- 119 -

CAP/SIL - EINE SYSTEMIMPLEMENTIERUNGSSPRACHE
FUR MULTI-MIKROPROZESSOR-SYSTEME AUS DER
CAP-SPRACHFAMILIE

Franz J. Rammig, H. W. R&der
Universitdt Dortmund

Zusammenfassung: Nach einem Uberblick iiber die CAP Sprachfamilie
und deren grundlegende Konzepte werden die verschiedenen Vertre-

ter dieser Familije vorgestellt. Dabei wird auf die Version CAP/
SIL besonders eingegangen. CAP/SIL enth#lt einen Modultyp zur
Definitiop getrennt (bersetzbarer Betriebsmitteltypen, der einen
KOntrOllausdruck zur Synchronisation der Moduloperationen enthdlt.
Bie MOglichkeit des Kontrollausdrucks wird an einem relevanten

Beispiel erldutert und anderen Konzepten gegeniibergestellt.

- 120 -

1. Uberblick iiber die CAP-Sprachfamilie

1.1 Historischer iUberblick

Erste Ansdtze fiir das CAP-Konzept reichen in das Jahr 1975 zuriick.

Damals war die Absicht, eine fortgeschrittene, flexible Hardware
Beschreibungssprache zu entwickeln [1]

Ansatz bereits das Grundkonzept,

. Man findet in diesem

eine alphanumerische Sprache

zum Aufschreiben interpretierter, Zeitbewerteter Transitions-

netze (mit einer semantischen Verankerung in Petri Netzen) anzu-
bieten.

Auf der Basis dieses Vorschlages wurde ab 1976 die Version CAP/

RTPL [2] implementiert. Neben dem Aspekt der Hardwarebeschrei-

bung liegt hier ein Anwendungsschwerpunkt bei der Programmierung
von mikreprozessororientierten Gerdtecontrollern.

Konsequenter-
weise findet man in dieser Sprache

Konstrukte der postulativen
Realzeitprogrammierung. Als Anlehnungssprache wurde aus verschie-

denen Griinden PL/1 gew#hlt. Das Projekt ist inzwischen beendet,
das System, bestehend aus Compiler,

Interpreter, Binder, Code-
generator, Code-Optimierer,

Testhilfesystem, Dokumentations-

system, Programmgenerator, ist im industriellen Einsatz.

Zur gleichen Zeit wurde eine zweite Version von CAP, CAP/SIL

konzipiert. Hier galt es, eine hardwarenahe Systemimplementie-

rungssprache fUr Multiprozessorsysteme zu konzipieren. Diese

Aufgabe brachte es mit sich, dag fir die Nebenliufigkeit auf
Prozedurebene erheblich mehr Unterstiitzung angeboten wird. Auf
Realzelitprogrammierung wurde verzichtet. Als Anlehnungssprache

wurde PASCAL gewidhlt, Besonderes Gewicht haben im Rahmen dieses
Projekts Paral1elisierungsalgorithmen.

Das Projekt steht kurz vor
seinem AbschluR.

Seit 1980 wird an einer dritten ve

rsion von CAP gearbeitet. Hier
geht es dezidiert darum,

eine fortgeschrittene Hardwarebeschrei-

eine besondere Bedeutung zy,

ine. Neben der Spezifikation von neben-
ldufigen Kausalitatsstrukture

n ist auch derer Realisierung durch

etakt ;
9 ete Systeme unmittelbar beschreibbar. Diese Version von CAP

- 121-

wurde CAP/DSDL genannt und lehnt sich wie CAP/SIL an PASCAL an.

1.2 Das CaAp Grundkonzept

Zumindest in ihrer semantischen Verankerung sind alle CAP Dialek-~
te nonprozedurale Sprachen. Sie kdnnen jedoch auch prozedural

benutzt werden, CAP/SIL sogar nur prozedural.

"Nonprozedurale Spache” soll in diesem Zusammenhang bedeuten, daB
die Anordnung der Anweisungen keinen EinfluB auf deren Ausfilih-
rungszeitpunkt hat. Vielmehr ist die Ausfiihrbarkeitsbedingung

fir jede Anweisung explizit anzugeben.

