ﬁ! t J
Acta Informatica 13, 229-256 I c .
|

© by Springer-Verlag 1980

Ordered Attributed Grammars

Uwe Kastens

Institut fiir Informatik 11, Universitit Karlsruhe, Postfach 6380,
D-7500 Karlsruhe 1, Germany (Fed. Rep.)

Summary. Ordered attributed grammars arc defined as a large subclass (_)f
semantically well-defined attributed grammars proposed by Knuth. An attri-
buted grammar is ordered if for each symbol a partial order over the asso-
ciated attributes can be given, such that in any context of the symbol the
attributes are evaluable in an order which includes that partial ord.er. The
definition does not refer to a predefined strategy for attribute evaluation, €.2.
several passes from left to right. For each attributed grammar gvaluable by
any predefined evaluation strategy such an order exists. The ordering property
can be checked by an algorithm, which depends polynomially in time on the

size of the input grammar. Visit-sequences” are computed from the attribute

dependencies given by an ordered attributed grammar. They describe the
hich can be part of an

control flow of an algorithm for attribute evaluation W
automatically generated compiler.

Contents

L Introduction .« .+ e 3:2;(9)
2 Attributed Grammars .« o T 20
3. Deciding Whether Attributed Grammars are Ordered . . - - - = - ==~ >
4 Hierarchioal Classification of Adtributed Grammars. . - - = - = =0 70T 2
3. Visit-Sequences for Ordered Attributed Grammars . . - - - -0 T T "
6. Implementations of Visit-Sequences . - -« - -+ - 2
7. An Algorithm for Computing Visit-Sequences < . - - - oot o
8 Conclusion e 258
S Referemoes T

1. Introduction

Attributed grammars (AGs) are a well suited means for a complete definition of

a programming language, including all statically determinable properties of the

language. In [9, 10] Knuth established a condition for well-defined attributed

0001-5903/80/0013/0229/$05.60

230 U. Kastens

grammars (WAGs): The semantic rules of an AG are well-defined if and only _if
there is no sentence of the language with circularly dependent attributes. In [4]1t
was proven that the decision whether an AG is well-defined is an intrinsical ex-
ponential problem.

In this paper we introduce “ordered attributed grammars” (OAGs) as a sub-
class of WAGs. Grammars of this class are characterized by the following condi-
tion: For each symbol of the grammar a partial order over the associated attri-
butes can be defined, such that in any context of the symbol the attributes are
cvaluable in that order. Such grammars have several desirable properties with

respect to the definition of programming languages and to automatic generation
of compilers:

— An OAG is well-defined in the sense of [9].

— The class of OAGs is defined without any assumption on the strategy for
attribute evaluation, ¢.g. One or more passes over the program from left to
right as for example in [1]. Furthermore for all AGs of a class based on
predefined evaluation strategies such an order exists.

— For an OAG one can automatically construct compiler algorithms evaluat-
ing the attributes of any sentence of the language.

— The class of OAGs is sufficiently large for programming language definition.
The context dependencies of programming languages can usually be
defined by OAGs. The dependencies between the properties (attributes) of a
language element define a partial order in each possible context. In general
the superposition of these partial orders result in a new partial or linear
order. In this sense the condition for the subclass is natural.

— Itis decidable whether an AG is ordered. The time needed for that decision
and for the computation of the order depends polynomially on the input
grammar. The analysis of OAGs for usual programming languages can be
done in reasonably short time,

Compiler generating systems based on different subclasses of AGs already
exist ([2, 11. 12, 141). In order to generate complete compilers the AGs are ex-
tended such that they describe the code 1o be generated for a target machine.
(Different approaches are discussed in [6, 16, 17].) A generator based on OAGS
(GAG) is currently being implemented by the author. A rather complete bibliog-
raphy on AGs is found in [15].

In Sect. 2 the notation of AGs and an ¢xample is given, which is referred to ?ﬂ
further sections. Section 3 defines the condition for OAGs and how to check it.
The position of OAGs within the hierarchy of classes of AGs is shown in Sect. 4.
The ordering property of an OAG is used in Sect. 5 for computing tree walk rlll?s
(called ~visit-sequences ™) for attribute evaluation. They can be implemented in
automatically generated compilers as shown in Sect. 6. In Sect. 7 we give an

abstract algorithm for checking whether an AG is ordered and computing the
visit-sequences and discuss its complexity.

2. Attributed Grammars

In this section we introduce our notation for AGs. It differs to some degree from
other notations used in literature in order to achieve completeness and readability.

Ordered Attributed Grammars 231

As an example for further reference we consider the definition of a small expres-
sion language.

A_n AG is based on a context-free grammar which is augmented by attributes
fun(?tlons defining values of attributes, and conditions OVver attributes. Eac};
a}tnbute describes a property of a language clement, which 18 defined by a func-
tion in a context dependent manner. The conditions restrict the combinations of
these properties according to static semantics.

An AG is defined by a 5-tupel

AG=(G, A, VAL, SF, SC).

th(N . TS, P) is a reduced context-free grammar, where N is the set of non-
tf}:llfmmal symbols, T'1s the set of terminal symbols, V=Nv Visthe vocabulary of
e grammar, SeN is the start symbol, and P is the set of syntactic rules. Each

syntactic rule pe P has the form
p=Xy: Xy... Xups np=0

X d_enOteS an occurrence of a symbol of N for i=0 and of V for i>0. In the fol-
lOWII_Ig X, will always denote an occurrence of a symbol X 1n such a rule p. The
quahflf:atiOn of the index 0Li=np will be implied.

A is a set of attributes. Each attribute 18 associated to exactly one symbol
XeV. A, is the set of attributes associated to X. The clements of Ay are denoted

X-a, X-b,.... We have
A=|J Ay and Ay A Ay 0 implies X=Y.

XeV

4 is partitioned into two disjoint subsets Al and AS, the inherited and the syn-

thesized attributes:

A=AIv AS and AS A AI=0.

and ASy. For each occurrence

Hence each Ay is partitioned into two subsets Al
.« for all attributes

X;of a symbol X in a rule p there 1s an attribute occurrence X;

acAy.
np
Apz U U Xi"a
i=0 aedx

is the set of all attribute occurrences in p.

SF=|]JSF,
peP
h semantic function

is a set of semantic functions associated to rules peP. kac
g on kz0 attribute

defines the value of an attribute occurrence inp dependin
occurrences in p:

feSF,
k
Je X DOM(bjeAp)—*DOM(aeAP),

j=0

€.8. Xi'ﬂ==g(X,,,-c,...,X,,-d,...).

for a k=0

232 U. Kastens

The values defined for the attribute occurrences are taken from a set of possible
values, the domain of the attributes: DOM(X; - a)=DOM|(X - a), for X=X,
VAL is the set of the domains of all attribute values:

VAL={DOM(a)|acA)}.
For each X, - a of the set of defining occurrences
Ab,={X; al(i=0and aeAS) or (i>0and aeAl)}

there is exactly one function in SE, defining the value of X, - a. Thus it is ensured
that the value of each attribute is determined uniquely in any context. The set of
applied occurrences (not defined by SF)) is

AszAp\AI*;‘

The attribute values are staticall y defined by the semantic functions, comparable
to the objects and functions of the lambda calculus. The functions must not be
looked upon as algorithms on variable attributes!

