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Abstract

This paper presents the evaluation of function free
logic programs by the PROTOQS-L system. PROTOS-
L is a logic programming language which embeds
a module concept, provides read access to external
databases and combines order-sorted types with poly-
morphism. From this viewpoint, PROTOS-L is sim-
ilar to DATALOG embedded in a typed logic pro-
gramming language.

The presentation focusses on the evaluation of queries
to function free logic programs within the PROTOS-L
system. We use a small {ragment of a travel informa-
tion system in order to illusirate the evaluation of
queries to function free PROTOS-L logic programs.

1 Introduction

This section summarizes some of the basic language
features of PROTOS-L which have already been de-
scribed elsewhere. It furthermore outlines the exam-
ple program which will be used throughout this paper.

1.1 An overview of PROTOS-L

PROTOS-L is a logic programming language ex-
tended by the following features: access to relational
databases, a module concept, a type concept in-
cluding subtypes and polymorphism. Furthermore,
PROTOS-L supports the programming of deductive
databases.

The type system of PROTOS-L which is de-
scribed eg. in &Beierle and Bottcher, 1989] sup-
ports subtypes and polymorphism, ie. type vari-
ables. It is derived from the type system of
TEL [Smolka, 1988]. PROTOS-L types are not
only used by the compiler for type checking, but
also by the PROTOS Abstract Machine PAM)
[Semle, 1989], [Bottcher and Beierle, 1989] for com-
putations on order-sorted types in order to reduce the
search space.

*The research reported here has been carried ont within the in-

ternational EUREKA project PROTOS (EUS6): Prolog Tools for
Building Expert Systems. Project partners are BIM, IBM Stuttgart,
Sandos AG, Schweiserische Bankgesellschaft, University of Dortmund
and University of Oldenburg.
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The module concept of PROTOS-L [Beietle, 198?1,
[Bottcher, 1990a] integrates ideas from the mo

ule concepts of Modula-2 [Wirth, 1983], TEL
LSmolka, 1988 and DBPL [Eckhardt et al., 1985],

Bottcher, 1989]. However, PROTOS-L offers two
inds of module bodies: program bodies and database
bodies. Like other implementation details, at the
interface of a module it is not visible, whether the
corresponding module body is a program body or a
database body. Program bodies support logic pro-
gramming with backtracking. Database bodies sup-
port access to relational databases and the implemen-
fation of deductive databases, i.e. the implementa-
tion of function free logic programs accessing these
databases. The language of PROTOS-L database
bodies has the power of DATALOG, i.e. every DATA-
LOG program can be expressed in a PROTOS-L

database body.

Database bodies are evaluated by an efficient set-
oriented query evaluation strategy which is described
in section 3, whereas program %odies are evaluated
by backtracking. Note that it is the decision of the
PROTOS-L programmer, which evaluation strategy
he wants to use for function free logic programs:
Whenever the programmer wants a predicate to be
evaluated by backtracking he has to implement it in
a program body. However, if he prefers set-oriented
retrieval he simply implements his function free rules

in a database body.

1.2 An example of a PROTOS-L function
free logic program

Before we describe the details of the set-oriented
evaluation of function free logic programs in the
PROTOS-L system, we give a small example for a
function free logic program written in PROTOS-L.
The example program is a function free part of a
travel information system which has been described
in more detail in [Bottcher, 1990a]. The example pro-
gram has been slightly modified in order to simplify
a performance comparison of the evaluation strategy
described in this paper with the performance of Quin-
tas Prolog.

The example program fragment of our travel infor-
mation system is shown in figure 1. It computes the
departure time, the arrival time and the number of
intermediate stops for f1ight_connections from a
large set of given direct.flights. The first rule
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database_body flight_info using flight DB .

rel flight connections :
% stops  from

rel  direct flights :
% from to

dbrel directflights is

endmodule.

