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This paper describes an integrated u-processor oriented CAD system which
has been designed and implemented at the University of Dortmund. The

system offers the concurrent programming language CAP

(similar to PL/1)

as specification language. This language is used within the CAD system

to describe
- machines to be designed,

- algorithms representing peripheral controllers,

- virtual machines for which software has to be cross-developed.

The paper includes a discussion of the major features of the language
inclusive concurrency and structured concurrent programming.

The basic building blocks of the system (compiler, binder, interpreter,
debugger, machine-model generator, documentation generator, code

generators)

1)_General

At the University of Dortmund, in coope-
ration with a german office-computer ma-
nufacturer (Kienzle Apparate GmbH, Vil-
lingen), we are developing and implemen-
ting an integrated u-processor oriented
?AD system for processor design, firmware
implementation and controller design.

The system includes the basic components
of a CAD system, supporting

- specification

= verification/evaluation

- documentation

- implementation.

We tried to design a unique system in-
Stead of collecting a couple of indivi-
dual design aids. E. g. the same language
18 used as well to specify algorithms to
be processed within controllers as to
model the p-~processor that has been se-
lected to process these algorithms. And
We use the same debugger system for veri-
fication of processor models and to veri-
fy programs running on such models.

The basic components of our CAD system
are:

~ CAPCOM: (inter-

compiler CAP to CAPID

mediate language)

- CAPLIN: binder CAPID to CAPID

=~ CAPSIM: interpreter for CAPID/ RT-
simulator

=~ CAPDOC: documentation generator

=~ CAPTEST:interactive debugging system

- CAPVM: processor model generator

- CAPCCL: optimizing cross code generator

First versions of CAPCOM, CAPSIM, CAPDOC,
CAPTEST, CAPCCL are operational now,
CAPLIN is scheduled to be completed late
in 1979, CAPVM runs in an experimental

are described and some applications are presented.

state.

The main applications are:

- processor design:

Designs are formulated in CAP, compiled
by CAPCOM, eventually integrated by CAPLIN
and simulated with the aid of CAPSIM.
The final design as well as intermediate
states are documented via CAPDOC.

- software cross development:

The target machine is formulated in CAP
(eventually with the aid of CAPVM) and
simulated by CAPSIM. The program to be
verified/evaluated is stored into the
simulated main store and thereby executed.
This happens under control of CAPTEST.

- controller design:

The algorithm representing the task of

a p-processor based controller is formu-
lated in CAP and translated into code of
a selected processor via CAPCOM and
CAPCCL. A high-level verification may
take place via CAPSIM and CAPTEST. The
design is documented with the aid of

CAPDOC.

2) Specification support

The specification language in our CAD
system is the language CAP /Ral/. CAP
stands for Concurrent Algorithmic Pro-
gramming Language. This language is si-
milar to PL/1 (we did not want to add

an additional storey to the Tower of
Babel) but offers a lot of important
additional features including description
of real-time behaviour, adequate data
types, interrupt handling and structural
description.

The most important feature of the language
CAP is the ability to describe in an as
well natural as concise manner concurrency.




This is done on the basis of a slightly
modified Petri Net model. Surely, PL/1
may also be used to describe cooperating
sequential processes ( for a Petri Net
based compile time analysis of multi tas-
king PL/1 programs see /HE1/) but CAP is
intended to be a language to describe
highly concurrent systems too.

2.1 Short description of the lanquage CAP
CAP has been designed to be suitable as
well for firmware implementation as for
hardware description on various levels

of abstraction including PMS-~level, RT-
level and IC-level. This implies that,
similar to most register transfer langua-
ges /BA1/, CAP can be used as nonprocedu-
ral language. This means that the ordering
of statements describing the operation

of the system are not attached to any
meaning. Similar to Dijkstra's "“Guarded
Commands" /DI1/ statements are associated
with an explicite condition for execution
of the operation described by the state-
ments.

