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ABSTRACT: Semantic data models have been widely studied for
the conceptual specification of databases. However, most of these data
models are restricted to the description of the static structure of a
database. They do not provide means to specify the dynamic behaviour
of a database.

This paper sketches a language for the specification of actions on
databases which have been specified by an Extended Entity-Relationship
(EER) schema. These actions are based on so-called elementary actions,
which are automatically be derived from the EER schema. So, it can
always be guaranteed that these schema dependent elementary actions
preserve all inherent integrity constraints.

The semantics of the elementary actions is glven in two steps: First, it
is shown how the semantics of a database schema, ie., a current
database state, can be represented by an attributed graph. Then, the
semantics of elementary actions is given by programmed graph replace-
ments.
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0. INTRODUCTION

Semantic data models have been studied for the conceptual specification of database
systems for certain application areas (cf. [HK 87]). However, most of these data
models are restricted to the description of the static structure of a database. They
do not provide means to specify the dynamic behaviour and especially database

modifications.

Meanwhile, it has been widely accepted in the database community that the speci-
fication of databases should comprise the description of the static structure and
the corresponding dynmamic behaviour. In this sense, database specifications are

comparable to abstract data type specifications.

Nevertheless, the classical, successfully used approach to specify database systems
is to start with the specification of the static structure. According to the chosen
data model, types of database objects and possible interrelations between instances
of these object types are fixed in the first step of the database specification
process. Afterwards, database actions are specified which model actions of the
application area. Of course, these database actions should respect the constraints
which arise from the specification of the static structure. 8o, database specifications
can be regarded as constructive data type specifications, consisting of a data type
construction part and a type dependent action specification part.

In the literature there exist several approaches to specify modifications of {system)
states. The scope ranges from descriptive, non-deterministic specifications, for
instance, by pre-/postconditions, up to procedural, deterministic ones. A great
advantage of the last ones is that they are executable and, therefore, well-suited

for a rapid prototyping of database specifications.

The issue of this paper Is to present a language for the specification of actions on
a database, the structure of which has been specified by an Extended Entity-Relation-
ship (EER) schema. This data model together with a well-defined semantics have
been developed at Braunschweig Technical University during the last years
(LHNSE 871, [HoGo 88)). It is our objective to start with this definition of syntax
and semantics of an EER schema, given In [HoGo 88], and to define syntax and

semantics of actions on such an EER database.

The developed language has a procedural, operational style. This is motivated by the
intended use of the action specification language within the database design environ-
ment CADDY ([EHHLE 893). The environment CADDY offers an integrated set of
tools to a database designer to support him/her during the specification and
testing by rapid prototyping of a conceptual database schema. So, this executable
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action specification language enables an immediate interpretation of actions and,
therefore, supports the rapid prototyping facility of CADDY.

The main ideas, presented in this paper, are the following: We define how database
states of an EER database can be represented by attributed graphs. Actions on a
database can then be regarded as graph transformations. Because of the constraints
given by the description of the static structure of a database, sequences of such
graph transformations often have to be applied to a database state graph to yield
a transition between correct database states. Therefore, the approach of programmed
graph grammars is suited to describe such sequences of graph transformations.
We show that such programmed graph replacements can be derived automatically
from the description of the static structure of a database. These programmed
graph replacements are called elementary actions. They describe the modification
of a database object together with all update propagation operations (cf. [SSW
80)) to yield a consistent, correct database state after a modification.

There exist some approaches in the literature which propose graph grammars for
database specifications; see for example [EK 801, [FV 831, or [Na 791, who gives a
survey on some early approaches in the field. Programmed graph grammars have
successfully been applied in the more general case of software specifications (e.g.
[Na 871, [G6 88]). In this case, programmed graph grammars are used to specify
graph classes for a specific application by fixing all allowed graph modifications.
Thereby, the structure of a graph is implicitly be determined. In contrast to this,
in the approach in this paper, we start with a description of the structure of a
graph and show how allowed modifications of such graphs can be derived automati-
cally from this structure description.

