The Hardware Description Language DACAPO III

Franz J. Rammig

Universitat-GH-Paderbor
FB A’[athe-matz'k/[nﬂfry“%(;?ik
D — 4790 Paderborn

Tel.: 49.5251.60.2069
Fax.: 49.5251.60.5427

e-mail: franz@uni-paderborn.de

Abstract
. The broadband HDL DACAPO T is introduced by discussing language support
or various levels of abstraction: Gate/Switch level, RT level, Algorithmic level, Sys-
tem level. A short comparison with the VHDL approach to model hardware by
concurrently active sequential processes concludes this contribution.)

1. The Hardware Description Language DACAPO III

DACAPO Il is the most recent version of a hardware description language the first
version of which was presented by the author in 1975 [Ra75], called DIGITEST II
in those days. In 1979 a version very similar to the present one was defined and
implemented. This language was called CAP/DSDL for Concurrent Algorithmic
PI'Ogl‘ammillg Language/Digital Systems Description Language [Ra80]. With a dif-
ferent implementation the same language 1s called DACAPO II. Slight modifications
?Sistll]e addition of the MODULA TII - like module concept resulted in DACAPO I
7].

In contrast to VHDL, DACAPO III is a real broadband language with strong
support for the System Level, the Algorithmic Level, the Register Transfer Level. and
the Gate Level. Weak support is provided for the Switch Level. In this contribution
an informal introduction to the basic principles of the language will be given. It is
organized with respect to the levels of abstraction to be covered. At the beginning
however some common foundations will be discussed.

2. DACAPO III Basics
DACAPO Il is a language that looks like MODULA T [Wi82] (or PASCAL) as far

as possible. Therefore the basic notatious, constants, identifiers, scope of variables.

data types can be explained very briefly.
There is a relatively large number of reserved
that may not be used as user defined identifiers.

marked by boldface.
Constants :

Numerical constants may be give
one. Decimal constants are given by an arbitrary sequenc

tially with a leading sign. The range1s extremely large as th
395

J. P. Mermet (ed.), Fundamentals and Standards in Hardware Description Languages, 395-409.
© 1993 Kluwer Academic Publishers. Printed in the Netherlands.

keywords and predefined identifiers
In"this description keywords will be

n in decimal notation or in a generalized binary
e of decimal digits, poten-
e virtnal DACAPO-engine

396

1s assumed to have a wordlength of (2%%31)-1 hits.

Bitstring constants are enclosed in leading and trailing » " 7.
For each bit-position there exists the extended range
{o, 1, X, L, H, Y, Z} with the following meaning;

logical zero , low impedance
logical one , low impedance
logical uncertain | low impedance
logical zero , high impedance
logical one , high impedance
logical uncertain | high impedance

no logical value high impedance

NI

Bitstrings are also interpreted as integers and vice versa. Characterstring constants
are enclosed in ’ ’ 7 symbols. Fach enclosed character is interpreted as a bitstring
of length 8 according to EBCDIC or ASCII code, dependent on the host machine’s
default code.

Data types :

The basic data type of DACAPO III is the bitstring of arbitrary length. It is
denoted by bit(n) where n gives the length in bits. Each “bit” is seven valued as
explained above. To express this explicitly one may also write bit_7(n). Instead of
writing bit(1) or bit_7(1) one may simply write bit or bit_7. If one wants to restrict
the “bits” to the range {0,1,X} one has to write bit_3 instead of bit or bit_7. The
type integer denotes a bitstring of length 32 where each “bit” is restricted to the
domnain {0,1}. Similarly by the type timevar such a string of length 64 is denoted.
In any case the bits are counted from right to left, starting with bit number 0. While
in bitstrings the actual coding is given, this is left open 1n enumeration types where
the range is simply given by an enumeration of the range of possible values.
Examples :

bit

bit_3(39/8567093459846987554)

(andcode, orcode, nandcode, notcode, norcode, exorcode, addcode,
minuscode)

Structured types are made by the PASCAL-like constructs for arrays and records.
Arrays of records and arrays of arrays are allowed. However arrays are not allowed
as record-components. The reason is that a record is also looked at as the bitstring
that results from concatenating all its components.

