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Summmy. The following results are proved by the use of transformabilities.

NTAPE (log #») = TAPE (log n)<There exists a § such that every language
accepted by a nondeterministic one-way one-counter automaton is contained in D,.
(D; is the family of all languages accepted by deterministic j-head two-way finite
automata.)

2. NTAPE (n) =TAPE (n)<There exists a j such that every language L C{1}*
accepted by a nondeterministic 5-head two-way finite automaton is contained in D,.

3. |J TIME (»%) =TAPE (log n)¢<>There exists a j such that every language
4

accepted by a deterministic 1-head two-way pushdown automaton is contained in D
4. {J TIME (@™ = TAPE (n)= There exists a j such that every language L < {1}*
d

accepted by a deterministic 1-head two-way pushdown automaton is contained in D;.
5. Df-ng-+1 for all ¢ N.

1. Introduction

In this paper we study the relationships between deterministic and nondeter-
ministic tape bounded Turing machines and between deterministic time bounded
and deterministic tape bounded Turing machines. It is known that TAPE (f(#)) <
NTAPE (f(n)) CTAPE (f(n)?) and that TIME (f(n)) CTAPE (f(n)) < L“)TIME

(@™ Ttisan open problem whether in any of these cases equality holds. We show
that these well known problems can be reduced to some simple looking problems
concerning multihead two-way pushdown automata and multihead two-way
finite automata. Especially we show that NTAPE (log#) CTAPE (f(»)) holds
if and only if each language accepted by a nondeterministic one-way one-counter
automaton is contained in TAPE (f(»)). Therefore the relationship between
nondeterministic and deterministic tape complexities is given by the deterministic
tape complexity of this subclass of the context-free languages, and the result of
W. J. Savitch [9] follows because all context-free languages can be accepted with
deterministic tape bound (log #)? [6]. Furthermore we prove a new hierarchy
result for deterministic multihead two-way finite automata.

In all these proofs we apply the same method. We use the notion of many-one
reducibility as it is defined in recursive function theory (due to D. Knuth [5] we
will speak of transformability). We get our results by showing that the classes,
which we have to consider, are transformable with respect to restricted trans-
formabilities to some subclasses or that they are closed with respect to these
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restricted transformabilities, respectively. This method was used implicitely by
J. Hartmanis in [3} and explicitely by R. V. Book in 1].

Definition. Let % be a class of functions (on strings).

(1) Let f: 2% I"* be a function in &. A set Ly C2*is f-transformable to L, ¢ I'*
if for every we X*, we L, if and only if fw)el,.

(i) A class %, of sets is C-transformable to a class &, of sets if for every L, €%
there exist L,€.%, and f€% such that L, is f-transformable to L,.

(ii) Let % be a class of sets, A set Ly is G-complete jor £ if £ is €-trans-
formable to {L,}. (Note that we don’t demand Z,c.%)

(1v) A class & of sets is closed under C-transformabilities if for every set L,, L,
is ¢-transformable to some set L,eZ implies Le?.

The following lemma can be proved easily,

Lemma 1. Let 4, B;, 1€N, be classes of sets such that 4, c4,,,, B, CBin

hold for all i N and set 4 =04, B:= U B;. Let %, 2 be classes of functions.
Then the following holds. eN €N

(1} Let 4 be ¥-transformable to 4, for some ieN and let B be closed under
%-transformabilities. Then 4 C B is equivalent to A4, CB.

Proof. (i) We have to show that 4; < B implies 4 ¢ B. For each L€A there

eXists a set L,€4, such that L is €-transformable to 4; CB. Bis closed under %-
transformabilities and therefore 4 ¢ B

(1) Suppose A4; CB. Because of (1) this implies 4 ¢ B. Since LeA4 and A ¢ B

there exists a i such that LeB;. 4, is Z-transformable to I and B, is closed
under 2-transformabilities and therefore 4;CB;. qed.

Remark. Lemma I. (i1) remaines true if we replace the condition B, is closed

under Z-transformabilities for all IeN” by ““For a1 1€ N and for every set L,
Liis Z-transformable to some set L,eB, implies LieB,,".

In the classification of S€ts according to their

ations of multitape Turing machines) are used as well

_ certain types of automatq (depending on the number
of input heads ang the storage structure).