(In many cases procedural programming is
much more comfortable. Therefore procedu-
ral vrogramming is supported by CAP as
well, In particular structured concurrent
programming is the favorite programming
style in CAP.)

The above conditions associated with sta-
tements are the firing of an associated
Petri Net transition.

2.1.1 Control structures in CAP ({(basic
concept)
Similar to LOGOS Control Graphs /RO1/ we
have different types of transitions /RA2/:
An AND-transition (nearly the usual Petri
Net transition), an asymmetric OR-transi-
tion, a DECIDER-transition and transitions
for blockstructuring (CALL, BLKHEAD,
BLKEXND, RETURN). A similar set of tran-
sitions is used in E-nets /NO1/. The main
difference is that in E-nets one has
tokens associated with attributes while
in CAP nets one has transitions associa-
ted with attributes.
Blocks arce generally activated as con-
current activities, a monitor concept is
provided.
Places mav have any fixed finite or an
i ite capacity and the firing -rule
2y transition type includes the
condition, that every output-place of a
transition must be marked below its capa-
city. (Note that by this we have boolean
and integer places in the sense of /YB1/
and in addition bounded integer places.)
A general nonprocedural CAP program con-
sists out of a set of statements, each
in accordance with the following syntax:
<interpreted transition> ::=

<transition><data manipulation>

RAMMIG

Transitions are described using label-
variables as identifiers for places and
ON-conditions to identify the type of
transitions:

AND- transition: .

DN (g (<label- «, < label>¥ ™)) :«<label>
This transition is firable if every input-
place (identified by the <labels> within
the ON-condition) has at least one token
and every output-place (the <labels> af-
ter the ON-condition) is marked below its
capacity. If the transition fires, it
withdraws a token from every input-place
and puts one into every output-place.

0D

OR~-transition: o:n o:n
ON (] (<label> X, <labels» " 7)) :d<label>:”
This transition is firable if at least
one input-place has at least one token
and every output-place is marked below
its capacity. If the transition fires,

it withdraws a token from the leftmost
marked input-place and puts one into every
output~place. (For special applicatiops
we offer in addition to this fixed prio-
rity rule event-dependent rules like FIEO:
LIFO, Roun Robin. Oviously all these pri-
ority rules make sense only if there 1S
at least one bounded outputplace of the
OR-transition considered.)

DECIDER~-transjition:

ON({<label>):IF <expression> THEN <labell»:
ELSE <label2>:

In this case also both output-places have

to be marked below their capacity. Other-

wise the net would become potentielly

unsafe.

CALL-transition:

ON({<labell>):<label2> CALL <label3>;

This is a special AND-transition with one
input-place and two output-places. The
calling activity proceeds via <label2>.

RETURN-transition:
ON(+<labell>,<label2>):<labell3>:

This is a special AND-transition with two
input-places and one output-place. 1t
identifies a backsynchronization of a
concurrent activated task with the calling
task.

BLKHEAD-transition: .
ON CALL(”label ¥, <label>»°*") :<label>:
PROCEDURE. . »
This transition has an additional input-
place which is not transparent to the
user. This input-place controls the actl=
vation state of the procedure. The BLKHEAD
transition is firable, if this intranspa‘
rent input~place is marked and there 1S
at least one reguest, i.e. at least On?
transparent input-place is marked. Again
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we have a priority rule.

BLKEND~transition:
ON{<label>) :END;

Note that BLKHEAD-BLKEND-pairs model a
special monitor. The original philosophy
/HO1/ however has been modified in the
sense that not only the request-coordi-
nation but also the manipulation of the
Tesource is handled by the monitor. (The
resource is treated as abstract data
typel)

This explicite description of transitions
although being the basic concept of CAP
is not used in most cases. Preferable is
the implicite generation of transitions
via structured concurrent programming
(see below).

2.1.2 Data manipulation in CAP

Data manipulation is done by PL/1 like

constructs.

Every used variable has to be declared.

