Attribute Grammars in a Compiler Construction

Environment

Uwe Kastens

University of Paderborn

Abstract

Attribute grammar (AG) specifications are implemented by attribute evaluators
which perform computations on tree structures as specified. An AG system should
concentrate on generating that implementation. In compiler construction the at-
tribute evaluator has to be combined with other modules, like scanner, parser, tree
construction, data bases, and translation modules. Those are generated by other
compiler tools, taken from a library, or implemented for the specific application.
These components have to fit together properly on the specification level as well
as on the level of module interfaces. In this paper those relationships are demon-
strated using the LIGA system within the compiler construction environment Eli

as an example.

1 Introduction

Compiler Construction is a deeply analyzed area of computer science. The compilation
task in general is well understood, and there is an overall agreement about its decomposi-
tion in subtasks, which can be found in text books like [Kas90,WaG84]. The decomposi-
tion of tasks leads to a task oriented modular compiler structure. For the solution of the
subtasks specific systematic implementation techniques can be applied. Hence a great part
of compiler implementation can be automated by reusing standardized implementations

of subtasks and by generating others from specifications.

381

Attribute grammar (AG) specifications play a central role for that part of the compila-
tion process which requires computations on the source program’s structure tree, i.e. the
phase of semantic analysis and translation into an intermediate or target language. If that
target representation is a tree AGs can be used as well to specify code generation for it.

The AG defines the shape of the structure tree, and thus contributes to the specification

of the structuring phase.

Structuring
lexical analysis
scanning token encoding
syntactic analysis
parsing tree construction
translation
semantic analysis
name analysis
attribute type analysis
evaluation operator identification
transformation
data mapping
action mapping
encoding
code generation
Assembly

Fig. 1.1 Compiler task decomposition

In Fig. 1.1 a decomposition of the compilation task is shown, taken from {GHK89].

It also describes the overall modular structure of a compiler. The first compiler phase

Ry

382

structuring transforms the source program text into the structure tree representing the
program’s abstract structure. It is the central data structure for semantic analysis and
transformation in the second phase translation, which yields an intermediate or target
representation of the program. The last phase performs the target machine specific en-
coding and sequencing of operations and data. The task and structure of this phase mainly
depends on the class of the target machine for the compiler. Fig. 1.1 does not include
an optimization phase which might be inserted before the last phase. In this paper we
concentrate on the structuring and the translation phase where AGs play a central role.

The modules scanning, parsing, and attribute evaluation are the active drivers within
their phase. They each transform the program representation by using functions of the
modules drawn right to them in Fig. 1.1. The latter are implementations of task specific
abstract data types (ADTs).

The tasks of scanning, parsing, and attribute evaluation can be specified such that
tools can generate the implementations automatically. In fact the generator produces
the central algorithms, which is embedded into a suitable interface to the surrounding
modules, as shown in the generation scheme of Fig. 1.2. For example the token sequence
is the input interface for the parser, which drives the tree construction such that the basic

data structure for attribute evaluation is build.

interface

acification e enerator - central
P g algorithm

compiler module
Fig. 1.2 Scheme for generating tools

These interactions between the central modules cause dependencies between their spec-
ifications, which will be discussed in Sect. 2. On the implementation side the module

interfaces must be designed carefully such that they fit together, and don’t introduce

383

unnecessary inefficiency. If the modules are generated using stand-alone tools (scanner,

parser, attribute evaluator generator) a considerable amount of technical know how and

manual implementation is required to fit the generated products together.

Eli
S
GLA

p
e

PGS
c Cola
i module
f CAGT Library
i GAG @

LIGA
c
a
t QIL
I DDL
0
n PTG
i

Fig. 1.3 Compiler Construction Environment Eli

A compiler construction environment like Eli [Depgl,GHKSQ,WHKSS] solves the prob-

lems of keeping specifications consistent, interfacing the generated products, and config-

uring the whole compiler. Hence the user can concentrate on the development of the

specifications and of the problem specific modules. Eli combines a set of compiler gen-

the parser generators PGS [DDH84]

erating tools the scanner generator GLA [Heu86],
AG [KHZ82] and LIGA [Kas89],

and Cola [Pro89}, the attribute evaluator generators G

384

further generators for compilation tasks described in Sect 3 and 4 and implementations of
several modules for standard compilation tasks. Fig. 1.3 shows a rough structure of Eli.

