Methodologies for Computer System Design

W.K. Giloi and B.D. Shriver (Editors)

Elsevier Science Publishers B.V. (North-Holland) 87
IFIP, 1985

A MULTILEVEL CYBERNETIC MODEL
OF THE DESIGN PROCESS

Franz J. Rammig
Universitdat-Gesamthochschule-Paderborn

Federal Republic of Germany

This paper presents a conceptual framework for the modelling
of design processes. The system analyst gets a kit of models
of elementary design activities and a selection of composition
rules. By this he can construct an adequate model of the spe-
cific design process. Influenzed by I.H.A.E. Amkreutz we start
with a feedback loop view of the design process. In contrary to
him we introduce various levels of abstraction. Now it is
possible to differ between Tevelinvariant and levelvariant
design activities. As compositon rules we investigate the main
techniques: "Chaining" (output of one subprocess is used as
input of the next one), "Recursion" (subprocess is substituted
by entire design process) and "Multilevel Feedbacking” (special
design activities are used as interlevel Tinks). All alter-
natives can easily be expanded to describe composition/decom-
position., We now have available the framework to describe
classical design strategies.

INTRODUCTION

In order to obtain a good CAD solution for a specific application the present
design process as well as the desired one have to be analyzed carefully. In a
very interesting paper I.H.A.E. Amkreutz proposed a cybernetic model of the
design process [AM1]. Unfortunately he did not introduce different levels of
abstraction. But without such a multilevel view it is rather difficult to speak
about specific design strategies. In addition with the aid of a couple of dif-
ferent levels of abstraction a more detailled classification of specific design
activities is possible. In our approach we differ between tevelinvariant con-
struction activities like modification, optimization and levelvariant ones like
implementation or aggregation. In a similar manner we differ between abstraction-
invariant and abstrationvariant feedback activities. Another advantage of the
multilevel approach is, that the composition between different design activities
within one level or on different levels have to be analyzed. Within this paper

we investigate three basic composition rules: "Chaining", "Recursion" and "Multi-
level Feedbacking”. A1l schemes may be used within one model 1in an intermixed
manner and they all can easily be generalized to describe composition/decomposi-
tion, Now classical design strategies like "Top Down", "Bottom Up", "Yoyo",
"Australian Yoyo" together with the common "Divide and conquer" way of doing can
be modelled. Heterogenous strategies may be modelled as well.

The investigation of a design process using such medelling tools itself is a
“Divide and Conquer" strategy. Usually not the complete design process is covered
by a single CAD tool. Having available a good modelling tool enabled us to identi-
fy such subactivities which are well suited and worth to be automated. Further-

88

more it is indicated how the individual toogl

SINGLE LEVEL MODELS

NOTATION

In arder to obtain

a concise and eas
design activities,

throughout this paper we

name (componentlz type,

name of system -———}

name of companent

type of component

As types we use:

objects that are elementary in our context
1ists/pa1rs,

*

€.9. integer-list

F.I Rammig

s have to be integrated.

¥y to understand description of our models of

use a simplified YDM [BJ1] notation.

s+ .5 COMponent,: type)

> €.9. integer, ianguage

» integer-pair
The first element 57 3 Ist or a pair™ K 35 denoted by first (K) or
head (K} , the second element by second (K)
* sets, e.q, lanquage-set
' sequences, e.q. <1anguage1 i€ {1 ns

mappings, e,gq, integer x integer -~ boolean
the domain of ma
Up to now onl

¥ the structyre of
sired feature

a system to
S are given in the

following no

is-gf name (componentl,

Features may be
natory notation,
mathematival defi

defined by reducing

e.9. (is-odd is-positive)
n1t1on‘765§ﬁage_7h a

EXAMPLE

nteger,
hypothesis - 1nteger,
answer boolean,
test number

PPIng f 35 denotad by dom (f)

R componentn) =

» 1ts range by map (f)

be spec
tation:

ified is described. The de-

featurel

X hypothesis—»answer

A Multilevel Cybernetic Model of the Design Process 39

is-wf sguare-root~checker {n,h,a,t} =
vn € INg : vheZ : aln,h) =(n =h *h)

STRAIGHT FORWARD GENERATION

A first idea for modelling a design process may be the simple black box approach:
A design process is Tooked at as a black box where tasks are entered, Whenever a
task is put into such a design process the process answers with a solution. We
will not go into further details but switch immediately to a more dynamic point
of view. Usually design processes are not independent from history (at least if
persons are involved). Thus, if we interpret a design process as a transformation
mapping that maps an object description given in an input language L; into a
description given in an output language L, , G : Lj >l G(Li) = L, we have
to take into consideration the fact that tRis mapping G~ is parametrized in some
kind by the design process's history.

