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Abst . 5 R

a raigﬁ§n this paper we will show that any languagé€ accepted by
tape-bounded and T(n) time-bounded nondeterministic
tape—bounded deter-

3??1529 also is accepted by & L(n)+1log,T{(n)
reéu‘tlc Turing machine.We will give some applications of this
it concerning the tape complexity of classes of formal

languages.

1. THE THEOREMS

Li 5
ttle is known about the amount of tape a Turing machine needs to

accept a given language.An outstanding T
obtairned by Hartmanis-Lewis-Stearns (1965) who showed that each
cepted by 2 (logzn)2 tape-bounded deter-
hich is & generaliza-

esult in this ares was

context-free language is ac

mini i . . .
istiec Turing machine.By our main theorem W

~Lewis-Stearns result we hope 1o gain further

tion of the Hartmanis
insight into these problems.

£ an aux PDA and showed the

S. ) . .
A.Cook (1971) defined the conception o
2d-L(n) time-

equivalence between L(n) tape-bounded aux PDA and
bounded deterministic Turing machines.

stic (nondeterministic) aux PDLA

s of a finite control (& se
get of final states) 2D input tape
es with read-write heads and 8 pushdown
start symbol on the pushdown

istic (nondetermi—

A k-tape determini
L (S’T’d‘F’Xb’So) consist
S, € S start state,F C 8
with read-only head,k tap
tape (T set of tape symbols,Y, € T
tape) . The next move function J is determin
ristic) .

A configuration of a 1-tape aux
(s,i,w,j,v,u) , where s € s 1is the state of M
and j e N are the positions of the input head an

+ of states,

pPpA M 1is @ 6-tupel
;i€ {4,..J(w)}

4 the head of
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the working tape ; w,v,u € 7* are the insriptions of the input
tape,the working tape and the pushdown tape.
The rext move furction d implies a mapping

(8,i,%,3,v,ua) i—> (s',iﬁﬂ,w,j+7,v',u§) , where a ¢ T ,
fcfs,2¢7) ana Mot € {-1,0,+1% .

—3Fis the Lransitive closure of —> .
A word w ¢ 0¥
t €F ,veT¥ and i,5 € IN such that

(8,015m,7 E5%) FAQ*(t,i,w,j,v,z) .
M is called a L(n) tape-tounded and T(n) time bounded aux PDA

is accepted by M , if ard only if there exist

o
i

if and only 1f for each w,accepted by },there exist a sequence of
at most T(L(w)) moves leadirg toa final state and to an empty
pushdown tape such that during this computstion no more thsn
L(1(w})) cells are used on the working tape.

A1l these defiritiors cen =8sily be transfered to the case of the

k-tape aux 1'DA.

Theorem 1  Suppose a set L is accepted by a L(n) tape-bounded
and T(n) time-bounded nondeterministic aux PDA.Suppose L(n) and
log,T(n) are functions essily computable in the sense which is de-
fined below and L{n) > loggn for all n ¢ N . Then there exists a
L(n)'loggf(n) tape-bounded deterministic Turing machine that

accepts I, .
This theorem will be proved in %the next paragraph.

Each L(n) tupe-bounded rondetermiristic Turirg machine is

Qé»L(n) time-bounded.Therefore theorem 1 implies the theorem of
W.J.88viteh (10970).

Theorem 2 [Hach set L acrepted by a L(n) tape-bounded nondeter-
ministic Turing machire , where L(n)2> loggn for all n € N , 18

o)
accepted by a L(n)“ tape-bounded deterministic Turing machine.

Because of S.A.Cook's results each T(n) time-bounded determi-
nistic Turing machine may be simulated by & log2T(n) tape-bounded

aug E?ASBut a L(n) tape-bounded zux PD4 in general needs
24 bin
2 moves to accept a word w , 1(w) = n , and that is why
no relationships between time and tape complexity classes of

Turing machines are obtained by theorem 1
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Because of the Greibach rormal form theorem each context-free
larguage is accepted by a pushdown automaton which moves its head
in each step one cell to the right.This automaton is a L(n) = logon

tape-bounded ard T(n) = n time-bounded nondeterministic aux PDA.

Thus we proved :

Theorem 3 (Hartmanis-Lewis-Stearns (1965))
Kach context-free language is accepted by & (log2n)2 tape-bounded
deterministic Turing machine.

By means of the results of Harrison-Ibarra (1968) ard the Greibach

to prove that each nondeterministic
+t to a nondetermi-

normal form theorem it is easy
k-head 1-way pushdown automat.n 1s equivalen
nistic k-head 1-way pushdown automaton which moves in each step at
least one of its heads one cell to the right.Theorem 7 therefore
implies the following :

Theorem 4 Hach language whic
k-head 1-way pushdown automaton is accepted by a

h is acceptable by & rondeterministic
(1oggn>2 tape-

bounded deterministic Turing machine.