Definition. Iet /:IN—NN be some function,

TIME (j(n)): — { I L i§ accepted by a det.el'ministic Turing machine
which operates with time bound f(n)

TAPE | ) — { I L i_s accepted by a deterministic Turing machine
which operates with tape bound f(n)

NTAPE (f (n): = { I L i§ accepted by a nondeterministic
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On the other hand we consider automata consisting of a finite control and an
input tape where £ heads may move independently in both directions (k-head
two-way finite automata). The input is placed between two endmarkers (-4 and
). The automaton starts in a distinguished starting state with its £ heads on the
left endmarker. It accepts the input string if it stops in an accepting state. The
automaton is called deterministic if its next move function is deterministic,
otherwise it is called nondeterministic. Let D, (N,), ke N, be the class of all sets
accepted by deterministic (nondeterministic) -head two-way finite automata.

Furthermore let 7, k€N, be the class of all sets accepted by deterministic
#-head two-way pushdown automata, where a A-head two-way pushdown autom-
aton consists of a finite control, an input tape where % heads may move inde-
pendently in both directions and a pushdown tape. Let C be the class of all
languages accepted by nondeterministic one-way 1-counter automata. Such an
automaton has a counter instead of a pushdown tape and only one head. This
head cannot move to the left. Tt is not difficult to see that C CN,, because every
string accepted by such a counter automaton can be accepted also by a sequence
of moves such that the numbers stored by the counter are always lineary bounded
by the length of the input.

Because of S. A. Cook’s Theorem [2] and some simple considerations (see for
example [3]) the following lemma holds.

Lemma 2. TAPE (logn) =\ D,,
kEN

NTAPE (logn)= {J N,

kelN

U TIME (#%) = (J B.
deN kelN

In [11] W. J. Savitch uses the idea of encoding an input string in unary
notation (he defines a mapping f:X*—{1}* and shows that LeTAPE (n) is
equivalent to H(L)eTAPE (log n) n{1}*) to prove that the LBA-problem (tl:lat
is the problem whether NTAPE (n) equals TAPE (n)) 1s equivalent to the question
Whether every computation of a log n-tape bounded nondete%"min'istic Turing
machine on an unary input string can be simulated by a deterministic log #-tape
bounded Turing machine.

The same method can be applied to problems concerning time bounded
computations. Denoting by Dj (N, IY), k€N, the class of all subsets of {1}* Fh&}t
are accepted by k-head two-way deterministic finite automata (nondgtermlnlstlc
finite automata, deterministic pushdown automata) we get the following lemma,

71

Lemma 3.  TAPE () =NTAPE () < () Di={ N}

kelN kelN
TAPE (n) ={) TIME (¢*) = {J D= ) B
d keN kelN

Now we will give a short survey of this paper.

In Section 2 we define some classes of transformabilities, and we prove by
means of Lemma 1 (i), Lemma 2 and Lemma 3 that the following holds:1 NTAPE
(log n) =TAPE (log #)<>C < TAPE (log n), NTAPE () =TAPE (n)e> N5 CTAPE

7 Acta Informatica, Vol, 6
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(log %), U TIME (#%) = TAPE (log n)= B, ¢ TAPE (log n), Ei) TIME (4% =TAPE
(n)e B! téTAPE log #). In Section 3 we improve these results by means of Lemma
1(ii). | .

( In Section 4 we show that D;{ D, holds for all 7€ N. This improves a result

of O. H.Ibarra [4], stating D;{D..,. In Section § we discuss some further
implications of our results,

late further equivalent problems which deal only with a restricted number of

heads. The first result in this area was proved by J. Hartmanis [3], who showed
that

UN, <UD, is equivalent to N, ¢ U D,.
keN kReEN

kReN
In order to apply the methods mentioned in section { we define some classes of
functions,
Definition,

o :{flf:—fE*Fﬁ—i(Z’uﬂ})*h 1625 IREN: f(dwr) — w11 . 11 Viee Z*}

TiqwrE
(1) 17, = U {13 3ke N F417F) = 1% VreNU{0})

Theorem 1.

() UB i [-transformable to 4
kEN

() UB is /L -transformable to P!
kEN

(3) UN} is I -transformable tq Ni.
ke N

Proof. The general strategy is

case (1}, Let Le U £ Then there is a fin;
keN

€D
Let fielT bethe functionf, (4wh) = w11 .. 11, We i show that L = {4, (¢) [ve L}

epasn ,
pushdown automaton accepting L. We
way pushdown automaton M which simulates on the input

string w11 .., |- the moves performed by M, on the input string Hwl-.

