Concurrent Languages in Distributed Systems

G.L Reijns and E.L. Dagless (editors)

Elsevier Science Publishers B.V. (North-Holland) 135
O IFIP, 1985

DESIGN AIDS FOR HIGHLY DISTRIBUTED HARDWARE

Franz J. Rammig
Universitdt-Gesamthochschule-Paderborn
Paderborn, Fed. Rep. of Germany

This paper describes how the design process for
highly distributed hardware is supported by tools that

have been developed and implemented by the author and his
collegues. These tools include a hardware description lan-
guage which is especially tailored towards loosely coupled
distributed systems, a simulator for this language and a
synthesis algorithm for the control structure of systems
described in this language. Both, nMOS and CMOS VLSI cir-
cuits may be synthesized by this algorithm.

INTRODUCTION

The design of distributed hardware consisting of numerous loosely coupled, con-
currently operating modules is a complicated task. It is rarely supported by tra-
ditional design tools Tike hardware description tanguages, simulators, synthesis
algorithms. Distributed, concurrently operating hardware on the other hand is
nothing but an implementation (realization) of a concurrent algorithm (the
interpretation algorithm for instructions) that has to be formulated in a concur-
rent description language. So the key point to the problem is a proper hardware
description language that allows the formulation of concurrent algorithms. Looking at a
broadband language that is able to accompany the design process over various Tevels
of abstraction this power is requested especially at the system Tevel and the pro-
cessor level (algorithmic level). At lower levels (register transfer, gate, switch)
the nature of the system to be organized as distributed concurrent one is no longer
visible, So when discussing hardware description languages we will concentrate on
language features for the system level and the algorithmic Tevel.

Concurrency is a feature of the control structure while distribution is a structu-
ral feature. Therefore we will mainly discuss concepts for the formulation of con-
trol structures and to structure a description (and by this the described system)
into a number of cooperating modules.

Finally a system has not only to he described but also to be synthesized. From the
point of view of this paper only the realization of the intermodule communication
(the global control) is of interest, A possible realization technigue for this task

is presented.

136 F.J. Rammig
A MODEL FOR CONCURRENCY : INTERPRETED PETRI NETS

Petri nets /PEl/ are an easy to understand, simple, general, and a mathematically
well investigated model of concurrent processes. In this paper we will not discuss
ordinary Petri nets but the special descendant used as the semantic foundation of the
hardware description language CAP/DSDL /RA1/.

CAP nets are transition/event nets with a heterogenous set of transitions (firing
rules) in contrast to the pure Petri net approach where we have only a single one.
Other heterogenous nets can be found elsewhere in the literature (e.g. /HY1/, /YGl/,
/NO1/, /RO1/).

Def. 1
PG = (P,T,E) is called Petri net graph :<=>
P finite set (of "places")
T finite set (of “transitions")
EcPxTouTxp
PnT=29
YXePuT:3yepPyT: (X;¥) e Ev (y,x) e E

Def. 2
PN = (PG,mO,R) is called Petri net :<=»
PG = (P,T,E) is Petri net graph
MyeM={m{m:p- N} (initial marking)
Roeflrir:7> frb with
Yt e T (ft : M- M) (firing rule of t)

While in ordinary Petri nets there is exactly one firing rule for all transitions,
we will consider six types of firing rules.

Def. 3
Let be PN = ((P,T,E),mo,R) a Petri net, t ¢ T,
R e PPt e B Lt s pe P [(thp) e E}
The transition t is called AND-transition :<=»
1) t is firable under marking m :<=»
VYpe 't im(p) >0
2) fy : M> Mis called firing of t i<=>

Fm(P)) =m(p) =1 <= p et At firable
TemP)) =m(p) + 1 <= pet- 4t firable
fo(m(p)) = m(p) else

Let A(PN) < T denote the set of al] AND-transitions of a Petri net PN. This type
of transition corresponds to the transition in ordinary Petri nets directly.

