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Einleitung

Neuronale Netze bedienen sich intern einer massiv parallelen Informationsverarbeitung. Im
Gegensatz dazu ist die derzeit haufigste Implementierungsvariante die relativ zeitaufwendige
Simulation auf konventionellen, weitgehend seriellen Rechnern, wie z.B. Personalcomputern
(PCs), Workstations oder auch Vektor-Rechnern. Dies fiihrt fiir die Simulation kiinstlicher
neuronaler Netze (KNN) bei realistischer NetzgroBe zu Rechenzeiten, die fiir eine
Echtzeitverarbeitung inakzeptabel sind und eine Untersuchung des dynamischen Verhaltens
neuronaler Netze sowie die Optimierung ihrer Topologie unmdglich machen. Aus diesem
Grunde kann der Nutzen von KNN heute nur fiir geniigend kleine Anwendungen festgestelit
oder durch Simulationsexperimente mit miniaturisierten Szenarien von anspruchsvollen
Anwendungen (z.B. Bilderkennung, Sprachverarbeitung) abgeschitzt werden. Von der
Anwenderforschung wird daher immer wieder der Wunsch nach effizienteren
Realisierungsmoglichkeiten geduBert. Die gewiinschte ErhShung der Rechenleistung ist aber
nicht primir durch den Technologiefortschritt in der Mikroelektronik und die dadurch bedingte
Jjahrliche Verdoppelung der Rechnerleistung konventioneller Rechner zu erreichen, Ferner sind
neue architektonische Losungen mit massiver Zeit- und Raumparallelisierung bei
dkonomischem Umgang mit der Verlustleistung gefordert. Einen Beitrag hierzu leisten
sogenannte Neurocomputer und Neuro-Chips , auf denen KNN entsprechend dem Stand der
Technik effizient implementiert werden konnen.

In der einschldgigen Literatur finden sich inzwischen eine Vielzahl von unterschiedlichen
Vorschlédgen fiir die Hardwareimplementierung neuronaler Architekturen, von denen sich der
iiberwiegende Teil allerdings noch in der Entwicklungs- bzw. Testphase befindet [1-8]. Die
unterschiedlichen Ansitze lassen sich grob in zwei Gruppen unterteilen (Bild 1). Zum einen in
Architekturen auf der Basis von handelsiiblichen Standard-VLSI-Bausteinen (VLSI=Very
Large Scale Integration), die sich weiter in Zusatzkarten (Add-On-Boards) fiir konventionelle
Arbeitsplatzrechner (PC, Workstation, etc.) und spezielle Parallelrechnersysteme aufteilen.
Zum anderen in Architekturen auf der Basis von anwendungsspezifischen VLSI-Bausteinen
(ASICs, application specific integrated circuits), die in digitaler oder analoger
Schaltungstechnik realisiert sein konnen. Der Vollstindigkeit halber sei erwihnt, daB in
Zukunft neben den hier genannten rein mikroelektronischen Techniken sicherlich auch opto-
elektronische bzw. molekular-elektronische Realisierungstechniken interessante Perspektiven
bieten werden. In naher Zukunft spielen sie fiir Anwendungen der KNN noch keine Rolle und

werden daher hier auch nicht ndher erldutert.
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Bild 1 Realisierungsalternativen fiir Neurocomputer

Die folgenden Abschnitte enthalten eine Ubersicht der aktuellen Ansiitze der Implementierung
von KNN in Hardware entsprechend der in Bild 1 gezeigten Gliederung, Aufgrund der Vielzahl
von bekannten Realisierungsvorschligen fiir Neurocomputer und Neuro-Chips liegt der
Schwerpunkt dieser Ubersicht auf ausgewihlten Realisierungen, die entweder bereits
kommerziell erhiltlich sind oder ein breites internationales Interesse erweckt haben. Die
Auswahl ist sicherlich subjektiv und erhebt nicht den Anspruch reprisentativ zu sein.

Vergleichskriterien

Fiir die Leistungsbeurteilung einer neuronalen Netzwerkimplementierung haben sich derzeit
noch keine standardisierten Vergleichsverfahren (benchmarks) etabliert. Damit aber dennoch
eine grobe Aussage iiber die Leistungsfihigkeit einer bestimmten Realisierung gemacht werden
kann, finden sich in der Literatur hdufig die MaBzahlen Gewichte pro Sekunde ((inter-)
connections per second, CPS (bzw. IPS)) fiir die Anwendungsphase und
Gewichtsinderungen pro Sekunde ((inter-)connection updates per second, CUPS (bzw.
IUPS)) fiir die Lern- bzw. Trainingsphase eines KNN. Fiir die Anwendungsphase ist mit CPS
gemeint, wie hiufig deren zentrale Rechenoperation, meistens die Multiplikation eines
Eingabewertes xj mit dem zugeordneten Gewicht Wwij (xi*wij) und Addition des Ergebnisses
zum Aktivierungswert S (S:=S+xi*wij), pro Sekunde ausgefiihrt werden kann (multiply&adds
per second). Entsprechendes gilt fiir CUPS in der Lernphase, wobei hier zusitzliche
Rechenoperationen gemiB dem verwendeten Lerngesetz durchgefiihrt werden miissen. Die
Angabe IMCPS (MegaCPS) bedeutet somit, daB eine Million Multiplikationen mit
anschlieBender Addition pro Sekunde durchgefiihrt werden konnen; d.h. ein einschichtiges
Netz mit 1000 Prozessorelementen (PE, kiinstliche Neuronen) mit jeweils 1000 Gewichten
kann die Multiplikation eines Ein gabevektors (1000 Komponenten) mit der Gewichtsmatrix in
einer Sekunde durchfiihren.

