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SYSTEMATISCHER ENTWURF EINES 32 BIT MIKROPROZESSORS ALS AUSBILDUNGSAUFGABE

Franz J. Rammig, Universitdt-GH Paderborn, Fachbereich Mathematik-Informatik

Kurzfassung

In diesem Beitrag soll erldutert werden, wie der systematische Entwurf komplexer
Rechnersysteme durch die Betreuung von aufeinander abgestimmten Diplomarbeiten
und einer vorbereitenden Lehrveranstaltung gelehrt werden konnte. Als Fallbei-
spiel diente ein 32 Bit Mikroprozessor mit komplexem Instruktionssatz und auf-
wendiger interner Architektur. Zundchst wird ein projektorientiertes Ausbil-
dungskonzept vorgestellt, wie es in Dortmund und in Paderborn praktiziert wird.
Das konkrete Beispiel wird anhand der Aufgabenstellung und einer kurzen Skiz-
zierung des erzielten Ergebnisses eingefiihrt. Danach wird auf die gewdhlte Ent-
wurfsmethode und die benutzten Hilfsmittel eingegangen. Zum SchluR wird versucht,
die Erfahrung kritisch zu wiirdigen.

1. Uberlegungen zu einem Ausbildungskonzept fiir den Entwurf von
Hardware Systemen

Es ist, sicherlich zu Recht, einmal gesagt worden, daB die Informatik als Wis-
senschaft nur Sinn macht, wenn sehr komplexe Systeme bearbeitet werden. Damit
sollte aber auch der Entwurf von Hardware Systemen nach Méglichkeit anhand kom-
plexer Systeme gelehrt werden. Es ergibt sich dadurch aber sofort das Dilemma,
daB derartige Systeme den Rahmen von Lehrveranstaltungen sprengen, insbesondere
den der m.E. wichtigsten, dem Anfertigen einer Diplomarbeit. Verzichtet man aber
auf Beispiele einer bemerkenswerten Komplexitdt, so sind Entwurfsverfahren, die
auch die héheren Abstraktionsebenen unfassen, kaum zu vermitteln, und die Not-

wendigkeit, komplizierte CAD-Hilfsmittel einzusetzen, kann von den Studenten
nicht eingesehen werden.

Sinnvolle Lehre auf dem Gebiet des Hardware-Entwurfs muB die zy entwickelnde
Hardware als eingebettetes System sehen, das im Zusammenwirken mit der System-
umgebung, gesteuert von Systemsoftware arbeitet. Die so abgeleitete Aufgaben-
stellung muB nun auf verschiedenen Abstraktionsebenen einer spezifischen Ausge-
staltung zugefihrt werden. Als Abstraktionsebenen sind zu nennen:

- Systemebene

Hier wird das Gesamtsystem als System kooperierender "Prozessoren’ (d.h. rea-
lisierter abstrakter Datentypen) in objektorientierter Sicht gesehen. Infor-
mationsformate und Codierungen liegen nicht oder nur zum Teil fest. Als Zeit-
modell zieht man sich meist auf ein Kausalitdtsschema zuriick, falls nicht

flir Leistungsbewertungen metrische Schédtzwerte bendtigt werdén

- Algorithmische Ebene

Jeder der "Prozessoren" der Systemebene muR mit
rithmus seines ¥nstruktionssatzes ausgestattet w

ungen sind oft festgelegt,
r Ebene ist, abgesehen von
Zeitmodell ausreichend.

Man beachte, daB man beim Entwurf von Hard i i i
sondern hochgradig nebenldufige Algorithmegaggséﬁgé?ﬁtkelne sequentiellen,

wenn auch nicht gezwungenermaBen. Auch auf diese
Leistungsanalysen, eine Kausalitdtsstruktur als
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- Register Transfer Ebene

Beim Ubergang von der algorithmischen Ebene zur RT-Ebene findet eine ganz
entscheidende Transformation statt: Die imperative Sicht der algorithmischen
Ebene wird in die reaktive Sicht der RT-Ebene iiberfiihrt. Die Informationsfor-
mate und Codierungen liegen fest, man arbeitet mit einem relativ einge-
schrdnkten Satz von Bausteintypen. Als Zeitpunkt bedient man sich meist der
Zdhlung von Takten mit einem oft groben Modell der Abldufe innerhalb eines

Taktes.

