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Abstract

Two VLSI special-purpose hardware implementations
of an associative memory mode! are described: a pure
digital and a mixed analog/digital architecture. Both
architectures can be easily extended to large scale
memories with several million Storage elements. The
advantages and disadvantages of both architectures are
pointed out. The memory concept is based on a sim-
ple matrix structure with nxm binary elements, the
connections, and on distributed storage of information
like artificial neural networks. There is no asynchro-
nous feedback and the inputs and outputs are binary,
too. Though the system concept is very simple, it has
an asymptotic storage capacity of 0.69-m'n bits and
the number of patterns that can be stored with low
error probability is much larger than the number of
columns (artificial neurons). The important aspect for
applications is that the input and output patterns
have to be sparsely coded.

| Introduction

applications. One of these ap
analysis of the performanc
approach s comparatively advanced is associative
memory. Neural networks are well suited for the
implementation of associative correlation memories

plication areas, where the
e of a neural network

ative for storing a
in large scale applications (e.g.

i . these systems will have to be
implemented in hardware. Because of their regular and

modular structure, neura] networks are welj adapted
for.VI'SI system design. Implementing large numbers
of individually primitive processing elements directly

nd pro-
pattern recognition )
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in VLSI hardware is intuitively appealing. TherEOd:ll’z
two different approaches for supporting these m

on parallel VLSI hardware [5]:

*  General-Purpose Neurocomputers g.eneral:ZVie:e»
programmable neural computers for emulating ‘gi !
range of neural network models, thus _prOVl }Tgthe
framework for executing neural models in muc o
same way that traditional computer address the p
blems of "number crunching”.

* Special-Purpose VLSI-Systems specialized dnfililcr:}
network hardware implementations that are fhere‘
ted to a specific neural network model and Neu-
fore have a potentially higher performance than
rocomputers.

e
This paper is devoted to a special-purpofe har;izz:y
implementation of a very simple associative mhas 4
loosely based on neural networks. The memor(yonnec—
simple matrix structure with binary elements cing of
tions, synapses) and performs a pattern mapl.’ro the
completion of binary input/output vectors. le model
authors knowledge, this comparatively simp € discus-
of a distributed associative memory was first milar
sed by Willshaw et. al [3] in 1969. However, :
Structures have been more generally diSC“S‘_sed‘ .
Kohonen [1]. The characteristics of the implem
model are described in section 2.

g b
nted

. his
The important aspect for VLSI implementatton (l:ifPt to
simple memory model is the close relat.lonsan
conventional memory structures. Hence, lt. ¢ with
densely integrated and large scale m emorlesan
several thousands of columns (model "euronS)Flfrther—
realized with current technologies alrea(‘i)" ——
more, the regular topology results in a "goroa Suc-
dularization of the system indespensible for Jexity
cessful management of the design and teSt, ?OTpand a
of VLSI systems. In this respect a pure dlg'tg scribed
mixed analog/digital VLSI architecture are de
in section 3 and discussed in section 4.



2 The Associative Memory Concept

In general the basic operation of an associative me-
mory is a certain mapping between two finite sets
X and Y. In a more abstract sense these two sets
may be regarded as questions and answers or stimuli
and responses, both coded as vectors of numbers
(Figure 1).
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Figure 1: Basic operations of an Associatiove Memory:
heteroassociation (a) and autoassociation (b).

The associative memory should respond with y" to
the input xP for every pair (xP.y") stored in the
memory. The paired associates can be selected freely,
independently of each other. This operation is often
called pattern mapping or heteroassociative recall
[1,4]. Further it would be convenient if the associative
memory responds with lh not only to the complete
input xM but also to sufficiently large parts of it. In
f)ther words the mapping should be fault-tolerant to
incomplete or noisy versions of the input pattern. A
special case of this functionality is the autoassociative
memory where the stored pairs look like (xh xh).
Given a sufficiently large part of xP the memory
responds with the whole pattern x™ (pattern comple-
ti.on). Besides the discussion of the fuzzy term “suffi-
Ciently large” the input can be any part of the stored
pattern and it even can be a noisy version of xP. This
Operation is called the best match search in terms of
Pattern recognition.