Sei

= (c1y...,cn) ein Tupel elementarer Bedingungen,
D= (d1r--‘,dm) ein Tupel von Datenelementen,
€nd=g,

Pt ein (partielles) pradikat auf C,
% ¢+ D > D eine (partielle) Abbildung (Datenmanipulation) und
Bt 2 €+ C eine (partielle) Abbildung (Bedingungsmanipulation).

Pann ist jede Anweisung t einer nonprozeduralen Sprache von der
Form;

Pt > (Ag,By);

Mt der informellen Semantik: i
"Immer wenn P, (C) wahr wird, wird die Datenmanipulation A, un

die Bedingungsmanipulation By ausgefiihrt."”

, ' -
Die Ausfﬁhrung von B¢ kann zur Folge haben, daB eine {nicht no

i i ...stn
wendlgerweise einelementige) Menge von Anweisungen ta, ’

dustlhrbar werden. sie kénnen dann (auch simultan, echte Neben-
ldufigkeit) ausgefithrt werden.

Dieses Konzept 1i8t sich besonders einfach auf interpretierte
Petrj Netze ibertragen. Dabei spielen Stellen die Rolle Voé Be~
diHQUHgsvariablen, das Ausfiihrbarkeitspridikat und die Bedin-

: - =~ n
JUngstransformation sinddurch die Schaltregel der Tran51tlot .
9egeben, wihrend die Datentransformation durch die Interpreta

beschrieben wird,

- : a
Der gesamte DatenmanipulatiODSteil {(Deklaration von Datenobjekten,
iner Wirts-—

AUSdrﬁcke, Zuweisungen) wird bei den CAP Sprachen von ein

t
SPrache entlehnt (um die babylonische Sprachverwirrung nich

- 122 -

weiter zu f&rdern). Die gesamte Kontrollstruktur wird jedoch
durch die CAP-eigene Kontrollstruktur ersetzt,

Da in der Regel Sstrikte nonprozedurale Programmierung zu uniiber-
sichtlich wire (nebenliufige Spaghetti—Programmierung), werden
in allen CAP-Sprachen spezielle Konstrukte fiir die strukturierte
(nebenldufige) Programmierung angeboten, die in ihrer Notation
entsprechenden Konstrukten der Wirtssprache gleichen [3].

Alle CAP-Sprachen haben ein Modulkonzept mit nebenl&dufig aufruf-

baren Moduln (aufrufende Instanz bleibt aktiv). Wihrend in CAP/

RTPL und CAP/DSDL ein relativ einfacher Abkapselungsmechanismus

nmal vorhandenen Resource nach starrem Priori-

tdtenschema) implementiert ist, bietet CAP/SIL hier erheblich
komplexere MSglichkeiten,

und CAP/RSDL kurz skizziert wer
von CAP/SIL werden unter 2.
geflihrt. Es sol1l an dieser g

den. Die speziellen Eigenschaften
dargestellt ung daher hier nicht auf-

telle betont werden, daB sich alle
speziellen Eigenschaften der

verschiedenen Versionen auf das
Grundkonzept zurilck fithren las

sen.

1.3.1 Besondere Eigenschaften von CAP/RTPI,

CAP/RTPL kann Sowohl prozedu

n) sind selektive postulative Anga-

und maximaler Zeitverbrauch von

l&sbare "Interrupts") iberlagert

SOgenannte imElicit—Variable hervorzuhe-
ben, derer Wert kontinyj

gig, von den Werten spezjfj
rer Weise abhingen,

- 123 -

l:LE_Egﬁgﬂﬁere Eigenschaften von CAP/DSDL

Auch CAP/DSDL kann sowohl preozedural wie nonprozedural benutzt
werden und erlaubt Nebenliufigkeit auf der Statement- und Proze-
durebene. Zusitzlich wird die Beschreibung realisierender getak-
teter Systeme besonders unterstitzt. Die deskriptiven Zeitangaben
sind recht komplex (Unsicherheitsintervalle, wertespezifische
Verzagerung),wogegen postulative Angaben nicht vorgesehen sind.
DaS"Interrupt"-Konzept unterstiitzt hier besonders auch Intermo-
dUleOmImmikation. Das "implicit"-Konzept von CAP/RTPL findet sich
mit einigen Erweiterungen auch in CAP/DSDL. Das Modulkonzept
Wirde so erweitert, daB die Implementation in der Version 1.0
(nicht bParametrisierter) abstrakter Datentypen unmittelbar be-

