System Level Simulation Concepts

Franz J. Rammig
Paderborn University
Dept. of Mathematics and Computer Science
Paderborn, Federal Republic of Germany

Abstract

In this paper special aspects of simulating digital equipment at the
system level are addressed. After a short characterization of the dif-
ferent levels of abstraction the conceptual foundations of the system
level are discussed. The more active point of view as represented
by communicating processes is compared with the more reactive one
of event triggered activities. CSP and Interpreted Petri Nets serve
as ezamples for the different classes. These concepts are directly
reflected by modelling concepts for the description of such systems.
YHDL as a standardized traditional approach is compared with more
m@ovative ones. As ezamples of such specification techniques object-
Orzented approaches and graphical languages are discussed. Not all
simulation techniques are well suited for system level applications.
Again reflecting the basic concepts, process-oriented techniques and
event scheduling seem to be the most appropriate solutions.

1. Levels of Abstraction

Today in the area of digital hardware design there is a rather widely
accepted scheme of 6 abstraction levels [RA1]. This scheme is or-
thogonal to the different views a system is looked at. As example for
this Gajsky [GA1] identifies three different views: behaviour, struc-
ture, and geometry. Additional views are possible, e.g. a test view.
In the context of simulation the behaviour view is of main interest.
SO' in this context the levels of abstraction are discussed only with
this view in mind. To point out the features that define the system
level a bottom-up presentation has been chosen. The lowest level
(level 1) usually is called the electrical level. Here it is modelled,
how electrical circuits built from resistors, capacitors, etc. behave
over the time axis. This is done by a system of differential equations.
Le. both the time axis and the observable values are represented by
a continuous domain. It should be noted that the geometrical view
of this level is the (metric) layout which doesn’t constitute an own
level. There are some simulators at this level, SPICE in numerous
versions [VL1] being the most widely used. The switch level (level
2) is the next abstract one. This level is rather accepted in digital
MOS design but makes sense in other digital designs as well. The
abstraction comes from modelling transistors as ideal on/off switches
and the connections between as discrete capacitances. So the value
flomain is a discrete one now where a value is given by a pair consist-
ing of a logical interpretation and a strength. Both components are
’from a finite domain. This abstraction introduces uncertain values.
They are handled either by introducing additional ”values” or by
“?I’Teseﬂting uncertainty by enumerating all possible values [LR1].
’l.he time domain may still be a continuous one. Other approaches
h.ke MOSSIM [BR1] have a discrete one in mind (unit delay assump-
tion). This leads to a concept to model switch level circuits by finite
automata. Various switch level simulators exist, MOSSIM being the

best known. The gate level (level 3) has a long tradition in digi-

tal systems design. It has a very nice mathematical background in
Boolean algebra. However this models only the timeless behaviour.
So some additional concepts have to be considered in order to cover

