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1 Kurzfassung

In diesem Beitrag wird versucht, neuere Entwicklungen bei der Methodik des Hardwareentwurfs
aufzuzeigen und zu untersuchen, inwieweit sich dadurch der Entwurf und die Implementation
von Software beeinflussen lassen. Zundchst wird versucht, den Hardwareentwurf als einen viel-
fach riickgekoppelten zyklischen Prozess tiber eine Anzahl von Abstraktionsebenen hinweq zu
charakterisieren. Dabei gelingt es, wenige Klassen von Entwurfsaktivitdten zu identifizieren,
die auf allen Abstraktionsebenen immer wieder vorkommen. Sodann werden grundsdtzliche Ent-
wurfsstrategien vorgestellt, die beim Hardwareentwurf sowohl von der Methode der schrittweisen
Verfeinerung wie auch, und dies vor allem auf niedrigeren Abstraktionsebenen, von der Aggre-
gation vorentworfener Standardbausteine gepragt ist. Bedingt durch enorme Anderungskosten
ist beim Hardwareentwurf eine sehr rigide Verifikations- und Testpraris verbreitet. Darauf wird
am Ende des Beitrages eingegangen werden.

2 Sichten und Abstraktionsebenen

Es haben sich beim Entwurf komplexer Hardwaresysteme eine Reihe von Abstraktionsebenen
herausgebildet, auf denen Modelle der zu konstruierenden Hardware angefertigt werden. Or-
thogonal zu diesen Abstraktionsebenen gibt es verschiedene Sichten, von denen aus das zu
entwerfende Objekt betrachtet werden. Hier hat sich, basierend auf einen Vorschlag von Gajski

[GAJ87], ein System von drei Sichten etabliert:

- die Verhaltenssicht beschrankt sich darauf, das Verhalten, d.h. die Werteverlaufe der
BestimmungsgroBen des zu modellierenden Objekts iber die Zeitachse hinweg darzustel-
len. Dazu bedient man sich auf den unterschiedlichen Abstraktionsebenen ganz unter-

schiedlicher Paradigmen.

- Mit der Struktursicht wird dargestellt, wie sich das Objekt aus Unterobjekten zusam-
mensetzt. Es werden sowoh! die hierarchische Struktur (”besteht aus”-Relation) wie auch
detaillierte Konnektivitatsstrukturen modelliert.

Die Geometriesicht schlieBlich beschreibt, wie die Objekte geometrisch im Raum an-

geordnet sind. Je nach Ebene beschrankt man sich dabei auf topologische (d.h. nur
mit relativen Magen und Orten versehene) Informationen, oder gibt prazise geometrische

Angaben.
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Jede dieser drei Sichten ist auf jeder Abstraktionsebenen prasent, wenn auch zu beobachten
ist, daB die geometrische Information von den hoheren Ebenen zu den ’tleferen an Bedeutung
gewinnt. Es gibt kein allgemein vereinbartes Ebenenmodell, d?ch s.plegelt das in [RAMSE.)]
wiedergegebene System weit verbreitete Vorstellungen wider. Hier wird von 'sechs. Abstrakti-
onsebenen ausgegangen. Sie sollen hier nur von der Verhaltenssicht aus kurz diskutiert werden,
da aus dieser Sicht die sehr unterschiedlichen Modellierungskonzepte besonders klar sichtbar
werden.

Als oberste Ebene betrachtet man beim Hardareentwurf die Systemebene. Hier hat man die
Vorstellung kooperierender, bis auf wohldefinierte Kommunikation autonomer Bausteine. All
diese Bausteine sind Prozessoren im weitesten Sinn, d.h. sie haben einen Instruktionssatz iiber
den Operationen (Dienste) angefordert werden kdénnen. Der objektorientierte Ansatz ist daher,
lange bevor er unter diesem Namen popular wurde, ein im Hardwareentwurf vertrautes Konzept.
Es muf} allerdings darauf hingewiesen werden, dafi im Hardwarebereich oft von Bausteinen
ausgegangen wird, die sich aktiv um Auftrige bemiihen. Ein klassischer Prozessor ist nur durch

man meist ein rein kausales Zeitmodel]. Dies bedeutet, daf die beim Hardwareentwurf so
essentiellen zeitlichen Abliufe auf Kausalabhéingigkeiten von Ereignissen reduziert werden.

