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INTRODUCTION

In the last decade there has been an increasing interest in the use of
artificial neural networks in various applications. One of these
application areas, where the analysis of the performance of a neural
network approach is comparatively advanced, is associative memory.
Artificial neural networks (ANNs) are well suited for the implementation
of associative memories at least because the processing elements
(artificial neurons) in an ANN operate in a highly parallel way and thus a
considerable gain in speed is to be expected. This parallelism is one of the
major reasons for investigating new computational models inspired b.y
neurophysiological processing principles. The idea is that information is
stored in terms of synaptic connectivities between artificial neurons while
the activities of the neurons represent the stored patterns. Thus the
information is stored distributed over many units and not anywhere in
Particular. Each unit participates in the encoding of several informations
(patterns). ANNs combine both storing and processing information
Whereas conventional computers are based on sequential processors
operating on the contents of a passive memory in which information is
accessed by finding the right place in memory.

Many different models have been discussed in literature under such
names as "Lernmatrix", “Correlation Matrix", " Associative Memory™ etc.
[1.2]. A bottleneck in both theory and applications of ANNs seems to be
the current lack of suitable parallel hardware exploiting the system
inherent parallelism. Thus, development of parallel computing
architectures is a fundamental requirement in making some of thgse
models a realistic alternative to more conventional forms of information
Processing. On the other hand, there are purely technological reasons for
studying parallel systems, because they may be the best way to increase
the speed and the power of computation in the future. In this respect,
ANNS are well adapted for VLS| system design, especially those models
using simple processing units and regular interconnection schemes. The
highly regular and modular architecture of certain ANN models is an
attractive property that circuit designers want to transfer to pa'ra||e| VLs!
hardware. In system design this aspect tends to play a more important
Part, as Computer Aided Manufactoring enhances VLSI process to higher
integration levels and Computer Aided Design leads to easy-to-handle

design of smart chips.
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There are two different approaches for supporting these mc:d,esls f(:;
parallel v(s) hardware (3): General-Purpose Neurocompt;_:urpose
emulating a wide range of neural network models and SpeCl‘:k o
VLSI-Systems which are dedicated to a specific neural netw(iation s
This paper is devoted to a special-purpose hardware implemen

has a simple matrix structure with binary elements . (Cofz)f;e;ti'::r;
synapses) and performs a pattern mapping or comp!etlon aratively
input/output vectors. To the authors knowledge, thl§ Codmgussed by
simple model| of a distributed associative memory was first dis o ore
Willshaw et. al. in 1969 (4]. However, similar structures have btefisticsof
generally discussed, €.9. by Kohonen and Palm [1,2]. The characte

the implemented model are described in the 2nd section.

I 0

The important aspect for VLS| implementation of this simple m:;(g’
model is the close relationship to conventional memory sFructU.fis' several
it can be densely integrated and large scale memories W_'th current
thousands of columns (model neurons) can be realized wit its in 3
technologies already. Furthermore, the regular tc_)pology fes‘;“essfu,
rigorous modularization of the system indespensible for a SS In this
Management of the design and test complexity of VLSI s_ysteme.wm be
respect a pure digital and 5 hybrid analog/digital vLs| architectur
described in the 3rd section and discussed in the 4th section.

THE ASSOCIATIVE MEMORY CONCEPT
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Figure 1

Basic Operations of an associative memory:

heteroassociation (a) and autoassociation (b).
The associative memo
pair (xh, yh) stored in
be selecteq freely, indepen
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be ient i L
. r;:?evtzn;:nz t|f Eh; associative memory responds with yh not only to the
the mapping sh: Idut also to sufficiently large parts of it. In other words
the input patt: be fault-tc_)lerant to incomplete or noisy versions of
autoassociative me”:r; A special case of this functionality is the
sufficiently large rtOI];whhere the stored pairs look like (xh , xh ). Given a
(pattern com le?'a of xh the memory (esponds with the whole pattern
“sufficiently Iair) ,',Or;]). _ Besides the discussion of the fuzzy term
even can be a n?)?s tv:r',”p”t can be any part of the stored pattern and it
searchin terms of gattersr"orf;::gxni;d'[:‘l? operation is called the best match