- Gatter Ebene

Auf der Gatter-Ebene ist die Separation zwischen Datenmanipulation und Steue-
rung nicht mehr sichtbar. Man hat ein uninterpretiertes System stimulierba-
rer (d.h. aus dem Gleichgewicht zu bringender) Boolescher Gleichung vorlie-
gen. Auf dieser Ebene arbeitet man meist mit recht feinen Realzeitmodellen
mit diskretem Zeitraster.

- Schalter Ebene

Dies ist eine Abstraktionsebene, die sich mit der Transistorrealisierung von
Gattern (Transistor als idealer Schalter gesehen) befaBt, aber auch mit
Schaltungen, die keine direkte Entsprechung auf der Gatterebene haben. Bei
grundsadtzlich gleicher Modellsicht wie die Gatterebene zwingen die Bidirek-
tionalitdt von Feldeffekt-Transistoren und die beschrdnkte Speicherfdhigkeit
isolierter Regionen zu erweiterten Wertebereichen der unterlegten Logik.

- Symbolische Layout Ebene

Diese Ebene ist auf Verhaltenssicht mit der Schalterebene identisch. Aus
Struktursicht wird zusdtzlich die relative Anordnung der Elemente und die
Dotierung ("Férbung") der Verbindungen festgelegt.

- Layout Ebene

Die Layout-Ebene unterscheidet sich von der des symbolischen Layout dadurch,
daBR alle Elemente mit MaBen versehen sind. Da Beschreibungen auf dieser Ebene
von der unterliegenden Technologie nicht zu trennen sind, ist sie aus Verhal-
tenssicht mit der elektrischen Ebene identisch.

- Elektrische Ebene

Hier hat man es mit einem analogen System zu tun, das typischerweise durch
ein System von Differentialgleichungen modelliert wird. Es liegt ein dyna-
misches System mit kontinuierlichen Wertebereichen iber einer kontinuier-

lichen Zeitachse vor.

Eine Lehrveranstaltung, die die Chance bietet, daB die Studenten mit diesen un-
terschiedlichen Systemsichten konfrontiert werden, und auch einsehen, daB sie
sinnvoll sind, stellt die "Projektgruppe" dar. Diese Lehrveranstaltung ist am

FB Informatik der Universitdt Dortmund bindend vorgeschrieben und wird derzeit
am FB Mathematik-Informatik der Universitdt-GH Paderborn in der Informatikaus-
bildung probeweise eingesetzt. Die Idee ist, daB3 eine Gruppe von etwa 10-12 Stu-
denten ein realistisches Projekt Uber ein volles Jahr hinweg vollstdndig bear-
beiten. Dies beinhaltet das Erarbeiten der notwendigen theoretischen Grundlagen,
die Konzeption der Problemlésung, deren Organisation und schlieBlich Durchfih-
rung, Test und Dokumentation. Wichtig dabei ist, daB den beteiligten Studenten
die gesamte Projektverantwortung tbertragen wird, der Veranstalter soll sich auf
eine (oftmals doch lenkende) Beratertdtigkeit zuriickziehen.

Im vorliegenden Fall lautete die Aufgabe, einen Mikroprozessor flr Realzeitan-
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wendungen zu entwerfen, wobei der EntwurfsprozeB das Spektrum von Systemebene
bis elektrische Ebene umfassen sollte.

Typischerweise sind die engagiertesten Teilnehmer einer Projektgruppe mit dem
erzielten Ergebnis nicht zufrieden. Fiir sie ist die Projektgruppe der erste
Durchlauf, anhand dessen Fehler man lernt, das Problem richtig zu 16sen. Diese
Studenten bearbeiten dann meist aus der Projektgruppe kommende Themen im Rahmen
ihrer Diplomarbeiten. Im hier beschriebenen Fall kam eine Gruppe von sechs Stu-
denten zu dem SchluB, daR der gesamte Prozessorentwurf neu zu iberdenken ist.
Nun Gbersteigt der Entwurf eines komplexen Prozessors sicherlich den Rahmen
einer einzelnen Diplomarbeit bei weitem. Damit bot sich das Konzept aufeinander
abgestimmter Diplomarbeiten an. Ublicherweise wiirde man entweder auf eine streng
horizontale Gliederung verfallen (jeder Kandidat bearbeitet eine spezielle Ab-
straktionsebene, eine spezielle Phase des Entwurfs) oder auf eine streng verti-
kale (jeder Kandidat bearbeitet eine spezielle Komponente des Prozessors). Die
erste Alternative verbot sich allein aus zeitlichen Grinden. Zudem wdre sie di-
daktisch bedenklich (Widerspruch zum "long thin man"-Konzept). Ebenso didak-
tisch bedenklich erschien die zweite Alternative, da hier die Gesamtsicht ver-
loren gegangen ware.

