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Abstract:

This paper describes the current implemen-

tation and major applications of the lan-

guage CAP (formerly DIGITEST II /RA 1/}~

CAP stands for Conecurrent Algortthmi¢ Pro-

gramming Language, showing the centrgl

underlying concept of this language: The

integration of an algorithmic programming

language and Petri Hets. e

Since 1975 we have Implemented a large

amount of software around CAP, ’

In this paper these components of .the CAP

CAD~system are-discussed. The major appli-

cations of the system are:

- processor desigw

- software design for mot yet realized pro-
cessors

~ controller design.

1) General

At the University of Dortmund, in coopera-
tion with a German office-computer manufac-
turer (Kienzle Apparate GmbH, Villingen),
we are developing and implementing an inte-
grated CAD-system for processor design and
firmware implementation.

The system includes the basic components of
a CAD-system, supporting

- specification

- verification/evaluation/modification

~ documentation

- implemenation.

We tried to design a unigue system instead
of collecting a couple of individual design
aids. E.g.the same language is used as well
to specify algorithms to be processed with~
in controllers as to model the u~processor
that has been selected to process these
algorithms. And we use the same debugger
system for verification of processor models
and to verify programs running on such
models.

2) Specification support

The specification language in our CAD system
is the language CAP /RA 2, RA 3/ (formerly
DIGITEST II/RA 1/). CAP stands for Concur-
rent Algorithmic Programming Language. This
language is similar to PL/1 (we did not
want to add an additional storey to the
Tower of Babel) but offers a lot of impor-
tant additional features including descrip-
tion of real-time behaviour, adequate data
types, interrupt handling and structural des-
criptiqu. The most jimportant feature.of the

CH1436-5/79/0000-0138$00.75 © 1979 IEEE

language CAP is the ability to describe, in
a natural as well as concise manner, con-
currency. This is done on the basis of a
slightly modified Petri Net model.

2.1 Short description of the language CAP
CAP has been designed to be suitable as
well for firmware implementation as for
hardware description on various levels of
abstraction including PMS-level, RT-level
and IC~level. This implies that CAP can

be used as nonprocedural language /BA 1/.
This means that the ordering of statemepts
describing the operation of the system 1S
not attached to any meaning. Statements

are associated with an explicit condition
for execution of the operation described
by the statements.

(In many cases procedural programming is
much more comfortable. Therefore procedural
programming is supported by CAP as well.

In particular structured concurrent pro-
gramming is the favorite programming style
in CAP).

The above conditions associated with state-
ments are the firing of an associated Petrl
Net transition.

2.1.1 Control structures in CAP
(basic concept)

Similar to LOGOS Control Graphs /RO 1/ we
have different types of transitions /RA ?/‘
An AND-transition (usual Petri Net transl-
tion), an asymetric OR-transition, a
DECIDER-transition and transitions for
blockstructuring (CALL, BLKHEAD, BKLEND,
RETURN) .
Blocks are generally activated as congurxent
activities, a monitor concept is provided.
Places may have fixed finite or an infinite
capacity and the firing-rule of every tran-
sition type includes the condition, that
every output-place of a transition must be
marked below its capacity. (Note that by
this we have boolean and integer places
in the sense of /YO 1/ and in addition
bounded integer places). A general nonpro-
cedural CAP program consists out of a set
of statements, each in accordance with the
following symtax:
<interpreted transition> :: =

<transition><data manipulation>
Transitions are described using label-
variables as identifiers for places and
Qg;ggggig%?ns to identify the type of
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AND-transition:
ON(&(<labelx, <label¥® ")) :4<label>:¥'"
This transition is firable if every input-
place (identified by the labels within
the ON-condition) has at least one token
and every output-place (the labels after
tpe ON-condition) is marked below its capa-
city. If the transition fires, it with-
draws a token from every input-place and
puts one into every output-place.
OR-transition:
ON(| { <label>, <label>'™)):«< label> %"
Thls transition is firable if at least one
input-place has at least one token and every
output-place is marked below its capacity.
If the transition fires, it withdraws a
token from the leftmost marked input-place
and puts one into every output-place.
é?or special applications we offer in addi-
ion to this fixed priority rule event-de-
pendent rule like FIFO, LIFO, Round Robin).
DECIDER~transition:
ON(<label>): IF <expression® Then< labell>:
In thi ELSE< label2>
to Lo s case also both.output—places have
wise t;t:arked below their capacity. Other-
sate e net would become potentially un-
ggi<1§bel1>):<labe12> CALL <label?®;
in stls a special AND-transition with one
caﬁ%_—place.agd two output-places. The
RETU;Eg activity proceeds via <label 2.
NS ~transition:
Thg }abe12>, <iabel2>):<label2>:
inls is a special AND-transition with two
tig?t-places and one output-place. It iden-
rentes a_back synchronization of a concur-
e activated task with the calling task.
KHEAD-transition: .
ON CALL (<labely, <label’f’"):<label>:
This t o PROCEDURE:....

