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Al?s_tract. After a definition of the term System Level, different system level design ac-
t1v1t_1es are identified: product specification and system level modeling, system level sim-
nlatllon, system level analysis and partitioning, embedding into a concurrent engineering
environment. These activities then are discussed in more detail with special emphasis on

modeling.

1. What is system level?

Today in the area of digital hardware design there is a rather widely ac-
cepted scheme of 6 abstraction levels [RA89]. This scheme is orthogonal to
?he different views a system is looked at. As example for this Gajski [GAST]
identifies three different views: behaviour, structure, and geometry. Addi-
st view. At higher levels the behaviour
view is of main interest. So in this context the levels of abstraction are
discussed mostly with this view in mind. In order to make the concept of
abstraction and by this the system level more visible, a bottom up pre-
sentation has been chosen. The lowest level (level 1) usually is called the
electrical level. Here it is modelled, how electrical circuits built from re-
sistors, capacitors, etc. behave over the time axis. This is done by a system
of differential equations. Le., both the time axis and the observable values
are represented by a continuous domain. It should be noted that the geo-
metrical view of this level is the (metric) layout which doesn‘t constitute an
own level. The switch level (level 2) is the next abstract one. This level is
rather well accepted in digital MOS design but makes sense in other digital
designs as well. The abstraction comes from modeling transistors as ideal
on/off switches and the connections in between as discrete capacitances. 50
the value domain is a discrete one where a value is given by a pair consisting
of a logical interpretation and a strength, both within a finite domain. This
abstraction introduces uncertain values. They are handled either by intro-
ducing additional “values” or by representing uncertainty by enumerating
all possible values [LR83]. The time domain may still be a continuous one.
Other approaches like MOSSIM [BRS1] have a discrete time in mind (unit
delay assumption). This leads to a concpt to model switch level circuits by
finite automata. The gate level (level 3) has a long tradition in digital
system design. It has a very nice mathematical background in Boolean alge-
bra. However, this models only the timeless behaviour. So some additional
concepts have to be considered in order to cover the time axis as well. In
the ideal case the value domain is restricted to Boolean values 0,1 while
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the time domain remains continuous. Again the problem of uncertain values
forces to introduce additional values. By this in most cases the underlying
algebra is no longer a Boolean one. Even the concept of different strengths
is carried over from the switch level in come cases. The operators, however,
are always Boolean (logical) operators. This finally constitutes this level. If
the value domain is restricted to 0,1 and the time model is unit delay then
the modeling concept for this level is exactly a system of Boolean equations.
Further abstraction comes with the register transfer level (level 4). At
this level a specific mode of operation is assumed. There are components
that continuously observe their specific conditions. Whenever the condition
of a component becomes true this component performs its specific operation.
[n any case such an operation may be interpreted as a transfer of data be-
tween registers where the data may be modified during the transfer. It is this
point of view that gives this level its name. Abstraction here originates from
implicitly underlying a specific mode of operation. In addition the elemen-
tary components used at this level are more complex (e.g. registers, ALUs,
etc.) abstracting from their implementation. The value domain at this level
is given by (uninterpreted) bitstrings while the timing model is the counting
of clock ticks. So the time domain now has become a discrete one as well.
The register transfer level is very helpful in clean synchronous designs, it
forces somehow to design in this manner. This level has been studied in-
tensively in academic institutions but is much less popular in industry. As
a consequence nearly all of the numerous register transfer simulation sys-
ters (e.g. CASSANDRE [ME70, ME73, MER5], CDL [CH79], DDL [DD79],
KARL [HAT77]) are used rather in universities only. At the algorithmic
level (level 5) the reactive point of view at the register transfer level is in-
verted to an imperative one. While at the register transfer level the system
is looked at from the eves of the individual components, at the algorithmic
level the controller's point of view is taken. In contrast to ordinary algorith-
mic descriptions, however, concurrency plays an important role in hardware
design and therefore also at this level of abstraction. Therefore highly con-
current algoriths usnally are described. While at the register transfer level
it is specified precisely what conditions cause operations to be carried out,
it is abstracted from this information at the algorithmic level. Only the log-
ical point of time, when an operation has to be carried out is identified. All
the remaining details are hidden away by assuming the imperative mode of
operation of a system. The domain of values may be freely definable but
usually is restricted to bitstrings with interpretations attached. The tim-
ing model is either still a counting of clock ticks or a purely logical one.
In this case simply a causality structure is assumed as in usual algorithmic
131‘%“%895- Algorithmic languages, have been a purely academic area for a
long time. The increasing complexity of digital systems and caused by this
the need for high level synthesis tools make this level more and more at-
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tractive for industry as well. VADL [VH87] approaching this level makes 1t
even more visible for the industrial practice. Up to now there are only very
few commercial systems available for this level. DACAPO III [DAS8T7] and
partially VERILOG [TH91] and VHDL may serve as examples. Finally at
the system level (level 6) it is abstracted from the algorithmic implemen-
tation of system’s instruction sets. At this level the entire system is looked
at as a set of cooperating processors. Here the term processor is used In a
wider sense to denote a subsystem with an instruction set that enables it
to export certain services. A usual processor is the most typical example
but channels, device-controllers, etc. fall into the same class. Such a compo-
nent is characterized by the functions performed by the instructions and the
protocol to be used to request a service (an instruction) to be executed. In
principle the initiative within such a protocol may be located at the serving
device or at the requester. E.g., in the case of a usual processor th processor
takes the initiative by fetching an instruction (the service 1t is requested to
perform) from memory without explicitly being triggered to do so. In addi-
tion, to describe the components of a system and their instruction sets plus
protocols, the global interaction of these semiautonomous objects has to be
specified. Dependent on the kind of system to be described this may be done
in a centralized manner or in a decentralized one. In the first case another
highly concurrent algorithm serves to specify the global behaviour while in
the second alternative in a totally distributed manner the different compo-
nents decide due to certain states or events to request certain services from
other components. So the system level can be interpreted as an abstraction
of the algorithmic level (centralized alternative) or the register transfer level
(distributed way). Both the value domain and the tizning model are purely
symbolic at this level. There are freely definable types with arbitrary seman-
tics and time is interpreted only to be advanced by causality The system
level up to now is supported by very few commercial simulators. DACAPO
Il and VHDL are approaching this level while performance analysis tools
like HIT [BES6] are addressing the system level as well.