The paper is organized as follows: In section 1, we summarize the definition of
[HoGo 88] of syntax and semantics of an EER schema. In section 2, we describe
how an EER schema and a corresponding database state can be represented as attri-
buted graph. Section 3 shows how actions on an EER database can be automatically
derived from the EER schema. The semantics of these actions is given by programmed
graph replacements. Section 4 summarizes the ideas and results of this paper.

1. THE EXTENDED ENTITY-RELATIONSHIP MODEL

The extended Entity-Relationship model (EER model) was developed by the database
group at Braunschweig Technical University during the last years [HNSE 87,
HoGo 88l. This conceptual data model is an extension of the classical Entity-Rela-
tionship model [Ch 76]. Similar to other ER extensions [EWH 85, MMR 86, TYF
86, PRYS 89), it combines concepts known from semantic data models like TAXIS
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[MyW 801, SDM [HaM 8!], IFO [AbH 87], or IRIS [LyK 861 to a uniform conceptual

data model.

Thereby, this model and the corresponding specification language offer features to
a database designer which allow a problem-oriented, natural modelling of the infor-
mation structure of a certain application task. The main important features of the
EER model are

- the possibility to extend the set of allowed data types for attribute domains by

new, application-dependent data types,
- components, i.e., object-valued attributes, to model structured entity types,
- the concept of type construction in order to support specialization and generaliza-

tion, and
- several structural restrictions like the specification of key attributes.

Let us illustrate the EER model by a very small example (cf. Fig. 1.1). It models the
world of persons who might be married or not, and who live at a certain town. This
is expressed by the entity types PERSON and TOWN, and the relationship lives-at.
The partition of objects of type PERSON into married and unmarried persons is
described by the type construction part, which has PERSON as input type and
MARRIED resp. NOT_MARRIED as output types. Each object of a certain entity type
is described by some attribute values. In case of key attributes (e.g. Name at
PERSON, expressed by a dot in the diagram), the value of this attribute uniquely
identifies an object in the set of all objects of this type. Attributes may also be
object-valued, as it is in case of the attribute Info at PERSON. This enables the
modelling of complex structured objects which contain subobjects, also called

components.

NOT
_ Divorced :
MARRIED horced

MARRIED
rom

Figure 1.1: Example of an EER schema

An EER schema bases upon a data type signature DS = (DATA, OPNS), which consists
of a set DATA of data type names and appropriate operations OPNS, and which has
a fixed semantics. This data type signature DS has to be specified by a database
designer In a previous step so that the data types can be used as attribute domains.
In the example of Fig. 1.1, DS contains the specifications of Int, string, and bool.
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Due to [HoGo 88], syntax and semantics of an EER schema can then be defined

as follows:

Def, 1.1:
The syntax of an extended Entity-Relationship schema EER(DS) over DS is given by
the finite sets ENTITY, RELSHIP, ATTRIB, COMP, T_CONSTR, and
the partial functions
attr : (ENTITY U RELSHIP) x ATTRIB -0~ DATA
key : ENTITY -o> ATTRIB
comp : ENTITY x COMP -o-» ENTITY
the total functions
particip : RELSHIP > ENTITY*
input, output : T.CONSTR > F (ENTITY) (F & powerset of finite subsets)
the predicate
is-partition ¢ T_CONSTR
The following conditions must hold:

(i) for all e ¢ domain{ key ): key ( @ } = a implies (e, a) ¢ domain ( attr )

(ii) comp is injective
(i.e., that an entity type is component of at most one (other) entity type)

(i) output (cq ) N output ( ¢ ) = @ for two distinct ¢y, €5 ¢ T_CONSTR
(i.e., each constructed entity type is uniquely constructed)

(iv) It is not allowed that connection* ( e, e ) holds for some e ¢ ENTITY, where
connection* is the transitive closure of the relation connection defined by:
if e, ¢ input( t ) and e_,, ¢ output( t ) for some t T_CONSTR, then
connection( e, , e, ) holds (i.e., type construction is cycle free).

