The GAG-System - A Tool for Compiler Construction

U. Kastens
Universitit-GH Paderborn

1. Overview

The GAG-System iz a compiler generator based on attribute
grammars (AGs). From an AG specifying the static properties of a program-
ming language it generates an attribule evalnator impiementing the semantic
analysis phase of a compiler. A main gozi of the development of the GAS-
System wag its usability as a tool in practicai compiler prejesta.

The system is roughly characterized by the followirg proper-
Lies: Attnioute evaluation is based on the method of ardered AGs presented in
{Kastens 1380): On the one hand it l2ads to efficient aitribute evaluators. On
the other hand OAGs are a sufficiently large subset of well-defined AGs such
that the designer of an AG usually need not zonsider restrictions {or attri-
buts deperidencies, evaluation order. ¢r groupinrg of attributes to evaluation
pass=s. He can concentrate nis attention to the essence of the specification.

The input language of the GAG-System (ALADIN) is a high level
applicative specification language especially designed for compiete
specifications of static language properties. There is no need for writing
semantic routines in some host language and "passing them around” the sys-
tem. High levei data types, strong typing, and powerful shorthand denotations
allow lor comprehensibie specifications which are checked for conmistency
and compieteness in numeraus aspects.

The attribute evajuators are generated in Standard Pascal (BS]
1982). Cpace and runtime efliciency is obtained by several optimizing tech-
niques which are autornatically appiied by the GAG-System.

Embedding of the attribute evaiuator in a compiler enviran-
ment is supported by an interface to a parser (usually generated automati-
cally), by a scanner {rame which can easily be adapted to specific require-
ments, output routines for attributes suitabie as interface to the synthesis
phase of the compiler, and by a protocol generator.

The GAG-Systemn has been preven o be a valuable tool in
several projects: e.g. definition of the German standard [or the language
PEARL (DIN 1980), development tool [or an Ada compiler [ront-end (Uhl et al.




Kastens: The GAG-system

1982), generation of a translator from Ada to Pascal, and generation of an
analyzer for Standard Pascal (Kastens et.al. 1982).

The structure of the GAG-System is comparable with that of a
usual compiler for a high level programming language: The analysis phase
performs well-known compiler tasks like scanning, parsing, type checking for
the specification language ALADIN. Typical for processing attribute grammars
is the analysis of attribute dependencies according to the OAG deflnition and
the computation of tables controlling the attribute evajuator (see Sect. 4).
Efficiency of the generated compiler i3 improved in the optimization phase
€.g. by space reduction [or attributes on the base of lifetime analysis at gen-
eration time, by elimination of semantic chain productions, and by transfor-
mation of functions with tail recursion. The code generation phase is a trans-
lation from the specificaticn language ALADIN to the high level language Pas-
cal. The data types of ALADIN (simple types, sets, records, unions, lists) are
mapped to corresponding Pascal types. Since ALADIN is strictly applicative
any object of a structured type is implemented by a pointer. That means a
drastical space reduction is achieved.

[n the following the use of ALADIN for AG development and com-
piler specification is demonstrated by a small example language (Sect. 2). Iis
static properties are specified by an AG in the appendix. In Sect. 3 the non
pass-oriented strategy for attribute evaluation besed on the 0AG technique is
discussed. Sect. 4 presents the method of life-time analysis for atiributes at
generation time. A more detailed description of the GAG-System including the
definition of ALADIN and a complete AG for Standard Pascal together with a
discussion of its design can be found in (Xastens et.a}.1982).

2. Development of Compiler Specifications in ALADIN

In this section it shall be demonstrated how the GAG-System
with its input language ALADIN is used for compiler specification and genera-
tion. For a small, rather artificial example language the steps of AG develop-
ment and properties of the specification language will be shown.

Before we go into the example some general properties of ALA-

DIN must be mentioned, which strongly influence the character of the resuit-
ing specification:

= ALADIN is a complete specification language. It should be used to apecify

all attribute rules and semantic functions compietely, instead of adding
functions in some host language.