Examples :

array (1023 : 0,0 : 7] of bit
tlus is equivalent to array {1023 : 0] of array [0 : 7] of bit
array [0 : 255] of record
ope ¢ bit (3);
adr : bit(13)
end

397

Type definitions :

 Data types are declared in a PASCAL-like fashion. In DACAPO the type-concept
is generalized to include Abstract Data Types as well. This will be discussed later.

Object declaration :
Objects of certain (user-defined or predefined) types are created by declarations.
Besides a generalization to allow instantiations of ADTs (will be explained later) this
is done asin PASCAL. Data objects may get an initial value by assigning a constant
(expression) to the declaration. The default initial value is “ALL_Z” DACAPO
distinguishes between two main classes of data objects:

- objects with storing capability (registers, memory cells, Flipflops) and

- objects without storing capabilities (connection lines, outputs of combinational
logic).

Storing objects are denoted by the attribute explicit (which can be omitted) while
non storing objects have to be attributed implicit.

Expressions :

Expressions are similar to expressions in PASCAL. References to the current value
of a simple data object is made by simply naming the object. A current value of
an array-component-object is referenced by naming the array-object together with
the proper index(-list). Entire arrays may be referenced as well, just by omitting the
index(-list). In the case of multidimensional arrays only the rightmost index or the
entire index-list may be omitted. The actual value of a record-object is referenced by
naming the complete path to the component using a dot as delimiter. Entire records
may be referenced as well as being treated identical to bitstrings.

There is a wide range of operators in DACAPO for arithmetic, logic, comparison,
string-manipulation, and case distinction. Only the last one shall be discussed here.

Case distinction :

If £y and E, are valid expressions and cond is a data object of type bit(1) then
if cond then E, else F, is a valid expression. The value of the entire expression 1s
either the value of Ey or of E;, dependent on the actual value of cond. Note that
obviously the else part must not be omitted.

If £y, Ey, ..., E, are valid expressions, cond is a data object and {vo. 01,0, Cyty 08
a subset of the range of cond. Then case cond of vy : Eoi 11 : Eyooovacr Eaoy s
else

E, end is a valid expression. The value of the entire expression 1s the value of £ if

the current value of cond is v;.

Function references :

Instead of refercncing a data object a function may be referenced. The referenced
function may either be a language provided built-in function or a user defined one. A
function may have arguments (formal paraineters) that ha_\'(.: to be served by agfugl
parameters. Again strong type checking takes place. Deﬁmtxou.an.d use of fur}c.t;ons
will be discussed in more detail when discussing DACAPO descriptions at the System

Level (section 4)

398

Assertions:

Simulation of a system is an attempt to verify it. This means one tries to check out
whether the described behavior matches the intended one. So the designer knows the
conditions that have to be true. Usually he has to analyze the simulation result for
checking the match. However, if he is able to formulate the conditions in advance, he
can hand over this cumbersome task to the simulator. In DACAPO he has the option

to formulate his conditions as_assertions. Such assertions are invariants that have to
hold all time. In case of a violation the simulator reacts in a user definable way, e.g.

by printing an error message. All assertions of a procedure or function are gro_upe.d
together in an assertions-part, headed by the keyword assertions. Each assertion is
of the form:

condition — action

Here condition is an arbitrary expression of type bit(1) and action is an arbitrary
statement. The assertion is evaluated continuously (the simulator makes use of spe-
cial techniques to do this with a minimal amount of cpu-time). Whenever condition
becomes true, action 1s executed. Typical actions are :

- Modification of the state using an assignment statement,
- error-message using built-in function error,

- stop of simulation using builtin function stop.

3. Descriptions at the Algorithmic Level

Algorithms play an important role at the System Level as well but they are centered
at the Algorithmic Level. Therefore this level is discussed first. Similarly all language
support for modularization will be discussed in the section about the System ‘Leve_la
though these techniques are of importance at the other levels as well. The algorithmic
part of a DACAPO description consists of a compound statement. Such a com]?ou’ﬂ.d
statement (CS) consists of a CS- head, a list of statements and a CS-end which 1s

simply the keyword end. The following types of statements may occur within a
compound statement :

o compound statement,
asstgnment stalement,
if-statement,
case-statement,
while-statement,
repeat-statement.
for statement,
at/when-statement,
procedure-call,
empty statenrent.

