Attribute Inheritance Implemented
on Top of a Relational Database System

Stefan Bottcher
IBM Deutschland GmbH
Scientific Center
Institute for Knowledge Based Systems
Postfach 80 08 80
D-7000 Stuttgari 80
West Germany

Abstract

We present an implementation technique which solves in-
tggrlt_y checking, query evaluation and transaction synchro-
.mzatl.on tasks in database systems with multiple attribute
inheritance and which uses the support of a relational data-
base system. The basic idea is to map arbitrary integtity
Fonstraints, queries and locks associated with classes of an
inheritance lattice onto integrity constraints, queries and
locks associated with relations of an underlying relational
database.

1 Introduction

Some of the major requirements for database systems with
attribute inheritance [Andrews87}, [Batory88a), [Batory88b],
[Bloom87], [Mylopoulos80], [Mylopoulos86] are to support
not only the inheritance of attributes including their type
restriction, but also to support the inheritance of arbitrary
constraints associated with the objects of certain classes.
This includes that the database system shall support ref
erential contraints connecting two or more classes. Further,
the system shall support transaction synchronization, e.g.
queries on a class ¢; have to be synchronized against write
operations affecting elements of some subclass ¢ of class ¢;.

In this paper we present an implementation technique sup-
porting these requirements. Arbitrary tread operations on
classes of an inheritance lattice are implemented by read op-
erations on database views. Write operations on classes (1.
NEW, DISPOSE and set oriented write operations) are im-
plemented by write operations on database relations. We
further show how to implement an integrity checker and a
transaction synchronisation component of a database sys-
tem with attribute inheritance (DBSAI). Different from the
papers cited above, we show how operations on arbitrary
predicatively described subsets of classes can be mapped to
a relational DBS.

CH2840-7/0000/0503$01.00 © 1990 IEEE

The next section defines a DBSAI and a set of basic op-
erations on it. The third section describes a mapping of
an inheritance lattice onto a relational database containing
fact relations and non-recursive views. We call this mapping
Canonical Mapping. In the fourth section, we show how
all the operations defined are implemented using Canonical
Mapping, and further, how integrity checking and transac-
tion synchronization tasks on arbitrary inheritance lattices
can be solved by propagating them to relational database

system tasks.

2 Database systems with Attribute
Inheritance

The objective of this section is to specify what shall be im-
plemented: we define the state of a database with attribute
inheritance and the semantics of the elementary write opera-
tions NEW and DISPOSE. We further introduce querties, sel
oriented write operations, integrity constraints and a concept
of predicate locks for DBSAL Examples are given in section

3.1.

2.1 The state of a database with attribute
inheritance

In order to define the semantics of the DBSAI write opera-
tions NEW and DISPOSE, we define a state of a database
with attribute inheritance. A siale of a database with at-
tribute inheritance is defined as a tuple

(0,D, A, C,IS-A N, IS-ATTRIBUTE-OF, IC)
with the following properties.
0 is a set of objects (denoted as o;)-

D is a set of domains d;, Which are ordered sets of values.
Typical domains considered are integers, strings, etc.

A is a linear ordered set of partial functions a; (called at-

tributes) mapping objects to values of a certain domain
d;eD.

C is a set of classes with a partial order IS-A, called the
subclass order. Whenever (c; IS-A ¢;), we call ; the subclass
of ¢; and ¢; the superclass of c;.

IS-ATTRIBUTE-OF is a binary relation describing which
attributes are defined for which class, i.e. (a; IS-
ATTRIBUTE-OF ¢;) denotes that the attribute a; is defined
for (all objects of) the class c;. Asin TAXIS [Mylopoulos80],
Wwe require that every attribute defined for a class c; is also
defined for all subclasses ¢; of ¢;, ie. if (a; IS-ATTRIBUTE-
OF c;) and (c; IS-A ¢;) then (a; IS-ATTRIBUTE-OF ¢;).
Further, we apply the Linear order of attributes to the set of
attributes defined for a class ;.

