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Abstract

The paper reviews the major trends in microelectronic implementation of
artificial neural networks. Despite the remarkable progress in silicon-based
VLSI technology, there is no clear consensus at the moment on how to
exploit these technological capabilities for massively parallel neural network
hardware implementation. In the following some of the key implemen-
tational issues will be considered and some representative VLSI hardware
realizations will be sketched.

Introduction

Even though there are still many open problems in the theory of ANNs, there
is unanimous agreement that computational speed will ultimately become a
stumbling block in the research and application of artificial neural networks
(ANNs). At present, ANNs are still mainly simulated on conventional,
sequential computers. Software simulators offer a high flexebility and serve
well to test an ANN concept, but don’t offer the performance required to run
real-world applications in general. Therefore, the availability of specially
designed neurocomputing hardware (neurocomputer) offers the most
advantageous alternative for multifarious utilization of ANNs. Not only would
the processing time drastically decrease for neurocomputing hardware, but
also the smaller volume, the reduced power supply requirements, and the
higher reliability would render microelectronic neurocomputers very

attractive.

State-of-the-art VLSI (Very Large Scale Integration) and the emerging ULSI
(Ultra Large Scale Intergration) technologies are able to integrate millions of
microelectronic devices on a single chip. Clock rates are approaching 100MHz
boosting the chip-computational power to 105-10¢ MIPS (million instructions
per second). Hence, modern microelectronic technology offers a .speed-up
factor of several orders of magnitude compared with simulation on todays
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sequential computers. Even more computational power may be obtained by
emerging technologies like optoelectronics or molecular electronics.

Despite the impressive development of microelectronics during the last
decades, there is no clear consensus on how to exploit these technological
capabilities for massively parallel ANN algorithms. It is currently not pos-
sible to determine the best way to perform ANN calculations for any given
application. This is one reason for the huge variety of approaches for ANN
hardware implementation known in literature. In the following, an overview
of the major trends in ANN hardware implementation with an emphasis on
integrated circuits (ICs) will be given by grouping the different approaches
into few categories and by discussing the key features of each of these cate-
gories. The first category contains neurocomputers based on standard ICs.
Task or model dedicated neural ASICs (application specific integrated

circuits) build the second group which are further subdivided into digital
and analog circuits (Fig. 1).

Neurocomputer

Standard ICs Neural ASICs

Figure 1 Neurocomputer categories

Neurocomputers based on standard ICs

Many AP:IN operations are based on a sum of products and are quite similar
to operations (e.g. filtering) in digital signal processing (DSP). This similarity
suggests that much of the PSP technology could be applied to accelerate ANN
operations. Several institutions have developed board-fevel systems, so
called add-on-boards or accelerator boards, built around a modern micro-
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processor (proprietary, DSP, or RISC (reduced instruction set computer)) that
excel at the floating-point operations required by many ANNs. Accelerator
boards speed up ANN processing by at least an order of magnitude albeit at
a significantly greater cost. Most of them are designed for IBM PCs and
compatibles and simulate ANNs with supercomputer-like performance of up
to 50MCPS (million connections per second) and 20MCUPS (million
connection updates per second) [1]. MCPS. which often refers to the number
of multiply-and-add operations that can be performed in a second, and
MCUPS are common speed measures for the retrieval and learning phase of
ANN simulators. Obviously, both terms have to used with great care. Firstly,
because speed is more a matter of convenience than of functionality. The
quoted MCPS may or may not include the time to fetch the variables that are
to be multiplied. for example. Hence, more data are needed to appraise
computational speed. Secondly, both terms are only useful in connexion with
a neural network model and its application, because there exist no widely
accepted benchmarks for ANNs yet. Nevertheless, the terms MCPS and
MCUPS are both quite important measures and are very common in the ANN
hardware community.