Its main general properties are:

o The know-how for tools usage and tools cooperation is embodied in the system. The

user delivers specifications instead of activating stand-alone tools.

o The system solves the configuration problem by composing the compiler (in source

and executable) from many intermediate products.

¢ Eli helps the users in tracing errors back to the specifications. This is a non-trivial
problem due to the interdependence between specifications and interaction between

tools.

o The system is implemented on top of the general tool management system ODIN
[Cle88]. Hence it is flexible and extendable with respect of integration of tools and

modules.

AG specifications for the generators GAG or LIGA play a central role in Eli. In Sect. 2
we show how AGs are related to the specification of the structuring phase, and give
some guidelines for the design of the structure tree specification. Standard solutions for

subtasks of the translation phase are presented in Sect. 3.

2 Attribute Grammars and the Structuring Phase

The first compilation phase, structuring (cf. Fig. 1.1), transforms the source program into
a structure tree. It is the basic data structure for attribute evaluation in the second
phase, translation. The context-free grammar of the AG is the abstract syntax which
specifies those trees. Hence the target of the structuring transformations is given by the
AG. The mapping is achieved in two steps: The lexical analysis transforms the character
sequence of the program into a token sequence, specified by descriptions of the tokens for
the scanner generator. In the second step the parser computes a derivation for the token

sequence according to the concrete syntax. It drives the tree construction module which

builds the structure tree.

385

The three specifications, tokens, concrete syntax, and abstract syntax in the AG, are
related. In the following we first discuss the scanner specification, then describe the
relationship between concrete and abstract syntax, and give some guidance for abstract
syntax design with respect to attribution.

The lexical analysis phase deals with two kinds of tokens: those which are only
relevant for the structuring phase, and those which carry information to the translation
phase. Keywords, like begin and then, delimiters like ; and parenthesis, and operators,
like + and :=, belong to the first kind. They are specified by a fixed character sequence

each. Their specification can easily be extracted from the concrete syntax, such that the

user need not supply a separate specification for them. A syntactic code is assigned auto-

matically and is communicated to the parser generator for identification of the terminal
symbols.

The second kind of tokens represent both syntactic and semantic information. Iden-
tifiers and literals typically belong to this kind. Their notation is usually specified by a

regular expression, €.g. in a specification for the scanner generator GLA:
Ident: [a-zA-Z] ([a-zA-Z] | [0-9]) [mkidn]

The token name, e.g. Ident, is used as a terminal symbol in the concrete syntax and in

ttribute associated to such a token which represents

rs, specified in the AG

the AG. There is usually one symbol

its identity, e.g. a unique encoding of identifie

TERM Ident: id: Symb;

The value of the symbol attribute i computed by one of the token encoding modules in

the lexical phase. Eli provides a library of standard modules for identifiers and literals.

Their functions have a standardized interface used in calls of the GLA generated scanners.

Hence it is sufficient just to add the name of that function, e.g- mkidn, to the token

specifications. For each of these terminals a Jeaf node is made in the structure tree. Its

symbol attribute is computed by the encoding function prior to attribute evaluation. The

function and the attribute evaluation have to agree upon its representation.

The syntactic analysis phase performs a transformation from the token sequence

to the structure tree. It is specified by the concrete syntax, the abstract syntax, and their

386

relationship. The concrete syntax is derived from the CFG given in the source language
definition. Usually some transformations are applied to disambiguate the grammar and
to achieve the grammar class required by the parser generator, e.g. LALR(1) in case of
Eli. Development of the abstract syntax is an early step of AG design. Its objective is
to specify a structure tree, which describes the semantic structure without unnecessary
redundancy. As a general rule those productions of the concrete syntax, that have the
same computation pattern in the AG should be unified in the abstract syntax, in order
to avoid repetition of attributions. Those chain productions which don’t have specific
attributions except transfer rules can be omitted in the abstract syntax. In practice
abstract syntax design needs already a good plan of the computations to be specified in
the AG, if revisions of the decisions should be avoided. In the following we first explain
formal relationships between concrete and abstract syntax, and then give some guidance
for typical cases in compiler applications.