Let s be a sentence of L(G) which is derived by

S=u W urXxy- u LWX y=>5,

Anode K representing the symbol X in the structure tree for s is called an instance
of X denoted by K,. For each attribute X - a an attribute instance K, - a is asso-
ciated to K. The values of the inherited attribute instances of K 4 are defined
by functions in SE,, the values of the synthesized ones by functions in SF,. A struc-
ture tree augmented by the attribute instances is called an attributed structure
tree,

SC is a set of semantic conditions, one associated to each rule p:

k
SCe X DOM(a;e4,)— {true, false}, for a k>0,
j=1

4=

A sentence se L(G) is a sentence of the language L(AG) iff for each application of
a rule p in the derivation of s the values of the corresponding attribute instances
meet the condition SC,. The following discussions are restricted to attribute
dependencies determining the evaluation order. As semantic conditions and the
domains of attribute values do not influence the attribute dependencies they are

(For more details see [7])

As an example for further reference we consider the definition of a simple ex-
pression language. The example covers four of the most important context sen-
sitive properties of languages: scope rules, mode checking, coercion and operator
identification. In addition ap optimizing method (constant folding) is incor-

poratec_l in a very simple way. We use an informal notation which can be con-
verted into a systematic description language [7].

Ordered Attributed Grammars

233

The following attributes are used:
description a pair (identifier, mode) describing a defined object;

access

primode
postmode

evaluable

value
id

the set of descriptions of declared objects visible from the syntactic
unit in question;

the mode (int or real) of a syntactic unit before applying coercion;
the mode of a syntactic unit, determined by the outer context

(coercion will yield this mode);
indicates whether the value of the syntactic unit can be computed

statically:
the value of the syntactic unit if it is computable statically;

a unique representation of an identifier denotation.

The attribute sets are:

Al = {X.access| X € {expression, primary, assignhment, declaration}
v {X . postmode| X € {expression, primary, assignment } }

AS= {X.primode| X € {expression, primary, assignment} }

v {X .evaluable| X € {expression, primary}}
v {X .value| X e{expression, primary, intconstant, red

lconstant}}

v {declaration. description]
v {identifier .id}

The language is defined by:
p,: rule program:primary
semantic

primary . access:=9;
primary . postmode:= primary. primode
end

p,: rule primary: *("declaration ! ‘assignment)
semantic

primary . primode: = assignment .p
assignment . postmode: = primary’.
primary . eraluable:= false:
primary . value: = undefined

end

declaration. access:=primary. access,
assignment . access: =

laration . description).
rimode;
postmode

include (primary .access, dec

ps: rule primary:identifier
semantic

primary . primode: =

identify (identifier. id, primary . access)},

primary.evaluable:z]‘blse ;

primary . value:= undefined;

condition

end

isdefined(identifier . id, primary .access)

234

P4 rule primary ‘intconstant

Ps:

Ps -

Pg:

semantic
primary . primode: = int :
primary . evaluable: = true -
primary .value: =
if primary . postmode = real
then widen(intconstant . value)
else intconstant . value fi
end

rule primary : realconstant
semantic
primary . primode: = reql :
primary . evaluable: = trye :
primary . value: =realconstant . value
end
rule assignment : identifier’:="expression
semantic
€Xpression. access: = assignment . access -
assignment . primode : =
identify (identifier .id, assignment . access) ;
expression. postmode: = assignment . primode :
condition
isdefined(identifier .id. assignment . access) and
not (expression. primode =real and

expression. postmode = int)
end

© rule e»c,messwnI expression,’ + " primary

semantic

evpfesszonz ACcess: = expression, . access:
primary . access: =expression, . access;
expression, . primode: =

if expression, . primode = int

and primary . primode = jng

then int else reql fi:

expression, . postmode =eXpression, . primode -

primary . postmode : =expression, . primode :
expression, . evaluable: =

expression, . evaluable and primary . evaluahle :

expression; . valye: =

if expression, . evaluable
then add¢ expression, . value, primary . valye)
else undefined fi

end

rule expression - primary

semantic transfer

end

U. Kastens

Ordered Attributed Grammars 235

py: rule declaration: ‘new’ identifier’ :="expression
semantic
expression. access:= declaration .access;
declaration . description: =
(identifier .id, expression. primode),
expression. postmode: = expression . primode
end
The meaning of the functions include, isdefined, identify, add, and widen are given
informally:
include(a, d) a is a set of descriptions, J is a description; the result is a v (d}.
if ¢ does not contain a description d' for the same identifier
_ described by d, (@\{d'})V {d} otherwise.
isdefined(id, a} ais a set of descriptions, id is an identifier; t
. contains a definition for id, false otherwise.
identify(id, a) a is a set of descriptions, id is an identifier; the result is the
mode defined for the identifier by a description in a. If no such
description exists, the result is undefined.
add(v) has the usual meaning for arithmetic values.
widen(v) converts an integer vajue to a real value.
Rule p, describes the block structure of the language. For simplification only one
declaration and one statementare allowed in each block. The scope rules described
b_y the attribute access are defined as usual for block structured languages. The
flrst semantic function of p, says that the declared identifier must not be applied
n the declaration part. In order to enlarge the complexity of attribute dependen-
Cics the mode of a declared identifier is not given explicitly in rule py. It 1s deter-
mined by the mode of the initialization expression.

There are no semantic functions defining the attributes identifier .id, int-
constant . value, and realconstant .value. Such attributes of terminal symbols are
implicitly defined by the symbol text. Semantic conditions are headed by condi-
tion. transfer in pg 1s 2 shorthand notation for semantic functions which define
corresponding attributes of expression and primary 10 have the same value.

he result is true if a

3. Deciding Whether Attributed Grammars are Ordered

In this section we introduce a method for deciding whether a given AG 1S ordered.
The method is based on the graph representation of dependency relations be-
tween attributes which was introduced by Knuth in [9]. The essential problem is
to reduce a condition stated for the dependencies in the (infinite) set of sentences
of a grammar to another condition stated for the dependencies between the
finite set of attributes. The problem is solved by ~projection” of the attribute
dependencies in sentences into dependency relations associated to syntactic rules
and symbols.

The basic idea of OAGs is the following: For each sy
a partial order DSy over the attributes Ay is construc
pendencies between attributes of symbols.) It determines an eva

mbol XeV ofa given AG
ted. (DS abbreviates de-
luation order for

236 U. Kastens

the attributes, applicable in any context X occurrs in. (X - a, X - b)e DS, indicates
that an attribute instance K x - a must be evaluated before K, - b (of the same K,)
for any symbol instance Ky in any structure tree. If neither (X +a, X-b)nor
(X-b, X -a)isin DSy, the evaluation order of corresponding attribute instances
can be chosen arbitrarily for any K ,.

The existence of such an order is a sufficient but not neccessary condition for
the well-definedness of the AG (see Sect. 4). The relation DS y must comprise all
direct and indirect dependencies, which may be derived from any possible context
of X. Furthermore for different symbol occurrences in the same context the rela-
tions must be compatible with the dependencies between the attribute occurrences.