Neben der Anzahl und der Art der Rechenoperationen ist die geforderte bzw. implementierte
Rechengenauigkeit beim Vergleich zu beriicksichtigen. Hier finden sich Modelle mit bindren,
diskreten (ganzzahligen) und kontinuierlichen (reellen) Ein-/ Ausgaben bzw. Gewichtswerten.
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Sowohl die Aktivierungsfunktionen als auch die Lernfunktionen dieser Modelle unterscheiden
sich zum Teil erheblich hinsichtlich des erforderlichen Rechenaufwandes. Fiir Modelle mit
bindren Ein-/ Ausgaben entfallt z.B. die zeit- bzw. flichenintensive Multiplikation bei der
Berechnung des Aktivierungswertes (s.0.). Hier wird deutlich, da8 die Leistungsangaben CPS
bzw. CUPS erst im Kontext eines bestimmten neuronalen Netzwerkmodells und dessen
Anwendung aussagekriftig werden.

Weitere, nicht minder wichtige Aspekte bei der Beurteilung einer bestimmten Realisierung eines
neuronalen Netzes sind die Flexibilitdt und die Skalierbarkeit einer Implementierung. Eine
Realisierung ist flexibel, wenn unterschiedliche neuronale Netzwerkmodelle implementiert und
deren Parameter verdndert werden konnen. Sie ist skalierbar, wenn die Erweiterung der
Hardwarearchitektur (z.B. Anzahl der Prozessoren, GroBe des Gewichtsspeichers) und damit
die Steigerung der Leistung (CPS, CUPS) und der Netzwerkgré8e einfach moglich ist.

Eines der wichtigsten und hiufig ausschlaggebenden Beurteilungskriterien ist letztlich der Preis
eines Neurocomputers. Hier ist zum einen der Preis fiir die eigentliche Hardware zu
beriicksichtigen als auch der Preis fiir die im allgemeinen unerlédBliche Softwareunterstiitzung in
Form von angepaften KNN-Entwicklungsumgebungen. Anhand der vorgestellten
Vergleichskriterien werden in den folgenden Abschnitten verschiedene Realisierungsvarianten
fiir Neurocomputer diskutiert.

Neurocomputer auf der Basis von Standard-VLSI-Bausteinen

Der Begriff Neurocomputer ist, trotz seiner h#ufigen Verwendung in der einschligigen
Literatur, bisher noch nicht genauer definiert worden. Im allgemeinen versteht man unter dem
Begriff Neurocomputer eine (Rechner-)Hardware, auf der sich KINN effizient implementieren
lassen. Unter effizient versteht man wiederum eine schnellere (z.B. in CPS und CUPS
ausgedriickt) oder eine kostengiinstigere Implementierung als dies zum Beispiel mit
konventionellen (Parallel-)Rechnern mdglich ist. Konventionelle Rechner sind in diesem
Zusammenhang Rechner, die nicht speziell fiir die Implementierung von KNN konzipiert
wurden. Hierzu gehéren sowohl Arbeitsplatzrechner (z.B. PCs), GroBrechner, Supercomputer
(z.B. der CM5-Rechner von Cray Research) als auch massiv parallele Rechnerarchitekturen
(z.B. die Connection Machine, Tab. 1), die man im allgemeinen nicht als konventionelle
Rechner bezeichnet. Der Preis und die Leistungsfahigkeit dieser konventionellen Rechner
bilden somit untere Schranken fiir eine effiziente Implementierung von KNN auf

Neurocomputern.

Zusatzkarten (Add-On-Boards)

Die einfachste und kostengiinstigste Art die Leistungsfahigkeit eines Arbeitsplatzrechners zu
erhohen, bilden sogenannte Beschleuniger- oder Zusatzkarten. Sie haben alle den prinzipiell
gleichen Aufbau. Basierend auf einem leistungsfihigen Prozessor, hier kommen sowohl CISC
(complex instruction set computer, z.B. der Mikroprozessor MC68040 von Motorola)), RISC
(reduced instruction set computer, z.B. der Transputer von INMOS oder der Prozessor 1960
von Intel) als auch insbesondere DSP (digital signal processor, z.B. der TMS320C30 von
Texas Instruments oder der DSP-32 von AT&T) Prozessoren zum Einsatz, verfiigen die Karten
iiber einen moglichst grofen und schnellen Datenspeicher sowie die notwendige Ansteuer-
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bzw. Schnittstellenlogik. Zielsysteme sind im wesentlichen IBM-PCs und Kompatible sowie
gingige Workstations (z.B. von SUN Microsystems oder Hewlett Packard).

