System Level Design

Franz J. Rammig

Universitit-GH-Paderborn

FB Mathematik/Informatik

D - 4790 Paderborn

Tel.: 49.5251.60.2069

Fax.: 19.5251.60.3427

e-mail: franz@uni-paderborn.de

Abstract:

In this contribution, some aspects of system level design are discussed. After a
short characterization of the term system level, most emphasis is laid on modelling
aspects. Various modelling techniques are discussed and a specific model, extended
Pr/T-Nets are introduced in detail. A short overview of other system level activities

concludes this paper.

1. Introduction

For a long time, different engineering disciplines have been in existence somewhat
independently. As a consequence, computer support has been developed individ-
ually. In the case of electronics design there has been an evolution from tools at

low levels of abstraction to more and more abstract levels. This trend now reaches
a level, where electronic components can be treated no longer independently from
their context. This is the challenge this paper deals with. As the basic problem to be
solved is to understand it and understanding something means to construct a m(_)del
of it, most emphasis will be laid on modelliing. The paper therefore is organized
as follows: In sections 2, 3 and 4 an idea about the system level and related desx:gn
activities will be given. After an overview on various modelling techniques (section
5) a specific modelling technique (extended Pr/T-Nets) will be discussed in section
6. In section 7 a discussion of system level design activities shall be initiated. Sec-
tion 8 is devoted to show communalities between system level design and concurrent

engineering.

2. System Level: The Electronics Engineer’s Point of View

Today in the arca of digital hardware design there is a fairl cc (
of 6 abstraction levels [RA89]. This scheme is orthogonal to the different views a
system is looked at. As example for this Gajski [GAST] identifies three different
views: beliaviour, structure, and geometry. Additional views are 1)0551!)1(?, e.g. a
test view [RASY]. Especially for VHDL other organizations may be sgxted bc?tter
[EHS)Q]. However, for the purpose of this discussion, Gajski’s scheme 1s sufficient.
At higher levels the behaviour view is of main interest. So in this context the levels
of abstraction are discussed mostly with this view in mind. In order to make the

v widely accepted scheme
1

109

J. P. Mermet (ed.), Fundamentals and Standards in Hardware Description Languages, 109-151.
© 1993 Kiuwer Academic Publishers. Printed in the Netherlands.

110

.) . ' ‘ re-
concept of abstraction and by this the system level more visible, a bottom up p
sentation has been chosen.

The lowest level (level 1) is usually called the electrical level. Here it is n.lodellye.d,
how electrical circuits built from resistors, capacitors, ete. behave over tllC.tllllcdakllS.
This is done by a system of differential equations. i.e., both the time axis al(l1 tlt :ti
observable values are represented by a continuous domain. I.t should be note t'tlt
the geometrical view of this level is the (metric) layout which does not constitute
its own level.

Electric Level:
® Modelling concept: differential equations
* Timing model: continuous real time

o Observable values: continuous reals

The switch level (level 2) is the next abstract one. This level is fairly well accepted m
digital MOS design but makes sense in other digital designs as well. The a.bstrz_mctioll
comes from modeling transistors as ideal on/off switches and the connections in be-
tween as discrete capacitances, So the value domain is a discrete one where a value
15 given by a pair consisting of a logical Interpretation and a strength, both w1thni
a linite domain. This abstraction introduces uncertain values. They are handlef
either by introducing additional “values” or by representing uncertainty by enumer-
ating all possible values [LRS3]. The time domain may still be a continuous one.
Other approaches like MOSSIM [BRSI] have a discrete time in mind {unit delay as-

sumption). This leads to a concept to model switch level circuits by finite automata.
Switch Level:

Modelling concept: discrete equations

Fiming model: continuous real time

Observable values: pairs (value, strength)

The gate deel (level 3) Las a long tradition in digital system design. It has a very
nice mathematical background in Boolean algelira. However, this models only the
timeless hehaviour, So some additional con(‘copts have to be considered in order to
cover the time axis as well. Various models of inertial delay and (inertia-less) trans
port delays have heen discussed in the literature [I\':’\S)D,Rab‘[)a,]{af)‘l] and efficient
suplementations of such models in simulators have heer achicved. In the ideal case
the value domain is restricted to Boolean values O and 1 while the time domain
FCHams continnous. Again, the probler of uncertain values forces one to intro-
duce additional values. By this in most cases the underlyine aleehra is no longer a
Boolean one. Even the concept of different strengtlys js carried over from the switch
level in some cases. >

: s. The operators, however, are always Boolean (logical) operators.
This finally constitutes this level. [f]

. A 1e value domain is restricted to 0,1 and the
tinte model is unit delay then the modeling concept for this level is exactly a system
of Boolean equations.

111

Gate Level:

¢ Modelling concept: “Boolean” equations
o Timing model: continuous real time

o Observable values: “bits” (may be multivalued)

Further abstraction comes with the register transfer level (level 4). At this level
a specific mode of operation is assumed. There are components that continuously
observe their specific conditions. Whenever the condition of a component becomes
true this component performs its specific operation. In any case such an operation
may be interpreted as a transfer of data between registers where the data may be
modified during the transfer. It is this point of view that gives this level its name.
Abstraction here originates from implicitly underlying a specific mode of operation.
In addition the elementary components used at this level are more complex (e.g.
registers, ALUs, etc.) abstracting from their implementation. The value domain at
this level is given by (uninterpreted) bitstrings while the timing model is usually the
counting of clock ticks. So the time domain has now become a discrete one as well.
The register transfer level is very helpful in clean synchronous designs, it forces one
to somehow design in this manner. This level has been studied intensively in aca-
demic institutions but is much less popular in industry. As a consequence, nearly all
of the numerous register transfer simulation systems (c.g. CASSANDRE [MET0].
CDL [CHT79], DDL [DD75], KARL [HAT7]) are more often used in universities only.
Register Transfer Level:

* Modelling concept: Guarded commands
¢ Timing model: discrete real time (clock ticks)

¢ Observable values: bitstrings

At the algorithmic level (level 5) the reactive point of view at the register transfer
level is inverted to an imperative one. While at the register transfer level the system
is looked at from the eves of the individual components, at the algorithmic level the
controller’s point of view is taken. In contrast to ordinary alg(_)ritlm'nc (l(,‘S(‘[:l])tl(JllS.
however, concurrency plays an important role in hardware design and therefore also
at this level of abstraction. Therefore highly concurrent algorithms are usually de-
scribed. While at the register transfer level it is specified precisely what conditions
cause operations to be carried out, it is abstracted from this information at the algo-
rithmic level. Onlv the logical point of time, when an operation ha.s to be g‘arn(_‘d out
is identified. All the remaining details are hidden away by assuming the imperative
mode of operation of a system. The domain of values may be frefrly (1(:[1.11(1})19 but
15 usually restricted to bitstrings with interpretations attached. The timing model
18 either still a counting of clock ticks or a purely logical one. In this case b:lll]l)].}'
a causality structure is assumed, like in usual algorithmic languages. Algorithmic
languages, have been a purely academic area for a long time. The increasing com-
plexity of digital svstems and, thus, the need for high level synthesis tools make this
level more and more attractive for industry as well. VHDL [VHST] approaching this
level makes it even more visible for the industrial practice. Up to now there are only
very few commercial systems available for this level. DACAPO III [DAST], partially

VERILOG [TH91] and VHDL may serve as examples.

112

Algorithmic Level:
® Modelling concept: concurrent algorithms
® Timing model; causality

¢ Observable values: interpreted words

. . : s device—COHtrouersv
vices. A usual processor is the most t;};pclg:ﬂggx?;lllgl?sb;l}facr};i?:r?lzéd by the fu{lctl(();!j
performed by the instructions and the protocol to kfe use'd to request a Sfr“oiemay
mstruction) to be executed. In principle the initiative within such a'pr?hoccase o
be located at the serving device or at the requester. For e.Xample.,]rtl fion (the
a usual processor this processor takes the initiative by fetchlng an lns.l”llCt ered
service it is requested to perform) from memory without explicitly qug ?igction
to do so. In addition, to describe the components of a system and thei)r'misrhas to
sets plus protocols, the global interaction of these semiautonomous o lj)ecdone o
be specified. Depending on the kind of system to be described this may }?1 e
centralized manner or in a decentralized one. In the first case another hig l}t’ Cnative
rent algorithm serves to specify the global behaviour while in the second at ercertaiﬂ
the different components,in a totally distributed manner, decide accordmgl o o om
states or events to request certain services from other components. So the d};lter-
level can be interpreted as an abstraction of the algorithmic level (centralize S
native) or the register transfer level (distributed way). Both the value dofglaﬂ; e
the timing model are purely symbolic at this leve] There are freely definable efll?tv.
with arbitrary semantjcs and time is interpreted only to be advanced by caus DA-
The system level Up to now is supported by very few commercial simulators.

CAPO I and VHDL age approaching this level while performance analysis tools
like HIT [BESG6] are addressing the syster

n level as well
System Level:

¢ Modelling coneept: cooperating “processors”

* Timing model: causality

* Observable valyes: freely definable

3. System Level: General Pojnt of View

Up to now the levels of abstraction }
point of view, How.

an entire system co

3 o nics
1ave been looked at from the pure electrgases
€ver, pure electronic systems are very rarely built. In mos

113

Consequently at the system level all these aspects have to be considered and the
electronics part doesn’t usually play the dominant role but a serving one; (it’s the
engine power a car driver is interested in and not the operation of the electronic
controller). The tradition of the various engineering diciplines involved resulted in
well defined levels of abstraction for the indivudual disciplines, similar to those dis-
cussed above for electronics design.For example in mechanical design there is a well
understood abstraction from real mechanical systems up to mathematical models.
Looking at the entire system it can be assumed, that during the design process,at the
highest level a separation into the different domains of engineering takes place. This
partitioning is a highly complex action, up to now almost entirely carried out by
human decisions, based on expert knowledge. Once the partition has been decided
on and the interfaces have been defined the further design can be carried out within
the specific engineering domains. Now the common interfaces may be interpreted
individually and modelled in the different areas. This should cause no problem, as
from now on a point of view centered at the specific areas is legal. Projected on elec-
tronics design after the step of partitioning an electronics system is then obtained,
providing an instruction set for software (which is of minor interest for the fur-
ther steps of electronic design but the central concern for software engineering) and
being connected to some peripheral components from a different enginecring domain.

There are many degrees of freedom in these partitioning decisions. The design of
a digital system may serve as example.A priori a solution providing the requested
instruction set directly hardwired as hardware is as correct and as 0b\'i0u§ as a
solution providing the requested instruction set by a piece of software running on
a general purpose processor which is available as a piece of hardware. And within
the bandwidth spanned by these two extremes a variety of potential, correct and
valuable solutions may exist. Only after one of these solutions has been selgctgd thc
specification of the electronic component to be designed (if not already existing) is
obtained.

4. System Level Design

From the above discussion it can be concluded that partitioning seems to be the
central design activity at the system level. In order to get something partitioned it
1s necessary to Lave a model of the entire system. Modelling therefore is essential,
not only but especially at this level of abstraction. This 1s the reason why this
Paper concentrates on modelling aspects. Such a model is the initial reaction to
& specification of the entire system. This specification should be independent of
the solution selected to find an implementation. The model obtained being the
first formal document describing the system to be built. some kind of verification
18 essential. It might be possible to proove analytically that certain aspects of the
specification are met. The main activity, however, to check the correctness at the
mitial model with respect to specification is simulation i.e. experimenting whether
the designer’s intention is followed. System level simulation therefore is an important
design activity. Besides sinwulation numerous additional analysis activities should be
supported, like performance analysis, testability analysis, manufacturability analysis
etc. Ounly when an appropiate set of these design tasks has been performed. the
above mentioned activity of partitioning can take place. It produces a couple of
individual specifications for the different engineering domains. At the same time the
environment for concurrent engineering has to be filled in so that during the entire
design process all relevant aspects and parameters can be observed and influenced.
So the following design activities are the most important ones at the system level:

114

a) specification support,

o

system level modeling,

g}

=8

system level analysis,

e

)

)

) system level simulation,
)

) system level partitioning,
)

f) integration into a concurrent engineering environment.

These activities are discussed within this paper in a somewhat more detailed way.
The emphasis will be on modelling aspects, however.

5. System Level Specification and Modelling
5.1. General Principles

There is no “one and only” system level modeling method and by the same reason
no “one and only” specification method. Requirement engineering being a complex
area in itself we shall concentrate on the modeling aspect here. Obviously it depends
licavily on how heterogeneous the possible design space is, whether an initial system
model can easily be derived from a specification. In relatively simple cases the basic
characteristics of a system to be built are fixed, only some parameters have to be
supplied. Examples of such approaches are systems like DEBYS [BK91] for logic
design. Such systems allow these parameters to be filled in an interactive way where
the user is supported by a knowledge based approach. So a search process through
a limited (but very large) design space more or less takes place. The result of such
a guided search can then be an initial model. Other examples of such an approach
are generators for simple DSPs [HI85] or models of RISC processors [NA89, PS90].
[his approach however seerns to be promising only as long as the design space 15
h‘;"”‘:)g“”@{)lls and limited. It is not surprising that all the examples mentioned are
within a single design domain (electronic design in this case). In the general case
this “ideal” way of requirement engineering does not seem to be possible. It }Vln
not even be possible to formulate homogeneous system models.Contrary to this a
‘_“““11){\1‘?1(113.;‘11111“(7 approach seems to be much more promising. In such an appI‘OHCh
for various aspects of 4 model, different paradigms are used, for each aspect the
paradigm Fhat seems to be the most natural one {or that which is most familiar
to the designer). In this section therefore a couple of modelling approaches shall
just be discussed. 1t should be noted that a partition of a model into parts using

different paradigms doesn’y imply the same partition into system components.