3.1. Compound statement
There are four different types of compound staiements :
o The sequential compound statement,

e the concurrent compound statement,

399

o the parallel compound statement,
o the compact sequential compound statement.

The last one will be discussed in section 7 (behavioral descriptions).

The sequential compound statement has the form

seqbegin S;; S; ...; 5, end ;

The semantics is that statement S; is initiated after statement Si_.l has l?een termi-
nated. However this does not necessarily mean that S; is initiated immediately after
statement S;_; has terminated as there may be concurrently active parts that may
interfere with this statement.

The concurrent compound statement has the form

conbegin 5;; S;; ...; 5, end ;

The semantics is that by initiating the entire concurrent compound statement all em-
bedded statements S;; Sy; ...; S, are initiated concurrently. They are now executed
completely independently. When the last one of these statements has terminated
the entire concurrent compound statement terminates. It should be noted that the
ordering of the statements Sy; Sy; ...; S, within a concurrent compound statement
has no semantical meaning. . , :

The following example shows why two consecutive statements in a sequential com-
pound statement are not necessarily executed immediately one after the other:

conbegin
seqgbegin
a:=1;
b:=10/a
end ;
a:={
end
In this example a concurrent compound statement contains two statements: {\‘ se-
quential compound statement and a simple assignment statement. As there is 1o
inner synchronization between the two statements of the concurrent compoun d state-
ment it may happen that the single assignment statement a := 0 is executed just
after the first assignment statement of the sequential compound statement (a:=1)

but before the second one (b := 10/a), potentially causing some unintended problems.
The parallel compound stalement has the form
parbegin 5;; S ...; S, end ;

In this case the embedded statements Sy; S2; ...; Sa are'rg’s‘trlctled';;o (L:.iz?nmtr,'r‘z(f
statements. The semantics 1s that all these statements are initiatec t‘]‘ -lf-’)rrln(-llfi'o??if’lffd
parallel compound statement is initiated. They are executed in a strictly syne s

manner. That is the execution of a statement .5; does not affect t‘izle othtliﬁttr;tf‘ﬂ;;’tlé"
of the same parallel compound statement at all. Of course the or ering of the bt' 1
ments Sy; S,; ...; S, within the parallel compound statement has no semautica

meaning.
Example :
parbegina:=b;b:=aend;
This describes a simple swap operation while
conbegina:=b;b:=aend;
would describe a nondeterministic behavior.

400

3.2. Assignment statement

An assignment statement causes a new value at a storing data object. The receiving
data object will keep this value until another assignment takes place. The assignment
target may also be formed by a concatenation of data objects, a substring, or a com-
bination of both. In addition multiple assignment is allowed. It assigns an identical
value to a list of data objects.

Assignments may be delayed to describe realtime behavior.

3.3. If- Statement and Case-Statement

The If-statement enables alternative flows of execution to be described. The dqcision
is made according to the actual value of a data object or expression of type bit(1).

3.4. Case - Statement

Like the If-statement the Case-statement describes alternative flows of execution. In
this case, however, one is not restricted to two alternatives but can select between an
arbitrary number of branches. The decision is made according to the actual value of
a data object or expression.

3.5. While - Statement and Repeat-Statement

The While-statement is the basic DACAPO form of a loop. o
The Repeat-statement is very similar to the While-statement. The main difference
is that the loop-body is executed first and then the test takes place.