1 ransition has an additional input-
ghéce.whlch is not transparent to the user.
st;i input-place controls the activation )
o e-of the procedure. The BLKHEAD-transi-

ion is firable, if this intransparent in-
put-place is marked and there is at least
One request, i.e. at least ome transparent
lnput~place is marked. Again we have a
Priority rule. Note, that the BLKHEAD-tran-
gltlon models a special monitor.

LKEND-transition:
ON(<label>) :END;
This explicit description of transitions
although being the basic concept of CAP is
hot used in most cases. preferable is the
implicit generation of transitions via
igi?ctured concurrent programming (see be-
2.1.2 Data manipulation in CAP
Data manipulation is done by PL/1 like con-
Structs.

Every used variable has to be

basic data types are:
- bit strings of arbitrary length and direc—

declared. The

- character strings of arbitrary length,
direction and code
- integers of arbitrary length and various
representations including two complement,
one complement, unsigned integer, packed
decimal
- floating point variables.
As in PL/1 (using the same notation) n-di-
mensional arrays and arbitrary structures
are available. Of course scattered data
carriers with individual names for the parts
are possible. Variables may be associated
with various attributes. The most impor-
tant attribute is the "IMPLICIT"-attribute.
A variable with this attribute is comparable
with a "terminal” in CDL, i.e. it gets im-
plicitly a new value every time a variable
on which it depends on gets a new value.
variables may be initialized or superimpo-
sed on other variables or fixed addresses.
There are the following operators:
_ arithmetic: +, -, *, /, mod, *x. They
get their concrete meaning by the ope-
rands they are used with.
- logic: &(AND), | (OR), @ (EXOR),
4/ (NOR) ., 1@ (COINC), 7 (NOT)
Besides NOT they may be used either as
dyadic or as monadic (APL-reduction) ope-

rators. <= >=
= =, < ’ > ’ ~ -

- relational: =,
- string:ll(concatenation), substr (sub-

string)
Note, that in most cases we have chosen the
pL/1-symbol for operators. There is a well
defined natural precedence between the ope-
rators. Expressions may be formed in the
usual way. The string operators may be
used on the left side of an assignment tooO.

Also multiple assignment is possible. The
assignment-symbol is:= (like ALGOL). In
nments to a " IMPLICIT"-

the sense of CDL assig

variable means a connection, otherwise a
transfer.
Constants are wri
sides bit strings w

XPL-notation /HO 1/ has
is done by simply referencing FILE

2.1.3 Example of a CAP~program with ex-
plicit description of the controlling
Petri Net (see appendix 1)

2.1.4 Stractured concurrent pro rammin
Up £o now we only introduced assignments
as <data manipulation>. We now inFroducg
compound statements for <data manipulation>
with inherent control structure.
«data manipulation> ::= <assignment>

j<if>

{<call>

| <terminator>

| <group>

have the same syntax and
PL/1. that in respect

semantics as in

to both aspects they are slightly different

from the DECIDER—transition or the -
n.» denoting

transition resp.- .
A <terminator> may be simply a i

an empty statement.

1& (NAND) ,

tten in the PL/1 way be-
here the more comfortable

been chosen. 1/0
-variables.

<if> and <call>
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Most interesting is group :
<group> ::= <grouphead><gjroupbody> QNR;
<groupbody> ::=<{<data manipulation>¥’
<grouphead> ::= <simple DO>
<while>
<case>
<replicatiom>
SEQUENTIAL
<simple DO> ::= DO {PARALLEL } <terminator>
CONCURRENT

The meaning is self explanetatory. Note,
that in concurrent groups there is no syn-
chronization in contrary to parallel groups.