5.2. SDL

SDL (Specification and Description Language) [CC88) is a graphical language (with
tCth‘la‘l counterpart) for specification and description of systems. It is standardized
by CCITT where the standard defines two semantically é(]ui\'ﬂl@ln representations
of the language: SDL-GR as graphical representation” and SDL-PR as the corre-
SI)Ondlng‘pL‘lrely textual counterpart. It is especially suited for telecom applications.
However it is o in other areas as well. For example [GV91,

eVeritas general enougl to be used
LGR92] discusses the use of SDL in electronjc design, relating SDL to VHDL.

115

SDL has the communicating sequential processes point of view i.e. a system is
described in SDL as a set of concurrent processes that communicate via shared
channels by (asynchronously) sending and receiving messages. The asynchronous
nature of SDL communications implies that buffers have to be assumed at each
communication channel.

SDL supports different views of a system description:
¢ a structural view, supported by
— Block Interaction Diagrams (BD)
® a communications view, supported by
— Sequence Charts (SC). and
® a concurrent behavioural view, supported by
— Process Diagrams (PD).

The BDs are just usual hicrarchical schematics as used at each level of electronics
CAE. The edges in a BD represent the communication channels. Attached to such
a channel description is a list of niessages that can be sent over this channel. By
identifier equality a BD is connected to the dynamics (the behaviour) expressed b«‘f
attached PDs and SCs. PDs and SCs both describe the system’s behaviour. Ina SC
the global view is stressed. It is described which communication sequences can be
observed from the outside world if it is abstracted from the processes internal to the
communicating objects. The inverted point of view is described by a PD. It abstracts
from the global communication structure by just describing what messages are sent
and received. On the other hand the process where these atomic communication
actions now play a role is specified preciscly.

the process is waiting for signals

‘ upon receipt of a signal or
if a condition (continuous signals)
Continuous is true the corresponding
Signal

transition is activated

operations are performed on local data

the traneition may branch

signals are sent
to other processes

process enters
next state

Fig. 5.2.1: SDL PD

116

The method used is an extended finite state machine. Assume tha@ a progfss. 1?
in a certain state S. It waits there until it ﬁnd§ an acceptable message In its]r}f
put queue. For each state there may be a specific set of aC('c‘ptab.ltc 1:11ess;angeesss;aﬂe
a message arrives at a process which is not in a state to accept it, the ag
may be discarded or saved, depending what has been specified for this Sl-tua'tl'oﬁ
When an acceptable message has been found in the input queue, a stat‘e‘ F-“‘mSlnia :
takes place. During this transition local data may be modified and mey,sjdgesld 01)1
be sent to other processes. The next state reached by a transition may VC]l])CIb i
actual values of variables. Autonomous state tl‘anSltIOI]S.al‘(i possible as well, asg
on continuous signals. In SDL there is the concept of single ownership ‘Of ‘da‘tislsesy
processes (local data). Owned data may be explicitly made visible to other processes.

The multiview approach of SDL makes individual descriptions very easy to und;‘r‘;
stand. To get a complete understanding of an entire system, hOWeVCl‘,.lt is n.e.ceSSSt Y
to combine several subdocuments and to understand {he intercorrelation. Lll]\e‘ ; (‘)au‘s
echarts (see 5.6) SDL supports only asynchronous communication but sync ll?ﬂ“ﬂ‘r
communication (rendezvous) can casily be simulated by this concept by GXI)~K1£1}'
describing a handshake procedure. SDL is in practical use \VOI‘ld\quC. (1.){Ccen‘}
extensions towards object orientation (SDL’92) have been proposed [SDLY2].

3.3. SADT and SA

SADT (Structured Analysis and Design Tochnique) consists of two parts:

® a graphical language SA (Structured Analysis)

* a methodology DT (Design Technique)

While in SA the structure and communication of objects (which are specified i\ﬂ
any other language), is described, DT serves as an instruction on how to use S’
SA looks at a svstem from the point of view that there are “things and hﬂl’_l)e‘}”lgl‘z '
[ROSTT]. Such things, happenings, and their interaction are described in S\ 1«\
diagrams. Such a diagram is a finite, directed, edge- and vertex-annotated grapi.
There are two basic interpretations of such graphs: if the nodes (drawn as 1'ecta11i
gles) are associated with activities and the arrows with data such a graph is called
activity diagram,

One identifies a horizontal data stream and a vertical control stream, where collf{‘{)/
denotes such data that directs the activity to perform specific operations _Whl(E
mechanisim denotes specific techniques to be applied. The sccond interpretation o
the SA graphs is an inverted view, In this case, the rectangles are used to d‘f“Otf?
data and the arrows the activities envolved. Such graphs are called data diagrams.
Typically a data object is drawn as indicated in Fig. 5.3.1.

Control

Input —_———— ————————— Qutput

Mechanism

Fig. 5.3.1: Basic element of SADT data diagram

117

In this case, the producing and consuming activities of a data object are drawn
in the horizontal direction while the controlling activity and the storage means are
shown vertically.

Both diagrams may be decomposed hierarchically. There are no sequencing con-
tructs in SA. Activity diagrams therefore are strict dataflow diagrams, that do not

contain information about a control flow. A control flow that is_consistent with_an
activity diagram may be constructed using specific sequentiahization techniques. DT

provides methods to support structured understanding of complex systems; team-
work; communication of intermediate results; control of adequacy, completeness and
quality; management. To achieve this, DT proposes certain fixed processes for sys-
tem design.

SADT is relatively vague in its description. It may be applicable in early design
steps to structure thinking. However, it is very hard to obtain precise and executable
specifications of systems to be designed. So it is not surprising, that SADT tools
are restricted to those which support documentation.

Structured Analysis (SA) [De78] is another dataflow-oriented method for require-
ment engineering. Here SA denotes the entire method, not to be confused with the
SA-language of SADT. In the present context however, an extension of SA, called
Real Time Structured Analysis (RT/SA) [WMS85] will be discussed. This extension
includes control-flow specifications. A system description in SA consists of a st of
dataflow diagrams, a data dictionary and a set of transformation descriptions.

A dataflow diagram is a graphical representation via a directed graph of functions
with their interfaces and dataflows. There are three types of nodes in such a dia-
gram, circles to denote actions/processes, twin horizontal bars to denote data stores
(files) and rectangles to represent terminal nodes (springs and sinks). The flow of
data is represented by arcs. Fig. 5.3.2 shows the different symbols.

data /i:;;;?\ data 44_»terminator:

flow "\ form flow sink

terminator:
source

data store

Fig. 5.3.2: Graphical symbols of SA

Edges and vertices of SA dataflow diagrams may be annotated with identifiers which
can be referred to in additional SA documents. The first type of such an additional
document is given by the data dictionary. In this document the terminology of the
project is deseribed and further details of the objects denoted by identifiers in the
dataflow diagrams are provided. Documents describing SA propose to use regular

expressions and plain text for this purpose. The second type of additional docu-

ments is given by transformation descriptions, often called minispecs. A minispec
1 ithin a dataflow di-

defines in further detail the internal operation of a function within : X
agram. No global information can be provided in a minispec. Minispecs may_be
formulated in pseudocode, decision tables, plain text or any other formalism. For

118

example in [TLK90] it is proposed to use VHDL to formulate SA minispecs.

RT/SA adds to the above concepts controlflow diagram and contro{ speczﬁcatw?isl’.
The two views (dataflow and control flow) are bound together by using Ilolc!es wi ;
the same identification. This may result in isolated nodes in one ‘of the (*I?giﬁlrgd
as, e.g. there may exist activities in the controlflow diagram that are not eldn)terram
in the dataflow. Such nodes then appear as isolated nodes in the dataflow dlato anm.
A control flow diagram has exactly the same syntactical structu}‘e as a 'aisa o
diagram, only its semantics is different. In the same way as there are mn; gciﬁé
a control flow diagram may have control specifications attached. Again, at ‘(I))l e
control specification is a purely local one, it specifies, how one node of a‘ctl)n T Lov
diagram has to be interpreted. Various techniques are possible for control spec

tions, including VHDL [TLK90]. . ‘ ;
Like SADT, SA supports hierarchical descriptions by stepwise refining nodes o

dataflow/controlflow diagrams to such diagrams. There are some tools available for
SA (RT/SA) including checking editors and analysis tools.

5.4. GRAPES

GRAPES-86 is a graphical language to support all aspects of S)’itel]] design. Izlhfzi
been designed by Siemens Nixdorf Informationssysteme AG [HE90] to be “fsé o
projects of high complexity. Like SDL, GRAPES makes use of a couple o fcotlion
lated diagrams to describe an entire system. In GRAPES this n}ultl—l‘epfeseﬂ:l)‘ES
approach is even expanded by introducing additional types of diagrams. GR .)
is intended to combine principles of [ORL (Input/Output Requiremel}ts LHHSU%:
[TB34], SA (Structured Analysis) [DETS], SADT (Structured Analysis and DCS]C’l;
Technique) [YC79] and SDL and approaches an object oriented view by looking a
a system as communicating and cooperating objects.

GRAPES has the “Cooperating Processors” point of view which in se'ctxon‘ ?tlla]i
been identified to be the basic modelling principle of the system level. So a sys ’e;
in GRAPES is modelled by a structured set of individual parts which mteractu ‘3
achieve the functionality to he provided by the entire system. These parts are cali€
objects in GRAPES. They are semiautonomous and interact only Via COMIMUMICA
tiou channels. Objects may be decomposed into structures of subobjects which m
turn are objects. So arbitrary hierarchies can be built. GRAPES has an e]a-borval‘[?
graphical notation, where coneepts are inherited from well established notations as
far as possible.

Communication Diagrams (CD) serve to describe the static structure of Ob.JeCtl-S:
Thus, GRAPES CDs ave comparable to SDL BDs. It is described how an object 151
decomposed into subobjects and what communication relationships are establishec
via communication lines,

For cach communication line an [nfe
diagram specifies the chanpel

rface Table (IT) has to be provided. U]lli
5 10 be used, the data types to be transmitted f“_'d t i
kind of communication (synchronous or e\su\'n(‘l\ron()\‘xs). The dynamic behaviour 13
specitied using Process Diagrams (PD). These process diagrams are inherited .ﬁ:OlU
SDL and have nearly the same syntax and semantics as in SDL. Slight m.Oﬁllﬁca'
tion originate e.g. from the existence of synchronous communication in addition to
asynchronous.

The local data of brocesses are specified via Data Tables (DT) and the local call
interfaces of proced

oD ures and functions are described using Specification Diagrams

Titte: store_administrator function

Date: Fri

Jun 16 14:16:15 1990

toop
> in_writin outgoing_goods > jncoming_qoods !I
issue ISSUe addition
issue—in_person: = add—to--stock
false

process process

(dispatch-dept=pissue, (dispatch-dept=issue,

shortage=sreplenish, shortage=replenish,

out_of_stock=>reorder) out—of_stock =reorder)

i false

false -
< reorder reorder deliver
< parcel I
L true | true
order order > dispatch >
replenish replenish parcel
end DC end DC

| store | store J’

issue 1Ssue

NVend CS

Model: store_administration Name: PROCESS store_manager Type: PD
Parent: OBJECT store_manager

Fig. 5.4.1: GRAPES PD

119

In addition to these specifications there exist Data Diagrams (DD) to model complex
data structures. DDs are a version of E/R diagrams using an easy to understand

graphical notation.

Finally Hierarchy Diagrams (HD) are used to represent the interrelationships be-

tween all the documents used to

model a system.

So GRAPES is an attempt to combine SA-like data flow diagrams, SDL-like pro-
cess diagrams and the entity relationship data modelling concept to one single well
defined {concerning syntax and semantics) modelling concept. Its dynamic modelling
concept (communicating sequential processes) is inherited from software engineer-
Ing and covers a wide spectrum of applications. For extremely parallel systems, this

approach may tend to become a

little bit unwieldy.