Als Ldsung bot sich schlieRlich ein "Puzzle-Ansatz" an. Hier bearbeiten ver-
schiedene Studenten auf den verschiedenen Abstraktionsebenen jeweils verschie-
dene Teilkomponenten. Mir erscheint dieser Ansatz unabhdngig von der Situation
"Diplomarbeit" sehr traafihig zu sein, da das Gesamtteam sehr widerstandsfahig
gegeniber externen Stdrungen wird (Personalfluktuation) und eine generelle
Identifikation mit dem Gesamtsystem erméglicht wird. Weiterhin zwingt diese Auf-
gabenverteilung zu einer permanenten prdzisen Dokumentation (nacniassiges Nach-
dokumentieren ist unméglich!) und zu einer konsequenten Abkapselungsstrategie
der Teilmoduln gegeniiber der Umwelt. Dadurch werden auBergewdhnlich robuste Ent-
wirfe ermdglicht, die zudem lokale Modifikationen einfach zulassen. Bei der Er-
lauterung des Ausbildungskonzepts sollte darauf hingewiesen werden, daB die
Teilnehmer von Projektgruppen mit nicht unerheblichen Vorkenntnissen in diese
Lehrveranstaltung gehen. Sowohl in Dortmund wie auch in Paderborn wird ein ab-

?Esgig?}es System von Vorlesungen und Seminaren als Vorbereitung angeboten
I .

2. Aufgabenstellung im vorliegenden Fall

Urspringliche Aufgabe der Projektgruppe war es, flr eine an der Universitit
Dortmund entwickelte Realzeit-Programmiersprache (CAP/RTL, /PS 83/ einen dedi-
zierten Prozessor zu entwickeln. Dieser Prozessor sollte durch einen komplexen
angepaBten Instruktionssatz mit aufwendigen Adressierungsarten und einem extrem
leistungsfahigen Interrupt-Konzept diese Sprache optimal unterstiitzen.

Im Rahmen der Diplomarbeit wurde von dieser Bindung an eine Sprache abgegangen.
Ziel war nun, einen Prozessor zu entwickeln, der blockstrukturierte hohere Pro-
grammiersprachen unterstitzen sollte. Dabei waren Prozedurkonzepte (PASCAL

/Jd 78/, C, /KR 78/), Blockkonzepte (ALGOL, /NA 63/, SIMULA, /BE 78/) und Klas-
senkonzepte (SINULA, /BE 78/, MAINSAIL, /XI 85/) 2u’unterstitzen. Tynische
Datenstrukturen wie array, record aber auch Text-Strings sollten einfach verar-
beitet werden. Neben der Verarbeitung des Objektcodes sollte jedoch auch dessen
Erzeugung durch den Prozessor unterstitzt werden. Der Compiler sollte von har-
ten Aufgaben (z.B. Register-Zuweisung) nach Moglichkeit entlastet werden. Fiir
beide Aspekte sollte noch ein einfaches Konzept fiir Kontext-Wechsel bereitge-

stelIt werden, insbesondere um rekursive Strukturen zy ( lihzeiti

: . Lo " unterstitzen. Friihzeiti
fand die Entscheidung fiir eine reine 32-Bit Losung statt. Damit sollte nicht nﬁr
modernen Trends Rechnung getragen werden, sondern” auch eine homogene interne
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Struktur des Prozessors bei hinreichend groBem Adressraum mdglich werden. Die
externe Schnittstelle sollte mit der Prozessorschnittstelle eines handelsiibli-
chen Prozessors kompatibel sein, um zu gewdhrleisten, daR der Prozessor in vor-
gegebene Umgebungen eingebettet werden kann. Die Entscheidung fiel recht zufdl-
lig auf die auf 32 Bit erweiterte Schnittstelle des 78000.

Da der Entwurf von der externen Architektur bis zum Erstellen der Layouts fur

den CMOS-ProzeB der Universitdt Dortmund durchzufiihren war, sollte bei jeder Ent-
wurfsentscheidung der Realisierungsaspekt als VLSI-Chip beriicksichtigt werden.