- ALADIN is a strictly applicative language. One should consider the AG as a
specification of language properties, rather than as an algorithm for their
computation. The atiribute evaluation strategy is powerful enough to
disregard evaluation order during the design process.



Kastens: The GAG-system

- ALADIN is strongly typed and provides for high level data types with
powerful operations. Hence the attribute types should be chosen such
that they describe exactly the language property the attribute stands for.

- ALADIN well suited for the specification of static language properties {e.g.
scope rules and type checking). Descriptions of code generation and
oplimizations are possible but not the typical application (see (Kastens
et al. 1982}). Hence we consider the attributed tree as the result of the
analysis phase specified by the AG which is transformed by later compiler
phases.

The Example Language. In the foilowing a short informal intreduction of cur
example language is given:

The language is block structured and expression oriented. Each biock or
assignment yields a result and can be part of an expression. For the sake of
simplicity control flow statements (except procedure calls) are omitted and
the set of operators is restricted. The only types of language objects are nt,
r=al, bool, and procedures. The scope rules are taken from Aigol: A definition
13 valid in the whole smalilest enclosing black. except all inner blocks with a
definition for the same identifier. The type rules allow for widening int vajues
to real values. The sperators +, -, * are overioaded for int and real cpoerands

and resuits.

AG Development. A systematic AG developmernt shouid start with an analysis
of the given or intended language and proceed :n the following steps:

) Specification of the context-free grammar

2) Design of attribute types {or the description of giobal language concepts
like scope rules and types of objec!s.

3) Design of atiribute rules and context dependent restrictions {or each pro-

duction together with functions for their computatien.

In the following we refer to the specfication of our example languags in the
appendix (by identiflers written in italics).

The context-{res grammar is specified in ALACIN using BNF with
extensions for optional parts, iteration (* and +). and iteration with a separa-
tor {e.g. see rule p_2). Each production is the header of a rule containing
atiribute rules and context conditions. Alternative productions for the same
ieft-hand side are separated in different rules.

The context-free grammar should specifly the concrets syntax
of the language in order to generate a parser for it automatically by a parser
generating system attached to the GAC-Systemn. There is no need for
transforming it into an abstract syntax. because the GAG-Systemn automati-
caily eliminates terminals and chain productions which are not needed for
attribute evaluation. In some cases it may be advisable to simplify the

167



Kastens: The GAG-system

context-free grammar: Certain language restrictions which can be described
context-free are more easily described by context dependent means, espe-
cially if properties are involved which are defined by attributes in any way
(e.g. restrictions on type denotations).

The second development step is concerned with global language
properties like scope rules and type rules which contribute to the attribute
rules of many productions. Before all these attribute rules are specified the
domains of the corresponding attributes are designed. An important guideline
for AG development is: An attribute describes a property of the symbol it is
attached te. Hence its domain should be an abstraction of that property. Let

us explain that by the concepts of types and scopes f{or our example
language.

Types. In our language we have procedures and objects of simple types
int, real, dool. The domain simple_type is defined in ALADIN by an enumera-
tion (as in Pascal). It is augmented by an element no_types which has no
equivalent in our language and is used for error handling avoiding avelanche
errors (see function compatidle). simpla_types and proc_types [orm the
discriminated UNION (in the sense of Algol 68) mada. Discrimination of values
of the united types is expressed by case expressions as in rule p_l. Zach
PToc_type is a pair cf parameter definitions and a simple resuit type.

Type attributes are used in two classes of context: Definitions
associale a type to an object and expressions and their constituents have a
type determined by certain type rules. [n our language type_danoters are
terminals. Their type attribute is determined by the scanner which aralyses
the key words. The values of this «ind of attributes is considered to be
predefined for the AG. [n the case of procedure declarations the proc_type
pair is constructed by composition of the def attributes of the formal param-

eters and the type attribute of the resujt type_denster (see first attribute
rule in p_ 5).

