respect to a given measure A on the base B, is simply the integral over B of the
p-function |[Az:07]. Lastly, for foliations given by suspensions, the foliated p-invariant coincides with the one
introduced and studied in [BePi:08§].

Extending to foliations the proof given for the Cheeger-Gromov invariant in |[ChGr:85], we have been able
to prove that the p-invariant p®(M, F, g) associated to the leafwise signature operator is independent of the
leafwise metric g used to define it. So we have,

Theorem 1.2.2. p*(M, F,g) = p* (M, F) does not depend on the leafwise metric g.

As a corollary, we also establish the following generalization of a classical Cheeger-Gromov theorem.
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Theorem 1.2.3 (Diffeomorphism invariance). Let f : (M,F) — (M',F'") be a leafwise diffeomorphism
of foliated manifolds. Let f.A denote the holonomy-invariant transverse measure induced on (M', F') (see
subsection[2.2.2). Then we have,

pA(Mv}-) = pf*A(MIv]:I)

1.3 Part III: Hilbert-Poincaré complexes for foliations

In their work on mapping surgery to analysis, Nigel Higson and John Roe have given an appropriate frame-
work of Hilbert-Poincaré (abbreviated HP) complexes (cf. |HiRoL:05],[HiRolIL:05],[HiRolIII:05]). They define
HP complexes as complexes of finitely-generated projective Hilbert C*-modules on a C*-algebra A with
adjointable differentials, and an additional structure of adjointable Poincaré duality operators that induce
isomorphism on cohomology from the original complex to its dual complex. Associated to an HP-complex
there is a canonically defined class in K;(A), called the signature of the HP-complex. It is shown in [HiRoI:03]
that a homotopy equivalence of such complexes leaves the signature class invariant. Moreover, an explicit
path connecting the representatives of the two signature classes in K7(A) is constructed.

In this section our goal is to construct such an explicit homotopy equivalence in the case of HP-complexes
associated to leafwise homotopy equivalent foliations. Although the homotopy invariance of the signature
index class for foliations is well-known [KaMi:85], [HiSk:87], an explicit path connecting the two signatures
has not yet appeared in the literature. Such a path will be crucial in the construction of the ‘Large Time
Path’ in Chapter [, which is an important step in the proof of the foliated homotopy invariance of p* (M, F),
see [Ke:00; [Kel:00; [BePi:08].

Notice that even in the K-theory proof of the homotopy invariance of the Cheeger-Gromov invariant [Ke:00],
it is important to extend the Higson-Roe formalism to deal with countably generated Hilbert modules and
regular operators. Moreover, in the case of foliations, we needed to extend it further to cover homotopy
equivalences of HP-complexes on Morita-equivalent C*-algebras.

For a foliated manifold (M, F (p)) with a complete transversal X we associate the HP-complex
g%d_x)g)l(d_x,...d_x,gg(

where £X is the completion of C°(Gx,r* (A" T*F)) with respect to a C*(G¥)-valued inner product (see
section B.3.0)). The Poincaré duality operator, denoted T, is induced on % by the lift of the Hodge *-
operator on Gy, and dy is the regular operator induced by the lift of the de Rham differential to Gx. So the
HP-complex, denoted (£x,dx,Tx), consists of Hilbert modules on the maximal C*-algebra C*(G¥). Now
consider a leafwise homotopy equivalence between two foliated manifolds f : (M, F) — (M',F'). Let X
(resp. X’) be a complete transversal on (M, F) (resp. (M’,F')). Denote the maximal C*-algebra C*(G% )
(resp. C*(G5X")) as AX (resp. AX,). Then we can give a stepwise description of the results of this section.

Step I: Tensor product with Morita modules

Since the C*-algebras A% and A§; are rarely isomorphic we cannot use directly the Higson-Roe formalism,
as their definition only considers HP-complexes on the same C*-algebra. To overcome this problem we
exploit the fact that since the foliations are leafwise homotopy equivalent the C*-algebras A% and A%: are
nevertheless Morita-equivalent, and so there exists an explicit Morita bimodule which implements the Morita
equivalence. In the first two subsections of Chapter [l we extend some constructions from [CoSk:84] and
[HiSk:84] and define a Hilbert C*-module £%,(f) which is an A¥X-A%, imprimitivity bimodule. Therefore
the interior tensor product of the Hilbert C*-modules £% with £%,(f) allows us to form a HP-complex

(Ex @ EX(f),dx @ I, Tx ®I) on AX,:

£% @ EX(f) 8L gl w X (f) 8L .. LBl er o £X,(f)
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Consequently, we can now define out of a leafwise homotopy equivalence, a homotopy equivalence between
the complex (Ex ® £ (f),dx ® I, Tx ® I) and the complex (€., d%., Tx) associated to (M', F', X'), since
they are now on the same C*-algebra. We note that €% ® £, (f) is isomorphic to a certain Hilbert A§:-

module SX’,IC( /) which implements the Morita equivalence between the C*-algebras C*(G, A* T*F) and A%,
and which is more convenient to work with. We denote by (€Y, (f),ds, Tf) the complex

EVOF) 2 EVH(f) 2 EVP(F)

Wherevl;f correspond to T'x ® I and dy correspond to dx ® I, under the isomorphism between E}“( ®EX(f)
and €3 (f).

Let the signatures of the complexes (£x,dx, Tx) and (EX,(f),ds,Ty) in K1(A¥) and K1 (AX,) be denoted
as 0(Ex,dx,Tx) and o(EX,(f),dy, Ty), respectively. Then,

o

Proposition 1.3.1. Let M : K, (AY) — K1(AX,) be the isomorphism induced by the Morita equivalence
between AX and A%,. Then we have

M(o(Ex,dx,Tx)) = o(EX(f),ds, Ty) in Ki(AX)).

Step II: Construction of the homotopy equivalence

We now proceed to explain how we construct an explicit homotopy equivalence between the complexes
(EX/(f),ds, Ty) and (E%,,d,, Txs). The leafwise homotopy equivalence f allows us to construct a chain
map

By €% — EX @ EX(S),
which is our desired homotopy equivalence. We first use a Poincaré lemma adapted to this context and prove
the following:

Proposition 1.3.2. With the above notations, Z; induces an isomorphism on unreduced cohomology between

the complexes (E%,,d',, Tx:) and (EX,(f),ds,Tf).

Moreover, if we construct in the same way chain maps =; and Zf,, for any leafwise homotopy inverse
g: M — M to f, then we prove that the following diagram commutes

(1
<

£ £ ® EX(f)

Efog Eg@1
re X' I8 e X X’
EX @Ex/ (fog) - ER & (f)@Ex (9)

where Q: EX,(fog) — EX.(f) ® X (g) is some explicit isomorphism. Now the main theorem of this section
can be stated as:

Theorem 1.3.3. As per the notations above, there is an explicit homotopy equivalence between the HP-
complezes (EX,(f),dy, Ty) and (E%.,d'y,, T%.) which is associated to the leafwise homotopy equivalence f.

As an immediate corollary we get the leafwise homotopy invariance of the index class of the leafwise signature
operator on a foliation (M, F) (cf. [HiSk:83], [KaMi:85] ), but more importantly an explicit path connecting
the signature representatives.

Corollary 1.3.4. Let f: (M,F) — (M',F') be a leafwise homotopy equivalence of foliated manifolds. Then
ind(Dsign) = ind(’Dgign) in K1(C*(G)).
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1.4 Part IV: Application to homotopy invariance

Finally, as an important application of our results on HP-complexes on foliations, we would like to extend
Keswani’s proof [Ke:00] of the homotopy invariance for the foliated p-invariant when the monodromy groupoid
is torsion-free. We recall here that the homotopy invariance of the p-invariant was first conjectured by Mathai.
The first results in this direction for classical Atiyah-Patodi-Singer p-invariants were obtained by Neumann
[Ne:79], who proved the homotopy invariance of the APS p-invariant when T is a free abelian group and Mathai
in [Ma:92] who proved it for Bieberbach groups. When I is torsion-free and satisfies the Borel conjecture,
the homotopy invariance of the p-invariant was proved by Weinberger [We:88]. The homotopy invariance
of Cheeger-Gromov p-invariants have been studied by Chang|Ch:04], Chang and Weinberger |[ChWe:03],
Piazza and Schick [PiSch1:07], and Keswani [Kel:00], [Ke:00]. The results of Keswani and Piazza-Schick were
improved by Chang |[Ch:04] who used topological methods to prove the homotopy invariance of Cheeger-
Gromov p-invariants under the condition that I' is torsion-free and satisfies the rational Borel conjecture.
For a recent reformulation of Keswani’s results exploiting links with surgery theory, see Higson and Roe
[HiRo:10]. The case of foliated bundles has been dealt with by Benameur and Piazza in [BePi:08], and
the homotopy invariance is established for a special class of homotopy equivalences and conjectured for the
general case. Their proof extends the techniques of Keswani for foliated bundles. For the sake of clarity,
we recall the skeleton of the proof of the homotopy invariance of classical p-invariants given by Keswani
in [Ke:00]. Let then f : M — M’ be an oriented homotopy equivalence and assume that I' = 7 (M) is
torsion-free and satisfies the maximal Baum-Connes conjecture. Let D and D’ be the signature operators on
M and M’, respectively.

e Using functional calculus for the regular self-adjoint operator D,,,, which is induced by D on the maximal
Mishchenko-Fomenko Hilbert module &,,, Keswani constructed a path Ve(Dy,) := (¥¢(Dim))e<t<1/e of
unitaries acting on &, such that

lim ((wr 0 77 — wo nl") (Ve(D))) = 5p(D)

where 7. (Ve(Dy,)) and 78" (Ve(D,y)) are the push-forward paths in the Atiyah von Neumann algebra
B(L*(M, E))" and the algebra of bounded operators on the Hilbert space L?(M, E), respectively and
wr and w the Fuglede-Kadison determinants on B(L2(M, E))' and B(L*(M, E)), respectively. Hence

we get with obvious notations

. V(D) 0

_ N — reg av e\Fm

(D) = D) =2 iy (o omzer —womery (P00 O )

e Using the Higson-Roe formalism of Hilbert-Poincaré complexes, Keswani constructed his ‘Large Time
Path’ LT, = (LTc(t))1/e<t<2/e composed of unitaries such that

2 _ 1 _ /l/}l/ﬁ(Dm) 0 : reg av -
LTE(Z) = IdSméB&’naLTe(g) = < 0 r(—Dl) and l%(wF om® —wonl")(LT.) = 0.

e Using injectivity of the maximal Baum-Connes map, he then constructed his ‘Small Time Path’ ST, =
(STe(t))e/2<t<e of unitaries such that, up to stabilization,

€ _ _ we(Dm) 0 . reg av _
STE(i) = ldg,,ae;,,5Tc(e) = < 0 V(=D ) > and ll_r%(wpow* —womy’)(ST.) =0.

Therefore Keswani ended up with a loop of unitaries which represents, through Morita equivalences, a class

in K1(C},,.T'). Using Atiyah’s theorem and surjectivity of the maximal Baum-Connes map, he was then able

to deduce the theorem.
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The goal of this section is to explain how our techniques can be applied to tackle, following the same lines,
the leafwise homotopy invariance of the foliated p-invariant. We first interpret the foliated 1 as a generalized
determinant (& la Fuglede-Kadison) of a path of operators on the maximal Connes-Skandalis Hilbert module.
To do this, we prove the following

Proposition 1.4.1. Let ¢ : R — R be a Schwartz function. Then ¢(Dy,) € K(En) and induces a trace
class operator under both traces ™ o Treg and T;-\ 0 Tay. Moreover, with simplified notations, compatibility of
functional calculi allows to deduce the following identities:

™ 0" (p(D)) = T (9(D)) and 72 0 7 (p(Dyn)) = T2 (0(D)).
Using this proposition, we deduced the first item, namely, again with simplified notations, that

1
lim (w0 770 — w0 7 (Ve(Dyn)) = 5p4(D),
€e—
where w® and wﬁ}_- are Fuglede-Kadison determinants in the regular von Neumann algebra and the foliation
von Neumann algebra, respectively.

As per the second item of Keswani’s proof, we apply our results on the HP-complexes for foliations and
define the Large Time Path LT, = (LT(t))1/e<t<2/e Which now acts on the direct sum of Hilbert modules

8)‘;’,k( f) @ &". In order to define and estimate the determinant of this Large Time Path, we were led to
consider appropriate von Neumann algebras W*(f) and W (f) on which we have defined semi-finite normal

positive traces 7o ¢ and 73, 7 and therefore determinants @A and u?;/’f , where A’ is the holonomy-invariant
measure on the foliation (M’, F’) which is the image under f of A. Using the Morita-equivalence induced
by the leafwise homotopy equivalence, we replace the Hilbert module &,, by the Hilbert module £¥,(f) and
consider the operator Dy on £Y,(f) corresponding to Dy,,. We then prove that

(@S onfren) (VDI O ) =t o m (WD) - (0 o mANVi(DL)

where 71" is the push-forward to the von Neumann algebra W*(f). The same relation holds with the
average representations and the von Neumann algebra Wi (f). Notice that we have the crucial relation

(D) = 2 x Tim (@ F o pfres — oS o pfavy [ Ve(Dr) 0
pa(D) — pa(D") =2 x ll_I%(w O T wr ' omy ™) < 0 V.(=D.)

where 7*" is the push-forward to the von Neumann algebra Wi (f). To end the proof of the second item,

we then estimate ) ,
1im(1DA £ o wf’reg - d)%”c o wf"“’)(LTe) =0.

e—0

Finally, the last item is too long and tedious to be included in the present thesis and turned out to be of
deep independent interest in its own. It will be treated in the work in progress [RI].



Chapter 2

Background on foliations and
Operator algebras

2.1 Foliated Charts and Foliated Atlases

We now give the formal definition of a foliation using foliated charts and foliated atlases. We refer the reader
for instance to |[CaCol:99; MoSc:06; IMkMr:03] for more details about the definitions and properties briefly
reviewed in this section.

Definition Let M be a smooth compact manifold of dimension n without boundary. A foliated chart on M

of codimension ¢ < n is a pair (U, ¢) where U C M is open and ¢ : U S LxTisa diffeomorphism, L and
T being products of open intervals in R™~? and RY, respectively.

The sets P, = ¢~ (L x {y}) for y € T are called the plagues of the foliated chart (U, ¢).

Definition A smooth foliated atlas of codimension ¢ is an atlas U = {U,, @ }aca of foliated charts such
that the change of charts diffeomorphisms are locally of the form:

Pap (T, y) = Pa 0 05 (2, Y) = (9ap(,Y), hap(y))

where z € R"79,y € R? and gog, hapg are smooth functions. We call such an atlas coherently foliated.

Definition Two foliated atlases U and V are called coherent if both &/ and V have the same codimension ¢,
and U UV is again a foliated atlas of codimension q. We denote this relation as U ~ V.

Lemma 2.1.1. Coherence of foliated atlases is an equivalence relation.

Proof. See [CaCol:99, Lemma 1.2.9] for a proof.

Definition A foliated atlas is called regular if:

(i) for each a € A, U, is compact in a foliated chart (Wa, %) and |y, = G-

17
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(ii) {Uq}aca is a locally finite cover.

(iii) The interior of each closed plaque P C U, meets at most one plaque in Ug.

Lemma 2.1.2. Every foliated atlas has a coherent refinement which is regular.

Proof. We refer the reader to |[CaCol:99, Lemma 1.2.17] for a proof.
O

Definition A foliation F on M is a pair (M,U) such that U is a maximal regular foliated atlas of M. The
leaves of F are locally given by the plaques of a foliated chart (U, ¢) of . We will denote by (M,F) a
foliation F on M.

Definition The set of points in (M, F) such that for any two elements z,y € M belonging to this set there
exists a sequence of foliated charts Uy, Us, .- , U and a sequence of points x = p1,pe,...,pr = y such that
pj—1 and p; lie on the same plaque in U for j = 2,--- , k is called a leaf of the foliation (M, F).

Remark. Fach leaf is a topologically immersed submanifold of M.

If F is a foliation of M, then the vector subspace of T, M for x € M given by the vectors tangent to the
leaves of the foliation forms a vector subbundle of T'M, called the tangent bundle of the foliation, and is
denoted TF. Conversely, by the Frobenius theorem [CaCol:99, Theorem 1.3.8], given a completely integrable
subbundle E of T M, one can define a foliation M whose tangent bundle T'F is exactly E.

2.1.1 Holonomy

Let (M,F) be a foliated manifold. In informal terms, holonomy measures the magnitude of deviation of
leaves close to each other, i.e. how they grow apart, wind around or come closer together as one “travels”
along the leaves. The concept comes from the notion of the “first return map” given by Poincaré in his study
of dynamical systems.

Let U = {U;}ier be a regular foliated atlas of M. Consider a continuous leafwise path « : [0,1] — M
from v(0) = z to y(1) = y. Let 0 = tp < t1 < t2 < ... < t, = 1 be a partition of [0, 1] such that
Y([ti—1,;]) lies completely in a foliated chart. We denote the local transversals of the foliated chart around
z and y as T, and T, respectively. Since U is a regular atlas, every plaque in a foliated chart U; meets at
most one plaque of any other foliated chart that intersects U;. Shrinking, if necessary the foliated charts
which intersect v, we can ensure that each plaque of the foliated chart around ~([t;—1,t;]) meets ezactly
one plaque of the foliated chart around ~([¢t;, ¢;+1]). Therefore, if U;,,U;,, ..., U;, are foliated charts covering
¥([to, t1]), Y([t1,t2]), ooy Y([tn—1,tn]), We get a one-to-one correspondence between plaques of U;, and plaques
of U;,,, thus inducing a diffeomorphism H (vy) between the local transversals T, and T}, (as long as the foliated
charts are small enough).

Then the germ of H(v) at z is called the holonomy map from x to y associated to the leafwise path . The
holonomy map does not depend on the choice of the partition of [0, 1]. Moreover, if v’ is another path from
x to y which is fixed end-point homotopic to 7, then the germ of H(7) is equal to the germ of H(y"). Thus
the holonomy map only depends on the fixed end-point homotopy class of leafwise paths from x to y.

2.1.2 Groupoids associated to a foliation

We first recall the definition of a groupoid.
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Definition A groupoid G is a couple (G, G(9)), where G(©) = X is the space of units and G(!) is the space
of arrow 7 : X — X together with the following structure maps:

e the inclusion map A : X — G,
e the inverse map i : G — GO,
e the range map r: G — X.
e the source map s : GV — X.

e the composition map m : Gél) — X, where Gél) is the set of pairs of composable elements in GV, (v, /)
such that r(y') = s(v).

The above maps verify the following conditions:

L r(A(x)) = s(A(x)), and m(u, A(s(u))) = u = m(A(r(u)), u).

2. r(i(u)) = s(u), and m(u,i(u)) = A(r(u)), m(i(u),u) = Als(u).
3. s(m(u,v)) = s(v) and ,r(m(u,v)) = r(u).
4

. m(u, m(v,w)) = m(m(u,v),w) if r(w) = s(v) and s(u) = r(v).

A groupoid is called topological (respectively differentiable of class C*) if X and G(!) are topological spaces
(resp. manifolds of class C*), A is a continuous map (resp. of class C*), m, r and s are continuous (resp.
submersions of class C*, and i is a homeomorphism (resp. diffeomorphism of class C*).

If X and G are smooth manifolds and all the structure maps above are smooth, the groupoid is called a
Lie groupoid.

Let (M,F) be a compact foliated manifold without boundary. There are various groupoids that one can
associate to (M, F). We give here the ones that are most important for us.

1. Monodromy groupoid : The monodromy groupoid G is the set of homotopy classes with fixed points
of leafwise paths on (M, F). The set of units G is the manifold M, the set of arrows G(!) is given by the
homotopy classes with fixed end-points [y] of leafwise paths (i.e. paths that are completely contained in a
single leaf). The inclusion map A is given by the class of the constant path at a point, the inverse map is
given by the homotopy class of the revsersed path, the source and range maps are the starting and ending
points of a representative in the homotopy class, and composition is given by the homotopy class of the
concatenated path.

2. Holonomy groupoid: It is very similar to the monodromy groupoid, we just replace ‘homotopy’ by
‘holonomy’ in the above description of the monodromy groupoid. Therefore, the holonomy groupoid is a
quotient of the monodromy groupoid.

3. Leafwise equivalence relation: It is defined as the equivalence relation given by following relation on
M: x ~ y if and only if z and y belong to the same leaf. So it is the set of pairs {(x, y)|z,y in the same leaf}.
We have A(z) = (z,2),r(z,y) = z,s(z,y) = y,i(z,y) = (y,x) and the composition of two pairs (z,y) and
(u,v) is given by the pair (x,v) if y = u. This is only a Borel groupoid in general (cf. [MoSc:06]).

2.2 Noncommutative integration theory on foliations

Let (M, F) be a foliated manifold. The theory of noncommutative integration given by Connes (cf. [Co:79])
provides a notion of integration on a foliated manifold which takes into account the local product structure of
the foliation. So locally one can ‘put together’ a measure in the direction of leaves and a transverse measure
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satisfying some invariance conditions in a Fubini decomposition inside a foliated chart and then sum over all
charts. In this section we describe this process of integration.

2.2.1 Tangential measures

Definition Let {\;}.cn be a family of measures with A\, a o-finite measure on G,. Such a system is called
right G-equivariant if the following condition holds:

for all ¢ € C.(G), 0 € G, we have,

/ o(8)dAo (8) = / (151N (7)
BEG vEG,

The definition implies in particular that each A, is GZ-invariant. So each measure A\, on G, descends to a
well-defined measure on L, the leaf through x, through the identification G, /G¥ = L,.

Definition A tangential measure is a right G-equivariant family of measures such that for ¢ € C.(G) the
function from M to C given by x +— A\, (¢) = fgw ¢(v)dAz(7y) is Borel measurable.

In the above definition one can ask for C*-continuity rather than just Borel measurability. See |Re:8(] for
more details.

Definition (Haar System) A (right) Haar system on G is a family of measures {\;}zens, satisfying the
following conditions:

(i) Supp()\m) =0y
(ii) (Continuity) for f € Ce(G), z — [5 f(v)dA:(7) is continuous.

(iii) (Right invariance) for all ¢ € C.(G), 0 € Gy, we have,

/ o(8)dAo (8) = / (151 dAy ()
BEG,

YEGy

One similarly defines a smooth Haar system by replacing “continuous” by “smooth” in condition (ii) of the
definition above.

2.2.2 Transverse measures

Definition (|Co:81]) A Borel transversal to a foliation is a Borel subset T of M such that T intersects each
leaf at most countably many times.

Definition (|Co:81]) A transverse measure on the foliation (M, F) is a countably additive Radon measure
on the o-ring of all Borel transverals.

Definition (|Co:81)) A holonomy-invariant transverse measure is a transverse measure A such that for any
leaf-preserving Borel bijection between Borel transversal 71 and T, ¢ : T1 — T (i.e. x € Ty and ¢(z) € T
are on the same leaf) we have A(Ty) = A(T3).
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Definition Consider foliated manifolds (M, F) and (M’, F").

e Two leafwise maps f,g: (M, F) — (M', F') are called leafwise homotopic if there exists a leafwise map
h: (M x1[0,1],F x [0,1]) — (M', F') such that h(.,0) = f and h(.,1) = g.

o Aleafwise map f: (M,F) — (M', F') is called a leafwise homotopy equivalence if there exists a leafwise
map g : (M',F') — (M, F) such that f o g is leafwise homotopic to the identity map in M’ and go f
is leafwise homotopic to the identity map in M.

e We will call (M,F) and (M’',F') leafwise homotopy equivalent if there exists a leafwise homotopy
equivalence from (M, F) to (M',F").

Proposition 2.2.1. Let f : (M, F) — (M',F') be a C°° leafwise homotopy equivalence between foliated
manifolds. Let A be a holonomy-invariant transverse measure on M. Then f induces a transverse measure
f«A on M’ which is also holonomy-invariant.

Proof. Let (U))aca be a distinguished open cover on (M’, F’). Let X/ denote the local transversal of UJ,.
Without loss of generality one can assume that X', N X’g = 0 for o # 3 (cf. [HiSk:84]). Then we can
choose a distinguished open cover (U;);er of (M, F) such that for i € I there exists «(i) € A such that
f(U;) C Ué(l.). Let U; = W; x X;, where X; is transversal to the plaques W;. One can also assume without

loss of generality that the induced map on the transversal f X, — f (X;) is a homeomorphism onto its image

ctf. ook:84|, |BePi: . Let mo ¢ i) — . be the map which projects to the local transversal.
f. |CoSk:84], [BePi:0g]). L o f(X X;(l)b h hich j he local 1
Denote X 1= mq (s (f(X;)). Then it can be easily seen that X’ := Uies X is a complete transversal for
(M, 7).

Now let T” be a Borel transversal on M’. Then locally on U (;( i) T’ is homeomorphic to a Borel subset To’t'(l.)

of X/, which is in turn homeomorphic to a Borel subset T(;(i) of f (X;). Since f is a homeomorphism onto its

image on X, f’l(To’ti) is a Borel subset of X; and we set

FAMT)) = A(fHTL)

Since T" is a disjoint union of such subsets we define f.A(7") as the sum ) f.A(T,,) where the index runs

over all a; such that T'N Uy;) # 0 and To’t(i) is homeomorphic to a Borel subset of f(X;). Then from the
properties of A we see that f.A is a countably additive Radon measure on the o-ring of Borel transversals
on M’.

Now let ¢’ : T{ — T} be a Borel bijection between Borel transversals 77 and T4 in M’. We need to show
that fLA(T7) = f.A(T3). Assume that 77 lies completely in some Uy, ), T3 lies completely in some U/, ),
so that there exist subsets Y/ of X such that T) =Y, for k = 1,2. Then there exist subsets Y;, of F(X5,)
such that Y;, = Yz'k for k = 1,2. The Borel bijection v’ induces a Borel bijection 1) between f‘l(Yi ) and
f=1(Y;,). Now, since A is holonomy-invariant, we have A(f~(Y;,)) = A(f~1(Y;,)). Since by definition we
have f.A(T}) = A(f~'(Yi,)) for k = 1,2, and a general Borel transversal is the disjoint union of such ‘local’
Borel transversals, the result follows.

O

The following corollary is immediate.

Corollary 2.2.2. Let (M,F) and (M',F') be closed smooth foliated manifolds and f : M — M’ a leafwise
diffeomorphism. If A is a holonomy invariant transverse measure on M then f.A is a holonomy invariant
transverse measure on M'.
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2.2.3 Integrating a tangential measure against a holonomy invariant measure

It turns out that holonomy-invariant transverse measure are the right objects of integration against tangential
measures, by exploiting the local product structure of the foliation. The integration process is described as
follows.

Let (vz)zem be a tangential measure and A a holonomy-invariant transverse measure on (M,F). Let
{(Ui, ¢i) }ic1} be a regular cover on (M, F) with each U; & L; x T; having a local transversal T; and plaques
L;. Consider the complete transerval T' = U;e;T;. Let (1;)i;er be a partition of unity subordinate to the
cover U;. Then for any function f € C'(M), we define a functional on C'(M) by the formula:

— (1. t. 4 L. .
A (f) = Z /tieTi L, Vil ta) f (L, tl)d’/ti (Li)dA;(t:)

icl

where VtLi is the restriction of v, ;,) to the plaque through ¢; and A; is the restriction of A to T;.

The above formula is well-defined due to the holonomy-invariance of A and is independent of the choices of
the regular cover and the partition of unity. Therefore this functional defines a Borel measure p on M, which
is expressed through notation as p = [ vdA.

2.3 Operator algebras on foliations

2.3.1 The convolution algebra on a groupoid

Let (M,F) be a foliation. Consider the monodromy groupoid G and the space of compactly supported
continuous functions B, = C.(G) on G.

We fix a Haar system {\;},cam on G. We define the multiplication and involution on B, by the following
formulae:

(f*g)(u) = / . f(v_l)g(vu)d)\r(u) (v), and f*(u) = f(u=!) for any u € G (2.3.1)
VEYr(u)

The Haar system is G-equivariant on the right, i.e. for all ¢ € B, 0 € G/, we have,

J/ o(8)dAo (8) = /f (15 1Ay () (23.2)
BEG.

YEGy

With this the convolution formula [2.3.10] becomes:

U*mwwi/g Fur)g(0) ) (v), u e G (2.3.3)
VEYs(u)

The L! norm on B, is given by

||f||1:sup{sup/ [f(@)|dAz(a), sup [ [f(a™h)|dAe ()} (2.3.4)
zeM JG, xeM JG,
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2.3.2 Representations of B,

Let x € M. We have a representation 7% of B on the Hilbert space of square integrable sections H, =
L?(G., ;) defined as

T (f)(E)(a) = / f(ap™h)E(B)dN. () for f € Be,é € Hy and a € G, (2.3.5)
BEGy
It is easy to check that 779 is a x-representation. Indeed for f, g € B., we have,

T (f * g) =m0 (f) o w0 (g) and m () = (w0 (f)* (2.3.6)

We also consider another representation 7% of B, on H, := L?*(L,,A\Y) = L*(G,/G*, \') given by the
following formula:

= N@e) = [ 3 s wislaiio) (237)
/1 ¥w BeGy

Here, as before, L, is the leaf through = and A* is the leafwise Lebesgue measure induced by the Haar system.

Lemma 2.3.1. For every x € M, w$" is a x-representation.
Proof. We identify L?(L,, A\Y) with L?(G,/G%, A\F). Then, for £ € L*(G,/G%,AF), [a] € G./G* we have,

CEOREOCITEY A A VD S R TSGR CICER

¥ B€G./GE 5€G./GE

We also have,

T (f*9)(E)([a]) = / D (f + 9)(aBO™)E([6]) AN (16])
=/9% pege
/gm/% BeGE
Using the property of the Haar system,

/gm/g Z{/ Flan™)g(nB6~ )X (n) Y([6]) A" ([6])

z Bege
Choosmg v € G and § € G such that n = 4, we have

/ / S Flab~ iy )g(raa0 1N (1)) () ([0])

{ /g F(6-)g(60B0™ YA (oo () (01 AL (1)

7‘(045971)

«/9% gegs =/9% sege
- (a6~ g (v 80~ )E([0])dAF ([7])dA= ([0
/’”/g /z/g BeGe sgzg:mf 79l )5([ ) (7)) ([o1)

/ Jaz / . ST N fad Tty hg(vB 0 e AN ()dAE(8])  (2.3.9)

© B'egy 8'egy

Which is the same as (Z3.8)). We can also check similarly that it satisfies the x-relation.
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2.3.3 (*-algebra of a foliation with coefficients in a vector bundle

Let E — M be a Hermitian vector bundle. Let C.(G, E) be the space of smooth sections of (s*(E))* @r*(E).
So, for v € G, f € C.(G, E), we have f(v) € Hom(E (), Ey(+))-

We have a x-algebra structure on C.(G,E). Let f,g € C.(G,FE). Then, we define the convolution and
involution as

(f*g)(v) = / g FOY™H 0 g()dh (1) (7)) and f*(y) = f(y~1) for y € G (2.3.10)
V' E€Gr(v)

As in the trivial case (E = M x C), we have a representation of BY := C°(G, E) on H, := L?(G,,7*(E), \z)
given by

79 (1)(€)(a) =/ﬁeg F(@BEB)AN(B) Tor f e BE.E €M, andae G, (2:311)

The regular norm on BE is thus given by

[1/1lreq = sup [l (£ (2.3.12)

We define the reduced C*-algebra of the foliation with coefficients in E as the completion of BZ in the regular
norm, denoted by BY, and the maximal C*-algebra BE its completion in the maximal norm given by

[1/llmaz = sup ||7(f)]|

where the supremum is taken over all L'-continuous *-representations of B.. Recall that a *-representation
is called L'-continuous if it is continuous with respect to the L' norm on B..

2.3.4 Von Neumann Algebras for foliations

For each desingularization of the foliation (M, F) that associates a groupoid to the foliation, one can define
von Neumann algebras on the groupoids which reflect many geometrical properties of the foliation. More
importantly, operators arising in geometric settings that act on sections on the groupoids will be naturally
associated with these von Neumann algebras using the “affiliation” relation. We will work with von Neumann
algebras associated to the leafwise equivalence relation R and the monodromy groupoid of the foliation. We
define them as follows:

The regular von Neumann algebra

Definition The regular von Neumann algebra W*(G) can be described as the space of measurable families
of operators T' = {T} } zenr such that for each x, T, € B(L?*(G., \z)) and the following conditions hold:

e The mapping z — ||T;|| is measurable and A-essentially bounded, i.e. Ess sup,, ||T;|| < co.

e We have for z,y € M,y € GY:Ty = R, o T, o R,-1 where R, : L*(G,, \;) — L*(Gy, \y) is given by

(Ry&)(a) = &(ay) V¢ € L* Gy, Ao) a € Gy (2.3.13)
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Remark. For the definition of measurable families of operators we refer the reader to [Di:5%, Chapitre 2,
Sections 1 and 2].

Lemma 2.3.2. The image of the representation ©"°9 lies in W*(G).

Proof. For f € C.(G) the family of operators (m;(f))zenm is measurable, hence from [Di:57, Proposition 1,
p.156] we get that z +— ||7,(f)|| is measurable. Now for o € G,,7 € G¥ and ¢, € L*(G,), we have

(Ry om0 (f) 0 Ry=1) (&) () (3 (f) 0 Ry=1)(&y) (ay)
[ a0 6,0 )
Uszing the invariance of the measure, we get

; Flan™)&, (n)dAy(n)

= T () &)(a)

Therefore the above computation together with the L!-continuity of 77¢ shows that the image of 779 is in

W*(G).
O

Remark: As can be checked easily, the regular von Neumann algebra of G W*(G), actually coincides with
the weak closure of the image of L'(G) under 779 in B(L?(G)). See |Co:79)].
The foliation von Neumann algebra

The foliation von Neumann algebra of R is defined as the space of measurable families of operators T' =
{T.}zenr such that for each z, T,, € B(L?(G,/G%, A\¥)) and the following conditions hold:

e The mapping z — ||T;|| is measurable and A-essentially bounded.
e We have for z,y € M,y € GY
Ty=RyoT,oR,, (2.3.14)

where R, : L2(G, /G, \l) — L*(G,/GY, A) is given by

(Ry&)([e]) = &([an]) VE € L*(G. /G2, M), a € Gy (2.3.15)

Let L2([G]) be the field of Hilbert spaces (L?(G./G%))wenr-

Lemma 2.3.3. The image of the representation 7 lies in the von Neumann algebra W*(M, F).

Proof. For a € G,y € GY and &, € L2(gy/g;5), we have
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(Ry 02 (f) 0 Ry-1)(&y)([a]) = (w8 (f) © Ry-1)(&y) (Jay])
= Jo. jgz Lpegs F(avBO~1)&, [0y~ ))AN([6))

Using the invariance of the measure, we get

= o jor Spegs FlvBy 0 )&y ()N () (23.16)
= Jo, g1 gy FaBn™)&, ([n))dr!([)
= 72" (£)(&) (o))

O

We define similarly the regular and foliation von Neumann algebras associated to a vector bundle £ on M,
and we denote them by W*(G, E) and W*(M,F; E).

2.3.5 Traces on foliations

Let U = (U;)ier be a regular covering of M (i.e. composed of distinguished charts) and (¢;);cr be a partition
of unity subordinate to U on M. Let T; be the local transversals at U; ~ L; x T;. We also assume that there
is a holonomy invariant transverse measure on M which we call A. We will now define traces on the von
Neumann algebras W*(G, E) and W*(M, F,E). To this end, let T' = (T1)cnm/7 be a positive element of
W*(M,F,E). Then, we define the traces as follows

Definition We define the trace 7';}- on W*(M,F,E) as

T}X(T) = Z/TTI(MCﬁiMTIM(ﬁ}m)dA for T € VV*(]\47 F, E)+ (2317)
el

where M 5172 denotes the multiplication operator by ¢3 / 2, Tr, is the usual trace on the Hilbert space

B(L?*(L,, E|L,)), and the integration procedure is done according to [MoSc:06, Ch. IV, p.90], since (T'r, (gb;/QTxgb;/z))zeM
is a family of tangential measures.