IN is a containment relation, i.e. (o; IN ¢;) denotes that the
object o; is an instance of class c;. The containment relation
IN has to fulfill the following conditions:

® Every object belongs to at least one class, i.e. for all
0;€0 there exists c;eC such that (0; IN ¢;)

¢ Every object contained in a class c; is also contained In
every superclass of ¢;, i.e. if (o; IN ¢;) and (c; IS-A <)
then (o; IN ¢;).

e If (0; IN ;), then for every atiribute a; of c;, a;(o;) is
defined.

IC is a set of integrity constraint definitions. The set of pos-
sible integrity constraint definitions is characterized by the
syntax for integrity constraint definitions given in appendix

A

2.2 The write operations NEW and DISPOSE

We define a write operation on a database with attribute
inheritance as the process of transforming one state into an-
other state. Throughout this paper we discuss the imple-
mentation of two elementary write operations, NEW and
DISPOSE. Both operations are only partially defined, i.c.
before they are executed certain preconditions have to be
fulfilled. We describe the semantics of both operations by
giving their preconditions and state transformations.

Given a state

(0,D, 4, G, I5-A, IN, IS-ATTRIBUTE-OF, IC)

the preconditions of the operation NEW (<) 05, (V1eeyva))
are the following:

1. the object to be created does not exist already, i.e.
°i¢0’

2. the class ¢; has n attributes, say a;, and for each one
the range d; of the function a; includes the valne \

If the preconditions are true, the execution of the NEW op-
eration transforms the given DBSAI state into a state

(0, D, A, C, IS-A, IN', IS-ATTRIBUTE-OF, IC)
with

0'=4;0U{0;} and

IN'=gs INU{(0i,¢;) | ci=¢; Ve IS-A¢;} and

A’ can be derived from A by augmenting every at-
tribute a, of ¢; by a partial definition which maps o;
onto the value v, given for the attribute a,.

Note that by this definition an object created in class ¢;
becomes an object of all superclasses c; of ¢; as well.

The DISPOSE operation can be defined similarly. Given a
state

(0,D, A, C,IS-A, IN, IS-ATTRIBUTE-OF, IC) ,

the precondition of the operation DISPOSE (¢ ,0:)isthe
following: The object to be disposed from class ¢; must exigt
in ¢;, ie. (0; IN ¢;) must be true. If the precondition is
true, the execution of the DISPOSE operation transforms
the given DBSAI state into a state

(0’ D, A’, G, IS-A, IN', IS-ATTRIBUTE-OF, IC)
with

0'=4; 0\ {0} and

IN =4y IN\ {(0i,¢;)] c;eC} and

A’ can be derived from A by removing the pair
(0.',61.(0.')) from every attribute a, of ¢;.

The NEW operation requires to specify the smallest class
in which an object has to be created, while it is suﬂic_fm
to specify any superclass within the DISPOSE Opefaflon'
This simplifies the definition of set oriented write operations,
which are defined in section 2.4.

2.3 Set valued queries and boolean queries

In order to define a query language we modify the relationfﬂ
calculus in such a way that the query expressions contain
class names instead of relation names, Our query language
syntax is similar to that of the relational database prograrm-
ming language Pascal/R [Schkmidt77]. A complete definition
of our query language syntax is given in appendix A. For
example, the query expression

{ EACH o; IN ¢; (SOME 0; IN¢;
(o;.attribute; = o, attribute,)) }

denotes the set of all objects o; in class c; for which' there
exists an object o, in class ¢; so that the value for attribute;

of o; is equal to the value for attribute; of o;. We call this
query expression a set valued query expression.

In addition to set valued queries, the query language sup-
ports boolean valued queries. This includes nested quan-
tified queries, e.g. “is there some object o; in class c; so
that its attribute attribute, is less or equal to the attribute
attribute, of every object o; of class c;”, which is described
by the following expression

SOME 0 IN [(ALL 0; IN C;
(o;.attribute; < o;.attribute;)).

The syntax of the query language specified in appendix A
also allows for more complex nested queries.

2.4 Set oriented write operations

Set oriented write operations can be defined using set valued
query expressions and the operations NEW and DISPOSE.

If c; is a class and § is a set valued query expression, then set
oriented write operations deleting (:-) a set S from a class ¢;
or inserting (:+) it into a class c;,

¢, '~ S and
G:+ S,
can be defined using the definitions of NEW and DISPOSE.

