Executable Specifications for Language
Implementation

Uwe Kastens

Fachbereich Mathematik/Informatik
University of Paderborn, D-4790 Paderborn, F.R. Germany

Abstract. Generating programs from specifications is an ambitious task
that is solved at most for restricted application domains. General solu-
tions which are practically satisfying as well are hard to achieve. Lan-
guage implementation is a field, where tools and toolsets are available
which process executable specifications and derive language implement-
ing programs {compilers or interpreters) from them.

In this paper we will study specification principles that contribute to the
success of program generation in this application domain. Examples are
taken from the specification techniques of the Eli-System. The task of
language implementation is decomposed into subtasks which have well
understood and sufficiently general algorithmic solutions. Hence the in-
stances of subtasks for a particular language can be specified. Certain
language concepts like scope rules can be understood as a combination
and variation of some basic rules. This situation allows specifications on
a rather high level and reuse of precoined solutions. Domain specific ex-
pert know-how embedded in a toolset can further raise the specification
level. The presentation of such specification principles in language im-
plementation may raise discussion whether and how they can be applied
to other areas as well.

1 Introduction

In the reference manual of Z [8] Spivey characterizes formal specifications as
follows:

“Formal specifications use mathematical notation to describe in a precise
way the properties which an implementation must have, without unduly
constraining the way in which these properties are achieved. They de-
scribe what the system must do without saying how it is to be done.”

The abstraction of the what from the how shall achieve specifications that
have a small cognitive distance to the system requirements and a large distance
to an implementation. Such specifications are declarative rather than operational

Specifications have an important role in the software life-cycle: They are a
reference point for both requirements analysis and implementation, and are a
valuable means of promoting a common understanding among all those con-
cerned with the system.[8] Specifications serve for proving an implementation
against the requirements with respect to certain properties, e. g. invariants on

2

the system states, I/O relation of a function, or mutual exclusion of critical
operations in a paralle] system. _

The role of specifications in software development is further increased if an
implementation is derived by refinement of the specification. Each refinement
step introduces a design decision moving towards an implementation while. keep-
ing the specified properties intact. If we could get to an tmplementation w1t:hf)ut
augmenting the specification of system properties by design decisions explicitly
we had an ezecutable specification. It could serve either for prototyping or for
generating software products, depending on the software quality of the imple-
mentation.

Executable specifications especially for rapid prototyping is the goal of spec-
ification languages classified as Very High Level Language (VHLL). Krueger [7]
discusses VHLL like SETL, PAISLey, and MODEL under the aspect of softwflre
reuse. The reuse effect is achjeved by the specification language compiler or in-
terpreter. It makes the implementation decisions without involving the author
of the specification.

General purpose specification languages, as those mentioned so far, are based
on elementary mathematical concepts: sets, functions, and sequences for mod-
elling data, and predicate logic for modelling properties of operations. Systems
that interpret or compile such specifications have to use generally applicable im-
plementation strategies. So on the one hand all aspects of a system have to be
specified and refined down to those elementary concepts. On the other hand the
efficiency of the automatically achieved implementation is at best acceptable for
prototyping.

This situation can be dramatically improved if the problem domain is re-
stricted to a certain application area: A system of that domain can be described
In terms of a dedicated specification language. An application generator trans-
lates such a specification into ap implementation [1]. Krueger [7] characterizes
domains appropriate for application generators, if “many similar software sys-
tems are written, one software system is modified or rewritten man y times during
its lifetime, or many prototypes of a system are necessary to converge to a us-
able product”. Report generators for data bases are 3 typical area for application
generators (3].

Narrowing the problem domain yields important advantages for specification
design and execution:

— A specification may refer to concepts that are well-understood in the domain
and hence need not be further refined.

3

instance of the application generator principle, although this research is much
older than the application generator idea. More than forty years of research and
practice in compiler construction have resulted in common understanding of task
decomposition and of subproblems, powerful formal methods for problem de-
scription, and in systematic implementation techniques. Tools are available that
generate implementations from specifications, hence achieve their executability.
The domain is very broad, ranging from compilers and source-to-source transla-
tors for programming languages to the implementation of dedicated specification
languages, as used for application generators.