Die GroBe der bearbeitbaren KNN und letztlich die Leistungsfihigkeit der Beschleunigerkarten
hingt einerseits von der GroBe des Gewichtsspeichers und andererseits von der Rechenge-
schwindigkeit der verwendeten Prozessoren ab. Die Anzahl der speicherbaren Gewichte ergibt
sich einfach aus dem Quotienten des Gewichtspeichers und der geforderten
Darstellungsgenauigkeit eines einzelnen Gewichtes. Die Rechengeschwindigkeit ist durch den
verwendeten Prozessor weitgehend festgelegt, wobei zu beachten ist, da8 CISC-Prozessoren
ia. durch einen mathematischen Coprozessor unterstiitzt werden k&nnen. Einen wichtigen
EinfluB auf die Rechengeschwindigkeit hat auch die Art der verwendeten Speicherbausteine
(statische RAMs (random access memories) versus dynamische RAMs). Aus Kostengriinden,
der Preis einer Zusatzkarte wird weitgehend durch die Speichergrofe bestimmt, werden in
kommerziellen Produkten fast ausschlieBlich die langsameren, aber preisgiinstigeren
dynamischen RAMs (DRAMs) verwendet.

Aufgrund der derzeitigen Verfiigbarkeit und den relativ niedrigen Anschaffungskosten
dominieren zur Zeit die Beschleunigerkarten den Markt fiir neuronale Hardware. Die in Tabelle
1 genannten Produkte ANZA+ und Delta II gehoren zu den ersten am Markt verfii gbaren
Zusatzboards fiir PCs zur schnellen Simulation von neuronalen Netzen. Fiir die schnelle Mul-
tiplikation und Addition werden hier keine Standard-Prozessoren sondern fiir diese Operationen
spezialisierte VLSI-Bausteinsitze verwendet. Beide Produkte gehdren aber nicht mehr zu den
neuesten Entwicklungen der am Markt vertretenen Firmen. Die steigende Leistungsfihigkeit
der Mikroprozessoren, die sich der 100 MFLOP (Millionen Floating Point Operations per
Second) Leistungsmarke nihert, und die steigende Dichte bei den integrierten
Speicherbausteinen fiihrt auch zu leistungsfihigeren Beschleunigerkarten, soda fiir Add-On-
Boards Leistungswerte von 100 MCPS bzw. 50 MCUPS moglich werden.

Parallelrechner

Parallelrechner mit vielen einzelnen Prozessoren sind heute im Bereich der Rechnersysteme
nichts neues mehr. Auf allen bekannten Parallelrechnersystemen wurden bereits neuronale
Netze implementiert. Bekannte Vertreter sind beispielsweise die Connection Machine von
Thinking Machines (Tab. 1) mit bis zu 65.536 bitseriellen Rechenwerken oder der iPSC von
Intel mit maximal 128 Mikroprozessoren vom Typ Intel 80386, unterstiitzt vom 80387-
Coprozessor. Die Connection Machine legt eine Implementierung von neuronalen Netzen nahe,
in welcher jeder Prozessor mit der Simulation eines PEs beauftragt ist. Im allgemeinen haben
Parallelrechner aber weniger Prozessoren als das zu simulierende neuronale Netz Neuronen
(PEs) hat (wie z.B. beim iPSC), soda8 ein Prozessor mehrere PEs simulieren muB. Man
spricht hier auch von einer virtuellen KNN-Implementierung. Dies muB nicht
notwendigerweise eine geringere Leistungsfihigkeit nach sich ziehen, da entsprechend
leistungsfihigere Prozessoren die gerin gere Parallelitit wieder ausgleichen kénnen.
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Produkt Hersteller Hardware Gewichts- CPS/CUPS Preis
speicher[MB] x1000%
Connection Thinking Bit-serielle 100M/40M
Machine CM-2 | Machines Corp. | Prozessoren
ANZA+ Hecht-Nielsen | Weitek-X1.- 10MByte 6M/1.5M
Corp. Chipsatz
Delta II SAIC Cipsatz 12Mbyte 11M/3M
N6400 Adaptive digitaler ASIC, | 256KByte 1.6G/256M |ca. 1
Solution Inc. 64 PE SRAM
MA 16 Siemens AG digitaler ASIC, | off chip 800M/-- ca. 2
4 PE
CNAPS Adaptive 4xN6400 IMB 5.1G/1.1G
Solution Inc.
Synapse-1 Siemens AG 8xMA-16 128M 5.1G/ca.1G  |ca. 200
NAM256 AT&T analoger ASIC, } 32KBit 80G/-- ca. l
max. 256PE
ETANN INTEL analoger ASIC, | analoge 2G/--
80170NX 64 PE Gewichte