A synthesized type attribute is associated to expressions and
its constituents (primaries and blacks). Their domain is restricted to
simple_types because the language neither ailows formal procedures nor
procedure variables. For each production in expression context an attribute
rule determines the type of the left-hand side; e.g. in p_2 it is stated that the
type of a block is the type of the last eIPpTesyicn (since ezpression is a
repeated symbol of the production the term expression.type stands for a list
of attribute values, where the predefined function LAST is applied to). A typi-
cal type rule is the operator identification in ruie P_8: The result type of the
formula is determined by the Operator symbol and the operands’ types.

ldentification of overioaded operators is specified by the case expression of
the function opr_identify.

In rules p_7 and P_9 the shorthand denotation TRANSFER
specifies that corresponding atiributes of the left-hand side and the right-

hand side are equai. (Such semantic chain productions are eliminated

168



Kastens: The GAG-system

automaticaily by the GAG-System.) In the case of procedure calls (rules
P14, p_15) type checking for actual parameters is specified using an inher-
ited attribute describing the list of the remaining formal parameters. The
context conditions require compatibility of actual and formal parameter
types and the correct number of actual parameters. For general relations
over types like compatibility a functien is introduced.

Scopes. The concept of scope is described by a domain being a list of
definitions together with an identification function identify The abstrac-
tion of a declaration associates the defined properties (here a mode descrip-
tor) to the introduced identifier. Each symboi representing a scope (block in
our case) has an environment attribute env for the list of local definitions
concatenated with the global deflnitions of the context (see rule p_2). A local
definition hides a global definition for the same identifier {(according to the
Algol scope rule), because the identification function finds the local one first
in the list.

For each applied occurence of an identifier (ruie p_15) the
function identify yields its definition according to the scope rules. In order
to avoid inherited environment attributes with =quai values fer all svmbols of
a block-body ALADIN supports a shorthand cdenotation fer "remote attribute
access’: The term INCLUDING block_env refers to the enviranment attribute
of the next ancester node in the structurs trse representing a dlock svmbol.
This feature usually saves many attributes and attribute rules in the AG and
in the attributed tres.

An alternative design of the domain for environment a:tributes
could be a list of sections each cantaining the ist of defnitions loca! to one
block together with an appropiate identification function. Functions like
identify operating on lists are [omulated recursively in the applicative
language ALADIN. In the function idantify cnly tail recursion occurs which 1s
transformed into iteration automatically by the GAG-System - ytelding a dras-
tic runtime improvement.

In ALADIN generic functions over differ=nt list domains can be
defined. The snecification of a XE7 component in tne domain definitions
allows for gene'nc tunctions (like the predefined UN/QUE_KEYS) aver lists of
records with a special "key” component (id for definitions ).

Error handling. In ALADIN context conditions are expressed by boolean
expressions over attributes (e.g. see rule p_2) If attribute evaluation yields
[alse for such a condition an error message is given indicating tnat the input
is semantically erroneous (the message text can be specified in the AG) For
convenience of notation context conditions can be part of expressions (cf.
rulep_1i1).

After an error is detected attribute evaluation proceeds aiways
in a consistent state. Since ALADIN is strongly typed and expression oriented.

169



Kastens: The GAG-system

the language ensures that in any case the evaluation of each expression
yields a proper value (provided that recursive function calls terminate, and
that the calls of a few predefined functions like HEAD are defined). That
means the AG designer is enforced to consider all cases of aiternative expres-
sions - including those which occur only for erronecus inputs (e.g. in case
expressions incomplete case labels must, be completed by an OUT~clause, ses
rule p_11). Furthermore the AG can be specified such that avelanche errors

are reduced in the generated compiler, e.g. by introduction of srror values
like na_type.

3. Attribute Evaluation for Ordered Attribute Grammars

The GAG-System constructs a visit-oriented attribute evaluator
for ordered attribute grammars (0AGs) as presented in (Kastens 1980). A
comparison with other evaluation methods can be found in the contribution
of Engelfriet ("Attribute Evaluation Yethods”, in this book). In the following
we describe the construction of visit-sequences for an 0AG.