?int x 7?string x 7string x “?int x ?int .
to departure arrival
% Which flight comnections are possible for which time 7

flight_connections( 0 , From , To , Departure , Arrival )
<-- direct flight( From , To , Departure , Arrival ) .

flight_connections( Stops+1 , From , To , Departure , Arrival )
<-- direct_flight( From , Change , Departure , Arrive_at_Change )
& flight connections( Stops, Change, To,

Depart_from Change, Arrival )
& Arrive.at Change + 100 < Depart_from Ch

ange .

?string x “?string x Zint x ?int

% Which direct 1lights are scheduled for which

Flight Rel( FROM , TO , DEPARTURE , ARRIVAL ) .

departure arrival
time ?

Figure 1: A function free logic program computing flight connections from ncyclic data for direct flights

states that a non-stop flight connection is a direct
flight. The second rule computes those n-stop flight
connections from direct flights and (n-1)-stop connec-
tions that leave enough time to change the airplane
(one hour in our example).

The program fragment shown in figure 1is a database
body, ie. the predicates defined in the database
body are evaluated by the efficient set-oriented eval-
uation strategy described in section 3 and some
facts for predicates are taken from a database re-
lation. The former is the case for the predicate
flight_connections. The latter is the case for
the relation directflights in our example, the
facts of which are taken from the database relation
Flight Rel of the database £1ight DB.!

Apart from the travel information system, PROTOS-
L is currently used to reimplement a part of a chem-
ical production planning system [BSttcher, 1990¢].
PROTOS-L has been implemented at IBM Stutigart
on an IBM-RT 6150 workstation.

2 Why we do not use the deduction
strategy of Prolog for function free
logic programs

This section summariges the advantages of bottom-
up and top-down query evaluation. It focusses on
the reasons why the PROTOS-L system contains a
special purpose theorem prover for function free logic
programs.

Although the implementation of the PROTOS-L sys-
tem embeds a database system and allows the re-

!The detabase relation Flight_Rel of the database flighs DB
must have at least the four attributes: PRON and 10 of type string,
and DEPARTURE and ARBRIVAL of type integer.

trieval of facts from database relations for the evalu-
ation of function free logic programs, most of the fol-
lowing arguments and, even more importantly, the al-
gorithms described in the next section do not require
that facts are physically stored in a database. The
improvements of our algorithm are applicable as well,
if the facts are coded in logic programs and stored to-
gether with the other program code in main memory.

The Prolog deduction strategy is depth first, left to
right with backiracking. It reduces the search space,
because it works goal-oriented, i.e. it only derives sub-
goals which might contribute to the answer of a query.
This goal-oriented deduction has been combined with
bottom-up (forward) deduction, e.g. in the magic set
approach [Bancilhon and Ramakrishnan, 1986]. The
PROTOS-L inference engine for function free logic
programs also uses this goal-oriented deduction, and
is therefore superior to naive or semi-naive inference
engines [Bancilhon and Ramakrishnan, 1986).

The following states the reasons why we do not use the
Prolog evaluation strategy for deductive databases in

the PROTOS-L system:

¢ The Prolog evaluation strategy may lead to infi-
nite left recursion, although there exists a proof
for a goal. We want {0 have a proof procedure
which always terminates. There is no termina-
tion problem for bottom-up deduction, because
for DATALOG programs all rules are function
ree.

¢ The Prolog evaluation strategy does a lot of re-
dundant computation. For example solutions to
a predicate q(X,Z) are recomputed for every oc-
currence of & goal q(X,2) in a logic program.
The idea of lemma generation is that all inter-
mediate results are stored for further usage. The



Prolog evaluation strategy does not use lemma
generation. This leads to a large number of
redundant computations in typical DATALOG
programs.

o The Prolog evaluation strategy leads to an ex-
pensive computation of large joins. Consider the
%)llowing example (which is written in PROTOS-

s(X,2) < —— r(x,1) & x(1,2) .