So stand in der Aufgabenstellung bereits fest, daB der Datenpfad in konsequen-
ter Bitslice/Functionslice-Technik /SA 84/ in einem Zweibussystem zu realisie-
ren war. Auch beim Entwurf der Steuerungen sollte auf hdochstmdgliche Regulari-
tdt geachtet werden. Bei der relativen Unerfahrenheit der Entwerfer sollte Ro-
bustheit ein wichtiges Entwurfskriterium darstellen. Dieser Aspekt wurde auf-
grund der Aufteilung der Teilaufgaben (s.0.) automatisch verfolgt.

3. Kurze Schilderung des Ergebnisses

Es ist nicht Ziel dieses Papiers, das Ergebnis der Diplomarbeiten darzustellen.
Dies ist ausfiihrlich in den Diplomarbeiten /AHLAP 85a/ und in /AHLAP 85b/ nach-
zulesen. Es soll hier nur kurz umrissen werden, um zu demonstrieren, welche be-
merkenswertes Ergebnis sich mit den hier beschriebenen Prinzipien erzielen laRt.

3.1 Externe Architektur des Prozessors AHLAP

Die Abkiirzung AHLAP steht fiir "Advanced High Level Languages Assisting Prozessor”.
Es handelt sich um eine CISC (Complex Instruction Set Computer) Architektur mit
etwa 150 Instruktionen. Nach strengem Orthogonalitdtsprinzip werden fur alle
Instruktionen alle Adressierungsarten angeboten. Es handelt sich in der Regel

um 3-Adress-Instruktionen, wobei fir jeden Operanden die Adressierungsart frei
gewdhlt werden kann. Aus Codeeffizienzgrinden wird auch ein kurzes Format mit

nur 2 Adressen und eingeschrdnkten Adressierungsarten angeboten. Auch dieses
Konzept steht orthogonal zum Instruktionscode.

Die Adressmodi sind so gewdhlt, daB typische Datenstrukturen hoherer Program-
miersprachen wie array oder record mit unterstitzt werden. Es gibt sogar eine
Stackpointer- oder Datapointer-relative indirekte Adressierung speziell fir array
of records. Bei den Instruktionen sind neben einem reichen Satz konventioneller
Instruktionen besonders solche hervorzuheben, die der Textverarbeitung dienen,
den Kontextwechsel vereinfachen und solche fiir die InterprozeBkommunikation. Als
Interrupt-Konzept wurde der tbliche Ansatz uber Interrupt-Vektoren gewdhlt.

Bei der Festlegung der externen Architektur wurde davon ausgegangen, dafl moderne
Codegeneratoren, insbesondere nach dem Graham/Glanville-Verfahren /GL 77/ sehr
wohl in der Lage sind, einen komplexen Instruktionssatz auszunutzen. Auf der an-
deren Seite ist die Registerzuteilung ein hartes Problem und ist es besonders
auch fur ein "bottom up"-Verfahren wie im Falle Glanville. Daher wurde der Vor-
schlag von Ditzel und McLellen /DL 82/ aufgegriffen und anstelle einer Register-
bank ein Stackcache vorgesehen. Es hdlt statisch den jeweiligen "top of stack".
Die GréRe dieses Stackcache ergab sich aus Platzgriinden als 32 Worte & 32 Bit.
Dieser relativ kleine Cache zeigte bei Testldufen eine mittlere Trefferrate von

immerhin 89 %.

3.2 Die interne Architektur des AHLAP

Die interne Architektur des Prozessors AHLAP 1aRt sich charakterisieren als im
Pipelining betriebenes System lose gekoppelter Subprozessoren, die iber FIFO-
Puffer kommunizieren. Die Subprozessoren ergeben sich aus dem Ablauf des Pipe-
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lining: IFETCH, OPFETCH und EXEC. Dazu kommt ein I/0-Prozessor, dgr alle drei
Pipelinestufen bedient und ebenfalls iiber FIFO-Puffer entkoppelt ist.