{v) comp( e, ¢ ) =e with e, e ¢ ENTITY, ¢ ¢ COMP implies -~ 3 t ¢ T_CONSTR with
e cinput( t ) or e ¢ output( t ) (i.e., components are not allowed to be input or
output type of a type construction)

So, the syntax of an EER schema consists of finite sets of names for entity types,
relationship types, etc., and of functions and predicates which fix the contextfree
structure of EER(DS). Further contextsensitive rules are demanded by the conditions
() - (v).

As already mentioned, the semantics of the data type signature DS is fixed. Let
t[DATA] denote the semantical domain of DATA. Let IFISET! denote the class of finite
sets, and IFUNI the class of total functions.

Def. 1.2:
The semantics of an extended Entity-Relationship schema EER(DS) over DS is given by
- a function plENTITY] : ENTITY - IFISETI
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a function y[RELSHIP] : RELSHIP = IFISETI
such that particip(r) = <eq, ..., ey> for r ¢ RELSHIP implies
u[RELSHIPI(r) < ulENTITY1(eq) x ... x RCENTITYI(e,)
a function pLATTRIB] : ATTRIB - IFUNI such that
attr( e, a ) = d implies uLATTRIBI(a) : pLENTITYI(e) - uLDATAI(d) resp.
attr( r, a ) = d implies pLATTRIBI{a) : uLRELSHIP}r) > pLDATAI(d)
a function pLCOMP] : COMP ~» IFUNI such that
comp( e, c ) = @ implies bijective functions
t[COMPI(c) : uLENTITY1(e) - WIENTITYI(e')
a function pLT_CONSTRI : T_CONSTR - IFUNI such that
input( t )= { iy, ..., in }, output( t) = { 04 ...y Op, } implies injective functions

uLT_CONSTRI() :JB1pEENTITY](oj) 5 U WLENTITYIG)
= k=1

The following conditions must hold:
(i) ("disjoint sets of instances")
for two distinct e, e ¢ ENTITY: pLENTITYI(e) N RLENTITYI(e) = @
(i) ("key attributes”)
for all e ¢ ENTITY, a ¢ ATTRIB with keyle) =a and attr( e, a ) = d
uLATTRIB)a) : ulENTITY1(e) > p[DATAI(d) is injective
(iii) ("partition”)
for all t ¢ is_partition: 1 input(t) | = 1 and uLT_CONSTRI(t} is bijective

The definition of the semantics of an EER schema assigns to the schema a fixed
database state. This database state consists of sets of instances of entity resp.
relationship types. The association of current attribute or component values to
entity resp. relationship instances is described by functions. Analogously, the

rearrangement of instances of entity types by a type construction is fixed by

corresponding functions.

The definition contains several restricting conditions, which have to be fulfilled in
a current database state. These restrictive conditions are termed "schema inherent
integrity constraints” in the database literature, because they are expressed by
syntactical means within the schema. For example, type constructions can be used
as partition operator (condition (iii)). This means that, in contrast to the general
case, all instances of the input entity types have to be contained in the set of

instances of output types.

2. GRAPH REPRESENTATION OF DATABASE STATES

Section 1 summarized the definitions of syntax and semantics of an EER schema as
they were given in [HoGo 881. The main idea was to represent an EER schema



350

and a corresponding database state by a set of functions and predicates. As it is
our intention to describe state transitions by graph replacements, at first we need
a graph representation of a database state. Therefore, we define how syntax and
semantics of an EER schema can equivalently be represented by an attributed graph.

Def, 2.1:

A directed, labelled graph G = (Nodes, Nodelabels, nodelab, Edgelabels, Edges) is defined by
- a finite set of Nodes,

- a finite set of Nodelabels,

- a labelling function nodelab : Nodes - Nodelabels,
- a finite set of Edgelabels,
- a set of labelled Edges c Nodes x Edgelabels x Nodes.