Assume that the relation T contains 1000 ground
facts (or the goal r(X,Y) yields 1000 ground
answers). In the worst case, the Prolog strat-
egy proves 1000 goals r(X,T) and 1000 x 1000
goals r(1,2) in order to compute the answers
{0 s(X,Z). Here, it would be much faster to use
efficient join algorithms, e.g. the sort-merge al-
gorithm [Ullman, 1982].

The proof strategy of the PROTOS-L deductive
database system contains the following improvements
in order o avoid the disadvantages of the Prolog proof
sirategy.

o There is no infinite left recursion possible with
the PROTOS-L proof strategy.

¢ The PROTOS-L proof strategy uses lemma gen-
eration for every predicate.

¢ PROTOS-L proofs use a fast computation of
large joins.

Remember that PROTOS-L does not require to eval-
uate every predicate in a set-oriented way but only
those pre.dicates for which the PROTOS-L program-
Ter requires a set-oriented evaluation (by implement-
ing them in a database body). In order to support
evaluation strategies, the PROTOS-L system embeds
its special purpose theorem prover in an extension of
the Warren Abstract Machine [Warren, 1983)].

8 The process model

This section describes the inference engine of the
PROTOS-L deductive database system. A more cont-

rehensive description of the algorithms is given in
rMeyer, 1989] the basic idea of which is summarised
in this section.

3.1 The inference engine of the process
model

A PROTOS-L deductive database contains only fanc-
tion free rules which additionally have the property
that after every bottom-up (forward chaining) appli-
cation of such a rule every variable occurring in the
head is bound.

The PROTOS-L deductive database inference engine
uses an approach which combines the QoSaQ ap-
proach(}Vieille, 1988] with ideas of [Hulin, 1989]. The
basic idea of the PROTOS-L deductive database in-
ference engine is the process model. Every predicate
(occurringina PROTOS-L deductive database) is i.m-
plemented by its own process. The rulesimplementing

a process and the goals occuring in these rules are con-
sidered to be part of the process. It is easier to think
of independent processes in order to understand the
process model. Nevertheless, the whole computation
1s_1mp1emented as a single operating system process
within the PROTOS-L system because this reduces
the communication costs and it makes the evaluation

much faster.
Every process has two kinds of memories:
¢ one memory in order fo store all received queries
together with their environments,
e one memory in order to store all teceived an-
swers.

For example, we look at {wo predicates p and q where

q is defined by

q(x,2) <—— ... & p(X,1,2) & ...

The memories of a ptocess computing the answers to
a predicate p could contain the following queries an

answers.

| queries and  answers
7 p(1,X,Y) p(1,2,3
(2) | > p(1,2,2) p(1,4,5)

(3) | ™ p(1,¥,¥)

The processes are coordinated by a global scheduler.
Every process can perform three kinds of activities:

o It can submit a subquery. For example, the pro-
cess q submits a subquery to the process p.

o It can submit an answer. For example, the pro-
cess p submils answers to the process 4. This
reactivates process q, if q i idle.

o It signals to the global scheduler that it is idle
when is has submitted all of its subqueries and
all of its answers. For example, the process p
can signal that it is idle. Note however that the
process p is reactivated, if it receives a query from

the process q.

Query processing is com leted when all processes sig-
nal to the globafschedn er that they are idle. A pro-
cess signals that it is idle, when it has computed all
answers to all subqueries it has received up to now and
it has submitted every answer to all queries which can
be solved by the answer. But the process removes the
idle signal, when it has received some queries which
have not been processed completely.

Every process decides on its own, which subqueries
and which answers it wantsto submit first. The global
scheduler assigns priorities to the processes thereby
controlling the evaluation strategy, e.g. it can assign
higher priorities to processes at the bottom in order
to perform a bottom-up evaluation.