The next step towards higher performance are multiprocessor neuro-
computers which are very similar to general-purpose parallel computers.
The connections between processors can either be through a single high
speed data path (bus-oriented) or via short point-to-point links between
processors. For a bus-oriented system the number can vary between two
and a few hundred complex processors, for example, whereas in the other
case the system can have several thousand simple processors (e.g. up to
16384 for the Connection Machine [1]). The interconnection needs for ANNs
pose a special challenge for parallel neurocomputers. As the nature of ANNs
is to emphasize a high degree of connectivity. a massively parallel system
can sustain dramatic decrease in throughput because of communication
delays. Another difficulty is the inconsitency of the need for flexibility and
the difficulty of efficiently programming parallel systems. In literature.
performance figures of up to S500MCPS and 200MCUPS for multiprocessor
neurocomputers can be found [1-3].

Since the components for such neurocomputers already exist they are being
improved as fast as the state of the art of technology will allow it. This is
obviously a strong point for neurocomputers based on standard ICs. The
challenge in ANN implementation lies in developing appropriate architec-
tures to effectively use these standard components.

Neural ASICs

An alternative way in implementing neural networks is the design of
special-purpose integrated circuits. There has been much work in the design
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of VLSI ICs implementing ANN algorithms. In IC design the options are
digital or amalog or a combination thereof.

Digital neural ASICs

Digital ASICs are the most flexible and mature ANN implementations. The
obvious advantages of digital designs are high computational precision, high
scalability, and the possibility to implement modifiable synapses with almost
unlimited precision. Furthermore, powerful design tools are available for
digital full- and semi-custom design. The disadvantages are the relatively

large circuit size for low and medium sized ANNs and a semi-parallel imple-
mentation of the weighted sum of inputs.

Digital neural ASICs can be categorized into general-purpose approaches, for
emulating different ANN models, and special-purpose approaches which are
dedicated to a specific ANN model. However, the more general a neurocom-
puter is the slower it is. The synaptic weights can be stored on or off chip.
The advantage of on-chip weight storage is the fast weight access. The

disadvantage is that the number of necessary chips grows linear with the
number of neurons.

The N6400 chip from Adaptive Solution Inc. [4] is an example for a general
purpose digital neural ASIC with on chip storage of weights. Each N6400
contains 64 processing units and 256KBytes weight memory (1-16 bit weight
resolution) on chip. A single chip (25 MHz) can perform 1.6GCPS (256MCUPS,
backprop) for 8 or 16 bit weights and 12,8 GCPS for | bit weights,
respectively.  The CNAPS neurocomputer contains in the standard vers?on
four N6400 and has four-times the performance. Another interesting
example of this category is the WSI (wafer scale integration) neural net from

Hitachi [5]. It comprises 576 digital neurons and 36KBytes weight memory.
It performs 1.25 GCPS and 118MCUPS.

The MAL16 neural signal processor from Siemens is an example of a general-
purpose digital neural ASIC with off chip weight storage. The MA16 chip has
a systolic architecture build by four processing units  each with four
16bitx16bit multipliers. The chip performs about 800MCPS at a clock rate of
50MHz. A prototype of the Synapse-1 neurocomputer has eight MA16 neural
signal processors, two MC68040 CISC processors for control purposes, and 2

128MByte DRAM bank. The prototype performs 4.2GCPS and 330MCUPS [6).

These examples of digital neural ASICs show the potential for further
improvement of ANN simulation speed compared with general-purpose

parallel computers. A speed of up to two orders of magnitude higher seems
to be possible with current technologies.
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Analog neural ASICs

Analog neural ASIC approaches can be divided into continuous-time and
discrete-time analog electronics. Some additional options arise relating to the
connectivity (local/global or low/full connetivity) within the ANN and the
transistor’'s mode of operation (weak inversion or strong inversion) {7,8]. The
advantages of analog designs are their compactness and their high speed due
to the saving of device functions by functional integration. On the contrary,
the design of analog circuits demands much more time and a good theoretical
knowledge about transistor physics [8]. Analog integrated circuits are
susceptible to noise and process-parameter variations resulting in a limited
computational precision. Last but not least it is still difficult to integrate
adaptive synapses (weights).