In Fig. 2.1 the concrete syntax for simple expressions is given. The grammar is
unambiguous and LALR(1). It describes certain structural properties of the operators:
The left-recursive productions p! and p2 define both AddOpr and MulOpr being left-
associative, i.e. the structure of a+b+c is equivalent to that of (a+b)+c. Furthermore the
MulQOpr have higher precedence than the AddOpr, i.e. the structure of a+b*cis equivalent
to that of a+(b*c). This property results from the hierarchical order of the nonterminals
Ezpr — Fact — Term. Other bindings of operands to operators can be achieved by
parenthesized subexpressions according to p5, i.e. a+(b+c) or (a+b)*c. These structural
properties of expressions are the determined by a parser which constructs a derivation
according to the concrete grammar.

The design of AGs for expressions leads to the observation that the computation
pattern is the same for any binary operator context. It comprises rules for overloading
resolution, type determination, and translation coercion. Hence there is no need to distin-
guish contexts for AddOpr and MulOpr. There is only one other context p6 which requires
non-trivial attribution for identification of the applied identifier, computation of its type

and translation. Hence attribution can be associated to an abstract syntax as given in
Fig. 2.2.

387

pi: Expr ::= ExXpr AddOpr Fact

p2: Expr = Fact
p3: Fact ::= Fact MulOpr Term
p4: Fact ::= Term

pS: Term ::= ‘¢’ Expr ‘)’
pé: Term ::= Jdent
p7: AddOpr ::= ‘4!

p8: AddOpr ::= ¢
p9: AddOpr ::=)
pi0: MulOpr ::= ‘/’

Fig. 2.1 Concrete expression syntax

1

RULE apl: Expr :: Expr Opr Expr END;

RULE ap2: Expr ::< Ident END;
RULE ap3: Opr ::= ‘¥’ END;
RULE ap4: Opr ::= '’ END;
RULE ap5: Opr ::= ‘¥’ END;
RULE ap6: Opr ::= ‘/’ END;

Fig. 2.2 Abstract expression syntax

The relationship between concrete and abstract syntax can be described by a straight-

forward formalism: The nonterminals of the concrete syntax form a set of equivalence
classes, { Ezpr, Fact, Term} and {AddOpr, MulOpr} in our example. Their members are
stract syntax, Ezpr and Opr. Hence both pro-

., pl0to ap3, - ap6. The chain

mapped to the same nonterminal of the ab

ductions pl, p2 are mapped to apl, p6 to ap?, and p7, ..

productions p2, p4 for symbols within one equivalence class do not occur in the abstract

syntax. p5 is considered as a chain production, too, because it has only structural but no

semantical relevance.

This mapping of productions also defines the construction of the structure tree. Ac

388

Stmts Stnt

pl: Stmts

p2: Stmts

p3: Stmts ::= Stmt

p4: Stmt := ‘begin’ Stmts ‘end’

p5: Stmt = ‘while’ Expr ‘do’ Stmt

p6: Stmt = ‘if’ Expr ‘then’ Stmt ‘else’ Stmt
p7: Stmt = Var ‘:=’ Expr *;

Fig. 2.3 a) Concrete statement syntax

tions for node construction are associated to those concrete productions which have a
corresponding production in the abstract syntax. In the Eli system the design of the
abstract syntax is supported by a tool, CAGT [Dep91], which automatically relates the
productions and attaches the actions for tree construction to the parser grammar.

In Fig. 2.2 the operator symbols are retained for better readability only, they do not
occur in the structure tree. It has nodes for nonterminals and attributed terminals, like
Ident, only. A closer look at the attribution for Opr shows that the grammar can be

further simplified. All four contexts would have a computation pattern like

RULE ap3: Opr ::= ‘4!
STATIC Opr.op = Addsyn
END;

We could drop the four productions and let Opr be a terminal with the symbol attribute
op. Then the attribute is computed by an encoding module of the lexical phase, as
described in the symbol specification.

The technique of abstract syntax design as described for expressions can be applied
to other parts of the grammar correspondingly, as shown for statements in Fig. 2.3.