The evaluation order DS x 18 the base for the construction of a flexible and
efficient attribute evaluation algorithm. It is closely adapted to the particulfir
attribute dependencies of the AG. The principle is demonstrated here, for details
see Sect. 5. Assume that an instance of X is derived by

S=u Yy-apqux)-'ﬂquvwxy:s.
Then the corresponding part of the structure tree is
Ky
rule p

u Ky v

rule ¢

W

An attribute evaluation algorithm traverses the structure tree using the opera-
tions “move down to a descendant node” (e.g.from K, to K ;) or “move up to the
ancestor node ™ {e.g. from Ky to Ky). During a visit of a node K, some attributes
of AF, are evaluated according to semantic functions of SF,,if p is applied at Ky.
In general several visits to each node are needed until all attributes are evaluated.
A local tree walk rule is associated to each p. It is a sequence of instructions of
three types: move up to the ancestor, move down to a certain descendant, and
evaluate a certain attribute,

The relations DS, act as “interfaces™ between visit-sequences, assuring that
the visit-sequences for a tree node and for its descendants fit together in the fol-
lowing sense: A move down from Ky to Ky is made in order to evaluate the
attributes of a certain subset of 4§ x- Their values can be used for further evalua-
tions of functions in SF, after the traversa] has returned to K v The existence of
such a relation DS, assures that the subset is the same for all rules ¢ deriving X.
Correspondingly after a move t0 Ky the subset of 4] x of additionally evaluated
attributes is the same for each occurrence of X on the righthand side of any rule P
Therefore each DS, must define a linear order over subsets of 4 x» which contain
alternatingly inherited and synthesized attributes only. In general DS is partially

ordered, since the evaluation order within cach subset is not relevant for the
interface,

Ordered Attributed Grammars 237

DS imary acc pri post ev val
S~ W
DS, ewion: ACC ri ost ev val
RN F S
DSassignmem: acc pr1 pOS[
_/
DSdeclaratiun: acc descr

Fig. 1. Dependency graphs DS, (all lines), IDSy (heavy lines)

The AG is an OAG, if a dependency relation DS with the properties discussed
above can be constructed according to the following definitions. Figure 1 shows

the graph DS for our example.
Definition 1.

DP=|DF, DFcA,xA4,

peP

is the relation of direct dependencies between attribute occurrences associated to

production rules, where

DE={(X; a, X;- b)|there is a semantic function in SF,
defining X;- b depending on X; - aj.

The relations DP, for our example are given in Fig.2 by the heavy lines only.

A dependency graph over the attribute instances in a structure tree for a sentence
can be constructed by “pasting together” graphs DP, according to the applica-
tions of rules p in the derivation of the sentence. Figure 1 shows such a graph for a
sentence of our example.

In the next step we constructa dependency relation IDP over attri.bute occuf-
rences. IDP is defined recursively: Starting from DP a direct or indirect depen-
dency between attributes of one symbol occurrence induces a dependency between

corresponding attributes of all occurrences of that symbol. | N
In the following we use the notation D* for the non reflexive transitive closure

of D. In the graph representation an arc (a.b)isin D7 1ff an oriented path from «
tobitsin D.

Definition 2.
IDP=|JIDP, IDFcA, x4,

peP

is the relation of induced dependencies betWeeD attribute occurrences, where

IDE,=DP, v {(X;-a, X, b)| X; occurrs in rule p, ¥; occurrs in rule g.
X=Y, 0<j<ng (Y- a Y}-b)eIDPq*}.

The graphs IDF, for our example are shown in Fig. 2.

238

4%
program
N
acc | pri | post | ev | val
) 2 Ny LA
primary ~- N—
Ps:
rimary ~ ™
P) N N
'acc pri | post | ev ! val
ident.
ps:
rimary -~ T~
P Y NATTY N
Lacc pri | post | ev | val
val
realconst
Ps:
expr. - - Y
P N \/.‘/' " TN
acc | pri post | ev ! val
LT
o
\acc pri post[ev val{
‘ N v S
pr1mary"} ~— _/}‘
pst
expression _.._
/
ESEIRE

LN Mo AN A
expression >~ -7 Vil 27

——

Fig. 2. Dependency graphs

e Joon[o ot

"?

U, Kastens

Py

primary ___
s

TN

AT N
post val

N

descr acc | pri
A

S

P

N/
cc | pri

a
acc

A
decl. ™~

eV

post

N 2.
~—"assignment

P4l
primary
"~ —\//\\ S

prt | post | ev | val

/
o

acce

intconst

Pe:

assignment

acc

ev | val ‘

Now_ N _ A
7 N = expr

Y

Py

declaration

-

hY

/!
descr
/f/T/\

post

N AN_AA
N = expr.

val

——

-~
VA

o]

L

o

- % :
~_ ~" primary

T
2

x

-

DF, (heavy lines), IDF, (heavy and dashed lines), EDE, (all lines)

Ordered Attributed Grammars 239

program

primary
N

dec}aration/ /‘\‘ assignment
a

cc | descr acc pri

ident. expr. 1dent. X \ expr.

[ace i [ot [o [4] [ace [[pos [e

T T L1 L] b

intconstant al |intconstant
|

ar= 2)

inew q:=

Fig. 3. Dependencies in an attributed structure tree

indirect dependencies into dependencies

The construction of IDP *projects”
pendencies are extracted in the next step.

between attribute occurrences. These de

Definition 3.

IDS=|) IDSycAx A
XeV

is the relation of induced dependencies between attributes of symbols, where

IDS,={(X -a, X - b)|there isan X,=Xina rule p and (X;-a. X, -b)eIDE}.

Note. (X -a, X - b)e IDS implies that (X;-a X, b)yelDF, for each occurrence X,

of X in each rule p. If there is a dependency between attributeé instances Ky -d
gnd K, b in the structure tree for any sentence of the language. (X - 4. X-b)is
m IDS. On the other hand (X -a. X -b)eIDS does not imply that a dependency
eXists in any structure tree between corresponding attribute instances. In that
sense IDS is “ pessimistic”. The graphs DS for our example are given in Fig. 2.

In the next steps IDS will be completed to the relation DS such that for each
two attributes X - acAl, X -beAS either (X -a, X -b)eDS or (X b, X a)eD3
holds. Then each DS, defines a lincar order over disjoint subsets Ay, of Ax.
Eac}} Ay . consists of those synthesized 0f inherited attributes whose values are
additionally available after a move up or down in the tree. The evaluation order

240 . U. Kastens

X= My Ay, Ax 3 Ax. Ay
primary

expression 4 acc pri post val, ev
assignment 4 acc pri post -
declaration 2 acc descr

Fig. 4. Disjoint partitions Ax s

corresponds to decreasing order of the index k. Hence the subsets are defined such
that A, , contains attributes which contribute directly to the computation of
attributes in Ay, ;.

Definition 4. Let IDS be acyclic. For each X eV we define successively
Ay 1 ={X-aeAS|there is no X - b such that (X -a,X b)eIDS*},

Ax 1,={X -acAl|for all X bedy: (X -a,X -b)eIDS* implies
2n-—1

X bedy,,m<2n\ | Ay,
k21

Ax ane1={X-acAS|for all X -bed (X -a, X b)cIDS* implies

2n
X-bedy ,, m<2n+ 1)\ \J Ay,
k=1
untilcach X-aeAy isin an Ay ,. The sets A, , form a disjoint partition of Ay’

4‘: U A.\'.k for mxgl,
k=1
Ay~ Ay ;#0 implies k=;.

Note. The disjoint partition could have been as well defined starting with the
attributes evaluable first. In that case we had to decide whether the first subset
contains inherited or synthesized attributes, ie. whether attribute evaluatiqﬂ
starts at the root or at the leafs of the tree. This assumption is not needed 10
Definition 4.