Hiwhe ‘

The positions ", .-, 4 of the k heads of M, are encoded by the head position ¢

of M in the form ¢ =t +iym +intl =1(-wh). We have to show that M
is able to change its head position according to a move of M,.

- Proof of (1). Let P=1 by 4 +4%*~" be the head position of M. By

Successive subtraction of n (nis given by the Position of the rightmost symbol



Transformational Methods and their Application to Complexity Problems 99

of X) M reaches a configuration where ¢, is the head psition and 4, +ign + ... +
;"% is written on the top of the pushdown tape. Then M reads the i,-th input
symbol and afterwards it generates the new head positioni =7, 4 ... +i,#* "2+
%%~ by successive addition of #*~* (M hasto compute #*~'again each time it
wants to add #*"). In this way, just by rotating (i, 4, .., 7,), M readsall input
symbols which are scanned by the heads of M,. Now M is able to simulate the
next move of M,. The head position of M is changed by computing again i,, 4,, ..,
i, one after the other and changing them according to the next move of M,.

2. Proof of (2). The situation is a little more complicated for the unary input
because the number # is not given directly by the input string which is of the

form 411 ... 1k, 7€ N. Therefore M has to decide first whether there is a e N

R —
r

such that » =#* and has to compute this number ». With the methods which are
used to simulate time bounded computations of Turing machines on pushdown
automata ([2], [8]) it is easy to prove that for every function /:IN—IN the fol-
lowing holds:

If fis computable by a deterministic Turing machine in polynomial time
where the input number is given in binary notation then f is computable by a
deterministic 1-head two-way pushdown automaton operating on the unary
notation of the input numbers.

Therefore M is able to compute the function
k

n, if r=n
1) = 0, if An:z =n".
In order to simulate M, the automaton M operates in the same way as it is
described in 1.

3. Proof of (3). M needs more heads than the pushdown automaton in 2. be-

cause it has no additional storage to store intermediate results. Let 411 ... 1+ be
—,—1

;
the input string. It is straightforward to show that M can compute ;Ehtle number %
such that 7 =#* if such a number exists. Afterwards M compute "~

Now let n, n*~, ¢, +1ym + ... +i,n*~! be the positions of head 1, he§d2 and
head 3. M has to compute 7}, 7y, .., i, one after the other. By successive sub-
traction of # (head 1 and head 5 are used alternately to store .'n) M puts its head 3
On position ¢, + iy + ... 4+#,#* "% and its head 4 on position /. J.Xf.terwarcls lltead_j
reaches the position 7, + ... 4" +4,#" ! by successive addition of #" 7. Itis
obvious how each move of M, can be simulated by M. O

In 1973 1. H. Sudborough [12] improved the result of Hartmanis agd showed
that () N, ¢ | D, is equivalent to 1 —N, C U Dy, where 1 —N,, k€N, is the class

kN ReN keN .
of all languages accepted by nondeterministic 4-head one-way finite automata

(that means, the % heads are only allowed to move from the -lef_t to the right be-
tween the two endmarkers). We will show in this paper that it is also equivalent
to consider the problem whether C is contained in l;;J D,.

This result looks similar to Sudborough’s result but it seems that this result
can’t be proved by using his methods, and the fact that C is a subclass of the

7.
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context-free languages may be useful to get further results. Furthermore we get
our results by using only transformational methods whereas Sudborough uses
Savitch’s language of threadable mazes [10].

We use a class 17, of functions which is defined in the following way:

(1) Let X be an alphabet, let 4, - be elements not in 2 and let £ be a natural
number. Let f, A (XU {H, F )% be the following function. For all me N
and all g,eX, i1=1, oMy foa(Hay . a,l) =g, . %ux_; Where # =m 2 and
a=(a,,a,..., @) for j=d tin+ .. +4,78 1 with 0=i,=n—1 for all
v=1, .., k. For the sake of simplicity we set dG=-anda, ,="|.