Up to now the levels of abstraction have been looked at from the pure
electronics point of view. However, very rarely pure electronic systems are
built. In most cases an entire system consists of components from various
domains like mechanics, hydrodynamics, aerodynamics, thermodynamics,
electronics and some software running on the digital part of the electronic
components. A digitally controlled car-engine may serve asa typical exam-
ple where a system consisting of mechanical components, analog electronics,
digital electronics running under the control of a sophisticated software have
to be combined to perform an operation of high thermodynamical and me-
chanical complexity.

Consequently at the system level all these aspects have to be considqed
and the electronics part usually doesn’t play the dominant role but a serving
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one (it’s the engine’s power a car driver is interested in and not the operation
of the electronic controller). There may exist levels of abstraction within the
modeling of non electronic parts as well but they are of minor interest for
our discussion. It can be assumed that at the highest level a separation into
the different domains of engineering takes place. This partitioning is a highly
complex action, up to now nearly completely carried out by human decisions,
based on some expert knowledge. Once the partition has been selected and
the interfaces have been defined the further design can be carried out within
the specific engineering domains. Now the common interfaces may get an
individual interpretation and modeling in the different areas. From now on
a point of view centered at the specific areas is legal. From our point of view
after the step of par ioning an electronics system is obtained, providing an
instruction set for software (which is of minor interest for the further steps
of electronic design) and being connected to some peripheral components
from a different engineering domain.

There are many degrees of freedom in these partitioning decisions. The
design of a digital system may serve as example. A priory a solution pro-
viding the requested instruction set directly hardwired as hardware is as
correct and as obvious as a solution providing the requested instruction set
by a piece of software running on a general purpose processor which is avail-
able as a piece of hardware. And within the bandwidth spanned by these
two extremes a variety of potential, correct and valuable solutions may exist.
Only after one of these solutions have heen selected the specification of the
electronic component to be designed (if not already existing) is obtained.