The disjoint partitions for our example are shown Fig. 4.

Definition 5. Let IDS be acyclic, The dependency relation DS is defined as a com-
pletion of IDS:

DS=1{)DSycAx A

Xev
DSy=IDSxv{(X-a X b)x. a€dy,, X -bedy, |, 2<k<m,}.
In the last step We complete the dependency relation IDP according to the com-
pletion of IDS, in order to check that the completion does not cause cycles.

pefinition 6. The extended dependency relation over attribute occurrences EDP
1s defined as a completion of [DP-

Ordered Attributed Grammars 241

b -

IDE, EDFE;: IDP,EDE,
. S AR A A
g=X:t e ‘ r=Y:s Tmeeeet
A

Fig. 5. Acyclic IDP (heavy and dashed lines), cyclic EDP (all lines), and ADS

EDP=|) EDF,

peP

EDP,=DP,v {(X,-a, X;-b)|(X -@. X -b)eDS, X=X}

¢ with the attribute dependencies if EDP is acyclic.

DS is said to be compatibl
relation DS exists and 1s

Definition 7. A given AG is an OAG iff the dependency
compatible with the attribute dependencies.
’ There exist AGs (usually not occurring in practical applications) where DS
1S not compatible with the attribute dependencies. This situation is caused by the
completion of the relations IDSk- (Figure 5 gives an example.) If IDP is acyclic
one can show that each cycle in an EDFE, contains at least two arcs, which are
mtrquCed by arcs (X -a, X - b),(Y-¢, T e DS\ IDS, where X and Y correspond
to different symbol occurrences in p. Furthermore X-a. X-band Y., Y d are
fﬂdep_endem in IDS*. The arcs are in DS because the attributes in question are
associated to different subsets of Ay and Ay according to Definition 4.

If ‘there are attributes independent in [DS* one can enforce a different disjoint
partition of A by adding dependencies which do not correspond to semantic
functions. An arbitrary set of dependencies ADS¢

| Ax A is called augmenting
dependencies between attributes of symbols.

Dejﬁn.ition 8. Let DP be the direct dependencies of an AG and ADS a set of aug-
menting dependencies. Let DS’ be computed on the base of DP’, where

DP=DP,v{(X;-a. X, DIX -a, X - b)eADS}.

An AG is arranged orderly by ADS if the AG together with DS’ is an OAG.

An AG is arranged orderly, if ADS has the following property: It contains
ares (X - b, X - a) such that in each cycle of the original EDP at least one arc
(X,-a, X, - b) is replaced by (X;-b. X;-a) and no new cycles are introduced. In
ge“"tfal the computation of an ADS with that property is a combinatorial problem
of high complexity. An algorithmic solution shall not be discussed here because
the problem has little practical relevance for AGs defining programming langua-
ges. For some restricted classes of AGS ADS can be given easily (see next section).

242 U. Kastens
4. Hierarchial Classification of Attributed Grammars

In this section we compare OAGs with other classes of AGs with respect to the
complexity of the expressible attribute dependencies. The expressive power of
OAGs is larger than that of any class of AGs defined by a fixed evaluation strategy.
Compared with well-defined AGs the restriction for OAGs does not exclude

practical cases. The hierarchy of classes of AGs is listed below in descending
order of expressive power:

AG attributed grammars

WAG well-defined attributed grammars [9]

ANCAG absolutely noncircular attributed grammars [8]
OAG ordered attributed grammars (defined in this paper)

m-APAG attributed grammars evaluable in m alternating passes [5]
n-PAG attributed grammars evaluable in n passes from left to right [1]
I-PAG=L-AG
attributed grammars evaluable in 1 pass from left to right [1], L-
L-attributed grammars [13]
S-AG S-attributed grammars [13]

The definitions of the classes below the line are based on an apriori defined
evaluation strategy, whereas for those above the line evaluation strategies must
be computed from the attribute dependencies. In the following we shall discuss
the relations between these classes. By simple examples it will be shown that the
inclusions are strict.

The definition of absolutely noncircular AGs [8] can be derived from Defini-
tion 2 for OAGs:

An AG is an ANCAG iff the following dependency relation is acyclic:
IDP-ANCAG=| J IDP-ANC 4G

pebP

IDP-ANCAG=DP, v
(X, a. X, b)i>0and there is a ge P:
4=Yyw. ¥, =X, and
(Yo-a. Y5 -b)eIDP-ANCAG*).

Obviously IDP-ANCAG¢IDP. and for some AGs this inclusion is strict. Thus
OAGEANCAG is a strict inclusion. Figure 6 gives an example for an ANCAG
which is not an OAG.

For each AG which is not well-defined there exists an attributed structure
lree containing a cycle. Therefore IDP-ANCAG Is cyclic and the AG is not
absolutely noncircular. Figure 7 shows the dependencies of an AG, which 15
well-defined but not absolutely noncircular. Thus ANCAG¢cWAG is a strict in-
clusion.

Several classes of AGs are defined by apriori fixed strategies for attribute
evaluation, such that for each Sentence of L(G) all attributes can be evaluated in

Ordered Attributed Grammars 243

DP:

P

p=S: X1,

B
=
B
—
~
e

o
=
—

e x[oe]ele)or ¥ LI
A ~___

r=X:t, s=X:t,

Fig. 6. ANCAG, but not OAG

DP: S

p=58:X
N N
x[a]p]eld
e Nt
L

—

g=X:14 r=X:t;

Fig. 7. WAG, but not ANCAG

DE,: S DE: Y
S:Y g=Y: XY / \
N
aun X aib)Y
DE: Y DR: X
N~ ./

r=X:t,

p:

g=Y:4
Fig. 8. 2-APAG, but not n-PAG

d ‘?eft'din number of passes over the structure tree. The most restrictive class con-
tains the S-AGs defined in [13]. They only allow for synthesized attributes. which
are evaluable in a single bottom-up pass.

Obviously they are included in 1-PAGs (called L-AGs in [13]). which arc
evaluable in a single top-down left to right pass. In [1] {-PAGs are generalized
to,”‘PAGS: For each ueA thereis a number 1Sk, Sn such that any instance of
d1n any structure tree is evaluated in the k,-th top-down left to right pass. The
number of passes needed is the maximum number k,.

A further generalization leads to m-APAGS, which are evaluable in m alter-
nating top-down passes: the i-th pass proceeds from left to right (right to left) if i
15 odd (even). For each n-PAG there1s an m<2n—1 such that it is an m-APAG,
too. Figure 8 shows a situation for which the m-APAG condition holds but not

the n-PAG condition for any . _
turned into an OAG by augmenting

d An m-APAG is an OAG or can be :
ependencies. For any m-APAG IDP and IDS are acyclic. If the completion of

IDS leads to cyclic EDP, the AG can always be arranged orderly:
h evaluates the attribute a according to

Let k, be the number of the pass whic !
the APAG strategy. Since the passes proceed top-down any instance Ky-a 15

244 U. Kastens

DP,: A DE: Ylalb|c|d
A

=5 =YY
Yial|bic|d Y|laib|c!ld

DP: Y l|lal|blc|d
NN

Fig.9. OAG, but not m-APAG

evaluated before Ky - bif k, <k, or k= kyand ae AT and be AS. Thus the m-APAG
condition defines a dependency relation IDS-APAGcA x A:

IDS-APAG={(X -a, X - b)|k, <k, or (k,=k,, uc AL beAS)).

