Chapter 9

Synthesis Related Aspects
of Simulation

Franz J. Rammig

9.1 Introduction

The starting point of a chapter on synthesis related aspects of simulation has
tf) be the assertion that, at least in theory, as any other verification method
simulation becomes obsolete by synthesis, because one intent of using synthesis
is to produce designs that are correct by construction. So what can simulation
be good for in such a context?

~ First of all, one has to make the distinction between fully automatic and
interactive synthesis. No doubt, some kind of verification is needed for interac-
tive synthesis, to check the manipulations the user imposes on the design. In
Chapter 8 formal methods for this purpose are discussed. In contrast to those
“analytical methods,” in this chapter “experimental methods” are explained.
But, one has to keep in mind that simulation is not informal at all. Both
E{Pproaches, formal verification and simulation, have benefits as well as restric-
tIQHS and both methods are heavily dependent on intelligent usage. Thus, in
this chapter one main emphasis is on how to use simulation properly.

Under the assumption of fully automatic synthesis, one may doubt whether
there is any need for verification, especially for simulation, at all. However,
using synthesis does not affect the correctness of an initial specification. Since
specification is the first formal document, it can only be proven to be consistent
fmd in accordance with certain fixed or generic rules. By no means can it be ver-
}ﬁed analytically whether or not the initial specification matc
intent. Because synthesis even in the ideal case can guarantee noth

hes the designer’s
ing more

304 The Synthesis Approach to Digital System Design

than an implementation which is correct in relation to a given specification,
the term correctness by construction has a meaning that reduces correctness to
correctness modulo specification. It can be concluded, therefore, that indepen-
dent of the synthesis strategy (fully automatic or interactive) and independent
of the availability of analytical (formal) methods, the initia) specification has to
be verified by simulation. Using simulation, intelligent experiments have to be

carried out to ensure that the specification is in accordance with the designer’s
intention.

In this chapter, the term “simulation” is used slightly differently from the
traditional usage. Simulation, in general, is used to validate that design steps
have been carried out correctly. Consequently, simulation systems in the past
have been optimized for lower levels of abstraction (logic level or circuit level).
When used in the context of synthesis, simulators are needed at higher levels,
both for checking adequateness and performance. Most important, however,
in the case of synthesis the designer has to be supported validating his or her
initial specification. This implies that planning, performing, and analysis of
intelligent experiments have to be supported. This is an aspect missing in
most traditional simulation systems.

The question remains about the relevance of simulation at lower levels
of abstraction. As already mentioned, it is needed for interactive synthesis,
competing—or better cooperating—with analytical methods. In the case of
fully automatic synthesis it 18, in principle, obsolete. However, designers tend
to distrust synthesis systems. Of course, like any other software, synthesis
systems are not free of “bugs.” Therefore, low-level simulation offers an op-
portunity to crosscheck the synthesis results. Another argument for low-lew'al
simulation can be seen in synthesis for simulation, when a hardware speci-
fication, unknown to be correct, may quickly be translated into a low-level
implementation and efficiently be simulated at this level of abstraction. The
behavior at the lower level, then, has to be retranslated to the higher level of
abstraction. In the extreme case, the low-level simulation may be performed
on a so-called simulation engine (hardware accelerator), which has a multipro-
cessor architecture and whose Instruction set is optimized for the execution of
logic-level simulation, L.e., synthesis can be used as a compiler frontend for the
respective simulation engine. This method has its analogy in software design,
where it has been observed that low-level instruction sets allow a more efficient
execution of high-level programs (after compilation) than architectures tl_lat
support the high-level languages directly. Therefore, experiments (teStS) with
high-level programs are carried out after compilation at the lower level, and
only the diagnostics are retranslated to the higher level of abstraction.

The Fhird argument for simulation of synthesized designs at lower levels of
abstraction derives from the fact that the transformation from high- to low-level

Chapter 9 - Synthesis Related Aspects of Simulation 305

descriptions provided by synthesis is by no means unique. Synthesis results can
vary greatly in low-level characteristics, such as delays and power consumption,
which are not or only incompletely specified in the input description. Low-level
simulation can be used in this situation to evaluate the quality of synthesized
implementations.

To conclude, simulation is needed within the context of synthesis, both
for automatic and interactive synthesis. There are good reasons to consider
simulation at high and low levels of abstraction. Simulation systems, therefore,
have to support the planning, execution, and analysis of intelligent experiments.

9.2 Multi-Level Modeling

9.2.1 Levels of Abstraction

As described in Chapter 1, a widely accepted scheme of levels of abstraction
and domains of description is used in the area of digital system design. In the
context of simulation, the behavioral domain—especially the modeling of time
and data—is of main interest.

At the circuit level behavior of electronic circuits built from resistors, ca-
Pacitors, etc., is modeled over the time axis. This is achieved by a system of
differentia} equations, i.e., both the time axis and the observable data (currents,
VOItageS) are represented by a continuous value domain. There are some §im-
ulators at this level of abstraction, with SPICE [Nage87] in numerous versions
being the most widely used.

The logic level has a long tradition in digital system design. This level
has solid mathematical foundation in Boolean algebra. However, with Boolean
algebra only the timeless behavior can be modeled. Some additional concepts
have to be considered in order to cover time as well. In the ideal case the val.ue
domain? is restricted to Boolean values 0 and 1 while the time domain remains
continuous, but the problem of uncertain values necessitates the introductic;n of
additional values. As a consequence, in most cases the underlying algebra 1s no
longer Boolean. The operators, however, are always Boolean (logic) operators.
Because of the long tradition of using the logic level for simulation purposes,
numerous simulators are available for this level of abstraction. They differ in

1A level of abstraction, which plays a major role in simulation, located b?tween c'irclut
and logic level, is the switch level, where circuits are modeled as network§ of ideal sthche;
and capacitors. As this level plays no role in synthesis, it is not further discussed here, an

is not included into the representation of the Y-chart of Chap.ter 1. Y.chart
The term “domain” is used here in another sense than in the context of the Y-

where it denotes the view or aspects of a design object one is interested in. Here, domain
refers to a range of values.

306 The Synthesis Approach to Digital System Desigr

their definition of value domains and timing models. HILO [H.ILOQI],' CA-
DAT [CADA91], DISIM [DISI91] are some examples of commercially available
simulators.

At the register-transfer level a specific mode of operation is assumed. Com-
ponents continuously observe specific, associated conditions. Whenever the
condition associated with a component becomes true, this component performs
its specific operation. Operations can be interpreted as a transfer of data'be-
tween registers; the data transferred may be modified during this operathn.
The value domain at this level of abstraction is given by (uninterpreted) .blt-
strings, whereas the timing model is that of counting clock ticks. Thus, the time
domain has become discrete as well. The register-transfer level is very helpful
for well-structured synchronous designs, since it enforces to some extend stfch
a design style. Simulation at this level of abstraction has been mainly studied
in academic institutions [Borr81, Chu74, DuDi75, Hart77].

At the algorithmic level the reactive point of view of the register-transfer
level is inverted to an imperative one. While at the register-transfer level
the system is seen from the point of view of the individual components, at
the algorithmic level the controller’s point of view is taken. In contrast to
ordinary algorithmic descriptions, however, concurrency plays an important
role in hardware design and, therefore, at this level of abstraction. In contra.st to
the register-transfer level, where it is precisely specified which conditions tr}ggef
an operation, at the algorithmic level this information is not explicitly va‘de(,i
Only the discrete point of time at which an operation has to be carried out, 18
identified. The domain of values can be defined in various ways, but is usually
restricted to bitstrings with interpretations attached (e.g., two’s compl‘?mfmt
integer, IEEE standard floating point number, ASCII character). The timing
model at this level of abstraction is either that of counting clock ticks.as at
the register-transfer level or a purely causal one. In the latter case, SlmPly
a causality structure is assumed as it is known from general programming
languages. Only a few commercia) simulators are available for this level of
abstraction [DACA90, Thom91]

Finally, at the system level the entire system is considered as a set of cooper-
ating processors. In this context the term processor is used in a broader sense,
namely to denote a subsystem which exports certain services (instruc.tlons)i
Both the value domain and the timing model are purely symbolic at this leve
of abstraction. Types can be defined freely and associated with arbitrary s€-
mantics. The sequence of operations is only defined by causality relations. ’Fhe
system level is supported by only very few commercial simulators. More sim-

ulators working at this level of abstraction will evolve as synthesis approaches
this level of abstraction.

