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Abstract

In this paper the neccessity for &« common modelling
approach for heterogeneous systems is discussed. As
an example for such a modelling iechnigue ertended
Predicate/Transition Nets are introduced. These nets
can combine modelling in a declarative way by means
of first order logic with an operational inilerpretation
inherited from Petri Nets. The added concepts of hier-
archy and recursion allow the description of extremely
complex systems. Three applications of Pr/T-Nets
are shown: Control of compler design systems, tim-
ing analysis and the implementation of communication
protocols.

1 Introduction

A basic problem when designing complex heteroge-
neous systems is to find a uniform method to model
the entire system, i.e. all the different aspects such
a system has. Only when such a model exists there
is a chance to provide automated tools (qualitative
and quantitative ones) for design activities like sys-
tem partitioning and decision support concerning the
target technology to be used for the different parts
of the system. In this paper it will be argued that
extended Predicate/Transition nets form an adequate
modelling environment for this purpose. The main
reason why Pr/T-nets are so attractive is their flexi-
bility. While axiomatic approaches have problems to
model operational and timing aspects in an adequate
manner (especially in the case of concurrency) most
operational models fail to support easily rigorous de-
sign methods like term rewriting and formal proofs
of correctness. The latter is especially true for most
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software engineering approaches. But also operational
approaches with a precise semantical foundation like
Statecharts have the deficiency tbat various aspects of
a system are modelled either by different diagrams or
in a mixture of explicit and implicit notations. With
Pr/T nets in one single document the data flow and
the control flow are specified in a consistent way. The
modelling style can be tuned towards a pure predicate
logic specification in one extreme, to a pure opera-
tional description in the other one, or to any mixture
of both with slight transitions. This flexibility also
allows to apply various classes of algorithms on such
models. Graph-oriented methods as being followed
up in the context of timing analysis, proof techniques
that operate on a predicate representation, synthesis
algorithms (especially scheduling and allocation work-
ing on dataflow and control flow representations) that
need operational information, they all can extract the
information relevant for them from one single mod-
elling framework.

2 Extended Predicate / Tran-
sition Nets

2.1 Basic Pr/T-Nets

Predicate/Transition Nets (Pr/T-Nets) initially have
been introduced by Genrich and Lautenbach {10] in
1981. What makes them so attractive for system
modelling is the fact that both, declarative concepts
(first order logic) and operational ones (Petri Nets)
are present in this model. In addition a representa-
tion of data flow and control flow in one single doc-
ument is provided, what in contrast to notations like
Statecharts makes closed representations in one sin-



gle document possible. Pr/T-Nets have an easy to
understand graphical notation. On the other hand
they have the computational power of Turing Ma-
chines [10]. We here extend the original model by
the representation of hierarchy and recursion. With
these extensions all classical techniques to attack com-
plexity are present: decomposition (divide and con-
quer), hierarcharchy and recursion. Mathematically
Pr/T-Nets form relatively complicated mathematical
objects. Therefore only a short informal introduction
is given in this paper. Like in ordinary Petri Nets
the underlying graph theoretical structure is a bipar-
tite graph with two classes of nodes: transitions to
model actions and places to model conditions. As in
ordinary Petri Nets places may be marked with tokens
and there is a token game played locally by transitions
due to the marking of the input places of the individ-
ual transitions. In contrast to ordinary Petri Nets in
Pr/T-Nets tokens are individuals. In Pr/T-Nets a to-
ken is an instantiated object of a certain type. Assum-
ing an underlying Petri Net Graph PG = (P, T,F,B),
P finite set of places, T finite set of transiticns,