Amon . .

the fie?dtr;? :‘\eir:ildnfferent lmplementa_tion§ of an associative memory in

a5 well 25 offors ngtworks the follown_ng simplest type is very attractive

Matriy s ve in regard'to VLSIA|mpIementation. The Associative

connection we a nxm matrix of_ binary storage elements wij, the
weights (Figure 2). The input vectors xh as well as the output

ve i
ctors yh take a binary form.
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Figure 2 Structure of an Associative Matrix (AM)

The input vector xh as well
hould be stored in the AM
ously. At the beginning all
h storage element at the
= 1) will be switched
hanged. This
trix and the

The .
as thmea&img is build up in the following way:

=1 Z)pUt vector yh of every pair which s
Storage 'ele:e applied to the rpatrix simultane
osspoint of ents in the matrix are zero. Eac
o, wheres an activated row and column (xh = yh
clipped Het: bi!' the other storage elements remain unc
information ike rule [2] programs the connection ma

on is stored in a distributed way (Figure 3 a,b):

h_ h—1 h A h 0_ —
wij_wij V(xi /\yi) ,wij—O, h=1.z . (1)
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Figure 3: Programming two pattern pairs into an Associative ?:l)at
and pattern mapping of an incomplete input pattern ().

L ; input vector
The recall of the constructed mapping is done by applying ?1" mfoducts of
to the rows of the matrix. For each column | we sum up the sights Wy
the input components xih and the Corresponding connection w

> h (2)
Si: z xj . wij
Jj=1

. ) llowing
The associated binary outpyt vector is obtained by the fo
threshold Operation (Figure 3 ):

A [1 i S;2Th

3)
Y 0, otherwise » TheN

. . ; rule the
Obviously, because of the above mentioned programming
memory matrix

- ill never be
gets more and more filled (the connections W;'i ?han the
switched off). Consequently, the Output might contain more will occur
desired outpyt Pattern. The chance that this kind of error

, ‘ ) ; llowing
INCreases with the numbper 5 of stored pairs. This fact causes the fo
Quantitative questions:

i) How many patterns can be stored in an AM?
i) How many bits of information can be stored in an AM?

i»ing his
n
Both questions were answereq, €.9. by Palm 1980 [5]. Summarizing
results, an AMm has

. cod
its optimal storage capacity C for sparsely
input/output patterns.

fany - in ut
Therefore, the Number I(k) of active components (‘1) in thel e‘n;th
(output) patterns should be logarithmically relateq to the pattern

. ; jation
(n,m). Asymptotlcally, the optimal storage capacity for hetero-associ
isgiven in [5]:
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Cimnklz) = In2 - m- n
m- n (4)

for n,m -» © and parameters: k=logn , l=logm , z<ln2lz

Hence, the storage capacity C is proportional to the number of storage
elements n ‘m and the number of patterns z that can be stored is much
larger than the number of columns (artificial neurons). For example, an
optimum of C = 593,000 bits for m, n = 1000, z = 34,780 (k = 2,1 =9) can be
stored in the AM under the constraint that on the average 90% of the
information of the output vector of each pair is stored [5]. Figure 4 shows
the storage capacity of an AM as a function of the number of stored
Patterns (z) and Table 1 as a function of the number of activated
omponents in the input () and output (k) patterns, respectively.
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Figure 4 Storage capacity Cin bits and the expectefi number E of addi-
tional '1's in the output pattern as a function of the numlb-er4
of stored patternsz(m,n = 1000): a)k = | = 3; bk =1=4
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Furthermore, it turns out that the AM works for pattern mapping
3pplications in a more economic way compared to conventional methods
leg. hashing) and other neural network models, if the number of
Patternsis large and their individual information content small [6].