The set oriented delete statement
[S

can be defined by applying the operation DISPOSE (¢, o;)
to every object o; selected by the query expression 3. The
set oriented insert statement

¢+ 8

inserting a set S to a class ¢;, can be defined similar by
applying the operation NEW (¢; , 0i (v;,,...,v,-")') to every
element (v;,,...,v;,) selected by the query expression S.

2.5 Integrity constraints

Throughout this paper we deal with the following set of ixf-
tegrity constraints. We will show how to implement arbi-
trary integrity constraints that can be expressed by.boole.an
queries. To keep the notation simple, we express mte.gnty
constraints in the same way as we specify boolean queries t_)f
the query language, e.g. a referential integrity constraint 1s

expressed as

CONSTRAINT
ALL o; IN ¢; (SOME o; IN ¢;

(o;-attribute; = o;.attribute; })-

Note that the integrity constraints described hete are more
general than type constraints since referential integrity con-
straints relate the elements of two classes to each other.

505

Type constraints are only a special kind of integrity con-
straints expressible in our query language.

2.6 Transaction synchronization using predicate
locks

Conceptual modelling languages like TAXIS [Mylopoulos80)
have a concept of transactions which operate on classes. The
DBSAI has to synchronize read and write operations of these
transactions, e.g. queries on a class ¢; have to be synchro-
nized against write operations on some subclass of ¢,. To
support these synchronization tasks we implement a concept
of locks. We decided to implement predicate locks 10 avoid
the "phantom problem” [Eswaran76]. When these predicate
locks are assigned to classes they also block some operations
on subclasses. For example, a predicate lock

READLOCK
{ EACH o; IN ¢; (o;. attribute; <1000) }

blocks write operations of parallel transactions on such ob-
jects of class ¢; that have an attribute; value less or equal
10 1000. Note that the lock operation includes objects of
subclasses of ¢;, that have an attribute; value less or equal
to 1000. Hence, write operations of parallel transactions on
these objects are blocked too.

The implementation technique presented supports (predica-
tive) read and write locks on subsets of a class. Lock state-
ments can lock arbitrary subsets of a class, where the size
of the subsets can be characterized by set valued query ex-
pressions.! Note that this approach is different from the
apptoach of [Garza88], where predicate locks are not sup-
ported. In the fourth section, we show that an efficient im-
plementation of predicate locks (e.g. |Bottcher8]) can also
be adapted to DBSAIL

Having specified what to implement, we now present a tech-
nique how to implement these tasks which is based on a
relational database system. For this purpose we define a
function which maps all the tasks defined for DBSAI onto

tasks for a relational DBS.

3 Canonical Mapping

In what follows, we define a function which maps each class
of an inheritance lattice onto a pair consisting of a view and
an updatable relation of a relational database. This function
is called Canonical Mapping. It is used for the implementa-
tion of arbitrary read and write operations, integrity checks
and lock operations. Before we outline & complete set of
definitions, we shall motivate them by giving the following

example.

1Phe syntax of lock statements is defined in appendix A.

3.1 A motivating example

We want to implement arbitrary read and write operations
on a multiple inheritance lattice with classes ¢y, cj, c3, and
c4, where ¢; is a subclass of ¢; and ¢;, and ¢; and c; are
subclasses of c4.

Inheritance lattice given

@——*@ means ¢; is a subclass of ¢,

Canonical Mapping means the following: Each class ¢; is
associated with a corresponding database relation R; and a
view V;. Each attribute of ¢; is associated with a correspond-
ing atiribute of R; and a corresponding attribute of V;, i.e.
both R; and V; by definition have the same set of attributes
as ¢;. Every read operation on class ¢; will be implemented
by a read operation on the view V;. However, every NEW
operation applied to class ¢; will be implemented by an insert
operation on R;. Animplementation of DISPOSE operations
will be presented in section 4.2.

The idea of Canonical Mapping is the following: If ; is a
subclass of c3, R, and R; are the corresponding database
relations, and V; and V, are the corresponding views, then
R; does not contain tuples for entities for which there are
tuples in Ry but the view V, does.