SChrieben werden kann.

lﬁ&é_zéégllé£i§0he tbersicht iiber spezielle Eigenschaften der
Yerschiedenen CaAP-Dialekte

Eigenschart CAP/CTPL | CAP/DSDL | CAP/SIL
Anlehnungssprache PL/1 PASCAL | PASCAL
NEbenléufigkeit auf Statementebene ja Ja ja
Strukturierte Nebenliufigkeit ja Ja nur
Nebenléfigkeit auf Prozedurebene |Basis Basis elaboriert|
Getrennte Ubersetzung ja ja ja
Postulative Realzeit ja nein nein
Deskriptive Realzeit Basis elaboriert | nein
Parﬁll@liSierungsalgorithmen nein nein j?
Cetaktete Systeme implizit jexplizit nein
Funktionale Programmierung Basis Basis nein
Abstrakte Datentypen nein Basis BaSi%
Speicherplatzvergabe statisch |} statisch Qﬂffugi
InterruPtbehandlung ja ja pne::ss

i i i g- i ro -
Crganisationsmodell (Haupt-) gigiggiig 2§Zig§;§; komm. |

h\»\

- 124 -

2. CAP/SIL - Eine Systemimplentierungssprache fir
Multi-Mikroprozessor-Systeme

2.1 Das Modulkonzept

Entwurfskriterien fiir CAP/SIL waren:

1. Es soll besondere Sprachunterstiitzung fiir die L&sung von Syn-

chronisationsproblemen bei der Betriebsmittelvergabe angeboten

werden,

2. bei der Benutzung von Betriebsmitteln soll Nebenldufigkeit
explizit formulierbar sein, und

3.

implizite Nebenldufigkeit bei der Benutzung von Betriebsmit~

teln soll durch Parallelisierungsalgorithmen erkennbar und
realisierbar sein.

Um diese Kriterien zu erfilllen, wurde in die Wirtssprache PASCAL
ein Modulkonzept in Form eines Modultyps integriert, das die De-
finition getrennt {bersetzbarer Betriebsmitteltypen erlaubt. {Zur
Laufzeit eines CAP/SIL-Programms k&nnen beliebig viele Betriebs-—
mittel aus einem Betriebsmitteltyp inkarniert werden.)
Ein Modultyp besteht aus

[-Parameterliste]

-Operationsliste

[-External-Liste)

-Kontrollausdruck

[-Deklarationsteil fiir lokale Datenstrukturen]
-Operatoren

(L 1 bezeichnetoptionalexomponenten)

Im Kontrollausdruck sind die Synchronisationsregeln fiir die Be~
nutzung der Moduloperatoren formuliert. Die Nutzung der implizi

ten Nebenldufigkeit kann nun durch Parallelisierungsalgorithmen
erreicht werden, die alle Aufrufe von Betriebsmitteloperatoren

unter Beachtung von Datenabhingigkeiten parallelisieren. Notwen~

dige Synchronisationen werden innerhalb des Betriebsmittels VO~
genommen .,

2.2 Laufzeit-Organisation

Die CAP/STIL

~Module und ihre Kontrollausdriicke machen eine

- 125 -

prozedurorientierte Struktur des zu implementierenden Betriebs-
systems notwendig [4], Dabei wird ein Betriebssystemkern und/
oder ein Laufzeitsystem bendtigt, mit dem u.a. folgende Sprach-

mittel unterstiitzt werden:

1. Prozeduren und Funktionen (Operationen)
Eine Operation besteht aus einem Algorithmus, lokalen Funktio-
nen und Parametern. Sie arbeitet immer innerhalb der Umgebung
eines Programms oder Mecduls (Objekt) und hat Zugriff auf alle
Daten und Operationen, die innerhalb des Objekts deklariert
sind. Aufrufe von Operationen k&énnen synchron oder asynchron
dusgeftihrt werden. Synchrone Operationsaufrufe entsprechen
normalen PASCAL-Operationsaufrufen. Ein asynchroner Operations-
dufruf liegt vor, wenn eine Export-Operation eines anderen
Objekts aufgerufen wird. In diesem Fall wird die Abarbeitung
der Operation als eigenstindiger ProzeB gestartet. Der ProzeSf
hat Zugriff zu den lokalen Datenstrukturen des gerufenen
Objekts, besitzt jedoch einen eigenen Stack fiir die Abarbei-

tung der Operation.