The syntax of an EER schema can then be represented by a directed, labelled graph,
where all identifiers for entity or relationship types, attributes, etc. occur as node
labels. Labelled edges represent the functions and predicates of the schema and
describe the contextfree and contextsensitive interrelations within an EER schema.
Representation 1 defines how the constituents of the Schema_Graph are constructed
for a given EER schema.

Representation {:
Schema_Graph := (S_Nodes, S_Nodelabels, S_nodelab, S_Edgelabels, S_Edges)
with
S_Nodelabels := ENTITY U RELSHIP U ATTRIB U COMP U T_CONSTR U DATA
S_nodelab : S_Nodes > S_Nodelabels bijective function
S_Edgelabels := { E_Key, E_Attrib, E_Comp, E_lInput, E_Output, E_Attr_Type, E_Comp_Type,
E_Partition } U { E_Part_1, ..., E_Part_n I
where n := max { | particip(r) | | r ¢ RELSHIP }
The set S_Edges is constructed as follows:
For all e ¢ ENTITY U RELSHIP, o' ¢ ENTITY, r ¢ RELSHIP, a ¢ ATTRIB, ¢ ¢ COMP,
t ¢« T_CONSTR, d ¢ DATA holds
~ (e, E_Key, a) ¢ S_Edges iff. (e, a) ¢ domain( attr ) and key(e ) = a
- (e, E_Attrib, a) ¢ S_Edges iff. (e, a) ¢ domain( attr ) and key( e ) # a
= (a, E_Attr_Type, d) ¢ S_Edges iff. ( (e, a) ¢ domain( attr ) and attr(e, a) = d )
- (e, E_Comp, c) ¢ S_Edges ff. (e, c) ¢ domain{ comp )
- {e, EComp_Type, e') ¢ S_Edges iff. ( (e, c) ¢ domain( comp ) and comple, c) = e )
- fori=1, .., I particip(r) | :
(r, E_Part_i, e) ¢ S_Edges iff, ( particip( r ) = ceq, ..., e» and ¢, = e )
- (t, E_Partition, e) ¢ S_Edges iff. o ¢ input(t) and t e is_partition
- (¢, E_Input, e) ¢ S_Edges iff. e ¢ input(t) and not ( ¢ « is_partition )
- (t, E_Output, e) ¢ S_Edges iff. e ¢ output(t)
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Figure 2.1 shows the representation of the example of an EER schema of Fig. 1.1

as Schema_Graph.

string int boal
3 3
E_Key
WN =1 Name
TO E_Attr_Type
r
E _Part 2
lives_at
E_Part_1
r
PERSON EKey
Name ‘e Anr Type
E_Atlr Type
E_Comp
——tt  Info
E_Comp_Type
r
E_Attrib Year
INFO Birth
E_Partition E.Aub Height
‘ E_At_Type
E_DU[PUf NOT E_Aﬂl’ib Divorced
part MARRIED] E_Aur_Type
E_Output E_Attrib | Year_
MARRIE Marriage | E_Atlr_Type

Figure 2.1: Example of a Schema_Graph

For the representation of a database state, we need node attributes additionally: Let
Node_Attrib be a finite set of node attributes. Each node attribute n_a ¢ Node_Attrib
has a domain of values, termed n_a_Values. Let Node_Attrib..Values be U n_a_Values.

n.a ¢
Node_Attrib

Def. 2.2:
An attributed graph AG = (Nodes, Nodelabels, nodelab, Edgelabels, Edges, node_attr,

attr_value) over Node_Attrib and Node_Attrib_Values is defined by
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~ (Nodes, Nodelabels, nodelab, Edgelabels, Edges) a directed, labelled graph
- node_attr: Nodes -0 Node_Attrib a partial function, which assigns a node an attribute
- attr_value : Nodes -o> Node_Attrib_Values a partial function, which assigns a node
an attribute value.
The following condition must hold:
domain(node_attr) = domain(attr_value) and
node_attr( n ) = n_a implies attr_value ( n } ¢ n_a_Values