T
i
1
P

i

i

the time axis as well. In the ideal case the value domain is restricted
to Boolean values 0,1 while the time domain remains continuous.
Again to solve the problem of uncertain values forces to introduce
additional values. By this in most cases the underlying algebra is
no longer Boolean. Even the concept of different strengths is carried
over from the switch level in some cases. The operators however are
always Boolean (logical) operators. This finally constitutes this level.
If the value domain is restricted to 0,1 and the time model is unit
delay then the modelling concept for this level is exactly a system of
Boolean equations. Because of the long tradition there are numerous
simulators for this level. They use different value domains and dif-
ferent timing models. HILO, CADAT, DISIM are some examples of
commercially available simulation systems at this level. Today such
simulators usually allow the user to define his own "macrogates”
using so called "behavioural languages”. These macrogates may be-
come very complex. However the conceptual model is maintained,
the oftenly cited "functional block level” is not really an own one.
This is the case with the register transfer level (level 4). At this
level a specific mode of operation is assumed. There are compo-
nents that continuously observe their specific conditions. Whenever
the condition of a component becomes true this component performs
its specific operation. In any case such an operation may be inter-
preted as a transfer of data between registers where the data may be
modified during this transfer. This point of view gives that level its
name. Abstraction in this case originates from implicitely underly-
ing a specific mode of operation. In addition the elementary compo-
nents used at this level are more complex (e.g. registers, ALUs, etc.)
abstracting from their implementation. The value domain at this
level is given by (uninterpreted) bitstrings while the timing model
is the counting of clock ticks. So the time domain now has become
discrete as well. The register transfer level is very helpful in clean
synchronous designs, it forces somehow to design in this manner.
Therefore this level has been studied intensively in academic insti-
tutions but is much less popular in industry. Therefore nearly all of
the numerous register transfer simulation systems (e.g. CDL, DDL,
RTS, KARL, ERES) are in use rather only in universities. At the
algorithmic level (level 5) the reactive point of view at the register
transfer level is inverted to an imperative one. While at the register
transfer level the system is looked at from the eyes of the individual
components, at the algorithmic level the controller’s point of view
is taken. In contrast to ordinary algorithmic descriptions, however.
concurrency plays an important role in hardware design and there-
fore also at this level of abstraction. Therefore highly concurrent
algorithms usually are described. While at the register transfer level
it is specified precisely what conditions cause operations to be carried
out it is abstracted from this information at the algorithmic level.
Only the logical point of time, when an operation has to be carried

out is identified. All the remaining stuff is hidden away by assuming

the imperative mode of operation of a system. The domain of values

may be freely definable but usually is restricted to bitstrings with
interpretations attached (e.g. two's complement integer, IEEE stan-
dard floating point number, ASCII character). The timing model
is either still a counting of clock ticks or a purely logical one. In

717

this case simply a causality structure is assumed as in usual algo-~

rithmic languages. Algorithmic languages, and in combination with

these, algorithmic level simulators have been a purely academic area

for a long time. The increasing complexity of digital systems and
caused by this the need for high level synthesis tools make this level
more and more attractive for industry as well. VHDL approaching
this level makes it even more visible for the industrial practice. Up
to now there are only very few commercial simulators available for
this level. DACAPO III, VERILOG, ENDOT, and partially VHEDL

may serve as examples. Finally at the system level (level 6) it is:

abstracted from the algorithmic implementation of the system’s in-

struction set. At this level the entire system is viewed at as a set of

cooperating processors. Here the term processor is used in a wider

sense to denote a subsystem with an instruction set that enables it’

to export certain services. A usual processor is the most typical ex-
ample but channels, device-controllers, etc. fall into the same class.
Such a component is characterized by the functions performed by
the instructions and the protocol to be used to request a service (an
instruction) to be executed. In principle the initiative within such

a protocol may be located at the serving device or at the requester.’

E.g. in the case of a usual processor this processor takes the initia-
tive by fetching an instruction (the service it is requested to perform)
from memory without explicitely being triggered to do so. In addi-
tion to describe the components of a system and their instruction
sets plus protocols the global interaction of these semiautonomous
objects has to be specified. Dependent on the kind of system to be
described this may be done in a centralized manner or in a decen-
tralized one. In the first case another highly concurrent algorithm
serves to specify the global behaviour while in the second alternative
in a totally distributed manner the different components decide due
to certain states or events to request certain services from other com-
ponents. So the system level can be interpreted as an abstraction of
the algorithmic level (centralized alternative) or the register trans-
fer level (distributed way). Both the value domain and the timing
model are purely symbolic at this level. There are freely definable
types with arbitrary semantics and time is interpreted only to be
advanced by causality. The system level up to now is supported by
very few commercial simulators. DACAPO III and VHDL are ap-
proaching this level while performane analysis tools like HIT [BS1}
are addressing the system level as well.