3.6. For-Statement

Syntactically the DACAPO For-statement is similar to the For-statement of PAS-
C'AL. However, a different semantics is attached in many cases. The For-statement
has the following form:

for index := start_value application_selection final_value by step_size

do 5 :

Here Sis an arbitrary statement (see restrictions below), index denotes a data object
while stari_value, final_value and step_size are constants (or constant expressions).
The term application,election has one of the following forms :

- seqto, seqdownto {sequential application},

- conto, condownto {concurrent application},

- parto, pardownto {synchronized parallel application}.
- to, downto { compact sequential application}

Semantics: In DACAPO the For-statement does not denote a loop. It is just short-
hand for a compound statement. Let be # ¢ {seq, con, par, ,}

and let Sivder—veie denote statement S with each occurrence of index replaced by
value. Then

. for indez := start_value # to final_value by step_size do S ;
1s equivalent to:

401

begin
indez—stari_value s
indez— start_valuetsiep_sizes
iv.uie.z—>start_va.lue+2*step_si:e;
Sinder—rﬁnal_va.fue
end;

3.7. At/When Statement

Usually in imperative programming the flow of control is given entirely by the control
structure of the algorithm. This complicates it a little bit to describe synchroniza-
tion of the algorithm with external events. Such events may ocur as single ones
(e.g. a keystroke on a keyboard) or continuously (e.g. a clock). To support this,
in DACAPO a synchronization structure may be overlayed on top of a given control
structure. The basic idea is that any statement may be attached to an event it has
to synchronize with. In such a case the statement is executed if it has to be executed
according to the "normal” control structure and the synchronization event occurs.
The synchronization event may be either a certain value transition or a level. The
Al-statement describes edge-triggered synchronization. It has the form :

at direction (event) do statement ; ‘

Statement is an arbitrary statement. This statement will be executed if it is initi-

ated according to the "normal” control structure and after this the event has become
true.

The When-Statement describes the level sensitive alternative. It has the form:

when condition do statement :

3.8. Procedure call

Ol‘ganizing algorithms with the aid of procedures is an importa‘nt‘struct.um'lg r{'}gzt.hlod.
As in this context the entire modularization mechanism of DACAPO.IIde(i“,b‘CEI‘l“)f,;" in
section 4 (Descriptions in DACAPO III at the System Level) a detailed description
of procedure calls is delayed to this section. o

Activating a procedure call does not necessarily result in an immediate lrntxfat‘x(t)n
of its activity to serve this request as there may be competing concurrent reque hjbf?
a single procedure object that can serve only one request a time. See section 4 for
more detail.

3.9. Empty statement
The empty statement is syntactically given by an empty string as well.
seqbegin '

if @ <> bthen ¢ ;= a delay (loadtime)

else delay (prechargetime) ;

delay (loadtime) ;
end ; . .
In this example two Empty-statements are included. The first one is U'SGd'toh sim-
ulate” an absent else branch and is used to describe that some time (which is the ac-

tual value of data object prechargetime) has to elapse. The second Empty-'state?z:}?t
is used only to describe that some time has to elapse after the termination of the

402

If-statement until the entire sequential compound statement terminates. Note that
unlike VHDL in DACAPO, it is assumed, that a statement with delay consumes time,
i.e. the initiation of the following statement is delayed.

4. Descriptions at the System Level

In this section a couple of language concepts will be described that are of value at
other levels of abstractions as well. As the main support of System Level descrip-
tions originates from modularization and encapsulation all related Janguage features
are discussed here. Also high level event driven descriptions will be described in this
section. A DACAPQ description is composed of Modules. Here there is made the
distinction between Definition Modules that specify the interface to the environment
and Implementation Modules that specily the internals. The outermost module is
just a Module without separation into Definition Module and Implementation Mod-
ule. Modules may be further organized using Procedures, Export Procedures, and
Functions.

4.1. Procedures

In DACAPO procedures are the basic technique to block-structure a description.

A procedure is activated by calling its identifier and binding actual parameters to
formal ones. Each actual parameter has to be Type-compatible with its correSPO}ld‘
ing formal one. Parameters of type explicit are passed with their value at the time
of calling and receive the value of the respective formal parameter at time of termi-

nation of the called procedure. Parameters of type implicit are kept at equal value
continuously.

A procedure, once activated, remains active until its algorithmic part becomes ter-
minated. In contrast to languages like PASCAL all variables of type explicit keep
their value when the pmcer?u're is deactivated. The rules concerning the scope of
identifiers is exactly that of PASCAL. An important feature of a procedure is that 1t
can be active only once at a certain point of time. On the other hand there may be
concurrent attempts to activate it. In such a case a builtin arbitration mechansm
selects the request to be served first.