120

Title: Demarcation level of store__administration Date: Wed May 3 8:45:49 1990
dispatch
store customers
request
order send
suppliers
Model: store_administration Name: OQBIECT store_administration Type: CD
Parent:

Fig. 5.4.2: GRAPES CD

Tide:Definition of purchase_note and substructures

Date: Wed May 3

10:23:19 1990

l purchase_note |

date
ordered_|
oy address
items ~ "
item_tist
total
float
in_person
-pe boolean

address

| il

name
'—\% string l
account
string
delivery_address .
string
processed_by ~
string

| item I
article -

order_quantity

integer

delivery_quantity

integer

unit_price

float

total_price]
=

This construct describes the item_list as an array
with index bounds 1 to 21 reterring to the basic
type item, which s, in turn, a record.

integer (1..31)

integer (1..12)

integer (1900..2100)

I

Modei:store_administration

Name: DATATYP
Parent: OBJECT store_administration & purchase_note

Type: 0D

Fig. 5.4.3: GRAPES DD

121

5.5. Logic Programming

Specifying a system by means of rules to be respected seems to be a natural ap-
proach. This method is not very powerful alone as long as there is no inference
mechanism that allows one to decide what rules are applicable and by which further
knowledge can be deduced. A very general inference mechanism is given by unifi-
cation. Therefore PROLOG [CMS81] and its derivates become a useful language for
specific aspects of system level specification and modelling. PROLOG is a language
which is well suited to describe a calculation by means of the intended result, in-
dependently of intermediate steps. If processes where these intermediate steps are
of interest rather than a final result (which may not exist) the use of PROLOG
makes no sense as by the nondeterministic backtracking mechanism illegal interme-
diate states may be reached that cannot be communicated to the outside. For this
purpose stream parallel committed choice languages like PARLOG [CG84], GHC
[UE85], or FCP [SHS87, GK90] are well suited. FCP may serve as a typical example.
A FCP clause looks like H : =Gy, G2, ..., Gy | By, B, ..., Bi. His the clause head.
A goal can be unified with this head as in PROLOG. The G; are guard predicates.
The conjunction of these G; has to be true for the clause body to be executed. If
so the |-symbol (commit-symbol) is passed irreversably i.e. from now on there is
no back-tracking. The body predicates B; can be interpreted as processes that are
initiated concurrently by the commit operation. Fine grain communication between
the concurrent processes is carried out by shared variables that might be spe.ciﬁed
as read only variables in certain processes. This means that such a process is not
allowed to instantiate such a variable but has to wait until this has been carried out

by a process that has the right to do it. Concurrent logic programming has been
used for hardware specification [SU85, WS8T]. Efficient parallel implemgntat;ons
are available today [GH91,GL91]. FCP and their role in system level specifications
will be discussed in more detail in section 6.

5.6. Statecharts

Statecharts [HA 87] start from usual state diagrams of FSMs. In order to hz.mdle
complexity, first of all a concept of hierarchy is added. This is done by allowing a
state to be decomposed into an FSM as well, and so on. Graphically, the embed-
flCd FSM is drawn just inside the macrostate. This concept makes it necessary to
mtroduce means for specifying in which internal state such a macrostate has to be
started when activated. This may always be the same one (default _init,ial state)
or be dependent on the internal state a macrostate has been when this macrostate
has been deactivated. The first case is denoted by a single state transition arc that
originates from an isolated location inside the macrostate and ends at the initial
state. The latter situation is supported by the so called listory mechanisin that
may be extended recursively to deeper hierarchy levels. The history mechanism is
denoted Ly mtroducing a state symbol labelled with H inside a macrostate (or £~
if the history mechanism has to be continued recursively until the lowest embedded
level. This state svmbol is the destination of a statle tlralisition al‘CtOI:gl'na(IItlg h{m{]
a state 31 ¢ ostate > 1 which the macrostate 1s activated.

llcastgc?)ﬁt(r lc(l)(ilE:lefle)t.nal?lfllas)(Tt‘l()lu\t'CSlt‘.gfctcllllea1‘0tget(gl(f?‘%‘i\ls in order to handle complexity is

concurrency. Several Statecharts are now allowed to operate concurrently 1.e. when
the macrostate they are embedded in is activated, more than one 1‘11t.el:nal FSM s
activated. Graphically concurrently active FSMs are denoted by dividing the em-
bedding macrotransition using dashed lines and including a Statechart in eac¥1'of
the partitions. Introducing concurrency always makes it necessary to mtro_du.ce syn-
chronization and communication concepts. In the case of Statecharts this is done

122

] i i / : lication. Broadcasting
by a broadcasting mechanism, i.e. by asynchronous communic: . : !
is}descl‘ibed by tlgm usual edge annotations of ESNIS, l.e. an annotation of t-l,leef‘(v);g;
Lin [l denoteé, that this transition takes place if event [, happens and c?_uvscsFSMS
lsut to happen. These events are distributed all over the concurrently active FSMs.
ou

J

| o e ot e e e o

Fig. 5.6.1: Example of a Statechart

5.7. Extended Petri Nets

Petri Nets [Re85] are a technique that has been used for the SP.CCIﬁCELtIOIl and analt)i;lj
of (concurrent) systems for decades. As a result a relatively rich set of mathema
results is available.

Petri Nets constitute a graphical model of activity flows. The graphical l‘él?tleiefna
tation is given by Petri Net graphs. A Petri Net graph PG = (P, T, E) consists ting
finite set Pof “places ", a finite set T of “transitions” and directed edges connecl are
places with transitions and vice versa. Places represent condition variables anl(1 -
drawn as circles while transitions model actjons. They are drawn as horizonta ~l?~?nl
{or rectangles). Activity is introduced into a Petri Net via the concepts of ma;{ ‘an
of places and firing of transitions. Fach place may contain an arbitrary set of t?f ttihiLS.
A transition fires if each of its input places is marked with at least one token. o
is 50, it fires. This consists of removing one token from each of its input places a
adding one to cach of its output places. 3 have
Various classes of Petri Nots (defined by restrictions on the graph tOPOIOgY) H}ré
been investigated and a couple of mathematical results have been obtained ‘thvd‘t dl\'
valuable in system design. Ordinary Petyi Nets however, tend to become extlf{l?ge‘;‘
unwieldy if large svstems have to be modelled. Numerous extensions have thelevOI1
been discussed in the literature. Some of these extensions concentrate (lu‘od}:‘ OIL
the needs of hardware design, e.g. the approaches related to DACAPO [R“}SU]‘ 0
Cascade (LM92]. As extensions of Petri Nets will be discussed in more detail in sec-

tion 6. only the concept of Structured Petri Nets (S-Net) will be briefly introduced
here.

If Statecharts may be characterized by the sequence of adding to FSMs hr‘lera::
chy first and concurrency afterwards this sequence 1s inversed in the case of 5—116(‘1‘51
[CK81). They start from Petr; nets, Le. the concept of concurrency has already
been added to FS) ns introduced by Petri nets. The remain-
. ent concept for hierarchy (a problem that turned out t10
be a complicated one) has been solved by S-nets in a very elegant way. Here each

123

transition may be replaced by an entire S-net with a “flat” Petri net being an S-net
as well. A macro-transition becomes firable by the same condition as a usual one.
Internally the firing of a macro-transition means that the (always identical) initial
marking is taken. Starting with this marking the local S-net becomes active and
remains active as long as it is live. By this internal net becoming dead the macro-
transition plays its token game in the same way a usual Petri-net transition does.
Each Statechart can be simulated by an S-net and a subclass of S-nets that covers
all cases relevant for practical applications can be simulated by statecharts [SU90].
So for practical applications they can be looked at as equivalent. This is interesting
as Statecharts introduce hierarchy by decomposing states while S-nets decompose
transitions. Which concept is the more natural one depends on the special situation.
The history mechanism is missing in S-nets as originally defined by L. Cherkasova,
but can easily be added.

jakass

Fig. 5.7.1: Example of a Structured Petri Net

5.8. Programming Language Paradigms for System Level Modelling

System modelling by functions is a very natural way with a long tradition. By
systems of differential equations very complex systems can be described in a concise
way. The v.Neumann-paradigm unfortunatcly replaces equation by assignment.
As for the numerical calculation of equation systems v.Neumann computers have to
be programmed, this assignment point of view entered areas where it is completely
nadequate. Functional modelling is very natural in any kind of continuous systems.
n the area of electronics, analog devices are a typical example. But also in all
kinds of engineering continuous systems are investigated and mostly described
by means of differential equations. So system level modelling without supporting
a functional point of view rarely makes sense. An excellent example for an z}pprgach
to cover wide areas of electrical systems by functional techniques is GLASS [SE90].
) | approach. It also opens the way

Functional programming is not only a very natura L
10ds formal

to the long tradition of mathematics. By analytical and algebraic metl)
proofs and transformations can be carried out fairly simply on iu'nctlyo’nal spcmf_ic;.x-
tions while the same is very complicated in the imperative domain. Therefore it 15
ot surprising that functional programming is playing more and more an mportant
role in software engineering as well. This trend is increased by the observation that
the parallelisation of functional models is much easier compared with imperative
Ones. A language that influenced functional languages in the software domain is ML
[MTQO] while LISP can be looked at as the classical functional language.

124

M ~ . l-
If there is a paradigm that habs ttlile Il)otintlall't((l)aigveévnzﬁztpzii}iflzzsipoli (S)‘f]s(f:snclfélflg
1 ect-orientation may be the best candidat . By) € ol .
g;;etrénrlqgs7 l:?}ljjjcsit of objects thatya‘re incarnations of object {y[_}eg, 1.e.1 ?labco(fzvtelfliztltlgr
tural aspect is covered very well by the OO approach. This Is ac ?ledV By this prin.
if the principle of inheritance present in most OO la‘nguagfls is ;xsc S. ofyclasses o
ciple hierarchies of classes can be built. Fairly comphcate sys tem O ¢ asses e
be described in a concise way by this approach. Objects are no Jtus} é ssive ent
ties. They offer methods that can be requested by other objccyts‘f (f c)ongzept oy
Together with the principle of polymorphism this is a very power u ey
straction. Polymorphism in this context means that in orde{ tofliiiuenleésage e
just a message is sent to tle offering object. By the natu;e_ of the ntatioﬁ Do e
offering object can decide how the request can be satisfied. Object OU/iDT) (IS
nice mathematical background by the theory of abstract data types (it
An ADT D(S.E) is given by a signature S ax}d a set'of equations E. A ?gf dper-
S(sorts, ops) is given by a set of sorts (domain 1Fl¢1'1t1ﬁel‘s) and a se% OIXDT e
ations defined on these sorts. The signature specifies the syntax Offtée() L iazes
semantics is given by the set of equations to be respected. A couple 0] o 'ﬁl?eri(tjed
is available today with CH++ [STS()'] playing a dominant role just by)el%l(j' :)_ e
from C. Reccntluy efforts have heen made to make concurrent QO 1auguaoﬁkgyind
practicable [AH90]. This of course is essential if all aspects of systelm ~el<1g><>a o bg
have to be covered, as most aspects are concurrent by nature. Anot 1é1‘d1~16b"ects
attacked is the specification of the protocols to be used bctwcml.1'6(11'1est111g.ﬁ9(J1 o
and serving ones [MR39). Traditionally in QO languages nothing is vs‘peocll)vi/ouslv
this purpose. It is just assumed that any message sent from a requester 18

. .) » different way.
understood by the server. Technical systems behave in a completely differ

5.9. HDL Paradigms for System Level Modelling

o

CHDLs like VHDL have been designed to cover a specific aspect of syst?m (t_llo,l](fll;
efforts are underway to define VHDL extensions to support analog design 135“8‘;63
engineering, ie. the design of electronic hardware. In the case of \/_HDIf t'li: that
is further restricted to digital systems and a bandwidth of abstraction 1?‘ C’_m o
reaches from partly switch level to partly algorithmic level. As dedicated 'd‘lll.g ‘tlglel;
however, CHDLs should be the most adequate mneans to describe objects wit in th o
domain. As we have already identified that a multiparadigmatic appx.‘oa‘ch Sev?llnf-ol(’
be the most promising one for system modelling, CHDLs have their nz}‘tulale o
in this context. The approach of SpecCharts [VN91] is an excellent examnp the
this idea. Here the entire system is specified by a Statechart-like tc_n'm'd-lilsl?L the
fine grain functionality of the states, i.e. the operations to be'perfopme 111 e
states, are specified in VIIDL, The approach of [TLK80] to use VIIDL as lal?g?tltf(%]i
to formulate minispecs within RT/SA is similar. Another approach to ?{(l(l]S\l\ Lo
design capabilities to VDL is VAT, [AGSS]. Here additional information is ac f‘i-(ore
allow reasoning about descriptions provided. There are other CHIDLs that ()H("]' m e
direct support for the system level. DACAPO {1} [DAST] is an excellent example
for this. In contrast to VIHDL this language supports

¢ functional programming,
¢ implemented abstract data types,

* module concept,

¢ algorithmic concurrency

125

in addition to the scope covered by VHDL. Therefore it is not surprising that a couple
of proposals to enhance VHDL towards system level descriptions have been made by
researchers that are familiar with DACAPO III [Glu90, OC90]. DACAPO III was
also the basis for ODICE [MR89] an approach to introduce real object orientation,
including protocol specification, into a CHDL. A perfect idea with respect to the
intended polyparadigmatic approach is the concept of CONLAN [PBS3] to provide
a deduction system for building modelling languages instead of just defining one
language. A revival of CONLAN might be a very promising way of approaching a
framework for system level modelling.

6. Towards a Unified System Level Modelling Technique

6.1. General Principles

When looking for a specification method that covers both control and calculation,
that is able to deal with concurrency and that has a rigid formal foundation, Pred-
icate/Transition nets (Pr/T-Nets) [GL81] seem to be a well suited candidate. In
contrast to Statecharts [HHAS7] they combine the representation of control and data-
operations in one single diagram and in contrast to the Z-notation [SP92] they offer
a natural support to express concurrency. Due to the easy to follow graphical rep-
resentation Pr/T-Net specifications are relatively easy to understand. On the other
hand they have the computational power of Tuning Machines [GL81].

Unfortunately in the original definition of Pr/T-Nets no mechanism to handle hi-
erarchy has been provided. However it has becn investigated [Ku92, Ki92] how the
hierarchy concept of Structured nets [CK81] can be applied to Pr/T-Nets. But even
with hierarchy added, another basic specification technique is missing: recursion. In
this paper it is shown that recursion can be added in a relatively easy manner when
using “colored” tokens [JE91]. With these extensions an impressive specification
language with high expressive power has been obtained.