From Definition 3 follows that IDSCcIDS-APAG for all m-APAGs. Hence in the
OAG check neither IDP nor IDS can be cyclic. In a situation as shown in Fig. 5
the completion of IDS causes EDP to be cyclic. In any such case the AG can be
arranged orderly by ADS=IDS-APAG. So the class of m-APAGs is included
in the class of OAGs in the sense that each m-APAG can be arranged orderly.

The inclusion is strict because there are OAGs which can not be evaluated in
m alternating passes for any m. Such AGs contain recursive syntactic rules with
attribute dependencies such that the number of evaluation passes is determined
by the unlimited recursion depth (as shown in Fig. 9).

3. Visit-Sequences for Ordered Attributed Grammars

OAGs (and the larger classes as well) do not imply a predefined strategy for the
walk through the structure tree during attribute evaluation. For each grammar
of this class a special evaluation algorithm can be constructed based on the
attribute dependencies. Such an algorithm implements the semantic analysis of 2
compiler for the defined language. It is independent of the compilation of any
particular sentence: therefore it can be constructed at time of compiler generation.
The situation is similar to the construction of a parsing algorithm from syntactic
definitions.

The construction is based on the following idea: For each rule peP a vistt-
sequence VS, is computed. A visit-sequence is a local tree walk rule applied at
each node of the structure tree, which is derived by p. It describes the order of
visits to surrounding nodes and of evaluations of semantic functions between
those visits. (It is assumed that the semantic functions are translated conveniently
into the implementation language of the compiler. Only the applicability of the
functions according to the attribute dependencies is considered here.)

The ordering property of an attributed grammar yields both a rather simple
construction of the visit sequences, and a rather simple implementation of the
attribute evaluation algorithm. The visit-sequences for OAGs are linear sequences
of actions (node visits and attribute evaluations). The next action to be executed

Ordered Attributed Gre ars
rammars 245

zi elvalgatlon time is completely determined by its predecessor. The comparable
neituél;:?n;‘tl)lles'fo‘r ANCAGS ('[8] and. [3]) are partially ordered graphs. The
o e action is determined by its predecessor and a context dependent

attributes already evaluated. Thus the evaluation algorithm is simpler for

0AGs than for ANCAGs (see Sect. 0).
The construction of the visit-sequences is based on the dependency relation

ED - . 0 N
Conls’tdeflr_led ‘1 Sect. 3. As attribute evaluation may be done interleaved with the
ruction of the structure tree, we shall distinguish three cases for the con-

struction of the visit-sequences:

TC: i e i i

o ittr%bute evaluation starts, when the whole structure tree 18 completed.

TD: Attqbute evaluation is done interleaved with bottom-up tree construction.
- Attribute evaluation is done interleaved with top-down tree construction.

(}:if)rrueigsh Tlﬁ q a visit-sequence F5, will be constructed separately. For any pair
tOgetherqin_th. uX v and r=X:w VS, and VS, are constructed such that they fit
20d context f% %equence of attribute evaluation and .thf-: moves bptwegn context g
disjoint Xt r (ancestor anq q§scendant v131ts).. This interface is defined by the

partition of A (Definition 4). Such an interface for the TC- and TD-case

and m, =6 is given below:

context ¢
Axs Ay 4 Ax.2
11 ! 12 12 i3 13
Axs Ax 3 Ax.1

context r

are evaluated in the context 4. the syn-
1 k denotes the k-th descendant visit
om r. The number of ancestor and

-t[h};;lznezemed attributes (A X.m for even m)

from (A4, for odd m) in the context p.

desceg(’jgjk df:r}otes the k-th ancestor visit fr
nt visits are both

an:-fX div 2,

where f, i :
elre fy is the smallest even number fyzmy (for the TD-case).
n the BU-case tree construction and attribute evaluation s

interface moves in upwar

le o
afs of the tree. Thus the first visitin the

tarts from the
d direction:

context ¢
Axe Ax s Ax.2
[122 131314
Ay s Ay 3 Ay
context r

the BU-case the number of ancestor and descendant VISIts 18

neupy=(fy+1)div2, nvd()wnX:m‘upx—l

w .
here fy is the smallest odd number fy ZMx-

246 U. Kastens

The construction of VS, replaces in the graph EDP, all attribute oceurrences
not evaluated in the context p by corresponding ancestor or descendant visits.

Definition 9. Each visit-sequence V'S, associated to a rule pe P is a linearly ordered
relation over defining attribute occurrences and visits:

VS, cAV, x AV, AV,=AF,v v,
Vo={tel0<i<np, 1<k <nu,, X=X;}.

ti.o denotes the k-th ancestor visit, ty.i»1>0denotes the k-th visit of the descendant
X;. The function M APVS maps nodes of EDP to nodes of VS

X;-a if X, acdF,
Uy i X=X, X, -ae(4y,rAC,),
MAPVS(X; - a):= k=(fy—m+ 1) div2, k>0

undefined if X;,=X, X, ae(4,, NAC,),
O=(fy—m+1)div2.

HS, =UMAPVS(X; - a), MAPVS(X; - b)|(X,- a, X,- b EDP} v
{arbitrary arcs such that VS, 1s linearly ordered and

Ueos k=nry, X=X, is the “largest” element}.

Note that attributes evaluated before the context p is entered the first time (the
“smallest™ inherited attributes of Xo 1n the TC-case and the “smallest” syn-
thesized attributes of all X,, i>0 in the BU-case) are not represented by a visit.
Usually ail attributes of terminal symbols are synthesized and implicitly defined
by the symbol text. Thus terminal nodes need not be visited.

The TD-case is similar to the TC-case. Additionally for each VS, it must be
assured that the first visits of the descendants are ordered from left to right:

(a) 0<i<j<np implies () ;. 0p)e VST,

(b) 0<i<np implies (€. 1) g)E Vs,
The visit-sequences are computed as described for the TC-case. The freedom of
the arbitrary linearisation is used in order to achieve the above condition. In
general that is not possible for al] VS, . Thus we consider all symbols which would
be visited 100 late” for the first time In some context p:

LATE={X|there is a p such that X — Xi.i>0,and ¢, , occurrs
“too late™ in V5, according to (a) or (b)}

The set LATE contains al] symbols X, for which the interface, i.e. the disjoint
partitions of the attributes, must be changed such that the visit-sequences X
occurrs 1n fit to conditions (a) and (b). Thus we add an empty set Ay ,, k=nmy+ L
to the disjoint partitions of each XeLATE, if my 1s even. (If m, is odd, the ﬁrst
visit of X does not depend on attributes and can be placed at an appropriaf¢
position in any visit-sequence.) Then the visit-sequences are recomputed using
the updated interfaces. The added sets Ay will yield an additional visit of X for

syntactic purpose only. It can be placed such that (a) and (b) hold, because it does
not depend on any attributes,

Ordered Attributed Grammars 247

VS, for g= y:wand YeLATE
Y changed. Therefore we iterate
sequences until the conditions
LATE are disjoint for

_ In general some recomputed visit-sequences
violate condition (b}, because the interface for
the computation of a new set LATE and new visit-
hold for all VS,. The iteration terminates because the sets
all iteration steps, and V is finite.