32 Lemma generation within the process
model

The basic idea of lemma generation is to reuse an-

swers to intermediate queries (lemmas), instead of re-

computing them. The process model supporis lemma




generation as follows. No process computes answers
to any query submitted to it twice. Even more, when-
ever a query is subsumed by some other query which
is already in the query table of the process, then the
process will not submit further subqueries for the sub-
sumed query. The reason is that the subsumed query
can be answered by the facts solving the subsuming
query, but it can not get any other answer. Instead of
Processing subqueries twice, the stored answers of a
process are submitted to all goals they satisfy. That is
how PROTOS-L supports lemma generation for every
predicate occurring in a database body.

For example, look at the query table of the process for
some predicate p which is shown above, The queries
52) and (3) are subsumed by the query (1) and there-
ore they do not produce any new subqueries. The
answers to any query for p are used not only for query
(lﬂ bul are reused to answer the queries (2) and (3)
whenever this is correct.

It is not necessary to compute completely the answers
to some subsuming query, say query (1), before they
can be reused for a subsumed query, say query (2),
Instead, all answers found in the answer table of »

can be submitted to any query 1o p they solve without
delay.

The second part of the lemma generation is the fol-
lowing. Received answers for a predicate p will be
matched with all queries to P stored in the query ta-
ble of p. Whenever such a new answer to p matches
a goal for p occurring in a rule of process q, the then
answer of p is submitted to the process q. Together
with the answer q receives from p the environment
with which it called the goal to p because we store
these environment in the query table of p, i.e. the
ervironment is stored local to p and not local to q.

3.3 Alternatives and special cases of the
process model

The process model provides several degrees of free-
dom:

¢ The priorities can be assigned arbitrarily to the
processes.  This leads to different evaluation
strategies.

® Each process can perform an arbitrary number of
actions before it returns the conirol o the sched-
uler. For example, it can submijt only one sub-
query or one answer at a time or it can submit an
arbitrary other number of subqueries or answers
at a time,

* Join computation by side-way information pass-
ing could be done tuple-oriented or set-oriented,

The process model can emulate other strategies for
Tecursive query evaluation by selecting adaptive al-
ternatives for the parameters. For example, semi.
naive bottom-up evaluation of functjop free logic pro-
grams is achieved by assigning higher prionities to
those predicates which are closer tq the bottom, by
using lemma generation and by computing all answers
to a query at a time.

Furthermore, the depth-first strategy of Prolog is sim-
ilar to a process model not using lemma generation

where higher priorities are assigned to those predi-
cates which are closer to the query, and where pro-
cesses submit further subqueries for one answer {0 a
goal at a time.

4 Implementation of the process
model within the PROTOQS-I,
system

4.1 Inference engines of the PROTOS.-L,
system

The PROTOS-L inference system consists of two in-
ference engines which are implemenied as abstract
machines. The upper inference engine (called the
PROTOS Abstract Machine (PAM)) is an extension
of the Warren Abstract Machine by types and poly-
morphism. This upper inference engine uses back-
tracking. The lower inference engine (called deductive
database inference engine (DDBIE)) is a special pur-
pose inference engine for function free logic programs
implementing the process model. Iis proof technique
has been described in section 3 and some performance
results are described in section 4.3. The performance
results of section 4.3 show that this inference engine is
adapted for proofs which contajn large sets of ground
facts. The integration of both inference engines in
described in [Bsttcher, 1990b).

Alltogether, PROTOS-L provides backtracking on
top of set-oriented proofs. Note that it is the decision
of the PROTOQS-L programmer, in which cases he as-
sumes that solutions are easy to find and therefore
prefers backiracking, and in which cases he prefers
set-oriented retrieval of facts, because he assumes that
a large search space has to be searched in order to
find a solution. Remember, whenever the PROTOS-
L programmer prefers tuple-oriented unification with
backtracking he programs his rules in program bod-
ies, because program bodies are compiled into code
which at run time is evaluated by the upper inference
engine. Otherwise, if he prefers set-oriented retrieval
he programs his rules in database bodies. Database
bodies are compiled into code which is evaluated by
the lower inference engine.