As an example let us consider the case k=3 and » — 3. Then fy g{aya,as) =
Oydy ... Oy, Where

“0:(“0:“0:”0) —>a3:(a0,a1,a0) .. “*“9:(%:“0:“1)

% ={a,, Ay, dg) oy =(ay, ay, dy) Oy = (ay, 4y, )

“2:(“2:“0,‘20)_ “5:(“21“1:“0)‘ e T Oy = (ag, A, @),

Note that (4, 4, <oy hand (R k) enclose the new string and don’t occur

inside, therefore they can be regarded as endmarkers.
(1} Let d be a natural number and let

82,0,a AL AT U (A, F )
be defined by

&x,k,a(Hwh) =l o (Hwh) e e (Hwk)BRyEtHwbE g, e v
We denote by 77, the class of all functions which are defined in (ii).

Theorem 2. |, is {1,-transformable to
k

{L|3LecC, L,€ Dy, such that . =L,nL,}.

Proof. Let I ¢ X* be an arbitrary element of N, for some k. We will show that
there exists a ¢ N such that

8x4a(L) =1 M8z,5,a(12*) where LeC. Therefore
we first have to show that ¢

82,,4(12*F)€Dy. We define a deterministic 3-head
automaton M which accept

s this language. M needs only two heads in order to
test whether the input string has the form HovfifoRa)d Havh with o == (4, .

4 B=(-.+, .., F) and PR U{, D —{a, B)*%. Note that I(f, ,(Hwt)) =
L{Hwk )% M has to test whether there exists g ¢ such that f, | (dwh) =avf =
% .- %, With o€ (X G -, FD% M performs the following operations:

1. M checks whether there is g #€N such that
the form (g, 4 -,1) with aeX and that o,

the symbols o, ..., a, , have
n—1, be the first tomponents of ¢,

1:(FJ_§:","{). Let 6!1-,1::0,.--;

2. oy, ..., o has the desired form then the rest of the string is determined
by these # symbols, Let

T=iy+ipm-f .. +4.7*7! be some number and let us
assume that A/ hag already tested whether the symbols %, .., o; have the correct
form. Let furthermore he head 2 sca]n the 7,-th cell of
the input string. It is clear that in this case ¢. — (@, .., a;,). Now M has to test
whether o, ’ ok

+1 18 the symbo) determined by a,, .. %, and by j. If ¢, <n—1, then
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%;;y must be the symbol (4, (4, a;, .., 4;,) and this can be tested by means of «;
(the last £—1 components of «; and «,, must be equal) and by means of head 2
which moves one cell to the right and then reads a; .

Now consider the case i, =n—1. Let ¢ be the smallest number such that
1, #=n—1, this is just the smallest number ¢ such that the ¢-th component of a; 18
not equal to .

In this case j =n—1+m—)n+.. +n—-1)n'"Fin .. +iw"and
therefore § +1 = (i, +-1)w* " -+i,, %' + .. +i,#* " and M has to compare whether
o;1, 1s the symbol (4, ..,4, 4; 4, 4;,,, ..., @;). In order to do this M has to look
for a;,,,. M puts its head 1 and head 2 on the (j +1)-st cell. Let us denote by A the
position of head 2. M starts the following algorithm which computes (¢, + 1)n'~t
with 1 =7 41.

(i) If 2 =#' then goto (ii) else goto (iii). In order to test whether A >#', M
moves its head 2 to the left and examines whether there is any symbol of the form

(4,4,..,4,a,...), acX, among the «,, ..., «;. Head 3 moves to the right each

———
3

time head 2 moves to the left and therefore the head position 4 can be generated
again.

(ii) A =1—#'. Head 3 moves to the #’-th cell, this is the first cell storing a
symbol of the form (4, ..,4, ...) with a€Z. Afterwards head 2 and head 3 are
moving simultaneously to the left. Goto (i).

(iii) STOP. When this algorithm stops, then A=(i,-1)#»'~" and therefore
%y=(,..,, @;,.q, ...). Now M is able to test whether a;, is the correct symbol.

e

So we have proved that g5 ; 4(4Z*F)€D, and we will now construct a non-
deterministic 1-counter automaton M which accepts an input string of the ionn
gr 4 q(~wh) if and only if Jwk€L. We don’t care about the behavior of M on

Imput strings which are not of this form.
Let M, be a nondeterministic z-head two-way finite automaton accepting L.

