A Tool Kit for Knowledge Based Production Planning Systems

Stefan Boticher
IBM Deutschland GmhH
Scientific Center
Institute for Knowledge Based Systems
P.0.Box 80 08 80
D - 7000 Stuttgart 80
West Germany *

Abstract

This paper describes the logic programming language PROTOS-
L and how to use it as a tool kit for the programnung of knowl-
edge based production planning system prototypes. PROTOS-L
embeds transparent access to relational databases, supports the
programming of deductive databases, provides a module concept
similar to Modula-2 and contains a type concept with subtypes
and polymorphism. The programnung language PROTOS-L
and the PROTOS-L system have been developed and imple-
mented at IBM Stuttgart. PROTOS-L is currently used to reim-
plement parts of production planning systems which have been
developed at Sandoz AG i Basel and at Hoechst AG in Frank-
furt. The investigated production planning applications need an
integration of both concepts: read access to relational databases
{which contain the relevant Planning data) and « logic program-
ming language for the implemention of heuristic rules (which
control the planning strategy). In order to support both fa-
cilities, PROTOS-L fully embeds database access into a

logic
programming language.

1 Introduction

The Fureka project PROTOS investigates logic progranuning
tools for expert system npplications, and focusses on tools for
production planning systems. Production planning system pro-
totypes have been developed at Sandos AG in Basel and at
Hoechst AG in Frankfust. Currently, it is investigated how
parts of a planning algorithm for the Sandoz production plan-
ning problem, namely finding a prodnction schedule for severnl
products under given production constraints, can be reimple-
mented in the logic programming language PROTQS. L.

The paper is organized as follows, The second section describes
sonie requirements of the PROT(S production planning appli-
cations, which are relevant to the use of datnbases nnd knowledge
based systems. Next, we describe which facilities PROTOS.1,
provides in order to meet these Tequirements, i.e. we describe the
module concept of PROTOS.L and how PROTOS.L supports

database access and the development of deductive databases.

————

*The research reported here has been carried out within the in-
ternational EUREKA project PROTOS (EUS6): Prolog Tools for
Building Expert Systems, Project partners of the succeeding project
PROTOS I are BIM, IBM Stuttgart, Sandos AG Basel, Hoechst AQG

Frankfurt, IBM Montpellier, University of Dortmmnd and University
of Oldenburg.

2 Requirements of the PROTOS
production planning applications

The requirements of the PROTOS production planning appli-
cations result from many discussions with our industrial project
pattners.

2.1 A sketch of the production planning
prohlems

Within the PROTOS project, there is already a production
planning system prototype implemented at Sandoz in Basel
[Sauer et al, 1989], [Sauer, 1990}, [Slahor et al., 1990]. Another
production planning system prototype has been implemented
at Hoechst in Frankfurt. We summarize both applications and

outline their requirements to databases and knowledge based
systems.

A production planning system has to plan orders for several
kinds of products and has to fulfill the production constraints.
The most important production constraints for the production
planning problem at §andoz are the following;

¢ Fach mnchine can only be used for one production step
at a given time. If there are two production steps which
are planned to use the same machine in overlapping time
intervals, we call this a planning conflici.

¢ Ench production step can be performed only on some of
the machines, i.e. there are different types of machines.

¢ The production of a product must not be interrupted, i.c.

intermedinte prodncts have to be processed immedintely
{continuity constrant).

Encl order contains information about: which product is re-
quired, the arder priority, the enrliest time to begin the produc-
tion and the time at which the order shall be carried out.

For each product there are several production alternatives. A
production alternntive consists of a sequence of production steps.
Fach step can he performed on several machines. Therefore, the
order for a certain product ean be carried out, if there exists
& production time interval and o production alternative such

that for all of steps of this production alternative there exists an
available machine,

An important criterion for the quality of a plan is to carry out the
production orders in time {or at least with a short delay). How-
ever, the search spnce s too large to find an optimal solution,
e.g. tofind the production plan with the minimal sum of delay
days. Therefore, the planning algorithm combines heuristic rules
and interaction with a human planner! in order to construct the

"The time needed for hnman interaction is acceptable, because

production plan. Human interaction is also required, because in
the case of planning conflicts it is the decision of humans which
product will be delayed.