In order to derive the view definitions V; for a given inheri-
tance lattice, we introduce the notation 7;(V;), denoting the
projection of V; on the attributes defined for class c;. Note
that whenever c; is a subclass of c;, then all attributes of c;
are attributes of ¢; as well. Hence, for this j the projection
of V; on the attributes defined for class c;, 7;(V;), is well
defined,

The following view definitions of the views V;,...,V, can be

derived from the lattice structure given in the previous dia-
gram:

view lattice derived corresponding relations

R,

means V; is used to define V,

Vi=4 Ry i.e. Vy is defined to be equal to R

Va2 =45 R3 U my(V)
Vi =4s Ry U my(V))

Vi =det Ry U T‘(V’) U n(V;)

Given these view definitions we can implement queries on
classes by queries on views. We simply implement an ar-
bitrary query ranging over classes ¢; by substituting each
occurrence of a class ¢; with the corresponding view V;. For
example a query

{ EACH o; IN ¢; (o.attribute; < 1000) }

is translated to
{ EACH o; IN V; (oj.attribute; < 1000) }.

This translated query to the database view V; can be eval-
uated by the database system. Note that the answer to the
translated query may be changed by a successful NEW op-
eration creating an object of class c; 2 (and even by creating
an object of class ¢;). Since NEW operations which create
objects of class ¢; or ¢; may change the result of the query,
the query has to be synchronized against NEW operations
of parallel transactions. A read lock on class c; can be im-

plemented by read locks on both database relations, R, and
R,.

3.2 Definition of Canonical Mapping

We are now ready to define Canonical Mapping. Note that
the definition is obtained simply by generalizing the rules

"The NEW operation which crestes an object of class c; is implemented
by inserting a tuple into R,.

given in the example.

Can?nica.l. Mapping maps every class c; of a database with
attribute inheritance to a pair consisting of a view V; and a
database relation R;.

The schema definition of R; can be derived from the domains
of the attributes defined for c;. If (ay,...,a,) is an n-tuple of
all attributes of ¢; and dj,...,d, are the domains of these
attributes, then the schema of R;, schema(R;), is defined by

schema(R;) =aep di X .. X dn .

The view definition of V; is obtained by the following rule.
If ¢;,,eenyCq, are all subclasses of ¢; within a given database
state, then V; is defined by

Vi Zdef R; U Wg(V,‘,) U..uU W;(V,'n) .

Rememl.)er, that m;(V;;) denotes the projection of V;; onto
the attributes defined for the class ¢;.

Using this Canonical Mapping we can now implement
queries, write operations, integrity constraints and predi-
cate locks associated with arbitrary classes of an inheritance
lattice by mapping these tasks onto a relational database
system.

4 Implementation of queries, write
operations, constraints and predicate

locks for DBSAI

4.1 The translation of queries

Given an arbitrary query or subquery containing classes, we
can translate it into a query on database relations using the
following three-step transformation algorithm. First, every
.class is substituted by its corresponding view using Canon-
ical Mapping. Second, every view is substituted by its def-
inition. Third, all union operators are eliminated using the
following rules as long as they are applicable.

For all set valued expressions R and S and all boolean
query expressions F(o;) we have the following transforma-

tion rules:

1. { EACHo; IN (RUS) (F(a:))}—
{'EACH o; IN R (F(o))) } U
{ EACH o; IN S (F(e)) }

9. SOME o; IN (RUS) (F(as))
SOME o; IN R (F(o;)) OR
SOME o; IN S (F(o:))

3. ALLo;IN (RUS) (F(os))

ALL o; IN R (F{o;)) AND ALL o; IN S(F(e)) .

For a definition of the query syntax see appendix A.

507

After applying this transformation algorithm every query
expression contains only database relations,

This transformation algorithm will also be used to solve the
following tasks. Integrity constraints given for classes are
transformed into integrity tests to be performed on database
relations, and locks required on classes are transformed into
lock expressions on database relations.

4.2 The implementation of write operations

NEW, DISPOSE and set oriented write operations on a class
¢; are implemented by write operations on the corresponding
database relation R,.