There is an increasing demand for executable specification methods and (related
to this) for support of rapid prototyping. Of course it is possible to build a dedi-
cated simulator for extended Pr/T-Nets. Such a project, however, is cumbersome
as a couple of problems, that prove to be hard to solve efficiently, are present, es-
pecially concurrency, recursion, finding interpretations that allow transitions to fire.
When looking more closely at these problems it can be seen that most of them
are present when implementing Flat Concurrent Prolog (FCP) [SH8T7]. I'CP is the
most powerful representative of the class of committc(l.cholcc stream I)ara]l(’lrl‘(@c
Programming languages. Other members of this class include Flat Parlog [IT87].
Flat' Guarded Horn Clauses (FGHC) {IMTS7] and KI/1 [Na92]. Common to all
these languages is that they constitute a subset of Concurrent Prolog [SIISG]. that
can be implemented efficiently. In the case of KL/1 such implementations exist on
Unix-Workstations and on dedicated hardware, ICOT’s Parallel Inference Machine
SPIM)’ while eflicient implementations of FCP on Unix-Workstations and on ~Iarge
Transputer networks have been reported recently [GL92]. So it seems to be an inter-
esting question whether FCP can be used directly to execute extended Pr/T-Nets.

n the other haud, FCP programs look somewhat unfamiliar to most programmers
and are thus hard to understand for them. The question therefore arises, whet.her
extendend Pr/T-Nets can be used as graphical representation of FCP. The first
question is investigated in this paper and a positive answer 1s obtained.

126

6.2. Predicate/Transition Nets

Mathematically Pr/T-Nets form somewhat complicated objects. Therefore only a
short informal introduction shall be given here. '))
The first basic difference between ordinary Petri Nets and Pr/T-Nets is thzltt n
Pr/T-Nets tokens are individuals while in ordinary nets only their count on places
' i 2 . . . _
lliolgrl}l”_tfe—llm\%ts a token is an instantiated object of a certain type. A,ssumlng an ;mf
derlying Petri Net graph PG = (P, T, F,B), P finite set of “places”, T finite set o
“transitions”, PN T = {,

Fc{(tp)] tﬂ,psP%,

B C {(p,t)]| peP,teT},]
a global making M now is a bijective mapping from the set of places P onto a par
tition of the set of instantiated tokens, 0if i #
M : P — {ToeP (T,) | T, = set of instantiated tokens, T,, N T, = if
j7 U ToI = To } .

i.e. tokens are instatiated only as part of the marking of a place and each instan-
tiated token marks only one single place.) Gon is
Input arcs of a transition teT are labelled with typed variables. A t.ransmon_
firable only if there is a valid interpretation of the set of these typed va.nables uSIHtg
currently instantiated tokens in the respective places. Equally named variables at-

tached to input arcs of one transition have to be substituted by the same values for
an interpretation to be valid.

Transitions have attached a predicate and a toke
under a specific interpretation only
looking for a valid interpretation
tactically correct data while testin
restrictions are met.

If a transition fires, it destroys the input tokens that constitute the interpreta-
tion it is reacting on and calculates (i-e. instantiates) tokens on its output places.

By labelling output arcs with typed variables, values can be routed individually to
token instantiations.

n mapping. A transition t ﬁrSes
if its predicate is true for this interpretation. o0
may be interpreted as looking for sufficient syn—1
g the predicate means testing whether semantica.

Example 1:
P t P3
<> <X,Z>
@ ———] X<y 4
P P,

4
2= x4y

ERr o
@ — 4

Fig. 6.1: Pr/T-Net before firing

Assume the type of all variables to be integer. There are two valid interpretatigns:
(r—4,y —35)and (z - 8, Y = 7) but only the first one is accepted by ¢ for firing,
as the transition’s pr 1

e tre edicate requires r < Y- As result of the firing the following
marking is obtained:

X<y

Z = Xty

Fig. 6.2: Pr/T-Net after firing

<x,cnt>

{1}

Toy

P,

x := f(x,cnt)

X,cnt> P01
Tstart Potdone
<x>
Teoll Tok
X =278 X=y X <>y —
y =2-e <y> <y> _
cnt> X HV T
z> kent> (1}
- P 02
P02done
P®3 Too
IN0 o
lastcnt
Tinit Tcntup
ent =i, i=0
<cht>

x,cnt>
3
R x N‘O) {1}

Otstart

Fig. 6.3: The Collision Problem as Pr/T-Net

127

Pnexﬁt

128

Only basic concepts have been described here. Various mo('l1ﬁcat1011§/e>\it6951t(>ns
are possible. For example in [KU92] set operations have been included in t 1e] inter
pretation/firing mechanism or in [BOP89] linear factors and sums of‘ variab es‘;fte
included in the labelling of arcs. Such extensions make modelling more Conzfenl ent.
This section is closed by a more realistic application example: Assume a sys fm'tin
to be modelled, where two objects are flylng in a three-dimensional space, s gl'ectg
from two points that are closely neighboured but not identical. The tW'(Z'O Jas N
decide independently where to go by iteratively calculating the next II‘OSl'tlontiOHS
function of the present position and an additional integer argument. The 1‘6{_21 lon?
however are kept synchronized between the two objects. The number of itera lothat
counted. If the two objects happen to collide, the system is reset. This means :
the iteration count is handed over to be used as the additional integer algllmenn
ent in the next try, and then is reset to zero. Starting close to an externally give
position the two objects try again.

Explanation:

The calculation of the next position of object O1 (02) is carried out by tl‘anqutl(n:
T02(Toz). Both of these transitions can fire only if their arguments are 1)162628
{Po1, Ppy) and the next iteration may start (Poy e, Poosiart). Transition Ty fir
after Top and Tp, have finished their calculations (reported via Po; gone and Pozd%ge)
and the two new positions are not equal. By its firing, 7T, not only 1‘e-e.nfmbleff 01
and Toz (via Poy,. and Poastart) but also causes (via P,ei) the transition entup
to count up the iteration cowter. (Notice that T,; is reading Pp; and Pp, in vd
non-destructive manner as it returns the unchanged values). As soon as the two
positions become equal (asynchronous event!), Ty is no longer ena]?k?d. but T€D1z
will fire immediatelv. It removes the tokens from Py and Pg, and initiates a‘1e£
initialization via P.. Re-initialization is performed by T, by reporting the curren

1
. ¢ . . ot er to
value of the iteration counter ent t0 Plasicns and resetting the iteration count

;) . : L en
0. Aside from possibly different values of Z and ent the initial marking has bee
restored now, and a new try is possible.

6.3. Coloured Pr/T-Nets

Colouring tokens does not ncrease the modelling power of Pr/T-nets as this C(?lli
ceptiis implicitly included in the model. So it is for convenience only, that colourec
tokens are introduced here, The notation of coloured tokens will make it casier to
mtroduce recursion later,

Ina coloured Pr/T-Net there exists a (finite or infinite) number of classes (colours):
Each instantiated token belongs to exactly one class. (For convenience one Imay
introduce a joker-like superclass each instantiated token belongs to, to which by lil
troducing more sophisticated class hierarchies even more elaborate colouring mech-

anisms may be introduced. In this paper the simple case of single class membershij
will be assumec)

A transition ¢ is now activatable only if there exists a colour such that f would b?
activatable if only tokens of this colour existed. Note that now a transition ! may
be activatable concurrently and independently for different colours. So it make?
sense to fire a transition indepcndently for different colours. By this the concept o
a “coloured firing” is obtained where a transition ¢ which is activated with respect
to a specific colour ¢ of tokens, fires exactly if only tokens of this colour gx1sted.
It may, however, change the colour of the tokens (fxu'iﬂg the token game, i.e. the
colour of the input tokens may be mapped on a different one of the output tokens.

129

Within the framework of Pr/T-Nets colouring is introduced simply by replacing
each object-type by a pair (type, colour). Then the basic scarch for a valid inter-
pretation of Pr/T-Nets results in the colour-oriented activation rule, initiating a
coloured firing. The colour-mapping can easily be included in the mapping part of
the transition.

Example 2:

For the little situation of Fig. 6.4 it may be assumed, that there are the colours
red, green, blue to be considered. So in P;, P; we now have tokens of type
(N x colour) with colour = {red, green, blue} while in P, and Py we have tokens
of type ((N x N) x colour). The edge annotations would have to be augmented by
a colour-component of the variables as well, but as we know we are in the context
of coloured nets, this can be ommitted. The colour-mapping, however, has to be
included into the transition’s mapping part. It may be assumed that the function
cf: colour — colour is defined by red — green, green — blue, blue — red.

t P3
<xX,2Z>
X<y
P
2 Z = X+y 4
colour:= <z.y>
{@.8),blu cf(colour)

@.7).red

Fig. 6.4: Coloured Pr/T-Net before firing

For both colours, red and blue, valid interpretations exist;
for red: (x — 4,y = 8) and (x = 8,y = 1), .
only the first one being in accordance with the predicate
for blue: g\ 5 4,y — 8), being in accordance with the predicate.
So two independent coloured firings may occur,
resulting finally in the following situation:

P, t 3

X<y | m

Z = X+y
colour:= | <z.y>
cf(colour) 12,8),red

Fig. 6.5: Coloured Pr/T-Net after firing

130

Colouring may also be interpreted as a specific folding technique where multiply
used transitions calculate different streams of data independently.

6.4. Hierarchy

Besides decomposition (which is related to concurrency) hierarchy and recursion are
the basic techniques to conquer complexity. Decomposition and concurrency are a
basic principle of Pr/T-Nets. But hierarchy and recursion have still been missing
up to now. They shall be introduced in this section and the following one.

The way we are introducing hierarchy into Pr/T-Nets is heavily influenced by the
approach of Cherkasova/Kotov [CK81] for hierarchical ordinary Petri Nets. (see 5.7)
These concepts shall now be described in more detail. To describe the structural
aspects, the concepts of [Ki92] are used.

The underlying structural concept of Pr/T-Nets is the Petri Net graph PG =
(P, T,F,B). To avoid complicated graph grammar approaches, a simple pOl‘t/pOYt,‘
map technique similiar to VHDL [VHS7] is used here. Each transition’s or place’s
input/output edge may serve as a port, where each port may be of one of .three
types {in, out, inout}. The set of all ports of a net forms its interface. Graphically
a place-port is drawn as a solid dot, a transition-port as a solid rectangle and the
port-type is denoted by an arc between the port-symbol and the node being a port.
As in Pr/T-nets the individual edges of a transition ¢ have individual meanings,
they are identified by t.a, where a is the edge’s attribute.

Example 3:

E>

P "
<x> <w>
ty <y> P2
. <z>
P

Fig. 6.6: Petri Net Graph and Petri Net graph with interface

Hl()rarc.hy is now introduced by allowing a transition of a (hierarchical) Petri Net
graph to instantiate a (hierarchical) Petri Net graph with interface. By this process,
a copy of the graph to be instantiated is made and located within the instantiating
transition. After this copying process the ports have to be connected. This is done

by a port-map statement that connects ports with local nodes (places or transitions)

or with ports of othe.r instantiated nets. Of course only such port-map statements
are valid that result in a valid Petri Net graph, i.e. only places may be connecte
to transitions and vice versa.

131

Example 4:

'It\}?sume the nets given by Fig. 6.7 and I'ig. 6.8 (i.e. places Py, and Py are marked
with one token each. In rtlllS example we assume tokens of no individual meaning,
Le. normal Petri Nets. Thercfore the transition edges are not attributed in this
example).

P1 u P2
O
P3 R

w PS5

P4
—~O—{ -

Fig. 6.7: Petri Net graph without isolated transitions

P v P2 P1 a P2
1 —=—=>O 1 L O
v v
P3 c pa
2 1

P1 Td P2
w: @__{_ ()

Fig. 6.8: Definition of subnets

. Iftf&.rlSltion W instantiates net {7 transition w instantiates net 1. transition w t e
ngta.ntlat(‘s net V. and there is the port-map (v : ¢ow 2 d) then the hierarchical
(}LtTr] i\l(‘t as shown in Fig. 6.9 is obtained.
Varigbl(e)»s“"ow d C.OI](‘(‘[)L' has been [()H()\\"v‘(l up. t
im})e(lclédll) programming languages. If "global : _ | ‘
this rﬁacr ntl'Illépl‘o—ﬁx'allsltlo!ls can communicate with the outside onlh\:\'la po_x‘t‘s of
are intro(? la{hlst'm“. For this purpose 'namv(.l ‘fmd t:\'p(,‘(.l‘p.or_ts at ma_cm-t{'a_nsmgns
. tra,nsitjouce(= uch a port may be of transition-kind if it is to I)f". ule.mlfmd with
n-port of the interface of the erbedded net or of place-kind in the other
case. In all cases it may be in, out. or mout.
Graphlcally a port of a macro transition is drawn as a

kind) or solid circle (place kind) on the border of the m

hat is comparable to allowing global
variables™ are not to be allowed. nets

solid rectangle (transition-
acro-transition’s symbol.

132

o0 e
e

Fig. 6.9: Regular Petri Net graph

part

N
.II X s I[_N],

Fig. G.10: Macro-transition with formal ports

133

Example 5:

~ In Fig. 6.10 the macro-transition part has four ports, all of kind transition port,
i.e. internally they have to be identified with transitions-ports while externally they
have to be connected to places.

In this approach port-mapping is a two-step procedure. Internally the ports of
the interface of the internal net have to be mapped on to the ports of the macro-
transition and externally the ports of the macro-transition have to be connected
following the usual rules of Petri Nets. Within this paper in the sequel only hierar-
chical nets using formal macro-transition ports will be used.