Geht man auf der Systemebene von dey Exi
gilt es auf der algorithmischen Ebene fir diese Instruktionssitze
zu spezifizieren. Diese Algorithmen sind in dey Regel hochgradig ne
stungsanforderungen ergibt, die nur durch paralle] arbeitende Oper
erfilllt werden konnen. Fip diese Ebene haben sich daher Spezifikations- und Beschreibungs-
sprachen entwickelt, die ein hochparalleles imperatives Programpmieren erlauben, Alg Beispiel
sei hier DACAPO 111 [DAC87] genannt. Auch auf djeser Ebene benutzt man in der Regel
noch ein Kausalsystem zur Beschreibung der Zeitabliufe, Dies hat eine Entsprechung in se-

mantischen Modellen der benutzten Sprachen. Dijes ist im Falle von DACAPO III z.B. das der
interpretierten Petrinetze,

Der Ubergang zur nachst niedrigen Ebene, der RegiStertransferebene stellt die wohl wichtig-
ste Transformation in der Modelli i

_ on _ lerung eines Hardwaresystems dar. Hat man auf der algorith-
mischen Ebene eine 'mperative Sichtweise, map kann auch sagen die Sichtweise der Steuerung,

50 betrachte? man auf der Registertransferebege das Objekt reaktiv aus Sicht der Einzelkom-
pouenten. Eine derartige Komponente wird hier als passiy angesehen, bis ein spezielles, fiir die

jc\\‘(’illg(," I\.'omponente aktivierendes Ereignis emtritt. [n diesem Fall fithrt die Komponente ihre
dem aktivierenden Ereignis zugeordnete

ationswerke und Pipelining

gen auf dieser und allep niedrigeren
rung). Grundsatzlich kang m
darstellt, sequentielle Ablaufe nicht
héchst unerwiinscht sind. Auf dey
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Auf der Registertransferebene hat man bereits implizit eine strukturelle Auflosung von Ge-
samtverhalten in Einzelverhalten vorgenommen. Diese Auflosung wird auf der Gatterebene
noch weiter fortgesetzt. Hier gibt man nun die Unterscheidung zwischen Kontrollereignissen
und Datenmanipulationen auf, und beschreibt das System rein funktional durch ein System
von, im Idealfall Booleschen, Gleichungen. Dieses Gleichungssystem kann durch externe Er-
eignisse stimuliert, d.h. aus dem Gleichgewicht gebracht werden. Dies bedeutet aber nichts
anderes, daf} aktuell keine Losung des Gleichungssystems mehr vorliegt. Man geht bei der Mo-
dellierung auf dieser Ebene nun davon aus, daf ein derartiges destabilisiertes System aktiv eine
neue Losung zu erreichen anstrebt. Dies gelingt auch immer, sofern nicht ein inhirent astabiles
Sytem vorliegt. Jedes Hardwaresystem besitzt zumindestens eine astabile Komponente, die
den elementaren Antrieb des Systems darstellt. Da man auf dieser Ebene das Wissen iber
Kontrollereignisse aufgegeben hat, kennt man auch keine Takte mehr, kann das Zeitverhalten
auch nicht mehr auf dieser Basis angeben. Man modelliert daher auf der Basis sehr praziser
Realzeitangaben. Zumindest bei Hochleistungshardware besteht eine wesentliche Kunst des
Hardwareentwurfs darin, mit diesen Realzeitparametern optimal umzugehen.

Das grundsatzliche Paradigma des stimulierbaren Gleichungssystems wird auf den letzten bei-
den Ebenen beibehalten, nur die Wertebereiche der DarstellungsgroBen und die benutzten Ele-
mentarkomponenten unterscheiden sich. Auf der Schalterebene geht man davon aus, daB man
als Elementarkomponenten Knoten, die Ladung speichern kénnen, und Schalter hat. Um die
unterschiedliche Speicherfahigkeit verschiedener Knoten darstellbar zu machen, ist man darauf
angewiesen, unterschiedliche Signalstarken darstellen zu koénnen. Dies erweitert natiirlich den
Wertebereich tiber den Booleschen hinaus. Zudem muf hier die unidirektionale Sichtweise auf-
gegeben werden. Man hat also Gleichungssysteme vorliegen, bei denen die rechten und linken
Seiten der Gleichungen absolut gleichberechtigt und austauschbar sind.

Dies gilt im gleichem Mafle natiirlich auch fiir die elektrische Ebene, auf der das exakte
elektrische Verhalten in einer Wechselwirkung von Spannungen, Stromen, Kapazitaten, Induk-
tivititen und Widerstinden beschrieben wird. Hier hat man es natiirlich mit reellen Wertebe-
reichen zu tun. Der Wertebereich des Zeitmodells ist schon ab der Gatterebene reell, sodaB die
elektrische Ebene am adiquatesten durch ein System von Differentialgleichungen beschrieben

werden kann.

