Hierarchical Modular Description of VLSI Systems

franz J. Rammig

University of Dortmund, Abt. Inf. T

Abstract

In this paper it is shown how the design process
from functiorzal specification down to the discrete
transistor level can be supported by a single CHIL
named QAP/DSDL. The language is based upon a single
semantical model: Timed Interpreted Petri liets.
La”lglfag_e concepts that are general or dedicated to
specific levels of abstraction will be discussed.

L. Introduction

Language design always has been an important aspect
of software engineering. After first rather simple
approaches of Hardware Description Languages now
relatively sophisticated languages have been de-
veloped in this field. They are more or less in-
fluenced by results from software engineering. As
an'example of such a language may serve CAP/DSDL
which has been designed and implemented by the
author and his collegues and has been used very
SPCCessfully by SIEMENS AG in numerous projects
since a couple of years. The language makes use of
concepts like Abstract Data Types, Monitors, Petri
N?tsr Strong Typing, Structured Programming, Asser-
tions, all originating from software engineering.

2. General Remarks

This paper is not intended to be a general intro-
duction to CAP/DSDL but only specific language
features are to be discussed. However, as this will
be done on the basis of examples some basic prin-
ciples of the language have to be introduced.

We deffer
The basic data object is the bitstring of arbitrary
length bit(n). The basic type constructors (array
and record) are taken from PASCAL. Records are
identified with bitstrings of the length which is
computed as the sum of their components’ length.
Consequently each bitstring can be viewed as a
Iecord where components are to pe identified by
their location within the record, e.g. a.(7: 0)
denotes the leftmost eight bitposition of a bit~
String which has to be at least of length 8. As
operators we have logical ones (PL/1 notation) &,
Iy 1, 18, 11, @) (exor), 14 which also may serve as
reduction operators, relational ones =, <>, < >,
<=, >=, arithmetic ones +, - *+ /s mod and con-
?atenation Il . Relational and arithmetic operators
interpret arguments as two's complement integers as
long as they are not enclosed in bars; €.9. + means
a two's complement addition while |+’| means an

CH1815-0/83/0000/0112801.00© 1983 IEEE

between constants, types and variables.

H2

place.

unsigned integer one. Expression and assignements
follow the PASCAL syntax with an "if then else” and
a "case of" construct included.

3, Algorithmic constructs

The basic principle for behavioural descriptions in
CAP/DSDL is that of Timed Interpreted Petri Nets.
These nets may be specified by a designer directly
or indirectly via structured concurrent constructs.
The latter approach has some limitations but has
to be favoured whenever applicable. Experience has

hat nearly all practical control structures

shown t
nstructs. For

can be formulated with structured co
convenience three basic types of transitions are

offered by CAP/DSDL:

- AND transition {usual Petri Net transition)
Notation: on (in1 & inz & . & ing) do mark
(outq & . & outn)

OR transition (place with packward conflict in

usual Petri Nets)
Notation: on (inj | ing | ... ling)
& ... & outn)

do mark (outy

_ DECIDER transition (place with foreward conflict

in usual Petri Nets)
Notation: on (ingy) do if cond then mark

olved are special objects of type
ity may be

(outs)

The variables inv
In their declaration their capac

bound to a finite value.
ons special net templates are
r via own syntactical constructs.

If a user restricts himself to use exclusively
these constructs it is ensured that the resulting
deadlock free and reusable.

By well known reas
offered to the use

net is l-safe,
are the following:

The constructs of fered
end

- segbegin S4; ..-7 Sn

- conbegin S4; .- Sp end
conbed £€na

- If cond then Si else Sa2

_ Case cond of S1i .; Sp end

_ while cond do S

- regeat s until cond
seqto f do 5

- for a:=1
_ for a:=1i conto f do §

The seqbegin construct corresponds to the begin
construct in PASCAL (with same differences that

shall not be discussed here) while conbegin means
£ the included statements

nt will be terminated
terminated . In the

the concurrent execution o
Sq to Sn. The complete stateme
when all included statements are

for statements we allow only constants as bounds.
The reason becomes clear immediately if one consi-
ders the conto alternative. This means that all
statements S5 (S with the proper index value) have
to be executed concurrently. It should be noted
that we don't have a loop in this case.