« Module (Objekte)
Ein Modul besteht aus einer Anzahl von Operationen, lokalen
Datenstrukturen, Parametern und einem Kontrollausdruck fir die
Synchronisation der Export-Operationen. Als Inkarnierungspara-
Meter kdnnen u.a. Modultypen fiir die Erzeugung lokaler Be-
triebsmittel und inkarnierte Objekte als globale Betriebsmit-

tel Ubergeben werden.

Module“'In}':arriuz-ltionen werden mit Hilfe einer Standardfunktion

{acty i . _
Ltivate) erzeugt. piese legt eine neue Umgebung fir die Auf

n o -
dhme ger lokalen Moduldaten an und initialisiert den Kontroll
3Usdryck ,

2.
%rollausdruck

I?er fontrollausdruck beschreibt ein Transitionsnetz, in dem fir
Jede Modul—Exportoperation eine Transition vorhanden sein muB.
Die synchronisationsbedingungen f{ir die Exportoperationen ent-
.sp]_:echen den Stellenbelegungen. Das Schalten einer Transition
1n1tiiert die Abarbeitung der zugehdrigen Operation. Bei der Aus-—
*rtung des Transitionsnetzes wird davon ausgegangen, da8 nie

- 126 -

zwei Transitionen simultan schalten k&nnen (Kolateralitdt). Dies
bedeutet keine Einschrinkung der Nebenliufigkeit, da das Trans%-
tionsnetz lokal auf einem Prozessor ausgewertet werden mufB. Die
Auswertung beginnt, wenn die linkeste Eingangsstelle einer Tran-
sition markiert wird. Werden die 1inkesten1BingangSStellenHEhrerer
Transitionen simultan markiert, so wird das Transitionsnetz nach-

einander fiir alle Markierungen ausgewertet.

Bei der Formulierung von Synchronisationsregeln mit mdglicher Ne-
benliufigkeit mittels Petri-Netzen bemerkt man sehr schnell, daB
eine obere Grenze fiir den Grad der Nebenliufigkeit angegeben wer-
den muB. Will man z.B. das Reader/Writer-Problem l&sen, so muf

man die Anzahl der m&glichen nebenliufigen Reader-Aktivierungen
beschrinken: [6]

Wrifer Reader

, , C s s et . Die
Die Synchronisationsstelle § wird mit n Marken initialisiert

. - ines

Aktivierungdes Writer bendtigt n Marken von S, die aktivierung eine

. i n
Reader je 1 Marke von S, so daB entweder 1 Writer oder maximal
Reader nebenldufiqg aktiv sein k&nnen.

. , , : i tdten
Das Problem wird noch schwieriger, wenn man versucht Priorita

auszudricken. Dabei wird es dann n&tig, das Fehlen von Stellen-
Markierungen zu testen,

Um die Bestimmung einer oberen Grenze bei der Anzahl nebenldufi-
ger Aktivitdten zu vermeiden und die Formulierung von Prioritdted
zu ermbglichen, koénnen Stellendeklarationen in CAP/SIL ein Mar-~
kierungspriddikat enthalten, das Zihlerwerte benutzt [5 1. Lie~

fert die Auswertung des Pridikats den Wert true, so ist die Stel-
le markiert, andernfalls nicht.

- 127 -

Vereinfachte Syntax:
<8tel i
<M klendeklaratlon> ::= <Stelle>[:<Markierungspridikat>]
ar ie s 13 3
rungspridikat> ;:= <Zahler><Vergleichsoperator><Konstante>

Stelle> ;.= <identifier>

<Zdhler> ;.= <identifier>

ﬂ@rgleichsoperator> = > = | #)< = [> =

<Konstante> ;= natlirliche Zahl

ifz;jbzijik%ariérfen Stellen gibt es zur jeder Operation (Tran-

HDnsaufruf m;mi%lzlte.Synchronisationsstellei die beim O?era-

cinen 25h) oy g lErt.w1rd. F?rner g%b? es zu.jeder Op?ratlon .