In our case, node attribute values are elements of the semantic domain of data
types. So, Node_Attrib := DATA and d ¢ Node_Attrib implies d_Values := p[DATAI(d)

The graph, termed DB_Graph, to represent the semantics of an EER schema, i.e.,
a database state, then is an extension of the Schema_Graph by the following nodes
and edges:

2
DB_Graph := (DB_Nodes, DB_Nodelabels, DB_nodelab, DB_Edgelabels, DB._Edges,
DB_node_attr, DB_attr_value)
with
- 8_Nodes < DB_Nodes
DB_Nodelabels := S_Nodelabels {J { ENT_INST, REL_INST }
DB._nodeIab|9__N°d“ = S_nodelab
DB_Edgelabels := S_Edgelabels U { E_inst, E_Comp_Val, E_Origin }

and
(a) for all e ¢ ENTITY, for all e; ¢ LLENTITYI(e) :
(al) & ¢ DB_Nodes and DB_nodelab(e;) := ENT_INST
(a2) (e, E_Inst, ¢;) ¢ DB_Edges
/% the subgraph with root e is duplicated for each e */
(ad) for all a ¢ ATTRIB with (e, a) ¢ domain( attr ):
ay, ¢ DB_Nodes and (e, E_Attrib, a!‘) ¢ DB_Edges
DB_nodelab( a, ):

= a
DB_node_attr( a, )
)

attr( e, a )
DB_attr_value( a,, ) = uLATTRIBI(a)(e,)
(a4) for all ¢ ¢ COMP with (e, c) ¢ domain( comp )
Cq, ¢ PB_Nodes and (e, E_Comp, cg,) ¢ DB_Edges
DB_nodelab( Co, )= ¢
(cq; E_Comp_Val, uLCOMPI(c)(e;)) ¢ DB_Edges
(b) for all r ¢ RELSHIP, for all r; ¢ pIRELSHIPI(r) with r; = Cjpy o &0
(bl) r; ¢ DB_Nodes, and DB_nodelab( r;) := REL_INST
(b2) (r, E_Inst, r;) « DB_Edges
(b3) for all a ¢ ATTRIB with (r, a) ¢ domain( attr ):
%, ¢ DB_Nodes and (r;, E_Attrib, a_) ¢ DB_Edges
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a

attr( r, a )
pLATTRIBI(a)(r,)

(b4) (r;, E_Part_j, EJj) ¢ DB_Edges forj=1, ..., n
(c) for all t ¢ T_CONSTR, for all e ¢ domain( u[T._CONSTRI(t) ):
( e, E_Origin, uLT_CONSTRI(t)(e) ) ¢ DB_Edges

Figure 2.2 gives an example for a DB_Graph, which represents a {very small) database

state.
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Figure 2.2: Example of a DB_Graph
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3. ACTIONS ON AN EXTENDED ENTITY-RELATIONSHIP DATABASE

Up to now, we have described how the static structure of a database can be modelled.
Using the concepts of our EER model, an EER schema fixes the possible structure
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of objects and their interrelations in a database. But, the specification of the static
structure of a database is only a first step in modelling a database. A database is
not a dead, unchangeable read-only memory of objects, but an alive, often changing
storage, where objects can be inserted, deleted, or updated. Of course, all these
modifications have to regard the structural restrictions specified by the EER schema.

In the literature, there exist several approaches to specify those infinite sets of
allowed modifications of a current system state by a finite description. The scope
ranges from descriptive, non-deterministic specifications, for instance, by pre-/post-
conditions, up to procedural, deterministic ones. Here, we present an operational,
procedural approach, as it is our intention to get an executable description of
database actions. This supports rapid prototyping and testing of action specifications
by a database designer during the conceptual database design phase.