SEQUENTIAL
<while> ::= DO { PARALLEL WHILE<eXpression>
CONCURRENT.) <terminator>

This means a usual loop. The relative
ordering of the data manipulations within
the group can be specified as sequential,

or parallel or concurrent.

<case> ::= DO CASE <expressior><terminator>
This group is defined as in XPL, i.e. if
<expression> has the value n the n+1-th
<data manipulation> within the group will
be executed.

[ SEQUENTIAL ‘&
<replication> ::= DO %PARALLEL
CONCURRENT |

SEQUENTIAL
<indexrange> PARALLEL
CONCURRENT

In this case the relative ordering of the
<data manipulation> within the group as
well as the ordering of the application of
the different indices can be specified.
<indexrange> is defined similar to PL/1.
Note, that within a compound data manipu-
lation no transition can explicitly be
specified. A procedure may consist out of
a single (usually compound) <data manipu-
lation>. In this case we call it "struc-
tured procedure”.
We showed /RA 5/ that
a) every structured CAP-program (this is
a CAP-program consisting only of struc-
tured procedures) is ~ deadlock free

}<terminator>

- proper terminating

- residue free
b) on the other hand for every CAP-program
having these characteristics there is
a semantic equivalent structured CAP-
program.

2.1.5 Example of a structured ISP-like

CAP-program
(see appendix 2)

2.1.6 Additional features of CAP
Technology paramenters may be specified in
a descriptive or postulative manner. As
descriptive specification we implemented

a delay parameter while as postulative
specification we have limitation parameters
for time and memory consumption. The postu-~
lative specifications are important control
inputs for our optimizing code generator

while the descriptive specifications are
used for simulation and analysis. Techno-
logy parameters may be included in every
statement terminator thus offering dedi-
cated specification.

Examples:

A := SHL(C&D, 5) DELAY{(UP 10 DOWN7);

If the new value of A is greater than the
old there is a delay of 10 time units, if
it is less the delay is 7 units.

DO PARALLEL DELAY (20);

END;

This describes a simple swap (DO PARALLEL
denotes synchronized parallelism, DO CON-
CURRENT would have resulted in a data con-
flict in this example).

The overall delay is 20 time units.
Another important feature is the ability
to specify interrupt structures in a
detailled manner.

2.2 Translation of CAP

We implemented in a very short time (appr.
1,5 years) a compiler for CAP. This com-
piler translates CAP source-programs into
a intermediate language (CAPID). This
method has been chosen as we are proces-
sing CAP programs in different ways. We
have implemented as well an optimizing
code-generator for a variety of u-proces-
sors as an interpreter serving as well as
a RT-simulator. Both use CAPID as input.
CAPID consists out of two major parts:

a list-structured description of the con-
trolling Petri Net and a description of
the associated data manipulation in post-
fix polish., Additional tables serve as
description of technology parameters.
CAPID has been designed in such a way that
it can be directly interpreted very effec-
tively by our RT-simulator.

We use a syntaxdirected LR-1 parser with
an excellent error correcting facility
with good diagnostics.

The compiler runs currently on a DEC-10,

a SIEMENS 7.738 an an IBM 370. It is
written in SIMULA.

3. Support of verification and modifica-
tion
We have to consider two different tasks:
a) the simulation of designs which have
been specified in CAP
b) the verification and modification of
programs running on virtual machines,
the machines being described in CAP
Although interesting compile-time verifi-
cation algorithms may be implemented, up
to now we concentrated ourselves on dyna-
mic verification aids via simulation. For
this purpose we implemented an interpreter
for CAPID as CAP runtime system. This tool
is very flexible and transparent to the
debugger system which we have implemented
too. This debugger system is as well sui-
talbe for debugging CAP as for debugging
arbitrary programs running on arbitrary
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:1rtual @achines described in CAP. Up to
cg:éoge51des a couple of hypothetical pro-
s, we have CAP-models of the PDP8
;ge INTEL 8085 and the TI990. '
h;edigggger includes a variety of commands
ting of szgg, setting of variables, inspec-
gﬁ Y ocke ;ig%es, setting and inspecting
Mfeiézlizgtlme system is at the same time
the busic oo RT-simulator. Petri Nets being
rent aore lncept fer Fhe potential concur-
COnsequenti floy within CAP-programs, we
orienied ly des;gned a discrete-event-
this contsxmu}atlon.system. An event in
Petri Neteit 1s.def1ned as firing of a
Potri Nt .ran51t10n. The structure of the
ternal dat;s reflected precisely in an in-
tion). structure (tablé driven simula-