The advantage of the structered approach can be
seen immediately with the aid of a small example:
The control structure to be described may consist
of two concurrent branches, where one may be a loop.
Such a control structure is reflected by the fol-
lowing CAP net:

ACTION 2

This net may be described directly:

var A, B, C, D, E, F, G, H, I : place;
net

on(d) do mark(B & C) ACTION !;

on(B) do mark (F) ACTION 2;

on(C | p) do mark (E); -

on(E) do if €O then mark(H)

else mark(G);

on(H) do mark (D) ACTION 3;

on(F & G) do mark(I) ACTION 4
end mark .

Much easier to understand is the following descrip-

tion of the same net:

segbegin
——
ACTION 1
conbegin
——————
ACTION 2;
while CO do ACTION 3
end - -
ACTION 4
end -

It should be noted, that up to now no timing con-
cept has been introduced, neither via delay opera-
t?rs nor via clocking. These possibilities will be
g;gzussed later. In an early design phase the CAP(
user can be liberated from these implementation
details, He only has to specify a concurrent cau-
sality structure as indicated in the above example.

4. Data driven control

In the above section the basic ideas of CAP/DSDL in
Order to support the algorithmic RT level have been
Presented. To describe the flow of data through the
combinational parts of a hardware system an other
concept is offered by CAP/DSDL.

"3

A data variable that is declared with attribute
explicit (or without attribute) is interpreted as
device with storing capability (e.g. register). It
gets a new value if and only if it is ordered to do
so explicitely by the control structure. (An assign-
ment statement is executed due to the control
structure,)

Variables that are declared with the attribute
implicit are interpreted as non storing devices
(e.g. wires, outputs of combinaticnal logic). They
are allowed to stand on the left side of exactly
one assignment statement. It gets a new value im-
plicitly whenever one of the variables within the
expression on the right hand side of this assign-
ment statement gets a new value. These statements
have to be grouped in a special section of a CAP/
DSDL description.

It should be noted that this 1is a single assignment
rule for implicit variables. In fact, CAP/DSDL de-

scriptions may be restricted completely to implicit
variables leading to a functional programming style.

The following small example may give an idea about
this capability of CAP/DSDL. It describes a gate
level solution of a 16 bit wide RS register:

var R, S, Q, NQ : imEliCit bit(16);

impdef
Q := R nor NQ;
NQ := S nor Q

Of course the lexical ordering of the assignment
statement within the impdef section of a CAP/DSDL
description has no influence on the meaning of the

description.

This language- feature seems expecially adequate for
gate level descriptions of systems or parts of a
system within more abstract descriptions. In section
5 it will be shown how the discrete transistor level
(switching level) canbe covered with the aid of this
technique, too. In section 6 we will introduce
timing and will show how this concept also offers
the framework for the structural (nonprocedural RT

level}.

5. MOS specific features

MOS introduces a bidirectional point of view into
the language. This level of abstraction is covered
using the techniques of data driven control. CAP/
DSDL offers three builtin procedures for this pur-

pose:
pullup (A} andgulldown(A) with an obvious meaning
and transfer (techn, gate, left, right) in order to
model transistors. The parameter "techn" controls
whether a nMOS or pMOS transistor is described. The
v is a unidirectional input while
"]eft" and "right" are bidirectional
e mentioned as such bidirec-
tional parameters of transistors are interpreted as
seven valued ones (per bit) with the meaning: low
impedance one and zero, medium impedance one and
zero (pulled up or down), high impedance one and
zero (charged and then isoclated), uncharged. Un-
certain values are described by the subset of this
set that contains exactly the possible values (so we
are working with a 128 valued logic for this purpo—
se) . Such variables are restricted on implicit
variables. In their declaration a charge decay time

parameter "gate
the parameters
ones. Variables that ar

can be given. So dynamic storage elements and
dynamic logic can be described precisely.