In contrast to the techniques described above, where chain productions are eliminated,
the AG can also be simplified by introducing specific chain productions. Such a situa-
tion is indicated if a common computation pattern occurs in several contexts. Typical

examples are occurrences of identifiers. There are two different computation patterns,

389

RULE apl: Stmt ::= Stmt Stmt END;
RULE ap2: Stmt = END;
RULE ap3: Stmt ::= ‘while’ Expr ‘do’ Stmt END;

RULE ap4: Stmt ‘if’ Expr ‘then’ Stmt ‘else’ Stmt END;

RULE ap5: Stmt ::= Var ‘:=’ Expr ‘! END;

Fig. 2.3 b) Abstract statement syntax

one for defining occurrences (generating a key for the defined properties, introducing the
(identifier, key)-pair into the environment of the surrounding block, and checking for mul-

tiple definitions), and one for applied occurrences (identifying the key in the surrounding

environment and checking whether a definition exists). These attributions can be bound

to context like

RULE apDef: Defldent ::= Ident END;

RULE apApp: Appldent ::= Ident END;

Each occurrence of Ident in the concrete syntax is then classified to be a Defldent or an

Appldent. So it is avoided to repeat those attributions in several contexts. This principle

of factorizing computations by chain productions can usually be applied to several contexts

in the grammar. Another typical example is given by those contexts which introduce a

new scope, e.g. block, procedure body, with-statement, etc. A new nonterminal, e.g.

Range, would introduce suitable contexts for those attribution patterns.

Application of such design rules for the abstract syntax contributes to the quality of

the AG. Since the abstract syntax is designed before the computations are specified, a

good plan for the attribution is required in advance. Often situations for improvements

by modifying the abstract syntax arise during AG development. Such design iterations

do not require much effort, if the mechanical work is supported by tools in a compiler

construction environment like Eli.

390

3 Modules and Tools for Semantic Analysis

Several tasks of semantic analysis have general standard solutions which can be system-
atically adapted to the specific requirements of the particular compiler. The Eli system
provides modular implementations of such solutions for common tasks, like name anal-
ysis, property association, and operator identification. The functions of these modules
are used in the AG specification according to the principles described in [Kas91]. In this
section we give two examples for such standard solutions in Eli, a name analysis module

and a generator for operator identification. Another module for property association is

described in [Kas91].

3.1 Name analysis according to scope rules

One of the central semantic analysis tasks in any compiler is name analysis according to
scope rules: For each applied identifier occurrence the definition is found which is valid

at that program point. Language specific scope rules describe where a definition is valid.

The following rule is basic for many block structured languages:

A definition for an identifier a is valid in its smallest enclosing range, but not in

inner ranges which also have a definition for q.

This rule describes scopes in Algol 60; the rules for Pascal, C and Ada are variants of it.

The general identification problem can be reduced to few concepts and operations:
A definition is represented by a pair of an identifier and a unique key, which allows to
associate and access properties of the defined ob ject. An environment is the set of defini-
tions (identifier, key)-pairs which are valid at a certain program point. Environments are
constructed hierarchically by adding a set of definitions, called a scope, to an environment.

In [KaW90] an abstract data type is defined for name analysis based on these concepts,
and an efficient implementation based on a state model s given. Its operations can be used
to specify different variants of scope rules in commeon programming languages; examples

for C, Pascal, and Modula-2 are given in that article. Such a module is available in the

Eli system. Its main operations are

391

e = NewEnv ()

Qenerates a new environment, e. The function is used once for each

disjoint name space.

e3 = NewScope (e;)

Generates a new environment ez, Definitions may be added to the scope

of e,. e inherits all definitions of €;, unless they are redefined 1n e;.

k = Defineldn (e, 1)
Adds a pair (i, k) to the scope of e with a new key k, if there is no
definition for i in the scope of e; otherwise no definition is entered, and
kis the key of the existing definition. (The latter case indicates multiple

definition of an identifier in usual applications.)

k = KeyInEnv (e, 1)
Yields the key of a pair (3, k) in ¢, or k = NoKeyif e does not contain a

definition for 1.

A typical attribution for scope rule specification is shown in Fig. 3.1, comprising the

context of the program root, of ranges where possibly nested scopes are introduced, and

of defined and applied identifiers. It should be noted that two environment attributes

nv describes the envi-

Defldent

are used: initial.env describes just the hierarchy of environments, €

ronments with all their definitions completed. The message computation in the

context is made dependent on Hange.env, in order to yield a message at each of the
multiple definitions.