Let T be a transition, t; be a point of
system time. Assume T has become firable
at'ti- The first step is to calculate the
i:;if :Zrti:? tjeti the transition will
ting the £ fs time tj the event represen-
stored int:rlng of T is generated and
ass0ciated da properly organized qgeue.
o ata-operations (if present) ae
;:;;:::ii iméediately. They may occur at
points of time within the period

The

(ti'tj) the transition is activated. If

:ii:im:t%me has reached the scheduled

firinz ozme t. of the transition T, the
the transition T is simulated

according to its firing-rule. As a conse-
::22;2 :eme transitions (inclusive T!) may

irable. Each transition T' which
has become firable is handled in the same
Manner as T.

0 .
“2§e§1TU1at0§ is not only capable to handle
can a? Potri Nets as described above but
dist so simglate parallel control flows
Cap gi%gd by interrupts. In the language
progr erent types of interrupts can be
programmed. Included are interrupts with
afterammable priority and interrupts that,
cause iﬁecution of the interrupt handling,
diffefeni control flow to continue at a
;upted. state than the state being inter-
ri;gln'our simulator the occur
dom-s is controlled by a progr
specgenerator. Interrupts are represented as
tin al transitions being capable of activa-
norg themselves. They are processed like
del al transitions except that their firing
addiys the firing of other transitions. In
a. tion-an=interrupt—transition may force
reorganization of the marking in a way

rence of inter-—
ammable ran-

that would be impossible in respect to the

net-topology.

4. Support of documentation

Qur CAD system has been designed to be used
in an industrial environment. This implies
that documentation is of great importance.
As stated above, structured concurrent pro-
gramming is the favorite programming style
for CAP. To emphasize this, our system of-
fers documentation aids especially for struc-
tured concurrent programs. This is done by
a system generating modified Nassi-Schneider—-
man /NS 1/-diagrams out of structured CAP-
programs. The modification is due to the
additional concurrency feature of CAP.

The programmer can control the level of ab-
straction very easy by special control
statements. By this he can produce a hie-
rarchy of documents at various levels of
abstraction either during the design pro-
cess of stepwise refinement or after com-
pletion out of the final program.

As there are cases, where unstructured pro-
gramming is useful, this programming style
is supported too. For this purpose we im-
plemented a system that gnerates a Petri
Net representation of the control flow.
Practical considerations implied, however,
that the representation of this Petri Net

is very unusual.

5. Support of imglementation

A very ambitious part within our CcAD-system
was the implementation of a goal-processor
independent optimizing compiler for CAP
under special consideration of y-processors
as goal-processors.

An important application

field for CAP is
-based controllers

the design of u-processor
(i.e. the algorithm representing the task
n in CAP). This algo-

of a controller is give

be implemented on an arbitrary
u-processor (or a malti—u—processor'system
in a future version) . As typically there are
very restrictive time and memory limiations
in controller design, W€ had to implement a
compiler’with sophisticated optimization.
The code generating process js done on
several steps:, where we remain processor in-
dependent as long as possible. Appendix 3
demonstrates the code generating process
with the aid of an extremely simple example.
Adding a new goal processor to the system
means simply providing some tables des-

cribing this processor- N capID int

first step weé translate into _

I ther 2 te language (cCcLID) . 'I‘nisi
acnine.

another intermedia
de of a vir
-processors

tual three-address
available now
processor too. During
this step happens the first part of optimi-
zation, i.e. all processor jndependent ©OpP~
timization like loop unrolling., dead coq
elimination, redundant s i elimi~-
nation, etc.- controlled b
dependent tables
the selected proces

is the €O
1t covers all »
and a lot of other
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These tables include a description of the
instruction set and a definition of the
semantics of the instruction expressed with
the aid of CCLID. These tables are pro-
duced manually or by a code~-generator-gene-
rator which we are just implementing /CA 1/.
Having generated code for the selcted pro-
cessor we check whether any limitations

are violated. In this case additional pro-
cessor dependent optimization algorithms
(e.g. code motion, optimized register
assignment) are activated unless there is
no more violation or the restriction show
to be unfullfillable.