Chapter 9 — Synthesis Related Aspects of Simulation 307

9.2.2 Modeling Concepts

{)I; t:es.contiex.t of synthesis.three rn.ajor modeling concepts have to be considered
simu atlc_)n system: imperative models, reactive models and stimulated
equations {strictly functional models). ’
vonI;l::;?at;vetmodels originate ttrom algorithmic. programming languages for
high lovel deg ypt(? processors. H'1gh-level synthesis in most cases starts from a
e ot this cr(liplxpn in m}pelratlve style (cf. Chapter 6). Therefore, the sup-
Ppesative model 1s e§sent1al in the cont.ext of this book. While in traditional
iy tpr}?grammmg langl{ages a strictly sequential operation 1s assumed,
hardioe 3 nas to b.e generahzed to concurrent algorithms in the domain of
by ot 'i'eSIgn. ’If“hls is necessary, because hardware systems are concurrent
way fon e,n e.e.l,.p.er ormance is gamfad by the use of parallelisms. An obvious
o Ii Cat%‘a izing seqt.xentlal algorithms to concurrent ones is the approach of
e ing sequ'entlal processes (CSP) {Hoar78, Hoar85]. Therefore, this
y serve to introduce this concept.
proigssCeSP t}}:e entire system i-s rep.resented as a system of co
plementeaw el;le each process is strictly sequential. This concept, perfectly im-
e v I-III]ID 1I;J e programming language OQCAM [May83.], can also be iden-
the comstonct (cf.' Chapter 2). In CSP, a single process 1 represented using
are eom] tcls fzsszgnment, g.uarded command, and iteration. The processes
othor thI; ;13 ely mdemndent, i.e., they are r}ot allowed to sha.re any resources
ot shor gommunlcatlon channels. In thls.aspect, VHDL is less strict, be-
statioal] ed resources are allow§d. A.ny conflicts, however, have to be resolved
y using resolution funclions in VHDL.

ncurrently active

vents and processes. Objects to be specified are described using events.

rSI:LCnht a(.)r; event is treated as an stomic action. Typically, an event is the assign-
is callod al‘féllllue to a v;.lrlable. .T}'le set of gll eve.ents used to desc'ribe an (?bject
behav; alphabet f)f this description (of this object). A process 15 an arbitrary

avior of an object that can be expressed using the alphabet of this object.

ent and P a process. By “seqbegin
first, before process P
“seqbegin

s.e;l)uential execution. Let a be an ev

c; bseqend” it is denoted that event a has to happen

a-I;D e started. By definition, a is a process, and if P is a process,
; P seqend” is a process, too.

e true do P” it is denoted that P

“while true do P” is a process,
true do P” it is denoted

«grue.” If P is a process,

lfl::czlrsion. Let P be a process. By “whil
- (E be repeated 1¥1ﬁnitely. _If P is a process,
thai Peltl con be a binary variable. By “while con =
atb % has to be executed as long as con has the value
while con = true do P” is a process, t00.

308 The Synthesis Approach to Digital System Design

Case distinction. Let P;,..., P, be processes, cnt a variable with domain
{e1,...,en}. By “case cnt of ¢1: Pijeat Pe...;en ¢ P, caseend” it is
denoted that only that P, has to be executed whose ¢; is the current value
of ent. ¥ Py,..., P, are Processes, “case cnt of ¢; : Pj;cy : Py;...:cp : P,
caseend” is a process, too.

Input/output. Let chan be a special variable of type channel, denoting a
communication channel. Let var be an arbitrary variable. By chan'ver an
output operation is denoted. The actual value of var is transmitted via chan-
nel chan. The operation is not completed until a concurrently active process
(see below) has read this value (rendezvous concept). By chan?var an input
operation is denoted. The actual value taken from the channel chan is assigned
to var. This operation can be carried out only if the channel is not empty. Ini-
tially, a channel is empty and a non-empty channel is emptied by executing an
Input operation on it. Like assignments, input/output operations are treated
as events. By definition, neither an input operation nor an output operation
can be executed if no concurrently active additional process exists. It is as-
sumed that a function test (chan) exists for each channel chan. It returns true
if chan is not empty, false otherwise. This function can be used only within
control expressions and is not treated as an input operation (does not empty a
channel and does not block on an empty channel).

Sequential process. A sequential process is an arbitrary sequence of the
above constructs, and nothing else.

Concurrent process. Each sequential process is also a concurrent process.
Let P be a sequential process and C a concurrent one. By “conbegin P; C
conend” it is denoted that P and C are executed concurrently, i.e., P and C
are initiated at the same point of time and, then, run completely independent as
long as they do not communicate via ashared channel. The process “conbegin
P; C conend” terminates when the last one of the contained processes P and
C terminates. As mentioned above, processes within a concurrent process are
not allowed to share resources other than channels. If Pis a sequential process
and C' is a concurrent one, “conbegin P; C conend” is a concurrent process,
too.

Locally, VHDL has a similar point of view. However, internally all processes
are strictly sequential and are treated as looping infinitely, the loop being inter-
rupted in each cycle until events specified in the sensitivity list of the process
occur. Therefore, VHDL follows a reactive modeling concept.

With the imperative model, a system is observed from the controller’s point
of view. In this sense, a controller is an object that causes other objects to ex-
ecute operations in a well defined (partial) order. The reactive model inverts
this point of view. In this case, the entire system is observed from the position

Chapter 9 - Synthesis Related Aspects of Simulation 309

of the. controlled objects. From this (local and partial) point of view the partial
ordering of the operations has no meaning. For any specific object, it is rele-
vant only that a certain action has to be executed whenever a certain condition
becon'les true. Such an action may include a modification of certain conditions,
thus implicitly causing other objects to execute operations. The descriptive
power of the reactive model is the same as that of imperative modeling. How-
ever, 'Fhe global control concepts of a description are no longer visible. The
following simple example may help to illustrate this (VHDL notation):

process begin
operation_0;
operation_1;
operation_2;
end process

This is equivalent to

gignal sequence: Natural := 0;
-- auxiliary signal, initialized to 0
process begin

operation_0;

sequence <= 1;

wait until sequence = 0;
end process;
process begin

operation_1;

sequence <= 2;

wait until sequence = 1;

end process;
process begin

operation_2;

sequence <= 0;

wait until sequence = 2;

end process;

After the start of the system all three processes are continuously
Whenever the condition “sequence = i” becomes true the respective process is
(re-) started and the two actions “operation_i” and sequence “& ((i+1)mod 3)”
are executed.® The sequence in which the processes are written down in the

descriptive text is of no influence.

The reactive model seems to be quite natural for
because it takes a structural point of view with behavior attached, and it is
the basic modeling concept at the register-transfer level. At this level of ab-
Straction, the basic operation is the storage of information (possibly after mod-
ification) into a destination register under certain conditions. This is nothing
else than inverting the point of view of microprogramming, or looking at a
microprogram with the controlled object’s eyes. The global semantic concept

of VHDL is, as such, a reactive one.

What happens if the conditions in a react
a resolution function to be defined for the
omitted here.

active.

hardware descriptions,

ive model are always true? In this

3
i Due to technical reasons, VHDL requests 1
signal sequence. For reasons of readability, this function is

310 The Synthesis Approach to Digital System Design

case, the attached operations have to be executed continuously. Restricting
reactive models to those for which every condition is always true, does not
restrict the modeling power. Since, obviously, logic-level implementations exist
of all digital systems described at the RT-level, this may not be too surprising.
The same can be shown within the modeling context as well:

A reactive model is represented by a set

R={at ¢; dot;:= fi(s;)li=1:n}

, L.e,, aset of “guarded commands” with the meaning that whenever ¢; becomes
true, the value calculated by function f; on its arguments s; is assigned to ;.
It is not requested per se that the destination ranges ¢; are disjoint, but it is
always possible to rewrite R in such a way that this becomes true. In this case,
for each destination object the sequence of its values is defined. On the other
hand, each f; can be modified in such a way that the executability condition
c; becomes an argument of this function:

fi(si,ci) :.—:{ -tf:(sl) gsf; true

But then, the prefix “at ¢; do” becomes obsolete and can be omitted.
By the procedure described above a system of equations is obtained. In the
stable state all equations contained are in equilibrium (the system of equations
is solved). By changing the value of an arbitrary object, the equilibrium is
distorted, resulting in an instable global state. As a reaction, the system of
equations trys to restabilize (recalculate a solution). Of course, the existence
of a global stable state (a solution) is not always guaranteed. In that case, the
system will continuously attempt to reach a stable state, without success.