4.2 Implementation of the process model

Each PROTOS.L database body is compiled into
code which at rup time constructs a query graph
from the function free logic program contained in the
database body. This query graph is instantiated with
the variable bindings of a goal given by the PAM. In
the following we summarize, how solutions to a given
goal predicate are computed recursively by submit-
ting subqueries 1o thoge subgoal predicates which oc-
curin the ruleg defining the goal predicate. The query
graph (which is similar 1o 5 rule goal graph) contains
information abont the sequence of goals in a rule. For
example, look at the ryle for process q given in sec-
tion 3.2, This sequence is used in order to determine
to which further subgoal a subquery has to be sub-
mitled when an answer to 5 given goal (p) is received
by the process q- The variable bindings for the next
subgoal are computed from the recejved answer for p



a}ld from the environment stored in the query table
of p.

Although our implementation allows the retrieval of
facts from a database system, the process model
does not require that facts are stored physically in
a database. Instead, facts may as well be taken from
program code and stored together with the program
code in main memory.

The process model requires the assignment of two
kinds of memories to each process: a memory for
queries and their environments and a memory for an-
swers. Our implementation uses main memory tables
(organized as lists of entries) in order to implement
these memories, i.e. every process is implemented by
appropriate opetations on its main memory tables.

4.3 Performance results

The travel information system, part of which is de-
scribed above, has been implemented in PROTOS-L
and in Quintus Prolog (version 2.4, using the com-
piler) in order to get some performance results com-
paring the process model with the evaluation strategy
of Prolog. Both implementations have been run on an
IBM-RT 6150 workstation.

In the PROTOS-L version, the database contained
100 records for direct flight connections. In the Quin-
tus Prolog version all facts where coded in the Prolog
program. The query was to compute whether or not
there exists a flight connection between two cities (the
data was chosen in such a way that the longest path
between the two cities had the length n). For n=4
we got the result that the computation of the path
by the DDBIE is more than 6 times faster than the
cornputation of the path by Quintus Prolog (although
the DDBIE had to read all facts from an SQL/RT
database system, whereas in the Quintus Prolog im-
plementation the facts where coded in the Prolog pro-
gram).

In order to generalize this performance result, we
made further performance evaluations with the fol-
lowing result: The mote facts are derived for a predi-
cate, the more superior the DDBIE is compared to the
Prolog evaluation stralegy. Furthermore, the deeper
the proof tree is, the more superior the DDBIE is
compared to the Prolog evaluation strategy.

5 Summary and conclusion

PROTOS-L provides a module concept which sup-
ports transparent database access by hiding the im-
plementation of predicates from the user of a mod-
ule. Additionally, the programming of deductive
databases is supported by database bodies.

PROTOS-L offers set-oriented evaluation strategies
for rules contained in database bodies and backtrack-
ing for rules contained in program bodies. Neverthe-
less, the PROTOS-L programmer has to learn only
one single language, becanse program body rules and
database views are expressed in the same way. This
avoids the mismatch of other integrations of database
languages into programming langnages.

Rules contained in database bodies are evaluated by
the process model in a set-oriented way and incremen-
tally on demand. Query evaluation by the process
model is superiot to query evaluation by the Prolog
evaluation strategy, if a large set of facts (in the ex-
ample 100 ot more) of the same relation 1s given in
the search problem and the depth of the proof tree is
lajrge enough (in the example greater than or equal to
4).
However, if the search space for a given goal is smaller,
then backtracking is available to the PROTOS-L pro-
rammer, because the PROTOS-L system supports
oth set-oriented query evaluation and backtracking.
Therefore, the PROTOS-L system which integrates
both evaluation strategies supports adaptive evalua-
tion of small search spaces as well as of large search
spaces.
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