In order to obtain a consistent model we divide the input language L; into two

sublanguages L; 4 and Lic - The first one serves as language for an opera-

tional description of the object to be modelled, the latter one as language to
describe general constraints, either specific to the mode1 or general. Thus via
Li,c not only object specific "design rules" may be put in but also the know-

ledge base of the design process may be altered.

Thus we obtain:

Def. 1 (Straight forward design process)
SFDOP (inp : language-pair, outp : language-pair
gen : inp-list - outp-list,

hist: Z - IN,

)
Is-wf SFDP (i,o0,g,h} =
VL,L' € i-list @ (<L, | K€ {7 -h(i) : il> =
<ly P Ke - hi) ik =
(h(L))5 (g(L'));

Thus, what a straight forward design process puts out at a certain point of time
depends on the complete input during a certain time period which may vary from
time to time.

FEEDBACK LOOP GENERATION

We now want to follow an idea of Amkreutz [AM1] in order to obtain a closer look
to the inside of a design process. The basic idea is to differ between two basic

classes of design activities:

- Generation itself
- Checking activities (verification, validation, evaluation)

These checking activities use the output of the generation activity as input and

90 F.J. Rammig

pass the result back to the generation activity in order to obtain an effect,
Therefore the two activities form together a feedback Toop. Following this
approach now we also can route the different subTanguages within the design pro-
cess, i.e. identify information channels,

The object we have in mind may be shown as follows:

l—"""""—_“’——‘“—‘-——"‘ ————————————— S 1
] N I
' !
 EE— l
t lregul decis eval. e 4
]
[|
e 1
L.
1)—’—5 <JLO,§
Lo,d
Lid

generation

Tnis model seems to be @ good first approach to model a design process. The main

classes of activities can pe identified, information channels may be routed and
the dynamic behaviour can be investigated

For the latter

' task we need a more formal model with a variety of tunable para-
neters,

In our notation such a formal model] looks Tike ag follows:

Oef. 2 {Feedback Toop generation)

FLG {inp :]anguage-ggi[,
outp : Tanguage—pair,
Correct 1anguage,‘_—k
check language,
gen : (jiigg(inp))-liiz X correct-list -

check~li§£ X (fizgg(outp))-l;;;:

fdbk : (second(inp))-iist X check-;?ggv -

—_—

correct-list x (second(outp))-1ist
hist-g . 7 *INO
hist-f . 7 +INO

A Multilevel Cybernetic Model of the Design Process 91

is-wf FLG (inlng, outlIng, corlng, chking, gen, fdbk, hg, hf) =
is-dependent-on-last-hg(i}-inIng-inputs-and-on-actual-coring-
input (genj) A
is-dependent-on-last-hf(i)-inIng-inputs-and-on-actual-chking-
inp (fdb11)

The two features above may be formulated in the way like in Def. 1. By genj we
mean the output of gen at point of time 1 .

Note_E?at for the two main components different learning capabilities may be
possibie.

ENHANCED FEEDBACK LOOP GENERATION

Again following Amkreutz[AM1] we will identify three subobjects within the feed-
back-object of a design process:

~ an evaluation function
- a decision making function
- @ regulation function

The evaluation function maps the exogenous input and the output of the generation
object into an evaluation result. As exogenous information the evaluation function
gets the evaluation criteria and general restrictions. From the generation object
1t gets the internal design result to be evaluated.

In order to make sure that an evaluation results in the proper consequences
further subobjects are necessary. It is the job of the decision making function
to calculate the best suited strategy out of the exogenous input and the result
of the evaluation function.