2. What is system level design?

i From the above discussion it can be concluded that partitioning seems to
be the central design activity at the systemn level. In order to get some-
thing to become partitioned it is necessary to have a model of the entire
svstem. Therefore modeling is essential, not only but especially at this level
of abstraction. Such a model is the initial reaction to a specification of the
entire system. This specification should be independent from the solution
selected to find an implementation. The obtained model being the first for-
mal document describing the system to be built some kind of verification
1s essential. It might be possible to proof formally (a better word is ana-
Ivtically) that certain aspects of the specification is met. The main activity
to checlj; the correctness of the initial model with respect to specification is
s_xmulatmn, l.e. experimenting whether the designer’s intention is matched.
S.ystem.level simulation therefore is an important design activity. Besides
simulation numerous additiona] analysis activities should be supported, like
performance analysis, testability analysis, manufacturability analysis, etc.
All these design tasks being performed, the already mentioned activity of
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partitioning can take place. It produces a couple of individual specifications
for the different engineering domains. At the same time the environment for
concurrent engineering has to be filled in so that during the entire design
process all relevant aspects and parameters can be observed and influenced.

So the following design activities are the most important ones at the

system level:

a) specification support,

b) system level modeling,

¢) system level simulation,

d) system level analysis,

e) system level partitioning,

f) interaction with a concurrent engineering environment.

These activities now are discussed in a somehow more detailed way.

3. System level specification and modeling

3.1. GENERAL REMARKS

There is no “one and only” system level modeling method and by tbe same
reason no “one and only” specification method. Requirements engineering
being a complex area by itself we shall concentrate on the modehns aspect
here. Obviously it depends heavily on how heterogeneous the p0.551ble de-
sign space is, whether an initial system model can easily be derived from
a specification. In the ideal case the basic characteristics of a system to he
build are fixed, only some parameters have to be supplied. Exam_ples for
such approaches are systems like DEBYS [BK91] that allow to fill in these
parameters in an interactive way that is supported by a knowledge based ap-
proach. The result of this search process through a limited (but very large)
design space then can be an initial model. Other examples of such an ap-
proach are generators for simple DSPs [HI85] or models_(}.f RISC processors
[NA89, PS90]. This approach however seems to be promising 'only as long as
the design space is homogeneous and limited. It is not surprising ‘that z.ml] tl}e
examples mentioned are within a single design domain (electronic d_esngn. in
this case). In the general case this “ideal” way of requirements engineering
will not be possible. It even will not be possible to formulate homogeneous
system models. In contrary to this a multiparadigmatic approach seems to
be much more promising. In such an approach for va,rim']s aspects of a modl;el
different paradigms are used, for each aspect the paradigm tha.t' seems to e
the most natural one or this one that is most familiar to the des;gne?'. In this
section therefore simply a couple of modeling approaches shall !?e dxs'cussedé
It should be noted that a partition of a model into parts using differen
paradigms doesn’t imply the same partition into system components.
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Fig. 1. Example of a statechart and equivalent S-net (from SU90)

3.2. STATECHARTS AND STRUCTURED PETRI NETS

Both, Statecharts and Structured Petri Nets (S-Nets), originate from finite
state machines (FSM). Both add two major concepts for handling complex-
ity: hierarchy and concurrency. And finally both are graphical approaches
for system specification. Statecharts [HA 87] start from usual state diagrams
of F5Ms. In order to handle complexity first of all a concept of hierarchy
15 added. This is done by allowing a state to be decomposed into a FSM
as well. and so on. This concept makes it necessary to introduce means for
specifving in which internal state such a macrostate has to be started when
activated. This may be always the same one (default initial state) or be de-
pendent on the internal state a macrostate has been when this macrostate
has been deactivated. The latter situation is supported by the so called
history mechanism that may be extended recursively to deeper hierar-
chy levels. The second concept added by Statecharts to FSMs in order to
handle complexity is concurrency. Several Statecharts now are allowed to
operate concurrently. Le. when the macrostate they are embedded in 1s ac-
tivated more than one internal FSM is activated. Introducing concurrency
always makes it necessary to introduce synchronization and communication
concepts. In the case of Statecharts this is done by a broadcasting mech-
anism, i.e. by asynchronous communication.