Tabelle 1 Beispiele fiir Neurocomputer und Neuro-Chips

Das eigentliche Problem bei der Realisierung von neuronalen Netzen auf
Parallelrechnersystemen resultiert aus dem hohen Vernetzungsgrad neuronaler Netze. Die
Prozessorknoten eines Parallelrechners sind aus Aufwandsgriinden nur mit einer Teilmenge der
iibrigen Knoten verbunden. Bei der Versendung von Aktivierungswerten von PEs innerhalb
des neuronalen Netzwerkes miissen daher mehrere Prozessoren durchlaufen werden. Der
ndtige Kommunikationsaufwand steigt schnell iiber die Kapazitit der Kanile, so daf die
Rechenleistung des Systems nicht mehr vollstindig ausgeschdpft wird. Zur Ausnutzung der
maximalen Systemleistung stellt sich die nicht triviale Aufgabe, eine Ausgewogenheit zwischen
Parallelisierungsgrad und Kommunikationsaufwand zu erreichen.

Parallelrechnersysteme des o.g. Typs sind kommerziell erhiltlich und erméglichen eine schnelle
Simulation von sehr groBen neuronalen Netzen. Allerdings stellen sie fiir viele Anwendungen
aufgrund der hohen Anschaffungskosten sowie des groBen rdumlichen Volumens keine
adiquate Losung dar. Die Liicke zwischen Einprozessorsystemen und hochgradig parallelen
Rechnersystemen bilden erwartungsgemiB Systeme mit wenigen (<100) Prozessoren.
Insbesondere sind hier auch die Systeme interessant, die als Zusatzkarten fiir
Arbeitsplatzrechner zur Verfiigung stchen; z.B. Transputerkarten fiir den PC. Der
iiberwiegende Anteil der bekannten Systeme verwendet derzeit noch eine lineare Anordnung der
Prozessoren (bus-oriented architecture), die relativ einfach zu programmieren ist. Ansonsten
muB auch hier auf eine Ausgewogenheit zwischen Parallelisierungsgrad und

Kommunikationsaufwand geachtet werden.
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Neurocomputer mit Multiprozessorarchitektur kénnen derzeit eine Leistungsfihigkeit von bis zu
1 GCPS (Giga=109) bzw. 500 MCUPs erreichen. Auch bei den Parallelrechnern wird die
stindige Weiterentwicklung von Mikroprozessoren und von speziellen, aber KNN-
unspezifischen VLSI-Bausteinen unmittelbar auch zu einer Erhdhun g dieser Leistungswerte
fiihren. Hier liegt ein nicht zu vernachldssigender Vorteil von Neurocomputern auf der Basis
von handelsiiblichen VLSI-Bausteinen.

Neurocomputer auf der Basis neuronaler ASICs

Die bisher betrachteten Hardwarerealisierungen von KNN bewegen sich auf sehr
konventionellen Bahnen. Der nichste Schritt ist die Entwicklung von speziellen, auf den
Einsatz zugeschnittenen VLSI-Bausteinen, die hier mit neuronalen ASICs bezeichnet werden
(Bild 1). Neuronale ASICs kénnen sowohl in analoger als auch digitaler Schaltungstechnik
realisiert werden. Ferner findet man in der Literatur die Unterscheidung in Neuro-Chips und
neuronale Signalprozessoren (neural signal processor, NSP).

Neuro-Chips werden fiir konkrete Anwendungen entwickelt, welche mit kleinen Netzen eines
bestimmten KNN-Modells auskommen. Bei geringer Zahl von Neuronen bzw. Gewichten
lassen sich diese zur Ermittlung einer anwendungsgerechten Topologie und der optimalen
synaptischen Werte (Gewichte) auf heutigen Rechnern bzw. den im vorhergehenden Abschnitt
erwihnten Neurocomputern noch in ertriglicher Zeit simulieren. Aufgrund der bekannten
Erfolge der Mikroelektronik ist es bereits heute ms glich, kleine bis mittelgroBe neuronale Netze
(bis zu 1000 PEs, 1 Million Gewichte) auf einem bzw. wenigen Bausteinen zu integrieren. Der
modulare und oftmals reguldre Aufbau neuronaler Netze kommt den Chip-Entwicklern sehr
entgegen, weil sich dadurch die Entwurfskomplexitit deutlich verringert. Aus diesem Grunde
gibt es eine Vielzahl von Entwurfsstudien zu Neuro-Chips, von denen aber nur wenige
kommerziell erhiltlich sind oder bereits angewendet werden. Die Diskrepanz zwischen dem
heutigen Potential der Mikroelektronik und dem Realisierungsstand neuronaler ASICs
verringert sich aber zunehmend mit der Verbreitung und Anwendung von neuronalen Netzen.
Mit einer stirkeren Nutzung von KNN in der Informationstechnik wird auch der Bedarf an
Spezialbausteinen wachsen. Insbesondere dann, wenn Lésungen mit sehr geringem Platzbedarf
und Echtzeitverhalten gefordert sind.