Then there exists a d elN such that every computation of M on an input of length
7 needs at most 2-d-#* moves. In the following let  be this number. M simulates
on the input string &xk, ;(Hwk) all the moves performed by Uk on the input
string e . When M is snnulatmg the t-th step, 1 <¢{<2-d-un*, of M,, then its
head is located in the ¢-th block (a block is a string fx . (-w r) or f5 L (Hwk)E,
respectively) of gz , 4(dwr). Let 4,2, .- , i, be the positions of the % heads of
M, before M, performs its ¢&-th step. Then the head position of 3 is given by

1=1y +i,m+ ... —i—zknk 114k if t=1mod2, and
= 1)nt— (G Fin + .. C44nF ) if ¢=0mod 2.
Note that therefore the i-th symbol of gx ; o(whk) is just (@i, a;,, ..
"wk =q,. . That means that M reads with its one head ]ust the symbols

read by the k heads of M, and so M has all the information necessary to simulate

the next move of M,.
Let us suppose that M is simulating the ¢-th step of M, and let 7 be the head-

position of M. Then 3 has to move its head to the position " =¢- nt+(tn —1,)

t—1

., @), when
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where 1 = 1 |- 228 Bn' and Bie{—1, 0, +.1}, /=1, ..., k, are determined by the
moves performed by the £ heads of M, in its £th step.

i v
(t—li)nk o tnk (t+1)n
< < b
Fig. 1

M performs the following operations (note that the head of M is not allowed to
move to the left). . __—
Its head moves to the right and the number of these moves 1s stored by 1
counter. During this process A subtracts all numbers #’ such that 8, = +hi-
if M2 Lof the form (4,4,...,4,4,...), a€Z, on the
That means, if M reads a symbol of the form ( ; |
. . !
input tape, it looks for the greatest j < such that it still has to subtract n).
~ < . . a, ),
Then M moves to the next cell containing a symbol of the form (- |
7
acX. The distance of these two cells is just #/. During these moves the counteg
remains unchanged. Therefore the counter stores the number (t-n*— 1) — Zj, gi=11
when the head reaches the (£-#%)-th cell,
Now M adds to its headposition all numbers such that §; =—1 one aft(?r
the other beginning with the largest one. Again the movement of th.e head 1is
controlled by symbols of the form (4, wna,0), ae X During this process

the head moves to the position ¢y + 2.4, = —1. Now M reaches the head position
1 by adding the contents of the counter.

~

M accepts the input string when it notices that M, reaches a fin:il state.
Therefore 37 aceepts gy » o(Hwh) if and only if M, accepts —wr. Let L be the
language accepted by M, then grnall)=L NEs ra{12*F). O

It is not difficult to see that the class TAPE (log n} is closed under all the
transformabilities defined in this section.

Theorem 3. TAPE (log #) is closed under 11,

11, I transformabilities,
Proof. We have to show that LZeTAPE (

log #) implies

We will define Turing machine 37 accepting f-1(L)
all moves performed by M on the input f(w)
!(w)* and we may assum
Whenever the Position o

. M simulates on the input @
- There exists a % such that / (f(w)) =
e that M has & read-only heads moving on its input tapfi-
f the input head OfMisi=i tiyl(w) 4 ... 44,-1(w)*%,
then the position of the I-th head of M, 1 <j <4 i i

i Since f is a function be-
longing to J7 VILOIT,, the i-th symbol of ()

) is determined uniquely by the
hoth, . ., f-th symbols of . Furthermore 7 needs not more thap log I(f(w)) =#"
tog £() cels to store in each step of the simulation the contents of the working
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tape of M. Therefore M can simulate M step by step and it is clear that i/ can be
simulated by a normal log #-tape bounded machine with only one input head. O

Because of our basic lemma (Lemma 1) the results of this section mmply to-
gether with Lemma 2 and Lemma 3 the following theorem.

Theorem 4.
NTAPE (log #) =TAPE (log #n)=>C CTAPE (log #)
NTAPE (n) =TAPE (») & N; CTAPE (log n)
U TIME (%) =TAPE (log #) <P, CTAPE (log »)
delN
(J TIME (") =TAPE (n) =B CTAPE (logn).
deN

3. Complete Languages

The results of Section 2 might help to find a solution of one of these important
problems if equality holds. Now we will prove some results which might help to
prove inequality. In order to do this we use the notion of a complete language
(see Section 1). We define the following two classes of functions: Fi is the class
of all word-homomorphisms. F, is the class of all mappings f,:-{1}*F—4{1}*},
7€N, defined by f,(-H") =417 "-¥neN.