Finally the selected strategy have to be transformed into an input into the gene-
ration object of the design process. This is done by the regg]ation function. This
discussion leads to a system that may be shown in the following manner:

Fr-tTT - TS T oS-SS To T T TTTT 7
[I
[|
i H
|) Fa. !
I checking e :
]
!
' I
L
T,C >————L———~ > —> 0,C
1
t
L ! . coring checklng | 1 Lo.d
1,d *“”‘T‘——— —-r——————ﬂ
1 1
| generation = :
I
I
l 1
i !
L___...__._____,__._-____-___-_-.._.l

97 F.J. Rammig

[n order to obtain a formal description we only have to redefine the feedback
object of our design process:

Def. 3 (Enhanced feedback object)
EFO (inp : language-pair,
outp : lanquage-pair,

ed : language,
dr : language,

eval : inp-list -+ ed-list,
dec : ed-list x (head(inp))-Tist - dr-1ist,
reg i dr-list x (head(inp))-list - outp-1ist

)
is-wf EFO (inlng, olng, ed, dr, eval, dec, reg) =
is-wf FLG—with—fdbk—substituted—by-compatible—EFO

In order to avoid unwieldiness wi

thin this paper we restrict ourselbes on this
refatively vaque definition for t

he wellformedness of enhanced feedback objects.

Up to now we have obtained g model that reflects a top level view of theldESTgn
process, either as description of the existing situation (when the model's para-
meters are properly calibrated) or as descriptions of the desired process. In
both cases the structure does not necessarily reflect the structure of labour
division within the real process (e.g. the different departments envolved) but
the different actions to be carried out. In a first step of system analysis
using this model the design process should be analized globally and locally. By
this the following information per unit to be analized has to be sampled:

Jut by the generation object,

s of the generation object,
what is the knowledge base of thig object and how is it updated,

how far is thig object dependent on its history,
what kind of evaluation is carried out,

what kind of transormation is carried

what are the input and output Tanguage

how far is evaluation seperated from generation,

- how is the evaluation ob

Ject provided with inputs (design to be evaluated and
evaluation criteria)

what is the fyurther Pracessing of evaluation results,

how are modification strategies calculated,

- how is the decision making object provided with inputs (evaluation result and
€xogenous parameters),

in which form the calculated strategies are made available,
how are modification strategies transformed into input of the generation object,
- how is the regulation objec

t provided with inputs (strategy and exogenous
paramenters),
- what is the general mode of operation of the design Process, especially what
are the expected gr observed information rates compared with the processing
e

how are input and processing synchronised,

A Multilevel Cybernetic Model of the Design Process 93

- what are the possible main states of the processes, especially what are the
conditions for equilibrium.

Note that these questions habe to be answered as well in the case of analyzing an
existing design process as well as in order to design the desired design process.
It can be observed immediately that up to now we have a model that seems to be
valuable for a macroscopic view or as description tool for single actions in a
complex design process. The gap to be attacked now can be characterized as micro-
scopic view of the entire system. I.e. we need composition techniques that allows
us to integrate single models to a global one.

MULTIPLE LEVELS OF ABSTRACTION
LEVELS OF ABSTRACTION

Usually with respect to a design process one has in mind not a momelithic point
of view. One has the imagination of a sequence of design subprocesses at various
levels of abstraction. OF course in any field there is no natural or generally
adapted partition into levels of abstraction. Taking into consideration the va-
riety of reasons for a partitioning inte levels of abstraction one even will not
expect to find such a natural partition.

As reason for such a partitioning are worth to be mentioned the following ones:

- Technological facts 0 s :
Just the existence of a certain set of elementary building blocks establishes

a level of abstraction.

- Engineering facts _
ﬁﬁyfeng1neering methods (algorithm) assume a more or less exactly defined set
of objects. Of course there exists a close interaction to technology: On one
hand science tends to investigate areas it is confronted with. On the cher
hand objects that have a safe scientific foundation are preferred candidates

for implementation,

- Management facts _ o ' of
CompTex systems can be desinged only in a Tabour dividing environment. Of
course one will choose such a kind of labour division that minimzes frictional
losses. Obviously this is not the case 1f.different groups use mutga]]y Ehe]
other group's outputs as elementary building blqcks. Therefore a h1eragc { ?
abstraction levels is preferable. Of course again we have a strong technolo
gical impact on organisation structures.