Design aids for highly distributed hardware 137

Symbol

Def. 4
Let be PN = ((P,T,E),mo,R) a Petri net, t ¢ T, 't, t* defined as in Def. 3.
The transition t is called OR-transition :<=>
1) t is firable under markingm :<=>3pe "t :m(p) >0

2) f, + M~ M is called firing of t :<=>
fu(m(p)) = m(p) -1 <=>pe *t m(p)>0 A t firable
fo(m(p)) = m(p) +1 <=>pe t’ At firable
fe(m(p)) = m(p) else

This transition corresponds in ordinary Petri nets to a subnet like :

Let O(PN) © T denote the set of all OR-transitions of a Petri net PN.

Symbol :

A third and forth type of firing rules will be defined as Def. 6 and Def. 7.

Def, 5
IPN = (PN,I,D) is called interpreted Petri net :<=>
PN = ((P,T,E),m ,R) Petri net,
Ie{i]i:T~>0u{x)} with
0=1(o|o: dom(o) c X0~ codom(o) < xDy
D manysorted set (of "data ohjects")
A pair IF = (f,,i,) will he called interpreted firing.

!

138 F.J. Remmig

For technical reasons within this paper we restrict ourselves on such interpreted
Petri nets where only OR-transitions of degree (1,1) and ARBITER/DECIDER-transi-
tions have a nonempty interpretation. Of course that is no semantic restriction.

Def. 6
Let be IPN = (((P,T,E),mO,R),I,D) an interpreted Petri net, t ¢ T, "t = ip;1s
U7 Wratser Prpyeds T(t) = d = d, i(t)(d) = d, value(d) ¢ {true, false) .
The transition t is called DECIDER-transition :<=»

1) t is firable under marking m ; = m(pi) >0

2) ft : M~ Mis called firing of t :<=>
ft(m(pi)) = m(pi) -1
fe(m{pypye)) = MPipye) * 1 =t firable o d = true
ft(m(pfalse)) = m(pfalse) +1 <> f firable n d = false
£y (m(

g(m p)) =m(p) else
Let D(IPN) denote the set of all DECIDER transitions of IPN.

Symbol :

In ordinary Petri nets this transition corresponds to a subnet like :

This type of transition can easily be generalized to a "case"-type transition
{n branch decider). The CAP/DSDL compiler makes use of this possibility.

Def. 7
Let be IPN = (((P,T,E),mO,R),I,D) an interpreted Petri net, t ¢ T,

to= {enab]e,reqi o= 0,...,m > t7 = {run, reti [1=0,...,n} ,

Ht) =d-d, i(t)(d) = d, value(d) « f{req; | i =0,...,n} > (0,n], biject.} .
The transition t is called BLKHD-transition :<=>

1) t is firable under marking m :<=>

m(enable) > 0 A3p ¢ {req, P i=0,...n} : m(p) > 0

i
Z)faMemMe) = m{enable) ~ 1

ft(m(run = m{ run) £ 1

it

1

ft(m(ret,

m{ reg;) - 1}<=>{m(reqi)>0.(va1ue(d))(reqi)=
m(ret;) + 1 max((va]ue(d))(reqj) [3=0,...,n}

H

)
)
Fo(m(req;))
))

Design aids for highly distributed hardware 139

Let B(IPN) denote the set of all BLKHD-transitions of IPN. This type of transition
is a special case of an arbiter where the arbitration is carried out between the

request places reqq to req,.

req, req

run Si? ret_ enable
Def. 8 0 n

Let be IPN = (((P,T,E),mO,R),I,D) an interpreted Petri net, t e T,
"t = {finished, reti | i=0,...,n} , t" = {enable, backi | i=0,...,n} .
The transition t is called BLKEND-transition :<=>
1) t is firable under marking m :<=>
m(finished) > 0 A3 p e {ret; | i =0,...,n :m(p) > 0
2) fy : M > Mis called firing of t <=