In the following sections we emphasize the discussion of specification strate-
gies applied in this application domain to achieve executability. We use Eli [2] [4]
as an example for a system which integrates many generating tools, precoined
solutions, and domain specific knowledge. A major design goal of Eli is to achieve
executable specifications that have a small cognitive distance to requirements of
its problem area. We have learned many aspects of the specification strategies
discussed here from the experience in developing and using the Eli system.

2 Domain Specific Decomposition

Decomposition of problems into subproblems is a natural method for analysis
and design. Different aspects of a problem are separated and described on a suit-
able level of abstraction. Solutions can be found for smaller units using different
techniques suitable for the particular subtask. Modular structure of the imple-
mentation and its interfaces can be derived from the decomposition structure.

If the problem space is restricted to a certain application domain specification
and solution can be supported by a domain specific decomposition model that
can be applied for any particular problem instance of that domain. Many years
of experience in the language implementation domain led to a generally accepted
model for decomposition of compilation tasks, as shown in Figure 1 taken from
[2]. That model is not restricted to programming language compilers: In case of
arbitrary language translation or interpretation the transformation phase usually
yields the final result, the encoding phase is left out.

The existence of a suitable domain specific decomposition model simplifies
the development of particular problem specifications: The description of the
model leads to a structured way of reasoning about the problem - even if users
are not experienced in language design and translation: It becomes obvious that,
for example, the form of tokens of the input language has to be specified, or rules
for name analysis must be chosen if the language has named objects. The model
suggests that these properties of the problem refer to different subtasks and that
they are related by the representation of name tokens.

A domain specific decomposition also allows one to specify different subtasks
via dedicated formal models using suitable specification languages: E. g. the form
of tokens is described by regular expressions like

Ident: $[a-zA-Z][a-zA-Zo-9)*

Lexical analysis Scanning

Conversion

Syntactic analysi Parsing

Tree construction

Semantic analysis|Name analysis

Type analysis

Transformation [Data mapping

Action mapping

Code generation |Execution-order determination

Register allocation

Encoding Instruction selection
Assembly Instruction encoding

Internal address resolution

External address resolution

Structuring

Translation

Fig. 1. Compilation Subproblems

or the structure of the translated target text by a named pattern like
Block: "{" $1 ¢2 "}~

where the declarations are to be substituted at the first and the statements at
the second pattern variable.

The decomposition of the problem applies also to a modular decomposition
of the solution. Hence the mode] supports automatic derivation of subtask imple-

mentation. Well-understood formal methods can be used separately for solutions
of different subtasks, e. g-

— finite automata for scanning,

~ LALR(1) parsers with tree construction for structural analysis,
— attribute grammars for dependent computations in trees.

Separation of subtask specifications allows dedicated generating tools to be
applied, each solving nothing more than its specific task. If subtasks like struc-

turing and semantic analysis were not separated those implementation methods
would not be automatically applicable.

pose specification language, and would have to design a decomposition for each
particular problem instance. Jt would then be almost impossible to deduce appli-
cation of domain specific implementation methods automatically. On the other
hand the decomposition mode] requires that the specification is refined down to

the details of each subtask. That might not be desirable in each case. We shall
consider this aspect in Section 4.

3 Integration of Tools

In the previous section we ar
model. Of course the specifica
tions have interfaces. If tools

gued for having a domain specific decomposition
tions of subtasks are related and their implementa-
are applied separately for each subtask, the relations

between components of the specifications are not taken into account. The user
has to take care that the solutions fit together. On the other hand an integrated
system that processes the complete set of specifications can control those rela-
tions, and direct the relevant information to particular tools. Furthermore the
knowledge of domain experts can be embedded in the system such that most of
the interfacing problems are solved without being specified by the user.