Die Analyse und Erforschung von neuen KNN-Modellen und Lernverfahren fiir Netze mit
mehreren tausend Neuronen erfordern allerdings leistungsfihigere Spezialrechner. Um die
Forderung der Anwendungsforschung nach diesen leistungsfahigen General-Purpose-
Neurocomputern zu erfilllen und den Neuro-Chip-Entwicklern eine geeignete
Simulationsplattform bereitstellen zu konnen, muB die Architektur eines derartigen
Neurocomputers auf den rechenintensiven Operationen aufbauen, die einer mé glichst groBen
Palette von KNN-Modellen gemeinsam ist. Zu den rechenintensiven Operationen gehéren die
Multiplikation und Addition von Matrizen, die Transposition und Skalierung von Matrizen, die
Normierung von Vektoren und die Bestimmung von Minima/Maxima [5]. Um die
Leistungsfahigkeit von Neurocomputern auf der Basis von kommerziellen Mikroprozessoren zu
erhohen, sind hier spezielle VLSI-Bausteine gefordert (Neural Signal Processor, NSP). Diese
sind optimiert fiir eine schnelle Ausfiihrung der genannten rechenintensiven KNN-Operationen,
wohingegen die nicht-rechenintensiven Operationen von einem Mikroprozessor bearbeitet
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werden kénnen [5]. Die Programmierung solcher Neurocomputer erfolgt ebenfalls auf der
Grundlage der neuronalen Elementaroperationen,

Offensichtlich weisen Neuro-Chips und NSPs unterschiedliche Merkmale auf. Um einen
Einblick in den Stand der Technik zu geben, werden im folgenden einige ausgewihlte, bereits
realisierte VLSI-Bausteine vorgestellt.

Digitale neuronale ASICs

Die Digitaltechnik ist nach wie vor die dominierende Schaltungstechnik im Bereich der
Rechnerhardware. Der Vorteil der Digitaltechnik liegt darin, daB die Modellierung der
Netzwerkeigenschaften weitgehend unabhingig von der schaltungstechnischen Realisierung ist.
Ferner ist es leichter zwischen verschiedenen KNN-Modellvarianten umzuschalten.
Hauptaufgabe des digitalen Schaltungstechnikers ist eine fiir die geforderte Reaktionszeit
geeignete Multiplizier- Akkumulatorarchitektur mit minimalem Flichenbedarf zu entwickeln
sowie die Einstellbarkeit von Charakteristiken und Parametern eines KNN-Modells in
geniigend weitem Bereich zu erméglichen [5].

In Tabelle 1 sind zwei Beispiele fiir digitale neuronale ASICs aufgefiihrt (N6400, MA16), die
bereits realisiert und kommerziell erhiltlich sind. Fiir diese Bausteine ist auch die notwendige
Entwicklungsumgebung verfiigbar. Der N6400 und der MA16 sind NSPs und daher ausgelegt
fiir den Aufbau eines General-Purpose-Neurocomputers, mit dem eine Vielzahl von neuronalen
Netzwerkmodellen simuliert werden kann. Beide Bausteine gehoren zu den derzeit neuesten
Entwicklungen im Bereich der kommerziellen neuronalen ASICs. Sie unterstiitzen insbesondere

auch das Lernen von KNN.

Der N6400 (Adaptive Solutions [9]) enthilt 64 nutzbare Prozessoreinheiten (16 Bit
Rechenwerke mit einem 8x16 Bit Multiplizierer) mit jeweils 4KByte (K=1024) statischem
Speicher (SRAM) auf dem Chip. Die Auflésung der Gewichte kann zwischen 1 und 16 Bit
variieren. Damit kann ein N6400 maximal 128K 16Bit Gewichte bzw. 2048K 1Bit Gewichte
speichemn. Fiir die Simulation von groBeren KNN miissen entsprechend mehr Bausteine
verwendet werden. Die Ausgabe eines Neurons ist auf maximal 8 Bit beschrinkt.

Der MA16 (Siemens AG [10]) hat eine systolische Architektur mit 4 Verarbeitungseinheiten,
die unter anderem vier 16x16 Bit Multiplizierer mit nachfolgender Addierereinheit enthalten. Die
Ergebnisse konnen bis zu 47 Bit aufakkumuliert und ausgegeben werden. Neben dieser
Grundoperation sind eine Reihe weiterer Operationen auf dem Chip realisiert, mit denen man
alle géingigen KNN Algorithmen rechnen kann (Abstinde zwischen Vektoren, min/max-Suche,
etc.). Im Gegensatz zum N6400 ist der Gewichtsspeicher nicht auf dem Baustein integriert.
Damit wird wertvolle Chipfliche zur Steigerung der Rechenleistung verwendet, wihrend
kostengiinstige DRAM Bausteine zur Speicherung der Daten dienen. Ferner kann so der
Gewichtsspeicher und damit auch die Netzwerkgroe einfacher variiert werden.