In the above it 1s assumed that the left-hand side and the right-hand side
have different meanings (destination and source). In this case, a system of uni-
directional value assignment is modeled. In a system like this a well-defined flux
of distortions through the system exists, similar to a wavefront. If there are no
different roles, the assignment symbol becomes an equality sign. Of course, the
flux of distortions then becomes much more complex. Both models, unidirec-
tional and bidirectional flux of distortions make sense in hardware modeling.
This kind of functional modeling is the most natural one at lower levels of
abstraction, as well. Unfortunately, it is not at all supported by VHDL.

9.2.3 Modeling of Time

To model the timing of a system is of crucial importance, even though it adds
to the complexity of simulation. In addition, the problem exists that in real
systems a value at a certain point of time is not only dependent on calculations

Chapter 9 — Synthesis Related Aspects of Simulation 311

balsed upon arguments at exactly the same point of time, but on a history of
values over the time axis. In the range of abstractions to be considered in this
FOntgxt time dependencies can be reduced to delays, which are either inertial or
inertial free delays. This concept can be introduced quite easily at the logic level
Z?d can be.generalized to other levels of abstraction, afterwards. The following
b scussion is based on the assumption that the observable values are modeled
aida St}t of five 'elements {1, 0,p, n,u} where 1 and 0 stand for stable values, n
iy p for negatlve.or posrgve e.dges, and u for an uncertain value [Ramm80a].

is value model is used in this section for simplicity reasons, only; for more
advanced models the reader is referred to [Coel89, Dani70, Haye86, KrAn90,
LeRag3).

Deﬁpition 9.1 (Real continuous signal set, RCS) Let [L,R] C R be a

real interval. A set of differentiable real functions RCS C [L, H]® is called

real continuous signal set, rcs € RCS real continuous signal. L and H stand

J;OOTI the lowest and highest voltage available, for ezample, in the particular tech-
0gy.

This infinite set of observable values has to be mapped onto a set of only

five elements.

us signal set, FV®) Let H > TH >

Definition 9.2 (Five valued continuo
valued conlinuous

TL > L be reals, FV := {O,p,n,l,u}. FVR is called five
signal set, fes € FVR is called model of arcs € RCS & fes := f(res) with
VEER: f(res;) =1 res; >TH

f(res;)) =0:res; <TL

f(res))=p:TH >rese >TL A dresi/dt > 0

f(res;)=n & TH >resy > TL A dresi/dt <0

f(res,) = u 1< otherwise

To achieve a further abstraction, the time set is restricted to a discrete one:

Definition 9.3 (Five valued discrete signal set FVT) Let T be a count-
able subset of R with metric and ordering inherited from R. FVT is called

five valued discrete signal set, fds € FVT five valued discrete signal.
Let ..t q,titigr,--- denote adjacent elements (points of time) of T.

fds € FUT 1o outied iaodel of a fes € FV® :e> fds = f(fes) with:

Vi, e T . YVw € {O,P,n,l}t
f(fesii) =w eV <t < cfest=w
= u otherwise

312 The Synthesis Approach to Digital System Design

With the above abstraction, signals can be represented by traces [SneP§5].
For instance, a 50 MHz clock signal with a transition time of 4 ns for the raising
edge and 6 ns for the falling edge is modeled by the sequence?

(ppppl111 11nnnnnn00000)".

It is a basic principle for the modeling of real time behavior to distinguish
between purely functional aspects and timing,

Definition 9.4 (Timeless Boolean function) Let a; denote the value of o

signal at point of time t (“projection at t”), as already used above. h - (FVTyr —
FVT is called timeless Boolean function
=

AW FV* — FV) Vae (FVT)™ Yt € T : (h(a)), = W(ar)

The purely functional aspects are modeled perfectly by Boolean functions.
In addition, timing effects have to be considered:

a) Delay: It is assumed that a value calculated by an operation comes

to effect only some time period after the causing arguments have been
applied. No distortion of the waveform takes place.

b) Inertia; Usually, switching elements react only to signals that are stable
for a specific minimal period of time.

c) Edge triggering: Certajn switching elements react on transitions rather

than on stable valyes. Usually, a minimal slope requested for the transi-
tion has to be accepted.

d) Transition time modification: Switching elements may either de-
crease the slope of transformed signals, or act as pulse sharpeners.

In the following, a number of elementary time dependent functions are in-
troduced. They can be used to compose realistic models of switching elements.

Definition 9.5 (Transport delay function)

Let TD := (tpLH,tpHL) € Ng,tpLH +tpyyr finite, a transport delay speci-
fication, md -= max{tpLH,tpHL}.

The function tdfrp : FVT _ pyT
respect to T'D
=

Htdf - FV™ — vy va e Pyt gy e .
(tdfTP(ﬂ))t = tdf’(a,, ceay at_md) with
dan

*” denotes repetition.

s called transport delay function with

Chapter 9 — Synthesis Related Aspects of Simulation 313

Qt_tpyy if a €{1,p}V(a: =uAtpLy > tPHL)

Ai—tpy, Otherwise

tdf'(ay,. .., a_ma) = {

Tran :
and tPHSchEI;et(ijlay 18 O‘ff‘ered by VHDL, but the distinction between tpry
e : iy .
primitive. en positive and negative transitions) is not supported as a

};):t}f}l[l)ifi—m(ltg.ﬁ (Inertial fielay function)
thim be an ;I;}rli’ifzfl’zgl;to’;l) €N, tpLa+ipHL Hiotiy finite, fo < Lpui, i <
stable' lo be acerpted) y specification. (i specifies how long a signal has to be

I;;: }= m.ax{t.PHL,tpLH} + max{z'o, il}.
respect tou}zlc)twn idfip : FVT — FVT is called inertial delay function with
=
3(idf'21‘_'V“"id—>FV) Yae FVT :¥teT:

(ideD (a))t = idf’(at, veey at._mid) with

idf'(ay,. .., ar_ma) = {pn_t,,“,(a) if a; € {1,p}V (ax = uAtprr 2 tpLH)
Pri_ipy, (@) otherwise

with (for d € {tpry,tpuL)) :

Pre_g(a) =uss i) apg=u
Vii) qg=0AH>t >t—d>t" >t—mid:
G1_qg # 6y Nar_g # ap At =17 <o
Vi) agq = AR>S >t—d>t" >t—mid:
at—d ?é ap N ai—d # ap At — t’ _<_ il
= Qt—d otherwise

f};:;aflollllplg' Consider thg inertial delay specification id1l = (3,4,3,2). Then,
owing transformation can be observed from signal a to signal b by idfiar:
a = 00000p1n00000p11111n0p1111
Inertial 2 = ' ????00000pun00000p11111:}1111.31..111
bet ! elay is supported by VHDL as a primitive;
ween different values is made.
slopﬁ‘igt_e‘trlgge}'ipg {leeds a bit more consi
n the a trans1t10n. is represented by the perio
be ¢ (iase of a period longer than a certain thr
00 low for the edge to be accepted as trigger-

however, no distinction

deration. In a discrete model the
d a value p or d can be observed.
eshold, the slope is assumed to

314 The Synthesis Approach to Digital System Design

Definition 9.7 (Edge triggered inertial delay function)
Let ED = (tPLH,tPHL;tO, i1,ep,en) € Ng, (tpru,tpuL, i9,11) be a valid iner-
tial delay specification, ep + en finite be an edge triggered inertial delay specifi-
cation. (By ex the longest time-period is denoted during which a signal has the
transition value z to be accepted as trigger, 0 stands for “no edge triggering”).
med := max{tpry,tpyr} + max{io, i1, ep, en}

The function edfgp : FVT — FVT is called edge triggered inertial delay
function
=4
A(edf’ :FVmedaFV):VaEFVT YteT:

(edf(a)); = edf'(ay, . .., @t _meqa) with

1 = >1
edf'(ar, ..., ar—meq) = Pre-tp,y(a) if a; € '{l,p} V(e =untpur 2 trea)
Pri—tp,(a) otherwise

with (ford € {tpLr,tpyL}):

pre-d(@) =ue i) a_yz=u
Vi) Gad=0AR>>t—d>t" >t — med:
A_q # ayp A Qg F ap At —1° <1
Vit) g = 1A’ > >t —d> ¢ >t — med -
Qg # ap A G_g#ap At—1° <1
Vi) ep# 0N a=pAR >t >t—d>t > —med:
V' >tt > a4 € {a_g,u} At — 0 >ep
Vo) enFO0AG g=nAR>E St—d>t >t—med:
V' >t > a4 € {@_g,u} At —t” > en
=1) PFEONGa=pAI>t—d>t' >t— med:
at_d+1:l/\at:=0/\t—d+1~t'<6p
APTi-a41(a) # u A pro(a) # u
Vvii)en;éO/\a,_dzn/\Eit>t—d>t’>t—med:
at_d+1:0/\(1,::1/\t—d+1-t'<en
APri—ati(a) # uApro(a) # u
=0 otherwise

Comments. By inertia the delayed value is mapped on u whenever it is not
stable' long enough (ii, iii). The edge-triggering maps a transition to value '1
at a single point of time at the end of the edge if the slope of the transition 15

“high enough” (vi, vii). Smooth edges are mapped on u, too (iv, v). All other
cases are mapped to (.