4.2. Functions

Functions differ from procedures only in that they return a value bound to the object
identified by the function identifier. Like procedures, funetions, too, can be active
only once at a certain time. So they too have a builtin arbitration mechanism 0
resolve conflicts due to concurrent activations.

4.3. Export Procedures

Erport procedures are the DACAPQO notation {or Implemented Abstract Data Types
(IADT) [GHTS], if it is required that all operations of the IADT have to be mutually
exclusive. If this restriction is not required or not desirable, TADTs can be specifie
with modules as well (see section 4.6). An ezport procedure is given by an export
procedure head and an export procedure body. The export procedure head has the fol-
lowing form :

export (list of operations J procedure export_procedure_identifier ;

403

The body of an export procedure is very similar to the body of an ordinary one.
However, the algorithmic part has to be replaced by the keyword end. For each
identifier contained in the [ist of operations there has to exist exactly one function or
procedure with the same identifier that defines the implementation of this operation.
The operations are mutually exclusive simply by the fact that an export procedure is
a procedure. By this it can be active only once at a certain point of time.

4.4. Types of Procedures, Functions and Export Procedures

In DACAPO the PASCAL type-concept is generalized in such a manner that types
of Procedures, Functions and Ezxport Procedures are allowed as well. This is done by

simply using a Procedure-/ Function-/, or Export Procedure-declaration as replace-
ment of the type description within a type definition. Instances of objects of such
types are made just by declaring variables of such a type.

4.5. Generic Types

In many cases it is desirable to have instances of a certain type that differ slightly
from each other. For example it might be desirable to have available a fifo-buffer
where instances of various depths and wordlengths are possible. This possibility is
provided by generic types. To make a type generic, the type description has to be
prefixed by a generic specification. This has the form :

generic lisi-of-genevic-attributes :

If an object of this type is instantiated, actual attributcs have to be provided for
such formal ones. This is simply done by postfixing a list of actual attributes {types
or constants), separated by commas and bracketed by square brackets.

It should be noted that the generic concept is not restricted to Procedures, Fune-
tions, and FEzrport Procedures but may be applied to any types.

4.6. Modules

A Module is a compilation unit in DACAPO IIL. So the module concept not only
enables descriptions to be structured, but also libraries of {pre-) compiled object de-
scriptions to be kept. . ‘

There are two main classes of Modules : Definition Modules that specify the interface
of a module to the environment i.e. those internal objects it wants to make visible 1o
the environment, and Implementation Modules that describe tl‘m interior (_)f a modnle.
For each module identifier there has to be exactly one pair of one definition module
and one implementation module. i L ‘
A Definition Module makes visible an internal object just by listing it by identifier
and type. Note that the formal parameters of Procedures and Pundzgns are part of
their type-definition. If a module (Definition Module or [mplfme::nfatmn one) wants
to make use of an object offered by another Definition Module it has to import it.
This is done by import clauses just after the module head.

The outermast (Implementation-) Module has no Definition Module attached.

4.7. Interrupt Systems

DACAPO offers an event driven modeling style at higher levels, too. This is done
using an interrupt concept. Of course, interrupts in a highly concurrent environment

404

have a semantics which is not completely identical to that in sequential systems. The
basic idea of an interrupt, however, to transfer a system into a specific state, inde-
pendently from its present state is maintained in our context. The interrupt concept
is established using Interrupt Signals, Interrupt-Service routines, and Operations on
Interrupt Signals. Interrupt signals are objects of a specific type :

interrupt (priority)
An interrupt signal can have only two values:
{set, reset}.

Reacting on interrupt signals are interrupl service routines. If an interrupt signal
gets a value "set” every currently active procedure or Sunction with an interrupt service
routine for this interrupt signal declared in it is interrupted. All other currently active
procedures and functions remain unaffected. In an interrupted procedure or function
first the inferrupt service routine is executed, then the activity is resumed at the
situation when the interrupt occurred.