Symbo1 :

fo(m(finished)) = m(finished) - 1
fi(m(enable)) = m(enable) + 1
fo(m(ret;)) = m(ret;) - 1 } <om(ret;) > 0
fo(m(back;)) = m(back;) +1

Let N(IPN) denote the set of all BLKEND-transitions of IPN.
finished ret0 retn enable

Symbol

backo backn

BLKHD and BLKEND transitions are generated as pairs by the CAP/DSDL compiler where

the respective places named "enable” and "reti" are identified. This monitor mecha-

nism is produced for every function or procedure declared in a CAP/DSDL s
n internal control.

ource

description, modelling a time-shared hardware device with ow

Def. 9

Let PN = ((P,T,E),mo,R) be a Petri net, te T, 't

The transition t is called AT-transition :<=>

1) t is firable under marking m :<=> m(synch) > 0

2) f, : M>Mis called firing of t :<=
fy(m(synch)) = m(synch) -1
fom(ord)) =m(ord) - 1y o m(ord) > 0
fe(m(out }) = m(out)+ 1

= {synch, ord} , t' = {out} .

140 F.J. Rammig

Let Y(PN) denote the set of all AT-transitions of PN.
synch ord

Symbol :

O

out

AT-transitions are generated by the CAP/DSDL compiler whenever an AT-construct is
included in the CAP/DSDL source program. This construct allows the designer to

specify control flows that are synchronized with arbitrary data events (e.g. edges
of clock signals),

Now we have available the building blocks of the nets to be considered. In order
to get nets that can easily be implemented we introduce some global restrictions:
First of all, having introduced special types of transitions to model places with
backward and forward conflict it no longer makes sense to have places with connec-
tivity degree other than (1,1). Restrictions on the interpretation have already
been mentioned. Finally we will restrict our model on l-safe nets. As the nets

obtained are a subclass of the nets used in CAP/DSDL we will call the resulting
nets safe restricted CAP nets (SRCN}).

Def. 10

Let be IPN = (((P,T,E),mO,R),I,D) an interpreted Petri net.

IPN is called SRCN :<=»

1) T = A(IPN) _ O(IPN) . D(IPN) . B(IPN) o N(IPN) u Y(IPN)

2)¥pe P:ltpl = iprl =1

3)YpeP:WmeM: m(p) ¢ 10,1}

$) ¥t e Tt L DUIPN) v t ¢ B(IPN) v ¢ ¢ A(IPN) n {t e T | degree = (1,1)}
= i(t) =

FROM CONCEPT TO LANGUAGE : CAP/DSDL

CAP/DSDL (Concurrent Algorithmic Programming Language/Digital Systems Description
Language) is a broadhand hardware description language—that covers the entire band-
width from system level via algorithmic level, register transfer level, gate level,
down to switch level. Its hasic idea is to take interpreted Petri nets (CAP nets in
our case) and to build a PASCAL oriented hardware description language around it.
From PASCAL is taken the overall per module organization of CAP/DSDL and also much
of the notation. Every module in CAP/DSDL is organized in the following way:

Design aids for highly distributed hardware 141

- Module head with interface description (mandatory)
- Definition of constants (optional)
- Definition of object types (optional)
- Declaration of objects (optional)
- Definition of “assertions” (optional)
- Declaration of interrupt service routines (optional)
~ Description of the controlled part (optional)
- Description of the control part (mandatory)

- Module head with interface description:

Modules (unfortunately denoted by the keyword procedure in CAP/DSDL) serve as the
basic encapsulation construct. They constitute a scope for identifiers and hide all
objects that are not mentioned in an export list away from the outside world. A
module isnot a block in the ALGOL sense, i.e. all local objects are static ones that
exist and maintain values independently from the activation status of the module.
Parameter passing is always by reference hut the direction (in, out or inout) has

to be specified.