PN T=0,

Fc{@p)t € T,p € P},

Bc{(p,t)lp € Pt € T},

a global marking M now is a bijective mapping from
the set of places P onto the set of instantiated tokens,
M : P — {Ko; € P(K,)|K, =

set of instantiated tokens,

KoiN Koj =0 if i # j,UKo = Ko}

Le. tokens are instantiated only as part of the mark-
ing of a place and each instantiated token marks only
one single place. Input arcs of a transition te T are
labelled with typed variables. A transition is firable
only if there is a valid interpretation of the set of the§e
typed variables using currently instantiated .tokens in
the respective places. Equally named variables at-
tached to input arcs of one transition have to bf’ sub-
stituted by the same values for an interpretation to
be valid. Transitions have attached a predicate anfl a
token mapping. A transition { fires under a spgcn'ﬁc
interpretation only if this predicate is true for- this in-
terpretation. So looking for a valid interpretation may
be interpreted as looking for sufficient syntactically
correct data while testing the predicate means testing
whether semantical restrictions are met. In the case of
more than one valid interpretation which r&su.lt in the
predicate to become true, the transition ﬁres 1ndepeq-
dently for these interpretations. If a t‘ransxtlon fires, (;t
destroys the input tokens that constiltute' the consid-
ered interpretation and calculates (1.(?. instantiates)
tokens on its output places. By labelling output arcs
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with typed variables, values can be routed individu-
ally to token instantiatons. The values to be assigned
are calculated due to expressions that can be attached
arbitrarily to transitions.

Example 1 :

Fig. 1 shows a single transition before firing, Fig. 2
after. If we assume that the type of all variables is inte-
ger there are two valid interpretations: (z — 4,y -~ 5)
and (z — 8,y — 7). Only the first one is accepted by ¢
for firing, as the transition’s predicate requires z < y.
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Fig.2 Pr/T-net after firing

In this context we will concentrate on two additional
extensions: hierarchy and recurion. The first one com-
bines a technique introduced by L. Cherkasova [CK8.1]
for ordinary nets with the concepts of Pr/T-Nets. This
approach has first been reported by Kirstein [14]. ACon—
cerning recursion we refer to an own result published

in [15].

2.2 Hierarchical Pr/T-Nets

The problem when introducing hierarchy to any lfind
of Petri Nets is to handle structure a.nd' behaviour
in a consistent manuer. Obviously the're is no prob-
lem to define a hierarchical structure n an isolated
manner; each schematic entry system 1s cap.able t-q do
this. We use the same technique to define hl_erarchlcal
structures of Pr/T-Nets here. The ugderlymg struc-
tural concept of Pr/T-Nets is the Petri Net graph PG
=(P,T,F,B). To avoid complicated grapl.l grammer ap-
proaches, a simple port/port-map t'ech,mque sum{ar'to
VHDL is used here. Each transition’s or place’s m;
put/output edge may serve as a port, vjhere ea’Ic‘l; pm:t
may be of one of three types in, out,inout. e se



of all ports of a net forms its interface. Graphically
a place-port is drawn as a solid dot, a transition-port
as a solid rectangle and the port-type is denoted by
an arc between the port-symbol and the node being a
port. As in Pr/T-nets the individual edges of a tran-
sition ¢ have individual meanings, they are indentified
by t.a, where ¢ is the edge’s attribute. Hierarchy is
now introduced by allowing a transition of a (hierar-
chical) Petri Net graph to instantiate a (hierarchical)
Petri Net graph with interface. By this process a copy
of the graph to be instantiated is made and located
internally of the instantiating transition. After this
copying process the ports have to be connected. For
this purpose formal ports are introduced at the instan-
tiating transition. They too may be of kind place or
transition. From the outside these formal ports may
be connected to places or transtions due to the rules
of well formed Petri Net graphs, i.e. a formal port
of kind transition may be connected to a place and
vice versa. Internally the interfaces of the instanti-
ated net have to be mapped onto the formal ports of
the instantiating transition. Obviously a one to one
correspondance between formal ports and actual ones
is required.