The evaluation of the semantic condition SC, can be inserted in V'S, at any
place aftef the evaluation of the attributes it depends on.
The visit-sequences for our example (for the TC-case) can be computed as

follows:

VS =pri .
=prim ; . . y .
VSl p ar} -aceess, Ll.primary’ P”mar} .postmode, L2,primary7 bl.anceslor
2=d€damt10waccess, Uy declaration® assignmenr.access, Uy assignment?
primary . primode, Uy gncestor? primary.eva[uable, primary . value,

assi : .
Ignment) pOStmOde’ Lz,assignmentv l’z,ancesmr

VS, = " . . . ;
y= condition, primary . primode, Uy ancestor: Prtmary.evaluab!e, primary .value,

Uz.anceswr
S, = VS, =

primary . primode, vy apeestor» PTIMATY - €14
assignment . primode, Uy ancestor

luable, primary . value, Uz ancestor

VS, = .

—=expr ? +

6 P ess:_on.access, U1 expression®
expression . postmode, condition, Uy expressions ¥ 2.ancestor

VS, = :
=@ : , : e .,
7= €XPression, . access, Uy expression:” primary . Gceess, Uy primary:

expression, . primode, expression;
primary. pOSImOde, U3 primary? Uy ancestor®

exPreSSionl ' value, U3 ancestor
expression. primode, Uy ancestor’ primary

. pOSIMOdL’, UZ.expressiong H
expression; .evaluable,

VS = pri _
= primary . acc ; .pos
g =primary .access, Uy primary’ postmode,

expression. evaluable, expression. palue, Us gncestor

VS L'2.,primarya
Dg=¢Xx] » :
y press:gn.acc €8S, Uy _gxpression’ expr
eclaration.descr, Uy gneestor

ession . postmode, Uz expression®

6. Implementation of Visit-Sequences

The compiler phase for semantic analysis traverses through the structure tree
and computes the attribute values. The control flow of this algorithm 15 exactly

given by the visit-sequences. They describe which tree nodes are to be visited and
he visit-sequences can be translated

which semantic functions are to be called. T

Into recursive procedures or coroutines or into the transition table of an automa-
ton. The semantic functions (translated into the implementation language of the
compiler) complete the compiler phase. (The situation 18 comparable t0 LL-
grammars, which can be parsed by recursive procedures Of table driven parsers,
both augmented by actions appended 0 production rules.) In general a table

riven algorithm is the most efficien plementation UsIng

t implementation. Ant :
reCquWe procedures or coroutines is well suited to extend a recursive descent
parsing algorithm.

. In this section we show the principles of
SISSume that the visit-sequences ar¢ construc :
arts when tree construction is completed. It will be obvious

four implememation techniques. We
ted such that attribute evaluation
how the implemen-

248 U. Kastens

tations must be modified if the attributes are evaluated interleaved with tree con-
struction.

6.1. Implementation Using Coroutines

The implementation technique given here uses SIMULA-classes as coroutines.
It can be easily transferred to other programming languages providing comparable
control structures. We assume that each node of the structure tree is represenlted
by an instance of a class. The type of the class is determined by the correspondlpg
syntactic rule p. The tree structure is represented by references from a node to its
descendants.

For each rule p=X,: X,...X, a class definition is constructed. For rule pyof
our example it reads as follows:

node class p—2;
begin ref (node) declaration, assignment ;
attributes access, primode, postmode, evaluable, ralue :
(* syntactic part:
the subtress for declaration and assignment are constructed *)
detach;
(* semantic part: *)
declaration . access:
call (declaration);
assignment . access: = . :
call (assignment) :
primode:= . ;
detach:
evaluable: = ., -
value:= . ;
dassignment . postmode: = .,
call (assignment) -
detach
end

The semantic part is a straightforward implementation of the visit-sequence IS{!’:
An ancestor visit is translated into a detach-statement. A visit of descendant X;
1s translated into a coroutine call call(X,). Each attribute X, - an the visit-sequence
is translated into a call of a semantic function in SF, defining its value.

6.2. Implementation Using Recursive Procedures

We assume that the nodes of the structure tree are represented by data structures
with components for the attributes, references to the descendants, and a com-
ponent indicating the derivation rule applied to the node. For each rule p=Xo:
X_ . .- X, the visit-sequence V'§ o 1s split into m parts each terminated by an ancestor
visit:

VS,=VS, . VS, ,..VS

p.m-*

Ordered Attributed Grammars 249

For each VS, ; a procedure p' is constructed. For rule p, of our example it reads
as follows:

procedure p _ 2! (ref node primary)

begin
primary .declaration.access:=...,
p_9 (primary .declaration);
primary . dSSignMent . access: = ...,
p_6' (primary .assighment);
primary . primode:=....

end;

procedure p_ 22 (ref node primary)
begin
primary .evaluable:=....
primary .value:=....
primary . assignment . postmode:=....
p_6° (primary.assignment) N
end

The body of the procedure 1s a straightforward translation Qf the i-th part of thp
visit sequence VS, ;: Each X -d is translated into an appropriate c;all of a semantic
function, and each descendant visit vy ; into a call g*(X,). If there 1s more than one

rule g for the i-th descendant X the +-th visit , ; is translated into a case state-

ment, which determines the procedure to be called by inspecting the rule_ indicator
of X;:

case X, - rule indicator of
g_1:g_1"(X):

g_n:q_n (X))
esac

The ancestor visit at the end of ¥5,; 18 implicitly implemented by the retur

from the procedure at the end of the body.

6.3. Implementation by a Stack Auromaron

This implementation technique can easily be deduced from th'e Prf‘z;’;;s g:ﬂi
using recursive procedures: The structure tree is represen?ed as ;na6.s_i.t - Eable
of all visit-sequences VS, as defined above are collected into & rbr}) D ack j;
It is comparable to the program text of the procedure bodies nﬁ 2. o
maintained containing pairs of 2 reference to 2 Freenode and the ?eﬁ puntime
in the table to be encountered. It is an explicit 1mplememat10n of the r e
stack needed for the procedures of 6.2, which contains a return address an
node reference for each procedure ncarn

ation. An additional fgr}ction .\IAE—
DOWN is provided mapping the visit number 7 ofa descendanlt/ ;151‘(v, ; and the
rule indicator p of the visited node into the first table entry of V5,

. (comparable
as the
to the case statements of 6.2). The control loop of the automaton then h
following structure:

250 U. Kastens

push (root, MAPDO WN(I,roat.rule_indicaror))
repeat
case stack _top. table _eniry of
X;-a : call semantic function
Jor evaluation of X a;
increment(stack _top. table entry);
Ui :(* descendant visit *)
i>0 ncrement(stack _top, table_entry),
push (stack_top.Xi,
MAPDOWN(rstack top. X;.rule_indicator));
U0 :(* ancestor visit *)
pop
esac
until stack is empty