- Definition of constants, definition of object types, declaration of cbjects

A hardware description language has to provide a set of constants, of object types,

and of operators that is different from that of general purpose Tanguages like
PASCAL. Data objects in CAP/DSDL are based on bitstrings where each "bit" may

carry one of 127 values at a time (powerset of L0, L1, MO, M1, HO, H1, ZZ without

the empty set, where the prefix letter denotes the signal strength: L for “low

H for "high impedance", see /LRL/).

Of course thereexists a variety of language constructs to define constants and to
structure data objects (arrays, records).Types of modules may be defined as well as
cijal objects for Petri net places and for interrupt
As operators we have

impedance", M for "medium impedance",

types of data objects and spe
signals. This special feature will be discussed later.
the complete set of logical operators to be used either in a dyadic manner (excep-
ting not) or in a monadic one (as reduction operator excegtig not). Arithmetic and
unsigned and two's complement arithme-
d substring operators.
e.g. for

relational operators are offered, both for
tic. Stringhandling is carried out using concatenation an
In addition a rich set of predefined Ruiltin functions is available,
shift/rotate, timing, or to describe special MOS features 1ike bidirectional trans-
fer gates in a precise manner. 0f course there is strong type checking.

Ea

142 F.J. Rammig

- Definition of "assertions"

In CAP/DSDL it is possible (and recommended) to formulate invariant "assertions"

about a system to be modelled. Whenever such an invariant is violated, an action

as formulated by the user is caused.

Example: (uptime is a standard builtin function of CAP/DSDL while WRITE, DATA RDY
and SETUP are user variables in this example, their correlated behaviour
to be monitored)

not (WRITE & uptime(WRITE) - uptime(DATA RDY) <= SETUP) =>
error (' setup condition violated Y

- Declaration of interrupt service routines

Event driven control s a natural approach in distributed systems. Interrupt

systems are described in CAP/DSDL via interrupt signals (objects of type interrupt
with domain "set", "not set"), interrupt service routines and some specific operations
(sint(x), wait(x), enable(x), disable(x)). A module is sensitive to an interrupt
signal x if it contains an nterrupt service routine for signal x. So by the decla-
ration of interrupt service routines not only the reaction to an interrupt is de-
fined but also the static interruptability (which may restricted further dynamically
using disable/enable operations)

- Description of the controlled part/description of the control part
A hardware system typically can be separated into a controlled part (data path)

and a controlling one. This separation principle is reflected in CAP/DSDL by
offering two distinct parts to he used in a description.

In the part for the data path two phenomena are describied: The value behaviour of
non storing data objects (variables with type prefix implicit in CAP/DSDL) is de-
fined and guarded register transfers (or more complex operations, but guarded 1in
any case) are formulated. A CAP/DSDL description of a system may consist mainly of
this part, as shown in the example below,

Example: (3 bit ripple counter at RT-Tevel)

‘var ONT, T1, T2, T3: bit; CLK: fmplicit bit;

%mpdef
CLK := not CLK delay (50)
at up (CNT & CLK) do T1 :=T11 := not T1;
at up (CLK & not T1 do T2 : not T2;
at up (CLK & ot T2 do T3 : hot T3;

Design aids for highly distributed hardware 143

This part of a description can also be viewed at as a control structure based upon
events on data objects instead of being based upon identified control events. By
the CAP/DSDL software system such guarded operations are treated as isolated sub-
nets with a unique entry place that is marked by the respective event on data vari-
ables.

The control part of a system is described by formulating a concurrent algorithm.
This may be done either by using the wsual(straightforward extended) algorithmic
constructs (segbegin...end, conbegin...end, parbegin...end, while...do, repeat...

until, case...of, if...then...else, for...seqto...do, for...conto...do, for...
33[29...g9) or by formulating directly a controlling CAP-net. The first alternative
is to be preferred as, by exclusive use of this alternative, a deadlock-free,
reusable and safe system can be ensured /RA2/. For obvious reasons this
alternative is called "structured concurrent programming" in CAD/DSDL. It has been
shown /RA2/ that every deadlock-free, reusable, and safe CAP-net can be represented

by a semantically equivalent structured concurrent CAP/DSDL program.