These resut encourage a hardware implementation in VLSl of this simple

3sociative memory model in situations where such a mapping 1s a mo':e

Natural way of storing information than a listing. Especially, because the
Works the more effective the larger the matrix is.
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m=n | z C/mn
— — 23313 0.565
2028 1 96012 0.591
4096 12 318353 0.604
8192 13 1182378 0.613
16384 14 4407707 oert |

; r prob-
Table 1:  Number of patterns 2 that can be stored with Iogvaig?usction
ability and the corresponding storage capacity
of parameters n.m,l(k=3)

VLSI IMPLEMENTATION

; ion
The Associative Matrix can be handled most flexible as a rzr?:llﬁ be
Program on a conventional computer (workstation), of course.erform less
shown that even serial simulations of the AM would have tfObFi)twise mask
operations than a conventional implementation in terms o i the serial
operations. For the special case m<<n and a sparse matrlenough for
implementation is even for a large number of patterns fast has a poor
certain applications [7]. But in general, a serial implemetation
performance, especially if applied to very large matrices.

; ly by
't is quite obvious that operation can be speeded up consiﬂerraot:eyssof
paraliel Processing. The implementation by means of mu F:,etweer\
architectures (SIMD machines) is a promising C°mpr°m'sz - and a
flexible modelling - the system is sl program controlle Jeast two
complete paralie| Processing of large matrices. In fact, at omputer
research groups have already designed a parallel associative ¢

(SIMD) based on a set of conventional microprocessors comm
via a common buys (8,9].

Consequently, the highest d
dedicated VLS| systems. |t js

purpose VLS| architectures have been d
University of Dortmund:
implementation. Both of the

esigned for an AM Ztig
a digital and a hybrid analog/
m will be discussed in this paper.

ital
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from the slices. In consequence of the sparsely coded input/output
patterns the microprocessor transfers and collects the patterns optimally
by means of the addresses of the activated components. Hence, a transfer
operation of a m-bit pattern takes only log(m) cycles and address lines in
the serial case.
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Figure 5 Partition of an mxn Associative Matrix into slices.

Digital Implementation

In the case of digital implementation the columns of an AM are
controlled by a special slice chip comprising several very simple processing
units (PUs). Each PU controls one column of the matrix and computes pnt-
serial the weighted sum (2) of the input pattern and the respective
lumn. Because the input/output signals as well as the connection
elements are binary, the basic building blocks of a PU are a counter and a
COmparator (Figure 6a).

The programming algorithm (1) for the connection matrix is realized b):)a
S'mple  OR-logic-Block and is incorporated on the ChlP' too. The
onnection matrix can be build up by conventional RAMs (Figure 6b).

o the system control the

In order
to transfer the output pattern t ' |
; ted locally in the slice chips

addresses of the '1's in the pattern are genera

¥ an additional priority-encoder. All slice chips are connected to 2
c°"?'“°n bus and the access to the bus can pe controlled by daisy-
thaining or by an additional priority- encoder-logic (Figure 7). In case O
the daisy-chaining method the time for transferring the output pattern s
Proportional to the number of slice chips. in the other casé the time is
Proportional to the number of '1's in the output pattern. in t?oth cas:s
the transfer of the associated output pattern and the calculation of the

Weighted sum of inputs can be pipelined-
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Figure6  Basic 'bui.lding blocks of a digital implementation of an
Associative Matrix column (a) and slice (b).
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Figure 7 Transfer scheme for the generated addresses of '1'sin the
Output pattern.
g& Ot(S) gg:‘ sgve:al standard-cell-designs comprising 32 PUs (e.0- 2pf7}
dESign' com M* = 20,000 transistors, 53 pads, 10MHz) and a full-custom8
of a slice cﬁnsn:g 128 Pys (2pm CMOS, 1cm2, 48,000 transistors, Figure'
silicon 'P Nave been finished. Instead of realizing a whole chip "
we have first fabricated ang tested successfully a single PU of the
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full-custom-design at the University of Dortmund (Figure 9). The tested
PU is able to perform the calculations for the equations (1) - (3) at least at
aclock rate of 12 MHz. Optimization in respect to speed hasn't been done
yet. Instead, we have concentrated on a modular and testable design. As

Lol B B L)
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——— raps end PRIVER
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4 x 16
PUs

4 x 16
PUs

Contral-Logic

\118/7-Prloritu-incnde

_____/——————’L_'/‘
| ———vabs sna eRXVER —

ce chip comprising 128 proce!
| and one poly layer).