= Traditional facts])
Science, technology and management are (have to be) conservative to_g cirza1?
amount. Levels of abstraction may be argued for a priori with the aid of tra
dition,

i i ition i i ks Tike, we
Just to give a Timpse how a partition into levels of abstraction loo 2,
will present a gossible partition for the design process for conventional digital
computers:

a) Level of marketing
Action: Decision for a certain product line

b) Conceptual level
Action: Rough conception of system family

94 F.J. Rammig

¢} Level of programming system

Action: Decision what is the set of programs to be offered: Application pro-
grams, compilers, utilities

d) Level of operating system

Action: Definition of: Data management, process management, memery manage-
ment, resource management, pripheral control

e) Firmware Tevel

Action: Realization of the virtual operating system machine with the aid of
a set of microprograms

f) Architectural leve]

Action: Definition of microinstrustion format, adressing, memory organization,
bus organization, peripheral control

g) Register transfer level

Action: Decomposition of the architecture into objects Tike: Memory, register,
ALU, simple controllers

h} Gate level
Action: Logical realization of above building blocks

i) Physical design leve]

Action: Transofrmation of a lo
to a VLSI layout

gical network either to populated PC-boards or

In any case an adequate model of the design process has to reflect the concept of
partition into levels of abstraction. In the following, three basic approaches to

this goal will be discussed. We will characterize a level of abstraction simply

by the set of those languages within a design process which are attached to a
common level of abstraction. L.e. within a given design process we assume a to-
tally semi ordered partitign on the set of design languages.

Def. 4 (Design language set)
OLS (languages: }anguage-§gg,
Tevel : languages + I\

)

is-equivalent (1ngl, Ing,, dis) =

is-DLS{dTs) A fIngy, Ing,} < languages(dis) a level(ing;) = level(Ing,)

Egg—is-equivalent(lngl, 1ngz, dls)
not-exist-1Ing

iEfupper—neighbour(]ngl, Ing,, dls)

A
—between-lngl—and-Mg2

CHAINING
hat the input from the environment

. Further we have to assume that the in-
G; are either equivalent or neighboured

A Multilevel Cybernetic Model of the Design Process

with respect to the semi ordering of the design Tanguages.

Now the output of FLG, may be used as input of FLG, for which the same condi-
tions hold and so on.

Classical design strategies 1ike "Top Down" or "Bottom Up" are obtained if we
request that the neighbourhood of the input and outputlanguages of all involved
FLGI. are in the same direction. Of course Tevelinvariant design subprocesses may

be inserted.

The model obtained may be sketched in the following way:

J| FLG

. FLG, s .. —FL6 |—

vi € {2 : n}t: inp(FLG) = outp(FLGi_)

i

A Tittle closer look at our "Bottom Up" interpretation shows that the model is a
Tittle bit to simple. A design process where at a very low level of abstract1qn
some information is put in and then in successive steps a more abstract descrip-
tion is generated makes no sense. Usually both, the foundation and the goal are
to put in,

Therefore we obtain a system that may be sketched as follows:

FLG FLG o FLG,

This model seems to be more realistic in the "Bottom Up" as well as in the "Top
Down" case. Unfortunately in most cases unidirectional design strategies are not
practicable. In the case of "Bottom Up" we must be ab]g to process the informa-
tion that the design goal cannot be reached on the basis of the modules already
designed on lower levels. In the case of "Top Down" we musthe able to react_on
the information that, what have veen designed at a higher level can not‘be im-
Plemented at lower levels. Only if such information channe]s"are estab11shed the
realistic design strategies "Yoyo" (iterated "Top Down"'and Bottom Up" with main
direction "Top Down") and "Australian Yoyo" (1ike "Yoyo" but with main direction
"Bottom Up") may be modelled.

95

96 F.J. Rammig

What we obtained now is a double chain looking like the fallowing sketch:

[

Y...

FLG; FLG, f—— T r—rLG

That is our

first really useful composition scheme for multilevel design pro-
cesses,

Def. 5 (Double chained design process)

DCDP (flgs D <FLGy 11 € {1 : levelent) >,
mainings <language; | i € {2 : levelent + 1} »

inTngs t <language; | i € {1 : levelent} >,
fdbkings <language; | i € {1

¢ levelent + 1} >,
levelent : N

is-wf DCOP (flg, ming, 1lng, fing, lcnt) =
is-DLS (all-languages)
vie 1 : lent

© is-equivalent (ming;, flng;, iingj, DLS) A
is-equivalent (

m1n91cnt+1 ! f]nglcnt+1 > DLS) A

Vi€ {2 @ lenty - ii—from—f1g1_1-ngf191-1anguage(m19i)

jéfffgm—f]gi—zg—flgi_q—?anguage(f19i)

is-from-evironment-to-f1g-language(ilng;)
: 1eve](f?ngi)—1eve1(f1ngi+1)E {0,1}v

Eevel(flngi)-leveT(f]n91+1)E {-1,0}

A Multilevel Cybernetic Model of the Design Process 97

RECURSION

From a methodological point of view it is very attractive to model a hierarchy of
abstraction just by substituting subobjects of a FLG by a FLG object itself,
This is possible with all subobjects: Generation, evaluation, decision making,
regulation. This approach is recursive by its nature. Furthermore it is consistent
and elegant throughout the process of stepwiserefinement of a model of the design
process to be investigated.