Digitale neuronale ASICs erreichen bereits als einzelne VLSI-Bausteine eine hhere Leistung
als die unter 3.2 erwidhnten Parallelrechner. Fiir den N6400 und MA16 sind bereits
Neurocomputer mit mehreren solcher Bausteine und entsprechenden KNN-
Entwicklungsumgebungen entwickelt worden (Tab. 1: CNAPS, Synapse-1). Je nach
Ausstattung dieser Neurocomputer sind Leistungen von 10 GCPS und 3 GCUPS realisierbar.
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Insbesondere die hohe Lernleistung und die Flexibilitit machen diese beiden Systeme geeignet
sowohl fiir die Analyse der Eigenschaften und der Anwendungsfelder unterschiedlicher KNN-
Modelle, als auch fiir die Simulation von Neuro-Chips.

Beispiel digitaler Neuro-Chips fiir die Realisierung spezieller KNN-Modelle finden sich
ebenfalls in der einschligigen Literatur (1-8]. Digitale Neuro-Chips haben aber kein
nennenswertes kommerzielles Interesse geweckt, weil sie gegeniiber NSPs zu unflexibel und
gegeniiber analogen Neuro-Chips sowohl langsamer als auch flichenintensiver sind,

Analoge Neuro-Chips

Eine der Stirken der digitalen Schaltungstechnik ist die hohe Rechengenauigkeit gegeniiber der
Analogtechnik. Dadurch ist sie in den letzten Jahrzehnten in immer mehr Bereiche
eingedrungen, die vormals von der analogen Schaltungstechnik beherrscht wurden. Durch die
neuronalen Netze hat die Analogtechnik jedoch in den letzten Jahren eine gewisse Renaissance
erfahren. Die Auffassung, daf viele neuronale Modelle auch mit geringer Rechengenauigkeit
arbeiten konnen, hat analogen Realisierungen neue Méglichkeiten ein gerdumt. Die zentralen
Operationen Multiplikation und Addition konnen durch physikalische Gesetze, z.B. das
Ohmsche und Kirchhofsche Gesetz, mit geringem Aufwand realisiert werden. Zudem sind die
Schnittstellen von elektronischen Systemen zur AuBenwelt oftmals ebenfalls analog, sodaB eine
Analog-Digital- bzw. Digital-Analog-Wandlung der Ein-/Ausgabesignale entfallen kann.

Hauptproblem der analogen Realisierung ist derzeit die analoge Speicherung der Gewichte eines
neuronalen Netzes. Umgeht man dieses Problem, indem man die Gewichte digital speichert,
gibt man einen wesentlichen Vorteil einer analogen Realisierung auf, die Kompaktheit. Viele
Realisierungsvarianten entschirfen das Problem insofern, daB sie nur binire bzw. ternire
Gewichte (-1,0,+1) zulassen (Tab. 1, NAM256). Eine interessante Alternative bietet die
Verwendung von sog. Floating-Gate-Transistoren, die auch bei digitalen EEPROM-Speichern
(elctrically eraseable programmable read only memory) Anwendung finden. Dieses Prinzip
wird beispielsweise im ETANN-Chip (electrically trainable artificial neural network, Tab. 1)
von Intel [11] ausgenutzt, dem zur Zeit einzigen kommerziell erhiltlichen analogen neuronalen
ASIC. Der ETANN-Chip, auf dem 64 PEs mit insgesamt 10240 Gewichten integriert sind,
kann 2 GCPS berechnen. Die Ein-/Ausgaben des Bausteins sind analog, was sehr interessant
fir sensorische Anwendungen ist. Das Lernen wird allerdings aufgrund der relativ langen
Programmierzeiten fiir die EEPROM-Zellen (im Millisekundenbereich) nicht direkt unterstiitzt.
Die Gewichte werden vorher berechnet, z.B. von einem KNN-Simulator, und anschlieBend in
die Speicherzellen einprogrammiert. Ein anschlieBendes Nachlernen (fine tuning) zur
Leistungsverbesserung wird von der ebenfalls kommerziell erhéltlichen Entwicklungs-
umgebung allerdings unterstiitzt.

Neben der modellorientierten Umsetzung von KNN in Silizium hat sich der sogenannte
neuromorphische Ansatz (neuromorphic approach [12]) entwickelt. Bei diesem Ansatz, der von
der analogen Schaltungstechnik dominiert wird, findet eine stiirkere Einbeziehung der
physikalischen Eigenschaften mikroelektronischer Bauelemente und Schaltungen statt, in dem
diese Eigenschaften direkt in das KNN-Modell mit einflieBen. Bekannte und eindrucksvolle
Beispiele sind die von C. Mead und seiner Forschergruppe entwickelte Silizium-Retina und
-Cochlea [12]. In diesen Bausteinen sind die Sensorelemente und die Signalverarbeitun gsstufen
eng miteinander verzahnt. Fiir diese Integration zeigt sich die analoge Schaltungstechnik der
digitalen Technik deutlich iiberlegen. Zum einen, weil die Eingangssignale analog sind. Zum
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anderen, konnen die Signalvorverarbeitungsalgorithmen (z.B. logarithmische Kompression,
Mittelwertbildung, etc.) sehr effizient mit analogen Bauelementen realisiert werden. Der
neuromorphische Ansatz ist zur Zeit ausgesprochen forschungsorientiert, daher sind
kommerzielle Produkte noch nicht verfiigbar.