Concerning the behaviour, the basic approach of [6] is
applied to Pr/T-nets. In the following an instantiating
transition, i. e. a transition with embedded net is also
called a macro transition. For such a macro transition
the following behaviour is defined: It becomes firable
by the same condition as a normal one and plays the
first part of the token game up to the destruction of
the used input tokens like a normal one. Internally
the firing of a macro transition means that the (al-
ways identical) initial marking is taken. Starting from
this marking the embedded net becomes active and
remains active as long as it is live. When the embed-
ded net becomes dead the macro transition plays its
remaining token game in the same way a usual Pr/T-
net transition does. At the same time the internal
initial marking is restored. As there may exist con-
nections from an embedded net to external places, a
fine grain synchronization with external behaviours is
possible. This definition of a hierarchical Pr/T-net
behaviour is a very natural one: When an expandable
transition is activated it starts its embedded task and
remains active as long as the embedded net (i.e. the
task to be performed) has not been finished. After
this the macro transition reports to the outside that
it has performed its task and prepares for reactiva-
tion. It can be seen immediately that this behavioral
hierarchy is completely consistent with the structural
one.
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2.3 Recursive Hierarchical Pr/T-Nets

Up to now no restriction has been introduced that
forbids a macro transition to instantiate a net that
contains this macro transition. Structurally such an
instantiation means recursion. Being structurally no
problem the exact semantical meaning of such a con-
stellation has to be defined. For this purpose the tech-
nique of coloured Petri Netsis used, a technique which
is already included in the framework of Pr/T-nets, as
each token-type may include a colouring component.
Whenever there is a recursive net definition it is im-
plicitely assumed that the tokens and the firing rules
are coloured ones. For convenience in the sequel we
will use the term recursion-path instead of colour. For
this purpuse the recursively defined macro transition
and aech of its occurrencies inside the recursive defini-
tion have to have a unique identification. A concate-
nation of such identifications serves as a unique recur-
sion path, identifying for each token to which recursive
activation it belongs. Initially the recursion-path is
set to the identification of the entire macro-transition.
When a subnet has to be initiated recursively, its input
tokens are copied but with a recursion-path attached,
which is the caller’s recursion-path with the identifica-
tion of the called occurence in the definition concate-
nated. If a recursively activated macro-transition is
terminated, it marks its output-places (as usual) but
with a recursion-path attached which is the actual in-
ternal recursion-path with the last identification sym-
bol truncated. By this technique obviously just the
usual techniques to handle recursion have been ex-
pressed within the framework of hierarchical coloured
nets. A recursive definition, however, would be useless
when not ancered. Therefore a macro-transition that
is refined in a recursive way (obviously by definition
recursion can occur only for macro-transitions) has to
have two exclusive paths connected to the same ex-
ternal input/output places and the predicates of the
two pathes have to be mutually invers. One path,
serving as the recursion’s ancer must not be refined
recursively.

Example 2:

The recursive Pr/T-net as shown in Fig. 3 performs
Quicksort. The macro-transition gs takes a list of in-
tegers as input an produces a sorted list of these inte-
gers. The embedded transition ancer serves as ancer
of the recursive definition: if the input-list is empty
an empty output list is produced. In all other cases
first the transition Ad extracts the first element (z) of
the input list and hands over the remaining list (zs)
together with z to transition part. This transition par-
titions zs to a sublist (S) of elements that are smaller



than z and another one (I) of such elements that are
larger than z. Both sublists now are sorted by recur-
sively activating ¢s. LI is the sorted version of list L,
S1 the sorted version of list S. Transition concat forms
the list z by concatenating z left to L1 while transition
appnd concatenates the sorted sublists (now including
z). The entire control-flow is synchronized by places
local to ¢s (note that by definition places connected to
formal ports are shared ones) in such a way that there
is a sequence: hd then part then two recursive acti-
vations of gs concurrently then (after termination of
concal wich is activated after the termination of the ¢s
instance for sublist L) appnd. The dynamic behaviour
is easy to see when trying to play the coloured token
game with a small example.
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Fig. 3: Hierarchical recursive Pr/T-net for
quicksort