OPeratiOnsde;kt?r.bel Operatlonsa5t1v1efung 1?krement1ért und bei

Stelle wipq iy ivierung éekrementlert wird. Die Operatlonsaufruf-
it $ Operationsname und der Zihler mit # Operations-

hame ®indeutig festgelegt.

Die ve
tnetzung der Stellen und Transitionen wird in einer Anzahl

von K ,
ontrOllanwelsungen beschrieben. Vereinfachte Syntax:

<K0ntrollanweisung>
on <Stellenausdruck> <Operation> set <Stellenliste>

<
Stellenausdruck> 1= <Stelle>|
<Stelle> andp <Stellenausdruck>|

<Stelle> orp <Stellenausdruck>|
(<Stellenausdruck>)

<0 ,
Peration> ::= i<identifier>:|

[

<zy)
hlerausdruck> ::= for [<Konstante>!] <Zdhler> do

<S5t ,
©llenliste> ::= <Stelle> [,<Stellenliste>]
<Zihler> [,<Stellenliste>]

Dlé Semantik der Kontrollausdriicke soll an einem komplexen Bei-
SPlel, dem Reader/Writer-Problem, erliutert werden. Scheduling-
Strategie s0ll sein: Ein neuer Reader darf nur dann weiterarbei-
ten, wenn kein Writer wartet und alle Reader werden aktiviert,
Yenn ein Writer die Arbeit beendet. Eine Anderung der Scheduling-
Strategie ist sehr einfach durch Umordnung der Kentrollanweisun-

gen und/oder Verinderung der Eingangsstellen m&glich.

- 128 ~

type Buffer = medule

operation read, write

Place readdone; writedone;
nowriter : # write = 9
noreader : # read = @
nowritewait : # writewait = ¢
noreadwait : # readwait = @
waitingread : # readwait > @

waitingwrite : # writewait > @

on $ read andp nowriter andp nowritewait : read : set readdone;
on $ read : : set # readwait,

on $ write andp nowriter andp noreader : write : set writedone;
on $ write : : set # writewait;

on readdone andp noreader andp waitingwriter:Egg:1ﬁéwritewait§g
write : set writedone

on writedone andp waiting reader : for # readwait do
read : set readdone;

on writedone andp waitingwriter : for 1 # writewait do

write : set writedone

modulend

$ read und $ write sind die impliziten Operations—Synchronisa-
tionsstellen und # read, # write die Operationszdhler.

Die frei angegebenen Zihler (# readwait und # writewait) konnen
nur in Kontrollanweisungen manipuliert werden: Inkrementierund
in einer <Stellenliste> und Dekrementierung in einem <Zihler-

ausdruck>. Kontrollausdriicke, die die selbe linkeste Stelle be-

sitzen, werden in Reihenfolge der Aufschreibung abgearbeitet.

Im Anhang 1 wird der Kontrollausdruck als erweitetes Petri-NetZ

dargestellt und in Anhang 2 wird eine Aquivalente parstellung
als Monitor gezeigt.

2.4 Schlufbemerkungen

Der wesentlichste Unterschied zwischen CAP/SIL und Sprachen wie
Concurrent PASCAL, MODULA, Path PASCAL usw. besteht darin, das8
durch ein CAP/SIL-Programm oder -Modul ein dynamisches ProzeS-

System beschrieben wird, wihrend bei den oben genannten Sprachen

- 129 -

41t CAP/SIL
statische ProzeB-Systeme definiert werden. Ferner enth}am -
. 2o wel -
Kontrollstrukturen flir die Formulierung nebenldufiger Opera
. = ige -
gen, durch die die Parameterversorgung fiir nebenldufig P

tionsaufrufe erreicht wird.

i eines
Stand der Arbeiten: Ende 1980 wurden die Implementation lgorith~
. . a
CAP/SIL—Compilers und der zugehSrigen Parallelisierungsalg

men beendet,

Anhang 1

. ‘d ks
Petri-Netz Semantik des Beispiel-Kontrollausdruc

§Read $lrite

Writer

waitin
write

Erw W i i 815
e t] der riter Belsp
iteI (2} Petr i _Netz..Darste | ung des Rea /

- 130 -

—p bezeichnet Test auf @ Marken {Inhibitor Eingang)
—p zieht 1 Marke von der Stelle ab

1
(X gibt Prioritidt der Ausginge bei Konflikten an
2

Bzgl. Petri~Netz Darstellungen mit Inhibitor-Arcs und Priorita-

ten siehe [7 1.