Nevertheless, the majority of microelectronic ANN implementations use
analog computation at least to some extent. Analog processing derives it
main advantage when physical processes can be used to perform required
computational functions. For example, the weighted sum of input signals
(activation function) which incurs the largest computational load in the recall
phase can be efficiently implemented in analog circuit technique by means
of current or charge summing [7-9]. Most of the proposed analog neural
circuits make use of current summing as, for example, the associative
memory chips from AT&T [9] or from the University of Dortmund [10]. With
current state-of-the-art microelectronics simple neural associative memory
chips with more than 1000 neurons and 1000 inputs each can be integrated
on a single chip performing about 100GCPS. Such systems have been used for
pattera classification and image segmentation, for example.

The associative memory chips mentioned above are programmable, but not
trainable. Learning, or selforganization, does require incremental adjustment
of the synapses (weights) in small steps. The design of multivalued weights
must balance the cell size and the resolution of the weight. Whereas the
implementation of digital memories are well-mastered techniques, storage in
analog memories is still difficult. Proposals for analog synapses include
charge-coupled devices (CCDs), MNOS (metal nitride oxide silicon) transistors
combined with CCDs, and concepts based on special materials like bismuth
sesquioxide or a-silicon [11]. Very promising concepts offer floating-gate
transistors as used in EEPROMs [11] and analog storage cells with ferro-
electric films, e.g. PZT [11,12]. For these proposals several problems have to
be analyzed, for example, the amount of process-parameter variations across
the chip, the defect yield, storage time (volatility), and compatibility to
standard VLSI processing technology.

Analog and programmable weights are a significant feature of an effective
and flexible VLSI implementation of ANNs. At the moment, there is one such
analog neural ASIC commercially available, which uses two floating-gate
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transistors as an adaptive weight [13]. It contains 64 neurons, 10240
synapses and performs about 2GCPS. Learning has to be done off chip.

A rather new analog design methodology is the so called neur:omorphic
approach, which can achieve significant improvements in computing .hard—
ware capability compared with conventional analog and digital techmque_s.
This neuromorphic approach starts by identifying several structu_ra} level.s in
the nervous system, and then attempts to capture these organizing princi-
ples. At the lowest level, the computational primitives of the nervous system
are identified and silicon analogies are designed by creatively harnessing the
available physics of semiconductors. At the next level various ensembles of
primitives can be organized to perform complex computational tasks, such as
signal preprocessing. This novel methodology was inspired by the work of C.
Mead [8,14] and has let to several interesting prototype chips [8], for
example, a silicon retina, an electronic cochlea, or ear prothesis: Analog
circuits, hard-wired for a specific function and with local conmnections, can
deliver extremely high performance while dissipating very low power. The
combination of sensors and computing circuitry on one chip makes them look

promising for smart sensors. At the moment, they are still in research state
where their potential is being explored.

Analog circuits can boost the performance beyond that of digital designs. But
in general they are special-purpose implementations of a selected ANN
model for a specific application. For small and medium ANNs analog neural
ASICs are more compact than the digital counterparts, but not as fif:xiblt: as
digital systems. Analog systems hold undisputed claim to the interfaces
between digital systems and the real, analog world. Fast, very high-aCC}"'aCY
analog-to-digital and digital-to-analog converters are often the critical items
that make the application of intermediate digital processing possible. In the

near future analog techniques will make possible dynamic neurons, which
will lead to networks with new features [15].