2.4 Modelling with Hierarchical Pr/T-
Nets

The above discussion has shown that hierarchical re-
cursive Pr/T-nets form a very powerful means to
model complex systems in a convenient way. Read-
ability of this graphical language is provided mainly
by the very simple principles of Pr/T-nets which in-
herited simplicity and locality from original Petri Nets
but add the expressive power to specify both, control
and data-operations. With the features hierarchy and
recursion added (as described above) all basic tech-
niques to conquer compexity are present. A complex
system to be specified now can be decomposed into
its basic components where each component is mod-
elled as a macro-transition. By identifying the types
of objects that such a macro- transition consumes and

produces, the basic information streams are clearly
defined. Finally the concurrent overall control struc-
ture can be expressed using the usual Petri Net prin-
ciples. The hierarchy concept now allows the macro-
transitions to be refined. This may be carried out in
a stepwise manner until an intended level of abstrac-
tion has been reached. Where adequate the refinement
can be given in a recursive way. The refinement pro-
cess may diverge into different implementation tech-
niques: software where a scheduler takes over the role
of the general control structure [16], hardware where
the control structure may be mapped directly into an
implementation, or any mixture (HW/SW-codesign
[9]). There are rarely techniques published to per-
form the partitioning process into hardware and soft-
ware components automatically. In principle feature-
oriented qualitative methods are applicable or quanti-
tative ones. In both cases hierarchical Pr/T-nets form
a proper base for such algorithms. Features like "high
degree of recursion” that make a software solution for
a part of a specification advisable or "high degree of
concurrency” that imply preference of a hardware im-
plementation of the respective part can be identified
easily. Quantitative methods usually start from the
fiction of a pure software implementation [9] or a pure
hardware solution and stepwise replace parts of such a
pure implementation by the opposite technique until
certain restrictions are met. For such an approach a
metric (or a couple of metrices) is neccessary. Con-
cerning this metric the model can be profiled, e.g.
by observing various simulation runs. On the other
hand, based on the same metric, an objective func-
tion can be defined that governs the optimization pro-
cess. This process itself then can be carried out by
any generic algorithm like Simulated Annealing, Ge-
netic Algorithms, Simulated Neural Networks, Linear
Programming, etc. What is important in our context
is that the neccessary metrics can be included easily
in specifications given by recursive Pr/T-nets without
extending the model.

3 Hierarchical Pr/T-Nets Ap-
plied to Controlling Complex

Design Systems

One of the most complex systems to be designed are
design systems. As complex design problems can be
solved in acceptable time only by a a group of de-
signers working concurrently, support is neccessary to
control a well organized cooperation of such a team.
As this problem has been identified by various practi-



tioneers and researchers, design flow managers became
part of design frameworks and a couple of scientific
papers on this topic have been published. It is in-
teresting that a relative high number of these papers
use net-based models for their approaches (4, 7, 8, 13].
Here a short excerpt from the approach of Lisa Kupitz
and Jiirgen Tacken [13] shall be given as these authors
explicitely make use of the power of hierarchical Pr/T-
nets. Their design monitor system is called DECOR
(Design Control and Observation) and is tightly inte-
grated into the JESSI Common Framework [17] using
the same integration techniques used for the tools to
be monitored themselves. DECOR provides generic
design monitoring and control facilities that allow on-
line monitoring of design actions down to the granu-
larity of elementary object manipulations. In DECOR
design tools typically are modelled as a hierarchical
place that contains a subnet that models the tool’s in-
dividual actions. Tokens that mark such a hierarchical
place represent the processes that currently use this
tool while tokens marking places inside this hierarchi-
cal place represent individual states of such a process’
execution. DECOR consists of a net-editor that allows
to create hierarchical Pr/T-nets of arbitrary complex-
ity, a global execution monitor that executes such a
net and by this controls the usage of a design en-
vironment, and for each user optionally a dedicated
monitor. An event/trigger mechanism allows a fine
granular cooperation between DECOR’s components
and to monitor tool actions down to singular object
access. E.g. “drilling” a hole into the cabinet of an
electronic system with a mechanics editor may cause
a specific transition of the controlling Pr/T-net to fire
and by this an EMC-tool may be activated that calcu-
lates the resulting change of radiation. This example
illustrates DECOR’s excellent suitability to serve as
controller in a computer aided concurrent engineering
environment.