The basic data types are:

- bitstrings of arbitrary length and
direction

~ Characterstrings of arbitrary length,
direction and code

- integers of arbitrary length and vari-
OUus representations including two-comp-
lement, one~complement, unsigned inte-
ger, packed decimal

~ floating point variables.

As in PL/1 (using the same notion) n- di-

mensional arrays and arbitrary structures

are available. Variables may be associated

with various attributes. The most impor-

tant attribute is the "IMPLICIT"-attri-

bute. A variable with this attribute is

Comparable with a "terminal"™ in CDL /CH1/

i.e. it gets implicitely a new value

every time a variable on which it depends

On gets a new value.

Variables may be initialized or superim-

Posed on other variables or fixed addres-

ses .,

There are the following cperators:

- arithmetic:
+, -, %, /, mod, %x%. They get their
concrete meaning by the operands they
are used with.

- logic:
& (and), '(or) ,@(exor) ‘& (nand)
Y1 (nor), \e(coincidence), \{not)

Besides "not" they may be used either
as dyadic or as monadic (APL-reducticn)

Ooperators.
= relational: =,\= ,«, -, <=, »=
~ String: || (concatenation), substr

Note that in most cases we have chosen

the PL/1-symbol for operators. There is

a well defined natural precedence between
the operators. Expressions may be formed
in the usual way. The string operators
may be used on the left side of an assign-
ment too. also multiple assignment is

possible. The assignment-symbol is :=
(like ALGOL). In the sense of CDL /CH1l/
assignments to an "IMPLICIT"-variable
means a connection, otherwise a transfer.
Constants are written in the PL/1 way
besides bitstrings where the more comfor-
table XPL-notion /MK1l/ has been chosen.
I/0 is done by simply referencing FILE-
variables.

2.1.3 Example of a CAP-program with ex-
plicite description of the con-
trolling Petri Net.

See fig. 1-3 for a CAP program with two

concurrent cyclic processes with syn-

chronization,

the controlling CAP-net

and an equivalent Petri Net (for con-

struction see /RA2/).

2.1.4 Structured concurrent programming
Up to now we only introduced assignments
as <data manipulation>. We now introduce
compound statements for ~<data manipulation:
with inherent control structure.
<data manipulation> ::= <assignment->

<if>

<call-

<~terminator-

<group-
<if> and <call> have the same syntax and
semantics as in PL/1. Note that in respect
to both aspects they are slightly diffe-
rent from the DECIDER-transition or the
CALL-transition resp..
A <terminator> may be simply a ";" de-
noting an empty statement. Most interes-
ting is <group:>:

<group> = -gygrouphead»-groupbody: END;
<groupbody> ::= X<data manipulation»*’Ln
<grouphead>» ::= -simple DOx

~while:-

~case:

~replication

SEQUENTIAL

<simple DO~ ::= DO ‘PARALLIL -~terminator

CONCURRENT
The meaning is self explanentatory. Note
that in concurrent groups there is no
synchronization in contrary tc parallel
groups.
SEQUENTIAL
"PARALLEL
CONCURRENT
-expression:=-terminator:>

This means a usual locop. The relative
ordering of the data manipulations
within the group can be specified either
as sequential or parallel or concurrent.
<case> ::= DO CASE <expression»-terminators
This group is defined as in XPL, i.e.

if expression has the value n the nf?—th
data manipulation within the group will

be executed.

<whiler::= DO WHILE
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SEQUENTIAL
<replication> ::= DO {PARALLEL }
CONCURRENT
SEQUENTIAL
<indexrange>{PARALLEL }<terminator>

CONCURRENT

In this case the relative crdering of the
<data manipulation> within the group as
well as the ordering of the application
of the different indices can be specified.
<indexrange> is defined similar to PL/1.
Note, that within a compound <data mani-
pulation> no transition can explicitely
be specified. A procedure may consist out
of a single (usually compound) <«<data
manipulation»> In this case we call it
a "structured concurrent procedure".
We showed /RA3/ that
a) every structured CAP- program (this

is a CAP-program consisting only out

of structured procedures) is

~ deadlock free

- proper terminating

- reusable.
b) on the other hand for every CAP net

having these chracteristics there is

a semantic equivalent structured CAP

program.
(For a constructive preoof of a1 simil-~
result for "Control Nets for Asyn.nronous
Systems” /HY1/ see /BSY/.)