Dieses Grundkonzept fiir die interne Architektur hat eine Reihe von Vorziigen. Zu-
ndchst streut die Komplexitdt der Instruktionen wie auch die der Adressierungs-
arten sehr stark. Bei einer engeren Kopplung der Pipelinestufen wire der Pro-
zentsatz von Wartezyklen der einzelnen Subprozessoren signifikant gestiegen.
Beim vorliegenden Ansatz haben Messungen ergeben, daR eine in etwa gleichmdBige
Auslastung der Komponenten erreicht wird mit einer leichten Lastspitze bei der
Komponente OPFETCH. Der entscheidende Vorteil dieses Entwurfsprinzips ist je-
doch die weitgehende Isolierung der einzelnen Pipelinestufen. Nach Festlegung
eines relativ einfachen Protokolls zur Bedienung der Puffer konnten die einzel-
nen Komponenten weitgehend autonom entwickelt werden. Dies flihrte zu bemerkens-
wert einfachen Steuerungen, die zudem sehr wenig Interdependenzen zur Umwelt
haben ("design for robustness"). Der Zugriff zur AuBenwelt geschieht {ber eine
weitere iber Puffer lose gekoppelte Komponente, den 1/0-Prozessor. Er arbeitet
intern ebenfalls im Pipelining-Modus und hat fir die drei Komponenten IFETCH,
OPFETCH und EXEC je einen gesonderten Puffer. Dadurch wird die Konfliktwahr-
scheinlichkeit bzgl. Externzugriffen wesentlich vermindert (hierzu trdgt natir-
lich auch die hohe Trefferrate des Internen Stackcache bei). Ein weiterer Vor-
teil dieses isoliertenI/0-Prozessors ist, daB die Bedienung einer anderen Pro-
zessorschnittstelle (z.B. MC68020) durch lokale Modifikationen moglich wire.

Die zu zahlenden Kosten fiir dieses Konzept sind ein erhéhter Synchronisations-
aufwand. Synchronisation ist notig im Fall gemeinsamer Ressourcen, im Falle von
Datenkonflikten zwischen Makroinstruktionen und bei der Initialisierung der

Pipeline (z.B. nach Spriingen). Es zeigte sich jedoch, daR die gesamte Synchroni-
sation mit einigen hundert Transistoren zu 16sen war.

Konzeptionell liegen beim AHLAP drej Subprozessoren je mit Steuerung und Daten-
pfad vor. Da jedoch ein relativ hdufiger Intermodul -Datenaustausch notig ist,

wurde ein gemeinsamer Datenpfad in einem Zweibus-System konzipiert. Beide Busse
sind jedoch in je drei Abschnitte (die leicht versetzt zueinander liegen) teil-
bar. Somit ist es doch wieder moglich, jede Steuerung direkt mit “ihrem" Daten-
pfad zu koppeln und die Konfliktwahrscheinlichkeit auf den Bussen signifikant zu

senken. Im Idealfall liegt logisch ein 6-Bus-System vor. Ein dhnliches Konzept
Ist beispielsweise beim MC68000 zu beobachten

ATA LR
1 IFETCH
NSTR
IA3TR. ~qurue INSTR. ~Queut
PC-que re-que
ADORESSF - QUELT
%ﬁi’:‘u"‘
CACHE CPFETCH tar
re INSTA. .
{238 )(4] oUW
OPIRANG-QUOUE '
DATATN-QuuE
EXEC NERORY-OF . QUEiS
CXUICREGISTER QATAQUT-QuELE
INSTN . -QuELE

Abb. 1: Logische Struktur von AHLAP (aus /AHLAP 85a/)
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3.3 Die Realisierung des Prozessors AHLAP

Im Prinzip war ein Datenpfad und fir jede Subkomponente eine Steuerung zu kon-
zipieren. Alle Steuerwerke sind als konventionelle Mikroprogrammwerke aufgebaut,
wobei der Ablauf natirlich wesentlich vom Zustand der Pufferspeicher und der
Verflgbarkeit gemeinsam genutzter Ressourcen geprédgt wird. Die Mikroprogramm-
werke ihrerseits arbeiten im Pipelining-Modus.

Der Datenpfad wurde konsequent in Bitslice-/Functionslice-Technik entworfen.