The semantic foundation of CAP/DSDL is given by CAP-nets. The structu-

red constructs are viewed as templates of special nets that can be nested re-
cursively. Consequently the CAP/DSDL compiler maps every control structure onto a
CAP-net and our synthesis algorithm implements such nets directly in silicon.

FROM DESCRIPTION TO HARDWARE : THE CAP/DSDL SYNTHESIZER

Various methods for a direct implementation of interpreted Petri nets have been
using a diode matrix or

proposed in the literature. Some of them are centralized,
y that a central

a PLA structure /PAl/, /KI1/. Such approaches have the deficienc

control unit is obtained that has to distribute control signals all over the sys-

tem. This causes a layout with considerable high crossover complexity, especially

if % is scaled down. Most approaches make use of flip-flops in order to model a

place, representing the actual marking by the flip~flop’s state /DTM/, /KI1/, /PAL/.

In our opinion this approach has two main deficiencies:

- As input places have to he emptied when a transition fires, we ne
tions for every place-to-transition edge of the net.

- As redundant information is stored, redundant flip-flops are neccessary. This

results in a waste of chip area.
Therefore we prefer a "non return to zero" (NRZ) encoding of the markings /RA3/.
is /PD1/. In addition

This approach was first investigated by Patil and Denni

ed two connec-

our implementation is a distributed one.

144 F.J. Rammig

In our approach a place is represented by a simple 1ine and transitions by certain

circuits.

Let 1(p) denote the line representing a place p and let be t a AND-transition,

pe "t.

- t becomes firable if an arbitrary edge occures on 1(p) and for all other places
p' e "t the last edge on 1{p') has been the same as this one on 1(p).

- In order to model firing , transition t toggles the value on all 1(p+) with
t¥ ¢t and holds this value. Furthermore internally it toggles its encoding of
all its input places.

Note that we now have a one phase (non return to zero) protocol between places and
transitions. The storing capability has been moved from the places to the transi-
tions. In transitions we have to store two kinds of information:

- the actual coding of the input places

- the actual value of the output places.

A1l this information can be stored in a single flip-flop independently from the

number of input and output places. This is true because

- at every point of time the value of all lines representing output places of a
transition is identical (but may be interpreted in different ways by different
transitions that have such places as input places),

- we can assume that at every point of time all input places of a transition are
encoded identically with respect to the considered transition,

- we can use the same flip-flop in order to hold the value of the output lines and
to remember the actual coding of the input lines as this coding is toggled if and
only if the transition fires. By firing and only by firing a transition togg-
Tes the value of its output lines.

We will not discuss the building blocks of our implementation method in this paper.

They are described in detail in /BR1/ (both, nMOS and CMOS realization). Just to

give an idea of the simplicity of the approach we will sum up the principles:

a) An AND-transition with n inputs and m outputs is modelled by a n-input C-gate.
Using the nMOS realization of /MC1/, 2n+4 transistors are needed.

b} An OR-transition with n inputs and m outputs is modelled by a n-input coincidence

gate. Following an idea of /ED1/, 3n-3 transistors are needed for a nMOS reali-
zation.