2. System Level Modelling Concepts

2.1 Modelling the Component’s Functionality

As noted above a component is characterized by its instruction set,
i.e. the functions performed by the different instructions. From the
implementation of these instructions it is abstracted as far as possi-
ble. An algebraically well investigated model for this purpose is the
theory of abstract data types (ADT)[EM1, GH1]. An ADT D(S,E)
is by a signature S and a set of equations E. A signature S (sorts,
ops) is given by a set of sorts (domain identifiers) and a set ops of
operations defined on these sorts. The signature specifies the syn-
tax of the ADT. The semantics is given by a set of equations to be
respected. Example: The following ADT that defines the Boolean
algebra may also be interpreted as the specification of a Pprocessor
with instruction set {T, F, not, and, or} that performs these oper-
ations in a way that the Boolean algebra is respected. How these
operations are performed and how the arguments look like is com-
pletely abstracted from.

type Boolean is

sorts Boolean

opns T,F : Boolean;

{nullary operations, i.e. constants}

not : Boolean — Boolean; {unary operation}
and, or : Boolean, Boolean — Boolean;
{binary operations}

eqns or(a,F) = a;
and(a,T) = a;

or(a,b) = or(b,a);
and(a,b) = and(b,a);

and(a,or(b,c))
or(a,and(b,c))

or(and(a,b) ,and(a,c));
and(or(a,b),or(a,c));

and(a,not(a)) = F;
or(a,not(a)) = T;

or(a,or(b,c)) = or(or(a,b),c);
and(a,and(b,c)) = and(and(a,b),c);

or(a,a) = a;
and(a,a) = a;

or(not(a),not(b)) = not(and(a,b));
and(not(a),not(b)) = not(or(a,b));

not(not(a)) = a;
endtyps.

2.2 Specification of the Global Behaviour

A very useful concept to model the global behaviour on a condi-
tion/event basis is that of Timed Interpreted Petri Nets. Petri Nets
[PE2] have been defined by Carl Adam Petri [PE1] as a straight
foreward extension of finite automata. They model a system as a
set of actions (called transitions) controlled by conditions (called
places). Each transition decides locally whether its local executabil-
ity condition is fulfilled or not. The entire concept is very simple:

Def. 2.2.1 (Petri Net Graph)

PG = (P, T,E) is called Petri-Net-Graph :&
P finite set (of "places”)
T finite set (of "transitions”)
EC(PxT)u(Tx P)
PNT=9
o V:tG(PUT):HyE(PUT):(z,y)GEV(y,z)EE

A Petri Net Graph is just a certain structure. Behaviour is intro-
duced by adding markings of places and functions to manipulate
these markings:

Def. 2.2.2 (Petri Net) :

PN = (PG, m,, R) is called Petri-Net :&
PG = (P, T, E) Petri-Net-Graph
Mo € M={m| m:P — Ng} (initial marking)
Re{r|r:T - fr}
withﬁ-:{f,lteT}AVteT:(ﬁ:M—»M)
(firing rule of T)

718

In Petri Nets places are used to model conditions. If a place is marked
by at least one token this condition is interpreted to be true. Actions
are modelled by transitions. A transition can fire if certain conditions
at its input- and output-places are true. By its firing it modifies the
markings of its input- and output-places. All this is specified by the
firing rule f; associated to each transition t. In ordinary Petri Nets
there is only one single firing rule assiciated to all transitions stating
that a transition is firable if all its input places are marked with at
least one token. Interpreted Petri Nets are obtained by associating
operations on an additional data domain to transitions. Whenever
a transition fires, its associated operation is performed.

If it is neccessary to model time spent by performing operations this
may be added easily:

Def. 2.2.3 (Timed Interpreted Petri Net)

TIPN = (IPN,A) is called timed Interpreted Petri-Net : <
IPN = (((P,T, E), mo, R), I, D) Interpreted Petri-Net
Ae{6}§:T — r} with
7 ={0'| 0o :dom(o’) C X (D) — R}

ITere D denotes the data domain with interpretations I being defined
on. A timed interpreted firing is defined as follows: Let transition
t become firable at point of time to. Then at this point of time the
associated operation is initiated based on argument values valid at
this very point of time. At the same time the delay function d(t)=0’
is calculated based on its argument values at this point of time. The
result of this calculation may be k. Then at point of time fo + &
the results of the associated operation are assigned to their target
variables.