Der zeitliche Ablauf wird durch ein sehr einfaches Einphasenschema gegeben.
Schaltungstechnisch wurde das Konzept "statische Speicher/dynamische Logik" ver-
folgt. Die Trenngates auf den Bussen dienen gleichzeitig als Treiber, so daR
auch hier recht glinstige Vorlade- und Evaluierungszeiten erreicht werden konn-
ten. Da bei dem der Realisierung zugrundeliegenden Dortmunder CMOS-ProzeR nur
eine Metallisierungsebene zur Verflgung steht, muBten auch fir die quer zu den
Bussen laufenden Steuerleitungen nach je 8 Bit Treiber vorgesehen werden. Es

wurde ein hochgradig regelmdBiger Entwurf erhalten, bei dem die meisten Verbin-
dungen durch "abutment" gezogen werden konnten. So weist der Floorplan auch nur
wenig Fldche fir Verdrahtung auf. Die gesamte Komplexitdt des Chips betrdgt rund

100 000 Transistoren auf einer Fldche von etwa 11 mm x 11 mm.
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4. Entwurfsmethode

Die von mir in der Lehre vertretene und im vorliegenden Fall angewandte Entwurfs-
methode 1daBt sich als YOYO-Methode charakterisieren (iteriertes Top-Down und
Bottom-Up mit Vorzugsrichtung Top-Down). Diese Methode erfordert eine Modell-
bildung auf verschiedenen Abstraktionsebenen. Zwischen diesen Modellen finden
dann wohldefinierte Transformationen statt. Da stets eingebettete Systeme zu ent-
werfen sind, ist es notwendig, zundchst ein Grobmodell der externen Architektur
anzufertigen. Anhand dieses Modells kann die Interaktion mit der Umwelt und das
Verhalten unter der vorgesehenen Software untersucht werden. Sind diese Unter-
suchungen, evtl. nach Modifikationen, befriedigend abgelaufen, findet die Grob-
festlegung der internen Architektur statt. Das Gesamtsystem wird in ein System
interdependenter Agenten (objektorientierter Ansatz) aufgebrochen. Diese Trans-
formation erfordert ein tiefes Verstdndnis in die zu erwartenden dynamischen
Abldufe. Neben der Aufteilung ist auch die Kommunikationsstruktur festzulegen.

Im vorliegenden Fall wurde zu diesem Zeitpunkt aufgrund eingehender Untersuchun-
gen die Entscheidung getroffen, die Einzelmoduln weitgehend zu entkoppeln. Damit
konnten im vorliegenden Fall die weiteren Entwurfsschritte auch relativ isoliert
flir die verschiedenen Komponenten durchgefiihrt werden.

Nach Festlegung der internen Grobarchitektur ist fir Jjede Teilkomponente, die

Ja in jedem Fall als Prozessor im weiteren Sinn aufgefaRt werden kann, der Inter-
pretationsalgorithmus fir ihren Instruktionssatz anzugeden. Zu diesem Zeitpunkt
wird die Komplexitdt der spater zu realisierenden Steuerwerke und der Umfang des
Datenpfades im wesentlichen vorgeprdgt. Selbstverstindlich kann sich in dieser
Phase zeigen, daB die vorgelegte Modularisierung ungiinstig ist, was zur Inter-
aktion des vorhergehenden Entwurfsschritts fiihrt. Dieses Problem tauchte im vor-
liegenden Fall wegen der "kanonischen" Modularisierung nicht auf.

Ein weiterer zentraler Entwurfsschritt ist durch den Ubergang von der algorith-
mischen tbene zur RT-Ebene gegeben. Hier ist ein imperatives Modell in ein reak-
tives zu Ubersetzen. Dazu sind zunichst Steuerung und Datenpfad, die im Algo-
rithmus verflochten sind, zu separieren. Durch DatenfluBanalyse ist festzustel-
len, wie die logischen Operationswerke und Transportkandle auf physikalische
Objekte abzubilden sind. Da durch diese Abb. in der Regel Konflikte eingefiihrt
werden, muB das aus der Kontrollstruktur des Algorithmus abgeleitete Steuerwerk
um die Aufldsung dieser Konflikte erweitert werden. Modelliert wird das Ergebnis
in reaktiver Sicht, d.h. als Geflecht von Objekten, die gewisse Operationen
immer dann ausfiihren, wenn bestimmte Ereignisse stattfinden (Riickkehr zur zwi-
schenzeitlich aufgegebenen objektorientierten Sicht). Selbstverstandlich wird

man in der Praxis (und so auch im vorliegenden Fall) zwischen algorithmischer
Ebene und RT-Ebene Ofters iterieren miissen.