Among  the many different implementations of an
associative memory in the field of neural networks
the following simplest type is very attractive as well
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Figure 2: Structure of an Associative Matrix (AM).

as effective in regard to VLSI implementation. The
Associative Matrix (AM) is a nxm matrix of binary
storage elements w;;, the connection weights. The
input vectors xM as well as the output vectors yP
take a binary form (Figure 2). The mapping is built up
in the following way: The input vector x as well as
the output vector y® of every pair which should be
stored in the AM (h=1, ... ,z) are applied to the matrix
simultaneously. At the beginning all storage elements
in the matrix are zero. Each storage element at the
crosspoint of an activated row and column = y:‘= 1)
will be switched on, whereas all the other storage
elements remain unchanged. This clipped Hebb-like
rule [4] programs the connection matrix, and the
information is stored in a distributed way (Figure
3a.b):

h _ h- h h o _ =
w”—wu'\/(xj/\yl),wu-O.h-—l.....z (1

The recall of the constructed mapping is done by
applying an input vector to the rows of the matrix.
For each column i we add the products of the input

components x. and the corresponding connection
weights w“:
m
- h |
S, = > X)Wy (2)

The associated binary output vector is obtained by the
following threshold operation (Figure 3c):

~ 1, if S;=2 Th
yh=| 1 "% Th ¢ N (threshold) &)
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Figure 3: Programming two pattern pairs into an

Associative Matrix (a,b) and pattern map-
ping of an incomplete input pattern (c).

Obviously, because of the above mentioned program-
ming rule the memory matrix gets more and more
filled (the connections will never be switched off).
Consequently, the output might contain more 'I's than
the desired output pattern. The chance that this kind
of error will occur increases with the number z of
stored pairs. This fact causes the following quantita-

tive questions:
i) How many patterns can be stored in an AM?

ii) How many bits of information
can be stored in an AM?
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Both questions were answered by Palm [6]. Sum-
marizing his results, an AM has its optimal storage
capacity I for sparsely coded input/output patterns.
This means, the number | (k) of active components
€19 in the input (output) patterns should be loga-
rithmically related to the pattern length (n,m).
Asymptotically, the optimal storage capacity for
heteroassociation is given by [6];

Imnklz) —> In2 - m - n (4)

for nnm —> ® and parameters:
m-n

k = log(m) , I = logtm) , z < In2 S

Hence, the storage capacity 1 is proportional to the
number of storage elements n-m. Furthermore, the
number of patterns z that can be stored is much
larger than the number of columns (artificial neurons).
For example. an optimum of 12593000 bits for n,
m=1000, z=34780 (k=2,1=9) can be stored in the AM
under the constraint that on the average 90X of the
information of the output vector of each pair is sto-
red [6]. Figure 4 shows the information I that can be
stored in an AM as a function of the number of
stored patterns (z) and Table 1 shows | as a function

of the number of activated components in the input

(D and output (k) pattern respectively.
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Figure 1: Storage capicity C in bits and the expected
number E of additional ‘I's in the output
pattern as a function of the number of
stored patterns z (m.n = 1000):
ak=1=3; by k = [ = 4,

m=n 1 z C/m'n

1024 10 23.313 0.565

2048 1 96.012 0.59t

1096 12 318.353 0.604

8192 13 1.182.378 0.613

16384 14 4.407.707 0.621
Table 1.

Number of patterns that can be stored with
low error probability and the corresponding

storage Ccapacity C as a function of parame-
ters nml (k = 3),
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For the autoassociative case the optimal storage
capacity is at most half the optimal capacity for
heteroassociation [7). This is because autoassociation
leads to a symmetric weight matrix and hends only
half of the matrix is used for storing information.

Furthermore, it turns out that the AM works for
pattern mapping applications in a more economic way
compared to conventional methods (e.g. hashing) and
other neural network models, if the number of pat-
terns is large and their individual information content
small [7]. These results encourage a hardware imple-
mentation in VLSI of this simple associative memory
model in situations where such a mapping is a more
natural way of storing information than a listing.
Especially, because the AM works the more effectively
the larger the matrix is [7].