Example. Consider the edge triggered inertial delay specification

ed; = (4,4,3,2,2, 0). Then the following transformation occurs from signal a
to signal b by edf, 4, :

Chapter 9 — Synthesis Related Aspects of Simulation 315

a 00000p1n00000ppp11111nnn00000pp11111
b ?7?7?77000000u000000uuu0000000000000010000

As the last part of the assembly kit, transport delay functions are defined
that effect the “slope” either by increasing or decreasing it.

Definition 9.8 (Smoothing transport delay function)
Let SD = (tPLHytPHL,SU,Sd) € Ng X ZQ,tpLH +tpur + |sv] + |sd| finite,
su <tprg,sd < tpgy be a smoothing transport delay specification. (The values
su and sd are additive constants, with the meaning that a slope represented by
a sequence of n symbols = is transformed to one represented by a sequence of
N+ m symbols, m € {su, sd}, su affecting positive edges, sd negative ones.)

msd := max{tprg,tpyr} + max{su, sd}
sdf : FVT — FVT s called smoothing transport delay function
=4
Asdf' : FV™sd L FVY:Vae FVT :WteT:

(sdf(a)); = sdf'(as,- .., Gt—msd) with

sdf’(at . a) = pT't—tpz,H(a) if a; 6.{1,1)} V(ar=uAtpaL 2 tpLu)
sy Qtamsd) = Pri—tpy (@) otherwise

with (ford € {tpru,tpur}):

Pre_g(a) =06 i) ag=0Asd<0
Vv 1i) at_d:O/\sd>OAVt—d—stt’St—d:a,z#n

V i) at_d:n/\sd<0/\3t—d§t'St—d—sd:

ay =0Aa_g-1 =1

Il

1 w) aia=1A5u<0
V) gr_g=1Asu>0AVt—d—su<t' <t—d:av #p
V vi) G g=pAsu<OAF—d<t <t—d-su:
apy =1Aa_4-1=7p

=p& i) ai_g=pAsu>0
:p/\su<0/\Vt—d§t’§t—d—+su:at/;él

V it} ag_qg
Vv iz) a_g=pAsu>0ATF—d<t'<t—d+suiaw=p
vV z) ar_g=pAsu<OAF-—d<t' <t—d—su:

ap =1Aa-a-1#Pp
=n& 1) a_g=nAsd>0

Vv z11) at_dzn/\sd<0/\Vt——d§t’5t—d—+sd:ay¢0
ziii)at_dzn/\sd>0/\3t—d§t’gt—d—i-sd:a,/:n

V ziv) a,_d:n/\sd<0/\3t—d§t’gt—d—sd:
ap =0Aa_g-1#n

<

=u otherwise

316 The Synthesis Approach to Digital System Design

Example. Consider the smoothing transport delay specification

sdiy = (2,2,-1,1). Then, the following transformation exists from signal
a to signal b by sdf,q;:

a = 0000ppp1111nnn0000pp1111nn00p11n00

b = ?70000ppi1111nnnn000p11111nnnOp11nn0

In VHDL, neither edge triggered inertial delay functions nor smoothing
transport delay functions are offered as primitives. They may, however, be pro-
grammed by a user. The four delay functions defined above may be replaced
by other ones if different effects have to be modeled. In any case, they may
serve as typical examples of such functions. Using such delay functions as a
kit, quite realistic real time switching functions can be defined. As an example,
this is achieved by composing a smoothing transport delay function, a timeles:s
Boolean function and n edge triggered inertial delay functions. Other combi-
nations are possible as well, but it seems to be the most natural approach to
locate smoothing at the output of a switching element, while its inertia and
edge sensing are associated with its inputs.

Definition 9.9 (Real time switching function)

Let SD = (otpLu,otpyy, su, sd) be a smoothing transport delay specification,
ED; = (itpLH,itpHL,to,il,ep,en).-,i = 1 : n edge triggered inertial delay
spectfications, sdfsp a smoothing transport delay function, edfgp, edge trig-

gered inertial delay functions (i =1:n), and f a timeless Boolean Junction
with n arguments.

mdi := maXl;n{itpLH',l'tpHL‘}, mdo := max{otp. g, otpyr},
min ;= maxl;n{zo‘,il',ep,-,en,-},ms ‘= max{su, sd},
his = mdi + mdo + min + ms

rsf((FVYTY = FVT s called real time switching function

=
Irsf ((FV)")Ms S FV - vq E(FVTY .vteT-
(rsf(a)), = rsf'(ay, ..., Ay _his) with

rsftl = sdfsp (ftv ---)ft—mdo)
- SdeD (f(edf{(alty ey alt—mdi—miﬂ)) ey
) edfi(am,, ... My _mdi —min)
f(ed 1(ali—pmgo, . . v ale_pis), ..
edfr’n(amt—md07 ceey amt—hia)

Chapter 9 — Synthesis Related Aspects of Simulation 317

The approach presented above allows for relative precise modeling of timing
effects. It may easily be modified to support logics with another value-set, or
to describe other timing effects.

The question arises, whether it makes sense to model the timing behavior
in such a precise way. Definitely, it is not necessary at the algorithmic level
and at register-transfer level. It can even be omitted at the logic level as
long as strictly synchronous designs with a well calculated clocking rate are
used. At the algorithmic level, in most cases a causal timing is used, i.e.,
only the relative ordering of actions is specified. For this purpose, algorithmic
constructs or explicit causality structures using preconditions/postconditions
are sufficient.

The typical timing model at the register-transfer level is the counting of
clock ticks. All other actions are related to these clock ticks. This concept can
be modeled very easily. In a strictly synchronous design this relation to clock
ticks exists at the logic level as well. However, for performance reasons many
designers tend to use less strict synchronization schemes. Hence, whene?ver
Interactive synthesis has to be supported by simulation, certain timing trxcl.(s
used by a designer have to be considered. To handle these timing tricks in
analytical methods is very difficult, though attempts are made to cover the.:m,
€8, [SaB09l]. Therefore, time accurate modeling is a domain, in which sim-
ulation really can prove its strength. However, accurate timing costs a lot of

simulation performance. Clever designers will, therefore, mod.el only as accu-
and clever implementors of simulation systems will

Tately as really necessary,] o the
y as needed for

design adaptive algorithms that model only as accurate
actual design being simulated.

In this section an abstract model of timing has been intrgdt{ced. Hard-
ware description languages are intended only to specify the timing pgran;e—
ters. In most cases, the point of view is different from the one used in this
section. Timing has been introduced by defining current' values as a func-
tion of past sequences of values (backward oriented modelmg) while in mo:t
hardware description languages timing is expressed by schedulmg future gvents
(forward oriented modeling). Backward modeling is mathe.matlcal!y easier :i)
describe. It allows for specifying timing simply by functlo‘ns while fo(;'w;:ar
oriented modeling needs a procedure of scheduling and, POSSll_')lyz reschedu “ﬁ
of events. CONLAN [Pilo83] is one of the few hardware description lamhguagis
completely bound to backward oriented modeling. VADL, on th'e other l'an' o
mostly forward oriented, but supports backward oriented modeling to a hmite

extend as well.