We demonstrate these aspects by tracing the relationship of subtasks between
identifier tokens and scope rules for named objects. The decomposition model
tells us that we have to deal with identifiers in the subtasks scanning, parsing
and name analysis. Figure 2 shows these parts extracted from a complete speci-
fication. Part (a) describes the form of identifiers for scanning. mkidn refers to a
function that yields a bijective mapping from strings to integral encodings. Part
(b) shows a fragment of the context-free grammar specifying the input structure
of programs for the parsing task. The attribute grammar fragment (c) specifies
two distinguished contexts of the tree grammar where identifier tokens occur as
leaf nodes. Their instrinsic attributes Sym are propagated one level up in the tree
by the associated computations. Part (d) associates certain scope rule patterns
for defining and applied identifiers to the particular phrases of this tree grammar
(Section 5).

The specification fragments of Figure 2 are related to one another: The token
class Ident is a terminal symbol of the concrete grammar, and it corresponds to
a class of leaf nodes in the tree grammar. The encoding information derived from
the token is used as an intrinsic attribute for computations in the tree, in this
case by the name analysis computations of Figure 2 (d). An integrated system
can check the completeness and consistency of the specifications with respect to
such relations.

Furthermore redundancy of specifications can be reduced by deriving the
specifications for single subtasks from the complete set of specifications. For
example keywords, operators, and delimiters need not be specified separately
for the scanning task; their form is derived from the grammar productions. An
integrated system can even compute the mapping between productions of the
concrete grammar and the tree grammar. That mapping may be more complex
than the one-to-one mapping of the productions in Figure 2, e. g. for expressions
with several precedence levels. In many cases productions of the one grammar
can be derived from the other. In our example part (b) could be completely
omitted, taking that part of the parser specification from ().

It is well-known that tools can generate translator modules from specifi-
cations derived from those like that in Figure 2: implementations of a finite
automaton for scanning, a LALR(1) stack automaton for parsing, and a tree
walking algorithm for attribute computation in trees. These modules have to fit
together in order to make up an executable translator. This goal can be achieved
without describing any technical aspects of interfaces or implementation in the
specification. An integrated system like Eli embeds domain specific knowledge
on how to interface the modules and how to configure the executable product.

In case of our example several such engineering decisions are either fixed

6

Ident: $[a-zA-Z][a-zA-Z0-9]1% [mkdin]
a) Identifier token specification

Decl ::= Type VarDef HA
Assign ::= VarUge ’:=’ Expr.
VarDef ::= Ident.
VarUse ::= Ident.

b) Identifier terminals in the concrete grammar

RULE rDecl: Decl ::= Type VarDef °’;° END;

RULE rAssign: Stmt ::= VarZse >:=’ Expr ’;’ END;

ATTR Sym: int;

RULE rVarDef: VarDef ::= Ident COMPUTE
VarDef.Syn * Ident.Sym;

END;

RULE rVarUse: VarUse ::= Ident COMPUTE

YarUse.Sym = Ident. Sym;
END;

¢} Identifiers in tree grammar contexts

SYMBOL VarDef INHERITS IdDefNest, IdDefUnique END;
SYMBOL VarUse INHERITS IdUseNest, NokeyMsg END;

d) Scope rules specification related to identifier occurrences

Fig. 2. Related specifications for named objects

for all language processors generated or they are derived from the particular
set of specifications: A fixed interface is used between the scanner and modules
that store and encode token representations, like the function mkidn of a symbol
table module. A module for Lree construction is generated from the tree grammar
specification. The mapping between the tree grammar and the context-free input
grammar determines when the tree construction functions are to be called by
the parser. Appropriate actions are added to the parser generator input.

Hence on the base of a domain specific decomposition model implementation

decisions on interfaces can be made by an integrated system without the need
for explicit implementation level specifications.

4 Declarative Specifications

methods [9):

1. specifying properties of the problem P,
2. identification of P with the description of a problem @,
3. describing a solution of P.