3 VLSIImplementation

The Associative Matrix can be handled most flexibly
as a simulation program on a conventional computer
(workstation), of course. It could be shown that even
serial simulation of the AM would have to pe.,-forfn
less operations than a conventional implementation 'm
terms of bitwise mask operations [8]. For the special
case m<<n and a sparse matrix the serial implementa
tion is even for a large number of patterns ast
enough for certain applications [8]. But in general, :
serial implementaton has a poor performance, especi
ally if applied to larger matrices.

It is quite obvious that operation can be sped Ul_’
considerably by parallel processing. The implemen;;[)
tion by means of multiprocessor architectures (Sl-ble
machines) is a promising compromise between flex:1 ¢
modelling - the system is still program controll?
and a complete parallel processing of large matnC(;S-
In fact, at least two research groups have alreaeg
designed a parallel associative computer (SIMD) b‘fs i
on a set of conventional microprocessors communica
ting via a common bus [9,10].

Consequently, the highest degree of parallellsm] ::
achieved by task-dedicated VLSI systems. It is wel .
the range of current technologies to i"n':)lement~a|-
AM effectively on VLSI chips. Two different speaaan
purpose VLSI architectures have been designed f(?f‘t.al
AM 50 far at the University of Dortmund: 2 dxghlem
and a digital/analog implementation. Both of t
will be discussed in this paper.

The system architecture in both cases is split u:‘;
vertically into “slices™; each slice manages an €d a
number of columns. The slices are controlled ‘byure
conventional microprocessor (system control, Fig to
S). distributing input data in an appropriate W&Y es.
the slices and collecting output data from the slic ut
In consequence of the sparsely coded input/o“tshe,
patterns the microprocessor transfers and collects



patterns optimally by means of the addresses of the
activated components. Hence, a transfer operation of a
m~bit pattern takes only log(m) cycles and address
lines in the serial case.

M - Slice 1
M - Slice s

Systen Control
SRR 1

Figure 5: Partition of a mxn Associative Matrix into
slices.

31 Digital Implementation

In the case of the digital implementation the columns
of an AM are controlled by a special slice chip
comprising several very simple processing units (PUs).
Each PU controls one column of the matrix and
computes bit-serial the weighted sum (Equation 2) of
the input pattern and the respective column. Because
the input/output signals as well as the connection
elements are binary, the basic building blocks of a PU
are a counter and a comparator (Figure 6a). The
Programming algorithm (Equation 1) for the connection
matrix is realized by a simple OR-logic-block and is
‘Ncorporated on the chip, too. The connection matrix
can be built up by conventional RAMs (Figure 6b).

In order to transfer the output pattern to the system
control the addresses of the 'I's in the pattern are
Benerated locally in the slice chips. All slice chips are
connected to a common bus and the access to the
bus can be controlled by daisy-chaining or by an
add',itional priority encoder logic. In case of the daisy-
chaining method the time for transferring the output
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'8ure 6: Basic building blocks of a digital implemen-
tation of an Associative Matrix column (a)
and slice (b).
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pattern is proportional to the number of slice chips.
In the other case the time is proportional to the
number of active components (1). In both cases the
transfer of the associated output pattern and the
calculation of the weighted sum of inputs can be
pipelined.

Up to now several standard-cell-designs comprising 32
PUs (e.g. 2um CMOS, 31mm2, ~ 20000 transistors, 53
pads, IOMHz (11]) and a full-custom-design comprising
128 PUs {(2um CMOS, 64mm?, =~ 350000 transistors;
Figure 7) of a slice chip have been finished. Instead of
realizing a whole chip in silicon we have first fabricated
and tested successfully a single PU of the full-custom-
design at the University of Dortmund. The tested
6-Bit-PU is able to perform the calculations for the
Equations (1) - (3) at least at a clock rate of 12 MHz.
Optimization in respect to speed hasn't been done yet.
Instead, we have concentrated ourselves on a modular
and testable design. Therefore, the PU is built up by
six bit-slices which can be configured to a scan path
for test reasons. An extension to a 8- or 16-Bit-PU is
easy achieveable to duplicating the bit-slices.