318 The Synthesis Approach to Digital System Design

9.3 Simulation Techniques

The task of a simulation algorithm comprises the effort to map a modeling
concept (or a variety of modeling concepts) onto the architecture of: a host
computer. Of course, the most efficient simulation is achieved if the architecture
of the host computer is identical or at least similar to the modeling concept to
be supported.

This is the basic idea of a class of dedicated simulation machines (hardware
accelerators) [BDPV88, HaFi85, HaHE90, KoNT90]. Another class of such
machines makes use of pipelining to accelerate sequential algorithms.

In most cases, however, a conventional von Neumann computer has tO. be
used as host computer for simulation. This case is discussed in the follow1pg.
The main problem of mapping onto a strictly sequential machine is the high
degree of parallelism usually contained in concepts for hardware implementa-
tions.

There are three main techniques to tackle the problem:
¢ Streamline Code Simulation (SCS)
o Egquitemporal Iteration (EI)

e Critical Event Simulation (CES)

These approaches are discussed in the following sections.

9.3.1 Streamline Code Simulation

The basic idea of this approach is to generate code from the hardware de-

scription that can be executed directly by the host computer. Therefor.e, this
technique is often called compiled mode simulation. Of course, 1t 18 possxl")le 'to
generate directly executable codes for any modeling technique, but SCS in its

strict sense, without any interpretative and scheduling components, usually is
restricted to

¢ continuous evaluation as modeling concept,
¢ combinational or strictly synchronous circuits,

¢ models for which timing information is not important.

The classical application area of SCS is the simulation of combinational
circuits at the logic level. This example, therefore, is presented first.

Chapter 9 — Synthesis Related Aspects of Simulation 319

TheAncczimbina.tional circuit can be represented as a directed acyclic graph (DAG).

from : est of the DAG represent the gates of the circuit, while each connection
a . .

Figure 9g.1)e. output to a gate input is represented by an edge of the DAG (cf.

Figure 9.1: Combinational circuit and its representation as a DAG.

r the nodes of a DAG with respect to

It is a straightforward task to semi-orde
s technique

t
the length of the longest path from a node to a primary input. Thi
1s called levelizing:

1. Assign to each primary input in; : level(in;) =0

2. Assign to each other node nj : level(n;)
= (1 4 max{level(ny)|3 edge from ni to n;})

level 0 | level 1 |level 2 | level 3| level 4

Figure 9.2: Levelized DAG from Figure 9.1.

320 The Synthesis Approach to Digital System Design

Then, the levels may be interpreted as follows:
i) There is no influence of a node at level i on a node at level i<
if) There is no cross-influence between nodes at the same level.

iii) A node at level i may (but is not required to) influence any node at level
k. k>1.

By levelizing, therefore, a dependency relation is introduced fot.the circuit.
This is a further abstraction of the dependency relation already given by the
DAG. It is precise enough to define a save sequence of calculations at the
different nodes, i.e., a sequence in which no values are referred to before they
have been calculated: it is only necessary to arrange the code in' accordanc.e
to ascending levels of the represented nodes. The sequence within a leYel 1s
arbitrary because no interdependence between nodes of the same level.ex1§ts-

In the case of logic-level simulation, the code needed for a gate is given
by only a few instructions of the target computer. The connecting nets ar;
represented as variables (memory locations in the main or virtual memory o

the host computer). The example used in Figure 9.1 may be translated into
the PASCAL-like code shown in Figure 9.3:

var pi_1, pi_2, pi_3, pi_4, pi_5, pi_6: word;
int_1, int_2, int_3, int_4, int_5: word;
po.l, po_2: word;

begin

{level 1 computations }

int_1 pi_2 and pi_3;

int_2 := pi_4 and pi_5;

int_3 := not pi_§:

(level 2 computations }

int_4 := int_1 por int_2;

int_5 := int_2 nor int_3;

{level 3 computations }

po_l := pi_1 or int_4¢;

{level 4 computations }

PO_2 := po_l or int_S or int_3;
end

Figure 9.3: Code for example used in Figure 9.1.

The PASCAL-like lan
easily be replaced by the
declarations by allocating
ecutable instructions of t
calculation based on one
process an arbitrary seq

guage used as the target code in this example C“‘-m
machine code of an arbitrary processor, replacing
memory locations and assignment statements ?JY ex
he target machine. The example above describes 2
single input pattern. It may easily be extended to
uence of input patterns. By introducing simulated

Ch - '
apter 9 — Synthesis Related Aspects of Simulation 321

shift regi i :

chrono fsszer:sar?}t;aiytsequ.entlal c'ircui.ts can be simulated as well, even asyn-
long a5 no tricl'(y manua lter is of minor interest in the context of synthesis as
exviromment. Donsll awrllllodlﬁcatl.ons are performed in an interactive synthesis
using another and myI;Ch en SCS is applied, sequential circuits are supported
that no timing inform t.51mpler (but le.ss accurate) approach: It is assumed
Thus, any sequential ation of granularity finer than clock ticks is required.

ial circuit may be represented in Huffman normal form.

n
m

X —f—
' = Y=1(9)

P k
P
S=g(X.S)

-
i

Figure 9.4: Sequential circuit in Huffman normal form.

Tw s .
o combinational functions have to be calculated:

® y = Az, s) (Mealy model)

o s — 5(1‘, s).
ss manner) by the basic SCS
terpreted as one clock cycle,

o not need to be modeled
esenting the

app’foh::; f;lfnctions can be .calculated (in a timele
state 1o i. b one loop iteration of the algorithm s in
explicitlg Slir'on the feedback loop of the circuit d
state 1{ _ Tt is sufficient that the assignment to the variables repr
SCa es place at the end of each iteration.

phase Eul: a very efficient approach. It requires more effort in the compilation
avoids any overhead caused by interpretation. Therefore, whenever

more the preferred

appli .
erI;; ﬁCé(lible, compiled mode simulation becomes more and
od. In the context of synthesis, especially high performance register-

tra . R
nsfer level simulation can be achieved using this method. The approach

322 The Synthesis Approach to Digital System Design

presented above to support precise timing, however, causes an enormous over-
head. Whenever such precise models are requested (and simulation seems the

technique best suited in this area) other techniques are preferable. They are
outlined below.

9.3.2 Equitemporal Iteration

As already mentioned, especially those levels of abstraction that are used as
input levels to synthesis need to be supported by simulation. For high-level
synthesis this is the algorithmic level. SCS is a general technique, but not nec-
essarily the most efficient one at the algorithmic level. A classical, very simple
table-driven simulation is equitemporal iteration (EI). It is directly applicable
to VHDL. As for SCS, an iterative approach is used in EI to calculate the state
of the entire system being simulated. After each iteration the global simulated
time is increased by a fixed increment. The step size may vary from iteration to
iteration, but is always equal for all components of the system to be simulated.
(In this context, this technique is referred to as equitemporal.)

The El-algorithm is very simple and easy to implement. Unfortunately,
it is rather inefficient if the percentage of components being executable at a
certain point of time is low. This is due to the fact that at every point of
time (within the observation resolution) each component has to be visited and
checked whether its executability condition is true. At the logic level, typically,
the probability for this is about 0.05. The relative efficiency of EI increasgs
with the instability ratio of the system to be simulated. This instability ratio
increases either if the resolution of observation time is decreased, or if a larger
domain of observable values is used. Consequently, EI is mostly used at the

RT-level (coarse time resolution) and the circuit level (continuous domain of
observable values).

9.3.3 Critical Event Scheduling

This is the most frequently used simulation technique. The approach is aimed
at the task to overcome the efficiency problems of EI by restricting calcula-
tions to necessary {i.e., non identity) calculations. CES can be applied to any
modeling concept, in which the following restrictions are respected:

1) The point of time of the next event is predictable.

1) If the point of time at which a certain event takes place next, is not

predictable, this event does not take place, unless it becomes predictable
by another event taking place.

Chapter 9 — Synthesis Related Aspects of Simulation 323

~ These restrictions are fulfilled by all modeling concepts to be considered
In our context, thus leaving CES to be a universal algorithm in the field of
synthesis-related simulation.

For CES it is assumed that the system to be simulated is partitioned mnto
components at compile time. Furthermore, a dependency relation has to be
1ntro§uced. If there is a direct dependency of component A from component
B, Ais called influencer of B and B influencee of A. This dependency relation
allows the CES-algorithm for the decision which components are influenced
by the assignment of a new value to a data object. If the necessary timing
lnformation is provided, in CES-algorithm it can also be decided precisely when
this has to happen. Only those parts of the system being influenced by an event,
and only those points of time an event is scheduled for, need to be considered
further. Therefore, in contrary to EI, CES is a local approach.