Association and access of defined properties should be described independently of

name analysis, because it is a separate task to be solved by different means. There is

li for that purpose, defining Set and Get operations for

a general applicable module in E
properties of different representations. In the attribution of Fig. 3.1 the property JsDef is

used to check for multiple definitions. Further application patterns of such a module are

discussed in {Kas91].

392

RULE Prog

STATIC
Prog.initial_env = New Env();
Prog.env = EnterPredefs (Prog.initial_env);
END;
RULE Range ::= ..
STATIC
Range.initial_env =
NewScope (INCLUDING (Range.initial_env, Prog.initial_env));
Range.env =
Range.initial_env DEPENDS_ON CONSTITUENTS Defldent.def,
INCLUDING (Range.env, Prog.env);
END;
RULE Defldent ::= Ident
STATIC
Defldent.key = Defineldn (INCLUDING (Range.initial_env), Ident.id);
Defldent.def = SetIsDef (Defldent.key, defined, multiple)
message_if (EQ (GetIsDef (DefIdent.key, undefined), multiple),
"multiple defined identifier")
DEPENDS_ON INCLUDING (Range.env);
END;
RULE Appldent ::= Ident
STATIC

Appldent.key = KeyInvEnv (INCLUDING Range.env, Ident.id);

message_if (EQ (AppIdent.key, NoKey), “undefined identifier");
END;

Fig. 3.1 Scope attribution with name analysis module

393

3.2 Operator identification

In many programming languages operator symbols are overloaded with several different

meanings, e.g. in Pascal the + symbol is used for integer addition, real addition, and set
union. Both tasks of type checking and operator translation require overloading resolution,
i.e. for each operator symbol occurrence its meaning has to be identified. The specific
language rules for operator identification are described in terms of type signatures for

operators and coercion relations between types.

RULE Expr ::= Expr Opr Expr
STATIC
Opr.target =
0i1Id0p2 (Opr.op, Exprl2].type, Expr[3].type);
message_if (EQ (Opr.target, NoOpr),
"incompatible operator and operand types");

0ILOprType (Opr.target, 0);

Expr([1].type
0ILOprType (Opr.target, 1);

i

Expr[2] .posttype
DILOprType (Opr.target, 2);
DILOprCoerce (Expr[1].type, Expr[i].posttype);

Expr[3] .posttype

Expr[1].coerce

END;
Fig. 3.2 Operator :dentification computation pattern

There are two different general schemes for overloading resolution: In the Pascal-

like scheme [Ame83b)] the operator is ide
Ada-like scheme [Ame83a,,PWD79] additionally considers the result type required by the
[Depgl,KaSSS] in the Eli system supports both

ntified on the base of its operand types; the

context of the expression. The OIL tool

schemes by a module with two sets of functions. They are pa.rameterized with operator

signatures generated from specifications for OiL. The following example demonstrates

case of Pascal-like operator identification. Fig. 3.2 shows a

n of binary operators. The call of OilldOp? yields

the application of OIL in
computation pattern for identificatio
the identified target operator for the given op
result type is the type of the whole expression. Th

erator symbol and the operand types. Its

e operands have to be coerced to the

posttype taken from the operator’s signature.

394

% Signatures of target operators:
OPER iAdd, iSub, iMul (int, int): int;
OPER rAdd, rSub, rMul (real, real): real;

OPER sUnion, sDiff, sIntersect (set, set): set;

% Source operators overloaded by target opertors:
INDICATION Add: iAdd, rAdd, sUnion;

INDICATION Sub: iSub, rSub, sDiff;

INDICATION Mul: iMul, rMul, sIntersect;

% Coercion operator:

COERCION Float (int): real;
Fig. 3.3 Operator identification specification

This computation pattern is completely independent of the operator signatures in-
volved. Those are specified by rules in the OQIL specification language. Fig. 3.3 shows
an example specification for the source operators Add, Sub, Mul which are overloaded by
int, real, and set operators each. A widening coercion is defined from int to real. OIL
translates such a specification into data used by the functions of the attribution. Hence

the AG is not influenced by the usually great number of operators and their signature.