The set of specifications of database actions can be subdivided into the three types:
basic actions - elementary actions - complex actions

Basic actions describe the modification of exactly one database object. After the
execution of such a basic action, the new database state may be not a correct one.
This means that this local modification caused a violation of the database structure,
as it is demanded by the EER schema. In this case, additional basic actions,
known as update propagations [SSW 80], are necessary to yleld a new correct
database state. Minimal sequences of basic actions starting and resulting in a
correct database state are described by elementary actions. Elementary actions can
be composed to complex actions by the use of language constructs, e.g. control
structures, known from procedural programming languages like Modula-2.

It is not the topic of this paper to present the language for the description of
complex actions in more detail (see [Wo 89]). Here, we concentrate on the set of
basic and elementary actions.

3.1 BASIC ACTIONS

Basic actions describe the modification of exactly one database object. Such a

modification can be

(i) the insertion or deletion of an instance of an entity or relationship type together
with all attribute values,

(i) the addition or removal of a component of an Instance of an entity type,

(iti) the insertion or deletion of the membership of a database object In a certain
type construction, or

(iv) the update of attribute values of existing database objects.
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For our example, the signature of some of these basic actions have the following

form:

(i) basic_insert_PERSON ( name : string ) : PERSON
basic_delete_PERSON ( p : PERSON )
basic_insert_lives_at ( p : PERSON; t : TOWN ) : lives_at

(i) basic_add_comp_INFO ( p : PERSON; year_of_birth : int; height : int ) : INFO
basic_remove_comp_INFO ( p : PERSON )

(i) basic_insert_cons_PERSON_MARRIED( p : PERSON; year_of_marriage : int} : MARRIED
basic_delete_cons_MARRIED ( m : MARRIED )}

(iv) basic_update_INFO.Height ( i : INFO; height : int )

All insert actions are functions which yield as result a modified database state, and,
additionally, a reference to the inserted instance of an entity or relationship type. All
attributes of the entity or relationship type occur as formal parameters of the basic

insert action.
All delete actions as well as the insertion of a relationship instance only require

references to instances as actual parameters to denote the database objects which

are relevant for the execution of this action.

All these basic actions are implicitly given for each entity or relationship type of the
specified EER schema. This means that the syntax, i.e. the signature, and, as we will
see, also the semantics of basic actions can automaticaily be derived from the EER

schema.

We have shown in section 2 how database states can be represented by attributed
graphs. As the execution of a basic database action modifies the current database
state, this execution can be viewed as the application of an appropriate graph

transformation rule.
For example, the semantics of the action basic_insert_PERSON can be described by

the following graph transformation rule:

rule basic_insert_ PERSON (name : string ) : PERSON

1 1 2 3
ON - PERSON|—™" Ednst st} E Name
PERS ] INST
4
- Info
attr_value{3) ;= name

Figure 3.1
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Each graph transformation rule consists of the following four components: two
graphs, termed the left-hand and right-hand side of the rule, an embedding trans-
formation, and a sequence of attribute assignments. These components control the
application of a rule in several steps. The first step is to identify a subgraph in
the current DB_Graph (cf. representation 2 in section 2), which is isomorphic to
the left-hand side. The corresponding subgraph is removed in the second step of
the application of a graph replacement rule, and replaced by a graph which is
isomorphic to the right-hand side. In the third step, the newly inserted graph has
to be connected appropriately to the DB_Graph by additional edges according to
the given embedding transformation. Here, we only need the identical embedding.
Therefore, it is not contained in Figure 3.1 {for further details see [ELS 87D. In
the last step, the attribute values of the inserted nodes have to be set according to
the specified attribute assignments.

Our approach to graph replacements bases on [Na 791, and on an extended version
described in [ELS 871 and [En 86], where the reader can find a complete description.