In Figure 9.5 a skeleton of the algorithm is shown:

type event = record component_id, event_time: integer;

1
2 new_value: word
3 end;
4 var current_event, new_event: event; event_qgueue: queue of event;
S begin -
6 simulated_time := 0;
7 while simulated_time <= final_time & queue_level <> empty do
8 begin
9 current_event := remove (event_gueue);
10 current_time := current_event.event_time;
11 changed := data [current_event.component_id] <>
12 current_event.new_value;
13 1f changed then
14 begin
15 data[current_event.component_id] 1= current_event.new_value:
is if no_of_influencees[current_event.component_id] <> 0
then
}g for i:= 1 to no_of_influencees[current_event.component_ld]
do
20 begin
21 component : =) .
22 influencee [current_event.component_ld, il:
23 i1f executable (component) then
24 begin
25 new_event.component_id := component;
26 new_event.new_value .= action (component) ;
27 new_event.event_time := current_time+
28 B elapses (component)} ;
29 insert (event_gueue, new_event)
30 end
31 end (for loop body}
32 queue_level := test_level (event_queue)
33 end (if changed then begin}
34 end {while loop body}
35 enda

Figure 9.5: Skeleton of the CES algorithm.

324 The Synthesis Approach to Digital System Design

Some comments. In the algorithm shown in Figure 9.5 the existence of an
event queue which is always kept sorted in ascending order with respect to the
event times is assumed. The operation remove deletes the first element frf)m
the queue, the operation insert inserts an element into the queue, preserving
the order of elements, and, finally, the operation test_level returns the current
number of elements in the queue. The algorithm first sets the initial value of
the simulated time (line 6) and, then, starts the main loop (lines 7-34). The
algorithm is stopped if either the final time is reached or no more events are left
(line 7). The loop body starts by extracting the first element of the event queue
(lines 9, 10) and checking whether the new value to be assigned differs frqm
the old one (line 11). The special treatment of this question is called selective
trace. It can be observed that time is not incremented in fixed steps; rather,
the simulated time is changed directly to the point of time of the extracted
event. If a change of value occurs and influencees exist, all these influencees
have to be processed (lines 13 and 17). If the influencee is executable, an event
has to be created and inserted into the queue (lines 24-30).

This algorithm has to be combined with a data structure which describes
the structure of the system to be simulated; to generate it, the description of
the system is compiled. It provides storage elements for all data objects to be
considered (assumed to be arranged in a one-dimensional array, see lines 11 and
15), information on the dependency relation (again assumed to be arranged as
arrays, see lines 16, 18, 22), component identification (line 25), component op-
eration (line 26), and component delay time (line 28). The clever organization
of these data structures heavily influences the performance of the simulator.

The CES algorithm, too, is relatively simple. It is very efficient in most
cases, because no time is wasted for unnecessary calculations. This has to be
paid for by the requirement to keep the event queue sorted at all times. Inser-
tions into and deletions from priority queues can be accomplished in O(log n)
time, with n being the number of items in the queue. This is acceptable, €s-
pecially if one considers that the event queue is reasonably short at any time.

This is due to the fact that at most times approximately 95% of a circuit is
stable, 1.e., only few future events are known.

In situations where maintaining the priority queue tends to become the bot-
tleneck of the implementation, the time-wheel approach can be used. The key
idea of this approach is to use a circular data structure with a fixed number 7
of slots to implement the priority queue. Each slot i contains all known future
events to take place at the simulated point of time

time = (starttime of actual cycle + i) mod n,
l.e., events to be scheduled are inserted into the proper slot. This is nothing else
than a special implementation of a priority queue (based on the address calcu-
lation method used in the well-known bucket sort), which is possible whenever

Chapter 9 ~ Synthesis Related Aspects of Simulation 325

the priorities can be mapped to discrete values. If the number of slots is a
power of two, the identification of the proper slot can be realized by a simple
masking operation.
In t}}e CES-algorithm, the simulated time advanc
?tfli:i(}il lli(créément stepping forward to the next' slot of'the t'ime yvheel. Then
it ecked whether an ever'xt to be executed is contained in this slot. If 80,
inspeftrodcessed as descnbe.d in the above' algorithm. If n.ot,'the next slot 1s
i t'e , etc. The fixed time increment 1s due to the similarity b'etwe.en (.TE.S
: ime-wheel and. El. However, in contrast to EI, not the entire circuit 18
nspected at each point of time, but only the few active parts.
" lCES' as a very general and efficient algorithm is ideally suited for multi-

vel /mixed-level simulation, since it supports the algorithmic level equally well
as the register-transfer and logic level. Because mixed-level simulation systems
Zehbf%t suited for synthesis, CES seems to be the adequate implementation
VICI I;lique. In addition, it is an ideal algorithm for the entire bandwidth of

es in a cyclic manner by

9.4 Multi-Level Simulation

As already mentioned, within the context of synthesis, simulators are needed
that.are suited for different levels of abstraction, €.g., t0 experiment with the
S-peqﬁcation of a system or to verify one possible implementation. Classical
simulators dedicated to a specific abstraction level are not useful for this pur-
Pose. Simulation systems are needed that support at least two different levels
of abstraction. In addition, any support for comparison of simulation results
?Sta‘med at different levels of abstraction, applying equivalent stimuli, is help-
The term multi-level simulation refers to a simulation system that covers
more than one level of abstraction. Since by this definition a multi-level simula-
tion system is not necessarily capable of supporting simulations at various levels
concurrently, often the more precise term mized-level simulation is usgd. Two
main approaches to multi-level/ mixed-level simulation can be distinguished:

o either a broadband simulator is offered
® or a set of dedicated simulators is integrated reasonably well into oné

system (multi-simulator).

9.4.1 Broadband Simulator
flexible simulation syste
les of description. A sing

m coving i
e, -

levels of abstraction and various sty.

326 The Synthesis Approach to Digital System Design

ulator seems to be the most natural approach. The system to be simulated can
be treated, as described earlier, without the application of any transformaftlon
and without having to deal with distributing simulation tasks to variou§ simu-
lators. No tricky modifications of descriptions in order to overcome restrictions
of special simulators are necessary. It can be seen that at least based on CES
an algorithm powerful enough to support the entire bandwidth of VHDL can
be implemented.

Of course, one has to pay for this advantage. Due to the bandwidth covered
by VHDL, a complex simulator has to be implemented, which has to support
various modeling concepts and heterogeneous domains. Often, very general
algorithms, when applied to special cases, tend to be rather inefficient compared
to dedicated solutions. The reason is that dedicated algorithms incorporate the
knowledge about specific restrictions while general solutions have to cover and
to check for a variety of cases, which do not occur in a specific situation. In
the case of VHDL, the performance can be increased by translating large parts
of a description, especially the sequential bodies of processes, into difeC_tly
executable code. Then, only the basic handling of concurrency and timing
is performed by an interpretative CES-algorithm of high performance. High
performance can be achieved because of its restriction to this special type of

events. Today’s compiler generation systems support the implementation of
this approach.

9.4.2 Multi-Simulators

Despite of the advantages mentioned for broadband simulators, multi—SiH}U'
lators constitute reasonable solutions, as well. A typical situation, in which
multi-simulators are useful, arises if a semiconductor manufacturer accepts only
models suitable for the proprietary simulator. Another problem is the lack of
availability of models, either of standard components or of proprietary parts.
Often, a large library exists which was written for a specific simulator. The
most important application of multi-simulators is the simulation of a compleFely
heterogeneous design specification. Mixed digital/analog simulation provxfies
a typical example. Systems comprising a mixture of electronic and mechanical
parts (mechatronic systems) are of similar nature; such systems begin to play
an increasingly important role.

Three major problems need to be solved if existing dedicated simulators
have to be coupled:

i) the data exchange between the various simulators,

it} the synchronization of the simulators involved,

Ch - j
apter 9 — Synthesis Related Aspects of Simulation 327

i) a user i
ity i,em}t;(rjf'ace as trz.msparenF as possible with respect to the heterogene-
, i.e., hiding the different simulation approaches from the user.