Ports ¢ and zs are input-ports, while § and L are output ports. X is of type N and
the other ports of type [IN] (list of naturals).

A transition ¢ is called internal to transition ¢ if ¢ is a node of a net instantiated
by t or by an internal transition of ¢. Transition t’ then is called an encloser of ¢

a?d a minimal enclosure if there is no internal transition t” of ¢’ that is an enclosure
of t. In example 4 transition u : v 1s a minimal enclosure of transition a while

transition a is an enclosure of transition @ but not a minimal one. Two transitions
t,t" are called mates if they have the same minimal enclosure (e.g. u:vand cinthe
above example). A transition is called upper level transition if 1t has no enclosures.
A place is called local if it is input or output of mates only (e.g. P2 in example d), it
is called shared otherwise (e.g. Psin example 4}. It should be mentioned that these
definitions hold independently of whether there are formal macro-transition ports,

or not.
Concerning firing rules the behaviour of Structured Petri Nets as described in section

5.7 1s inherited.

6.5. Recursion

111 our (informal) definition of hierarchical nets it has not been excluded that an
internal transition ¢ of a net n instantiates this net n. If done so. a recursive net
structure is obtained. Such a structure, of course, is only legal if it is syntactically
correct. i.e. the general rules of Petri Net graphs Lave to be respected and the edge-
annotations have to be type-compatible with the places the edges are connected to.
Gl‘al‘ﬁhilca]ly recursive instantiations are denoted by a slightly modified transition
svmbol:

transition_name

Fig. 6.11: Graphical representation of recursive macro-transition

javiour of recursive nets can he defined

The question now is whether the dynamic bel Ive be
just by combining the principals of

in a natural way. But this can be done easily
coloured nets and hierarchical ones.

Whenever there is a recursive net definition we implicitly assume the tol_(ens and
the firing rules to be coloured. For convenience we will speak of ye.curswn—path
instead of colour in the sequel. The recursively defined macro-transition and each

of its ocurrencies in the recursive definition have to have a unique identification.

134

unique recursion path, identifiying for each token to which recursive activation it
belongs. Initially the recursion-path is set to the identification of the entire macro-
transition. When a subnet has to be initiated recursively, its input tokens are copied
but with a recursion-path attached, which is the caller’s firing path with the iden-
tification of the called occurence in the definition concatenated. If a recursively
activated macro-transition is terminated, it marks its output-places (as usual) but
with a recursion-path attached which is the actual internal recursion path with the
last identification symbol truncated. Obviously only the usual techniques to handle
recursion hve been expressed within the framework of hierarchical coloured nets.

A recursive definition, however, would be useless when not ancered. Therefore a
macro-transition that is refined in a recursive way {obviously by definition recursion
can occur only for macro-transitions) has to have two exclusive paths connected to
the same input/output places and the predicates of the two paths have to be mutL}-
ally invers. One path must not be refined recursively as it serves as the recursion’s
ancer. A simple example may serve (o explain the principle:

Example 6:

The recursive Pr/T-Net of Fig. 6.12 performs Quicksort:

The concatenation of these identifications in the case of recursive calls serves as a

gs

d z
=[] X> <X> _pan

) N
":m xh:ezad(in)) — E‘S_;' {yly<X)
x'sa":('n) di.Oisz_.'xsn {yly>X}

% Ped
s
v

2 kS| 1<l> concat
had 728
L1> Z:= <=
& W O
R SO
qs
lk <S1>
out (2]
<Ssort> <Lsort>
append
out =
Ssort ! Lsort
@3 g ou

Fig. 6.12: Recursive definition of quicksort

135

Explanation:

The macro-transition ¢s takes a list of integers as input and produces a (sorted)
list of (these) integers. The embedded transition ancer serves as ancer of the recur-
sive definition: if the input-list is empty an empty output list is produced.

In all other cases first transition hd extracts the first element of the input list
(z) and hands over the remaining list (2s) together with & to transition part. This
transition partitions s to a sublist (S) of elements that are smaller than z and
another one (L) of elements that are larger than z. Both sublists are now sorted by
recursively activating gs. L1 is the sorted list L, S1 the sorted list S. Transition
concat forms the list z with = concatenated left to L1 while transition appnd con-
catenates the sorted sublists (now including).

The entire control-flow is synchronized by places local to gs (note that by def-
inition places connected to ports are shared ones) in such a way, that there is a
sequence: hd then part then two activations of ¢s concurrently then (after termina-
tion of concat which is activated after the termination of the gs instance for sublist
L) append.

The dynamic behaviour may be explained with the aid of a small example. For
this discussion the places used for synchronisation purposes will be denoted by their
identification used in the drawing (S1 to S7) while the value carrying places will
be denoted by the variables attached to the input-arcs of transitions. Let’s assume,
that the list [4, 3, 5] has to be sorted. So in the (not drawn) input place connected
to port in there is a token [4,3,5]o (we write here the recursion-path just as index of
the tokens involved). As [4,3,5]0 is not the empty list, transition hd fires, removing
[4,3,5], and producing [4]o in places and z1,[3,5]o in place zs and a tokeng in
S1. Now transition part is firable. By this, places r, s and 51 become empty.
Place S is marked with [3]o, place L with [5]o and Sy, 53 with a tokeng each. Now
transitions ¢s; and ¢s; are firable. To make this discussion more readable, only ¢s
will be tracked. The token [5]o now is (virtually) copied to the input place of ¢s l?ut
with recursion-path 01, so there is now a token [5]o1. As this is not the empty].151.
hd fires, removing {5]o1, and producing [5]or in places , z1 and [Jo; (the empty list)
in place zs while S1 is marked with a tokeng,. Transition part demarks r,rs and
51, and marks L, S with [Jo; and $2,83 with a fokeng;. Again let’s track Pl 01.115'.
Now by the recursive call we have a token [Jonn in the input place. This list I)m'ng
empty causes transition ancer to fire. It produces a token, which leaves the recursive
macro-transition, i.e. a token [Jo; is produced in L1 and, as now ¢ has fired for 01,
54 is marked with a tokeng;. DBut now transition concat can fire for Ol-tokons.— It
removes (5]g;, [Jor and the fokeny from its input places and produces a token [3li
in place Lsorted and a tokeng; in Sg. As (by an analog procedure) 152 \\'lllvprodmro a
tokeng; in Sy and [Ju; in Ssorfed transition appnd is now able to fire ahitf:r S- ‘
fllarkcd with a tokeng, (places S5 and S now are unmarked). B\ firing appnd, its
input places are unmarked, and a token (5o is produced. As this token leaves 11.1(?
definition of the recursive macro-transition it becomes a token [510 which is placed in
the output place of the respective occurrence of the transition, i.e. 1n L1. As there
are now no more 01-tokens, g¢s fires for 0, producing a tokeng in S;. Now transition
concat can fire again. It now removes the token [4]o, [5]o and tokenp fl‘OlTl its mput
places and produces [4,5]o into Lsorted and a tokeng into SG. As ¢s2 .\\'111 prod.uce
a token [3]o in Ssorted and a tokeng in Ss finally (after firing of the mterm('?dlate
synchronization transition) appnd can fire. It demarks Ssorted, Lsorted and S; and

has been

136

produces a token (3,4, 5]g, which by leaving the macro—tran.siti.on bec01.nes an .(gn-
coloured) token [3,4,5]. As there is now no more activity within ¢s, this transition

fires, turning it to the passive state. It may now be reactivated externally with a
new list to be sorted.

In the definition of the macro-transition gs (Fig. 6.12) there are two more macro-

transitions included that need to be defined: part and appnd. These definitions are
ommitted here.

6.6. Modelling with HR Pr/T-Nets

The above discussion has shown that hierarchical recursive Pr/T-Nets are a Ver}{
powerful means to model complex systems in a convenient way. By their nattuhr;att
graphical representation this method supports the generation of spec1ﬁcat10ns: !
arc easy to understand. Readability is provided mainly by the very $11111)1€ Pllntf:

ple of Pr/T-Nets which inherited simplicity and, what is especially important .(;r
readability, locality from original Petri Nets but add the expressive power to Sl?e?l V
both, control and data-operations. With the features added in this paper (hlelax
chy and recursion) all basic techniques to conquer complexity are present now. :
complex system to be specified can now be decomposed into its basic COITL[)OH?H 8
where each component is modelled as a macro-transition. By 1dent11ymg t.hG t? pes
of objects that such a macro-transition consumes and produces, the basic lnfounl;':l—
tion streams are identified. Finally the concurrent overall control structure can be
expressed using the usual Petri Not principles.

g : " i v be
Fhe hierarchy concept now allows macro-transitions to be refined. _Thl-? malicen

carried out in a stepwise manner until an mtended level of abstl:actloIL 1as heen

reached. Where adequate the refinement can be given by recursion. The re ne

o X . o e softe
ment process may be divided between different implementation techniques: so
ware where a scheduler takes over the part

of the general control structure [RU93]7
hardware where the control structure can be mapped directly or any nlixtlll‘e_(hard_
ware/software codesign [GDY2a, GDI92b)). Tlhe modelling power of hierarchical re-
cursive Pr/T-nets however is not limited to systems consisting of digital electronics
together with software: the behaviour of arbitrary discrete systems can be modelled.

6.7. HR Pr/T-Nets and Flat Concurrent Prolog (FCP)

6.7.1. Introduction to FCP .

norder to provide some information to understand the following discussion, some
basic principles of Flat Concurrent Prolog (FCP) shall be discussed here. This scc-
tion is more or less a short excerpt from [GLA92].

FCP s a general purpose logic brogramming language designed for C()Il(,’ulv‘l‘(‘,llt)‘
programming and parallel execution. [t was developed at the Weizmann Institute
of Science in 1985 [MiS5]. The computational model of FCP is hased on the process
interpretation of logic programs [Sh86] in which the active parts of a computation
are conceived as concurrent processes. These concurrent processes communicate via
shared logical variables, An individyal process is represented by a goal atom of the
form Py, Age il Ay). By this a process of type p with arity & and the argument
list Ay, A, s identified. The Ay, .., Ap are arbitrary logical terms.

A process can perform one single operation, called process reduction. It is deter-

mined by the current valyes of the process’ arguments when and how the process
reduction can be executed.

137

Given a logic program P, the behaviour of a process p(Ay, ..., A) is defined by the
ﬁn}ite' s.ubset CPIN C of program clauses for predicate P and arity k. This subset
CPIX is also called a process procedure.

Each clause C,-P/K € CP/E represents a rewrite rule for goal atoms of type P/K.

It has the structure of a guarded Horn clause as defined below, where A, the G,
and the B; respectively represent atoms:

A Gl,G27...’Gm_ I B],Bg,...,Bn (m,nZO)
Head Guard Body

Guard predicates state conditions referring to process argument values. In order to
perform a reduction on a process A’ using some program clause A « Gy, ..., Gy |
By, ..., B,, the goal atom A’ has to unify with the clause’s head atom A (as in ordi-
nary Prolog) and in addition all guard predicates Gy, ..., G, must be fulfilled under
the selected unification.

The body part By, ..., B, here is interpreted as a collection of atoms defining a
multiset of concurrently active subprocesses. As a result of a successful reduction
step, these subprocesses spawn a local subnetwork that replaces the reduced pro-
cess. The global network state is updated due to the unification carried out. A
process reduction operation is possible if the related process procedure contains at
least one enabling clause (unifyable and fulfillable guards). Following the principle
of OR-parallelism, all clauses of such a procedure are tried in parallel.

In the case of multiple applicable clauses a sclection is made indeterministically
under control of the commit operator’ |' (guarded command indeterminacy) [Di75].
A clause is definitely chosen for reduction after its commit operator has been pro-
cessed. All other concurrently regarded clauses for this reduction are discarded at
this time. The commit operation 1s irreversible, i.e. there is no backtracking.

A clguse may respawn a process of some type as the one it reduces. This special
case will play an important role in the sequel. Another special case are unit clauses.
They have the form A «— Gi,..., G | true. The term true represents the empty
process network. A unit clause results in process termination.
lexity have been allowed. This results
Therefore, so-called flat languages
f primitive and built-in op-

~ Up to now guard predicates of arbitrary comp
in languages that can’t be executed efficiently.
restrict the use of guard predicates to a predefined set o
erations. They can be evaluated immediately without performing subcomputations
(processes) for guard predicates. In the exceution of a flat language, the goal there-
fore corresponds to a flat collection of processes. FCP is just one (very powerful)
example of flat languages. An overview on these languages is given in [Sh39].

current logic programuiing is to delay
ntiation state of variables in the argu-
f a process have not been sufficiently

I'he basic synchronization concept of con
reduction operations depending on the insta
ment of processes. If argument variables o
instantiated to be able to determine a reducing clause or to recognize that none of
the potential clauses is applicable, this process is suspended. When process variables
that caused a process suspension are instantiated. a repeated reduction is attempted.

FCP applies a reduction delaying mechanism based on the concept of read-only
variables. In contrast to ordinary (writable) variables, there is no write access to
read-only variables, except by instantiating their writable counterparts. A read-only
variable belonging to a writable variable’ ¥ is denoted by 'X?'. There may be more
than one occurence of a "X ? for one variable "X’. The writable variable "X’ and all

138

its read-only counterparts ‘X7’ refer to the same physical writable instance. .A]nly
attempt to reduce a process using a clause that would affect a read-only variable
within the process argument results in a process suspension.