Sometimes, it is useful to restrict the applicability of a graph replacement rule to a
specific subgraph in the host graph. Therefore, we extend the approach of [ELS 871
by the Introduction of node-valued parameters and node-valued functions. This
means that the application of a graph replacement rule may yield as result a
certain node of the host graph. This is expressed in the right-hand side by a
“Result™-node (cf. Figure 3.1). Furthermore, node-valued parameters are allowed.
For example, the rule for the addition of a component of type INFO has as
parameter the node p of an instance of a person:

rule basic_add_comp_INFO ( p : PERSON; year_of_birth :int; height : int) : INFO
1 1

ENT_ | ENT_
INST INST

E_Com 2 2
E_Comp_Val
3
INFO INFO -E_-*.'.n_s!..... ENT_ _EAA_me.. Year_
N INST |4 Birth 5

E_Attrib
Gy Lemr
-]

attr_value{5) := year_of_birth
attr_value(6) := height

Figure 3.2
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As an example for a basic delete action, we give the rule for the removal of the
component INFO from a person. The current person is denoted by the node-valued
parameter p.

rule basic_remove_comp_INFO (p : PERSON)

E Com E_Com
@—-, ENT_ | ==L o ENT. (=20t ol
INST |4 2 INST 4

E_Comp_Val
NFO E Inst ENT_ E_Attrib' Year_ INFO
E_Attrb
—= » Height
6
Figure 3.3

It is obvious that all these graph replacement rules for the description of basic actions
on a database can automatically be derived from the specified EER schema and the

corresponding graph representation. In this sense, a database designer, who has speci-
fied a database schema, has also implicitly specified all schema dependent basic

actions. But, as we have already mentioned, the execution of a basic action may

yield an incorrect database state. Therefore, basic actions have to be composed to

elementary actions.

3.2 ELEMENTARY ACTIONS

Let us illustrate such an elementary action by the example of the insertion of a

married person (cf. Fig. 3.4).

elem action insert_MARRIED ( name : string;
year_of_birth : int; height : int; year_of_marriage : int );

objects p : PERSON; i : INFO; m : MARRIED;

begin
if not PERSON_exists ( name ) then
p = basic_insert_ PERSON ( name );
i := basic_add_comp_INFO ( p, year_of_birth, height );

.= basic_insert_cons_PERSON_MARRIED ( p, year_of_marriage );

m
end

end
Figure 3.4: Elementary action for the insertion of a married person

Each person is uniquely identified by the key attribute name. So, at first, it is checked
whether a person with this name already exists. The semantics of this test can be
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given by a subgraph test (cf. Fig. 3.5). Afterwards, a sequence of three basic actions
has to be executed, to insert a new instance of type PERSON, to add as component
an instance of type INFO, and to add a new instance of type MARRIED to express
the partition. Because of the generation of these three new instances, the schema
inherent integrity constraints of Def. 1.2 are fulfilled. For example, the generation
of a new instance of type INFO within the action basic_add_comp_INFO guarantees
that u[COMPI(Info) is bijective. Therefore, the resulting database state is a correct
database state in the sense of Def. 1.2,

test PERSON_exists ( name : string )

Elnst | ent  |E_Atiib name
PERSON —= » ~ == Name
i INST |, 3

Flgure 3.5: Example of a subgraph test

As each call of a basic action can be viewed as the application of a graph replacement
rule and each boolean expression as the execution of a subgraph test, the whole

elementary action describes a programmed graph replacement in the sense of [ELS 871,
yielding an operational semantics for elementary actions.

In case of the deletion of a person, similar update Propagation actions have to be
executed to yield a new correct database state (cf. Figure, 3.6). Here, it has to be
checked whether this person is a married or not-married person, and the existing
one has to be deleted. In addition to basic modifying operations, there are basic
read operations like fetch _PERSON, which yield as result a reference {or in the
graph representation a node) to a database object. Furthermore, a person may
participate in the relationship lives_at, where all occurrences have to be deleted,
too.