We also have a trace 7 on W*(G, E)

Definition Let T = (Ty)zenm be a positive element in W*(G, E). Then define

™T) = Z/Tm(@l/QTIGEf/Q)dA (2.3.18)

icl

Whel"e~(]§i € C>(G) is supported in a compact neighbourhood W; very close to the diagonal G(*) in G such
that ¢;(y) = ¢i(r(y)) on W; C G, Tr, is the usual trace on B(L?(G,,r*E)) and as in the previous case

Tr, (q@j / 2T$q~5} / 2) is a well defined tangential measure on the leaf through x and is independent of the choice

of z (cf. [MoSc:06, Chapter VI, p.149]). The compact neighbourhood W; of G above is chosen such that
for x € U;, ¢pi(y) =0 for v € GE v #e.
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Proposition 2.3.4. (1) 74 is a positive faithful normal semi-finite trace on W*(M, F, E).

(2) T is a positive faithful normal semi-finite trace on W*(G, E).

Proof. We prove the assertions in (1).

e Positivity: Let T € W*(M,F; E)*. Then T = S*S for some S € W*(M, F; E). So we have Ty, = S35,
A-a.e. Then, M¢}/2TLM¢}/2 = Md);/QSZSLMq&}/z = (SLM¢}/2)*(SLM¢1/2) > 0. So by the pOSitiVity of the

trace T'r we get positivity of 7';}-.

e Faithfulness: Let T € W*(M,F,E)T be such that 78(T) = 0. Then we have TTL(M%;/QTLM@/Q) =
TTL(TL1/2M¢ZTL1/2) = 0, A —ae.. Then TLl/QMd,iTLl/2 = 0, A-a.e. follows from the faithfulness of T'r.
Therefore, 0 = Y., Tt/ *My, T} = T}/ S0,y My, T}/* = Ty, Hence T = 0.

o Traciality: Let Ty, T» € W*(M, F, E)*

T\%(T:[TQ) = Z/TTL(M¢1/2T1,LT2,LM¢1/2)dA

el

- Z/TTL(MWQTLLZM%TQ,LMWQ)dA
i€l ‘ jel ‘

= Z Z/TTL((M¢1/2T17LM¢1/2)(M¢1/2T27LM¢1/2))CZA

i j j i

i€l jel

= Z Z/TTL((M¢1_/2T27LM¢}/2)(M¢}/2T17LM¢1‘/2))CZA ( by the traciality of TI‘)
el jel ! ! ! !

= Z Z TTL(M¢1_/2T27LM¢iT17LM¢;/2)dA
J J

i€l jel
- Z/TTL(M¢;/2T27LZM@TLLM(b;/z)dA
jel icl
= Z/TTL(M¢1/2T27LT11LM¢1/2)CZA
- i i
jel
= XTTy) (2.3.19)

e Normality: Let A, / A be a net of positive operators in W*(M,F,E)*. Then from the normality of
the trace T'r, we know that TT(qu}/zAqub}/z) /! TT(qu}/zAqu}/z). So we can use the ‘convergence from

below’ theorem of Lebesgud] to show that ™™(Ay) / TA(A).
e Semifiniteness: This again follows from the semifiniteness of T'r as for any T € W*(M, F, E)™ we can find
a net (M¢;/2T,YM¢;/2),Y€A converging to M¢;/2TM¢;/2 with TT(M¢;/2T7M¢;/2) < 0o. Since one can choose

the complete transversal to be pre-compact, we have 72(T,) < oc. O

Let there be a Zs-grading on E, so that we can write £ = E* @ E~. Then we have two von Neumann
algebras W*(G, E*) of bounded operators acting on L?(G, ET). Denote 74 the traces on W*(G, E*). We
have the following

Iwhich states that for a measure space (M, p) if we have a sequence of measurable functions f, : M — [0, 00] converging
pointwise to f and fn(z) < f(z)Vn € N,z € M, then [ fdu = limp—co [ fndp
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Proposition 2.3.5. Let AT : L?(G,ET) — L*(G,E™), B~ : L*(G,E~) — L?*(G, E™) be bounded positive
operators, and AT B~ be 7 -trace class and B~ AT be Tjr\ -trace class in the respective Von Neumann algebras.
Then,

™(B~AT) =AATB7) (2.3.20)

Proof. To prove2.3.20 we note that W*(G, E*) = e*W*(G, E¥* © E~)e*, with e* projections in W*(G, E
+
E~), and 74 are the restrictions of the trace 7 on W*(G, E* @ E~). We write A = ( 0 4 )

( 0 0 ) A BeW*(G,ET ®E~) . Then,

B~ 0
A D ATBT 0 £ A 0 0
as= (47 5) Bi=(5 pa )

But for the trace 7% on W*(G, E), we know that 72 (AB) = 7 (BA), and we have,
™(AB) = (e~ A*B~e™) = TA(ATB™).
Similarly,
™8 (BA) = 7(B~ A%), thus proving 23200

We now state dominated convergence theorems for traces, following [Sh:, 2.2.4 Theorem 1, p. 54].

Theorem 2.3.6. : Let H be a Hilbert space, S a trace class operator on H,{Ay vy € T'} a net of bounded
linear operators on H such that

(i) there exists C' > 0 such that ||A,|| < C,¥Vy €T,
(11) w-lim, A, = A, where w-lim, A, denotes the weak limit of the net A .
Then, lim, Tr(SA,) = Tr(SA).

Proof. Choose an orthonormal basis (e;);es of H. Then,

Tr(SA,) =Y < SAyeje;>=Y < Aye;,S%e; > (2.3.21)

To prove the result it would suffice to show the uniform convergence of the sum in the last part of 223.2T with
respect to v € I'. To this end, let S = 5152 where 5;,¢ = 1,2 are Hilbert Schmidt operators on H. Then we
have,

| <SAseje; > | =1]<S2A e, 57e; > | < [|S24,¢;]|[S7e5l| (2.3.22)

Using Holder’s inequality for sums, we get for an arbitrary finite subset Ji of J,

S ol<SAve e > < (O 1S4, 11STes )2
jeJ1 JEJ jE€
< 1824, llms(D ] [1Sesl*)?
Jj€J1
< ClISallas (Y |IStes ) (2.3.23)

je1
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where ||.]|gs is the Hilbert-Schmidt norm and we have used the inequality ||SA||zs < ||S||zs||Al|l- Since the
series (3¢ |1S7e;1[?)'/? converges as Sy is Hilbert-Schmidt (therefore so is Sf) the uniform convergence of
the series in 23211 is established. O

Corollary 2.3.7. : If S is a trace class operator on H and {Ax, k = 1,2,...} is a sequence of operators in
B(H) such that the weak limit w-limg_,, A = A, then

klim Tr(SAg) =Tr(SA)

Proof. This follows from the Banach-Steinhaus principle in functional analysis which guarantees ||A|| < C,
and the application of Theorem (Z3.0)). O

We give next a proposition which we will need later in the proof of Theorem ([B.2.2)).

Proposition 2.3.8. If S is a 7"-trace class operator in W*(G, E) and {A,,n = 1,2,...} is an increasing
sequence of positive operators in W*(G, E) such that the strong limit of A, s-lim(A,), = A, for each x € M
for some A € W*(G, E), then

lim 72(SA,) = (5 A)

Proof. Since s-lim(Ay,), = Az = w-limy,—00(A4n )z = As, so we can apply Corollary(Z371) to get

lim TTz(Sm(An)z) = Trm(SzAz) = lim Trz(qulmsz(An)ngzlm) = Trz(qgilmszAngilm)v

and due to the normality of the trace Tr, we have Trw(@l/QSm(An)m@l/Q) < Trm(éil/QSwAwqgilm) Then,
we have,

. A . ~1/2 ~1/2

lim,, oo 7*(SA,) = limy, 00 Ziel fTTz(gbi (SAL) i~ )dA (2.3.24)

We use Lebesgue’s convergence from below’ theorentd then to infer that

~1/2

lim, e 7A(SAL) = Yooy [limn o Tro(ds (S AL)uds*)dA
~1/2 ~1/2
=Yier J Tra(di  Sududi 7 )dA (2.3.25)
= 7M(SA)
O
We define two functionals TT[ZQ and 72 on B, with the help of the measure y = J AdA on M as follows:
()= [ f0)dua) (2.3.26)

and

A () = / S H(B)du(z) (2.3.27)

M gege

2which states that for a measure space (M, p) if we have a sequence of measurable functions f, : M — [0, 00] converging
pointwise to f and fn(z) < f(z)Vn € N,z € M, then [ fdu = limp—co [ fndp
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Proposition 2.3.9. On B., we have

(i) T, Teg—r on" | and

13 ——T om?
(ii) 7o, = T

Proof. As Kprea(p)(a, ) = f(aB™!) and Kreu(p)([al, [B],1) = 20,25 f(@r 1), so for f € Be, ng"(f) has a
compactly supported Schwartz kernel Kav () and 79 (f) has a compactly supported continuous Schwartz
kernel K res sy and so they are trace-class operators.

We prove (ii), the proof of (i) is similar.

Ron®(f) = Z/Trm My, 7% (f)Mg,)dA

el

- / i (1, ) K pao( (1, 1, £)dA (£)
teT; JleLl;

i€l

-y / RCCIDIRCTNG

el Beg(l ,t)

(1,t)
/ ‘T)
M

ﬁGQI

an(f)

= T

Corollary 2.3.10. 1. Teg extends to a positive, faithful, normal trace on B..

2. A extends to a positive, normal trace on B..

Proof. We only show that T, Tag is faithful, as all other properties follow from the previous proposition. Let
f€B.and g = f* % f. Then we have

o(1,) = /  @PDw)

Now

o) =0= [ ] IR wdue) =0

So for p a.e. everywhere x f(v) =0 \; ae. for v € G;. The continuity of f on G then implies that f =0
on G, hence g = 0. Thus 7, eq is faithful.

T

O



Chapter 3

Foliated Atiyah’s theorem

3.1 Pseudodifferential operators on Groupoids

3.1.1 Longitudinal Pseudodifferential operators on Foliations and its monodromy
groupoid

Let W and V be open subsets of R” and R™, respectively.

Definition We denote by C*%(W x V) the space of maps f : W x V — R such that f(.,y) : W — R is
smooth for all y € V and f(x,.) : V — R is continuous for all z € W.

Definition An operator P = (P,)yev : CO(W x V) — C0(W x V), such that forv € V, P, : C*(W) —
C>(W) is a classical pseudodifferential operator is called a continuous family indexed by V' of pseudo-
differential operators on W | if it satisfies the following relation: for f € C*O(W x V), w € W,

By(fo)(w) = (Pf)(w,v)

We note that in the above definition the Schwartz kernel Kp of P can be viewed as a distribution on
WxWxV.

Now let X and Y be smooth manifolds with dimensions ¢ and p + ¢, respectively, and let s : Y — X be a
submersion. For all x € X, one can find an open neighbourhood V,, of  in X and an open subset VofY,
such that there are diffeomorphisms ¢ : V, — V, ¢: V — W x V, where V is an open subset of R? and W
is an open subset of R? and we have s, = =1 opry o ¢, where pry : W x V — V is the projection onto the
second factor. Let C°%(Y") be the space of functions f : Y — R such that for each such trivialisation given
above, the function fo¢=1 : W x V — R is in C®O(W x V).

Definition A family P = (P,).cx is called a continuous family of pseudodifferential operators indexed by
the submersion s : Y — X if each P, is a classical pseudodifferential operator on s~!(z) such that for each
local trivialisation of the submersion, with the same notations as above, the family (P,),cy associated via
¢ with the family (Py-1(y))y-1(v)ev,, is a continuous family indexed by V' of pseudodifferential operators on
W, as in the previous definition. One can write P as an operator P : C20(Y) — C0(Y).

Let (M, F) be a compact foliated manifold without boundary, and G be its monodromy groupoid. We denote
by C>:%(G) the space associated with the submersion s : G — M, as given above.

31
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Definition The space P (U, F) of longitudinal pseudodifferential operators of order m on a foliated chart
U ~ L x T is defined as the set of continuous families P = (P;)ier of operators indexed by T, with a
compactly supported Schwratz kernel Kp viewed as a distribution on L x L x T, such that each P; is a
classical pseudodifferential operator of order m on C°(L x {t}).

Definition A uniformly-supported G-operator is a family of operators indexed by M, written P = (Py)zear,
where P : C20(G) — C2>9(G) is a linear operator, and each P, : C2°(G,) — C2°(G,) is a linear operator
satisfying the following relations:

Pf(Y) = Py (flo.,,) () Vf € C2%G),v €6, (3.1.1)
for x,y € M,~" € GY,
PR, =R,P, (G-equivariance) (3.1.2)
where R,/ : C2°(G,) — C(G,) is given by

(Ry f)(a) = fe)

We note that due to the condition [B.1.2 the kernel Kp of a G-operator P can be viewed as a distribution on
G by the formula

kP(FY) = Kp(ls(v)a’}/)vvpy €g

Definition : A G-pseudodifferential operator of order m with compact support is a G-operator P = (Py)zem
such that each P, is a pseudodifferential operator P, : C°(G,) — C°(G,) of order m, whose kernel as a
distribution on G has compact support in G. The set of all such operators is denoted ¥7*(G).

We call a G-pseudodifferential operator compactly smoothing if its kernel viewed on G is in Cgo)o(g). The set
of compactly smoothing operators are denoted ¥_>°(G).

The following proposition summarizes the properties of operators in P7*(U, F) and U7 (G). It is proved in
[Va:01].

Proposition 3.1.1. (i) A family of operators P € P*(U,F) induces a G-pseudodifferential operator P of
order m with compact support i.e. P € W (G). There is an injective map iy : P (U, F) — ¥I*(G).

(11) Let (U;)jeq be a regular covering of M with foliated charts. Then, an operator in VI (G) can be written as
a finite linear combination of elements in iy, (P (U;, F)) and a compactly smoothing operator,i.e. W' (G) C
>jes i, (PI(U;, F)) + ¥ .°0(G), where S is a finite subset of J.

(i11) T (G) = UT(G) is an involutive filtered algebra.

meZ ¢

Let C°*9%(M,F) be the space of functions f : M — R such that on a foliated chart (U,6) of M with

0:U S LxT , where L (resp. T') is an open subset of R? (resp. R), the map f, o 01 :LxT—Risin
COL xT).

Definition For P € ¥™(G) define the operator r,(P) : C°%(M,F) — C°%(M,F) by the formula

reP(f)(2) := Py (for)(y), for any v € G

The above definition is independent of the choice of v due to the property 3.1.2] of P.
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Let 7. (¥, >°(G)) be denoted as P *°(M, F) and the vector space generated by linear combinations of elements
in P (U, F) and P;°°(M,F) be denoted as P (M, F). Let C2>°(M x M,F) be the space of functions k
on M x M such that k(z,y) = 0 if  and y are not on the same leaf and which is locally of the form
k€ C=O(L; x L; x T}), for regular foliated charts (U;);cs such that U; = L; x T}, with compact support in
L x L for each leaf L in (M, F).

Proposition 3.1.2. (i) If P € P7°°(M,F) then kp € C*°(M x M, F).
(i) PE(M, F) o Py (M, F) C P (M, F).
Proof. (i) Since P € P;°(M,F) < P € r.(¥;>°(G)) by definition, P = 7.(P) for some P € ¥;®(G).

Therefore the kernel kp (seen as a distribution on G) is in C2%(G). Now the kernel of P as a distribution
on M x M is given by the following formula: for z,y in the same leaf,

v)=Y kp(7)
vEGY

Indeed, we have,
rP(f)(z) = ]5 (n(For)(v)
= / (1) (f o r)(71)dAs() (1)

Gs(v)

> EKp(ym)(for)(m)dr=o (v)

vebe) megy

- /EL k(v H(f or)(m)dA o (v)

s(7) yq eg )

/EL Yo ks ) | f0)dr (v)

€I

/ (@) | F(0)drE () (putting o = y77Y)

ath
N / kp(z,v) f(v)dA"= (v)
VEL,

hence we have the desired equality. Since k5 has compact support C; in each G, for x € M, kp has support
inside r(Cy) X s(Cy) in Ly x L. Moreover, since kp is in C2°(G) it is locally of the form C°°(L; x L; x T)
and hence kp is also locally of the same form.

(ii) This follows from Proposition 3.2.4 of [Va:01] and the fact that ¥_°°(G) is an algebra , thus so is
7. (¥-°°(G)) because 7.(P o Q) = r.(P) o r.(Q) for P € ¥™(G),Q € V.(G). Indeed, we have,

ro(PoQ)(f)(x) = (PoQ)sq(for)(y) foryeg”
= ( (1) © Q) (for)(7)
= Py ( Qs (for)(v)
= Pyy(r:Q(f)or)(v)
= (rnP)(r.Q(f))(z)
= (rPor.Q)(f)(z)

where we have used 7.Q(f)(r(7)) = Qs (f o7)(7) in the fourth equality above. O
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3.1.2 Almost local pseudodifferential operators on foliations

Let U be a regular foliated chart and 6 : U — L x T be a diffeomorphism, with L (resp. T') open intervals in
RP (resp. R?). Let gr be a leafwise smooth metric on (M, F) whose restriction to U is a continuous family
of metrics (g¢)ier, where g; is a metric on the plaque §~1(L x {t}). The associated distance functions are
denoted dx and d;.

Definition An operator P € P (M, F) is called a c-almost local operator if there exists a constant ¢, ¢ > 0
such that the Schwartz kernel of P vanishes outside the set

{(z,y) € M x M| x,y are in the same leaf, dr(x,y) < c}

Remark. An operator P € P"(U, F) is c-almost local for some ¢ > 0.

Assume that G is Hausdorff. With the help of dr on (M, F), we can define a length function on the groupoid.
For a leafwise path a in M (i.e. a lies completely in a leaf) starting at = and ending at y, we denote by {(a)
the length of a. Since elements of G are homotopy classes of leafwise paths in M, we can define for v € G,
I() := inf{i(a)|a € v}. Now we define the almost local property for a pseudodifferential operator on the
groupoid.

Definition An operator P € ¥7*(G) is called a c-almost local operator if there exists a constant ¢, ¢ > 0
such that the Schwartz kernel of P viewed on G vanishes outside the set {y € G|i(y) < c}.

We call an operator almost local if it is c-almost local for some ¢ > 0.

Proposition 3.1.3. A c-almost local operator P € P (U, F) lifts to a c-almost local operator Pe U(G).

Proof. Let P be c-almost local. The Schwartz kernel Kp of P has compact support in G(U) := L x L x T,
and can be extended to all of G by setting it zero outside G(U), which gives us an operator P € ¥™(G).
Then, for v € G, I(y) > ¢ = di(01(s(7)),01(r(7))) > ¢, 01 being the projection onto the first component
under the image of 6. This implies that K () = 0 for I(y) > ¢. Thus P is c-almost local. O

Proposition 3.1.4. Let k € CO(M x M,F) be such that it vanishes outside the set A, = {(z,y) €
M x M|z,y are in the same leaf and dr(z,y) < c}. Then k induces k € C°°(G) which defines a c-almost
local operator P € W_°°(G) such that r.P is c-almost local with Schwartz kernel k.

Proof. Let {U,;}icr be a regular foliated covering of (M, F). Let ¢ be small enough so that dr(z,y) < ¢
implies that there exist a regular foliated chart U = L x T for which x and y belong to the some plaque
L x {t},t € T. Define k(y) = k(s(v),7(y)) for v € G. Then I(y) > ¢ = dr(x,y) > c and therefore k
vanishes outside the set {v € G|I(y) < ¢}. Since k € CO(M x M, F), |[Tu:99, Proposition 1.8] implies that
ke C2°9(G). Therefore, by definition, k defines a c-almost local operator P € ¥ >°(G). Now, by Proposition
B2 the Schwartz kernel k,, p of r.(P) is in C>%(M x M, F) and is given by

krop(@,y) =Y k(Y)
gl‘

But due to the assumption on c, l;:(fy) is non-zero only for a unique v € Gy for which there exists a § > 0
such that all paths a in the class of v for which I(a) — I(7y) < 0 lie completely inside the plaque containing x
and y. Therefore if k(7) is non-zero v can be identified with (1,1’,t) € L x L x T where = = (I,t),y = (I',t)
in a foliated chart U = L x T. Therefore we have,

krop(@,y) = k(LU ) = k(z,y)
Thus the Schwartz kernel of r, P is k and is c-almost local by hypothesis.
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3.2 Measured Index of Dirac Operators

3.2.1 Statement of foliated Atiyah’s theorem

Let (M,F) be a smooth even-dimensional foliation on a closed (i.e. compact without boundary) manifold
M, and A be a holonomy invariant transverse measure on M. Let D = (Dr)repm/# be a family of leafwise
Dirac-type operators on M. Let D= (ﬁm)meM be the lift of D to the monodromy groupoid, i.e. the pullback
r*D by the range map r : G — M. For each z € M, D, is a first order elliptic differential operator acting on
C(Gy). D is then the unique operator satisfying r,D = D, where 7, D is given by

r.D(f)(@) = Dy (f 07)(3) for 7 € G”

Let E — M be a longitudinally smooth continuous vector bundle over M having a Zs grading E = EY®E™.
Let C°0(M, E*) denote the space of tangentially smooth sections on M which are locally of the form
C>(L x T, ET). Then we have an induced grading on the pullback bundle 7* E over G. Then we can define
D as acting on sections over M in a 2x2 matrix:

D= ( DO+ %_ ) where D¥ : C°0(M, EX) — (M, EF),

and similarly for D. The operators DF, D¥ are closable and extend to unbounded, densely-defined operators
acting on L? sections. Let 7+ be the projection onto the space of L2-solutions of D*. We define similarly
7+ for the operator D on the groupoid.

We have the following well-known result. Recall the traces 7% and T]/_E defined in section [2.3.5]

Proposition 3.2.1. :

ot are positive self-adjoint T%—tmce class elements of W*(M, F, E¥).

+

e 7T are positive self-adjoint T"-trace class elements of W*(G, ET).

Proof. We only prove the second statement. By [Theorem 7.6, [R0:88]], we know that for any Schwartz
function f € S(R), f(D) € W*(G, E) and is a tangentially smoothing operator with uniformly bounded
kernel. By approximating xo(the characteristic function at 0) by rapidly decreasing functions with pointwise
convergence and using the spectral theorem, we get a sequence of operators Af\[ € W*(G, E)T which converge
strongly to #%. Since W*(G, F) is strongly closed, we get that #* € W*(G, E)*. Now consider the function
exp(—tz?) on R. By [Prop 7.37, [Ro:88]], exp(—tD?) is of 7*-trace class. Since xo(z)exp(—tz?) = xo(z), we
get by the spectral theorem that
7 = 7exp(—tD?)

Since exp(—tD?) is 7*-trace class, we get that 7 is 7"-trace class. O
We can now define the measured indices of Dt and D*:

Definition The measured index of D is defined as Ind*(D*) = 7A(x ) — 74(x 7).

The measured index of DV is defined as Ind*(D*) = 72 (7+) — 74 (7).

Theorem 3.2.2 (Foliated Atiyah’s Theorem). Ind* (D) = Ind* (D)

We will extend Atiyah’s theorem and show the following steps:
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1. There exists an almost-local parametrix Q= : C°*%(M, E~) — C>°(M, E*) for D" ie. Q— € P~1(M,F)
such that the kernel of @~ has support as localized near the diagonal A = {(x,z)|z € M} as wanted, and
St=1-Q DY eP (M, F)and S~ =1—-D+*Q~ € P.>°(M,F), with both ST and S~ 72-trace class.

2. If Q~ is localized near A, then it lifts to a parametrix Q~ of D, such that we have Q~ & U-H(G), with
St=1-Q Dt e ¥,;®(G) and S~ =1—DtQ~ € ¥;>(G). Moreover, Q—, St, 5~ are 7*-trace class, and
satisfy (cf. B29)

™ (SF) = 72(5F) (3.2.1)

3. For any such almost-local parametrix Q~ : E= — ET of DT as in step 1 above , we have the Atiyah-Bott
formula 72 (7t) — 72(77) = TA(ST) — 72(S7).

4. For the parametrix Q= of DT given by the lift of Q~ in step 2 above, we have 72(71) — 74(77) =
™ (ST) — 72(S7).

Then we would have:

T2(T)
= 17(5T) —72(S7)
= 7M(SF) = (57) (3.2.2)
= A ) = A E)
= Ind* (D)

3.2.2 Construction of the parametrix

For an elliptic operator P € P*(M,F), we want to construct an almost-local parametrix . To do this, we
will follow the general construction of a parametrix for an elliptic operator to get a parametrix @’ (which
need not be almost-local), and then show that there exists an almost-local operator of the same order as
@' such that Q — Q' € P7°°(M,F). It will follow that @ is a parametrix for P which can be chosen as
almost-local as wanted.

Let us begin by solving the analogous local problem, i.e. to construct an almost-local parametrix for an
elliptic operator P € P*(U,F), where U ~ L x T is a regular foliated chart of M. Recall that an operator
P e P"(U,F) is called elliptic if the principal symbol o, (P)(z, t, £) is invertible for (z,t,&) € LxT xRP\{0}.
The following proposition is a consequence of the proofs in |Co:79, Page 128], [MoSc:06, Pagel179 Proposition
7.10].

Proposition 3.2.3. For an elliptic operator P € PT(U,F), there exists Q € P, ™(U,F) such that Sy =
1-QPeP.>U,F),S1=1-PQeP.>U,F).

We now construct a c-almost local parametrix for P € P*(U,F) with arbitrarily small ¢ > 0.

Proposition 3.2.4. For a given parametriz Q' of an elliptic operator P € P™(U,F), there exists for any
€ > 0 an e-almost local operator @ € P.™(U,F) for P, such that Q' — Q € P;>°(U,F).

Proof. : Let the Schwartz Kernel of @’ be denoted by K, which is a distribution over G(U) := L x L x T.
We know that K is smooth outside a compact neighbourhood W of the diagonal where dx(z,y) > € outside
W. We choose a smooth cutoff function x on G(U) with the following properties:

(i) supp(x) € W.
(ii) x = 1 on an open neighbourhood W’ of A x T with W’ C int(W).
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Then, letting @) denote the operator given by M, Q’, where M, is the multiplication operator with the
function y, we find that Q' — @ has kernel which vanishes on W’. This implies, by the pseudolocal property,
that it is smooth on G(U). Hence we have Q' — Q € P, °°(U,F) and Q is e-almost local. O

Remark. If P, € P"(M,F) is c1-almost local and Py € PI(M,F) is co-almost local then Py Py € P (M, F)
is (c1 + c2)-almost local.

Corollary 3.2.5. : For an €y-almost local elliptic operator P € P™(U,F), there exists for every e > 0 an
e-almost local parametriz Q € P;™(U, F) such that So =1 —QP € P;>°(U,F),5 =1—-PQ € P> (U,F),
with Sy and S1 (€ + €o)-almost local.

Proof. : Let Q' be a parametrix for P. Then from proposition [3.2.4] there exists an almost local operator
Q € P.™(U,F) such that R:= Q' — Q € P. (U, F). Then, we have

QP=(Q-Q +Q)P=RP+Q'P (3.2.3)
=RP+I1I-S5y=1-25 -
where I — QP = Sy = RP — S}, € P, °°(U,F). Similarly we can find an S; = I — PQ € P, (U, F). The
almost local property of Sy and S; follows from the convolution formula of kernels together with the remark
above, and that I is 0-almost local. o

We now patch together our local parametrices to get

Proposition 3.2.6. : For an elliptic operator P € PM(M,F), there exists an almost local parametriz
Q € P.™(M,F) such that R = 1 — PQ € P;*(M,F),R =1—-QP € P,>*°(M,F), with R and R’
almost-local.

Proof. : Let {¢;}Y; be a partition of unity subordinate to a regular covering {U;}¥, for (M, F). For each
i, let ¢; € C°(U;) be such that ¢, = 1 on supp(¢;). Let C' be a compact neighbourhood of the diagonal
in M x M such that the set {(z,y)|x € supp(¢;)} C C for all i. Since P is pseudolocal, we can assume
that its Schwartz kernel has support inside C. Let My be the multiplication with the function ¢%, and put

P; = PMy,. Then P; € P"(U;, F). Let Q = Zﬁl Mg QiMy,, where Q; is the almost local parametrix for
P;, such that P,Q; = My — R;. Then @ is the required almost local parametrix for P. To check this, we
calculate:

PQ =YL, PMyQiM,,
=SV (PQiMy,)

N (3.2.4)
= im1 (Mg, My, — RiMy,)

=I-R

with R € PZ°°(M,F). It remains to see that @) and R are almost local. Indeed, since @) is a sum of almost
local operators, it is almost local. The same argument holds for R as each R; is almost local. O

Definition An operator P € ¥7*(G) is called elliptic if the operator r. P € P (M, F) is elliptic.

The following proposition gives the existence of parametrices of elliptic operators in W7 (G).
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Proposition 3.2.7. Let P € U7(G) be an elliptic operator. Then there exists an operator Q € ¥ ™(G) such
that
PQ=I-Rand QP =TI — R’

where R, R’ € ¥_>=(G).
Proof. See |Co:79, Page 128] or [MoSc:06, Pagel79 Proposition 7.10] for a detailed proof. O

Let us keep the notations from the statement of Theorem B.2.2]

Corollary 3.2.8. : Let Q— € P_Y(M,F) be a parametriz for DT which is c-almost local for ¢ sufficiently
small, with DTQ™ =1 -5 and QDT =1 — S* for S* € P7°(M,F). Let Q~ € V1(G) be the lift of
Q™ and ST € U_>2(G) be the lifts of S*. Then we have

DtQ - =I-8 andQ Dt =1- 8%

Proof. : This follows from the construction of the parametrix Q~ in the proof of Proposition 1.1l and the
construction of the parametrix for an elliptic operator in 7' (G) (see [MoSc:06, Page 179 Proposition 7.10])
, choosing the parametrix @~ to be as almost-local as we want. o

Proposition 3.2.9. : Let us take the notations given after the statement of Theorem[3.2.2. Then we have,

™SF) = 72(57) (3.2.5)

Proof. Let (U;);cr be a regular foliated cover of (M,F). The operators (;53/25@1/2 € P>*(U,;,F) for each
i € I. Then as in Proposition and Proposition B.I.4, we let ¢ > 0 to be small enough such that the
Schwartz kernel kg= € C29(M x M, F) of ST coincides with the Schwartz kernel of S*, since 7,5 = S*.

Then choosing S to be c-almost local, the operators (b;/QS(b;/? lift to the operator (;3;/2553;/2 € U >(G)
which are also c-almost local and the Schwartz kernels of gb;/ g gb;/ % and (;311 /28 gi;ll/ % coincide by the proof of
Proposition 3.4l Hence, by the definition of the traces 7% and 72, we get the desired result. O

3.2.3 Atiyah-Bott formula for the measured index

In the following proposition and proof we denote the trace on W*(M, F, E) as 7 for convenience of notation.

Proposition 3.2.10. : Let Q~ be a parametriz for DT, put ST =1—-Q D', S~ =1—-D Q™. Then , we
have

TA(7T+) — TA(7T7) = TA(S+) — TA(Sf) (3.2.6)

Proof. : We will follow the method of Atiyah [At:76] to prove (B26]). We have the following relations:

e DTST=Dt-—DtQ Dt =S5"D"

¢ 5TQT=Q -QDQ =Q 5 *)
o Strt =gt _Q Dtrt=nt

e T ST=x" -7 DYQ" =7~

The last relation uses the fact that 7= = Plye.p- = P|;,,p++, as DT is the adjoint of D~. Indeed, we have,
for u,v € L*(L(z), ET),
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<7~ Dtu,v >=< Dtu,m v >=<u,D 1 v >=0.

Now, let us define even operators T+ and T~ as follows:

TH=(1—-7")ST1 —-7") (3.2.7)
T-=(1-7)S"(1—-7n") (3.2.8)
Then,
™I = M1 -7N)ST (1 —aT))
= (ST —atSTH(1 —7T))
= ASH —AEh + A =TQ DY)
Similarly we get
™) MA=77)S (1 —7))

7'A((5H —m ST)(1—-77))
™8T =) +A(DTQT)

But from the trace property, we know 74(AB) = 74(BA), so T8 (7tQ~D*) = 74(Q~D*x*) = 0. Similary,
A(DYQ 1) =7~ DTQ7) =0

Therefore, proving equation(3.2.0)) is equivalent to showing that
™I = 7NT) (3.2.9)

Using the previous relations (*), We also have the following relations:
e D'Tt=DVI—-7")ST(I—7")=D*ST(I —7")=8" Dt —Drt =S5"D*
e I'Dt=(I-7)S(I—-7n)Dt=({I—-7")S D" =S"Dt—7"D" =S5"D" So, we have,
DTt =T7-D* (3.2.10)

Now DT has a polar decomposition D¥ = UTAT, where U™ is a partial isometry and AT is a positive
self-adjoint operator, this is well defined from the functional calculus of measurable families, with both U™
and AT being measurable family of operators |[Di:57] Pagel69. Define

R* := (UT)*T~UT Since U™ is a partial isometry,by the uni-
tary equivalence of the usual trace tr, we have

™ (RY) =T7), (3.2.11)

while (B2.10) gives
ATTH =T- A" (3.2.12)
Now, let P be the spectral projection of AT corresponding to the closed interval [%, n], and we put
T =PrT*TPF, Ry = PTRTPT, Af =PrATPF+ (I - P)

We claim that A;} is bounded and invertible.Since P, A* Pt is bounded, so is A;'. To prove invertibility, it
suffices to prove that 0 is not in the spectrum of (A;}); for almost every L € M/F. We apply the spectral
mapping theorem to see that o(A;) = f(o(AT)), where

) =x12 m(MAX[2 5 (A) + 1= X121 (A)
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Since f(A) = Xif A € [L,n] and takes the value 1 otherwise, we see that o(A}) C [£,n] U{1}. Therefore A
is invertible as it is invertible for L € M /F(cf. |Di:57] Pagel59).

Hence, from 3.2.12),we have,= AT+ (A})~! = R}. Taking the trace on both sides gives, due to the unitary
equivalence of the trace,
™MTh) =R} (3.2.13)

Note that P commutes with both T and R™, so we get

™MTH =MTTP), and ™(R))=71"RTP)) (3.2.14)

n

Since x[1 , is a uniformly bounded sequence(|x 1 ,,j(A)| < 1) and X1 ,,) — X(0,00) COnverges pointwise, by

Lebesgue’s dominated convergence theorem we have x(1 ,; (A}) = X(0,00) (A} strongly with sup, [1X[2 ] (AD)|| =

1 < oo for each L € M/F. Proposition 4(ii) page 160 of [Di:57] then guarantees the strong convergénce of
P = X1 0 (A7) 10 X(0,00) (A7) = 1 = X(—00,0(AT) = = x(0} (A7) =T — ™.
So, by Proposition(Z3.8) for the trace 7, we get

lim 7(TTPF) = 78T+ (1 — 7)) = 78T™T),

n—oo

where the last equality comes from the definition of 7. Similarly we have

lim 7A(RYPH) = 7M(RY(I — 71)) = 72 (RT),

as KerUt = KerDt = UtnT =0

Therefore by equations (.2Z13) and (2Z14) we get 78 (T+) = 7*(R™T), which together with ([B211]) proves
B.2.9):

Tty =M1, (3.2.15)
thus completing the proof of (B:2.6]). O

We can repeat the same arguments given above to prove that

Proposition 3.2.11. : Let Q~ be a parametriz for DV, put St =1 — QD+, S~ =I1—DVtQ~. Then , we
have

MET) = A GET) =S - TA(ST) (3.2.16)

Equations 8.2:6) and (32I6) thus complete the proof of Theorem [B3.2.2).

