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We characterize the class of all languages which are acceptable in exponential time by means
of recursive and grammatical methods. (i) The class of all languages which are acc‘:eplable in
exponential time is uniquely characterized by the class of all (0-1)-functions which can .be
generated, starting with the initial functions of the Grzegorczyk-class €7, by means of subst‘lvtullon
and limited recursion of the form f(x, y + 1) = h(x, v, f(x. ¥}, f(x 1(x,y)) {(x.y)<y. (i) The
class of all languages which are acceptable in exponential time is equal to the class of all languages
generated by context-sensitive grammars with context-free control sets.

1. Introduction

In this paper we will characterize the class E of all languages which are
acceptable by deterministic multi-tape Turing machines in exponential time. This
class is very interesting in connection with the relationship between time and tape
complexity. It is not known yet whether E is different from the class of all
languages acceptable by deterministic linear bounded automata. E is formally
defined in the following way:

E ={L | 3d € N A3 deterministic multi-tape Turing machine M accepting
L within the time bound d"}.

This definition is largely independent from the Turing machine being the underly-
ing machine model. )

A characterization of the class E by means of some machine mod'el was given by
Cook in [1]. He proved that a language belongs to E if and only if it ls'accepted b)'l a
writing pushdown acceptor [5]- A writing pushdown acceptor COIl.SlSlS of a ﬁmFe
memory, a pushdown tape and an input tape with a head that'can print and move in
both directions on the tape segment given by the input string. )
In this paper we will give two further characterizations of the class E, a recursive
and a grammatical one. These characterizations are similar to those known for
deterministic context-sensitive languages.
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Ritchie proved in [9] that the deterministic context-sensitive lanfuha'(gi:r:;;
characterized by the (0-1)-functions of the class €2 of the Grzegorczyk hi

. limited
{2]. We get a similar description for E replacing the scheme for the lim
primitive recursion

(8- hj € €% fx,y)= Axy [y = 0—g(x), h(x,y, f(x,y — 1))],
fen)=j(xy)] = fe &

in the definition of ©2 by the scheme

(8111 F: f(%y) < Ay [y =0 g (30, h (5, 50y = D5 9

Mo y) <y fley)<j(xy)]) == fez
Then E is characterized by the (0-
On the other hand E i equal to th
context-sensitive grammars with con
ance checking”). When we denot
respectively (notation from [10)), th
the question asked in [10] whether
sensitive languages is a question
deterministic time bounds and non

Proving the recursive characterization of E we have to define an arithmetlzano:
of the computation of a Turing machine. We do this without encoding whole tal:)f
inscriptions by natural numbers. Thus we avoid defining a great n.Umb‘”h f
functions and predicates describing the moves of a Turing machine. This metho

. - ter
leads to a proof 1 form theorem which is considerably shor!
than those given

In Section 2 we w
grammatical one, §

D-functions belonging to the class %. )

€ class of all languages which are generated by
text-free control sets (with or without “‘appear-
¢ these classes by £(1,2,0) and $(I,Zf, 1r)e
en we get #(1,2,0)= ¥(1,2,1) = E. There ot_
Z(1,2,0) is equal to the class of the contex

about the relationships which hold between
deterministic tape bounds.

of Kleene’s norma
in the literature.

i : S . ion 3 the
il prove the recursive characterization of E and in Section
ome of the proofs can be found in more detail in [71.

2. Recursive characterization of E

Up to now two differen
Computations by means of ¢
a certain type of limited ge
characterization since recy
tapes —on the other hand |;

The recursion scheme

t methods have been used to describe time bound‘f;j
ecursive methods, On the one hand there has becn uSey
neral recursion [4, 6] —this is closely related to Cook’s
tsive calls can be controlled by means of pushdown
mited syntactic recursions have been applied [11, 12]

has the advantage that it is quite 2

Definition. is the smallest class of functions such that the following conditions
hold:
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i x - y] belong
() Ax[0], Ax[x + 1], Ax, ... x.[xi]forn EN, i €{1,..,n}and Axy[x - y]
1 x{vy, 5
to F. o ~
(ii) F is closed under substitution. Slet g :N* o N: 1N N  : NN
berandlet g : shL:N > ret
iii) Let k be some natural num A I €Ny &N an
be(lfl:J)nct?ons belonging to %. Let I(Xx,y)=<y hold for all x
f:N*"'>N be defined by:

f(x,0)=g(x)
fGy+1)=h(xy, f(£y) f(X, I(X, y)))- .
, X hen f&€ #. o
R A El‘;’ ynedbi’h:: errzfegorczyk class € is the
| . iy i hen
he difference between : e
f ;:“he;:f?rlef to:: want to compute f(x,y + 1) by means 0:] 1;2(rieitcil(1)na] e
ou m gt.kn(}),w not only the value ot f(£, y) but also a o e or
- rln(u-s ) In this context it is interesting that we don
y=Uxy)=sy.
use schemes of the form

Fv)< 8)).
fEy + D)= h(Ey GG Y IE Y <y (e [8])

F = &* holds. )
But it is not known whether % :: o c te a function out of %.
Fi time we need to compu unction out 0
irst we show, how much

ist natural numbers
:N*—N be a function out of F. Then.ther; e;:;;:ty ot
Lemma 1. [_elj ¢ ;nachine M which needs — starting with the e in
i m;d ; T“”"ige N* on its input tape — not more than ¢ - (MaX<i<
tupel (xi,... x . ; its tape.
orZer to write ¢(x\, ..., xc) in binary notation on D

; hat the initial
. . d. It is clear t
traightforwar ions out of
f of the lemma is s f all functio )
:’roof-. Th; Pr(;:e above property. Furthermore the grov'vthS (;f (i) and (ii) — that is
;ni?tl)zzsndizeby functions which can be generated bii::eadnﬂ € N such that f(¥)<
€ % there e : . ion on the
i i herefore to each f ) induction
without recu;sl¥:~ Temma is now proved in the usual vf;/a)’ :)tf,e function &. Our
. DP. The B ne M
r(:u (?::{:f}Zubstitutions and recursions necessary t((; ?(fr time than the primitive
m .
ter deman . ursion
i s not lead to a grea A ither of the rec
recurs¥ve scheme does e function which is defined by e s successively
recursive one.hFor let f behs;l,: 0 compute in bo[hl) gse
schemes.  Then we y+1).
F(E0), f(x,1),.. ., f(%,v) in order to get the value f(

. : d show how time
i ther direction an )
: the way in the o . ut of %. First we
In the following we want to go s of functions o !
. ribed by mean Turing machine
boun omputations can be desc - one-tape
will s:(:):rcthatpevery computation can be simulated by a

. jal way. if i its head
e sy ot move i Specll'xa':\e his normal form if it can move 1ts
i achi
We say that a one-tape Turing m
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only in the following way: Starting on the first cell the head moves to the right (it s
never allowed to remain on the same cell) until it reaches a cell which has not hee.n
scanned before. After that the head moves back to the first cell. This .process s
started again and again until the machine stops. The first cell is marked in the first
step.

To give a formal definition, a Turing machine in normal form is a 6-tuple
M= (S, X, T, 8, So, F), where

(1) X and T are finite sets (sets of in
respectively), X N T = @,

(2) S=Sx{l,r
of final states.

() 8:SX(XUTU{B)—S x Tx{-1,+1} is a mapping such that {;(M):
(s".v". ) for some 55'€S1yEXUTUB)y e T.m €{~1, +1} implies

put symbols and symbols written by M,

. - . o t
for some finite set §. S € S is the initial state and F CS the se

_f+1 i SESX{r}AyETVSEgX{l}AYETn
n= {—1 otherwise,

Here B denotes the blank symbol and T,
announce the left end of the tape. In the
afterwards it is always just the first cell

If a Turing machine has normal form t
determined and does not depend on the
with 0, then the Jjth cell of the tape is re
step for the first time (see Diagram 1). Th

z

C T is the set of those tape symbols which
first step a symbol out of T is written and
which stores a symbol out of T\.