Unfortunately this model describes only one single design methodology: “Bottom up
with predefined design goal". The design task is passed down to the Towest fevel,
is processed there by its generation object (the only one involved!) is checked
there and is then pushed up for checking at various levels of abstraction until it
reaches the top level again. As an example may serve the follewing daft of a re-
cursive substituted design process: (The subobject "generation" is substituted
twice, the feadback object is not further substituted).

N

W

J

Of course, the formal definition of the recursive substituted design process is
very simple:

Def. 6 (Recursive substituted design process)
RSDP (f1g(,,s, gen, eval,dec, ref,,)) =
is-FLG(fIg()) A
Jobj € {gen, eval, dec, reg}: is-FLG(obj)

98 F.J. Rammig

MULTILEVEL FEEDBACKING

purely endogenous approach and chaining as purely exogenous one. Now a compromise
shall be developped that combines the generality ofchaining with the consistency
and elegance of recursion. The fundamental idea is to identify such subjects
within FLG from which there exist abstracting or deabstracting variations. Such
objects may be used to couple various levels of abstraction. It should be noped
that in this approach active subobject are used as coupling elements while in the
other approaches language objects serve for this purpose. First of all the sub-
objects of FLG have to be investigated in order to identify suitable candidates.

- Generation object

The most popuTar variation of generation is a deabstracting one, namely imple-
mentation. But also the contrary is very important, we will call it aggregation.
As an example may serve the extraction of a program scheme out of a program,

- Evaluation object

Of course, evaTuation is an act of abstraction. But that is no abstraction 1ﬂ_
the sense discussed Within this context. E.g. if the description of an adder is
mapped by an evaluation object on "faster than 20 ms" this predicate is no longer
2 description of an adder. We will assume that every level of abstraction has

its own evaluation criteria with the same level of abstraction attached to. Of
course then there is no deabstracting nature of evaluation,

- Decision making object

1s object may decide that an abstraction or deabstraction has to be carried
cut; the object itself remains on one single level however.
- Regulation object
ere there exist both variations, the abstractin

An example of an abstracting regulation is the message “"desired object not imple-

mentqbie" within a "Yoyo" environment whije as deabstraction regulation one may
mention a message "offered module don't fits into my requirements".

g one and the deabstracting one.

The model obtained may be drawn in the following way:

A Multilevel Cvbernetic Model of the Design Process 99

In order to keep this paper readable we have to restrict ourselves on the structu-
ral part within the formal definition of the multilevel feedbacking:
Def. 7 (Multilevel feedbacking)
MLG (levels : IN ,
flgs @ <FLGj | 1 € {1 : levels}> ,
impls : <dom (gen(FLGjt+1)) ~
gen(FLGj)) | i ¢ {1 : levels-1l> ,
gen(FLGi)) -
gen(FLGi+1)) | 1 € {1 : Tevels-1}> ,
-
r

rng (
(
(
eg(FLGi+1)) ~
(
(
(

en
aggrs : <dom n
rng

(
(
(
(
regdns : <dom (
{
(
(

rng {reg(FLGi)) | i< {1 : levels-1}>,
regups : <dom (reg(FLGj)) »
rng (reg(FLGij+1)) | 1 ¢ {1 : Tevels-1}>

)
is-wf MLF () -
a-couple-of-straight-forward-restrictions-especially-stating-

dependencies-of-mappings

COMPOSTTION/DECOMPOSITION

Up to now we did not mention the extremly important design activities "gomposition'
and "decomposition". The reason for this is that decomposition is a typical deab-
stracting activity while composition {aggregation) is anabstracting one. I:e: we
must have available a multilevel model to be able to speak about these activities.

It's not surprising that all of our three approaches to mode) a multilevel design
Process can easily expanded to compository/decompository schemes.