For completeness, we add the following important corollary.

Proposition 3.2.12 (Calderon’s formula). For any n > 1, and with notations as in the previous section, we
have
Ind*(D) = 72((5T)") = 72((S7)™) and nd™(D) = 72((ST)™) — T2((S7)™) (3.2.17)

Proof. We will give the proof of the second equation, the proof of the first one is similar. We first note
that since ST and S~ are leafwise smoothing operators, DTS is a bounded operator which lies in the von
Neumann algebra W*(M, F; E). As in the proof of Theorem [B.2.2] we recall the following relations between
St 87,Q"7,Q~,DT and D:

e St=71-Q DF
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o S =I1-DTQ"

e DtTSt=Dt_Dt*Q=Dt =S5"Dt
¢ STQ=Q -QDQ=QS
We now calculate:

(S7)?= (I -Q D)
=1-2Q-Dt*+Q DTQ D+

=1-2Q Dt +Q-(I-S5")D* (3.2.18)
=I1-Q Dt -Q S D+
=St -Q-S D+

Similarly, (S7)? = S~ — D*S*Q~. Since S* and S~ are T2-trace class, so are the operators (S7)2, (57)2.
The operators Q~S~ DT and DTS*Q~ are also T2-trace class, since we have Q= S~ Dt = QD' S* and
DTStQ™ = S~ DTQ . Now, taking traces on both sides of the above equations and taking their difference,
we get,

- )
=TR(S1) = T2(S7) +TR(QDTST) — TA(DTSTQT) (3.2.19)
= TR(SH) = TA(S7)

where we have used the relations given above, the fact that @~ and D*S* are bounded operators in the
von Neumann algebra W*(M,F,E) and Q= D*ST (resp. DTSTQ7) lies in the von Neumann algebra
W*(M,F,E") (resp. W*(M,F, E~) and the tracial property for 72 (cf. Z3.20).

Now let us assume that (??) is satisfied for n = m. We will prove it for n = m + 1. To this end, we calculate:

TS = T2((ST)") = mR(ST(ST)™) — rR((ST)™ST)
= (I -=Q D")(SM)™) —m2((S7)"(I - D*Q7))
= (SN = Q DT (ST)™) —T2((S7)" ~ (ST)"D*Q")
TR((S)™) = T2((ST)™) = T2(QTDH(SH)™) + 72((ST)"DTQ7)

However, D' (S*)™ is a bounded 72-trace class operator in W*(M, F, E), and we also have D*(ST)™ =
(S7)mD*. So TA(Q~ DT (ST)™) = rA((S7)™DTQ™). Therefore we get,

TR((SH)™H) = T2((ST)™ ) T((ST)™) = T2((S7)™)
= TR(ST) —12(S7) ( by the induction hypothesis)

= Ind*(D) ( by the Atiyah-Bott formula)

O
Remark. We also have the following formulae which are easily proved by induction:
o(ST)m =8t —Q (ST + (ST )+ ..+ (S)™ HD*" (3.2.20)
o(ST)m=85"=DF(ST+ (ST + ..+ (SH™HQ -
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3.3 K-theoretic Index of Dirac operators

3.3.1 Hilbert C*-modules on foliations

Let T be a complete transversal for the foliation (M, F'). Then we have a subgroupoid G of G which consists
of arrows in G starting and ending in T, and Al := C.(G}) naturally inherits a *-algebra structure by
convolution and involution defined in a similar way as in the previous section.

Let f € AT ¢ €1?(GT). The regular representation pi¢9 : AT — B(12(GT)) is defined as

() = Y €™, (3.3.1)

v'egt

So in a similar manner as in section 1 we get a regular norm ||.||req := supger ||p2°9(f)|], and the completion
of AT in this norm is the reduced C*-algebra AZ". Similarly, the maximal norm, obtained by taking the sup
over all representations of AZ which are ['-continuous, gives the maximal C*-algebra A% on completion.

Similarly, we have an average representation p2” of AL on 1?(G1'/G%) given by

g (OND) () = 2 egr SN (V™)

(3.3.2)
= Y ear gz 2= S DS (m ™)
Let Gr := s~1(T). A right action of AL on &. := C.(Gr,r*E) is defined as follows:
ENM = D, FOMER ) for fe AL, 6 €&y €Gr (33.3)
’Ylegz(’v)
Proposition 3.3.1. We have (£f)g = &(fg) for f,g € AL £ € &..
Proof. We have for v € Gr,
[(€N)9)(0) = Xyregr  9(YNENN)
= 2yegr  90'Y) Lpegr By HEB™) (33.4)
= Yyear,, Legr_, 90N (BYTHEBT)
On the other hand , we have,
€I =2 egr (f*9)(Y1ER™)
=2 yect Zaegfm,) glay'y) fla h)eB) (33.5)

= 2yegT | XacdT f('a™Nglan)E( ™)

s(v)=r(v)
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where in the last equality we have used the G-equivariance of the Haar system. As f, g are of compact support
we can interchange the order of summations to see that the last lines of B34 and B35 are the same. Thus
we have a well-defined right-C..(G%) module structure on &, := C.(Gr,r*E). O

We also define an A -valued inner product on &.:

< 51’52 > (u) = / < 51 (’U)v§2 (UU’) >ET(U) d>\7‘(u) (1)) for 51752 S gmu S g{,%: (336)

vEgr(u)
We will prove the following linearity property for the inner product defined abovd:
Proposition 3.3.2. Let &,& € E.,v € GX, and f € C.(GE. Then

< &, & f >=<&1,& > *f, where * denotes convolution in AL

Proof. We compute first the LHS in Proposition(3.3:2):

< fl;fo > (7) = f'y’GQT(w) < §1 (7/)7 (§2f)('7/7) >Er('v') d>‘r(v) (FY/)

- f,y/egr(‘y) < 51 (7/)7 ZQGQZ“(_Y,) f(a’ylv)g(a_l) >ET(’Y’) d)\T(’y)(,yl)

_ 3.3.7
= Leg, Sacor, 07/7) < 6, 8(07) > 5,0 A7) (3:3.7)

= [yeonr Eaeg;’wn:w flam) <&(v), &(v'a™) >p, ) dAv (V)

Computing now the RHS, we have:
<& > xf(7) = Xyegr, < &1s(62) > (YY)

(3.3.8)

= eqr Jucg,., F0') < &(). €077 >k, dArsy (@)
From B3.7 and B.3.8 we thus get < &1, & f >=< &1,8 > *f. O

Definition We define the Connes-Skandalis Hilbert C*-modules &, and &, as the completion of the pre-
Hilbert AZ-module &, in this inner product with respect to the reduced and maximal completions of A7
respectively.

Now, there is a representation x : BE — L(&,) of BY := C.(G, E) on &, given by the following formula:

[X(@))(€)(y) = / (Y EN VAN () (V) for ¢ € BE £ € Ec,v € Gr. (3.3.9)

V' E€Gr(y)
We have the following:
Proposition 3.3.3. With the notations above, we have:
(i) x(¢) : Ec — &, is AL —linear.

(ii) x is faithful and extends to C*-algebra isomorphisms x, : BY — Kazr (&) and xm : BE — Kaz (Em)-

INote that we prove linearity in the second variable. We assume the same for the fiberwise inner product on E
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Proof. (i) Let f € AT,y € Gr,¢& € E.. We need to prove [x(6)(&)]f(7) = x(¢)(&f) (7). Computing the LHS,

we have,

XOHEN () = Syegr T NXB)E)™)

= Z'y’egfm FO') Jaeo Pl (ay ) dAs(y)(a)

s(H=r() (3.3.10)
= 2rear Jaco. iy T NE(@HE(@Y AN () (@)

s(v")=r(v)

Similary we compute the RHS,

X(@)ENM) = [Lreq,., 2V TENE VN () ()

= f’y’GQT(W) ¢(7/71) Zaegf(v/) f(a’}/ﬂ)/)g(ail)cp\r(v) (FY/)

— -1 -1 (3.3.11)
~ Jyeg,, Sacer_, . S0 @NEE YA (7)
— -1
= Lo, Sacor, . FHandl/He0'a)dr e ()
which is the same as the LHS computed above. The last item is proved in [HiSk:84]. (]

With the representation (?7?) and the Hilbert module &,, we can define, for any * € M, a Hilbert space
H, := Em @ rea 12(GL) with the inner product given by

<G ®EL,G®E&E >=<&,pp9(< (1, >)e >12(GT) -

Let Uy req : Hy — L?(G,,7*E) be the map induced by the formula

(Vo reg(C @O (u) = D & (3.3.12)

veg?l
where ¢ € &.,€ € 12(GY),u € G,.

Proposition 3.3.4. With the above notations, we have:
(1) Wy req is an isometry.
(1) o req(Cf © &) = Wy reg(C @ [p59(£))E) for f € AL and ¢, as above.
(111) We have,
T59(8) = Wy reg © [Xm (S) @ Idpg2(gry)) © Uty for S € BE (3.3.13)

(1) Uy reg is surjective when the G is Hausdorff.
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Proof. (i) First, we compute for ¢ € C°(Gr,r*E), £ € 12(GT),

<(®ECR®E>=<[preg(< (¢ >e.)|€,§ >p2gr)

= Y eqr[heq(< C.¢ e )E)Ew)

_ v wo™é(u
= 2uegr Lovegr §(W(< G ¢ >)(uv™)8(u) (3.3.14)
= Zuegf Zvegf f(v)@ faegr(m < ((a), ¢(auv™t) >E,(a) @Ar(u) ()

= Zuegg Zveng a€G, 5(”)@ < C(au_l)v C(av_l) >Er(a) d)‘LE (Oé)

where in the last line we have used G-equivariance in the variable a. Next, we have,

< \I}m,reg(<®£)7\1}w,reg(c®§) > L2(Gy,r*E)= /eg < wreq(c®€)( ) 1T€q(c®§( )) Er(u) d)‘I(u)

Computing the integrand, we get

< Wareg(C® ) (1), Wareg (C @ E) () >,y =< Lpegr §0IC(wv™1), 3o segr EB)S(uB™) >k,

= eqr Lpegr EWEWB) < C(wv™),C(wB™) >,

(3.3.15)
Thus,
mreq(<®§) mreq(<®§ >r2 (Gzyr*E)=— / Z Z 5 _1)7C(uﬁ_1) >ET(u) d)‘w(u)
U€Ys yegT BegT
which is the same as the last line of 3314} since < ( ® &, (R E>=<(RECRE >.
(ii) Let u € G,. Then we have,
V(Cf @) = D &) uv)
vegT
= Z Z E(u) f(wuv™H(w™h)
veGT wegl
= Z Z E(u) f(wv™ ¢ (uw™h) (by G-equivariance) (3.3.16)
vegy wegl .
Computing the RHS, we have,
VL (CR [ (NI = D [0 HIED) Q) v)
vegl
= Y cw)sw )l (3317)

veGT weg?T

which is equal to [3.3.16]
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(iii) We shall prove the equation first for an element ¢ € C°(G, E). We have for ¢, &, u as above,

[\I}w,reg ( (¢) ®IdB 2 QT)))](C®§)( ) = ‘I’m,reg(Xm(¢)(<) ®§)(U)
= D &)hm(@)](uv™)
vegl
= &(v (w1 (wuv™ M) (w
> O BT TR TR
= uw_l wo ! 2 (w 3.
- X ) [ ot e ) @319

where in the last equality we have used the G-equivariance. Also, we have,
[ (D) (Wa,reg (¢ @) (1) = / P(uv™) (Vs req (¢ @ €)) (v)dAs (v)
VEGy
/ o) Y o)

weGT

[ % st et ) 3319
VEGy wegT

which is the same as[3.3.18 hence proving the desired equation.

n—oo

Now for a general element S € BZ there exists a sequence ¢,, € C°(G, E) such that ¢, —— S in the
maximal norm. Then, using the Contlnmty of the representations 7¢¢ and x,, with respect to the maximal
norm on BZ and the isometry property of W, .., and the fact that ||x,m(S) @ I|| < [[xm(S)|| (cf. |La:95, pg.

42]) we have ﬂ-Teq(¢") m Wreq(S), and \IICE sreg [Xm(¢n) ® I] © \I]LE %‘eq m \ij yreg [ (S) ® I] o \ij ];eq
Since we have 7% (¢y,) = Uy reg © [Xm (dn) @ I] 0o U 1Teq for all n > 0, we get the desired result.

(iv) To see this, first let « € T. Then if n € C.(G,,r*FE), we can extend 7 to 77 € C.(Gp,r*E). Now take the
delta function §, at the identity element in G¥, and extend it by zero to GX . Then 4, € [*(GL) and n is the
image under ¥, ;.4 of ) ® ;. Indeed, we have,

Va,req (7] @ 0z ) (u)

Il
>,
8
—
<
S~—
A
=
IS
4
L
N~—

[

=
S

~—

since u € Gp. If z € M\ T, as T is a complete transversal, there exists a t(z) € T and v € Go @) < Ggr
which induces unitary isomorphisms R, : L*(G,,7*E) — L*(Gy(z),7*E) and R, : I*(GL) — 12(gt(m)) Then,
we have, for &1,& € 12(G1), &), ¢ € 12(g§$)) and (1, € &,

<&, P (< LG >)e > = =180, 19 (< 1, Go >)Ry 185 >

_ ,151, (< GG >)E >

= < 51, 7‘6(] (< CluCQ >)§2

where we have used the G-equivariance of the representation p"® in the second line. Therefore the map
®: Hy — Hyyy given by (¢ ® §) = ( ® R,¢ is an isometric isomorphism. O
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We have proven:

Proposition 3.3.5. Ve € M,V e : Hy — L2(Q$,T*E) is an tsometric isomorphism.

Similarly using the average representation p%’ we define a map Wy 4y : En @pav 12(GL /G2) — L*(G4/GZ, E|L)
induced by

Vo (C @) ([u]) = > o(fv ) for ¢ € E.,¢ € 12(G7 /G3).

UEQT

We have the following

Proposition 3.3.6. Vo € M,V, 4y : Em @pev 12(GL /GE) — L*(G,/GE, E|L) is an isometric isomorphism of
hilbert spaces. Moreover, we have the following properties of Wy g4

(1) 00 (CfF @ @) = Wy 0o(C R [p20(f)]@) for £ € AL and (, ¢ as above.
(it)r5"(T) = Yo av © [xm(T) @ IdB(IQ(Q{/Q’;))] z, am for T € Bf,

Proof. : In this proof we drop the subscripts z, av from the notation ¥, 4, and simply write ¥ for simplicity.
It is easy to see that the definition does not depend on the choice of representative u for the class [u] € G /G®.
So we have

U(C®¢)([u]) = V(¢ @ ¢)([u]) for u’ = ug, g € G;.
Now we prove the properties of W:

e U is an isometry:

We have
Vo) (u) = Y. Y Cluw ()
[v]€GT /G2 [w]=[v]
= > C(uwwhe([w]) (3.3.20)
vegl
So,
<Y(C®), V(D @) >L2(Lx).El L)) (3.3.21)

_ / <U(C®P)(2), U(C @ P)(2) >, dN.(2)
[a]eL(x)

- / [a]eL( >< Y Clav™e(]), D Claw™)g([w]) >, dX,(2)

veGT weGT
_ / S % SDe(w]) < Clav ), Claw) >, dAL(2)
EL(@E) 'UGQT wEgT

- /H L(x) 2 2 2 ol D <Clapv™h), Claw™) >, dXy(2)
z=|ajeL(x

[v]€[gT] BeGE weGl

= > o) Z/ 3 6(w]) < (o), Claw™) > 5, dN.(2)

[v]€[GT) wegT 7 101€92/95 ege

0D / o([w]) < ¢(av™),Claw™) >, dAs(a) (3.3.22)

[v]€lGT] wegT /€Y
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where the last equality is clear since the measure A, is GZ-invariant.

<(®O,(RP>

< ¢, 05" (< € ¢ >)d >i2(gr/gn)

Yo EI(< GO ([)

==[u]€[g7]

= Y 6(x) Y. <GC> (w o)
s=[uelg]]  vegT

= Y ex) ), < / < (@), ¢lauww™) >p, dm)) #([v])
s=[uelg?]  vegT \7 0w

= > o) ) </ <Clou™),¢(av™h) >p, ., dAz> o([v])(3.3.23)
[u]€[GT] vegT \7@€9sw)=a

Thus and give that
<V ® ), V(COP) >L2(L(2),Blrw) =< (D A, (R D >¢,0,0012(57 /g2)

proving that ¥ is an isometry.
e U is surjective when G is Hausdorft:

To see this, first let # € T. Then if n € CX(G,/GE,r*E), we can lift n to a G¥-invariant section 7 €
C>*(Gy,r*E). Now extend 7 to C°(Gr,r*E), and denote this extension by 7. We take a function x on
C2°(G,) such that for u € G, we have

Z k(ua) = 1.

aegr

Then 7 is the image under V¥ of -7 ® J,., where - is pointwise multiplication of functions and &, € I12(GL /G¥)
is the delta function which is equal to 1 on the subset G¥ C GI" and 0 elsewhere. Indeed, we have,

V(k-d@6)([u]) = Y w-i(uo)d([])

veGT

= Z K - 7(uv 1)
veEGE

= Z k(uvo™ A (uv™t)
veGE

= > slww n(r(uo™t))
veGT

= Y wlw n((u)
veGE

= () Y m(ww™)

veGE
= () (3.3.24)

(ii) Let ¢ € B, ¢, ¢ as above. Then we have,
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T (WP @ 9))([a]) = / . > w(aBo™)¥(¢ @ ¢)([6)dN ([6))

Begs
- / S w(aBo ) S (])c(05)ax ([0])
=/9% pegs 5egT

On the other hand, we have,

[V (xm(¢) @ DI(C @ ¢)([a])

> Als) Do ()¢ (ar™)

keGT

= o([r V(v N (var™HdN o
3 el /g (7 )¢(rar ) dAr e (7)

= > ¢([“])/ >l e )dA ) (v)
wegr veLra) 5, &G,

= ) [ S bl e AN )
reGY velie) yoegy

= X el [ 3 wlas a5 e a0
weGT vele gege

( fixing 42 € GY for each v € L, v2 = 42/3)

= Y 4K / S (0B 55 )¢ e B N[

HEQI '}’2€gz/g: ﬁegi

() / S p(af55 )G )N (o))

K E€GT 7¥2€G./G% prege

Comparing the last lines of the above computations gives the result. O

3.3.2 Dirac Operators on Hilbert C*-modules

Let {Dr}er be a family of leafwise Dirac operators on M, and {f)w}me u its lift to the monodromy groupoid
via the covering map r : G, — L(x). Thus the family D = {D,}sen is a G-operator. Then, we define a
densely defined AT -linear operator on the Hilbert module &, as:

Dg(ﬁ)/) = Ds(v)(ﬂgs(w))(ﬁ)/) for £ € Ogo(gTaT*E)v'-Y € 0r. (3325)

Then [Va:01, Proposition 3.4.9] applies to our case to give:

Proposition 3.3.7. The operator D is a closable operator and extends to closed self-adjoint unbounded
reqular operators D, and Dy, on &, and &,,, respectively.

Proof. We recall the proof given in [Va:01]. Since D, is a formally self-adjoint operator, D* is densely defined
and D* = D on the dense subspace .. Since D* is a closed operator, so is (D*)*, and G(D) C G((D*)*)
implies D is a closable operator. To show G(D) C G((D*)*), we use the definition of the graphs G(D) =
{(z,y) € €|z € DomD,y = Dz} and G(D*) = {(y,z) € E?|Vz € DomD, < x,z >=< y,Dz >}. Therefore,
G(D) C G((D*)*) = {(y,z) € E|Vz € DomD*,< x,z >=< y,D*z >}
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D, has a parametrix Q, which is a pseudodifferential operator of order -1, and satisfies D;Q, = 1 — R, where
R is a compactly smoothing tangential operator on the monodromy groupoid. So for large enough n, (Q*Q)"
has a compactly supported continuous kernel on G,i.e. an element of B, and thus extends to an element in
the C*-algebra BY and is therefore a compact operator on &,, by Proposition B.3.3 But (Q*Q)" extending
to a bounded operator implies the same is true for Q let it be denoted by Q.

We want to show that the extension of the operator DQ coincides with DQ. To see this, let (u,v) € G (DQ)
Then, there exists a sequence {u,} in £ such that ||u, — u|| — 0 as n — oo, for which |[DQu,, — v|| — 0
as n — oo. But by the definition of Q, there exists a w € £ such that ||Qun —w|| — 0 as n — oo. Thus

(w,v) € G(D) and so (u,v) € G(DQ). Thus we have shown G(DQ) C G(DQ).
Now, f)Q = 1— R is a zero-th order operator and also extends to a bounded operator on £, and thus has
full domain €. So G(DQ) = G(DQ) < DQ = DQ.

But then we have the relations DQ =1 —R, QD =1 —R’and Q*D* C (DQ)* = —R*. Let u, € Dom(D)
be a sequence converging to u, such that Du,, — Du. As Q and R are continuous,we get QDu = u —
R’u. This implies Dom(D) C Im(Q) + Im(R’). As Q*D* C (DQ)* = I — R*, we get similarly as above
Dom(D*) C Im(Q*) + Im(R*). As Q is bounded and formally self-adjoint,it is self-adjoint by continuity.So
Dom(D*) C Im(Q) + Im(R*) € Dom(D) = Dom(D*), as R* is the closure of a compactly smoothing
operator.

Therefore, G(D) = {(Qz+Ry, DQx+DRy); (z,y) € £2}, which is an orthocomplemented submodule because
it is the image of the bounded closed operator given by

(o ®
U= ( DQ DR )
The complement submodule of Im(U) is Ker(U*) = hG(D*)*,h : (z,y) — (y, —z). Therefore D is regular
by |La:95, Proposition 9.5]. O

Definition We define the index class ind(D;},) € Ko(K 4z () as the class [e] — { 8 ? } where e is the

idempotent

where ST =7~ Q Dt 8 =71 — DTQ’ are the operators on the Hilbert module &, associated to the
remainders S* for the Dirac operator D7.

We also recall that S is the extension of the operator S and is defined by

SE() = Ssméle.i, (), (3.3.26)

where § € C.(Gr,r*E),y € Gr, and we have the isomorphism W, g : Eq @ res 12(GY) — L?(G,,7* E) defined
in[6.31)

Proposition 3.3.8. W, ¢, 0[S ® Idp2(gry)) 0 ¥y ey =S

x req

Proof. Since by definition,
[S’w(‘yw,reg@ ® §)))(u) = Evegg S, [Rv*1C|Qr(u)](“)§(U) (3.3.27)
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we have,
\I’w,Tego[Sm®Id](C®§)(u) wreq( mC®§)( )

= eor SmCluvE()
= EUEQI Sr('u <|QT(v) (U’U )5(1))

= S egr Bu1[SnwCla, ., () (3:3.28)
= Zvegg So[R,- 1<|QT(U)](U)§(U) (using G-equivariance)
=[S (Wa,req(C ® €))](u)

O

Recall that we have an isomorphism X, : Bf, — K a7 (€,). We define another index class of D, in Ko(Bp,),
where BE = Cr (G, E)), as the image of ind(D,,) under the map x,,., : Ko(Kaz (Em)) — Ko(BE) induced
by x;!. Let us denote this index class by ind(D,,).

Let also 714, , := 7 omi® : Ko(BE) — Cand 72, := 72 , om2" : Ko(BJ) — C be the maps induced by the
traces TTAeq and 73 on BE. Then we have the following

Proposition 3.3.9. We have the following equalities:
ind(Dpn)) = Ind*(D) and 72, (ind(Dy,)) = Ind*(D)

req *(

Proof. To show the first equality we will show that Teq(x;1 (S)) = 72(S). Recall that

Ay =74 07" and 719 (T) = Vo reg © Xm(T) @ IdB(P(g{))] © \I/m_,}“ega for T € B},

reg

So letting T' = x;,}(S) in the last equation above, we get,

T2 (X (S)) = W reg © [S @ Tdp2(gry)) 0 Wy tey = S (by Proposition (3.3.8)) (3.3.29)

Since S is 7"-trace class, we have the required identity reg(X;zl (S)) = 72(S). Therefore, we have,

Treg, (nd(Dm)) :Ti‘O(WIegOX;”)(md( m)) =72 0 (77 0 x; ')« (IND(Dpn))
(ST ) ™((57)%) (3.3.30)

But then the Calderon’s formula for N = 2 gives

A((S1)2) — 72((§7)2) = Ind*(D), thus establishing the first equality. The second equality is similarly
established. (|

req *(lnd(Dm))) = Té}",*(lnd(Dm))

Corollary 3.3.10. As per the above notation, we have T,

Proof. This follows directly from Theorem and Proposition O

3.3.3 Remarks on the Baum-Connes map

Let (V,F) be a compact foliated manifold without boundary. Let G be its monodromy groupoid, which we
assume to be torsion-free, i.e. all isotropy groups G¥ are torsion-free. Let BG be the classifying space of
the groupoid G (cf. [Co:94]). We recall the definition of geometric K-homology for BG as given in [C0:94].
Recall that a generalized morphism f: M — V/F (in the sense of [C0:94]) is called K-oriented if the bundle
T*M @ f*r admits a Spin®- structure, where 7 is the normal bundle to the foliation F, i.e. 7, = T, V/T,F.
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Definition The geometric K-homology group for BG, denoted K, (BG) is the set of triples (M, E, f), called
K-cycles, where M is a closed Riemannian Spin®-manifold, E is a complex vector bundle over M, and f is
a K-oriented map from M to the space of leaves V/F of (V,F), modulo the equivalence relation generated
by the following relations:

(i) Direct sum: Let (M, E, f) be a K-cycle, and F = F1 & E5. Then
(MaEuf)N(MuEluf)l—l(MuE27f)

where LI denotes the disjoint union operation given by (M, E1, f1)U(Ma, Es, fo) = (M1UMs, E1UE,, f1U f2).

(i) Bordism: Let (My, E1, f1) and (Ms, Ea, f2) be K-cycles. Then (M, E1, f1) ~ (Ma, Es, f2) if there
exists a smooth compact Riemannian Spin°-manifold with boundary, W with a complex Hermitian vector
bundle E on W and a K-oriented map W — V/F such that the cycle (0W, E|aw, fow) is isomorphic to the
disjoint union (M7, E1, f1) U (—=Ma, Es, f2). Here —Mjy denotes My with the Spin®-structure reversed, and
we call two K-cycles isomorphic if there exists a diffeomorphism h : M; — Ms such that h preserves the
Riemannian and Spin®-structures, h*FE; = F; and we have fo o h = fi.

(iii) Vector bundle modification: Let (M, E, f) be a K-cycle. Let H be a Hermitian vector-bundle on
M with even-dimensional fibers. Let 1 denote the trivial line bundle on M, 1 = M x R. Let M = S (Hol)
denote the unit sphere bundle of H & 1 corresponding to the inner product on H. The Spin®-structures on
TM and H yield a Spin®-structure on TM, so that M is a Spinc-manifold. Let p : M — M denote the
projection to the zero section.

Since H has a Spin®-structure, there is an associated bundle Sy of Clifford modules over T'M such that
Cl(H) ® C = End(Sg). The Clifford multiplication by the volume element induces a Zs grading on Sy,
which we write as Sy = S’}'} ® Sy. Denote the pull-backs of S’}'} and Sy to H by Hy and Hi, respectively.
Now, M can be seen as two copies of the unit ball bundle of H glued together via the identity map on Sg.
Form a new bundle H on M by putting S’I‘; and S;; on the two copies of the unit ball bundle of H respectively
and then gluing them together along Sy by a clutching map o : Hy — Hy, where o is given by the Clifford
action of H on Hy and H;.

Then the vector bundle modification relation is defined as (M, E, f) ~ (M, H ® p*E, f o p).

The set K.(BG) is an abelian group with respect to the operations of disjoint union and reversal of the
Spinc-structure. The subgroup Ko(BG) (resp. K1(BG)) are the subgroups of K,.(BG) given by K-cycles
(M, E, f) such that each connected components of M are even (resp. odd)-dimensional.

maz(9)) is given by the map [(M., E, f)]
fi([E]), where fi denotes the shriek map implementing the wrong-way functoriality in K-theory (see [Co:94,
Section 2.6, page 111], |[Co:81]).

Definition The maximal Baum-Connes map pinaz @ K«(BG) — K. (C*

We have the following theorem which ensures that the map piyq, is well-defined.

Theorem 3.3.11 (Corollary 8.6, [C0:94]). Let x € K.(BG) and (M, E, f) be a K -cycle representing x. Then
the element fi([E]) € K.(C},.-(G)) only depends on the class of (M, E, f) under the equivalence relation
generated by direct sum, bordism and vector-bundle modification, and pmes s an additive map of abelian

groups.

Recall the functionals 7,¢q « and 74, « from the previous section.

Proposition 3.3.12. We have Tyeg .« = Tau,« 0N the image of pimaz i K (C),(G)).
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Proof. We give a brief outline of the proof and refer the reader to [BeRo:10] for more details. By [C0:94,
Proposition 8.4] and [C0:94, Theorem 8.5], one can restrict to K-cycles (M, E, f) such that f: M — V/F
is a smooth K-oriented submersion. Then there is a well-defined pull-back foliation on M, which we denote
by Far. Then the maximal Baum-Connes map for the foliation (V,F) is given by the index of an operator
Dy on a certain Hilbert C*(G)-module &, g induced by a family of order zero Dirac operators and lies in
K. (C*(G)) (for notations and details see [CoSk:84, Lemma 4.7, Definition 4.8, Theorem 4.14]). Then we can
apply the same techniques as in the proof of Proposition and Corollary B30 for the operator Dy to
get the result. O

3.4 Functional calculus of Dirac operators

3.4.1 Functional calculus of normal regular operators on Hilbert C*-modules

The functional calculus of normal regular operators on Hilbert C*-modules has been treated by [Wo:91] and
[Ku:97]. We state some results which we will require for the functional calculus of the operator D. We begin
with the following definitions:

Definition ([Wo:91]) Consider a C*-algebra A and let T be a linear mapping acting on A defined on a linear
dense domain Dom(T) C A. T is said to be affiliated with A if and only if there exists z € M (A) such that
[|z]] <1 and for any z,y € A we have

x € Dom(T),y = Tx <= There exists a € A such that x = (I — 2*2)"/2a and y = za.

Definition (|La:95]) Let &,&’ be Hilbert C*-modules over a C*-algebra A and T be a densely defined A-
linear mapping from Dom(T) C € to £’ such that T is closed, T* is densely defined and I 4+ T*T has dense
range. Then T is called a regular operator from & to &’.

Remarks:

1. By Theorem 10.4 of [La:95], we see that affiliated operators on a C*-algebra A are therefore nothing but
regular operators on A, viewed as a Hilbert A-module.

2. By Theorem 10.1 of [La:95], a regular operator T on a Hilbert A-module F is affiliated to the C*-algebra
K a(F) with dense domain span{6, |z € Dom(T),y € E}. See |Pa:99]

Theorem 3.4.1 ([Wo:91] Thm.1.2, [Ku:97] Thm.1.9, Propn. 6.17). Let m : A — L(E) be a non-degenerate
x-homomorphism from a C*-algebra A to the bounded linear operators on a Hilbert C*-module £. Then

(i) m can be extended to a well-defined map 7 : n(A) — R(E) where n(A) is the set of elements affiliated to
A and R(E) is the set of regular operators on E.

(it) m(Dom(T))E is a core for n(T) and n(T)(w(b)v) = n(T(b))v for every b € Dom(T) and v € E.
(111) if T is a normal element affiliated to A then w(T) is a normal element in R(E) and for any bounded

continuous function f: C — C we have f(n(T)) = n(f(T)).

We would like to study the functional calculus of a regular operator on interior tensor products of Hilbert
C*-modules. This is done as follows. We follow the treatment in [La:95], pages 104-106, Chapter 9. Let E be
a Hilbert A-module, F' be a Hilbert B-module and « : A — L(F') be a x-homomorphism. Let ¢ : D(t) — E
be a regular operator on the Hilbert A-module F with dense domain D(t). Define

Dy :=span {z®yl|z € D(t),y € F}
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where 2@y denotes the equivalence class of the algebraic tensor product 2 ®y in E®, F. Then Dy is a dense
(algebraic) submodule of E ®4 F. We consider the operator ¢; defined on Dy as the linear extension of the
following operator defined on simple tensors in Dy:

t(z®y) = tz®y
Similarly, we define D := span {z®y|r € D(t*),y € F} and we define an operator ¢ as

ta(zy) = t" 2@y

Then we have for z € D(t),y € D(t*), and u,v € F,

< t1(z®u), y@v >=< 1QU, ta(yRv) >

and therefore by linearity, < t1¢, ¢ >=< ¢,t2¢) > for ¢ € Dy, € Dj. Therefore D§ C D(t) and to C t5.
So t7 is densely-defined and therefore ¢; extends to a closed operator a.(t).

Proposition 3.4.2 (|La:95], Proposition 9.10). Ift is a regular operator on E then the closed operator o (t)
s a regular operator on E ®q F. Moreover we have

(0 (1)) = au(t?)

To study the functional calculus of the operator o (t) when ¢ is self-adjoint, we consider its bounded transform
(or z-transform)

fau = ()L + an(t)ax () 7

Let f; = t(1 +t*t)~'/2. For s € L(E), consider the adjointable operator s ® 1 in L(E ®, F) defined in
Chapter 4, page 42 of |La:95).

Proposition 3.4.3. We have f; ® 1 = f, 1)

Proof. Let g = (14 t*t)~/2. Then (1 + t*t)¢?> = 1. Similarly let 7 = (1 + a.(t*)au(t)) /2, then
11+ a(tHa(t)r* =1 1.

We wish to prove that ¢ ® 1 = r. First let us show that if s € £L(F) and ¢ is a regular operator on E such
that ts € L(F) then range of s ® 1 is in Dom(a.(t)) and we have

ts®1=a.(t)(s®1)

Since I'm(s) C Dom(t), we have Im(s ® 1) C Dy C Dom(aw(t)). So we have on simple tensors
(1) (s ® 1)(2®y) = a.(t)(sa®y) = tsa@y = (ts ® 1)(2®y)

Now let Dy = span{z®y|x € Dom(t*t),y € F}. Then D; C Dy, and we have on Dy,
0 (£7)n () (260) = () (t2y) = £t00y) = s (£°0) (20)

where the second equality is justified by the fact that x € Dom(t*t) = tz®y € D{. Therefore we have
. (t*)au(t) C ax(t*t), and since range(q?) C Dom(t), it is easy to see that
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11+ a(t)at)(®@l) =121
Since the map s — s ® 1 is a x-homomorphism (cf. [La:95], page 42), we have r = ¢ ® 1. This implies that

[iol=tq®1=0a.(t)(g®1) = a.(t)r = fa.@)

O

Thus by the above proposition we see that the definition of av.(t) coincides with the image of ¢ under extension
of the non-degenerate *-homomorphism o* : 4 (E) — Kp(E ®q F) in (cf. |La:95], page 42) to affiliated
operators on K(E) in Theorem B:411

3.4.2 Functional calculus for the operator D,,
Since we have an isometric isomorphism (see B3E) Wy ey : Em @pres 12(GL) — L2(Gy,7*E), there is an

induced *-isomorphism W ... : K(Ep ®res 12(G])) — K(L*(Gy, r* E)) given by conjugation with ¥ r.cq. We
have the following

x,reg *

Proposition 3.4.4. Let f : R — R be a bounded continuous function. Then, we have f(D,) € B(L*(G,, 7 E)),
and f(Dz) = e req 0 [f(Dm) ®pres Id] 0 U1

z,reg*

Proof. By proposition B3, Dy, is a regular operator on &,, . Therefore (p5%9).(D,,) is a regular operator
on Enp ®yres 12(GL) and therefore affiliated to the C*- algebra K(Em ®@,pres 12(GL)). Hence the operator
Ur ((p7¢9). (D)) is affiliated to K(L?(G,, r* E)). Now for ¢ € C°(Gr,r* E) E€CGT)u€ Gy Uy rey((®

T, reg

€) € C°(Gy,r*E) C Dom(D,), and we have by direct computation :

Uareq © [P @Id)(C®E) (1) = [Da(Tareg(C ®E))] () (3.4.1)

Checking domains shows that the closed operators D,, @ Id := (p"9),(D,,) and D, coincide.
So we get for f € Cp(R),
F(Dz) = [((¥} 1eg) (D ® 1d))

= ( wreq) ((Dm@ld))

= ( wreq)(f(Dm)®I)
(3.4.2)

where the equalities above are justified by Theorem [3.4.1] and proposition [3.4.3 O

A similar proposition can be stated with similar arguments as before for the leafwise Dirac operator D:

Proposition 3.4.5. Let f : R — R be a bounded continuous function. Then, we have f(Dy,) € B(L*(L., E)),
and f(Dr,) = Vs ,a0 0 [f(Dm) ®pev Id] o W p

T,av”’

We give now a useful proposition exactly analogous to Theorem 3.19 [BePi:08], which we will use later.