If Statecharts may be characterized by the sequence of adding to FSMs
hierarchy first and concurrency afterwards this sequence is inversed in the
case of S-nets [CK81]. They start from Petri nets, i.e. the concept of concur-
rency has already been added to FSMs by the usual extensions introduced
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by Petri nets. The remaining task to find a consistent concept for hierarchy
(a problem that turned out to be a complicated one) has been solved by
S-nets in a very elegant way. Here each transition may be replaced by an
entire S-net with a “flat” Petri net being a S-net as well. A macro-transition
becomes firable by the same condition as a usual one. Internally the firing
of a macro-transition means that the (always identical) initial marking is
taken. Starting with this marking the local S-net becomes active and re-
mains active as long as it is life. By this internal net becoming dead the
macro-transition plays its token game in the same way a usual Petri-net
transition does. Fach Statechart can be simulated by a S-net and a sub-
class of S-mets that covers all cases relevant for practical applications can be
simulated by statecharts [SU90]. So for practical applications they can be
looked at as equivalent. This is interesting as Statecharts introduce hierar-
chy by decomposing states while S-nets decompose transitions. It depends
on the special situation which concept is the more natural one. The history
mechanism is missing in S-nets as originally defined by L. Cherkasova but

can be added easily.

3.3. SDL

SDL (Specification and Description Language) [CC8R] is a graphical lan-
guage (with textual counterpart) for specification and description of systems.
It is standardized by CCITT which indicates that it is especially suited for
telecom applications. However it is general enough to be used in other areas
as well. E.g. [GL 91] discusses the use of SDL in electronic design, relating
SDL to VHDL.
SDL supports different views of a system description:

— astructural view, supported by

= Block Interaction Diagrams (BD)
~ a communications view, supported by

= Sequence Charts (SC), and
~ a concurrent behavioural view, supported by

= Process Diagrams (PD).

The BDs are just usual hierarchical schematics as used at e
electronics CAE. By identifier equality a BD is connected to the dynamics
(the behaviour) expressed by attached PDs and SCs. PDs and SCs both
describe the system’s behaviour. In a SC the global view is stressed. It is
described which communication sequences can be observed from the outside
world if it is abstracted from the processes internal to the communicating
objects. The inverted point of view is described by a PD. It abstracts from
the global communication structure by just describing what messages are
sent and received. On the other hand the process where these atomic com-
munication actions play a role now is specified precisely. This multiview

ach level of
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approach of SDL make individual descriptions very easy to understand. To
get a complete understanding of a complete system, however, it is necessary
to combine several subdocuments and to understand the intercorrelation.
Like Statecharts SDL supports only asynchronous communication but syn-
chronous communication (rendezvous) can be simulated easily by this con-
cept by explicitly describing a handshake procedure. SDL is in practical use
worldwide. Recently extensions towards object orientation (OSDL) have
been proposed [MBS8T].

3.4. GRAPES

GRAPES-86 is a graphical language to support all aspects of system design.
It has been designed by Siemens Nixdorf Informationssysteme AG [HE90]
to be used for projects of high complexity. Like SDL, GRAPES makes use
of a couple of correlated diagrams to describe an entire system. In GRAPES
this multi-representation approach is even expanded by introducing addi-
tional types of diagrams. GRAPES is intented to combine principles of IORL
(Input/Output Requirements Language) [TB84], SA (Structured Analysis)
[DE78],SADT (Structured Analysis and Design Technique) [YC79] and SDL
and approaches an object oriented view by looking at a system as communi-
cating and cooperating objects. Like SDL in GRAPES the static structure
of a system is represented by special diagrams. The equivalent to SDL’s
BD is the Communication Diagram (CD) in GRAPES. In addition the
structure of a connection within a CD is further explained using an In-
terface Table (IT) that specifies the used channels and data types. The
basic specification technique for behaviour is given by Process Diagrams
(PD) with the same meaning as in SDL. There is no equivalent to SDL’s
SCs. On the other hand more emphasis is laid on the specification of data
objects and data types. For this purpose Data Tables (DT) and Data
Structure Diagrams (DD) are used. The counterpart to ITs from the
process’ point of view is the Specification Diagram (SD) where the in-
terfaces of procedures and functions and the export interfaces of modules
are spectfied. The entire declaration hierarchy of a system is represented by
means of Hierarchy Diagrams (HD).