Let now X be some alphabet, {0, 1}¢2, andset 2’ = XU {0, 1}. Let A: () 2*
be the homomorphism defined by %{a) =a for all aeZ, 4(0)=h(1) =¢. Let us
consider the following language Ly < (X")*F. -wk € L, if and only if the following
conditions are fulfilled:

1. 3p€{0, 1}* such that we (2" ¢)*
2. ¢ is the encoding of a nondeterministic one-counter automaton (we choose
some fixed method to encode a onecounter machine by a 0-1-string).

3. Let M, be the one-counter machine whose encoding is ¢. Then M accepts
the string /i (w).

Essentially L, is a universal language for all languages out of C. It can be
proved with the usual methods that LyeNTAPE (log #).

It is easy to see that L, is a language which is [y-complete for C. Fpr. ic't LeC,
L<X* (0,14X), be an arbitrary language, let M be a nondeterministic one-
counter automaton accepting L, let ¢ be the encoding of M and let. h, be the
homomorphism defined by: &, (a) =a ¢ for all aeX. Then wel holds if and only
if h¢ (w) ELO ) . - -

In the same way we define a language Lie\TIME {»% which is universal for
F and therefore F-complete for F,. 4 B

Now we will define in a similar way a universal language L, for N5. In order

to apply Lemma 1 (ii) L, must be an element of |JN} and therefore we have to
R

encode each automaton by some natural number. We use the mapping «:{1}-{0, 1}*
—>{1}*, a(g) =1*"® for all pe{1}-{0, 1}*, where un((p)'is: tllle natural number
whose binary notation is ¢. Let M be any nondetermlm_stlc 5-head twg—way
finite automaton, then we define gz (M) =a(@y) where @315 the o-1-encoding of
M.
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L, is defined as the set of all strings 41™F which fulfill the following conditions:

1. 37, neNsuch that m — (n +7)®+u. (Note that #, # are determined uniquely
if they exist.)

2. There exists a nondeterministic 5-head two-way finite automaton M such
that gn (M) =y,
3. M accepts 41",

L, is Fycomplete for N2, For let I be an element of N} let M be a nonde;tler-
ministic 5-head two-way finite automaton accepting L and set # =g%(M ). Then
-1+ €L if and only if -q@+ri+n_ €L,. Furthermore it is not difficult to S}?e
that L,c TAPE (log n). The corresponding Turing machine M, performs 0111 the
input string 41" the following operations: Tt computes the gree%tes-t number p
such that p2<m and examines whether no=m—pt<p. If th_ls is true then
7=p—n. The binary notations of # and ¥ are stored on the workmg tape. Aftel;
wards M, examines whether 7 is the encoding of some nondeterministic 5-hea
two-way finite automaton M and simulates M on the input string -1,

In the same way we define 4 language L; belonging to (J N; whichis Fy-complete
k
for B'. Now Lemma 1 (ii) leads to the following theorem -

Theorem 5.
1. NTAPE (log ) =TAPE (log n)3;:C <D,
2. NTAPE (n) =TAPE (n) (:)Ej:Né <D,
3. E}TIME (n%) =TAPE (log #) =3;:F D,

4. UTIME (@*) = TAPE (n) <3P ¢D
d

ve the first relation. Tet again L,eNTAPE (log ») be

y to see that each D, j‘e N, is
hat means, that D, is closed under inverse
(ii) implies :

closed under B-transformabilities {t
homomorphism). Therefore Lemma 1

ed. The proof of the relations 2

s-transformabilities but that F2‘1(D].) C 1?2 ; holds
aj-head automatop then Z, ={-11" [lmtnrtn e}
utomaton. The twq heads are needed to simulate

ad position of length #2). Because of the remark to
4 follow. [

foralljeN. (If Lisaccepted by
1s accepted by a (2f)-head a
On an input of length # a he
Lemma 1 the relations 2 ang

4. A Hierarchy Result
We will use now the met
result for the D;, jeN. 0.

7

abilities) that D; $DJ-

hod of transformabilitieg to prove a new hierarchy

H. Ibarra showed in (4] (also by using transform-
+g forall jeN.
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We will show first that we can get this result by a direct diagonalization
argument and that even languages of a special form belong to D ira—D;:

Lemma 4. Let X' be some alphabet which contains at least two symbols and
let f5 , be the function defined in Section 2. Then to each 7€EIN there exists a
language L; Cf; ,(AZ*) with LeD,,,—D;.