56 CHAPTER 3. FOLIATED ATIYAH’S THEOREM

Proposition 3.4.6. Let ¢ : R — R be a Schwartz function. Then ¥(Dy,) € K(En) and the following
formulas hold:

(Cl;) (ﬂ-;egoxgzl)(w(pm)) = \ijyrego(d](D )®I)O\I]m ieg and (ngerZl)W(Dm)) = ‘I’w,avOW(D )®I)O\Ijz }11)
(b) Theg (X (0 (D)) = T ($(D))
(¢) o (X' ((Dm))) = 72 (¥(D))

( A

in particular the element x,,'(¢)(Dy,)) € BE is trace class under both traces Treg and s
Proof. Since 1 is a Schwartz function we know by the functional calculus for D,,, that the operator ¥(D,,) (I +

D2)) is a bounded adjointable operator on &,,. Also from Proposition 4.2.3 and Proposition 3.4.5 of [Va:01),
we have (I +D2)~! € K(€,,). So one has

YD) = [$(P) (I + Dp)] (1 + D)7 € K(Em)
Now (a) is a consequence of and the second item is a consequence of We will now show the
formula (c), the proof for (b) is easier.
We have 728 = 74 o m,,. It suffices to prove the result when ¢(D,,) is positive. Assuming so, we have,
(Taw © X)W (D)) = (77 © Taw © X ) (H(Drm)))
= TJA-‘((‘IJz,av o (Y(Dm) @ 1) 0¥, ov)weM)

T2 (1(Dy)zen) ( from proposition BA.5)
= 72(¢(D)) < o0

where in the last line we have used Proposition 7.37 of [MoSc:06]. O



Chapter 4

Stability properties of foliated
p-invariants

4.1 The foliated n and p invariants

Consider the function ¢;(x) = z exp(—tz?) for t > 0. Then by the functional calculus, ¢;(D) and ¢;(D) are

well-defined. Since ¢; is a Schwartz function, the operators ¢;(D) and ¢:(D) have smooth Schwartz kernels.

Let the Schwartz kernels of e *2 and e ~*2” be denoted by k; and K;. Then k; € C°°(Lx L, End(\* T*L))
and Ky, € C®(G, X Gz, End(A\" T*G.). We have the following estimate for these kernels for small ¢:

Proposition 4.1.1. (Bismut-Freed estimate) For 0 <t < 1 there exists a C > 0 such that,
(1) |trpt(kt-,L(Ia €L, TL))| = O(\/E)
(2) [trpe(Ke (e, 12)| = O(VT)

for each x € Ly, the leaf through n € T', where tr,; denotes the pointwise trace.

Proof. The proof of (1) is given in [Ra:93]. We give a detailed proof of (2) on the lines of this proof. A
parametrix P(.,.,t;x) for the heat kernel satisfies the following equation:

Kio(a,b) = P(a,b,t;z) — > _(—1)'Pi(a,b, s;2) (4.1.1)
i>0

where P; = P *.ony (R*) with R(a,b,t;2) = (0; + Ab)P(a,b,t;x), *eonw 1S the convolution of kernels and
R* = R *conw - - * *conw R with ¢ factors. The series on the right hand side of LIl converges uniformly on
G X G, x[0,T] together with all its derivatives. We can construct a parametrix P(., .,¢; x) for the fundamental
solution of the heat equation on the possibly noncompact Riemannian manifold G, such that P satisfies the
following conditions (cf. [Ra:93]):

o7
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e P(a,bt;x) € Hom(/*\ T;Qm,/*\Tb*gm) V>0 (4.1.2)
o (Ay+ %)P is O(t™) (4.1.3)
o Dy(Ay+ %)P is O(t™ 1) (4.1.4)
(4.1.5)
Here m is chosen such that
/t(t — 5)"25m s = O(t1/?) (4.1.6)
0 |P(a,b,t;2)|[ap < CE2 (4.1.7)

where ||P(a,b,t;z)||4,» denotes the norm on Hom(A" TG, A" T;7G.). The construction of such a parametrix
on compact manifolds is classical (see [Pat:71],|MiPle:49]). Choosing the support of P on a precompact e-
neighbourhood of the diagonal, where € is less than half the injectivity radius 41 of G,, we can restrict the
convolution integrals to metric balls of radius € around one of the variables and use the uniform bound on the
volume of these balls due to the bounded geometry property to estimate the integrals instead of the volume
of the manifold which is used in estimating for the case of a compact manifold. This estimate is given by

AB>‘_1’UOZ(B€(,T)))‘_ltk_(n/2)+>\_l

R*}xt <
| (’I’y)|_(k—%—|—1)(k—%+2)(k—%+)\_1)

where A, B are constants (cf. |[Ros:88]).

The semigroup domination property for the heat kernel gives the following estimate for the norm of K , (cf.
[Ra:93],|Ros:88]):
[ Kt,0(a,b)l|ap < exp(et) Ky (a,b) (4.1.8)

where KB is the Schwartz kernel of the operator e **£5, where Ay p is the Laplace Beltrami operator on
G, and || K (a,b)||qp is the norm on Hom(A T4Gs, A TvGs)-

By Duhamel’s principle, ~ _ _ _

8y + Ap) P seony R = R* + R*HD) (4.1.9)
Thus by 1.9 and A11], K, is the fundamental solution of the heat equation because the heat operator
applied to the sum on the right side of E1.1] equals —R. So we have from L.1.Tt

O+ A)K = 0= (0 + Ay)P = (0 + D) X jn (- 1) P;(a, b, 5y 7) (4.1.10)
By using Duhamel’s principle again we have(cf. [Ro:88, Proposition 7.9, p. 96])

t
Z(—l)ipi(a,b,s;x) = / ds Kt_s7m(u,w)(8g + A P(w, v, 5;) %4 1 (4.1.11)
i>0 0 Ga S

where *,, is the hodge operator in the w-variable. So from [£.1.1] we then have,

t
Ky 5 (u,v) = P(u,v,t; ) —|—/ ds K,g_sw(u,w)(a2 + Ay)P(w, v, 5;) %4 1 (4.1.12)
0 Gu 5

We remark that ¢ is positive as G is the universal cover for the Riemannian manifold L(z) having bounded geometry.
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Since the series in LTl converges uniformly with derivatives of all orders, we can also apply the above
computation to Dy K to get

t
DvKt,x(u,v) = DUP(u,v,t; x) +/ ds Kt,sym(u,w)(a2 + AU)I)UP(w, V, 85 X) #yy 1 (4.1.13)
0 G S

Applying the pointwise trace functional on both sides of A.1.13 and using its linearity and normality, we get
at u =,

t
trpt(f)Km(u, u)) = trpt(ﬁP(u, u,t;x)) —|—/ ds trp ( K,g_s,gc(u,w)(a2 + A)DP(w,u, 8;x) %y 194.1.14)
0 Go &

where DK, ,(u,u) = Dy K (1, 0)fuzy, DP(u,u,t;2) = Dy P(u,v,t; 2)|y=y and DP(w,u, 5;2) = Dy P(w,u, $; )|y -
From the estimate of Bismut and Freed(cf. |[BiFr:86])

[trp:(DP(u,u, t; )| = O(V1) (4.1.15)

where the inequality constant depends on x. We estimate the integrand for the second term in AT1.14] for
t | 0 following [Ra:93]:

trpt (fgz ths,m(uyw)(% + A)DP(w, u, 5; ) %y 1) ’
< CfBz(u €) 1K= s 0 (ty w0)|[u,08™ ™ 0 1 (4.1.16)
< Chvol(By(u,€))(t — s)™/2sm~1

for C,C7 > 0 and where we have used [L1.4] and the estimate for the kernel of the Laplace Beltrami op-
erator 0 < K[FB(u,v) < Ct="/2(cf.  |Ch:84], Ch.8§4]). . The bounded geometry of G, implies that
sup,eg, vol(Bx(u,€)) < oco. Thus we get from EL.T.6] E.T.T4] and [.1.16]

[trpe (DK o (u,u))| < A(z)Vt (4.1.17)

where the constant A(x) depends on z, the dimension and the local geometry (Christoffel symbols and its
derivatives for the Levi-Civita connection) of G,. However, since M is compact, the constants A(z) are
bounded above by a constant A independent of z.

Thus

[trpe (DKo (. 0)| = O(VE) (4.1.18)

uniformly over z € M. O

Proposition 4.1.2. The functions t +— T(Dexp(—t2D?)) and t — 12(Dexp(—t>D?)) are Lebesgue
integrable on (0, 00).

Proof. Since D and D are affiliated to the Von Neumann algebras W*(M,F; E) and W*(G, E), so their
spectral resolutions Ey and Ey belong to the respective von Neumann algebras and are T}—tra@ class and TA—
trace class, respectively. Then corresponding to the positive functionals F(\) = 72(E)) and F()\) = 72(E))
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on R there exist o-finite Borel measures on R, denoted o and & respectively, such that for a rapidly decreasing
function f: R — R, we have

A D)) = x)da(x) an TA = x)do(x
T(f(D))—/]Rf( )dé(x) and 72(f(D) /]Rf( )do(z)

|/ T%(Dexp(—tzDz))dﬂ < / |T$(Dexp(—t2D2))|dt
1 1

Now, we have,

</ " PA(D] exp(~2D%))\dt

— / / Nexp(—t*A\?)da(\)dt

= OoeX 2 ex — 20(
- / A pu)/ p(— (£ — 1)\2)dadt

1

2 (exp(—D?)) < 00 (4.1.19)

Also, we have

/O|Tj;(Dexp(—t2D2))|dt < /;// 7k (1, Loy ) [dNE (1) A (8)
< CdNE(1;)dA(t;) by Proposition(@.11)
(2] ¥ Propos
= Cxwvol(M) < (4.1.20)

O

Definition We define the foliated n-invariant for the Dirac operator D and its lift D as follows:
nx(D) = \/_/ 78(D exp(—t>D?))dt and n* \/_/ M(Dexp(—t>D?))dt

Definition We define the foliated p-invariant associated to the longitudinal Dirac operator D on the foliated
manifold (M, F) as

pN(D; M, F) = n™(D) = nz(D) (4.1.21)

Example 1. Let M — M be a universal covering of a compact manifold M. Then (M,F) is a foliation
with just one leaf, and 7" coincides with the L2-trace Trr, where I' = 71 (M) on the von Neumann algebra
W*(G) = B(L*(M)", and 72 coincides with the usual trace on B(L?(M)). Therefore the foliated p-invariant
coincides with the Cheeger-Gromov p-invariant.

2. When the foliation is given by a suspension, the foliated p-invariant coincides with the p-invariant defined
and studied by [BePi:08].
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4.2 p-invariant as a determinant

Our main reference for finite projections and finite von Neumann algebras is [Di:57]. Let M be a von
Neumann algebra and P(M) be the set of projections on M. Define a partial order < on on P(M) as
follows: for two projections p; and ps of M,

p1 < P2 < p2p1 = P2

Also p; and py as above are equivalent,denoted p; ~ po if and only if there exists u € M such that p; = u*u
and po = uu*.

Definition [Di:57, Chapter I, §6.7, p.97] A von Neumann algebra M is called finite if given any non zero
T € MT there exists a positive, finite, faithful, normal trace ¢ on M such that ¢(T") # 0.

Definition [Di:57, Chapter II, §2.1, p. 229] A projection p € M is called a finite projection if the the algebra
pMp is finite. The set of finite projections in M will be denoted by P/ (M).

Definition Let T' € M. Define
Nr = sup{p € P(M)|Tp = 0}
and
Ry =inf{p e P(M)|pT =T}
Nr is called the null projection of T and Ry is called the range projection of T

The element 7 is called finite( or of finite rank) relative to M if Ry € Pf(M). Let the set of all finite rank
operators relative to M be denoted by KCy.

Proposition 4.2.1. Ky is a two sided *-ideal in M.

Proof. Let S € M and T' € Ko. Then Rrs = inf{p € PH(M)|pTS = T'S}. We must prove that Rrg is
finite. Clearly pT = T = pT'S = T'S. Thus {p € P/(M)|pT = T} C {p € P/(M)|pT'S = TS}. Therefore
Rrs < Rp. Since Ry is finite, so is Rrg.

Now let T, S € Ky. Then we have to show T'+ S € Ky. This follows from the fact that sup(Rr, Rg) is finite
[Di:57, Proposition 5, page 231] .

Finally we have to show that if T is finite so is T*. Consider the polar decomposition of T', T = W|T|. Then
WW™* is the projection onto the range of T', and W*W is the projection onto the range of T*. We show that
Ry = WW*. First, we know that WW*T = WW*W|T| = W|T| =T, so Ry < WW*. Also WW* is the
least projection in M such that pT'=T. So WW* < Rp. Thus Ry = WW* Similarly we get Rp» = W*W.
Therefore Ry ~ Ry~ and so Ry~ is finite.

O

Definition Let I denote the norm closure of Iy in . Elements of I are called compact operators relative
to M. We will also use the notation (M) for K.

Definition (|FaKo:86]) Let 7 be a positive, semi-finite, faithful, normal trace on a von Neumann algebra M.
Then we define L'(M, 1) := {T € n(M)|7(|T|) < oo}, where n(M) is the set of densely defined closed oper-
ators affiliated to M and for a positive self-adjoint element S € (M) we define 7(S) = sup,, 7( [, AddE\) =
Jo " Adr(Ey).

LY(M,7) N M is then a two-sided *-ideal in M.
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Definition We define
ILY = {A € M|A invertible and A — T € L*(M, 1)}

IK = {A € M|A invertible and A — T € K(M)}
Proposition 4.2.2. The spaces IL' and IK are subgroups of the group of invertibles in M, with group
operation being composition of operators.
Proof. Let A € L. Then, A = I + B for some B € L'(M, 7). We write

(I+B)! (I+B)"Y(I+B-DB)
I-(I+B)™'BezL!

since B € LYM,7)NM = (I +B)"'Be L*(M,7)NM, as L*(M,7) N M is an ideal in M.

Now let Ay, Ay € ZL'. Then, clearly Aj As is invertible with inverse A;lAfl. We also have A; = I + B; for
some B; € LY (M, 7),i=1,2

A1Ay = (I+By)(I+ By)
= I+ (B1+ Bx+ B1Bs)

But (By + By + B1Bs) € LY(M, 1), s0 A1 45 € ZL'. The proof for the space of operators ZK is similar. [

Now let {U;}cjo,1) be a norm continuous path of operators in ZK. We have the following lemma:

Lemma 4.2.3. Lete > 0. There is a piecewise linear path {Vi}iep0,1] n ILY such that ||U,—V;|| < eVt € [0,1].

Proof. Since Uy is continuous and [0, 1] is compact, Uy is uniformly continuous. Therefore there exists § > 0
such that
[t—t|<d=||U —Ul|| <e/4

Since each Uy is of the form I + T3, T} € K(M), we get
[t —t'| <= ||Ty — T{|| < /4

Now, using the fact that L'(M,7) N M is dense in K(M) in the uniform topology, we can find Sy, Ss/2 such
that
|[So — Tol| < €/4,1|Ss5/2 — Ts/2|| < €/4

We define the piecewise linear path for ¢ € [0,d/2] as
St =tS5/2 4+ (1 = 1)So
Then we have ¥Vt € [0,6/2]:

[[St = T¢l| = |[[tS5/2 + (1 —t)So — T¢||
= ||[t(Ss/2 — T5/2) + tT5/2 + (1 — t)(So — To) + (1 — t)To — Tt||

< tSss2 = Tsyall + (1 = 1)]|So — Tol| + t||T5/2 — Tol| + ||To — T3]
< tSra-nSeisg s
4 4 4 4
< e (t<1) (4.2.1)

We now repeat the above construction for the intervals [(n — 1)§/2,nd/2] until nd/2 < 1, and if nd/2 > 1,
then we do the construction for the interval [(n — 1)6/2,1]. Now put V, = I+ S, for ¢ € [0,1]. Thus we get
a piecewise linear path of operators {Vi};cp0.1] € ZL" such that ||U; — V|| < € V¢ € [0, 1].

O
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Let {T}}ieqo,1) and {St}iefo,1) be as in the lemma above.
Definition The path {.S;}+c[o,1) is called a piecewise linear e-perturbation of the path of operators {7} }+¢[o,1]

Definition Given a continuous piecewise linear path T' = {T}}c[o,1) in ZK, we define its Fuglede-Kadison
determinant w™(7}) as follows:

. 1 [t ,dS
w (T) :% . T(St ld—tt

)dt
for a piecewise linear e-perturbation S of T' corresponding to a small enough € > 0.

The following proposition ensures the well-definedness of the above determinant [HiSk:84].

Proposition 4.2.4. Let T = {T}}c[0,1] in ILY be a continuous piecewise linear path of operators. Then we
have the following:

1. If||IT = 1I||s < 1Vt €[0,1], then for any t € [0,1] the operator Log(Ty) is well defined in the von Neumann

algebra M and we have
w(T) = 5 [r(Log(T)) — (Log(Ty))]

" 2mi
2. There exists § > 0 such that for any continuous piecewise linear path T' = {T} };c[0,1] which satisfies
T, — Ti||s <0, and Ty =T¢, Th =T,
we have w™ (T) = w™(T").

3. The determinant for any piecewise linear path continuous in the uniform norm is well-defined and depends
only on the homotopy class of the path with fized endpoints.

We now proceed to interpret the nm-invariant as the determinant of a particular path of operators. Our
references for this section are [Ke:00], [BePi:08]. Let for ¢ > 0,

2 " —s* = —exp(imd, (x ) = a:eiﬁlz
¢t<x>.—ﬁ/0 e s, (x) = — explindy(x)), fi(x) =

Then the functions 1 — 44,1, and f; are Schwartz class functions for all ¢ > 0. The operators 1 —
Yt(Dim), Vi (D) and fi(Dy,) are C*(G¥)-compact operators acting on the Hilbert modules &,,. Further-
more, their images under the representations 77¢¢ and 7% are 7 and Tjﬁ_—trace class operators in the von
Neumann algebras W*(G, E) and W*(M, F, E), respectively. Moreover, 1;(D,,) is an invertible operator
with inverse given by —e~®(Pm) for t > 0, so (¢:(Dpm))i>0 gives an open path of invertible operators in
IK 43 (Em), whose image under 7“7 o X! is a path in ZL'(W*(G, E)). Similarly, its image under 7% o x;!
is a path in ZLY (W*(M, F, E)). We define two paths associated to the operator D,,:

V(D) = (779 0 X! ($1(Dim)))e>0, and
V(D) = (1 0 X3! ($(Din)) )0

Using the traces on the von Neumann algebras W*(G, E) and W*(M, F, E), we associate to V"% (D,,) and
V@ (D,,) the corresponding determinants. We define

Wl (D) = Wi (VI (D)) and w?® (D) i= w (V" (Dr)

where V7*9(D,y) = (179 0 X1 (D)) <1<V, and VE¥(Dy) = (197 0 x5 (D)) <11/,
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Proposition 4.2.5. We have the following formulae:

1 ~ 1
lim wl(D,,) = EnA(D) andlim wl’(D,y,) = 5772(D)

e—0 € e—0

Proof. The proof is exactly as in Theorem 5.13 [BePi:08], we give it here nevertheless for completeness. We
have

(VD) = (572 0 (7D e ) = 20/ (" 0 ) (Do)

d

(V7 (D)

By Proposition 324 we have (779 o x-1)(f¢(Dp)) = f1(Ds) , so

(7" 0 X3 ) (fe(Pm)) = fo(D)

Therefore we have

e—0 e—0 271

1 1/e
lim wi® (D) = lim _/ T2V (7" 0 X, ) (fe(Din)))dt

1/e 5
= lim%/ A (fi(D))dt

e—0

1 /Oo A _2p?
= — T (Dpe m)dt
VT Jo
1 4 =

= 577A(D)

The second formula is proved in a similar way using Proposition [3.4.5 O

Corollary 4.2.6. We have

PN (D, M, F) =2 x Jim (w? (D) — w¢" (Drm)

€ €

Proof. This is immediate from the definition of p(D, M, F). O

4.3 Metric independence of the p-invariant

Let g be a leafwise metric on M*~1 which lifts to a G-equivariant family of metrics (g;)zen such that
e is a metric on G,. Let D¥9" = (D}"") ¢ 7 be the leafwise signature operator on (M,F), and let

Dsi9m = (D59, pr be its lift to the smooth sections on the groupoid as defined in B2l We can define the
foliated p-invariant (which coincides up to a sign with the definition [.T]) associated to the signature operators
as

1o i
Phign (M, F,g) = —ﬁ/ A (kdexp(—t*Agi—1)) — T3 (+d exp(—t* Ay _1))dt
0

where Agl,l and Ag;_; are the Laplacians on 2] — 1 forms associated with the metrics § and g, respectively.
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Theorem 4.3.1. Assume the data given above. Also let gg, g1 be leafwise smooth metrics on (M, F). Then,
P (M, F, go) = p* (M, F. g1)

where p™(M, F,g) is the p-invariant associated with the metric g and the corrsponding leafwise signature
operator.

Proof. We will extend the method of Cheeger and Gromov [ChGr:85]. Set g, = ug1 + (1 — u)go, for u € [0, 1].
Let us first compute the variation %Té_—\((*d exp(—t?Ag_1)). Denote by A, the Laplacian corresponding
to the leafwise metric g, acting on k-forms. Let T',(t) = exp(—t?Ay 2;—1). Applying Duhamel’s principle, we
get,

%0 ALy (t — €)To(€) — *odly(e)To(t —€) = — [#0d[y(t — s)To(s)]) ds

= —/ 76[— xo dL (t — 8)To(s) + *odLy (t — s)T(s)]ds
/ [%0d AT (t — $)To(s) — #odly(t — s)AgTo(s))ds3.1)

Taking the trace 75 of the term odl',(t — s)A¢I(s) in the last line above, we get,

T}(*Odl"u(t —8)AgTg(s)) = Té_\-([*odl—‘u(t —$)To(s/2)][To(s/2)Ag))

(using the semi-group property of I'(¢) and commutativity due to functional calculus)

= 72([Lo(s/2) Ao][*odlu(t — 5)To(s/2)])
(using the trace property and boundedness of the two operators in square brackets)

= 72(x0dAolu(t — 5)To(s/2)[To(s/2)])
(using the trace property again and that Ay commutes with *d)

= TR (x0dAoTy(t — 5)[o(s)) (4.3.2)

where we have also used the fact that Range(T',(t — s)) € Dom(Ay), since T',(t — s) is a tangentially
smoothing operator with uniformly bounded kernel. So from £3.1] and [£.3.2 we get,

TR (odly (t — €)To(€) — *0dTy(€)To(t — €)) = —/ h TR (*0d(Ay — Ag)Tu(t — 8)To(s))ds (4.3.3)
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Differentiating [1.3.3] with respect to v and setting u = 0, the right hand side is given by

Tff\(*od;iu[mu — Ao)Tu(t — 5)To(s)])ds

T%(*Od[AuFu(t —s)To(s) + Aufu(t —s)To(s) — Aof‘u(t —5)T0(8)]|u=0)ds

T%(*OdAoro (t - S)Fo(s))dS

t—e

TR (x0dAoTo(t))ds (semi-group property of I'(¢))

— (1= 202 (vodAoTo (1))

= —(t —2€)TR(x0d(dby + od)To (1))

= —(t — 2€)7R(x0ddodTo(t))

= (t —2e)7R[(*odkod %o dTo(t)) + (xod %o dkodTo(t))

= —2(t — 2€)72 (%0dAoT(t)) ( by permutation of bounded factors) (4.3.4)
Taking the limit as € — 0 we get the result

t—e

lim — Tjg(*od%[mu — Ag)Ty(t — 5)To(s)])ds = 2t%Tjg(4<odro(t)) (4.3.5)

Now to compute the left hand side of £.3.3] we first note the identity

DA (wdr (1))

T TR (KD (1)) + T2 (+dD (1))

= TRAGAD(t)) + TR (t — €+ €))
= TR(kdD(t)) + TRA(xdD (¢ - () + TR (xdD(t — e)I‘(e))
= lim [TAG+dT(t)) + TA(+dD(t — €)T(€)) 4+ T2 (xdL(t — €)T'(€))]

= TRAGAD(t)) + TRA(dD(t)) + lim TR (+dD ()T (€)) (4.3.6)
which implies that .
lir% TR (+dD(H)T(e)) = 0
Using this in the LHS of 3.3 we get,

lim i[Té}‘(*OdPu(t —€)o(€) — *odly(€)To(t — €))]|u=0

e—0 du
~ lim (T;;(*Odfo(t — )To(€)) — T2 (%0dl'o ()To(t — e)))
= d%hzorg(*udru(t)) — 7A(kodTo (1)) (4.3.7)

So from 30 and 371 we get,

%Tjg(*udru(tmu:o = 78 (kodDo(t)) + 2%7}_(*0@0@)) (4.3.8)
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Now, we have,

2 o0
A A 2
nr(M,F,gu) = —/ 77 (kudexp(—t~Ay))dt 4.3.9
BOLF.) = —= [ mndesn(-£A.) (139)
o2 [Ty 2
= Tlgy;() gl—l%ﬁ/e 77 (*ydexp(—t°Ay,))dt (4.3.10)

where both the long time and short time convergence is uniform in u. From 3.8 and 3.9,

d A .
(M, Fogu)lu=o = Tlin;olgxg)\/—E/ =0T (Fud exp(~£2A,,))

2 (T d
— i lim / [ (oo (1)) + 2 (hodTo 1))t (4.3.11)

T—o0 €e—=0 /T
whence integration by parts of the second term gives us

d
_77_/7-\—(M7 -7:7 gu)|u:0 =

— ( Jim 27 (kodT(T)) — limy 2ET£(>&OdPO(e))) (4.3.12)

2
N

We can repeat all the arguments to show that

dA~sign _2 . A~ T . A/~ 1
gul (DI lumo = — (TlggozTT (FodT'o(T)) — lim 27 (*Odl"o(e))) (4.3.13)

We claim that .
lim 2772 (kodlo(T)) = 0 and Jim 2T 72 (%dTo(T)) =0

T—o00

To show this we use the spectral estimate

|27 72 (0dTo(T))| < CTa((1 — Eo)Ex(1 — Ep)) 4 2T exp(—\T — 1))7% (exp(—Ap))

for any A > 0 where FE) is the spectral resolution of Ag.
To show this, we note that the operator #*~! is a bounded operator acting on the L? space of forms. So we
have, 72 (+0dDo(T)) = T (%0 % ' *0dlo(T)) < [[ko %5 " [|73(J%0dTo(T)|) = Cor2(|%0dTo(T)|) Now, as in the
proof of £.1.2] we have

T2 (J*0dTo(t)]) = /OOO VI exp(—t2X)da(N) (4.3.14)

where a corresponds to the positive linear functional F(\) = 7&(E\). Since *od[o(t)Ey = 0, we have
x0dLo(t) = *0dLo(t)(1 — Ep), so that we can rewrite [L3.14] as

TR (%0dlo(t)) = /000 Vexp(—t2A)(1 — X0y (A))da(N) (4.3.15)

Now let g : (0,00) — (0,00) be defined as g(z) = v/x exp(—t2z). Then,

/@) =5

(1 — 2t%z) exp(—t2x)
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and
1 t2
g’ (x) = 4:5——3/2(1 — 2t%z) exp(—t?z) — NG exp(—t2z) + F(l — 2t%2)(—t?) exp(—t*z)
Thus solving ¢'(z) = 0 gives x, = t%, and it is a global maximum since
t3
" (zs) = -7 exp(—2) <0 for t >0

We also have g(z.) = %= exp(—2). So we can estimate the integral in £.3.14] as follows. Let A\g > 0, so we
write

00 Ao

/ VA exp(—t2\)da(N) = VA exp(—t2X\)(1 — X{01(N\))d / VAexp(=t2\)da()\)  (4.3.16)
0 0 Ao

Let ¢, Ao be such that 0 < t22 < e 1)\0 Then the first integral on the right hand side of [£3.16] is bounded

above by ¥2 2 exp(— fo (1—=xq0y(N)da(X) = % exp(—2)7R(Ex, (1 — Ep)) = % exp(—Q)T}-((l—EO)E,\O(l—

Ep)), where we have used the linearity and normality of the trace.

For the second integral, we write

/OO Vaexp(—t2A)da()) = /OO Vxexp(—(t? — 1)) exp(—=A)da(N)
Ao Ao

IN

/OOO g(tz_l)(/\o) eXp(—/\)da(/\)
Vo exp(— (2 — 1)Ag) T (—e20) (4.3.17)

IN

So we get the inequality
12772 (0dTo(T))| < Col2v2exp(—2)7((1 — Eo) Ex, (1 — Eo))| + T/ Ao exp(—(t2 — 1)Xo) T2 (e~20)| (4.3.18)

Letting T — oo we have Tv/Ag exp(—Ao(T? — 1)) — 0 uniformly with respect to Ao for A\g € [0, K] for some
positive constant K, so that

lim hm |7/ Ao exp(—(t? — 1)Xo)T2(=Ag)| =

T—o00 )\[)

Also, since E)\ — Ejy strongly as A\ — 0, using the normality of the trace we get limy_.q 7'%_(E0L NE)) =
limy— o2 ((I — Eg)Ex(I — Ep)) = 0. So we have the desired result

Jim 2T (50dTo(T)) = 0
Similarly, one has

Jim 2T (50dTo(T)) = 0

In the second term in 312 we can replace the operator I'g(¢) by a suitable c-almost local parametrix for ¢
sufficiently small, so that we get (cf. Proposition3.2.9)

72 (*0dlo(€)) = 7" (%odLo(€))
Combining the above two results for the respective small time and large time limits, we get

d A/ yst d A
N D3grn u=0 — 51N ]\47 J s 9u ) |lu= 4.3.19

Thus we get the desired result [4.3.11 O
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4.4 Leafwise diffeomorphism invariance of the p-invariant

Let (M,F) and (M’,F’) be closed foliated smooth manifolds and f : (M,F) — (M’',F’) be a leafwise
diffeomorphism. Let g be a leafwise smooth metric on (M, F). Since f is a leafwise diffeomorphism it
induces a leafwise smooth metric f.g on (M',F’). Let A be a holonomy-invariant transverse measure on
(M,F). Then by Proposition 22211 we have a holonomy-invariant transverse measure f.A on (M',F’).
The leafwise diffeomorphism f induces a leafwise diffeomorphism between the corresponding monodromy
groupoids G and ¢’. In particular, there is a diffeomorphism f, : G, — g’f(m) for any z € M. Let E (resp.

E') be the Grassmanian bundle of tangential forms A\*T*F (resp. A" T*F’). Then f, induces a unitary
map U, : L*(G,,7*E) — L*( )T E") given by
Un&(a!) = &(f; ) for o € Gy, € € LP(Ga, 7 E).

Notice that f*E’ = E. The leafwise Hodge operator ¥ on G’ corresponding to the leafwise metric f.g then
satisfies
Frw) = Ur o %e 0 U

/

4ign o0 G’ for the metric f.g is given

We also have U, o cix = J}(I) o U, and therefore the signature operator D
by D. =U,o Dsign oU L.

sign

Proposition 4.4.1. Keeping the notations from above, we have

~ ~ A
nA (Dsign) = nf*A(D/sign) and n.%(DSWn) = 77.5-" (D;zgn)

!/

Proof. The functional calculus of bsign is given by conjugation by U,, and in particular we have

D/sign eXp(_t2 (Dlmgn)Q) = UE ° DSi!]n exp(—t2 (DSig")Q) ° U;1
Applying the traces on the von Neumann algebras corresponding to E, E’, and the holonomy-invariant
transverse measures A and f,A, we get for the foliation von Neumann algebra:

MDD/

sign eXp(_tQ(D;ign)2)) = TA(UI 0 Dsign eXp(_tz(DSign)z) 0 Uz_l)

and similarly for the leafwise signature operators on the foliations corresponding to the metric f.g we have

Dlign = g © Dgign o u;" , where u, : L*(L(z), B, ) — LQ(L’f(w),E"L/ ) is the unitary induced by the
' @)

diffeomorphism f, : L, — L'f(m). Therefore by the functional calculus and applying the trace on the regular

von Neumann algebra we have,

ij-‘*’A(D;ign exp(—t2 (D;ign)z)) = T]/-E (uz © Dsign exp(—t2 (Dsign)Q) o u;l)

O

Theorem 4.4.2. Let (M, F) and (M',F') be foliated manifolds with leafwise smooth metrics g and g’ respec-
tively, and let f : M — M’ be a leafwise diffeomorphism. Let A be a holonomy-invariant transverse measure
on (M, F). Then we have for the leafwise signature operators Dsign and Dy;,,, on M and M’ corresponding
to the metrics g and g', respectively,

pM(M, F,g) = pN(M', F',g)
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Proof. Let D! be the signature operator on (M’, F’) corresponding to the metric f,g. Then by the
g

sign,1

previous proposition [£.4.1] we have the equality

pA(DsignuMuj:) :pf*A( : Mluj:/)

sign,1l>

However from Theorem 3T} we have p™*(D7, ., M', F') = p"M(D/, ..., M’, '), which proves the desired
result.

O



Chapter 5

Hilbert-Poincaré complexes on
foliations

The results of this chapter are treated in the preprint [BeRo:10].

5.1 Hilbert modules associated with leafwise maps

Let f: (V,F) — (V',F') be a smooth map such that f sends leaves to leaves. Let X (resp. X') be a
complete transversal on (V,F) (resp. (V/;F’) ). Denote by G and G’ the monodromy groupoids of (V,F)
and (V', F'), respectively. We use as before the standard notation, setting Gx := s~ 1(X), g% = r~}(X),
GX == r Y(X) N s Y(X) and similarly for G4,,G'X', and G5¥'. The leafwise map f induces a map by
restriction on the transversal X which we also denote by f. Also, f induces a well-defined map f G — G
In the sequel, we will use the same notation for the range and the source maps on the groupoids G and G'.

Set
G (f) = A{(z,7) € X x Gxo[ f(z) = r(v')}

and define the following two maps:
ri:Ga(f) = X,rp(n,y) ==

and
Sf gi((’(f) - X/’ Sf(‘r’/yl) = 3(7/)

Now, g§§f acts freely and properly on G¥,(f) as follows: if o’ € gggﬁ is such that r(a’) = s(y/), then
(x,¥)a' = (z,7'a’). Note that r(y'a’) = f(x), so this action is well-defined. This allows us to induce a
structure of a right C2°(G%X )-module on C°(G%, (f)), given by the following rule:

€N (@)= Y ExAa e (o), for € € CX(GX (), ¢ € CX(GR)

«a Gg;)((,y/)
Lemma 5.1.1. We have
(€)' = E(¢ x4, for € € CX(GX(F)), ¢ ,0' € C2(GR) (5.1.1)

where x is the convolution product in C° (Q’X,).