elem action delete _PERSON ( name : string );
objects p : PERSON; m : MARRIED; » NOT._MARRIED;
la_set : set ( lives_at);
begin
if PERSON_exists ( name ) then
p = fetch PERSON ( name );
it MARRIED_exists ( p ) then
m := fetch_PERSON_as_MARRIED ( name );
busiq_delete._cons._MARRlED( m )
else
n = fetch_.PERSON__l.s_,,NOT_MARRIED { name );
basic_delete_cons._NOT_MARRIED( n )

end;
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la_set := fetch_relship_lives_at_PERSON ( p );
forall la in la_set do
basic_delete_lives_at ( la )
end;
basic_remove_comp_INFO ( p );
basic_delete_PERSON ( p )
end
end;
Figure 3.6: Elementary action for the deletion of a person

In both cases, only a subdiagram (or subgraph} of the current EER schema, termed
propagation subgraph, is involved in the corresponding elementary action. For example,
in the case of the insertion of an instance of an entity type e, instances of all
entity types in the chain of partitions starting at a non-constructed entity type
and ending at this entity type e have to be inserted. Furthermore, for each newly
inserted instance all attribute values have to be set, and also all dependent

components have to be inserted.

While the general proceeding for the insertion of a new instance is always the same,
the shape of concrete elementary actions totally depend on the current database
schema. Therefore, it is possible to build a generator for elementary actions, which
automatically derives elementary actions from a given database schema. Because of
our representation of database schemes by attributed graphs, this generator is a
set of special graph algorithms. Each algorithm describes a traversal of the
propagation subgraph of the Schema_Graph, which corresponds to the elementary

action currently to be generated.

Figure 3.7 sketches the algorithm to generate an elementary insert action. This

algorithm can be subdivided into four parts:

-~ In part 1, the chain of type constructions is computed, starting at the current
entity type, indicated by ent_name, and ending at a non-constructed entity type.

- In part 2, the frame of an elementary insert action is generated (cf. Fig. 3.4},
and the call of a basic insert action for an instance of the first entity type in
the type construction chain is generated.

- In part 3, all components of this entity type are collected by an access (AG_...)
to the attributed graph Schema_Graph, and appropriate basic actions to add
components are generated. This generation may be recursive, if the component

contains further components.
In part 4, all entity types along the chain of type constructions are handled.
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procedure Gen_elem_insert_entity ( ent_name : string );
yar var_name : string;
ent_chain, components : list ( nodes );
basic_ent, input_ent, output_ent : node;
begin
/% part 1 %/
compute_partition_chain ( ent_name, ent_chain );
/* part 2 */
basic_ent := head ( ent_chain );
Gen_frame_elem_insert_entity ( ent_name, basic_ent );
Gen_basic_insert_entity ( basic_ent, var_name );
/¥ part 3 */
components := AG_get_target_node_list ( basic_ent, E_Comp );
forall comp in components do
Gen_add_component ( comp, var_name )
end;
/*® part 4 »/
input_ent := basic_ent;
while not empty ( ent_chain ) do
output_ent := head ( ent_chain );
Gen_handle_partition ( input_ent, output_ent, var_name );
input_ent := output_ent
end
end
Figure 3.7

A detailed description of the generators for elementary actions can be found in
[Wo 891. It is the topic of current research to prove that the generated elementary
actions together with the graph replacement rules for basic actions describe tran-
sitions between correct database states, as they were defined in section 1.

4. CONCLUSIONS

Let us summarize the ideas of this paper:

We have shown that the description of the static structure of a database can be
used to derive automatically corresponding modifying actions, termed elementary
actions, which describe correct state transitions. The semantics of these elemen-
tary actions was given by programmed graph replacements. For this purpose, we
have shown how a database state can be represented by an attributed graph, so that

the semantics of basic actions, i.e. the constituents of elementary actions, can be
given by the application of graph replacement rules.
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These automatically derived elementary actions can then be used by a database
designer to compose complex actions, by which greater parts of the database state

are modified and which mode! specific actions of an application area.

The language for complex actions, the generator for elementary actions, and a
corresponding interpreter are realized within CADDY ([Wo 89], [Sc 901). CADDY is
a database design environment, which supports a user in designing and testing a
database on a conceptual level ((EHHLE 89]).
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