A visit-oriented attribute evaluator performs a walk through
the structure tree where nodes are visited and values of attribute instances
are computed. Let the currently visited node Y, Which is derived by a produc-
tion p: X,-X, - X,. Hence v, and its descendent nodes V..U, represent

an application of p. Then the evaluator can perform cne of tae following
classes of operations

aval{a) evaluate an attribute instance according ta an attribute rule asso-
ciated to p

vistt (X, 1) visit the i =th descendent node v, for the j —=th time

leave(j) leave the context P lor the j~th time reaching the ancestor node
of v,.

For the evaluation of 0AGs a visit TSequence vs, is associated
to each production p. USp i3 a sequence of the above operations which con-
trols the evaluator actions while a node derived by p ig visited. The execution

of visit-sequences USy and vs, interact for two adjacent contexts P and q in
the tree, as shown in Fig. 1.

170



Kastens; The GAG-system VAl

y
/‘/ .! N
B l context pr. y-uXw
U’ VX W
| context g: X =L
{
Z
vsp = LA, visit{X LGB visit(x, 2) L.C..
/ // /’
Vg Zo. . leave(1) . E... Teave(2)

Fig. 1 Interaction of visit-saquences for adjacent contaxts

A visit(X, i} in vs, leads o tihe beginning of vsy i j=1 or tc the
operation ‘oilowing a leeve (j~-1) in vs, olherwise. A leave (j)in vs, leads
to the cperation following visit(X.j} in vs,. (We assume that the parte A, 3
and C of vs, does not contain a visit (X.j)and the D, £ in vsy does not con-
tain a legve(j).) Cbviousiy the visit-sequences for each pair of preductions of
the form p and ¢ must "fit together”, i.e. the number of corresponding visit ~
and leave —operations must be equal; the last element of a visit-sequence
must be a legue —cperation; and a vs, must contain an eval (e )-operation for
each attribute rule associated to p.

A correct evaluation order {or the atiribute instances of any
structure tree is obtained by the {oliowing princigle - the basic idea of QAGs:
Consider the attribute instances of vy in Fig. 1. The inherited (synthesized)
attributes of X are evaluated by zvai(a)-operations in vs,(vs,) and used in
us, (us,). Hence the attribute set Ay is partitioned by the context switches
(visit and leqve) into disjoint subsets Ay;, t=0,...my which alternateiy



Kastens: The GAG-system 172

contain inherited or synthesized attributes only (Fig. 2).

A CONText p:  y = uXw

X,0 TAX,Z
lvisit leave visit leave ...

A context q: =7
£,1 X,3

A

A

Fig. 2 Attribute partitions

The subsets Ay are ordered such that t<j implies that the
altributes in 4y, are evaluated befors those in Ay; lor any X-node indepen-
dent of its context. The partitions can be ~onsiderad as an interface hetween
any pair of visit-sequences Vsp,u3, for rules of the form Py-suXw, and
¢: X+Z Assuming that a sujtable partition is given for each symbol V then
visit-sequences can easily be computed: Let DP, be the dependency graph for
direct dependencies bhetween attribute occurences for a production
P X=X, - X, suchthat

DPy={(X.3.X;.5)) there is an attribute rule X;.0:=f (. X a..) associated to -2

This graph is overlaid with the evaluation order given by the partitions:

APy= DPyu {X.a.X.0) X =x, Xacay,, Xd€dy,, r>e]

In 4P, the nodes for attributes in Axer. for =024, - are
mapped into a single node for each 1 representing a leave-operation.
Correspondingly the Agr for i=ln, r=1235... are mapped into nodes
representing visit-operations. The remaining nodes represent eval-
operations. A topological sorting of the graph yields a visit sequence vs,. (The

first leave-operation must be deleted and a leave “Operation is appended at
the end.)



Kastens: The GAG-system

Now let us consider the probelm how to find a suitable partition

"for each symbol X. Obviously it must be consistent with any direct or indirect

dependency between two attribute instances of any X-node in any attributed

tree. Hence we define recursively graphs for induced dependencies for pro-
ductions and symbols:

IDB,= DPyu ((X..%.0)| %=X, (Xa.X5)€DSy]

IDSy={(Xa .Xd)| thereisa production p X, ~X, - - - X, and 0sign:
X=X, (&.a,&.b)e:[DP;]
(IDP,,+ is the non-reflexive, transitive closure of IDP,.)