The production planning system prototype developed at Hoechst
AG in Frankfurt differs from that of Sandoz in several nspects.
For example, the constraints and the criterion for the quality of
a plan are different from the Sandoz production planning prob.
lem. In the case of Hoechst, the production planning system
prototype is used for a couple of production lines, each of which
is capable to fulfill any order for the given plant. It is desirable
to produce many orders of the same kind sequentially on & single
production line in order to reduce cleaning costs. The number of
product changes on a production line shall be minimized. More-
over, if it 15 not possible to use a production line for a single
kind of otders, then it is preferable to put similar production
orders on a production line, which at least need less cleaning of
machines than other production orders.

Both production planning scenarios have the following problems:

o The storage of data relevant to production in relational
databases: for example, an order datahase contains the or-
ders of customers and different production database con-
tains information about used machines, product descrip-
tions and information about which machines can can pro-
duce which products or can carry out which production
steps.

The search space is too large to find an optimal solution.
Heuristic rules have to be used in order to find a good
solution.

Human planners must have the possibility to modify the
planning strategy i.c. the decisions for conflict resolution.

In the next section, we summarize the requirements to a tool kit
for the implementation of such production planning systems.

2.2 Requirements to a tool kit for knowledge
based production planning systems

The need for database access

Embedding database access into a programming language for
production planning systems is enforced by the following rea-

SOns:

» Most of the characteristics of products, production alterna-
tives, production steps and machines are (or can be} stored
in relational databases and have to be accessed efficiently.

¢ The production orders are stored in a relational database

o Databases are used for information sharing, ¢.g. if thc. ac-
tual nccessible set of machines changes because of repair or
maintenance activities, then this information will be pro-

vided in a database relation.

The need for a logic programming language

A programming language for production planning systems
should support the programming of rules for the following ren-
son. As mentioned before, the search space for production p}nn-
ning problems is too large for an exhaustive senrch of an optimal
solution. “Good” solutions found by heuristic rules and human

the time needed for interactive planning is only a small fraction of
the time during which the production plan is carried ont.

interaction are sufficient for the applications. Finally, in our ap-
plications the leuristic knowledge for finding & good solution is
typically given in the form of rules as in logic programs. All-
together, a logic programming langnage seems to be the most
adequate approach for the implementation of heuristic planning
knowledge.

Further useful langunge features

A knowledge structuring concept, a type concept and the sup-
port of rapid prototyping are further useful properties of a tool
kit for the development of prodnction planning systems for the
following rensons.

¢ In our applications, production planning systems will only
benccepted, if the production planner can control the plan-
ning algorithm, t.e. he must be supported by a simple facil-
ity to exchange parts of the planning algorithm. Therefore,
some kind of knowledge strncturing concept or module con-
cept would he very useful.

o A type concept wonld he nseful for data structuring and
for avoiding type errors.
¢ Since production plans and the underlying algorithmns are

often developed internctively, the support of rapid proto-
typing is also necessary.

3 PROTOS-L

This section ontlines the design goals and summarizes the main
language featnres of the programming language PROTOS-L,
which are described e.g. in {Beierle, 1989] and [Bottcher, 1990b).
It further describes how the PROTOS.L module concept sup-
ports the developnient of knowledge based production planning
systems.

3.1 Design goals

The design gonls of PROTOS.L are to meet the production plan-
ning system requirements, ae.

to embed dntabase access in alogic programming language,

to support hoth hacktracking and set-oriented query eval-

uabion,

to support data strnetnring and a powerful type concept
and

to support knowledge structuring, separate compilation
and rapid prototyping

In order to meet these gonls, the logic programming langunge
PROTOS-L incorporates the following basic langnage fentures,
e f. [Beierle, 1989] and [Battcher, 1990b].

o The madule concept snpports knowledge structuring, sep-
arate compilation and rapid prototyping. Similar to
Modnln-2 [Wirth, 1983], PROTOS.L distinguishes be-
tween interface and body of A module and hides the imple-
mentation of the exported predicates in the module body.
The body of a PROTOS-L module is either a program body
or a database body. Program bodies implement the predi-
cates of A module by a set of facts and rules in the embed-
ding logic programming language. However, database bod-
ies implement the predicates by a set of views on database
relations. At the interface of a module it is transparent how
the predicates are implemented, i.e. whether the module
body is a program body or a database body.