Petri Nets have a nice graphical representation that makes them very
readable. There is a rich theory about and various extensions have
been studied intensively.

@
@
get bus
@
20

release bus

bus available

Q ()
getbus
@
10

release bus

request bus request bus

Fig. 1: Example of an Interpreted Petri Net (from [RA1L])

Petri Nets are a completely event oriented approach while the model
of Communicating Sequential Processes (CSP) [HO1] is based on the
concept of processes. This model, too, is very simple though power-
ful. The entire system is represented by a set of concurrently active
Processes which internally are strictly sequential. The different pro-
cesses have no shared resources and communicate only via messages
where only svachronous communjcation is allowed.

718

Tt

Def. 2.2.6 (Events and Processes)

Objects to be specified are described by events. Such an event is
looked at to be atomic. An example for such an event may be the
assignment to a variable. The set of the events of an object is called
the alphabet of this object. An arbitrary pattern of behaviour that
can be described on this alphabet is a process.

Def. 2.2.7 (Sequential Execution)

Let be a an event and P a process. By ”segbegin a ; P segend” it
is denoted that first a has to happen and then P is started. It is
defined that a is a process as well and also ”segbegin a ; P seqend”.

Def. 2.2.8 (Recursion)

Let P be a process. By "while true do P” it is denoted that P is
repeated infinitely. If P is a process then also "while true do P”. Let
con be a binary variable. By ”"while con do P it is denoted that P
is repeated as long as con is true. "while con do P” is a process as
well. -

Def. 2.2.9 (Case Distinction)

Let Py,...,P, processes, cnt a variable with domain {¢1sestn}. By
"case cnt of ¢1:Py;...cn:Py caseend” it is denoted that exactely this
P; is executed whose ¢; is the actual value of cnt. If Py,.., Py are
processes then "case cnt of ¢1:Py;...ca: P, caseend” is a process as

well.

Def. 2.2.10 (Input/Output)

Let chan be a special variable of type channel and var an arbitrary
variable. By chan ! var an output operation is denoted. The value
of var is transferred via chan. The operation is not finished until
the receiver (a concurrently active process, see Def. 2.2.12) has read
the value. By chan ? var an input operation is denoted. It can
be performed only if the channel chan is not empty. Initially any
channel is empty. It can be filled only by an output operation. By
an input operation the channel is emptied again. Input and output
operations are interpreted as events.

Def. 2.2.11 (Sequential Process)
A sequential process is constructed by rules 2.2.6 - 2.2.10. Nothing

else is a sequential process.

Def. 2.2.12 (Concurrent Process) '
A sequential process is a concurrent one as well. Let P be sequential

process and C a concurrent one. By ”conbegin P ; C conend” it is
denoted that P and C have to be executed concurrently. Pand C
are initiated at the same time but then run independently (besides
possible rendevous because of input/ output operations). The entire
process “conbegin I ; C conend” is terminated if the last one of Pand
C'is terminated. Concurrent processes must not share any resources
besides of channels. If P is a sequential process and Cis a concurrent
one then “conbegin P ; C conend” is a concurrent process as well.
Nothing else is a concurrent process.

2.3 Specification of Protocols

The protocols neccessary to request operations may be specified with
each of the two concepts Timed Interpreted Petri Nets or CSP. I't
depends on the individual situation which concept is more appropri-

ate.