71
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Proof. Let us compute the left hand side of the above equation first:

W (@) = D ()@ oh e (o))
i €6
= Z { ST &yl o e (b)Y (ah)
« eg{ x! g;}(;’ )
= Z S byl al e (ah) (o) (5.1.2)
oY Eg;X, (j;}({;/)

Now computing the right hand side of B.1.1] we get

e+ )(x,) = D ayal (¢ y)(ah)

aheg,

= Z 595’/04(0,1 Z ¢a3a4 ¥ (o)
a5 €9 A

= > ) by ey e (abal Y (o))
4 €G], aheGT)

= > ) @AoDY (ah) (o) (putting of = ahal)(5.1.3)
egs’(‘w’) eg;’(‘;,)

Therefore we get the equality of 5.1.21 and 5.1.3 thus proving B.1.11

On the other hand, G¥ acts on G%, (f) via:
a(w,7") = (r(a), fa) o7') for (z,7') € GX:(f), @ € GX

We note that r(f(a)ov') = r(f(a)) = f(r()), so this action is well-defined. The left action of G¥ on G, (f)
induces in this way a left C(G¥)-module structure on C2°(G<,(f)), with the action given by:

T (9)E(, 7 = Y @)= > da)(s(a), fla™) o) for ¢ € C(GX), € € C(GX(f))

v aou=v aeg;‘(f(v):z

Lemma 5.1.2. We have the following properties:
Jor 6,14 € C2(GX).€ € C2(GX (1)), ¢’ € C2(GX0),
1.7y (¢ * ) = mp(d)my ()

2. The left and right actions are compatible, i.e. we have

mr(8)(€¢) = (5 ()€)¢'
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Proof. 1. Computing the left hand side first, we get:

(9 * V)@ ) = 7 pxv(a)E(u)

v

aou=v

= > > dla)dlarta)(s(a), flamt) o)

aeGf a1 €G%

= X sla)eler a)(s(a), faT) o)

a1 €05 a€g%

= > > slan)d(a)E(s(a2), flag art) o) (5.1.4)

a1€G% a2€g;(0<1)

Computation of the right hand side gives:

T (@) ()E(@y) = D ) )E)(w)

Y Bow=v
= > eB)mr)Els(8), F(B) o)
BEGE
= Y eB) Y. (BB, FBIHFBT) 0
0% pregi?
= >3 eB)w(B)EB), FBTBT) o) (5.1.5)

PEIX pregy?
comparing [5.1.4] and [5.1.5] gives the result.

2. Starting with the computation of the left hand side first:

T (@) ) (@, y) = Y dla)Ed)(s(a), fla)Y)

aeGy

= T g Y ls(0), fla) or' o0 e (ad)
aeGy a/egéi{w’,)

= > D d@is(a), fla) oy oai e (o))

X! cGr
O/Egs(‘y/)a 9%

’ 1 X7
VGG

= (1p($))¢ (z.7) (5.1.6)
O

Assume that f has discrete fibres. We define the following C2°(G4X')- valued inner product on C°(G¥,)(f):

<&n>0N= > > E(x, )@, ) o) for &, € Ce(GX)(f)

yieg;{%) {zeX|f(@)=r(vD)}

Or, equivalently,

<&m>(@@)= ), > Gl (e, yid)

z1€XNL (o1 ’Y{EC//];S;)
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Proposition 5.1.3. With the inner-product defined above, C°(GX, (f)) is a pre-Hilbert module over C2°(GXX').

Proof. We show the following properties for &, € C°(G%,(f)) and ¢ € C=(GE)
1. < &g >=<&,n > *¢

2. <& >t=<n, &>

3. < £,€>>0 (as a positive element in C*(G5")).

1. The left hand side computation is as follows:

<& >() = > > (@, 71) (ne) (@, 71 ©7')

11eg ) reX|f(@)=r(1))

= ) >, £z D nlz)eh) (5.1.7)

~1egf O {zeX|f(z)=r(v])} Y50v5="7107
1=7r (")

Now, computing the RHS:

<&n > (y) S <&n> (o)

v4ov5=Y’

> > Y an(@ avh)é(h)

1ONH=Y areg/l ) {reX|f(x)=r(a")}

> > Y an(a, B)é(h)

areg/ 09 {a€X S (w)=r(a)} B'or5=a’y’
(Y

(5.1.8)
E.I7 and 5.1.8 together give the desired result.
2. We have,
<&En>T () = <&n>(h)
= 2 > @ mEier )
'yieggfiﬁ {zeX|f(@)=r(vD)}
=2 S @)
7,eg/C0 AreX|f (@)=r ()}
= <n&>(7) (5.1.9)
3. Finally, positivity of the inner-product is classical, it is given in [BeRo:10] and is omitted here.
O

After appropriate completions, we hence get a Hilbert C*-module over C* (gg? /), the maximal C*-algebra of
the groupoid Q}?g/, and we denote this Hilbert module by £, (f).

Now let (V, X, F), (V', X', F') and (V", X", F") be foliated manifolds with complete trasversals X, X’ and
X", respectively. Let (V, X, F) ER V', X", F) L (V" , X", F") be smooth leafwise maps. We define

GXAP) % gy G¥(9) = A7) (¢':7") € GXF) x GXolg)la! = s(1)}/ ~
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where ((2,7); (¢/,7")) ~ ((z,7")a’;a/ 7! (@',7")), for o € G'), (o) = s(v/) = o',

Proposition 5.1.4. With the above definition we have a diffeomorphism
G (f) X gyt GRn(9) 2 GRu(g o f)
Proof. We define a map ® : G, (f) Xg/x/ G (9) — GX. (g o f) in the following way:
x/
O([(z,7); (&', 7")]) = (=.9(7') 07")

We note that g o f( ) =g(r(®"))

for if [(z,7); (z',v")] = [(z1,71); (x
and we have

r(G(v")), so (z,9(7") ov") € GX. (g o f). Also, this action is well defined,
L] e (@nm); (@1, 9) = ((2,9)a/sa/ 71 (2!, 7")) for some o € GF7,

O([(z,7)e"; (@' 4")]) = @((x

= ([(=,7); (@",7")]) (5.1.10)

e & is smooth: Let &y be the map given by

Do((z,7); (2",9") = (2,9(v") 04")

Then, ®¢ can be written as a composition of maps &y = (pri1, m(g o pra, pra)), where pry, pra, prd are the
projections onto the first, second and fourth coordinates, respectively, and m is the composition map for the
groupoid. Since all these maps are smooth, @ is smooth. Therefore ®, which is induced by ®q, is smooth.

e & is injective:
Let ([(x1,71); (#1,71)]) = @([(22,72); (£2,72)]). Then we have,

x1 = x2 and §(v1)v) = §(19)7% (%)

Now let o/ =75 Lo~} € G Then, s(a’) = },7(a’) = b, and we get,

(w2, 13)0" ;0" (ah,75)) = ((w2,%50)); (s(a), (0’1 )23)
= (21,70 (21,90 Hg(3)3)
= ((z1,m); (21,7)) (5.1.11)

Hence @ is injective.
e ® is surjective:

Let (2,7") € GX./(go f). Then as X’ is a complete transversal, there exists an element 7' € g;{,(””). Set
u=[(z,7); (s(v), (v ~1)¥")]. Hence u € G, (f) X gix: g})((,/, (9), and we have,
X/

D(u) = (z,9(v)§(v" ") = (=,7")

Thus @ is surjective.

Hence ® is a diffeomorphism between G5/ (f) X g/x/ GX(g) and GX..(g o f). O
X/
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Proposition 5.1.5. We have the following isomorphism of Hilbert C*(G% )-modules :

EX(f) @ gpy) EX(9) = ERnlg o f)

Proof. Let & € C(G%.(f)),ny € CM(QX:/( )) Then we define &¢ x 1, € C°(GX. (g0 f)) as follows. We
make the identification (x,v") — [(x,v"); (',7")], and set

& xmgl@ ) (@] =& emg(@,y") = Y &pm,y'a )ng(a/ ', ga/ " ") for (2,9") € GXu(g o f)

s(~/
o/Eg;;SAY )

We also set
s([(z,7); (2",7")]) = s(v")

We check the following properties:

(i) if [(z1,71); (27, 70)] = [(w2,72); (25,72)], then & = ng[(w1, 71); (1, 71)] = &5 * mgl(w2,72); (25, 72)]-
(ii) for ¢/ € C°(GKE), we have £7¢ % n, = & % 1y (¢')1,.
(iil) < & %1y, & %y >=< 1y, 74(< Ef, &5 >)ny >, where the equality is in C*(G¥.,).

(i) Let [(z1,7); (21, 7)) = [(#2,72); (22, 72)]. This implies that (z3,72) = (21, M)#", (22,72) = K )
for some ' € G&X' such that r(k') = s(v{) = z}.

Then, we have

& wmgl(w2,70); (@5,75)) = Y Eplwa,aa )ng(a/ " ah, Gla’ )y
S(’Y
/eg 2

= > &plmisa)ng (o T g(el )

,eg/s%)
= > GBI 2,687 (putting B = Ko
ﬁ/egls('Yl

= & xnglle,); (21,77)] (5.1.12)

(W)

Qc

(i) Let ¢/ € C>°(G5X"). We compute the left hand side:

§d w gl y); (2] = YD (&) (@A ng(e T ga’ )Y

a/egls(’Y/)

Yo D En@ndaThd (@h)ng(o e gla T )y) (5.1.13)

aregi" af el
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The right hand side is computed as follows:

& x (¢l ) (@] = D & @A B)mp (@ )mgl (B 5B )y)

ﬁ/eg;E’Y,)

= Y @y B¢ gl (s(8),9(8 )Y
pregis”

= Y @B DD me(s(8), (8B Y (81)
Q/GQ;E’Y,) ﬁiGg;/(B,)

= > &@AB) Do me(s(8). 585 (B8 (85 = 6'87)
prege”) Bregy ™

= D G@AB) DD mels(82), (85 v (81 Bh)
B/EQ;E'Y/) ﬁzegls(’Y )

= > > @A Bme(s(835), 5By Y (B BY)
ﬁéeg;/ﬁ’) B/Eg;/ﬁ’)
= > > &8 Ing(s(8). 98y V) (Bh) (5.1.14)

15(~") X!
B5€G Bs€ gs(ﬁ )

Comparing B.T.T3 and BT.T4 gives the required equality.

(iii) We compute the left hand side first. Let 4 € G%.. We note that with the identification G%, (f) X gix'
X/
G (9) = GX, (g o f) we can write the inner product in C°(G¥, (g o f)) as
<&p*ng,Ef kg > Z Er *mg(u 5]‘*779( v) for u,vég})((/(f) xgl)gi/ g))g”(g)
uoy''=v

Then, we have,

<&ramgramg > (V) = Y & xng(u)és xmg(v)

uoy'' =v

(u,0 € G (f) Xgp G (9))

= > S Gluwa ) (0 Tua) | (&f % 1y(v))

uoy! =v /Sf(ul)

a’'eG

(u = [ur, usl;us € G/ (f), u2 € Gxn(9))

= > > &Gwa (o Tus) > &vah)mg(al v

uoy!''=v /eg/sf(ul) 1eglsf(”1)
(v = [v1,va]s01 € GX/ (f),v2 € GXir(9))

= > > G )ng(a/Tus) Z Er(uray)ng(af tuay”)
w;s(u)=r(y") ,eg’sf(uﬂ 169 sp(u1)

(€ GXAF) X gy GXilg) ur = o1, 02 = 127"
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But we also have

> > &wa)ng (@ Tus) | A(ur)B(ug) =

u€GE, (F)X gxr GX (9is(w)=r(v"") /eg'sf(“l)
x/

> 3 €7 (un)mg (uz) Aur ) B(ua)

u2€G%), (9)i89 (uz)=r(y"") u1€G%, (f)iss(u1)=ry(u2)
for functions A € C(Gx), B € C°(G%/(f)). Therefore we get

<& kg, §f kMg > (7”) =

Z Z & (u1)ng(uz2) Z Er(ura)ng (o tuay”)  (5.1.15)

u2€G%),(9)i89(uz)=r(v"") u1€G%, (f)iss(u1)=rg(u2) i eg! s f (1)
Computing now the right hand side,

g mg (<& &r g > (V) = D mela)my(< &5, & >Img(B)(a.b € G (9)

= > e Y <&n& > (8 (B0

aoy"'=b ﬁ’eg;g,(b)

= S nla) D

asg(@=r(1")  gegra®

> (Ger(es)) m(5 7 ar") e € G (£)

c;sy(c)=r(B")
- ¥ XY (5@g(s)) n(8 ey

a;sg(a)=r(v") g/eg;‘i/(a) c;sp(c)=rg(a)

> > Y (GO ) n (8"
aisg(a)=r(v") ﬁ,eg;f,@ c;sp(c)=rg(a)

= > o m@(e) Y &(eB)ng(8 an"(5.1.16)
a;sg(a)=r(v") c;sf(c)=rgy(a) ﬁ/eg;f,@

Comparing 5. 1175 and B.1.16 we get the result.

Thus from the above properties we see that the map £ ® ny — &7 * 1y is a well-defined isometric map
from E5,(f) O (grx") EX(9) to EX"(go f). To see that this map is surjective, we use the fact that myo; :
X/ )

C*(GX) =N K(EX (go f)) and 50 g0 (C*(GX)EX (go f) is dense in EF (go f). So it suffices to show that
an element of the form 7,07 (h)€ is in the image of this map for all h € C*(GX) and € € ¥ (g o f). This

is done as follows: let 71,72 € EX (f) be such that Onyms € Tgor (C*(GX)). We will prove the following two
properties which will suffice to show surjectivity:

1. For n1,m2,¢ € C2(G%(f)), we have 0,), ,,¢ = 7s(n1 * n2)¢, where 11 x 2 € C2°(G%) is defined as follows:

mxmp(a):= > m(r(a),al)m(s(a), flat)a)

04 €g L7
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2. We have for € € C(G%, (g0 f)), Tgor (1 % n2)& = m1 * (n2 * €) where nz x € € C2°(G%,(9)) is given by

mrl )= > Y @A) g0 ")

TEXNLy 4regHt

where L, is the leaf in V' which is mapped to the leaf L!, by f.
We now proceed to verify these properties:

1. Starting our computation from the left hand side, we get,

Oy n€ w = (m.<m,¢>)(z,7)
F(@)=r(v")

= > m@y ) <m,¢> ()
a’egl¥,

= mz,ya ™) > > (@), vie)
aregx!, 21€XNL (o) %eg;{g%)

= > myd™) Y > (e e’ (z1,9h)
aregrX’, 21EXNLs(an) y1eg L

= ) m@Ad) D > @ o (@)
o' €G0 P1EXNEa () 7 eG ()

N > S Y m@ e ma(en, v Y e ) (v )

TEXNLotn 15eG (D) ared i,

= > D> me A D men, s Y e )(s(s), Fg )

IlGXﬁLS(W/) Y3 Gg:l a/eg/)((//)
s(v

(since 3 unique 3 € Gy, such that F(3) = %)

= Y Y m A ma(s(s), fys Y )C(s(rs), F(s YY)

v3€GL ot '
X a Egs(w,)

= DY mxal)m(s(), flar ) T(s(s), Fr )

18EIX apeglf ™

= Y| Y. mOe)a)mlste), (s el ™) | Cls(ys), f(rs )Y)

'Ysegf( O/leg;{,(z)

= Z (1% 12) (43)C(5(v3), F(3)Y)

v3€G%

= mp(m *n2)C(x, )

Thus we get the result.
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2. We compute the left hand side as follows:

Tgor(m*m)é  (z,9") = D (mrm)(@(s(a),go fla™)y")
gof@=rty)

S Y mlwal)mls@), faalés(@), g o fla )y [5117)

a€G% o eg’){l(’”

Now computing the right hand side, we have,

[ (2% €)](2,7") = [ (2% E)][(2,7"): (s(v'), §(¥"H7")] (for any v € GL™)
= Y m@ya)m=&(s(), 5y
a/eg;£7/)
= > m@a))p*)(s), g ")
a’leggff”)
= Y m@a) > > @ g(e )Y
alleg;é'/(’t) 11€XﬂL (o/) ¥ Eg/f((t/)
= Y m@al) Y > mba)é@ §(v:)y")
alleg;{,(z) $1€XﬂLs(a/) 74 eg/;éj)l)
= Y ma) YYD mlen fe)ah)E(ango Fla)")
alleg;é'/(’t) r1EXNL, ’7269
= > m@al) Y m(r(r), f(r2)eh)Er(2), 0 f(42))7")
a’leggff”) 12€G
= > mlmal) > m(s(y), F(reh)é(s(r), go Fy ")
ategff® V€9
= > (e, af)m(s(v), F(r)ah)e(s(7), g0 Fy ™))
o€ g (z)'y €%
(5.1.18)
Comparing B.1.17 and [F.T.18 gives the equality. O

5.1.1 Alternative description of G¥,(f)

Consider the following definition:

GX 5L G = {(1,7) € % x Gxr|f(s(7) = r(v)}/ ~

where (y1,71) ~ (ya, Fla=1)y) for o € G such that r(a) = s(7).

v

Remark. For a € G such that r(a) = s(v), the action (v,7)a = (ya, f(a™t)y') is well-defined since
fs(ya)) =r(fa™)y").

We define a map © : GX xé G — G (f) by ©[1,7] = (r(7), Fy)
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Proposition 5.1.6. O is a well-defined smooth map and is a diffeomorphism between GX xéng, and g§§, (f)-

Proof. e O is well-defined and smooth:

) v v

We have ©[(y,7)a] = B[y, f(a™)y] = (r(ya), f(ye) fla~ 1)) = (r(3), F(7)A)
hence © is well-defined. Smoothness follows from the smoothness of r, f and the composition map in G'.
e O is injective:

Let ©[y1,71] = ©[2,74]. Then r(m) = r(y2) and f(n)y = f(12)75 Let a =45 9. Then (y1,7))a =
(v2s fla™)) = (32, fOa D F()78) = (2,7).-

e O is surjective:

Let (z,79") € G%:(f). Then setting u = [1,,v'], we find u € g% xé G as f(s(1g)) = f(z) = r(v/). Then
O([u]) = (z,7), and so O is surjective.

Hence © is a diffeomorphism. O

5.1.2 Relation with Connes-Skandalis module

Let f be as before. Let G(f) denote the right principal G’-bundle (cf. [MkMr:03]) defined by Connes and
Skandalis (cf. |[CoSk:84],]C0:94],|Co:81]) defined as follows:

G(f) = {(v,0");v € Vo' € ¢’ and f(2) = (')}
G(f) also has a free action of G on the left. More precisely, the right action of G’ is given by
(v,)f = (v,a'B), for ' € G’ such that 7(8') = s(a)
while the left action of G is given by
Av, o) = (r(A), F(N)a) for A € G with s(A\) = v .
It is easy to show that these actions are well-defined.

Let
g(f) Xg Gxr = {((Uva/)vﬁ/); (’U,O/) € g(f)vﬁ/ € g/|8(0/) = T‘(ﬁ/)}/ ~

where ((v, ), 3") ~ ((v,a" )N, N713) for any X' € G’ such that r(\') = s(’).
We define similarly,
gX Xg)’g g})((’(f) = {(a7 (x7,7’));a S gu (xuly/) € g))g’(fﬂs(a) = JI}/ ~

where (o, (x,7)) ~ (a3, 871 (z,7")) for B € G such that r(8) = s(a) = z.
There is a map Uo : Gx x G/ (f) — G(f) x Gx+ defined by setting
Vol (2,7') = ((r(e): f(a), )
Proposition 5.1.7. 1. W, induces a well-defined map ¥ : Gx Xgx G (f) = G(f) xg' Gx+
2. The map ¥ is smooth and injective

3. When f is a leafwise homotopy equivalence, ¥ is also surjective.



82 CHAPTER 5. HILBERT-POINCARE COMPLEXES ON FOLIATIONS

Proof. 1. Let a; = aff = r(ay) = r(a), (x1,7}) = B (z,7) = 21 = s(8),~, = f(671)7. then we have
(a1, (z1,71)) ~ (@, (2,7")). Now,

Wo(an, (21,71)) = ((r(en), flaa));71) = ((r(@), fl)F(B); F(B7)7) = ((r(@), f(e);7) o F(B)

Hence Wo(ou, (1,71)) ~ o(a, (z,7')), and so ¥ induces a well-defined map ¥ : Gx X gx G (f) = G(f) xgr
Gx given by

V[(a, (2,7))] = [((r(@); f(@)),7")]

2. As Uy can be written in the form ¥y = ((r o prq, f o pri1);prs), we see that ¥y is smooth. Hence the
induced map ¥ is smooth too. Let U[(aq, (x1,7))] = ¥[(az, (2,75))]. This implies that r(a1) = r(az2), and
as G(f) is a principal G'-bundle, this means that there exists a unique 3’ € ¢’ with (") = s(f(c1)) such
that f(a1) o = f(az) and @'~ 171 = 5. Now let 3 € G be the unique homotopy class of a leafwise path
connecting 3 € X to #; € X such that as = a13. Then we have f(a) o f(8) = f(az). Hence f(3) = &,
and so (ag; (22,73)) = (1 8; 87 (x1,7))) = [a1; (w1,7])] = [az2; (x2,74)]. Thus ¥ is injective.

3. Let ((v,&/);7") € G(f) x G%/ such that r(v') = s(«/). Let g : (V/,F') — (V,F) be the homotopy inverse
of f. Denote by H the homotopy between g o f and idy, and H' the homotopy between f o g and idy-. For
any v € V, H gives a leafwise path from v to g o f(v), we denote this path by H, and the homotopy class
of H, as A, . Similarly, for any v € V', H' gives a leafwise path from v’ to f o g(v'), we denote this path
by H!, and the homotopy class of H!, as X,,. Using the fact that f is a surjective map (see [BeRo:10]) , we
denote the preimage of X/, as A/, i.e. f(/\;’/) = X,. Now, let 2/ = r(y') = s(a’). Then, as X is a complete

transversal, we may choose 3 € ggf” ). Now we set

wi= (Nfoh o g(a’) 0 B (s(8), F(B) ™ o Xy 09)

Claim: U[u] = [(v,a);7].
We have, by definition,

To(u) = (0, (FN])) 0 F(@(@)) o F(8)): F(B) 0 Ny o)
= (0, Ny 0 F(a(@)) o f(8); F(B™Y) o Ny o) (5.1.19)

(v, (Vi) 0 F(@(0)) N 07') ~ (0, (Nl 0 F(d(0)) 0 Novi ')

So it remains to prove that (/\’ ! ) F(a "))oX,, = a/. To see this, let &/(s), 0 < s < 1 be a path representing
o in a leaf of V'. Then we have the following diagram of paths:

o) —29 4 fogo fu)

o fog(a)

", )
o ———— foyg(a)
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Now for every s € [0,1], there is a path given by H&,(S) connecting o/(s) to f o g((¢/)(s)). We call this
path H'(u,d/(s)), 0 < uw < 1. For a fixed ug, the path T'y,(s) = H'(ug,a'(s)) is a path connecting
H'(u, ") = Hj/(uo) to H'(ug, f(v)) = H},(uo). Therefore, the element )\'f_(i) o f(§(a)) o X, € G is
given by the homotopy class of the path H'(¢, f(v ) <1 *con I'1(0/(8))o<s<1 *con H'(t, 2" )o<t<1, where %cop
denotes concatenation of paths. Consider for 0 < u <1,

p(u) == H'(t, f(0))g2i<y *eon H' (1, (8))ozs<1 *eon H'(t,2")o<e<u
Then p is a path from 2’ to f(v) and p(0) = H'(0,0/(s))o<s<1 = &/(8)o<s<1, While
p(1) = H'(t, f(v))g2e<1 *con H'(u,0'(s))os<1 *eon H'(t, 2 )o<e<1

Hence [p(0)] = o/, [p(1)] = X 1 o f(g(a’)) o X.,. Therefore we have proved that

o = Nigh o F(i(a)) o X,

Consider now the following space
Gx(f) = A{(v.") € V x Gx/r(v) = f(v)}

Then we have

Proposition 5.1.8.

GY.(f) = Gx xgx G5(f)
where Gx xgx G%:(f) = {(vi (2,7")) € Gx x G, ()lx = s(v)}/ ~, and ((v; (2,7)) ~ (vasa~}(z,7")) for
all a € G such that r(a) = s(7).

Proof. Let ¢ : Gx x GX.(f) — G%.(f) be defined as ¢o(7; (z,7") = (r(7), f(7)7'), then ¢y induces a
well-defined map ¢ : Gx xgx G (f) — G%.(f). Indeed, let a € G¥ with r(a) = s(7). Then we have,

po(vas (s(e), f(a ™)) = (r(va), fva)fla™))
= (r(v), f()Y)

Thus the induced map ¢ is well-defined and it is clearly smooth.

Assume ¢[v1; (z1,71)] = ¢[12; (22,73)]. Then we have

r(y) =r(72) and f(11)7) = f(12)7%

Set A =75 'v1. Then s(\) = s(v1) and we have

(72 (s(12),72)A - =

(5.1.20)
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Therefore ¢ is injective.

Let now (v,7) € QX/( ). Then r(y') = f(v). Since X is a complete transversal, we can find A € G%. Put

)
u=(X; (()f( 1)7")). Then,

Hence ¢ is surjective.
Finally, ¢ : Gx Xgx Gx(f) — G¥% (f) is a diffeomorphism.

O
Define projections m1 : G¥%/(f) — V' and 2 : G¥%, (f) — G%, by projecting onto the first and second factor,
respectively. Then we state the following corollary which is proved in [BeRo:10].

Corollary 5.1.9. Let E be a smooth vector bundle over V. Then we have the following isometric isomor-
phisms between Hilbert modules

Ex.m Oux) EX () = Ex xrp(f) = EX 5 (f)

where Ex,x1;6(f) is the completion of the pre-Hilbert module CZ°(Gx X gx G (f), (rom)*E) with respect to

the mazimal norm on Afx(:
Corollary 5.1.10. We have an isomorphism of Hilbert C* (g}?(,/)-modules
Ex Ocx(gX) EXf) 2 E(f) ®cgr) Ex
Proof. Since from the previous corollary we have £x ®c-(gx) EX(f) = Ex x/(f), it suffices to show that

E(f) ®cx(gr) Exr = Ex x:(f). Recall that we have a diffeomorphism G(f) xgr G%, = Gx Xgx G (f). We
define a map v : C2°(G(f)) ®ce(gx) C°(Gx7) — C°(Gx Xgx G, (f)) given by

1%

vE@n)y (2,9 = / oy ST (@™ YN ) for € € O (G()).m € CF (Gx)

To check that the above formula is well-defined, we prove the following formulae:

LI [ya5 (21, 71)] = 23 (22, 73)], then v(€ @ n)[vy1; (21, 71)] = v(€ @ n)[y2; (22,75)]
2. we have, v(£¢' ® 1) = V(£ ® xm(P)n) for ¢ € CX(G’), where ¢’ € C*(G') and X, : C*(G') — K(&],) is an

isomorphism.

L If [y1; (z1,75)] = [y2; (w2,7%)], then we have, y2 = v13, 20 = B ta1;95 = f(B7!) for some 3 € Gp2. We
have,
o(€ @ mnf: (5~ a1, FB )] = / ). FnB)al (el (B ) AN @) (af)
ol egrs (f(B))

S AR LGN (CAESUCRRATARED
= v(E@n) B (B o1, F(B7H)N)]
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2. We first compute the left hand side v(£¢’ ® n). We have,

wed o = [ (@06, faa a0 @)

= [ e e e s (B3 @)
a’egim() Jpreg!
Let us now compute the right hand side v(§ ® xm(¢)n). We have,

v(€® xm (& ))y; (2, 7)]
- /Gg”"(w) r( )7f(7)ai)(Xm(¢/)n)(a/11 ’)d/\r(’)’( )

/ E(r(), f()ah) (/ & (B m(Bai ) dA wn) O (af)
aregm) Bieg’

(o))

1€g’

s(a/)

- /'eg/r(w)/ V) F)ah)d (B (B0 YdAs(ar) (BN ()

-/ s Jagegrroty ST (@7 BB )N D (BN o)
alegrt’ eg/m*q

- /Be rr(af) </ eg/rw) (r(7). f(v)a) @' (01" Bp)d A" (a )) (B85 ') AN o) (61)
Sy (/ o )vf(v)ﬂéa'{l)sb’(a’z)d%(ﬁ;)(a’l)) (B 17) A (3)

= foir ] SRR {1 g (eI (3))
e Jayeg

Comparing the last lines of the two computations above gives the result.

We show now that the map v is an isometry, i.e. < v(£®n),v(€ ®n) >=< N, xm(< &€ >)n >. To show
this, we note that with the identification G¥.,(f) = Gx Xgx G (f), one can rewrite the formula for the map
v as follows:

v(€®n)(v,7") ::/ E(v, (e’ ~1)dN () for € € C(G(f)),n € C(Gxr)
a’egr(v")
The Aﬁg:—valued inner product formula on C2°(GY,(f)) is given by

<&,6 > (%) :=/ . D G DE0, 717 dA ) ()
ve

r(Y) 1 eg! (V)
’YlegT(w’)
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where L, is the leaf in V' such that f(L,y)) = L’TW). Then we have,
<v(E®n),vE®n) > (7)
/ L > v€@ (v, @n)(v,77)dN (v)

ve

() ’Yieglf(U)
/'UGL

r(~v")
putting o = 0/1*171 we get
/ L Z / g(vuWialgil)n(alg)d)\s(»yi)(alg) ‘/g/ o §(U7a/2)n( /—1 / I)d)\r(’yl)(alz)d)\l’v/ (’U)
ve ’ o]

) gt () 9ol

r(~y")

/g/(,)f(v,o/l)n( /—1 /)d)\r(’h)( 1)/g (/)5(’[},(1’2)”( /— 1’7]{7/)d)\r(71)(0/2)d)\l/7/(’U)
(v} o

") s eg @)
MG

/—1_r1 1—1

putting 3] = oy Yoy - we get
= / > &(v,yiah n(as) / (v, 71 B (B ) A (g (B1) dAs(ag) (05) A" (v)
UGLT‘(’Y,) 7{691{(“ g;(’yi) ':‘(Ot/)

(5.1.21)

The C*(G’)-valued inner product on C°(G(f)) is given by the following formula:

<&,&> (v > G AD&0,A1y)dN (v) for &, 6 € C(G(f))
L
ve ’

1f(v)
V1€, (4

Computing now the term < 1, x,n (< §,€ >)n >, given by the inner product in C°(G%,), we have
<0 xm(< 66> > (Y)
[ hon(< €m0’y )i e

(")

[ @ [3 <68 (N i () )

r(v')
. / |
r(v")

putting 73 2a we get

- [ 3 / / . Z S0 D, 70~ BN (s YA () A (@)

r(~v') /f(v)

"‘(’Y/)
/”GLﬁ/ e F )

/ ; HaNE w5 (v, 750"~ 880"y YAy (A (0 AN (v)
a’eqg’
3=Tr ()

&(v,75)€(v, 738" AN " (0)n(B' e’y )dAr (o) (B")dAr () (@)

’UELB/ /f(v
12€9, (a1

g;‘(a’)

Comparing the last line above with E.1.2T] we get the result.

Lastly, in order to prove surjectivity of v, we follow the method of proof in Proposition Since £(f)
implements the Morita equivalence between C*(G) and C*(G’), we have an isomorphism 7y : C*(G) —
K(E(f)). Similarly, we have an isomorphism 7 (f) : C*(G) — K(EX,(f)). Let &1,& € C°(G(f)). Let & &
denote the function on G given by

frea)= [ 60060 0O )
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Denote by 0, ¢, the operator in IC(E(f)) given by 8¢, ¢,¢ := &1 < &2, >. Then a straightforward calculation
shows that f¢, ¢, = 77 (£1%€2). Then to prove surjectivity of v it suffices to show that for any k € C°(G¥. (f))
we have

T(f)(&*&)r =v(& @ (2 0k))
where
£ 0 n(7) = / S B0 s(, )i (v) for o' € G
vEL,/ v{eg;‘f(;”,i

Computing the left hand side, we have

FN@ ) = [ (@ re) s fay )i o)

= [ ] e, fla e (s fa ) @)dx o)
(5.1.22)

Now computing the right hand side, we get

wa @) = [ ) e n)e )0 @)

= / & (”"”/ S Blon Do, e )aAE (o) dN @ ()
a’eg/fv) v1 €L,
v

1f(v1)
{egs(a“/;

= / 51(?),0/)/ D> &(v1,vha))k(v1, 75y ) (01)dN ) (o)
a’eg’f(v) v1E€L,
v

7 (1)
5€9 (1)

= /a/eg/m 51(?1704')/“6% Y &lon, f)a)r(vr, f(r2)7 YA (01)dN (o)

Y2E€G,t

- / (v, ) / &(r(a), fra)a)(r(@), f(2)7")dhu(@)dN ) ()
o’ eG'f(v) a€G,

Comparing [5.1.22] with the last line above gives the desired equality.

5.2 Hilbert-Poincaré complexes for foliations

We review in the appendix some basic properties of a so-called Hilbert-Poincaré complex and collect some
results that are used in the present and next chapter. Our main reference is [HiRolI:05].

Let (M, F) be an odd-dimensional smooth foliation on a closed manifold M. Let X be a complete transversal
of the foliation. Denote by G the monodromy groupoid of the foliation and let (A; ). be a right-equivariant
smooth Haar system on G. We consider the pre-Hilbert module &£ = C®(Gx,r* \"T * Fx) with the
AX := C>(G<%) valued inner product given by the following formula:

For &,6 € £ u € g))g,
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<&,6e > (u) = / <& (v), &(vu) >pipe  dArw)(v) (5.2.1)

vEgr(u)

A right action of AX on &! is defined as follows:

For f € AX, £ € &ly € Gy,
EHM = D MR (5.2.2)

’ X
V€95

By taking the completion of AX with the maximal C*-norm and then completing the above pre-Hilbert
module we obtain a Hilbert C* (g§)-module Ei for 0 <i<p=dimF.

Consider the leafwise de Rham differential d = (d)zenm on (M, F) and for each x € M denote the G-
equivariant 1~ift of d, to G, by d,. Let d denote the family of operators (d;).ecx acting on 82. Then it is easy
to see that d?> = 0 and so we can consider the de Rham complex on Gx:

0d o1 d eop
E =& ... =&

The densely defined unbounded operator d then extends to a closed, densely defined unbounded operator on
the Hilbert-modules &; for 0 < ¢ < p which we denote by dx.

We also consider the leafwise Hodge-* operator on (M, ) and denote its lift to Gx by T'x : C°(Gx, ™ (/\l T
F) — C=(Gx,r*(N'""T * F)). Tx is given by the formula:

Tx (r*(dezr Adxg A ... Ndzg)) = r*(degr Adxgeo A ... Adzy)
The following computations show that Tx is A%-linear:

we have for w € EF, f € AX | one can express w in local coordinates:

w= Z wrr™(dzi, Ndxi, A ..o Adxg,)

11 <t2<...<ig

Then we have

whH() = D FENeE™Y

'y’GQfM)
= Z (') Z wr(Y ™Y (day, Adxg, A ... Aday,)
~v'egX i1 <t <...<ip

(v)

= Z Z FOYVwr(y Y (day, Adxg, A ... Aday,)

11 <i2<...<ip »y/egffm

= Z (wrf)()r*(dzsy Adxiy, A ... A day,)

11 <t2<...<ig

Let {j1,j2..-jp—k} be the complement of the index subset {i1,42...ix} in {1,2,...,p} sorted in increasing
order, and sign(I,J) be the sign of the permutation {1, is, ..., %k, j1, j2, ..., jp—k }. Therefore from the above
computation we have
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Tx(wf)(v) = Yo sign(L, Dwif)(N)r* (dej, Adzj, AN dzj, )

11 <i2<...<i

= Z sign(I,J) Z FOwr(y " (day, Adxj, Ao Adzj, )
i1 <ig<...<ig y/egfﬁ)

= Z f&'v) Z sign(I, Jwr (v~ )r* (dzj, Adxj, A ... Adxj, )
»Ylegf‘((’y) 11 <12<...<ig

= ) fNTx@E'
’Ylegf(’v)

= (IxW)f(v)

which proves that T is AX-linear.

