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Abstract

Two VLSI special-purpose hardware implementations of an associative memory
model are described: a pure digital and a mixed analog/digital architecture. Both
architectures can be easily extended to large scale memories with several million
storage elements. The advantages and disadvantages of both architectures are
pointed out. The memory concept is based on a simple matrix structure with
nxm binary elements, the connections. There is no asynchronous feedback and the
inputs and outputs are binary, too. Though the system concept is very simple, it
has an asymptotic storage capacity of 0.69-mrn bits and the number of patterns
that can be stored with low error probability is much larger than the number of
columns (artificial neurons). The important aspect for applications is that the

input and output patterns have to be sparsely coded.

1. Introduction

Recent advances in associative or neural network models have been largely

supported by simulations on conventional computers. However, if these models

should offer a viable alternative for storing and processing information in large
scale applications (e.g. pattern recognition) these systems will have to be imple-
mented in hardware. Because of their regular and modular structure, neural
networks are well adapted for VLSI system design. Implementing large numbers
of individually primitive processing elements directly in VLSI hardware is intui-
tively appealing. There are two different approaches for supporting these models

on parallel VLSI hardware [1]:

* General-Purpose Neurocomputers : generalized, programmable, neural computers
for emulating a wide range of neural network models, thus providing a frame-
work for executing neural models in much the same way that traditional
computer address the problems of "number crunching”.

* Special-Purpose VLSI-Systems : specialized neural network hardware implemen-
tations that are dedicated to a specific neural network model and therefore
have a potentially higher performance than Neurocomputers.
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This paper is devoted to a special-purpose hardware implementation of a very
simple associative memory loosely based on neural networks. The memory has a
simple matrix structure with binary elements (connections, synapses) and performs
a pattern mapping or completion of binary input/output vectors. To the authors
knowledge, this comparatively simple model of a distributed associative memory
was first discussed by Willshaw et. al. [2] in 1969. However, similar structures
have been more generally discussed, e.g. by Kohonen [3]. The characteristics of
the implemented model are described in section 2,

The important aspect for VLSI implementation of this simple memory model is
the close relationship to conventional memory structures. Hence, it can be densely
integrated and large scale memories with several thousand columns (model
neurons) can be realized with current technologies already. Furthermore, the
regular topology results in a rigorous modularization of the system indespensible
for a successful management of the design and test complexity of VLSI systems.
In this respect a pure digital and a mixed analog/digital VLSI-architecture are
described in section 3 and discussed in section 4.

2. The Associative Memory Concept

The Associative Matrix (AM) is a nxm matrix of binary storage elements Wigs the
connection weights. The input vectors x" as well as the output vectors yP take
a binary form (Fig. 1. The basic operation of an AM is a certain mapping between
the finite sets X and Y. In a more abstract sense these two sets may be regarded
as questions and answers or stimuli and responses, both coded as binary vectors.
The AM should respond with y" to the input x" for every pair (xP',yP) stored

in the AM. The paired associates can be selected freely, independently of each
other (heteroassociative recall [3]).

The mapping is build up in the following way. The input vector _)ﬂgh as well as
the output vector f‘ of every pair which should be stored in the AM (h={, ... ,2)
are applied to the matrix simultaneously. At the beginning all storage elements
in the matrix are zero. Each storage element at the crosspoint of an activated
row and column (x:‘= y?= 1} will be switched on, whereas all the other storage
elements remain unchanged. This clipped Hebb-like rule [4] programs the
connection matrix, and the information is stored in a distributed way:

h _ h-1 h h (4]
Wi TWy VOSAY L wl=0,h=1, . )
The recall of the constructed mapping is done by applying an input vector to the

rows of the matrix. For each column i we add the products of the input
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Fig. 1 Structure of an Associative Matrix.
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The associated binary output vector is obtained by the following threshold operation:

~h - {1' ifisl_2 Th

y . Th « N (threshold) (3)
i 0, otherwise

¥

The AM concept has occurred in the literature in many variations, as already

mentioned. There have been discussions on theoretical as well as practical topics
of AMs, especially what kind of mappings can be approximated by different
models and about the storage capacity of AMs with such a simple matrix structure
[3]. Especially the comparatively simple version of an associative memory described
above has been intensively studied, e.g. by Palm [5]. Summarizing his results, an
AM has its optimal storage capacity I for sparsely coded input/output pattems.

few l=log(m) (k=log(n)) components of the input (output) vectors

This means, only
torage capacity is given

are active (‘') at any time. Asymptotically, the optimal s

by [5]:
Imnk,,z) —> In2 - m ‘n 4)

for n,n —, © and parameters:

K = log(n) , 1 = log(m) , z < In2 57
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Hence, the storage capacity | is proportional to the number of storage elements
n'm and the number of patterns z that can be stored is much larger than the
number of columns (artificial neurons). For example, an optimum of =593.000
bits for n,m=1000, z=34.780 (k=3,1=9) can be stored in the AM under the constraint
that on the average 90% of the information of the output vector of each pair is
stored [5]. Furthermore, it turns out that the AM works for pattern mapping
applications in a more economic way compared to conventional methods (e.g.
hashing) and other neural network models, if the number of patterns is large and
their individual information content small [4]. These results encourage a hardware
implementation in VLSI of this simple associative memory model, especially
because the AM works the more effectively the larger the matrix is (4).

3. VLSI Implementation

Two different special-purpose VLSI-architectures have been designed for an AM
so far: a digital and a digital/analog implementation. The system architecture in
both cases is split up vertically into "slices™; each slice manages an equal number
of columns. The slices are controlled by a conventional microprocessor (system
control, Fig. 2), distributing input data in an appropriate way to the slices and
collecting output data from the slices. In consequence of the sparsely coded
input/output patterns the microprocessor transfers and collects the patterns
optimally by means of the addresses of the activated components. Hence, a

transfer operation of a m-bit pattern takes only log(m) cycles and address lines
in the serial case.
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Fig. 2 Partition of a nxm Associative Matrix into slices.
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3.1 Digital Implementation

In the case of the digital implementation the columns of an AM are controlled
by a special slice chip comprising several very simple processing units (PUs).
Each PU controls one column of the matrix and computes bit-serial the weighted
sum (2) of the input pattern and the respective column. Because the input/output
signals as well as the connection elements are binary, the basic building blocks
of a PU are a counter and a comparator (Fig. 3a). The programming algorithm (1)
for the connection matrix is realized by a simple OR-logic-Block and is incor-
porated on the chip, too. The connection matrix can be build up by conventional
RAMs (Fig. 3b).

Up to now a standard-cell-design comprising 32 PUs (2um CMOS, 31mm?, ~20.000
transistors, 53 pads, 10MHz, Fig. 4) and a full-custom-design comprising 128 PUs
(2um CMOS, 64mm?, ~50.000 transistors) of a slice chip has been finished. A
test chip of the full-custom-design will be fabricated at the University of Dort-
mund in the beginning of 1990. A 8192x8192-AM can be build up by 64 slice chips
comprising 128 PUs and 64 (256Kx4)-dRAMs, for example. This AM stores more
than one million sparsely coded patterns with low error probability, which cor-
responds to the storage capacity of 40 Mbits. Such an implementation performs a
pattern mapping within 100us. The association time is proportional to the number
of 'I' in the input/output patterns (log(m) + log(n)) and hence independent of the

number z of stored pairs.
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Fig. 3 Basic building blocks of a digital implementation of an AM column (a)
and an AM slice (b).
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Fig. 4 Standard-cell-layout of an AM slice chip comprising 32 processing units.

3.2 Digital/analog Implementation

The largest computational load implementing an AM is incurred by the weighted
sum of input signals (2). Using analog circuit techniques [6], this sum can be
effectively computed by summing analog currents or charge packets, for example.
In Figure 5 a simple circuit concept is proposed in CMOS technology. The matrix

operation is calculated by current summing and the threshold operation is done
by an analog voltage comparator.