Acyclic /DSy are a necessary but not sufficient condition for
the existence of a suitable partion for all X yielding acyclic AF, graphs. Even
worse, the decision problem whether such a partition exists for an AG i.e. it is
a simple multi-visit AG has been proven to be NP-complete (Engelfriet & File
1980).

For OAGs a canonical partition is defined such that each atiri-
bute is included in an Ay with 2 maximal index © consistent with /0S: A func-

1™

tion indy : Ay-+{0....my| maps the attributes of Ay into the suosets Ay, : i.e.
CEAx ing(3) ndy is defined by the [ollowing conditions

)  myis odd and minimal
() indy(a)iseven <=> aedly

) (a.b)e[DSy => indy(e)Sindy(b)

) Let ind'y be a [unction solving (1)-(3) then for all
@ €4y indy(a)zind'y(a)

The AG is an OAG if all AP, are acyclic with the partition
defined by indy . This choice of the partition causes attributes to be
2vaiuated as late as possible {lazy evajuation) - a desired effect for attribute
storage optimization.

The reason for a simple multi-visit AG not to be an QAG is
roughly characterized: For several symbois X, Y there are atiributes indepen-
dent in /DS and some DP, contain depcndencies between attribute
occurences of X and Y which cause cycles in the 47,. Such a situation is rare
in practical cases; it may occur e.g. during AG development when not all attri-
bute rules are completely specified. The GAG-System supports two techniques

to cope with such situations:

173



Kastens: The GAG-system

a) One can enforce a certain partition by adding dependencies to the AG
(the AG is arranged orderly {Kastens 1980) ). They can be specified
separately without changing the AG.

b) According to the OAG definition the partitions are computed indepen-
dently for each Ay. If the OAG - condition fails. The GAG-System can
optionally use a more “careful” algorithm: After the computation of the
partition for one symboi the consequences for all AP, and the "feedback”
to the /DS graphs of symbels are computed. If it succeeds, the AG is
"automaticaily arranged orderly”.

4. Storage Reduction for Attributes

A naive implementation of an AG requires a huge amount of
storage for the values of altribute instances: Many attributes describing typi-
cal language properties represent structured information like environments
containing a set of valid definitions or structured type information. Such
attributes are usually associated to many tree nodes, e.g. an environment
attribute for ail nodes containing applied accurences of identifiers. it is not
tolerable to associate an attribute value representing the contents of a
definition tabie to many nodes. The GAG-System reduces these storage
requirements drastically by an eflicient implementation of the ALADIN types
and by attribute life-time analysis at generation time.

ALADIN is a strict applicative language without variables, ioops,
pointers, etc.. Furthermore there are no semantic functions outside the AG
specification which are not under control of the GAG-System. Hence the
semantics of an ALADIN specification does not change if all (structured) attri-
bute values are implemented by pointers to aobjects; and copies of such
objects are impiemented by copies of the pointers. This technique is conse-
quently applied in the GAG-System: A substructure of an object is
represented by a peinter to the value it is constructed from. In our example
language for each definition exactly one structured value is allocated. The
eavironment atiributes are lists of pointers to these objects. Even in the case
of concatenation of such lists (when the environment is augmented on block
level) none of the pointer lists nead to be copied - only a new list header is
allocated. The same holds for structured type attributes {

e.g describing pro-
cedure types).

Life-time Analysis Attributed structure trees are implemented straight for-

ward Dy tree nodes representing a symbol instance of X with a component for

each of its attributes of Ay. A significant improvement of storage require-

ments is achieved if for some attributes all instances can be implemented by
a global object outside the tree instead of many node components. From the
visil-sequences one can derive assertions on the life-time of attribute
instances at compiler generation time: i the life-
attribute Ya are

times for all instances of an

174



Kastens: The GAG-system

- pairwise disjoint it can be implemented by a global variable,
- properly included it can be impiemented by a global stack,

- overlapping it must be implemented by a node component.