0.E.Ibarra (1970) defined n - simple matrix ‘anguages.
k such that ary n - simple matrix

To each n there s exists 8 Ky,
language with a right endmarker is acceptable by 2 nondetermiristic
k, -head 1-way pushdown automaton.If L(n) 2 logyn , then the tape
complexity L(n) of a language is independent of the use of end-
markers.We get from theorem 4

Theorem 5 Eech n - simple matr
(log,n)“ tape-bounded deterministic Turing machine.

ix language is accepted by a

results each language is acceptable by an
small amount of tape.ln general however this
accept a word.

Because of S.A.Cook's

aux PDA using only &
aux PDA needs an enormous number of moves toO
Theorem 1 shows that in studying classes of formal langusges it 1S

interesting to investigate whether these larguages are accepbable 24

aux PDA's using only a small amount of tape and of time.

2. PROOF OF THEOREM 1

We use quite the same method 8s Hartmanis-Lewis-Stearns (1965)

and W.J.Savitch (1970) .
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The L(n) tape-bounded and T(n) time-bounded k-tape nondetermi-
ristic aux PDA which accepts L may be simulated by a L(n) tape-
bounded and T(n)2 time-bounded -tape nondeterministic aux PDA
M o= (SaTsfjaF9a’oaso) .

For each w = a, .. a_ ¢ ﬁ?*, 1(w) = n , we define a set X = X, =

= S¥f1,..,nIxT x{1, .., L{n)Ex pb(2)x g x{ﬁ,..,n}x{ﬂ,..,L(n)}xTL(n)
and a partlial mapping V = VW : IxE — EX .
Suppose X = (8,1,y,J,v,s',i',j",v') € X

¥ o= (84,100 010dq5V4080,10,05,v) € X
Then =z = (52,ia,jg,ja,ve,sé,ié,jé,vé) € V(x,y) if and only if
cne of the following conditions is true.

(i) Xa = b’q ] (Sgaing1jzsve13/2) E— (Saiswaj’vva’gb’D

8' = sy 1" = 1,00 = §qaVt o= vgasy = 85,1 = 15,05=05,V7Y)
(ii) XE‘ = b/ s (?‘Qaigswajgavgyalg) —_— (Sf!siq’wsjflav’anQXfl)
5 = S,'],i = 1f||vJ = ‘j,'l,V = V,'],S' = Séai' = iésj' = Jé,v' = Vé

|z € V(x,y) 1is e=quivalent to Cook's notation : x and y generate 2

Partial mappings ¢ = t, : X — N , d = q, : XxX —5Nv{0} are
defined for each w € T¥ by
(1) If x = (s,i,y,3.,v,s',i',3',v') and
(syiywydyvyy) > (s',i',w,j"',v',£) then +t(x) =1 , otherwise
t{x) = min {t(z) + 5 | vz €X, x €V(y,z) , t(x) and t(y)
are iefinedﬁ}
(2 If x =y then d(x,v) = 0 , otherwise
d{x,v) = min { alz,v) + t{u) | u,z ¢ X, x € V(u,z) , d(z,y)
and t{u) are defined }

t(x) 1s defined if and only if x = (s,i,y,j,v,s',i',j',V') and
(syi,w,3,vy)) —* (s',i'",w,j',v',5) . t(x) 4is a lower bound for
the mirimal number of steps —* ig composed of.
I 7 = (5,3,053,v,8" 51" ,3°,v') ond X = (s,,00,000dq0Vq255,35,d7¥4)
then d(x,y) 1is defired iff there ewvists a string % €77 such
that (S,] ,i,' :W!J.q ’ng)ﬂl) H‘(S,i,W,j,V,gr) ——*

(s',1%,w, 3", v, %) " (s],i),w,35,v], 9
In this case d(x,y) 1is a lower bound for the minimal number of
steps the first and third F—%fare composed of.

We have assumed that L(n) 2 log,n for all n ¢ N .If n is great
enough then nec more than 5-<L{m) cells ere necessary in order %O
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store an element x € X .

We number the elements of X , starting with 1 , snd write X
if m is the number assigned to x . Then there exists a d
such that m ¢ N = 5d-L(n) 5r 2 x for some x € X .

m
=z D

We define & deterministic Turing machine M, that accepts L and

uses for each we T%, 1(w) =n , on each tape at most
(1 + d'L(n))-Balog?T(n) cells.

Tape 1 of M, is divided into T = 5-1og2T(n)
(1 + d-L(n)).In each segment is stored a pair
x € {1,..,8N} is the number of an element of X and B ¢ }U,4I .

segments of length
(x,B) where

Tape 1 alwavs stores a sequence (X1$Bq><X2132) ceue (XP,BF;

We demand that L{(n) and long(n) are functions easily compu-
table in the following sense : If M, has W, 1(w) = n , on its
input tape , it is able to compute L(n) and loggT(n) using no
more than L(n)-loggT(n) cells on the tapes.