6.4. Implementation by a Finite Automaton

This implementation technique avoids the (implicit or explicit) stack of the
previously described techniques. We assume that the tree is linked both upwards
and downwards. Each node contains an indicator of the applied rule and_ the
number s, when the node is the s-th descendant of its ancestor. Two functions
MAPDOWN and MAPUP are provided. MAPDOWN is defined as in 6.3
MAPUPr, s, p) maps the number r of an ancestor visit, the descendant number s
of the currently visited node and the rule indicator p of its ancestor into that

element of VS,, which is preceeded by o, . The contro] loop of the automaton
then has the following structure:

current _hode:=root -
state: = MAPDOWN/ Lroot.rule indicator) ;

repeat
case srare of
X:-a :begin
call semantic function for
evaluation of X, . «:
InCrement(state)
end;
L, - begin (* descendant visit ¥)
i>0 state:=MAPDOWN¢ rX, . rule indicator)
current _node:= X,
end;
(I - begin (* ancestor VISit *)
State:=
MAPUP(r,current_ node . s,
Current node.ancestor . rule_indicator)
current _node:= current node . ancestor
end
esac;

until current node — root and state — U o

Ordered Attributed Grammars 251

7. An Algorithm for Computing Visit-Sequences

This section discusses an abstract algorithm which checks whether a given AG
is ordered, and computes the visit sequences for it. We show that in the worst
case the ‘complexity of the algorithm is bound by the product of the 4'* power of
the maximum number of attributes associated to a symbol, the 37 power of the
maximum length of a syntactic rule, and the length of the underlying context-free
grammar. This is an important result compared to the intrinsic exponential com-
plexity of well-definedness of AGs [4]. For most programming languages the
nu.mber of attributes is rather small. Thus the complexity of the algorithm is
suitable small for practical applications. The complexity of the algorithm is ex-
pressed by the size of the input grammar. The parameters used are:

|P| the number of syntactic rules;
|R| the maximum number of symbols in a single syntactic rule;

| X| the maximum number of attributes of a single symbol;

V| the number of symbols, bound by |V <G|

These parameters are used to compute the following expressions:
\G|=|P||R| the length of the grammar;

ID|=|R}|X| the maximum number of nodes of a depen
rm of a program for an abstract machine,

dency graph for a rule;

We shall describe the algorithm in fo
which is defined by the following data structures and functions.

A dependency relation D over n attributes is considered as a graph with n
pqd_es_ The arcs (a, b)e D are represented by a vector of n sets over n nodes. D is
nitially empty. Primitive operations on D are (a,b)eD, (a.b)¢D and addarc
(D, (a, b)) which adds the arc (a, b) to D. The costs of these operations are O(1).

Eachrulep=X,: X,... X, 18 represented by a vector X of symbol occurrences,
T/dependency relations TDE, over the attribute occurrences X, -a,and a graph

S, representing the visit-sequence.

For each symbol X € V' there isal

graph TDSy over the attributes Ay.
already induced at all occurrences of X.

to the index k of Ay .
The following functions are u

addarctrans(D, (a, b)):
It is assumed that D 1s a transitively closed, non-reflexive relation. The arc

(a, b} is added to D. All arcs needed to close D transitively again are added
to D, too. The costs of this operation are O(n?), if D is a graph over n nodes.

addarcinduce (D, (a, b)):
This function is applied to relatio
transitive closure D as addarctr

inked list of its occurrences, and a dependency
The arcs of this graph are marked if they are
A vector PART maps the attributes X - a

sed for updating dependency relations.

ns TDF, associated to rules p. It updates the
ans does. Additionally, for each new arc
(X;-a, X,-b) an arc (X -4, X - b), which 1s not marked, is added to TDSy, if
(X-a, X -b)¢TDSy, X=X, The costs of this function are the same as the
costs of addarctrans, because the additional action is only applied to a subset
of the totally inspected arcs.

The main idea of the algorithm 1s t
relations DP,, IDE,, EDE,. their transitive closures are

he following: Instead of the dependency
computed. The recursive

252 U. Kastens

definitions of Sect.3 are transformed mnto iterative algorithms. The algorithm
consists of 5 steps: Steps 1 and 2 compute the relations IDE* and DS;. Stf:p 3
computes the disjoint partitions. In step 4 EDP* is computed and it is decided
whether the AG is ordered. Step 5 computes the visit-sequences.

Step 1. Computation of DP+
Input: The semantic functions SE.
Output : Dependency graphs IDE,=DP*, and updated graphs TDS,.

Method: For each dependency established by a semantic function f €SF, an arc
1s added to the transitively closed TDPF, by calling addarcinduce.

for each fe SF, defining X;-b
loop for cach argument x i~aof f
loop if (X, - q, X;-b)¢ TDP,
then addarcinduce (TDP,, (X, - a, X;-byfi
repeat
repeat

The graphs TDS, contain the arcs to be induced due to direct dependencies; they
are not marked.

Complexity: O(|P| IDI*)

The upper bound for the number of ares in TDP is |D|?; it is multiplied with
|DI%, the complexity of addarcinduce.

Step 2. Computation of [Dp

Input: Acyclic dependency graphs IDE=Dp*, graphs TDS, containing arcs to
be induced due to direct dependencies,

Output : Dependency graphs I’"DAI’;:IDIJ;’,+ containing all induced arcs according
to Definition 2, and the graphs DS =1IDS;.

Method: Each arc in IDS which is not marked is induced at each occurrence of

the symbol. If new arcs to be induced are found they are added to TDS by add-
arcinduce.

while there is an arc (X-a. X -b)in IDS which is not marked
loop murk(X - u. X . h):
for each occurrence X;of X in any rule p
loop if (X, - 4, X;-b)¢ 1De
then addarcindyce (TDP (X, q, X, b))
fi
repeat
repeat

The invariant condition for the while-loop 1s: Ifa TD}; contains an arc (X, 4

X;). and if (X -a, X . by is marked, then (X - a, X - b) is already induced in all

IDE. Thus TD};;—IDE,* when finally all arcs in TDS are marked, and TDSx=

IDS+.
Complexity: O(|G| IX1? D%

Ordered Attributed Grammars 253

There are at most | X|? arcs in each TDSy. The for-loop is executed once for each
arc and each occurrence of the symbol. There are |G| symbol occurrences where
arcs may be induced. The marking of arcs in TDS ensures that no arc is induced

more than once.
Step 3. Computation of the disjoint partitions of Ay
Input: Acyclic dependency graph TDS=1IDS™.

?Ufpstt: A vector PART mapping acAy to k if X -aeAy, accordin
ion 4.

Method: Starting with k—1 for each attribute it is checked, whether it can be
included into A, ,. When no more attributes can be added to Ay, k 1s in-

cremented.

for cach XeV
loop k:=1; not _assigned:= Ay,
while not _assigned +9
loop found one:= false;
n: for each X - ae(not_assigned A
if odd k
then AS, else Aly fi)
loop condition_holds:=true;
m: for each X - benot_assigned
loop if (X -a, X - b)e TDSx
then condition_holds: = false
exitloop m

g to Defini-

fi
repeat
if condition holds
then PART[X -a]:=k:
not _assigned: =hnot _ assigned- {X -a}:
found _one:=true;
exitloop n
fi
repeat;
if not found one and not _assignec
repeat;
my:=k:
fy:=if odd k then k+! else k fi
repeat

Complexity: O(V||X|?)
In the worst case cach A ;. k> 1 contains one attribute, and Ay , 1S empty. Thus
the while-loop is repeated at most 2|X|+1 times. (| X]| steps succeed in assigning
X'- a to a subset, and | X|+ 1 steps fail.) In the loop n success Or failure is deter-
Mined after at most | X| steps. The loop n checks the condition for not more than

| X| arcs.