Methods (1) and (2) lead to a declarative specification style. The description
of a solution (3) is usually operational on the level of implementation. Hence
it should be considered as an escape from declarative specifications for aspects
not covered by the underlying formal model. E. g. in Figure 3.1 (a) regular
expressions does not cover storing and encoding of identifiers by a symbol table.
Association of a function call mkidn is an escape to an operational level. Most
declarative specification techniques need such operational hooks. They either
attach solutions to the specification which are supplied on implementation level,
or they connect specifications using different models. The careful distinction
between declarative and operational aspects supports clarity of the specifications
and allows tools to strictly apply formal methods for the declarative part.

Figure 2 shows the use of specification languages for the description of the
form of tokens, by regular expressions, syntactic structure by context-free gram-
mars, computations in trees by attribute grammars. Tools generate executable
program modules from such specifications. In general none of these subtasks
are completely described in declarative style. For that purpose operational solu-
tions of smaller subtasks can be hooked to the description of problem properties
without destroying their declarative character. We give three examples for this
aspect:

The name of a symbol table function mkidn is attached to the description of
the identifier tokens. The scanner generator inserts a call of that function into
the scanner code. The implementation of that function is either taken from a
system library or it is supplied by an operational solution.

Similarly actions for tree construction are attached to context-free produc-
tions and processed by the parser generator. In this case those operational hooks
are not visible on the level of the original specification, and their implementation
need not be specified.

The tasks of the semantic analysis and the transformation phase are specified
in the calculus of attribute grammars. Its declarative aspect associates compu-
tations (function calls) to tree contexts and states dependencies between them.
The attribute grammar tool decides how to walk the tree, when to call the func-
tions, and where to store attribute values. On the other hand the implementation
of the functions and the representation of the attribute values lies outside of the
declarative aspect of that calculus. They are either contributed by tools for other
subtasks, e. g. a pattern driven generator for output functions, or operational
solutions are taken from a library or given by the user.

The method (2) of describing a problem instance by identification with an-
other problem that has a known solution is typical for domain specific applica-
tions. For example one could specify the form for identifier tokens by referring
to those of the language C:

Ident: C_IDENTIFIER

8

Here the token specification is simply taken from a library pro'vxded by the
system and mapped to the token name for the particular probl.em mstance.

The same principle can be apphed for other subtasks .whlch' have cl-larac-
teristics that frequently occur in the problem domain. Eli provides a library
of reusable specification modules for different instances of name analysis tasks.
They are used by specifying that certain symbols of the pa}rtlcular tree gramntl-al'
play computational roles relevant for name analysis. In Figure 3 the module for
Algol-60-like scope rules is chosen. The roles of the grammar root, the range

of definitions, defining and applied identifier uses are mapped to the grammar
phrases.

SYMBOL Progr INHERITS Root END;
SYMBOL Block INHERITS Range END;
SYMBOL VarDef INHERITS IdDef END;
SYMBOL VarUse INHERITS IdUse END;

Fig. 3. Use of a name analysis specification module

Such specification modules encapsulate precoined descriptions of certa.m con-
mon problem instances. They are formulated in terms of the specification lan-
guages for their subtasks, e. g. regular expressions for tokens, attribute grammars
for name analysis. The user maps the central concepts of the identified problem

to entities of his specification without knowing the details of the specification
module.

Those are general criteria for reusable libraries.

Specification modules like that a
task introduce a new kind of declar
a set of related task specific conc
IdUse. In case of Algol-60-like scop
a mapping from identifier encodin

pplied in Figure 3 for the consistent renaming
ative specifications. Such a module describes
epts, in this case Root, Range, IdDef, and
e rules a Range is a program phrase that_has
gs to object keys describing identifier bindings

ases of the particular tree grammar play the roles
of the related concepts described by the module. (Usually Range, IdDef, and

¥ to show that the specification de-
module itself is specified correctly.

The module is described in terms of dependent computations using the calculus
of attribute grammars. Figure 4 shows the module specification for our example
taken from [6]. The verification of the above described concepts is supported
by concentration on a single computational aspect (here consistent renaming),
and by abstraction from the particular tree structure. For example it can easily
be shown that the KeyInEnv function in the IdUse context is not called before
all DefineIdn calls are done for all IdDef contexts in enclosing ranges. On the
level of attribute grammars such dependencies between computations, and the
propagation of values between computations can be proven.