3 Idealisierte Modelle des Hardwareentwurfs

Eine Spezifikation auf jeder der beschriebenen Ebenen besteht aus zwei Teilen: der Spezifikation
der erwarteten Funktionalitit und der Angabe der zu respektierenden Restriktionen [GUHT8].
Diese Zweiteilung findet man bei den Entwurfsaktivitaten wieder. Hier gibt es 'einc generie-
rende Aktivitit, die aufgrund der funktionalen Spezifikation eine Systembeschrmln.mg er'stellt
und eine uberpriifende, die testet, ob dieses so erhaltene Systerr.l den g.enannFen. Restrlkltlonen
geniigt. Ist dies nicht der Fall, so wird die generierende Aktivitat Iﬂlt‘ m?dlﬁzuﬂjter Eingabe
reaktiviert. Dieser riickgekoppelte Prozess wird solange fortgfesetzt, bis ein stabiler Zust‘and
erreicht ist. Die generierende Aktivitadt kann entweder aU}‘ einer Abstraktlonsebene bleiben
(Optimierung, Transformation), eine niedrigere Ebene als Ziel haben (Implementierung), oder
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cine hohere (Aggregation). Dabei mufl eine ebeneniibergreifende Generieru.ng stet.s von einer
gegenlaufig gerichteten Uberpriifung begleitet sein. Um djes ein.:zusehen, sel von einer Aggre-
gation ausgegangen, die von einer niedrigeren Ebene i auf eine hohere Ebene J aggregiert. Das
Ergebnis ist dann auf der Ebene j gegen die dort gultigen Restriktionen zu iiberpriifen. Sind
diese nicht erfullt, wird man zunachst durch Optimierungen auf der Ebene J versuchen, den
Restriktionen doch noch zu genfigen. Gelingt dies nicht, so ist die Aggregation gescheitert und
der niedrigeren Ebene i ist durch eine dorthin gerichtete Uberpriifungsaktivitit mitzuteilen,
daB ein anderer Ansatz gewahlt werden muB. Im Falle einer ” topdown”- Vorgehensweise gilt
analoges. Die "reinen Lehren” des Entwurfs, namlich striktes "top down” und striktes "bottom
up” werden auch fir den Hardwareentwurf genannt, sind aber auch hier in ihrer reinen Form
unrealistisch. Beim strikten "top down”-Entwurf versucht man, eme abstrakte Spezifikation
durch schrittweise Verfeinerung in eine Implementierung auf einer niedrigen Abstraktionse-
bene zu iiberfithren. Im Softwarebereich kann die Idee der strukturierten Programmierung
als programmtechnische Auspragung dieser Vorstellung angesehen werden. Ein wesentlicher

zuzuordnen und damit auch ausfithrbar zy machen. Dies geschieht entweder durch spezielle,
den jeweiligen Ebenen zugeordnete Simulatoren, oder durch Breitbandsimulatoren. Es besteht
naturlich kein Zwang, Verfeinerungsschritte (Implementationsschritte) nur zur jeweils unmit-

telbar benachbarten nichst niedrigeren Ebene vorzunehmen. Es ist im Extremfall denkbar,
cine Systemspezifikation unmittelbar in Layout umzusetzen. Wegen (
der Aufgabenstellung findet jedoch fast imm,

Entspricht die strukturierte Programmierung der "top down”-Vorgehensweise, so gilt eine

ﬁhnlich'e Entsprechung zwischen der "bottom up”-Strategie und der objektorientierten Pro-
gramnierung. Bei dieser Entwurfsstrategie versucht man ¢

fertigter Bibliothektskomponenten etne Impl
Ebene vorgegebenen, § pezifikation zu finden. D)
cine lange Tradition, wobe die benutzten Kom

immer komplexer wurden. Stand am Anfang ein Angebot elementarer logischer Gatter und

einfacher Flipflops (Small Scale Integration, SSI) so entwickelte sich das Angebot {iber Regi-

-\'t;‘rt1‘;1}5_forkompc.me'men wie Register, ALUs, Multiplexer (Medium Scale Integration, MSI)
vder rozessor Bitslices, UARTS (Large Scale Integration, LSI) bis hin 2y Komponenten der

Systemebene wie Prozessoren, [,AN. : R Digitale Signalprosessoren (DSP)
). Die Umsetzung einer Spezifika-
us langwierig und teyer. Dies hatte von