[+0 then k:=k+1 fi

254 U. Kastens

Step 4. Computation of EDP

Input: Graphs IDP and the vector PART describing the disjoint partitions of
the A,.

Output: Graphs IDF,=EDE*
Method: Arcs are added to TDP according to the relation given by PART.

for each peP
loop for i:=0 to np
loop X:=X,;
foreach X - ¢
loop for each X - b
loop if PART[X - a]>PART[X - b]
then addarctrans(TDI;, (X:-a, X;- b))
fi
repeat
repeat
repeat
repeat

Now TDF, = EDP* holds for each pe P. If each TDF, is acyclic the AG is an OAG.
Complexity: O(|P)|R| | X|? | D|?)

The complexity is the product of the upper bounds for the number of steps each
nested loop is executed.

Step 5. Construction of the visit-sequences

Input: Acyclic graphs TDPE as computed in step 4, and the vector PART as com-
puted in step 3.

Outpur: A visit-sequence for each pEP.

Method : Starting from an empty graph VS, over AV, arcs are added according
to Definition 9.

for each pep
loop for each (X, a, X;-b)e TDP,
loop Xi: =X, Xji=X,
mi:=PART[Xi- al; mj:=PART[Xj- b];
kiz=(fy;—mi+1)div2:
Kjz={fy;—mj+1)div 2:
if ki >0 and ki>0
then addarctrans(vs .
(if X;- a€AF,
then X, - 4 else Ui i 1,
if X, beAF,
then X . b else vy f)

)
fi

repeat;

Ordered Attributed G
rammars 253

(* add arcs until VS, is linearly ordered *)
for each ge AV,
loop for each he AV
loop if (g, h), (h, 2)¢ VS,
then
if g=1, o and k=nvy, X=X,
then addarctransi(h, g)
else addarctrans(g, h)
fi
fi
repeat
repeat
repeat

Complexity: O(|P||D|*)

For the two loops on the second level \D|? is an upper bou
addarctrans.
The complexity of the whole algorithm is giv

Step 1: O(1P||D|*)+
Step 2: O(|G| | X |? |D|H)+
Step 3: O(|V || X7+
Step 4: O(IP]|R||X|* IDIH)+
Step 5: O(|P||DI*)
SS::;ez | gll dg i V| step 3 does not contribute
are equal, because |G|=|P} R

nd for the arcs added by

en by the following sum:

to the total complexity. The items for
|. Hence the formula reduces to

O(IP||DI*+1G| | X|* |DI)=
O(X|*|GI(RI? +|RI)=
O(XI* |G| IRIY)

g‘; i‘lfﬂgth of the context-free grammar contributes only l.inearly to the total
. plexity. The maximum length IR} of the syntactic rules is gsually bound by
small constant. So the most significant item 18 |X|* the maximum number of
attributes associated to a single symbol. For AGs defining programming lan-
guages this number will be rather small, too. Thus the computation of transitive

closures can be implemented by more powerful set operations, which will reduce
of this algorithm on 2

[S};G complexity to O(X{*[GIIRI?). An implementation
(EMENS 7760 needed about 60 seconds for the analysis of an AG for the
rather large language PEARL (X1 =25, |G| =849, [RI=8)

8 Con i
* clusion
thdUCGd: ordered attributed

ted grammars 1s larger than
based on a fixed evaluation
mming languages.

In this paper a new class of attributed grammars is in
tglrlammars. The expressive power of ordered attribu
o raz:t of any.other subclass of attributed grammars

egy. It is sufficiently large for the definition of progra

256 U. Kastens

The class is well suited for both programming language definition and auto-
matic compiler generation. The definition is based on the natural concept of
linearly ordered dependencies between the attributes of syntactic units. There-
fore a language designer can define the context dependent properties of the
language statically, without considering any (predefined) evaluathn strategy.
The evaluation algorithm can be implemented in a simple and efficient way. It
is parameterized by local evaluation rules, which are computed from_the given
attributed grammar. This principle is comparable to well known and widely used
techniques for parser generation (e.2. LALR(1)-technique). In [7] it is shown how

this method can be integrated in a compiler generating system based on attributed
grammars,

Acknowledgements. 1 am indebted to G. Goos and my colleagues for many stimulating discussions,

to R. Loos for his valuable remarks on the complexity analysis, and to W.M. Waite for his comments
on the manuscript.

References
I. Bochmann, G.V.: Semantic evaluation from left to right. CACM 19, 55-62 (1976) (
2. Ganzinger, H., Ripken, K., Wilhelm, R.: MUG1 —an incremental compiler-compiler. In: Proc. o

ACM 1976 Ann. Conf., pp. 535-540, 1976 .

3. Giegerich, R., Wilhelm, R.: Implementierbarkeit attributierter Grammatiken. In: Informatik
Fachberichte 10, pp. 17-36, 1977)

4. Jazayeri, M., Ogden, W.F., Rounds, W.C.: The intrinsically exponential complexity of the circu-
larity problem for attributed grammars. CACM 18, 679-706 (1975)

5. Jazayeri, M., Walter, K.G.- Alternating semantic evaluator, In: Proc. of ACM 1975 Ann. Contl.
pp. 230-234, 1975

6. Kastens, U.: Ein Ubersetzer-erzeugendes System auf der Basis attributierter Grammatiken. Fak. [
Informatik, Universitit Karlsruhe, Interner Bericht 10, 1976

7. Kastens, U.: ALADIN — Eine Definitionssprache fir attributierte Grammatiken. Fak. f. Infor-
matik. Universitit Karlsruhe, Interner Bericht 7, 1979

8. Kennedy, K., Warren, S.K - Automatic generation of efficient evaluators for attribute grammars.
Conference record of the 3w ACM Symp. on Principles of programming languages, pp. 32-49.
1976

9. Knuth, D.E.: Semantics of context-free languages. Math, Syst. Theory 2, 127-145 (1968)

10. Knuth. D.E : Semantics of context-free languages: correction. Math. Syst. Theory 5, 95-96 (1971}

Il Lecarme. O.. Bochmann, G.2 A (truly) usable and portable compiler writing system. In: [nformd-
tion Processing 74. 1974

12. Lewi. J., de Viaminck. K. Huens, 1., Huybrechts, M - Project LILA: The ELL(1) generator of
LILA, an introduction, In: International Comp. Symp. 1977, pp. 237-251. North-Holland Publ
1577

13. Lewis, P.M., Rosenkrantz. D.J. Stearns, R E . Attnibuted translations, Journal of Computer and
System Science 9, 279-307 (1974)

14. Lorho. B.: Semantic attributes processing in the system DELTA. In: Methods of Algorithmic
language Implementation, pp- 21-40. Springer Verlag 1977
- Rédihd. K.-J.: On attribute grammars and their ug
University of Helsinki, Dep. of Comp. Sc. 1977
16. Schulz, W.A : Semantic analysis and target lan
Colorado., Dep. of Comp. Sc., PhD thesis 1976

17. Wilheim. R Baumtransformatoren. Eip Vergleich mit Baumtransduktoren und Aspekte def
Implementierung. TU Miinchen, Bericht, pp. 77-13, 1977

€ 1n a compiler writing system. Rep. A-1977-4

. ‘varsity Of
guage synthesis in a translator, University

Received September 21,1978, July 20, 1979 / October 5, 1979

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25
	Seite 26
	Seite 27
	Seite 28