[l

A DECIDER-transition with one enafile input, a fully decoded m-bit control input

and m outputs is realized with the aid of one pulse generator and m gated toggle
flip-flops. This implementation needs 12m5 transistors for a nMOS realization.

d) A two-way ARBITER (the heart of the BLKHD-transition) consists of 3 toggle flip-
flops, a pulsegenerator and some additional circuitry. A nMOS realization costs

58 transistors. A n-way ARBITER costs 1/2(n+35n+38) transistors and finally a

Design aids for highly distributed hardware 145

BLKHD-transition for n requests needs 1/2(n2+41n+32) transistors.

e) A BLKEND-transition for n requests is implemented using one pulse generator,
n toggle flip-flops and some additional circuitry, needing 18n+2 transistors
in total.

f) A AT-transition is just a special case of the BLKEND-transition and is imple-
mented similarily with 20 transistors.

g) Data operations have to be sensitive for any edge on an "invoke"- input and
have to acknowledge by toggling the value of an “acknowledge“-output. Such black
boxes may be inserted into the net whenever it is requested by the concurrent
algorithm to be implemented. (In practice just the opposite procedure is followed
up: First the data manipulation modules are arranged following a data path
approach and afterwards the circuitry for the implementation of the control
structure is inserted, connecting "invoke"- and nacknowledge"-signals via imple-

mented transitions due to the net structure.)

ed on a single format data base,

In the CAP/DSDL system all system services are bas
nized

called C/D-code. This is an internal representation of CAP/DSDL programs, orga
as a couple of multiple Jinked lists. In the C/D-code the complete control struc-

Fure of a CAP/DSDL description is already transformed into an interpreted CAP-net.
Using this a remarkable part of the synthesis job to be done is carried out by the

usual CAP/DSDL compiler, used for every application of CAP/DSDL.

Fig. 1 shows the overall organization of the control structure implementation

algorithm.

Fig. 1

CAP/DSDL Source

CAP/DSDL Compiler

.

'

C/D Code

Synthesis System

Simulation System

146 F.J. Rammig
GRANULARITY OF CONCURRENCY : THE MODULARIZATION CONCEPT OF CAP/DSDL

Like MODULA, CAP/DSDL has included a module concept, but this is closer to the
class-concept of SIMULA.

In CAP/DSDL the terms "module" and "procedure" are identified, i.e. every proce-
dure describes a piece of hardware that has its own resources, its

own control, and may be requested by several activities concurrently. The requests
are served in a time shared manner, i.e. included in the procedure/module concent
is a monitor concept with arbitration (see BLKHEAD/BLKEND-transitions).

Procedures may be defined as types. So an arbitrary number of instantiations of
such a type may be created just by declaring "variables" of such a type.

Example

type memorycell =
procedure memorycell (in operation : bits
inout data : bit(8));
const read = "P"; write ="1";
var datacell : bit(8);
conbegin
case operation of
read : data := datacell;
write : datacell := data
end
end;

memoryhank =
procedure memoryhank (in operation : bit;
in adr : bit(1p);
Inout data : hit(8));
var memory : array [P : 19231 of memorycell;
conbegin
memory [adrl (operation,data)
end;

var memory : array [@ : 19237 of memoryhank

Design aids for highly distributed hardware 147

It should be mentioned that in CAP/DSDL procedure types may be generic objects.
Another important feature of CAP/DSDL procedure types is that they may be declared
as implementations of abstract data types (ADT) /LS1/, i.e. objects that export
operations on data instead of data (-values). Such procedures therefore are called
“export procedures® in CAP/DSDL and are comparable with classes in SIMULA.

(Implemented ADT “stack", implemented on array, generic with attributes type of

“stackelement" and "size" of stack)

type stack =
export (flush, pop, push) procedure stack
[stackelement : type; size : const] 3

var stackcarrier : array [P : sizel gf'stacke1ement;

procedure flush;
{procedure body}

procedure pop (out data : stackelement; out emply :bit);
{procedure body}

procedure push (in data : stackelement; out full : bit);
{procedure body}

end;

var largebytestack : stack [bit(8), 19 0001 5
smallarraystack : stack [array [@ : 161 of bit(32), 641 ;5

The CAP/DSDL concept of modularization is comparable with the LMA concept /SC1/

and the concept of packet architectures /DE1/:

A system is constituted by a set of modules of different types that are invoked

ertain action. After the requested action has been
in well defined inter-

er and deactivates itself

mutually in order to perform a ¢
performed (and eventually the required data has been stored
face locations) an invoked module acknowledges to its invok
(makes itself ready for a subsequent activation).