! » die unbedingt notwendig
ON anzupassen, nimmt eip Hard wareent-
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wickler detaillierte Schaltungsentwicklungen vor. Im Idealfall beginnt dieser Entwurfsstil auf
der Systemebene, hinterliBt dort Anpassungsteile (sogenannte "glue logic”), die in gleicher
Weise auf der Registertransferebene behandelt wird, und so fort, bis der endgiiltige Entwurf
erhalten ist. Oft findet aber ein direkter Entwurf von ” glue logic” auf der Gatterebene fiir Sy-
stementwurfe statt. In der Praxis werden stets Mischformen dieser Entwurfsstrategien verfolgt,
in denen iterativ verfeinernde und aggregierende Aktivititen eingesetzt werden. Wird bei ei-
nem derartigen Vorgehen als Hauptrichtung eine ”top down”-Methode verfolgt, so spricht man
vom Yoyo-Entwurfsstil, im Falle einer hauptsichlichen ” bottom up”-Vorgehensweise scherzhaft
vom australischen Yoyo.

Man beobachtet also, daB es fiir den Hardwareentwurf gelingt, ein relativ starres Raster von
Aktivitaten zu identifizieren und auf dieser Basis wohl definierte Entwurfsstrategien zu verfol-
gen. Dabei ist es von grofier Bedeutung, daB es ein etabliertes System von Abstraktionsebenen
und orthogonal dazu ein ebenso etabliertes System von Sichten gibt. Dies erlauht es, Ent-
wurfsaktivitaten in einheitlicher Weise zu identifizieren und damit auch Werkzeuge mit hinrei-
chend grofler Verbreitung anzubieten. Eine dhnliche Situation sehe ich beim Softwareentwurf
hauptsachlich im Compilerbau [WHGS5]. Der dort weit verbreitete Konsens tiber die einzel-
nen Aktivititen hat auch hier dazu gefithrt, da weit verbreitete Werkzeuge zur Verfiigung
stehen. Dies wiederum fithrt zu einer vergleichsweise hohen Produktivitit in diesem Bereich
des Softwareentwurfs. Daf$ der Compilerbau an Hochschulen so intensiv gelehrt wird, liegt
nicht zuletzt daran, daB dadurch eine strenge Systematik des Entwurfs unter Verwendung
vieler vordefinierter Moduln trainiert werden kann. Die Etablierung allgemein akzeptierter
Abstraktionsebenen hatte im Bereich des Hardwareentwurfs zudem den Effekt, daB man sich
auf genormte Schnittstellen einigen konnte. Hiervon scheint man im Softwarebereich noch weit
entfernt zu sein. Diese Schnittstellen sind in vielen Fallen als Defakto- oder Industriestandards
entstanden. Beispiele sind SPICE (die Eingabesprache des gleichnamigen Simulators auf der
elektrischen Ebene) als allgemein akzeptierte Schnittstelle fiir die Verhaltenssicht auf der elek-
trischen Ebene, GDS II oder CIF als Schnittstelle fir die Geometriesicht auf der elektrischen
Ebene oder EDIF [EDI87] als Schnittstelle fiir die Struktur- und die Geometriesicht fir die
Ebenen unterhalb der Gatterebene einschlieBlich. Es soll hier nicht verschwiegen werden, daf
es fir diese Schnittstellen auch einen enormen Bedarf gibt, da Hardware in der Regel extrem
arbeitsteilig, oft durch verschiedene Institutionen durchgefiihrt wird. Als Beispiel mag dienen,
daB der Entwurf bis hinunter zur Gatterebene von einem Systemhaus und darunter von einem
Halbleiterhersteller durchgefithrt wird, eine Vorgehensweise, die ohne genormte Schnittstellen

und Austauschformate undenkbar wire.