hen the movement of its head is u“'iqu.el'V
input. If we number the cells bcg.lnn??g
ached by the Turing machine in its j th
e position H(t) which has the head of M
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fter ¢ steps is given by |t — (Vf — V1|, where Vtis the greatest natural number
after ¢ steps i
such that (Vi =<1t

ing machine
Lemma 2. Let L be some language which is accepted by a onej-tape T:ir:;gm achine
J\/: ith the.f time bound T(n). Then there exists a one-tape Turing mac
w . !
form which accepts L with the time bound T(n).

here X is the set

Proof. We can assume that M is a 6-tuple M = (S, X T’}\i f(:lf))’(wﬂ? o
of input symbols, T is the set of symbols W.rlttelll 'by dal o which simulates

It is not difficult to construct a Turing machine M in norm o hen AT
M step by step in the following way: If M reaches some .csotheg e Tor M
reaches a configuration where the inscription of the ta}')ec:l lof g e ked. In
except that the first cell and the cell, scanned b'y the healveS - ;lead ‘o the right
order to simulatc the next move of M, the machine M mo During this process o
until it reaches a cell which has not been scannc]:ld bzfgl::nges e tape inscription

ich i in the marked cell an _ b
reads the symbol which is stored in t - it is possible (only in the
f M asfarasitisp !

iti ined by the next move function o. ! 0% ¢ possiblc).
2TSsl; ]fv(liitrirr:‘}::eheaz of M moves to the left in its next steP‘;h':(:Z“"ODEring s
t\after M has reached its turning-point it movcs'backft;)\;tthe s .
process it eventually marks the new head poimon q -der o simulate the T(n)

It is clear that M needs not more than T(n)° steps 1n o1
steps of M. [

i : have to

* by functions f : N—>N, we have
emna pping to be bijective
o defined in numbers

If we want to characterize languages L C e
: *
define a bijective mapping g: X ——>N.. ‘Weh o ion 1 is al .
(and not only injective) because otherwise the : e tiom than L. In this
not belonging to g(X *) and therefore it contains more o oacterization.
case we should not call the correspondence betweenEf;n e ijecrive mapping
= for some r .
We may assume that X ={1,...,r}

8 :X*— N is defined by:

YaEX,vE X*.
= - g (v
g(e)=0, g(va)=a+r-g(v) e may assume

ing mach _
Now let M = (8. X, T, 8, 50, F) be a one-tape Turing M is described by

i iour
that X =(1,...,r} and that S, T CN. The dynamic behavio
the following functions: ! steos

H(y, t) = head position which is reached by M after p
string, - .
Ply.0)y=1+max{r <t|r'=0vH(y.0= H(y, .)L of M when the tape symbol,
P(y, 1) determines that moment in the computatio
sc d t steps, has been written. o - ibe input string.
::‘(nef)iﬂi;te Sczf;pmed by M in its fth step lf.g.'_(’y) ISiS thee inf)ut tring,
T(); )= Atapc symbol written by M ints rthstep if g )

if g, '(y) is the input
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If M is a Turing machine in normal form then H and P are functions not

depending on the machine M or on the input string. Thercfore in this case we will
only write H(r) and P(1). We already saw that

H() =]t~ (Vip- V4.

Suppose now that M = (S, X, T8, s,

F)is a Turing machine in normal form and
that S = {1, o} CN. Then the next

move function § defines the following two

functions
s’ if 5(&',7):(5’,)",71) with some y' € T,y {1, +1},
a(s,y)= 40 if s€{0}jUF,
o+1 otherwise;
iy if 8(s,¥)=(s", v, m) with some s'& Snpel-1,+1,
B(s,y)= 0 !
otherwise.

a and B can be regarded as extension
Th

s of the component-functions of 8§ on NxN.
¢y are total functions and constant

Put string. In the definition of a we assumed that
EF.

L :N°>{o,.