It should be mentioned that by this concept one interrupt signal may be served
by more than one interrupt service routine concurrently and that the actions within
these interrupt service roulines may differ. A system reset signal is an example for
such a situation. It causes different modules to perform a local reset operation that
may be very specific to the very module.

An interrupt service routine has the following meaning: If the interrupt-signal be-
comes set then the procedure or function it is declared in is interrupted, including ail
dynamically activated procedures or functions. However, this takes place only if this
block is currently active. Interruption of an active procedure or function means that
all currently active non interruptable actions (assignments, empty statements, com-
pact compound statements) are processed as normal but no more actions are initiated.

When the last non interruptable action has beey terminated the interrupt service
routine 1s initiated and all interrupt signals that caused this interrupt are resct locally
for this interrupt service routine. They may remain set at other ones. After the
termination of the interrupt service routine the mterrupted activity is resumed. i.e. all
actions that would have been initiated in the case of no mterruption are initiated now.
Values of interrupt signals are stored for procedures or functions that are not active at
the time when the interrupt signal was set. They get interrupted immediately upon
activation. Interrupt signals can be manipulated and interrogated only with specific
operations.

4.8. Protocol Specification

Besides the specification of the module’s functionality. it has to be specified how it
communicates with its environment. That is a prolocol has to be specified. Protocols
are described in DACAPO either by inferrupts or using the at/when coustruct of the
language. The at/when-style is more related to a rendezrous-like communication as
the receiver in an arbitrary state cannot be forced to accept a message. Instead of
this it has to become a message accepting state due to its flow of control. This is fine
as long as the protocol assumes this.

405

5. Descriptions at the Register Transfer Level

At the Algorithmic Level systems are described in an imperative way. Even by intro-
ducing the at/when-construct there establishes only a subordinated level of additional
synchronization within an imperative domain. But the imperative control structure
may become meaningless if the control structure keeps all statements enabled con-
tinuously and concurrently. In such a case we have obtained a reactive description
within an imperative domain. To ease the description in DACAPO such a reactive
description is concentrated in a special part, headed by the keyword impdef.

Of course the order of the statements within an impdefpart has no influence on
the semantics of such a description. By this we have obtained a Register Transfer
language that is slightly more general than usual ones, as in most RT-languages the

actions are restricted to assignments.))
Assume that the actions are restricted to assignments with data objects of type ex-

plicit as target objects (storing variables, registers). Then by a statement of form:
at up (event_1) do target := expression ;

an edge-triggered transfer of a value into a register is described. This target register

is sensitive on rising edges only. Registers triggered by falling edges are described by:
at down (event_1) do target := expression ;

If a master-slave operation is to be described the two guards just have to be combined:

at up (event_1) do

at down (event_1) do target := expression ;

or

at down (eveni_1) do

at up (event_1) do target := expression ;

If the buffer-register is of explicit interest this may be replaced by :

at up (event) do master.target := expression |

at down (event) do slave_target := master_target ;

or

at down (event) do master_target := expression ;

at up (event) do slave_target := master_target ;

The values over the time axis of non storing data objects get defined in the lmpdefi
part as well. For each such object declared there has to exist exactly one equation o
the form :

target := erpression :

Though looking like an assignment in fact it 1s an equation 1n tllxs case as.tl
get value always has the value assigned, i.e the assignment 1s e,\'e.cutczd' continuous|
(conceptually, in the case of simulation a more efflicient altcrna‘t‘:v‘e-wlth equnai?nt
result is used). Such an equation may be prefixed by when condition do resulting

1¢ tar-
ly

i a statement of form:

when condition do target := expression ; . ‘
Here condition is an arbitrary expression of type bit(1). The semantics of'thxs
statemnent is that target follows the value of ezpression as long as condition has;-.a"ltue
“1”. If condilion gets value “0” then target holds its most recent vallze_untl! con ztzortz
gets the value “17 again. So by this statement a level-sensilive Iat_ch with tla'nspa,rerz
mode during level “1” is described. As mentioned in section 3 each assignment-