To check properties (i),(ii), and (iii) in Definitiol ATl for Tx, we first compute the adjoint of T'x with respect
to the inner product given by B.2.11

We have for wq,ws € Cgo(gx,r*(/\kT x F)), we have < Txwi, Txws >=< wi,wy > and Tx(Txw) =
(=1)*=k)y for w € EF. Therefore we have,

< TX(Ul,(UQ > = (_1)k(n—k) < Tle,Tx(TXwg) >
= (DM <wy, Tyws >
= <uw, (DM Ty, >

Hence we get T% = (—1)*"=®) Ty on £F. Therefore Tx extends to an adjointable operator on & which
satisfies (i) of Definition [A]

We define the adjoint of d as the operator 6 : £f — £~ by the formula
g = (—1)p(i+1)+1TXcZTX

Then 6 extends to a closed densely defined unbounded Aig—linear operator 0y : Eo — Eo_1.

A straightforward calculation shows that TXS = (—1)kaTX on k-forms, and therefore we also have T'xdx =
(—=1)*dxTx on k-forms. This shows that condition (ii) in Definition [A]]is satisfied.

To see that the third condition is verified, i.e. Tx induces an isomorphism (Tx ). : H*(E,b) — H*(E,b*),
we first note that due to condition (ii) the map Tx takes Im(b}) to Im(b,—;+1) and therefore the induced
map (Tx). is well-defined.

e (Tx). is injective: Let 2 € & such that [Txz] =0 € H" *(E,b*). Then there exists a sequence (2, ),>0 €
En_k such that Txz = lim,,_,b*2,. Then we have

2= +Tx (limn—ood™2n) = limp— oo £ Tx (0% 21) = limy—oob(£Tx 21)
Thus z € Im(b) = [z] = 0 € H*(E,b). Therefore (T ). is injective. Surjectivity of (T'x ). follows easily from
surjectivity of T'x. Hence (T'x )« is an isomorphism.

Finally, to check condition (iv) in Definition [AJ] we remark that d+46 is an elliptic operator and therefore
extends to a regular Fredholm operator on the Hilbert module , and the extension of d + ¢ coincides with
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dx + 0x (cf. [Va:01],[BePi:08]). Moreover, since (d 4 6 4+ i)~! is a pseudo-differential G-operator of negative
order, its extension to the Hilbert module is a compact operator. This extension coincides again with
(dx +dx = i)_l.

Let the Laplacian on the Hilbert-module be defined as Ax = (dx + dx)? = dxdx + dxdx. Then we have

Proposition 5.2.1. Let ¢ be a Schwartz function on R with a compactly supported Fourier transform such
that ¢(0) = 1. Then on smooth compactly supported forms, we have Im(¢p(Ax)) C Dom(dx), and

#(Ax)dx = dxp(Ax)

d(Ax)ox = dxp(Ax)

Further, $(Ax) induces the identity map on cohomology of the Hilbert-Poincaré complexr associated to the
foliation.

Proof. (i) As ¢ has compactly supported Fourier transform, it takes compactly supported forms to com-
pactly supported forms. Therefore, Im(¢(Ax)) € Dom(dx). Furthermore, since the Fourier transform of
a compactly supported smooth function is an entire function whose restriction to R is Schwartz, and the
square of the Fourier transform operator is a constant times identity, we get that ¢ is entire. Then, following
the arguments in cf. [HeLa:90], we consider the holomorphic functional calculus for the self-adjoint regular
operator Ay, which makes sense as the resolvent map z — (2I — Ax)~! is analytic on the resolvent of Ax in
C (cf. Result 5.23 in [Ku:97]). Therefore, choosing a curve v in C that does not intersect R and surrounds
it, as in cf. [HeLa:90], one can write

H(Ax) = —— / 6(2)(2 — Ax)~Ldz

211

Now, we have dx Ax = Axdx on EF. Therefore for z € C in the resolvent of Ay, we have dx (2 — Ax) =
(21 — Ax)dx which in turn implies that (2] — Ax) 'dx = dx (2] — Ax)~! and thus ¢(Ax)dx = dx$(Ax).
Similar arguments show that ¢(Ax)dx = dxd(Ax)

(ii) Now to show that ¢(Ax) induces the identity map on cohomology we proceed as follows. As ¢ is

entire with ¢(0) = 1, the function ¢ given by ¢ (z) = % is also entire and in particular smooth on R.

Using the facts that Schwartz functions are dense in the space of smooth bounded functions and Schwartz

functions with compactly supported Fourier transform are dense in the Schwartz space, one can find a

sequence of Schwartz functions with compactly supported Fourier transforms (o, )new such that a,, ———s
n—oo

in the ||.]|ooc norm. Consequently, o, (Ax) —— 1(Ax) in the strong operator topology and we also have
an(Ax)dx = dxan(Ax). Soif v € EF, we get

an(Ax)v BLEEEN Y(Ax)v

and
dx (e (Ax)v) = an(Ax)(dxv) = ¥(Ax)(dxv)
Therefore 1) (Ax)v € Dom(dx) and ¢(Ax)dx = dxy(Ax) on EF for k=0,1,2, ..., p.

(iii) Now let w € Ker(dx). Then there exists a sequence (wy, )n>0 such that each wy, is a compactly supported
smooth form, w,, —— w, and dxw, — 0. We then have,
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d(Ax)wn —wn = P(Ax)Ax(wn)
= Y(Ax)(dxdxwn) +Y(Ax)(0xdxwn) (well-defined since Im(dx|ex) C hans Im(0x|er) C 1
= dW(Ax)dxwn) + ¥(Ax)dx(dxwy) (by (ii) above) (5.2.3)

However, on compactly supported smooth forms we have

b(Ax)odx = P(Ax)[(I+Ax)(I+Ax)"ox
= W(Ax)T +AX)][(I+ Ax) 6x] (since Im(I + Ax)~" € Dom(I + Ax))
= [P(Ax)+o(Ax) = I[(I + Ax)~'ox]

But ¢¥(Ax) + ¢(Ax) — I is clearly bounded as ¢ and ¢ are bounded smooth functions and (I + Ax) *dx
is bounded because it is a pseudo-differential operator of negative order. Hence ¢)(Ax) o dx is a bounded
adjointable operator.

Hence, we get

Y(Ax)0x (wn) = h(Ax)(dxw)

and
P(Ax)0x (dwy) =250

Hence by B.2.3], we get

Y(Ax)0x (wn) = h(Ax)(dxw)

and
d(p(Ax)dxwn)) = S(Ax)wn — wn — P(Ax)ox (dxwy) —— $(A)w —w

Thus the above two limits together imply ¥(Ax)ixw € Dom(dx), and ¢(Ax)w —w = dx(¢P(A)dw) C
Im(dx). So ¢(Ax)w —w = 0 on cohomology and ¢(Ax) is the identity map on cohomology.
O

Proposition 5.2.2. The closed unbounded operators dx and dx are regular operators.

Proof. The only thing that one needs to check is that the operators 1 + dxdx and 1 + dxdx are surjective.
We will show that (1+dxdx)(14+dxdx) on Dom(Ax) = Dom(dxdx) N Dom(dxdx) is well-defined and we
have (1+Ax) = (1+dxdx)(1+dxdx). Then the surjectivity of (1+dxdx) will follow from the surjectivity
of (14 Ax), since Ax is a regular operator.

Let A = db + 6d on EF. Then A extends to Ax and we have on EF:
(14dd)(1+0dd) = (1+dd+0d) = (1+A)

Now let z € Dom(Ax). Then there exists a sequence (2, ),>0 such that z, € £F and we have

n—oo

2y =25 2, and (14 A)z, "5 a € E

But on compactly supported smooth forms we have

(14 Az, = (1+d0)(1 + 6d)z,
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Since z € Dom(dxdx) and Sd= S_J,the sequence (1 + dd)z, by definition converges to (1 + dxdx)z. This in
turn implies that (14 dxdx)z is in the domain of (1+dxdx) and (14+dxdx)(1+dxdx)z =a= (14+Ax)z.
Hence (14 dxdx) is surjective and thus dx is regular. Since dx = d%, By Corollary 9.6 of [La:95] dx is also
regular.

O

5.3 Homotopy equivalence of HP-complexes on foliations

Let (V,F) and (V',F’) be closed foliated manifolds with complete transversals X and X', respectively,
and f : (V,F) — (V/,F') be a leafwise smooth homotopy equivalence with leafwise homotopy inverse
g: (V',F') = (V,F). We now let E := \"T¢F and E' := N\ TEF'. We will use the notations from previous
sections.

Let ' € V' and L, be the leaf through 2/. Let d’, denote the exterior derivative in L', and d’,. its lift to
G',. Similarly, let d, be the exterior differential on L, for 2 € V and d’, denote its lift to G¥,(f) := {(v,7') €
V x Gulr(y') = f(v)}. We note that for h € C°(G,,), di h(v') € T ) F"™ is given for X" € Ty, L, as
follows: ~ R

(durh)y (X)) = (X'R)(Y)
where X’ is the unique horizontal lift of X’ on G’,, i.e. X' is such that r*ﬁ/f(;, = X;W). Similarly for

X e T,(f~Y(L.,)) we define X € T(w,1G%: (f) as the unique lift of X (via m1) such that
(Wl)*,(v,'y’)X(vy’Y’) = Xri(wry) = Xo

and for u € C2(GY.(f), 71 E), d’,u(v,y') € T;F is given by

x

(dg/u)(v,'y’)(Xv) = (Xu)(v,'y’)
Definition We define a map ¥ : C°(G%,,r*E') — C=(GY. (f), 7 E) by the following formula:

U ()0, %) = (fu ) [(750") (0,7")] for ' € C2(Gxr, 7 E'), (v,7") € Gx/(f)
where

o 'fu N\ Tr )T — N T} F is the transpose of the pushout map f , : T,.F — Tp,yF' and is given by the
formula:
tf*u (a/f('u)) = (f*a/)v
with f* being the pullback of differential forms via f.
e 75 is the pullback via 7 of elements of C2°(GY,,7*E’) given by (mhw')(v,7') = w'(7/) € El =ty S0
' fo l(mhe') (v,9)] € By = (11 E)(4,4+) and the map W is well-defined.
Proposition 5.3.1. We have the following properties:
1. for o € CX(L.,,E"), mi(f*a) = ¥s(r'a’)
2. for h € C(GL),dL, (whh) = U (d., h)
3. d, oWy =Wpod, on CX(Gy,,r*E').

where we have denoted pullbacks via m and r by w) and r* respectively.
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Proof. For (v,v') € G¥.(f),

fom(v,y)=f)=r(y)=rom(v,y)

1. We compute as follows:
m(ffa)v,) = ( o’)(v)
= fe (o)
ofrl)('uy)]

) (a(v,'y’))]
ro Wz)'(azv ~! ))] (by 5.3.1)
7T'2 Orl(a(v'y ))]

= Uy(r'a’)(v,)

2. We have r*ﬁ.y/(f;;/X) = (fewX)r(y and

T ==75
&s/\\

(P [(72) 4,01 X)) = (7 0 ) (0,9 X))

93

(5.3.1)

= ((f o ™), (00 X)r(r) = (oo (M) w000 X)r(r1) = (Frw X))

But as r is an immersion we get (f;,/X)W/ = (WQ)*’(UW,)X'
<Up(deh)(v,7),X > = <'fo,[(derh) (7)), X >
= < (deh)(Y), frnX >
(fe,0X)rh(v)

= ((W2)*,(v,’y’)X)’Y’h(’7/) = Xﬂ—!zh(vv'yl)
= <d,mhhv,), X >

Hence d/, (hh) = U(d,, h)
3. First, we note that it is easy to verify the following two properties:

Us(wAa)=Ts(w)AVs(a) and Us(h) = mhh

(5.3.2)

for w,a € CX(G%,,r*E’) and h € C>°(G%/). Now, let o/ € C°°(L,, E'). Then r'a/ € C>=(G.,,7*E’) and we

have,

(d, o Tp)(r'a) = dl[ri(f*a)]

|
i)

|
S
—~
—~
<
U

= (¥yo0 dyr (r!o/)

Now for any section s € C°(G,/,r*E"), we can write s in the following form:

!
s = E hi ral
i
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where h; € C°(G.,), o) € C*(L,, E’). Then we have

(Jgj,oq/f)(zmr!a;) = Ji,[Zﬂ'!th(\I/fr!o/)]

Z d~£,7r!2hi A \I!fr!a; + w!ghi(ii,kllfr!a;
i

Z d~£,7r!2hi A \I/fr!a’i + W!thklllf((imlr!a;) (5.3.3)

3

We also have,

qudz/(z hi’l”!Oé;) = \I/j[z Cim/hZ AN T!Oé; + hiJI/T!a;]

Z Ut (dprhs A7) 4+ U ¢ (hidyr'al)

= Z Jgfc,wéhi AW et + mhhiW ¢ (dprtal) (5.3.4)
Hence from and [5.3.4] we get the desired result. O
We now define a map ®¢ : C=(GY.,/(f), 7 E) — C=(Gx Xgx G (f), (ropri)*E) as follows:

D5 (&) (s(3),7)] = E(r(y), f(7)Y) for € € C(GX. (f), 7T E) (5.3.5)

Proposition 5.3.2. ®; is a chain map.

Proof. The proof is technical but straightforward. We refer the reader to [BeRo:10] for the details.
O

Notice that ®¢(&)[v; (s(7),7")] € Ey(y). Now the map ¥y : C2°(Gk,,7*E’) — C°(GY,(f), 7 E) defined for
f in can also be written for the map ¢, giving a map

U, : CX(Gx, 1" E) — C2(GX (9), i E')

So,
Uy(@)(v,7) = ("ge,)(mhw) (v, 7)] for w € CZ(Gx, 7" E), (v/,7) € G% (9)
We consider the map
PG Xgxr GX (9) xgx GR () — GX (9) xgx GX(f)
given by
(a3 (1) 1)]; (s(0),72)] = [(r(31), G(v1)71); (8(71),92)]
Then, by Proposition [5.1.7 p is a diffeomorphism. We define the tensor product ¥y ® I :

Uy @1 C2(Gx xgy G5(), (rom) B) — C2(GY (g) xgx G¥(f)

(Tg @ 1) (@)[(v,7); (s(1),7)] = “guwr (@3 (5(7),7)]) for & € C(Gx xgx GX/(f), (r o pr1)*E)

With the identification p given above, this can also be written as:

(Tg @ D) (@) (p) 715 (s(71), 7)]; ((31),72)] = * Gy (@9 (31) 715 (5(71),73)])
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Then the following formula holds for the composite map (¥, ® I) o ®y:

(T @ D(@E)[(V',7); (5(7),7)] = "9, (€(r(7), F(V)N) € Bl for & € (% (f), 7 E)

Now consider the diffeomorphism (the proof of this is analogous to the one given in BT, A : g)‘?/(g) Xgx
G.(f) — G¥ (f 0 9) given by ]
AW, 7); (5(7),7)] = @', f(1)Y)
Then A induces a map A : C2(GY!(f 0 ), w4 E') — C=(GY (g) xgx G, (), (v} o pr1)*E') given by:
(Aa)[(@,7); (s(1),7)] == o' (v/, f(4)Y) € Els for o € C(GX(f 0 g), 71" E)
Then A induces an isometry at the level of Hilbert modules.

Let Wpoq 0 C°(Ghr, 7 E') — C2(GY,(f 0 g), 7 E') be defined analogously as W, replacing f by fog. We
then have the following

Proposition 5.3.3. The following diagram is commutative:

v og ’
C(Gyr 1" E) - C(GY/(f 0 g),m )
Ty A

C2(GY (), 7y B) — C2(GY (9) Xgx G (f), (mh 0 pr1) ')

ie., N oWy =ANoWysy,, where N := (¥, @1)o0 Py .

Proof. Let ' € C°(Gyr,r*E’). Then we have

(Ao W )(B)(W,7); (s(v), )] =

“(F 0 9)uw ) (B ) (5.3.6)

We also have,

(Ao Wrog)(B)(0,7); (s(1): )] = Wrog(v', f(1)7)
= ((fog)eu) (B ()] (5.3.7)

So we get the statement of the proposition from [£.3.6] and (.37 O

Now, let & : GX' (g) Xgx GX.(f) = GX/(f o g) be the diffeomorphism as in Proposition 514 It induces an
isomorphism

Q: C(GX:(f 0 9)) = CZ(GX (9) xgx Gx(f)) given by Q&) =3¢ =00

We make the identification

¢+ Gk xgpr 16X (9) xgx G ()] = G xgy G (f 0 9)
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given by y
Cvs [s(Y)s )5 (s(), Y = s (s()s F(N)AY)]

The map ¢ induces the operator

1©Q5 C2 (G T E') D¢, o) CE(GX(F 09)) = CZ Gy T E) G gy C(GX (9) Xgy G

Proposition 5.3.4. The operator I ® € is well-defined, i.e. the following property holds:

Qr($)€) = w()RUE) for ¢ € C2(GE), € € C2(GX (f o g))

Proof. Computing the left hand side first:

QUn(@)O)(@,7); (s(1):7)] = [F( @, flv ) )
= D d@)Es(@), f(ga )M
aeg’f'

Now computing the right hand side:

m(@) Q) 7); (s(7),7)] Y @) QE)(s(a)), 5@ )Y); (5(3):7)]

a/eg/m’
= > é ), Fa(@ )7y
«@ Eg;?/
Thus from £.3.8 and £.3.8 we see that the operator I ® € is indeed well-defined. O

Using now the definition [£.3.5] of the map ®¢ for g, we get a map
By : C(GX (9). 7 E') = CZ (G X gt GF (9), (ropri) E)

as follows:
()15 (s(v): M) =€ (r(v),9(+')y) for ' € CZ(GX (9), 71" E')
Similarly we define the map ®.4. Then we have the following

Lemma 5.3.5. The following diagram is commutative:

C2(GY (fog).niE) C(9X (9) xgx G (f), () o pr1) )

Dog ®,01
190

CE(Gir x gy GRY (f0.g). (ropr) E') =22 O (Gher X gixr GR (9) gy GRo (), () 0 pr1) EY)

i.e. we have (g @I)o A= (I®Q)0Pso.
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Proof. We compute the left hand side as follows: Let o € C°(GY,, 7} E')
((@g @ 1) o A)(@)[y15[(s(71);7); (s(0): )l = (A)[(r(71), 3(v1)7));5 (5(7), )]
= alr(), fFEEHMNY))
= alr(), (fo )W) F (M)

Computing the right hand side, we get,

(T @Q) 0 Prog)(@)[y1; [(5(11),7); (s(V), V)N = (@roga)[y1; (5(71),

Thus from B.3.8 and 538 we get the desired equality.

o
Now let Oy := @y 0 ¥y : OF(Gx/, 7 E') — OX(Gx,7"E) @ce(g¥) C2(GX/(f)). Similarly we define the
maps ©4 and O 4.
Then from Proposition [£.3.3] and Lemma [5.3.5] we get the following

Theorem 5.3.6. The following diagram is commutative:

©
£ ! - ELT®EZTT(S)

Ofog ORI
gc,oo ® gX/,C,OO(f o ) 10 gc,oo ® gX',c,OO( ) ® gX,c,OO(f)
X', E X/ g > Cx/ g X g X/

i.e. we have

(Tege, ®9Q) 0O 10g = (B9 ® Ipxee(f)) 0 O;
where 7%, = CZ(Gxr, 7" E'), EXO™(f) == C(GX.(f)) and so on.

Proof. We have from Lemma [5.3.5]
IR oProy=(Py@I)0A.

So we have, (I ® Q) o Proq 0 ¥yoy = (@3 1I) 0 Ao ¥y, Now using Proposition £33 and the definition for
O¢o4 we have
IT®9) 0Oty =(P301)0(¥y0I)0PsoTy

Since (P, @ I)o (¥, ®1)=0,® I and Oy = @ o U, we get the result.
O

5.3.1 Regularization and extension to adjointable operators on Hilbert-modules

In the previous section all computations were done in dense subspaces of the Hilbert modules. In this section
we will extend each of the maps defined to the maximal completion of the pre-Hilbert modules.

We use the following notations:
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o« X = CEED
o AX, = C(GEN)"

ax

° SX,E = Cgo(gx,T*E)<.7.>

) SX',E' = Cé)o(g‘/X/,r*E/)<'7'>
’ —_— <>
o &5 (f) = C (G5 (f))
<>

o £50(9) = C(9%(9))
o &% p(f) = C(G%/(f), T E)

’ 7 e >
o &% p(9) = C(GX (9), T EY)

where @<~ denotes the completion of a pre-hilbert module with respect to a suitable C*-valued inner
product and %" denotes the maximal completion of the C*-algebra.

>

We will show the following results:

Proposition 5.3.7. The maps @y, Q, A are isometric isomorphisms and therefore extend to adjointable
operators of Hilbert modules.

Proof. We have defined ®; as a map ®; : C(GY, (f),nE) — C>(Gx Xgx G%.(f), (ropri)*E) as follows:

for ¢ € C(GX.(f), 71 ), )
() (8(7), )] = E(r (), F()Y)

Using the diffeomorphism ¢y : Gx Xgx g% (f) =N GY.(f) we can see that ®;(£) = £ o ¢y. Then the inner
product on C2°(Gx X gx G (f), (ropr)*E) is defined as

<&, > =< 810 05,82 00f >0(gY, ()71 B)

where we recall that the inner product on C2°(GY, (f), 7 E) is given by the following formula:

<&m> ()= /eL Z <&(v,M)n(v,7) >E, dAr(4)(v)

") L eg
M1E€G, )

where L,(, is the leaf in V' such that f(L,,) = L;('v’)'

Therefore ® is an isometry. Clearly, ®; is also surjective with the inverse image given by £ := no ¢>;1.
Therefore @ is an isometric isomorphism of Hilbert modules. '
Also, as in the proof of lemmal[5.1.4] one defines amap w : C2°(Gx, 7" E)@coo (gx)C2° (G (f)) = C=(Gx Xgx
gx/(f), (ropr)*E)
wE@n)ly (@)= Y &ram s, fla™)y)
QGQX(W)
We can follow the proof of (.1.4] to prove that w extends to an isometric isomorphism of Hilbert modules,

and we have an isometric isomorphism <I>171 ow:Ex,E ®ax EX(f) = EX 5 ().

In a similar way it can be shown that A and € are isometric isomorphisms of Hilbert modules and further there
are isometric isomorphisms (by abusing notation) Q : £5,(f)® ,x EX (9) — Ex (9o f) and A : EY, p/(fog) —
X/ )

€Y 1(9) ®ux EX.(1).
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Finally, we remark that any isometric isomorphism of Hilbert modules is adjointable with the adjoint map
simply being its inverse. O

Proposition 5.3.8. Let ¢ € C°(R) be such that ¢(0) = 1 and ¢ € C(R). We define
W§ = Wyog(A)

where A’ is the Laplacian. \If? extends to an adjointable map on the Hilbert module.

Proof. To see that \IJ? = U0 ¢(A’) extends to an adjointable operator on Hilbert modules, we compute its
Schwartz kernel on the dense subspaces. Let k, denote the Schwartz kernel of ¢(A’). Since ¢ is chosen such
that it is rapidly decreasing and its Fourier transform is compactly supported, k4 is smooth and is uniformly
supported, i.e. it has compact support in G'.

Let k; denote the Schwartz kernel of Uy on C°(G%,,r*E’). So we have for v’ € C°(Gy.,r*E’),

V) = [ k() ) ) (538)
TEGK/ u
Here ks ((v,v),7}) : E;('y o = By, de kp((v,7),71) € Hom(E;(%),Ev).

Claim: k¢ ((v,7),7)) = " fev0d(7, 7)), where 6(7,~}) is the distribution on G4, x G, satisfying the formula:
JECROPCARINED

The claim is clear from the following computation:

/vie(};f” frwod(7 YW (1))AA(Y]) = (/VE o %7{)(60’(7{))61/\(7{))
= f*v( (7))_ \I]f( )('U,’Y/)

Therefore the Schwartz kernel of the operator \Il? is the convolution of the kernels of ¥, and ¢(A’). Let this
Schwartz kernel be denoted by K. Therefore we have,

e 0 00/, 8) 0 ko8 1) aNE)

tf*,v e} /€¢(7/,%) S HO’ITL(E;(,Y{),EU) (539)

Kr((v,7);m)

Since ky is smooth with compact support in G/, K also is smooth with compact support in G¥, (f). Hence \I/q;
is a bounded operator and therefore adjointable as a map between the dense subspaces by classical arguments
using the Riesz representation theorem. This is seen as follows: Kp((v,7'),71) acts as a bounded linear
transformation between the inner product spaces E;( ) and F,. Now for a fixed w € E, we define a bounded

linear functional ,, on Er('y by ¥yw(u) =< Kp((v,7),v;)u,w >g,. Then by the Riesz representation

theorem there exists a unique h € F’ () such that ¢, (u) =< u,h >p . Then we define the adjoint of the

r(v])
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homomorphism Kr((v,7'),71) as Kx((v,v),71)w = h which clearly satisfies < Kr((v,7'),7])u, w >p,=<
U, K;‘((va ’Y/)a ’Y{)w >E;

,
[CH

Now, since an adjointable operator between pre-Hilbert modules extends by continuity to an adjointable
operator on the Hilbert module, \Il‘? extends to an adjointable operator \II? Ex p — SV,ﬁE(f).

O

Now let us consider the leafwise homotopy H : [0,1] x V — V and H' : [0,1] x V' — V', and denote as before
for £ € V' the homotopy class of the path ¢ — H(t,x),0 <t < s by 3. For 0 < s <1, let Hs := H o,
where is: V < [0,1] x V is the map i5(v) = (s,v). Then we have the following

Proposition 5.3.9. For all 0 < s < 1, £ (Hy) is isomorphic as a Hilbert module to A%.

Proof. We define a map 0%, : C°(G%) — C2°(G= (Hs)) by the following formula:

03(&)(m,y) = &((45) 1) for € € C°(GX)

e 0%, is C°(G%)-linear:

Let ¢ € C2°(G% ). Then we have,

O3 (Ex o) (x,y) = (Exd)((v3) ")
= Y st

X
€T

= Y () M He(y) (putting 2 =71 (3) ")

’Yzegﬁ((w)

= Y (a9 (@7 )e(27)

X
12€9, )

= > (08 (@, v73 )d(ys) (putting 5 = 727 )

X
13€95()

= [(0u8)¢l(z,7)

Thus 6%; is C2°(G%)-linear.
e 07 is an isometry:

Let £ € C°(G%). Then we have,
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<OREOE> () = Y > 0RO @m)05E) (@,m)

megh ) He(w)=r(m)

D D D (G e (G o))

megHs () Hy(@)=r(m)

= Y &(n)é(tey) (putting 2 = (v3)"'7)

72€g§(w)

= Z mgﬁﬂ)
72€gi((’v)

= > &hEm)
’Yzegi((w)

= (€=M

e 07, has dense image:
Let n € C°(GX(go f)). Then define for v € G,

03) () =n(r(V): V)
Thus (05;)*n € C°(G% ), and we have,

03 ((03) ) (,7) = ((03) M) ((v3) ") = nlz, v (v5) 1) = n(x,7)
Thus 6% has dense image.

Therefore, 6% is an isomorphism of Hilbert modules. o

Corollary 5.3.10. £¥, (g o f) is isomorphic to AX as a Hilbert module.

Proof. The isomorphism is given by 0 := 6}, as Hy = go f.

Corollary 5.3.11. £, (f o g) is isomorphic to AY, as a Hilbert module.

Proof. We use the homotopy H' to define the isomorphism in a similar way as in the previous proposition. [

Remark. We note that gfg(idv) o, g))g is a diffeomorphism, where mo is the projection onto the second
factor. We also note that there is a canonical isomorphism of Hilbert modules 0 : Ex,p ® ax AS 2 Exp

Consider the Hilbert-Poincaré complex associated to the odd-dimensional foliation (V, X, FP) given as follows:

Set EF := C(Gx,r* /\k T*F). We denote the lift of the leafwise de Rham derivative on V' to Gx by dx and
the lift of the leafwise Hodge operator by T'x. As proved in the previous section, the complex (Ex,dx,Tx)
given by:

SLe e Le,

is a Hilbert Poincaré complex as per the definition in subsection [A.1l
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Proposition 5.3.12. The map

[0y Exp@ax Ex(90f) = Ex.b @ ax A

is a well-defined map of Hilbert-modules. Further the composition map
PH = do (I@@I}l) : gX,E ®A§ g})(((go f) — gX,E
commutes with the differential on Ex g, i.e. pu(dx @ I) =dx o py.

Proof. Let us prove the left linearity of 0, i.e. that Oy (¢ * &) = m(¢)0u(£). Let ¢,& € C°(GX). Then we
have,

(% E)(z,7) = (6+E((1) ")
= Y LT )

71€9%

Computing the right hand side, we get:
T(&)0m (€)@ 7) = D @)y o (Fedla™)on)

aefGy

(5.3.10)

Put y1 =, o (fog)(a)o Ys(a)- Then from the proof of Proposition 5.1.7 we see that 71 = a. Therefore we
have,

m(@)0u(©)(@7) = Y, d(m)éln o () )

v1€G%
(5.3.11)
which is equal to the left hand side.
To see the py is a chain map, we compute as follows:
ppo(dx®I) = 50(I®9ﬁl)o(dx®f)
= So(dx®I)o(I®04") (since I ® 05" and dx ® I commute)
(5.3.12)
But then we have for ¢ € C°(Gx,r*E), ¢ € C=(G%),
do(dx®@DNE®p) = 6dxER )
= dx(&)¢ (since ¢ is given by right multiplication)
= dx(£¢) (since dx is A¥-linear )
dx[0(§ @ ¢)] = dx 0 6(§ © ¢)
Therefore from the two computations above we get the desired result.
O

Definition We set f7 := ®yo \I/‘?

Notice that f7 is an adjointable operator since both ® ¢ and \I/‘? are adjointable. As ¢E is compactly supported,
®(A) preserves the dense space C°(Gx,r*E), and by Proposition [[221] ¢(A) induces the identity map on
cohomology of the complex (£x,dx,Tx).
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Theorem 5.3.13. On cohomology, we have the following functoriality formula:
(T g Dfy=(fo9);

Furthermore, f; induces an isomorphism on cohomology as a chain map between the complexes (€%, d,, T%/)

and (Ex ®(€X/(f),dx ®I,Tx ®I).

Proof. Since O¢, 0, are chain maps, we get from Theorem [(5.3.6]

TeM) g oDf; = (T2 (0,0 )($(A)a)0sh(A)
= (IeQ) 10,2 )0,¢(A)?
®f09¢(A)2
= (fog)god(A) (5.3.13)

But as ¢(A) is identity on cohomology, we deduce the relation.

Let now p}; denote the map induces by pg on cohomology. Then the Poincaré lemma for Hilbert modules
states that (see next section)

P o (fog)y=Idu-(cax )

So we get
Pl @) (g5 @ 1) f§ = Idg-(g,dx,Tx)

Therefore f7 is injective. Also, since pi(I ® Q) is an isomorphism, g3 ® 1 is surjective. Applying the same
argument reversing the roles of g and f, we get the existence of operators A;, Ao, such that on cohomology:

(fi®I)o A =1d, Ago fi=1d
The two equalities above together imply that
(F301): Expr @ 41 EX (9) = Ex.p © 4, EX(F) @ 45, EX (9)

~

is an isomorphism on cohomology with inverse A, ® I. However, using the fact that £¥ (g) ® AX EX(f)
EX (f og) =P AX,, we get that the map

(F301@1): Exm ® 4, EX (9) @ a5 EXN) = Ex. @ 4x; EX(F) @ 4, EX (9) @ a5 EX(F)

is conjugated via isomorphisms to the map f; Therefore the map f, »» induces an isomorphism on cohomology.

O

5.3.2 Poincaré lemma for Hilbert modules
Let Xo := {0} x X C[0,1] x V' be the complete transversal of the product foliation on [0, 1] x V, for which

each leaf is the product [0,1] x L where L is a leaf in V. We denote this foliation by [0,1] x F. Let G be the
monodromy groupoid of the foliation ([0, 1] x V[0, 1] x F). Then we have

G =g x[0,1]

We denote by fl§g the maximal C*-algebra of G§g
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Define maps @ and ¥y as in the definition (.35l We note that using a similar proof as for Lemma [£.3.9]
one has an isomorphism pg : EXO £ ® j%o0 5§°(h) — EXO 5 Then we set H* := pgo®pyoV¥y = pgoOg, so
; gold ;

we have a map

Ex.E —»501]XV(H) ¢—H’8XU,E®

xo ExO(H) 25 No.b
0

Ax

where E :=r* A" T*([0,1] x F).

Since we also have

Gx, = 10,1 x Gx, G3° =Gx

there is a canonical isomorphism of Hilbert modules between the completions of C2°(Gx, x ) Gx*(H), (ro
Xo

7)*E) and the completion of C>(Gx,,r*E) Qe (6X) C>(G¥). Therefore we can finally construct an
adjointable map of Hilbert modules:

I{‘j = H* Od)(A) : 5x)E — 5X0 E
Remark. Using the same arguments as in the previous section, we can show that H® is adjointable as
\I/% = Uy o ¢(A) extends to an adjointable map and P, extends to an isometric isomorphism and therefore
is also adjointable (with adjoint ®5").
Remark. Notice that for any x € X, if Hf := (pg 0 O)s, a map
H} : C2(G, 7" E) — C(G (0.0, 7" E) = C2([0,1] x G, r*E)

then H} is simply given by the formula:

Hy ()(t,7) = ("Ha) (1,0 (EH(E,7) 0 7e())

where ("H,)¢.» TV — T, ([0, 1]XV) is the transpose of the differential of H and H(t, ) := vﬁ(v)v(vé ()"t
Indeed, and as before, on dense spaces, we take the following map for H :

CX(Gx,r* E) 25 (G Y (H), (r o pri)*E) 25 €2 (G, Xgxo Gx°(H), (ropr1)*E) 25 C=(Gx,, B)

Thus we have,

(I ®05")(®r o V) (E)[(t,7), (0,a)]

(0 Va)(E)[(t,7), (s(t,7), (0,a))] (5.3.14)
(as O : GR°(h) — g§§g is given by ((0,z),v) — (0,0,7))

= ("H.)rin EH(E,7)a))

(5.3.15)

And

4

§o(I@0)(@uo¥u)E)(t,y) = (@05 )(@noPm)(E)[(t7), L0
(tH*)(t,r('y) (g(f[(tv 7)10,7))
(tH*)(t,r(v) (g(H(tv 7)72(7)))

where in the last line we have used the following: since H(t 8,7y) = FYT(W) v(vy 85(7))*1, s0 for (t,7) € g})ﬁg,ﬁ(t, v) =
(t, 0,7) = FYT('y)’Y' But we have FYT('y)FY = H(u,)o 'Vs(y)'
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Now if £ € C2°([0,1] x gz,r*E) is a k-form, it can be expressed using a local chart (U, x1, 2, ...,xp) in the
leaf L, where p is the dimension of F, as follows:

&= Z (fl)fr!(d:vil ANdxi, A...Ndz;,) + Z (fz)Jdt/\T!(dle Adxj, /\.../\d:vjkfl)

11 <i2<...<ip J1<j2<...<jrk—-1

Then there is a well-defined map
1 A
/ :C([0,1] X Gy, 7™ E) — C°(Gyy 7™ E)
0

given by

1 0 |
/05:— > </1 &aa, )dt)r (dajy Adaj, Ao Aday, )

J1<je<...<jr—1

Let for 0 < s <1, is: G, — [0,1] x G, be the map is(y) = (s,7)
Lemma 5.3.14. We have,
1 1
do ([ 0+ [ (g =€ron—eois
0 0

where §1 =37, i i (&) (dxy, Adxiy A ... Adxy,).