M, starts the following algorithm :

AoE, wrives  (1,00(1,0) ... (1,0

r
B. If By =1 for all M = TyeesT

on tape 1 .

, goto L.

Otherwise let L be the smallest index such that 3B, =V
if Xy, 4 (S,i,b’,j,v,ﬁ',i',j',v') ard if
(8,i,W,J,V,y) > (s',i',w,j',v',€) ther goto o.
If there are X,b € f1,..,0} such that By = By ="~ ard
X, € V(Xx,xﬂ) then goto L.
Otherwise goto D.
C. v as in B.
t ¢ F then stop the algo-

If x, = (so,’l,ag,‘l,g,t,i,,j,v) with
rithm and accept w.
Otherwise : B, = 1 3 Xp =
Goto B.

D. v as in B.
If x, =N for all M= T,..

reject w .
Otherwise let X be the smallest sindex such that xp # N .

= e £
Set X, = Xy + 1 and X = 1, Bus= 0 for all m = Ty-e»
Goto B.

,r then stop the algorithm and

The following lemma Shows how M, works.
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Lemma 1 Suppose 1 € N,w ¢ T¥,X = X,V = V,,t = t,,d = d,

(1) Suppose x,y,z € X and t(x) < 21—1 , t(y¥) £ 2i -1
t(z) £ 28 -1 .
If the inscription of tape 1 has the form
(1,0) e (4,02(x5i+1,B51+4) cee (Xr,Br)
2i
then tape 1 stores after a finite number of moves of M4 :
éﬂ,O) te (1%92(x,1)(y,1)(z,ﬂ)(x5i+q,B3i+1) ‘o (Xr’Br)
3i-3
(2) Suppose tape 1 stores
(1,0)...(1,0)(x51+1,B51+1)J..(xq;Bq)(x,O)(XQ+2,BQ+2)...(Xr,Br)
31
Suppose B, =1 for all w=3i+1, .., 4 and there exists
M € {3i + 1, .. ,r 3 such that Bu = 1 and d(x,%,) £ 2t -1
Then tape 1 stores after a finite number of moves of My
(1,9 ;e (1,000 (x
q

>

q+2’Bq+2) e (Xr’Br)

Proof:In our proof we only consider what is written on tape 1 .The
other tapes are used to do auxiliary computations.

If starting with the insription (x4,B4)(%5,B5) --. (X, B.)

M, reaches the insription (x%,B%)(xé,Bé) “he (xé,BL) in a finite
number of moves , then we write

(%7184) +-v (eluBL) =D (x,BY) o (x),B1)

(1) and {(2) are proved simultaneously by induction .

i =1

211 Ei - 1 = 1 .Therefore (1) is obvious.To prove (2) we first
mention that because of d(x,gM) =1 there is a y € X such that
t(y) =1 and x € V(xu,¥) . M, works as follows

(/} ,0)(1,0)(1,0)(}(&,]34). . -(Xq,Bq>(X,O)(Xq+2,Bq+2)c . .(XT’BI‘)

#==§(1,O)(1,0)(y34)(x4a34)---(xq,Bq)(x,O)(XQ+2,BQ+2)...(xr,Br)
F=(1,0) ... (1,0)(x,")(x
3

q+2‘Bq+2) .o (xr,Br)

Now let i'¢ N be a number such that (1) and (2) are true for all
natural numbers less or equal than i . We want to prove (1) end (2)
. .r the number i+1 .

(1) Suppose y € X and t(y) < 22*71 -4

Then there exist YoreesTpr2gree 2y € X such that 2y = Yo
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Yy € V(yk—ﬂ’zk) for k = 1,.+,0 5 Y and

=J
1 x .
t(yo) £2° -1 t(yq)z 21 , t(Z,’) < 21 -1 .

Suppose X3i+3-é X , Bszgsz 6{0,1} are arbitrary elements.

Because of our assumption, (1), M, works in the folilowing Way :

Il
(1,0) ... (1,O)(x5i+3,B3i+5)(x3i+4,B5i+4) voeo (xp0BL)

3i+2
s 208y L (1,00 (7750 (320) (X5, 30B53,5) v OprBr)

31

3i-2
= (1,0) e (1Lgl(yﬂ‘1)(y’0)(x31+3B51+5)"' (xr,Br)
31
Because d(y,yq) = t(y) - (¥4
our assumption,(2),implies that M, changes th

of tape 1 and gets

,I LI 3

(1,0) (1,0)(y,1)(x3i+3,B3i+5) te
It is easy to see that the following is true also.