86

¢ The logic programming language PROTOS-L integrates
access to external relational databases. Furthermore,
PROTOS-L supports the programming of deductive
databases. A database body is used to nccess an exter-
nal relational database or a deductive database.

o Set-oriented evaluation is used for rules in database bodies
(i.e. for deductive databases) wherens backtracking is used
for program bodies.

® Program bodies for small amounts of data used by proto-
types can be substituted by database bodies for the access
to external databases, when the first prototyping phase is
completed.

® As in TEL [Smolks, 1988], the PROTOS.L type system
[Beierle and Bittcher, 1989] supports data structuring and
writing more readable programs, and it helps to avoid
typing errors. The type system requires to assign types
to all arguments of a predicate, but it provides sub.-
types and polymorphism, i.c. type variables. However,
PROTOS-L types atc not only used by the PROTOS.
L compiler for type checking purposes, but also by
the PROTOS Abstract Machine (PAM) [Beierle, 1989],
[Bsttcher and Beierle, 1989] for type inferencing in order
to reduce the search space. If a predicate is implemented
in a database body, then the types of its arguments are
restricted to integer and string.

The basic design goals are met by the language features of
PROTOS-L as follows.

¢ The module concept supports knowledge structnring, sep-
arate compilation and rapid prototyping.

¢ Database bodies support both access to relational
databases and the programming of deductive databases.

* The type concept supports data structuring and more rend-
able programs, it leads to a reduction of the search space
during query evaluation, and it helps to avoid typing errors.
A deseription of the PROTOS-L type concept can be found
e.g. in {Beierle and Bittcher, 1989] and [Beierle, 1989],

3.2 The module concept of PROTOS-1L

The PROTOS-L module concept integrates ideas from the
module concepts of Modula-2, DBPL [Eckhardt ¢! al., 1985),
[Bottcher, 1989] and TEL [Smolka, 1988). As in TEL, the inter.
face specifies only the predicate names and the types of their ar-
guments. Different from DBPL, PROTOS-1L, supports database
access by a special kind of module bodies and not by & spe-
cinl kind of interfaces. The advantage of this approach over the
DBPL approach is that PROTQS-L allows

to keep the database
ccess transparent to the user of a module.

The example of figure 1 shows a part of an interface of that
module in our production planning systern which contains and
computes the production datn. The module computes

 which machines are used in whi

ch time intervals for which
order and

¢ which production steps can be done by which machines.
It is hidden how the Predicates are implemented, i, the concept
of an interface supports knowledge encapsulation.
the distribution of rules into several separate modules
knowledge structuring,

Similarly,
supports

Separate compilation and thereby the maintenance of large pro-

gram systems is supported as i Modula.2: interface and body

of & module are compiled separately Since compilation nnits
import only from interfaces, but never from badies, the body of
any module ean he modified and recompiled independently of
the rest of n modnle system

The PROTOS-L module concept also supports two kinds of
rapid prototyping: namely top-down and bottom-up system de-
velopment. Top-down system jmplementation is fmhmed‘as
follows. The programmer can use dummy suhmodules which
list only a few facts for tapid protolyping purposes in order to
check whether nn upper module works well Later, the dummy
submodules ean be exchanged by modules which implement the
desired predicates, withont changing the interfaces of the mod-
ule. Bottom-up system evaluation is even better supportc.d
than in many conventional programming languages, because in
PROTOS-I the progranumer can interactively query every pred-
icate defined in any module, provided that the module and all
its submodules are implemented.

Let us continne onr example: During a rapid prototyping ph.nsc
the predicates used_machines nnd step_machines could be im-
plemeted in a program hody, e.g by listing some cxnmp]c' facts.
When the prototyping phase is completed successfully, ﬂ\.ls pro-
gram body can be substituted by a database body selecting the
facts from n relationnl or deductive database.

4 Access to relational and deductive
databases

This section summarizes how ccess to relational and deductive
databases is embedded in the programming language PROTQS'
L, i.c. how database access is expressed within database bodies
{Bottcher, 1990n]. The bnsic iden is to give the PROTOS-L pro-
grammer & uniform high-level database programming language.
The impedance mismnteh of other language integrations, ¢.g.
the integration of SQL into C, should be avoided.