Die thter—Ebene und die Schalter-Ebene sollte man im Falle von MOS-Entwiirfen
als Einheit sehen. Nach der Festlegung bestimmter globaler Regeln (im vorliegen-
den Fall die Entscheidung fir dynamische Logik aber statische Speicher, die Ent-
scheidung, nahezu alle kombinatorischen Schaltkreise als dynamische PLAs zu rea-
1151eren, Festlegung der Flipflop-Typen) ist die Transformation von der RT-Ebene
auf die Gatter-/Schalter-Ebene relativ einfach, erfordert aber den intensiven

Einsatz von Optimierungsalgorithmen. Auch hier wird man in der Regel o6fter ite-
rieren missen,

Die Uberfihrung in die elektrische Ebene ist wieder eine Transformation, die
viel Know-How und Fingerspitzengefiihl erfordert, falls effiziente Losungen er-
warten werqen. Im Falle von CMOS-Schaltungen ist das Problem der Dimensionierun-
gen zwar nicht ganz so groB wie im Fall von reiner “ratio"-Logik, doch ergeben
sich auch hier im Falle dynamischer Logik nichttriviale Probleme.
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Der so skizzierte Verhaltensentwurf wird von einem Strukturentwurf begleitet.
Auf den hoheren Abstraktionsebenen findet ein logisches Plazieren und Entflech-
ten statt, das durch ein friihes Floorplanning (relatives Plazieren) begleitet
werden sollte. Ist man auf der Schalterebene angelangt, kann man fiir die Einzel-
zellen (Blattzellen) symbolische Layouts angeben. Durch Kompaktieren nach den
geltenden globalen Entwurfsregeln und Kontextbedingungen hat man die Informa-
tion, wie der Pitch fiir Daten- und Steuerleistungen gewdhlt werden kann. Unter
Zugrundelegung dieses Pitch kann das endgiltige Layout der Zellen und Makrozel-
len angefertigt werden. Eine globale Verdrahtung sollte bei einem gut durchge-
flihrten Entwurf von geringer Bedeutung sein.

Im beschriebenen Fallbeispiel wurde in Ermangelung eines geeigneten Hilfsmittels
das symbolische Layout iibersprungen und der Pitch durch Handlayout geeigneter
Zellen festgelegt. Fir diesen Pitch wurden dann alle Zellen entworfen.

5. Benutzte CAD-Werkzeuge

Der beschriebene Entwurf wurde mit bemerkenswert wenig Werkzeugen durchgefiihrt.
Zur Verfligung standen die Werkzeuge CAP/DSDL, DOMOS und RUDI.

CAP/DSDL ist eine Breitband-Hardware-Beschreibungssprache mit Mixed Level Simu-
lator /RA 81/. Das System wurde in Zusammenarbeit zwischen der Universitdt Dort-
mund und der Fa. Siemens AG unter Leitung des Autors entworfen und implementiert.
Unter dem Namen DACAPO wurde eine portable Neufassung der Software, nun insbe-
sondere unter UNIX ablauffdhig an der Universitdt Dortmund implementiert.
Gleichzeitig fand bei Siemens eine Integration von CAP in das Simulationssystem
SMILE /FR 84/ statt.

CAP/DSDL iiberdeckt den Bereich Systemebene bis Schalterebene und erlaubt dabel
beliebige Mischungen von Beschreibungen und Simulationen auf verschiedenen Ab-
straktionsebenen. Durch ein Modularisierungskonzept, das auch abstrakte Daten-
typen umfaBt, wird der oben beschriebene Entwurfsstil unterstiitzt. CAP kennt
imperative und reaktive Sprachmittel, so daR alle Ebenen addquat beschrieben
werden konnen. Soweit mdglich ist die Sprache an PASCAL angelehnt, so daB sie
mit relativ geringem Trainingsaufwand erlernbar ist. Um einen Konzeptdinosaurier
zu vermeiden, dienen interpretierte zeitbehaftete Petri-Netze als einheitliches
semantisches Modell. Wo ndtig kann das Zeitverhalten in hoher Prazision (rise-/
fall-Zeiten, Unsicherheitsintervalle) angegeben werden. Die Benutzung von CAP
erlaubte im beschriebenen Fall das Anfertigen und Austesten von hierarchischen
Modellen auf verschiedenen Abstraktionsebenen.