3. System Level Modelling Languages

The system level is rarely supported by design languages Becently
by VHDL [VHD] a language has been standardized that is u‘nende'd
to cover the system level as well. From the above discussion this
+hould mean that there are language features to specify abstract data

types and some mechanism for cooperating processes or something
equivalent to Petri Nets. Processes are directly present in VHDL. A
process in VHDL is initiated by a certain condition indicated in its
"sensitivity list”. In fact there is enumerated a list of variables the
process reacts on value changes of. More than one process may be
active concurrently. Once a process is activated it loops forever until
it eventually reaches a suspension command. A process is a timeless
and strictly sequential sequence of operations. However it may wait
on specific events and may schedule future events to happen with a
real-time axis in mind. Despite of originating from ADA, VHDL is
not restricted to synchronous process interaction. In fact there is no
primitive for message passing at all in the language. All communi-
cations is via shared "signals” (variables with a dimension in time).
For such signals, as mentioned above, future values may be scheduled
by a process and another process may wait on certain values of such
signals. So the basic principle is asynchronous communications via
shared resources. For a hardware description language this approach
is fine as it is very general and by this imposes no restrictions on the
systems to be designed. By proper use of the language the com-
munications may be restricted to message passing and furthermore
this message passing may be programmed in a synchronous way by
always extending the simple sending to a handshake protocol. From
this discussion VHDL seems to be nicely suited to support the sys-
tem level from this point of view. On the other hand whenever time
plays a role in a specification the time model of VHDL looks a little
strange. A VHDL process being timeless even a sequence of opera-
tions that follow each other but all consume a certain amout of time
cannot be described directly. In such a (rather usual situation) each
elementary operation Op has to be replaced by a sequence:

i) schedule a virtual termination signal t(Op) for the intended
termination time of Op

iiy Op
iit) wait on t(Op).

Abstract data types are approached by VHDL by having imported
the ADA package concept. This makes it possible to define the func-
tionality of modules to be integrated into a system as packages to
be used in the description. Unfortunately the software concept of
shared code has been inherited without any change. So an arbitrary
number of requests to services of such a package may be handled
concurrently. In most cases this doesn’t reflect the behaviour of real
hardware components. The standard situation of a hardware com-
ponent that can handle exactly one service at a time therefore has
to be described in a rather complicated manner in VHDL. This sit-
uation is handled perfectly in DACAPO III {DAC]. This language
offers a direct equivalent to implemented ADTs, called "export pro-
cedure” in this language. Such an export procedure exports (offers) a
list of operations to its environment and makes sure that concurrent
requests are handled properly. The basic principle of DACAPO is
given by Timed Interpreted Petri Nets on the basis of which process
models may be built as well. The time model is that in a sequence
Opy; Op, the operation Op; can start only after Op, has terminated.
This means if some time consumption is attached to Op, then Op,
waits for this time.

So both languages may be used for system level descriptions with
DACAPO being more adequate in the behavioural aspects while
VHDL offers more support in describing structure and configura-
tions. For this purpose VHDL with its "port maps” and "configura-
tion bodies” offers perfect support.

Object-oriented programming when extended by concepts for con-
currency and for explicitely expressing protocols seem to be the most
adequate description style for the system level. Up to now there
are very few attempts into this direction. One example is POOL
[OD1}a parallel object-oriented language which is intended for gen-
eral purpose but has been used for high level hardware description

as well. Another example is ODICE [MR1]. This experimental lan-
guage has been defined and implemented to study a clean approach
for integrating the concept of seperately specified protocols and of
object- oriented programming into a conventional hardware descrip-
tion language. The experiment was made with DACAPO as host
but may be possible with VHDL as well. ODICE uses the concept
of object-oriented programming to define the module’s functionality
(the instructions interpreted as methods). Structures are generated
by a generative concept similar to ZEUS [LK1] or MoDL [SA1]. Fi-
nally protocols are specified externally and bound to method-calls
individually. Besides these concepts all basic expressing power of
ODICE is inherited from the host language (DACAPO or VHIDL).