Because of this simplicity we will introduce these expansions only by means of
drawings.

EXTENDED CHAINING

In order to expand the chaining scheme we simply have to transform our quasi linear
list to a quasi tree. If we want to describe both decomposition and composition

Within one model we have to combine two quasi trees. In order to obtain a simple
mapping from levels of abstraction onto levels of the quasi trees we request that
all design process objects on one level of a tree lay on one level of abstraction.
Now a decomposition/composition scheme may look like follows:

100 EJ. Rammig

decomposition

4 = = - g = = - -

composition

EXTENDED RECURSION

In the case of recursion we simply have to use Tists of FLGs instead of a single
FLG as substitution for subprocesses .

By the nature of the recursive substituted desj
composition are covere

gn process hoth decomposition and
d by this single scheme.

The following draft

: 'L may illustrate the idea. In this example the generation sub-
process is decomp1sed/composed into two subpr
tion.

OCesses at a Tower level of abstrac-

A Multilevel Cybernetic Model of the Design Process 101

|

EXTENDED MULTILEVELFEEDBACKING

The multilevel feedbacking may be extended in order to desgribe decomposition/
composition as easily as the other approaches. The only thing to do is to allow
cartesian products as range or domain of the deabstracting or abstracting subpro-
cesses.

implementation is carried out

The following example shows a design process where : ‘ J
ting regulation 1s a composito-

in a decompository manner. Consequently the abstrac

r -
Y one. >

P A A S

102 FJ. Rammig

DESIGN STRATEGIES

The most cited design strategies are "Top Down" and "Bottom Up". Ehe first one may
@¢1s0 be characterized as "stepwise refinement" the latter one as stepw1§e aggre-
gation". Both strategies are academic in nature. Therefore we w1]1 rgst(1ct our-
selves within this paper to describe the realistic strategy "Yoyo W1th1n the
model of extended multilevel feedbacking. It may be assumed that a design task fis
entered into the system at a certain level of abstraction. A first reaction may be

some modifications on the same leve] (levelinvariant generation) and at least a
validation process on the input data.

Assuming that there are no more problems a first implementation may occur {level-
variant generation). This may happen either in a decomposing way or not. ATl)
design processes on the lower level of abstraction now have to check_the 1mp1emen
tation result. Problems may be solved on this lower leve] bysomernod1f1gat1ons or
by regulating the design process one leve] higher (levelvariant regu]at10n)._Here
we see the Yoyo game in action: The regulation function acting one level up 1s

nothing else than a local "Bottom Up" activity. Note that this "Bottom Up" activi-
ty may have a reaction Up to the highest level of abstraction. The usua]_reacp10n
on an upward regulation is a modification on the higher level of abstraction, its

verification and, if the redesign is satisfactory, a new implementation attempt.

HETEROGENOUS DESIGN SYSTEMS

Up to now we discussed only pure schemes for th
processes. One easily observes howerver that he

with a well structured approach at
the top level, i.e. recursion or Multilevel feedbacking. In practice one will be

forced to leave the path of beauty when a more detailled planning of the design

process takes place. Then different chaining configurations wil] become the basic
structuring technique

CONCLUSTONS

This paper presents an approach to systematic system analysis of design processes.
By introducing levels of abstractio

n, dividing the design activities into genera-
ting ones and checking ones and finall

: y both classes in levelinvariant and level-
variant ones gne obtains 3 valuable classification scheme to identify separate de-
Sign activities. This separation toget i iti

REFERENCES

LAMLD . K. A, £, Amkreutz:
Cybernetic mode] of the design process
Computer Aided Design, Vol. 8, No. 3, 1976

[(BJ11 D. Bjormer, . B. Jones (eds):

The'Vienna Development Method: The Metalanguage
Springer Lecture Notes in Comp. Sc., Vol. 61, 1978

K011 c. Jg. Koomen:
Information Lays For System Design
Prac. Intern. Conf. on Cybernatics apd Society, Tokyo, Nor. 1978, Vol. II

A Multilevel Cybernetic Model of the Design Process 103

[MC1] C. Mead, L. Conway:
Introduction to VLSI Systems
Addison-Wesley, 1980

[RV11 C. R. Rupp:
Components of a Silicon Compiler System _
Proc. First International Conference on VLSI, Edinburgh, August 1981

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17