Proof. Let & be a k-form in C2°([0, 1] x G, r* (A" T*([0, 1] x F))). It is sufficient to check the formula in local
coordinates and where £ is in either of the following forms:

1. &(t,z) = & (t, )7 (dog, Adxiy A ... ANdxy,) , or
2. &(t, @) = &a(t,2)dt Art(daj, Ndxj, A ... Ndwj, )

For the first case, we have:

p
dg & = mz::l gj;r!(da:m Adzi, Ndxiy A ... Ndxg,) + %dt AT (dzg, Adai, A ... Aday,)

(5.3.16)

so we get

1 1
5} |
(/0 dg §)(z) = (/0 %dt)r'(d:z:il ANdziy A ... Adxg,)
= (&(1,2) — (0, 2))r (dri, Adziy A ... Adz;,)
= 51 Oil(I) —51 Oio(.I)

Since in this case f01§ = 0, we get the desired result. Now for the second case, we have:

1 1P 0t !
; dg & = ; (Z —aTdt/\r(d:zcm/\daci1 ANdxi, A ... Ndzy,))
m=1 m

p 1 852 \
> (/ — 22 dt)rt (da, A dxg, Adai, A ... A dag,))
= Jo 0T,
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And on the other hand,

dgz(/olﬁ)

1
dg. (( / & (t,x)dt)r! (day, Adaiy A ... Adwy,))

~ [ 9
= Z / 6—dt M (dam A dzi, Adzg, A ... Adg,)
m= 0 Lm
So in this case fol dg £ +dg, (fol &) = 0 which finishes the proof as £&; = 0 in this case. O

If ¢ = H:(n) for n € CX(Gz,m*E), we have

1 1
/O dg Hy(n) +dg, (/0 Hi(m) = H*(Mlgyxg., — H (M1l{oyxg.
But we know from above remarks that,
H*()(1,7) = CH) e HL,7) 0 7)) and HY (0)(v) = ("Hi e () H1 () © Ys())]

where H = (g o f)" = (pn © Ogoy).
By lemma below, we have:

1 1 1 1
13 n) = 13n) = [ dg 11200+ dg, ([ 1200) = dg, [ 120+ dg ([ 1)
Hence setting K*n := fol H*n, we get
HE o) — Hig oy (n) = K odg, +dg, o K (5.3.17)

Let K* = K* 0 (A). Then we have the following

Proposition 5.3.15. K% is an adjointable operator on Ex.E and we have

(go f)f —d(A)=K*od+doK*

Proof. We have already shown, modulo Lemma [(5.3.16, in 5317 that
(gof)—Id=K*"od+do K*
We now check the following:

'fo C([0,1] X Gy, 7*E) — C(Gy,7*E) is well-defined map of Hilbert modules and extends to an ad-
jointable operator on £ 4.

We check the following properties of the map:

1. fol is a C°(GX)-linear map with the identification G¥ = G¥ so that

/01<£¢> - (/015)¢

2. The adjoint map is given by Dn =mn A dt. i.e. we have

1
</ En>=<EnAdt >
0
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1. We compute as follows: Let £ = & 4+ & A dt so that o = &6+ {20 A dt. Then,

[ = [ % na

' oG
=/ o O Ndt

1 852
(| G

- (/Olsw

So we get the desired result.

2. Let £(t,v) = m(t, ) + m2(t, ) Adt,n(t,y) = m(t,y) + na(t,y) A dt be differential forms. Let the hodge
x-operators on Gx, be denoted by *pe f and on Gx by *) e r, respectively. Then we have,

#pe 2 (t,7) = (kpe Fmi(t, 7)) Adt

and
#pe 2 (ma(t,7) Adt) = (1P~ (xp e zn2(t,7))

Then, we have,

1 1 1
[ e nsgeznen = [ @) nspemia) des (<07 [lt) ndenspe rm(t.)
0 0 0

= /0(gl(ta’}/)/\*A'Fnl(ta’}/))/\dt+/() gQ(ta’}/)/\(*/\’]—"HQ(tvﬁ)/))/\dt

(5.3.18)
Now we have,
1 1
<[eax@) = [ < [ematm) >pe duen)
0 Grev) 0
1
= [ < [ @l ndtatn) > den)
Gr(v) 0
1
= / / <&t )N, a(1Y) > B, () dtdN ) (71)
Gr(y) 70
(5.3.19)

Letting n(t,y) = a(y) A dt we get:

1 1 1
/ <&(t,m),nt,vy) > dt = i/ §i1(t, 1) Axps Fa(n1y) > Adt = / <&i(t,m),alny) > dt
0 0 0

Therefore we get,
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1
/0 < €t )0t 1Y) >, (o) dtdA () (1)

</01§,oz>(7) = /g

= / <&(t,m),n(t, 1Y) >E, () dtdA () (1)
g"(’Y)X[Ovl]

r(v)

= <&n>(y)=<&and >

Hence the desired equality. Thus fol extends to an adjointable operator on Hilbert modules, and as a result
K* as well.

O

We have used above the following lemma.

Lemma 5.3.16. We have, H*(n)1]|1,4) = Hy(n)(7)

Proof. We first show that for £ = &1 + & A dt, we have & = (Yi.)€.

Let X € T, L, then, (“i1.£:)(X) = &1.0)(i1,:)(X) = €1.0)(X(1.0) = (€1)(1.2)(X(1.0))> as X does not have &
terms.

Now, we note that as Hy = H oy, we have (“i1 ), o ("H.)(1,4) = ("H1,+)s, and so

H*(T/)ll(l,’y) til,*)r('y)(H*(n)(lv’Y))
)

(
= (Yi1,0)r(y) © (CHL) (1,004 0(H (1,9)Vs())
( () (W(H(lv 7)75(7))

Thus proving the claim. Therefore we have

(gof)—Id=K*od+do K*
Multiplying by ¢(A) on the right in the above equation, we get the desired result:

(go f)f —d(A)=K*od+doK*

since ¢(A) commutes with d.

Corollary 5.3.17. (go f)* induces the identity on cohomology of the complex (Ex,dx).

Proof. This is immediate from the previous proposition and the fact that ¢(A) induces the identity on
cohomology, while K* o d + d o K* is zero on cohomology. O



Chapter 6

Applications: Extending Keswani’s
proof for foliations

6.1 von Neumann algebras associated with a leafwise homotopy
equivalence

Recall that f: (V,F) — (V',F’) is a leafwise homotopy equivalence. Recall also that for v' € V', GV (f) is
the inverse image of the Connes-Skandalis principal bundle G(f) := {(v,&/) € V x G'|f(v) = r(a/)} under
the map sy given by sf(v, ) = s(a’) (cf. |CoSk:84]). Let L2(GY (f),n;E) be the Hilbert space defined as
the completion of C°(GY,(f), m; E) with the inner product given by:

< fv',m' >i= / . Z < 5(“77/)1 77(11,7/) >E, d)‘v/ (7/) for &ﬂﬂ?v' € Cgo(gX(f)vﬂrE)a
vel, 1f(v)
'Ylegv/

where L, is the (unique) leaf in (V’, F’) whose image under f is in L], in (V',F’). Then the family of
Hilbert spaces H(f) := (L3(GY.(f), 7f E))wevs is a measurable field of Hilbert spaces (cf. [Di:57]). For every
v e gjf; there is an isometric isomorphism U, : LQ(QUVé (f), 7 E) — LQ(QX,1 (f), 71 E) given by

Uy&o (v, ") 1= §y (v, 0'y)

Then the measurable field of Hilbert spaces H(f) has a square-integrable representation of G’ (for definitions
see [Co:79], definition 5.11, page 37). So by Theorem 6.2, page 40 of |Co:79],

Endyr (H(f)) := {[T)|T = (T ) ev-measurable family of A’-essentially bounded operators s.t. Ty Uy = Uy Ty }
is a von Neumann algebra, where T,y € B(L*(GY,(f),n{E)) for each v' € V' and A’ = f,A is the holonomy

invariant transverse measure on (V’, F’) associated with the holonomy invariant transverse measure A on
(V, F) and the equivalence classes [.] are given by equality of operators A’-a.e..

Now, we consider the leafwise graph of f for v/ € V/,
L(f,0") == {(v, f(v))|v € V, f(v) € Ly}

109
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Then H(f) = (L*(T(f,v"), 7} E))w ey is a measurable field of Hilbert spaces, with inner-product given by

<66 = / <6 S0), &0 f0) >5, )

for &,& € L*(T(f,v'), 71 E), where L,/ is as before. Then we define as above Endy/(H(f)) as the von
Neumann algebra associated with this field: it is the set of measurable families of A’-essentially bounded
operators T' = (T )yrevs 8.t Ty = Tyy for vf, vy in the same leaf, where T,y € B(L*(T(f,v'), 7} E)) for each
v eV

6.2 Traces

Let Ty = (Tt )vev: € Enda(H(f)) be a positive operator such that each T, is positive and given by a
kernel as follows:

Ty w(v,7) = / D S CRER R HORH IS

~ie6

where kz, o € C2(GY.(f) x GY (), Hom(w; B, x5 E)).

Then the trace of Ty is defined as follows. Let (U, )aca be a distinguished open cover on (V',F’). Let
X! denote the local transversal of U/,. Without loss of generality one can assume that X', N X’5 = 0 for
a # [(cf. |HiSk:83]). Then we can choose an distinguished open cover (U;);er of (V,F) such that for i € I
there exists a(i) € A such that f(U;) C U/ ;). Let Uy = W; x X;, where X is transversal to the plaques

W;. One can also assume without loss of generality that the induced map on the transversal f X — f (X3)
is a diffeomorphism onto its image (cf [CoSk:84], [BePi:08]). Let mye @ f(Xi) — X;(i) be the map which

projects to the local transversal. Denote X := 74 ;) (f(X;)). Then it can be easily seen that X’ := Uier Xi
is a complete transversal for (V', F").

Let (¢?)icr be a partition of unity in V' subordinate to Uj, Y ier ¢? = 1. Let a; be the restriction of the
leafwise measures A on V to the plaques of W;.

Definition The trace Tas ¢(Ty) of T is defined by
T (Th) = / / (K, (v, 140y, 0, 1)) des (0)dA ()
il YV EX] JvEW, ,

where W, . is the unique plaque in U; corresponding to the plaque W' (i)’ in Ua( ) by the image of f, 1,
is the homotopy class of the constant path at f(v) and KTf (v1,71,v2,75) = @i(v1)Ps(v2) Ky (1,797, v2,75).

The following propositions give some properties of the trace 7a/ f:

Proposition 6.2.1. The above formula for 7o does not depend on the choices of (UL)aca, (X} )aca,
(Uz)zela (Xz)zEI and (d’ )16[

Proof. Let us choose another distinguished open cover {U s}pen of V' with local transversal Xj and a
corresponding distinguished open cover of V' { 0 }ies with ﬁ W X X such that f induces a diffeomorphism
i X; — f(X ;). We consider the complete transversal X' = Uje ]X where X = wﬁ(J)(f(f(j)) as before.
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Let

sty =S [

[ (i, (0100000 ()N ()
jeg’v 'UGWj

Y/
GXj

By considering locally finite refinements of the cover {02,}% B, we can assume without loss of generality
that U, = Uyep(a)Uy with Ug N U = @ if and only if B # 3 for 3,8 € B(a). Corresponding to this
refinement one can choose a refinement {U; } je; of the cover {U;};cs such that for all j € J,38 € B for which
f(U;) CUsg and U; N U = 0 if and only if j # j'. Let j(i) = {j € J|U; NU; # 0}. We claim that

/ ~ / ~ (K, (0, 10y, 0, 150y (0) A ()
’U’GX{ ’UGW,LW/

Z / v/
v/EXj

/ e (K (0,1 50y, 0, 1))ty (v)dA ()
j(2)eJ (i) vew;

(i),

(i)

Evidently it is enough to consider the case when V' & W’x X’ and V = W x X such that f(X) is diffeomorphic
to X. We choose a finite open foliated good cover of V' denoting it U’ = {Uj}pep and a corresponding finite
open foliated good cover of V, U = {U,} e such that conditions on the previous paragraph are satisfied. In
this case partitions of unity functions are identically 1 on open charts.

Now let Jx = {j € JIX NU; # 0}. We also let for j € Jx,X(j) = X NU,. For j € Jx consider the set
S(j) ={k € J|38 € B and v' € X such that f(U;) C U, Wi,.» C W, } where Wy, is the plaque through v
in the foliated chart Uy such that f(v) € W/, and W,y is the corresponding ‘leaf’ in V. It is not difficult to see
that we can assume w.l.o.g. that Jx has only one element. Now for v’ € X, let Jw,,» := {k € J|W)NUy # 0}.
Then we can divide X into equivalence classes of subsets with the relation given by v} ~ v} & Jww, = Jwy-
Denote these subsets by X1, X3, ..., X/,. Each X/ is a connected open subset of X’. Then we clearly have

/ / tr(Kp, (v, 1), 0, 1)) da(v)dA (V")
v'eX’ JoeW,,

— Z/ / tr(KTf(v,lf(v),v,lf(v)))da(v)d/\’(v’)
i=1 ’U’GX{ ’UGWU/

Let J = {jo, j1, .-, in}. Set h(v,v") = tr(Kr; (v, 1), v, 15())) for v € Wy, We want to prove

N
/U/GX/h(v,v)doc(v)dA (U):Z//GX/ /UGW /h(v,v)dajl(v)dA (v) (6.2.1)

1=1 V' €X], e

Then we have,
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/MGX, h(v,v")da(v)dA (v') = i_n:[jex; LGWM h(v,v")da(v)dA (V')

= Z/ Z / h(v,v")day (v)dA (v")
; ’U'GX{ KE Ty o 'UGWI@,U’

=1

= / Z / (v, v")dag(v)dN (v') + I
VEXT ke gy o Y VEWkw

= X [ Ly e
kGJWm/ Trk(X{) 'UGW)@,UI

where

I = Z/ﬂ . ~/v€Wk ) h(v,v")day (v)dA (v")

and m, is the projecction onto X;. We have used the fact that X{ = m(X]) in the last line. Now choosing
all © such that jo € Jw,,v" € X| in the above sum, we get

i k€Jyy

Z/ / h(v,v")dagdA" + other terms
— Jx Anjy(x0) Juew,

However, we have X = Ujcrjjoe Ty 1 0/ EX] (X7, N7 (X])). So the first term in the above line equals

/ / h(v,v")daj,dN (V')
i UEW’

vl

Therefore we can ‘extract’ individual terms in the sum appearing in [6.2.1] from the original integral. Since
X' is a complete transversal such individual terms corresponding to every index in .J can be extracted and
no residual terms are left.

O

Proposition 6.2.2. 75/ s satisfies the following property: for T € Enda: (H(f))" such that Tar ;(T) < oo and
S € Enda (H(f))" such that T'S and ST are operators with smooth, compactly supported Schwartz kernels,
we have: Tar f(ST) = Tar ¢(T'S).

Proof. We note that the Schwartz kernel of T'S is given by convolution of the Schwartz kernels of T" and S
as follows:

Krs),, (v,7), (v1,71)) / > Erw (0,9, (v2,7) Ks,wr (v2,75), (01,71))dA" (v2)  (6.2.2)
v2€Ly rpeg )

Y2
The Schwartz kernel of ST is given by a similar convolution formula. Therefore we have,

TA/ / /
'UGX/ veW,

iel i,v

/ X (0T (2 ) K (02,95), (0,10 )N (o) (0)dN () (6:23)
v2€ly , _ oif(vg)
Vzegu/
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Since support of K. ¢ o C U;, the right hand side above can be written as

ms(T8) = /X/W /W
v'e veW; DS ’

el i,v
> (K (0,1 40)), (2,9%)) K (02,%), (v, 150))))des (v2)dovi (v)dA (v')
,Y2€g/f(v2)
B ; /v'eXZf v/’UzEW,L»’v/
> [/ tr(Ks,or ((v2,72)s (0, 1)) K (0, 15)), (v2,72)))dai (v) | devi(vg)dA (o)
N TAR VEW; o1
B ; /J'exg v/’UzEW,L»’,U/

/W > tr(Ksw((ve, 15(v2)), (0,78)) K (0,95), (02, 1 (0y))))devi (v) | devi(v2)dA’ (v)
ve ,Eg/ﬂvz)

- / / tr(K S (v2, 14 (05), V2, 1f(0y)))dats (v2)dA' (v)
v EX 'UgeW7L

el
= TA/)f(ST)

where we have used the holonomy invariance of A’ and the G’-equivariance property for the Schwartz kernels.

O

We define in a similar way a trace functional 75, ;, on Enda (H(f)) as follows. Let ty = (tfu)wev: €
Endas(H(f)) be such that almost each ¢, is positive (w.r.t the measure on V') and given by a kernel as
follows:

tro€(v, f(v)) = / Ky (0, f(0)), (1, f(01))E(vr, fvr))dAL, (v1)

1€L,

where ki, v € C(T(f,v") x I'(f,v"), Hom(n{ E, 73 E)).

Definition The trace TA, f(ts) of ty is defined by
Rt =3 [ [ el (0 0. 0 F0)das ()N ()
il YV EX] JvEW,

where W; . is the unique plaque in U; corresponding to the plaque W(;(
Ki ((v1, f(v1)), (v2, f(v2))) = @i(v1) @i (v2) Ko, (01, f(01)), (v2, f(v2)))-

i 10 Up ;) by the image of f and
A proposition analogous to the two propositions above can be stated for T[Z'-, 5 as follows.

Proposition 6.2.3. (i) The above formula for 7%, ; does not depend on the choices of (U})aca, (X},)aca,
(U’L)ZGIa (Xz)zel and (¢ )16[
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(ii) For t € Enda/ (H(f))" such that 7%, () < oo and s € Endn(H (f))Jr such that ts and st are positive
operators with smooth, compactly supported Schwartz kernels, we have: TA/ f(st) = TA/ f(ts)

Proof. The proofs are similar to the proofs in Proposition [6.2.1] and Proposition [6.2.2] O

Recall the von Neumann algebra defined on the measurable field of Hilbert spaces H := (L?(G,,r*E))yev
where the inner product on L?(G,,r*E) is given by

< &uy Mo >=/ <&(a),m(a) >E, ., d(a) for §,n, € CF(Gy, 7" E)
Otegv

Then the von Neumann algebra Enda(H) is denoted by W*(G, E) (see section 2.3.4)). This von Neumann

algebra has a positive, semifinite, faithful, normal trace 7.

Proposition 6.2.4. Let T be a positive trace-class operator in W*(G, E) with compactly smoothing kernel
kr. Let Ty be the operator in Enda/ (H(f)) whose Schwartz kernel is given by K, (v1,v2,7") = kr(7y), where
v € Gyt is unique such that f(y) =~'. Then we have

Tan(Ty) = 7(T)

Proof. One has K, (v1,71,v2,7;) = kr(712), where 12 € GJ1 is unique such that f(y12) = TYe LAsT
is a A-essentially bounded operator, its kernel is also a compactly supported measurable function on G, and
therefore K, is also a measurable function with compact support viewed as a section on G(f). Hence T} is
A’-essentially bounded.

Ky, is G'-equivariant since we have K7, (v1,7{a’,v2,75¢’) = kr(v12) = Kr, (v1,7],v2,7%) since v{75 " =
Yol ~tyh7t for o € G such that r(a) = s(7}) = s(74). Therefore T} interwines the representation of G'.
Hence T is a positive operator in Enda: (H(f)).

We compute as follows:

TA/J’(Tj’) = / / (KTf(’U lf(v),v,lf(v)))dozz( )dA/( /)

ier Jv GT/ 'UGVVZ o’

= / / KTf 0, 15(0), Vs Lp(0)))da (v)dA (v') ( since T} = 7, Z)(f( D))
icl YV Gj (Ty) veWw, .,

= / / tr(Kf, (0, 11wy, v, 15(v)))dai(v)dA(6) ( since A" = f.A) )
icl 0eT; 'UGWZQ

- / / Y (Kr (1)) das (v)dA (0)
ZGI 0eT; 'UGWZQ

O

A similar proposition relating operators between foliation von Neumann algebra W*(V, F; E) and End/ (H (f)

is given as follows. Recall that W*(M, F; F) has a positive, semifinite, faithful, normal trace 7';}-.

Proposition 6.2.5. Lett = (t1)rev,F be a positive trace-class operator in W*(V, F; E) such that for each
L € V/F, the Schwartz kernels ky 1, € C°(Lx L, Ey, ). Letty be the operator in Enda/ (H (f)) whose Schwartz
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kernel is given by Ky, ((v1, f(v1)), (va, f(v2))) = ki1, (v1,v2), where vi,va € V are in the same leaf. Then
we have

TR () = T2 (t)

Proof. The proof is similar to the proof in [6.2.4]

6.3 Operators on Hilbert modules

Recall that for every v € V we have an isometric isomorphism of Hilbert spaces Uy, y¢q : Ex.E ®ax 12(GX) —
L?(G,,r*E) given by the following formula:

[Woreg(C®E] (1) = Y &l (6.3.1)

aeGX

where ¢ € £%,€ € 1%(GX),v € G,.
Here the representation of AX on I?(GX), p;*9 : Ax . — B(I*(G))) is defined as

(IO = Y o)), (6.3.2)

Y1E€GYX

Let as before BE := C*(G,E). We have an isomorphism x,, : BY — Kax(€x.p). Then we have (see
Proposition B3.5):

Proposition 6.3.1. Let v € V. Then we have for S € BZ,

T, (S) = Uy reg © [Xm(S) ® IdB(P(ggf))] © \I/;Teg

In a similar way, for every v’ € V' there is a representation p, g of AX: on 12(g/X’). Then we have
the interior tensor product £X, 5 (f) ®p,, .., 12(G/X") which is a Hilbert space. Consider the map ¥/,

EX 5(f) ®p,, ., 12(G5X) — L*(GY(f), 7 E) given by

v/ reg *

(W) e C@ONw,A) = D &),y o/ (6.3.3)

«@ Eg;x,

where ¢ € £, & € 12(GX),y € Gl such that f(v) =r(y).

Proposition 6.3.2. v/, is a well-defined map and an isometric isomorphism.

v, reg

Proof. e v/, is well-defined:

v’,reg

Let 6,/ denote the delta function at 4/ € G/X'. Letting v'€(v,7") = £(v,~7"y'~1), we have
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for ¢ € C°(G5%),

Ul (€0 @6,)(0,9") = (68w, 7"y ™)
= ) AT ()

1 X!
a’'eg (")

= > A" TH (YT
Begx

= [£<¢'*6 (7"

= [ e (6@ (& O)I(0,7)

Therefore \I/ is well-defined.

v',reg

. \IJU reg is an isometry:

We have for £1,& € 5V’/C,E(f)v

SQ@0LE @0y > = <Oy, < LG >0y >
= <o <&.& > (B e
/8/

<&,&> MY
/ 3 > <&)L) >6, dAE(v)
ve

(4D ’eg’{(“))
(v

On the other hand, we have:

<MELE > = / Y < (HE)®.), (16)(0,7) > 5, dAE(v)
veL. ) legu:w))
= / > <aAN) LA >E, dA(v)
UELT(—yl) ,eg:};iv)
- / Y <&@, &0 ) > e, A (v)
veEL

r(v]) //Eg’f(v)
(1)

which proves that o, is an isometry.

v’ reg

° \IJZ reg 18 surjective: It suffices to prove this for v/ € X’ since there is an isomorphism of Hilbert spaces

L2(g1‘)/1 (f), 7T E) = L2(QI‘)/§(f),7r’fE) for v}, v} in the same leaf. Consider n € C°(GY,(f),7{E). Then n can
be extended to € C(GY, (f), 7 E). Let §, be the delta function at v’, which can be seen as an [? function
on g; Then 7 is the image of 7j ® &, under ¥/, Hence U/, s surjective. O

v, reg” v’ reg

Recall that we have an isomorphism x/, : BE = K 4x/(EX) 5(f)). We define a representation for v' € V’,
X/ ’
7079 BE — Enda/ (H(f)) by the following formula:



6.3. OPERATORS ON HILBERT MODULES 117

ﬂ'f,’reg v N = 1 U1, { 51}1
(79 ()€ (0, 7') / S )€, 1)) ANE (o)

f(v
,Y/ eg/uf 1)

1 1—1

where given vy € Ly, € g’fff”l), 71 is the unique element in G; such that f(vy1) = "7,

Then we have the following proposition:

Proposition 6.3.3. Let v/ € V' and S € BE. Then,
79§y =wl, oy (9) ® IdB(ZQ(g;)/(/))] o (\I/-Z,Jeg)—l

v’ reg

Proof. We first note that the isomorphism x7, is given by the following formula, for ¢ € BEL)C, ¢ e 5)‘?,(? (),

(@O, = / D SERCARCRRT TN

1f(v
negy’

where 1 € GY is unique such that f(y1) =~'7] ~1. Then computing the left hand side, we get,

(79 () (W0 (€ © ) (v, 7)) / D MR ICHICAIEBICRATAEY

16g/f(vl)
= [ X e X @ ra Hirkw)
v1E€Ly 7{69;{(”) a,eg;),(/

Computing the right hand side, we get,

(Vo (X () @ DICRE(,7) = (Tur (xm($) @ E))(v,7)
> LB (@) (w8

pregx’
/UGL S oAt e gl em)cn )
ﬁ’eg’x’ !

(71 €Gyl st fm) =" )
- / S € GIEY dlw)C(or, 78
v1E€L,

ﬁ/eg'X/

/1 1—1

(v =70 v2=m €G! st f(v2) = v )

Comparing the last lines of the above computations gives the result. O

Now consider the representation p, g, of A% X on 12(Gh /) given in Section[3.3.21 Consider the interior tensor
product £%, p(f) @, ., 12(GX' /G'Y") which is a Hilbert space. Consider the map ¥/, av EX,CE(f) ®po a
12(G/X /G0y — L(T(f,v'), 7} E) given on simple tensors by

W, (@& (v = Y N, (6.3.4)

« Eg;Xl

where [o/] is the class of a in g; / gv. A e g;f ) and the formula does not depend on the choice of +'.

Then we have

v”
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Proposition 6.3.4. \Ilg, is a well-defined map and an isometric isomorphism.

av

Proof. The proof is similar to the proof in [6.3.2] O

We also define a representation 7/;*" : BE — Enda (H(f)) by the following formula:

v’

e ) = [ 3 e S0y )

Proposition 6.3.5. Let v/ € V' and S € BE. Then,
590 (8) = W, 11 0 W (9) @ T aggrnt gryy) © (0 00) !
Ty v’ ,av Xm B(l2(g;)f /g;v, ) v’ ,av
Proof. The proof is similar to the proof in O

Let D be the leafwise signature operator on (V, F), D = (D,)vey be its lift on the monodromy groupoid and
Dy, be the associated self-adjoint regular operator on £x r. Then we have the following result relating the
functional calculi of D,,, and D (cf. B:44] [BePi:08])

Proposition 6.3.6. Let ¢ : R — R be a bounded continuous function. Then, for each v € V, we have
»(D,) € B(L*(Gy,m*E)), and

7/)(Dv) =Wy reg © (¥ (D) & pres Id]o \I/';,ieg

Now consider the leafwise graph of f, for v’ € V/,

L(f,0') = {(v, f())lv € V, f(v) € Ly}

Then, we define the densely defined closed unbounded operator (D), : L2(GY/ (f), ni E) — L*(GY, (f), 7 E)
as the G'Y'-invariant lift of the operator Dy, L2(T(f,v"),mfE) — L?(I(f,v"),7fE) which is a densely
defined unbounded operator given by:

Dyé(v, f(v)) = Dé(v) for ¢ € C*(D(f,0), 7 E) — CZ(D(f,0'), 7 E) (6.3.5)

where D, : L*(L,,E) — L?*(L,, E) is the leafwise signature operator on V on the leaf L, and ¢(v) =
é(v, f(v)). Then one can check that the Schwartz kernel of Dy is given by Kp,(vi,v2,7") = Kp(y) where
v € Gyt such that f(v) = +'. This follows from the fact that the Schwartz kernel of Dy is given by

K&(vlvf(vl)vv% f(vQ)) = Z KDf (1)1,’02,")/)

)~ f(v1)
V€T ()

and so we have

K&(vlvf(vl)vv% f(v2)) = Z KDf (1)1,’02,")/)

’ 7f(vy)
V€T ()

> Kp(y)
YEG,E
= Kp(vi,v2)
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Therefore by the uniqueness of the Schwartz kernel and that of the lift of the operator Dy we see that

Kp,(v1,v2,7") = Kp(v). The ellipticity of the operator D in turn implies that the operator Dy is an
elliptic operator (i.e. each (Dy), is elliptic for v' € V') and that for any bounded measurable function g,
the Schwartz kernel of g(Dy) is a bounded measurable section and belongs to the von Neumann algebra

Enda (H(f))-

Proposition 6.3.7. The operator Dy = ((Df)v )wevs is family of self-adjoint elliptic operators with each
(Dy)y acting on sections over GY,(f). Moreover, for any bounded measurable function g, g(Dy) belongs to
the von Neumann algebra Endy/ (H(f)).

Proof. On a local chart, one can express the Schwartz kernel of Dy as the Fourier transform of its symbol.
Then from the above remarks it is clear that the local family of symbols for D coincides with the family of
symbols of D as an endomorphism on E. Since D is elliptic, its family of symbols is invertible, hence the
same is true for Dy. Therefore Dy is elliptic.

Since the family of operators ((Dy),)v" € V' is a measurable family of self-adjoint operators, the measurable
family spectral theorem (cf. Theorem XII1.85 in |[ReSiIV:78]) then implies that for a bounded measurable
function g, we have (D) = (g(Dy)v ) ey is a measurable field of uniformly bounded intertwining operators.
Therefore g(Dy) € Endas (H(f)). O

The elliptic operator D¢ therefore defines a closable operator D¢ on £ V,7 g (f) which extends to an unbounded
regular operator due to the ellipticity of D as in Proposition B3.71

Proposition 6.3.8. Let ¢ : R — R be a bounded continuous function. Then, for each v € V, we have
U((Dy)o) € B(L*(G)(f), 7 E)), and

1/}((Df)vl) = \I/{;",reg © [1/}(Df) ®pzfg Id] 0 (qjg/,reg)_l = ﬂ-g’,reg © (Xr];)_l(U’(Df))

Proof. The first equality is proved as in the proof of Proposition B.4.4] and the second equality is a corollary
of Proposition [6.3.3 O
Parallelly, we have similar results for the average representations and the operator D .

Proposition 6.3.9. We have,

(i) The operator Dy = ((Dy)v )vev is a family of self-adjoint elliptic operators with each (D). acting on
sections of T'(f,v"). Moreover, for any bounded measurable function g, g(Qf) belongs to the von Neumann
algebra Enda/ (H(f)).

(i) Let ¢ : R — R be a bounded continuous function. Then, for each v € V, we have ¥((D;),) €
B(L*(L(f,v'), 71 E)), and

Y((Dy)or) =, 4 0 [W(Dg) @pey 1d] 0 (V] )" =), ,, 0 (k) T ((Dy))

6.4 Determinants and the Large time path

6.4.1 Determinants of paths

Using the representation /"¢ : BE — Endx (H(f)) and the isomorphism x{, : BE — K x/ (€Y, ;) we can
. . X, ’
define a map o/ : IK ,x/ (€Y, ) — ZK(Enda (H(f))) by o/7¢9 := z/¢d o (x1 )71, In addition, we note
X’ ’
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that for a Schwartz function 1, /79 (¢)(Dy)) = 1(Dy) is a Tas s-trace class operator in Enda/ (H(f)). We
denote the determinant on Endas (H(f)) by wi,.

Let Bi,a <t < b be a norm continuous path of operators in ZK ,x (¥, p) such that the end points B, and
X/ ’

By, map to s s-trace class operators in Enda/(H(f)). Then we define the determinant w’/ of this path as
follows:

Definition wf((Bt)agtgb) = w'};, (U-f’Teg((Bt)agtSb))

Similarly, one can define a map /% : ZK ,x/ (Y, ;) — ZK(Endx (H(f))) by o/ := 7/2v o (x{ )~! and
X/ ’

another determinant wg_- of B; is defined as
Definition w_];:((Bt)aStgb) = wl{,ﬁ}-(af’“”((Bt)agtSb))

where w}‘;,y}- is the determinant on Endx/ (H(f)).

6.4.2 The Large time path

Our goal in this section is to furnish a path of operators ¥¢(D),) & 1(Dy) on the Hilbert module J :=
Ex'p ® 5¥,7E(f), and to compute its determinant as defined in the Section This path of operators will
connect — exp(img.(Dy)) ® — exp(—inge(D’)) to the identity on J, where

/€ )
belz) = % /O et

Recall that we have a homotopy equivalence f; between Hilbert-Poincaré complexes (Ex/ g, dy,, %) and

(Exp®EX(f),dx @1, Tx ®I), where E, E’ are the longitudinal exterior bundles on V and V", respectively,
and T'x (resp. T%/) is the lift of the Hodge *-operator along the leaves on Gx (resp. Gx/). Since there is an
isometric isomorphism of Hilbert modules @ : £x g ® EX,(f) = €X, p(f) which is also a chain map, we have

a homotopy equivalence Ay between the chain complexes (£x7, g, d,, T.) and (X, p(f),dys, Ty), where df
and T correspond through conjugation by the isomorphism ® to dx ® I and Tx ® I, respectively.

We denote by S the grading operator which is defined on k-forms of £x g, as,
S — ik(k—1)+lTX

Denote the operator on 5V,7E(f) corresponding to S® I on Ex g ®ER, (f) by Sf. Similarly, define the grading
operator S’ on EX/,E/p

Now we define, as in [Kel:00], [HiRoL:03], a path of grading operators on Ji := Ex/ g ® Ex p(f):

S (t) = < tATSpAp+(1=1)S" 0 )(Ogtg 1)

0 —Sf
—cos(mt)A3Sp Ay sin(mt) A% Sy 3
= y <t< =
= (t) ( sin(mt) Sy Ay cos(mt) Sy (Ists 2)
0 e27ritA*S 3
ZB(t): ( eQﬂitszf Of ! )(§§t§2)
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. B 0
We denote by 3(t) the concatenation of the paths ¥ (t), X2(t), X3(t). Let B = 0 B
f
where B’ = d'y, + (d'y/)*, and By corresponds to the operator dx ® I + (dx)* ® I.
Lemma 6.4.1. The operators B &+ X(t) are invertible for all t € [0, 2].

! * _ /
Proof. We have for t € [0,1],B+ X(t) = < B +tA;S; A+ (1-t)S 0 )

Consider the mapping cone complex of the chain map K = t A} Sy A+ (1—1)S": (&, dx/) — (&, —(dx/)").

Its differential is ) :
_( dy 0
e = < K (dy) >

Since K is an isomorphism on cohomology, its mapping cone complex is acyclic, i.e. all the cohomology

!
groups are zero. Therefore the operator Bx = di + dj; is invertible on J. Now, Bg = ( ?{ g, >
As B’ + K identifies with Bg on the +1 eigenspace of the involution which interchanges the copies of 7.