In combination the variables X and X? form a communicalion channel going
from X to X?. However, in spite of the fact that, due to the single-assignment
nature of logical variables, any simple variable can be instantiated at most once, a
communication channel as described here allows the transfer of an infinite sequence
of messages. Tor this purpose, the Prolog list structure is used. When the writing
process is instantiating the writable variable, it does this by instantiating the variable
with the actual message (list head) and an uninstantiated list tail.

6.7.2. Basic Approach

Here only the problem of executing HR Pr/T-Nets using FCP (i.e. translation to

I'CP) shall be investigated. When examining the two models, similarities but also
differences can be observed

* A transition in Pr/T-Nets has to perform two steps to decide whether it is
firable:

— First it has to check whether there are sufficient tokens of the right kind
in its input places so that a valid interpretation is obtained.

~ Secondly the transition’s predicate has to be checked against such an in-
terpretation.

At each point of time there may be no, exactly one or more valid interpre-
tations. If there are valid interpretations the predicate may be true for no,

exactly one, or more valid interpretations. In the latter case the transition is
firable multiple times.

A FCP clause head has to be unified with logic variables. There may be no,
exactly one, or more possible unifications. If unification is successful the (op-
tional) guard is checked. For a given unification this guard predicate may be
true or not. If the guard is true, the clause’s body is executed irreversibly. So
the two coucepts are somewhat similar. The main difference occurs if there is
more than one unification with the guard predicate being true. Here FCP se-
lects indeterministicly just one alternative while in IR Pr/T-Nets a transition
will fire for all valid interpretations. In order to solve simpler cases first, in the
first instance it is assuned, that there is never more than one token in a place.

In this case a place can be modelled by a logic variable and the corresponding
mput arc by a corresponding read-only variable.

Pr/T-Nets have a static structure, i.e. the entire net exists statically and only
the tokvq flow introduces z dyvnamic concept. In contrast to this, FCP has
a dynamic structure, Processes are created only ou request, i.e. if they are
contained in the body of 4 clause that has successfully been unified and the

guar(! of which is true. In addition a FCP process disappears as soon as 1ts
p n A} T
task is fin.]shed. An everlastmg process, liowever can be modelled in FCP by
the following schema:

transition — name([In1? | Inls?), .., [Ink? | Inks?],

[Outl | Outls], ... [Outn | Outns]) : —
transform(In1?, In22, ... nk?, Outl, Out?, ..., Outn)

139

transition — name([In1s?), ..., [Inks?],

[Outls], ..., [Outns]).

Notice that now lists (i.e. sequences) of variables are processed. This models
one-to-one the sequence of tokens flowing through a net. The appearance of a
token in a place now is modelled by a variable being initiated which enables
the process transition-name. It performs the calculation of new tokens and
after this spawns itself. By the structure of the arguments the clause cannot
be unified with empty input lists, i.e. it is activated only if each of the read-
only-lists carry an initiated head element. Arguments of the process transform
whose values don’t influence the values of the token produced can be omitted of
course. Such tokens are just “consumed” by the respawning clause. An entire
Pr/T-Net (up to now without hierarchy and recursion) is now modelled by the
schema:

net:-

transy ([Inl1? | Inlls?], ..., [Inlky 2 | Inlkis?],

[Outll| Outlls], ..., [Outing | Outlng s [),

lrans,, ‘([[nml ? | Inmi1s?], ... [Inmky, ? | Inmk,s? |,
[Outml | Outmls], ..., [Outmny, | Qutmng,s |).

where the different trans; clauses (processes) are defined as above. Places shared
by different transitions are modelled by variable-identifiers shared by processes.
Some of the lists have to be provided with instantiated heads. This models the
initial marking and allows some processes to be activated.

Pr/T-Nets like any kind of Petri Nets consume tokens when firing. This is mod-
elled in the above schema by discarding the head-elements of each argmnent.—lisf
when a transition spawns itself. However, by this method only the *consuming
process gets notice of the “token” being consumed. So, this method works only
with places without forward conflict. As, of course, nets with conflicts .havc to
be modelled as well, a special solution has to be found. FO[‘tll[}atCIy this prob-
lem has a relatively simple solution as long as a conflict is decided determinis-
ticly based on attached predicates or global markings, i.c. whenever there is a
conflict, at most one of the respective transitions really can fire. Assume tran-
sitions #;, ..., t,, being in conflict w.r.t. place Py. For cach of these tr,xiansxt,xo'ns {;
there is an additional variable {Rcmovc_lol.'en,- | Rmnovc;{r_)/«cns,v]j 'l he variable
Remove_token; is instantiated during the firing process of l‘r‘u‘nszlu).n,'. On t,l.w
other hand all [Remove_token; | Remove_tokens;] with j # i are included in
the parameter list of each transition; as rfo-variables. The “normal” clause for
transition; is augmented by guard predicates unknown (Remove_token;) for all
J # i and for each such j a clause is added of the form:

transition;([In17 | Inls?], ..., [Ink? | Inks?],
[Outl | Oulls),...,[Outn | Outns],
[Remove_token,? | Remove_tokens;?, ...
[Remove_token,? | Remove_token,, s7).
[RRemove_token; | Remove_token;s]) 1 — .
unknou’n(RcvnoveJokenl'.7), unknown(Remove_l‘okcnm 2y
transform(..., remove_token),
transition;(In1s?, ..., Inks?, Outls, ..., Outps,

140
Remove_tokemy?, ..., Remove_tokens,, ?, Remove_tokens;).

transition;(...) : —known(Remove_token;) | transition;(...).

transition(...):—known(Remove_tokcnm) | transition;(...)

Pr/T-Nets allow situations where transitions use a place for both, 1f}1)]ult Sar;ﬂ
output. The semantics of FCP however require the sct of r/(i Vzua)teoken
be disjoint of that of writeable variables. If a transition Juft tlaa slace ren
unchanged in such an input/output place (“test—only places”) tlle pﬁ?st o
simply be ommitted in the list of output places and in addition tlf? wning
element of the respective r/o variable Las not to l_)e removed when Iveflpa'hen 8
the procedure during “normal” firing. However, It has to be remove r“lained
“rcmove—token”—message is received from a conflicting transition as exp nec
above. A transition handled in this way must not be considered as an ac

. | en it 1s
competitor in a conflict situation. As it does not really consume a tok
also not allowed to send a “remove-token”-command.

If the transition, however, changes a token in an input/outpup-plaCﬁ 32?0522‘
technique has to be used. In this case, the transition does not ﬁr_eA(hmT t)it ho
its output place but into an auxiliary one. An additional transition, eS i
called “token-mover”, then fires the token into the final destination. So

. . v‘nﬂ
is assumed, that transition f uscs place p as input/output place, the following
skeleton is obtained:

t. [P7] Ps?), .. [Pauz | Pauas), ...)

token_mover([Pauz? | Pauas?), [P, Ps)),

where t.and token_mover are defined in the usual way.

6.7.3. Handling of Hierarchy

FCP is hierarchical by nature. This ma
casier. The main problem to be addressed lelled
firing not earlier than its embedded net becomes dead. It has also to be moc (TI o
that a macro transition always starts from a fixed initial internal marking. }11'
basic idea to handle this correctly, is to introduce a process, that decides \vhqty 1lei-
all processes modelling the embedded net of a macro transition are suspen(led,dlllt(l A
cating that the net is dead. In this case these processes have to be abOl‘te(! an ‘121
firing of the macro transition has to he completed. The skeleton of a FCP moc
for a macro trausition looks like the following:

Assume a macro transition mt with input pl
opn and a predicate guard. This is mode

mt([Ip17 | Ipls?), .. [Ipn? | Ipns?],[Op] | Opls],....[Opm | Opms]): —
guard | t1(..., Abort?)

kes modelling of hierarchical Pl‘/T‘“e.:S
is that a macro transition completes its

aces ipl, ..., ipn, output places opl. ...
Hed by:

k]

k..., Abort?),
trans orm_mtr(Ip1? | Ipls), ..., [Ipms?),

[Op1] Opls),...,[Opm | Opms], Abort?),
termchk(T1?, ... Tk?, Abort).

141

Fach embedded transition ¢; is translated to
ti(..., Abort?) : —
unknown(Abort?) | transform_ti(...),
ti(..., Abort).
ti(..., Abort?) : —
known(Abort?) | true
Respawning mt now becomes part of transform_mtz, to make sure that it takes
place only after it has finally fired:

transform_mtz([Ip1?7 | Ipls], ..., [Ipm? | Ipms?],
(Opl | Opls],...,[Opm | Opms), Abort?) : —
known(Abort?) | transform_mt(Ip1?, ..., Ipm7, Opl,...0pm),
ml(Ipls?, ..., Ipms?, Opl,...0pm).

6.7.4. Handling of Coloured Nets

Up to now it has been assumed that no more than one token is contained in a
place at any time. This assumption makes no sense in coloured nets. As already
discussed, coloured ncts are no real extension of Pr/T-Nets. If colours are present.
this means nothing else other than adding one component “colour” to the datas-
tructure that describes tokens. The existence of multiple tokens can be modelled
by using lists of lists instead of simple lists to model places. The check for coloured
firability and the coloured firing can then be modelled using standard techniques.

As coloured nets have been introduced here only to support the definition of
recursive nets and as this special case can be handled in a more elegant manner.
coloured nets are not discussed further.

6.7.5. Handling of Recursion

FCP is recursive by nature. So the mechanisms introduced to define recursive
Pr/T-Nets are implicitly part of the FCP language. Recursive Pr/T-Nets therefore
translate directly to FCP. However, some details have to be considered. First of all.
a recursive macto transition plays two roles: that of the macro transition itself.and
that of an embedded transition. This causes problems with the abortion mechanism.
Fortunately a recursive transition has to be aborted exactly after its ancer-definition
has been executed. Modelling the ancer-definition as alternative clanse for the re-
cursive macro-transition without respawning solves the problem in the case of a
recursive call. However, the macro-transition might be called from the outside with
the same parameter that causes the recursion ancer to be scle(,‘te'd. In this case a
respawning has to take place. This problem is solved by introducing an aﬁlrln,lopal
level of (FCP-)hierarchy. A recursive macro transition spawns an “internal” version
of itself and upon termination of this “internal”version (= termination of recursion)
respawns itself. It is the “internal” version of the macro transition that is gallod
recursively. There is no respawning included in the definition of this “internal™ ver-
sion other than that caused by recursive calls. These recursive calls are terminated
by selecting the ancer-clause. “As recursive macro-transitions have to be C()mplctqu
dynamic, each transition in the body of such a recursive macro transition has to dis-
appear immediately after firing. Therefore the respawning part of the definition of
transitions has to be ommitted in this case. By the same reason. the ter_mmgxtlon.de-
tection needed otherwise for macro-transitions, is obsolete in the recursive situation.

142

in Fi ve to illustrate the approach.
icksort- le shown in Fig. 6.12 may serve dlustrat : ach.
ToTrlxix(;l?euéil:?éd:ﬁ(r)?g readable, two additional simple transformations are applie

] 1s erati t can

e the operation of transitions Ad and concat are simple list Op(fatl?:;g]ig]ead can
be made part of the unification procedurg. Therefore the){ alxg ?ask
the clause-heads of ¢s and appnd are rewritten to take over this .

e redun-
e the sequencing caused by markings of places 5, Sq, 55, 134,155, S(S;ég; 2;156 Jocur
dant in this case. They are present only by syntactical rea

o roart re ommit-
transitions have to be activated explicitly. In the FCP-version they are o
ted.

. s leanpt | tained:
With these simple transformations the following FCP-code for quicksort is obtaine
Logs ([[Inh 2| Inks 2] | Ins 2] [Start 2| Starts ¢ /]
[Out | Outs], [Ready | Readys]) -
gst ([Inh ? | Inhs 2], Out, Iready),)
transform_qgsx ([[Inh ? | Inhs 2]| Ins 2]
Start ? | Starts ?], i
! [Out | Outs], [Ready | Readys Jy Iready 2).
< transform_qsx (..) .-
transform_gs (Out, ready),
s (Ins ?, Starts ?, Outs, Readys).
Foqsi ([Inh ? | Inks ?], Out, Iready) -
ast ([Inh ? | Inks ? J, Out, Iready) -
part ((Inh 2, Inhs 2, s ¢ /,
st (E 2 FL [readyt),
gsi (S 2SI, Iready?),
appnd (S12, [Inh 7| By] Out).
bt ([]][] iveady).

Explanation:

Clause 1 defines 75. This process takes upon activation (Start?) a list ‘Ot ltnti?:\{:
([1nh? | Inhsv]). produces a sorted list of integers (Out) a‘nd' I‘GPOWS' ‘Iof with
finished the jol, (Ready). To do the Job, s spawns an internal version of 1ts<‘3t‘ it
the actual parameters only but an additional parameter (]rea(/,l_j) that I'GPOId5ﬁn€d
the internal version has been finished. After this qs performs its firing as le lace
by clause 2. Place Out is marked by the sorted list as obtained from ¢si and p

. . o ned in the
Ready is marked by the (arbitrary) value ready. In addition ¢s is respawned
usual way with the heads of the parameter lists truncated

ask of
Clause 3 defines the (non-ancer version of) ¢si. It can be secn that thef td?l;nod
transition fid is taken over by making visible the list-structure in the ll‘C.ad o ’1,‘1';("(1[s
using its components i the head of part. Similarily the task of traxr}.‘SIt‘IOlll'Cowe also
mcluded in the head of appnd. Clause 4 defines (he ancer-version. This clause
(arbitrary) value iready.
The colouring mechanjsm described in section 5
the FCP runtime system. The FCP version of tl
and appnd is obtained in a similay manner,

; : icitly by
is now carried out un'p!xcnl)m;.t
1€ recursive macro transitions }

143

7. System Level Design Activities

7.1. System Level Simulation

By the heterogeneity of typical system level models, monolithic simulation systems
hardly seem to be adequate. Multisimulator-systems may therefore be the best
solution. Three major problems have to be solved when dedicated simulators have
to be coupled to a multisimulator:

e data exchange between the different simulators,
e synchronization of the individual simulators,

¢ a unified user interface.