As an example may serve the description of a dyna-
mic nMOS RAM cell:

vdd
SEL vdd

const nMOS = "1" ;

var A, NOTA, SEL, LEFTMEM, RIGHTMEM: implicit bit
. decay (160) ;
impdef)

pullup(A);
pullup (NOTA) ;

transfer (nMOS, SEL, A, LEFTMEM);

transfer (nMOS, SEL, NOTA, RIGHTMEM) ;

transfer (nMOS, RIGHTMEM, LEFTMEM, "@");
_ transfer (nMOS, LEFTMEM, RIGHTMEM, "@"):

6. Timing and clocked systems

T%ming in hardware design usually is expressed
either by counting clock signals or by the real
time behaviour of the envolved actions. In many
causes both methods are used and therefore both
are supported by CAP/DSDL.

Every assignment statement and every empty state-
ment may include delay specification. The actual
delay time may be specified viaanarbitrary ex-
pression of type integer (bit(n)). So it is very
easy to specify delays that are dependent on actual
values, states, histories. Intervals of uncertaincy
may be specified, too. By delay is meant in CAP/DSDL
the period between the evaluation of the arguments
of an assignment and the assignment of the resulting
value. Within a sequential control structure the
statement following the delayed one is initiated
after the specified delay time.

Example
var R, S : bit; Q, NQ : implicit bit
impdef)

Q := NQ var R delay (up 5 to 7y down 4 to 6):
NQ := Q var S delay (9265_(3_8,d_0_w23£9_6)7

segbegin
RIS := "g1" delay (if S = "1" then 1§ else 58);
R Il's := "1¢" Gelay (50)

end

In order to describe clocked systems in CAP/DSDL

first a clock generator has to be defined. This is
usually be done via an implicit variable which is
defined as its own complement with a proper delay.

Example

CIK := not CLK delay (up 5, down 45)

Now the edges or the levels of such clock signals
may be interrogated by the at resp. when prefix.
Any statement may be prefiiza’with these constructs.
If this is done within the explicitely given control
part this logical control specification remains

unchanged. Only concerning timing it is synchroni-
zed with the clock signals.

Example: (see section 3, now synchronized with clock
signals)
segbegin
at SLOWCLOCK do ACTION 1
conbegin - B
at SLOWCLOCK do ACTION 2;
while CO do at FASTCLOCK do ACTION 3;
end
éE»SLOWCLOCK do ACTION 4
end . B

It should be noted that the at prefix is not re-
stricted to clock like signals.

When used within the impdef part of a CAP/DSDL de-
scription the at resp. when statements constitute
the main control structure.

The prefix may initiate arbitrarily complex opera-
tions in this case. It can be observed that now we
have a data driven control of "second order”. The
isolated control part now may be viewed as a data
driven system while the whole system may be viewed
as a system triggered by control events. But this
is the classical point of view of RT languages. In
order to clarify the difference we usually call it
structural RT level to distinguish it from the
algorithmic RT level described in section 3.
(usual finite state machine, LAMDA and
SIGMA are user functions)

XEE.CLK: i Elicit QEE; STATE: 25&(2); X,Y: EEE(IO);
impdef

CLK := not CILK delay (50);

2t STATE = "@@" & CLK do conbegin

- Y := LAMDA(X,STATE);

STATE:= SIGMA(s,STATE)
end;

at STATE = "$1" & CLK do ...

Example:

.

7. Modularization concepts

CAP/DSDL offers one basic conceptfornwdularization:
The Erocedure. But this single concept has been de-
signed in such a way that the concepts of
- Modules .
- Abstract Data Types
- Generic Objects
- Monitors (managemen
can be subsumed.
First of all a CAP grocedure is a procedure in the
cense of PASCAL. It constitutes & context with the
scope of variables rule from PASCAL. The only
difference is that all variables are static ones
(own in ALGOL terms). I.e. they maintain their value
after the deactivation of 2 procedure and may be
used after a reactivation of it. There may be a
formal parameter list. Here in, Qut and inout ‘
parameters are distinguished. parameter passing 1s
always by reference. However if an actual parameter
is a constant or an

expression that congists of more
symbols than a single variable, the value of the

actual parameter is first copied to a dummy variable
that is passed by reference (i.e. de facto parameter
passing by value) .
ion procedure is of fered

Like in PACAL also a funct.
using the PASCAL notation.

t of critical sections)

There is a strong type checking of the formal para-
meters against the actual ones. This is true also
in the case of separately compiled procedures and
functions. A separately compiled procedure or
function has to be declared like an internal one
with the difference that its body is substituted
by the keyword external. So the type checking
between the formal parameters and the actual cnes
can be carried out by the compiler while the check
whether the declared procedure is compatible with
the referenced one is done by the binder.