4 Werkzeuge fiirr den Hardwareentwurf

Der breite Konsens iiber Abstraktionsebenen und Entwurfsaktivitaten hat‘auch zu Fol.ge, daB
es sich lohnt, fiir einen breiten Markt umfangreiche Bibliotheken vorgefertlgter Bau.'s.tcn‘le und
ein ebenso breites Angebot von standardisierten Entwurfswerkzeugen anzublf:ten. FLII‘ die Ele-
mente der Bauteilbibliotheken lohnt sich wegen der méglich.en I\IarlftV'erbrelttlng ein enormer
Entwicklungsaufwa,nd, der in der Regel zu hochgradig optimierten Komponenten fithrt. Kom-
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ponenten vergleichbarer Qualitat lassen sich kaum fiir Einzelentwicklungen zu vertretbaren
Kosten entwickeln. Der Hardwarebereich erhalt einen wesentlichen Impetus seiner Leistungs-
explosion aus dieser Tatsache. Hier sollen nun einige Werkzeuge fiir den Entwurfsprozess kurz
diskutiert werden. Dabei sollen Werkzeuge zur (ausfithrbaren) Modellierung der Entwiirfe am
Anfang stehen. Im Hardwarebereich ist es schon lange nicht mehr moglich, eine Implementie-
rung "mal eben” vorzunehmen und mit ihr zu experimentieren. Man ist also gezwungen mit
Simulationsmodellen zu arbeiten. Dieser Zwang hat auf der anderen Seite dazu gefuhrt, daB im
Hardwarebereich in der Regel von ausfithrbaren Spezifikationen ausgegangen wird. Die ersten
Simulatoren beschrankten sich auf die elektrische Ebene und dje Gatterebe. Daher gab es fir
diese Ebenen auch die ersten Modellierungssprachen, im Hardwarebereich Computer Hardware
Description Languages (CHDLs) genannt. Schon auf diesen Abstraktionsebenen modelliert
man weitgehend deklarativ, d.h. durch Aufzahlung von Instanzen von Bibliothekselementen
und Angabe ihrer Verschaltung. Dies wird auch dadurch erzwungen, da8 die in der Realisierung
benutzten vorgefertigten Komponenten sehr prazise Restriktionen fiir ihren Betrieb fordern und
andererseits iiber die Zeitachse hinweg auch sehr fein wirken. Realitatstreue Modelle lassen sich
daher nur dadurch erreichen, da man fir die Komponenten dedizierte sehr prazise Modelle in
Bibliotheken ablegt. Etwas anders sieht dje Situation im Fall einer reinen Spezifikation aus.
Hier kann man sich darauf beschrinken, das intendierte logische Verhalten in Form Boolescher
Ausdriicke anzugeben. Dieses Verhalten wird dann durch implementierende Aktivititen in eine
Verschaltung von Bibliothekselementen transformiert. Das Ergebnis ist gleichzeitig ein Plan fiir
den ph_\tsika.lischen Entwurf und ein prazises Verhaltensmodell. Auf der Registertransferebene
ha't es sich durc'hgesert, die Operationen auf einen Typ zu "ikonisieren”, den Registertransfer.
l}:‘:tf:‘l:;:llsla‘;é:l g”“_ZiP von der EXiStf:nz von nur zwei .Ty.pen parametrisierbarer Standard-
Jaiate aus: dem Register als Datenspeicher und der beliebigen Transformationsfigur auf den
[ransferwegen. Register haben eine direkte Entsprechung in Hardwarekomponenten und auch

die ‘beliebig parametrisierbaren Transformationsfunktionen kann man sich als ” Programmable
Logic Arrays” ( PLA) realisiert vorste]

steme in einer zu Software sehr ahnlic

l‘nclrl sind daher auch. an imperative Programmiersprachen wie PASCAL angelehnt. Zur Dar-
IEEnZélgtjzr P; rf:n:htat und der notwendigen Synchronisation mussten allerdings neuartige
. [t)k } raf*" eite errden; Petrmet'ze {PET?T’, REI85] haben sich hier fiir die operationale
Pemantik bewahrt. Dieses Konzept wird im Falle von DACAPO 111 [DAC87] explizit benutzt.

i{);)(?lbyﬁtmn:l)e{le wird c'ler.zeit nur sehr wenig durch CHD g unterstutzt. Es gibt jedoch eine
eihe von . ns.atchn, beispielsweise QD] 'E [MURSQ]. Diese Sprache verfolgt sehr konsequent
emen objektorientierten Ansatz. In letzt i y

€T Zeit gewinnen Breitbandsprachen im Bereich der

on der G ) hier DACAPO III, welches den Bereich
ron er Systemebene bis zur Schalterchene iberdeckt, und VHDL, [VH,I)VE;?]Cfs den Bereich

Xot fi‘;:{egzt?‘tm"Sferebe“e bis zur Schalterebene 24 nenpen. DACAPO III lehnt sich in der
;Iurc(h mel?rnod( em' Mpdulkonzepff an MODULA 11 an, VADL an ADA. Alle CHDLs werden
far die Beschr;‘;b:;g;sg;;aiﬁzgefe]g? SSiIT}ZUIatOren kOmplettiert_ Sie bilden das Laufzeitsystem
i i n. 1e eriola: . . . R "
Realzeitmodel] auf eine Zielarchitek ,C FMel]g'l\elt'ril(lecgotn;leé:lrtlino’nellln hocﬁgfadlg n(};ber}llla;‘ﬁigs‘zs
ellen v.Neumann-Rechn ]