With powerful graphical interfaces available today graphical specifi-
cation languages for the system level become more feasable. State-
charts [HA1] and Structured Petri Nets [CK1] may serve as examples.
Statecharts start with usual state diagrams of FSMs. In order to han-
dle complexity, first of all a concept of hierarchy is added. So a state
may be decompgosed to an entire FSM and so on. This concept makes
it neccessary to introduce means for specifying in which state such
a macrostate has to start when activated. Similarly when leaving
a macrostate it must be possible to store the last active microstate
(history mechanism). As large systems usually are decomposed into
cooperating automata, expressing power to describe concurrency has
been added as well. In terms of Petri Nets by (nonhierarchical) co-
operating automata the class of FSM decomposable Petri Nets is de-
fined. Hierarchy seems to be added to Petri Nets as well. The most
elegant way may be the approach of Structured Petri Nets [CK1]. In
this approach a transition may be replaced by an entire Petri Net.
Such a macro-transition becomes firable by the same condition as
usual ones. The firing of such a macro-transition means that first
the (always identical) initial marking is taken. Starting with this
marking the (local) Petri Net becomes active and remains active as
long as it is life. By this net becoming dead, the macro-transition
plays its token game. When restricted to finite markings the Struc-
tured Petri Nets are equivalent to State Charts. While Statecharts
may be characterized by "take FSMs, then add hierarchy, and fi-
nally add concurrency”, Structured Petri Nets reverse the sequence

of extensions: “take FSMs, then add concurrency, and finally add
hierarchy”.

A
a
po—— B —Ly
c 'F
o+ 1
1
D vole
1
]
»
¥
bllec |} b|lc
,
E +{u
)
)
]
]
x
I

Fig. 2: Example of a Statechart (from [HE1])

720

O
Q)

(o)
oY

m
I

e

__<
O

x

Fig. 3: Equivalent Structured Petri Net

4. System Level Simulation Techniques

The simulation technique to be used at system level depends on
the major underlying modelling concept. If this concept is event-:
oriented then the well investigated technique of event scheduling is |
best suited. Today there are very efficient event scheduling algo-|
rithms available that can handle all levels of abstraction. This is due
to the fact that there is a clean distinction between the schedulingi
mechanism and the events to be scheduled. These may be different :
'at different levels of abstractions. At system level the typical event
is a request to perform a certain service (operation). The action to
be triggered by an event may be of arbitrary complexity. While at
gate level it typically is the calculation of a Boolean function at sys-
tem level it means calculation of the requested service. In both cases

the action may cause aditional events to happen (infuencees). To
increase performance in some recent simulators the model to be sim-
.ulated is compiled into executable code as far as possible. Only the
innermost kernel of the scheduling mechanism remains predefined.
In principle this kernel looks like the following skeleton:

module main ;
from circuit import
circuit_size, word, data, influenee_nr, influencee,
executable, action, elapses ;
const empty = 0 ;

type event = record
component_id : integer;
event_time : integer;
new_value : word
end;
var current_event, new_event : event ;
current_time, queue_fill : integer;
changed ¢ bit ;
begin
time := 0 ;
final_time := stop_time ;

{stop_time to be supplied externally }
while time <= final_time & queue_fill <> empty do
begin
current_event := event_queue .
current_time := current_event .
changed := datalcurrent_event . component_id] <>
current_event . new_value ;
data [current_event . component_id] :=
current_event . new_value ;

remove
event_time ;

if changed &

influencee_nr [current_event .
then begin
for i :=
1 to influencee_nr{current_event .
do
begin
component :=

influencee [current_event . component_id,i];
if executable (component) then

component_id] > 0

component_id]

begin
nev_event . component_id
:= component ;
new_event . new_value :=
action (component) ;
nev_event . event_time :=

current_time + elapses (component) ;
event_queue . insert (new_event)

end
else
end
end
else;
quene_fill := event._queue . test

end
end ;

end main .