Anhang 2

Monitor-Semantik des Beispiel-Kontrollausdrucks
Vergleiche [8 3, [9 1).

monitor Scheduler;
var readreg, writereg : condition;
read, # write, # readwait, # writewait : ¢ ... maxint,
procedure $ read ;
begin if (@# write=@) and # writewait=@))
then # read := # read+!
else begin,
readwait := # readwait+1;
readreg.wait
end
end (% read *);
procedure §write ;
beqin if (@ write=@) and # read=@))
then # write := 1
else begin
writewait := # writewait+1;
writegeg.wait;
end
end (+ $writexr);
procedure readdone;
begin # read := read-1;

if (& read=@) and(# writewait > @))
then begin

writewait := writewait-1;
writereg.signal;
end

end (*readdonex)

procedure writedone;

- 131 -

begin # write = # write-1;
if # readwait > ¢

then while # readwait > @ do begin
readwait := # readwait-1:

readreg.signal;
end

else if # writewait > @
then begin
writewait :=# writewait-1

writereg.signal

end
&nd (*writedones)
read := g,

write 1= g,

readwait := @;

writewait 1= @;

&0d («monitor schedulerx)

D : s R
?.e Signal-operation muB so implementiert sein, daB der signali-
Sierende Prozes aktiv bleibt.

S a
kizze der Monitoraufrufe:

Scheduler, $reag scheduler. $write

.
.

Code der Operation code der Operation

read write

.
-
-

Scheduleyr, readdone scheduler .writedone

2 Literatur

L) Rammig, F, J.: DIGITEST II: An integrated Structural and
Behavioral Language. Proceedings of 1975 International Sym-~
POsium on Computer Hardware Description Languages and their
Applications. New York 3. 9. - 5. 9. 1975

L2 1 Rammig, F. J.: An Introduction to the Concurrent Algorith -
mic Programming Language CAP or Looking at CAP with the
Revised Iroman's Eyes. Forschungsbericht Nr. 80 der Abt.

- 132 -

Informatik der Universitit Dortmund (1979)

Rammig, F. J.: Structured Parallel Programming with a High-

ly Concurrent Programming Language. Proceedings of AICA '80
Bologna 29. - 31. Okt. 1980

Lauer, H. C.; Needham, R. M.: On the Duality of Operating
Systems Structures. Proc. Second Tnternational Symposium
on Operating Systems, IRIA, Oct. 1978, reprinted in Opera-
ting Systems Review, Vol. 13, No. 2 (1979), pp. 3 - 19

Gerber, A. J.: Process Synchronisation by Counter Variables.
Operating Systems Review, Vol. 11, No. 4 (1977), pp. 6 - 17

Kosaraju, S§. R.: Limitations of Dijkstra's semaphore primi-

tives and Petri nets. Tech.Rep. 25, Johns Hopkins Univ.,

Baltimore, Md., May 1973, 5 PP.; also in Operating Systems

Review, Vol. 7, No. 4 (1973) pPp. 122 - 126

Hack, M.: Petri Net Languages. MIT, Project MAC, Computa-

tion Structures Group Memo 124 (1975)

Hoare, C. A. R.: Monitors: an Operating System Structuring

Concept. Communications of the ACM, Vol. 17, No. 10 (1974)
Brinch-Hansen, p
Hall, 1973

.: Operating Systems Principles. Prentice

Dr. Franz J. Rammig
Universitidt Dortmund
Abteilung Informatik
Postfach 50 05 QO

4600 Dortmund 50

Horst R&der
Universitit Dortmund
Abteilung Informatik
Postfach 50 05 00

4600 Dortmund 50

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14