2u modellierenden Sichten. Ebenso wichtig
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ist die Struktursicht. Hier sind im Hardwareentwurf komfortable graphische Struktureditoren
iblich ("schematic capture”). Sie erlauben eine hierarchische Darstellung der Hard warestruk-
tur, wobei wieder vorgefertigte Bibliothekselemente instantiiert, plaziert und verdrahtet werden.
Diese Editoren sind in der Regel unabhingig von der Abstraktionsebene. Es gibt aber auch
ebenenspezifische Editoren. ABL [HRT77] ist ein derartiges Beispiel fiir die Registertransfere-
bene. Hardwareentwickler haben sich derart daran gewohnt, in Bildern zu denken. dafB eine
grofle Nachfrage danach besteht, auch das Verhalten graphisch darzustellen. Ein sehr machtiges
Beispiel fiir einen derartigen Ansatz stellen die ”Statecharts” [HRE87] dar. Editoren fir die
Geometriesicht sind natiirlich von erheblich héherer Komplexitat. Da man im Hardwareent-
wurf bestrebt ist, moglichst regelmaBige Strukturen zu erzeugen, werden generative Konzepte
fir Geometrieeditoren besonders wichtig. Als Beispiel kann hier HILL [LEMB84] genannt wer-
den. Derartige generative Ansatze werden auch in neueren Verhaltenssprachen wie ODICE oder
MoDL [SMI86] benutzt. Fiir die verschiedenen Ubergange zwischen den Abstraktionsebenen
wurden eine Reihe von Synthesewerkzeugen entwickelt. Ein relativ neues Gebiet ist dabei der
ﬁbergang von der algorithmischen Ebene zur Registertransfereben. Dieser Schritt wird meist
"High Level Synthesis” genannt. Hier finden Methoden des modernen Compilerbaus weite An-
wendung. Ein wesentlicher Unterschied besteht darin, daf im Compilerbau in der Regel von
einer vorgegebenen Zielarchitektur ausgegangen wird, wihrend man bei der "High Level Syn-
thesis” diese Zielarchitektur erst erzeugt. Dieses Gebiet wird besonders aktiv in Deutschland
verfolgt [JOG86, MAR85, PFA88, ROC87]. Die Elemente der Registertransferebene werden
durch sogenannte Modulgeneratoren in Verschaltungen der jeweils angebotenen Bibliotheksele-
mente auf der Gatterebene tiberfithrt. Dabei stehen fiir den Datenpfad meist passende Elemente
zu Verfiigung, die nur noch passend parametrisiert werden missen. Fiir das Steuerwerk hat
man verschiedene Optionen (Mikroprogrammierwerk, PLA-Automat, Automat in krauser Lo-
gik). Welche Option man wahlt, ist von der jeweiligen Aufgabenstellung abhingig. In jedem
Fall hat man einen transformierenden Automaten zu realisieren. Fiir dessen Erzeugung aus
einer abstrakten Spezifikation stehen wieder machtige Werkzeuge zur Verfiigung, beispielsweise
das LOG/IC-System [GRL79]. Die Uberfithrung von Gatterschaltungen in ein geometrisches
Layout wird von sogenannten ”Silicon Compilern” geleistet. Hier werden verschiedenartige
Ansitze verfolgt. Ein Ansatz fiir den "Full Custom”-Entwurfsstil ist es, das Strukturbild des
Schalterebene mit Information tiber die relative Positionierung der Elemente und der Ebene der
benutzten Verdrahtung anzureichern, womit man sogenannte "Stick Diagramme” erhélt. Diese
enthalten noch keine metrische Information. Figt man diese hinzu, indem man aus Biblio-
theken die notwendige Information erhalt, so hat man ein zunéchst noch wenig pIatzoptimalos