6(s, v) is not defined for any s
If we now define 4 function - r}, such that I(z, i) is just the ith
symbol of g !(z) by
b= [0 T 210,
x if 3¢,¢1/EX*:1(¢>)
(note that 1.(z,0) is the lef
described by the followin

Sing (dxy)=z

tmost symbol of g;'(; ), then the functions S and T are
& recursion scheme:

S(v.0)= s,

S(v.t v 1y= {Ms(.v-a TOLP(1)) if P(ry£1,
(SOu0). Ly, H(ry)) i P(t)=1,
T(y.0)=0p,

T+ )= B0 TGPy it pyp g

{B(S(_V»t)» L. H@y) it P(l;= L
ion scheme totally
€ compared with the

This simple recyrs

describes the computation of a Turing
Complicated functions which have to be
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fore, then
this tape symbol is T(y, P(t)). If the ccll H(r) has {1ever bef:n sc;r}:;lsegyl::b(:; o
= h symbol of the input string. :

P(t)=1 and M reads the H(¢)t 1pu ' e
I Ey) H(1)) if we assume that the blank Symbo]'B l;ldel;n‘fii::dfo»:lstome LN Let
N that M operates with the time oun ‘

N()’(“; le";l:ls aj\ilunmeids at mospt) d'® steps in order to decide whethcla(r)le:1 acc:;:.t:i

e ot “=d'". There

lt))yEM If we set y = g.(v) then there existsac €N suc.h tha(tj yt >e:1her neretore ¢
is acc.epted by M if and only if S(g,(v), g (v)*)= 0. This leads tog
1 to our first main theorem.

Ihe‘)lenl 1. Let rip—» w i W ove. [hen
8 {] } N be the functl()ﬂ thh [~ deﬁned ab
. r . P

the following holds: . 5 Then L -
jl)OL(:"IN i:N—>{0, 1}  bhe some function c;ut of &
{vef1,....r}*| f(g.(v))=1} belongs to E for all r =2.

he function
Q) Let L C{l,....r}*, r =2, be some language out of E. Then the f
[l if g N (x)EL,
flx) = 0 otherwise,

belongs 10 F.

i i ccepts L, Let
Proof. (1) We have to define a Turing machine M ,:h‘i(::ﬁ:n Opr s
v €{l1,..,r} be the input string and set x = grgv)- The'ci i’ Computes the value
of two parts: (a) M computes the binary notation of x; (b)
f(x) (starting from the binary notation of x).
Letv=e,...am a €1{1,...,r}. Then

m-1 I(u)+1
X=gW)=an+an - rt. ... tar"ST .
starting from this unary

ion of x and :
Therefore M can compute first the unary notatio ) gteps where ¢ ENIs

. : than ¢ -r L
Notation, the binary notation of x in notf(m;)f;ecause of Lemma 1 there exists a;
x)- . tota
. Afterwards M computes Therefore the
;ngzngtel:atAM needs not more than ¢ - x° steps to do t‘t,l‘,’s(u)
) . by ¢’ -r"7 . .
amount of time, nceded by M. 1s bounded a::’:’; EyLet M be a Turing machine
language 0 ’ hermore we can
2) Nowlet L C{l,....r}* bea ) € N. Further
Wh(ic)h accepts L with the time bound d fo.r B lljform. Because of Lemma 2
assume th tpM is a one-tape Turing machine i norma imulation of multi-tape
and beca:se 0f‘ the well-known theorem ab()l(l)t4]thtehesre exists to each Turing
. ) i Theorem 10. machine in
machines by one-tape machines [3, ivalent one-tape
machine wg’rking wFi)thin time bound T(n) a; e
. . - n).
normal form working within time })Ol;lf;ld v?(fur o
We already described the dynarr?lc cha .
which were defined by the recursion schem

f M by the two functions Sand T
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S(n.0)=1 (so is identified with the number 1),
_ (a8 ). T, P()) it Py # 1.
Srt+1)= {a(S(y, 0, LGy, H(t) if P(t)=1.

T(y,0)=0,

=B, T(y, P(1))) if P(t)#1,

Tos e+ =gt L. H(@) if P(e)=1.