These properties are deflned by a mapping of the visit-
sequences into context-free grammars. The description specifies an analysis
algorithm based on well-known techniques for grammar analysis.

Each attribute ¢ is separately considered for globalizaticn. The
set of visit-sequences i3 mapped to a context-free grammar
Ga=(N;.T3.P3.5,). Gy is defined such that for any structure tree the
sequence of operations performed by the attribute evaluator which involve an
instance of a (i.e. definition and last application of one instance) is a sen-
tence of L{G,). (Since G, is context-free L(G,) will in general contain addi-
tional sequences which cannot occur in attribute evaluation. Hence the con-
ditions derived below are sufficient but not necessary.)

Let G=(N,I'.P.5) be tha contaxt-lree grammar the AG is based
on. For ease of dascription we assume that the AG 18 in Bochmann-Normai-
Form.
¥, is the set of nonterminals with
Ng={X*|XeNi=i,. k. and ¢ is the number of inherited subsets Ay .
Ts=1D.4] is the set of terminals where D represents a defining rule for e, and
A represents the last applicaticn of @ in a visit-sequencs.

S4=5!, where S is the start symboi of &
The productions P, are constructed by the [ollowing rules. Consider a nisit-

sequence

us, =u, leave,u, leave,.. u, leave,

for a production p€P X,-Y,- - X,. Then k& productions of P; are con-

structed:

where the u; are mapped into v;. The leave-operations are onutted. Each
visit (X;,7) in an ¥ is mapped inta A7 in ¥ For each eval(d) in an w; we des-

tinguish the {ollowing cases:

a) It b#a and :he corresponding attribute rule does not cerend on 2 it is

omitted in vy.
b) If b=a and the corresponding attribute rule depends on a2 2nd there is no
further application of @ to the right in vs, it is mapped to 4.

¢) Y b=a itis mappedto 0.

175



Kastens: The GAG-system

d) If both (b) and (¢) hold (i.e. different occurrences of a are involved) it is
mapped to AD.

For a pair of rules in P of the form P:Y+y X ya and q: Xz
synthesized attributes of X are defined in vS, and applied in vsy ( for inher-
ited attributes vice versa). For some p the attribute a may be not applied in
us, at all. In that case in the production Y’ -+u¥"v an 4 ig inserted:
V' +uX" dv, where r is the maximum number such that a production X" ~wDz

exists. (The case of inherited attributes is treated accordingly.)

Now we can state suflicient life-time conditions in terms of Gy:

1) All instances of an attribute ¢€4y can be implemented by a simple
global variable if L{G,)=(DA)*, i.e. an altribute instance is used for
the last time belore the next instance is defined. This property can
easily be checked by computation of the FIRST and FOLLOW tunctions
for G:

FIRST (S,)=1D1,
FOLLOW (D)={A4|l. and
FOLLOW (4)={D.c].

2S) For a synthesized attribute a€4y consider all productions in £, con-
taining 0. They have the form X*+wlz, s<isr If all productions with

X' on the right-hand side have the form ¥? ~ul"vdy then @ can be
implemented by a global stack.

2l)  For an inherited attribute 3€Ay consider all productions in P, con-
taining 4. They have the form X'~ziw, ssisr. If all productions with

X" on the right-hand side have the form Y +uDuX"y. then a can be
implemented by global stack.

The conditions 2S5 and 2! ensure that the life-times of all
instances of a are disjoint or properly included. 25 and 2! are suflicient but
not necessary because if a life-time is interrupted by an operation leaving the
considered subtree the worst cage - overlapping life-times - is assumed. If an
attribute is decided to be impiemented by a stack the above cornditions

describe where to insert push- and pop-cperaticns into the visit-sequene
(immediately before the D-respectively the A -operaticn).