4 Hierarchical Pr/T-Nets Ap-
plied to Timing Analysis

As mentioned above a basic prerequisite for any kind
of quantitative decomposition in HW/SW-codesign is
the availability of metrices. Among these metrices
timing information plays an important role. In fact
it is timing that mostly prevent designers to restrict
themselves to pure software solutions. In [1] P. Al-
tenbernd and R. Milczewski desribe an elegant way
to carry out timing analysis within the framework of
Pr/T-nets. In fact in their paper they even restrict

538

themselves on ordinary Petri nets which form a sub-
class of Pr/T- nets. Their approach is not only apphi-
cable to electronic circuits at the gate level but also to
high level models and heterogeneous mechatronic sys-
tems. Their basic idea is to model not only the system
to be analyzed by a Pr/T-net but also the constraints
to be checked for. E.g. in their paper they present
net templates, that check for missing events or for for-
bidden ones. The model of the system to be checked
and the constraints then are combined automatically
into a homogeneous model that either can be analyzed
in an hierarchical way using Cadlab’s timing analysis
system CaTAS [2] or may be simulated by any Pr/T-
net simulator.

5 Hierarchical Pr/T-Nets Ap-
plied to Communication Sys-
tems

Signal Transition Graphs (STG) [5] are a well known
technique to model asynchonous systems and to syn-
thesize asynchronous hardware from such models.
They form a rather restricted class of Petri nets and
by this an even more restricted class of Pr/T-nets.
In [12] B. Kleinjohann and R. Milczewski show how
this synthesis appraoch can be extended to more gen-
eral hierarchical Pr/T-nets. On the other hand in
{3] M. Brielmann and B. Kleinjohann show how even
time continuous systems may be modelled by means of
Pr/T- nets. As conventional synchronous systems also
are covered by this model all conventional design tech-
niques are available as well. What makes Pr/T-nets
s0 attractive for system design, however, is the fact
that software implementations may also be derived
very easily. In [16] M. Rupprecht describes a method
to specify complex communication protocols by means
of Pr/T-nets and to synthesize automatically a soft-
ware realization from such a specification. Concep-
tually the underlying abstract machine architecture
is what he calls a Multiple Decision Multiple Action
(MDMA) machine. In such an architecture “action
units” execute threads of sequential “protocol mod-
ules” (POM). They do this under the control of a ” de-
cision unit” which executes the controlling Pr/T-net.
Such a MDMA-machine may be built as dedicated
protocol hardware. Another alternative described in
[16] is to program a conventional v.Neumann proces-
sor using the programraing language PENCIL/C. This
language has been developed and implemented as ded-
icated language to describe communication protocols
based on Pr/T- nets. The basic component of the



software implementation of PENCIL/C is a scheduler
that plays the token game.

6 Conclusion

More and more, system engineering turns out to be
the next challenge of engineering. A major problem
to be solved in this context is to construct a com-
mon modelling base. Such a modelling base has to
be applicable not only to technical objects but also
to organzational ones like design processes. In this
contribution the attempt has been made to show the
adequateness of extended (i.e. by hierarchy and re-
cursion) Pr/T-nets to serve as such a common model.
By discussing some applications in very different areas
the power and flexibility of this modelling concept has
been demonstrated. At Cadlab, Paderborn, currently
a system engineering environment. based on Pr/T-nets
1s under development.
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