The accuracy of analog circuits is not as high as for digital circuits, but more
appropriate for highly parallel signal transfer operations immanent in neural
networks. Because there are only log(m) terms contributing to the weighted sum,
the required accuracy of an AM is only about 4 to 5 bits even for large matrices
(m,n>10000) and in the range of analog circuit techniques.
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Fig. 5 Analog circuit implementation of an AM column.

The design of the connection element is based on conventional storage devices
(ROM, RAM, EEPROM). For example, a conventional static memory cell has to be
enlarged by two transistors, an EEPROM cell requires no additional transistors
[7]. Hence, one million programmable connections can be integrated on one chip
with current VLSI-techniques. The 8192x8192-AM requires 64 of such chips each

comprising 128 columns.

Even more limiting to the overall size of an AM slice than the area needed for
the connections are the pin requirements of each slice. Taking advantage of the
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sparsely coded patterns, serial as well as parallel transfer of the patterns is
suitable. The input/output organization in the serial case is similar to that of
the digital implementation (Fig. 6a). For a full parallel transfer of the patterns
the m rows and n columns of the matrix are divided into g blocks of equal size.
Under the assumption that at uppermost one component in each block is active,
only m/g {1 of m/g)-decoders are needed for a full parallel transfer of the input
pattern to the AM (Fig. 6b). We calculate the number of pins as:

p = logo(m/g) - g (5)

For g~log(m), a 8192x128-AM-slice requires less than 130 pins. Because of the
full parallel operation a recall occurs within 1us. Two test chips in 2.5um CMOS
technology, a 64x64 AM according to Fig. 6a (7x8mm , ~40000 transistors) and a
96x16-AM-slice according to Fig. 6b (7xSmm2,'~”a20.000 transistors, Fig. 7) with
programmable connections (Fig. 5) have been fabricated at the University of
Dortmund. With both test chips the above mentioned functionality has been
tested and verified.

4. Discussion

Though the AM system concept is comparatively simple, it has very attractive
features in regard to other associative or neural network VLSI implementations:

* the asymptotic storage capacity is 0.69:n‘m bits
* the number of sparsely coded patterns that can be stored in an AM is
much larger than the number of columns (artificial neurons)

* the number of operations during association is only Of(log(n)'m) instead
of O(m‘n)
* the simpler circuit design requires less silicon area

Because of the modular and regular structure of the proposed architectures, the
implementation of very large AMs (n,m=10000) is feasible. This aspect is very
important for practical applications where the AM has to be extended to a useful
number of storage elements. Work on possible applications of an associative
memory of this type is done at the moment [4,8].

Comparing both VLSI approaches presented above, we can call on efficient soft-
ware tools for a fast, reliable and even complex digital system design. For the
memory matrix we can use standard RAM chips employing the highest density in
devices. In general, the matrix dimensions (n,m) can be extended by using additional
RAM chips. An important disadvantage up to now is that most RAM chips have a
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Fig. 6 Input/output organization of a serial (a) and full parallel (b) analog

implementation of an Associative Memory.
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one or four bit organization whereas a longer word length (216} is more appro-
priate for the digital implementation.

On the contrary, the design of analog circuits demands much more time, good
theoretical knowledge about transistor physics, and a heuristic experience of
layout. Only a few process lines are characterized by analog circuits. The noise
immunity and precision is low compared to digital circuits. The fixed matrix
dimensions are a further disadvantage. In their favor, we point out that analog
circuits can be build much more compactly and are more appropriate for the
highly parallel signal transfer operations immanent in neural networks. For example,
a 1000x1000 AM can be integrated on one chip, whereas the digital concept requires
several slice chips and at least one RAM chip. In conclusion, both approaches
have their advantages and it remains to be seen which type of implementation
will be more effective in certain applications.
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