Up to now we have available the controlling
tables for the 8085 and the 8048 (genera-
ted manually) while late in 1979 the code
gnerator generator will be available which
makes adding a new processor type to the
system a relative simple task.

Appendix 1)
ON CALL(MAIN): RUN: PROCEDURE;
DCL(B,A) CHAR(EBCDIC,80), /* EBCDIC string +/
I FIXED(8,TC)
DCL FILE(SYSIN, SYSOUT) CHAR(80); /* I/0 ports x/

ON(RUNJ T "LOOPGO: C: B,A i= SYSIN; /«Fork, input, multiple assignments/
ON(C): D: SUBSTR(A,0,10) Il SUBSTR(A, 11,70) := A; /xrotatex/
O (| (LOOPGO, LOOPP) ) : LOOPIN: I := %;
ON(LOOPIN): IF I#30 THEN LOOPT: I := I+1:
ELSE LOOPEND:;
ON (LOOPT) : LOOPP: SUBSTR(B,I,1) := 'T'ISUBSTR(B,I,1); QMAIN
ON (LOOPEND,D) : END;
Controlling Petri Net for above example:
RUN
2 BLKHEAD
LQPPGO
LOOPP C
Ki ; £  BLKEND
L/
LOOPIN
2 DECIDER
AN
D
LOJPEND

. i
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Appendix 2) Part of PDP~8 description

ON CALL (PDP8): PROCEDURE;
DCL AC FIXED(12,TC), /*two's complement arithmetics/
L BIT(1),
PC FIXED(12,TC),
(RUN, I STATE, IO PULSE(3) BIT(1);
DCL 1 INSTRUCTION, /*scattered registerx/
2 PAGE_ADDRESS FIXED(7,UN),
2 IND BIT BIT(1),
2 PAGE O BIT BIT(1),

2 orp BIT(3); N
DCL M({"(3) 10000") FIXED(12,TC), /»address space specified as octal numberx/

. /+additional declarations, omitted heres/

ON CALL (ADDRESSING): PROCEDURE; .
/*description of addressing mechanism, ommitted herex/

END;

DO SEQUENTIAL WHILE RUN; /+instruction cyclex/
IF I REQUEST & I _STATE
THEN DO PARALLEL;

M(0) := PC; I _STATE := "O"; PC := 1;
END;
ELSE DO SEQUENTIAL;
DO PARALLEL;
INSTRUCTION := M(PC); PC := 1;
END;

CALL ADDRESSING;
DO CASE INSTRUCTION.OP; m(z)
xcase 1: andx/ AC := AC & H .
/ add+/ L Il AC := (L 1IAC)+("O | 1M(2Z) )

/*case 2:
/+case 3: iszx/ DO SEQUENTIAL;
M(Z1) = M(Z)+1;
IF M(%Z1)=0 THEN PC := PC+1;
END;
/xcase 4: dcax/ DO PARALLEL;
M(Z) := AC;
AC := O;
END;

END; /*of case*/
END; /»of sequentialx/
END; /*of instruction cyclex/
END; /+of PDP8 description*/
process

. ion
Appendix 3) Extremely simple example to demonstrate the compilatio

a) CAP program:
ON CALL{(ADD): PROCEDURE;
DCL (A,B.C,D} FIXED(8,TC);
DO SEQUENTIAL;
1;

IRTETEr
wononK

~U0Ow

END
END;
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/BR1/

/CAl/

/BHO1/

b) CAPID for a) (simplified)
i _
1
— ~
B §\\~\\\\J: ~\> gp
2/——‘ >
e
A
B
+
Ly =
D
A
B
+
C
+
Ly :=
c) CCLID for a) (simplified)
LOAD A , 2
LOAD B , 2 d) 8085 code for a)
ADD ¢, A, B MVI b , OMH
ADD®#1 , A, B
ADD D , C , #1 MVI C , O2H
MOV A , B
ADD C
MOV D , A
MOV A , B
ADD C
MOV E , A
MOV A , E
ADD D
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