4 Modules and Tools for Transformation

On the base of the tree structure and the information computed by the semantic analysis
the transformation phase transforms operations and data of the program into an interme-
diate or target representation, cf. Fig. 1.1. Structure and contents of that representation
depends on the interface of the encoding phase. For certain compilation tasks that phase
is not needed, and the target representation is produced directly. In any case the trans-

formation is specified by computation patterns of the AG, which should be separated into

specific AG modules (see [Kas91].)

395

It is a good design practice to implement the target representation by a module, which
provides constructor functions for components of the target structure. Such a target
modules depends very much on the design decisions for the specific compiler. Hence the
Eli system provides some mechanisms for certain classes of target structures, rather than
precoined solutions. In the following we briefly describe the support for producing plain

text files, tree structures, and tree structured target text.

Frame: v#include <stdio.h>/n"
"main () {/n"

$/* bOdy */ u/nn

"/n}/n"
Block: "/n{"
$/*% decls and stmts */
"/un}/n"
Decl: $/* type */ $/% identifier */ ";/n"
Assign: $ "=t $ /0
Seq: $ 3
Empty:
Numb: int [printnumb]
Ident: int int [printident]

Fig 4.1 Translation specification for PTG tool

Unstructured textual output is easily produced using print functions which append strings

iven directly as arguments, taken from the string memory

if source symbols are written, or converted from numbers. The attribution has to specify

to an output file. They may be g

396

the sequencing of output components by dependencies between the function calls, as
described in [Kas91}.

If the target structure is an abstract intermediate language, it is usually represented by
a tree composed of nodes of different types. A constructor module is easily developed, such
that it provides a constructor function for each node type, like PTGBlock and PTGDecl
in Fig. 4.2,

The computations of the AG in Fig. 4.2 then specify bottom-up tree construction by
calls of those functions, which use attributes representing subtrees. The same principle
can be used to produce directed acyclic graphs. If cyclic graphs should be produced,
the module needs additional functions for definition and use of labeled subgraphs. Such
modules may also be generated by other tools like IDL [Lam87].

A special case arises if the target tree is interpreted as the structure tree of a subsequent
attribution phase, which specifies register and label allocation for example. In that case
the second AG specifies the tree structure, i.e. the node types with descendants and
attributes. The AG systems integrated in Eli (GAG [KHZ82] and LIGA [Kas89]) generate
the constructor functions which are used in the first AG to produce the tree. Eli also
supports a mechanism to combine both attribution phases into one, yielding a mechanism
for AG specified tree transformation.

There are many compiler applications which translate a source program into a program
of a different source language, e.g. Pascal to C translation, or in general produce text
with an underlying hierarchical structure, e.g. transform a data manipulation language
into a sequence of nested calls of a data base system. This task can be easily solved
if it is decomposed into its two subtasks: The hierarchical structure is computed as a
target tree using the technique applied in Fig. 4.2. The tree is then transformed into a
textual representation by recursively applying a transformation rule for each node type.
This kind of source to source transformation is supported in Eli by a specific tool, PTG
(Program Text Generator, [Dep91]). The form of the output is described by a specification
for PTG. It has one rule for each node type, describing its components and its textual
representation as shown in Fig. 4.1.

The rule for Assign describes that the node is composed of two subtrees. It should be
textually represented by the text of those subtrees separated by a = symbol and followed

397

NONTERM Block: ctext: PTGNode;
CHAIN cseq: PTGNode;

RULE pi: Prog ::= Block
STATIC
Prog.ctext =
PTGOut (PTGFrame (Block.ctext));
END;
RULE p2: Block ::= ‘begin’ Decls Stmts ’end’
STATIC
CHAINSTART Decls.cseq = PTGEmpty ();
Block.ctext = PTGBlock (Stmts.cseq);
END;
RULE p3: Decl ::= Ident ’:’ Ident ’;’
STATIC
Decl.cseq = PTGSeq (Decl.cseq,
PTGDecl (PTGIdent (Ident[2].id),
PTGIdent (Ident[1].id)));
END;
RULE p4: Stmt ::= Ident ’:=' Numb ’;’
STATIC
Stmt.cseq = PTGSeq (Stmt.cseq,
PTGAssign (PTGIdent (Ident.id),
PTGNumb (numb.val)));
END;
RULE pS: Stmt ::= Block
STATIC
Stmt.cseq = PTGSeq (Stmt .cseq, Block.ctext);
END;

Fig 4.2 Attribution for target tree construction

398

by a ;. From such specifications PTG generates a tree construction module to be used in

the AG specification like that of Fig. 4.2. In this case it would contain a function
PTGNode PTGAssign (/* PTGNode a, b */) ...