Discussion

One of the most important differences between ANN research today and
what was possible 30 years ago is the huge improvement in the technological
capabilities. The progress in microelectronics provides a powerful basis to
implement large neural networks in electronic or opto-electronic hardware.
State-of-the-art VLSI and the emerging ULSI technologies are able to
integrate thousands of neurons on a single chip with clock rates reaching 1
GHz. In the far future even more computational power for ANN may be
obtained by using optoelectronic and molecular electronics. Optoelectronic
devices and light wave guides integrated on silicon offer interesting aspects
for ANN. First of all we get a flexible interconnectivity with high data rates
and many data can be processed in parallel. Furthermore, new alternatives
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for analog storage of weights (synapses) are offered by using PZT films, for
example [16].

Much higher integration densities follow from nano and molecular elec-
tronics. For example, the crystal Zeolith with its regular pipeline structure,
where conducting polymers and semiconductor molecules are embedded,
offers a very high density of weights, about 10° mm3. The drawback is the
very simple architecture with low interconmnectivity, which is similar to
cellular nets [16]. Molecular elecironics offers a huge potential for ANN [17].
The tactile molecular processing unit with proteins has a relative low
processing speed, but solves the interconnectivity in an elegant way: The
information packets flow parallel in the cell liquid all searching their neural
goals.

Despite of such features the discussion about the technological way to large
neural systems, in the long term to so-called artificial brains, is open. At long
term it might be the way of biological concepts with proteins or the physical
way with nanostructured devices. For the next decade microelectronics will
dominate the field of ANN implementation. A large number of design studies
on ANN hardware implementation have been carried out in U.S., in Japan and
in Europe. In Europe and Japan, digital implementation precedes analog and
Optoelectronic approaches. On the contrary, in U.S. the analog approach has
been prevailing [2.3]. A number of neurocomputers - specialized machines
able to efficiently implement neural networks - have been built. and a few
are¢ now commercially available [18].

The neurocomputer categories as shown in Fig. 1 and reviewed in this paper
are summarized in respect to their speed performance in Fig. 2. The ‘most
commonly used category of neurocomputers are the desktop workstations.
They offer a large amount of ANN simulators as well as graphics and support
software, but they are quite slow compared with the other implementations.
A straight forward way to enhance their performance is to couple them with
Add-On-Boards offering the best price/performance ratio. Neurocomputers
of this category can perform up to 100 MCPS at present. An ord_er_of
magnitude faster are multiprocessor neurocomputers which are very similar
to general-purpose parallel computers. provided software exists.

The next step towards higher performance are special purpose VLSI
COmponents. The digital approach is currently the best. _so[utmn to
implement ageneral purpose neurocomputer with high precision. Analog
circuits find applications in front-end signal processing with low p-rE:CISIOl'l%
In particular pattern recognition. Microelectronic implementations t;
neurocomputers promise to make cost-effective and physically smgll neurai-
based products possible. General-purpose computers and simulators,
however, often fail to meet the size or cost constraints of designs that must
be deployed in the real world.
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Figure 2 Speed of computation versus resolution in the computation

For the next decade the perspective of microelectronics are not narrowed by
technical limitations, even if progress advances as fast as in the past. This
implies for all neurocomputer categories an increase in performance by
about two orders of magnitude. Consequently, neurocomputers are
approaching the TeraCPS (106MCPS) performance. In other words, the output
of an ANN with 100 million neurons each having about 10.000 inputs
(synapses) can be computed within one second. As already mentioned, these
performance figures have to be used with great caution. The simulation of
ANN paradigms by means of a simple weighted summer and a threshold
activation is much simpler than the emulation of biological oriented ANNSs
(pulse-coding, spatio-temporal parallelism). But they give an idea of the
large potential of available technologies. Of course, comparing this number
with the 10!2 neurons of the human brain this potential may not be
impressive. On the other hand, there are living organisms with smaller
brains showing clever as well as fascinating behaviour. The forthcoming
neurocomputer generation will offer new opportunities to alternative ANN
design for discovering such neural organizing principles. It is in that spirit
that progress in hardware implementations will hopefully contribute to a
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better understanding of paradigms and biological systems as well as a
nrumber of useful applications.
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