An operation NEW (¢, o, (v1y-s¥n)) shall create an
object o; of a class ¢ and assign the values (v1)o¥a) to
(a1(01),+++18n(0n))- This operation can be implemented by
an insert operation, inserting the tuple (vy,...,Vn) into the
database relation R;. Note that the tuple (v1,...,Ys) repre-
senting the object o; is visible to every query on V, after the

insertion of (¥1,..-,¥n) into Ri.

An operation DISPOSE (¢, 0;) shall dispose an object o,
of class ¢;. Since the object o; may be an instance of some
subclass ¢; of ¢; too, the object has to be deleted from that
relation it has been inserted into. One simple implementa-
tion technique is to determine in which database relation the
object is represented and to delete it from this relation.

Set oriented write operations can be implemented similar to
the NEW and DISPOSE operations. A set oriented insert

operation

¢+ S

is implemented by a set oriented insert operation on a data-
base relation inserting all elements of S into the database
relation R;, while a set oriented delete operation

C; :-'S

is implemented by deleting all objects described by S from

the database relations R;, R, - R corresponding to the

class c; and its subclasses €y - Cia -

4.3 The propagation of integrity constraints

integrity constraints ranging over clas-
ses can be mapped onto integrity constraints over views.
These constraints can be propagated onto the database re-
Jations of the underlying database by using the propagation

rules listed in section 4.1. After applying these transforma-

tion steps we have a set of integrily constraints defined on

database relations only, which implement the integrity con-

straints defined on classes of the given inheritance lattice.
Both integrity checking and predicate locks are implemented

Like boolean queries,

Pl

eg. in the DBPL database system which was developed at
the University of Frankfurt [Béttcher89), [Schmidt88).

4.4 The propagation of predicate locks

Given arbitrary lock requests as described in section 2.5,
the set valued query expression of these lock requests can
be transformed into set valued query expressions containing
only database relations by using the rules given for query
transformation in section 4.1. After the transformation a
set of lock requests containing only database relations re-
mains. These lock requests can be submitted to an ordinary
relational database system. The database system should
provide some efficient locking algorithm for predicate locks
(e.g. [Bottcher86]) in order to synchronize lock operations
of different transactions against each other.

4.5 System architecture

The DBSAI based on Canonical Mapping is implemented
by the following three-layered architecture. The top layer
is a language processor (an interpreter or a compiler) and
processes DBSAI programs. The intermediate layer is the
Canonical Mapping layer. It performs the transformation
steps described in this paper. Queries, write operations,
integrity tests, lock and unlock operations associated with
classes are transformed into queries, write operations, in-
tegrity tests, lock and unlock operations, which can be ex-
ecuted by a relational database system. The bottom layer
contains a relational database system. It executes the tasks
it receives from the Canonical Mapping layer.

System architecture

Language processing units

Canonical Mapping

Relational database system (e.g. DBPL)

5 Summary and Conclusion

We have shown that Canonical Mapping is a natural way
of mapping a variety of tasks of a DBSAI onto a relational
DBS. Hence, using Canonical Mapping, queries, write op-
erations, integrity checks and predicate locks in a DBSAI
can be implemented by queries, write operations, integrity
checks and predicate locks in a relational DBS. Therefore,
Canonical Mapping seems to be a natural way to extend the
relational data model with attribute inheritance,

References

[Andrews87] Andrews, T., Harris, C.: Combining Lan-
guage and Database Advices in an Object-
Oriented Development Environment. O0OP-
SLA Conference Proceedings, Orlando,

Florida, 1987.

Batory, D.S.: Concepts for a Database Sys-
tem Synthesizer. ACM PoDS, 1988.

Batory, D.S., et al.: Genesis: An Exten-
sible Database Management System. IEEE
ToSE, November 1988.

Bloom, T., Zdonik, S.: Issues in the De-
sign of Object-Oriented Database Program-
ming Languages. 0OPSLA Conference Pro-
ceedings, Orlando, Florida, 1987.

Béttcher, S., Jarke, M., Schmidt, J.W.:
Adaptive Predicate Managers in Database
Systems. Proceedings of the 19th Infer-
national Conference on Very Large Dala
Bases, Kyoto, 1986.

Béttcher, S.: Pradikative Selektion als
Grundlage fiir Transaktionssynchronisation
und Datenintegritit. PhD Thesis, Johann
Wolfgang Goethe Universitit Frankfurt,
1989.