406

statement may be delayed. Of course, this is true in this case as well, including the
case where the assignment has become an equation in fact. It is described by post-
fixing a term delay (delay-ezpression). This will be discussed in detail in section
6. Let us assume at the moment that delay-ezpression is just an expression of type
timevar (i.e. bit(64), restricted on values “1” and “0” per bit). So a register transfer
with delay may look like :

at up (event) do target := expression delay (some_delay } ;

The semantics is that the expression is evaluated immediately after event has be-
come true based on the values of the data-objects involved at this point of time. On
the same basis some delay is evaluated. The assignment of this value of expression
however is delayed by some delay time units. Until this point of time target remains
its old value. DACAPO knows no predefined implicit clock. So both, synchronous
and asynchronous systems can be described. If a clock is needed this can be done
simply by declaring a nonstoring data-object of type bit(1) and defining it in the
impdef-part as its own complement with a proper delay.

6. Descriptions at the Gate/Switch Level

At the Gate Level a set of Boolean equations have to be provided. As already de-
scribed in section 5 (DACAPO I1I Descriptions at the Register Transfer Level) this
is done using implicit variables and assigning to them an expression within the im-
pdef part. As the objects involved are not restricted to the type bit(1) bundles of
functions can be specified in a concise manner. At least at this level the timing con-
cept becomes very important. The defanlt timing concept of DACAPO is unit delay.
If no explicit timing information is provided it is assumed that each assignment takes
exactly one time unit. By a global option the value of this unit can be set. There are
no restrictions concerning this default delay value. So the value 0 is one of the options
allowed. For a more precise timing the user is allowed to specify a specific delay for
each assignment and for each empty statement. As the default delay is still assumed
for all assignments where no explicit timing information is given it is advisable to set
default delay to 0 as global option in this case. Explicit timing information is given
by a postfix to assignment statements and empty ones. This postfix has the general
form :
delay [delay specification | .

The general semantics is the following:

If an assignment is initiated, a snapshot of the current values of the arguments of
the assignment and of the delay specification is taken. On the basis of these values
the value F of the expression to be assigned and the value D of the delay specifica-
tion are calculated. The assignment of F to the target variables of the assignment
statement however is delayed until D time units have elapsed since the initiation of
the statement. During this period the target variables keep the old value (if they
are not affected by other assignments during this time). All value changes that may
happen during this time to the arguments of the expression to be assigned and the
delay specification have no effect on £ and D. In the simplest case delay specification
1s just an expression, e.g. a constant:)

delay (35)

delay (gate_delay)

delay (latency_time + seek_time)

407

The delay-expression may include a case distinction on the values of the expression
to be assigned. Typically this is the case when gates are modeled more precisely. In
this case usually the rise- and fall-times differ considerably.

a:=b & cdelay (if & & c then rise_delay else fall_delay) ;

This is a valid delay specification. However it is not only cumbersome to write down
but also to calculate, as the expression b & ¢ has to be calculated twice. Therefore
DACAPO offers a shorthand for this situation which in addition is more efficient in
runtime :

delay (up delay_specification , down delay_specification)

This delay specification may be used with all types of assignments. If the assign-
ment target is not of type bit(1) the different bits of the target get their new value
independently with the specified delay.

Example:

(Assume a is of type bit(2) and the statement is initiated at point of time f,.
Assume a had value "10” before)

a :="01" delay(up 10, down 20) ;

This results in the following sequence of values of a:

to+10 ca="11"
t0+20 a4 = ”01”

In many cases the exact delay time is not known but only a certain bandwidth. In
order to describe this situation in DACAPQ each delay specification may be of the
form :

min_delay_specification to mazr_delay_specification

“where min_delay_specification and maz_delay_specification are arbitrary expres-
sions.

Example:
delay (up 30 to 32 down 22to 35)

This is interpreted in such a way that first an uncertain value is assigned and after
the interval of uncertainty has elapsed the final definite value. So in the above exam-
ple if there would be a value 707 to be assigned at fp then at fyi22 a value "7 would

be assigned and at fyy35 a 707, finally.
1 netlist-form in the extreme case. In this

Gate Level descriptions may be given in » ‘ This
case the expressions to be assigned are restricted to contain only one operator. This

form of description documents very precisely the implementation structure by single
gates. In the other extreme an entire combinational Cil‘Cllit. with n primary outputs
and m primary inputs may be described just by n expressions with up to m argu-
ments each. A widely used compromise 1s to identify common subexpressions and
assign them to intermediate variables (internal fan-outs) used as arguments by other
expressions.