Thus B+ K is an invertible operator. We can use similar arguments to show the invertibility of the operators
B+ X(t) for t € [1,2]. O

Then define the path of operators

(B+X(t)(B—%(t) "t for 0 <t < 3, and
W(t) = (6.4.1)

(B +e(t)S())(B - £(1) " for <t <2

e27rit 0
e(t) = - ( 0 e—2mit )

Since (D +4I)(D—il)~' = (iBS +il)(iBS —il)™' = (B+8)SS™1(B—-S)"! = (B+S)(B—S)"! ,we have
W(0) =U' ® Uy, where U’ (resp. Uy) is the Cayley transform of D’ (resp. Dy).

where

We also have, W(2) = Idy. So the path W(t) connects U’ & Uy to the identity. Recall that our goal is to
connect — exp(inde(D')) & — exp(—inde(D)) to the identity, where

/e )
belz) = % /O et

To this end, we will connect U, ® Uy to —exp(ing.(D')) & —exp(—in¢(Dy)) using chopping functions,
where U, (resp.Uy.c) is the Cayley transform of 1D’ (resp. 1Dy).

Recall that a chopping function is a continuous odd function on R which tends to +1 at £o0o and absolute
value bounded by 1. We note that ¢ can be written as — exp(irx(D)) where y(z) = 2 arctan(z) which is a
chopping function. Since ¢(z) is also a chopping function, there is a linear homotopy between the two. Let

1lt,5) = (1= 5)ocd) +5xt)  (elt) = x(1))

be this linear homotopy. Then, I'.(s) = —exp(imy.(D')) ® —exp(—inv.(Dy)) is a path of operators that
connects U’ & Uy to — exp(inpe(D’)) & —exp(—imp(Dy)). Let We(t) be the path W(t) with B replaced by
1

=B.



122 CHAPTER 6. APPLICATIONS: EXTENDING KESWANI'S PROOF FOR FOLIATIONS

Definition The concatenation of the paths W,(t) and T'c(s) gives a continuous path of operators that
connects — exp(inge(D’)) & — exp(—impe(Dy)) to the identity on J. We call this the large time path and
denote it by LT..

6.4.3 The determinant of the large time path

In this section our goal is to show that the large time path as defined in the previous section has a well-defined
Fuglede-Kadison determinant and thereby calculate this determinant.

Consider the continuous field of Hilbert spaces J = (J, := L%(G),,7*E"))yev: & L*(GY,(f), 7} E). From the

v’

discussion in the previous sections, there is an isometric isomorphism of Hilbert spaces
Sureg 1 T @IHGE) = Ty
As before, we have a von Neumann algebra Endy/(J), which we denote by W*(f). The trace of an element

T € W*(f)* which is of the form T = ( Tu T

such that 77, is Ta/, p-trace class and Thy is A trace
To1 T2

class is given by )

ar g (T) = 7ar g (Tia) + 7% (To2)
We define a map wyeq : K(J) — W*(f) as follows: for 7 € K(J), w(7) is a family of operators (Ty )y ey
such that T,y = @y req(7), where

THT) :=Zp reg o (T @I) 0 (s reg)
Lemma 6.4.2. (i) The map wyeq : K(T) — W*(f) is well-defined, i.e. wreq(K(T)) S W*(f).

(i1) Further, wyeq(KK(JT)) C KW*(f), where KW*(f) is the set of compact operators in the von Neumann
algebra W*(f).

Proof. 1) We prove the following two properties:

a) for vy, vy € V' v € Q:,)é, we have @y reg(T) 0 Uy = Uyr 0 Wy reg(T)
? 4 .

b) Ess-supp || req(T)|] < 00

! — —
a) We note that for v}, v € V' .4’ € gv,12, we have Uy 0 By reg = Eut reg- Then we have,

@yl reg(T) o Uy = (Bt pego(T®I)o0 (Eviyreg)_l) o U,y
= (Uyo Evé,reg) o(TwI)o (Evéweg)_l
= Uy 0wy reg (7)

b) Denote by I, the identity on B(12(G'X")). Let £ € L2(.J) be a measurable section and &, be its restriction
to L?(J,). Then we have,

| < @orreg (D)0 6 > | = | <Burireg 0 (T @ L) © (S req) ™ )éurs € > |

| < Erireg © (T @ L) 0 (Bur reg) ™ )eurs Bt regBiregbor > |

| < (T ®1ILy) o (s reg) Héur, E;];reggvl > | (since 2,/ is an isometry)
1T @ Lo [[[|(Er reg) w112

Tt req) w12

-
-

IN N
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Therefore, we get ||y req(7)|| < ||T]| for all v/ € V'. The result is then immediate.

(ii) Let £ = < & > ,n = < Zl ) € L?(J) such that 0y, & € Cg"(gx(f),wa), and n2,&2 € C°(G.,, r*E").
2

&2
Define the operator ©, ¢ € I(J) by
0 0
0, — n1,81 n1,82 )
e ( 6‘772751 9772,52

where 0, ¢, (¢;) = ni. < &;,¢5 >, for 4,5 € {1,2}. Then @y reg(Oy,¢) is of the form

fireg fy—1
wv/,re.q(@n,g):((% o () ™) (O 1) . )

b (T reg © Xr_nl )(Ons.¢2)

However, since 71, &1 are smooth sections with compact support, (wf,’reg o (x2,) ") (O, 1) is Tas p-trace class,
and similary (7, reg © Xinb) (O e, ) is T -trace class. Hence @y reg(0,.¢) € KW*(f). Since operators of the
form O, ¢ generate K(J), we get the result.

O

The map w4 induces a map ZK(J) — ZKW*(f). Unless there is ambiguity we will use the same notation
w for the induced map. Now consider the large time path LT, defined in the previous section, which is a
path of operators in £(J) which connects — exp(im¢.(D’)) & — exp(—in¢pe(Dy)) to the identity on J. In fact,
since (B +1i)~! € K(J), we see that the operators (B — X(¢))~! € K(J). Hence (B + X(¢))(B — X(t))~! =
Id7 —2%(t)(B — %(t))~! € ZK(J) for t € [0,2]. We also note that the derivatives of ¢.(x) and x(z) are
Schwartz functions. Therefore 1 —exp(imy.(z, s)) is a Schwartz class function, and hence the path of operators
(T'e(s))sef0,1) lies entirely in ZK(T).

So the large time path LT, consists entirely of operators in Z/C(J). Its image under w4 lies in ZKKW*(f)
and has end-points which are trace-class perturbations of the identity. Therefore there is a well-defined
determinant of this path which is given as

wreg(LTe) = wA,J(wreg(LTe))
where @'/ is the determinant for a path in ZKW*(f) associated with the trace 7 f.

Proposition 6.4.3. Let V.(Dy) (resp. V.(D,,)) be the path (11(Dy)e<i<ise (resp. (Vs(Dy,)e<i<ise). We
have

(5% 0 yeq) ( ) viey ) = (W 0w 0 X, NVi(D],)) = (wh 07" 0, ) (Ve(Dm))

Proof. We have from the definition of @,

wmg( Ve(é);n) ‘/e(_()Df) ) N ( (ngoxgl(l))(‘/e(pm) (m)7e9 o (ano)’l)Ve(—Df) )

Since the trace Ta/ f is given by Tas f = ™ o TAr,f, We easily get

(5% 0 yeq) ( S vide ) = (W 0w 0 X NVA(D],)) = (i om0 0 ()" H)(Ve(Dy))

However, from Proposition[6.2Z4land the definition of the determinants, we get (w™'-For/ 90 (x/ )=1)(V.(Dy)) =
(wh o 779 o x;71)(Ve(Dyy)). This finishes the proof.

O
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Similarly we define a von Neumann algebra associated to the field of Hilbert spaces J = (L?(G!,,r*E’))y cv' &
L3(D(f,v';, 71 E)) which we denote by Wx(f). We also define, analogous to w@yeg, & map @, : K(J) —
KW (f) given by

wv/),w(T) = Ev’,av o (T ® I) o (Evlﬂv)_l for T € K(j)

where Z, 4, is an isometric isomorphism of Hilbert spaces
—_ . 2001 X" 1o’
S’ av - j ®1 (gv’ / v1’) ) - lv’

Using the trace %f)f on Wi(f) one can define a determinant ij;*f , and we define another determinant of
the Large Time Path
A f
Wao(LT.) = 0 ¥ (wa(LT.))
We have the following proposition similar to Proposition [6.4.3]

Proposition 6.4.4. Let V.(Dy) and Vc(D,,)) be as before. We have

’

(@5 owa) (G Op ) = ont o D)) - (a0 7 X V(D)

Then as a consequence of Proposition [6.4.3 Proposition [6.4.4] and Corollary [4.2.6] we have

Corollary 6.4.5. The following relation holds

D — A AL Ve(Dy,) 0
A(D) = pae(D) =2 x Ty 0 0y — 5 0mu) (VP O

Proof. We get the result easily by first subtracting the left hand sides of the equations in the statements of
Propositions [6.4.3 and [6.4.4] and then applying Corollary [4.2.6] O

We now estimate the determinant of the Large Time Path with the following proposition.

Proposition 6.4.6. We have, W™/ (w,cy(LT.)) — 0 and wjﬁ’f(wav(LTe)) —0asel0.

Proof. We shall prove the result for @/ (ew,,(LT.)), the proof for u?j\f/’f (wWav(LTe)) is similar. Recall that
LT, is the concatenation of the paths We(t) = W(%) and I'c(s), where We(t) connects — exp(imxe(D’)) @
—exp(—imx.(Dy)) =U. ® Z/lj_el to the identity, and T'¢(s) connects — exp(imxe(D’)) @ — exp(—imxe(Dy)) to
—exp(27mige (D)) ® — exp(—2mige(Dy)).

Let II € K(J) denote the projection onto the kernel of B, whose image under w is a 77/-trace class operator
in K(W*(f)). Then, we claim that @ (LT.) converges strongly to the path

(SIS

), —1<t<
i

w(—1II + I+
L 6.4.2
+1I0IY), 3<t<2 (6.4.2)

et ={ oo

e27rit 0
e(t) = - ( 0 e—2mit )

To see this, we first claim that the path I'c(s), s € [0, 1] converges strongly to Wx(t),t € [~1,3] as € — 0.
We have the following lemma:

where
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Lemma 6.4.7. Ase — 0 the image under wyeq ofL{E’@L{;j and exp(in¢e (D)) ® — exp(—2mi¢e(Dy)) converge
strongly to wyey(—TI + IT1).

Proof. This is a consequence of the spectral theorem and the fact that the functions (z &+ i€)(x F ie)~! and

exp(imde(x)) converge to 1 — 2xo(z) as € — 0. O

Therefore the above lemma implies that the path w,.y(T'<(s)) converges strongly to wye,(—II + IT+). Now,
extend the path X(¢) by setting 3(¢) = ¥(0) for —1 <t < 0. We define an operator

(1) = IS (4)TT — (TS ()T, —1<t<0
I (1)1, 0<t<3

We consider the following path of operators

(B+Y(t))(B-%'(t) for —1<¢< 3, and

W (t) =
(B+e(t)X(3)B-%/(3)) " for 2 <t <2

We claim that the image under wy., of the path W.(¢), which is the path W’(¢) in which B is replaced by
1B, converges strongly to the path W (t). We note here for future use that Wa(t) connects wy.qq (IT 4 II*)

to the identity, and that the operators 3(s,t) = (1 — s)X(t) + s¥/(t) give a fixed-point homotopy between
the paths W'(t) and W(t), so that W'(¢) and W(¢) have the same determinant.

From now onwards, unless stated otherwise, we use the same notation for an operator and its image under
@reg. To prove the claim, we compress W' (t) to the range of II. We have , for —1 < t < 2 TIY/(¢)IT =
IIX(¢)I1. Then, we get for —1 <t < 3
II(B + MIX(t)IT)(B — IIX(¢)I1) "' = M (1) II(B — TIX(¢)I) "'
(6.4.3)
But as (B — IIX(t)IT)IT = —IIX(¢)II, we have

—II = (B — IIX(t)II) " 'IX(H)IT = X (4) (B — IIX(¢)II)

where we have used the fact that 1'__:IE(t)1:!~ and (B — IIX(t)IT) ! are self-adjoint. So
TI(B + IS (t)IT)(B — IS (t)) 10T = —TI0T = — 1, for —1 <t < .

For 3 <t <2, since fIE'(%)fI = 1:12(%)1:[, the above arguments can be applied again to get
WV ()T = —e(t)IT

Thus we have TIW' (t)IT = TIW, (t)IT , for —1 <t < 2.

Now we compress W(t) to the range of TI'*. For —1 < ¢ < 0, we have

IS (I = — IS (4) I

Therefore,
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MWt = 5B+ OX()I — IS4 )(B — IIX ()T + IS () I+ Tt
= It - 2ATY (I (B + OX(H)I + Iy () I+) !

Now, TI*W! (H)IT+ = I+ — 2T+ ()T (e ' B + TIX ()T + ¢TI (1) IT+H) !

However, as B anticommutes with S (e7'B+S)? = ¢ 2B? + I is bounded below by a multiple of ¢!, so
the norm of (¢ !B + tII-X(¢)IT) ! is bounded above by a multiple of € on the range of IT*. Hence we get

s lim T W/ ()T = I

e—0

For the interval 0 <t < 32 5

we have IT+Y/ (£)IT+ = 0, and (B+ X(¢))IT+ = BIT* so IT+ = BIT-(B+X(¢)) !
oWt = IIH(B)B+X'(t) '+
f[J_
Lastly, for the interval 2 < t < 2, we have I:IJ-E'(%)IZIJ- =0, and (B — E'(%))H = BIT* so T+ =
BIT*(B - %(3))7!
Therefore we get

3

W Hmt = Bfﬂ(B_z(i))*lﬁL

= It (6.4.4)

So, we have as € — 0, @yeg(WL(t)) — W (t) strongly.
Let p(z) be the signum function of z, i.e.

1, x>0
ple)=< 0, z=0
-1, <0

Then there is a straight line homotopy h. connecting the functions ¢.(z) and p(z),i.e. for 0 <¢ <1,

he(t) = (1 —t)pe + tp

Consider the path X (t) := exp(imhe(t)(D’))@exp(imhe(t)(Dy)). Then X (t) connects wy.qq(— exp(irde(D'))®
— exp(—ipe(Dy))) t0 wyeg(—II + IIH), as exp(imp(x)) = 1 — 2x0(z). Therefore, we get a loop of operators
O(t) by concatenating the paths X.(t), Weo(t) and the reverse of wyeq(LTe). Now as ¢ — p as € — 0, and
the reverse of w4 (LTe) converges strongly to the reverse of We (t), the loop O(t) is strongly null-homotopic.
Therefore the determinant of O(t) is zero. So from the additivity of the determinant we get

T (@reg(LT2)) = 0™ (Xe) + 0™ (Wae)

However, as € — 0, X, converges strongly to the constant path wTeg(—fI + 1:IJ-)7 we have u?A/’f(XE) — 0.
Also, as

S

[ ]9

<t
d

Weo(£)™

S~

) ey (1) (6.4.5)
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kernel of D¢ (resp. D'). However, 75 ¢(I1f) = 7*(II), where II is the projection onto the kernel of D. Also,

from the homotopy invariance of foliated Betti numbers [HeLa:91], 74 (l:I) =7 (f[’) So wA/’f(Woo(t)) =0.
Thus wAlvf'(wreg(LTe)) — 0 as € — 0 and we conclude the proof. O

So we have %A/,f(WOO(t)_ldL“’(t)) = 7N (I') — 7or ¢ (T1f), where II; ( resp. II') is the projection onto the

6.5 Remarks on the Small Time Path and homotopy invariance

| | (VD) 0 . G(D)) 0
From the previous section we have a path V., = ( 0 V.(-Dy) which connects 0 Yo (~Dy)
1/}1/6(DI ) 0 > : < 1/}1/6(DI ) 0
to m . Moreover, we have the Large Time Path that connects m
< 0 ¥1/e(=Dy) & 0 U1/e(=Dy)

to the identity. As in the proof of Keswani [Ke:99], the next step is to construct a Small Time Path ST, which
Ye(Dyy) 0

0 7/’6(_Df
minant would converge to 3(pa (D) — pas(D’)) provided we have the following estimate for the determinant
of the Small Time Path ST,:

connects ( ) ) to the identity. Then we would have a loop [ at the identity whose deter-

Proposition 6.5.1. Assume that G is torsion-free (i.e. all isotropy groups G¥ are torsion free for x € V) and
the mazimal Baum-Connes map fimaz : K«(BG) — K. (C*(G)) is bijective. Then we have (@A,’f(wmg(STE))—

wfn_-l’f(wav(STE))) —0ase]0.

Using the surjectivity of pima. and Proposition 3312, one can prove, as in [BePi:08], the following equality:
W (e (1) — i (@an (1) = 0
The above equation implies

N (@reg (Vo) =7 (@ (Vo)) + 0N (@req (LT.)) =7 (@ (LT +0™ (169 (STe))— 7 (@an (ST)) = 0

Then, from Corollary [6.4.5] Proposition [6.4.6] and Proposition [6.5.1], we have
pa(D) = pa/(D')
We summarize the result in the following

Theorem 6.5.2. Let (V,F) and (V', F') be smooth foliations on closed manifolds V and V', respectively, and
f:(V,F)—= (V',F') be a leafwise homotopy equivalence. Let A be a holonomy invariant transverse measure
on (V,F) and A’ = f.A be the associated holonomy invariant transverse measure on (V',F'). Assume that
the mazimal Baum-Connes map for the monodromy groupoid G of (V,F) is surjective. Then for the leafwise
signature operators D and D" on (V,F) and (V',F'), respectively, we have

pA(D) = par(D')
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Appendix A

Signatures and homotopy equivalences
of Hilbert-Poincaré complexes

A.1 Unbounded HP-complexes

Definition An n-dimensional Hilbert-Poincaré complex (abbreviated HP-complex) over a C*- algebra A is
a complex (E,b) of countably generated Hilbert C-modules

b b b
EO =, El = Eg — En

where each b; is a densely defined closed unbounded regular operator with a densely defined regular adjoint
b ¢ Eer1 — E, such that successive operators in the complex are composable (i.e. the image of one is
contained in the domain of the other) and b;41 o b; = 0, together with adjointable operators T': Fe — E;,_q
satisfying the following properties:

1. For v € B,
Ty = (—1)(”7”)”TU
2. T maps Dom(b*) to Dom(b), and we have for v € Dom(b*) C E,,

TH; v+ (=1)" by, Tv =0

3. T induces an isomorphism between the cohomology of the complex (E, b) and that of the dual complex
(E,b*):
b* by _, b*

En —— En_y Epn_s... = Ep
i.e. the induced map T, : H*(E,b) — H¥(E,b*) is an isomorphism.

4. The operator B := b+ b* : E — E is a regular Fredholm operator (i.e. it has an inverse modulo
compacts) and (B i)~ € K4(&).

Recall that the cohomology of the complex (FE,b) is defined here to be the unreduced one given by

Ker by
HYE,b) = ———— .
(B = s

129
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Recall also that a regular Fredholm operator is a regular operator ¢ which has a pseudo-left inverse and a
pseudo-right inverse. A pseudo-left inverse for ¢ is an operator G € £(&) such that Gt is closable, Gt € L(E),
and Gt = 1 mod K(€). Similarly a pseudo-right inverse for ¢ is an operator G’ € L£(£) such that tG’ is
closable, tG” € L(€), and tG’ = 1 mod K(£).

Remark. The complex (E,b) given in the definition is viewed as an two-sided infinite complex with finitely
many non-zero entries.

We consider E as the direct sum @o<i<nE; and b = Go<i<nb; and similarly for b*.

Definition Let dimE =n = 2l + 1 be odd. Define on E,,
S = ?@=VHT and D = iBS.
Then D is the signature operator of the HP-complex (E, b, T).

Proposition A.1.1 (JHiRolL:05], Lemma 3.4). With the notations as in[A 1 we have S* = S and bS+Sb* = 0.

Proof. We have S* : E,,_, — Ep,

§* = (=) (=P (nmpt D+ — (g (rmp)(nmp ) yp(n—p)p

Now
m—p)n—p+1)+1l = Q2+1-p)2l+1—p+1)
= (2+1-p)(2l+2-p)
= plp—1)+1mod?2
So that

(—g) (=P =ptDH_pyp(n=p) = (_1)3 =D+ (n=p)p
R R

. (_1) [P(P;1)+l] _ zp(p_l)_;’_l
Therefore S* = (i)PP~D+IT = S, Again we have, for v € Dom(b*) C E,, since b*v € E,y1,

(Sb* +bS)v = (PETOHT)p*y 4 p(PE=DHTy)
i(p(p+1)+l(Tb*v + i 2PbTv)
iPEFOF(Th 4 (—1)PBTw) = 0

where we have used property (ii) of T. O
Recall that a regular operator ¢ is adjointably invertible if there exists an adjointable operator s such that
st Cts = 1. Notice that for a self-adjoint ¢, this is equivalent to the surjectivity of ¢ [Ku:97].

Proposition A.1.2 ([HiRoI:05], Proposition 2.1). A Hilbert-Poincaré complex is acyclic, i.e. its cohomology
groups are all zero, if and only if the operator B is adjointably invertible. Moreover, B~ € K 4(£).
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Proof. Let the HP-complex be acyclic. To prove that B is adjointably invertible it suffices to prove that
B is surjective. Since all the cohomologies are trivial, Im(b) = Ker(b), so the range of b is closed. Since
the differentials by, k = 0,1...,n are regular operators, Q(b) = b(1 4+ b*b)~/? is a bounded adjointable
operator and we have Im(b) = Im(Q(b)), Ker(b) = Ker(Q(b)). Then by Theorem 3.2 in |La:95] (which
is an application of the Open Mapping theorem), Q(b)Q(b*) is bounded below on I'm(Q(b)) and therefore

Im(Q(b)) € Im(Q(b)Q(b")). Similarly, Im(Q(b*)) < Im(Q(b*)Q(b)).

Now, as Im(Q(b)) is closed, Ker(Q(b)) is an orthocomplemented submodule with Ker(Q(b))* = Im(Q(b)*) =
Im(Q(b*)). Hence we have E = Im(Q(b)) ® Im(Q(b*)). So for any v € E, we have v = Q(b)vy + Q(b*)vq for
some v1,v2 € E. However Q(b)v1 = Q(b)Q(b*)w1, and Q(b*)ve = Q(0*)Q(b)w, for some wq,ws € E. Hence
we have for any v € E, v = Q(b)Q((0*)w1 + Q(b*)Q(b)ws. We will now prove the following lemma

Lemma A.1.3. We have

Q)2 = Q(b) = 0 and Q(b+b*) = Q(b) + Q).

Proof. 1. Let f = Q(b). Then we have b = f(1 — f*f)~Y2, (1 +b*b)~"/? = (1 — f*£)*/?, and since
fo(f*f) = p(ff*)f for any polynomial p, by continuity it also holds for any p € C([0,1]). So in particular
we have

FA— Y2 == ff)V3f (A.1.1)

We compute

2= O +btb) A1+ b))
= pO—-rnrs
= b[(1— f*f)Y2f] (since Im((1 — f*£)*/?) = Im(1 + b*b)~*/2 C Dom(b) )
= b[f(1—ff)
=0

since bf = b(b(1 + b*b)~/2) = (b?)(1 4 b*b)~'/2 = 0, the computation justified by the facts that I'm(b) C
Dom(b) and Im(1 + b*b)~'/2 C Dom(b). Similarly one can show that (f*)? = 0.

2. We will show that f = Q(b) = b(1 + b*b + bb*)~1/2 and f* = b*(1 + b*b + bb*)~'/2 so that we will have
FH=QM)+ QM%) = (0+b)(1+b"b+bb") "2 = (b+b")(1+ (b+6)*) 7 = Qb+ ")

We proceed as follows. We have b = f(1 — f*f)~'/2 and b* = f*(1 — ff*)~'/2. We note that for any
polynomial p with p(0) = 1, we have fp(ff*) = f, since f2 = 0. So the equality also holds by continuity for
any p € C([0,1]) for which p(0) = 1. In particular we note for later use that

fA—ff) 2 =f (A.1.2)

Let Ay = bb* 4+ b*b. Then (1+ A,)~" and (1 + Ap)~1/? are bounded operators since A, = B? is regular. Let
G = (1 + Ay)~ /2. We show first that (1 — f*f)~/2G is bounded:

<(A—=f V26,1 - )y V20> = <Gz, (1-ff)" Gz >
= <Gz, (14+b"0)Gx >
= < Gz,Gx >+ < Gx,b"bGr >
= < Gz,Gr >+ < bGx,bGx >
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So that (1 — f*f)~/2G would be bounded if bG has a bounded extension. We compute:
< bG(G2),bG(Gz) > = < Gz, b'bGx >

< G?z,(1+b"b)G?x >

< G%r, (1 +b*"b)G*r > + < b*G?2,b* Gz >

< G?z,(14+b*b 4+ bb*)G?z >

< G,z >< |G| ?

AN

So b@G is bounded on the range of G. However, Im(G) = Dom(A;) is dense, so bG extends to a bounded
operator. Thus (1 — f*f)~'/2G has a bounded extension as well. Now we compute as follows on Dom(Ap)

(1= f)1+Ay)

A=A+ A=) 2= ff) P (= ) 2= 7))

A= fFH)+ A=) A= ff) 2+ (A= ) (A= ff) 72— 7 )72 (since f2 =0)
= (A= H+FA= A= 2+ Q= HYHA = FHOVEFA= F)TYDEA - )T
= (L= f )+ + 1= fFHY2A = OV = ff)7 V2= )72

Now, as Dom(l—l—bb*)l/2 Dom(b*) (cf. Theorem 10.7 in [La:93]), (1+bb*)'/2b is well-defined on Dom(A,) =
Dom(b*b) N Dom(bb*). As (1 — ff*)~1/2 = (1 + bb*)'/? as regular operators with domain Dom(b*), we also
have ((1 — ff*)Y/2(1 ff Y7H2) = (1 +bb*)"1/2(1 4+ bb*)1/2 = 1 on Dom(A). So on Dom(Ay),

(= OV FP)TYF A= 1T = (= FH2 O = LT = )72
Therefore, we have on Dom(A;),
A=A+ A= HTRLFA= )24 A= )72 A= N7
L= f) T (L= (1 fff”fxu—fﬁv*“ﬂl—ffr”%

( )
= (A= f) 40"+ (1= OV A= FOP = )T = )T
= a—ffwww+u—fVﬂ” F@ = ffOY2A = f)7 Y= )72
= (1= H+b+Q-f )2 ff)”%

However, by the functional calculus for the self-adjoint operator f*f, we have
(A== N2 =11
Finally we get on Dom(A;)
QA=f"HA+Ap)=1—f"f+b0"+ ff=1+0bb"*
However, as (1 — f*f)"1/2(1 + Ay)~1/? is bounded, we get
(L= 7RO+ D) T2 = (140672 = (1 Ay) T2 = (1= [ )2 (1= )12
. So we have
b(L+8y)7H2 = b= )R- [
= fA=fHTRA- A= ff)
FL= )2
= f (from equation [AT.2])

Therefore we have proved Q(b + b*) = Q(b) + Q(b*). O
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Finally, to prove that B is invertible we proceed as follows. We have already established that for any v € FE,
there exist wy, ws € E such that v = Q(b)Q(b*)w1 + Q(b*)Q(b)w2. However, since Q(b)? = 0, and Q(b*)? =0
we have

v =(Q(b) + QO))(Q(V")wr + Q(b)w2)

which shows that Q(b) + Q(b*) is surjective and hence so is Q(b+ b*). However, Im(Q(b+b*)) = Im(B) and
hence B is surjective and thus invertible.

Conversely, let B be invertible. Then for v € Ker(b), there exists w € Dom(B) such that v = Bw. Then

[|0*w||* = || < b*w,b*w > || = || < w,bb*w > || = || < w,bBw > || =0

hence v = Bw = bw € Im(b). Therefore Ker(b) = Im(b) and thus the complex is acyclic. O

A.2 Signatures of HP-complexes

Definition A chain map between HP-complexes (F,b) and (F’,b') is a family of adjointable maps A =
(Ai)i>o0 such that each A; is an adjointable operator in L4 (F;, Ef) and we have b} A; = A;b;. A chain map is
denoted A : (E,b) — (E', V).

The mapping cone complex of a chain map A : (E,b) — (E’,b) is the complex

bO bl n—1
By py gy B Ey

where E/ = E; 1, & E! and bl := ( —bit1 0/ )
A1 b

K2

Proposition A.2.1 ([HiRoI:05], Lemma 3.5). The self-adjoint operators B+ S : E — E are invertible.

Proof. Consider the mapping cone complex of the chain map S : (E,b) — (F,b*). Its differential is
-b 0
o= (50
Since S is an isomorphism on cohomology, its mapping cone complex is acyclic, i.e. all the cohomology groups

are zero. Therefore the operator Bs = dg + d is invertible on £ ® E. Now, Bg = ( fs,} 153 )

As Bg identifies with B 4+ .S on the +1 eigenspace of the involution which interchanges the copies of F and
with B — S on the —1 eigenspace. Thus B £ S is an invertible operator. o

Proposition A.2.2. A chain map between HP complezes induces an isomorphism on cohomology if and only

if its mapping cone complex is acyclic.

Proof. This follows from the general theory of (Co)homological algebra that a chain map induces a long
exact sequence of cohomology groups: if f: C — C’ is a cochain map of cochain complexes and C(f) is its
mapping cone complex, then we have a long exact sequence

= HYC(f) = HY(C) £ HY(O) 2 H™H(C() — -
where i : C' — C(f) is the map given by y — (0,y) and § : C(f) — C' is given by (b, ¢) — —b. O
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Definition Let (E,b) be an odd-dimensional Hilbert-Poincaré complex. Then the signature of (E,b) is
defined as the class of the self-adjoint invertible operator (B + S)(B — S)™! € K1(Ka(E). We denote this
class by o(E,b).

Lemma A.2.3 (|[HiRol:05], Proposition 3.8). If an HP-complex (E,b) over a C*-algebra A is acyclic, its
signature s zero.

Proof. Since all the cohomology groups are zero, T is an admissible duality operator for ¢t € [—1,1] (i.e. it
satisfies the assumptions (i),(ii),(iii) in the definition of an HP-complex). Therefore the operators B — ¢S is
adjointably invertible for ¢ € [—1,1]. Therefore the path of operators (B + S)(B —tS)™1, -1 <t <1,isa
norm continuous path of invertible operators connection (B +S)(B —S)~! to the identity. Therefor the class
of (B+ 8)(B — S)~" is trivial in K (K4 (E)). O

A.3 Homotopy invariance of the signature

Definition Let (F,b) be a complex of Hilbert-modules. An operator homotopy between Hilbert-Poincaré
complexes (E,b,T1) and (E,b,T») is a norm-continuous family of adjointable operators Ts,s € [0,1] such
that each (E,b,Ty) is a Hilbert-Poincaré complex.

Lemma A.3.1 ([HiRol:05], Lemma 4.5). Operator homotopic HP-complezes have the same signature.
Proof. Let (E,b) be a complex of Hilbert-modules and T, s € [0,1] be a norm-continuous family of duality
operators acting on (F,b) and S be the self-adjoint operators defined from T} as in definition [A] First we

note from Result 5.22 in [Ku:97] that for a regular operator ¢ the map C 2 p(t) > A — (t—\)~! is continuous.
Since (B £ 5) is an invertible self-adjoint regular operator, we have

(B+S)™! = lim (B + 5 + i)~
B

Now for a fixed p € R and any s1, s2 € R, the resolvent identity holds:

(B+ S, +ip) ' = (B+ S, +ip) " = (B+Ss, +ip) " (Ss, — s, ) (B + Sey +ip)

One can use techniques in Theorem V1.5 of [ReSil:80] to show that the above identity implies that (B + S5+
i)~ is norm-continuous in s € [0,1]. Then M, := sup,c1;(B + Ss + i) ™" < oo for alll 4 € R, and we
have

I(B+8s)™" = (B+85,)7 Il = IIA{iL%((BJrSsHu)*l—(B+550+iu)71)||

lim [|((B + 85 +iu) ™" = (B + S5, +1in) )]
H—

IN

tim 22215, — S,

IN

M||Ss = Ssoll

Hence using the norm continuity of the family S, we get the norm continuity of (B +Ss)~!. Similary we can
prove that the family (B —Ss)~! is continuous in norm. Therefore the families B(B+S,)~! and Ss(B+S;) !
are also norm continuous, and hence (B + S,)(B — S,)~! is a norm continuous family of bounded adjointable
operators which gives an operator homotopy between (B + Sp)(B — Sp)~! and (B + S1)(B — S1)~! and thus
they lie in the same class in K; by the homotopy invariance property of Kj. o
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Lemma A.3.2 ([HiRol:05], Lemma 4.6). If a duality operator T is operator homotopic to —T then the
signature of the HP-complex is zero.

Proof. Let Ty, s € [0, 1] be the operator homotopy between T and —T'. Then from the proof of the previous
lemma one can show that (B + S)(B — Ss)~! is a norm-continuous path of adjointable operators. This path
implements the operator homotopy in K-theory connecting (B + S)(B — S)~! to the identity. So the class
o(E,b) in K-theory is zero. O

Definition A homotopy equivalence between two HP-complexes (F,b,T) and (E’,b’,T’) is a chain map
A (E,b) — (E',b) which induces an isomorphism on cohomology and for which the maps AT A* and T’
between the complex (E’,b') and its dual (E’,b™*) induce the same map on cohomology.

Theorem A.3.3 ([HiRol:05], Theorem 4.3). If two odd-dimensional HP-complexes (E,b,T) and (E',b',T")
are homotopy equivalent then their signatures are equal in K1(Ka(FE)).

Proof. The proof of the above theorem as given in [HiRol:05] works word by word in this case. O

A.4 Morita equivalence of HP-complexes

Let now A, B be o-unital C*-algebras which are Morita-equivalent, with Morita bimodule 4 Ep. So we have
A= Kp(aEB), and so there is a x-homomorphism ¢ : A — L(4Ep). Let now (E,b) be a Hilbert-Poincaré
complex of countably generated A-modules. We also assume that there exists a duality T on (F,b) such that
the associated operator S satisfies S? = 1. We then form a Hilbert-Poincaré complex (E ® sEp,b® I):

Ey® aEB ber, E1® aEB bl FEo® AFEB... ber, E,® aFp

Let M : K1(A) — K;(B) be the isomorphism induced by the Morita equivalence between A and B. Then
we have

Proposition A.4.1. M[o(E,b)] =0c(E® aEp,b®1).

Proof. 1. We note that
(D +iI)(D —il)™* = (iBS +iI)(iBS —il) "' = (B+ S8)SS ' (B-S)"' =(B+S)(B—-S)"!
Let U(D) = (D +4I)(D —il)~" and E4 := ©,E,.

2. The class of U(D) in K1(A) can be identified with the class of the K K-cycle in KK (C,A) given by
(Ea, N\, U(D)), where X is the scalar multiplication by complex numbers on the left. Then, M[o(F,b)] can
be identified with an element of K K (C, B) which will be given by the Kasparov product of (E4, A, U(D))
with the Morita K K-cycle (4Ep, ¢,0).

3. We claim that this Kasparov-product is given by the K K-cycle (Fg4 ® 4Ep,A® I,U(D) ® I). This can
be seen by the characterization of the Kasparov product with connections as U(D) ® I is a 0-connection] on
Es® aEpB.

4. Since D is self-adjoint regular operator, by the uniqueness of the functional calculus we have U(D) ® I =
U(D®I). But then we can identify the class of U(D®I) in K;(B) with the cycle (Ea® aFp, \@I,U(D)®1I)
in KK (C, B) (we refer the reader to |[BL:98, Section 17.5, page 154] for details on this identification). This
finishes the proof. O

Lfor definitions and properties see [BL:98, Chapter VIII, Section 18.3]
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