Based on these facts, a 8192x8192-AM can be built up
by a 64 MBit-DRAM and 64 slice chips each comprising
128 PUs, for example. This AM stores more than one
million sparsely coded patterns with E { 1 (Table 1) ,
which corresponds to the storage capacity of 40 Mbits.
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Layout and floorplan of a slice chip compri-
sing 128 processing units (2 um CMOS, one
metal and one poly layer).

Figure 7:



With current submicron technologies it is possible to
integrate 512 and more PUs on a single slice chip.
Hence, the limiting factor for the number of PUs per
chip is the pin count. Nevertheless, it is possible to
have 256 PUs on a slice chip at least. The important
disadvantage of this digital approach up to now is
that most RAM chips have a one, four or eight bit
organization whereas a longer word length (216) is
more appropriate for this approach. In order to get
the highest degree of parallelism the optimal memory
organization is mxu (m = npumber of matrix rows,
u = number of PUs per slice chip). For the above
mentioned 8kx8k-AM RAM chips with a 8kx128
organization are required, for example. Therefore, the
system architecture has to be slightly modified in
order to make effective use of currently available

memory chips. Work on this topic is done at the
moment.

Such an implementation performs a pattern mapping
within 100us. The association time is proportional to
the number of 'I's in the input/output patterns
tlog{m) + log(n)) and hence independent of the number
z of stored pairs. Table 2 shows some time estimations
of the association time for a single pattern (t,) and
the programming time for 2z pattern pairs (tp)
depending on the number of 'I's in the input and
output patterns. The estimations are based on test
results of the fabricated PU in combination with a
static RAM (100 ns cycle time).

t o (us) tp(s)
1096 12 3 318353 4.4 2.7
i 10 95395 5.5 0.7

8192 13 3 1182378 4.7 1
13 10 354750 6.1 3.3
16384 14 3 4407707 5.0 441
t4 10 1322288 6.4 13.2

Table 2:

Association (t,) and programming (tp) time

estimations as a function of the parameters
nm.k.l.z.

3.2 Digital / Analog Implementation

The largest computational load implementing an AM is
incurred by the weighted sum of input  signals
(Equation 2). Using analog circuit techniques {123 | this
sum can be effectively computed by summing analog
currents or charge packets, for example. In Figure 8
a simple circuit concept is proposed in CMOS tech-
nology. The matrix operation is calculated by Current

summing and the threshold operation is done by an
analog voltage comparator.

The accuracy of analo
digital circuits,
compactly and

g circuits is not as high as for
but they can be built much more
they are more appropriate for the
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Figure 8: Analog circuit implementation of an As
ciative Matrix column.

highly parallel signal transfer operations immanen t.m
neural networks. Note, however, that analog CirCl-“ti
are not so densely integrated as it may seem at firs
glance. They demand large-area transistors to assur®
an acceptable precision and to provide good matchlngt
of functional transistor pairs, as used in curl'(l"-’n
mirrors or differential stages. Furthermore, ana:i
circuits are influenced by device mismatches from t I
fabrication process and it is very difficult to conter
offset voltages, for example. Consequently, and ogl
implementations should be applied to artificial neura_
networks requiring only modest precision. One exam
ple for such a network is the AM because there arr:
only log(m) terms contributing to the weighted :uto
S;. The required accuracy of an AM is only about .
S bits even for large matrices (m,n>10000) and hene
in the range of analog circuit techniques.

The design of the connection element is based l\‘;;‘
conventional storage devices (ROM, RAM, EEPRO tc;
For example, a conventional static memory cell has it
be enlarged by two transistors, an EEPROM c’ene
requires no additional transistors [13]. Hence. ©
million programmable connections can be integr?
on one chip with current VLSI-techniques.
8192x8192-AM requires 64 of such chips €€
comprising 128 columns.