Proof. Seta = (4,4), f =(b,F) and 2" = (XU {4, F})2{a, B} Thenf, ,(42X*F)
Coa(2Z')*B. Let h:X {0, 1} be some fixed surjective mapping and let /:X*—>
{0, 1}* be the monoid homomorphism induced by k. We define a (7 +2)-head
automaton M which works on an input string wee(X")*g in the following way:

1. M tests whether wef, ,(-12*+). Because of the proof ot Theorem 2 this
can be done by using only 3 heads. M rejects w if wdfy o (12*F).

2. Let us assume now that there exists a v€X* such that w=/{g ,(v). M
tests whether % (v) is the encoding of a deterministic j-head two-way finite auto-
maton. An encoding of such an automaton is a list of 0-1-strings of the form
001°01%01% ... 01%01°01™0 ... 0100 describing the change of the state and the
head positions if the automaton is in the state s reading the symbols 4, ..., a;.
§',%, ..., n, must be determined uniquely by s, aj, ..., a;. M needs two heads to
perform this test.

3. Let M, be the j-head automaton whose encoding is /(). M simulates M,
on the input w. During the simulation the position of the i-th head, 1 <7 <7, of
M is always equal to the position of the i-th head of M. M needs its two additional
heads to simulate the next move function of M,. Let s be the actual state of M,
and let 4, ..., aj-eZ" be the symbols read by the j heads. Then head j 4-1 of M
is in the position s (we can assume that all states are natural num}bers) and head
7+ 2 looks for a substring of %(¢) of the form 001°01%0 ... 01%01701™0 ... 01"00.
If no such substring exists and if s is no final state of 3/, then M, does not accept
w. In this case M accepts w. Otherwise the head positions are changed flccording
toy, ..., 7;, 8" and the next move of M, (whose actual state is now s’) is simulated.

M accepts w if and only if M, does not accept z.

Since § 4-2>2% holds for all j¢ N. M needs only j 42 heads to perform the
operations described in 1., 2., 3. and therefore L;€D; ,. By the definition of L,
it is clear that L <y o (42*F). Furthermore let LeD; be some language and let
“9€{0, 1}* be the enc;ading of a j-head automaton accepting L. ?\ow con91d§r
some vkt (vg) and set w=f, ,(dvt). Because of 3. wel holds if and only if

o]

w¢L,. Therefore L =+ L, for every LeD, and this implies L;¢D;. O

Theorem 6. Let j =4 be an even natural number and let L;, 2" be defined as
in the proof of Lemma 4. Then fy- »(L;)€Dj:1-

Proof. 1et X, X' be the same sets as in the proof of Lemma 4. L; is accepted by
a {7 +2)-head automaton M which has the following property: Lgt awf, wE(Z")*,
be any input string, then the heads j -1, 7 +2 are used only if there exists a
v€42*F such that qwpf = {5 2(-vk), and in this case these two heads move ox?ly
on the initial string of awf of length I(v) =Vi(xwp). Note that uefy. ,(L;) implies
that there exists a ve Z* such that u =fp o(f5,2(-H0F)).
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We have to define a (j/2 + 1)-head automaton M accepting fy. o(L;). Let u be
the input string. Then M7 tests first whether there exwists a we((l')* SUC.h that
u=[r ;(awf). Note that 7/2+1=3% and therefore M can perform this test.
Afterwards M simulates on the input string fy. o («wp) all the moves performed by
M on the input string awf. (Let awf=ay.. a, , with g,=q, a,_,=f and
a,e2" for 1 <y <n—2)) Let i3, ..., 1;. 4 be the head position of M after a number

of steps. 1 encodes these head positions by its head positions /;, ..., &g in
the following way:

Ry =Ty, +1y,n for p=1, 72—,

By =1, 4 +1; g Vn Tlorn, by, =17
Note that #; |, i, , <.