Furthermore the GAG-System compares the life-time of
different global attributes in order to impiement, groups of att,
single global variable or stack. (The result of

optimai.) The main effect of this grouping is not the reduction of attribute

storage rather than the saving of code Space and runtime for deieted copy
operations within the variables of one group.

ributes by a
this algorithm is of course not

The effect of the improvement based on this life-time analysis
are demonstrated by flgures frem an Ada-AG: The 517 attributes are

178



Kastens: The GAG-system

implemented by 59 global variables, 24 global stacks, and 85 node com-
ponents. 212 of all attribute rules are eliminated (copy rules within a group).
(For more figures see (Kastens et.al. 1982) ).

References

British Standardas Institution (1982). Specification for Computer programming
language Pascal.

DIN Deutsches Insitut fir Normung e.V. (1980). Programmiersprache PEARL,
Normentwur!, Beuth-Verlag.

Engelfriet, J., File, G. (1980). Simple Multi-Visit Attribute Grammars TH
Twente, Memorandum Nr. 314.

Kastens, U. (1980). Ordered Attributed Grammars, in Acta Informatica 13,
229-258.

Kastens, U., Hutt, B., Zimmermann, E. (1982). GAG - A Practical Compiler Gen-
erator, LNCS 141, Springer-Veriag.

Kennedy, K. Warren, SK. (1978). Automatic zeneration of sfficient evaiuators
for atiribute grammars; Conference record of the 3rd ACYH
Symp. on Principles of pregramming language, 32-49.

Uhl, J.. Drossopoulou, S., Persch, G.. Goos, G., Dausmann, M., Winterstein.G.,
Kirchgdssner, W. (1982). An Attribute Grammar for the Seman-
tic Analysis of ADA, LNCS 139, Springer Verlag.

177



Kastens: The GAG-system

Appendix

Static ssmantics of the sxample |anguage
specified In ALADIN for tha GAG-System

"t 3k 0

(s Attribute types: =)

TYPE mode : UNION (simple_type, proc_type);

TYPE proc_tupe : STRUCT (paraws : definitions, result
TYPE simple_type : (int, reai, boal, no_typel;

TYPE definition : STRUCT (id : SYMS, descr : mode);
TYPE definitions : LISTOF datinition KEY idy

(s Attributes associatad to (non}tersinals : =)
NONTERM program :

NONTERM block :
gicbals : definitions,
anv t dafinitions,
type ! simpie_type:

NONTERR expression, formuia, primary :
ype ! sinpla_typa; .

NONTERM act_parame :
tormals : definitions:

NONTZRNM declaration, simple_dsci :

: simpla_type);

det : definitions
NONTERM ident!fier
dat t definitions
TERNM type_denotsr (x attridbuts values of terainaie a)
vhe t simple_tupe; (2 are supplied by the scanner s)
TERR ident :
id : Symg;
TERN litaral ;
type : simple_type;
TERN opr

sysboi  : SYMB;

RLE p_l: Dprogram ::s block
STATIC
Dlock.globale := definitiens();

ALE p 2:  Dblock :3» '"{° dec!aration 2 (expression // ')y

STATIC
Slock.anv := declaration.dat + bilock.giobal s;
black. type := LAST (expreesion. el

CONOITION UNIQUE KEYS {definitions (deciaratisn.det})
0 MESSAGE "multipie defined identiflers";
3

178



Kastens: The GAG-system 179

RALE p_3: declaration ::= simple_dec!
STATIC TRANSFER
END;

AULE p_4: simple_dec! ::« typs_denater idsnt °:'
STATIC

simple_dec!.def := definition (ident.id, type_denoter.type):
END;

RULE p_S5: declaration ::=
‘proc’ lident '(' gimpis_cacl = ')
type_denoter *:’ block ';°

STATIC
declaration.def :=
dafinition

(ident. id, proc_tyne (simple_dacli.dsf, type_denater.type));
block.globals := simple_dec!.det « (INCLUDING block.env);
CONDITION UNIQUE XEYS (dafinitions (simple_cec!.de?t))

MESSAGE 'multiplio defined parameters';
CONDITION compatible (biock.type, type_dsncter.type)
MESSAGE ' incompatibls result typse’;
ENO;