Here a and B are functions wh
therefore they belong to the Grzeg
shown in [2] that functions like our

ich are constant outside finite intervals z.in.d
orczyk class €° (€°C €2 C %). Furthermore it is

H belong to €° and that €° is closed under IEC
i e
operation of limited maximum. Therefore P € €°. I, can be defined by using t

functions D, (z) = Lz/r] (greatest natural number <z/r)and R,(z)=r— D.(z)r
It is easy to see that L e g

In order to show that S, TE Z we set A D=SWy 1)+ (o + 2)- T(y, t). Then
S(y.1)=R,..(A(y, t)) and

T(»1)= D...(A(y, 1)) and in the case P(t)# 1 from the
recursion scheme follows:

A(y,t+1)= *(Ra. Ay, 1)), D,..(A (». P(1))))
+(o + 2)- B(R

»+2(A Y, 1)), D,.a(A(y), P(1))).
gous formula for the case P(t)

A(y,0)=1,

A+ 1) = gy, LAy,

We get an analo

=1 and this leads to the recursive
scheme;

h 1) Ay, P(1))),
where

_ R, .a(x), Do‘z(z))+(a+2)-B(R

U(v.t.x, z —{a(
"aR oy 16y H(t)+ (o +2)- g
Since ¢y € €' CF ang
therefore alsp Se g

wr2(%), Doia(2)) if P(1)# 1,
(Roa(x), L(y, H(t))) if P(1)=1.

A is bounded above by a constant we see that A € F and

Furthermore we alread

Y showed that t
equivalent to S(g,(v), g

(v))=0. Let yus
fwy={) I Strx)=g,

otherwise.
Then f€ F and f(x)=1 holds if ang only

Theorem 1 States tha
the class of aJi (0-1

here exists a ¢ €N such that vEL 15
define a function f:N—{0,1} by

if g-'x)e L. O

t (except of the necess

ary encoding g, ) the class E is equal to
>-functions belonging to

#. With the methods of this section this

r 14 n. onentiai-am n (4 6
¥4 f th S
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tll t we can use our lltllllletlzatl() to prove a version of Klee[les
a n p )
It 15 Clear a p
n()““a] ‘Olm ‘heole]ll. (It Should be lloted tha[ % C C% .

{ } -
Theorem 2. Let ’ ‘N— “, 1 be some Co'nputable ’u”c"on Ihe” the‘e exist
g’” € ‘iv such that ’(x) g((M/t)l‘l('f’t) 0 ) “G)ds.

i 2 e
i i ting f. We can assum
1 = T F T'uring machine compu . i
5. % T, 5, 50, )be_a s defined on S:
::-0:)2 ift :4di§j(unctive union § = %S S;C}il Et'ligt 1‘}5 ilf and only if i is the
at S is g . _ 1),
1 i belonging to S;,
tops in a state
(XUuTU{B}Y and'M s
value of the function f.
Now we set

€S,
0 if t=evenaS(xH)E S,vit=oddAS(xi(z+1))
l - y
h(x )= { 1 otherwise,
1 if t =odd,
g(1)= {0 otherwise.

- ds. O
Then g h € F and f(x) = g((u/t)[h(x 1)=0]) holds

. i ur methods to
As mentioned above we cannot trMSfP:Ir‘ ﬂ:; :::}::n;”‘:: b(e) the underlying
. uri .
arbitrary-valued functions lfi::r C}?;’::Ziet:lz Candom access maCh:Zei nw:;:s: O(;ni]t)sf
machine model. If. we"coll:s successor function and which can St}i)e first register as
arithmetical operation is ¢ eh n we can interpret the conten't of th o of such 2
registers a natural number,_t ¥ We can describe the dynamic be aion  Kloene's
the result of the COmputanonb'ove (see also [6]). This leadstoa ve:ble functions.
rachine In the same way 5?51:3 is valid for arbitrary-valued comp“h- h does not use
PO imal form theorem Wh]cf (;i Kleene’s normal form theorem w rlocof known from
N ?nt{] e wni;)gliecta?e%rzzcodings whose application make the p
any of those co
thg literature so tedious.