Aufgrund der eingeschriinkten Rechengenauigkeit analoger Schaltungen und dem Problem bei
der adaptiven Gewichtsspeicherung eignen sich analoge neuronale ASICs nur zur Realisierung
von neuronalen Netzen mittlerer GroBe, die mit einer Rechengenauigkeit von weniger als 8 Bit
auskommen. In diesem Bereich kénnen analoge Realisierungen durchaus interessante
Alternativen zu digitalen Losungen bieten, die sowohl wesentlich schneller arbeiten als auch mit
weniger Fliche und geringerem Leistungsverbrauch auskommen. Allerdings erkauft man sich
diese Vorteile mit einem Verlust an Flexibilitdt, da i.a. nur ein bestimmtes neuronales Modell
realisiert wird, und an Skalierbarkeit, da zumindest die Anzahl der Eingiinge pro PE festgelegt
ist. Hat man fiir eine spezielle Anwendung den Nutzen eines bestimmten KNNs nachgewiesen,
sind diese Freiheitsgrade allerdings nicht mehr entscheidend. Analoge neuronale ASICs zielen
daher besonders auf sogenannte eingebettete Anwendungen (embedded applications), wie z.B.
die Erkennung von handgeschriebenen Ziffern oder Buchstaben auf Briefen oder Schecks,

Diskussion und Ausblick

Die Realisierung von Kiinstlichen Neuronalen Netzen in Hardware stellt bereits heute aufgrund
der revolutiondren Entwicklung der Mikroelektronik kein prinzipielles Problem mehr dar. Fast
alle namhaften Chip-Hersteller zeigen Aktivititen auf dem Gebiet der Hardwareentwicklun g fiir
KNN, so da8 sich die Anzahl der kommerziell verfiigbaren Neurocomputer bzw. Neuro-Chips
auch in Zukunft steigern wird. Dariiber hinaus gibt es vielfdltige Forschungs- und
Entwicklungsprojekte an Universititen und Forschungsinstituten. Die Leistun gsfahigkeit der
verschiedenen Neurocomputerkonzepte (Bild 1) wird sich ebenfalls mit der technologischen
Weiterentwicklung stindig erhdhen. Ahnlich wie die Zielsetzung der TeraFLOP-
(1012FLOP=106MFLOP)-Initiativen im Bereich der Hochleistungsrechner werden auch im
Bereich der Neurocomputer 1012CPS (TeraCPS) bis zum Jahre 2000 an gestrebt. Diese
Leistungsstufe wird noch erreichbar sein, ohne auf optoelektronische und optische Konzepte
zuriickgreifen zu miissen. Die Mikroelektronik wird somit noch fiir mindestens eine Dekade die
Hardware-Realisierung von KNN dominieren.

Die Entwicklungslinien fiir Neurocomputer, wie sie in Bild 1 aufgezeigt und hier diskutiert
worden sind, werden in Zukunft weiterhin Bestand haben. In Bild 2 werden die Rechenleistung
und Speicherkapazitiit der hier diskutierten vier Neurocomputervarianten beziiglich wichtiger
KNN-Anwendungsfelder gegeniibergestellt. Arbeitsplatzrechner, gegebenenfalls mit
Beschleunigerkarten aufgeriistet, werden aufgrund ihrer groBen Verbreitung, ihrer Flexibilitit
und der Verfiigbarkeit von unterschiedlichen KNN-Simulatoren weiterhin das untere
Leistungsspektrum abdecken (Bild 2). Parallelrechner und insbesondere Neurocomputer auf
der Basis von digitalen neuronalen ASICs ermoglichen gegeniiber diesen Systemen eine
Leistungssteigerung um mindestens zwei GroBenordnungen. Eine wichtige Voraussetzung fiir
die Nutzung dieser Leistung und die Akzeptanz dieser Systeme wird die Verfiigbarkeit
adiquater KNN-Entwicklungsumgebungen sein. Das gilt insbesondere fiir General-Purpose-
Neurocomputer, die fiir eine flexible Simulation und eine Analyse verschiedener KNN-Modelle
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ausgelegt sind. Die Entwicklungsunterstiitzung und die Benutzerschnittstelle spielen eine
bedeutende Rolle fiir den Erfolg dieser Systeme.
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Speicherkapazitit (Anzahl Gewichte)

Bild 2 Einordnung der Neurocomputervarianten sowie wichtiger KNN-Anwendungsfelder
beziiglich der Speicherkapazitit und Rechenleistung (nach [5] und [8]): 1: Add-On-
Boards; 2: Parallelrechner; 3: NSP-Systeme; 4: Neuro-Chips.

Anwendungsspezifische und modellspezifische Neuro-Chips bilden das obere Ende des
Leistungsspektrums neuronaler Hardware. Hier treten analoge Realisierungen in den
Vordergrund, die allerdings in der Gewichtsauflosung (< 8 Bit) und Flexibilitit sehr ein-
geschrankt sind. Spezialisierte neuronale ASICs eignen sich insbesondere fiir eingebettete,
zeitkritische Anwendungen, wie z.B. die Erkennung einfacher Muster im sensorischen Bereich
(Bild- oder Sprachvorverarbeitung), die zudem noch eine kompakte Realisierung fordern.
Analoge neuronale ASICs unterstiitzen derzeit noch nicht das Lernen, d.h. hier bendtigt man
leistungsfihige digitale Neurocomputer fiir die Lernphase und die Simulation der
Anwendungen.