2.1.5 Example of a structured CDL-like
CAP program

See fig.4 for a example that describes in
CAP the complementer example of Y. Chu
/CH1/. The CDL origin implies that there
is no asynchronous parallelism.

2.1.6 Additional features of CAP
Technology parameters may be specified in
an descriptive or postulative manner.

As descriptive specification we implemen-—
ted a delay parameter wnile as postulative
specification we have limitation parame-
ters for time and memory consumption.

The postulative specifications are im-
portant control inputs for ocur optimizing
code generator while the descriptive spe-
cifications are used for simulation and
analysis. Technology parameters may be
included in every statement~ <terminator:,
thus offering dedicated specification.
Another important feature is the ability
to specify interrupt structures in a de-
tailled manner.

2.2 Translation of CAP (Component CAPCOM)
We implemented in a very short time (appr.
1.5 years) a compiler for CAP. This com-
piler translates CAP source programs into
an intermediate language (CAPID)., This
method has been chosen as we are pro-
cessing CAP programs in different ways.
We have implemented as well an optimizing
code generator for a variety of u-proces-

sors as an interpreter serving as well

as RT-simulator. Both use CAPID as input.
The CAP compiler is a two pass compiler
with an optional additional step to gene-
rate a formatted printout of the source
text including level-count, nesting-count,
procedure identifications and a highly
sophisticated xref-tabel which not only
indicates the use of a variable but also
identifies the way of use (left hand side
or right hand side of an assignment,
declaration, use within control expres-
sion etc.).

We use a syntaxdirected LR(1) parser with
an excellent error correcting facility
with good diagnostics.

In addition contextsensitive dependencies
are checked carefully (e.g. type compa-
tibility) .

The compiler runs currently on a DEC-10
and a IBM 370. It is written in SIMULA.

3. Support of verification/evaluation
(components CAPSIM, CAPTEST, CAPVM,
CAPLIN)

We have to consider two different tasks:

a) the verification/evaluation of CAP
programs

b) the verification/evaluation of programs
running on virtual machines, the ma-
chines being described in CAP (see
fig.5). _

Although interesting compile-time veri-

fication algorithms may be implemented,

up to now we concentrated ourselves on
dynamic verification via simulation.

For this purpose we implemented an inter-

preter for CAPID as CAP runtime system.

This tool is very flexible and transparent

to the debugger system which we have 1m~

plemented too. This debugger system 1S
well suitable for debugging CAP as for
debugging arbitrary programs running on
arbitrary virtual machines described in

CAP. Up to now, besides a couple of hypo-

thetical processors, we have CAP-models

of the PDP-8, the INTEL 8085 and the

TI 990. In addition we already have,ge~

nerated by CAPVM the overall control

structure of the MCS 6500, the NS PACE

and the INTEL 4004.

The debugger includes a variety of com—

mands like tracing, setting of variables,

inspecting of variables, setting and
inspecting of clocks etc..

The CAP runtime system is at the same

time an excellent RT~simulator. Petri

Nets being the basic concept for the po~

tential concurrent control flow within

CAP programs, we consequently designed &

discrete-event-oriented simulation system:

An event in this context is defined as

firing of a Petri Net transition. The

structure of the Petri Net is reflected
precisely in an internal data structuré

(tabel driven simulation).
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Let T be a transition, ti be a point of
system time. Assume T has become firable
at ti' The first step is to calculate
the point of time tjzti the transition
will fire. For this time tj the event
representing the firing of T is generated
and stored into a properly organized
queue. The associated data-operations
(if present) are initiated immediately.
They may occur at different points of
time within the periodfti,tj] the transi-
tion is activated. If system-time has
reached the scheduled firing-time tj of
the transition T, the firing of the tran-
sition T is simulated according to its
firing rule. As a consequence some tran-
sitions (inclusive T!) may become firable.
Each transition T' which has become fira-
ble is handled in the same manner as T.
Our simulator is not only capable to
handle "clean" Petri Nets as described
above but also can simulate parallel
control flows being distorted by inter-
Tupts. In the language CAP different types
of interrupts can be programmed. Included
are interrupts with programmable prio-
rity and interrupts that, after execution
of the interrupt handling routine, cause
the control flow to continue at a diffe-
Tent state than the state being interrup-
ted.