3. Grammatical characterization of E

inal
; f non-termina
V. is the set O '
§). where Un bol, is called
ition - G =(Vn, Vn P, ¢ start symbol,
Deﬁt:'utlton‘./ Athgfamtm::fr terminal symbols and S Eth; :1“ . Atts —> u, Vlz, Where
s s, € se / e fo L Aus
c)(,)r:tegt-sensTitive if all rules belonging to P have t

. € Vn
Unu € (VU Vi)*, 0 E(VaU Vr) and A € Vi

ijective
: P—N be some biject
. ar. Let {: P~ derivation
text-sensitive gramm t.Let D bea
N"“" let G be a c_on (if) and let F, CLab(P)be some S.CU is called control word
fnzpplf:jgt;sez; Labéli’)t-uge (Lab(P))*. Asin [10] Weddeﬂne’
Induced by and le .. is fulfiled:
of D if one of the following conditions is fu
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() D is the derivation 4 — v and U = f, where u = 1, u us, v = u, wu, for some
i, Uo, Uy, w € (Vy U V,)* such that u,—>w € P and {(u;—>w)=f

(i) D consists of one word v € (VsUVr)*and U = ¢ or U € F, and ¢ \(U) =
Ur— u, has the property that u, is no subword of v,

(iii} D is a derivation b= —ovsand U = U, U, where U, is the control word
of v, —v, and U, is the control word of v, —yp,.

The control word of a derivation gives us th
in the derivation in the succession of their
f & Fiisnot applicable then this rule can be o

the next rule of the control word.
We define:

e numbers of all rules which are used
application. If a rule with a number
mitted and the derivation continues at

LG CF)={we V|3 derivation D : § —:> w and U € C such that
U is control word of D},

In this paper we consider co

ntext-sensitive grammars G and context-free control
sets C. We set:

LM ={L(G,C F)|Gisa context-sensitive grammar, C C (Lab(P))* isa

context-free language and F, CLab(P)},

Z£(0)={L(G, CH|Gis a context-sensitive grammar and C C (Lab(P))’
is a context-free language}.

In [10] our families £(1) and #(0) are denoted by £(1,2,1) and £(1,2,0),
respectively. We wil} show now that Z0)= Z(1)=E. In this proof we use the
characterization of £ by means of writing pushdown acceptors. The reader should
remember that deterministic and non-deterministic writing pushdown acceptors
define the same families of languages. Firgt We prove that #(1) C E. This result is

not trivial since the control word of 5 derivation can be far longer than the

derivation itself.
Lemma 3, F()CE.
Proof. Let G = (Vi, Vi,

a context-free language
define a non-determinist;

P,S)be a context-sensitive grammar, let C C(Lab(P))* be

(P). Set L = L(G, G, P). We will now
Wn acceptor M = (S, X, T, 8, s,, F) which
ddition to its pushdown tape an input tape
&ement we avoid writing on two tracks). A
b-tuple (s, w, v, Uij)wherese§; w e X*; u,v € T* and
\ ,'the inscription on the input tape, working tape, pushdown
d positions on the input tape and the working tape. Furthermore

-determinisiic Pushdown automatgn accepting C. We can assume
ts head one cell to the right i each step.

c writing pushdo

let K be a non
that K moves i
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i i ivation D
M simulates (non-deterministically) on it.s wprkmg tape afltarb;t:;(rj);sirlrjpeo D
f the grammar G and simultaneously it simulates on its pushc ' tape e
. g' f K where K takes the control word of D as its ¥np o
Comp:ta;lo:vo(;d w € X* if and only if it reaches a configuration where
accepts

msC“PUOIl on the W()]kl]lg Ial)e 1S w alld l [+ ])IIS l(l()W)I ‘ape 18 elllpty.

ivation § —> v
Now let w € X* be an arbitrary word and let D be some deriv p.

i S, w,u,4,1,1)
with control word U. In this case M will reach the Cosgg:;a?::e (vs\;hich can be
where § is the state and 4 is the inscript:pn on the pushdo
reached by K starting from the input string U. G is simulated by M. Let

We have to show how a derivation step of the grammalr ut of P and let f be the
a— f be an arbitrary (non-deterministically chosen) rule o

sociated with this rule. is is true, then M

"“;‘hb;]r ;ZS(;rst examines whether « is a subword of hv‘tlrfn::nss:lsvt: viav; with
chooses non-deterministically a place where a occurs (tva it 1(0n B0s) < I(w). The
U1, v; € T*) and replaces on its working tape v by U;]ﬁn 2::d according to the next
state and the inscription on the pushdown tape fr”e cha rﬁbol f. That means, if 8 is
step which is performed by K when it reads the input sy € T then M can proceed
the next-move function of K and if & = a_o Y ,for somiulh ti’lat v=v av. and
o every configuration (s',w,v:Bvsd°y’1,1)
(s, y'YE 8(s, f, v). M stops if I(v; ﬁv?) > I(w). d of v. If f& P,, then M stops.