This organization concept may be nested to any depth and ADT procedures may be
intermixed arbitrarily with ordinary ones.
arrays and records of procedures (modules). Concurrency is not restricted to the
cooperation of modules but is possible within moduTes as well. Our synthesis algo-
rithm performs its realization task on every control structure given by a CAP-net.
Parts of a description that have not to be processed by the synthesizer can be

encapsulated by using data driven control (usually used for synchronous submodules)

or by a compound statement of type ”begin...ggg“.

Regular structures are described using

148 F.J. Rammig
REFERENCES
/BR1/ R. Briick

/DEL/

/0T™M/

/EDY/

/FR1/

/HYL/

/KI1/

/LR1/

/LS1/

"Zur Synthese asynchroner Steuerwerke aus CAP/DSDL Beschreibungen®
(Synthesis of asynchronous controllers from CAP/DSDL descriptions)
in german

Diplomarbeit, Universitdt Dortmund, Abt. Informatik (1983)

J. B. Dennis
"Packet communication architecture®
Proceedings of 1975 Sagamore Conference on Parallel Processing (1975)

R. David, R. Tellez-Giron, E. Mitrani

"Emploi des cellules universelles pour 1a synthdse de systemes asynchrones
déscrit par reseaux de Petri"

Digital Processes, 6 (1980)

C. Edwards
"Some novel exclusive OR/NOR circuits®
Electronic Letters (1975)

D. Frantz, F. Rammig
"The impact of an advanced CHDL on VLSI design"
Proceedings of ICCD'83, Port Chester, N.Y. (1983)

0. Herzog, M. Yoeli
"Control Nets for asynchronous systems, Part I"
Technion Haifa, Dept. of Computer Science, Techn. Report 74 (1976)

D. Kinniment
“Regular programmahle control structures”
Proceedings of VLSI'81, Edinbourgh (1981)

K.-D. Lewke, F.J. Rammig

“Description and simulation of MOS devices in register transfer languages”
Proceedings of VLSI'83, Trondheim (1983)

B. Liskov, A. Snyder, R. Atkinson, C. Schaffert
"Abstraction mechanisms in CLU"
CACM, Vol1.20, No.8 (1977)

/MCL/

/NOY/

/PAl/

/PD1/

/PE1/

/RAl/

/RA2/

/RA3/

/RO1/

/5CY/

Design aids for highly distributed hardware 149

C. Mead, L. Conway
"Introduction to VLSI systems"
Addison Wesley (1980)

J. Noe, G. Nutt
"Macro E-nets for representation of parallel systems"
IEEE ToC, Vol. C-22, No.8 (1978)

S. Patil
"Micro control for parallel asynchronous computers®
Proceedings of Euromicro '75 (1975)

S. Patil, J. Dennis
“The description and realization of digital systems"
Proceedings of 6th IEEE Annual Comp. Society Intern. Conf. (1972)

J. L. Peterson
"Petri Nets"
ACM Computing Surveys, Vol. 9 (1977)

F. J. Rammig
"Preliminary CAP/DSDL Language Reference Manual"
Forschungsbericht Nr. 129 d. Abt. Informatik d. Univ. Dortmund (1981)

F. J. Rammig
“Structured parallel programming with a highly concurrent programming language”

Atti di Congresso Annuale AICA '80, Bologna (1980)

F. J. Rammig

"An alternative approach to self-timed VLSI systems”
Forschungsbericht Nr. 131 d. Abt. Informatik d. Univ. Dortmund (1982)
C. Rose

“LOGOS and the software engineer”

Proceedings of FJCC '72 (1972)

M. Stefik, L. Conway
"Towards the principled engineering of knowledge"

The Al Magazine (1982)

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15