Switch Level Descriptions

The Switch Level is not supported by special language constructs in DACAPO: Th?
T-valued logic and a couple of builtin procedures fogether with the general power o

the language, however, allow fairly precise switch level descriptions.

408

7. Behavioral Descriptions

The term ”Behavioral Language” is very misleading. It is used for languages that
describe the I/Q function of an object only. In most cases algorithmic languages
are used for this purpose despite the fact that a function has to be described. It
is assumed that this function has to be calculated whenever a signal change at any
primary input of the object occurs. The arguments of the function are the object’s
current state and the current values at its primary inputs. The function calculates
the object’s new state and the values at its primary outputs. All internals of the
object are of no interest. This is exactly the wayAlt gate models are handled in
event driven gate level simulators. The so called “Behavioral Languages” originated
from the intent to offer more complex “gates” to those simulators. VDL processes
originate from the same idea. Following a completely data driven approach, such
models can not be used to specify or document concurrent control structures (algo-
rithms). On the other hand this approach results in relatively fast simulation times
as the object-models can be compiled into directly executable code. Although not
intended for this purpose DACAPO can be used as behavioral language as well. For
this purpose there is the special form of the compound statement:

begin ... end

This statement models a timeless non interruptable activity. Therefore the state-
ments within such a statement are restricted. There is no delay and no at/when
allowed and contained statements also are restricted in this way. Consequently only
procedures and functions can be called which have such a compound statement as
algorithmic part. With these restrictions a DACAPO style is obtained that is very
similar to VHDL processes. So the following example is just a DACAPO version of
a VHDL process that is sensitive on signals arg! and arg? and calculates signal res
(multiplication)

at change (argl | arg2) do

segbegin
begin
intres := 0 ;
for ¢ ;= 0to 15do
begin
if argl.(0) = "1” then intres := intres | + | arg?
else ;
intres || argl := shr(intres || argl, 1)
end
end ;
1‘63' = intres delay (30 + 30 * onecount(argl))
en

Remarks: The begin ... end is timeless. So the timing behavior is described
by the surrounding seqbegin ... end, or more precisely by the delayed assignment
statement to be executed after termination of the beginy... end. The function
onecount is assumed to be a user supplied function that returns the number of ones
of an argument. Note that this function describes no hardware component but is just
an auxihary function to describe a certain feature of a hardware component. This 1s

the other purpose of the begin ... end statement. So a synthesis algorithm can be
biased to ignore such statements entirely.

409

8. Conclusions

DACAPO III as a result of a relatively long evolution is a real broadband HDL. It
offers powerful support for the gate/switch level, the register transfer level, the algo-
rithmic level up to the system level. Inheriting the module concept from MODULA
2 and providing easy to understand ADT notation, highly complex systems can be
specified in DACAPO III. A very flexible and powerful delay model is offered and a
.forma! Petri Net [Re85] based semantics which abstracts completely from a simulator
is av'allable. DACAPO TII (and derivates) have been used successfully in industry
for simulation and synthesis. Currently it is influencing the discussions on how to
enhance VHDL, especially for system level support.

References
[DA87 }-: DACAPO III - System User Manual. Dosis GmbH, Dortmund, 1937

[GH78] J. Guttag, J.J. Horning: The Algebraic Specification of Abstract Data
Types. Acta Information, 10, 1978

[Ra75 | F.J. Rammig: DIGITEST II: An Integrated Structural and Behavioural
Language. Proc. IFIP CHDL’75, 1975

[Ra80 | F.J. Rammig: Preliminary CAP/DSDL Language Reference Manual. Univ.
Dortmund, Abt. Informatik, TR No. 129, 1930

[Re85 | W. Reisig: Petri Nets: An Introduction. Springer, 1985
[Wi82 | N. Wirth: Programming in Modula 2, Springer, 1982

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15