While data exchange can be handled fairly easily by defining universal exchange
formats and eventually adding information about transmitter details, the synchro-
nization turns out to be the central problem. The simulators involved have to be
kept at least synchronous enough so that at each point of time a data exchange
oceurs, this point of time is legal for all simulators involved. There are two extrenie
solutions for this problem:

e the (“oversynchronizing”) supervisor approach,
o the (“undersynchronizing”) time warp method.

The supervisor approach being a “pessimistic” one always allows only the b:uHul{itor
that plans to let the event happen in the closest global future perform this action.
The method is safe but doesn’t allow any concurrency. Time warping [J585] op
timistically”assumes that the simulators can run completely independently.” This
assumption is O as long as no data is transmitted to the local past of a simulator.
If so, the receiving simulator has to be rolled back and resumed at an carlier local
point of time. Of course when doing this, all messages sent to o,t,h('?r simulators
i the meantime have to be canceled by sending “antimessages . This may cause
additional rollbacks at the receivers of these antimessages. Recently very powerful
multisimulator frameworks have been reported, SICS [NI91, 0C91] being an espe-
cially promising system. Currently CFLis working at a standard f01“. the coupling of
heterogenous simulators. This standard on a “simulator backplane™ will be sinular
to the SICS-approach which heavily influenced this standard.

Simulation at system level is mainly used to offer a workbench to the system
engineer to pcrforym experiments. Therefore special support to plan. p(‘rfor!n. and
analyse experiments has to be offered. For this purpose Al }C@lll]fglf‘s have been
proposed by a couple of authors [AP86, EOSG, ERSS. LASG, SMS5]. With such
techniques a knowledge based automated experimenter that performs experiments
in a goal-oriented manner can be implemented. A very advanced i}'?‘tem f(‘)r this
purpose has been designed and implemcuted by I.I. Ptamla}lsen [’I Fo1]. %Llcll a
system is a step to closing the gap between simulation and “formal” methods.

7.2. System Level Analysis and Partitioning

Besides experimenting with a modelled system yarious kinds of apaln'svxs mtaly be C?lé—l
ried out. This analysis can be based on simulation results or statically on the mo

itself. Performance analysis is the area where most results have been achieved. By

144

: i ‘hile in other
i ing theory, simpler situations can be solved analytically w hile in othe

Eclgspelsy]sniil?llll:tl;]cglghas tg7be a}pplied. In this case not the rs\ystem’g f}lvnctlonraclgf;;i
simulated but the behaviour at the assumed queues. HI'T [BES()]l 1s la‘nl(t%models
example of such a performance analysis tool appllcal_)lc to system Vevev..t] noces
systems in a very clean client/server way and offers hierarchy to cope lWl]lrctrolilicAs
systems. Testability analysis, well understood at lower levels Wlthlfl t llele Cthat e
domain is rarely supported at system lfavel. Rule based a‘pproacfles 1\cna1 Lo
scribed in [BI91] may be promising. Similar approaches may serve for an a agalysis
fabricability and maintainability. In order to support a clever 1.)<'1r_t1t10r.11r1}g,I nayss
of similarity with predefined objects, but also within a.descrlptlon,llSﬁ ledpcla.sses
partition where, relatively, many parts can be mapped into few prel(e ne Ll s
1s a good candidate for an economic one. Feature oriented retrieva OIPeiatraction
libraries of rather complex objects are therefore needed. At this level of a DS {offor-
it makes nearly no difference whether the “similar” object is similar becaus%lo el
ing the required methods directly as hardware or by software .SoluthHS‘- I lfmiling
such a retrieval system is equally helpful to search in libraries for OO progra PR
and in libraries of hardware components. Designing such retrieval Syste‘mS w
one of the most challenging tasks in system engincering of the near future.

8. System Level Design and Concurrent Engineering

When system level design is carried out all aspects of a product’s lifecycle hay fﬁég
be considered. This coherent consideration of multiple illLerdqpendcncms 18 Cfa o
Concurrent Engineering (CE) [SS91]. Aspects to be considered 1lnclu‘d_e sys.ten} U})i}»
tionality, performance, price, price/performarce ratio, maintainability, iavb“?aling
ity, marketing aspects, substitutability of preproducts, management cost, recyc
costs, legal aspects, etc.

. .] \ . R SRR nalysis
Concurrent Engineering has been defined by the US Institute for Defense Analy
as:

. L . o - urrent

“Concurrent Engineering is a systematic approach to the integrated, Cloncl) ort
design of products and their related processes, including manufacture and S,E(Ilgr i
This approach is intended to cause the developer, from the outset, to consl

elements of the product [ife cycle from conception through disposal, including qual
ity, cost, schedule and user requirements”.

All these aspects have a very limited view of tl] es-
local optima. To do so. influcnces of other aspects have to be considered, not ,nect;
sarily knowing the inside of the decision-making process of the influencing af’{{elcl‘ai
Concurrent engineering has to provide the necessary information to tlle.lllfllﬂl(iel
aspect-processing agents continuously and, based on a global engineering m(l)(\
tries to find a global optimum as a compromise of the local optima l)ro\‘ld(‘(l.‘ a
concurrent engineering model therefore has the same similaritics as a 5)'5'“‘5”_1. ‘[;u—
model of an object to he designed. System level design methods therefore may in be
elce concurrent engineering techniques. Even similar computer support scems o)'t
probable. Two main areas for computer support of CE can be identified: support
of concurrency and support to keep track of the various, independent asP‘fCtSIO_
engineering. The neccessity to support various design teains results in a strong (et
mand on distributed processing and team-work tools. An elaborate CE C”V”‘On?]e{"l
will include all heceessary services to support high speed LANs, MANs and W A 5
including multimedia and \'ideoconferencing. 81} top of these base technologlels
Computer Supported Cooperative Work (CSCW) systems have to be implemented.
Client-server architectures seem the appropriate basic approach to grant these de-

. - d
ie entire problem and try to fin

145

mands. OSF’s Distributed Computing Environment (DCE) is an example of an
architecture supported by industry.

In any case a powerful design framework is needed for system level design with or
without connected concurrent engincering. When embedded in a CE environment
this framework aspect becomes even more evident. Framework architectures have
been standardized by the CAD Framework Initiative (CFI) a worldwide association
of about 50 institutions, most case companies active in the electronics CAD market.
In the CFI framework model, there exist tool slots, where various tools may be
integrated as long as they are in compliance with the CFI standards on interfaces.
This integration procedure has to be considered in three different and orthogonal
views:

e data integration
¢ control integration
¢ user interface integration
This includes additional basic components of a CFI compatible framework:
¢ a methodology management,
¢ a user interface management,
® a common design representation based on data management.

All these components are based on a standardized system environment and sup-
ported by standardized services for intertool communication. Based on such a frame-
work, complex design environments can be built fairly easily [BKRY3].

The core component of such a framework is an object oriented data base manage-
ment systems (OMS) [FF91]. This OMS has to handle objects of different complexity
and efficiently retrieve objects in a feature oriented way. In addition a powerful event
handling and trigger mechanism has to be provided to inform and trigger tools that
are working concurrently at different aspects of designing a specific system. This is

the base service for CE. . . . KU92
Another important service of such a framework is design flow management. [KU92,

292, LJD92] It manages all the versions of obtained design documents, application
of tools in a concurrent or sequential manner, makes decisions about tools being
best suited for a specific design, produces the reports that make the design process
understandable and controllable. The third basic component of sucl} a framework
is a unified user interface management system (UIMS) helping to implement er-
gonomic user interfaces. Design frameworks have been identified to be the central
service to be provided for concurrent engineering. They ave nn'c._s‘tlgaterl scientif-
tcally [RA87, RW9L, NRY2] and commercial products are emerging. ‘Om_’ of\t‘lrx‘c
most advanced solutions for the framework problem is the already mentioned JESSI
Common Framework (JCF) [ST92].

. Currently there is an emerging trend towards so callec
18 an approach to keep existing frameworks or comparab . ' ,
nize the neccessary interaction. Such an approach allows the saving of the enormeous
Investments such companies have spent in Product Information Management Sys-
tems (PIMS), CAD Frameworks, CIM environments etc., and at .the same time the
obtaining of the integration nceded to achieve Concurrent Engineering. The flef
sign of federated systems is made easier by the fact, that at least PIMS and CFI
compatible CAD frameworks have a similar architecture.

| “Federated Systems”. This
le systems alive and to orga-

146

9. Conclusion

More and more system level design turns to the next challenge of e‘nglneletzi:;%. “};\hf:é
a long tradition of departmentalisation (at least within the wcstefln cu o)
not only engineering has been looked at separately from other pro }?SS]OD(ﬁVided s
but also even withing engineering the different disciplines hlave Te}?nSe N
fairly independent subactivities, new structures have to evo Ve.d tetl e
tures have to tackle the entire life cycle of products as a whole and at th
activities have to be organized in as concurrent a way as possible. Lelln
A major problem to be solved in this context is to construct a Clon'lm(l)r(l)l?'lgctz }])u%
base. Such a modelling base has to be applicable not only to tec lnl‘.cla o Jn o
also to organizational ones like (e.g.) design processes. In this contri)Su »1<1) R
tempt has been made to propose extended Pr/T-Nets as base model. . uC‘lf' o
15 intended to be used mostly as an internal conceptual model. The interfac o
human users should be carried out in a multiparadigmatic way, Le. thfa ‘comgome
system has to adapt to the user’s preferences and demands and not vice \jyls]aihe e
of the numerous possible external conceptual models have been discussed i
ginning of this contribution. . . be art
The modelling aspects also constitute a basis for concurrent engllleil‘l?g,y}s1§1‘ga_
of engineering which seems to be the most promising one to overcome today
nizational deficiencies.

References

o 5 d
[AH90 | J.K. Annot, P.AM. de Haan: POOL and DOOM: the Object Oriente

Approach. P.C. Treleaven (E.): Parallel Computers, Object-Oriented, Func-
tional, Logic. Wiley, 1990

[AGS88 | L.AL Augustin, B.A. Gennart, Y. Huh: Verification of VHDL Design Using
VAL. Proc. 25th DAC, 1988

[APS86 | 111 Adelsberger, U.W. Pooch et al: Rule Based Object Oriented Simu-
lation Systems. In [LA36)

[BE86] I1. Beilner: Workload Characterization and Performance Modelling Tools.

G Serazzi (Ed.): Workload Characterization of Computer Systems & Com-
puter Networks. North Holland. 1936

[BI91 | M. Bidjan-Trani: A Rule-Based Design-for-Testability Rule Checker. IEEL
Design & Test of Computers, March 199]

. - .. - . - - 1 . “owards an
[BK91] J. Bartolazzi. K. Rirsch, K. Neusinger., K.I). Miiller-Glaser: TO\tﬂf‘l“agil
Integrated Environment for Microsystem Design. F.J. Rammig, R. }Eﬂ-\”’
(Ed.): Electronic Design Automation Frameworks, North Holland, 1991

(BKR93 | M. Brielmann, E. Kupitz, S. Rudolph: Hardware Engim,‘eri.nvg LE
vironment. in: P. Schefstrm, G. van den Brock (Eds.): Tool Integratio
Environments and Frameworks, Wiley, 1993

(BO81 | D. Borrione: Langue de descri

. . . . sition
ption des systemes logiques - Proposi
pour une methode formelle

le definition. These d’Etat, INPG Grenoble, 1951

147

[BOP89] H.J. Burckhardt, P. Ochsenschlger, R. Prinoth: Product Nets - A Tor-
mal Description Technique for Cooperating Systems, GMD Studien Nr. 165,
Gesellschaft f. Mathematik u. Daienverarbeitung mbH, St. Augustin, 1989

[BR81] R.E. Bryant: MOSSIM: A Switch Level Simulator for MOS-LSL Proc.
18th DAC, 1981

[CC88 | CCITT Recommendation 7.100: Specification and Description Language
SDL. AP 1X-35, 1988

[CG84 | K.L. Clark, S. Gregory: PARLOG: Parallel Programming in Logic. Impe-
rial College, London, Rescarch Report DOC 81/, 1984

[CH79] Y. Chu: Introducing CDL. IEEE Computer, Dec. 1979

[CK81] L.A. Cherkasova, V.E. Kotov: Structured Nets. Proc. NIFCS'81. Springer
LNCS 118, 1981

[CMB81 JW.F. Clocksin. C'.S. Mellish: Programming in PROLOG. Springer. 1981

[DE78 | T. DeMarco: Structured Analvsis and Systems Specification. Prentice
Hall, 1978

[DAST] DACAPO 111 Syvstem User Manual. Dosis GmblLL Dortmund

[DD75] J.R. Duley, D.L. Dictmeyer: A Digital System Design Language (DDL).
IEEE ToC, C-24, No. 2, 1975

(EH92] W. Ecker, M. Hofmeister: The Design Cube - A New Model for VHDL
Designflow Representation. Proc. Buro-DACT92, 1992

[EO86 | M.S. Elzas, T.1. Oren, B.P. Zeigler: Modelling and Simulation Methodology
in the Artificial Intellegence Era. North lolland. 1936

[ER88 | H.W. Egdorf. D.D. Robert: Discrete Fvent Simulation Methodology in the
Artificial Intellegence Environment. Proc. Conlerence on Al and Simulation.
Al Papers, 1938

[FFO1 | W. Fox, J. Fricdrich. R. Hopp. 1. Kathdfer, A Meckenstock. D Nolte.
K. Pielsticker, . Reitmever. F. Rupprecht. M. Schrewe: The Arclitecture ol
the Object Management System within Cadlab Framework. I°.). Ramumig. R.
Waxmann (Ed.): Electronic Design Automation Frameworks. North Holland.