4.1 Transparent database access

The most important new aspect of the PROTOS-L module con-
cept is that PROTOS-L offers two kinds of bodies of a module:
program bodies and database bodies. Program bodies supp‘?"t
logic programming with backtracking, whereas database bodies
support set-oriented retrieval from external relational dntabases
and vser defined dednctive databases.

Because access to an external database shall be "“‘"p"".“t. flor
the user of n module, at the interfnce of a module it is not VI!'de'
whether or not the corresponding implementation of the body

Recesses an externnl databnse and which kind of data retrieval
is used.

For example, the predicates used_machines and step_machines
could be implemented cither as m Prolog by a set of fncts and
rules written down in n program body or by external dntn!ﬂr“‘
as described in the third section. At the interface it is not visible
how the predicates are implemented.

The database module can be used as an interface to a rfh'
tional databnse as follows. The implementation of a module is o
database body and the facts solving a predicate are taken fr?m
a relationnl databage. Furthermore, for every database relnC!Ol‘
declared in the database body there has to exist a corresponding
database relation in the database schema.

For example, the interface given in section 3.2 ean be imple-
mented by the database body given in figure 2.

interface production_data.

tel nused machines : 7string x ?int x 7int x 7int .
% machine name used from used until for order
% Which machine is nsed in which time interval for which order ?

Y% If the machine is available in the time interval, them the 4th argument has the valne 0.

rel step machines : 7int x ?string .
h production step machine name
% Which production step can be done by which machine ?

endinterface.

Figure 1: Abstraction from details of the production data

database_body production data using schedule DB .

rel used_machines : 7?string x ?int x ?int x ?int .

% machine name used from mnsed until for order

Y% Which machine is used in which time interval for which order ?

Y% If the machine is available in the time interval, then the 4th argument has the value 0.

dbrel used_machines is Machine_Rel(Machinename , From , Until , Order).

rel step_machines : ?int X 7string .
h production step machine name

% Which production step can be dome by which machine ?

is Hachines_for_Productionstep(Step , Machinename).

dbrel stepmachines

endmodule.

Figure 2: Implementation of relations containing the relevant production data

This database body requires that there are at least two
relations in the database schedule_DB: Machime Rel and
Machines_for_Productionstep. Furthermore, Machine_Rel
must have at least the four attributes: Machinename of type
string, and From, Until and Order of the type integer. Sim-
ilarly, Machines_for_Productionstep must have at least the
attributes Step of the type integer and Hachinename of type

string.

However, the database module can also be used in order to pro-
gram a deductive database. Therefore, a PROTOS-L database
body may contain function free database rules in order to imple-
ment predicates specified in the modnie’s interfnce. A function
free database tule cousists of a hend and o number of goals,
ench of which does not contain a function symbol. Note that
the PROTOS-L programmer may progran recursive and non-

recursive rules in database bodies.

For example, the database body given above may additionally
contain two non-recursive rules which are shown in figure 3. The
first rule computes, which machines are available in which time
interval, and the second rule computes which available machines
con be used for a production step in a given time interval.

Since rules in program bodies and view definitions in database
bodies are expressed in the same way, the PROTOS-L program-
mer has to lenrn only one single language for deductive databases
and application programs. This avoids the impedance mismatch
of other integrations of database query langunges into host pro-
gramming languages, e.g. of the integration of SQL into C.

Different from the rules in program bedies which are evaluated

by backtracking, the rules in database bodies are cvaluated by
set-oriented query evaluation strategies. The implementation of
these strategies is described e.g. in [Meyer, 1089]. Set-oriented
query evaluntion strategies are especially advantageous, if the
accessed data sets are large.

4.2 Evaluation strategies for rules

PROTOS-L integrates two evaluation strategies for rules: set-
oriented evaluntion and bhacktracking. Whenever a rule uses
facts that nre stored in a dntabnse the programmer has the choice
to select an ndequnte evaluntion strategy for this rule.

Set-oriented evaluntion is preferable for the goals of & rule, if
many calls of the gonls are needed in order to solve the rule
or if many solutions of the rule are needed in order to solve a
higher gonl. Hewever, hacktracking is preferable for the goals of
a rule, if few solutions of its goals are sufficient in order to solve
this rule and if few solutions of this rule are sufficient in order
to solve a higher gonl. A typical case where backtracking may
be preferable is o program execution which computes only few
solutions to a subgoal hefore ranning over a cut.