Within our simulator the occurence of
interrupts is controlled by a programma-
ble random-generator. Interrupts are re-
Presented as special transitions being
Capable of activating themselves. They
are processed like normal transitions.

In addition an interrupt-transition may
force a reorganzation of the marking in

4 way that would be impossible in respect
to the net-topology. (For a detailled
discussion of interrupts in concurrent

Systems see /GR1/.)

4. Support of documentation (component
CAPDOC)
Our CAD system has been designed to be
used in an idustrial environment. This
implies that documentation is of great
importance. As stated above, structured
concurrent programming is the favorite
programming style for CAP. To emphasize
this, our system offers documentation
aids especially for structured concurrent
programs. This is done by a system gene-
rating modified Nassi-Schneiderman-dia-
grams /NS1/ out of structured CAP pro-
grams. The modification is due to the
additional concurrency feature of CAP.
The programmer can control the level of
abstraction very easy by special control
statements. By this he can produce a
hierarchy of documents at various levels
of abstraction either during the design
process of stepwise refinment or after
completion out of the final program.
As there are cases, where unstructured
programming is useful, this programming
style is supported too. For this pur-
pose we implemented a system that gene-
rates a Petri Net representation of the
control flow. Practical considerations
implied however that the representation
of this Petri Net is very unusual.

5. Support of implementation (components-
CAPCOM, CAPLIN, CAPCCL)

A very ambitious part within our CAD-

system is the implementation of a goal-

processor independent optimizing cross

compiler for CAP under special conside-

ration of u-processcrs as goal-proces-

SOrs.

As there is a special paper on this topic

within this volume /CA1/ I only will give

a rough summary.

An important application field for CAP

is the deign of .-processor based con-

trollers (i.e. the algorithm representing

the task of a controller is given in CAP).

This algorithm has to be implemented on

an arbitrary u-processor {(or a multi-u-

processor system in a future versionj.

As typically there are very restrictive

time and memory limitations in controller

design, we had to implement a compiler

with sophisticated optimization.

The code generating process 1is done in

several steps, where we remain processor

independent as long as possoble. Even

the basic optimization is done without

consideration of a special goal proces-

sor. Processor specific optimization runs

only if a time- or memory-restriction

is violated.

Adding a new goal processor to the sys-

tem means simply providing some tabels

describing this processor. Even this

task is supported by an automated gene-

ration process.
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Fig. 3) Equivalent standard Petri Net for CAP net in fig. 2 (main cycles again
especially inlicated). It has been assumed that the capacity of every

place of the CAP net is one.

i
i
|

j

e




RAMMIG

F.J.

256

ogram (output produced by formatter/xrefgenerator
info character inicates the usage, D stands for
R for right side, C for usage

L for left side of an assignment,

within a control expression)

without procedurename-option,
declaration,

Fig.4) Example of a structured CAP pr
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Fig. 5) Application example :
Cross development of software

User (software engineer)
communicates with CAPTEST

to Toad his program to be
tested into the simulated
machine and to process it
under control (verification,
evaluation, performance
measurement)

g

CAPTEST controls CAPSIM,
the simulated machine and
the program to be tested

CAPSIM simulates the si-
mulated machine which
executes the program to
be tested

Simulated machine, written
in CAP (eventually genera-
ted by CAPVM) compiled

by CAPC M, linked by CAPLIN

Simulated main store
(integral part of machine
description in CAP)

Program to be tested
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