System level simulators based on event scheduling may be supported
properly by highly parallel simulation engines based-on this princi-
ple. One of the most promising approaches seems to be the event-flow
mechanism introduced by the MuSiC project [HF1]. This architec-
ture modifies the data-flow paradigm to support event scheduling in
a highly efficient way. Again there is a clean distinction between
the event mechanism performed by the event-flow engine and the at-
tached operations that are performed on general purpose processors
(MC6800 in the first proposal, T800 ir more recent ones). Process-
oriented modelling concepts are easier to be simulated. A process
mechanism is present on all nontrivial operating systems and is sup-
ported by a couple of languages incloding SIMULA or ADA. So the
main task to be solved is the handling of real time and the fine grain

721

translation of the model’s process concept to this one offered by the
host system. In fact this may cause real problems. The problem of
mapping broadcasting to a system that only knows point to point
message passing like OCCAM may serve as an example. Process-
oriented simulation systems may be parallelized in a straight for-
ward way. Transputers seem to be a natural host system to do so.
It should be noted, however, that there is no guaranteed linear or
even near-linear speedup when going this way. Only if real process-
oriented models are handled by such systems they perform properly.

5. References

{BR1] R.E. Bryant :
MOSSIM: A Switch Level Simulator for MOS-LSI
in: Proceedings 18th DAC, 1981

[Bel] 1. Beilner :

Workload Characterization and Performance Modeling Tools

in: G. Serazzi(ed.): Workload Characterization of Computer Sys-
tems & Computer Networks, North Holland, 1986

[CK1] L.A. Cherkasova, V.E. Kotov:
Structured Nets
in: Proceedings MFCS’81, Springer LNCS 118, 1981

[DAC] DACAPO III System User Manual
DOSIS GmbH, Dortmund, 1987

{GA1] D.D. Gajski :
The Structure of a Silicon Compiler
in: Proceedings IEEE ICCD, 1987

{GH1] J. Guttag, J.J. Horning :
The Algebraic Specification of Abstract Data Types
Acta Informatica, 10, 1978

[EM1] H. Ehrig, B. Mahr :

Fundamentals of Algebraic Specification

in: EATCS Monographs on Theoretical Computer Science, Vol. 6,
Springer, 1985

[ITE1] P. Hennige:

Generierung hierarchischer Steuerwerke anhand von Spezifikationen
durch modifizierte Statecharts

Diplomarbeit, Univ. Paderborn, FB 17, 1990

(1I01] C.A.R. Hoare :
Communicating Sequential Processes
Prentice-Hall, 1985

(LK1] K.J. Lieberherr, S.E. Knudsen :
ZEUS: A Hardware Description Language on VLSI
in: Proceedings 20th DAC,1983

[LR1} K.-D. Lewke, F.J. Rammig :

Description and Simulation of MOS Devices in Register Transfer
Languages

in: Proceedings IFIP VLSI'83, North Holland, 1983

[MR1] W. Miiller, F.J. Rammig :

ODICE: Object-Oriented Hardware Description in CAD Eaviron-
ment

in: Proceedings CHDL'89, North Holland, 1989

[OD1] E. Odijk, W. Bronnenberg :
Parallel Computing: the Object-Oriented Approach
in: Proceedings CONPAR 88, 1988

[PE1] C.A. Petri :

KNommunikation mit Automaten

Schriften des Rheinisch Westfilischen Instituts fiir instrumentelle
Mathematik, Bonn, 1962

{PE2] J.L. Peterson :
Petri Nets
in: ACM Surveys, 1977

[RA1] F.J. Rammig :
Systematischer Entwurf digitaler Systeme
Teubner, 1989

[SA1] J. Smit et al.:

Definition of the Syntax an Semantics of the Modelling and Design
Language MoDL

in: Dewilde (ed.): The integrated Circuit Design Book, Delft Uni-
versity Press, Delft, 1986

722

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6