Example

procedure PROCEDURE DEMO;

var F,G : bit(16); H : bit{(l17);
procedure SWAP (inout A,B : bit(16));

conbegin
AllB:=B lla
end;
function SUM (in A,B : bit(16)): bit(17);
external
conbegin
SWAP(F,G) ;
H := SUM(F, F&G)
end.

A procedure or function must contain an explicit
control part (i.e. a compound statement). It re-
mains active after a activation until this control
part terminates. If a never ending control part is
used and implicit variables are used as parameters
tben procedure are well suited to modularize com-
blgational circuits, too. The "calling" in the
main program then has the meaning of a "power on".

Example

procedure FULLADD (in A,B,C,CIN : implicit bit;
out S, COUT : implicit bit);
const NEVER = "@";
procedure MAJORITY (in A,B,C : implicit bit;
. out D : implicit bit);
impdef
D :=A&B | A&C | B&C ;
segbegin at NEVER do end;
Procedure PARITY (in A,B,C : implicit bit;
out D : implicit bit);
impdef
D := (exor) (A HIB IIC);
segbegin at NEVER do
conbegin -
MAJORITY (A,B,CIN,S);
PARITY (A,B,CIN,COUT)
end.

Of course in reality nobody would modularize such
@ small circuit.

EZQIY procedure or function includes a monitor
chanism. I.e. at one point of time a procedure or
fun?tion can be active only once. All additional
activations are delayed until the actually served
one has terminated. Concurrent activations are
served according to a fixed priority scheme by an
arbiter, By this feature a procedure or function
in CAP/DSDL models a once existing piece of hard-
Ziie that may be requested concurrently but is
ocated to requests in a time shared manner.

Procedures and functions may not be not declared as
single cbjects but also as types of objects. Instan-
ces of such a type may be generated in the usual

115

way using var declarations. It should be noted

tbat a module concept is introduced into CAF/DSDL
simply by overcoming a PASCAL restriction (absence
of type: procedure). The module concept offers its
benefits especially in regular structures. Presently
such regular structures became more and more popular
in VLSI design. Another important feature of CAP/
DSDL modules (i.e. procedure types) is that they
may be generic. In the type definition thers may

be a list of formal attributes standing for con-
stants or types. By these attributes any objects
within the procedure type definition may be attri-
buted. In the var declaration these formal attribu-
tes have to be substituted by actual attributes.

Example:

procedure GENERIC AND MODULE_DEMO:
type ADDER = -
procedure ADDER [WORD: Exgg]
(}_n A,B: WORD, CIN : bit;
out SUM: WORD; COUT: bit):

conbegin
COUT 11 SUM: =1 f CIN then("@"[l A)+("@"liB) +1
else("g" |l A)+("g"ll B)
end

var ~ALU_ADDER : ADDER [bit(16) 1
ADR ADDER : ADDER [bit(24)]

Generic objects are especially suited to be stored
in a data base for multiple use various designs.
Structures like systolic arrays are supported by
arrays of objects of type procedure.

A last (but especially prwerful! concept that is
included in CAP/DSDL procedures 1§ that of Abstract

Data Types (ADT). An abstract data type is defined
(that may be an ADT as

as a carrier data structure
A

well) and a set of operations on this carrier.
user of an ADT has access toO the data structure
only via the offered operations. This idea is
followed by export procedures in CAP/DSDL. An ex-
port procedure has no own control part {so it is
the only exception to the rule started above). It
consists of a local data structure (carrier data
structure) and a set of procedures and functions
that manipulate this carrier structure (offered
operations on the carrier structure}. These pro-
cedures and functions have to be listed in an
export list in front of the procedure head. So

just following the usual scope of variables the
internal carrier data structure is hidden from

the outside while the operations on it are made
available (well controlled encapsulation technique) .
As an example may serve a very simple ALU that is
able tocarryout the operations add, sub, and, or,
not. The result is stored into an internal register
in any case. This register can be read by an addi-
tional operation read. This internal register is
one hit longer than the used wordlength. In the
jeftmost bit the carry is stored in. In the example
a generic solution is demonstrated.