Even more limiting to the overall size of an AM slice
than the area needed for the connections are the pin
requirements of each slice. Taking advantage of the
sparsely coded patterns permits an effectively serial
as well as parallel transfer of the input/output
patterns. The input/output organization in the serial
case is similar to that of the digital implementation
(Figure 9a). For a full parallel transfer of the patterns
the m rows and n columns of the matrix are divided
into g blocks of equal size. Under the assumption
that at uppermost one component in each block is
active, only m/g (1 of m/g)-decoders are needed for
a full parallel transfer of the input pattern to the
AM (Figure 9b). We calculate the number of pins as:

p= logz(m/g) g ©)

For g~log(m), a B8192x128-AM-slice requires less
than 130 pins. Because of the full parallel operation
a recall occurs within 1 ys. Two test chips in 2.5 ym
CMOS technology, a 64 x64 AM according to Figure 9a
(7 x8 mm2 ~40.000 transistors, Figure 10) and a
96 x 16-AM-slice according to Figure 9b (7 x5 mm?,
~20.000 transistors [121) with programmable con-
nections (Figure 8) have been fabricated at the
University of Dortmund. With both test chips the
above mentioned functionality has been tested and
verified. The accuracy of the proposed analog circuits
tumed out to be at least 4 bit. In other words,
sparsely coded binary patterns with up to 16 activated
components can be handled correctly by this simple
implementation.
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'8ure 9: Input/output organization of a serial (a) and
full parallel (b) analog implementation of an
Associative Matrix.

Because of the modular and regular structure of the
architecture, the implementation of large AMs
(n,m > 10.000) is feasible. A further attractive feature
of the AM is its fault tolerance to defective
connections. Fven in the presence of 5% defects, up
to 20.000 sparsely coded patterns (1=13, k=3) can be
stored in a 1.000x 10 00 AM with low error probability.
Therefore, the AM will also be well adapted for the
evolving wafer-scale-integration technique.
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Figure 10: Microphotograph and floorplan of the

analog/digital implementation of the 64x64
Associative Matrix test chip.

4 Discussion

Though the AM system concept is comparatively
simple, it has very attractive features in regard to

other associative or neural network VLSI implementa-

tions:



* the asymptotic storage capacity is 0.69'n-m bits

« the number of sparsely coded patterns that can be
stored in an AM is much larger than the number
of columns (artificial neurons)

* the number of operations during association is only
Of(log(n)m) instead of O(m'n)

* the simpler circuit design requires less silicon area

Because of the modular and regular structure of the
proposed architectures, the implementation of very
large AMs (n,m=10.000) is feasible. This aspect is very
important for practical applications where the AM has
to be extended to a useful number of storage ele-
ments. Work on possible applications of an associative
memory of this type is done at the moment by diffe-
rent research groups, e.g. in the field of speech re-
cognition, scene analysis and information retrieval.

Comparing both VLSI approaches presented above, we
can call on efficient software tools for a fast, reliable
and even complex digital system design. For the
memory matrix we can use standard RAM chips em-
ploying the highest density in devices. In general, the
matrix dimensions (n.m) can be extended by using
additional RAM chips. An important disadvantage up
to now is that most RAM chips have a one, four or
eigth bit organization whereas a longer word length

(216) is more appropriate for the digital implementa-
tion.

On the contrary, the design of analog circuits de-
mands much more time, good theoretical knowledge
about transistor physics and a heuristic experience of
layout. Only a few process lines are characterized by
analog circuits. The noise immunity and precision is
low compared to digital circuits. The fixed matrix
dimensions are a further disadvantage. In their favor,
we point out that analog circuits can be built much
more compactly and are more appropriate for the
highly parallel signal transfer operations immanent in
neural networks. For example, a 1.000x1.000 AM can be
integrated on one chip, whereas the digital concept
requires several slice and RAM chips. In conclusion,
both approaches have their advantages and it remains

to be seen which type of implementation will be more
effective in certain applications.
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