(1,0) .o (1,0)(%z;5 4 B3i4a) *° (%54 BL)

3i+5
= (110) .o (1so)(Xvo)(Y11)(qu)(xai+4’BBi+4) see
51 .
iv1 _ 4

where t(x) £ ot , t(y) £ i+t _ a4 t(2) £ 2

.(xr,Br)

)£2i+1_,]_21=21_,]
e above inscription

(xr,Br)

(xr,Br)

There exist u,v ¢ X such that x € Vv(u,v) and t(u) £ 2i -1,
t(v) & sl . 4 . Because of our assumption,(ﬂ),mq does
(1,0) fe (1,OZ(X,O)(y,ﬂ)(z,ﬂ)(x31+4,B3i+4) - (xr,Br)
3i
= w(u,mmxx,oxyn)(z,4>(x5i+4.35i+4> oo (3,5BL)
3i-2
=>(1,0) ... (1,0)(x,1)(y,ﬂ)(z,ﬂ)(x51+4,83i+4) vee (XpBp)
31 )
i+1 _ 4

(2) Suppose x,xm € X and a(x,%u) £ 2
Then there exist yq,..,ym,zo,..,zm e X such that 2, = %# )

€ V(zk—1’yk) for k = 1y.-0 o Zp T y

V4
EE; t(y,) = a0x %) £ ol L1

If d(x,%) 228 -1 then becaus
i
nothing to prove.Therefore we assume that d(x,&,);: 2

We have to consider tWO cases.
a.) t(y,) & 2" -1 foreall kK = TyoesD -
yesym} is defined by

and

e of our assumption there is

A number p € {1
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; t(y,) £ 2' =1 ang t(y) > 2

Beczuse of

- s +] i+ i i
Yy £ (3 ) Z:: § t(y ) £ 2 -1 -2t =2t o
K=p+2 =1 k=1 k
the following relations are valid
i
(v, z5 q) .l 1, d(zp+q,zp) = t(yp+1) £ 27 -1 and

a(z ,{M) -1 .

Cur assumption,(2),therefore implies
£11924$4£119)<X51+4’B§i+&)"'(Xq’Bq)(X’O)(Xq+2’Bq+2)'"(Xr’Br>
2i+3
b=$(1,O)nxﬂ,o)(zp,1)(x5i+4, 7i+4l‘(k Bq)(X,O)(XQ+2,BQ+2lu(Xr,Br)
2i+2
k=$§1;92;;;£149)<2p+1»4)(Zp,1>(xgi+4,5

A1+

siaa) e (5gsB) (x,0)

(Xq+2,Bq+2)...(Xr,Br)
=x1,0) ... (1,0)(x,1)(xq+2,BQ+2) cee (Xr’Br)
b.) There is a p € {1,..,m} such that t(yp)jz o1 .

! ) o= C t

ﬂ(x,%M, d(x,zp) + 1(zp,zp_q) + ﬂ(zp_q,%u)

This implies

147 i
d(x,zp) + dgzp_ﬂ,x ) = a(x,x,) - d(zp,zp_q).f ot g ot
=2t -1

vur assumption,(2),and what we have proved in (1) therefore

shows

4 A Il

c1,00...¢ O)(X71+4’ 51_’_4) ( anq)(xso)(xq+2an+2)"-(XraBr)
5i+%
LN B Y

@\ '1b/"0(4 ,O)(yps’i)(X3i+4,B5i+a_)ﬂ‘(Xq,Bq)(X,O)(Xq+2,Bq+2)...(Xr,Br)

A1+2

=3(1,0)...(1, o)(7 q,.)(v 1) (y51+4, 51+4) (xq,Bq)(x,O)

Y

[
P

1+

(Xqap2Bgyn) - - - (X By
@Cﬂ ’O>' . '(fl 10)(va’])(zp_z] ”1)(yp|’])(xai+[+1B5i+l;)' -.(Xq,Bq)(X,O)

AL

(XqspsBgap)e o (%0 B)

=201,0) e (1,000, 1) (e 018 0) - (x,BL)

3.e.d.

It is obvious that My isa (1 + d:-L(n))-3- long(n) tape-bounded
deterministic Turing machine.All we have to show is that M,
accepts L .



Pushdown automata and Turing machines 583

If w ¢ L then our algorithm never leads to a pair (x,1) where
X = (50,1,36,1,£,t,i,j,v) with + & F and therefore M,1 rejects

W .

If w € 1L then there exists a x = (50,1,56,1,£,t,i,j,v) with
t € ¥ such that t(x) ¢ T(1(w)) and during the corresponding
computation no more than L(1{w)) cells are used on bthe working

tape.
Because of Lemma 1 M, needs at most 5-log?t(x\£ B'IOgET(l(w))

segments to compute (x,1).Therefore M, =accepts W .

As the tape complexity of a language is independent of a constant

factor theorem 1 is proved.
q.e.d.
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