Layout erhalten. Dies kann man dann durch geeignete Algorithem (Kompaktoren) optimieren.
Das HILL-System ist ein Beispiel fir diesen Ansatz. Weiter ver.breitet §ind Standardzel]eq-,
Makrozellen- und Gatearray-Ansitze. Diese Unterscheiden sich im Fe{tlgt.mgsprozess und in
der Art wie Zellen geformt und plaziert werden kénnen. Gememsan? ist ihnen al')er,‘ daB es
vordefinierte Bibliothekselemente gibt, die parametrisiert, dann plaziert u.nd sc.hh.eﬁhc.h ver-
drahtet werden. Nur durch Silicon Compiling- Techniken ist es heute moglich, die inzwischen
hochkomplexen VI.SI-Bausteine in vertretbarer Zeit optirr'lal 2u ent?verfen. Optimierungsak-
tivititen wurden bereits implizit oder explizit genannt. Sie spielen im Hard.wareen.t’WL-lrf, der
sehr harte Restriktionen zu beriicksichtigen hat, eine zentrale Rolle. Im Bereich der "High Le-
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vel Synthesis” kann dabei auf Methoden des Compilerbaus zurﬁckgegriﬂ'.en we'rden. A‘lle QOrt
benutzten Codeoptimierungsverfahren finden auch hier Anwendung. EII'I weiteres w1c.ht1g&s
Optimierungsgebiet ist das Scheduling, d.h. die Anordnung von Operationen des zu 1mp‘le-
mentierenden Algorithmus liber die Zeitachse in einem parallelen System von Resourcen. Dies
ist ein sehr aktuelles Gebiet der Forschung. Zur Optimierung auf der Registertransferebene
und der Gatterebene stehen reichhaltige Werkzeuge zur Verfiigung. Die Schaltwerktheorie als
die zugrundeliegende Mathematik wurde bereits in der ersten Halfte des Jahrhunderts weit
entwickelt. Dies hatte zur Folge, daB sehr effiziete Algorithmen zur Zustandsreduktion von
Automaten und zur logischen Minimierung kombinatorischer Schaltnetze entwickelt werden
konnten. Diese Algorithmen sind entweder in die entsprechenden Synthesewerkzeuge integriert
oder werden getrennt eingesetzt. Fiir den physikalischen Entwurf stehen ebenfalls machtige Op-
timierungswerkzeuge zur Verfugung. Hier sind besonders Algorithmen zur Faltung von PLAs,
zur Plazierung (" Floorplanning”) und Verdrahtung zu nennen. Entwurfsfehler sind im Falle von
Hardware erheblich gravierender als bei der Software, da eine nachtrigliche Reparatur entwe-
der sehr teuer (Leiterplatten) oder gar unméglich (VLSI-Chip) ist. Den Verifikationsaktivitaten
kommt daher enorme Bedeutung zu. Das Gebiet der formalen Verifikation wird wissenschaftlich
seit Jahren intensiv bearbeitet. Zwar sind inzwischen schon vollstandige Mikroprozessoren und
Spezialchips als korrekt bewiesen worden, doch ist man von einer breiten Anwendung in der
praxis noch weit entfernt. Erheblich weiter entwickelt sind Systeme zum Korrektheitsnachweis
der Realzeitbedingungen, sogenannte "Timing Verifier”. Sie erlauben es, die Simulation auf
das rein logische Verhalten zu reduzieren, was zu einer enormen Effizienzsteigerung fiihrt. Die
Simulation schlieBlich ist heute immer noch das dominierende Hilfsmittel zur Verifikation von
Hardwareentwiirfen. Dabei muB man sich natirlich im klaren dariber sein, daB die Simulation
selbst noch keine Verifikation ist, sondern nur eine Methode, die dazu notigen Daten zu be-
schaffen. Durch intellegente Ergebnisauswerter und erweiterte ” Assertion”-Mechanismen hofft