(FT87 FL Toster, S. Tavlor: Flat Parlog: A Basis for Comparison. Int. Journal of
Parallel Programming 16.2.1937

[GARY] D.D. Gajski: The Structure of a Silicon Compiler. Proc. of ITEEE 1CCD.
1987

[GD92a] R.K. Gupta. G.DeMicheli: System Synthesis via I’Ia.rd\\‘zu'o—Sofr ware Co-
design. C'SL Technical Report CSL-TR, Stanfort University, 1992

[GD92b] R.K. Gupta, G. DeMicheli: System Level Synthesis Using Re-Programmable
Components. Proc. EDAC92, 1992

148

[GH78 | J. Guttag, J.J. Horning: The Algebraic Specification of Abstract Data
Types. Acta Informatica, 10, 1978

a 1. Karcher, G -enfeld: istributed Imple-
GH91] U. Glasser, G. Hannesen, M. Karcher, G. I_,elnenfdd. A D}stll [
[merltation of Flat Concurrent Prolog on Multi-Processor Environments. Proc.

First International Conference of the Austrian Center for Parallel Computation,
1991

[GK90 | U. Glasser, M. Karcher, G. Lehrenfeld, N. Vieth: Flat Concurrent Prolog

on Transputers. Journal of Microcomputer Applications, Academic Press, Vol.
13, No.1, 1990

[GL81 | H.J. Genrich, K. Lautenbach: System Modelling with High-Level Petr
Nets. Theoretical Computer Science, 13, 1981

[GL92 | U. Glsser: A Distributed Implementation of Tlat Concurrent PI‘OllOg (;11
Multi-Transputer Environments. in: P. Kacsuk, M.J. Wise (Eds.): Impleme
tations of Distributed Prolog, Wiley, 1992

[GU90 | W. Glunz, G. Umbreit: VHDL for High-Level Synthesis of Digital Systems.
Proc. 1st European Conference on VIIDL, 1990

[GV91 | W. Glunz, G. Venzl: Hardware Design Using CASE Tools. Proc. IFIP
VLSI'91, 1991

[HAT7] R. Hartenstein: Fundamentals of Structured Hardware Design. North
Holland, 1977

[HAS8T] D. Harel: Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8, 1987

[HE90 | G. Held (Ed.): Sprachbeschreibung GRAPES. Siemens AG, 1990

[HI85 | P.N. Hilfinger: A High-Level Language and Silicon Compiler fO}' Digital
Signal Processing. Proc. IEEE Custom Integrated Circuits Conf., 1985

(IMT87] N. Ichiyoski, T. Mivazaki, K. Taki: A Distributed Imp]emgntation of g.lat
GHC on the Multi-PSI. in: J.L. Lassez (Ed.): Logic Programming-Proceeding
of the Fourth Int. Conference on Logic Programming, MIT Press, 1937

[JE91 | K. Jensen: Coloured Petyi Nets: A High Level Language for System Design

and Analvsis. in: G. Rozenberg (Ed.): Advances in Petri Nets, Springer Lectur
Notes in Computer Science, No. 485, 1991

[JS85] D.R. Jefferson, H.A. Sowizral: I

. . E. ime
ast concurrent simulation using the ti
warp mechanism. Proc.

SCS Distributed Simulation Conference, 1939

[KA90] T.IL Krodel, K.J. Antreich: An Accurate Model for Ambiguity Delay
Simulation, Proc. EDAC’90, 1990

[Ki92 | D. Kirstein: TransNet - Ein Interpreter zur mengentheoretischen Transf?};‘
111;)?;)1011 hierarchischer Petrinetze. Diplomarbeit, Univ.-GH Paderborn, FB 17,

149

[KK91 | B. Kleinjohann, E. Kupitz: Tight Integration in a Hardware Synthesis
System. In [RW91]

[Ku92 | E. Kupitz: Design Assistance in Concurrent Integrated Environments.
Proc. 3rd IFIP Workshop on Electronic Design Auto-mation Frame-works-

(EDAF’92), North Holland, 1992

[LA86 | P.A. Luker, H.H. Adelsberger: Intelligent Simulation Environments. SCS
Simulation Series, 17:1, 1986

[LID92] J.C. Lopez, M.F. Jacome, S.W. Director: Unifying Tool, Data and Pro-
cess Flow Management. Proc. Euro-DAC, 1992

[LGRO2 | B. Lutter, W. Glunz, F.J. Rammig: Using VHDL for Simulation of SDL
Specifications. Proc. Euro-DAC’92, 1992

[LM92 | C. Le Faou, J. Mermet: Introducing CASCADE, Control Graph in VHDL.
in: J. Mermet (Ed.): VHDL for Simulation, Synthesis and Formal Proofs of
Hardware, Kluwer, 1992

[LR83] K.D. Lewke, F.J. Rammig: Description and Simulation of MOS Dg\fices in
Register Transfer Languages. Proc. IFIP VLSI 83, North Holland, 1983

[MB87] B. Moller-Pedersen, D. Belones: Rational and Tutorial QSDL: An.()bjcjcht—
Oriented Extension of SDL. Computer Networks and ISDN Systems 13, 1987

[ME70]J. Mermet: Définition du Langage CASSANDRE, These Doctorat-ingénieur,
Grenoble, 30 mars 1970

[MI85] C. Mierowskiy, S. Taylor, E. Shapiro, J. Levi, S. Safra: Tl}e' Iﬁ)}‘sign and
Implementation of Flat Concurrent Prolog. Technical Report&& 35-9, Dept.
of CS, The Weizmann Institute of Science, Rehovot, [sracl, 1985

[MR89] W. Miiller, F.J. Rammig: ODICE: Object Oriented Hard\vage Description
in CAD Environment. Proc. IFIP CIIDL 89, North Holland, 1989

[MT9o0] R. Milner, M. Tofte. R. Harper: The Definition of Standard M. MIT
Press, 1990

[NAg9] C. Nagel: Genericrung funktionaler Modelle fur EANCllmann Rechnerar-
chitekturen. Diplomarbeit, Univ.-GH-Paderborn, '3 17, 1939

[Na92 | K. Nakajima: Distributed Implementation of KL1 on the Multi-PSL in:((l?).
Racsuk, M.J. Wise (Eds.): Implementations of Distributed Prolog, Wiley. 1992

[NIo1] M. Niemever: Simulation of lHeterogencous I\Iodgls With a Sin_mlator Cou-.
pling System. Proc. SCS 1991 European Simulation Multiconference, Juni
1991

[NR92] M. Newman, (ed.), Tom Rhyne: Flectronic design automation Fran}e—
works: when will tl(le promise be realized? Proceedings of the 3rd IF'IP “-();
10.2/WG 10.5 Workshop on Electronic Design Automation Frameworks, 1992

150

[OC90] A. Oczko: Hardware Design with VIIDL at a very high level of abstraction.
Proc. 1st European Conference on VHDL, 1990

[OC91] A. Oczko, Ch. Oczko: Putting Different Simulation I\'Iodfls‘TogEt};cir
- The Simulation Configuration Language VHDL/S. Proc. IFIP CHD ,
North Holland, 1991

(PB83 | R. Piloty, M. Barbacci, D. Borrione, D. D.ieth);cr, F. Hill, P. Sl\leélsy‘i
CONLAN Report. Lecture Notes in Computer Science No. 151, Springer, 198:

[PF91 | H. Pfaffhausen: Lin wissenshasierter Ansatz zur autox.natisghleu P'Lll'"ctllél;{li
rung von Experimenten in der Logiksimulation. Dissertation, Universitat-
Paderborn, 1991

[PS90] B. Plorin, M. Schweins: Dialogorienticrte Generierung von (MikrOpI‘OZeS‘
sormodellen. Diplomarbeit, Universitat-GIH-Paderborn, FB 17, 1990

[Ra80a] Five Valued Quasi Real Boolean Functions, Proc. 5th. European Mecting
of Cybernetics and System Research, 1980

[Ra80b | F.J. Rammig: Structured Parallel Programming with a I'Iigllly Cc:ncurrent
Programming Language. in: Atti dj Congresso Annuale AICA’80, 1930

[RA87 | F.J. Rammig (Ed.): Tool Integration and Design Environments. North
Holland, 1987

[RA89 | F.J. Rammig: Systematischer Entwurf digitaler Systeme. B.G. Teubner,
1985

[Ra92 | F.J. Rammig: Synthesis Related Aspects of Simulation. in: P. Michel, U.

Lauther, P. Duzy (Eds.): The Synthesis Approach to Digital System Design,
Kluwer, 1992

[Re85 | V. Reisig: Petri Nets: An Introduction. Springer, 1985

[ROSTT] D.T. Ross: Structured Analysis (SA): A Language for Communicating
Ideas. in: IEEE ToSE SE-3:1 (1977)

[RU93] M. Rupprecht: Implementierung und parallele Verarbeitung von Kommu-
nikationssoftware, Teubner Texte zur Informatik, Band, 1993

[RW91 | F.J. Rammig, R. Waxmann
works. North Holland. 1991

[SDLO2 | CCITT: CCITT Specification and Description Language SDL, Recom-
mendation 7. 100 (SDL’92). Genf 1992

(Eds.): Electronic Design Automation Frame-

[SE90 | M. Seutter (Ed.): Glass: A system description language and its environ-
ment, Introduction and User manuals. University of Nijmegen, NL, 1990
[SHS6 |

o 6E. Shapiro: Concurrent Prolog: A Progress Report, IEEE Computer 19,8,
N

[SH87 | E. Shapiro: Concurrent Prolog: Collected Papers, Vol. 2, MIT Press, 1987

151

[SH89] E. Shapiro: The Family of Concurrent Logic Programming Languages.
ACM Computing Surveys 21,3, 1989

[SMS85 | R.E. Shannon, R. Mayer, H.H. Adelsberger: Expert Systems and Simula-
tion. SIMULATION, Vol. 44, Juni 1985

[SP92] J.M. Spivey: The Z Notation, A Reference Manual, 2nd Edition, Prentice
Hall, 1992

[SS91 | R.A. Sprague, K.J. Singh, R.T. Wood: Concurrent Engineering in Product
Development. IEEE Design & Test of Computers, March 1991

[ST86] B. Stroustrup: The C++ Programming Language, Addison-Wesley, 1986

[ST92] B. Steinmller: The JESSI-COMMON-FRAME-Project - A Project Overview.
in: NR92

[SU85 | N. Suzuki: Concurrent Prolog as an Efficient VLSI Design Language. IEEE
Computer, Vol. 18, No. 2, 1985

[SU90] U. Suffrian: Vergleichende Untersuchungen von State-Charts und struk-
turierten Petri-Netzen. Dipl.Arb., Univ.-GlH-Paderborn, FB 17, 1990

[TB84 | Teledyne Brown Enginecring: [ORL Reference Manual. Huntsville, AL,
1984

[TH91 | D. Thomas: The Verilog Hardware Description Language. Kluwer, 1991

[TLK90] T. Tikkanen, T. Leppnen, J. Kivel: Structured Analysis and VHDL in
Embedded Asic Design and Verification, Proc. EDAC90, 1990

[UE85 | K. Ueda: Guarded Horn Clauses. ICOT Techn. Report TR-103, Tokyo,
1985

[VH87] IEEE Standard VHDL Language Relerence Manual. IEEE IStd 1076. 1987

[VNO1] F. Vahid S. Narayan and D.D. Gajski: SpecCharts: A Language for System
Level Synthesis. Proc. 1FTP CHDL 91, North Holland, 1991

[WMS85 | P.T. Ward, S.J. Mellor: Structured Development for Real-Time Systems,
vol. 1-3, Yourdon Press, N.Y. 1985

[WSs7] D. Weinbaum. E. Shapiro: Hardware Description and Si:nulation Using
Concurrent Prolog. Proc. IFIP CHDL 87, North Holland, 1987

[YC79] E. Yourdan, L. Constantin: Structured Design: I"undilm(‘ntals of a Disci-
pline of Computer Program and Design. Prentice Hall. 1979

(2292 | M. Zanella: Principles of Design Mcthodology Management for Electronic
CAD Frameworks. Proc. EDAC92, 1992

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25
	Seite 26
	Seite 27
	Seite 28
	Seite 29
	Seite 30
	Seite 31
	Seite 32
	Seite 33
	Seite 34
	Seite 35
	Seite 36
	Seite 37
	Seite 38
	Seite 39
	Seite 40
	Seite 41
	Seite 42
	Seite 43