3.5. LOGIC PROGRAMMING

Specifying a system by means of rules to be respected seems to be a natural
_approach. This method is not very powerful alone as long as there is no
inference mechanism that allows to decide what rules are applicable and by
w.hich. fu?ther knowledge can be deduced. A very general inference mecha-
nism is given by unification. Therefore PROLOG [CM84] and its derivates
become a useful language for specific aspects of system level specification
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Fig. 2. Example of a GRAPES PD (from HE90)

and modeling. PROLOG is a language which is well suited to describe a
calculation by means of the intended result, independently of intermediate
steps. If processes where these intermediate steps are of interest rather than
a final result (which may not exist) the use of PROLOG makes no sense
as by the nondeterministic backtracking mechanism illegal intermediate
states are reached that cannot be communicated to the outside. For this pur-
Pose stream parallel committed choice languages like PARLOG[CG84],
GHC[UES5], or FCP[SH87, GK90] are well suited. FCP may serve as a typ-
ical example. A FCP clause looks like H : — Gy, G2y -y Gn|B1, B2, - -5 Br
H is the clause head. A goal can be unified with this head as in PROLOG.
The G; are guard predicates. The conjunction of these G; has to be true
for the clause body to be executed. If so the |-symbol (commit-symbol) is
passed irreversably, i.e. from now on there is no back-tracking. The body
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predicates B; can be interpreted as processes that are initiated concurrently
by the commit operation. Fine grain communication between the concur-
rent processes in carried out by shared variables that might be specified as
read only variables in certain processes. This means that such a process
is not allowed to instantiate such a variable but has to wait until this has
been carried out by a process that has the right to. Concurrent logic pro-
gramming has been used for hardware specification [SU85, WS87]. Efficient
parallel implementations are available today [GH91].

3.6. FUNCTIONAL PROGRAMMING

System modeling by functions is a very natural way with a long tradition. By
systems of differential equations very complex systems can be described in a
concise way. The v.Neumann-paradigm unfortunately replaces equation by
assignment. As for the numerical calculation of equation systems v.Neumann
computers have to be programmed this assignment point of view entered ar-
eas where it is completely inadequate. Functional modeling is very natural in
any kind of continuous systems. In the area of electronics, analog devices are
a typical example. But also in all kinds of engineering continuous systems
are investigated and mostly described by means of differential equations. So
system level modeling without supporting a functional point of view makes
rarely sense. An excellent example for an approach to cover wide areas of
electrical systems by functional techniques is GLASS[SE90]. Functional pro-
gramming not only is a very natural approach. It also opens the way to the
long tradition of mathematics. By analytical and algebraic methods formal
proofs and transformations can be carried out rather simply on functional
specifications while the same is very complicated in the imperative domain.
Therefore it 1s not surprising that functional programming is playing a more
and more important role in software engineering as well. This trend is in-
creased by the observation that the parallelisation of functional models is
much easier compared with imperative ones. A language that influenced
functional languages in the software domain is ML [MT90] while LISP can
be looked at as the classical functional language.

3.7. OBJECT-ORIENTED PROGRAMMING

If there is a paradigm that has the potential to cover most areas of system
engineering. object-orientation may be the best candidate. By the princi-
ple of describing systems by a set of objects that are incarnations of object
types, i.e. classes, the structural aspect is covered very well by the 00 ap-
proach. This is achieved even better if the principle of inheritance is used
that is present in most Q0 languages. By this principle hierarchies of classes
can be built. Rather complicated systems of classes can be described in a
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concise way by this approach. Objects are not just passive entities. They
offer methods that can be requested by other objects to be performed. To-
gether with the principle of polymorphism this is a very powerful concept
of abstraction. Polymorphism in this context means that in order to request
a method just a message is sent to the offering object. By the nature of
the message the offering object can decide how the request can be satisfied.
Object orientation has a nice mathematical background by the theory of
abstract data types (ADT) [GH78]. An ADT D(S,E) is given by a sig-
nature S and a set of equations E. A signature S(sorts, ops) is given by
a set of sorts (domain identifiers) and a set ops of operations defined on
these sorts. The signature specifies the syntax of the ADT. The semantics
is given by the set of equations to be respected. A couple of 00 languages
is available today with C++ [STS86] playing a dominant role just by being
inherited from C. Recently efforts are made to make concurrent 00 lan-
guages more practicable [AH90]. This of course is essential if all aspects of
system engineering have to be covered, as most aspects are concurrent by
nature. Another area to be attacked is the specification of the protocols to
be used between requesting objects and serving ones [MR89]. Traditionally
in 00 languages nothing is specified for this purpose. It is just assumed that
any message sent from a requester is understood by the server. Technical
systems behave in a completely different way, obviously.