Furthermore there is a predefined function PTGOut which produces the specified tex-
tual representation for its tree argument. Other PTG specification rules allow to attach
user defined functions for generating symbols like identifiers or numbers. Hence for this
kind of application both the tree construction module and the output module are gener-

ated automatically and are applied in an attribution like that of Fig. 4.2.

399

5 References

[Ame83a)

[Ame83b]

[Cle88]

[DDH84]

[Dep91]

[GHK89]

[Heu86]

[Kas89)

[Kas90]

[Kas91]

[Kas8g]

[KHZ82]

(KaWwg0]

American National Standards Institute, Reference Manual for the Ada Pro-
gramming Language, ANSI/MIL-STD 1815, 1983.

American National Standards Institute, Programming Language PASCAL,
ANSI/IEEE 770 X3.97-1983, 1983.

Clemm, G. M., The Odin Specification Language, in International Workshop
on Software Version and Configuration Control ’88, Teubner, Stuttgart,

1988.

Dencker, P., Diirre, K. and Heuft, J., Optimization of Parser Tables for
Portable Compilers, ACM Transactions on Programming Languages and

Systems 6 (October 1984), 546-572.

Department of Electrical and Computer Engineering, University of Col-
orado, Eli Documentation, Technical Report, Boulder, CO, 1991.

Gray, R. W., Heuring, V. P., Krane, S. P., Sloane, A. M. and Waite, W. M.,
Eli: A Complete, Flexible Compiler Construction System, Department of
Electrical and Computer Engineering, University of Colorado, SEG 89-1-1,

Boulder, CO, June 1989.

Heuring, V. P., The Automatic Generation of Fast Lexical Analyzers, Soft-
ware - Practice & Experience 16 (September 1986), 801-808.

Kastens, U., LIGA: A Language Independent Generator for Attribute Eval-
uators, Universitat-GH Paderborn, Bericht der Reihe Informatik Nr. 63,

1989.

Kastens, U., [Ibersetzerbau, Handbuch der Informatik, Oldenbourg Verlag,

Miinchen, 1990.

Kastens, U., Attribute Grammars as & Specification Method, Proceedings

of the International Summer School on Attribute Grammars, Application

and Systems, Prague (1991).

Kastens, U., Code Generation Based on Operator Identification, Univer-
sitat-GH Paderborn, Reihe Informatik, Bericht Nr. 49, Januar 1988.

E., GAG: A Practical Compiler

Kastens, U., Hutt, B. and Zimmermann,
cience, vol. 141, Springer Verlag,

Generator, Lecture Notes in Computer S
Heidelberg, 1982.

Kastens, U. and Waite, W. M., An Abstract Data Type for Name Analysis,
accepted for publication in Acta Informatica, 1990.

[Lam87]

[PWD79]

[Pro89)

[WaG84]

[WHKSS]

400

Lamb, D. A., IDL: Sharing Intermediate Representations, ACM Transac-
tions on Programming Languages and Systems9 (1987), 297-318.

Persch, G., Winterstein, G., Dausmann, M. and Drossopoulou, S., Overload-
ing in Ada, Fakultat fiir Informatik, Universitat Karlsruhe, Bericht 23/79,
Karlsruhe, BRD, 1979.

Prott, K-J., Effiziente LALR(1)-Analyse mit Bestimmung sicherer An-
kniipfungspositionen in einem Parsergenerator, Universitat-GH Paderborn,
Diplomarbeit, 1989,

Waite, W. M. and Goos, G., Compiler Construction, Springer Verlag, New
York, NY, 1984.

Waite, W. M., Heuring, V. P. and Kastens, U., Configuration COI'ItI‘OI in
Compiler Construction, in International Workshop on Software Version and
Configuration Control '88, Teubner, Stuttgart, 1988.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21