SYMBOL Range: Env: Environment, GotLocalKeys, GotAllKeys: VOID;
SYMBOL IdDef, IdUse: Sym: int, Key: DefTableKey;

SYMBOL Root INHERITS Range COMPUTE
INH.Env = NewEnv();
INH.GotAllKeys = THIS.GotLocalKeys;
END;

SYMBOL Range COMPUTE
INH.Env = NewScope (INCLUDING Range.Env);
INH.GotAllKeys = THIS.GotLocalKeys
DEPENDS_ON INCLUDING Range.GotAllKeys;
SYNT.GotLocalKeys = CONSTITUENTS IdDef.Key;
END;

SYMBOL IdDef COMPUTE
SYNT.Key = DefineIdn(INCLUDING Range.Env, THIS.Sym);
END:

SYMBOL IdUse COMPUTE
SYNT.Key = KeyInEnv(INCLUDING Range.Env, THIS.Sym)
DEPENDS_ON INCLUDING Range.GotAllKeys;
END;

Fig. 4. An Attribution Module for ALGOL 60-like Scope Rules

The operational aspects, i. e. the effects of the computations, are beyond the
scope of this calculus, In [5] a formal specification of an abstract data type for
the functions used in this module is given. An implementation can be proven
against that specification, but it cannot be used to generate the implementation.

This observation applies as well to the other kinds of declarative specifica-
tions mentioned above (scanner, parser, tree construction, output patterns): The
declarative aspects can be proven within the corresponding formal calculus. The
correctness of their implementation is preserved by the generating tools. For
the operational hooks the sequence of calls and the supply of arguments can be

10

proven within the calculus, tools can integrate the operations correctly into the

generate algorithm, but the effect of those operations can not be proven in the
original formal model.

5 Conclusion

We have shown that executable specifications can be achieved in t.he dorpmn. of
language implementation. Narrowing the problem space to a cer-tam athcatfon
domain leads to specification strategies that effectively simphfjf specification
development and support generation of high quality implementations: .

A domain specific decomposition model supports well-structured specifica-
tions using dedicated formal calculi for subproblems. Dedicated tools can be ap-
plied to components of the specifications. Careful distinction between declarative
formal specifications and iecessary operational hooks allows tools to perform ef-
fectively on exactly their task. . _

Most implementation decisions can be made without explicit specification by
an integrated system that embodies know-how of domain specific experts.

In a restricted problem domain there are usually widely applicable and well-
understood common concepts. They give rise to specifications on higher levels,
and to the use of Precoined solutions.

It seems to be pPromising to transfer these strategies and the experience of
this area to other applications domaijns,

References

1. Cleaveland, J. C.. Buildin
25-33

2. Gray, R. W, Heuring, V. P, Levi, S, P, Sloane, A. M. & Waite, W. M.: Eli: A

Complete, Flexible Compiler Construction System. Communications of the ACM
35 (Feb. 1992), 121-131

3. Horowitz, E., Kemper, A. & Narisimhan
IEEE Software 2 (Jan. 1985), 40-54.

& Application Generators, IEEE Software 5 (July 1988),

» B.: A Survey of Application Generators.

5. Kastens, U. & Waite, W. M.: An Abstract Dat
Informatica 28 (1991), 539-558.

6. Kastens, U. & Waite, W. M. Modularity and Reusability in Attribute Grammars.
Universit t-GH Paderborn, Rejhe Informatik, July 1992,

11

. Krueger, C.W.: Software Reuse. ACM Computing Surveys 24 (June 1992), 131-183.
. Spivey, J. M.: The Z Notation A Reference Manual, 2nd Ed. International Seriers
in Computer Science, Prentice Hall, 1992.

. Waite, W. M.: A Complete Specification of a Simple Compiler. Department of Com-
puter Science, University of Colorado, Boulder, CU-CS-638-93, Jan. 1993.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11