3.8. COMPUTER HARDWARE DESCRIPTION LANGUAGES FOR SYSTEM ENGI-
NEERING

CHDLs like VHDL have been designed to cover a specific aspect of system
engineering, i.e. the design of electronic hardware. In the case of VHDL this
area is further restricted to digital systems and a bandwidth of abstraction
levels that reaches from partly switch level to partly algorithmic level. As
dedicated languages, however, CHDLs should be the most adequate means
to describe objects within their domain. As we already have identified that
a multiparadigmatic approach seems to be the most promising one for sys-
tem modeling, CHDLs get their natural role in this context. The approach
of SPECCHARTS [VN91] is an excellent example for this idea. Here the
entire system is specified by Statecharts, the fine grain functionality of the
states, i.e. the operations to be performed in the states, are specified in
VHDL. Another approach to add system design capabilities to VHDL is
VAL [AG8S]. Here additional information is added to allow to reason about
provided descriptions. There are other CHDLs that offer more direct sup-
port for the system level. DACAPO I [DACST] is an excellent example for
this. In contrast to VHDL this language supports

—~ functional programming,

— implemented abstract data types,
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— module concept,
— algorithmic concurrency

in addition to the scope covered by VHDL. Therefore it is not surprising that
a couple of proposals to enhance VHDL towards system level descriptions
have been made by researchers that are familiar with DACAPO III [GL90,
0C90]. DACAPO III was also the basis for ODICE [MR89] an approach
to introduce real object orientation, including protocol specification, into a
CHDL. A perfect idea with respect of the intended polyparadigmatic ap-
proach is the concept of CONLAN [PB83] to provide a deduction system for
building modeling languages instead of just defining one language. A revival
of CONLAN might be a very promising way of approaching a framework for
system level modeling.

4. System level simulation

By the heterogeneity of typical system level models, monolithic simulation
systems hardly seem to be adequate. Therefore multisimulator-systems may
be the best solution. Three major problems have to be solved when dedicated
simulators have to be coupled to a multisimulator:

— data exchange between the different simulators,
— synchronization of the individual simulators,
— a unified user interface.

While data exchange can be handled rather easily by defining universal ex-
change formats and eventually adding information about transmitter details,
the synchronization turns out to be the central problem. The simulators in-
volved have to be kept at least synchronous enough so that at each point of
time a data exchange happens, this point of time is legal for all simulators
involved. There are two extrem solutions for this problem:

—  the (“oversynchronizing”) supervisor approach,
~  the (“undersynchronizing”) time warp method.

The supervisor approach being a “pessimistic” one always allows only the
simulator that plans to let happen the event in the closest global future to
perform this action. The method is safe but doesn’t allow any concurrency-
Time warping [JS85 | “optimistically”assumes that the simulators can run
completely independently. This assumption is OK as long as no data is trans-
mitted to the local past of a simulator. If so, the receiving simulator has to
be rolled back and resumed at an earlier local point of time. Of course when
doing this, all messages sent to other simulators in the meantime have to
be canceled by sending “antimessages”. This may cause additional rollbacks
at the receivers of these antimessages. Recently very powerful multisimula-

tor frameworks have been reported, SICS [N191, OC91] being an especially
promising system.
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Simulation at system level is mainly used to offer a workbench to the
system engineer to perform experiments. Therefore special support to plan,
perform, and analyze experiments have to be offered. For this purpose Al
techniques have been proposed by a couple of authors [AP86, EO86, ER8S,
LA86, PF91, SM85]. With such techniques a knowledge based automated ex-
perimenter can be implemented that perform experiments in a goal-oriented
manner. A very advanced system for this purpose has been designed and
implemented by H. Pfaffhausen [PF91]. Such a system is a step to close the
gap between simulation and “formal” methods.