The symbol read by the p-th head of M is (2, . a; ) if 1 =v<J/2 and (a, “z‘g)
i v=j{2+1. Furthermore we know that the heads 741, 742 are used only if
there exists a veX* such that w=Ffy o(Hdvl). Let 4ok be by ... b,,N,,l, m=|n.
Then a, , bnor, = (b,,, 0,) for all O=7,7=m—1, and therefore M reads the
symbol ((bijﬂ,-bim): ;) with its j/2-th head whenever M reads the symbols
(by..0 ), (s, ),Noz,-}.‘1 with its heads 7 + |, ]+2,7—1.

Therefore M has all the informatj

On necessary to simulate the next move of
M. In order to do so A7 must be abl

€ to add (or subtract, respectively) » or V”
3 uses its head (2 +1) as a counter. Note that the position of head (j/2 +1) is
always divisible by n. Therefore 47 is able to count up to n (J'n, respectively) by
moving its head (7/2 +1) to the nearest cel] containing a symbol of the form (o, @)
with a€ X" (or ((4, b), a) with pe X ael’ respectively). Afterwards head (i/2+1)

can move back to its original position and therefore we can change all head
Positions one after the other. O

Theorem 7. Let X he an al

Phabet and jeN. Tet [ ¢ 42*F be some language.
Then fr,g(L)eDj implies Le D

2;-

maton accepting g o(L). Our 2 7-head automaton
s each position of 3y by the posttion of two of its heads.
Let fo ,(Hwh), wh=ay . a,_ a,c2 for all y=1, .-., n—2 be the input
string of M and let L= +i,-m, 0 S0, i Zu—1, be the position of one of the
heads of 3/ during its computation. Then the position of the two corresponding
heads of 37 are iy and 7,. Therefore M reads the symbols g4 ;, and a; whenever M
reads (a,,, a;) and so M can simulate each movye of M. )

Theorem 8. Di{D,., forall J€IN.

Proof. D, is the class of the regular sets and therefore {a"8"|neN}gD,. It is
obvious that {a"b"|ne N}eD, and this implies D, { D, .

Now let us assume that j >2 and D;=D
in Lemma 4. Thep leyz(Lg,r)eDjH =D, hold
Ly,€D,, because of Theorem 7. This is co
Lo8D,,. Thus we have proved that Di+D, .. o

i+1- Let L, be the language defined
s because of Theorem 6 and therefore
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5. Related Results

In Section 2 we proved that NTAPE (log #) = TAPE (log ) is equivalent to
C CTAPE (log#). We got this result by showing that NTAPE (log #) is trans-
formable to {L,~L,|L,eC, L,eD,} under our class 7, of transformabilities and
that TAPE (log #) is closed under IT,-transformabilities. Therefore it is clear that
NTAPE (log #) CH is equivalent to C CH whenever H is closed under [T, trans-
formabilities and D, CH. We get the following theorem:

Theorem 9. Let a be some rational number. Then NTAPE (log #) CTAPE
((log #)%) is equivalent to C CTAPE {(log #)*).

From this result we see that Savitch’s theorem [9] stating NTAPE (log #) ¢
TAPE ((log #)?) is an evident consequence of the theorem given by P. M. Lewis,
R. E. Stearns and J. Hartmanis [6] stating that the class of context-free languages
is contained in TAPE ((log #)2). Furthermore if we could improve this result we
would get a better bound for the simulation of deterministic Turing machines by
nondeterministic ones.

On the other hand even if the upper result is optimal there might be a better
bound for the simulation of nondeterministic machines by deterministic ones
because we have to consider only the deterministic tape complexity of the one-
counter languages and this class is only a subclass of the context-free languages.

We will show further that the following result of the author [7] can be proved
using only these simple transformability methods.

Theorem 10. Let peIN and let L be any language accepted by some nondeter-
ministic two-way multihead pushdown automaton which performs on every
input of length # not more than »? steps. Then LETAPE ((log #)?).

We have to realize only that the languagei ={{fy (@) 'fzvh(w)R)”“‘“’[wEL},
Where L ¢2* is accepted by a k-head antomaton, is accepted by a nondeterministic
one-way 1-head pushdown automaton. This can be seen as in Theorem 2. We need
no additional counter in this case because the automaton has a pushdown tape

which can operate like a counter. L is a context-free language and the.refore
Theorem 10 follows because of the result of Lewis, Stearns and Hartmanis [6].
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