Now let us consider the case that « is not a subworﬁ ration (s',w, v, i@y’ 1, 1)
If however f € P,, then M can proceed to any co}? tg:: = goyforsomey €T
such that (s', y') € 8(s, f, v). Here again we assume*tba two words with I[(v)<{(w).

G is a context-sensitive grammar. Let v, w € X* be

* . Iword U € C if and
. cvath —> p with a contro
Then obviously there exists a derivation S P

; —where s, is the
only if M can proceed from the configuration (s, W;jsth;” :a:)i of K —to some
initial state and vy, the initial symbol on the pushdo

configuration Swoel ). * with a control word
. H —_— W
In order to decide whether there exists a derivation $ p

in the configuration

U€ C, M performs the following Operatim_“: () M St::lt,si,::ry derivation of G
(50, w, s, ¥ 1,1). (2) M simulates on its working tapeda':)n its pushdown tape the
(as far as the derivated string is not too long) a: input string. (3) When no
Computation of K taking the control v.vord as t:n M examines whether ﬂfe
non-terminal symbol is left on the working tape, t eif and only if the question in
inscription on the working tape is w. (4) M accepts w
3) is Positively answered.

Thus M accepts the language L(G, G P king tape is a
that the length of its inscription on the working

length of the input string. (J

d M so
more we constructe
v lways bounded by the
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Lemma 4. E C ¥(0).

Proof. Let M = (Q, X, T, 5, 9o, F) be a non-deterministic writing pushdown accffP‘
tor. Let us assume that M can write on its input tape, that it has no further Turing
tape and that during its whole computation it does not leave the tape segment
determined by the input word. Furthermore M does not write more than two
symbols on its pushdown tapes in one step.

First we consider a linear bounded automaton M, = (Q. X, T, 8., go, F) which is
given by M simply omitting the pushdown tape and le
can be performed by
0:QOXTXT— Q x
$:0xT-0Qx {-

t M, perform all moves whicp
M for some inscription of its pushdown tape. That means, if
{=L0, + }X TX T* is the nextmove function of M, then
1,0, + 1} X T is defined by:

(s',TI,y')E 81(5;7) < 371 (S T,’? c {5} UTuU Tz:(s17 TI:'YI,';) c 6(5,‘)’,’)’1)-

The moves of M, can be described in the usual w

ay [3, Theorem 7.4] by means of
a context-sensitive grammar

G =({(QU{ehx (TU{ehx X U{S}, X, P, S),
SZ(Q U{e})X(TU{s})XX.
G is defined in such a way that whenever M,

Qo@:...4x; ay,...,a. € X to some configuratio
a,...a, €T; q,_,,

can proceed from a configuration
N a...¢qa.,...¢0-.. 0 with
-8, € X; q € Q, then the derivation

S (. ay, ag... (& a, ai)(q, Qiey, Qiy). .. (s, a,, a,)(l-:, £, a.1).-- (s 5 @)

is induced by the rules of G. Here we assume that M can write no symbol belonging
t0 X and therefore M, has not scanned the string a

There are three types of rules in P,

(i) rules. which generate the *
to Pforallag X,

(i) rules.  which
(Q U{eDx (T U{e}
a:# ¢ and B

,+1.-. 4, up to this time.

input word”: S S(e, ¢, a), S —(qu, &, a) belong

simulate one

step  of M,: Let s =(q,a a)E
)><Xf0ri=],2v3

] +With g, = g,=¢ and g, € Q. Set B = a-if
=a:1f a.=¢. Then the following rules belong to P:
Vv p— V](Q',a’,az)lh if (q',a',O)G 5.(q: B),

Vivari— (e, o, a:)(q’, a,,

a) if (¢ e, 1) e 3.(q2, B),
a)(e.a’, a,)p,
These rules are ot context-sensitive but
rules can easily be constructed.