type ALU = exggrt (ADD,SUB,AND,OR,NOT,READ);
procedure ALU [worD

LENGTH: consth
type WORD = bit (WORDLENGTH):
var BUFFER : bit (SORDLENGTH + 1)
— edure ADD (in A,B : WORD; in CT : Dit);
external;

procedure SUB {in A,B

: WORD; in CI : Qiﬁj;

external;
procedure AND (in A,B

external;
procedure OR

external;
procedure NOT (in A

external; -
function READ

external;
end;

: WORD) ;

(in A,B : WORD1 ;

: WORD) ;

bit (WORDLENGTH + 1};

var ADR ALU : ALU[16];
DATA ALU : ALU[24];

conbegin

DATA ALU.ADD(REG{1}, rReclo], REG{2].(0));
ADR := ADR ALU.READ. (23 : 0);

end

The concept of ADT's is especially valuable at the
level of functional specification. Here typically a
set of ADT's is specified from which operations are
requested. This closes our discourse through the
levels of abstraction. It has been shown by which
language features different levels of abstraction
are supported. These levels are (top down) :

~ Functional Specification

- Algorithmic Register Transfer Level

- Structural Register Transfer Level

- Gate Level

- Discrete Transistor Level.

Though being so powerful the language is easy to
learn and to use as it is based on very few prin-
ciples. This is reflected by a very good acceptance
both in industry and at our university. It turned
out that neither design engineers (in most cases
with EE background) nor CS students had problems to
understand these few principles (i.e. PASCAL + Timed
Interpreted Petri Nets +Data Driven control) .

8. Additional language features

Two main features of the language have not yet been

d%scussed: Assertions and Interrupts.

CAP/DSDL allows the user to formulate per procedure
or function a set of assertions that must hold
throughout the procedure's execution. It should be
noted that there is a strict distinction between
hardware description and description of certain
features of this hardware (requested pehaviour) .
Assertions are used either for formal verification
purposes or in the case of simulation as tool that
liberates the designer from the neccessity to read
same inches of print out. Instead of looking for
somewhat in the simulation result he formulates as
assertion for what he looks and let the simulator
do this job.

Interrupts are very suitable for the specification
s like telecommuni~

of highly event oriented system 0
cations or industrial control systems. The inter—
rupt concept of CAP/DSDL all

systems where concurrent algorithms are partially

ows to specify interrupt

interrupted or that partially wait for interrupts.

While assertions are a levelindependent tcol, the
interrupt constructs are mainly designed in order
to support the functional specification level.

9. References

We avoided references in the text but prefer a re-
ferencing annex.

A language reference manual for CAP/DSDL is given by
/RAl/. As an introduction into the theory of Petri
Nets may serve /PE1/. The idea of classical RT lan-
guages is explained very well in /DDl/. For monitors
see /HOl/ while /LS1/ may serve as reference to ADT's.
The RAM cell of section 5 can be found in /CL1/.
Modularization techniques are presented in /WIl/,

/CLi/: W. A. Clarke: "prom electron mobility to
logical structure: A view of integrated
circuits”. ACM Comp.Swrv.Vol.l2# 3 (1980)

/ppl/: J. Duley, D. Dietmeyer:

"A digital systems design language (DDL)"
{EEE ToC, Vol. C17, #9 (1968)

/BOl/: C. A. R. Hoare:

"Monitors: An operating system structuring
concept"
CACM, Vol. 17, # 10 (1979)

/LS1/: B.Liskov, A.Snyder. R.Atkinson, C.Schaffert:
"Abstraction mechanisms in cLy"

CACM, Col. 20, #8 (1977)

/PEl/: J. L. Peterson:

"petri Nets"
ACM Comp. Surveys, Vol. 9 (1977)

/RAl/: F. J. Rammig:
“CAP/DSDL, preliminary language reference
Manual”
Univ. Dortmund, Abt. Inf., Techn. Report
129 (1982)

/WIl/: N, Wirth:

“Modula: A language for modular multipro-

gramming”

Softw. pract. Exper. vol. 7, #1 (1977)

11

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5