In PROTOS-L, the choice of an appropriate evaluation strategy
is left to the programuuer, assuming that he knows best how
much search is needed before a rule can be solved. Whenever
the programmer assumes that there are many results of goals
needed in order to solve n rule R, he may prefer set-oriented
evaluation of the rule R. In this case, he codes the rule R in &
database body, and the PROTOS-L system evaluates the rule
set-oriented. On the other hand, if he assumes that there are
only few results of gonls needed to solve a rule R, he may prefer

87

88

database_body production_data using schedule DB .

rel available_machines : ?string x 7int x ?int .

4 machine name used from used wntil
% Which machines are arvailable in which time interval ?

available_machines(Machine , From , Until)
<-- used machines(Mackine , From , Until , 0) .

rel step_can_use_machine : ?int x ?string x ?int ?int .
% step machine name from until
% Which machines can be nsed for a production step and

% are available in a given time interval ?

step_can_use machine(Step , Machine » From , Until)
<= stepmachines(Step , Machine) &
available_machines(Nachine , F L, U)
F < From &
U > Until .
endmodule.

Figure 3: Computation of available machines from the production data

dutabaso_hody production_data using schedule_DB .

Tel single_step_product : ?string x

%
% Vhich products are

Tint x ?int .
product name production step time needed

produced by a single production step,

% and how many days are needed for this Production step 7

dbrel single_step product is

Single_Step_Products(Product_name ,

Production_stop » Time_needed).
endmodule.

Figure 4: Products which Tequire a single production step

database_body order_dats using order DB

rel order : ?int x ?string x ?int x

Y% ordernr product name due date
% Which order for shich product shall be performed until which due date ?

dbrel order is Order_Rel(Order_Id , Product_name » Due_date).

endmodule.

Figure 5: Accessing the order database

module planning algorithms,

imports production_data y order_data .

Tel servable_order . ?int x Tstring x

% ordernr
4 Vhick order for which product

Tint x |
Product name duve date

can be performed op some available machine ?

servable_order(Ordernr » Product , Duedate)
<=~ order(Ordernr , Product » Duedate)
b single step product(Product , Step , Duration)

[3 step_can_use machine(Step , Machine N

Duedate--Duration s Duedate) .
endmodule,

Figure 6: Computating servable orders from the order dnta and the deductive database containing production data

an evaluation by backtracking and use a cut at that place of
a program, where no more answers to & gonl are needed. In
this case, he codes the same rule R in a program body, and the
PROTOS-L system evaluates the rule by backtracking.

Let us continue our example. If it is assumed that many
calls of step_machines are needed in order to solve the rule
step_can_use_machine, then the rule step_can_use_machine is
preferably implemented in a database body as shown in figure
3, because the database body performs a set-ortented evalua
tion of the rule. However, if it is assumed that only few solu-
tions of step_machines are needed in order to solve the planning
problem, and therefore backiracking is preferred, then the rule
should be implemented in another program body instead of the
database body. Hence, whether a rule which accesses database
relations should be implemented in a database body or in a pro-
gram body depends on the desired cvaluation strategy for this
rule.

4.3 Accessing multiple databases

PROTOS-L can integrate the knowledge of many databases
within a single application program. According to the claim
that knowledge structuring is supported by the module concept,
every database (like every other knowledge packnge) is enclosed
in its own module. Hence, every database needs its own database
body. The information of several databases can be integrated
within program bodies that import all the predicates they need
from the database modules.

In our example, the production data and the order data are
stored in different databascs, Nevertheless, the knowledge of
both databases has to be integrated for the production planning
process.

Assume that the database body production_data implements
a further relation single_step_product, which contains infor-
mation about each product that can be produced by a single
production step and about the time required for that produc-
tion step (c.f. figure 4).

Assume farthermore, a relation Order _Rel is stored in a different
database and therefore is implemented in a different database
body {c.f. figure 5).

Then the PROTOS-L programmer can integrate the knowl-
cdge of both databases in the program body outlined in fig-
ure 6. The rule for servable_order computes which orders for
single_step_products can be performed by some available ma-
chine.

5 Summary and conclusion

The PROTOS production planning applications need a tool kit
which supperts data and knowledge structuring, which inte-
grates logic programming and database access and which sup-
ports rapid prototyping.

