REINHARD
KEIL-SLAWIK

DEPARTMENT OF
COMPUTER SCIENCE
H. NIXDORF INSTITUTE

COGNITIVE IMPERIALISM

TO COMMENT ON SIMON'S ARTICLE IS A DIFFICULT ENDEAVOUR.
First, neither he nor L are literary critics; I am a computer scientist,
he is a cognitive scientist. Second, Simon touches on many basic is-
sues and concepts in such a brief way that it is impossible to assert
what cognitive psychology has to offer to literary crificism—apart
from adding a new and imperialistic (as Simon admits) view to the
field. Last but not least, his arguments are based on the physical
symbol system hypothesis which I do not share. However, discus-
sions of the validity or appropriateness of this hypothesis fill up al-
ready thousands of pages—no need to add yet another page.

On the other hand, it is the central issue in Simon”s paper,
and thus needs some consideration. I will oy to cope with these
problems by selecting one issue that may help to shed some light
on the underlying assumptions and consequences of this hypothe-
sis, and which, at the same time, isrelated 1o 2 common field of in-
terest for both of us, namely programming and uhderstanding
programs. The crucial queston is: Can meaning be located in a
(program) text, and hence be deduced by interpreting this text®

Itis my hope that the way I characterise the problems and
draw the conclusions is not completely irrelevant to the field of lit-
erary criticism.

The problem of locating meaning in a text is a crucial issue for
software engineers because the engineering perspective is strongly
tied to the idea of writing a complete, consistent, and unambigu-
ous specification of a system such that this document could be
handed over to other persons and they would know exactly what
to do. Thiswould imply that the meaning can be located in the re-
spective text. If this were true, it would equally well apply to all de-
sign artefacts, be it programs (source code), data models, require-
ments definitions, (mathemarical) specifications, or user manuals;
and it would solve a ot of problems,

However, more and more empirical studies and laboratory
observations of the programming process reveal that the meaning
created in the communicative processes among programmers, de-
signers, users, and managers, cannot be captured by documents:.
And there are numerous practical examples showing us that we
should not confuse ¢-¢ result of 3 process, the document, with the
process as such. We have to distinguish between programming as
discourse, which is a meaning-creating activity, and programs as text.
Software developmentis not only the production of a Pproduct, but
along and tc‘iﬁﬂllsl&amingpmces. Dedgnate&cﬁemagcasa
trade-off between various interests and technical alternatives
rather than representing self.conmined specifications of technical
solutions to wellimown problermns, '

Reinhard KEIL-SLAWIK




If we regard software as a mathematical object that is inter-
preted by a machine, its sernantics are a static atribute of the pro-
gram text. Once the instruction sequence is fixed, the behaviour
of a program is determined solely by the input. However, the cru-
cial point for developers as well as for users is determining
whether a given instruction sequence is appropriate for support-
ing execution of the rask at hand, i.e., finding out which input se-
quence will produce the desired output in a suitable and compre-
hensible manner. Since sofiware embodies a variety of claims and
assumptions about the context and the nature of the problems to
be solved by installation of the system at the workplace, the prop-
erties describing the relatons between software and the usage
context cannot be expressed in terms of formalisms. Too many
mutually influendal factors have to be waken into account. The na-
ture of the problem as it is perceived by the designers changes
with every new insight, and very often incompatibie requirements
lead to design conflicts that have to be resolved.

The knowledge required for design, then, has to be built up
in the course of a tedious and often painful learning process. Dur-
ing this process, the designers learn which aspects fit into their al-
ready developed framework, and which ones require redesign,
correction, or restructuring of already existing design artefacts
and programs. The reasons and motvatons behind such changes,
and the arguments concerning how these changes are to be
achieved while maintaining the overall quality of the design, are
not part of a program or its specification, and they cannot be doc-
umented in their entirety.

The same holds from a user’s perspective. As designers of in-
teractive systems, we have learned that users do not understand
systems by reading bulky user manuals. It is through the combina-
tion of reading manuals, using the system, and talking to fellow
colleagues that the meaning is created. Thus, to foster communi-
cation and learning among the parties involved in the develop-
ment process, documents have to be complemented by prototypes
(executable programs), and the development of both of them re-
quires extensive communicaton.

To conclude: in systems development meaning is not a rela-
tion between an individual human being and a text. It is a combi-
nation of acting and communicating in a rather complex social set-
ting. Reading and writing only covers a small, although important,
fraction of the overall meaning-creating process. Meaning cannot
be located in a text as long as the interpretation of the respective
text requires some kind of learning. If no learning is required, we
can behave as if the meaning would reside in a text because we ad-
here to 2 frame of reference such as defined by conventions, stan-
dards, rules, or theories that determine the possible interpretation.
Meaning resides in the social processes of developing, using, and,
especially, revising such regulations and conventions due to our
experience. Our behaviour is, of course, structured to a large ex-
tent by regular patterns or the execution of mechanisms because
these patterns and mechanisms provide shortcuts for the human
mind. We do not have to learn the same thing over and over again.
By finding an appropriate symbolic representation, we may even

STANFQRD
HUMANITIES
REVIEW



be able to delegate the symbolic transformations that do not re-
quire human-conscious interpretation to a machine. Cognitive sci-
ence may help us to produce explicit descriptions of such mechan-
ic transformations. Thus, to the extent the task of literary criticism
would be to identify such regular patterns, cognitive science could
be of some use. If, however, the primary problem is not to deter-
mine the meaning in the most precise way but to trigger discourses
and to initiate changes, or to enable our scholars to find their own
way of interpreting the world rather than o seek for the most and
only appropriate interpretation, then the fight among different
schools in the form of constructve critique may prove to be a pre-
requisite to accomplish this goal.

Jerome Bruner has made us aware of the paradigmatic and the
narrative mode of thought and that both of them complement each
other—neither one can be replaced by the other (Bruner, 1984).
Simon advocates the paradigmatic mode of thought but fails to
describe its limitatons. I will not deny that cognitive science may
provide a productive stimulus for literary criticism, but in its impe-
rialistic form, I am afraid, it will only add yet another doctrine to
the “current noisy combat™—and, even worse, in the form present-
ed it might not be the best doctrine one could add.

NOTES

1 For an excellent overview of the various facets involved here as pre-
sented by scientists with different scientific backgrounds see Floyd et al.
(1992), and Naur (1992).



	Seite 1 
	Seite 2 
	Seite 3 