Carey, M.J., DeWitt, D.J., Vandenberg,
S.L.: A Data Model and Query Language
for EXODUS. ACM SIGMOD Ind. Conf.,
Chicago, 1988.

Eswaran, K.P., Gray, J.N., Lorie, R.A.,
Traiger, LL.: The Notions of Consistency
and Predicate Locks in a Database System.
CACM, 19, 11, 1976.

Garza, J.F., Kim, W.: Transaction Manage-
ment ir an Object-Oriented Database Sys-
tem. ACM SIGMOD Conf., Chicago, 1988.

[MylopoulosSO] Mylopoulos, J., Bernstein, P.A., Wong,
HK.T.: A Language Facility for Design-
ing Database-Intensive Applications. ACM
Transactions on Database Systems, 5, 2,
1980, pp. 185-207.

[Mylopoulos86) Mylopoulos, J., Brodie, M.L.(Eds.): On
Knowledge Base Management Systems.
Springer, 1986.

[Batory88a]

[Batory88b]

[Bloom87]

[Bottcher86)

[Bottcher9)

[Carey88]

[Eswaran76]

[Garza88)

[Schmidt77] Schmidt, J.W.: Some High Level Language
Constructs for Data of Type Relation. ACM
Transactions on Database Systems, 2, 3,
1977, pp. 247-261.

[Schmidt88] Schmidt, J -W., Eckhardt, H., Matthes, F.:

DBPL Report. DBPL-Memo 111-88, Jo-
hann Wolfgang Goethe Universitit Frank-
furt, 1988.

Appendix A

In this appendix we outline a query language containing both
!)oo_lean queries and set valued queries. The query language
is sqnilar to that of DBPL [Schmidi88] except that here
queries range over classes instead of relations. Further we
fiescribe statements for write operations, for the definition of
integrity constraints and for the synchronization statements
lock and unlock.

For the definition of this query language we assume states
of a database with attribute inheritance

(0, D, A, C, IS-A, IN, IS-ATTRIBUTE-OF, IC)

to be defined as in section 2. In order to define boolean
query expressions we start defining atomic boolean query
expressions.

Al o,.a; comp o;.a; and

A2 o;.a; comp v

are atomic boolean query expressions, where comp€ {=,<
y >, #,<,>}, vis a value of 2 domain d;, i.e. ved; and
d;€D, a; and a; are attributes with domain d;, and a;(o;)
and aj(o;) (denoted as o;.a; and 0;.a;) are defined.

Now we can define boolean query expressions and set valued
query expressions recursively.

B1 Atomic boolean query expressions are boolean query ex-
pressions.

B2 If A and B are boolean query expressions then
A AND B, A OR B, and NOT A are boolean query
expressions,

B3 TRUE and FALSE are boolean query expressions.

B4 If B is a boolean query expression, and § is a set valued
query expression, then
ALLo;INS(B)
SOME o, INS(B)

are boolean query expressions.

Set valued query expressions are defined by the following
rules,

S1If ¢; is a class (i.e. ¢,€C), and B is a boolean query
expression, then
{EACHO.‘INC.’(B)}
is a set valued query expression.

$2 Further, if R and S are set valued expressions, then
m(S) and
RUS
are set valued expressions, where ,(S) denotes the pro-
jection of S onto the attributes defined for the class
¢,;€C. We assume that the projection removes dupli-
cates.

$3 To get a relational complete query language, we further
define joins: if R and S are set valued expressions and
B is a boolean query expression, then

{EACHo; INR x S(B)}
is a set valued expression. Note however, that this join
is not used to define Canonical Mapping.

Set oriented write operations can be described as follows. If
¢; is a class and S is a set valued query expression, then

¢ - S and
¢+ 95,

are sel oriented write operations. Further, the NEW and
DISPOSE statements described in section 2.2 are write op-

erations.

An integrity constraint definition can be described as follows.

1L B is a boolean valued query, then
CONSTRAINT B
is an integrity constraint definition.

Lock and unlock statements are defined as follows. 1f S is a

set valued query expression, then
READLOCK S and
WRITELOCK §

are legal lock statements and

UNLOCK §

is a legal unlock statement in any transaction.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7