5. System level analysis and partitioning

Besides experimenting with a modeled system various kinds of analysis may
be carried out. This analysis can be based on simulation results or statically
on the model itself. Performance analysis is the area where most results
have been achieved. By applying queuing theory simpler situations can be
solved analytically while in other cases simulation has to be applied. In this
case not the system’s functionality is simulated but the behaviour at the
assumed queues. HIT [BES6] is an excellent example of such a performance
analysis tool applicable to system level. It models systems in a very clean
client /server way and offers hierarchy to cope with complex systems. Testa-
bility analysis, well understood at lower levels within the electronics domain
in rarely supported at system level. Rule based approaches like this one de-
scribed in [BI91] may be promising. Similar approaches may serve for an
analysis of fabricatability and maintainability. In order to support a clever
partitioning, analysis of similarity with predefined objects, but also within
a description, is helpful. A partition where relatively many parts can be
mapped into few predefined classes is a good candidate for an economic one.
Therefore feature oriented retrieval operations on libraries of rather complex
objects are needed. At this level of abstraction it makes nearly no difference
whether the “similar” object is similar because of offering the required meth-
ods directly as hardware or by software solutions. Therefore such a retrieval
system is equally helpful to search in libraries for OO programming and in
libraries of hardware components. Designing such retrieval systems will be

one of the most challenging tasks in system engineering of the near future.

6. Interaction with a concurrent engineering environment

When system level design is carried out all aspects of a product’s lifecycle
have to be considered. This coherent consideration of multiple interdepen-
dencies is called Concurrent Engineering (CE) [SS91]. Aspects to be con-
sidered include system functionality, performance, price, price/performance
ratio, maintainability, fabricatability, marketing aspects, substitutability of
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preproducts, management cost, recycling costs, legal aspects, etc.

All these aspects have a very limited view of the entire problem and try
to find local optima. To do so, influences of other aspects have to be con-
sidered, not necessarily knowing the inside of the decision-making process
of the influencing aspects. Concurrent engineering has to provide the nec-
essary information to the individual aspect-processing agents continuously
and, based on a global engineering model, tries to find a global optimum as
a compromise of the provided local optima. A concurrent engineering model
therefore has same similarities to a system level model of an object to be
designed. System level design methods therefore may influence concurrent
engineering techniques. Even similar computer support seems to be prob-
able. In any case a powerful design framework is needed for system level
design with or without connected concurrent engineering. When embedded
in a CE environment this framework aspect becomes even more evident.
The core component of such a framework is an object oriented data base
management systems (OMS) [FF91]. This OMS has to handle objects of dif-
ferent complexity and retrieve efficiently objects in a feature oriented way.
In addition a powerful event handling and trigger mechanism has to be pro-
vided to inform and trigger tools that concurrently are working at different
aspects of designing a specific system. This is the base service for CE.

Another important service of such a framework is design flow manage-
ment. It manages all the versions of obtained design documents, application
of tools in a concurrent or sequential manner, makes decisions about tools
being best suited for a specific design, produces the reports that make the
design process understandable and controllable. The third basic component
of such a framework is a unified user interface management system (UIMS)
helping to implement ergonomic user interfaces. Design frameworks have
been identified to be the central service to be provided for concurrent engi-
neering. They are investigated scientifically [RA87, RW91] and commercial
products are emerging. One of the most advanced solution for the framework
problem is the JESSI Common Framework (JCF) [KK91].

7. Conclusion

Traditionally systems have been designed by partitioning the problem into
different engineering domains manually. Within these domains the system’s
parts then have been designed independently with the methods of different
areas. The well known problem of life-cycle reduction, increasing system
complexity and market pressure make a more systematic design process at
the system level necessary. Such a design process has to be supported by
computer based methods. Finally an integrated CE environment has to be
achieved. Today the necessary base technology is evolving. So the problem
can be attacked now. And it has to be attacked, especially when the european
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situation is considered. Europe today is very strong in system integration and
the design of highly complex systems of heterogeneous nature. To maintain
this strength the understanding and application of automated system level
design and concurrent engineering seems to be essential.
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