Die in diesem Artikel hiufig zitierten LeistungsmaBe CPS und CUPS sind, wie bereits erwihnt,
nur grobe Anhaltspunkte bei der Beurteilung von Neurocomputern. Signifikant sind diese
Angaben streng genommen erst dann, wenn allgemein akzeptierte Bestimmungsverfahren
(benchmarks) angewendet werden, was zur Zeit aber nicht der Fall ist. Geringe Unterschiede in
den Leistungsangaben von Neurocomputern sind daher mit Vorsicht zu genieBen, wihrend
Unterschiede von einer GroBenordnung und mehr als Entscheidungskriterium durchaus
herangezogen werden kénnen. Insbesondere sollte die Angabe von CPS bzw. CUPS auf die
realisierbare Gewichtsgenauigkeit bezogen werden. Umso geringer die Gewichtsgenauigkeit,
umso hoher ist die prinzipielle Leistungsfihigkeit einer Hardwareimplementierung. Zum



- 127 -

Beispiel ist die hohe Leistungsfihigkeit der neuronalen digitalen ASICs N6400 und MA16
(Tab. 1) gegeniiber konventionellen Parallelrechnern auch darin begriindet, daB die maximale
Gewichtsgenauigkeit auf 16Bit beschrinkt wurde. Dadurch nehmen die integrierten
Rechenwerke (PEs) weniger Siliziumfliche ein, werden schneller und es kénnen mehr PEs auf
einem Baustein integriert werden (héherer Parallelititsgrad). Entsprechendes gilt fiir die
analogen neuronalen ASICs. Inwieweit diese Einschrinkungen signifikant werden, hingt
letztlich von dem KNN-Modell und der Anwendung ab.

MCPS Preis (DM) DM/MCPS | Antwortzeit | GroBe

(Millisek.)
Add-On-Board 100 5.000 50 100 10
Parallelrechner 1.000 1.000.000 1.000 100 1.000
Neurocomputer 10.000 200.000 20 10 100
Neurochip 100.000 1.000 0,01 0,01 1

Tabelle 2 Grober Vergleich verschiedener KNN-Realisierun gen

Mindestens genauso wichtig wie das Auswahlkriterium Geschwindigkeit ist der Preis bzw. das
Preisleistungsverhiltnis eines Neurocomputers. In Tab. 2 ist eine Gegeniiberstellung der
Anschaffungskosten (soweit bekannt) und der CPS-Angaben der in Bild 2 aufgefiihrten
Neurocomputervarianten aufgezeigt. Hier wird deutlich, daB die Entwicklung spezieller
Hardware fiir Neurocomputer neben reinen Geschwindigkeitsaspekten auch aufgrund eines
besseren Preisleistungsverhiltnisses (DM/MCPS) sinnvoll ist. Neben dem Preis fiir die
Hardware ist hier auch der Preis fiir die notwendige KNN-Entwicklungsumgebung zu
beriicksichtigen. Fiir Neuro-Chips ergeben sich ferner GroBenvorteile fiir die Realisierung von
kleinen und mittelgroBen KNN, wobei die in Tab. 2 angegebenen Zahlen nur eine grobe
Abschétzung darstellen. Die aufgefiihrten Antwortzeiten ergeben sich aus dem Quotienten von
Speicherkapazitit und Rechenleistung bezogen auf die Angaben aus Bild 2.

Zusammenfassend sind die wichtigsten Entscheidungskriterien bei der Auswahl eines
Neurocomputers der Preis, die Verfiigbarkeit einer komfortablen Entwicklungsumgebung, die
Geschwindigkeit (CPS; CUPS), die Skalierbarkeit und die Flexibilitit. Die Rangfolge dieser
Kriterien hingt letztlich vom Anwendungsprofil ab. Befindet sich der Anwender noch im
Experimentierstadium, dann sind neben dem Preis und der Verfiigbarkeit einer komfortablen
Benutzerschnittstelle die Flexibilitit und die Lernleistung eines Neurocomputers entscheidend.
Steht fiir eine spezielle Anwendung das zu verwendende KNN-Modell inklusive der
Modellparameter fest, so treten neben dem Preis die Geschwindigkeit (CPS), gegebenenfalls
die Kompaktheit und die Einbettung, d.h. die Integration des Neurocomputers in eine
vorgegebene (Hardware-) Umgebung, in den Vordergrund. Aus diesen Griinden wird es auch
in Zukunft nicht den allgemeinen Neurocomputer fiir alle Falle geben, sondern in Abhzingigkeit
von dem Anwendungs- bzw. Anforderungsprofil werden die verschiedenen, hier skizzierten
Konzepte fiir Neurocomputer auch weiterhin ihr Einsatzgebiet finden.
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