Fi , i
'gure8  Layout and floorplan of asli ssing
units (2pm CMOS, one meta
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can be seen from the microphotograph in Figure 9, the PU is built up by
six bit-slices. The bit-slices can be configured to a scan-path for test
reasons and an extension to a 8 or 16 bit PU is easily achieveable by
duplicating the bit-slices.

Based on this facts, a 8192x8192-AM can be build up by a 64 MBit-RAM
and 64 slice chips, each comprising 128 PUs, for example. This AM stores
more than one million sparsely coded patterns with low error.pmb"’lblllty
(Table 1), which corresponds to a storage capacity of 40 Mbits. Such an
implementation performs a pattern mapping within 10ps. The
association time is proportional to the number of '1's in the input/output

patterns (log(m) + log(n)), hence independent of the number z of stored
pairs.

Figure 9

Microphotograph of the test circuit for a single 6-bit )
Processing unit (2um CMOS, 350 transistors, 1.1mm x 0.4mm).

With current submicron technologies it is possible to integrate 512 anc:
more PUs on g single slice chip. Hence, the limiting factor for the numbse6
of PUs per chip is the pin count. Nevertheless, it is possible to have 2 |
PUs on a slice chip at least. The important disadvantage of this diglt?t
approach up to now is that most RAM chips have a 1, 4 or 8-btle
organization whereas 3 longer word length (>16) is more appr-opf'a
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;:IIBit-RAM chips with a 8kx128 organization are required, for example.

ekrefore, the system architecture has to be slightly modified in order to
ma.e. effec.tlve use of currently available memory chips. Work on this
topicis carried out in the moment.

Digital ! Analog Implementation

LZ?Q':tfggst c0mpgtatione_zl load imple_menting an AM is incurred by the
e sum of mput's:gnals (2). Using analog _circuit techniques [10],
charge aCakn be effectively compu.ted by summing anglog currents or
pr0poseg Ckets, for example. In Figure 19 a s:mp!e circuit concept is
Current In CMOS technology. The matrix operation is calculated by

Summing and the threshold operation is done by an analog
voltage comparator.

Vi,
J"-"‘

j

| S——

,
I

Figure 19 Analog implementation of an Associative Matrix column.
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. I : H t
The accuracy of analog circuits is not as high as for dlgltzl rcil;::lft:r f:e
they can be build much more compaclly arld are more'appel"urr;| etnorks
highly parallel signal transfer operations Immanent Ir; n e o realize
Nonlinearities or parasitic effects of the devices al ov:'on (1] Note,
complex functions, as an exponential or squarejroot funfjl \ it may seen
however, that analog circuits are not so densgly integrated a . acceptable
at first glance. They demand large area transustors. to assure éstor oais, 5
Precision and to provide good matching of functional transi et
used in current mirrors or differential stages. Furthermore, analog

ork is the
requiring only modest precision. One example for sych a nteht;Nweighted
AM because there are only log(m) terms contributing tOS bits even for
sum S,. The required accuracy of an AM is only about 4 to

) log circuit
large matrices (M.n>10,000) and in the range of analog
techniques.