(i1i) terminal rules:
a € TU{e}, qEF,

Vv, "1“’(11'»01;,

if (9", a’, - D€ 8.(q., B).
we know how equivalent context-sensitive

(e.e.a)~>q, @ o, a)—'q belong to P for all a€X
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* * if and only if w is accepted
In the usual way it follows that § —>w € X* holds i
. cepted
byNA(/)l\lv let M be our writing pushdown acceptor and let L be the langt::lag: a6c arp:d :
by M. We have to show that there exists a context-sensitive %ratr:z3 e gramman
cc);me;(t-free language C such that L = L(G, C,0). We .tlzlakeog l(l)aramee i
defined above. By means of the control language we \;1 n tua‘g eetingon of the
: i ich belong to the ac .
S f G can be applied which : e sote
;)h(:led;zlsst:pe In order to do this we split the set P up into disjunctiv
u . . P |
B Y e {; }ﬁU Z:?i)land P, is the set of all rules defined x.n
Here P, is the set of all rules defined 1 . the set et B = if
(iii) \rlowoset v =(g,ana)fori=123 withq:=q:=¢ a:€ Qa
o, # €; B = a, if a-= ¢. Then the rules

v v;—>vi(q’,a’, a)vs, oOr
v vs— s, ', a2)(q', as, 1), of
129 72 113—>(ql, a,, al)(E, a', a:)V3

i = =lor
' - with n =0 or 7
belong to P(y, ) if and only if (¢'.a'. 7, 7) € (4= B, v)
1 = —1, respectively.
We set

PZ = U 2 P(’Y’ ‘7)'
YET.FE{JVTUT
- isi ive sets we have to
Then P = P, U P, U P,. In order that Po, Pi, P(v, ¥) are dls}u:;t:;fn these rules are
permit that some rules out of P occur in P more than once a
associated with different markers. -

We choose C = P¥oC,° P} with a certain ?P
an encoding of the input word, the rules out of I, g¢ to P, in such a way that the
computation of M is simulated by the rules bfflongmg nd the marker of the rule
Tule itself describes the alteration on the Turing ta’?e a:nake this clear we use a
describes the alteration on the pushdown tape. T?) which is defined by
homomorphism h : P — T%, T.=Tx({e}UTU T,

. ; erformed on the
A word out of T4 totally describes all alterations W'gcg ;l': Euch that a word
Pushdown tape. We define a context-free language ¢z ex;xctl)’: homomorphic
(1. 50y, 72).... (42 7:) € C: is the control word tor mdorenl if the automaton M
image of t’hé c.(')r'ltr(')’l word) of a derivation in P: if a: :) rrilbol y: and replaces it
reads in its ith step, | < i < r, on its pushdown tape the sy
by ¥. i €{1,...,r— 1} then y.., must be
Therefore if %, € T or . = B: 8. € T" for some ¢ h's’ means that the uppermost
€qual to ¥, or Blz, respectively. However if ¥ = & (thi

C P*. The rules out of P, generate
génerate the terminal word. The
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.41 1s uniquel
symbol on the pushdown tape, in our case vy, has to be erased),fthenm;ml livlll:cg haz
determined by (y,, 7,). --(¥» %) to be the rightmost sy‘mbol o ﬁo ° y,way:
not been erased yet. This can be described formally in the fo ;W ge Tt by:

We define a partial mapping ¢ : T%— 2" for all Y Y2 Y3aE€ET, u

Yy v2) (v2.€)) = {(y,, £ )}, YUy Y293) (s, €)) = {(y1, y2)h,
) ={u wus |30 € T = uy puy p U(v) = ua.

Let ¢* be the transitive closure of ¢. Then we set

- *
Cz={vET§|('y.,,s)€«1}*(v)}, C=Ptoh (Cy)oPt.
C. is a context-free lan
Furthermore we defined
derivation in G describi
actual inscription of th

guage and therefore C is a context-free language, ;:?y.
C:in such a way that a control word out of‘ C allow; "
ng alterations of the Turing tape which are induced D)’

€ pushdown tape. Therefore L(G,C,0)= L holds.

From Lemmas 3 and 4 we get the theorem:

Theorem 3. ZO)y=2)=FE
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