Com ar
easicn top soelieto];l:; oflher three problems, data exchange [BeLW91] seems
connections aré thosear E'l;'e to. be ex.changed‘ on global connections. These
of a specific model andets}ll ing in the intersection of the set of primary inputs
case, the signal value d e primary outPut of .another. In the ideal (but rare)
dentical. Thon. oo oo omains of the primary 1pputs and outputs involved are
Some other’ nversion 'of s1gn.al values is necessary at all.
domain of valueza:es all)re rela.'tllvely s1.mple to handle: those, where a larger
bijéctively map eda:n e pz.irtltloned into classes such that each class can be
always reasona,bFI) .mto a single value of a smaller domain. In any case, it is
typically to be S(})’ISIIEple to map a larger domain onto 2 smaller one, a problem
abstraction to Onevet whfen signals are sent from a model at a lower level of
more difficult, to ha dai higher lt.ave] of abstractiop. The opposite direction is
circuit of the Sendfin e. In this case, assumptions on details of the driver
made sither globallmg component are necessary. These assumptions can be
signals to inpute Og' :r llocall.y, based on user speciﬁcations. Mapping digital
Pfoglem e nalog simulators is a typical example for a non-trivial
Systeilllco}}r::;;zzm: is t}.le central problem of multi-simulation. Since the entire
ulators involvgdri ing simulators models the system to be simulated, the sim-
pOInt of time wh ave to be kept at least synchrgnous enough so that at each
simulators o] erz1 a da?a exchggge hz.ippens, this point of time is legal for all
the synchron] ved. This definition gives some degree of freedom concerning
ronization method used. There are two main approaches:

e the supervisor approach and

¢ the time-warp method.

ssimistic” solution. It
the supervisor before
ervisor is then able to identify
he near future; this simulator

e enough to handle all
ntact

synchronizing “pe

The i
supervisor approach is an over-
d over control to

Iflzuslirrisufam simulator involved to han
the Simulzttor advances its modeled time. The sup
is activatedotr)that plans tg schedule an event in t
Kinds of sin Iy the supervisor. The appr.oa.ch is ﬂexibl :
the Supervisu aﬁors. To mtegrate a CES simulator, this algorithm may co
Simulators Ofl‘ just after having extracted the next eve.nt fr'om the eveflt.q.uefle.
a new cycl o ’;lass SCS or EI may contfxct the S}lperv1sor Jjust l?efore initiating
requir €. h'e supervisor approach is very sxmple3 easy to implement, and

es only minor modifications of the simulators involved. Unfortunately,

it over- . . ; 1
er-synchronizes the system as no overtaking between simulators 18 allowed

328 The Synthesis Approach to Digital System Design

even if no communication occurs during the overlap period. The most serious
drawback is the fact that only one simulator can be active at a time. Therefore,
it is rarely applicable to multiprocessor systems.

While the supervisor approach over-synchronizes, the time warping method
[JeSo82] under-synchronizes. In this method, following a purely optimistic
approach, completely free running simulators are assumed without any syn-
chronization besides the exchange of messages. When such messages arrive at
a point of time within the local past of a simulator, they cause this simulator
to perform roll-back, a costly operation. This situation is discussed in more
detail.

Let Sy and S, be two simulators, currently simulating at local virtual points
of time (LVT) t5; and g0, t51 # ts7. It is assumed that S; sends a message
m = (datat,,) to So where data denotes the transmitted value and t, the

point of time it has to come into effect. Of course, in any case the following
holds:

1) iy > ts1.

Concerning tg there are two possibilities:
i) ty > tsy or
i) ty, < tg.

Case ii) is simple. The message is handled like any stimuli event, i.e., it i
inserted into the event queue.

Case iii) is much more complex. In this situation, S, has to be rolled back
to a point of time ¢ prior to t,,. This ability is required for any simulator to
be integrated into a time-warp controlled multi-simulator system. While Sz 1
resimulated starting from ¢5, all external events between t, and tg have to be
reconsidered. Therefore, simulators to be integrated need to store the entire
history of incoming events (at least for a period determined by the allowed slack
between the simulators involved). The handling of past events is accomplished
in three phases. In the first phase, called roll-back, the state of S» at point of
time 24 is restored. S; may have sent messages to other simulators during the
period between t), and tg;. All these messages, then, have to be canceled. This
1s performed during a cancellation phase by sending an anti-message for each
message. These anti-messages are handled similarly to ordinary messages. Ifa
glmulator receives an anti-message that exists in its local future, this message
1s removed only from the event queue. If it is located in the local past, it
causes a roll-back as well, with the respective message being removed from the
stored incoming events. A single roll-back, therefore, may “ripple” through the

Chapter 9 - Synthesis Related Aspects of Simulation 329

simulation system by implicitly causing additional roll-backs. Finally, S3 can
resume its normal mode of operation.

The time-warp method, first introduced in [JeSo82], is a very general method
and can be implemented efficiently on multiprocessor systems [AposSQ, BaSKJ91,
Jeﬁ‘85a]. A further enhancement to this method has been achieved by Iaz.y can.;
cellation [Jeff85b]. Because the time-warp approach becomes less e.ﬁiaent. i
too many roll-backs occur, it has rarely been used in heterogeneous 'SImulat'lon
systems. An example of a heterogeneous simulation frz.imework fo.r lntegratlo;:
of arbitrary simulators is the SiCS system [BeLW91, Niem91]. This .frame.v:}c:r
Supports both the supervisor approach and the time-warp mechanism with a
controllable slack.

To build a unified user interface that introduces transparency t.o 'thelhet-
€rogeneous structure is the last problem to be solved by a m}lltl"sml.u at}?r
System. Such an interface has to allow for the descrip?lox% <?f c1rcu.lts]mtt se
Proprietary language (including graphical ones) of the individual SI'II‘H; a.;:lr1 e,
but should offer a unified description language (e.g., VHDL) as well. le ? the
is true for stimulation and presentation of results. The entire cgntgod gin .
System has to be presented to the user in a strictly _umﬁed way. Hfl‘ :mewfrk
multi-level simulation system into an electronic design auton_latlon T e
[KIKug1, LeWB91, RaWa9l] seems to be the most appropriate appro
this purpose.) ;

Multi-level /mixed-level simulation as required m .the cont{:Xt dOfisI:IlS::;:z
is widely understood and available. Both monolithic broaq an ulsators o
and multi-simulator systems have their specific benefits. Multx-im;or o Iator
been studied for a long time [Merm85]. Recently, open frameworks
coupling have been announced [Niem91].

9.5 Outlook

. i ons.
Only the kernel of a simulation system is presented in the preceg(l)r:f tsheec tslame
The intent of simulation is to have a host system (a Compumr)ﬁsﬂ experiments
behavior as the system to be simulated, and thep to per.fon;'l ;liien < Aotormined
On this simulated system. Therefore, the quality of simula

by

i) the quality of the model of the system to be simulated,

; ality of the
it) the quality of the mapping onto the host system (i.e., the quahity

simulator itself),

i) the quality of the experiment performed,

330 The Synthesis Approach to Digital System Design

iv) the quality of result analysis.

Unfortunately, for the traditional simulation systems emphasis has been put
mainly on i) and ii). The planning, executing and analysis of experiments have
remained widely manual tasks.

In the simplest case, at least the application of stimuli and a certain post-
processing of result patterns have to be performed. In graphics-oriented envi-
ronments a graphical waveform editor is often offered for both purposes. Th%s
approach seems to be adequate at the logic level. It is convenient to use and ft
looks familiar to traditional design engineers. In the context of synthesis, this
solution is less adequate. First of all, a synthesis-related simulation system has
to cover higher levels of abstraction, levels at which waveforms are no longer 2
natural way of representation. More abstract stimuli have to be applied (e-8-
machine programs for a processor to be synthesized) and much more abstract
responses are expected (e.g., results of such programs). If low-level waveforms
are of interest, they should be hierarchical so that certain patterns can be
identified as the equivalent of abstract traces at the higher level of abstracti?n-

The most serious drawback of waveform editors is that they produce passive
stimuli and passively record responses. In most cases, however, the system to
be synthesized and, therefore, the system to be simulated as well, are embedded
in a predefined environment. This environment, in general, reacts to ou"'P“t.S
of the part to be designed, and as part of the reaction produces specific stimuli.
Therefore, it is much more adequate to use a model of the environment instead
of passive stimuli generators. Such a model can be written in the same language
as that the system to be simulated is described in. Therefore, it can be execut(?d
by the same simulator which is used for the system to be exercised. This,
of course, is true only if the hardware description language used is powerful
enough. Because broadband simulation is assumed, this is the case. In the case
of a multi-simulator system at least one simulator in the compound should be
powerful enough to model even a complex environment.