]

RULE p_B: sexpression ::= identifier *:e' formula
STATIC
expraasion, type :=
CASE identifier,def.descr GF
IS simpie_type : THIS
CUT (mo_type CONDITION SALSE MESSAGE 'wrong variaple')
ESAC:
CONDITION compatible (formuia. typa, exprmssion. type)
MESSAGE 'incompatibie type in assignment';
END:

ALE p_7: expression ::s ‘oraula
3TATIC TRANSFER
END:

SULE p_8: formula ::= formula opr primary
STATIC
forauta{ll.type :=
opr_identify lopr.symtol, ‘ormulal(2).type. primary. typel;
END:

RLE p_3: formula ::e primary
STATIC TRANSFER
END;

RULE p_l3: primary ::= block

STATIC
primary. type := biock. types
block.giobals := INCLUOING block.env;



i

#

Kastens: The GAG-system

ARWLE p_ll: primary ::= ldent!fier *(° { act_params ] ')’
STATIC
primary.type :«
CASE identifier.def.descr OF
1S proc_type: THIS.result
QUT (no_type CONGITION FALSE MESSAGE ‘wrong cail®)
ESAC;

act_params, formais :=

CASE icentifier.dst.descr OF

[S proc_type: (THIS.params
CONDITION EMPTY {IT) OR {act_params [5 THERE)
MESSAGE 'missing parametar')

auTt definitions ()

ESAC;

END:

RULE p_l12: primary ::= ident!fier
STATIC
primary, type :=

CASE idantifier,def.descr OF
IS simpla_typa : THIS
QUT (no_type CONDITICN FALSE MESSAGE ‘wrong variabla')
ESAC;

ENG;

AULE p_13: prirary ::e literal
STATIC TRANSFER
END;

RULE p_l4: act_parame ::= exprassion ',' aci_params
STATIC

2ct_params (2], formais := TAIL (act_params(1). forwals):
CCNDITION

(P EFPTY lact_parameil]. formals)

THEN FALSE

ELSE compatibie (axpressiocn. tupe,

type)

HEAD (act_params(l]. formals).descr QUA simpiae_

F1
PESSAGE 'wrong paramelar’:

END;

RULE p_1S: act params ::= axprassion

STATIC

CONQITION

IF E'PTY (act_params. fornals)
THEN FALSE
ELSE compatibie (sxpression, type,
l HEAD (act_params.formais).dsscr QUA sirpie_type)
FESSAGE 'wrong parametsr’

END;

RULE p_18: identifier ::e ident
STATIC

EN‘;dantifiar.daf = ldentify lident.id, INCLLDING block.snv);
H

180



Kastens: The GAG-system 181

CONST no_det : definition (**, no_typel;

FUNCTION identify (id : SYNB, defs : definitions) dafinition :

[F EMPTY (dets)
THEN (no_de¢ CONDITION FALSE MESSAGE *ldentifier not defined')
ELSE IF HEAD (defs).!d « id

THEN HEAD (dets)

ELSE identity (14, TAIL (dafs))

I

Fl:

FUNCTION opr_identify
lopr : SYMB, left ., right : simple_type) simpie_type :
(CASE opr OF

L] l. * '. L
-

+' : ‘2’

IF compatiblie (left, int) AND compatible (right, int)
THEN int ELSE

[F compatible (taft, real) ANO compatible (right, real)
THEN real ELSE no_type FI FI;

"/': IF compatible (left, real) AND compatibie (right, real)

THEN reai ELSE no_type FI;

"AND': 'OR':
IF compatible {left, bool) AND caompatible (right, bosoi)
THEN bool! ELSE no_typs FI .

OUT  no_type

ESAC CONDITION [T =/ na_type MESSAGE 'wrong cperation’);

FUNCTICN compatible (t1, t2 : simple_tysa) S07L
(tl = t2) 0A (¢l = no_typel OR (t2 « no_typel CR
(el = int) AND (22 = reai));

e



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 