: atic
ices (ROM, RAM, EEPROM). For example, a Conve”t'::zlEPs;oM
memory cell has to be enlarged by two transistors (Figure 10), ne million
cell requires no additional transistors [12]. Hence, o ith current
Programmable €onnections can be integrated on one chip w

) ips each
VLS techniques. The 8192x8192-AM requires 64 of such chip
omprising 128 columns.

eded
Even more limiting to the overall size of an AM slice than the area nTZkinQ
for the co nections are the pin requirements of each Isllc‘:' parallel
advantage of the sparsely coded patterns, serial as wel fion in the
transfer of the patterns i suitable. The input/output organiza 11a). For
serial case is similar 1o that of the digital implementation (F,gurens of the
a full paralle| transfer of the patterns the m rows and n columtlon that
matrix are divided into g blocks of equal size. Under the assump1 of mig)
at uppermost one €Omponent in each block js active, only m/g (

p:log2 (gﬁ)' g (5)

. ins. Becausé
Forg = log(m), 4 8192x128 AM slice réquires less than 130 pins. B
Il parallel o i

o hips in
of the fy Peration a recal) occurs within 1us. Two test chip
2.5um CMOs technology, 5 64x64 AM accord;

= 40,000 transistors) ang i

(7x5mm?2 + =20,000 transistors) [10]
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Figure 11
Lnal:uitlloutput organization of a semi-parallel (a) and full
allel (b) analog implementation of an Associative Matrix.

microph

ShOW:i:tggLarzh1;f the 64x64 AM test chip in CMOS technology is
order to reduce th. In. this case, data input is done through a buffer in
each column is att ehpln count, whereas for test reasons the output of
analog cuircuits 1 ached to a separate pad. Thg accuracy of the proposed
toded binary ;Jrned out to be at least 4 bit. In other words, sparsely
handled ¢ patterns with up to 16 activated components can be

orrecly by this simple implementation.

Becaus

imple r:e::a;h:nmidular and regular structure of the architecture, the
attractive festy of large AMs (n.,m. > 10000) is feasible. A further
connections. by re of the AM is its fault tolerance to defective
coded pattorr Zn_m the presence of 5 % defects, up to 20,000 sparsely
error probabilit =13, k = 3) can be stored in a 1000x1000 AM with low
envolving waf y. Thefefore, t.he AM will also be well adapted for the

afer-scale-integration technique.

Discussion

ratively simple, it has very

Though
gh the AM system concept is compa
tive or neural network VLSt

attractiy

: e features i ;

i in regard to othe i
Mplementations: 9 r associa

the .
asymptotic storage capacity is 0.69 -n-m bits
erns that can be stored in an AM is

th
€ number of sparsely coded patt
lumns (artificial neurons)

m
uch larger than the number of co
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the number of operations during association is only Oflog(n) -m)
instead of O(m -n)

the simpler circuit design requires less silicon area.

Because of the modular and regular structure of the proposed
architectures, the implementation of very large AMs (n,m>10000) is
feasible. This aspect is very important for practical applications where the
AM has to be extended to a useful number of storage elements. Work on
possible applications of an associative memory of this type is done at the
moment by differnt research groups, e.g. in the field of speech
recognition, scene analysis and information retrieval.

Comparing both VLS| approaches presented above, we can ca!l on
efficient software tools for a fast, reliable and even complex digital
System design. For the memory matrix we can use standard RAM chups
employing the highest density in devices. In general, the matrix
dimensiong (n,m) can be extended by using additional RAM chips. An
'mportant disadvantage up to now is that most RAM chips have a 1 or 4
bit organization whereas a longer word length (>16) is more
appropriate for the digital implementation.

On the contrary, the design of analog circuits demands much more time,
900d theoretical knowledge about transistor physics and a heuristic
experience of layout. Only a few process lines are characterized by analog
Crcuits. The noise immunity and precision is low compared to digital
Greuits. The fixed matrix dimension in case of a special-purpose
'mplementation is a further disadvantage. In their favour, we point out
that analog circuits can be build much more compa‘f'd)/.3“"‘1."“re more
3PPropriate for the highly parallel signal transfer operations immanent
'n neural networks. For example, a 1000x1000 AM can bg mtegrated on
one chip, whereas the digital concept requires several slice chips and at
'east one RAM chip. In conclusion, both approaches have the.‘lz
3dvantages and it remains to be seen which type of implementation wi
¢ More effective in certain applications.
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