DOMOS ist ein an der Universitdt Dortmund entwickelter Simulator fir die elek-
trische Ebene, speziell fiir MOS-Schaltungen /SI 82/. DOMOS liefert fiir diesen
Anwendungsfall exakte Ergebnisse bei relativ geringen Rechenzeiten. Fiir den
Dortmunder CMOS-ProzeB standen alle Parameter zur Verfiigung, so daR prdzise
Ergebnisse erzielt werden konnten. Es wurden alle kritischen Schaltungen und
alle Blattzellen mit DOMOS simuliert und gegebenenfalls aufgrund der Ergebnisse

modifiziert (meist bzgl. der Dimensionierung).

RUDI ist ein Layouteditor, der an der Universitdt Dortmund nach dem Vorbild von
CESAR der UCB entwickelt und implementiert wurde. Ein derartiges Hilfsmittel

ist natirlich auf die Dauer unbefriedigend. Es stellt sich aber heraus, daR sich
beim Verfolgen streng hierarchischer Entwurfsprinzipien auch mit einem derart
einfachen Hilfsmittel komplexe Entwiirfe durchfithren lassen.

Als besonders schmerzlich wurde das Fehlen von Optimierungspaketen {z.B. LOGE
/GL 79/ bzw. ESPRESSO /RU 83/), das Fehlen eines TPG und eines in den Editor

integrierten DRC/ERC empfunden.
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6. Kritik

In der Summe kann das beschriebene Vorhaben als grofler Erfolg gewertet werden.
Dies wird besonders deutlich, wenn man sich vor Augen hdlt, da es sich um das
Ergebnis von 6 Diplomarbeiten handelt. Bedingt durch fehlende Hilfsmittel, aber
auch knapper Zeit wurden jedoch wesentliche Entwurfsschritte ibergangen. Das
Krasseste Manko ist sicherlich, daB der Testbarkeitsaspekt nicht beriicksichtigt
wurde. Vor einer eventuellen Fertigung ist hier mit Sicherheit eine Uberarbei-
tung notwendig. Ein weiteres Manko ist, daB die Simulationsmodelle nicht hin-
reichend mit Last versehen werden konnten. Erforderlich wdre ein Betriebssystem-
kern und Compiler flir gdngige Sprachen gewesen. Letztere hdtten sich nach dem
Glanville-Verfahren relativ einfach generieren lassen. Dennoch wdre damit end-
giltig der Rahmen von Diplomarbeiten gesprengt worden.

Bei all diesen Unzuldnglichkeiten wurde m.E. jedoch demonstriert, daR bei Ver-
folgung einer strikten Entwurfssstrategie von einer relativ kleinen Mannschaft
in relativ kurzer Zeit ein hochkomplexer Baustein sauber entworfen und dokumen-
tiert werden kann.
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Anhang 1: Beispiel fiir eine Beschreibung auf Systemebene: Abstrakter Daten-
typ Queue in CAP/DSDL, erlaubte operationen in Exportliste.
(Aus /AHLAP85a/)

type queue =
export (enq, deq, read, full, empty, reset) procedure queue;

const n = (*Breite*);
const m = (*Laenge*);
var speicher : array {0:m-1] Qf'gig(n);
T first, last : integer;
fu, em : bits
procedure enq ( in data : bit(n) ) ;
segbegin
speicher[last] := data; ,
last = (last + 1) mod m ;
fu = (first = last);
em =0
end;
function deq : bit(n) ;
segbegin
deq = speicher[first];
first = (first +1) mod m;
em = (first = 1ast);
fu =0
end;
function read : bit(n) ;
seqbegin read := speicher[last] end;
function full : bit;
segbegin full = fu end;
function empty : bit ;
segbegin empty”  := em end;
procedure reset ;
conbegin
first, last = 0;
fu = 0;
em =1
end;

end;
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Anhang 2 : Yoyo - Entwurfsprozess

Ebene i
Ebene i+1
y <l N
/ 7
.

1 : Spezifikation auf Ebene i

2 : Intraebenen - Generierung ( z. B. Optimierung )

3 . Bewertung

4 : Modifikationsentscheidung

5 : Modifikationssteuerung

6 : Top Down Interebenen - Generierung ( z.B. Implementation )

7 : Top Down Interebenen - Modifikationssteuerung

8 : Bottom Up Interebenen - Generierung ( z.B. Komposition )

9 : Bottom Up Interebenen - Modifikationssteuerung
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