VHDL uses exactly this approach of modeling the environment in the sarne
language. This idea is perfectly supported by the modular structure of t.he
language. With the aid of this language feature, it can also be expressed eaSll'y
which part of a description has to be interpreted as a specification for synthesis
and which part models only the environment for simulation purposes.

Replacing passive stimuli by a potentially interactive model of the environ-
ment does not at all exclude passive stimuli. They constitute the special case
of a predetermined environment without any reaction to the simulated system-
Such a special case of an environment can be described by the same languagé
possibly restricted to a subset.

The modeled environment interacting with the simulated system is the ﬁfs_t
step towards an environment in which experiments can be performed intelll-

Ch - j
apter 9 — Synthesis Related Aspects of Simulation 331

gently tha i

rom zndert s?;i&:;gﬁs‘? s;.)ec.lﬁc ql.lestions about specific features of the sys-
2 modeled experimem. ﬁhls.ls achleved., the modeled environment becomes
directed by intermedia(t)r that in a goal-oriented manner performs experiments
sults. As performine - .ehresults.and ab.stract features, extracted from these re-
of knowledge 1n Ordge utc bexperlments is a non-trivial task which involves a lot
Seems £0 be an ade r to be pgrformed properly, a knowledge-based approach

quate technique to tackle the problem.

Befo ‘hi .

Perimentzrde:}::t;mg a potential architecture of such a knowledge-based ex-
eXamined. iI‘he e a.}sl p ei ;’f features an gxperimentor is looking for have to be
tor are virtual s; nleIS orm of abstractions from values produced by a simula-
arguments Signalgv t; s. They are calculated by an arbitrary function using as
simulator, Any kin?;l u(;s or ?tr?ams of such values, as they are produced by the
nals. A profound e 0 .Stat.lstlcs may serve as an example for these virtual sig-
an intelligent ex X.amlnatlon of simulation results alone, though only a part of
by SOphisticatedpenmentor’ can become a very complex task to be supported
tion, a distinctiosy'stems such as SIMUEVA [BuLa87, Busc90b). In this sec-
analysis, toleran: s mad¢ between vqlzdatwn, error correction, performance
deals with questi e analysis, optimization, and stimuli validation. Validation
restrictions. ete (I)IIS, such as respecting pre'deﬁned domains, delay ranges, bus
be the reas’on fc'> n tihe case of error COI‘I"e.CthIl, hints are given as to what may
a system like SI;/I;Eetec'te(fl error con.dmon. Suc.h eva.lua.tions are essential if
performance analvsi VA is integrated into an en!;l.l'e experln’fento.r, because for
caleulated dyna }fSlSldelay pat.hs, sloPes of transitions, reaction tuqes, etc., are
to validation, b Htllca ly from S}mulatxon Fesul?s.. Tolerance analysis is similar
proper Opera.,tiou .under certain assumptions 1t 18 ca?culated whether or npt a
Virtual signals fn 18 gl}ar.ante.-ed over a range qf possible operatlo.n conditions.
Sumption . re or Opt.lmlzatl.on Purp.oses may include the dynamic power con-

, Tesponse times, distribution function of delays, etc. Finally, the

applied stimuli .
stimuli can be analyzed with respect to the results obtained. Statis-
imulation, coverage of cases at

tic .
Swist:}f)ezut aliorlthmic paths visited during a s
this case’ g’;‘i e of concurr'ency .a.Cl%leved, etc., are.typical _data of interest., in
This is nc;t Suese. are questions su.mlal.r to those. Qf .mteres?; in spftware testing.
iS a task u Irprising, %)eca.use val.ldatlon of an initial spe.c1ﬁcat10n for synthesis
[similar to validating a piece of software by testing.
Wa.rdfsa PO.Werfl%l result an.a,lysis system is available, the remaining step to-
an intelligent experimentor can be attacked. This leads to the ap-

plicat; o

[Ag;t;gn of artificial intelligence techniques as some authors have indicated

this « 6, EI0786, EgRo88, LuAds6, Pfaf9l, ShMASS]. An experimentor, in
ase, becomes a special expert system usin,

addit; g simulation results and possible
additional external facts as basic facts, planne

infere d experiments as rules. By an
n
ce mechanism, conclusions for controlling the execution of the experl-

332 The Synthesis Approach to Digital System Design

ment can be deduced. Using a simulation system with a hardwarg deSCI:lpt}OH
language of sufficient power, the expert system itself can be built using this sim-
ulation system. Such an approach using DACAPO III [DACA9.0] as Slmulatl(‘))ll
system and hardware description langnage has been described in [Pfaf911. 0 -
viously, any hardware description language that allows a reactive descrlpthll
(e.g., VHDL) is suited to describe rules and, therefore, facts as well. The m;l]r?,l
question arises about the inference mechanism. But if one looks é?,t the RE
algorithm used in OPS5 [Forg81], a similarity to CES with selective tr:?,ce can
be observed. Based on this similarity, a CES based inference mechanism for
applications in the area of simulation has been described in [Pfaf90]. It de-
pends on the services offered by the underlying simulation system whether the
explanation component usually included in an expert system can 'be offelred é}S
well. In any case, it can be constructed by generating proper virtual signals
because all information needed for producing explanations are available from
the set of simulation results. .

In the system described in [Pfaf91] arbitrary rules can be specified by a
user. Thus, specific needs arising in a synthesis context can be supported.

This system is built on a relatively complete set of basic rules. This rule base
contains:

1) general rules such as value checking, cycle checking, etc.;
ii) analog rules such as transition slope checking;

iil) timing rules such as set-up and hold time checking, minimal pulse width
checking, etc.;

iv) breakpoint rules affecting the operation of the controlled simulator;

v) tester-oriented rules, checking whether experiments can be performed by
a hardware tester;

. s of
vi}) abstraction level comparison to compare descriptions at various level
abstraction;

vii) filtering rules for value sampling;

. . . : ns
viii) rules to generate virtual signals such as error-functions, ratios, meabs
ete.;

ix) logic rules;

x) arithmetic rules.

Chapter 9 — Synthesis Related Aspects of Simulation 333

Thi i

SOnabl;s E:;C lSet of rules already allows formulation and performance of rea-
plex experiment i i i i

goal-directed way. p ents that are used to guide a simulation run in a

K . .
lator ISIO::ledge—ba,sed exp?rlmentors provide a good argument for multi-simu-
b pluy ZII.IS. If an e).(pe.rlmentor is built on top of a powerful simulator, it can
COOpergagt? in Y:}I;y easily into any multi-simulator system; an ordinary simulator
) ng with a si _ i ; :
simulator systern. imulator-based experimentor automatically forms a multi-

It . .
tems :V‘:ﬁ F)e expected that emphasis on experimentor guided simulation sys-
mothod 1ncrefa.se. "I‘hen,.the gap between analytical (formal) verification
will b St }?nd s1mulat'1on will become narrower. The main difference, then,
PIOVerE;) at for thg mfe'rence system of an analytical method (its theorem
b s atic fa.cts including symbolic signal values are used while a knowledge-
o simulation system continues to be based on dynamic facts (simulation
portuS)'.t The emerging similarity—disregarding this difference—offers the op-
itin 21}11 y to build cooperative systems including both approaches and inher-
Systi e .str.engths .Of both methods. When tightly coupled with a synthesis

m within a design framework [RaWa91] the ideal design environment will

be achieved.

9.6 Problems for the Reader

L. Mode] the “philosophers problem” with CSP: Five philosophers are sit-
tlng around a table, each one looping between thinking and eating. For
eatxns, a philosopher needs two forks but there are only five forks avail-
able, i.e., each pair of philosophers has to share the fork between them.
Model the most simple solution, ignoring any deadlock problems.

¢ of the time wheel approach in

2. Specify the operations insert and remov
ent to slot

PASCAL-like pseudo-code. The operation insert adds one ev
t of the event-queue, remove removes the next event stored in the time

wheel. Assume that the time wheel 1s modeled by a data structure of

type time_wheel_queue = array [0:2+ssize] of
record
component.id: integer;
new_value: word;
event_time: integer

end;

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25
	Seite 26
	Seite 27
	Seite 28
	Seite 29
	Seite 30
	Seite 31