PROTOS-L provides the facilities which are needed for our pro-
duction planning system applications. The module concept sup-
ports rapid prototyping, knowledge structuring and transparent
database access by hiding the implementation of predicates from
the user of & module. Additionally, database bodies facilitate the
programming of deductive databases. Furthermore, PROTOS-L
supports the integration of knowledge from multiple databases.

Efficient set-oriented evaluation strategies are nsed for rules con-
tained in database bodics and backtracking is used for ritles con-
tained in program bodies. The PROTOS-L programmer selects

the appropriate evaluation strategy for a rule, simply by coding
it in a program body or in a database body. Because program
body rules and database views are expressed in the same way,
the PROTOS-L progranuner has to learn only one single lan-
guage. This avoids the impedance mismatch.

Finally, the example showed how to implement small frag-
ments of a production planning and scheduling system within

PROTOS-L.

References

[Beierle, 1989] C. Beierle. Types, modules and databases in the
logic programming langnage PROTOS-L. In K. H. Blisius,
U. Hedtstiick, and C.-R. Rollinger, editors, Sorts and Types
Jor Artificial Intelligence, Springer-Verlag, Berlin, Heidel-
berg, New York, 1989. (to appear).

|Beierle and Bottcher, 1989) C. Beierle and S. Béttcher.
PROTOS-L: Towards a knowledge base programming lan-
guage. In Proccedings 3. GI-Kongreff Wissensbasierte Sys-
teme, Informatik Fachberichte, Springer-Verlag, 1989.

[Bottcher, 1989) S. Bottcher. Prddikative Selektion als Grund-
lage fir Transektionssynchronisation und Datenintegritdt.
PhD thesis, FB Informatik, Univ. Frankfurt, 1989.

[Bottcher, 1990a) S Béttcher. Development and programming
of deductive databnses with PROTOS-L. In L. Belady, ed-
itor, Proc. ' International Conference on Software Engi.
neering and Knowledge Engincering, Skokie, Illinois, USA,
1990. (to appenr).

[Béttcher, 1990b] S. Boticher. How to use PROTOS-L as a
logic-bnased database programming langnage. In H.-J. Ap-
pelrath, A.B. Cremers, and O. Herzog, editors, The EU-
REKA Project PROTOS, Springer-Verlag, 1990. (to ap-
pear).

[Bottcher and Beierle, 1989] S. Bottcher and C. Beierle. Data
base support for the PROTOS-L system. Microprocessing
and Microcomputing, 27(1-5):25-30, August 1989.

(Eckhardt et al, 1985] H. Eckhardt, J. Edelmann, J. Koch, M.
Mall, and J. W. Schmidt. Draft Report on the Dalabase
Programming Language DBPL. DBPL-Memo 091-85, Univ.
Frankfurt, 1985.

[Meyer, 1989] G Meyer. Regelauswertung auf Datenbanken im
Rahmen des PROTOS-L-Systems. Diplomarbeit Nr. 630,
Universitat Stottgart, NDecenber 1989.

[Saner, 1990) J Smner. Design and implementation of a henris-
tic planning algorithm. In H.-J. Appelrath, A B. Cremers,
and 0. Herzog, editors, The EUREKA Project PROTOS,
Springer- Verlag, 1990. (to appenr).

[Sauer et al, 1989] J. Snuer, G. Micheanx, and L. Slahor. Wis-
sensbasierte feinplanung in PROTOS. In Proceedings 3.
Gl Kongrefi Wissensbasterte Systeme, Informatsk FacA.
berichte, Springer-Verlag, 1989.

[Slahor et al, 1990] L. Slaher, F. Reuter, and H. Schildknecht.
Scheduling problems: a user's perspective. In H.-J. Appel-
rath, A.D. Cremers, and Q. Herzog, editors, The EUREKA
Project PROTOS, Springer-Verlag, 1990. (to appear).

[Smolkn, 1988] G. Smolkn. TEL (Version 0.9), Report and User
Manval SEKL-Report SR 87-17, FB Informatik, Univ.
Kaiserslautern, 1988.

[Wirth, 1983] N. Wirth. Programming 1n Modula-2. Springer,
Berlin, Heidelberg, New York, 1983.

89

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6