man, auch fiir die eigentliche Verifikation auf Simulationsbasis geeignete Werkzeuge anbieten
zu Konnen.

Bei der Komplexitat des Hardwareentw
che Aneinanderreihung von Werkzeuge:
wird daher intensiv an integrierten Ent
bung stellt eine leistungsfahige Datenh
Benutzeroberflache und eine Steuerung
waltung zur Verfiigung. Hier gibt es na

urfs und der Vielzahl an Werkzeugen ist eine einfa-
1 nicht mehr praktikabel. Ap verschiedenen Stellen
wurfsumgebungen gearbeitet. Eine derartige Umge-
altung, ein generatives Konzept fiir eine einheitliche
des Entwurfsmanagements, einschliefllich Versionsver-
heliegende Parallelen zy Softwareentwursumgebungen
E. ltungskonzepte sind i den Hardwareentwurf mit sei-
ner sehr feinen Struktur und der Notwendigkeit der Verwaltung groBer Mengen von Objekten

fvinu.r Granularitat nur bedingt geeignet. Hardwareentwurfsum
i CADLAB entwickelt wurden [MWS8s]

Bereich an. Wegen des viel mehr formal
crheblich

: gebungen, wie sie beispiels weise
bieten daher hoher entwickelte Konzepte fiir diesen

L isierten Ablaufs des Entwurfsprozesses konnen auch
machtigere I\'Iana.gementkomponenten angeboten werden. ’
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5 Testproblematik

Die Testproblematik im Hardwarebereich unterscheidet sich von der bei der Softwareentwick-
lung grundlegend. Im softwarebereich ist ein Entwurfsfehler wahrscheinlich, ein "Fertigungs-
fehler” jedoch weitgehend ausgeschlossen. Bei der Hardware sind beide Fehlerarten moglich.
Die Sprachregelung im Hardwarebereich ist meist, daB man das Suchen von Entwurfsfehlern
Entwurfsverifikation nennt, auch dann, wenn man im Sinne des Softwareentwurfs testet, also
simuliert. Nur die Uberprufung nach Fertigungsfehlern wird Testen genannt. Dabei kommt
man ebenso wie im Softwarebereich sehr schnell zum Ergebnis, daB das eigentliche Ziel, einen
Nachweis der korrekten Funktion aus Komplexitatsgriunden nicht fihren kann. Im Hardwarefall
hat man jedoch einen sehr machtigen Ersatz dadurch geschaffen, dal man sehr aussagekriftige
Fehlermodelle gefunden hat. Man testet nun nicht, ob der Prafling funktional korrekt arbeitet,
sondern, ob keiner der nach dem zugrundeliegenden Fehlermodell moglichen Defekte vorliegt.
Als einfaches und dennoch machtiges Fehlermodell hat sich beispielsweise das erwiesen, das
als einigen moglichen Defekt Leitungen, die standig "true” oder standig "false” sind, kennt
(Haftfehlermodell [RBS67]). Hierzu ist natiirlich Kenntnis Giber die Struktur des Priiflings
notwendig. Fiir das Haftfehlermodell gibt es leistungsfahige Werkzeuge, die Testmengen mit
fast 100moglichen Defekte erzeugen. Weiterhin hat die Erfahrung eine weitgehende Koinzidenz
zwischen korrekter Funktion und Abwesenheit von Haftfehlern gezeigt. Allerdings hangt die
Testbarkeit und die Komplexitat der Testmusterberechnung in groem MaBe von der Struktur
der zu testenden Objekte ab [BEN84]. Hier haben sich Regelsétze herauskristallisiert, deren
Einhaltung eine geringe Testkomplexitat sicherstellt [EIW77]. Fiir deren Uberprifung gibt es
seinerseits leistungsfahige Werkzeuge, zum Teil unter Verwendung wissensbasierter Methoden
[BID88]. Es wire sicherlich von groBem Interesse, zu untersuchen, ob dieser Qualitatsbegriff
der Testbarkeit tiber den Fertigungstest von Hardware hinaus iibertragbar ist.

6 Zusammenfassung

Der Hardwareentwurf wird, bedingt durch technische Randbedingungen hochgradig formali-
siert und unter intensiver Benutzung vorgefertigter Komponenten durchgefuhrt. Diese intensive
Verwendung vorgefertigter Bauteile zwingt nicht nur zur Einhaltung“ derfer.l funkvtlonalor SPZiﬁ“
kation, sondern auch der Bedienungsprotokolle. Dies hat zu einer fruhzmtlg_cn Normung dieser
Protokolle gefithrt. Die weitgehende Standardisierung hatte zur Folge, dafl mit vertretbarem ho-
hen Entwicklungsaufwand umfangreiche Bibliotheken von zum Teil hochkomplexen Standard-
bausteinen aber auch eine Vielzahl von weit verbreiteten Entwicklungswerkzeugen entstanden
sind. Die, technologisch bedingte, Aufgabe individueller Fre‘lh.m"tsgra(:le beim Ent.wurf haben
in diesem Bereich zu einer unverhaltnismaBig hohen Produktivitatssteigerung zu einer nahezu
explosionsartigen Leistungssteigerung gefuhrt. Dabei sollte.aber nicht Gl he
die Komplexitit auch hochkomplizierter Hardwaresysteme immer noch um Groﬁenordnu'ng.en
unter der von Mammutsoftwaresystemen liegt. Hier nimmt der Harcbvaref’entwu‘rf derzex.t in-
tensiv Anleihen aus dem Gebiet des Software-Engineering auf. Ein weitaus intensiverer Dialog

sollte fur beide Aspekte des Systementwurfs von grofiem Vorteil sein.

hersehen werden, daf}
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